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PREFACE
The great progress of meteorology in recent years has been

largely due to the application of the laws of thermodynamics and

hydrodynamics to the study of the atmosphere and its motions.

It is the aim of this book to give an account of these investigations

and their results, with regard to applications to weather fore-

casting and to research.

No previous knowledge of meteorology is assumed, although
some preliminary training in general meteorology will facilitate

the study of the book. A large number of references to literature

have been given in order to enable the reader to consult the

original papers. The material presented has been the subject of

lecture courses on Dynamic Meteorology given at the University
of Toronto during the past six years as part of the meteoro-

logical course offered by the university in cooperation with the

Meteorological Service of Canada. The scope of the book is, in

the main, a theoretical discussion of the various phenomena,
without a complete descriptive account of the observed phe-
nomena and of the actual practical applications of the theory.

The mathematical technique has been kept as simple as possible.

Readers who are sufficiently well versed in advanced mathe-

matical methods will know how to obtain solutions for many of

the specific problems discussed here by more elegant mathe-

matical methods. Thus, the derivation of the equations of

motion on the rotating earth (Sec. 45) could be shortened greatly

by the use of vector analysis. Where more advanced results

of thermodynamics or of hydrodynamics are used, they have been

explained briefly, but the reader will do well to remember that

this book does not deal with these subjects but with dynamic

meteorology and that for a thorough study of thermodynamical
or hydrodynamical problems, specialized textbooks should be

consulted.

The problems are chosen partly to supplement the text with

material of secondary importance and partly to indicate the

possibilities of practical applications.
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The formulas are numbered according to the decimal system.
The number before the period refers to the section in which

the formula appears, the number after the period indicates the

position of the formula in the section. The formula with the

smaller number comes first. Thus (17.21) precedes (17.3), but

follows (17.2).

The author is indebted to Dr. W. Elsasser for permission to

reproduce Fig. 21, to the editors of Nature for permission to

reproduce Fig. 24, to Prof. J. Bjerknes for permission to reproduce

Figs. 45, 79, 80, 86, 89, to Prof. S. Petterssen for permission to

reproduce Figs. 55 to 57, to Sir Napier Shaw and Messrs. Con-
stable and Co. for permission to reproduce Fig. 81, and to

Mr. C. M. Penner and the National Research Council of Canada
for permission to reproduce Figs. 84 and 85. Owing to the

present war, it has been impossible to approach all the authors

and publishers concerned for permission to reproduce diagrams
which appeared in their publications. The author offers his

apologies for this omission and hopes that the permission may be

considered as granted, since proper references are made in each

case and since all these diagrams have originally appeared in

scientific journals.

The author wishes to express his gratitude to Prof. J. Patterson,
controller of the Meteorological Service of Canada, to Mr. A.

Thomson, assistant controller of the same service, to Prof. C. F.

Brooks, director of Blue Hill Observatory, and to Prof. Sverre

Petterssen, head of the Meteorological Department of the Mass-
achusetts Institute of Technology, for their encouragement dur-

ing the preparation of this book.

Sincere thanks are due to Lt. Haakon Anda of the Royal
Norwegian Air Force for reading the manuscript, and to Mrs.
Haurwitz for her great assistance in preparing the manuscript for

publication.

BERNHARD HAURWITZ.
CAMBRIDGE, MASSACHUSETTS,

Augtist, 1941.
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DYNAMIC METEOROLOGY

CHAPTER I

THE EARTH. THE EQUATION OF STATE FOR DRY AND
MOIST AIR

1. The Earth and Its Gravitational Field. The earth is

approximately a sphere or, more accurately, a spheroid with an

equatorial radius of 6378.4 km and a polar radius of 6356.9 km.
For almost all meteorological problems the deviation of the

earth from the spherical form may be disregarded, so that the

earth may be assumed as exactly spherical with a radius of

6371 km, approximately. A sphere of this radius has roughly
the same area and volume as the earth.

The angular velocity of the earth's rotation

2w = 7.292 X 10-5 sec- 1
.

sidereal day

The acceleration of gravity that is observed on the earth con-

sists in the actual attraction by the earth diminished by the

effect of the centrifugal acceleration caused by the earth's rota-

tion. Points near the equator move faster than those at higher
latitudes owing to the earth's rotation. Therefore, the centrifugal

force decreases poleward, and consequently the total acceleration

of gravity increases. Moreover, owing to the spheroidal shape
of the earth, points at higher latitudes are closer to the center of

the earth. This is an additional reason for the increase of the

acceleration of gravity poleward, for the gravitational force at a

point outside the earth is inversely proportional to the distance

from the center. The total acceleration can be expressed by
the following formula for the acceleration of gravity at sea level

0o and at latitude <p:

go = 980.621(1
- 0.00264 cos 2*>) cm/sec 2

(1.1)

1
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Because the acceleration of gravity decreases with the square
of the distance from the center, its value g at an altitude z above

sea level is given by

9 =
[i + (L2)

or g ~0o(l 3.14 X 10~7
2) if z is expressed in meters.

E = 6371 km, the mean radius of the earth.

On mountains, Eq. (1.2) should be replaced by another equa-

tion, owing to the mass of the mountain and the imperfect

isostatic compensation. The consideration of these corrections

would lead too far into geodesy and is not of great importance to

the meteorologist who finds these figures in tables. 1

The height z of a point above sea level can also be expressed

by the difference between the potential of gravity at sea level

and at the altitude z. The potential at the altitude z is numer-

ically equal to the work done when the unit of mass is lifted from

sea level up to this height. It is called the geopotential. The

following relation exists between the geopotential ^ and the

height z:

+ =
$*gdz (1.3)

according to which, with (1.2),

Because z<E, the denominator on the right side of this last

equation is very nearly unity so that numerically ^ is about

10 times larger than z if the meter is used as the unit of length.

In order to obtain approximate numerical equality between the

geopotential and the corresponding altitude the former is usually

expressed in a unit that is 10 times smaller than the one following

from Eq. (1.31). This unit is called the "dynamic meter "
or

"geodynamic meter." It should be clearly understood that

the dynamic meter is not an altitude but rather an energy per
unit mass. The hundredth part of the dynamic meter is a

dynamic centimeter, 1000 dynamic meters are a dynamic kilo-

1 "Smithsonian Meteorological Tables," 5th ed., Smithsonian Institution,

Washington, D. C., 1931. BJERKNES, V., "Dynamic Meteorology and

Hydrography,
" Tables 1M and 2M, Carnegie Institution of Washington,

Washington, 1910.
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meter, etc. If the height above sea level is expressed in these

units, it is called
"
dynamic height" to distinguish it from the

ordinary geometric height. Obviously the following relation

exists between the dynamic height ^ and the geometric height z:

(1.4)Y ~
10 1 + (z/E)

Because go
= 9.8 m/sec 2

[if go is expressed in centimeter-gram-
second (cgs) units the factor Jlo has to be replaced by Koool>

\l/ is about 2 per cent smaller numerically than z. With the aid

of (1.4) and (1.1), dynamic heights and geometric heights may be

transformed one into the other. In meteorological practice where

speed is essential, tables are used for this transformation. 1

The practical advantage of the dynamic height \l/ over the

geometric height z is due to the possibility of combining the

variations of the acceleration of gravity g with the variable ^
which measures the elevation (see Sec. 6).

Dynamically, the surfaces of equal potential are more impor-
tant than the surfaces of equal height because the force of gravity

is everywhere normal to the former while it has a component

parallel to the latter. Therefore, a sphere would be in equilib-

rium on a surface of equal potential but would roll toward the

equator on a surface of constant height.

The surfaces of equal geometric and dynamic height intersect

each other, but the inclination is small. The equipotential

surface 20,000 dyn. meters, for instance, descends 107 m from

the equator to the pole.

2. Units of Pressure, Temperature, and Density. Pressure

is defined as the force exerted on the unit area. The unit

of force in the cgs system being the dyne, it follows that the

unit of pressure in the cgs system

Dynes/cm 2 = gm cm"" 1 sec~2

This quantity is too small for practical use in meteorology. A
pressure of 106

cgs units has been called
"
1 bar."

1 bar = 106
dynes/cm

2

l
BjERKNBS, op. cit., Tables 3M-6M. "Smithsonian Meteorological

Tables," Tables 64-68. LINKS, F.,
"
Meteorologisches Taschenbuch," I,

Tables 26-27, Akademische Verlagsgesellschaft, Leipzig, 1931.
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and in practice the millibar, i.e., the thousandth part of a bar,

is in most countries used as the unit in which the atmospheric

pressure is expressed

1 mb = 103
dynes/cm 2

In addition to the millibar the following expressions are some-

times used :

1 decibar = 10" 1 bar

1 centibar = 10~ 2 bar

1 microbar = 10~6 bar

It may be noted that the centibar is the unit of pressure in the

meter-ton-second system.

In practice the atmospheric pressure is most frequently deter-

mined by the height of a mercury coluitin exerting the same

pressure as the air. Consequently, the pressure observations

are given in units of length, millimeters or inches. Because the

density of mercury is 13.6 and the acceleration of gravity at sea

level and 45 latitude is 980.6 cm/sec
2
,
the pressure of a mercury

column of height 1 mm in cgs units is

1 mm Hg = 10- 1 X 13.6 X 980.6 = 1333 dynes/cm 2 = 1.333 mb

Similarly, the pressure of a mercury column of height 1 in. is,

because 1 in. = 25.4 mm,
1 in. Hg = 33.86 mb

The following scales are used to express temperature: Accord-

ing to the centigrade scale, the freezing and boiling points of

water at
" normal "

atmospheric pressure (760mm Hg = 1013 mb)
have the values and 100, respectively. According to the

Fahrenheit scale, these two fixed points have the values 32 and

212. The relation between the two scales is therefore

PC = %(tF -
32) (2.1)

The Reaumur scale according to which the freezing point of

water is and its boiling point 80 is today not used in meteorol-

ogy. According to the absolute temperature scale the freezing

point of water has the value 273 1 and the boiling point 373, so

that the absolute temperature T is, in degrees centigrade,

T = t C + 273 (2.2)

1 This figure is sufficiently accurate for all meteorological problems.
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For a discussion of the theoretical foundations of the absolute

temperature scale the reader is referred to the textbooks on

thermodynamics.
The density p is defined as mass per unit volume. Its unit in

the cgs system is gm/cm3
. The specific volume v is the volume

per unit mass. It is obviously

v = i
(2.3)

p

3. The Composition of the Atmosphere. Atmospheric air is

a mixture of various gases. The two main constituents in the

lower layers are nitrogen and oxygen which account for 99 per
cent of volume and mass of the air. A critical survey by Paneth 1

shows the composition of the air near the surface to be as given
in the following table in abbreviated form :

There are also small traces of neon, helium, krypton, xenon,

ozone, radon, and perhaps hydrogen present.

The table refers to completely dry air. The water vapor of

the air is variable, for water may freeze, condense, and evaporate
at the temperatures encountered in the atmosphere. It there-

fore requires separate consideration (Sec. 5).

The observations indicate that the composition of the atmos-

phere remains virtually unchanged at least up to 20 km. Ozone

becomes more abundant at greater heights, with a maximum
between 20 and 30 km. It has great influence upon the emission

and absorption of radiation in the upper atmosphere, but its

amount is not sufficient to affect the density of the air directly.

At greater altitudes, but probably not below 100 km, lighter

gases must become predominant.
2 For the problems of dynamic

1 PANETH, F. A., Quart. J. Roy. Met. Soc., 65, 304, 1939.
2 CHAPMAN, S., and MILNE, E. A., Quart. J. Roy. Met. Soc., 46, 357, 1928.

HAUBWITZ, B., The Physical State of the Upper Atmosphere, J. Roy. Astr.

Soc. Can., 1937, 1938. CHAPMAN, S., and PRICE, W. C., Report on Progress
in Physics, Phys. Soc. London, 3, 42, 1937.
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meteorology the state of the high atmosphere is not important,

at least according to our present knowledge.

4. The Gas Equation for Dry Atmospheric Air. In thermo-

dynamics, it is shown that the following relation exists between

pressure p, density p, and absolute temperature T of an ideal gas:

Here 72* = 83.13 X 106
ergs/gm degree = 1.986 cal/gm degree,

the universal gas constant, and m is the molecular weight of the

gas. For actual gases, (4.1) holds as long as they are in a state

sufficiently far away from condensation. Therefore, the equa-
tion can always be used for the atmospheric gases at ordinary

temperatures and pressures, with the exception of water vapor.

For a mixture of two or more gases, as, for instance, for

atmospheric air, a similar formula holds. To simplify matters a

mixture of only two components will be considered. The gases

may have the volumes V\ and V*, the masses M\ and M^ the

same pressure p, and temperature T. Because

M l , M2

Pl = and p2
=
y-

it follows from the gas equation (4.1), as long as the gases are

separated in two containers, that

R* Ml A R* M* _
p T and p T" miVi m 2 72

If the containers are brought together and the separating wall

is removed, each gas occupies the whole volume V.

V = Fi + F2

Consequently the sum of the partial pressures of both gases

This relation states Dalton's law, viz., that the sum of the partial

pressures is equal to the total pressure of a mixture of gases.

The preceding equation may be written

m
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provided that the "molecular weight of the mixture" is defined by

M ! + M, = M i M2

m mi W2

Because Af i + Af2 = M,
the total mass of the gas mixture

Thus, the gas equation for a mixture of gases is also given by

(4.1) provided that a mean molecular weight m is introduced

according to (4.2). If the mixture consists of more than two

components, its molecular weight is given by

m ^J mi
'

From the table in Sec. 3 the molecular weight of the air is

found to be m 28.97 if nitrogen, oxygen, argon, and carbon

dioxide are taken into account.

Since the universal gas constant R* appears in the equation

mostly divided by the molecular weight m, it will be convenient

to introduce the gas constant for (dry) air

R = = 2.87 X 106 cm 2 sec~2
(deg)-

1

6. Atmospheric Water Vapor. In addition to the other gases

enumerated in Sec. 3, atmospheric air contains a certain amount
of water vapor which varies widely with time and locality. As

long as no condensation or fusion is taking place, water vapor

may be treated as an ideal gas. If e is the water-vapor pressure,

mw its molecular weight, m^ =
18, pw its density, T its tempera-

ture, according to Eq. (4.1)

" = ~^ RT >

where m^/m = 0.621. It is convenient to introduce the gas

constant R for (dry) air in (5.1). The temperature T of the

water vapor may be assumed as equal to the temperature of the

dry air with which it is mixed. Therefore, it is not necessary to

denote it by a subscript w. In meteorology the density of water

vapor is frequently called
"
absolute humidity."
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The total density p of the moist air is the sum of the density

of dry air and of water vapor. The partial pressure of dry

air is p e when p is the total pressure of the moist air.
1

Conseauently

j) g IP I "r^i /ra\
P =

~~ftf
^ 0.621 ^j ^

"D>P I
* """ 0.379 -

j (5.2)

This equation shows that moist air is lighter than dry air of

the same temperature and pressure, for the water vapor is lighter

than the air that it replaces.

In problems where only the density of the air is important,

dry air of somewhat higher temperature may be assumed to be

substituted for the actual moist air. This temperature which the

fictitious dry air should have in order to be of the same density as

the actual moist air under the same pressure is called the ''virtual

temperature
"

T*. According to (5.2),

T* =
1 -

The density of moist air may then be written

(5.4)

At a given temperature the water-vapor pressure can rise only

up to a certain maximum, the saturation, or maximum, vapor

pressure em . If the existing water-vapor pressure e is smaller

than em, evaporation from liquid-water surfaces or ice can take

place; if e = em,
an equilibrium is reached between the liquid

(or solid) and the gaseous state; if e > em,
condensation 2 occurs.

Below the freezing point, one has to distinguish between the

saturation pressure over ice and over water.

It should be clearly understood that the fact of saturation is

independent of the presence of other gases besides water vapor.

If water of a certain temperature is brought into a vessel con-

taining no other gas, the water-vapor pressure, by evaporation,

will reach the same saturation value as if air or any other gas

1 But if all water vapor condenses and falls out as precipitation, the result-

ing pressure fall will not be e, for the water vapor by itself is not in hydro-

static equilibrium (see Chap. II, Prob. 1).

2 For modifications of this statement due to the surface tension of water

droplets and the pressure of dissolved substances in water, see Sec. 16.
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were present. The maximum water-vapor pressure depends

only on the vapor temperature. It is, therefore, not strictly

correct to say that the air is saturated with water vapor. Some

justification for such a statement may, however, be found in the

fact that the atmospheric water vapor has the same temperature
as the air of which it forms a part. Because the saturation

pressure depends on the temperature, its magnitude is indirectly

influenced by the air temperature. The expression
"
saturated

air" will therefore be used, for its brevity, in the following

discussion.

The variation of em with the temperature is given in Table I,

(page 341). Tetens 1 has given an empirical formula for em based

on the laboratory measurements. If em is the saturation vapor

pressure in millibars and t the temperature in degrees centigrade,

em = 6.11 X 10 *T* (5 '6)

The constants a and b are as follows:

Over ice,

a = 9.5, b = 265.5

Over water,

a = 7.5, b = 237.3

A similar theoretical formula can easily be derived from the

equation of Clausius-Clapeyron for the heat of condensation. 2

Besides the absolute humidity, which is used rarely in meteor-

ological practice, the water-vapor content may be expressed by
numerous other quantities. The relative humidity f is the ratio

of the actual vapor pressure to the saturation pressure at the

existing temperature,

/ = f (5.6)
m

or, according to (5.1),

/ - -^-
(5.61)

PW max

The relative humidity may thus also be defined as the ratio of

the actual absolute humidity to the maximum absolute humidity

possible at the existing temperature.
1
TETENS, 0., Z. Geophysik, 6, 297, 1930.

2
See, for instance, D. Brunt, "Physical and Dynamical Meteorology,"

2d ed., p. 103, Cambridge University Press, London, 1939.
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The specific humidity q is the ratio of the absolute humidity

(density of water vapor) to the density of the moist air,

The mixing ratio w is the ratio of the absolute humidity to the

density of dry air,

w = -^- = 0.621 (5.8)~~'

The following relations exist between the specific humidity and
the mixing ratio according to their definitions (5.7) and (5.8):

^ (5-7D

-2-
(5.81)

Because e < p as seen from Table I, which gives the maximum
water-vapor pressures at different temperatures, (5.7) and (5.8)

can in practice be simplified to

q ~ w ~ 0.621 -
(5.82)

Mixing ratio and specific humidity are figures without physical
dimensions. Owing to their smallness, it is convenient in prac-

tice to express them in grams of water vapor per kilogram of air

(dry or moist). In Sec. 13, it will be shown that q and w remain

constant for dry-adiabatic changes. These quantities are there-

fore useful for the identification of air masses.

The dew point r is the temperature to which the air has to be

cooled, at constant pressure, in order to become saturated.



CHAPTER II

p-dp
P

z+cfz
z

ATMOSPHERIC STATICS, ADIABATIC CHANGES OF
DRY AIR

6. The Decrease of the Pressure with Elevation, The atmos-

pheric pressure at any level in the atmosphere represents very

accurately the total weight of the air column above the unit area

at the level of observation. At greater altitudes the pressure is

consequently smaller, for there is less mass above the observer.

To find the rate of decrease of the

pressure, consider a vertical air

column of unit cross section (Fig.

1). At the level z the pressure is

p; at the level z + dz, it is p dp.

The pressure difference is equal to

the weight of the air column of the

height dz. If dz is chosen suffi-

ciently small so that the density

and the acceleration of the gravity

g may be regarded as constant in the height interval under

consideration,

dp = -gpdz (6.1)

This equation is sometimes called the "hydrostatic equation."

As long as the water-vapor content can be neglected, the density

(4.1)

(6.11)

Fia. . Decrease of the pressure
with altitude.

which may be substituted in (6.1). If the variation of g with

th^e
altitude is neglected, it follows that

dp g

~p

~ ~^
and, by integration, that

p (6.2)

11
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where po is the pressure at the earth's surface. If the tempera-

ture is independent of the altitude, (6.2) may be written

p = poe~*T (6.21)

The assumption of a constant temperature in the vertical

direction is a good approximation to the average temperature

distribution in the stratosphere. In the lower part of the

atmosphere, the troposphere, the temperature distribution is rep-

resented better by a function decreasing linearly with the height,

T= To - az

The constant a is called the "lapse rate of temperature" or the

"vertical temperature gradient," even though the latter expres-

sion should rather be reserved for dT/dz. When the temperature

increases with the altitude, the lapse rate is negative and the

atmosphere shows an "inversion" of the temperature lapse

rate; when a. = within an atmospheric layer, the layer is

"isothermal."

If the temperature is a linear function of the height, integration

of (6.2) gives the equation

T\_ ]Ra (6.22)

Upon introducing the geopotential ^ according to (1.3) in

(6.1), it follows that

dp = -pcty (6.3)

Equation (6.3) can be integrated in the same manner as (6.1).

When the geopotential is used instead of the geometric height,

the variable acceleration of the gravity no longer appears in

the equations.

The influence of the atmospheric moisture content on the

decrease of the pressure with altitude can be taken into account

by using the virtual temperature T* instead of !T. From Eq.

(5.3), it followed that moist air of the temperature T and of the

vapor pressure e has the same density as dry air of the temperature

T* = - (^ *i\

1 - 0.379(e/p)
(*'6)

where T* was the virtual temperature of the air. Therefore,
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for moist air the temperature T should be replaced in the pre-

ceding equations by the virtual temperature T*.

7. Height Computation of Aerological Ascents. The baro-

metric formula is used for the solution of a great number of

practical problems as, for instance, for the height computations
of aerological ascents. Because the aerological data must be

1000
-10

4000 3000

20

1000

10 20 30

Temperature, C

2000

Dyn. meter

FIG. 2. Height computation of an aerological ascent after V. Bjerknes. Toronto,
July 3, 1939. (The ordinate is p - 2 ^8

, not in p for reasons given on page 23.)

quickly available for the daily weather analysis, a number of

methods have been developed for the computation of the height

of any point in the atmosphere for which aerological observations

are available. 1
Only the method of V. Bjerknes

2 will be described

here. From the aerological ascents the pressure p, the tempera-
ture T, and the relative humidity / for a number of points in the

1
STOVE, G.,

"
Meteorologisches Taschenbuch," II, Akademische Verlags-

gesellschaft, Leipzig, 1933.
2
BJERKNES, V.,

"
Dynamic Meteorology and Hydrography," Chap. VI,

Carnegie Institution of Washington, Washington, D. C., 1910.
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atmosphere are obtained. They are plotted on a chart whose

abscissa is the temperature on a linear scale and whose ordinate

is the pressure on a logarithmic scale (T-ln p chart). As an

example the airplane ascent made at Toronto on July 3, 1939,

is plotted in Fig. 2 (broken curve).

The data for this ascent are

The height of the Toronto airport is 187 dyn. meters.

To find the height of each point of observation the virtual

temperature has to be determined first. Because the computa-
tion of this quantity from (5.3) would require, in practice, too

much time, provision has been made on the T-ln p chart to

obtain it more directly. The difference between virtual temper-
ature and temperature is approximately

T* - T = 0.379 f
6^^ T

As long as the relative humidity is 100 per cent, the difference

T* T
7

is a function of pressure and temperature only. There-

fore, the value of T* T is fixed by the pressure and temperature
of each point on the chart. It is indicated by the distance

between each two successive short vertical lines on every isobar

representing a multiple of 100 mb. For instance, when the

pressure is 700 mb and the temperature +10C, the virtual

temperature of saturated air would be about +12C. When the

relative humidity is less than 100 per cent, T* T is obtained

by multiplying the difference T* T for saturated air by /.

In the previous example a relative humidity of 50 per cent would

give a virtual temperature of +HC. In this manner the

virtual-temperature curve can be plotted quite easily (full curve

in Fig. 2.)

The height may now be expressed in dynamic meters in order

to eliminate the acceleration of gravity g. Upon substituting the

equation of state for moist air (5.4) in (6.3), it follows that
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and, by integration

1 fln Pl
1 v

fa fa = _ _ R
\ T*d(ln p) =

77^ #^1,2* In ^ (7.1)10 Jin Pl 10 p2

Here

(In pi
- In p2)7Y2* =

f r*d(ln p) (7.2)
/ln p

Ti, 2
*

is a suitably defined mean virtual temperature in the layer

between pi and p 2 . Ti,z* can easily be found on the T-ln p
chart. Consider, for instance, the virtual-temperature dis-

tribution between 900 and 800 mb in Fig. 2. The integral on the

right-hand side of (7.2) is represented by the area enclosed

between the isobars pi = 900 mb and p% = 800 mb and between

the isotherm t = 273C (0 abs) and the virtual-temperature
curve. Equation (7.2) shows that the isotherm representing the

mean virtual temperature T* must be chosen so that the area

enclosed between the isobars 900 mb and 800 mb and the iso-

therms 273C and TI,** is equal to the area given by the

integral in (7.2). Thus, the shaded triangles in Fig. 2, which

are bounded by the virtual-temperature curve, the isotherm

Ti, 2 *, and the isobars 900 mb and 800 mb must be equal. In

practice the mean virtual temperature of a layer can be deter-

mined quite accurately in this manner even if the virtual-

temperature curve is more complicated. The mean virtual

temperatures for the ascent at Toronto on July 3, 1939, are

given in Fig. 2 under the heading Tm *.

The dynamic height difference between two pressure levels

depends only on the mean virtual temperature of the layer. In

practice the height differences between levels whose pressures

are multiples of 100 mb, the so-called "standard" isobaric sur-

faces, are first determined. Tables giving the dynamic height

differences between standard isobaric surfaces for various virtual

temperatures are available. 1

If the pressure p 2 is not a standard pressure, (7.1) may be

written

. In = - ^(273 + <) In

l BjERKNEs, op. cit., Tables 10M-12M. LINKB, F.,
"
Meteorologischea

Taschenbuch," I, Tables 27 and 276, Leipzig, 1931.
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where pt and ^, are the pressure and the dynamic height of the

next isobaric surface above or below p2 and t* is the mean virtual

temperature in degrees centigrade.

Let

where

Ho = R X 273 In
Pa

and

_ t*=
#273

Ho depends only on p 2 for a given p.. It gives the dynamic

height difference between the two pressures when the mean
virtual temperature is 0C. The correction AH depends on

the mean virtual temperature and on the dynamic height Ho at

0C. HQ and AH can also be obtained from tables. 1 If the

temperature t* is below freezing, AH is negative. In the example

given in Fig. 2 the uppermost layer extends from 700 mb to

626 mb. The dynamic height difference between these two

pressures at t = 0C is 876 dyn. meters. The correction for a

mean virtual temperature of 5.8C is 18 dyn. meters so that the

total height difference is 894 dyn. meters. Similarly, it is found

that the earth's surface is 802 dyn. meters below the 900-mb

surface. Upon adding the height differences (given under the

heading A^ in Fig. 2) successively to the station height the

elevations of the various pressure levels are obtained. They are

given under the heading H in Fig. 2.

Instead of computing the distance between the surface pressure

and the 900-mb surface the distance between the 900-mb surface

and the 1000-mb surface might have been computed first and

then the distance between the surface of the earth and the

1000-mb surface. To compute the latter the virtual-temperature
curve has to be extrapolated downward, for the 1000-mb surface

is below the ground in the present example. As long as the

surface pressure is not much lower than 1000 mb, this extrapola-

tion will not give rise to an appreciable error.

After the height of the standard isobaric surfaces has been

computed, a curve may be drawn representing the pressure dis-

tribution with height, the pressure-height curve. When the

1

BJKRKNES, V., op. cit., Table 9Af . LINKB, op. cit., Table 28.
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linear abscissa is used as the height scale, the pressure-height

curve must be approximately a straight line. This permits the

detection of major errors in the computations. The heights of

intermediate pressure levels can be obtained from the pressure-

height curve with an accuracy that is sufficient for most meteor-

ological purposes.

8. Adiabatic Changes of Dry Air. It is known from physics

that heat is a special form of energy which may be changed into

other forms such as mechanical work, for instance. The unit

of heat is the calorie, or more precisely the gram-calorie. It is

the amount of heat required to raise the temperature of 1 gram
of water 1C. This amount varies somewhat with the tempera-
ture and the pressure so that the gram-calorie is defined more

accurately as the amount of heat necessary to raise the tempera-
ture of 1 gram of water from 14.5C to 15.5C at the normal

pressure of 760 mm Hg. But for meteorology this refinement is

not important. The gram-calorie represents a certain amount
of mechanical energy. Experiments have shown that it is equal
to 4.185 X 107

ergs. Therefore, in order to convert calories into

ergs, one has to multiply by a factor

J = 4.185 X 107
ergs/cal

J is called the mechanical equivalent of heat.

If the amount of heat dq is required to raise 1 gram of a sub-

stance through a change in temperature dT, the specific heat

c-*i~
dT

In the case of gases, one has to distinguish among various specific

heats according to the change of state that the gas undergoes.
If its specific volume is kept constant, the specific heat at constant

volume cv has to be considered. If the pressure remains constant

the specific heat at constant pressure cp appears. For air,

cv = 0.170 cal/gm degree.

The first law of thermodynamics
1 states that an amount of heat

dq added to a gas is used partly to increase the internal energy
and partly to do work against the outer pressure by expansion
of the gas. In the case of an ideal gas the internal energy depends

1 A derivation of the first law for ideal gases will be found in any textbook

on thermodynamics.
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only on the temperature, and the change of the internal energy
is given by cv dT. To find the work done by expansion against

an outer pressure p, consider a cylinder with a movable piston

of cross section F (Fig. 3). The forde exerted by the outer

pressure on the piston is pF. When a gas inside the cylinder

expands and moves the piston a distance dx, the work done by
the gas is

pF dx = p dV

where dV is the change of the gas volume. Consequently the

amount of work done by the unit mass is p dv where v is the

specific volume. If the work is to be ex-

pressed in thermal units, it has to be multi-

plied by A = 2.390 X 10~8
cai/erg, the

'dx reciprocal of the mechanical equivalent of

heat.

The first law of thermodynamics applied
to the unit mass of an ideal gas may, there-

fore, be written

FIG. 3. Computa-
dq = ^ dT + Ap ^ Q ^ticof

expansion. -pry ajr may j^ regarcJed ag an ideal gas
at the temperatures occurring in the atmosphere; but the water

vapor requires a separate treatment, for it condenses and freezes

at atmospheric temperatures.

Upon substituting here the gas equation (4.1), Eq. (8.1)

changes into

dq = (c, + AR) dT - dp (8.2)

If the pressure is kept constant and only the temperature

changes, the specific heat at constant pressure is obtained. It

follows that

cp
=
($)p

= cv + AR (8.3)

For dry air the specific heat at constant pressure is 0.239.

Actually, the two specific heats of the air are variable, but the

variation is so small that it may be neglected.

Frequently, it can be assumed that during atmospheric

processes the heat content of the air under consideration remains
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unchanged, i.e., that

dq =

Such variations are called "adiabatic." Strictly speaking, it

has also to be assumed that the variations of the gas are infinitely

slow so that the whole finite change of the gas consists in a

succession of equilibrium states, as is discussed in the textbooks

on thermodynamics (see page 59). Changes of state in the

atmosphere may frequently be assumed to resemble adiabatic

processes, for the loss or gain of heat by radiation or conduction

is often small compared with the change caused by compression
or expansion, especially in connection with vertical motion.

For adiabatic changes, it follows from (8.2) and (8.3) that

or, by integration, that

where

T cp p

f.
-

fe)'

K = = c-^=-^ = 0.288
cp cp

To is the temperature at the pressure p . Upon introducing the

gas equation (4.1) into (8.41), a relation between pressure and

density is obtained,

pp-x = const (8.42)

where

X = & = 1.405
9

If the specific volume and temperature are introduced in (8.42)

for the pressure and the density, the adiabatic relation may be

written

TV-1 = const (8.43)

For the theoretical considerations, it is sometimes useful to

generalize the adiabatic condition dq = by assuming instead

that

dq = c dT

where c is a constant of the dimensions of a specific heat.

Changes of state of a gas that follows this more general condition
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are called "polytropic." The relation between pressure and

temperature now becomes

= (*YTo W
where

. cp cv
/c

cp c

and the relation between pressure and density becomes

pp~* = const (8.51)
/ _ s*

where X = is the "modulus" that characterizes each
cv c

polytropic curve. The following polytropic curves are of special

interest :

Isobaric curves,

X =
0, c = Cp

Isothermal curves,

X = 1, c = 00

Isosteric curves,

X = oo
j

c = cv

Adiabatic curves

X = ^, c =
cv

9. Potential Temperature. The Dry-adiabatic Lapse Rate.

Vertical Stability of Dry Air. The potential temperature
6 of dry air is the temperature that the air would assume if

brought adiabatically from its actual pressure to a standard pres-

sure P that is generally chosen equal to 1000 mb. Consequently

(9.1)

When dry air undergoes adiabatic changes, the potential temper-
ature remains constant. It is a conservative property of dry

air, conservative with respect to adiabatic changes.

A unit of air that moves vertically upward or downward

expands or contracts because the pressure exerted on it by the

surrounding atmosphere decreases or increases. The effects of

vertical motions in the atmosphere are as a rule so marked
that the influence of radiation and convection may be neglected
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and the motion can be assumed to be adiabatic. Then it follows

from (8.4) that the temperature variation of the ascending air

1 cHP ^ 1 dp
f dz

K
p dz

The decrease of the pressure with the altitude dp/dz depends not

on the temperature T of the moving air but on the temperature
T' of the surrounding air, so that, with (6.11),

dT _ gK T _ gA T
~&

~ RT~ ~^r ("'Z)

Because the ratio T/ T' is mostly not very different from unity,

the 'decrease of the temperature of the ascending air is very

closely given by

T = ^ = 0.98C X 10-4/cm = 0.98C/100 m (9.21)
/b

This quantity is called the " adiabatic lapse rate" or, more

accurately, the "
dry-adiabatic lapse rate."

If the lapse rate of the air is smaller than the adiabatic lapse

rate, the air is in "stable" equilibrium. To show this condition,
consider a parcel of air that originally had the temperature of its

surroundings.
1 It will be assumed that the motion of such a

parcel of air does not disturb the stratification of the environ-

ment, an assumption that is obviously not fully justified if the

motion of the parcel is to be studied. 2 Such a simplification is,

however, permissible when, as in this case, the static problem
of the stability or instability of the atmosphere is being investi-

gated. If the parcel is lifted, it cools at the adiabatic rate while

the temperature of the surrounding air decreases at a rate less

than the adiabatic. Thus, the displaced air parcel attains at

its new position a temperature lower than the temperature of the

surrounding air. Because the pressures of the displaced air

and of the surrounding air are the same, the density and weight
of the displaced air are greater owing to its lower temperature.

Therefore, it sinks back to its original position. The argument

1 For a rigorous proof, see H. Ertel,
" Methoden und Probleme der dyna-

mischen Meteorologie," p. 57, Verlag J. Springer, Berlin, 1938.
2
BJEBKNES, J., Quart. J. Roy. Met. Soc., 64, 325, 1938. PETTERSSEN, S.,

Geofys. Pub., 12, No. 9, 1939; "Weather Analysis and Forecasting," p. 64,

McGraw-Hill Book Company, Inc., New York, 1940.
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obviously holds also when downward motion takes place, for the

moving parcel of air now becomes warmer than the air surround-

ing it and is therefore lighter and returns upward to its original

position.

If the lapse rate of the air is larger than the adiabatic, on the

other hand, a parcel of air moving upward would arrive in its

new position warmer and lighter than the surrounding air and

would continue to ascend. The air is in "unstable" equilibrium.

It should be understood that even in this case vertical motion

will not start spontaneously. As long as the mass distribution

of the atmosphere is undisturbed, equilibrium prevails. Lighter

air is above heavier air. Only after an initial disturbance has

been brought about will strong vertical motions occur, and in

the case of a less-than-adiabatic lapse rate such a disturbance is

damped by the stable stratification of the air.

If the lapse rate happens to be adiabatic, a particle moved up
or down has always the same temperature as the surrounding air

and is thus always in equilibrium. The equilibrium is "indif-

ferent." In general the lapse rate of temperature in the atmos-

phere is below the adiabatic, about 0.6C/100 km.

If the lapse rate is called a, the equilibrium conditions for dry
air may be written in the form

a < F, stable equilibrium

a =
T, indifferent equilibrium

a > F, unstable equilibrium

Upon differentiating (9.1) logarithmically and substituting from

(6.11), it is seen that the lapse rate of potential temperature is

related to the lapse rate of temperature by

fz
= |(r-) (9.3)

This formula permits one to express the equilibrium conditions

for dry air by the lapse rate of potential temperature. Dry air

is in stable equilibrium when dQ/dz > 0, in indifferent equilib-

rium when dQ/dz =
0, and in unstable equilibrium when

dB/dz < 0. Near the surface of the earth where the pressure
is not very different from 1000 mb, 9 is approximately equal to

T. Thus, approximately,

9 = T + Tz (9.31)
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If lines of equal potential temperature are drawn on a pressure-

temperature chart as used in Sec. 7 (Fig. 2), it can be seen at a

glance whether the (dry) air is in stable equilibrium or not. If

the inclination of the ascent curve is steeper than the inclination

of the lines of constant potential temperature, the stratification

is stable; if it is less steep, unstable. Where the inclination

is the same for both curves, indifferent equilibrium exists. The
lines of constant potential temperature are also called adiabats,

for the point representing the pressure and temperature of a

mass of dry air moving adiabatically remains on the same line.

The whole chart is also referred to as an adiabatic chart.

On a chart whose abscissa is the temperature and whose

ordinate is the logarithm of the pressure the adiabats are obvi-

ously not straight lines. If the ordinate were p", however, the

adiabats would become straight lines as is seen from (9.1).

Because this is convenient for many problems, adiabatic charts

with p* as ordinate have also been constructed. On such charts

the determination of the mean temperature outlined in Sec. 7 is

not quite exact; but the error involved is negligible, especially

when the pressure intervals are chosen not larger than 100 mb.

The previous considerations concerning the stability of dry
air undergoing adiabatic changes can be extended to polytropic

changes in general. If the atmosphere follows a polytropic

law characterized by a modulus X, it is in stable equilibrium

provided that the temperature lapse rate is smaller than

-
R~ R x

'

This expression plays for an atmosphere following such a poly-

tropic law the same role as the adiabatic lapse rate for an atmos-

phere following an adiabatic law of compression and expansion.

10. The Influence of Vertical Motion on the Temperature

Lapse Rate and on the Stability of Dry Air. When large-scale

vertical motions take place in the atmosphere, whole layers of

air may be moved up or down so that they are brought under

different pressure and their horizontal cross section is changed.
In anticyclones, for example, a descending motion frequently

takes place under simultaneous spreading of the air layers, as

indicated schematically in Fig. 4, while the relative position

of the layers remains the same. Under these circumstances the
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lapse rate of temperature changes owing to adiabatic expansion.
1

The change in lapse rate can be computed quite easily under

the simplifying assumption that the height of the layer con-

sidered is small. The cross section of the layer (Fig. 5) may be A
before the change has taken place, B and + dQ the potential

temperatures at the lower and upper

surfaces, p its density, and dz its

height. After the change, let the

cross section be A', the density p', the

height dz'
;
the potential temperature

is not altered as long as the process is

adiabatic. Because the mass of the

layer remains constant,
if ~^

FIG. 4. Subsiding motion and . , ,
.

, , , .

shrinking. Apdz = A'p' dz'

Here it is assumed that the height of the layer is small so that p

and p' may be regarded as independent of the height within the

layer. Owing to the invariance of the potential temperature,

dz' dz dz' dz Ap

When the density is expressed by the pressure and temperature

dz

e+de

dz,' A'

O

(a) (b)
FIG. 5. Variation of the lapse rate of temperature due to vertical motion.

(10.1)

according to the gas equation (4.1), this equation may be written

c?6 _ dB
A^_ p' T_

dz'
~
~dz1~pr

The lapse rate of potential temperature can be expressed by

the lapse rate of temperature according to (9.3),

(r a')
= (r a) -^

1 SCHMIDT, W., Beitr. Phys. Atm., 7, 103, 1917.
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Thus

An increase in cross section acts in the same way as an increase

in pressure, i.e., as a sinking of the layer of air; a decrease in

cross section like a decrease in pressure, i.e., as a lifting. For

the rest of the discussion, it will therefore be assumed for the

sake of simplicity that A remains unchanged even though the

change in cross section may actually be as important as

the pressure change. Equation (10.2) then becomes

a' = a - (r
- )^? (10.21)

where

Ap = p'
- p

First the case where r > a may be considered, i.e., where the

temperature distribution is stable originally. When Ap > 0, i.e.,

when the air descends, a! < a, i.e., the lapse rate becomes smaller,

and when Ap is sufficiently large, a' may even become zero or

negative. When the lapse rate is negative, the temperature
increases with elevation. Thus an inversion may be formed by
sinking and spreading of the air. This process occurs frequently
in the center of stagnant anticyclones where large inversions

are observed which from their origin are called subsidence inver-

sions. 1 Because the stratification is more stable the smaller

the lapse rate is compared with the adiabatic lapse rate, the

result may also be stated by saying that descending motion in

an atmosphere with originally stable stratification increases

the stability of the air. On the other hand, when the air ascends

(or when its cross section decreases), i.e., when Ap < 0, the lapse

rate a becomes larger.

In the rare case of originally unstable stratification, a > T,

the effect of upward and downward motions is just the opposite.

Downward motion increases the lapse rate; upward motions

make the lapse rate smaller.

When the lapse rate was originally adiabatic (r = a) it remains

unchanged. The method can also be extended to air columns

of finite height,
2 but the lapse rates resulting from vertical

1
NAMIAS, J., Harvard Met. Studies, No. 2, 1934.

2
HAURWITZ, B., Ann. Hydr., 69, 22, 1931.
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adiabatic motion of finite air columns are not very different

from those obtained from the preceding formula (10.21).

For a graphical determination of the change of the lapse

rate in a layer of air that ascends or descends adiabatically, the

adiabatic chart may be used. The full curve AB in Fig. 6

may represent the original pressure and temperature distribution.

When the layer is subjected to vertical adiabatic motion, each

point of AB must move along an adiabat (broken curves). If A
comes to rest at a pressure p<?, and B at pD without a disturbance

of the relative position of the points along AB, the line CD

represents the new stratification of the layer. It may be noted

that owing to the conservation of mass the pressure difference

Fio. 6. Change of the lapse rate in a subsiding layer.

between C and D is equal to the original pressure difference

between A and B if the cross section of the layer remains

unchanged. If the cross section changes, the pressure difference

changes also. The mass remains constant, so that

(PB
- PA)A = (PD

-
pc)A'

11. The Relation between Pressure and Temperature Varia-

tions. Because the surface pressure is the total weight of the air

column above the point of observation, it varies when the mass

of air changes at any level.

It may be assumed that the atmosphere is divided into n

layers of equal height h. If the height h is chosen not too large,

the temperature in each layer may be regarded as constant.

If the surface pressure is p ,
the pressure at the highest point of

observation nh is pn and the mean temperature in the layer k

from (*
-

l)ft to kh is Tk,
it follows by repeated application of

the barometric formula (6.21) that
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Po = pne
x- 1

(11.1)

This formula expresses the surface pressure by the pressure at

the highest point of observation and by the temperature in the

intermediate layers. Upon differentiating logarithmically with

respect to time, (11.1) becomes

The differential quotients with respect to the time may be identi-

fied with the 12-hourly or 24-hourly variations of pressure and

temperature which can be determined by successive aerological

ascents. Formula (11.2) is, of course, correct in so far as it

gives the changes that must occur simultaneously in the different

atmospheric layers if static equilibrium persists. But it has

frequently led to misinterpretations that will be discussed here,

for such a discussion will clarify the mechanism that links the

pressure and temperature variations at various levels in the

atmosphere.
1

When the temperature in the intermediate layers remains

unchanged, (11.2) is reduced to

dpv^podp*
dt pn dt

UA-^I;

The pressure variation at the ground is p^/pn times larger than

the simultaneous pressure variation at the level nh. For

instance, when in the atmosphere at an altitude where the average

pressure is 250 mb a pressure variation of 5 mb is observed, the

simultaneous pressure variation at the ground where the average

pressure is 1000 mb should be 20 mb. From (11.21), it has been

inferred that the variations of the pressure at greater heights
dominate the surface pressure variations completely, especially

after it was discovered from aerological ascents that the daily

variations of the pressure at greater altitude are of about the

same magnitude as at the ground. Obviously, however, (11.21)

cannot mean that a pressure change dpn at a height where the

pressure is pn causes a surface pressure change ~dpn . This
Pn

1 HAURWITZ, B., and HATJRWITZ, E., Harvard Met. Studies, No. 3, 1939.
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cannot be correct, for an increase of the pressure dpn shows only

that above the level of the pressure rise the mass increases by

dpn/g per unit cross section. As long as no advection takes

place in the lower layers, the mass of the air column increases

only by dpn/g and not by -^*
Pn g

To interpret the meaning of (11.21) correctly, it has to be con-

sidered from a different angle. Suppose that the pressure at the

earth's surface changes by dp$, which may be assumed positive

in order to have a more concrete picture. This pressure rise

indicates that the total mass of the air column per unit cross

section has increased by dp<)/g. If the advection of mass has

taken place at and above an altitude H, the air column below //

is compressed by the added air and a part of the air previously

above // sinks below this level. The change in pressure dpn at

this level H is therefore equal to the weight of the air added at

and above H minus the weight of the air that sinks below H owing
to the compression. The increase of the mass above //, dpn/Qj

is thus only a fraction of the total mass that has been added

above //. Consequently the pressure increase at the surface

must be larger than dpn because the variation of the surface

pressure represents the total mass added to the air column. Thus

Kq. (11.21) actually states, not that a pressure variation dpn at

the height where the pressure is pn causes a surface pressure

variation po/pn times larger, but that the total pressure variation

dp$ at the level // is diminished proportional to the ratio of the

pressure pn/p<> owing to the compressibility of the atmosphere.
Another misinterpretation of (11.21) concerns the second

term on the right-hand side containing the temperature varia-

tions. If the temperature changes only in the layer k, from

(k l)h to kh the surface pressure change, according to (11.21),

is

This equation shows that for one and the same temperature

change at different heights the surface pressure variation is

usually somewhat larger for the temperature changes at higher

altitudes because the temperature usually decreases with height.

However, one and the same temperature variation at a higher
altitude affects a smaller mass when layers of the same thickness
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are considered, on account of the decrease of the air density with

altitude. Therefore, the change of the total mass of an air

.column should be smaller, the higher the layer in which the

temperature variation takes place. To explain this apparent

paradox, consider the variation of the pressure dpk-i at the bot-

tom of the layer k due to a change of the temperature in the

layer k, while the pressure pk at the top of the layer remains

constant. This variation is expressed by

dP*-i __ Q L Pk-i dTk , .~ " ~ h ~ ll '26

According to this expression the pressure variation at the bottom

of any layer due to the temperature variation within the layer

is proportional to the pressure at the bottom of the layer. Con-

sequently, for a layer at greater height the pressure variation is

smaller even though the temperature variation be the same.

But according to (11.21) the surface pressure variation con-

nected with the variation is given by

_

dt pk-i dt

This equation combined with (11.23) leads back to (11.22).

This rather roundabout derivation of (11.22) shows that the

change in weight of an air column due to the temperature varia-

tion of a given layer is proportional to the pressure at the lower

boundary of this layer. Thus, the effect of a given temperature

change in a layer of given thickness upon the weight of the whole

air column is actually smaller the higher up in the atmosphere
this layer is located, as should be expected considering that less

mass is affected by the temperature variation if it occurs at a

higher altitude. But if equilibrium in the underlying air column
is to be maintained, its mass must also be changed to such an

extent that the surface pressure varies according to (11.22).

12. Computation of the Advection at Great Heights. In

reality the connection between pressure and temperature varia-

tions at different altitudes will be more complicated than was

assumed in Sec. 11. In general the variations in the underlying

layers are not of precisely the right order of magnitude to balance

the change of the weight of the layer k. Therefore the air that

is in this layer, between the heights (k l)h and kh, does

not remain there because the underlying air column is com-
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Fio. 7. Effect of cooling on the posi-
tion of a layer of air.

pressed. The vertical motions that are then taking place are

indicated schematically in Fig. 7. It is possible to observe only
the "local" 1

temperature variation between the levels (k l)h

and kh that is in the layer ABCD before and A'B'C'Df
after

the advection of air of different temperature. This is the tem-

perature variation that is inserted in (11.22) and (11.23). The
"individual" 1

temperature variation that actually accounts

for the change in mass due to advection is the temperature
variation of the air which was at ABCD before the advection

and which is at EFGH after the

advection.

The misinterpretation of

(11.22) was thus obviously due

to a confusion between local and

individual temperature varia-

tion. It'follows that Eq. (11.2),

which was derived from the

barometric formula, is unsuit-

able for giving an indication of

the effects of advection on the change of the surface pressure.

The individual pressure variation fa at a surface that consists

always of the same air particles and that moves up or down when
the weight of the overlying air changes would be a more satisfactory

expression of the total advection above this fixed level, fa is zero

when no advection takes place or when the air is replaced by air

of the same density so that the advection would appear to be zero.

However, since in this case the advection is without effect on

the surface pressure, it is without interest and the failure of fa

to measure the advection in this case is not serious. The quan-

tity fa may be called the "advection function." It was first

discussed by Rossby,
2 later by Ertel and Sjan-zsi-Li.

3

The complqte treatment of this problem cannot be given here.

Instead a somewhat simpler problem, a typical example of the

way in which problems of this kind may be attacked,
4 will be

discussed here.

1 The local variation is that observed at a fixed place while the individual

variation is that observed following one and the same particle of air.

2
ROOSBY, C.-G., Beitr. Phys. Aim., 13, 163, 1927 and 15, 240, 1928.

8
ERTBL, H., and SJAN-ZSI-LI, Z. Phyfrik, 94, 662, 1935.

4 ROBSBY, C.-G., loc. cit., 1927.
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It may be assumed that the advection takes place only at a

great height. The problem is to find the temperature and

pressure changes below this level as functions of the altitude.

When these variations are determined, it can be decided by com-

parison with the observed variations whether the assumption is

correct that the advection occurred at a great height only.

The variation of the surface pressure 5p is equal to the total

advection of mass at great heights, expressed by $TT. Below the

level of advection the individual pressure change is also equal to

Sir,

hp = for

The operator 5 stands for a small change of the quantity with

time. The subscript i refers to the individual change, and I

indicates local changes. The local pressure change is equal to

the sum of the individual pressure change and the effect of the

vertical displacement of the air

8ip
= d lp + gp dz = dir + gp dz (12.1)

where dz is the height variation of the surface on which the

individual pressure change is measured. The condition of con-

tinuity states that the mass p dz of the layer whose thickness was

originally dz is constant, i.e., that

d(p dz) =
or

6 lP d(dz) __
'

~l 7 v
p dz

For brevity, no change of the cross section is assumed. From
the adiabatic equation (8.42),

^-X^ =
P P

Because the adiabatic relation refers to individual particles, dp
is here the individual pressure change dw. From geometric

considerations, d(5z) =
d(dz). Upon combining the three pre-

ceding equations, it follows that

d(dz) = _ I fa

dz
~~

X p
By integration,

/. -

__ __
fa I dz

* Jo P
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where the condition

o
=

has been introduced.

Tn practice the observed temperature distribution can fre-

quently be replaced with sufficient accuracy by a mean tempera-
ture Tm when the vertical pressure distribution is to be computed.

According to (G.21), it is then
Q z~
~B ~>r~

p p<>e
K lm

With this relation, (12.2) assumes the simpler form

a, - - 5T- (a -
i) (12.21)

OP* \P / x

The local pressure change, from (12.1) and (12.2), is

Tf the approximate expression (12.21) is used,

The local temperature change due to advoction at great heights

can be expressed by

^T = d tT - ~ bz (12.4)

which is analogous to (12.1) for the pressure. Because according

to the adiabatic relation (8.4) the individual temperature change
is connected with the individual pressure change by

the local temperature change, upon putting a = -> is

With the simplifying assumption leading to (12.21),
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With the aid of (12.2), (12.3), and (12.5) the vertical displace-
ment of a particle and the pressure and temperature variation at

a given altitude due to advection at a higher level can be com-

puted when the original pressure and temperature distribution in

the atmosphere are known. The generalization for arbitrary

polytropic changes is obvious.

Equation (12.2) or, more clearly, (12.21) shows that the alti-

tude of a particle of air decreases when mass is added and

increases when air is taken away at great heights, the changes
in height being greater at greater elevations. The local pressure

change is largest at the earth's surface where it is, of course, equal
to the total advection and decreases with altitude, as is seen from

(12.3) arid (12.31).

Rossby
1 has given an example that shows very clearly advec-

tion at great heights over Trappes (France) on Apr. 11 and 13,

1912. The results of his analysis are reproduced in the following

table. The first five columns contain the height, the pressure

and temperature observed at this height on the first day, and

the change of pressure and temperature at these heights from 1 >

eleventh to the thirteenth. The pressure
' ^ at a'*

whereas the temperature falls only in the 1-

1 ROSSBY, C.-G., loc. cit., 1927.



34 DYNAMIC METEOROLOGY

only this layer can contribute directly to the increase of the sur-

face pressure. In the upper troposphere the temperature varia-

tion is very small and positive; above 10 km the temperature
has increased considerably. It may therefore be expected

already from the observed data that the advection has mainly
taken place at great altitudes. In order to show that this is the

case, 5?r has been computed from (12.3). If fa were variable, it

would show where advection has occurred. Actually, it has

approximately the same value of 16 mb at all heights for

which observations are available. The pressures observed

during the ascent are given only in whole millimeters of mercury
so that for this reason alone errors of 1 mb are possible in

8ip. Thus, the great increase of the surface pressure appears to

be mainly due to advection in the stratosphere, whereas the

surface layers up to 2 km contribute slightly, owing to the advec-

tion of a cold air mass. The variation of the height of an indi-

vidual particle of air is more than 300 m at 12 km, the highest

point for which observations are available. Because mass has

been added to the air column, the height variation is negative;

each layer of air has been pressed down by the advection.

Rossby has also computed the local temperature change from

(12.5). The agreement with the observed changes is, however,
not very good. This may be due to advection in the lower layer

which is large enough to prevent agreement between observed

and computed temperature changes though it is not large enough
to have a noticeable effect on the pressure variation.

The considerations leading to (12.3) have been generalized by
Rossby

1 and Ertel and Sjan-zsi-Li
2 to allow for advection in the

lower part of the air column. Ertel and Li have shown that the

formula (12.3) holds also in this more general case.

In the preceding discussion the possible effects of a change of

the cross section are neglected. Van Mieghem3 has shown that

these changes are also quite important and have to be taken into

account in a more complete analysis.

1
ROSSBY, C.-G., loc. cit., 1928.

'

'
KPT-EL. H., and SJAN-ZSI-LI, loc. tit., 1935. See also H. ERTEL, "Metho-

obleme d~ lynamischen Meteorologie," p. 80, Verlag J. Springer,

'. roy. de Belg. bull. da89. act., 5th ser., 26, 243,
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and hence

^ = ^
(13.2)

p e
v y

Therefore,
APT

dq = cp dT - ~~ dp (13.3)

The same relation for w gm 1 of unsaturated water vapor is

wdq = uw^dr - ARwT~ e

p mw e

Here cpw
=

0.466, the specific heat at constant pressure of

water vapor, and m/mw is the ratio of the molecular weights of

dry air and water vapor.

According to (13.2),

wdq = wcpw dT -AH wT^ (13.4)mw p

By addition of (13.3) and (13.4),

(1 +w)dq= (cp + wcpw) dT - AR
(

1 + w] T&
\ w^w / p

We may introduce

P * - 1 l+j^/Oy> _ r JL
p

~ r̂ 1 + (m'/mjw
"

p
l +

as a specific hea'^ at constant pressure for unsaturated moist

air. .Because w 'is small, of the order of magnitude 10~ 2
,

c
7,*

differs very little from cp . For adiabatic changes, because

AK

L = M*'*
To W

AR

(13.5)

This equation is for all practical purposes identical with the

equation for adiabatic changes of dry air (8.41).

In dealing with moist air, it is frequently advantageous to

use the partial potential temperature
2 which is defined as the

temperature which the air would assume if it were brought

adiabatically from the actual partial pressure of dry air p e

to the standard pressure P = 1000 mb. According to (13.5)

1 This is obviously the mixing ratio of the total amount of (1 -j- w) gm of

moist air.

2 ROSSBY, C.-G., Mass. InsL Tech. Met. Papers, 1, 3, 1932.
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AR

(PjH
Upon comparing this equation with the definition for the potential

temperature (9.1) and disregarding the slight difference between

cp
* and CP) it follows from (5.8) that

AR
9d = e(i + 1.6090

c**
(13.7)

14. Minimum Inversion. Because the density of water vapor
is less than that of dry air, moist air is lighter than dry air at

the same temperature and pressure. At a boundary surface

where a drier air mass lies over a moister one a certain minimum
inversion is therefore required in order to maintain the purely

mechanical equilibrium, as shown by Margules.
1

Let p be the density of the air below and p + Ap the density

of the air above the moisture discontinuity. The condition of

mechanical equilibrium requires that the density decrease with

the altitude. The stability condition is then expressed by

Ap ^

Because the pressure on both sides of the ^
f
ce of discontinuity

must be the same, the virtual temperature . st increase,

AT1 * >

Upon substituting from (5.3), it follows that

0.379 be

p 1 - 0.379(e/p)

If this condition were not fulfilled, the air above the discontinuity

would be heavier than that below and the stratification would be

unstable. When the water vapor decreases upward, as, for

instance, on cloud surfaces, the temperature must increase.

The inversion necessary to maintain stability in the case of a

sudden decrease of the water-vapor content is called the "mini-

mum inversion."

If the water vapor increases, the temperature may even

decrease suddenly without offsetting the stable stratification.

The actual temperature differences that result from (13.6) are,

1 MARGULES, M., Met. ., Hann-vol., 243, 1906,
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of course, quite small. With a pressure of 800 mb, a temperature
of 280 abs, and a relative humidity of 100 per cent below and
50 per cent above the inversion, &e is 5 mb because the maximum
vapor pressure at 280 abs is 10 mb. Therefore, AT = 0.66C.
The practical significance of such minimum inversions which

ensure the stability of moisture discontinuities is therefore

very slight.

Similar considerations apply also to the case where a gradual

change of temperature and humidity in the vertical direction

is taking place. It can be shown 1 that in an unsaturated moist

air column the lapse rate of the virtual temperature, instead of

the lapse rate of the temperature, must be lower than the adia-

batic in order to have a stable stratification.

16. Variation of the Dew Point with the Altitude. Con-

densation Level. It was shown in Sec. 9 that air which ascends

adiabatically is cooled, for it does work expanding against the

pressure of the surrounding atmosphere. Therefore, when
unsaturated moist air ascends sufficiently high, it may finally

reach a temperature at which the water vapor contained in the

air represents the saturation value. The height at which satura-

tion is reached is called the
" condensation level." Actually,

the condensation does not necessarily begin as soon as saturation

is reached; supersaturation may occur (see Sec. 16). Neverthe-

less, the condensation level and the corresponding condensation

pressure give at least an idea as to the lowest possible height
at which condensation and therefore cloud formation may be

expected when air ascends adiabatically.

To obtain a working formula for the condensation level, it

will be assumed that a quantum of air ascends adiabatically

without mixing with its surroundings so that its potential

temperature and its mixing ratio remain unchanged. Before

the air is lifted, its dew point r is lower than its temperature T,

for the air is at first unsaturated. During the ascent, not

only the temperature, but also the dew point decreases. The
variation of the dew point with altitude may be obtained from

(5.5) which gives the relation between maximum water-vapor

pressure and temperature. In this formula the maximum vapor

pressure em may be replaced by the actual vapor pressure e

1
BRUNT, D., "Physical and Dynamical Meteorology," 2d ed., p. 44,

Cambridge University Press, London, 1939.



40 DYNAMIC METEOROLOGY

and the temperature by the dew point r so that, by logarithmic
differentiation and using the constants for em over water,

de 7.5 In 10 237.3 dr

e (237.3 + r)
2

Because the mixing ratio remains constant during an adiabatic

process as long as the air is unsaturated it follows from (13.2)

that

de _ dp
e p

Combining this with the hydrostatic equation
1

dP - _ JL dz7~ RT az

the variation of the dew point in a rising air mass may be written

_* = 9____1__ (237.3 + r)

dz R 7.5 In 10 - 237.3 (273 +0 { }

when dew point and temperature are expressed in degrees

centigrade. If second and higher Dowers of r/237.3 and t/273

are neglected, (15.1) becomes

Thus the dew point of an ascending quantum of air decreases

much more slowly than its temperature.
At a height z (below the condensation level) the dew point is

therefore approximately

(~Jwhere TO is the dew point at the surface and ~J the mean

change of the dew point up to the level z. The variation of

the temperature of the ascending air mass with height is approxi-

mately
t = Jo

- Tz

where F is the adiabatic lapse rate. At the height of the con-

densation level hc ,

Tc
=

tc

1 T is here the temperature not of the ascending but of the surrounding air.
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This gives for he

" - FTwk <'>
or approximately

hc
= 121 (Jo

-
TO) in meters (15.21)

In Sec. 18, it will be shown how the pressure and temperature
at the condensation level may be determined graphically.

Nevertheless the formula given here will be useful for estimates

of the height at which condensation may occur.

The validity of the approximation formula (15.21) depends

very much on the original assumption that no mixing between

the ascending and the surrounding air takes place so that its

humidity mixing ratio does not change.
1 This obviously can

not be strictly true. In order to allow for changes of the humid-

ity mixing ratio due to mixing with the surrounding air, it has

been suggested
2 that not the mixing ratio at the surface but a

mean value for the whole layer through which the air ascends

should be considered, in order to allow for a decrease of the

mixing ratio in the ascending air due to turbulent mass exchange
with the environment.

16. The Role of the Condensation Nuclei. Atmospheric
condensation takes place mostly in the form of water droplets;

only near the ground, condensation on surfaces (plants, rocks,

buildings, etc.) may sometimes occur. Owing to the surface

tension the maximum vapor pressure over curved surfaces

is larger than over plane water surfaces. Therefore, when
saturation has just been attained with respect to a plane water

surface the vapor pressure is still smaller than the satura-

tion vapor pressure over a curved surface, and a small water

droplet brought into such an atmosphere would evaporate. If

e' is the water-vapor pressure over the curved surface, e that

over the plane surface, M the constant of capillarity, mw the

molecular weight of water vapor, <r the density of liquid water,

T the temperature, and r the radius of the spherical droplet,

it can be shown3 that

1 PETTERSSEN, S., /. Aeronaut. Sri., 3, 305, 1936; "Weather Analysis and

Forecasting," p. 54, McGraw-Hill Book Company, Inc., New York, 1940.
2 WOOD, F. B., Mass. Inst. Tech., Met. course, Prof, notes, 10, 1937.
3
PRESTON, T., "Theory of Heat," 3d ed., p. 392, Macmillan & Company,

Ltd., London, 1919.
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R*
v 1

e
'

> ^_
2"

T<r In = e e -\

m.n e r
(16.1)

When e
1

/e is not very different from unity, (16.1) may be written

in the simpler form which was originally derived by W. Thomson 1

*L^ =
J*jgfc

(16.11)

The capillarity constant /x of water in contact with air depends
on the temperature T as shown by the following table: 2

These values hold for a plane surface. The possible variation

of M due to the curvature of the liquid surface will be neglected.

As long as the radius of the drop is large, e' is not very different

from e. But it increases considerably when the size of the

droplet decreases. The ratio 100 X (e'/e) given in the following

table represents the supersaturation with respect to a plane
water surface when the water vapor is in equilibrium with respect

to water droplets. The temperature is assumed to be 273 abs.

This table shows that the atmospheric condensation would

require enormous supersaturation if there were no other forces

counteracting the effect of the surface tension. Actually,

hygroscopic particles are always present in the atmosphere as

has been shown by H. Koehler,
3 who found that salts are dissolved

in the atmospheric condensation products. A large part of

the nuclei, as, for instance, those consisting of sodium chloride,

may originate by evaporation of ocean spray. Another impor-
1 THOMSON, W., Phil Mag., 42 (4), 448, 1871.
2 "Smithsonian Physical Tables," 8th ed., Table 193, the Smithsonian

Institution, Washington, D. C., 1933.
8 KOEHLER, H., Medd. Stat. Met. Hydr. Anst., 2, 5, 1925; Geofys. Pub., 2,

1, 6, 1921; Gerl. Beitr. Geophys., 291, 68, 1931. For a complete discussion of

the present knowledge about nuclei see H. Landsberg, "Ergebn. d. kosm.

Physik," Vol. 3, Akademische Verlagsgesellschaft, Leipzig, 1938; and M. G.

Bennett, Quart. J. Roy. Met. Soc., 60, 3, 1934.
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tant source of nuclei, especially those containing sulphuric

products, is combustion due to industries. The normal sizes

of the nuclei may lie between 7 X 10~7 and 1(H cm. The

number of nuclei varies, according to observations, between the

orders of magnitude 10 and 106
per cubic centimeter. But

only between 10 2 and 104 nuclei per cubic centimeter may be

effective in the formation of clouds because the supersaturation

in the atmosphere is much smaller than in the nuclei counters

so that only on the largest and most hygroscopic nuclei are

droplets formed. 1

When condensation occurs on such hygroscopic particles, the

droplets that are formed represent solutions of the hygroscopic

substance in water. The water-vapor pressure e" over a solution

is lower than the pressure e over pure water. For a solution of

low concentration containing ra' molecules of the solute and m
molecules of water, it can be shown that

e
" -e = -e

'

, (16.2)m + m' ^ '

Equation (16.2) shows that the equilibrium pressure becomes

smaller the more concentrated the solution. For high con-

centrations, (16.2) no longer holds, but the saturation vapor

pressure continues to decrease with increasing concentration.

Thus condensation nuclei can exist in the atmosphere in the

form of watery solutions of high concentration, for some water

vapor is always present in the atmosphere. When the atmos-

pheric water-vapor pressure increases over the saturation value

with respect to the watery nucleus, more condensation takes

place; the droplet grows even if the relative humidity of the air

is less than 100 per cent with respect to a plane water surface.

Small droplets containing a sufficient amount of the solute

may therefore originate at relative humidities of less than

100 per cent. This has been demonstrated by Pick,
2 who

showed that fogs frequently occur at relative humidities of less

than 100 per cent. At first the droplets must remain very small,

for only then can the depression of the vapor pressure due to the

concentration of the solution balance the effect of the surface

tension. For every nucleus, there exists a critical relative

humidity of the air. When this value is reached, the drop can

1
FINDEISBN, W., Met. Z., 66, 121, 1938.

2
PICK, W. H., Quart. J. Roy. Met. Soc., 67, 238, 1926.
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continue to grow without further increase of the relative humidity
because the effects of the surface tension and of the solute on

the saturation pressure balance each other. When the critical

value of the relative humidity is surpassed, further condensation

depends on the amount of water vapor released by the atmosphere
when the air is cooled. The drops will finally grow by coagula-
tion. Whether electric charges of the drops are important for

coagulation, as suggested by Schmauss and Wigand,
1

appears
doubtful. Coagulation occurs mainly between drops of different

size, for such drops fall with different speed and move, therefore,

relative to each other. If the cloud elements were all of the same

size, only turbulent motion could be effective in bringing about

coagulation,
2 but it appears that the magnitude of the drops

in a cloud varies widely.
3

The observations of rain from clouds, however, seem to

indicate that coagulation cannot produce drops of the size

measured in rain. Bergeron
4 has therefore suggested the

hypothesis that rain is formed when ice crystals fall through
cloudvS of small water droplets. Because the vapor pressure

over ice is lower than over liquid water (see Table I, Appendix),

evaporated water condenses on the ice crystals. The ice con-

tinues to fall and melts in falling, so that it arrives as rain at the

earth's surface. This hypothesis is supported by investigations

of Peppier
5 and Findeisen. 6 These authors found that rain,

especially rain with large drops, originates as ice condensation.

Because the presence of the condensation nuclei lowers the

freezing point of the water considerably, the formation of ice

crystals cannot take place on condensation nuclei. Separate

sublimation nuclei must be present in the atmosphere. The
nature of these sublimation nuclei is not yet known. But it

seems obvious that they must be solid particles. The order of

magnitude of their linear dimension has been estimated to

10~6 cm by Findeisen. 6 Their number per unit volume appears

1 SCHMAUSS, A., and WIGAND, A., "Die Atmosphare als Kolloid," F.

Vieweg & Sohn, Braunschweig, 1929.
2 ARENBERG, D., Bull. Am. Met. Soc., 20, 444, 1939.
3
FINDEISEN, loc. dt. HOUGHTON, H. G., Papers in Physical Oceanography

and Meteorology, Mass. Inst. Tech. and Woods Hole Ocean. Inst., 6, 4, 1938.
4 BERGERON, T., Un. int. gtod. gtophy*., mil. assoc., 156, 1933.
6
PEPPLER, W., Beitr. Phys. Aim., 23, 275, 1936.

FINDEISEN, loc. cit.



CONDENSATION 45

to be considerably smaller than the number of condensation

nuclei.

The structure of the snow particles depends largely on the

state of the atmospheric layers through which they have passed.

Findeisen 1 has discussed how far it may be possible to draw from

the form of the snow conclusions concerning the structure of

the atmosphere. In particular, when ice crystals fall through
clouds of supercooled water droplets, they coagulate with these

droplets and change gradually into soft hail. It is therefore

possible to deduce from the appearance of such snow particles

the presence of supercooled water in the atmosphere, which

makes icing on aircraft likely.

17. Adiabatic Changes in the Saturated State. Owing to the

presence of hygroscopic nuclei, condensation docs not begin sud-

denly when the air has ascended to the "condensation level
"

and attained a relative humidity of 100 per cent with respect

to a plane surface of pure water. The actual start of the con-

densation depends on the physical and chemical properties of

the nuclei. In order to obtain droplets of appreciable size,

however, a sufficient amount of water vapor must be released

by the atmosphere. This is possible only when the relative

humidity is close to 100 per cent. Moreover, when the drops
reach an appreciable size, the surface tension is very small and
the concentration of the solute very low, so that the influence of

these two factors on the vapor pressure becomes negligible. For

most purposes, condensation may therefore be assumed to begin

at a relative humidity of 100 per cent.

The main effect of condensation on the adiabatic changes
consists in a decrease of the rate of cooling of the air, for the

cooling due to adiabatic expansion against the outer pressure

is now partly compensated by the release of the latent heat of

condensation.

For the theoretical discussion, it is necessary to assume either

that the condensed water remains in the air and is carried along

by the ascending air2 or that all condensed water falls to the

ground as precipitation.
3 When the condensed water falls

1
FINDEISEN, W., Met. Z., 56, 429, 1939.

2 HERTZ, H., Met. Z., 1, 421, 1884.
3 VON BEZOLD, W., Sitzb.-Ber. Akad. Wiss. Berlin, p. 485, 1888. NEU-

HOFF, O., Abhandl. Preuss. Met. Inst., 1, 6, 1901. FJELDSTAD, J. E., Geofys.

Pub., 3, 13, 1925.
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out completely, the temperature changes that the air undergoes
are evidently not reversible, for the air when descending again

will be heated according to expression (13.5) for unsaturated

moist air, i.e., approximately at the dry-adiabatic rate. This

process is called
"
pseudo-adiabatic." On the other hand, when

the condensed water is retained in the air, a fraction of the

temperature increase in the descending air will be used to

evaporate the liquid water again during the descent. In this

case, which is called "saturated adiabatic" or "moist-adiabatic,"

the rate of the temperature increase during the descent is equal
to the rate of the temperature decrease during the ascent. The

process is reversible.

In the following derivation of the thermodynamic relations,

which describe the change of moist air, it will be assumed that

the condensation products are retained in the air so that the

variations are saturated adiabatic.

It will first be assumed that all processes take place at tem-

peratures above the freezing point. This is frequently referred

to as the rain stage.

According to the assumption, the total water content w per

gram of air is constant. It consists of an amount of water

vapor w and of liquid water u>i\

w = w + wi

From the first law of thermodynamics for dry air, it follows that

dqd = cp dT - ART d(p
~ ^

*a p
p e

Let the heat added to the total water content w be dqw . This

heat is used in three ways.
1. The amount c(w w) dT increases the temperature of the

liquid water. (The specific heat of the water c may be regarded,

with sufficient accuracy, as constant and equal to unity.)

2. The amount L dw is used for the evaporation of liquid

water (L = 595 0.5C, the heat of condensation).

3. The amount c8wdT increases the temperature of the

saturated water vapor (c, is the specific heat of saturated water

vapor).

Thus, if the change of the volume of the liquid water is

neclected

dqw = c(w - to) dT + L dw + c>w dT



CONDENSATION 47

To find the specific heat of saturated water vapor c,, the fact may
be used that the entropy is a total differential, as shown in Sec. 22.

The entropy change of the water vapor and liquid is dqw/T. This

expression is a total differential if

_d_ c(w w) + ctw = _d_
/L\

dw T dT \T)
Therefore,

which gives the specific heat of saturated water vapor. Thus

dqw = cwdT + Td fe
J

Upon adding the expression for the change of heat of the dry air

and of the water vapor, it is found that the total change of the

heat content of the moist air

dq =
(cp + cw) dT + Td fe) - ART d(p

" e^
(17.2)

\ l / p e

For adiabatic changes, i.e., when dq =
0, this equation may be

integrated and becomes when the index indicates the initial

o o o o

Here

Equation (17.3) may be written in different forms. If the pres-

sure is eliminated by

w = 0.621 (5.8)
p e

it is transformed into

i
w

i
e

. / i
^

i
1 (Lw L Qw<\ n . - ..

In--- In - + m' In ^- + -j^ ( -^
--

7fr
-

1
= (17.5)

100 CQ 1 o Aft \ 1 1 /

and if w is eliminated, it changes into

p - e _ 0.621 f Le___L e 1
ln

po
- eQ AR lT(p-e) 5To(po

-
o)J

- mMn ~ =0 (17.6)
/ o
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It should be noted that in Eqs. (17.3), (17.5), and (17.6) w is a

function of pressure and temperature only, for saturation prevails

HO that e is the saturation vapor pressure and therefore a function

of the temperature only.

When the adiabatic, or, to be more accurate, the moist-

adiabatic, ascent of the air continues sufficiently long, the air will

eventually reach the temperature of 0C. It is known today that

liquid water exists quite frequently in the supercooled state in the

atmosphere. According to Findeisen,
1 water clouds are more

frequent than ice clouds down to a few degrees below freezing.

Below about 10C, ice clouds become more numerous. Water

droplets have been observed down to temperatures as low as

-40C.
Before it was known that supercooling is a rather regular

occurrence in the atmosphere, the treatment of adiabatically

ascending air reaching the freezing point was based on the

assumption that all liquid water begins to freeze and that the

temperature remains constant when the air ascends farther owing
to the released heat of fusion until all the liquid water has been

changed over in the solid state. The name hail stage was given

to this form of the adiabatic changes. In practice the hail stage

is today mostly disregarded, for the phenomenon of supercooling

shows that it frequently does not take place. Moreover, when
the changes during the ascent are pseudo-adiabatic, i.e, when all

the condensed water falls out, the ascending air can obviously

not pass through the hail stage.

Below the freezing point the cooling of the moist air produces
snow crystals during the adiabatic ascent if supercooling does not

occur. Therefore, the stage is called the snow stage.

The equations for the snow stage are analogous to the equations
for the rain stage except that, in all considerations of the rain

stage, ice now takes over the role of the liquid water. Conse-

quently the constants for the water have now to be replaced

by the corresponding constants for ice. Because the specific

heat of ice cv
= 0.49 at 0C, it follows that the constant

m" = CP + K
3.47(1 + 2.050) (17.7)

AJi

will replace ra', which appeared in Eqs. (17.3), (17.5), and (17.6).

1 FINDEISEN, W., Met. Z., 65, 121, 1938.
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Instead of the heat of condensation L the heat of sublimation

Lt appears. According to Fjeldstad,
1

L8
= 677 cal/gm

and this value may be regarded as constant. Thus when the

water-vapor content of the air is expressed by the vapor pressure

the equation for adiabatic changes in the snow stage is given

by the equation

0.621 (L,e I L8e Q I \ . T
i -nr(~T~~ ; --T~~ r J

" m In ^"
^po

-~
o/ Art \lp-e 1 Q PQ eo/ 1 o

(17.71)

or when the water-vapor content is expressed by the mixing
ratio w,

m
T) _ I'

= m"
In

r" + T/? ( r
~
r) (17.72)

PO ^0 -^O A. Jib \1 1 O/

18. The Application of the Equations for Saturated Adiabatic

Changes to Atmospheric Processes. Pseudo-adiabatic Chart.

In applying the results of Sec. 17 to the atmosphere, it is necessary

to keep in mind the assumptions on which the derivation of the

equations was based. The assumption that the changes are

adiabatic, and its limitations, were discussed in Sec. 8.

It was furthermore assumed that all the water vapor which is

transformed into the liquid or the solid state is retained in the air.

This is obviously not always the case, for precipitation does occur

in the atmosphere. The assumption that all condensation

products are retained is not any more justified than the other

extreme that they are expelled completely, i.e., that the changes
are pseudo-adiabatic. The first alternative was preferred for

reasons of mathematical expediency. When all the water is

retained, the total constant amount of water w appears in (17.2)

whereas when the changes are supposed to be pseudo-adiabatic
w has to be replaced by w, the variable mixing ratio of the water

vapor. In practice, the difference between the pseudo-adiabatic

and the saturated-adiabatic ascent is, however, negligible at

temperatures above freezing; for w as well as w is small. Only
when the freezing temperature is reached does the difference

become noticeable, for the air does not go through the hail stage

1
FJELDSTAD, J. E., Geofys. Pub., 3, 11, 1925.
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when its changes are pseudo-adiabatic but passes directly from

the rain stage to the snow stage. Furthermore, when the ascent

is pseudo-adiabatic, any subsequent descent will follow the dry
adiabatic for all the condensed water is being expelled during the

ascent so that the air becomes unsaturated as soon as it begins to

descend.

The actual computation of the simultaneous changes of pres-

sure, temperature, and moisture content are greatly facilitated

by the use of thermodynamic charts. A simple thermodynamic
chart which permits one at least to find the temperature varia-

tions of dry or unsaturated moist air undergoing adiabatic

pressure changes has already been described in Sec. 9. The
abscissa of this chart is the temperature and the ordinate the

logarithm of the pressure or its 0.288th power.
1

With the aid of the relations developed in Sec. 17, lines can

be constructed that give the simultaneous values of pressure

and temperature of ascending saturated air. These lines are

called
" saturated adiabats" or

"
pseudo-adiabats

"
;

for the

difference between the two types of changes is negligible, as

pointed out previously. The resulting chart may be referred to

as a "saturated-adiabatic" or a "pseudo-adiabatic" chart.

The first saturated-adiabatic chart has been constructed by
Hertz. 2 It also takes into account the hail stage whose repre-

sentation has been omitted on the charts now in use for the

reasons stated above (page 48). Because the hail stage is

omitted on this chart, the designation
"
pseudo-adiabatic

"
is

preferable. Figure 8 shows a pseudo-adiabatic chart. The
abscissas are the temperatures in degrees centigrade and the

ordinates the 0.288th powers of the pressures in millibars.

The sloping straight lines are the dry adiabats computed in the

manner explained in Sec. 9.

For the construction of the saturated adiabats, (17.6) can be

used at temperatures above the freezing point. For each moist

adiabat the initial value of p and T may be taken arbitrarily.

The saturation pressure e and the heat of condensation L are

determined by T. Therefore, one value of T belongs to every

given value of p. A mean value may be assumed for iD, for

1
Strictly speaking the chart with the coordinate p-*

88 should not be

called a thermodynamic chart (see p. 81).
1 HERTZ, Joe. cit.
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it has little effect on the size of m owing to its smallness. In view

of the slight difference between saturated- and pseudo-adiabatic

changes the curves constructed with the aid of (17.6) may also

be regarded as pseudo-adiabats. Below the freezing point the

computation of the saturated adiabats may be continued with

the aid either of the same equation (17.6), when it is assumed

that supercooling takes place, or of equation (17.9). The prac-

tical difference arising from the use of these two assumptions is

negligible.

1000
-10 -5 5 10

Temperature,C
FIG. 8. Pseudo-adiabatic chart.

15

The saturated adiabats computed in this manner are drawn as

broken curves in Fig. 8. They are sloping more steeply than the

dry adiabats, a fact indicating that the adiabatic temperature

changes due to pressure changes are smaller in the saturated

than in the unsaturated stage. This condition is, of course,

caused by the heat of condensation which compensates partly

for the temperature change due to the adiabatic expansion or

contraction. The compensation is larger the greater the avail-

able amount of heat of condensation. Consequently, the

saturated adiabats are steeper for high temperatures and pres-

sures where the saturation mixing ratio is larger than for lower

temperatures. For very low temperatures where the mixing
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ratio is practically negligible the saturated adiabats are prac-

tically parallel to the dry adiabats.

For many computations, it is desirable to have on such a

chart, also, linos representing the atmospheric moisture content

for a given pressure and temperature when saturation prevails.

On the chart under discussion the lines of constant saturation

mixing ratio have been plotted for this purpose (full curves;

steeper than the dry adiabats). These lines are constructed by
means of the equation

w = 0.621 (5.8)
p e

Because a state of saturation is assumed, e is the saturation pres-

sure of water vapor which depends on the temperature only, so

that w is only a function of p and T. Below the freezing point,

the saturation vapor pressure either over water or over ice may be

chosen; for, quite frequently, water occurs in supercooled form

in the atmosphere, also. 1 The choice is not important; for at

first the difference between the two vapor pressures is quite

small, and at lower temperatures w itself becomes insignificant.

In Fig. 8 the saturation pressure over water has been used. The

figures give the mixing ratio in grams of water vapor per kilogram
of dry air. For a temperature of 12C and a pressure of 980 mb,
for example, the saturation mixing ratio is 9 gm of water vapor

per kilogram of dry air. When the relative humidity is not

100 per cent, the mixing ratio is obtained by multiplication of the

saturation mixing ratio with the relative humidity. This,

though not strictly correct, is sufficiently accurate; for e p.

Thus the mixing ratio of air whose pressure, temperature, and

relative humidity are given can easily be obtained from the chart.

The numerous practical uses of the pseudo-adiabatic charts

can be explained best by an example. Consider a unit of air

at a pressure of 980 mb, a temperature of 12C, and a relative

humidity of 70 per cent. The saturation mixing ratio of this air

is 9 gm/kg, and its actual mixing ratio 6.3 gm/kg. Its dew

point r is the temperature to which it would have to be cooled at

constant pressure so that its mixing ratio 6.3 gm/kg becomes the

saturation mixing ratio. Upon following the isobar 980 mb to

1 The effects of surface tension and impurities of the water on the satura-

tion pressure are not taken into account.
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the saturation mixing ratio 6.3 gm/kg, it is found that T = 6.6C.

Next, the pressure and temperature at the condensation level

may be determined where the air becomes saturated. Because

the air is in the unsaturated stage, it follows the dry adiabat

through the starting point and its mixing ratio remains constant

up to the condensation level, according to Sec. 13. Saturation

occurs when the mixing ratio becomes the saturation mixing
ratio owing to the adiabatic temperature decrease. Conse-

quently, the condensation point is situated at the intersection

of the dry adiabat through the initial point with the saturation

mixing-ratio line representing the actual mixing ratio of the air.

In the example its pressure is 904 mb, and its temperature
5.6C. These are the condensation pressure and temperature.
It may be noted that the dew point remains always on the same

saturation mixing-ratio line during the unsaturated-adiabatic

ascent. Therefore, these lines are also called
"
dew-point lines."

When the air continues its adiabatic ascent, it will now follow the

saturated adiabat through the condensation point. The tem-

perature 0C is reached at a pressure of 805 mb. Completely

dry air of the same initial pressure and temperature would have

been cooled to the freezing point already at a pressure of 842 mb.

Suppose the air ascends to a height where the pressure is 700 mb.

Its temperature would here be 7C. The saturation mixing
ratio is here 3.2 gm/kg of dry air as compared with the original

6.3 gm/kg. The surplus of 3.1 gm/kg either is present as liquid

water and ice (snow) in the atmosphere or has fallen out in part
or completely as precipitation. In this mariner the chart affords

also a rough estimate of the possible precipitation intensity.

When all the liquid water and ice (snow) is retained, the air

will undergo the same states in reverse order when it is brought
down to its original pressure. When, on the other hand, all

liquid and ice are precipitated, i.e., when the process is pseudo-

adiabatic, the air becomes immediately unsaturated when

descending and follows the dry adiabat through the point at

which the descent started. In the example chosen here, the air

would attain a temperature of 20.1C if brought back to its

original pressure of 980 mb provided that it has discharged all

its condensation and sublimation products. Its relative humidity
is now only about 21 per cent. The temperature of the air has

risen during the ascent and subsequent descent from 12 to
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20.1C. This temperature rise is due to the latent heat of

condensation that has been released during the ascent. It may
also happen that the air loses part of its water and snow content

during the ascent so that the descent is first saturated adiabatic

down to a certain pressure and then dry adiabatic.

The best known examples for pseudo-adiabatic changes are

furnished by the foehn and Chinook winds of mountainous

regions, when the air ascends over a mountain range and descends
on the other side. 1

During the ascent the air cools at the

saturated-adiabatic rate and loses at least a great part of its

water or snow so that on its descent it follows a dry adiabat

during the whole or the latter part of the descent. The foehn

appears therefore as a warm dry wind.

19. Saturated-adiabatic Lapse Rate. The differential equa-
tion for dry-adiabatic changes (8.4) led to the expression (9.2)

for the rate of the temperature change with the altitude of

ascending or descending dry air and to the concept of the dry-
adiabatic lapse rate. In a similar manner the equations of

Sec. 17 may be used to find the rate of the temperature change
with altitude in ascending saturated air which leads to the

saturated-adiabatic lapse rate.

The expression for the saturated-adiabatic lapse rate can,

however, be derived more directly, although the derivation is

not quite rigorous. According to (8.2),

d<?
= cp dT -^T<lp

P

for dry or unsaturated moist air. When condensation begins,
let the decrease of the mixing ratio be dw, so that the heat
L dw is released and increases the temperature of the air. The

minus sign indicates that heat is released when the mixing ratio

decreases. When the presence of water vapor and liquid water
is neglected (except for its production of the latent heat of con-

densation), it follows that

-L dw = cP dT - dp (19el )

Equation (19.1) may be compared with (17.2) to ascertain the

simplifications involved. These simplifications are permissible
1
LAMMBBT, L., Arb. Geophys. Inst. Leipzig, 2(7), 261, 1920. KRICK, I. P.,

Gerl Beitr. Geophys,, 39, 399, 1933.
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here; for only small changes of p, !T, and w are considered, whereas

in Sec. 17 an integration was to be performed.

If the pressure variations are due to vertical motions,

According to (5.82),

^= -gdZ
p

dw _ de dp
w

~~

e p

(6.1)

(5.82)

Upon substituting in (19.1) and rearranging, it follows that

dT
cfe

(19.2)

In (6.1) the density of the environment appears. In sub-

stituting (6.1) in (19.1), it has been assumed that the temperature
of the ascending air is not very different from the temperature
of the environment so that both temperatures may be regarded

as equal.

If the snow stage is considered, L in (19.2) stands for the heat

of sublimation.

The expression F' is called the "saturated-adiabatic" or

"moist-adiabatic lapse rate." Its numerical value depends on

the temperature and pressure. The term de/dT may be obtained

by differentiating (5.5) or using Table I of the Appendix for the

saturation vapor pressure. The following table shows the

saturated-adiabatic lapse rate in degrees centigrade per 100 m for

a few temperatures and pressures :

The values of the lapse rate below freezing have been computed
for saturation with respect to ice. A graph showing the satu-
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ratecl-adiabatic lapse rates for different pressures and tempera-
tures has been given by Brunt. 1

20. Stability with Respect to Saturated-adiabatic Changes.
Conditional Instability. The saturated-adiabatic lapse rate

plays a similar role in the concept of stability with reference to

saturated-adiabatic changes as does the dry-adiabatic lapse rate in

the case of dry-adiabatic changes. In particular, a column of

air with a lapse rate a is in stable or unstable equilibrium with

respect to saturated-adiabatic changes when a < F' or a > I",

respectively. There is, however, a complication owing to the

moisture content of the environment. When saturated air

of the initial temperature T is lifted from z to z + Az, its tem-

perature becomes2

T - T' Az

The temperature of the surrounding air at the level z may be T,

the same as the temperature of the displaced air. The tempera-
ture of the surrounding air at z + Az is

T - aAz

where a is the lapse rate of the surrounding air. The lifted

particle will be stable if its density is larger than that of the air

surrounding it. The density depends not only on the tempera-
ture but also on the humidity. When the surrounding air is also

saturated, stability exists if

a < T'

and instability if

a > I"

similar to the case of dry air considered in Sec. 9. If the sur-

rounding air is not saturated, the lifted particle of air is not

necessarily heavier, even though a may be smaller than F' and its

temperature therefore smaller than the temperature of the

surrounding air, for the moister air is lighter than the drier air

at the same pressure and temperature. It is evidently not

sufficient that a < T'
;
a must be smaller by a finite amount that

1 BRUNT, D., Quart. J. Roy. Met. Soc., 59, 351, 1933;
"
Physical and

Dynamical Meteorology/
1

p. 66.

* The temperature variation of the ascending air depends slightly on the

temperature of the surrounding air, also, as was seen in Sec. 8. But this

small effect may be neglected here.
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depends on the difference in moisture content between the air

and its environment. Thus, although the saturated air will

be unstable when a. > T', it is not necessarily stable when
a < F'. However, in the latter case it will at least not be very
far from stability. Therefore, the saturated-adiabatic lapse rate

can in practice be regarded with sufficient accuracy as the limit

between stable and unstable stratification.

When the temperature lapse rate of an air column is inter-

mediate between the dry- and the moist-adiabatic unsaturated

air lifted adiabatically would always be cooler than its surround-

ings and would therefore be in a stable position. Saturated air

would be warmer and, therefore, in an unstable position. This

type of equilibrium which is very common in the atmosphere is

referred to as
"
conditional instability."



CHAPTER IV

FURTHER APPLICATIONS OF THERMODYNAMICS
TO THE ATMOSPHERE

21. The Energy of Thermodynamic Processes. The Carnot

Cycle. The atmosphere as a whole may be compared with a heat

engine that is maintained in motion by being heated in the

tropics and cooled in the polar zones. Similarly, the thermo-

dynamical processes occurring in many of the smaller scale

atmospheric circulations, as, for instance, monsoons or land and

sea breezes, may be treated as the

actions of a heat engine in which

air is the working substance.

The work done by a gas serving

as the working substance in a heat

engine can be studied by means of

a so-called
"
indicator

"
diagram.

The coordinates of such a diagram
are the specific volume and the pres-

*v
sure (Fig. 9). The full curve RS in

(Pv Fig. 9 may represent the successive

states of the gas while it is changing
from the state represented by R to S. Because the gas expands
in the direction from R to S, it does work against the outer pres-

sure which will be counted negative ;
work done on the gas will be

counted positive. The amount of work done by the gas while it

expands from R to S is given by (cf. page 18)

Fio. 9. Indicator diagram
diagram).

VK
(21.1)

It will be noted that the amount of work depends not only on the

initial and the final state but also on the path itself. If the gas
is then brought back to its original state R along the dotted line

/?S, the amount of work done by the gas is

(21.11)

68
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The whole process that the gas undergoes is called a cyclic

process. The total work done by the gas during the cyclic

process is

-f
v

*pdv- C
v

*pdv = -<pdv (21.12)
Jvs Jva J

The circle through the integral on the right-hand side of this

equation indicates that the integration is to be performed along a

closed curve. When the cycle represented by this curve is com-

pleted, the gas has returned to its original state. The total

amount of work done is measured by the area bounded by the full

and broken curves RS, for the area enclosed between the full

curve RS and the abscissa appears in the first integral on the left-

hand side of (21.12) with a negative sign and in the second

integral with a positive sign. If the cyclic process is performed
in the direction assumed here, counterclockwise, the total work

done is positive (i.e., the work done by the gas is negative), for the

area under the full curve is smaller than the area under the broken

curve. The work done on the gas is larger than the work done

by the gas.

To compute the total work, or energy expended, during a

variation of the gas the thermodynamical law that is followed

during the changes of state has to be specified. One of the most

important cyclic processes in thermodynamics is the Carnot

cycle, which consists of two isotherms and two adiabats. The
heat engine performing such a Carnot cycle may have two heat

reservoirs of the temperatures Tf and 7"', which are so large

that their temperatures are not changed when heat is added to

or taken away from them in order to cool or warm the working
substance. The working substance is an ideal gas. It may be

contained in a cylinder one end of which is closed by a piston.

This piston can move without resistance so that no energy is lost

by friction. The changes of state of the working substance are

reversible so that every change, for instance, expansion due to

reduction of the outer pressure acting on the piston, takes place

so slowly that the piston does not gain any kinetic energy.

The cyclic process that the gas undergoes is represented in

Fig. 10. The gas may at first be in the state characterized by
the point 1 where its temperature is T f

. The temperature of

the gas is kept constant at the temperature T' by a suitable con-

nection with the reservoir of the temperature Tr
. By reduction
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of the outer pressure, it is made to expand. Thus, the gas
does work against the outer pressure. The heat equivalent
of the work is furnished by the reservoir of the temperature T'.

Because the change of state is isothermal, the work done by the

gas when it expands from 1 to 2 given by the expression

-TFi 2
= A i pdv = ART' In -2 (21.2)

Because the heat q\z added to keep the gas at constant tempera-
ture is equal to the work done by the gas, it follows further that 1

-TFi2 =
qi2 (21.21)

Next the gas may expand adiabatically until it reaches the

Isotherm

Acl/abat

Fia. 10. Carnot cycle.

temperature of the second reservoir T" (T" < T'). Its repre-

sentation on the indicator diagram describes thereby an adiabat

from the point 2 to 3. Consequently

g2 3 = (21.3)

and, according to the first law of thermodynamics for ideal gases

(8.1),

-TV = A (
Z

pdv = c,(7"
-

7'") (21.31)

Now, the gas is connected with the second reservoir T" and is

compressed isothermally to the specific volume v^ from which

the original specific volume v\ can be reached by adiabatic

compression. Here

Wu = -g, 4 (21.4)

1 The heat as well as the work added to a system will be counted positive.
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The amount of heat #34 is taken away from the gas and added to

the reservoir of the temperature T".

Further,

r4

TF34
= -A I pdv=-ART"ln- (21.41)

J3 #3

Finally, the gas is compressed adiabatically from the volume i; 4

to the volume v\, whereby

?4i
=

(21.5)

and

V 4 i
= -cv(T" -

7") (21.51)

The substance has now been brought back to its original state.

The total amount of work done is obtained by adding (21.2),

(21.31), (21.41), and (2.51).

W = -ART In ^ - ART" In ^
vi t; 3

for the contributions along the adiabats cancel each other. By
virtue of the adiabatic relation (8.43),

Hence,

W = -AR(Tf - T
7

") In - (21.6)

Because T' > T" and v 2 > v\, W < 0; i.e., work is done by
the substance. In the indicator diagram the work is represented

by the area 1234. While the working substance remains

unchanged, a certain amount of heat qi 2 has been taken away
from the first reservoir and the amount qu has been added to

the second reservoir. From (21.2) and (21.41), it follows that

the absolute value of the heat taken away from the first reservoir

is larger than the amount added to the second, for the tempera-
ture during the first isothermal change is higher than during the

second.

The ratio of the work done by the gas to the amount of heat

deducted from the first reservoir is called the
"
efficiency

"
rj

of the engine.
W T"

r,
= -JL = l _ _

(21.7)
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22. Entropy. From the discussion of the Carnot cycle in

the preceding section, it is seen that

P + f
=

(22.1)

A similar relation holds for any reversible cyclic process. In

Fig. 11, such a process is represented in a p-v plane. This

cycle may be broken up into a number of Carnot cycles, as

indicated in the figure where the full curves represent the adiabats

arid the broken curves the isotherms. Along the adiabats,

no heat is taken away from or added to the substance. There-

fore, all that needs to be shown is that when the subdivision is

made sufficiently small the
* amount of heat added or sub-

tracted along the isotherm be-

tween two adiabats is equal to

the amount of heat added or

subtracted along the part of the

original cycle between these two

adiabats. Consider, for in-

stance, the isotherm BC and the

part AC of the original cycle,

v If ABC is regarded as a cyclic
Fio. 11.-Entropy during a reversible

process, the total WOrk per-
cycnc process.

x ;

.

r

formed during this cycle is re-

presented by the area ABC and the heat added along AC and

BC is proportional to the length of these curves. Along the

adiabat AB, no heat is added. Therefore, the sum of the heat

added along BC and along AC must be equal to the work done

during the cycle change. This work is equal to the area of the

triangle which becomes small of higher order than the length of

the sides of the triangle when the adiabats and the isotherms are

drawn at smaller and smaller intervals. It follows that

QBC + QCA.
= quantity of higher order

Consequently, when both curves are traversed in the same

direction,

Vac = QAC + quantity of higher order

Thus, the heat added on the infinitely small line AC of the original

cycle may be replaced by the heat added on the isotherm BC.



FURTHER APPLICATIONS OF THERMODYNAMICS 63

By repeating this reasoning for the whole cyclic process, it is

seen that the result expressed by (21.1) for the Carnot cycle can

be extended to an arbitrary reversible cycle.
1

Hence,

-~ = quantity of higher order

T is the temperature of the isotherm along which the small

amount of heat Ag has been added to the system. When the

steps between the points are made infinitely small, the summation
has to be replaced by an integration, and the difference between

the heat added along the cycle and along the isotherms vanishes.

ji
=

(22.2)

From (22.2), it follows that $dq/T between two given points

Ai and A 2 is independent of the path. To show this, two such

paths may be combined in a cyclic process by changing the

direction in which the changes of state take place along one of

the paths. When irreversible changes of state take place,

I >0

as shown in textbooks on thermodynamics.

The quantity $dq/T counted from an arbitrary origin is

called the "
entropy" of the system

=
J , + const (22.3)

According to Nernst's theorem the entropy vanishes for T =
0,

but in meteorology it is not necessary to take this fact into

account. The importance of the entropy is due to the fact that

it is independent of the path, i.e., of the particular law which the

change of state follows. From (22.2) it follows that d<j> is a total

differential. In Sec. 17, this fact was used to formulate the

adiabatic relation for the ascent of saturated air.

1 In a similar manner, it can be shown that the expression (21.6) for the

efficiency of a heat engine performing a Carnot cycle holds for any reversible

cyclic process.
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Changes of state are called "isentropic" if d<t>
= 0. They

satisfy the condition that dq = and are therefore always
adiabatic. The converse is not necessarily true, for isentropic

changes must also be reversible. The reversibility implies

that the variation of state is so slow that it may be considered

as a succession of equilibrium states. The so-called "adiabatic

changes" in meteorology are really isentropic changes, for they
are assumed to be reversible, as already pointed out in Sec. 8,

where the equation for dry-adiabatic changes was derived.

If the first law of thermodynamics in the form (8.2) is sub-

stituted in (22.3), integration shows that the entropy of dry
air

<t>

-
4> Q

= cp In J~
- AR In -

(22.4)
I o PQ

Here is the arbitrary value of the entropy at the pressure p
and TQ. Shaw 1 has suggested that for meteorological purposes

<t>
=

when T = 100 abs. and p = 1000 mb would be a suitable

choice.

When the definition of the potential temperature (9.1) is

introduced, (22.4) may be written

<t>

-
0o = cp In (22.5)

V70

Thus the entropy of dry air is proportional to its potential

temperature. Because cp has the dimensions calorie per gram and

degree, Eq. (22.5) gives the entropy in caloric units. To obtain

it in mechanical units, it must be multiplied by the mechanical

equivalent of heat.

The entropy of moist air can be obtained directly from (17.2).

Division of this equation by T and integration show that

/ \ C dq , . _ N , T
,
Lw L QWQ

(
-

o)
=
J ~f

=
(cp + cw)\n^

+ ^r- -^
- AR In

P ~ e

(22.6)
Po

- e

The moist air may be regarded as consisting of dry air and water

vapor. Hence, the entropy variation of the dry air

1 SHAW, N., "Manual of Meteorology," Vol. 3, p. 247, University Press,

Cambridge, 1933
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LoWQ\---
^

I

(22.7)

When the moist air undergoes an isentropic process, it follows,

because the second term on the right-hand side is small, that

v /Lw Z/ottf(A~~
9o)dry air

= ~~
I ~7rT

~
~~lm j

\ 1 If) /

23. Energy Released by the Adiabatic Ascent of Air. When
a parcel of air ascends or descends, its temperature and density

are in general different from that of the surrounding air whereas

the pressures are the same,

P'
= P

The variables marked with a prime refer to the ascending quan-
tum of air, the variables without a prime to the surrounding air.

For the surrounding air the hydrostatic equation holds so that

The air in vertical motion is not in equilibrium with the air sur-

rounding it, for its density p' is different from the density p of the

environment. The acceleration to which the unit mass of the

air in vertical motion is subjected is given by

1 dpa =- g
-p'te

Upon substituting for dp/dz from (6.1) the acceleration becomes

When the air is moist, T' and T are virtual temperatures; but

here the effect of the moisture content on the density may be

neglected. The work done by the unit mass 1 when moved a

distance dz

T ' ~ T
dz (23.2)

1 It should be noted that we are considering now the work done by the

ascending mass as positive, not the work done on the mass as in Sec. 21.

To indicate this difference the notation W is used.
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or, according to (6.11),

dW = - AR(T' -
T) d In p (23.21)

The conversion factor A is added so that W is expressed in

thermal units.

When the air ascends through a colder environment, T' > T;

dW > during ascending
motion, energy is liberated,

whereas energy is expended
when the air ascends through
a warmer environment where

T' < T.

Equation (23.21) shows how
the energy necessary to lift a

parcel of air from a pressure
=* level pi to another level p 2 may

FIG. 12. Energy released during be represented on an adiabatic

the adiabatic asnent of dry or unsatu- chart ( T-ln p chart) . In Fig. 12,
rated air and of saturated air. A ^ r , . , , . ,ACB represents the observed

temperature distribution. When air rises from p\ to p 2 ,
it follows

the adiabat from A to B. At B, it is again in equilibrium. The
work done by lifting the air is

-AR f
p
'(r - T)dlnp

This integral is equal to the area enclosed by the adiabat AB
and the temperature-pressure curve ACB. In the present

example the temperature T' of the moving parcel of air is larger

than the temperature T of the environment except at A and B
while d In p is negative. The integral is consequently positive ;

energy has been released during the ascent.

The preceding considerations may be extended to the vertical

motions of moist saturated air. Equation (23.21) would remain

unchanged, but the temperature T' of the parcel of ascending air

would follow a moist adiabat instead of a dry adiabat as before.

In Fig. 12 an example is also shown where the air first follows

a dry adiabat from A to Z>. At D the saturation stage is reached

and the air follows now the saturation adiabat DE. The external

temperature distribution is indicated by ACBE. In this example
the temperature is again always higher than that of the surround-
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ing air so that energy is released. At E the temperature of the

ascending air and that of the air surrounding it become equal

again so that a new equilibrium position is reached.

The stability or instability of an atmospheric temperature
distribution arid the gain or loss of energy during vertical motion

depend on the position of the pressure-temperature curve rela-

tive to the adiabat. When this curve is to the right of the adia-

bat, the atmospheric layer is in stable equilibrium and energy
must be supplied to lift air, when the ascent curve is to the left

of the adiabat, the equilibrium is unstable and energy is released

during vertical motion.

24. Equivalent Potential Temperature and Equivalent Temper-
ature. The adiabatic relation for dry air led to the definition of

the potential temperature (Sec. 9), which remains constant as

long as the changes of the air follow the dry adiabat. The use-

fulness of the potential temperature for air-mass analysis is,

however, restricted, for the potential temperature varies when
condensation takes place during the adiabatic process. But

with the aid of the relations developed in Sec. 17, it is possible

to introduce a quantity, the equivalent potential temperature,
that remains constant during moist-adiabatic changes. The

equivalent potential temperature is realized if the air is first

lifted dry adiabatically to the condensation level, then lifted

pseudo-adiabatically to the pressure zero so that the water

vapor condenses and falls out, and is finally brought adiabatically

to the standard pressure of 1000 mb. To formulate this defini-

tion of the equivalent potential temperature mathematically the

slight difference between the rain and the snow stage can be

disregarded. Furthermore, cw may be neglected with respect

to cp in Eq. (17.3). This does not cause a serious error and is

correct in any case if the changes of state of the air are pseudo-
adiabatic. It follows that

cp In T + ~ - AR In (p
-

e)
= C (24.1)

where C is a constant. Upon introducing the partial potential

temperature from (13.6) and putting cp
* cp ,

cp In d
- AR In P +^ = C (24.11)
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If the air is at first unsaturated, its partial potential temperature
remains constant up to the condensation level. Above the

condensation level, (24.11) holds. Lifting the air further the

water vapor condenses and falls out until w = when p = 0.

The partial potential temperature, which is then attained, is

the equivalent potential temperature

C = cp In BE - ARlnP (24.2)

Upon combining (24.11) and (24.2), it is found that

Lw

QK = Qde^T (24.3)

or if the temperature is introduced again from (13.6),

AR LW
e^T (24.31)

When the air whose equivalent potential temperature is to be

computed is not saturated, the temperature at the condensation

level has to be inserted in the exponents in (24.3) and (24.31)

instead of the actual temperature.
It is sometimes convenient to use the "equivalent tempera-

ture" TE, which is realized by bringing the air from the pressure

zero dry adiabatically not to the standard pressure of 1000 mb
but to its original partial pressure.

Consequently,

-

or, with (24.3),

TE = Te^~T (24.5)

This definition of the equivalent potential and equivalent tem-

perature has been given by Rossby.
1 It has the advantage that

it shows clearly the conservative property of 0# with respect to

saturated adiabatic changes.

There are other, slightly different definitions of TE and BE.

According to (24.5), approximately

TE-T = L~ (24.6)
cp

1 ROSSBY, C.-G., Mass. Inst. Tech. Met. Papers, 1, 3, 1932.
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This relation, which according to Rossby's definition is only an

approximation, has been taken as the definition of the equivalent

temperature by Robitzsch 1 who followed some earlier ideas of

von Bezold. 2 Robitzsch's definition states that the equivalent

temperature is the temperature which the air assumes when all

its water vapor condenses at constant pressure and the latent

heat of condensation is released. Rossby has pointed out that

it is impossible to visualize this process physically.

Robitzsch defines further as the equivalent potential tempera-
ture the equivalent temperature that the air assumes when it is

brought dry adiabatically from its original pressure to the

standard pressure of 1000 mb. It follows as the definition

equation that

/7~\ *

(24.7)

This equation may be regarded as a simplification of (24.31).

Because Rossby's and Robitzsch's definitions are different,

the values for GA- and TE are also different. For example, let

p = 1000 mb, T = 302, and w = 14 X 10~3
,
so that the air is

just saturated. Then the difference between TK and T would

be 36.1, according to Rossby 's formula (24.5), and 34.2, accord-

ing to Robitzsch's formula (24.6).

Petterssen 3 retains the names "
equivalent temperature"

and "equivalent potential temperature
"

for Robitzsch's defini-

tion and refers to Rossby's as the
"
pseudo-equivalent" and

"
potential pseudo-equivalent temperature," to indicate that

the changes of air are pseudo-adiabatic. Stiive 4
calls the quanti-

ties as defined by Rossby
"
pseudotemperature

" and "
pseudo-

potential" temperature. A very exhaustive discussion of the

possible definitions and their conservative properties has been

given by Bleeker. 6 In practice the differences are mostly quite

negligible.

1
ROBITZSCH, M., Met. Z., 45, 313, 1928.

2 VON BEZOLU, W., "Gcsammelte Abhandlungen," Vol. 10, Friedrich

Vieweg & Sohn, Brunswick, 1906.
3 PETTERSSEN, S., "Weather Analysis and Forecasting," p. 24, McGraw-

Hill Book Company, Inc., New York, 1940.
4
STtivE, G., "Handbuch der Geophysik," Vol. 9 (2), p. 238, Gebriider

Borntrager, Berlin, 1937.
* BLEEKER, W., Quart. J. Roy. Met. Soc., 66, 542, 1939.
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26. Wet-bulb Temperature and Wet-bulb Potential Temper-
ature. The atmospheric humidity is measured either by the hair

hygrometer or by the psychrometer. The psychrometer con-

sists of an ordinary thermometer showing the temperature of

the air and another thermometer whose bulb is kept covered with

a thin film of water. The temperature of the wet-bulb ther-

mometer has some important thermodynamical implications
which will be discussed now.

The following notations are used:

T = temperature
Tw = temperature at the wet-bulb

w = mixing ratio

ww = mixing ratio at the wet bulb

e = water-vapor pressure

ew = water-vapor pressure at the wet bulb

L = latent heat of condensation at T
Lw = latent heat of condensation at Tw
cp = specific heat at constant pressure of dry air

Cpw = specific heat at constant pressure of water vapor
It will be assumed, following Normand, 1 that the air in contact

with the wet bulb is cooled by evaporation from the wet bulb so

that saturation occurs at the temperature Tw indicated by the

wet thermometer. This assumption implies that (1 + w) gm
of moist air are cooled in contact with the wet bulb from T to

Twy so that an amount of heat is released sufficient to produce

,(1 + ww) gm of saturated air. It follows that

Lw(ww - w) =
(cp + cpww)(T - Tw) (25.1)

If the vapor pressure is introduced by (5.8), (25.1) becomes

approximately, because cpww cp ,

(25 -u)

This equation may be used to find the vapor pressure and the

relative humidity as functions of the difference between the dry
and the wet thermometer. It is referred to as the

"
psychrometer

equation."

1 NORMAND, C. W. B., Mem. Ind. Met. Dept., 23, 1, 1921.
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Equation (25.1) may be written in the form

(cp + cpww) T + Lww =
(cp + WwCpw)Tw + Lwww

- cpw(ww
- w)Tw (25.2)

This relation states Normand's first proposition that, apart from

the small difference between Lw and L, the heat content of the

air is equal to the heat content of the same air at the wet-bulb

temperature minus the heat content of the water vapor necessary
to saturate it.

The air becomes saturated when it reaches the wet-bulb tem-

perature. It can therefore not be cooled below the wet-bulb

temperature by evaporation.

The process that is assumed to take place at the wet bulb is

irreversible, for heat is taken away from the air at a temperature
between T and Tw and added to the water at a temperature Tw
where it is used to evaporate the water. Therefore, the entropy
of the system increases. The system consisted at first of (1 + w)

gm of moist air at the temperature T and (ww w) gm of water

at the temperature Tw . Finally, there are (1 + ww) gm of

saturated air at the temperature Tw . According to the definition

of entropy (22.2), the gain of entropy by the water is

T T
( \ \

* w
(Cp -f- WCpW)

J w

and the loss of the entropy by the air is

C T dT T
(cp + wcpu) I -57

=
(Cp + wcpw) In -

J Tv * L w

Because

T = r-r,,_
Tw Tw

the net gain of entropy is

[1

(T T Y 1-
(

^
-

J
terms of higher order

This is approximately %(T TW)/TW times the net gain of the

entropy by the water. Because (T TW)/TW is a small quan-

tity, the gain of entropy of the whole system can be neglected in

comparison with the loss of entropy by the air and the gain of
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entropy by the water. Hence, Normand's second proposition

follows, according to which the entropy of air is approximately

equal to the entropy of the same air when saturated at the wet-

bulb temperature minus the entropy of the water required to

saturate it.

If saturated air of temperature Tw and mixing ratro ww ascends

adiabatically, it follows a pseudo-adiabat. In Fig. 13 the point

B represents the original state of the air, and BD the pseudo-

adiabat followed during the ascent. The amount of condensed

water, say ww w, falls out and the mixing ratio decreases

to w. If the air is brought down adiabatically to its original

pressure level, it follows the dry adiabat DA. At A the tempera-

ture of the air may be T. Its mixing ratio w remains constant

Inp

\

-+
Fia. 13. Relation between the temperature and the wet-bulb temperature.

during the descent. The process represented by ADB is not

reversible for the condensed water has been expelled. Apart
from the heat of condensation, no heat has been added or taken

away from the air. Thus, the entropy of the moist air at A is

equal to the entropy at B minus the entropy of the precipitated

water: Therefore, according to Normand's second proposition

the temperature Tw of the saturated air at B is the wet-bulb

temperature of the air whose temperature and mixing ratio

are T and w, respectively, at A. Because the air ascending
from A becomes saturated at D, this point is the condensation

point. The line DC may represent the saturation mixing-ratio

line (dew-point line) through the point D. It has been shown

in Sec. 13 that the dew point moves along the saturation mixing-

ratio line during dry-adiabatic processes. Therefore, the point C
where DC intersects the isobar through A is the dew point of the

air whose temperature is T and whose mixing ratio is w. Con-

sequently the dry adiabat through the temperature, the pseudo-
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adiabat through the wet-bulb temperature Tw ,
and the saturation

mixing-ratio line through the dew point meet in the condensa-

tion point. This is referred to as Normand's third proposition.

Because Normand's second proposition is not strictly accurate

and because the condensation of the water vapor on the saturated

adiabat BD occurs at temperatures different from TWJ Normand's

third proposition is not quite accurate,
1

or, to put it differently,

the wet-bulb temperature determined with the aid of Normand's

third proposition is not identical with the one defined by (25.1).

Bleeker has therefore suggested the name "adiabatic wet-bulb

temperature" when Normand's third proposition is accepted as

the definition of the wet-bulb temperature. Petterssen 2
prefers

the term "
pseudo-wet-bulb temperature" in order to indicate

that the changes of the air are pseudo-adiabatic. In practice the

difference between the wet-bulb temperature and the pseudo-, or

adiabatic, wet-bulb temperature is appreciable only if T Tw
is large, i.e., at high temperatures and low humidities. Actually,

however, this difference is negligible.

The wet-bulb temperature remains constant when evaporation
or condensation takes place at constant pressure. When the

air undergoes adiabatic changes in the saturated or unsaturated

stage, the wet-bulb temperature follows always the same pseudo-
adiabatic curve. We may therefore define the wet-bulb potential

temperature 6, as the wet-bulb temperature that the air assumes

when it is brought adiabatically to the standard pressure. 9W
is then invariant with respect to dry- or moist-adiabatic changes
and to evaporation at constant pressure; it is another conserva-

tive property of the air. More accurately, one should distin-

guish between the potential wet-bulb temperature and the

potential adiabatic, or potential pseudo-wet-bulb temperature.
The former is strictly conservative with respect to evaporation,

the latter with respect to dry- or moist-adiabatic changes, as

follows from the foregoing discussion.

The (potential pseudo) wet-bulb potential temperature and

the (potential pseudo) equivalent potential temperature stand

in a direct functional relationship so that one can be computed
when the other is given. To find this relation, consider Eq.

(24.2). When the air is first lifted adiabatically to the pressure 0,

1 BLEEKER, W., Quart. J. Roy. Met. Soc., 65, 542, 1939.
2
PETTERSSEN, op. cit., p. 25.
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so that all the water vapor condenses and falls out, and then

brought down to the standard pressure of 1000 mb, the tempera-
ture becomes 6# for which (24.2) holds. On the other hand,

when the air is brought moist adiabatically to the standard pres-

sure the wet-bulb potential temperature Gw is realized for which

cp In Gu, + - AR In P = C (25.21)
Uu,

according to (24.1). For w the saturation value at the tempera-
ture Bu, is to be taken. Because the constant is the same in

(24.2) and (25.21), it follows that 1

A similar relation holds between the equivalent temperature
and the wet-bulb temperature. If the exponential in (25.3)

is developed in a series and terms of higher order are omitted,

it is found that, approximately,

cpes = cpQw + Lw(Qw) (25.31)

Thus, the equivalent potential temperature is approximately
the temperature that dry air must have at the standard pressure

for its heat content to equal the heat content of the air at the

wet bulb at standard pressure.

The application of the wet-bulb potential temperature to

air-mass analysis has been studied extensively by Hewson. 2

Because the wet-bulb potential temperature and the equivalent

potential temperature are determined by each other according

to (25.3), either quantity may be used in practical work. In

fact, it may be said that the choice between the wet-bulb poten-

tial temperature and the equivalent potential temperature
amounts only to a decision as to whether one prefers to mark the

pseudo-adiabats by the temperature of the isotherms that they
intersect at the pressure of 1000 mb or by the temperature of

the dry adiabats that they reach at the pressure mb. (This

is strictly correct only for the potential pseudo wet-bulb tem-

perature and the potential pseudo-equivalent temperature, in

1 BINDON, H. H., Monthly Weather Rev., 68, 243, 1940.
1 HEWSON, E. W., Quart. J. Roy. Met. Soc., 62, 387, 1936; 63, 7, 323, 1937;

64, 407, 1938.
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Petterssen's terminology.) A practical advantage of the wet-

bulb potential temperature over the equivalent potential tem-

perature is that it can be determined more easily from the

adiabatic or any other thermodynamic chart (see Sec. 28),

for it does not require that the air be lifted to the pressure mb.
26. Latent Instability. Frequently the lapse rate of temper-

ature is intermediate between the dry and the moist adiabatic

so that the atmosphere is conditionally unstable (see Sec. 20).

Consider such a conditionally unstable temperature distribution,

as shown by the full curve AGED in Fig. 14. If the air at A is

unsaturated, it follows the dry adiabat AB when lifted adia-

batically until it becomes saturated at B. From there on, it

Fio. 14. Latent instability.

cools at the saturated-adiabatic rate represented by the line

BCD. At C, it is again in equilibrium with the air surrounding
it. Up to this point, energy is required to lift the air, for it is

cooler than the surrounding air. But from C upward the ascend-

ing parcel of air would be warmer than the surrounding air. It

can therefore now rise spontaneously until it again attains

equilibrium with the environment at D. This type of condi-

tional instability which can be released by vertical displacement
of a parcel of air has been called latent instability by Normand. 1

Normand distinguishes between two cases of latent instability:

(1) If the positive area CDE is larger than the negative area

ABC, there will be a net gain of energy that will partly be used

to overcome friction and that may partly be changed into kinetic

energy. This case is referred to as real latent instability. (2) If

the positive area CDE is smaller than the negative area ABC
f

1 NOBMAND, C. W. B., Quart. J. Roy. Met. Soc., 64, 47, 1938,
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there is a net loss of energy. This is the case of pseudo-latent

instability. In the latter case, convection is much less likely to

arise than in the former. In both cases the initial stability

represented by the lower, negative area has, of course, to be

overcome first.

Latent instability can exist only where the stratification is

conditionally unstable, but it does not always prevail under

conditionally unstable conditions. To find a criterion for latent

instability, consider the wet-bulb temperature curve A'F'G in

Fig. 14 which belongs to the temperature distribution AFCED.
The wet-bulb temperature corresponding to A is represented by

A', which lies on the pseudo-adiabat through the condensation

point B of A and on the isobar A 'A through A. It will be seen

that latent instability exists for a given parcel of air if the

pseudo-adiabat through its wet-bulb temperature intersects

the curve representing the atmospheric stratification. Thus,
the wet-bulb curve affords an easy method of finding the regions

of latent instability. Above the pressure level indicated by the

isobar FF', no latent instability exists because the pseudo-

adiabat through the corresponding point F' on the wet-bulb

curve just touches the curve showing the temperature dis-

tribution at the point E. Nevertheless, the atmosphere is con-

ditionally unstable up to E.

It must be emphasized that these stability considerations do

not take into account the fact that downward motions must

take place in the surrounding air in order to satisfy the con-

tinuity conditions. The effects of these compensation motions

on the stability have been studied by J. Bjerknes
1 and by

Petterssen. 2

27. Potential, or Convective, Instability. When vertical

motion affects the whole layer of air, instead of a small parcel

of air, the lapse rate of the air undergoing a vertical displacement
is changed so that the stratification may become unstable when

it was stable to begin with.

The analytical expression for the variation of the lapse rate of

a layer subjected to a dry-adiabatic change is represented by

(10.2). To derive a similar formula for air in the saturated

1 BJERKNES, J., Quart. /. Roy. Met. Soc., 64, 325, 1938.
a
PETTERSSEN, S., Oeofys. Pub., 12, No. 9, 1939; "Weather Analysis and

Forecasting/' p. 64.
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state would lead to rather complicated formulas. The problem
can be solved readily, however, with the aid of a pseudo-adiabatic

chart. As an example, consider a layer whose pressure, tem-

perature, and mixing ratio are, respectively, at the bottom (point

A) 1000 mb, 15C, and 9 gm/kg and at the top (point B) 900 mb,

12C, and 4.0 gm/kg (Fig. 15). When the layer is lifted without

any change of its cross section, the pressure difference between

bottom and top must remain constant owing to the conservation

of mass. When A ascends to the pressure level 800 mb, it follows

first the dry adiabat to the condensation point C and then the

1000
-10 -505

Temperature,C
FIG. 15. Convectivo or potential instability.

moist adiabat to A". Similarly, B, when lifted 200 mb, follows

the dry adiabat to the condensation point D and then the

moist adiabat to B" where the pressure is 700 mb. Origi-

nally, the lapse rate of the layer AB was less than moist adia-

batic; in fact, the layer was not even conditionally unstable.

After it has been lifted 200 mb, its lapse rate is greater than the

saturated adiabatic. Because the air column has become

saturated, it is now unstable. The reader may verify on a

thermodynamic chart the fact that the lapse rate of the layer

becomes greater than dry adiabatic when the layer is lifted

another 150 mb. This type of instability, where the layer was



78 DYNAMIC METEOROLOGY

stable originally but becomes unstable owing to vertical lifting,

is called potential
1 or convective instability.

2

The development of instability during continued lifting is due

to the unequal heating of the air originally at A and at B by the

latent heat of condensation. The amount of heat supplied to

the air originally at A is larger than the amount of heat supplied

to the air originally at #, for the air at A reaches the condensation

level earlier than the air at B. When the moist adiabats through
A." and B", which of course also pass through the respective

condensation points C and D, are extended to the 1000-mb

isobar, the wet-bulb potential temperatures A' and B' are

obtained. In the present example the wet-bulb potential tem-

perature decreases with the altitude. It is easily seen that a

layer is potentially unstable when its wet-btilb potential tempera-
ture Btt, decreases with height. When the layer is lifted, the

variations of the wet-bulb temperature Tw of any particle in the

layer follow a saturated adiabat. As soon as the air becomes

saturated, its temperature and wet-bulb temperature coincide.

When the lapse rate of Tw was originally larger than the saturated

adiabatic, it remains always larger during the lifting, and the

layer becomes therefore unstable after saturation. A lapse

rate of Tw greater than the saturated adiabatic implies a decrease

of Ou, with the elevation. It follows that dQw/dz < is the condi-

tion for potential instability.

Since the wet-bulb potential temperature Ow and the equivalent

potential temperature 0j? are related by (25.3), the condition

for potential instability may also be written dQE/dz < 0.

28. Thermodynamic Charts and Air-mass Charts. According
to Sec. 21 the area enclosed by the curve that represents a cyclic

process on an indicator diagram measures the amount of energy
transformed during the process. In meteorological practice

the use of the specific volume v as the one coordinate is very

unsatisfactory, for v cannot be observed directly. But on the

adiabatic chart that has T and In p as coordinates the energy
involved in cyclic processes is also represented by an area

according to Sec. 23. The work done or gained during the

ascent of a parcel of air is given by the area between the curves

representing the changes of state of the parcel and the actual

1 HEWSON, E. W., Quart. J. Roy. Met. Soc., 63, 323, 1937.
*
ROSSBY, C.-G., Mass. Inst. Tech. Met. Papers, 1, 3, 20, 1932.
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atmospheric stratification. It will be shown below that the

adiabatic chart is an equal-area transformation of the pv dia-

gram. Obviously, any diagram that can be obtained from the

pv diagram by an equal-area transformation will serve as well.

Such diagrams may be called "thermodynamic charts."

Hitherto, we have used only the adiabatic or pseudo-adiabatic

chart because its coordinates T and p can be observed directly

so that it may be regarded as the simplest thermodynamic chart

in meteorology. Because a great variety of thermodynamic
charts 1 are now employed in meteorology, it is useful to investi-

gate the condition for equal area transformations of the pv

diagram.
2 The coordinates of the new chart may be denoted

by x and y. They may be regarded as functions of p and v,

x = x(p, v) y = y(p, v) (28.1)

The condition for an equal-area transformation requires that

toty_**dy (282)
dp dv dv dp

^ }

For a derivation of this condition, reference may be made to the

textbooks on differential geometry.

Any pair of variables x and y that satisfies (28.2) can serve

as new coordinates. In practice, when a thermodynamic
chart is to be constructed, one of the coordinates will in general

be known, whereas the other is to be found. If x =
x(p, v) is

known, then M = dx/dv and N = dx/dp are also given. From

(28.2), it follows that y is the solution of the partial differential

equation

N dJ>- M ^ = l (28.21)
dv dp

^ '

To solve (28.21), consider the system of simultaneous ordinary
differential equations

dv _ dp _ dy ,

2R 99
v

N
- ~ M ~ T (28 '22)

1 For a complete collection and description of the charts see L. Weickmann,
"Ueber aerologische Diagrammpapiere," Internationale Organisation,

Internationale Aerologische Kommission, Berlin, 1938.
2 REFSDAL, A., Geofys. Pub., 11, No. 13, 1937. WERENSKIOLD, W., Geofy*.

Pub., 12, No. 6, 1938.
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The equation ~ = -~ is satisfied by the relation

x(p y v)
= XQ = const

The variable v may now be expressed as a function of p and XQ

so that M appears as a function of the variable p only. Then y

may be found by integration of the equation

_dp = fy
M ~

1

according to which

2,= -Jf + *'(*) (28.3)

F(x) is an arbitrary function of x. After the integration is

performed, #0 has to be replaced again by x in (28.3).

For instance, if

x =
v"pP (28.4)

it follows that

f^<vM = = av 01"^
dv

Substituting here from the equation

a-1

M = aXQ
a
p
a

Upon introducing this expression for M in (28.3), integrating,

and writing again v"pP for XQ, it is found that

y = - ^~ v l

-pi~* (28.41)

where it has been assumed that F(x) = 0. When a = and

ft
= K = AR/Cp, one of the coordinates becomes p*, which is often

used as one of the coordinates, and the temperature T as the other

coordinate (see Sec. 9). From (28.41), it follows that, in the

case of an equal-area transformation,

y Up 1-



FURTHER APPLICATIONS OF THERMODYNAMICS 81

or, with Eq. (9.1),

where P is the standard pressure of 1000 mb and 9 the potential

temperature. Thus the chart with the coordinates p* and T
is not an equal-area transformation of the pv diagram and cannot

be used for energy computations, although the errors would in

general only be slight.

The case ft
= a requires a separate treatment. It is found

that

lnp (28.42)

When a =
ft
=

1,

x = pv = RT and y = In p

This is the adiabatic or pseudo-adiabatic chart which has been used

hitherto.

As another example, let

x = alnv+p\np (28.5)

Then

When a = cp,
and ft

= cv according to (28.51) and (22.44)

x = Cpln v + cv ln p
= cp In 7

7

(cp cv) In p + cp ln R
=

<t> + const

and

Shaw 1 has constructed such a chart with the absolute tempera-
ture T as abscissa, and the entropy of dry air <t> as ordinate. This

chart is called the tephigram. Because the entropy is propor-
tional to the logarithm of the potential temperature according

, N., "Manual of Meteorology," Vol. 3, University Press, Cam-
bridge, p. 269.
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to (22.5), the ordinatc gives also the potential temperature on a

logarithmic scale. The dry adiabats are thus horizontal, a

circumstance useful for practical work.

When a = in (28.5), it is found that

y = - In p (28.52)a

In particular, if a = # =
1,

x = In RT and y = -RT In p

A thermodynamic chart with these coordinates, the aerogram,

has been constructed by Refsdal. 1 It has a great number of

advantages although the many lines may be somewhat disturbing

when it is used in practical work. The height difference between

two pressure levels is represented by the length of the isotherm

representing the mean temperature between the two isobars

on the aerogram. This permits a very quick computation of the

height. For a proof of this theorem and for a detailed description

the reader is referred to Refsdal's original paper. Similar

graphical methods of height computation can be adopted on

other thermodynamic charts as pointed out by Spilhaus.
2 In

an atmosphere with adiabatic lapse rate, by logarithmic differ-

entiation of (9.1) and from (6.11),

dT _ dp _ _ d

T
~

*p
~ K

RT

By integration between two levels 1 and 2, it follows that

fr
- ^ = (r2

-
TI) (28.6)

Thus, to determine the height difference between pi and p 2 ,
the

adiabat has to be found that encloses the same area between the

isobars pi and p 2 as the actual temperature distribution. On

thermodynamic charts with the temperature as one coordinate

the projection of the adiabat between p\ and p% on the isotherm

is proportional to the height difference, and a scale can be con-

structed from which the height difference can be read off directly.

1 REFSDAL, A., Geofys. Pub., 11, No. 13, 1937.
'
SPILHAUS, A. F., Bull Am. Met. Soc., 21, 1, 1940.
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In addition to the thennodynamic charts that are equal-area

transformations of the pv diagram, other charts have been con-

structed, not intended by their authors to be used for height and

energy computations. When aerological ascents are plotted on

these charts, certain features of the vertical stratification are

stressed so that these charts are particularly useful for certain

purposes of air-mass analysis. To indicate that these charts are

of a different type insofar as they are not equal-area transforma-

tions of the pv diagram, they may be called
"
air-mass charts" 1

even though the charts described earlier also permit, of course,

an analysis of the structure of the atmosphere.

Rossby has constructed a chart 2 with the mixing ratio w as

abscissa and the partial potential temperature on a logarithmic

scale as ordinate. Because

w = 0.621 (5.8)
p -e

and

and because e
}
the saturated vapor pressure, is only a function

of the temperature, the pressure p and the temperature T of the

air are determined when w and 9d are given. If the air is not

saturated, it may be lifted adiabatically to the condensation level

without changing w and Gj. The values p and T obtained in the

unsaturated case are therefore the pressure pc and Tc at the con-

densation level. Because w
9 6*, and Tc are thus determined

by the position of a point on the chart, the equivalent potential

temperature 9E can be computed from (24.3) for each point, and

lines of equal equivalent potential temperature may be drawn.

The diagram is therefore called the equivalent-potential-tempera-

ture diagram (or, more briefly, the Rossby diagram). The mixing

ratio and the partial potential temperature of unsaturated air do

not change during adiabatic variations. The air is therefore

represented by one and the same characteristic point on the

diagram until condensation occurs. When a layer of dry

unsaturated air is thoroughly stirred so that it becomes homo-

1 WBICKMANN, loc. dt.
8
ROSSBT, C.-G., Mass. Inst. Tech. Met. Papers 1, 3, 1932.
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geneous, its potential temperature and mixing ratio will approach
constant values, and the layer is shown as a very short line or,

in the limiting case, as a point. On the other hand, where two

air masses of very different properties meet, the transitional zone

between these air masses is stretched over a long distance on the

diagram. These properties and the possibility of finding the

conservative equivalent potential temperature directly from

the diagram make it a very useful tool for air-mass analysis.

Another air-mass chart that may be mentioned here is the

thetagram developed by Schinze. 1 The abscissa of the diagram
is the temperature and the ordinate the pressure, both on a linear

scale. To facilitate the identification of air masses the thetagram
shows furthermore the typical (mean) vertical distribution of the

equivalent potential temperature as a function of the pressure

in the various unmodified air masses. Because this element

varies from month to month, different thetagrams have to be

used for different months and the chart for each month shows the

typical distribution of the equivalent potential temperature
at the beginning and at the end of each month. Obviously,
different thetagrams should be used also for regions of very
different geographical location, e.g., for Europe and North

America.

Problem

7. A parcel of air has a temperature T
f
different from that of the air sur-

rounding it, T. The temperature of the surrounding air decreases with the

altitude at the constant lapse rate a. Find the motion of the parcel of air,

neglecting the effects of a compensating motion of the surrounding air and

assuming dry-adiabatic changes of state. Under which conditions is the

motion stable and unstable? What are the period and amplitude of the

oscillation in the stable case?

1
SCHINZE, G., Beitr. Phys. Atm., 19, 79, 1932.



CHAPTER V

RADIATION

29. The Laws of Radiation. For an understanding of the

effects of solar, terrestrial, and atmospheric radiation on the

atmospheric processes a knowledge of the laws of radiation is

necessary. These laws will be briefly recapitulated here, but

for details the reader is referred to textbooks on the subject.

If the emissive power of a radiating body for a given wave

length X is e\ and its absorptive power for the same wave length

is ax, Kirchhoff's law states that the ratio of the two depends not

on the nature of the body but only on the wave length of the

radiation and the temperature of the body,

J = E.(\,T) (29.1)
"x

If the absorptive power a\ = 1 for all wave lengths, i.e., if a body
absorbs all incident radiative energy, it is called a "

black body/'

Thus, the function E9(\,T) in (29.1) is the radiation of the black

body. When the absorptive power a\ of a radiating body is

known, its emission is the fraction a\ of the black-body radiation.

Strictly
" black

"
bodies do not exist in nature, but the radiation

from the earth's surface or from a cloud surface, for instance, may
be treated as black-body radiation.

If a\ = const < 1 for all wave lengths, the radiation emitted is

that of a "gray" body. Such gray bodies do not exist in nature,

either; but they are a helpful device in the discussion of some
radiation problems.
The energy distribution in the spectrum of a black body of the

temperature T is given by Planck's law,

r.\-*
Ex d\ = - d\ (29.2)

The constants Ci and c2 follow from the quantum theory.
85
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At a fixed temperature T the radiative energy of a black body

E\ has a maximum for a certain wave length Xmax that can be

found by differentiation of (29.2) with respect to X and equating

dE/d\ to zero. The result is Wien's law,

Anux ==
7p (29.o)

where a is a numerical constant whose value is 0.2892 cm deg.
1

Thus, the greater the temperature of a black body, the smaller

the wave length of maximum intensity. In the visible part

of the spectrum, this law leads to the well-known phenomenon
that the light of a radiating body appears whiter, the hotter the

body.
To obtain the total radiation intensity / of the black body at a

given temperature 7", Eq. (29.2) has to be integrated over the

whole spectrum. It follows that

/ = erT 4
(29.4)

This relation is known as Stefan-Boltzmann's law. The constant

or is called "Stefan's constant/'

a = 5.70 X 10~ 5
erg cm~ 2 sec" 1

deg~
4

= 0.817 X 10- 10 cal cm~2 min" 1 deg~V

Historically, the formulation of Stefan-Boltzmann's law and

Wien's law precedes the formulation of the more general law of

Planck.

Figure 16 shows the energy distribution in the spectrum of

black bodies at some temperatures that may occur on the surface

of the earth or in the atmosphere. The width of each band

of the spectrum for which the radiation is given has been chosen

equal to IM (
= 10~ 4

cm). It can be seen that the wave length of

maximum energy emission is displaced toward longer wave

lengths with decreasing temperature and that the total radiation

energy decreases with decreasing temperature.
30. The Solar Radiation. The intensity of the solar radiation

at the outer limit of the atmosphere on a surface perpendicular
to the solar beam is 1.94 cal/cin

2 min" 1 when the earth is at its

mean distance from the sun. This value of the solar radiation

1
WENSBJL, H. T., Bur. Standards, J. Research, 22, 375, 1939.
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is called the "solar constant/' The expression "constant"

means not that the solar output of energy is invariable but only
that the large apparent variations of the solar radiation have been

eliminated that are due to variations of the transparency of the

earth's atmosphere and to the changing distance between sun and
earth. It is still an open question whether the remaining slight

changes of the solar constant are caused by real variations of the

sun's radiation intensity or by an incomplete elimination of

the effects of the earth's atmosphere.
1

25 30

FIG. 16.-

10 15 20

Wavelength,^
-Black-body radiation at different temperatures.

When the solar constant is known, it can be computed from

(29.4) what temperature a black body of the same size and at the

same distance as the sun should have in order to emit the same
amount of radiation. This quantity is called the "effective"

temperature. The effective temperature of the sun is found to

be 5760 abs.

Another method of arriving at a figure for the sun's tempera-
ture is given by Wien's law (29.3). Outside the earth's atmos-

phere the energy maximum of the solar spectrum is at the wave

1 See numerous papers by C. G. Abbott and collaborators mainly in

Smithsonian Misc. Coll. Also, Ann. Astrophys. Obs. Smithsonian Inst., 2,

1908; 3, 1913; 4, 1922; 6, 1932. PABANPJE, M. M., Quart. J. Met. Soc., 64,

459, 1938.
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length 0.475/x. It follows that the temperature of the sun

according to Wien's law, the so-called "color" temperature, is

6090 abs. The difference between the effective temperature
and the color temperature of the sun is not surprising. Even

though the photosphere of the sun may radiate as a black body,
the absorption and radiation in the sun's outer atmosphere
modify the character of the radiation finally leaving the sun. 1

The temperature of about 6000 abs is of course far lower than the

temperatures that must exist in the interior of the sun.

The solar spectrum is not continuous but interrupted by many
dark lines arid bands in which very little or no energy emission

takes place. A great number of these lines are due to absorption
of the radiation in the outer atmosphere of the sun. Other lines

and bands, however, are caused by the, absorption of radiation in

the earth's atmosphere.
31. The Geographical and Seasonal Distribution of the Solar

Radiation in the Absence of the Atmosphere. The total amount
of solar radiation received by the earth is obtained by multiply-

ing the solar constant by the cross section of the earth irE 2
. To

find the mean value of the solar radiation over the whole earth,
this last figure has to be divided by the area of the earth

71-7/72

<3L1 >

where / is the solar constant. Of course, the actual values of the

solar radiation received deviate considerably from Jm with
the season and the geographical latitude and the varying distance

between earth and sun. The computation of these figures is an
astronomical rather than a meteorological problem.

2
Figure 17

shows the daily amount of solar radiation that would be received

per square centimeter of the horizontal surface of the earth, in the

absence of the atmosphere, at different latitudes and at different

times of the year. The ordinate of this figure is the geographic

latitude, and the abscissa the time of the year expressed by the

longitude of the sun on the upper margin and by the correspond-
ing date on the lower margin. At the summer solstice the North
Pole receives the maximum amount of radiation; for the sun is

1
MILNE, E. A., Monthly Not. Roy. Astr. Soc., 81, 375, 1912.

2
MILANKOVITCH, M., in Koeppen-Geiger, "Handbuch der Klimatologie,"

Vol. 1, A, Gebriider Borntrager, Berlin, 1930.



RADIATION 89

here shining during 24 hours of the day, the obliqueness of the

sun's radiation being thus more than compensated for. A
secondary maximum, indicated only by a bulging of the line

1000 cal/cm
2
day, exists at 40 north latitude. In the south-polar

regions, no solar radiation is received, for the sun is always below

the horizon during the northern summer. During the winter

season the distribution of the solar radiation is reversed. The
radiation received by the Southern Hemisphere during the north-

North Summer'
45 90'

North Wfnter
225 270 315

March?! May6 June22 Aug8 Sept 23 Nov.8 Dec.22 Feb.4 March 21

South Winter South Summer
FIG. 17. Daily insolation in calories per square centimeter received at the

earth's surface in the absence of the atmosphere. (After Milankovitch'a

computations.)

ern winter is larger than the radiation received by the Northern

Hemisphere during its summer, for the earth is closer to the sun

during the northern winter than during the northern summer.

32. The Depletion of the Solar Radiation in the Earth's

Atmosphere. Owing to the presence of the atmosphere the

intensity of the solar radiation reaching the earth's surface is

smaller than as it is shown in Fig. 17. During the passage

through the atmosphere a fraction of the solar radiation is

absorbed by some of the atmospheric gases, water vapor, carbon

dioxide, oxygen, and, in higher layers, ozone. The absorption
lines and bands of terrestrial origin in the solar spectrum can be

distinguished from those due to the absorption in the sun's

atmosphere, for their intensity varies with the length of the path
that the solar radiation has to travel through the earth's atmos-
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phere. The terrestrial lines become stronger the larger the

zenith distance of the sun. Furthermore, when the spectroscope

is directed at the solar limb, the lines of solar origin show a

Dopplcr effect due to the rotation of the sun, whereas the ter-

restrial lines show, of course, no such displacement.

In discussing the effect of atmospheric absorption on solar

radiation on the one hand and on radiation from the ground and
from the atmosphere on the other hand, it is important to know
that the solar radiation resembles the black-body radiation at a

temperature of about 6000 abs, whereas the terrestrial radiation

is emitted at temperatures of 200 to 300 abs. Consequently, the

radiative energy of the sun up to about 99 per cent is contained

between the wave lengths 0.17/x and 4ju, with a maximum in the

visible spectrum at 0.475/x. The radiatiye energy of a black body
at a temperature of 300 abs is contained, up to 99 per cent,

between about 3ju and 80ju, with a maximum at lOju; that of a

black body at 200 abs., between 4^ and 120/x, with a maximum
at 15ju. Thus, the solar radiation may be said to be of much
shorter wave length than the radiation from the surface of the

earth or from the atmosphere.
The short wave end of the solar spectrum is terminated

suddenly at about 0.3ju owing to the absorption of the atmos-

pheric ozone 1 in this spectral region. The atmospheric ozone

is mainly concentrated in regions between 20 and 30 km altitude.

The ratio of the density of ozone to the density of air has a

maximum at a higher level, at about 40 km, owing to the decrease

of the air density with elevation. A discussion of the statistical

relationship between ozone and meteorological variables, espe-

cially of the high correlation between the total amount of ozone

and the potential temperature in the stratosphere, has been

given by Meetham. 2

The loss of incident solar radiation by the absorption in the

atmosphere is small. It is mainly due to water vapor,
3 for the

oxygen lines are narrow, and carbon dioxide does not absorb

in the spectral region in which the main part of the sun's radiative

1 GOETZ, F. W. P., Oerl. Beitr. Geophys., 3d suppl. vol. "Ergebnisse der

kosmischen Physik," Vol. 3, p. 251, Akademische Verlagsgesellschaft,

Leipzig, 1938.
* MEETHAM, R., Quart. J. Roy. Met. Soc., 63, 289, 1937.
8
FOWLE, F. E., Astrophys. J., 42, 409, 1915.
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energy is concentrated. The heating of the atmosphere by
direct solar radiation is therefore not important.

Apart from absorption the energy of the solar beam is depleted

by scattering and diffuse reflection in the atmosphere. Tt was

shown by Lord Rayleigh
1 that the diminution of the radiation

intensity due to the scattering on the air molecules is inversely

proportional to the fourth power of the wave length. Thus,

light of short wave length is scattered more than light of long

wave length. Consequently, in the scattered light from the sky
the shorter bluish waves predominate, as indicated by the blue

color of the sky. On the other hand, in the direct light coming
from the sun, the components of shorter wave lengths become less

intense the closer the sun is to the horizon so that the wave length

of maximum intensity is displaced toward the red side of the solar

spectrum.
For particles larger than air molecules the coefficient of

scattering is inversely proportional not to the fourth but to a

smaller power of the wave length.
2 When the particles are

sufficiently large, the depletion becomes independent of the wave

length, and the process of scattering is superseded by diffuse

reflection. Because the diffuse reflection is the same for all

wave lengths, the blueness of the sky is less pure the greater

the number of large particles. These large particles are mainly

dust, water droplets, and ice crystals, so that the blueness of the

sky gives at least a qualitative indication of the amount of these

atmospheric impurities.
3

To obtain a rough measure for the depletion of the solar

radiation during its passage through the earth's atmosphere, it

may be assumed that the depletion is independent of the wave

length. The following relations are therefore correct only for the

radiation a't a given wave length.

From the law of Bouguer and Lambert, it follows that the loss

of radiation passing through a layer of the thickness dz

dJ = -k(z)J sec dz (32.1)

where J is the intensity of the radiation, k a proportionality

1
See, for instance, W. Humphreys, "Physics of the Air," 2d ed., p. 538,

McGraw-Hill Book Company, Inc., New York, 1929.

LINKE, F., and VON DEM BORNE, H., GerL Beitr. Geophys., 37, 49, 1932.
8
OSTWALD, W., and LINKE, F., Met. Z., 45, 367, 1928.
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factor, and f the zenith distance (Fig. 18). The level above

which the effect of the depletion vanishes may be at the altitude

ft. Here the intensity of the solar radiation is equal to the solar

constant J except for the varying distance of the sun. It follows

by integration of (32.1) that the

solar radiation at sea level, z = 0,

J =

The quantity

/;
-sec f k(z) dz

(32.2)

, k(z) dz

(32.3)
I+dl

FIG. is, -Tho law of Bouguer is the "transmission coefficient."
and Lambert. A , .,1 *. . . /, . >

At a zenith distance f ot the sun

the solar radiation arriving at the surface of the earth is

therefore

J (32.4)

To obtain the amount of radiation received per unit area of the

earth's surface, this value of J has to be multiplied by cos f.

4901
45 90 135'

March 21 May6 June22 Aug.8 Sepi.23 Nov8 Dec 22 Feb.4 March 11

FIQ. 19. Daily insolation in calories per square centimeter received at the
earth's surface when the atmospheric transmission coefficient is 0.7. (After
Milankovitch's computations.)

Figure 19 shows the daily amount of solar radiation in calories

per square centimeter at the earth's surface during the year
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when the transmission coefficient is 0.7, according to computa-
tions by Milankovitch. 1 The daily totals are now considerably

lass than those shown in Fig. 17. The loss is particularly strong

in the polar regions on account of the great zenith distance of the

sun. In lower latitudes the loss by extinction in the atmosphere
is less so that the summer maxima are now found approximately
in the same position as the secondary maxima in the case of an

earth without atmosphere (Fig. 17).

When the sun is near the horizon, the simple secant law has

to be replaced by a more complicated one 2 on account of the

curvature of the earth and the atmospheric refraction.

The transmission coefficient may be used as a measure of the

effect of impurities suspended in the atmosphere, the atmospheric

turbidity. To obtain better expressions for the atmospheric

turbidity, Linke has defined a turbidity factor; Angstrom, a tur-

bidity coefficient. For a discussion of these quantities which

is beyond the scope of this book the reader is referred to the

literature.
3

33. The Albedo of the Earth. The radiation that is scattered

and reflected diffusely is partly directed back into space, perhaps
after secondary scattering or reflection has taken place, so that

it is lost to the terrestrial heat balance. In addition a certain

amount of radiation is reflected at the ground and at cloud

surfaces. The ratio of the radiative energy reflected and scat-

tered Jback into space to the radiative energy received is called

the " albedo" of the earth. It varies considerably for surfaces of

different nature. 4 For clouds, it is 0.78, for freshly fallen snow

0.81 to 0.85, for fields only 0.14. For water the albedo increases

with increasing zenith distance f of the sun, from 0.29 when

f = 78 to 0.62 when f = 86.

1 MILANKOVITCH, loc. cit.

2 Tables of this function: LINKE, F., Mctcorologischcs Taschenbuch,"

II, Table 68, Akademische Verlagsgesellschaft, Leipzig, 1933;
" Smithsonian

Meteorological Tables/' Table 100, 5th. ed., Smithsonian Institution,

Washington, D. C., 1931.
3
LINKE, F., Beitr. Phys. Atm., 10, 91, 1928. ANGBTROM, A., Geografiska

Annaler, 11, 156, 1929; 12, 375, 1930. FEUSSNER, K., and DUBOIS, P.,

Gerl. Beitr. Geophys., 27, 132, 1930. WEXLER, H., Trans*. Am. Geophys. Un.,
14th Ann. Meeting, p. 91, 1933.

4 CONRAD, V., in Koeppen-Geiger, "Handbuch der Klimatologie," Vol. 1,

B, p. 23. Gebriider Borntrager, Berlin, 1930.
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The mean albedo for the earth depends among other factors

on the amount of cloudiness. Assuming a mean cloudiness of

52 per cent, Aldrich 1 determined the albedo to 0.43. According
to Angstrom 2 the albedo A is related to the cloudiness C by the

formula

A = 0.17 + 0.53C (33.1)

Danjon
3 did not find a very clear relation of the albedo to the

cloudiness or to other factors such as snow cover and vegetation,

from the observation material available at present. The mean
visual albedo is 0.39 according to Danjon. The albedo of the

earth for short wave lengths is larger than for long wave lengths.

Because the energy lost owing to reflection and scattering does

not enter into the terrestrial heat balance, the radiation incident

at the outer limit of the atmosphere must be diminished by the

amount reflected back to space, in order to obtain the actual

amount of energy available for atmospheric processes.

Thus, the mean value Jm of solar radiation received on the

average over the whole earth [see (31.1)] would become 0.276

cal cm~2 min" 1 when Aldrich's value for the albedo is used.

In drawing Fig. 19 the loss of radiation energy due to the

albedo has not been taken into account. Because this loss is

largely due to reflection from clouds, Fig. 19 represents the

amount of solar radiation when the sky is clear.

34. Absorption of Terrestrial Radiation. Although the solar

radiation is only slightly absorbed by the atmosphere, a con-

siderable percentage of the long-wave radiation emitted by the

ground and by the atmosphere is reabsorbed in the atmosphere.
To obtain an expression for the absorption, consider a mono-

chromatic beam of the radiation intensity 7\. This beam may
pass perpendicularly through a thin layer of thickness dz. When
the density of the absorbing substance in this layer is

<r,
the

absorption is proportional to cr dz. The product adz is called

the
"
optical thickness

"
or

"
optical mass" of the layer and will

be denoted by du here. It follows that

u (34.1)

1 ALDRICH, L. B., Smithsonian Misc. Co//., 69, No. 10, 1919.
2 ANGSTR&M, A., GerL Beitr. Geophys., 15, 1, 1926.
3 DANJON, A., Ann. Obs. Strassbourg, 3, No. 3, 1936.
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k\ is the absorption coefficient of the substance for radiation

of the wave length X. By integration,

x (34.11)

This relation is known as Beer's law.

To determine the radiation of the atmosphere, one has to

know the absorption coefficients of the atmospheric gases in the

wave-length region from about 3/x to about lOO/x where black-

body radiation at terrestrial temperature takes place. Then
the emission is also known according to Kirchhoffs law (29.1).

The most important absorbing gas in the regions of the atmos-

phere in which we are interested is water vapor. Furthermore,

absorption by carbon dioxide has to be taken into account.

In earlier investigations, it was assumed that water vapor may
be treated as a gray absorber, i.e., that it has a uniform absorption
coefficient throughout the whole long-wave region. Investiga-

tions by Simpson
1 have shown that this method of attack is quite

inadequate. The assumption of gray absorption leads to the

conclusion that the radiation which is emitted by the earth and

its atmosphere into space is practically independent of the surface

temperature. Thus it would be impossible to see how the tem-

perature of the air adjusts itself to changes in solar radiation.

It is therefore necessary to consider the variation of the absorp-
tion coefficient with the wave length. Until recently the absorp-

tion coefficients of water vapor mostly used in meteorology were

those determined by Hettner2 in steam. They show an intense

band centered around 6.26/i and a wide band beginning at about

lOjit and increasing with oscillations toward longer wave lengths.

New measurements by Weber and Randall 3 at wave lengths larger

than 10/i through moist air at room temperature have given lower

values of the absorption coefficients, although they confirmed

Hettner's results qualitatively.

In order to simplify the investigation of atmospheric radiation,

Simpson
4 divided the atmosphere into layers each containing

0.3 mm (
= 0.03 gm) of precipitable water per square centimeter

cross section. If h is the height of a column of 1 cm 2 cross section

1
SIMPSON, G. C., Mem. Roy. Met. Soc., 2, No. 6, 1928.

2 HETTNER, G., Ann. Physik, 56, 476, 1918.
8 WEBER, L. R., and RANDALL, H. M., Phys. Rev., 40, 835, 1932.
4
SIMPSON, C. G., Mem. Roy. Met. Soc., 3, No. 21, 1928.
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containing a mm of precipitable water (= a X 10"" 1

gm), it

follows that 10" 1 a = hpw where pw is the density of water vapor.

When the water-vapor pressure e is expressed in millibars and

h in meters according to (5.1),

h = 4.62a - (34.2)

If a = 0.3 mm of precipitable water, T = 275, e = 10 mb,
h = 38 m. Simpson assumed further that each layer contains

0.06 gm of carbon dioxide. These figures for water vapor and

carbon dioxide were chosen under the assumption that they

represent the amount of water vapor and carbon dioxide in the

stratosphere. Using Hettner's data except in the region from

9 to 12fj,j where according to Fowle 1 but contrary to Hettner no

absorption takes place, he divided the spectrum in three zones

with respect to the absorption by such an atmospheric layer.

1. Practically complete absorption from 5.5 to 7/i and above

14/i.

2. Complete transparency from 8.5 to llju and below 4/i.

3. Incomplete absorption from 4 to 5.5/z, from 7 to 8.5jz, and

from 11 to 14ju.

In the light of Weber's and Randall's measurements, which

gave smaller absorption coefficients than those found by Hettner,
it will be necessary to modify Simpson's assumption, in particular

by choosing thicker atmospheric layers of larger water content in

order to ensure complete absorption in the regions mentioned

under (1) (see also page 103).

The absorption coefficient of liquid water2
is so large that

droplets of*a size such as that of the droplets in clouds and fogs

emit and absorb radiation practically like black bodies.

35. The Effect of the Line Structure of the Water-vapor

Spectrum on the Atmospheric Emission and Absorption.
Albrecht 3 has discussed the water-vapor spectrum in the long-

wave region from the viewpoint of quantum theory and has

pointed out that the absorption coefficients should depend on the

pressure and the temperature of the atmosphere. Elsasser 4 has

1 FOWLE, F. E., Smithsonian Misc. Coll., 68, No. 8, 1917.
2 RUBENS, H., and LADENBERG, E., Ver. deut. physik. Ges., 11, 16, 1909.
8 ALBRECHT, F., Met. Z., 66, 476, 1931.
* ELSASSER, W. M., Monthly Weather Rev., 65, 323, 1937; 68, 175, 1938.
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studied this question in greater detail on the basis of the new
measurements by Weber and Randall 1 and by Randall, Dennison,

Ginsburg, and Weber. 2

The energy distribution in a spectral line can be represented

by a curve of the form shown in Fig. 20 with the frequency v as

abscissa. The center of the

line is at VQ. The same curve

represents, of course, according
to Kirchhoff's law (29.1), the

intensity of the absorption
coefficient due to the line.

From Fig. 20, it can be seen that

the absorption may overlap,

especially the absorption of

strong lines that are spaced
not too widely apart. For practical computations, this effect has

to be smoothed out so that the variation of absorption with the

wave length can be represented by a reasonably regular curve.

When the absorption of radiation in a finite wave-length interval

is considered, Beer's law

h = h*e-k *u
(34.11)

FIG. 20. Energy distribution

spectral line.

does not in general hold any more. The exponential function

must be replaced by a more general transmission function

ri(u)
= T

-

(35.1)

where u is again the optical thickness of the medium. Elsasser3

has shown that a good approximation for T, is given by

(35.2)T,(U) = 1 - * U/-

where & is the error function

f
Jo

x*

dx

1 WEBER and RANDALL, loc. cit.

2 RANDALL, H. M., DENNISON, D. M., GINSBURG, N., and WEBER, R. L.,

Phys. Rev., 52, 160, 1937.
3
ELSASSER, W. M., Phys. Rev., 54, 126, 1938.
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The quantity Z, which measures the absorption due to the group
of lines, may be called the "

generalized absorption coefficient.
"

Schnaidt has given a transmission function of a different form

which is, however, in good numerical agreement with (35.2). In

the region of weak absorption from 8 to 27/i, Beer's law (34.11)

holds according to the theory
1 and according to the observations. 2

On the basis of the observed absorption in water vapor,
Elsasser3 has computed generalized absorption coefficients / (or

the ordinary absorption coeffi-

cient k) in the region from 8 to

27/i. The result of his com-

|
/ putations is shown in Fig. 21,

' +2 1 1 1 h-f I where the decadic logarithm of

the absorption coefficient is

plotted against the reciprocal

of the wave length. The
values of the wave lengths in

microns have been added

underneath. The region
where the transmission func-

tion may be represented by an

exponential is indicated by
broken lines. The region around 15/x where a large part of the

absorption due to carbon dioxide takes place
4

is indicated by
vertical lines.

The absorption curve shown in Fig. 21 may have to be sub-

jected to corrections, especially around 6/z where 6 at present the

data are not yet very reliable.

Elsasser has concluded from the theory that the absorption is

proportional to the air pressure. According to observations of

Falckenberg
6 which have been discussed by Schnaidt 7

it would

appear, however, that the absorption is proportional rather to the

1
ELSASSER, W. M., Phys. Rev., 53, 768, 1938.

2
ADBL, A., Astrophys. J., 87, 497, 1938.

8 ELSASSER, W. M., Quart. J. Roy. Met. Soc., 66, suppl,, 41, 1940.
4 CALLENDAR, G. S., Quart. J. Roy. Met. Soc., 67, 31, 1941.

*FowLE, F. E., Smithsonian Misc. Coll^ 68, No. 8, 1917.
6
FALCKENBERG, G., Met. Z., 53, 172, 1936; 55, 174, 1938.

7
SCHNAIDT, F., Gerl. Beitr. Geophys., 64, 203, 1939.

Fio. 21. Atmospheric-absorption coeffi-

cients. (After Elsasser.)
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square root of the pressure. The effect of the pressure can be

taken into account as a correction to the optical path u.

There is also a slight temperature effect on the absorption, but

it is so small that it may be neglected.

36. General Survey of the Terrestrial Heat Balance. Because

the yearly mean temperature of the earth and its atmosphere
remains constant apart from possible long periodic variations,

the total amount of radiation received must be equal to the total

amount of radiation emitted back into space. In a detailed

study of the balance between the heat received and that emitted,

each latitude should be considered separately. For a first

orientation, however, it is useful to see how the different items

of the terrestrial heat balance are distributed on the average.

Estimates of the average distribution of the items in the atmos-

pheric heat balance have been given by various authors. Natu-

rally, they differ somewhat, but the differences are not very

important when only a first orientation is desired. The estimates

of Baur and Philipps
1 will be given, with a modification sug-

gested by Moller. 2

According to (31.1) the total amount of solar radiation received

1440
per square centimeter and per day is 1.94 X = 700 cal at

the outer limit of the atmosphere. Of this amount, 27 per cent

penetrates directly to the earth's surface, and 16 per cent arrives

as diffuse sky radiation, so that altogether 43 per cent reaches the

ground. Fifteen per cent is absorbed by the atmosphere, includ-

ing clouds. The rest, 42 per cent, is reflected back into space,

33 per cent by direct reflection on clouds and on the surface and

9 per cent by diffuse reflection. This value of the albedo, 0.42,

differs somewhat from Aldrich's and from Danjon's values. A
final value for the earth's mean albedo has not as yet been

determined.

The distribution of the incoming radiation over the various

items is shown on the left side of Fig. 22. The radiation received

by the atmosphere and the earth is counted positive; the radiation

given off by the atmosphere and the earth is counted negative.

1 BAUR, F., and PHILIPPS, H., Gerl. Beitr. Geophys., 46, 82, 1935; 47, 218,

1936.
2 MILLER, F., Gerl. Beitr. Geophys., 47, 215, 1936.
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Figure 22 represents, strictly speaking, the yearly mean for the

Northern Hemisphere only. But the conditions for the Southern

Hemisphere have not yet been studied sufficiently.

While 42 per cent of the solar radiation is reflected directly

back to space as short-wave radiation, the remaining 58 per cent

is reemitted by the surface of the earth and the atmosphere
in the form of long-wave radiation. The net outgoing radiation

from the ground is 24 per cent. This represents the difference

between the total radiation emitted by the ground, 120 per cent

of the total solar radiation, and the radiation from the air

Short wave radiation Long wave radiation

FIG. 22. Tho heat balance on the Northern Hemisphere. Units are percentages
of the incoming solar radiation. (After Baur, Philipps, and MMler.)

to the ground which is 96 per cent. Of this 24 per cent, 16 per
cent is reabsorbed in the atmosphere and 8 per cent returns

directly to space. The remaining 50 per cent is radiated back
to space by the atmosphere. The distribution of the outgoing

long-wave radiation over the various items in the terrestrial

heat balance is represented on the right side of Fig. 22.

There is finally an internal transport of energy by turbulent

mixing (Chap. XI) from the atmosphere to the surface, amount-

ing to 4 per cent, and from the surface to the atmosphere by
condensation. The latter was estimated to 23 per cent by
Baur and Philipps. It takes place in the form of water vapor
which carries along, crudely speaking, the latent heat of condensa-
tion and releases it when condensation begins at higher levels.

Including the heat transport by turbulence and by condensa-
tion a heat balance exists also for the earth's surface and the

atmosphere separately.
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The surface

receives loses

by direct radiation 27% by radiation 24%
by diffuse radiation 16% by condensation 23%
by turbulence 4%

47% 47%

The atmosphere
receives loses

by absorption of solar radiation 15% by radiation 50%
by absorption of radiation from by turbulence 4%

the earth 16%
by condensation 23%

54% 54%

In this heat balance the 96 per cent that is radiated back from

the air to the ground is again omitted, and only the outgoing

radiation from the ground is inserted.

37. The Geographical Distribution of the Outgoing Radiation.

The figures of the preceding section are mean values from

which the incoming and outgoing radiation at different latitudes

deviate considerably. The geographical distribution of the

incoming radiation has been discussed in Sees. 31 and 32. The

geographical variation of the outgoing radiation will now be

considered.

Simpson
1 has developed a method for the computation of the

outgoing radiation from the earth and the atmosphere based on

his simplified scheme of the absorption spectrum of water vapor
and carbon dioxide (page 96). He has assumed further that the

stratosphere contains at least 0.3 mm of precipitable water and

0.06 gm of carbon dioxide. Thus, radiation between 5.5 and 7/z

and above 14/x would be completely absorbed in the stratosphere.

The radiation in these spectral regions that leaves the atmosphere
must have originated in the stratosphere. Finally, Simpson has

made use of the fact that the outward flux of radiation for a given
wave length must lie between the fluxes from black bodies at the

temperatures To and T\ ;
these are the temperatures at the lower

and upper limits of the gas layer, respectively.

Under these assumptions the outgoing radiation in the region

of complete absorption described under (1) on page 96 is the

black-body radiation emitted at the stratosphere temperature in

1 SIMPSON, G. C., Mem. Roy. Met. Soc., 3, No. 21, 1928.
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this part of the spectrum. The radiation in the transparent

region (2) (page 96) is the black-body radiation at the tem-

perature of the earth's surface for these wave lengths. Both

amounts can easily be determined graphically by plotting the

energy distribution of black bodies at the temperature of the sur-

face and at the temperature of the stratosphere. In the inter-

mediate region of partial absorption the radiation is intermediate

between the black-body radiation at the temperature of the sur-

face and at the temperature of the stratosphere. Simpson
chooses the mean between these two values which can similarly

be determined graphically. This assumption cannot cause a

serious error, for a somewhat different choice would not seriously

affect the value of the total outgoing radiation.

The intensity of the outgoing radiation, is influenced by the

cloudiness. When the sky is totally overcast, the radiation from

the earth's surface has to be replaced by the radiation from the

upper surface of the cloud which radiates like a black body.

Simpson assumes that the temperature of the surface of the

clouds is uniformly 261 abs at all latitudes and that the mean
cloudiness is % everywhere.
The results of Simpson's computations are summarized in the

following table.

INCOMING AND OUTGOING RADIATION

The second column gives the effective incoming radiation from

which the losses due to the albedo have been deducted. The
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third column shows the outgoing radiation. The mean outgoing
radiation was found to be 0.271 cal cm~ 2 min" 1 which agrees well

with the values for the average incoming radiation given on page
94. The outgoing radiation varies very little with the latitude.

This is partly due to Simpson's assumption that the cloud tem-

perature is independent of the latitude. Thus, with totally

overcast skies the outgoing radiation would increase toward the

pole, for the fraction emitted by the cloud surface remains

constant while the radiation from the stratosphere increases

poleward with increasing stratosphere temperature. At latitudes

below 35 the incoming radiation is larger than the outgoing
radiation. Therefore a heat transport toward the poles must
take place if the yearly mean temperature of each latitude is to

remain constant. This heat transport which brings the surplus

radiative energy from the latitudes below 35 to the higher
latitudes and here makes up for the deficit is effected by the

general circulation and will be discussed in greater detail in

Sec. 95.

In a later paper, Simpson
1 discusses the distribution of the

outgoing radiation over the globe and its variation with the

season. Again it appears that the outgoing radiation is very
uniform in time and in space.

In view of the newer investigations of the infrared absorption

spectrum of water vapor, Simpson's assumptions about the

absorptive power of water vapor will have to be modified (page

96). Instead of a layer containing only 0.3 mm of precipitable

water, layers having a higher water-vapor content will have to

be considered; thus, the thickness of the layer would increase

according to (34.2). Nevertheless, at least in the lower atmos-

phere, Simpson's method gives a first approximation to the

outgoing radiation. But it appears that the stratosphere does

not contain even 0.3 mm of precipitable water. 2
Therefore,

the radiation in the spectral regions of complete absorption

must originate, at least partly, in the upper troposphere.

Because the decrease of the water vapor with the height

follows an exponential law the main part of the radiation from

the uppermost layer which still contains the critical amount of

precipitable water must originate in the lower part of this layer.

1
SIMPSON, C. G., Mem. Roy. Met. Soc., 3, No. 23, 1929.

* BRUNT, D., and KAPUR, A. L., Quart. J. Roy. Met. /Soc., 64, 510, 1938.
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This was pointed out by Albrecht 1

according to whom the

"emission layer" is completely in the troposphere. The tem-

perature of Albrecht's emission layer is more uniform than the

temperature of the stratosphere. Therefore, the variation of

the outgoing radiation computed by Albrecht varies more with

the latitude than Simpson's values, for now the effects of the

varying surface temperature are not so much compensated by
the opposite temperature gradient in the upper layer. Albrecht's

results are shown in the fourth column of the table on page 102.

Finally, the investigation by Baur and Philipps,
2 referred to

in the preceding section, must be mentioned here. Baur and

Philipps regard the temperature and water-vapor content of

the air as given, so that the black-body radiation for every wave

length and the relation between the height and the optical

mass u are known. In order to eliminate the difficulties arising

out of the complicated variation of the absorption coefficient k\

with the wave length X, they divide the spectrum in three regions

and assume a certain constant value for each region. In the

table on page 102 the yearly means of the outgoing radiation

after Baur and Philipps are included. The figures are set half-

way between the latitudes, for they refer to the latitudinal

belts to 10, etc., and the polar zone from 60 to 90.

The differences between the three sets of figures for the out-

going terrestrial radiation are easily understandable, for they
are all based on approximate calculations and on simplifying

assumptions. However, it is, interesting to note that in all

three instances the outgoing radiation becomes larger than the

incoming between 30 and 40 latitude.

38. Computation of the Radiation Currents in the Atmosphere.

Owing to the complexity of the water-vapor spectrum the

numerical computation of the radiation currents passing upward
and downward through the atmosphere is exceedingly laborious.

This is especially true if the evaluation is to be carried out not

for an average temperature and moisture distribution but for a

number of actually observed cases. On the other hand, a knowl-

edge of the upward- and downward-going radiation permits
one to find the changes of the energy and therefore of the tempera-
ture in the atmosphere, due to radiation.

1
ALBRECHT, F., Met. Z.

t 48, 57, 1931.
2
BAUR, F., and PHILIPPS, H., Gerl. Beitr. Geophys., 45, 82, 1935.
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In order to make the computation of the radiation currents

in the atmosphere practicable, Miigge and Moller have con-

structed a chart 1

by means of which the currents can be deter-

mined graphically, once the temperature and moisture distribution

in the vertical direction are known. More recently, Elsasser 2

has constructed a radiation chart based on the new theoretical

and experimental investigations of the infrared spectrum of water

vapor. For the details of the theory and the practical use of the

chart the reader is referred to Elsasser's paper.

A study of typical temperature and humidity distributions

obtained from aerological soundings on the North American

continent with the aid of the radiation chart has shown that

the cooling of the atmosphere due to radiation is of the order

of 1C per day in polar air masses and of the order of 2 to 3C per

day in equatorial air masses. 3 An empirical equation of the

form

AT7 = 1 + 2 log w (38.1)

where AT represents the cooling in degrees centigrade per day
and w, the specific humidity in grams per kilogram of moist air,

represents the relation between cooling and humidity quite well,

although all that can be claimed is that the relation is a satis-

factory approximation in the lower troposphere and in middle

latitudes.

Clouds usually gain some heat on their base, for the radiation

from the ground and the lower atmospheric layers is larger

than the radiation from the cloud base. At the same time, they
lose heat at their top because the cloud surface radiates like a

black body while it receives only the selective atmospheric
radiation from the upper layers. The cooling of clouds per day
can be represented approximately by the expression

AT =
(38.2)

where Ap is the thickness of the cloud expressed in millibars.

It appears clearly that the atmosphere is not heated anywhere
by radiation. It seems that the rate of cooling decreases steadily

1
MtfGGE, R., and MOLLER, F., Z. Geophysik, 8, 53, 1932.

2
ELSASSER, W. M., Quart. J. Roy. Met. Soc., 66, suppl., 41, 1940.

3
ELSASSER, W. M., Monthly Weather Rev., 68, 185, 1940.
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with the elevation above 2 km, at least up to 5 km; at this level,

Elsasser's calculations end. This process would in the course of

several days lead to an appreciable stabilization of the atmos-

pheric stratification so that the radiative cooling may well be a

major stabilizing factor in the atmosphere.
39. Nocturnal Radiation and the Cooling of the Surface Layers.

The surface of the earth radiates like a black body so that the

total radiation emitted can be computed by Stefan-Boltzmann's

law (29.4). On the other hand, k

the

ground receives radiation from the

atmosphere and, in daytime, from the

sun. The amount of radiation received

in daytime is generally larger than the

amount lost. At night when the short-

wave radiation from the sun and the

scattered sky radiation are absent, the

radiation emitted by the ground is as a

rule greater than the radiation received

from the atmosphere; for the ground
radiates like a black body throughout,
whereas the atmosphere radiates like

a black body only in certain spectral

regions. The difference between the

radiation from the ground upward and

the radiation received from the atmos-

phere at the ground is called the net

outgoing or nocturnal radiation.

Wexler 1 has discussed how polar maritime air may be trans-

formed into polar continental air by the cooling of the ground
due to the net outgoing radiation. Polar maritime air shows

the regular decrease of the temperature with the height, whereas

polar continental air has as a rule a strong inversion in the lowest

layers and then a more isothermal layer. Only at greater heights

is the normal temperature gradient found. A typical example
of the vertical temperature distribution in polar continental air

is shown in Fig. 23.

Wexler computes with Simpson's method, but on the basis

of the newer absorption measurements in the water-vapor

spectrum by Weber and Randall, the radiation emitted by the

1 WEXLER, H., Monthly Weather Rev., 64, 122, 1936.

-40 -10-30 -20

Temperatu re, C
FIG. 23. Vertical tem-

perature distribution at Fort

Smith, Northwest Terri-

tories, Jan. 28, 1937.
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air at a temperature TA. Because the snow surface radiates

like a black body, it can be found from the Stefan-Boltzmann

equation (29.4) at which snow-surface temperature Ta the snow-

surface radiation equals the atmospheric radiation. Within

the range of temperatures that may occur the result can be

expressed by the relation

TA = l.27Ts - 32 (39.1)

When (39.1) is satisfied, the radiative energy loss of the snow

surface is compensated by the atmospheric radiation. The
direct solar radiation to the snow surface can be neglected even

if the sun is above the horizon because its altitude at these high

latitudes is very low. Furthermore, most of the solar radiation

is reflected back to space by the snow surface.

Thus, if polar maritime air with an original surface tempera-
ture of 274 abs moves over a snow-covered continent, the snow-

surface temperature must sink to 241 abs according to (39.1).

But a state of radiative equilibrium between the snow surface

and the air cannot persist for the air does not absorb all the

radiation emitted by the snow surface. Therefore, it loses heat

by radiation, arid its temperature drops. At first a shallow

ground inversion is formed. As the cooling spreads upward, an

isothermal layer will develop from the top of the ground inversion

to the height at which the temperature was the same as that of

the air at the top of the inversion before the cooling. With the

decrease of the air temperature the balance of radiation between

atmosphere and snow surface is disturbed again and the snow-

surface temperature must decrease further, a further cooling

of the atmosphere being thus produced.

However, it must be added that this radiative formation of

the ground inversion appears to be effective only at high latitudes

where the surface temperature can fall much below the air

temperature; for Elsasser 1 has shown that the radiative heat

exchange between the ground and the atmosphere is concentrated

in the lowest 50 m and is very small above this height, whereas

the ground inversions often extend to 1 km and higher. The

ordinary nocturnal inversion seems, therefore, almost exclusively

of turbulent origin in so far as the transfer of heat between the

ground and the air is concerned. It is of radiative origin only
1 ELSASSER, M. W., Monthly Weather Rev., 68, 185, 1940.
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in the sense that the heat loss of the ground itself is of a purely

radiative nature.

When the nocturnal radiation R is found from observations,

the radiation S from the atmosphere to the earth is given by

S = <rT4 - R (39.2)

where T is the surface temperature and S and R depend not

only on the temperature but also on the water vapor. According
to Angstrom's

1

observations,

8 = *T*(A - B 10~") (39.3)

Here e is the water-vapor pressure at the surface, and A, B,

and 7 are constants. When e is expressed in millibars, A =
0.806,

B = 0.236, and 7 = 0.052, but these constants cannot be

regarded as final.

Brunt2 has shown that the formula

S = <rT*(a + b Ve) (39.4)

is also in good agreement with the observations. The constants

a and b vary to a certain extent, their mean values3
being

a = 0.44 and b = 0.080 when the vapor pressure e is expressed in

millibars.

Both Angstrom's and Brunt's formulas must be considered

as empirical formulas, although a theoretical justification of the

first has been given by Ramanathan and Ramdas 4 and of the

second- by Pekeris. 5 Within the range of values of e that are

likely to occur at the surface, both equations give about the same
values of S with a proper choice of the constants. It is therefore

not surprising that two formulas of apparently totally different

form should have been deduced from the observations.

When e = 0, the formulas give a finite value for the atmos-

pheric radiation. It is doubtful whether or not this extrapolation

is permissible. Furthermore, the surface variations of the

water vapor are only loosely connected with the changes of

1 ANGSTROM, A., Smithsonian Misc. Coll., 65, No. 3, 1915.
a BRUNT, D., Quart. J. Roy. Met. Soc., 58, 389, 1932.
3 BRUNT, D., "Dynamic Meteorology," 2d ed., p. 137, Cambridge Uni-

versity Press, London, 1939.
4 RAMANATHAN, K. R., and RAMDAS, L. A., Proc. Ind. Acad. Sci., 1,

822, 1935.
6
PEKERIS, C. L., Astrophys. J., 79, 441, 1934,
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the water vapor at higher levels. Therefore, even with vanishing

water-vapor pressure at the surface, there may still be an appre-

ciable water-vapor radiation from higher altitudes. Moreover,
there is also a certain amount of atmospheric radiation due to

carbon dioxide.

When the sky is overcast, the nocturnal radiation from the

ground is greatly reduced; for a cloud surface radiates like a

black body. Therefore, the radiation from the atmosphere
to the ground consists now not only of the water-vapor radiation

but also of the radiation in the other spectral regions emitted

at the temperature of the cloud base.

The radiation from the cloud base to the ground is greater

the lower the cloud. The nocturnal radiation R from the ground
should therefore increase with increasing cloud height. This

appears to be borne out by an investigation of Angstrom,
1

at least for low clouds below 1.5 km. According to Angstrom,

R = 0.011 +0.036/1 (39.5)

where h is the cloud height in kilometers.

The amount of cloudiness affects also the intensity of R.

Angstrom and Asklof 2 have from their observations derived

the formula

Rm = (1
- km)R (39.6)

where Rm is the nocturnal radiation for the cloudiness m (m =
0,

clear; m =
10, completely overcast) and k is a constant which

for low clouds is 0.08.

The problem of the nocturnal radiation is important for the

forecast of minimum temperatures. When the nocturnal

radiation is strong, the cooling of the ground and of the adjacent

layers of the air will also be considerable so that in spring, when
the temperatures are not yet sufficiently above freezing, frost

with subsequent damage to certain crops is likely to occur.

However, nocturnal cooling depends on a number of other

factors besides the radiation which is determined by the cloudi-

ness and the water-vapor content of the atmosphere. (1) When
a wind is blowing, potentially warmer air is brought down from

1 ANGSTROM, A., Slat. Met.-Hydr. Anst. Stockholm, Upps., No. 8, 1936.
2 ASKLSF, S., Geog. Ann., 2, 253, 1920.
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higher to lower levels by turbulent mixing (see Sec. 84). (2) The

heat lost by the surface of the earth is partly replaced by con-

duction from below. The heat conducted from the lower layers

of the ground to the surface of the earth depends on the heat

capacity, the density, and the conductivity of the soil. These

factors vary considerably for different soils and even for one

and the same soil, depending on the water content and the

amount of air space between the particles of soil.

A great number of empirical investigations into the problem
of forecasting minimum temperatures have been undertaken.

To these the reader is referred for details. 1

40. The Differential Equations of Atmospheric Radiation.

The differential equations of the atmospheric radiation currents

may be derived here for the sake of completeness. An analytical

solution of these equations under assumptions that agree reason-

ably well with the actual absorption conditions in the atmosphere

appears quite impossible in view of the complexity of the water-

vapor spectrum.
Consider a given horizontal level in the atmosphere above

which the total water-vapor content or, more precisely, the total

optical mass is u, the temperature at this level being T. The
downward beam of radiation for a given wave length X may be

called B\ and the upward beam A\. Both may be assumed

parallel, E\ may be the black-body radiation at this temperature
and wave length which is given by Planck's law (29.2). The

upward beam A\ passing through an infinitesimal layer of optical

mass du extending upward from u to u du suffers a change
dA\. Owing to absorption in the layer du the intensity of A\
decreases by k\A\ du according to (34.1), and owing to radiation

of the layer the intensity increases by k\E\ du according to

Kirchhoff's law (29.1). Because u decreases upward, the first

term is to be reckoned positive and the second negative. Thus,

du - kxEx du

Similarly, it is found for the downward beam that

dBx
= -kxB* du + kxEx du

1 A complete review, including the literature up to 1926, will be found in

R. Geiger, "Das Klima der bodennahen Luftschichten," F. Vieweg & Sohn,

Brunswick, Germany, 1927.
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In this manner the equations of Schwarzschild 1 for radiative

transfer are obtained.

^ = feMx -
ft)

(40.1)

When the total radiative energy received by a layer is equal

to the total energy emitted upward and downward, radiation

equilibrium is said to exist.

2
JT

fcx#x d\ =
JT

W

*x(^x + ft) dX (40.2)

The direct practical application of these equations to atmos-

pheric radiation problems is severely restricted by the com-

plexity of the water-vapor spectrum, as was discussed in Sees.

34 and 35.

41. Radiation and the Stratosphere. The atmosphere, at least

up to about 25 km from this height direct observations can be

obtained by means of sounding balloons may be divided into

a lower part, the troposphere, and an upper part, the stratosphere.

The troposphere is characterized by a linear decrease of the

temperature, the lapse rate being approximately 0.6C/100 m.

At a height of about 16 km in the tropics and about 10 km in

the temperate latitudes, there is a sudden discontinuity in the

temperature gradient; and at higher levels the temperature
remains either constant or increases slightly, as shown in Fig. 24. 2

The boundary between troposphere and stratosphere is called

the tropopause. The tropopause and therefore the layer with

decreasing temperature are higher in tropical than in temperate
latitudes. Therefore, the temperature in the lower stratosphere

is cooler over the equator than at the same altitude over higher

latitudes. But the temperature inversion in the stratosphere is

strongest in low latitudes so that at greater heights in the strato-

sphere the temperature becomes more uniform in a horizontal

direction.

1

SCHWARZSCHILD, K., Nachr. Ges. Wiss. Gdttingen, Math.-Nat. KL, 1906,

41.
2 RAMANATHAN, K. R., Mem. Ind. Met. Dept., 25, 5, 1930. Nature, 123,

834, 1929.
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Owing to its isothermal state the stratification of the strato-

sphere must be very stable, as follows from the considerations

of Sec. 9. Under these conditions, vertical motions should be

small and the temperature distribution in the stratosphere

should be dominated by radiative processes, at least to a con-

siderably greater extent than the tropospheric temperature dis-

tribution. Because the temperature, in the absence of other

than radiative processes, can remain constant with time only

when each layer emits as much as it absorbs, it was concluded

Lai 90 90Lc.t.60 30 30 60

Summer Winter
FIG. 24. The temperature distribution over the Northern Hemisphere. (After

Ramanathan.)

by a number of authors that the stratosphere must be in radiation

equilibrium so that Eq. (40.2) is satisfied.

Humphreys 1 has developed a simple theory aiming at an

explanation of the isothermal state and the temperature of the

stratosphere, but Emden2 showed that his treatment is open to

objections. About the same time as Humphreys, Gold3
and,

somewhat later, Emden attempted explanations of the strato-

sphere. Both Gold's and Emden's papers were based on the

assumption of gray radiation so that k\ in Eqs. (40.1) for

radiative transfer becomes a constant. For the difference

1 HUMPHREYS, Astrophys. /., 29, 14, 1909,
"
Physics of the Air," p. 46.

1 EMDEN, R,, Sitz.-Ber. Bayr. Akad. Wiss., Math.-Nat. KL, 1913, 55.

GOLD, E., Proc. Roy. Soc. (London), A., 82, 43, 1909.
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between the "short" radiation from the sun and the long terres-

trial radiation, allowance was made by assuming twro different

absorption coefficients, one for solar, the other for terrestrial

radiation. Emden's results seemed for a while to establish a

fairly satisfactory theory of the existence of the stratosphere, for

he found that strong superadiabatic lapse rates would develop
in the lowrer troposphere and isothermalcy in the stratosphere.

But especially through the work of Simpson,
1

it became clear

that the assumption of only two different absorption coefficients

for the whole spectrum is too crude to yield satisfactory results

and that the selective nature of atmospheric absorption has to

be taken into account. The reader who desires more information

about these attempts to explain the existence of the stratosphere

as a consequence of radiation equilibrium is referred to an

excellent critical summary by Pekeris. 2

At present no satisfactory theory of the stratosphere exists.

In fact, even the assumption that the atmosphere is in radiation

equilibrium has to be rejected, as pointed out by Penndorf3 and

Brunt. 4 It appears that the role of such dynamic processes

as advection of air of different temperature and even convective

mixing is more important in the stratosphere than has been

previously assumed.

A further barrier to the development of a theory of the tem-

perature distribution in the stratosphere is the lack of knowledge
of the amount of water vapor in the stratosphere, which is indis-

pensable for a computation of the radiation currents.

Problem

8. Show that in the case of radiation equilibrium the difference between

the total upward-going and downward-going radiation energy is independent
of the optical mass.

1
SIMPSON, G. C., Mem. Roy. Met. Soc., 2, No. 16, 1927.

2
PEKERIS, C. L., Mass. Inst. Techn., Met. course, Prof, notes, 5, 1932.

3
PENNDORF, R., Veroffentlich. Geophys. Inst. Leipzig, 2d ser., 8, 253, 1936.

4
BRUNT, D., Quart. J. Roy. Met. Soc., 66, suppl., 34.



CHAPTER VI

THE EQUATIONS OF MOTION OF THE ATMOSPHERE

42. Plane Motion in Polar Coordinates. To study the motion

on a sphere such as the earth, polar coordinates are most appro-

priate. Before the equations of motion in three dimensions are

developed, it will be useful to recapitulate briefly the representa-

tion of the motion in a plane by means of polar coordinates.

If the mass of the body whose motion is to be studied is m
and if the force F acting on it has the components Fx and Fv the

equations of motion are in Cartesian coordinates

=
(42.1)

my - Fy
^ J

The dots indicate, here and in the following discussion, dif-

ferentiation with respect to time, each dot indicating one

differentiation.

If r is the radius vector of a point P and
\[/

its angle with the

a>axis, it follows from Fig. 25 that

x = r cos *
y = r sm \[/

'

It is seen from Fig. 25 that the radial component Fr and the

tangential component F+ of the force F can be expressed by the

Cartesian component with the aid of the following equations :

Fr
= Fx cos t + Fy sin ^

(
.

F* = -Fx sin ^ + Fy cos ^
^ '

Analogous equations hold for the components of the acceleration

of the particle. Thus, the radial acceleration is

x cos \l/ + y sin ^

and the tangential acceleration

x sin ^ + y cos ^
114
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If Eqs. (42.2) are differentiated twice with respect to time and

substituted in these expressions, it is found that the radial

FIQ. 25. Plane motion in polar coordinates.

acceleration is

and the tangential acceleration

(42.4)

(42.41)

The equations of motion in polar coordinates may now be written

in the form

m(r - r^
2
)

= Fr

(42.5)

The interpretation of the various terms is found in the textbooks

on mechanics and need not be given here.
"

43. The Motion on a Rotating Globe. The equations of

motion in a three-dimensional Cartesian coordinate system
1 are

mx = Fx

my = Fy

mz =F,

where Fx,
Fv,

and Ft are the components of the external force.

Because the earth may, at least to a very high degree of approxi-

1 Only right-hand coordinate systems will be considered throughout this

volume.
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mation, be regarded as a sphere, polar coordinates may be

introduced by the relations (Fig. 26)

x = r cos <p cos a

y = r cos <p sin a

z r sin <p

(43.1)

r is the distance from the origin; <f> the latitude, reckoned from

the equator positive northward and negative southward; and a

the longitude reckoned positive eastward from an arbitrary

meridian.

FIG. 26. Transformation of Cartesian into spherical polar coordinates.

The equations of motion in spherical coordinates can be

derived in a straightforward fashion, although with much labor,

by differentiating Eq. (43.1) and substituting in the preceding

equations. A shorter derivation is possible by considering

the accelerations in the radial, longitudinal, and latitudinal

directions and equating them to the components of the external

force in these directions.

Consider the sphere in Fig. 27. is the center of the sphere;

AA' is its axis, which will later be identified with the axis of

rotation but is arbitrary at present; and EE' is the equator.

P is an arbitrary point on the sphere, APEA 1
the meridian

through P, and M the projection of P on the axis AA'. AGA'
is the meridian from which the longitude is reckoned. The
motion of P may be represented as the sum of

a. The motion in the meridian plane APEA'.
6. The rotation of the meridian plane due to variations of the

longitude of P.
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FIG.

A'
27. Acceleration in

coordinates.
spherical

Owing to (a) the point has [see Eq. (42.4)] a radial acceleration

r r<p
2

along OP and a tangential acceleration rip + 2rv,

counted positive northward along the tangent to the meridian

at P. Owing to (6), it has a radial acceleration r cos <p a
2
along

MP, for MP = r cos ^. A
term of the form r does not

appear here, for the accelera-

tions considered under (6) are

due to the rotation of the

meridian only. The tangen-
tial acceleration due to (b) is

r cos (p a. + 2a(d/dt)(r cos y?),

parallel to the tangent at P to

the latitudinal circle through
P and directed eastward. The
radial acceleration r cos <p a

2

may be resolved into two

components, one along OP,
r cos 2

<p a 2
,
the other one

toward north, r cos <p sin <f>
a 2

. Thus, the accelerations along the

three rectangular directions are the following : Along OP,

r - r<p
2 - r cos 2

<p a
1

(43.2)

Normal to OP, eastward,

r cos <p a + 2d(r cos <p r sin <p <p) (43.3)

Normal to OP, northward,

rip + 2r<p + r cos <p sin (p a
2

(43.4)

These expressions for the accelerations hold for a coordinate

system fixed in space. When a coordinate system rotating with

the earth is used, r and tp remain unchanged provided that the

axis AA' coincides with the axis of rotation. If X is the longitude

measured from a fixed point on the rotating earth,

Oi = \ + tot

where co is the angular velocity of the earth rotation. Upon
substituting this relation in the expressions for the accelerations

and equating to the components of the external force which
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are F\ in the longitudinal direction (toward E), Fv in the merid-

ional direction (toward N). and Fr in radial direction (upward),
it follows that

F\
r cos

<f>
X + 2(X + co)(r cos <p r sin <p <p)

=
(43.51)

/TV

r + 2r + r cos *> sin *>(X + co)
2 = ^

(43.52)

^ _ r^2
_ r COS 2

^(x 4.^)2^: (43.53)m

If a particle on the rotating earth is considered, which is

originally at rest,

r = <p
= \ =

and only subjected to the acceleration of gravity g,

Fi = = Fv and Fr
= -mg

the preceding equations become

r cos <p X =

r$ + r cos ^> sin <p co
2 =

r r cos 2
<p w 2 =

gr

The two quantities r cos <p sin ^ w 2 and r cos 2
99 w2 are the

meridional and vertical components of the centrifugal accelera-

tion due to the earth's rotation (Fig. 27). A particle originally

at rest on the rotating earth is thus subjected to the horizontal

component r cos <p sin (p co
2 of the centrifugal acceleration which

is directed toward the equator. Because this force is acting

on all masses on the earth, the figure of the earth is not strictly

spherical but ellipsoidal with an equatorial radius that is slightly

longer than the polar radius. Owing to the deviation of the

earth from the true spherical form, the gravitation is not directed

exactly to the center of the earth. In order to take the ellipsoidal

form of the earth into account the coordinate system may be

turned slightly around the tangent on the latitudinal circle at P
(Fig. 27) so that the radius vector OP coincides with the true

vertical. The angle between the true vertical and the radius

vector OP is small, about 700" sin 2<p. In this new coordinate

system the meridional component of the centrifugal acceleration

is compensated by a horizontal component of the acceleration of
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gravity. The vertical component of the acceleration of gravity,
which is also slightly changed by the rotation of the coordinate

system, is combined with the vertical component of the cen-

trifugal acceleration of the earth's rotation. Only the sum of

both can be determined by observation, and this sum is what is

now denoted as the acceleration of gravity. In Eqs. (43.51),

(43.52), and (43.53) the centrifugal terms may be omitted now,
so that

F\
r cos v X + 2(X + w)(r cos <p r sin <p <p)

= (43.61)

V
r'<i> + 2f<f> + r cos <p sin <p X(X + 2co)

= -*
(43.62)

wi

? - r<}>*
- r cos 2

<p X(X + 2co)
= F-

(43.63)
771

FX, Fy, and Fr are the components of the external force in the

new coordinate system. After the dynamic effects of the

spheroidal figure of the earth have been taken into account,

the earth may again be regarded as a sphere for most problems
of dynamic meteorology.

44. The Conservation of Angular Momentum. Equation

(43.61) can be written

* d
2 cos 2

r cos <pdt
^ ' ' m

It follows, when the component of the external force in the west-

east direction vanishes, that

r2
(X + w) cos 2

<p
= const (44.1)

r cos <p is the distance from the axis of rotation, and X + w the

absolute angular velocity of the mass under consideration.

Thus r2 cos2
^(X + co) is the angular momentum, and (44.1)

states the theorem of the conservation of angular momentum.

If a mass is brought from a latitude <p\ to a latitude <pz while r

remains constant (the mass remaining at the same height),

*. +*.+> <*>

Because the linear velocity relative to the earth in the west-east
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direction at <pz9

and at <pi

it follows that
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= X 2r COS <f>2

u\ = Xir cos

cos= u\
COS

cos COS 2

COS <f>2

(44.3)

Let us assume that at <p\ the mass was at rest with respect to

the earth, u\ = 0. When the mass is brought from a lower to a

higher latitude, cos <pi > cos <? 2 on either hemisphere, uz > 0.

The mass acquires a velocity towards the east. By motion

toward lower latitudes a westward velocity results. The effect

is obviously due to the variation in the distance from the axis

of rotation, r cos <p, which must be compensated by a variation

of X according to (44.1).

The following table shows the velocities that result when a

mass originally at rest is moved horizontally from a given latitude

10 toward the pole or the equator under conservation of its

angular momentum :

Such high velocities as would result from a meridional dis-

placement, especially at higher latitudes, are rarely, if ever,

observed in the atmosphere. It must therefore be concluded

that large meridional displacements of air masses under con-
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servation of angular momentum hardly occur in the earth's

atmosphere, at least at higher latitudes.

From Eq. (44.1), it is also seen that a westward velocity

results when a mass originally at rest is lifted and an eastward

velocity when it is lowered. But the resulting velocities are

quite small compared with the velocities arising from meridional

displacements.

45. Introduction of a Cartesian Rectangular Coordinate Sys-
tem. In many problems of dynamic meteorology, it is permissible

to neglect the curvature of the earth. It can then be assumed

that the part of the earth on which the motion takes place coin-

cides with a plane tangential to the earth. The z-axis may
point vertically upward, the z-axis toward east, the ?/-axis

toward north. The equations of motion in this coordinate

system can be obtained from Eqs. (43.61) to (43.63) for spherical

coordinates or by direct calculations. 1 The latter method will

be used here even though it is somewhat lengthy, for it does not

require any knowledge of the kinematics of a rigid body.
Let us assume instead of this Cartesian coordinate system

another one xn
', y

n
',
z" whose z"-axis coincides with the axis of

the earth and whose origin is at the center of the earth. This

system may not rotate with the earth. When the components
of the external force are denoted by Fg>>, Fv j /<>, the equations
of motion are

x" = -F*m

y" = ~Fy (45.1)

z" = - jF>m

Now, assume a second coordinate system #', y' ,
z

r whose z'-axis

coincides with the z"-axis of the first system and whose origin

is also at the center of the earth, so that the zV-plane coincides

with the equatorial plane of the earth. This system may rotate

with the earth. When x
f
coincides with x" at the time t = 0,

the angle between the two axes is ut at a time t. The relation

between the two systems is, according to Fig. 28 (the z"- and

1 By the use of vector analysis a very short derivation of these equations is

possible. See H. Solberg, Geofys. Pub., 5, No. 9, 7, 1928.
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z'-axes are perpendicular to the plane of the paper) :

x" = x
f

cos ut y
f

sin wt

y" = x' sin ut + y' cos wt

z" = z'

(45.2)

Analogous equations hold for the transformation of the com-

ponents of the external force from one coordinate system into

the other.

FIG, 28. Transformation from a nonrotating into a rotating coordinate system.

FIG. 29. Transformation into a rotating coordinate system at an arbitrary
latitude.

In order to transform the x', y', z
f

system into the x, y, z

system mentioned at the beginning of the section, it has to be

rotated around the z'-axis until the z'-axis points vertically

upward at the latitude <p at which the motion is studied (Fig. 29).

In order to have the zy-plane tangential to the earth's surface

at the latitude <p, a parallel translation of the x', y', z' system
is also necessary, but this does not affect the dynamic equations.

The xy-plane is then tangential to the earth, x may be directed

toward east (perpendicular to and into the plane of the paper in

Fig. 29) so that y points northward. The relation between the

coordinate system x, y, z and x', y', z' is, according to Fig. 29,
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given by

x
1 = x

y'
= y sin <p z cos <f> (45.3)

z' = y cos <p + z sin #

From (45.2) and (45.3), it follows that

x" = x cos <o (y sin <p z cos <p) sin co*

y" = x sin co* + (y sin <p z cos Y?) cos co* (45.4)

z" = y cos <p + z sin ^

Again, analogous equations hold for the transformation of the

components of the external force. Therefore

Fx = Fj> cos <jit + Fv sin co*

Fv
=

/''a/' sin (p sin co* + Fv sin <p cos co* + Fz cos ^> (45.5)

Fz
= Fx" cos v? sin ut Fy cos <p cos co^ + FZ

" sin <p

With the aid of Eqs. (45.1) the last system of equations may be

written

x" cos co + y" sin cot = ~ F.
?7l

o:" sin ^ sin coi + i/" sin ^ cos co^ + 2" cos <p
= Fy

"
cos c? sin co< y" cos v? cos co* + z" sin <p

= Fgm

Upon differentiating (45.4) twice with respect to time (it should

be noted that <p, which determines the position of the coordinate

system x, y, z, is constant) these equations can be written, when
the notations x = u, y ~

v, and z = w are introduced,

-5- co
2z 2co(y sin o w cos <p) Fx

at m

-T: co
2
(t/ sin <p z cos <p) sin <p + 2co sin <p u ~ Fv (45.6)

Ctt fit

-TT + co
2
(y sin ^ z cos <p) cos <p 2co cos p u = Fg

dt HYI

The terms containing co
2 are the components of the centrifugal

acceleration, or rather their negative values. They need not

be considered according to the discussion on page 118. The
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equations of motion then take the form

du rt / x 1

-jr
~

2co(v sin <p w cos <p) Fx
at m

-r + 2w sin ^ u = Fy (45.7)

-T7 2w COS ^ tt = Fz
dt

* m

In the following discussions, the equations will be used mostly
in this form.

Sometimes, however, it will he convenient to introduce a

coordinate system x, y, z whose o>axis makes an arbitrary angle

with the x-axis, i.e., with the direction toward east, while the

z-axis remains perpendicular to the earth's surface. Analogous
to (45.2) the equations of transformation between the old and
the new coordinate system are

x x cos ft y sin ft

y = x sin ft + y cos ft

z = z

Similar equations hold for the components of the velocity and of

the acceleration, for ft is independent of the time. Upon multi-

plying the first equation (45.7) by cos ft and the second by
sin ft and adding, then multiplying the first equation by sin ft

and the second by cos ft, adding, and substituting from the trans-

formation equations for the components of the velocity and the

force, it follows that

-jr 2w sin <p v + 2w cos # cos ft w = F-&
at m

-r + 2co sin <p u 2o> cos <p sin ft w = - F$ (45.8)
CLL fYl

-j- 2co cos <p(u cos ft v sin ft) F?
at m

46. The Coriolis, or Deflecting, Force of the Earth's Rotation.

The terms containing the factor 2co in the equations of the pre-

ceding section are the negative values of the components Cx ,
Cy ,

and Cg of the Coriolis force. Upon using the coordinate system

x, y, z whose z-axis is directed toward the east,
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(46.1)

Cx = 2w(v sin <p w cos ^)

Cy
= -2cosin <? u

Cz
= 2w cos ^> w

The direction cosines of the earth's axis are 0, cos <p, and sin <p in

this coordinate system
1

(Fig. 30). Now,

Cx + cos <p Cy + sin <p Cz
=

Consequently, the sum of the products of the direction cosines

of the Coriolis force into the respective direction cosines of the

earth's axis is also zero. It follows that the Coriolis force is

perpendicular to the earth's axis. Its absolute value is given by
~ - w cos v>)

2 + w 2
(46.2)V~C*

2 + C/T~C7 = 2coV(^ sin

To interpret this expression the coordinate system x*
', y>',

z
r
of

Sec. 45 may be used, whose
is parallel to the

Analogous to (45.3),equator.

u u

v
f = v sin <p w cos <p

(46.21)

The Coriolis force is therefore

equal to 2o> times the projection

of the velocity into the plane of

the equator.

Because uCx + vCy + wCz
=

0,

the Coriolis force is perpendicular

also to the velocity of the moving
mass. Consequently, it can

bring about changes only of the

direction of the velocity but not of its amount. Therefore, it is

also frequently called the deflecting force of the earth's rotation.

When a purely horizontal motion is considered, w =
0, the

first two of Eqs. (45.7) become

FIG. 30. The direction cosines of

the earth's axis.

du 1 r,
-r- 2w sm <p v Fx
dt m
dv

,
1 r,

-7- + 2w sm <p u = Fy
dt

* m v

(46.3)

1 In the coordinate system for which Eqs. (45.8) are derived the direction

cosines are cos <p sin /3, cos <p cos )3, and sin <p.
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The third equation may be omitted when horizontal motion is

considered (see also page 145). The first two of Eqs. (45.8) for a

coordinate system whose z-axis does not coincide with the direc-

tion toward east, assume the same form, for only the vertical

component w sin <p of the angular velocity of the earth's rotation

appears. The latter does not change with the transformation

from the coordinate system x, y, z to x', y', z' as can be seen from

Fig. 30. For horizontal motion,

Cx = 2co sin <p v

Cv
= 2co sin <p u

From these expressions, it can again be seen that the Coriolis

force in the two-dimensional case is perpendicular to the velocity,

as was shown in three dimensions. Let OF in Fig. 31 represent

the velocity. As drawn in Fig. 31, u and v are positive. There-

fore, in the Northern Hemi-

sphere where <p is positive,
Cx > 0, Cy < 0, so that the

Coriolis force falls in the direc-

tion OC, whereas in the South-

ern Hemisphere where <p is

negative its direction is OC".

It follows that the deflective

force acts to the right on the

Northern Hemisphere, to the

left on the Southern Hemi-

sphere. The same result holds,

of course, for three-dimensional

motion, as can be shown by a

somewhat involved discussion

of the direction cosines. Because we shall not use this result in

its general form, its derivation will not be given here.

At the equator, according to (46.1),

V

FIG. 31. Direction of the Coriolis

force in the horizontal.

Cx
= - C

tf

=
0,

As long as purely horizontal motions and accelerations are con-

sidered, therefore, the Coriolis force does not appear when
motions at the equator are studied. This is obvious; for the

Coriolis force is parallel to the equatorial plane, and the equatorial

plane is normal to the earth's surface at the equator.



THE EQUATIONS OF MOTION OF THE ATMOSPHERE 127

47. The Hydrodynamic Equations. Because the atmosphere
is a fluid medium, its motion follows the hydrodynamic equations.

For a rigorous derivation of these equations the reader is referred

to the textbooks on hydrodynamics. Here, the derivation of

these equations will be outlined only briefly.

The effects of friction may be disregarded at present. They
will be considered later in Chap. X. In a nonviscous fluid, each

surface element is subjected to a pressure p, normal to the surface

element. The pressure p is a continuous function of the coordi-

nates x, y y
z and the time t. Owing to the variations in space of

p, a force is exerted on every fluid element. To find this force,

consider a rectangular parallelepiped dx dy dz whose edges are

x x+dx
FIG. 32. The computation of the pressure-gradient force.

parallel to the axes of the coordinate system (Fig. 32). Let the

mean pressure on the face dy dz with the abscissa x be p. Then
the mean pressure on the face dy dz with the abscissa x + dx is

p + -~- dx and the forces exerted on both faces are p dy dz and
CfX

(p + -^-
dx } dy dz, respectively. The latter force is directed

toward decreasing x. The resultant of the two forces

~- dx dy dz
uX

is the a>component of the force exerted on the volume element

owing to the pressure variations. The force per unit mass is

obtained by dividing by the mass of the volume element p dx dy dz.

dp/dx and p are mean values for the volume element; but when

dx, dy, and dz tend to zero, they may be replaced by the values

at the point x, y, z. The x-component of the force per unit mass,
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~ has to be added to the expression for the z-component
p dx

of the external force in (45.7) and (45.8). Similarly, to the

^/-component and 2-component of the external force the expres-

sions ~- and TT- have to be added. These terms may be
P dy p dz

added explicitly to the equations of motion; for they will always
be present, even if there is no external force acting, dp/dx and

dp/dy are the horizontal components of the pressure gradient,

dp/dz the vertical component (see Sec. 6). In practical meteor-

ology the negative values of these expressions are mostly referred

to as the components of the pressure gradient. The expressions

I dp 1 dp , I dp ,, , f , ,

_, -L, and - are the components of the pressure-
p dx p dy p dz

,

gradient force.

The terms du/dt, dv/dt, and dw/dt are the components of the

acceleration of a moving fluid particle. They do not refer to a

fixed point. The pressure gradient, on the other hand, is

measured at a given fixed point. The accelerations have there-

fore to be resolved into quantities also referring to a fixed point

in the fluid. 1 Because u, v, and w are functions of x, y, z, and t, it

follows from the rules of partial differentiation that

du du dt dudx du dy du dz

Further,

dx dy dz
-JT

= u ~J7
= v

-J7
= w

dt dt dt

Thus

du du
,

du
,

du
,

du ,. n .^
(47J)

Corresponding equations hold for dv/dt and dw/dt. The partial

derivatives of the velocity components with respect to the time

are called the "
local

"
derivatives because they measure the

velocity changes at a given point. When the local derivatives

1 It is also possible to transform the equations so that the pressure terms

refer to a moving particle. If this method is used, the Lagrangian hydro-

dynamic equations are obtained; the equations derived here are the Eulerian

equations.
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vanish, the field is "steady." The other terms in (47.1) express

the variation of the velocity of a moving particle due to its

motion into regions of different velocity.

Thus we obtain the hydrodynamic equations of motion in a

coordinate system which rotates with the earth and whose x-axis

points eastward,

du du

Tx

du du " W C S

P dx

1 dp~-
p dz

(47.2)

If it is more convenient to use a coordinate system whose x-axis

includes an arbitrary angle with the x-direction, only the Coriolis

x x+dx
FIG. 33. The derivation of the equation of continuity.

terms have to be changed as indicated by Eqs. (45.8). For the

sake of brevity the accelerations will sometimes be written later

in their undeveloped forms du/dt, dv/dt, and dw/dt. The operator

d/dt refers to the differentiation of an individual particle with

respect to the time. It may be called the " individual" time

derivative in order to distinguish it from the local derivative d/dt.

To the equations of motion the condition of the continuity of

mass has to be added. This condition states that in each volume

of a fluid the net amount of mass entering through the (fictitious)

boundary is equal to the increase of the mass enclosed by the

boundary. To formulate this condition mathematically, con-

sider Fig. 33. The fluid mass entering the parallelepiped
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through the face dy dz with the abscissa x in the time dt is

pudydzdt where pu is a mean value for this area. Because

( pu + -- dx
J

is the corresponding value of the velocity for

the face dy dz with the abscissa x + dx, the fluid mass leaving

through this area is f pu + -r dx ] dy dz dt. The net gain of

mass of the volume under consideration is -- dx dy dz dt.
uX

Here, dpu/dx is again a mean value which may be replaced by
the value at the point x, y, z and at the time t when dx, dy, dz, and

dt are sufficiently small. Similarly the net gains due to the flow

in the y- and z-directions per unit time are -~ dx dy dz dt and

--~ dx dy dz dt, respectively. The sum of these three expres-
oz

sions represents the total net increase of the mass contained in

this volume. This change in mass must cause a change of the

density in the volume element from p at the time t to p + dt
ot

at the time t + dt. The mass increase in the time dt can therefore

also be expressed by dt dx dy dz. Upon equating both expres-
ut

sions for the mass increase and dividing by the volume dx dy dz

and the time dt the equation of continuity is obtained,

(47 .3)

When the fluid under consideration is incompressible and

homogeneous, p = const, the three equations of motion (47.2)

together with the equation of continuity (47.3) and appropriate

boundary and initial conditions are sufficient to determine the

motion because there are then four equations available to

determine the four unknown variables u, v, w, and p. This is the

pase which is generally dealt with in hydrodynamics. For many
meteorological problems, however, it is obviously not possible to

regard the air as an incompressible and homogeneous fluid. Then

p has to be added to the four other unknown variables, and a

fifth equation has to be found in order to obtain a system of five

equations from which to determine the five unknown quantities.
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48. The Physical Equation. Piezotropy. The fifth equation
in the system of hydrodynamic equations that must be available

in order to make the number of equations equal to the number of

unknown variables can be obtained from thermodynamic con-

siderations. For ideal gases, for instance, we have the equation

p = ^ PT (4.1)

between the pressure p, the density p, and the temperature T.

However, if this equation is added to the four purely hydro-

dynamical equations, a sixth variable T appears so that a sixth

equation is needed to make the system complete. The first law

of thermodynamics may be chosen as this sixth equation,

dq = cv dT + Ap d I
-

) (8.1)

Here the amount of heat dq added to a particle has to be deter-

mined from other quantities, such as the heat received by radia-

tion, by conduction, and by other processes.

Most problems investigated so far are of a much more limited

scope, for it is assumed that the changes of the state of the fluid

are polytropic (Sec. 8), in particular, adiabatic, or isothermal.

In the case of polytropic changes

pp
~x = const (8.51)

When this equation in which T does not appear is added to the

three equations of motion and the equation of continuity, a com-

plete system of five equations with five unknown variables is

obtained, for a sixth variable does not enter. It should be noted

that (8.51) depends on the coordinates, for the constant may
change from particle to particle. An equation of the type (8.51)

which contains only two of the three variables of state p, p ;
T is

called a
"
piezotropic

"
equation after Bjerknes.

1

The preceding example may be generalized. The equation

of state for a particle may be given in the form

p = P(p, T, ) (48.1)

1 BJERKNES, V., BJERKNES, J., SOLBERG, H., and BERGERON, T., "Physi-

kalische Hydrodynamik," p. 84, Verlag Julius Springer, Berlin, 1933.
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where the dots indicate that other variables of state besides p
and T influence the density. In the case of atmospheric air, for

instance, the water vapor would be such a variable. If, how-

ever, the density of the particle depends solely on one other

variable of state, e.g., on p, the fluid is called "piezotropic." The

piezotropic equation will, in general, contain the coordinates

x, y, and z. Thus, a piezotropic equation of state is of the form 1

P = P(P\ x, y, z) (48.2)

of which (8.51) is a special case. When an equation of the type

(48.2) can be added to the equations of motion and the equation
of continuity, the number of equations is sufficient to determine

the five unknown variables u, v, w, p, and p. The last equation
will then be referred to as the physical equation. In an incom-

pressible fluid the physical equation is, of course, superfluous.

A piezotropic fluid may be characterized by its coefficient of

piezotropy. It is defined as the differential quotient (dp/dp) Ph.

The subscript ph is added to indicate that this quantity refers

to the physical changes of the state of the particle.

If the changes of state are isothermal, for instance, it follows

from (4.1) that

1

dp/ph (R*/m)T

Here T may change from place to place, for the assumption of

piezotropy implies only that the changes of state of the individual

particles are isothermal, but not the temperature distribution in

space.

The physical equation (48.2) applies to a particle while the

quantities appearing in (47.2) and (47.3) refer to a fixed point.

Therefore, in Eq. (48.2), individual time derivatives may be

formed,

dpdp = fdp\ dp
dt \dp/ph dt

If the individual time derivatives are developed in the same

1 By the gas equation (4.1), p may, for instance, be replaced by T so that

more generally, a piezotropic fluid is a fluid where the two others of the three

variables p, p, and T can be found if only one variable is given.
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manner as the accelerations in the preceding section,

dp i dp i dp i dp

ph

This last equation contains only quantities referring to a fixed

point.

49. Barotropic and Baroclinic Stratification. When the spatial

distribution of density and pressure in a fluid at a given moment
is considered, the surfaces of equal density will, in general, not

coincide with the surfaces of equal pressure. But if, for instance,

the pressure and density distributions at a given time are func-

tions of the altitude only, p p(z) and p = p(z), z may be

eliminated from these two equations, it being thus shown that

p = p(p). When an equation of this form holds for the distribu-

tion of density and pressure, the surfaces of equal pressure and

density coincide. The fluid is then called barotropic. The

general case where the surfaces of equal pressure are inclined to

the surfaces of equal density is called the baroclinic case.

The properties barotropy and piezotropy should be clearly

distinguished. The former refers to the density distribution in

space, the latter to the dependence of the density of a particle on

its pressure. In principle, the question whether the stratification

of the atmosphere at a given time is baroclinic or barotropic can

be decided from simultaneous observations at different points.

To find out whether the atmosphere is piezotropic, observations

of individual particles at different times are required.

In a barotropic fluid a coefficient of barotropy (dp/dp) g may be

introduced. The subscript g indicates that this coefficient refers

to the geometric distribution of p and p.

A fluid whose stratification is barotropic at a given moment
does not, in general, remain barotropic. Consider, for instance,

an atmosphere whose surfaces of equal pressure and equal

density are horizontal and whose temperature decreases linearly

with altitude, the lapse rate being less than adiabatic. Let the

changes of state follow the adiabatic law so that the fluid is not

only barotropic but also piezotropic. If a parcel of air is lifted

in this atmosphere, it will arrive at its new position with a tem-

perature lower than that of the surrounding air at the same level
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and, therefore, with a higher density. Only if the original lapse

rate of temperature had been adiabatic would the mass distribu-

tion have remained undisturbed and the barotropic stratification

have been maintained.

A fluid whose equation of piezotropy is such that an original

barotropic stratification is maintained is called autobarotropic.

The simplest example for an autobarotropic fluid is an incom-

pressible homogeneous atmosphere. Further examples are an

isothermal atmosphere in which compression and expansion
follow an isothermal law or an atmosphere with adiabatic lapse

rate following an adiabatic law. The general condition for

autobarotropy is that the piezotropic and the barotropic laws are

identical so that the coefficients of piezotropy and barotropy
become the same.

50. Streamlines. Divergence and Velocity Potential. To
obtain a representation of the instantaneous state of motion of a

fluid the streamlines are introduced. The streamlines have

everywhere the same direction as the velocity so that their

tangent indicates the direction of the velocity. The differential

equations of the streamlines are therefore

dx:dy.dz = u:v:w (50.1)

The streamlines coincide with the paths of the particles only
if the fluid motion is steady. When the motion changes with

time, the streamlines show the instantaneous distribution of

motion throughout the fluid.

In the case of two-dimensional motion of an incompressible

homogeneous fluid, the equation of continuity (47.3) assumes the

simple form

+- < 2>

It is satisfied by any function $(x, y) provided that

u = - ^ and v = ^ (50.3)
dy dx ^ '

From the equation for the streamlines in the two-dimensional

case,

dxidy = u:v (50.4)
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it follows that along the streamlines

^(z, y)
= const (50.5)

The function \l/(x, y) is therefore called the stream function.

From the derivation of the equation of continuity (47.3), it

will be seen that the net amount of mass leaving the volume

element dx dy dz per unit time is

This expression measures the divergence of the flow of mass.

More generally, the divergence of a vector with the components
A x, Ay, and A z is

=++ (50.6)

When the divergence is negative at a point or in a region so that

mass is accumulated there, it is sometimes called "convergence."
A function $ is called the velocity potential of a given velocity

distribution if

d$ d$ d$> /c _,_ xu = y = - w =
(50.7)dx dy dz
^ '

61. Circulation and Vorticity. The circulation C around a

closed curve formed by fluid particles is the line integral of the

velocity component tangential to the curve,

C = $V cos ads (51.1)

V is the velocity, ds the line element, and a the angle between V
and ds. If u, v, and w are the components of the velocity V and

dx, dy, and dz the components of ds, Eq. (51.1) may be written

C = < (udx + vdy + wdz) (51.2)

If the curve whose circulation is to be determined lies in the

ary-plane,

C = < (udx + vdy) (51.21)j
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In Fig. 34, a curve in a horizontal plane is shown; PI and P2 are

two points on the curve a small distance ds apart, and is the

instantaneous center of rotation. Let J^f be the angular

velocity at Pi with as center. The contribution dC of the

line element ds to the circulation is then, according to (51.1),

FIG. 34. Circulation in a horizontal plane.

(a.)
FIG. 35. Circulation in rectangular Cartesian coordinates.

cos a ds where a is the angle between the velocity and the

line element at PI. Because cos a = -5;

and, by integration over the whole curve,

(51.3)

r and J^f are functions of 6, But when the curve is a circle with

as center whose radius is so small that f may be regarded equal
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to the value at everywhere in the region of the circle,

C = 7rr
2
f (51.31)

f is called the
"
vorticity" or the "curl

"
at 0. It is equal to twice

the angular velocity of the fluid at 0.

Another expression for C may be obtained by dividing the area

of the curve into small rectangles whose sides dx and dy are parallel

to the x- and y-axes (Fig. 35a). The velocities tangential to the

sides of an elementary rectangle are shown in Fig. 356. It follows

that the circulation around an elementary rectangle is given by

= u dx + ( v + ^ dx} dy - ( u + - dy} dx - v dydxdv

When the circulation for each rectangle in the contour is taken

in the same (positive) direction and the circulations are added,
the contribution from sides common to two rectangles cancel, for

the summation is performed in opposite directions, as indicated in

Fig. 35a. The sum represents the circulation around the broken

curve approximating the original contour. Making the division

of the area into rectangles sufficiently small,

The surface integral is to be extended over the area enclosed by
the curve around which the circulation is to be computed.

If (51.4) is applied to a circle whose radius r is so small that

(dv/dx) (du/dy) may be regarded as constant and equal to the

value at the center of the circle, it follows that

(51.41)

The double integral represents the area of the circle. Upon com-

paring this relation with (51.31), it is seen that the vorticity in the

#2/-plane (around the 2-axis)

"5-g <"'5>
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Similarly, in the three-dimensional case, it is in the xs-plane,

du dw
f

* = Tz~Tx (51 '

and in the ^s-plane,

These expressions show how the vorticity can be computed when
the field of the velocity is given.

From (51.4), (51.5), and (51.21), it is seen that in a plane

$ (u dx + v dy) =
JJY dx dy (51.6)

This is Stokes 's theorem for two-dimensional motion. Analo-

gously, in three dimensions,

( (u dx + v dy + w dz)

= f f ( cos nx + t] cos ny + f cos nz) dS (51.7)

Here, cos nx, cos ny, cos nz are the direction cosines of the

elements dS of the surface over which the integration is to be

extended. The three-dimensional formula (51.7) will not be

derived; for we shall not make use of it later, and the connection

between vorticity and circulation is plain from (51.6). Both

formulas show how a line integral is transformed into a surface

integral.

When a velocity potential exists [see (50.7)], the vorticity

vanishes 1 and the motion is called irrotational.

The reader should notice that the terms "rotational" and

"irrotational motion" in the hydrodynamical sense do not always
coincide in meaning with these terms as ordinarily used. Thus, a

horizontal motion parallel to the x-axis that increases with the

elevation z is rotational because du/dz.^ 0. An example of

irrotational circular motion, on the other hand, will be found in

Prob. 11 at the end of this chapter.

52. The Circulation Theorems. The importance of the cir-

culation C for dynamic meteorology is due to its close connection

1 The circulation vanishes, also, provided that the potential is a single-

valued function. But a discussion of such mathematical refinements may
be omitted here.
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with the vorticity. In order to find the growth and decay of

vorticity the changes of the circulation with time may be studied.

From (51.2), it follows that

The second integral

_/* f fu^ ~\~ v^ -\- w*\
d) (u du + v dv + w dw) (b d(-

^
-

1 =

for the integration is extended over a closed curve. The remain-

ing equation

dv . dw

states the relation between the variation of the circulation with

time frequently referred to as the "circulation acceleration"

and the acceleration of motion. It is known as Kelvin's theorem.

Upon substituting from the equations of motion (47.2) into

(52.1), it follows that

+ Fg dz) + (t> 2u[(v sin ^ w cos #?) dx u sin <p dy

+ u cos <p dz]

The first integral can be written
(p (dp/p). The second

integral vanishes if gravity is the only external force, for

<b g dz = 0,

or, more generally, if the external force has a potential (which

is a single-valued function).

In the third integral the coordinate system #', y', z
f
of Sec. 45

whose #V-plane is parallel to the equator may be introduced

again with the aid of (45.3) and (46.21). Thus, this integral
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becomes

2co (v* dx' - u' dy')

Let the closed curve in Fig. 36 represent the equatorial projection

of the curve along which the integration is to be performed.

ds
1

with the components dx' and dy' is a line element of the pro-

jected curve. The variation per unit time of the area F enclosed

by the pro ection of the original curve in the equatorial plane is

due to the motion of all the line elements ds'. Because the veloc-

ity in the x'-direction is u', the change of the area due to the

motion of ds' in the ^'-direction is u' dy' and similarly the change
of the area due to the velocity in the ^'-direction is v

f
dx' .

Thus

2~ =
$(u'dy'-v'dx')

and

dC rdp dF /com
-31

=
<P 2co T77 (52.2)

dt J p dt
^ '

This is V. Bjerknes's circulation theorem. The integration is

extended over a geometric curve. Therefore, when the spatial

distribution of p can always be

expressed by p, p = p(p), i.e.,

when the stratification of the fluid

is autobarotropic, the change
of the circulation is produced by
the earth's rotation only. It

follows that in a fluid with auto-

barotropic stratification in a

, nonrotating coordinate system

FIG. 36. Computation of the the circulation and therefore the

effect of the earth's rotation on the vorticity remain constant, espe-
circulation '

cially zero, if they were zero to

begin with. In this restricted form the theorem for an incom-

pressible homogeneous fluid was originally derived by Helmholtz.

V. Bjerknes's theorem demonstrates clearly the importance of

baroclinity for the dynamics of atmospheric motion. As long

as the surfaces of equal pressure and density coincide, the cir-

culation can change only owing to the effect of the earth's rota-
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tion. In a baroclinic atmosphere, on the other hand, a change

of the vorticity is brought about by the stratification of the

atmosphere. The circulation theorem is a prognostic equation,

for it gives the variation of the circulation with time in terms of

the present distribution of pressure and density. Once a motion

has begun, it is further modified by the effect of the earth's

rotation as indicated by the second term on the right side of

(52.2). It is interesting to note that the circulation integral

has the same form as the integral appearing in (21.12)
P

for the energy of a gas undergoing a cyclic process, although

its physical interpretation is quite different.

tr
FIG. 37. Solenoids.

To evaluate < > the surfaces of equal pressure, p = const

(isobaric surfaces), and of equal specific volume, 1/p = const

(isosteric surfaces), may be drawn at intervals corresponding

to the system of units used (Fig. 37). These surfaces divide

the space into tubes, the so-called
"
isobaric-isosteric solenoids"

whose cross sections will be parallelograms. It can be shown

that the value of (p is equal to the number of solenoids
j p

enclosed by the curve around which the circulation integral is

to be taken.

Another form of (p can be obtained by means of Stokes's
J p

theorem (51.7). For the sake of brevity, only the case will be

considered where the curve of integration lies in a plane. The

following derivation is valid also for orientations of the plane
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other than the horizontal. Because

(51.6) may be applied. Here u is to be replaced by -~-> v
p dx

by - -. It follows that
pdy

If a is the angle between the pressure gradient dp/dn and the

x-axis and the angle between the gradient of specific volume

(
-

) and the z-axis,dn \p/

d fl\ d (l\ . d fl\ 6 fl\ .

1
-

]
= T- 1

-
)
cos 1

-
1 = I

-
I si

dx\pj dn\p/
^

dy\P/ dn\p/
I sin

!

dx \p/ on \p/ ay \p/ on \p/

and

dp dp dp dp .

- = ~- cos a ~- =
-^- sin ,

dx dn dn dp

Thus

and

If a > /3, i.e., if a negative rotation is necessary to bring the

pressure gradient in the same direction as the gradient of the

specific volume, dC/dt < 0, as shown in Fig. 38a. If a < ft

dC/dt > (Fig. 386). In both cases the circulation acceleration

is from the pressure gradient to the gradient of specific volume.

For the practical computation of numerical values of dC/dt
and for many theoretical discussions, it is convenient to introduce

the temperature in d) . If the circulation in a vertical

plane is to be computed, for instance, a convenient path of
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integration would consist of two isobars p Q and p\ and two

comparatively short vertical lines a and 6 connecting these

isobars (Fig. 39).
l In order to compute the intensity of the

meridional component of the tropospheric circulation from the

pole to the equator, one might choose the isobars 1000 mb and

(a) (b)

FIG. 38.- -Direction of the circulation acceleration.

a

Fia. 39. Computation of the circulation acceleration.

300 mb and the verticals connecting these isobars at the pole
and at the equator (see also Sec. 94). From the equation of

state (4.1), it follows that

,dp

Integration along the isobars gives zero. Along the curves a

and 6 the mean temperatures Ta and Tb, defined in analogy With

(7.2), may be introduced so that

Po- dF
(52.4)

1
BJERKNES, V., and collaborators,

"
Physikalische Hydrodynamik," p.

144, Verlag Julius Springer, Berlin, 1933.
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If Ta > Tb, the circulation acceleration is in the direction indi-

cated by the arrows in Fig. 39 so that the circulation is toward

lower pressure (upward) on the warmer side, toward higher

pressure (downward) on the colder side, and from the colder to the

warmer side along the surface of higher pressure, and back from

the warmer to the colder side along the surface of lower pressure.

The circulation theorem of V. Bjerknes can also be used to

explain such small circulations as land arid sea breezes or mountain

and valley winds which may be mentioned briefly. In both

cases the returning currents at upper levels appear to be less

clearly established than the lower currents, but the circulation

must nevertheless be closed in some form to satisfy the continuity

condition. In the case of land and sea breezes, the air over the

land is more strongly heated in daytime and cooled more strongly

at night, for the water surface is kept at a more even temperature

by mixing with the lower layers. If column a in Fig. 39 repre-

sents the air over land during the day and over water during the

night, the origin of land and sea breezes is easily deduced.

Similarly, the air temperature near a mountain slope or in a

V-shaped valley increases more in daytime and decreases more

at night, owing to radiation, than the air at the same pressure

level away from the mountain or outside the valley. Thus,

there arises in daytime a wind blowing up the slope of the moun-

tain or of the valley, and at night a wind blowing downward. 1

Problems

9. Find the velocity that a particle acquires owing to the conservation of

angular momentum if it is lifted or lowered.

10. Which form must the physical equation have in an autobarotropic

atmosphere if the vertical lapse rate of temperature is constant and if the

temperature is the same everywhere in the horizontal?

11. Show that a horizontal fluid motion along concentric circles is irrota-

tional except at the center if the velocity is inversely proportional to the

distance from the center.

12. Express the circulation integral u) ~
a. By the gradients of pressure and potential temperature.
6. By the gradients of temperature and potential temperature.

i WAGNER, A., Met. Z., 49, 329, 1932.



CHAPTER VII

SIMPLE ATMOSPHERIC MOTIONS

63. The Geostrophic Wind. When the air moves horizontally

without change of the velocity and of the direction of motion

and when the only external force is gravity, Fx = Fv
= and

Fg = fir.

1

Equations (47.2) become

-2cosin<^ = - -^ (53.11)
p ox

2o>sin<pu = -
-^ (53.12)

-2w cos <f>
u + g = - -

1 ^ (53.13)
p dz

where the rr-axis points toward east, the ?/-axis toward north,

and the z-axis vertically upward. The equation of continuity

(47.3) is satisfied when dp/dt = 0.

The coordinate system may be rotated around the 2-axis so

that the new ^-direction coincides with the (positive) pressure

gradient and makes an angle ft with the east direction. The
first two equations then become, according to (45.8),

-2co sin <p v = - - ^ (53.21)

u = (53.22)

and the third equation becomes, according to (45.8),

+2co cos <p v sin ft
= - - ^ -

g (53.23)
p dz

Here the expression on the left-hand side is of the order 10~ 3

m/sec
2 when v is of the order 10 1

m/sec and g is of the order

10 1

m/sec
2

. Thus, Eq. (53.23) is a very close approximation
to the static equation (6.1). With such a motion as that being

1 Note that now forces per unit of mass are considered as follows from the

expression for the pressure-gradient force.

145
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considered now, static equilibrium may be assumed to prevail

in the vertical direction.

The motion under discussion is referred to as the geostrophic

wind. Equation (53.21) shows that under the conditions

assumed equilibrium exists between the Coriolis force and the

pressure-gradient force. Because the geostrophic wind is

independent of space and time, the isobars plotted on a hori-

zontal map must be straight lines in the geostrophic case.

Equation (53.21) gives the velocity of the geostrophic wind

when the pressure gradient is known. It shows furthermore

that the geostrophic wind is perpendicular to the pressure

HIGH
, Corio/is force

, Pressure

gradient force

LOW
FIG. 40. Geostrophic balance in the Northern Hemisphere.

gradient and therefore parallel to the isobars and in such a

direction that in the Northern Hemisphere (^>0) the high

pressure is to the right when one faces in the direction of the

wind (Fig. 40). For instance, when dp/dx > the higher

pressure is toward positive x, while v > 0, so that wind blows

in the positive ^-direction.

The direction and velocity of the geostrophic wind can also

be obtained directly by postulating that equilibrium should

exist between the Coriolis force and the pressure-gradient force

(Fig. 40). The latter is perpendicular to the isobars toward

lower pressure. The Coriolis force must therefore also be per-

pendicular to the isobars and toward higher pressure. Because,

in the Northern Hemisphere, the Coriolis force acts toward the

right of the velocity and perpendicular to the wind velocity,

the wind must be parallel to the isobars and in such a direction

that the high pressure is to the right when one is facing in the

direction of the wind. This rule is called Buys Ballot's law.

In the Southern Hemisphere the wind blows, of course, in the
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opposite direction. The condition that Coriolis force and

pressure-gradient force must be numerically equal in order to

balance leads again to (53.21).

64. The Inclination of Isobaric Surfaces. Instead of drawing
the lines of equal pressure, the isobars, at a given level, e.g.,

at sea level, it is sometimes more convenient to draw the height

or dynamic height above sea level of an isobaric surface of a

given pressure. Such a representation is called the "
topog-

raphy
"
or

"
dynamic topography

"
of the isobaric surface. If the

wind is geostrophic, to a sufficient degree of approximation,

-2w sin <p v = - -
|2 (53.21)

p dx

when the #-axis is again in the direction of the (positive) pressure

gradient. Upon multiplying the first of the equations by dx

and the second by dz, it follows that

di) = +2o> sin (p v dx g dz
P

Because the pressure on an isobaric surface is constant, the

differential equation of the isobaric surface is given by

(̂ 'dx g

or when the dynamic height D is introduced according to (1.4),

dD 2o> sin <p v

dx 10
(54.2)

According to these equations the geostrophic wind velocity is

proportional to the inclination of the isobaric surfaces. The

geostrophic wind velocity can therefore also be obtained from

a map of the topography of an isobaric surface. In this case

the density does not enter in the relation between gradient and

wind.

Because v > for dz/dx > when <p > 0, it follows that the

geostrophic wind blows in such a direction that in the Northern

Hemisphere the regions of higher elevation of the isobaric sur-
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face are to the right of the direction in which the wind blows

(Buys Ballot's law).

The inclination of the isobaric surfaces is small. At a latitude

of 43 an isobaric surface ascends 1 m in 10 km when the geo-

strophic wind velocity is 10 m/sec.
55. Horizontal Temperature Gradients and Geostrophic

Motions. The equations for the geostrophic wind,

-2wsin <?v = --^ (53.11)
p dx '

2wsin <p u = ~~~
(53.12)

show that owing to vertical variations of the density the wind

velocity and direction may be functions of the vertical coordinate

even though they are constant in the horizontal. A comparison
with Eq. (45.8) shows that (53.11) to (53.13) hold for any
orientation of the x- and 7/-axes when w =

0, for the Coriolis

term in the third equation can be neglected in comparison with

g-

Eliminating the density by means of the gas equation

P -^ (4.1)

from (53.11) to (53.13), it follows that

-arin,' i --JZ^ (55.11)

2n,--B* (55.12)

Differentiating with respect to z and substituting from the third

into the other two equations,

a (?)-(*) <"">
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Integration between the levels ZQ and z shows that

U^ _ UQ_ fif I* JL d^7

T
~~

T Q 2o> sin <? J Zo T 2
dy

'

v VQ

T
~~

n sin
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(55.31)

(55.32)

Thus the geostrophic wind at a given level may be regarded
as consisting of the surface wind changed in the ratio T/To
and a term depending on the horizontal temperature gradient.

The latter is called the "thermal wind." 1 It should be clearly

understood that this thermal wind is due only to the variation

of the pressure-gradient force with the altitude. The wind was

yj

dT
*y

Fio. 41. Velocity change of the

geostrophic wind duo to a hori-

zontal temperature gradient.

assumed to be geostrophic and

must therefore reflect the varia-

tions of the pressure-gradient
force.

When the pressure gradient is in

the direction equal or opposite

to the temperature gradient, the

rr-axis may be chosen parallel to

UQ (Fig. 41). The (positive) sur-

face-pressure gradient is then

directed in the negative ^/-direction

(Sec. 53, Buys Ballot's law); and the temperature gradient is,

according to the assumption, parallel to the y-axis. From (55.31),

it follows

1. That the geostrophic wind increases with the altitude when
the lower pressure coincides with the lower temperature.

2. That the geostrophic wind decreases with the altitude when
the higher pressure coincides with the lower temperature.

2

The same rules hold in the Southern Hemisphere.
Because the actual wind is often not very different from the

geostrophic wind, the observed increase of the generally westerly

currents of temperate latitudes upward throughout the tropo-

sphere can be explained as an effect of the temperature decrease

toward the poles in the troposphere.

1
BRUNT, D.,

"
Physical and Dynamical Meteorology," 2d ed., p. 196,

Cambridge University Press, London, 1939.
2
MARGULES, M., Met. Z., Hann-vol., 243, 1906.
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When the surface-pressure gradient is normal to the tem-

perature gradient, U Q may again be directed along the positive

x-axis and the pressure gradient along the negative y-axis. The

temperature gradient is then, according to the assumption,

directed along the positive or negative z-axis (Fig. 42). From

(55.31), it follows that u remains constant apart from the effect

of T/TQ, v is zero at ZQ and becomes

positive or negative at higher

levels. The following rules may
be formulated.

3. When the geostrophic wind

blows toward lower temperature,
it turns to the right (veers).

4. When the geostrophic wind

blows toward higher temperature,
it turns to the left (backs).

(3) - dT In the Southern Hemisphere the

(4) *~lhc wind veers when blowing toward
FIG. 42. Turning of the geo- the higher temperature and backs

strophic wind due to a horizontal , i i , i .1 i

temperature gradient. when blowing toward the lower

temperature.
These four rules can easily be derived in a qualitative fashion

when it is remembered that the pressure-gradient force decreases

more slowly in warmer than in colder air. The rules are useful

for forecasting the upper winds at times when upper-air observa-

tions are not available.

56. Steady Motion along Circular Isobars. In general the

isobars are not straight lines but curved. In order to study
the relation between pressure field and wind field, in this case,

it is convenient to introduce horizontal polar coordinates

x = r cos y = r sin 6 (56.1)

It will be assumed that the motion is steady, so that the

local derivatives d/dt vanish, and furthermore that the motion

is purely horizontal. The equations of motion (47.2) become

du
,

du . 1 dpU T~ + v ^ 2w sm <pv = -r*-

dx dy p dx

dv dv . I dpu \- v -
\- 2w sm <p u = ~-

dx dy
*

p dy
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To transform these into polar coordinates, it should be note**

that, by differentiation of (56.1) with respect to time,

u = v r cos Ve sin 6

v = vr sin 6 + Vff cos 6

Here

vr =
-j->

the radial velocity
at

Further

r TT; the tangential velocity

/

-r- = cos - h sin

f /% \ (56.2)
= sin 6 - I- cos 6

dx
T

<ty

and

Therefore, the equations of horizontal steady motion in polar

coordinates are

dvr . dvr v e
z

. 1 dp
V^ + "

^Te
- T - 2" sm ^ ^ = -

P a^

dt;^ . dvo
,

y^ yr
,

1 dp
'

v'
aF
+ "

Fa + + 2w sm v 'r = "
pFw

It may now be assumed further that the isobars are concentric

circles around the origin of the coordinate system so that

dp/36 = 0. The second equation (56.4) can then be satisfied

by assuming vr
= and dve/dB = 0. Such a motion satisfies

the condition of continuity. From the first equation, it follows

that

+ +2wsin?in = +-f (56.5)
r p or

which states that the motion is parallel to the isobars and that

centrifugal, Coriolis, and pressure-gradient forces balance. This

type of motion is called gradient wind. The geostrophic wind

is obviously a special case of the gradient wind when the radius
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of the isobars is infinite, i.e., when the isobars are straight lines.

It follows from the above assumption that the gradient-wind
relation holds strictly only for circular isobars and circular stream-

lines coinciding with the isobars. But, in the case of other

curved isobars, it gives at least a better approximation to reality

than the geostrophic wind relation.

The gradient-wind equation (56.5) can be written down

immediately as the condition that the centrifugal, Coriolis, and

pressure-gradient forces balance, as shown in Fig. 43 for centers of

low- and high-pressure distribution in the Northern Hemisphere.
In the case of a center of low pressure (Fig. 43d) the wind

Wind

Cenfrifugoif force

Corio/is force

Pressure gradient
force

'

Centrifugal force

- Pressure arac/ienf
T

(a) (t>)

FIG. 43. Relation between pressure and gradient wind in the Northern
Hemisphere.

blows counterclockwise so that the centrifugal force and the

Coriolis force counteract the gradient force. A balance of

forces would theoretically also be possible with the wind blowing
in the other direction. Then the centrifugal force would have to

balance the Coriolis force and the gradient force. But with

increasing r the centrifugal force would become very small;

when r = oo, the motion would not become geostrophic. This

alternative is therefore to be rejected.

Similarly, the wind must blow clockwise around a high-

pressure area (Fig. 436) so that centrifugal force and gradient
force balance the Coriolis force. In order to have the signs in

(56.5) right for the anticyclone, it must be noted that ve < 0,

for the motion is clockwise, and that dp/dr < 0, for the pressure
increases outward from the center.

The low-pressure area is also called a cyclone, the high-pressure
area an anticyclone, and the direction of the motion around a
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cyclone cyclonic and around an anticyclone anticydonic. It

will be noted that in the Northern Hemisphere these terms coin-

cide with the terms
"
counterclockwise

"
(positive) and "

clock-

wise" (negative).

From (56.5),

<p ( 1 Jl
\ \

v = -cor sin <p 1 l + 2 z (56.6)
rco

2 sm 2
?? p dr/

^ J

The suffix 6 has now been omitted. When dp/dr =
0,

v = tor sin ^(1 1)

Thus, when the positive sign before the root is taken, an anti-

cyclonic motion is possible even in the absence of a pressure

gradient. In this motion the Coriolis force and the centrifugal

force balance each other. If the variation of the latitude is

disregarded, the motion will be in a circle whose radius

r
2o> sin

(56.7)

This circle is called the circle of inertia.

Such an inertia motion is dynamically possible. But as r

increases, the motion along curved isobars should resemble more
and more the geostrophic case. In the geostrophic case the wind

velocity vanishes when the pressure gradient is zero. Therefore,

in the present case, only the solution with the negative sign

before the root in (56.6) has any significance. This choice of

only the negative sign in (56.6) is in agreement with the choice

of the direction of the wind velocity in Fig. 43; the other direction

of v would be represented by the positive root.

In the case of a low-pressure area, dp/dr > and

v = +cur sin ? (
Jl + 2

1

2
- ~ - 1

) (56.81)
\ \ rco

2 sm2
(p p dr /

^ '

The velocity around a low-pressure area is positive, i.e.
}
counter-

clockwise, in the Northern Hemisphere. In the Southern

Hemisphere, it is clockwise, for <p < 0. Introducing the geo-

strophic wind velocity,

re = ^-4_i^ (53.21)2w sm <p p dr
'
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it follows from (56.5) that

Vg
= v + *?L (56.82)^

2co sin <f> r

Thus the gradient wind in cyclones is smaller than the geostrophic

wind at the same pressure gradient, or for the same wind velocity

the pressure gradient is stronger in cyclones than in the case of

straight isobars. The reason for this is that in the geostrophic

case the gradient force is balanced by the Coriolis force only,

whereas in the case of cyclonic gradient wind it is balanced by
Coriolis and centrifugal force so that the wind velocity can be

smaller, other things being equal.

For high-pressure areas, dp/dr < 0. Upon introducing the

absolute value \dp/dr\ of the pressure gradient, it follows that

v = -cor sin <p (
I - Jl

2

1

,

i
^1 ) (56.91)

\ \ rco
2 sin 2

<p p dr\/
^ '

The velocity around a high is negative (clockwise) in the

Northern Hemisphere. Because the root must be real, it

follows that

< rpco
2 sin 2

<p
VI

and

\v\ < cor sin <p

These conditions are necessary when the balance between pres-

sure-gradient force and centrifugal force on one side and Coriolis

force on the other side is to be maintained. If the pressure

gradient and therefore the wind velocity become too high, the

Coriolis force cannot balance the pressure-gradient force and

the centrifugal force, for the latter increases as the square of the

velocity. This holds especially near the center of the anti-

cyclone where r is small. Consequently the winds and pressure

gradients observed here are generally quite feeble.

According to (56.82) the gradient-wind velocity is absolutely

larger in anticyclones than in the geostrophic case (note that v

and vg are now negative) for the same pressure gradient.

Near the equator or in small vortexes, such as tornadoes,
where r is small, the Coriolis force is much smaller than the cen-
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trifugal force and can be neglected. Then, from (56.5),

This type of motion is called "cyclostrophic." The motion

may be clockwise or counterclockwise, but the pressure must

be lowest at the center.

When the isobars are not circular, Eq. (56.5) cannot be

strictly correct any longer. Nevertheless, it will at least repre-

sent an approximation to the actual wind velocity at a given

pressure distribution, and this approximation will be better

than the geostrophic relation which neglects the effect of cur-

vature. Because v 2
/r represents the centrifugal force due to

the air motion, one has to substitute for r the radius of curvature

of the path of the air, not of the isobar.

The geostrophic wind relation in the case of fairly straight

isobars and the gradient-wind relation in the case of appreciably

curved isobars give fairly good approximations to the actual

wind velocity,
1
especially at levels more than 500 to 1000 m

above the ground where the influence of surface friction (see

Sec. 76) becomes very slight.

57. Accelerated Motion and a Changing Pressure Field. It

cannot be emphasized too strongly that geostrophic wind and

gradient wind represent only approximations to the actual

relations between pressure gradient and wind. The stronger

the accelerations of motion, i.e., the more pronounced the

development of the fields of pressure and motion, the greater

must be the deviation from the geostrophic or gradient wind.

The effect of the acceleration on horizontal motion will now
be discussed in more general terms than in the preceding section

where only the centrifugal force was taken into account.

When the motion of the air is accelerated, the pressure-gradient

force must balance not only the Coriolis force as in the case of

the geostrophic motion but also the acceleration. Therefore,

from (47.2),

du . 1 dp
-r- = 2o> sin ? v --
at p ox ,. ^
j i ^ (57.1)
dv . I dp
-TT

= 2o> sm tp u -- -

dt p dy

1 GOLD, E., Met. Off., No. 109, 1908.



156 DYNAMIC METEOROLOGY

Introducing the geostrophic wind velocity with the components
ug and vg instead of the pressure gradient,

1

-TT = 2w sin (p (v vg) = 2a) sin <p v
f

dv .
<57 '2>

- == 2w sin
<;> (u ug)

= 2co sin ^> u'

where u' and t/ denote the deviations from the geostrophic wind.

It follows that

= w Sn

Thus, the geostrophic deviation is proportional to the accelera-

tion of motion. If a denotes the angle between the #-axis and

dv
dt

u'
dt

FIG. 44. Acceleration and geostrophic deviation.

the angle between the -axisthe geostrophic deviation and
and the acceleration (Fig. 44),

, dv/dt uf
1

Tan R.
' ,

tciii u ~j T~Ti ~"7~ .

du/dt v tan a

Thus, the acceleration of motion is perpendicular to the geo-

strophic deviation and to the right of it, as is seen immediately
from the signs of the components of the geostrophic deviation

and of the acceleration. The study of the deviations from the

geostrophic wind field and of the closely related acceleration of

motion is of great importance; for, in a purely geostrophic wind

field, no change of the surface pressure can occur, as will be

shown in the next section.

1

SUTCLIFFB, R. C., Quart. J. Roy. Met. Soc., 64, 495, 1938.
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We may consider in particular the local derivative of the wind

velocity in the form

du _ dug du'

~dl

~
~dT

+
~dt

dt dt dt

The other terms in the expressions for the acceleration [see

(47.1)] will be disregarded. Because u 1 and v' are, in general,

small (for the actual wind approximates the geostrophic wind),

their local derivatives will be neglected. But it must be pointed

out that this simplification is not necessarily justified, for the

comparative smallness of a variable does not always imply

comparative smallness of its derivatives. Substituting from

the expressions for the geostrophic wind (53.11) and (53,12)

and changing the order of differentiation,

dt 2cc sin <p p dy \ dt

dt 2o> sin tp p dx\dt

dp/dt is the pressure tendency which can be represented on the

weather map by the isallobars, i.e., lines of equal-pressure change.

The foregoing equations show that an isallobaric gradient

produces an acceleration. According to (57.2), this gives rise

to a deviation from the geostrophic wind.

Sin yy p \j+, \w / ,_ ~N

1 A (*P\m <p)
2
p dy \dt/(Zw sm

u1 and v
r
are here the components of the isallobaric wind. 1 The

isallobaric wind is proportional to the isallobaric gradient. It

blows perpendicular to the isallobars toward the lowest pressure

tendency. While the divergence of the geostrophic wind is

zero, the isallobaric wind field may have a finite divergence

provided that the isallobaric gradient is not the same everywhere.

Thus, with regions of rising and falling pressure, convergence
1 BBUNT, D., and DOUGLAS, C. K. M., Mem. Roy. Met. Soc., 3, 22, 1928.
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and divergence may be associated, and in particular precipitation

may be produced by isallobaric convergence.

In the derivation of the isallobaric wind terms the local deriva-

tive of the geostrophic deviation and the terms representing
the change of the wind field in space have been omitted. This

does not imply that these terms are so small that they can, in

general, be neglected in comparison with the isallobaric term.

But Brunt and Douglas have shown that a consideration of the

isallobaric wind component may lead to a better understanding
of the weather development where otherwise an explanation

may be difficult. The magnitude of the isallobaric term may
often amount to 5 m/sec.

According to a statistical investigation of pilot-balloon observa-

tions by Moller and Sieber,
1 the isallobaric wind component

appears to be directed not perpendicular to the isallobars and

toward lower tendency but parallel to the isallobars and so that

the region of falling pressure is to the right if one is looking in the

direction of the isallobaric wind. Ertel 2 has given a theoretical

explanation for this result, based on the assumption that the

wind does not follow immediately but only after a certain relaxa-

tion time, the changes occurring in the pressure field. But a

decision about the average direction of the isallobaric component
from such a statistical investigation is subject to considerable

error, for the isallobaric component in the statistical material

gives very small mean values. Moreover, Moller and Sieber

neglect the effect of the curvature of the streamlines. Because

clear skies are much more frequent in anticyclones than in

cyclones, a preponderance of anticyclonal situations can be

expected in the pilot-balloon observations. Berson 3 has shown
that the deviation of Moller and Sieber's results from the deduc-

tions of Brunt and Douglas can be explained by the assump-
tion that the majority of pilot-balloon ascents were made in

anticyclones.

Another investigation into the deviations of the actual wind
from the geostrophic wind has been made by Philipps.

4 He

1 M5LLBR, F., and SIEBER, P., Ann. Hydr., 66, 312, 1937.
2
ERTEL, H., "Methoden und Probleme der dynamischen Meteorologie,

Erg. Mathematik und Grenzgebiete," Vol. 5, No. 3, p. 120, Verlag Julius

Springer, Berlin, 1938.
8
BERSON, F. A., Met. Z., 56, 329, 1939.

4
PHILIPPS, H., Met. Z., 56, 460, 1939.
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found that Brunt and Douglas's theory holds approximately
when the isobars are straight lines and equidistant. When the

isobars are curved, the expressions (57.6) for the isallobaric

wind are less satisfactory, for the other terms come into play
which depend on the spatial variation of the wind and pressure

field.

58. Divergence, Convergence, and Pressure Variation. The

pressure p at any level h represents with a great degree of accuracy
the weight per unit area of the total mass of air above this level,

Thus the local pressure variation can be expressed by the mass

variation

p r,2p
dt Jh

y
dt

dz

Upon substituting the value for dp/dt from the equation of

continuity (47.3), it follows that

In the last term on the right-hand side the integration may be

carried out, the slight variation of g with the height being neg-
lected. Because the density vanishes at infinity,

The pressure variation at a given level thus depends on the

horizontal-mass transport above the level of observation h

and on the vertical-mass transport through the level. It follows

in particular for the surface pressure po, because the vertical

velocity vanishes at the earth's surface, that

dp * - - f
*

a
d (pu) dz - ("

~dt~ Jo
ff -*r d*

Jo

If the values for the geostrophic wind are introduced in this

equation from (53.11) and (53.12),

2ES. r*( 1 **\te- f
m

a *( l dV
dt J

g dx \2co sin ? dyj Jo
y
dy \2co sin <f>

dx
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The variation of the Coriolis parameter with the latitude can,

in general, be neglected (its effect will be discussed later in

Sec. 106) ; thus, both terms on the right side cancel each other.

The pressure variation in a purely geostrophic wind field is

zero.

Margules
1 has shown with the aid of Eq. (58.1) that it is

impossible to forecast the pressure changes directly from the

wind observations, for the wind and its variation in space cannot

be determined with sufficient accuracy (see Prob. 18).

Though a direct application of the equation of continuity to

a computation of the pressure tendency is impossible, a number
of important qualitative results can be derived from it, as has

been shown by J. Bjerknes.
2

Equation (58.1) may be developed
into the form

dp --

The first term on the right-hand side now represents the effect

of the mass advection; the second term represents the effect of

horizontal divergence or convergence of velocity. Bjerknes con-

siders a sinusoidal pressure field whose isobars run in a west-

easterly direction, with the lower pressure toward north (Fig. 45a).

Such a type of pressure distribution is typical for the upper
levels of the troposphere in temperate latitudes. The wind

velocity, according to the observations, is greater than the speed
with which the pressure systems travel. Thus the curvature

of the path of the air motion in the neighborhood of AB is

cyclonic and around CD anticyclonic. It may be assumed that

the wind velocity can be expressed by the gradient-wind relation

(56.5). The wind velocity across AB is accordingly given by
the equation

1 MARGULES, M., in F. M. Exner, "Dynamische Meteorologie," 2d ed.,

p. 75, Verlag Julius Springer, Vienna, 1925.

a BJERKNES, J., Met. Z., 59, 462, 1937. A number of these results have

been presented by Bjerknes in a series of lectures given at the Meteorological

Office, Toronto, in August, 1939. A revised issue of these lectures is avail-

able there.
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VAB = - i dp
p 2co sin <p dr

1

and across CD by

1
VCD = ~ 1

sn <p r

VCD*

p 2o> sin <p dr 2c*> sin <p r

(58.4)

(58.5)

The wind velocity across the trough line AB is less than the wind

velocity across the ridge CD. If it is assumed further that the

wind blows parallel to the isobars, there is divergence in the area

ABCD bounded by the straight lines AB and CD and by the

isobars AD and BC. Consequently the pressure must fall in

A 1

Divergence D 1

Convergence E
S

FIG. 45. Divergence and convergence in the upper pressure field. {After
J. Bjerknea.)

this area and the trough AB wanders toward east. By similar

reasoning, it can be seen that the pressure rises in the area CDEF,
owing to convergence, so that the ridge also moves eastward.

In reality the isobaric field generally has not the regular

appearance shown in Fig. 45a. It resembles rather the pressure

distribution shown in Fig. 45c, with a central isobar of maxi-

mum amplitude. The amplitudes decrease northward and

southward, and straight isobars limit the pressure system.
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There are now regions between the parallel straight isobars

where the isobars converge and diverge, as is shown separately

in Fig. 456. A wind blowing in the direction of converging
isobars is subjected to an increasing pressure gradient. Consider

a mass of air originally at G. If the mass is here under balanced

forces, the Coriolis force, which is directly proportional to the

wind velocity, balances the pressure gradient. As the mass

proceeds, it comes into regions of stronger pressure gradient

though retaining its previous velocity owing to inertia. Thus,
the pressure-gradient force will be larger than the Coriolis force,

and the wind is deflected across the isobars toward lower pressure.

Similarly, it is easily seen that a wind moving in the direction of

diverging isobars is deflected toward the higher pressure.

The effect of this deviation of the wind from the geostrophic

balance makes itself felt, also, in an isobaric configuration of the

type represented in Fig. 45c. Bjerknes assumes that there is

no transport across the straight isobars B'C'F' and A'D'E'.

In the region A'D'C'B'
, divergence of horizontal motion occurs

owing to the velocity across the ridge C'D' being faster than

across the trough A'B'. The pressure falls in front of the trough,
and the trough moves eastward. Similarly, convergence occurs

in the region C'D'E'F' so that the pressure rises here and the

ridge also moves eastward. The motion of the pressure systems
caused in this manner may be called the cyclostrophic effect,

for it is due to the difference of the cyclostrophic terms in cyclonic

and anticyclonic motion. These considerations explain why
ridges and troughs wander eastward in a westerly current. The
motion is not due to a bodily transport of the pressure systems in

the current. Similar reasoning can also be applied to the closed

isobaric systems that are observed in the lower atmospheric layers.

The preceding analysis is, of course, based on the assumption
that the wind follows the gradient-wind relation. If this were

not the case, the position of the regions of convergence and

divergence might be quite different; but the agreement with the

observed eastward motion shows that the assumption represents

at least a good approximation to the facts. A more detailed

study of the horizontal divergence of motion in relation to the

motion of pressure centers has recently been published by
Petterssen. 1

1
PBJTTBBSSBN, S.

?
Quart. J. Roy. Met. Soc., 66

? suppl., 102, 194Q,
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The parts of the isobars in Fig. 45a lying near AB are farther

south than the parts near CD. Therefore, the first term on
the right-hand side of (58.4) will be larger than the corresponding
term in (58.5). If the second, centrifugal terms were to be dis-

regarded, the wind across AB and EF would therefore be greater

than the wind across CD. This difference would give rise to a

motion of the pressure systems westward, which may be called

the latitudinal effect.
1 For pressure systems with a large north-

southerly extent the latitudinal effect becomes large and may be

greater than the cyclostrophic effect. Such disturbances will

be studied in Sec. 106. In the ordinary disturbances of the

temperate latitudes that are associated with the migrating

cyclones, however, the cyclostrophic effect is preponderant, for

its magnitude does not depend on the north-southerly amplitude
but on the radius of the curvature of the trajectory only.

59. Pressure Distribution in a Moving Cyclone. Exner2 has

discussed the effect of the superposition of a uniform straight

motion on a circular motion. Starting with the field of motion

the pressure field can be derived from the equations of motion.

Exner's calculation is an interesting example of the determination

of the pressure field from the wind field, a procedure that appears
in many respects more satisfactory than the determination of

the wind distribution from the pressure distribution under the

assumption of a balance of forces.

The x-axis may be chosen parallel to the straight motion U
(Fig. 46). The fluid may be regarded as incompressible which

is not a serious restriction in the case of horizontal motion.

The center of the cyclonic motion moves with the velocity U
along the it-axis. Let r be the distance of a point P from and

f the angular velocity of cyclonic motion which may at first

be an arbitrary function of r. Then

r' = (X - my + y
*

Further

u = -r? sin + U = -ft/ + U
(f

.

Q n
v = rf cos = f(x

-
Ut)

V '

It may be noted that the equation of continuity is satisfied.

1
ROSSBY, C.-G., and collaborators, J. Mar. Research, 2, 38, 1939.

2 EXNER, F. M., "Dynamische Meteorologie," 2d ed., p, 268, Verlag Julius

Springer, Vienna, 1925.
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From (47.2), it follows that

du
,

du
,

dw

dv dv dv

= _1<?2

lap
(59.2)

From these equations the pressure gradient can be determined.

du . du . du ... -..,.

dv dv

which is the centrifugal acceleration. It follows that

idp_ _,_ sn

sn sn U
(59.3)

The pressure gradient is a superposition of the gradient cor-

responding to the circular motion on the geostrophic gradient

and could have been written down directly.

V

FIG. 46. Superposition of straight and circular motion.

Let V be the absolute value of the wind velocity and a. the

angle that it makes with the x-axis. dp/dn is the absolute value

of the pressure gradient and ft the angle that it makes with the

x-axis. Then

dy
= -7^3? <*(-- -

j (x
-

Vf)

(59.4)
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This relation shows that the angle between pressure gradient

and wind is now not 90. The angle would be 90 if 17=

or if f = 0, i.e., if a pure gradient motion or a pure geostrophic

motion exists.

To show the deviation of this comparatively simple motion

from the balanced motion more in detail, Exner assumes that

the cyclonic velocity rf is inversely proportional to the distance

from 0,

rf =
"

(59.5)

a velocity distribution that has been found to hold in the outer

part of some tropical and many extratropical
1

cyclones. Equa-
tion (59.5) implies that the angular momentum relative to the

FIG. 47. Isobars (full lines) and streamlines (broken lines) in a moving vortex.

(After F. M. Exner.)

earth remains constant. Very close to the center, this velocity

distribution cannot hold, for it would lead to an infinitely high

velocity at the center. The streamlines are given by

u dy v dx =

Substitution of (59.1) and integration show that the streamlines

satisfy the equation

a In r - Uy = const (59.6)

From (59.3) the equation of the isobars follows,

T) Q?- = a2co sin <p In r
^-5

2w sin <p Uy + const

Figure 47 shows streamlines (broken) and isobars (full) computed
by Exner with the aid of these equations. It is assumed that

Ufa = 0.4 so that the velocity of translation is four-tenths the

circular velocity at the distance 1 from 0.

1
GOLDIB, A. H. R., Met. Off., Geophys. Mem., No. 72, 1937.
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Problems

13. A geostrophic wind scale gives the geostrophic wind velocity corre-

sponding to any pressure gradient as shown on the weather map, as a func-

tion of the distance between two consecutive isobars. How can such a

geostrophic wind scale be used to find the thermal wind when the isotherms

are plotted? To simplify matters, it may be assumed that the temperature
does not change with the altitude.

14. Show that the geostrophic wind is independent of the height in a

barotropic atmosphere.
15. Express the geostrophic wind velocity by the geopotential and the

temperature distribution in a surface of equal potential temperature (isen-

tropic surface).

16. Find the equation of the isobaric surfaces in a cyclonic circular vortex

whose inner part (r < R) rotates with a constant angular velocity rj, the

velocity of the outer part (r > R) being inversely proportional to the

distance from the center (Rankine vortex) when the velocity is continuous

across the circle of the radius R.

17. How may a geostrophic wind scale be used to find the isallobaric

wind?
18. How accurately must the horizontal change of the wind velocity be

known in order to predict a surface-pressure change of 1 mb/3 hr with the

aid of the equation of continuity? For the sake of simplicity, it may be

assumed that the horizontal wind velocity and direction do not change with

the elevation and that the wind direction and the density are constant in

horizontal direction.

19. How accurately must the horizontal change of the wind velocity be
known in order- to determine vertical motions of at least 10 cm /sec from the

horizontal wind velocity? Make the same simplifying assumptions as in

Prob. 18, and assume a steady field (dp/dt =
0).



CHAPTER VIII

SURFACES OF DISCONTINUITY

60. General Expression for Surfaces of Discontinuity. Fre-

quently, air masses from different regions and therefore of differ-

ent temperatures are brought close together so that a zone of

rapid temperature transition is formed (see also Sec. 108). Owing
to the small scale of the maps and cross sect ons that must be

used in meteorological practice, these zones of transition appear

mostly as sharp surfaces of discontinuity and may be treated

as such mathematically. At the surface of discontinuity the

rapid but gradual variation of the temperature in a finite interval

may then be replaced by a sudden change through the surface

of discontinuity.

When the variable considered, e.g., the temperature, shows a

discontinuity, the surface is called a discontinuity of zero order

with respect to this variable (see Fig. 52a, page 176). When
the variable is continuous but its first derivative is discontinuous

across the surface of discontinuity, we have a discontinuity of

the first order
j
and so on for higher derivatives (see Fig. 526,

page 176). We shall see below that the pressure is continuous

but its first derivatives are discontinuous. Thus, the surfaces

of discontinuity are discontinuities of the first order with respect

to the pressure but of zero order with respect to the temperature
or to the density.

Because the air masses differ in temperature, their densities

must in general be different too. The surface of discontinuity

must therefore have a certain inclination with respect to the

surface of the earth which will now be determined. The equation

for the surface of discontinuity may be defined by the condition

that the pressure must here remain continuous. 1 If the pressure

pi in the first air mass measured at a point P on the surface of

discontinuity were different from the pressure p 2
* in the second

1 BJEBKNES, V., Geofys. Pub., 2, No. 4, 1921.
*

In. the following, the index 1 will be used to refer to the colder mass and

the index 2 to refer to the warmer mass.

167
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air mass measured at the same point on the surface of dis-

continuity, the pressure gradient would be infinite. This is obvi-

ously impossible. Thus

Pi
- p2 = (60.1)

Upon differentiating, it follows that

Equation (60.2) states that the component of the pressure

gradient parallel to the surface of discontinuity must be the same
in the first and second air mass when measured directly at the

surface of discontinuity. This condition gives the differential

equation for the surface of discontinuity. According to (60.2)

the inclination of the surface of discontinuity to the horizontal

i/-plane in the x- and ^-direction is given, respectively, by

-
dx

"
(dp/dz)i

-

^ _
dy

~~

The intersection between the surface of discontinuity and the

ground that may be identified with the xt/-plane is the front. The
front makes an angle with the x-axis whose tangent is given by

Frequently, it will be convenient to orient the coordinate system
so that the front runs parallel to the t/-axis. Then dy/dx = <*>

and

(3),
-
(3).

-

According to this equation the horizontal component of the

pressure gradient parallel to the surface of discontinuity is the

same on both sides, which is a special case of the condition

stated by (60^2). The inclination in the y-direction vanishes,

of course, with this orientation of the coordinate system.
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61. The Pressure Distribution at Fronts. It may be assumed,
as at the end of the preceding section, that the front is parallel

to the y-axis so that

(60.4)
- =

dy)l

The index 1 denotes again the colder mass, and the index 2

the warmer mass.

FIG. 48. Position of cold and warm air at the surface of discontinuity.

The colder air may extend in the direction of increasing x,

and the warmer air toward decreasing x (Fig. 48). Because the

cold air must be under the warmer air, dz/dx must be positive.

Now

(61.1)(V) < (

\dzjl \9z

for the pressure decreases faster with the height in the cold

mass than in the warm mass. Hence, the condition that

dz/dx > implies, according to (60.31), that

(61.2)

Equations (60.4) and (61.2) state that the component of the

pressure gradient parallel to the front is the same on both sides

of the front, whereas the component normal to the front is

greater in the cold mass than in the warm mass.

It follows that the isobars at the front must be bent so that

they form a trough of low pressure. This can most easily be

seen by considering Fig. 49. If (dp/dx)i and (dp/dz) 2 are both
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positive (Fig. 49o), the total horizontal gradient (dp/dri)i makes

a smaller angle with the rr-axi i.e., with the direction normal

to the front than (dp/dri)* does. The direction of the isobars

(broken lines) changes at the front so that a trough of low pres-

sure must exist. If (dp/dx)* is negative and (dp/dx)i is positive,

the pressure trough is even more pronounced (Fig. 496). The

reader will have no difficulty in proving that the rule holds when

both (dp/dx)i and (dp/dx) 2 are negative. In this case, (dpjdx)i

must be absolutely smaller than (dp/dx) 2 according to (61.2).

*vC

(a) (b)
FIG. 49. The pressure trough at fronts.

The proof for the existence of a pressure trough is obviously

independent of the orientation of the coordinate system and could

have been given in the same manner if the position of the cold

and warm masses were interchanged, for in this case dz/dx < 0.

62. Surfaces of Discontinuity in a Geostrophic Wind Field.

When the field of motion is geostrophic, the inclination and

orientation of the surface of discontinuity can be expressed by
the temperature and the wind at the surface of discontinuity.

As before, it is convenient to choose the coordinate system

so that the t/-axis is parallel to the front. The z-axis makes,

then, an angle ft with the direction toward the east. The equa-

tions for geostrophic wind are, according to (53.11), (53.12),

and (45.8),

2co sin <p v = -=2-

p ox

o ldP2an?ii --^
2co cos <p(u cos ft v sin ft} + g = T^

p oz
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Upon substituting from the first of these equations in (60.4), it

follows that

(62.1)

According to (61.2),

PlVl > P2l>2 (62.11)

From the condition (62.11), it is seen that, in general, v\ > v 2 ,

for the ratio pi/p2 is generally not very different from unity.

Thus, if one looks in the direction from the cold to the warm air

(Fig. 50), the warm air must
move more slowly toward the y i X

right or faster to the left than
I

I

I

/

the cold air. The rule may
be remembered more easily in

the form that the air mass

toward which the observer is

looking must move faster to

the left than the other air mass.

But it should be kept in mind
that this rule has been derived

for unaccelerated motion only
and that it may break down
when sufficiently strong devi-

,. f ,-. , i . Fio. 50. Relative wind velocities at a
atlOns from the geostrophic front in a geostrophic wind field.

wind occur. Because, in

general, these deviations are small, however, the rule will often

be found valid in the atmosphere.
The inclination of the surface of discontinuity to the horizontal

dz
tan o

= T~dx

2co sin <P(VIPI V 2P2) ,co ON= + TJ : 57 x . s (62.2)
2><j) cos (p sin p(Vipi Vzpz) + Q\Pi

~~
Pa)

according to (60.31), where <*o is the angle between the direction

tangential to the surface of discontinuity and the horizontal in

the geostrophic case. The first term in the denominator on the

right-hand side of (62.2) is, in general, much smaller than

the second term, as follows from the considerations on page 145.

It may therefore be omitted except when pi = p2 . In this case
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only the wind component parallel to the surface of discontinuity

is discontinuous and

tan -

The direction cosines of the earth's axis are cos <p sin #, cos <p cos 0,

and sin <p (page 125) ;
and the direction cosines of the normal to

the surface of discontinuity are sin o, 0, and cos ao- Hence,

the cosine of the angle between the normal to the frontal surface

and the earth's axis is

cos <p sin ft sin o + cos <p cos ft + sin y cos o

It will be seen from (62.3) that this expression vanishes so that

the two directions are at right angles. A surface along which the

wind only is discontinuous is therefore parallel to the earth's axis

provided that the motion is geostrophic. When ft
= so that

the z-axis coincides with the west-east direction and the front

therefore with the north-south direction, =
ir/2. The surface

of discontinuity is vertical. When ft
=

?r/2, so that the front

is in the west-east direction,
=

^.

When Vi = v%,

. 2o> sin <pv /ftn A ^
tan a = o
-r-^ : (62.4)2w cos <p sin ftv + g

'

According to (54.1), this is also the inclination of the isobaric

surfaces. The inclination of a surface of density discontinuity is

therefore equal to the inclination of an isobaric surface.

In the general case when pi =|= P2 and v\ 4= 02, the first term in

the denominator of (62.2) may be neglected in comparison with

the second term and the temperature may be introduced instead

of the density by means of the gas equation (4.1). When the air

is moist, the variation of the density due to the moisture content

can be taken into account by the introduction of the virtual tem-

perature [see Eq. (5.3)] instead of the temperature. Because the

pressure is the same on both sides of the surface of discontinuity,

_ 2o> sin <p T&i i (M .,
tan =---

ST
-m (62.5)

g 1 2 1 1

In this simple form the inclination of a surface of discontinuity
was first derived by Margules.

1

1
MARQULBS, M., Met. Z., Hann-Vol, 293, 1906.
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Introducing the temperature and wind discontinuities,

A rr rn _ rn

At; = V2 Vi

2co sin
tan

in^/ ^ AtA

7 \
Vl
~ Tl

AT/

where the inclination of the surface of discontinuity is expressed

by the inclination of the isobaric surfaces in the cold mass plus an

additional term depending on the temperature and wind dis-

continuities. Because the first term in the parenthesis is, in

general, much smaller than the second term, the inclination of the

isobaric surfaces is much less than the inclination of the surfaces

of discontinuity. For Ti = 273, AT1 = 10C, v 2
= m/sec, it is

at 42.4 latitude, as the table below indicates,

63. Accelerations at Frontal Surfaces. It will be assumed

again that the ?/-axis coincides with the front and that the angle
between the z-axis and the east direction is ft. In order to

express the orientation of a surface of discontinuity in an arbitrary

wind field by the velocities, accelerations, and temperatures on

both sides of the surface, the components of the pressure gradients

in (60.31) and (60.4) have to be expressed by the values following

from (47.2). The complete equations that would result from

this substitution are very complicated and cannot be discussed

satisfactorily, for the vertical velocities cannot be determined

directly. In practice, however, it is permissible to neglect the

Coriolis term containing the vertical velocity in the first Eq.

(47.2) for the horizontal pressure gradients, for the vertical

velocity components are much smaller than the horizontal

components. In the third equation of (47.2) the terms on the

left-hand side may be neglected in comparison with the accelera-

tion of gravity. From the discussion on page 171, it follows that

this approximation is justified as long as the temperature dis-
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continuity does not become too small, i.e., as long as the front is

of practical importance and not too weak. According to (60.4)

and (60.31) the following two relations must then be satisfied:

Pii)i P2t>2 + 2co sin <P(UIPI Uzpz) = (63.1)

= 2o> sin <P(VIPI t>2pi) g(pi p2) tan a (63.2)

These equations hold also when the surface of discontinuity is

moving with a constant velocity provided that the velocity

(a) (c)

(6)
FIQ. 51. Acceleration at surfaces of discontinuity.

(cL)

(After J. Bjerknes.)

components are measured in a coordinate system moving with

the velocity of the frontal surface. The expressions u\ y Vi, u2 ,
and

t>2 represent, then, the differences between the velocity of the

frontal surface and of the cold and warm air masses.

When the warm air ascends at the surface of discontinuity

while the cold air descends or ascends more slowly (Fig. 51a), the

cold air must move more slowly in the horizontal than the warm

air, u\ < Uz, or, with sufficient accuracy, p\u\ < ptuz', for the

ratio piipz is approximately equal to 1. It follows 1 from (63.1)

that

Pivi > p2t>2 (63.3)

l BjBRKNBs, J., Geofys. Pub., S, No. 6, 1924. See also E. PALM^N,
Soc. Set. Fenn. Comm. Phys. Math., 4, No. 20, 1928.
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The accelerations tangential to the surface tend to produce a

cyclonic vorticity (Fig. 516).

If the cold air has an ascending motion while the warm air

descends or ascends more slowly or if the cold air descends more

slowly than the warm air, (Fig. 51c), piUi > p*U2 and, according
to (63.1),

< P&Z (63.4)

In this case the tangential accelerations tend to produce anti-

cyclonic vorticity.

With the aid of aerological ascents, it is sometimes possible to

determine the inclination of a surface of discontinuity, tan a,

directly and to compute the inclination tan that the surface

would have in the geostrophic case. When tan a is introduced

in (63.2) with the aid of (62.5), the small Coriolis term in the

denominator being omitted,

piiii pzu z = g(pi p 2)(tan do tan a) (63.5)

When the surface of discontinuity is inclined more steeply than

in the geostrophic case, a > a
,

l <

The horizontal acceleration of the air perpendicular to the surface

of discontinuity is then greater in the warm air than in the cold

air (the effect of the different densities of both air masses may be

disregarded). If Ui and u z were originally not very different

from each other, it follows that the warmer air will eventually

move faster and ascend over the colder air if the motion is in the

direction from the warm air to the cold air (warm front). If

the motion is in the opposite direction as in the case of a cold

front, subsidence will take place.

When the surface of discontinuity is less steeply inclined than

in the geostrophic case, the vertical motions in the cold and in the

warm air are reversed.

Owing to the rapid change of the temperature through the

frontal surface the number of solenoids becomes very great here,

as has been shown by Bergeron and Swoboda. 1

Therefore, the

circulation acceleration near the frontal surface must be very

1 BERGERON, T., and SWOBODA, G., Verdffentlich. Geophys. Inst. Leipzig,

2d Ser., 3, 63, 1924-1927.
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strong [sec Eq. (52.2)], which explains the importance of fronts

for the dynamics of the weather in general.

64. Zones of Transition. In the preceding formulas a sharp

discontinuity is always assumed at the surface of discontinuity.

If the mixing is very strong, however, the transition from one

air mass to the other may become so gradual that the finite

width of the zone of transition has to be taken into account. The

isotherms may run across this zone of transition somewhat as

shown in Fig. 526. Here the zone of transition is separated from

(a)

Fia. 52. (a) Isotherms at a sharp surface of discontinuity, (6) isotherms at a
diffuse surface of discontinuity.

the two air masses by discontinuities of the first order with

respect to the temperature, but the discontinuity may very well

be of a higher order. A mathematical discussion of the position

of these zones of transition will not be given here. It is sufficient

to say that in the equations of the foregoing sections the finite

differences of quantities (or products of quantities) measured

across the front have to be replaced by their horizontal deriva-

tives across the zone. 1

66. Fronts and Pressure Tendencies. When a frontal surface

passes over a station, the pressure may be expected to change, for

air of a given temperature is

replaced by air of different tem-

perature. This ' '

static
' '

effect of

the frontal passage on the re-

corded surface pressure can easily

be computed approximately.
2

Consider, for instance, the

passage of a cold-front surface (Fig. 53) whose inclination is tan

a. and whose velocity is Uf. Both quantities may be constant.

The mean temperature in the cold mass may be T and in the warm

FIG. 53.-Static effect of the frontal

passage on the surface pressure.

1 BjERKNES, IOC. tit., PALM^N, IOC. Clt.

* GIAO, A., Mim. Off. Nat. Mtt. France, No. 20, 104, 1929.
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mass T + dT. According to (6.21) the pressure at A

(6.21)

where p is the pressure at A' on the surface of discontinuity.

When the front has moved the distance AB, the warmer air

column is above the point of observation. The surface pressure

changes from p Q to p Q + dp , owing to the replacement of the

cold air by the warmer air, whereas the pressure at z remains

unchanged. From (6.21), it follows by logarithmic differentia-

tion that

dpo is the pressure variation during the time that it takes the

front to travel the distance AB. Because z = AB tan a, this

time interval is z/tan a. Uf. Upon dividing the right-hand side

of (65.1) by this value the pressure variation per unit time is

found to be

2 = - tan a t*yp (65.2)

For practical purposes it may be assumed that p Q
= 1000 mb and

T = 273 and that the tendency dp ()/dt is expressed in millibars

per 3 hr. When the wind velocity is given in m/sec and the

temperature difference in degrees centigrade, (65.2) may be

written in the form

^ = -Stanaw/dr (65.3)
ot

For a cold front the same expression holds except that u/ or dT
must be given the opposite sign.

Equation (65.3) can readily be evaluated with the aid of the

diagram (Fig. 54) constructed by Mr. T. J. G. Henry, provided
that the necessary data are known. Let the velocity of the front

be 30 mph, its slope Moo* and the temperature 10F. To find

the pressure tendency, ascend vertically from the scale on the left

marked 30 mph to the intersection with the slope line Hoo> then

move horizontally to the right to the intersection with the tem-

perature-difference line 10F. Upon moving vertically down-
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ward from here the pressure tendency is found to be not quite

4 mb/3 hr.

In practice the static effect of the frontal passage is, in general,

superimposed on pressure changes extending over a large area

on both sides of the front. Then dpQ/dt represents the difference

between the pressure tendencies on both sides of the front.

Frontal slope Temperature difference in F

700 600 500 400 300 200 100

Miles movement in twelve hours

60 50 40 30 20 I0~

00 I 2 3 4 5 6 7 8

Three-hour pressure change in mb
due to frontal advection

50 40 30 20

Miles per hour
FIG. 54. Pressure change due to frontal advection. (After T. J. G. Henry.)

It should be clearly understood that (65.3) gives only the static

pressure effect and that the difference of the pressure tendencies

on both sides of the front will in general not agree with the values

computed from the above formulas, for other effects, such as

vertical motions, convergence and divergence near the frontal

surface, and pressure variations at higher levels, are superimposed

(page 326). The practical value of the calculation consists

rather in the possibility of estimating the relative importance of

the static and dynamic influences on the variation of the pressure

tendencies. A computation of the static effect will show that

frequently the simple concept that the approach of cold air

makes the pressure rise or that the approach of warm air makes it
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fall is incorrect, or at least incomplete, for it may often not

account for the total variation of the pressure tendency.

Problems

20. Find an expression for the orientation of a front (angle between front

and direction toward east) in a geostrophic wind field when the east and

north components of the wind and the temperature on both sides of the front

are known.

21. Find the expression for the inclination of a surface of discontinuity in

a gradient-wind field with circular isobars.



CHAPTER IX

KINEMATICAL ANALYSIS OF THE PRESSURE FIELD

66. The Motion of Characteristic Curves. An attempt to

compute the future weather by direct application of the equations
of thermodynamics and dynamics seems at present not promising,

owing to the complexity of the problem. Exner 1 has studied

the feasibility of this line of attack, but the simplifications that

have had to be introduced are so many that the results obtained

do not appear very encouraging. A similar attempt on a much
broader basis has been undertaken by Richardson. 2 His work
shows very clearly that, in the present state of our knowledge, this

way is not practical. The thermodynamics and dynamics of

the atmosphere enable us to understand the weather processes
and to obtain numerical results in some cases where it is possible

to single out a phenomenon influenced by a limited number
of factors, such as adiabatic ascent of moist air or motion under

balanced forces. But a computation of the future weather

by dynamical methods will be possible only when it is known
more definitely which factors have to be taken into account under

given conditions and which may be neglected.

It is, however, possible to arrive at quantitative formulas of

direct use to the forecaster by another method developed largely by
Petterssen. 3 This method is based on an analysis of the pressure
field and its variations. The pressure has been chosen because

it is the element that can be measured most accurately and that

is much less affected by local disturbances than, for instance,

temperature or wind. Moreover, a determination even of the

future pressure distribution only is of great assistance to the

forecaster.

1 EXNER, F. M., Sitz.-Ber. Akad. Wiss. Wien, Ila, 116, 1171, 1906;

116, 995, 1907; 119, 697, 1910.
2 RICHARDSON, L. F., "Weather Prediction by Numerical Process,"

Cambridge University Press, London, 1922.

PETTERSSEN, S., Geofys. Pub., 10, No. 2, 1933.

180
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Petterssen's method makes use not of dynamical but of

kinematieal principles. Nevertheless, it is of interest also in

dynamic meteorology apart from its practical value for it

relates quantities of dynamic importance, as, for instance,

pressure tendencies and pressure gradients. In this chapter,

some of the basic features of Petterssen's method will be discussed

briefly, but for the technique of the synoptic application of the

following formulas the reader is referred to the original literature

and especially to Petterssen's book " Weather Analysis and

Forecasting."

Lines of equal pressure, equal-pressure tendency, or, in general,

lines along which a derivative or the sum of derivatives of the

pressure is constant may be called characteristic curves. It is

convenient to introduce the notation

ft

(6(U)

The subscript I indicates the number of differentiations with

respect to x, m the number with respect to y, and n the number
with respect to t. The characteristic

curves whose motions are to be studied

will, as a rule, be of the form
So*

pi,m, n
= const (66.2)

An isobar, for instance, is represented

by the condition that p oo = const.

Let /So (Fig. 55) be the position of a

characteristic curve at a time t and Si

its position at a time t + dt, and choose
i ., T j- ^i FIG. 55. Velocity of

an arbitrary axis L pointing in the characteristic curve.

direction of motion of the curve.

The velocity of the curve in the direction of L

dL

Frequently, it will be convenient to choose L at right angles to

S and as z-axis.

Consider now a fictitious particle forced to remain on a char-

acteristic curve pi,m ,n
= const, which moves with the velocity c

of this line in the direction of L. The direction may be chosen
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as the x-axis. The individual variation dpi,m>n/dt, for this

particle must vanish, for it remains on the characteristic curve.

On the other hand, for a particle that moves with an arbitrary

velocity u relative to the field of pim.n,

for the individual variation of pi,m ,n is composed of the variation

due to the change of the field and the variation due to the motion

of the particle relative to the field. It follows, for the particle

moving with the velocity c of the field, that

ot ox

Thus, the velocity of the characteristic curve

c = - P^l
(66.4)

Pl+I,m,n

the notation introduced by (66.1) being used.

In forecasting the future position of characteristic curves,

it is important to know whether c will remain constant or not.

To this end the variation of the velocity of the particle on the

characteristic curve with the time dc/dt must be found, dc/dt

is the acceleration A of the characteristic curve. If c is directed

along the z-axis, the acceleration

A can be found in the following manner: According to (66.3)

the individual variation of pi t m,n of a particle moving with the

velocity u relative to the field pi>m ,n is obtained by applying

the operator + u Thus,
at ox

*L - (L + uAVl + u ^\ -
dt*

"
\et

+ u
dx) \dt

^ u
dx)

~
dt*

(du . du\ d
, 2

d*
l^7 + M T")^" + w r-2
\at ox/ dx ox*

For a particle remaining on the characteristic curve, d*pitm ,n/dt
2
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must vanish. Because for such a particle u =
c, it follows that

(66.6)

The expression in the parenthesis of (66.6) is the acceleration.

According to (66.5),

Pl+l,m,n

67. The Motion of Isobars and Isallobars. The equation for

isobars has the form

POOO
= const

Therefore, the velocity of isobars is

according to (66.4). The isobars move faster the greater the

tendency and the smaller the pressure gradient. If the tendency
is expressed by T and the distance between two consecutive

isobars by h, (67.1) may be written

d = -Th (67.11)

for h is inversely proportional to dp/dx.
The acceleration of the isobars

... 2c . .

C
2 ^ l

to2

PlOO

according to (66.7). d*p/dt* can be determined either from two

consecutive tendencies or, preferably, from three consecutive

pressure readings at the same station, for

^ = (Pi
-

Pi)
-

(Pi
-

Po) (67.21)

provided that the time interval between the readings is chosen

small enough. ^-~. is the gradient of the isallobars. It may be
ox at



184 DYNAMIC METEOROLOGY

expressed by I///, the distance between two consecutive

isallobars. d 2
p/dx

2
is the variation of the pressure gradient.

Putting again

* = !
dx h

it follows that

^2 = _ JL ^ (67 22)
dx 2 h 2 dx \\>t>**)

Thus, 6 2
p/dx

2
is given by the variation of the distance between

three consecutive isobars.

The equation for isallobars is of the form

= const

The velocity of isallobars

erSS -PS!S=-*n (67.3)
PIOI W

according to (66.4). H is again the distance between two con-

secutive isallobars, and d^p/dt
2 can be found from (67.21).

The acceleration of the isallobars can be determined in a similar

manner, but in practice some of the necessary differential quo-
tients of p cannot be determined with any degree of accuracy
from the observations.

68. The Motion of Troughs, Wedges, and Pressure Centers.

It will be assumed that there is no front in the trough so that the

derivatives of the pressure are continuous. The motion of

fronts will be discussed in the next section.

A trough line or a wedge line may be defined as a line along
which the curvature of the isobars has a maximum value (Fig.

56a and b). The velocity of the line can be derived from this

condition. However, it is possible to obtain a simplified but

sufficiently accurate expression for the velocity of troughs and

wedges from a less precise condition for the trough or wedge
lines.

When the z-axis is tangential to the isobars at the intersection

with the trough or wedge line,
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at the trough or wedge, for the pressure along the x-axis must

here have either a minimum or a maximum. The condition

(68.1) is necessary but not sufficient for the existence of an

extremum. Nevertheless, it yields a sufficiently accurate

expression for the velocity of the trough or wedge line. From

(66.4), it follows that the velocity of this line

?>200
(68.2)

The variation of the pressure gradient in the z-direction, p 2oo, is

negative for wedges and positive for troughs. A wedge moves,

(c)(CJ (CM
FIG. 56. Trough (a), wedge linos (&), and pressure centers (c, d).

therefore, in the direction of greater positive tendencies and a

trough in the direction of greater negative tendencies, as is, ot

course, obvious directly.

At a pressure center the pressure has a maximum or minimum
relative to its surroundings. It is, in general, possible to draw

two lines of symmetry through a pressure center, one connecting
the points of maximum curvature of the isobars, the other

connecting the points of minimum curvature (Fig. 56c and d).

The definition of these symmetry lines corresponds to that of

the trough lines (68.1). A pressure center can therefore as a

rule be defined as the intersection between two lines having
the characteristics of trough lines. The symmetry lines need

not necessarily be at right angles to each other. Choosing one
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of these lines as the x-axis and the other as the t/-axis,

g-O and | = (68.3)

Let CLX and CLV denote the velocities of the two lines defined by

(68.3). Then, in the same manner as for the trough and wedge

lines,

CLx = _ 121
CLv = _ E211

(68 .4)
P200

If the two symmetry lines are not at right angles, the future

position of the center is found in the following manner: Upon
multiplying cLx and CLV by
the considered time interval

A the displacements in the x-

and ^-direction are obtained.

Because the displacement in

the x-direction is CLX A, the

pressure center (Fig. 57)
cLx*dt 35

*"

must be on the normal to the

FIG. 57. Velocity of a pressure cen- or-axis through A . It will as a
8ymmetry lines are not at

rule not be on the *-axis unless

the displacement in the

^/-direction has the right value. Owing to the latter displace-

ment, must be on the normal to the z/-axis through B. It

follows that the position of the pressure center after the time

interval A is given by the intersection 0' of both normals to the

axes.

The acceleration of troughs, wedges, and pressure centers

requires the determination of higher derivatives of p which cannot

be obtained with any great accuracy from the observations.

Nevertheless, it is possible to derive from the acceleration for-

mula (66.7) at least some qualitative rules for forecasting, as

has been shown by Petterssen.

69. The Motion of Fronts. According to (60.1) the pressure

must be the same on both sides of a surface of discontinuity.

Consequently a front, being the intersection of a surface of dis-

continuity with the surface of the earth, may be characterized

by the condition that

p'
- p* = o (69.1)

where p
l and p

11
are the pressures on both sides of the front.
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To find the velocity CF of the front, p
1

p
n
may be substi-

tuted in (66.4) for pi, in . It follows that 1

_ (djf/dt)
-

(dp
n
/dt)

C' " ~
-

This formula is analogous to (67.1) for the velocity of an isobar

except that now, instead of each derivative, the difference of the

derivatives appears on both sides of the front.

Similarly, the acceleration of a front

i py _ ay
1

aoT

~~

~dx

+ 2CF
\dx~dt

~~

dxJt)
+ CF

*

\dx*

~
~&

according to (66,7).

70. The Application of the Kinematic Formulas to Forecasting.

The formulas derived in the preceding sections of this chapter

do not involve any dynamical principles. Therefore, as pointed

out by Petterssen, they can not state anything about the causal

relationships between the different atmospheric variations.

They are extrapolation formulas that give the future position

of characteristic curves. Even if the accelerations can be

computed, the method employed is still an extrapolation method;

but the reliability of this extrapolation will be improved when

the accelerations can be determined, too.

Such extrapolation methods are, of course, always used tacitly

in practical forecasting when conclusions with respect to the

coming variations are drawn from the observed past variations,

e.g., when the future displacement of a cyclone is assumed to be

similar to its past displacement.

Petterssen's method puts these extrapolations on a more

satisfactory theoretical basis and permits the forecaster to take

the structure of the pressure field into account when estimating

the displacement and the variation of the pressure field.

1 See also A. Gilo, Mim. Off. Nat. Met. France, No. 20, 41, 1929.



CHAPTER X

ATMOSPHERIC TURBULENCE

71. The Shearing Stresses in a Viscous Fluid. The viscosity

produces a tangential force between fluid layers of different

velocity. Consider a fluid originally at rest between two

parallel plates at a distance D from each other (Fig. 58). When
the upper plate is moved with a horizontal velocity U, while

the lower plate remains at rest, the fluid in contact with the

upper plate assumes also the velocity U due to friction, whereas

the fluid in contact with the lower plate does not move. 1
Owing

to the viscosity of the fluid produced by the irregular molecular

motion the fractional drag exerted by the upper plate is trans-

mitted to the lower plate, and it is necessary to apply a force

to this plate in order to keep it at rest. Experiments have

shown, as might be expected a priori, that the force exerted on

the unit area of the stationary plate is proportional to the

velocity U of the upper plate and

inversely proportional to the dis-

tance D between the two plates.

The ratio U/D is the velocity

gradient perpendicular to the direc-

tion of motion, for experiments have
shown that U decreases linearly

i222 from the moving to the stationary
FIG. 58. Frictional drag.

plate The representation of the

velocity distribution as shown in Fig. 58 is called the velocity

profile, and we may say that in the case under consideration the

velocity profile is linear.

Analogously, the force r per unit area exerted by a horizontal

fluid layer with the velocity u + du on a fluid layer with the

velocity u at the distance dz is proportional to du/dz. Introduc-

1 This involves the assumption that there is no motion, relative to the

solid boundary, of the fluid particles in direct contact with it.

188
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ing a proportionality coefficient /x, we may write 1

du

189

(71.1)

r is called the shearing stress, for du/dz is the shear of the velocity.

The shearing stress has the dimension force/area (gm cm" 1

sec~2 in cgs units) which is the same as the dimension of the

pressure, p, is the coefficient of viscosity. Its numerical value for

air at 760 mm Hg and 0C is 1.71 X 10~4
gin cm- 1 sec" 1

. It

increases with increasing temperature. The effect of the pressure
on /* is quite negligible under ordinary conditions.

In the atmosphere, both the wind velocity and direction change
with the elevation z. Therefore, the two velocity components u
and v have to be considered separately. They give the com-

ponents of the shearing stress

du
and

dv
(71.2)

dx

The velocity components u and v vary also in the x- and t/-direc-

tion. However, in the study of

atmospheric motions, the hori-

zontal variations of u and v can

frequently be neglected in com-

parison with the much larger

vertical variations (see also Sec.

85). The stresvses due to vari-

ations of the vertical motion can

also be disregarded as a rule.

To make allowance for the

effects of the shearing stresses

in the hydrodynamic equations
of motion (47.2) consider an

infinitesimal parallelepiped (Fig. 59) with the edges dx, dy, and

dz parallel to the coordinate axes. The drag exerted in the

^-direction on the lower face dx dy is rzx dx dy; on the upper face

dx dy it is rzx + -^ dz dx dy. The difference between these

two quantities gives the force acting on the volume element due

1 This expression for the shearing stress was first introduced by Newton.

FIG. 59. The force due to viscosity.
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to the viscosity of the fluid,

dz dx dy = -^- [ p, ) dz dx dy
Z dz\ dz/dz

In the equations of motion, forces per unit of mass are con-

sidered. Therefore, the terms

;!(')

have to be introduced into the horizontal equations of horizontal

motion which now become

du
,

du
,

du . 1 dp ,

1 d I du\+M+ - 2wsm ^ =-+
dv

These equations are derived under the assumptions that the

vertical velocity component and the horizontal variations of the

horizontal velocity components can be neglected. The complete

equations of motion for a viscous fluid can be found in Lamb's
"
Hydrodynamics," Chap. XI.

72. Dynamic Similarity and Model Experiments. Although

frequently the hydrodynamic equations can not be solved for a

specific problem, it may be possible to study the problem on a

model in the laboratory. The question arises then under which

conditions the results obtained in the laboratory may be applied

to the original problem. For such an application to be possible

the boundaries of the flow in the model and in reality must be

geometrically similar, and corresponding streamlines must be

similar in shape. The latter condition requires that the various

forces acting on corresponding fluid particles in the model and

in reality are in the same ratio to each other.

We shall assume first that these forces are the pressure-gradient

force, the frictional force, and the inertia force. Because they
are in equilibrium, it is sufficient to consider only two of these
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three forces, e.g., the inertia force and the frictional force. The
two systems, the model and the actual flow, may be characterized

by two lengths l\ and h e.g., the dimension of an obstacle or

the width of a channel and two corresponding velocities V\

and V%. The densities and viscosity coefficients may be pi,

pn and P2, M2, respectively. The inertia forces per unit volume

are represented by expressions of the form p or pu ,
so that

ut oX

the inertia forces can be expressed in the form pV*/l when the

characteristic quantities of either system are used. Because

the frictional terms are of the form
( p ),

the characteristic

expression for the frictional forces per unit volume is

Dynamic similarity requires that the ratio of the inertia forces

to the frictional forces be the same at similar points in both

systems. Thus the relation

,, con,t (72.1)

is the condition for dynamic similarity. The dimensionless

quantity pVl/n is called the Reynolds number Re. 1 If Re is

large, the inertia forces are predominant; if it is small, the

frictional force is predominant. The Reynolds number has

a wide application in the study of turbulent flow.

If the effects not of viscosity but of gravity are considered, the

postulate of dynamic similarity leads to another characteristic

number. The force of gravity per unit volume is pg (g is the

acceleration of gravity). The ratio of inertia to gravity force

is called Froude's number Fr. It follows that

Fr =
(72.2)

This number is widely used in model experiments for naval

architecture, and it seems that it deserves similarly wide atten-

tion in meteorology.

Other factors that have to be taken into account in the study
of dynamic similarity in the atmosphere are the earth's rotation

1
Reynolds, O., Phil Trans., 174, 935, 1883.
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and the compressibility. Very general investigations including

these factors are due to Helmholtz. 1 A discussion of meteoro-

logical model experiments has been given by Weickmann. 2

Most of these experiments which aim at a demonstration of

atmospheric currents on a small scale are only analogies to

atmospheric motions, but other experiments may make real

contributions to the solution of meteorological problems, such

as the investigations of the air currents over obstacles, islands,

or mountains 3 and around meteorological instruments4 or the

study of the motion of fluids injected into a rotating tank. 6

73. Turbulent Motion. The velocity and direction of the fluid

motion are frequently subjected to rapid irregular fluctuations.

The motion is then called turbulent. When the motion of the

fluid is made visible by the addition of a coloring substance, the

lines of flow have a very irregular appearance, showing numerous

small eddies, and cannot be followed for any considerable dis-

tance through the fluid. In the case of nonturbulent, or laminar,

motion, on the other hand, the lines of flow have a smooth

appearance and can be followed downstream from the point
where the coloring substance was added, at least for a con-

siderable distance.

The origin of turbulence has not yet been explained satis-

factorily. Progress has been made in connection with the transi-

tion from laminar to turbulent flow, which begins when the

Reynolds number increases over a certain critical value, and in

the understanding of the effect of obstacles on the development
of turbulence.

Atmospheric motion is always turbulent, as can be seen, for

instance, from the inspection of the many fluctuations of a wind
record or from the observation of the smoke from a chimney.
The actual velocity u may therefore be split up into a mean

velocity u and a turbulent velocity u' superimposed on the

1 VON HELMHOLTZ, H., Sitz.-Ber. Akad. Wiss. Berlin, 501, 1873. See also

F. M. EXNER, "Dynamische Meteorologie," 2d ed., p. 92, Verlag Julius

Springer, Vienna, 1925.
2 In "Lehrbuch der Geophysik," by Gutenberg, B., Chap. 80, Gebriider

Borntriiger, Berlin, 1929.
3 AHLBORN, F., Wiss. Ges. Luftfahrt, No. 5, 1921.
4
BASTAMOFF, S. L., and WITKIEWICH, W. J., Bull. Geophys. Inst. Rech.

Geophys., No. 10, 1926.
6
SPILHAUS, A. F., /. Mar. Research, 1, 29, 1937.
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mean velocity,

u = u + u' (73.1)

The mean velocity may be defined as the average of u for a time

interval At which is sufficiently long to obtain a representative

mean value that does not change too rapidly but, on the other

hand, is not so long that the computation of the mean velocity

obliterates meteorologically important changes of u. Thus,

-
s- r

T

/' o"

u dt (73.2)

It follows that for such a time interval the mean value of the

turbulent velocity u' vanishes. The length of the suitable time

interval At for the process of averaging may vary considerably

under different conditions, but it appears that in many cases a

time interval of 10 min will give representative values of the

mean motion.

The hydrodynamic equations of motion (47.2) and continuity

(47.3) are derived for the actual turbulent motion. Owing to

its complexity, it is impossible to deal with this turbulent motion

directly. The mean velocities defined above have to be intro-

duced in the equations, and, in fact, these mean velocities are

the ones which are of meteorological interest, and not the minor

turbulent fluctuations. In introducing (73.1) and the cor-

responding relation for v and w in the hydrodynamic equations,

additional terms due to the turbulent velocity components

appear. It will be seen that these terms produce an effect

analogous to that of the viscosity considered in the preceding

section.

It is convenient to give the hydrodynamic equations a different

form. The Coriolis terms may be omitted, for the reader will

readily see how they are transformed. It will be assumed that

the fluid is incompressible, but a similar transformation holds for

compressible fluids. The equation for the re-direction may be

written in the form

du . du
,

du
,

du dpu v w - = -
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Upon multiplying the equation of continuity for an incom-

pressible fluid by pu,

du
,

dv
, dw

and adding it to the preceding equation, it follows that

dpu dpuu dpuv dpuw _ dp n .

~dt
+
~"d^^~df^ ~~dT

~ "
to

(76 '6)

Similar forms can be derived for the second and third equations

of motion. The terms of Eqs. (73.3) may be integrated with

respect to time for the interval from t ~- to t + -?r in order
2t i

to arrive at an equation for the mean motion. Now

uu = (u + u')
2 = uu + u'u

for "uf = 0. S milar expressions are obtained for uv and uw.

Thus, (73.3) becomes

dpu . dpuu ,
dpili) dptliD __ _ dp dpu'u

r

_ dpu
f
v

f

~dt dx ~~dy" dz
~~ ~~

~dx fa dy~

-*&
(73.4,

Two analogous equations can be derived for the y- and ^-com-

ponents. The Coriolis terms would contain only the mean

velocity but not the turbulent velocity, for they are of the first

degree in the velocity terms. Likewise, the equation of con-

tinuity is of the first degree in the velocity terms and becomes,

therefore,

Thus, the equation of continuity remains unchanged when the

mean motion is considered except for the appearance of the mean

velocity instead of the total velocity. In the equations of motion,
on the other hand, additional terms appear that depend on the

turbulent velocity. The quantities

pu'u', ptTt?, pu'w'

pw'w'
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of which the latter three appear in the other two equations of

motion are called the eddy stresses. They are due to the tur-

bulent motion of the fluid which may be regarded as an eddying
motion superimposed on the mean motion of the fluid. Their

introduction into hydrodynamics is due to Osborne Reynolds.

Equation (73.4) may be written again, with the aid of (73.5),

(73.6)

du . du _ du _ du
___ __

1 dp __
1 dpuu _ 1 dpuv

'dl'di'dy'dz'"
~~

~pdx

~~

~p~~dx p dy

I dpu'w'

p dz

Thus, the equation of the mean motion contains terms due to the

variation of the eddy stresses in space. It will be seen in the

next section that these additional terms produce an effect

similar to the effect of friction in a viscous fluid.

74. PrandtPs Theory of Momentum Transfer. In order to

express the stresses in (73.6) by observable quantities, Prandtl 1

considers a fluid moving in the ^-direction with the mean velocity

u. This mean velocity may be a function of the ^-direction

normal to the mean flow though it may be independent of the

^/-direction. Prandtl assumes, now, as a working hypothesis

that a parcel of fluid which is displaced in the ^-direction owing
to the turbulent motion has to be moved a certain distance /

before it loses its individuality by mixing with its new environ-

ment. The distance I is called the mixing length. It corresponds

to the mean free path in the kinetic theory of gases although its

physical definition is, of course, not so precise. It may be noted

that the theory of the mixing length regards mixing as a dis-

continuous process which is obviously a working hypothesis

only. When a parcel of fluid is displaced from a position z

where the mean velocity is u (z) to z + /, the difference between

its velocity and the velocity of the surroundings is u(z + 1) u(z),

or approximately I This value is at least an approximation
uZ

to the turbulent velocity component u f
. To obtain the value

of the 2-component of the turbulent velocity w', consider two

parcels of fluid coming from z + I and z l
} respectively, to

1 PRANDTL, L.,
" Abriss der Stromungslehre," p. 93, F. Vieweg und Sohn,

Braunschweig, 1931.
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the level z. Their relative velocity will be 21 For reasons

of continuity the turbulent vertical velocity component must

therefore also be of the order of magnitude / Thus,

/ ^ _\ 2

pu'w' ~ pi

Prandtl writes an equality sign in this relation and thus includes

the proportionality factor in I, which changes the meaning of I

slightly. In order to show that the stress is positive if du/dz >
and negative if du/dz < 0, the preceding formula may be finally

written

=
pi

2
du

dz
(74.1)

Similar expressions hold for the other eddy stresses. Those

eddy stresses which are dependent not on the vertical but on the

horizontal gradients of the mean velocity can in many instances

be neglected in comparison with the eddy stresses due to the

vertical variation of the horizontal mean velocities which are

much larger (see pages 189 and 232).

The foregoing discussion shows that the turbulent state

of the fluid produces a drag similar to the frictional drag. The
formal analogy between the effects of viscosity and turbulence

becomes more obvious by the introduction of a coefficient of

eddy viscosity

pi
2
du

dz (74.2)

Because the effect of turbulence appears in the form of a fric-

tional drag, it is customary to speak of the eddy viscosity of a

fluid in turbulent motion and of the coefficient of eddy viscosity

M'; the ordinary viscosity of the fluid is referred to as the internal

or molecular viscosity.

When the direction of the mean velocity changes with the

altitude, the eddy stress

pn (74.3)
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has to be considered, in addition to (74.1). Upon comparing

(74.3) with (74.1), it will be noted that /*' need not necessarily

be the same for rzx
f and T*/, although for lack of information it is

generally assumed that // is the same in both directions.

The hydrodynamic equations for horizontal mean motion

in the turbulent atmosphere now obtain again the form (71.5)

when the bars for the mean-velocity components and the prime

distinguishing /*' and JJL
are omitted.

Taylor
1 has discussed the transformation of the eddy stresses

under the assumption that not the momentum, but the vorticity

of the motion is conserved if a parcel of fluid travels cross stream.

With his assumption of a constant vorticity, it follows that the

effect of eddy viscosity should be expressed by a term of the

. Hd 2u ,, I d ( du\ . ,. ,,,, ,, j,form -
-T-TJ-; not by -

I u I as in rrandtls theory of momen-
p dz2

p dz \ dz /
J

turn transport. A final decision in favor of one of these two

forms cannot yet be made. When /*
= const, both expressions

become identical. Ertel 2 has shown that both expressions are

special forms of a more general form which follows from the

tensorial nature of turbulence.

PrandtPs theory of the momentum transfer and Taylor's

theory of the vorticity transfer treat turbulent mixing as a

discontinuous process, an assumption that is obviously not very

satisfactory. Taylor has therefore attacked the problem in an

entirely different manner based on statistical methods. 3 He
considers the coefficient of correlation r between the velocities

of the fluid particles at a time t and at a later time t + At and

studies the dependence of r on At in the turbulent motion. His

method was adopted and extended by Button. 4 For details of

this statistical theory of turbulence the reader is referred to the

original papers.
6

76. The Vertical Variation of the Wind in the Surface Layer.
Prandtl 6 has shown that a logarithmic law for the vertical

1 TAYLOR, G. I., Phil. Trans. Roy. Soc. A, 216, 1, 1915; Proc. Roy. Soc. A,

136, 685, 1932.
2 ERTEL, H., Ann. Hydr., 66, 193, 1937.
3 TAYLOR, G. I., Proc. London Math. Soc., 20, 196, 1922.
4
SUTTON, O. G., Proc. Roy. Soc., A, 136, 143, 1932.

5 See also D. BRUNT,
"
Physical and Dynamical Meteorology," 2d ed.,

Chap. XII, Cambridge University Press, London, 1939.
6 PRANDTL, L., B&itr. Phys. Atm., 19, 188, 1932.
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distribution of the wind velocity is obtained under the assump-
tion that the surface layers of the atmosphere are subjected to

the frictional drag at the ground and by the upper, faster-moving

layers and that volume forces, such as the pressure-gradient

force and the Coriolis force, can be neglected.

Under these conditions the shearing stress in the surface

layers may be regarded as independent of the height. The

mixing length may be assumed to increase at a linear rate with

the distance from the earth's surface, which agrees with the

laboratory experiments where the mixing length increases with

the distance from the wall. The earth's surface has a certain

roughness so that if 2 = the mixing length has a finite value.

Thus, according to Prandtl,

/ = fc (2 + 2 ) (75.1)

fco is a nondimensional constant which according to Prandtl

and von Kdrmdn 1 has the value 0.38, approximately. ZQ depends
on the roughness of the surface over which the air is flowing.

It is called the roughness parameter.
2 Upon substituting (75.1)

in (74.1), it follows that

du I

dz k Q (z + z (

where the bars and primes have been omitted. Because p

may also be regarded as a constant in the layers next to the

earth's surface, the wind distribution follows a logarithmic law

= ~ A ln-
*o \P

(75.3)

The integration constant has been chosen so that u = where

2 = 0.

The logarithmic law for the wind velocity in the lowest layers

must be regarded as semiempirical, for the assumptions on

which it is based are rather crude. Its main justification is its

satisfactory agreement with the observations. Logarithmic
laws for the wind distribution in the surface layer have, in fact,

been suggested previously without any theoretical reasoning

1 VON KXRMJtN, Th., Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl.
9 p. 58,

1930.
8 See also W. PAESCHKE, Beitr. Phys. Atm., 24, 63, 1937.
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but simply from an inspection of the observations. Hellmann,
1

for instance, expressed his data by a formula of the form

u = a + b log (z + c)

The following table shows some wind velocities observed by
Hellmann and Koppen 2

(second line) and the wind velocities

computed with the aid of the formula

u = 0.695 In
z + 1.43 cm

1.43 cm

For the coefficient of eddy viscosity the following expression

can be derived from (74.2) and the preceding equations:

H = pk Q (z + (75.4)

Under the assumptions made by Prandtl the eddy viscosity is a

linear function of the altitude in the surface layer. In order to

express n by observable quantities, Rossby and Montgomery8

introduce the wind velocity ua at the anemometer level za in

(75.3). Upon substituting in (75.4), it follows that

=
pfc

2
(z + z )

In'
Z

(75.41)

Zo

The linear distribution of /z in the surface layer is confirmed by
observations made by Mildner. 4

The preceding theoretical considerations which lead to the

logarithmic law of the wind distribution hold only in an atmos-

phere in indifferent equilibrium (Sec. 9) although a logarithmic

formula appears also to approximate the observations well in

1 HELLMANN, G., Met. Z., 32, 1, 1915; 34, 273, 1917.
* See A. PEPPLER, Beitr. Phys. Aim., 9, 114, 1921.

3 ROSSBY, C.-G., and MONTGOMERY, R. B., Papers in Physical Oceanog-

raphy and Meteorology, Mass. Inst. Tech. and Woods Hole Ocean. Inst. 3,

1935.
4 MILDNER, P., Beitr. Phys. Aim., 19, 151, 1932.
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the case of a stable atmosphere, according to Sutton. 1 When the

lapse rate is less than the adiabatic, the effect of the stability of

the stratification has to be taken into account.

Richardson 2 and later Prandtl 3 showed that the turbulence

in the atmosphere depends on the dimensionless quantity

(|Xt)

()'
where 6 is the potential temperature. This expression is fre-

quently referred to as the Richardson number. Its derivation is

based on the reasoning that turbulence will die down when the

work required to displace air from its equilibrium position in a

stable atmosphere is greater than the work done by the eddy
stresses. It will be seen on page 242 that an expression of the

form (du/dzY is proportional to the work done by the eddy
stresses. The numerical value for the Richardson number
above which the motion ceases to be turbulent has not yet been

determined definitely. Richardson found 1 and Prandtl 2

from theoretical considerations. Experiments of Prandtl sug-

gest y to % which would agree with investigations of Taylor
4

based on the study of small oscillations.

Rossby and Montgomery 6 have investigated the stabilizing

influence of the stratification and found that with increasing

stability the difference between the wind velocities at two heights

near the surface tends to become proportional to the difference

of the square roots at these two heights,

7/1 u 2 ~ \/Zi \/Z2 (75.5)

From observations as well as from theoretical considerations,
laws of the form

i^

u ~ zn (75.6)

1 SUTTON, O. G., Quart. J. Roy. Met. Soc., 63, 105, 1937.
*
RICHARDSON, L. F., Proc. Roy. Soc. (London), A, 67, 354, 1920.

8
PRANDTL, L. Beitr. Phys. Aim., 19, 88, 1932.

4 TAYLOR, G. I., Proc. Roy. Soc. (London), A, 132, 499, 1931.
8 ROSSBY and MONTGOMERY loc. ciL
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have been suggested for the wind distribution in the surface

layers. The numerical values of n vary widely. In the homo-

geneous case a power law of the form (75.6) may be regarded
as an approximation to the logarithmic law, for the logarithm
is the limiting value for a very small positive power.

76. The Variation of the Wind above the Surface Layer.
When the wind distribution above the surface layer is studied,

the pressure-gradient force and the Coriolis force have to be

taken into account. In order to simplify matters, it will be

assumed that the pressure gradient is independent of the altitude,

that the isobars are parallel straight lines, and that the motion

is horizontal and steady.
1 The motion would then be geostrophic

except for the influence of eddy and molecular viscosity. The
coefficient of viscosity /z will be assumed constant, which is the

simplest case, although in general it is known to vary with

the altitude. The effects of the factors neglected here will be

discussed in the following sections. When the x-axis is oriented

parallel to the pressure gradient, the equations of motion become,

according to (71.5),

--- -JS+5S <>
o M d 2V
2co sin <p u = -

-j-=
p az*

Because u and v depend only on z, total differentials may be

written instead of partial ones. The equation of continuity is

obviously satisfied, for u and v are independent of x and y.

The simplest boundary condition at the ground would be

the assumption that the wind velocity vanishes here. However,

because, in the surface layer, equations different from (76.1)

determine the wind distribution, it is preferable not to extend

the solution down to the ground but only to a somewhat higher

altitude, say up to anemometer level. It will be assumed that,

at this level za ,
the shear of the wind is parallel to the wind

itself, so that

1 HESSELBERG, T., and SVEKDRUP, H. U., Veroffentlich. Geophys. Inst.

Leipzig, 2d ser., 1, 241, 1915. AKERBLOM, F. A., Nova Acta Reg. Soc. Sci.

Upsal, Ser. 4, 2, 2, 1908.
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The proportionality factor K may be called the coefficient of

surface friction, for it represents the effect of friction at the

boundary separating the lowest surface layer from the layers

that are now under consideration. If K = 0, the boundary
condition (76.2) is reduced to the simple condition that the

velocity at the lower boundary of the layer vanishes.

An estimate of K is possible using the results of the preceding
section. It must be assumed that the wind is continuous at

the boundary between the surface layer and the upper levels,

for this boundary has no physical reality but is only a suitable

surface above which another law for the wind distribution is

chosen. This surface may, for instance, be placed at the ane-

mometer level. Then

(76.21)

where Va is the wind in the surface layer at this level. From

(75.2) and (75.3), it follows that

=
(Za + 20) In

Za + ZQ
(76.22)

Here ZQ is the roughness parameter and za the anemometer level.

If ZQ = 4 cm and za = 10 m, for instance, K = 55.2 m.

In the following computations the height will be counted

from the anemometer level so that za = 0. Introducing the

geostrophic wind,

41
1 1 dp

- _ - *_-

2co sin <p p dx

and

v' = v - vg (76.3)

Eqs. (76.1) may be written, because vg is independent of z,

o /2w sin (p v = --7-5

This is a system of two homogeneous linear differential equations

with constant coefficients. A solution of such a system must
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consist of exponentials with real or complex exponents, in other

words, of real exponential or trigonometric functions or a com-
bination of both. Therefore, it appears justifiable to try whether

expressions of the form 1

u = -Avger
09 sin (az

-
6)

v
1 = Bvge-** cos (az

-
6)

satisfy Eqs. (76.4). Negative exponentials have been chosen,

for u and v', which represent the deviations from the geostrophic

wind, must tend to zero when the distance z from the ground
and from its frictional drag tends to infinity. The choice of

the negative exponentials in (76.5) thus represents the introduc-

tion of a second boundary condition, at infinity, in addition to

the boundary condition (76.2), at anemometer level. The

quantities A, #, and a and b are constants which have to be

determined so that Eqs. (76.4) and the boundary conditions

(76.2) are satisfied. The factor vg has been added in order to

make A and B dimensionless quantities. From (76.5), it follows

that

dij '

-j-
= Avgae~

az
[sin (az b) cos (az b)]

dv'
(76 '51)

= Bv ae~a*[cos (az 6) + sin (az b)]
uZ

Upon differentiating again and substituting in (76.4), it follows

that

2w sin (p v Be~az cos (az 6)
= - 2a2Avge~* cos (az b)

P

2o> sin (p vgAe~
ae sin (az 6)

= - az2Bvge~~
at sin (az 6)

P

The exponential and trigonometric functions and the factor

2vg can be canceled on both sides of these equations. Therefore,

:? /*fl
2 _ __ pa? sin <p

A
"~

pw sin <p

~~

pa*

1 The reader who is sufficiently familiar with complex variables will have

no difficulties in solving Eqs. (76.4) more directly by multiplying the second

equation by \/ I and by determining the horizontal vector u -\- \/ 1 v.
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and

sm
(76.52)

Here the real positive root must be taken, for the exponential

must tend to zero when z > <*> . Furthermore,

Thus
u = -Avge-

a* sin (02
-

6) (7
v = vy[l

- Ac cos (02
-

6)]
U

The remaining two constants A and 6 are found from the bound-

ary conditions (76.2) at z = za = 0.

Avg sin 6 = KAvga(sm b 4- cos f>)
, _.

fy(l A cos 6)
= *Aa v

tf (co8 b sin 6)

From the first of these equations, it is found that

tan b = -
rfs (76 -M)

and from the second, the value of tan 6 being used, that

A * -
i +J+ a.v (76 ' 55)

The constants A and 6 may also be expressed by the angle

between the negative pressure gradient and the wind V Q at

anemometer level (z
=

0). Because

tan --!!?-_ Wd*)o
tctil CtQ TT T^T \~

^0 (du/dZ)Q

it follows from (76.51) that

tan a =
! 7 ?

an
? (76.56)

1 + tan b
^ }

Upon substituting (76.54) the following relation is found between

K and aoj

tan a = 1 + 2*a (76.6)

When the wind at anemometer level vanishes, K = 0, the angle

between negative pressure gradient and wind is 45. When
fc 41

0, ao is greater than 45.
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According to (76.56),

tan 0:0 = tan ( 7

since tan 7T/4
= 1. Therefore b = (ir/4) o, orb = (5/4)7r aQ .

The second alternative would give a wind blowing toward

higher pressure and has to be rejected. From (76.55) and

(76.6), A may be expressed by o,

A 2 = 2 cos 2
(76.61)

Substituting the values of A and b in (76.521),

u = vg \/2 cos a Qe~
az sin ( az + a 7)

v == va 1 cos o -\/2e~
* cos ( az + <*o 7 )

(76.7)

The wind direction is parallel to the geostrophic wind direction

when u = 0. This direction is reached at the height where

az + a - = rnr (n =
1, 2, )

The lowest height D (n =
1) at which this occurs is called the

gradient-wind level. Thus

D = J% (771-
-

\pco sm ^ \4
(76.71)x '

The gradient-wind level is higher, the larger /z and the smaller .

Further, it is inversely proportional to \/sin tp.

At the equator the gradient-wind level would become infinite,

for here o> sin <p
= so that a geostrophic balance between

frictional force, pressure-gradient force, and Coriolis force is

impossible. The preceding formulas cannot be applied to the

regions very close to the equator where no geostrophic balance

is possible.

The gradient-wind level D and the angle a which appear in

(76.71) can be observed directly, although the determination

of D may not yield very accurate values owing to the small

deviation of the actual wind from the geostrophic wind near the

gradient-wind level. It is therefore possible to compute \t,



206 DYNAMIC METEOROLOGY

from observations, of course with the restricting assumptions

(M = const, vg
= const, steady straight-line flow) on which the

solution (76.7) is based. Individual values of D and a vary

widely, depending on the weather situation and on the nature

of the surface of the earth. To obtain an estimate of the order

of magnitude of /z, it may be assumed that a = 45 which

corresponds to calm at z = and D = 1500 m. 1 It follows,

-10 -8 -6 -4 -2

a, m. per sec.

FIG. 60. Vertical variation of the wind distribution (Ekman spiral).

when p = 1.1 X 10~ 3 gm/cm 3 and <p
= 40, that /x

= 116 gm
cm" 1 sec" 1

. This value may be regarded, of course, only as a

rough approximation owing to the simplifying assumptions
and the varying atmospheric conditions. Even the order of

magnitude may be smaller by a factor 1/10. But it is interesting

to note that this value of /* is more than 10 5 times larger than the

coefficient of molecular viscosity 1.71 X 10~4 gm cm" 1 sec" 1
.

1

SBBLIGER, W., Beitr. Phys. Aim., 24, 130, 1937.



ATMOSPHERIC TURBULENCE 207

Obviously, the value of p determined from the height of the

gradient-wind level is the coefficient of eddy viscosity, not the

coefficient of molecular viscosity. The effect of the eddy vis-

cosity in a turbulent medium such as the atmosphere is so much

greater than the effect of the molecular viscosity that the latter

can be neglected.

To give an example of the wind distribution represented by
(76.7), let K = 55.2 m, vg = 20 m/sec, /JL

= 110 gm cm"- 1 sec" 1

,

tp
= 40, and the average density p = 1.1 X 10~ 3 gm cm~ 8

.

Then a = 2.16 X 10~ 3 m- 1
,
a = 514', and D = 1405 in. The

wind distribution computed from (76.7) is shown in Fig. 60.

The curve represents the end points of the wind vector. The

^-component can be read off the abscissa, and the v-component
off the ordinate. The heights corresponding to a number of

points are given on the curve. The end points of the wind

vector lie on a spiral which is called the Ekman spiral after

Ekman who solved the corresponding problem for ocean cur-

rents. 1 The first application to the meteorological problem
was given by Akerblom. 2

Figure 60 shows that the wind turns to the right (veers)

with increasing altitude in the Northern Hemisphere. In the

Southern Hemisphere the wind turns to the left, as can be seen

from (76.7). Above the gradient-wind level the wind velocity

becomes somewhat greater than the geostrophic wind, but the

difference is small, for the exponential functions at and above

the gradient-wind level are so small that the deviations from the

geostrophic wind become rapidly negligible.

77. The Effect of the Vertical Variation of the Pressure

Gradient. The expressions (76.7) were obtained under the

assumption that the pressure gradient is independent of the

altitude. If ~- in (76.1) varies with the height, the equa-
p OX

tions represent a system of inhomogeneous equations that can

be integrated by standard methods. In general, the height

of the gradient-wind level is sufficiently small so that the pressure

gradient may be regarded as constant up to the gradient-wind
level. The rapid transition from the wind near the surface to

1 EKMAN, V. W., Nyt. Mag. Naturv., 40, 1, 1902.
2 AKERBLOM, loc. cit.
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the gradient wind generally overshadows completely the small

variation due to the change of the gradient wind in this layer.

Above the gradient-wind level, however, the effect of the

variation of the pressure gradient with height may become

of some importance. The effect of friction prevents the actual

wind from attaining the gradient-wind values appropriate

to a given altitude owing to the shearing stresses exerted by the

upper and lower layers where the pressure gradient is different.

Only the simple case will be dealt with here, that nothing but

the intensity of the gradient wind changes. Upon introducing

the geostrophic wind velocity vg) Eqs. (76.1) may be written

in the form

r n , M d 2U
2co sin (p v = 2o> sin <p vg -\ -r-%

o P2w sin (p u -
-7-5

p dz 2

'

P
(77.1)'

According to the results of Sec. 76 the difference between v

and va is very small above the gradient-wind level. Therefore,

as pointed out by Mollwo,
1 v may be replaced by vg in the second

equation of (77.1) so that

In order to obtain an estimate of the wind component normal

to the isobars due to eddy viscosity above the gradient-wind

level, let us assume that the vertical variation of vg is caused by
horizontal temperature gradients. According to (55.21)

1 f^\ = _JL_ 1 ^
dz \T/ 2co sin <p T 2 dx

For the sake of simplicity, T may be regarded as independent of

z. Then

A, = g 1 <

dz 2
2o> sin <p T dz \dx

According to Wagner 2 the meridional temperature gradient

along the meridian 97 west between the latitudes 46 and 41.5

1 MOLLWO, H., Beitr. Phys. Atm., 22, 45, 1935.
2 WAGNER, A., in Koppen-Geiger, "Handbuch der Klimatologie," Vol. 1,

p. 7, Gebruder Borntrager, Berlin, 1931.
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north is 0.88C per degree latitude at 500 m and 0.74C/deg

latitude at 4000 m, so that |- ( |^J = 3.6 X 10~ 14 C/cm 2
.

oz \ox /
From the above formula it follows that 3 2vg/dz

2 = 1.32 X 10~9

per cm and sec if T = 273 abs. Upon substituting in (77.2) and

assuming that p,
= 100 gm cm" 1 sec" 1

,
it is found that

u = 1.3 cm/sec.

Although this is a rather small velocity, it may be of some

importance in connection with pressure variations due to hori-

zontal divergence and convergence. This possibility is dis-

cussed in some detail by Mollwo.

78. The Effect of the Centrifugal Force. It was assumed

in Sec. 76 that the wind is geostrophic. The motion repre-

sents, then, a balance between pressure-gradient force, frictional

force, and Coriolis force. In reality, however, the isobars and

the paths of the air particles are frequently curved, and the

centrifugal force has to be added to the three other forces. The
mathematical problem to be solved becomes, in this case, more

complicated, for the centrifugal force contains the square of the

velocity so that the differential equation to be solved is of the

second degree. A solution is possible under simplifying assump-
tions only.

1 In cyclones the gradient-wind level is reached at a

lower altitude, in anticyclones at a higher altitude, than in the

geostrophic case, when the pressure gradient, the coefficient of

eddy viscosity, and the angle between surface wind and pressure

gradient are the same in all three types of pressure distribution.

This result can easily be derived in a qualitative fashion.

In cyclones the centrifugal force acts in the same direction as the

Coriolis force. The centrifugal force is approximately vgr
2
/r,

for the gradient-wind velocity vgr may be substituted for the actual

tangential velocity v. Thus, in the cyclonic case the angular

velocity relative to the earth vgr/r has to be added to the angular

velocity of the earth's rotation co sin <p. The parameter a [see

(76.52)] in the expressions for u and v in Sec. 76 becomes

+ w sin <p

M

1 HAUBWITZ, B., Gerl Beitr. Geophya., 45, 243, 1935; 47, 203, 206, 1936.
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Upon substituting this term in the formula (76.71) for the height

of the gradient-wind level D instead of ,* /
,
it is seen that

D is smaller in the case of cyclonic motion than in the case of

geostrophic motion.

In anticyclones, on the other hand, the centrifugal force acts

in the direction opposite to the Coriolis force. Consequently,
the expression corresponding to (78.1) is, for anticyclones,

1 8m * - (v /r>
P (78.2)

which gives a higher gradient-wind level in anticyclones than

in the geostrophic case, other things being equal. The end

points of the wind vector are situated on a spiral similar to the

one shown in Fig. 60.

79. The Variability of the Coefficient of Eddy Viscosity. It

has been pointed out already that the coefficient of eddy viscosity

must vary with the altitude. In the layer next to the ground,

fj, may be represented by a linearly increasing function of the

height, according to Prandtl [see (75.41)]. At higher levels, n
must obviously follow a different law for it cannot increase

indefinitely with elevation.

Methods for the direct determination of the vertical dis-

tribution of M from the vertical wind distribution have been given

by Solberg
1 and Fjeldstadt.

2
Solberg's method has been used

by Mildner3 and Schwandtke 4 to determine the distribution of

p,. Fjeldstadt's method, which was originally developed for

ocean currents, was extended to the atmosphere by Sverdrup.
5

All three investigations show clearly the variation of ju with

the altitude. At first, ju increases from the ground upward;
then it decreases again. Mildner found from pilot-balloon

observations with two theodolites the following values of /* on

Oct. 20, 1931, near Leipzig:

1 In V. Bjerknes and Collaborators,
"
Physikalische Hydrodynamik,"

p. 502, Verlag Julius Springer, Berlin, 1933.
2
FJELDSTADT, J. E., Gerl. Beitr. Geophys., 23, 237, 1929.

8 MILDNER, P., Beitr. Phys. Aim., 19, 151, 1932.
4 SCHWANDTKE, F., "Die innere Reibung der Atmosphere in Abhangigkeit

von der Luftmasse," dissertation, Leipzig, 1935.
5 SVERDRUP, H. U., Norwegian North Pole Expedition with the "Maud,"

1918-1925, Sci. Results, Vol. 2, Met. I, p. 62, 1933.
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The values of p and their vertical distribution depend also

on the character of the air mass in which the observations took

place, especially on the vertical stability which is determined

by the vertical lapse rate of temperature. In order to find a

theoretical expression for the vertical distribution of /z, there

must evidently be some additional conditions besides Eqs.

(76.1). Rossby
1 obtains such conditions by an application of

von Karman's 2
postulate that the patterns of the turbulent-eddy

disturbances are dynamically similar so that only the length

scale and the velocity scale for each disturbance remain undeter-

mined. In the case of atmospheric motions the Coriolis force

has to be taken into account. Rossby showed that under these

conditions von Karman's principle requires that the absolute

value of the shearing vector \/(du/dz)
2 + (dv/dz)

2 remain

constant while its direction changes. It follows further that

the shear of the wind and the rate of change of the shear must
be at right angles to each other. The end points of the wind

vector still form a spiral as in the simple case, when /z
= const,

considered in Sec. 76; but the spiral is somewhat deformed.

For the mixing length in the layers above the surface layer,

Rossby finds that

_ k(h
-

z)
(79.1)

where k is a nondimensional constant whose value is estimated

to be 0.065 and h is the height where the frictional influence

disappears so that it corresponds to the gradient-wind level D
[see (76.71)].

The coefficient of eddy viscosity

M =

by analogy with (74.2) . Because it follows from Rossby's investi-

1 ROSSBY, C.-G., Mass. Inst. Tech. Met. Papers, 1, 4, 1932.
* VON KARMJtN, T., Nachr. Oes. Wiss. Gdttingen, Math.-Phys. KL, p. 58,

1938.
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gations that the shear has the same value at every level in the

layer under consideration,

M ~ (h
-

z)
2

(79.2)

so that n decreases above the surface layer. A similar dis-

tribution of M was indicated by the figures obtained by Mildner

(page 211) and by the results of other investigators. According
to (79.2), /x should vanish at h, but the observations tend to show

that even at the heights where the wind approaches the gradient

wind there is still some residual turbulence. Rossby assumes

that, for this residual turbulence, /z
= 50 gm cm" 1 sec" 1 under

normal stable conditions. In unstable strata, JLI may be 10 or

even up to 100 times larger.

The extension of the principle of dynamic similarity to tur-

bulent motion in the atmosphere is particularly valuable, for

it permits one to derive not only the vertical wind distribution

but also the vertical distribution of eddy viscosity. It is not

necessary to start with a more or less arbitrary assumption

concerning the dependence of n on 2, which is equally unsatis-

factory from a theoretical and from a practical viewpoint.

In a later paper, Rossby and Montgomery
1 combined the

solution found for the boundary layer next to the ground with

the solution for the upper part of the frictional layer in which

the wind distribution is represented by a spiral. The frictional

drag, the mixing length, and the wind velocity must be con-

tinuous at the boundary between both parts of the frictional

layer. From these conditions, it is possible to express the

height of the boundary layer H by the height of the upper fric-

tional layer. According to (75.1), I = k Q (H + z ) at the height

H of the boundary; according to (79.1), I = fcA/\/2, for, in the

latter equation, z is counted from H upward. Thus

H + 2 =
^-7= A = 0.12A (79.3)

fc V2
This relation holds for an atmosphere in indifferent as well as

in stable equilibrium.

1
ROSSBY, C.-G., and MONTGOMERY, R. B., "Papers in Physical Oceanog-

raphy and Meteorology/' 3, 3, Mass. Institute of Technology and Woods
Hole Ocean. Inst., Cambridge, Mass., 1935.
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80. The Diurnal Variation of the Wind Velocity. At the

earth's surface the wind velocity reaches normally i.e., apart

from disturbances caused by the change in the weather situation

a maximum shortly after noon and a minimum during the

early morning hours. At higher levels, the maximum of the

wind velocity occurs during the night, the minimum about

noon. Figure 61 shows the diurnal range of the wind velocity

at various altitudes over Nauen and Potsdam according to

observations by Hellmann. 1 Up to 32 m altitude, the maximum
of the wind velocity is reached about noon, the minimum at night.

10

(After

Md 4 8 Noon 4 8 Md
FIG. 61. Diurnal variation of the wind velocity at different altitudes.

Hellmann.)

At 123 m and above, the maximum occurs at night, the minimum
in the daytime. The greater irregularity of the upper curves is

due to the smaller number of observations. The anemometer at

70 m is obviously in the transition zone between the two types of

wind variation. The curve for this level shows two faint minima,

in the forenoon and afternoon, and two faint maxima, about

midnight and noon. The data from which Fig. 61 is plotted

represent mean values for the whole year. According to Hell-

mann's observations the daily variation of the wind velocity at

70 m is analogous to the variation at higher levels during the

winter and to the variation at lower levels during the summer.

Similar results have been obtained at other stations, for instance,

on the Eiffel Tower. 2

1 HELLMANN, G., Met. Z., 34, 273, 1917.
2 ANGOT, A., Ann. Bur. Centr. MM. France, p. 76, 1907.
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A satisfactory theory of the diurnal variation of the wind

velocity has been given by Wagner.
1 It is necessary to considei

the equations of motion of a fluid (71.5) in which eddy viscosity

is active,

du . 1 dp . n 3 2u
,

1 On du
2w sin ? v = 4-

~ ~

dt
Msm * v

P dx^ P dz*^ pdzdz
dv

, n . I dp , tid*v ,
1 dudv

^ '

ff+2w ,-_-_ + -_ + -__

For simplicity, the acceleration terms have been written in

undeveloped form, and the differentiations in the viscosity

terms have been carried out to facilitate the following discussion.

fjt, is, of course, to be regarded as the coefficient of eddy viscosity.

According to the observations,

du > dv > d *U < d *v <
Tz

> '
Tz

>
' M <

' ^ <

in the layer that is here considered. Therefore, when dp/dz > 0,

the last terms in both equations (80.1) cause an increase of the

wind velocity with the time, whereas the terms with /* cause

a decrease of the winivelocity. In the layers next to the ground,

dfji/dz is positive according to (75.4). The value of dp/dz
attains a maximum around noon in the layers next to the ground,

owing to the effect of the surface heating and the resulting vertical

convection. Because /i itself is always very small at the ground,
the last term in each of the two equations (80.1) is more effective

than the preceding one. Thus, the noon maximum of the wind

velocity near the ground is due to the increase of dp/dz and

occurs in spite of the increase of n in the lowest layers. An
increase of ju alone would cause a decrease of the wind velocity.

The effect of the increase of /z during the noon hours is pre-

dominant, however, in higher layers, so that here the wind velocity

sinks to a minimum about noon. At night the wind velocity

has a maximum in the upper layers because UL is smaller than

in the daytime and a minimum in the layers next to the ground

owing to the decrease of dp/dz from day to night.

The diurnal variation of the wind velocity in the layer next

to the ground is also affected by the friction at the ground.

1 WAGNER, A., Oerl. Beitr. Geophya., 47, 172, 1936.
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The stratification of the surface layers is less stable in the day-

time, more stable at night. Thus, the air at the surface can

surmount obstacles at the surface more easily in the daytime
than at night when the more stable stratification requires a

greater expenditure of energy. Consequently, the surface

friction is smallest during the noon hours and greatest during
the night; this factor also contributes to the maximum of the

surface wind around noon and to the minimum during the night.

The wind direction has also a diurnal period which is, however,
more disturbed by local effects, such as land and sea breezes

or mountain and valley winds, than the diurnal period of the

wind velocity. Wagner has shown that this periodic variation

of the wind direction is also due to the daily variation of n
and dn/dz.

Problems

22. Find the relation between pressure gradient and wind velocity and the

angle between pressure gradient and wind if a frictional force acts that is

proportional to the wind velocity and in the direction opposite to the wind.

Assume geostrophic conditions apart from the effects of friction.

23. Derive a relation between the direction and velocity of the surface

(anemometer-level) wind and the geostrophic wind velocity under the

assumptions made in Sec. 76.

24. Introducing the assumptions made in Sec. 76, find the angle between

the frictional force and the pressure gradient. What is the angle between

the direction of the wind and the frictional force at the surface (anemometer-

level) and at gradient-wind level?

25. Show that the wind component due to friction above the gradient-
wind level is zero if the temperature gradient is in the same direction as the

pressure gradient and if the temperature decreases linearly with the altitude

but at the same rate everywhere.



CHAPTER XI

TURBULENT MASS EXCHANGE

81. Transfer of Air Properties by Turbulent Mass Exchange.
The transfer of momentum at right angles to the direction of

mean motion has already been discussed in Sec. 74. We have

seen that the turbulent eddying motion produces an effect

similar to the molecular viscosity, only of much greater intensity,

as is shown by the fact that the coefficient of eddy viscosity is

10 5 times larger than the coefficient of molecular viscosity (see

page 206).

In a similar manner the turbulent eddies cause also a transfer

of heat, of water vapor, and of other properties of the air. The
heat transfer is analogous to the molecular conduction of heat;

the transfer of water vapor is analogous to the process of molecu-

lar diffusion. But the effectiveness of the transfer by turbulent

eddies is much greater than the effectiveness of the molecular

transfer, as can be expected from the comparison of the coeffi-

cients of eddy viscosity and molecular viscosity. Because the

transfer of properties by the turbulent eddies involves the trans-

port of air, it is frequently referred to as turbulent mass exchange.

Physically the transfer of momentum considered in the last

chapter and the transfer of other properties to be discussed in

this chapter are entirely analogous. The special case of heat

transfer by turbulent mass exchange is sometimes also referred

to as eddy conductivity.

The amount of the property per unit mass of air whose transfer

is to be studied may be denoted by s. The quantity s will be

assumed to vary in the vertical direction only. This assumption
is in many cases justified, for the vertical variations of the air

properties are in general much larger than the horizontal ones.

The following discussion can, moreover, easily be extended to

three dimensions.

The quantity s may represent any property of the air that

does not change owing to vertical motion. Thus potential

temperature or mixing ratio may be considered, as long as no
216
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condensation takes place, but not the temperature or the relative

humidity.
Consider a horizontal area F at a height z that is moving with

the mean horizontal-wind velocity. It will be assumed that

there is no mean vertical component of the air motion. This

assumption must be fulfilled, at least on the average, to satisfy

the continuity condition. Owing to the turbulent eddying
motion a vertical transport of air upward and downward through
F is taking place. Upon denoting the mass of a parcel of air

ascending through F by w+ and the mass of a particle descending

through F by m_, the total amount of air rising through F must

be equal to the total amount of air descending through F,

_ (81.1)

We shall suppose now as in Sec. 74 that a particle travels a certain

distance /, the mixing length, before mixing with its surroundings.
l

The distance I is not necessarily the same for all particles passing

through F. The amount of s carried by an air particle of mass m
arriving at F will be m s(z 1) where the argument of s indicates

that the value of 5 is to be taken at the level z L The positive

sign has to be chosen if the particle descends, and the negative

sign when it ascends. The average time t may be needed by the

particle to move through the distance I to F. Then, the net

transport of 5 upward per unit time and unit area

s = m+ s(z
-

z)
~ m- s(z + (8L2)

Because I is a small quantity,

-.

Here terms of higher than the second order in I may be omitted.

In the neighbourhood of z, s is thus expressed by the value of s

at z and its derivatives. Upon substituting (81.3) in (81.2) and

noting that 5 and its derivatives at the level z can be taken before

1 See also W. Schmidt, "Der Massenaustausch in freier Luft und ver-

wandte Erscheinungen," Henri Grand, Hamburg, 1925. The above analy-
sis follows Schmidt mainly.
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the summation sign, it follows that

The suffixes z added to ds/dz and dz
s/dz* in (81.3) have been

omitted again, for in the following these quantities are always
to be taken at the level for which the transport is to be com-

puted. The first term on the right in the equation above van-

ishes on account of (81.1). Similarly, the third term vanishes

because, for each mass coming from a distance I above F, there

will be, on the average, a mass coming from the same distance

below F, except very close to the ground. The factor of -7- may

be written 2wZ where the summation is now to be extended over

all positive and negative m. Thus

where

A =^
(81.5)

The coefficient A is the coefficient of turbulent mass exchange.
Its dimensions are in grams per centimeter per second when

cgs units are used, the same as the dimensions of the coefficient

of eddy viscosity with which it is, in fact, identical when the

exchange of momentum is considered.

In some cases, it is necessary to add another factor to Eq. (81.4)

in order to have the same physical dimensions on both sides

of the equation. For instance, when the heat transport in rela-

tion to the gradient of potential temperature is considered, the

right-hand side of (81.4) has to be multiplied by the specific heat

at constant pressure cp . The heat transport due to turbulent

mass exchange is thus

S - -cpA g (81.41)
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A derivation of the transfer by turbulent mass exchange differing

from Schmidt's has been given by Taylor,
1 who showed that

A = pw'l (81.6)

where p is the density of the air, w
f

the turbulent vertical motion,
and I the mixing length, as before The bar indicates that the

mean value of the product should be taken. It will be noted

that Taylor's expression for A is very similar to Schmidt's.

The coefficient A is, of course, a function of the altitude and

of the time because it depends on the intensity of the turbulent

mixing. When the stability of the atmospheric stratification is

great, as, for instance, at inversions, the turbulent mass exchange
is very small. Around noon, especially during times of strong

insolation, on the other hand, A will be large.

To show the strong variation of A with height next to the

ground Schmidt2 discusses some temperature measurements

made by Wust in the lowest 9 m over the Baltic Sea. If the

transport of heat had not been the same at all levels, some layers

would have gained or lost heat and thus their temperature would

have changed. But the temperature remained constant at all

levels up to 9 m, and therefore the heat transport must have

been the same everywhere. Thus, it follows from (81.4) that for

two heights

dzU:A,-(

For s the temperature may be taken here instead of the potential

temperature, for the heights considered are so small that adiabatic

changes of the temperature at the rate of 1C/100 m are of no

effect. The temperature gradient at various levels and the

ratio of A at each level to the value at 1 m are given in the follow-

ing table:

1 TAYLOR, G. I., Phil. Trans. Roy. Soc. A, 215, 1, 1915.
2 SCHMIDT, loc. tit.
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The coefficient of turbulent mass exchange is very small near the

ground where vertical motions must be small and increases very

quickly upward.
Besides the potential temperature and the mixing ratio the

preceding considerations may also be applied to such properties

of the air as its dust content. In this case, allowance must be

made for gradual settling of the dust. An application to the

entropy is, however, not permissible; for the entropy, though

remaining constant during adiabatic motion, changes during

mixing processes, as pointed out by Pekeris. 1

It is obviously not a priori to be expected that the coefficient

of turbulent mass exchange is the same for all properties trans-

ferred by mixing. The mixing length / may be different for

different quantities. From observations of Sverdrup,
2
it appears,

however, that in the atmosphere A is the same for momentum
and heat whereas in the ocean it is different.

82. The Differential Equation of Turbulent Mass Exchange.
The transfer S of a property s is a function of the height. Thus,
the transfer of s per unit area and unit time across the level z is

S(z), and the transfer across the level z + dz

when dz is infinitesimally small. A rectangular parallelepiped of

unit cross section and of the height dz gains, therefore, per unit

time the amount

The amount of mass in the parallelepiped is p dz. Thus, the

ds
total change of s per unit time inside the parallelepiped is p -r- dz.

ot

Upon equating both expressions for the change of s inside the

parallelepiped, it follows that

ds . dS ,

1

PEKERIS, C. L., Met. Z., 47, 231, 1930.

SVERDRUP, H. U., Geofys. Pub., 11, No. 7, 1936.
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or, with (81.4), that

ds 1 3 / d

This is the differential equation of turbulent mass exchange. It

has the same form as the equation of molecular heat conduction,

and therefore the solutions derived in the theory of heat con-

duction can also be applied to the analogous problems arising

in the discussion of the effect of turbulent mass exchange. If A is

assumed to be constant, (82.1) can be written in the form

at
~

P w
When A is given, the vertical distribution of s and its derivatives

with time can be computed. Frequently, however, the opposite

problem arises, that s is given and that A is to be found.

Ertel 1 has shown that A can be determined by means of the

standard deviations of 5 and ds/dt which are available from

records of the turbulent variations. This method has been used

by Lettau 2 and others to find A from wind and temperature
records.

Other more indirect methods of determining A can be devel-

oped by integration of (82.1) under suitable assumptions about

the dependence of A on z and t. Upon applying the solution of

the differential equation to the observations of s, it is possible to

determine the value of A. As an example, the daily temperature

period will be considered in the next section. The main difficulty

of this procedure is that the dependence of A on z and t is not

definitely known, and thus only a rough determination of A is

possible.

83. The Daily Temperature Period. The air temperature
near the earth's surface undergoes a periodic daily change, with

a maximum around two hours past noon and a minimum around

sunrise. On clear days the amplitude of the daily temperature

period is greater than on cloudy days. At greater heights the

amplitude is smaller, and the maximum occurs later than at the

surface. The decrease of the amplitude with the elevation

1 ERTEL, H., Gerl Beitr. Geophys., 26, 279, 1930.
2 LETTAU, H., Ann. Hydr., 62, 469, 1934; "Atmospharische Turbulenz,"

Akademische Verlagsgesellschaft, Leipzig, 1939.



222 DYNAMIC METEOROLOGY

and the retardation of the maximum are due to the propagation
of the temperature wave upward by turbulent mass exchange,

although other influences are effective, too, as will be seen from

the following discussion.

The daily temperature period at the ground depends on the

rate of heating, mainly by direct solar radiation, in the daytime
and on the rate of cooling, mainly by nocturnal radiation (see

Sec. 39), at night. In the daytime the temperature curve

follows the variations of the intensity of the solar radiation quite

closely and can therefore be approximated by a cosine function.

At night the temperature decreases gradually to a minimum in

the morning hours around sunrise. Therefore, the temperature
variation throughout the whole day cannot be represented

exactly by a single cosine function, although it can be expressed

accurately enough by a few terms of a harmonic series.

Nevertheless, for the sake of convenience, we shall express the

daily temperature variation here by a single cosine term. The

following computations can easily be extended to a trigonometric

series. Let the temperature at the surface

To = B cos vi (83.1)

Here the daily mean temperature at the surface has been given
the value zero, B is the amplitude, and v = 2?r/day. The phase

angle has been put equal to zero so that the time t is counted

from the time of the temperature maximum at the ground.
In order to apply (82.1) to the problem, the potential temperature
should be considered according to page 216. However, we are

interested only in the comparatively small periodic deviations

of the temperature from the mean values at each altitude and
not in the mean vertical temperature distribution; therefore,

the temperature may be used instead of the potential tem-

perature. For the sake of simplicity, it will be assumed that

A = const. The differential equation to be solved is then,

according to (82.2),

at
~

P d*
'

subject to the condition (83.1) when z = 0. The observations

indicate that the amplitude whose value at the earth's surface

^e B decreases with the altitude and that the maximum occurs
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later at higher levels. As a function that satisfies these condi-

tions and that is equal to (83.1) when z = 0, we may choose

T = Be~** cos (vt
-

Xz) (83.3)

Here the decrease of the amplitude is expressed by e~~
x
*, and the

retardation of the time of the temperature maximum by Xz.

Upon substituting (83.3) in (83.2), it follows that this expression

is a solution of the differential equation provided that

X -^ (83.4)

When the amplitudes r\ and r2 at the levels z\ and Z2 are observed,

r2 e~ z *

or

X = - In ^ (83.41)
Z 2
~

Zi 7*2

When the phase retardation of the maximum AX between the

levels Zi and z 2 is known, it follows that

X = -^- (83.42)
z2
-

Zi
'

The coefficient of turbulent mass exchange can thus be com-

puted from the vertical distribution of the amplitude or of the

phase. If the variation of the mean temperature in the vertical

direction is to be included in (83.3), the differential equation

(83.2) may be regarded as an equation for the potential tem-

perature 9. Obviously, any linear function of z, e.g.,

8 = + /3z

satisfies the differential equation (83.2). From (9.31), it follows

that

T - To - (r - 0)z

for at the earth's surface, very closely, TQ = 9 . In order to

have a more complete solution the linear expression for T may
be added to (83.3). Because (83.2) is a linear differential

equation, the sum of two solutions is also a solution. But,



224 DYNAMIC METEOROLOGY

as mentioned previously, for the present discussion of the daily

temperature period only the periodic term is of importance.

Equation (83.3) together with (83.4) shows that, the larger

v
y i.e., the smaller the period 2ir/v, the more rapidly does the

amplitude of the period decrease. On the other hand, the greater

A, the less rapidly does the amplitude diminish. The smaller

the period 2ir/v, the larger the phase angle Xz which shows the

retardation of the maximum as a function of the period. Fur-

thermore, the larger A, the smaller the phase angle. It will

be noted that similar conditions hold for the propagation of a

temperature wave by molecular conduction.

A convenient representation of the vertical distribution of

the temperature period can be given in a polar diagram as shown

by Schmidt. 1 The amplitude r and the phase angle x are

represented, respectively, by the length of the radius vector

and by the angle that it includes with an arbitrary zero direction.

In the present case of constant A,

and

so that

r = e

X = X*

r = e

The end points of the radius vector should therefore be situated

on a logarithmic spiral around the origin. Schmidt uses tem-

perature observations made on the Eiffel Tower during 5 years.

The following table shows, as an example, the average amplitude
and time of maximum during autumn at different heights:

These data are plotted in the polar diagram in Fig. 62. The

points lie on a spiral. The spiral, however, approaches, not

1
SCHMIDT, op. cit., p. 21.
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the origin, but a point R to which correspond the amplitude
1 .23C and the time of maximum temperature 3.5* P.M. Schmidt

ascribes the discrepancy between the theory and the observations

to the effect of direct heating of the air by solar radiation.

But the radiation cannot be the sole reason. In reality, A
varies with time and altitude contrary to the assumption of a

constant A, and thus the points cannot be expected to lie on a

spiral around 0.

Choosing R in Fig. 62 as the new origin, Schmidt obtains new
values for the amplitudes and for the retardation of the maximum
with elevation. From the latter, he finds as the value of A

2C

JC
Noon

FIG. 62. Polar diagram of the daily temperature period on the Eiffel Tower.

(After W. Schmidt.)

9 gm cm" 1 sec^ 1 for the layer between the two lowest levels and

15 and 11 gm cm" 1 sec" 1 for the next two layers. These figures

indicate clearly that A varies with the altitude, but it is impossible

to find reliable values for this variation of A based on a solution

that starts from the assumption that A = const. Even the

order of magnitude of the mean value for A throughout the

whole layer may be completely wrong when A is computed from

the observations under the assumption that it is constant whereas

it is in reality variable with altitude. The simplifying assump-
tion that A = const gives only a qualitative picture of the

decrease and retardation of the temperature wave with the

altitude.

Haurwitz 1 has studied the vertical distribution of the amplitude
and phase retardation under the assumption that A increases

1 HAURWITZ, B., Trans. Roy. Soc. Canada, 3d ser., Sec. Ill, 30, 1, 1936.
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linearly with height. Although this assumption is also arbitrary,

it has at least the advantage that the determination of the

variability of A with z need not be based on a solution which

supposes that A = const, to begin with. Moreover, for the lowest

layers, A may be expected to be a linear function of
, by analogy

with the results of Rossby and Montgomery for the coefficient

of eddy viscosity (cf. page 212) which is closely related to the

coefficient of turbulent mass exchange.

When A increases with the altitude, the amplitude of the

daily temperature variation decreases rapidly in the lowest

layers, while higher up the decrease is slower. Similarly, the

phase retardation increases most strongly in the lowest layers

while it is constant in the case of constant A. The rapid varia-

tion of amplitude and phase in the lowest layers is due to the very
small A near the ground. A small A causes a rapid decrease of

the amplitude and a rapid increase of the phase retardation

as can be seen from Eqs. (83.3) and (83.4) for constant A. The

paper describes also how the vertical distribution of A can be

computed from three observations of the amplitude or of the

phase under the assumption that A increases linearly with the

height. Upon applying this method to the Eiffel Tower observa-

tions, values are obtained that are noticeably higher than those

given by Schmidt. The latter values appear too small when

compared with results from other observations, also.

The coefficient of turbulent mass exchange not only depends
on the altitude but also varies with time. In the daytime,

especially around noon when strong convection occurs, A is

larger than at night when the stratification of the atmosphere is

stable. The effect of the variation of A with time makes the

determination of A from the daily temperature period still

less reliable, although it is possible to solve (83.2) also without

difficulty if A/p is a periodic function of the time.

84. The Transformation of Air Masses by Turbulent Mass

Exchange. In Sec. 39, we discussed the transformation of a

relatively warm maritime air mass that comes to rest over a cold,

snow-covered continent. The cooling of such an air mass must

largely be due to radiative processes. In addition to the radia-

tive transfer of heat, there must also be cooling due to the

transfer of heat by turbulent mass exchange from the air to the

ground, But in the case under consideration the turbulent maiss
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exchange must be small owing to the very stable stratification

of the air.

On the other hand, when a relatively cold air mass comes in

contact with a warmer surface, it will be heated from the surface

upward owing to the effect of turbulent mass exchange. This

effect will be much stronger now than in the case of a warm air

mass over colder ground, for the stability of the stratification

is much smaller.

In this section, we shall study the transport of heat upward
in somewhat greater detail. It is hardly necessary to mention

that the transfer of other properties, e.g., of specific humidity,

may be discussed in the same fashion.

We have to consider now the potential temperature 9. Once

9 is known, the temperature T can easily be obtained from Sec. 9:

The potential temperature 9 may be a linear function of the

altitude in the cold air, before the motion toward warmer regions

has taken place. If the time is counted from the moment when
the air reaches the warmer region,

9 = e + yz when t = (84.1)

This assumption is justified when inversions such as are shown
in Fig. 23 for polar continental air are not present. It would

also be possible to solve the problem for more complicated
distributions of 9, but the solution is more laborious. As a

further simplification, the transition of the air from the colder

to the warmer region may be sudden. This is never strictly

true even during the motion from land to sea. In fact, when a

cold mass moves in a southerly direction over land or over water,

the temperature variation is rather gradual. The case of a

gradual variation of the surface temperature can be treated

quite easily,
1 but here we shall restrict ourselves to the simpler

condition that when t > the potential temperature 9 at the

surface suddenly changes to 9i. Thus, we have in addition

to the initial condition (84.1) the boundary condition that

9 = 9i when z = (84.2)

Finally, it will be assumed that the surface of the earth or of

the ocean is not cooled by its contact with the cold air. This

1 BRUNT, D.,
"
Physical and Dynamical Meteorology," 2d ed., p. 228,

Cambridge University Press, London, 1939.
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condition is probably less well satisfied over land than over the

ocean, where the cooled surface water will be replaced by warmer

water from below owing to turbulent mixing. The potential

temperature must satisfy the differential equation for the

turbulent mass exchange,

"dF
= ~"

6V (84.3)

and the two conditions (84.1) and (84.2). In (84.3), A is again

regarded as constant. In the theory of the conduction of heat,

it is shown that the solution of (84.3) that satisfies (84.2) and

(84.1) is given by

_ E [
-? 11 (84.4)

LViW^Jj
Here E stands for the error function,

rx *

dx (84.5)f
Jo

Tables of this function are available/ thus (84.4) can readily

be evaluated for concrete examples.

The reader who is not familiar with the solution (84.4) can

easily verify that it satisfies the initial condition (84.1) for

t = 0, the boundary condition (84.2) for z = 0, and the differen-

tial equation (84.3).

For the following discussion, it is useful to keep in mind that

the increase in potential temperature AO and in actual tempera-

ture AT7 due to turbulent transfer of heat is related by the

formula

AT = A6

according to (9.1), provided that the pressure p at the level under

consideration does not change. Under average conditions the

following table applies:

1 For instance, F. Linke,
"
Meteorologisches Taschenbuch," 2d ed., Table

93, Akademische Verlagsgesellschaft, Leipzig, 1933; PEIRCE, B. 0., "A
Short Table of Integrals," 3d ed., pp. 116-120, Ginn and Company, Boston,

1929.
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Therefore, the variation of the actual temperature is very closely

represented by the variation of the potential temperature.

At the surface, the total effect of the heating that is given by
the difference 61 6 becomes noticeable immediately, at greater

heights theoretically only after an infinite time has elapsed.

To obtain a first orientation about the propagation of the heating

upward, we may determine the height zm at which the potential

temperature, after a given time t, has increased by (61 6 )/2,

i.e., by one-half the total possible increase. By analogy with

the "mean life" of radioactive substances, this height zm may
be called the height of mean heating. The time after which 9
has risen by (61 O )/2, at a given level, may be called the time

of mean heating. Upon formulating the condition for the height
of mean heating with the aid of (84.4), it follows that

According to tables of the error function E,

(84.6)

and therefore the height of mean heating can be found for any
time when A is given.

In Fig. 63 the increase of the height of mean heating with time

is shown for different values of A. It has been assumed that

p = 10~~
3 gm/cm 3 as a mean value. The heating effect spreads

rapidly through the lowest layers, but it proceeds more slowly

at higher altitudes. When A = 50 gm cm" 1 sec" 1
,
for instance,

the height of mean heating is 1000 m after 2% days, but only
after 10 days has it reached 2000 m. When observations of

the temperature increase with time at different heights are

available, Fig. 63 may be used to estimate the value of A.
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4DOO

5 2010 15

Days
FIG. 63. Height of mean heating for various coefficients of turbulent mass

exchange (A in cgs units).

-35 -30 "25 -20 -15 -10 '5

Tempercrhjre,C
FIG. 64. Heating of a cold air mass from below. (After Schwerdtfeger.)
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Schwerdtfeger
1 has given an example (Fig. 64) of the vertical

distribution of 9 when the air is heated from the ground. It is

assumed that dQ/dz = 0.5C/100 m, 9 = ~15C, 61 = 0C,
A = 40 gm cm" 1 sec" 1

,
and p = 10" 3 gm/cm s

. After the heating
has begun, the potential temperature decreases from the surface

upward to a minimum. At higher levels, 9 increases in the same
manner as before the heating began. This minimum moves

higher and becomes less sharp as time goes on.

The lowest layer of the air mass under consideration attains a

superadiabatic lapse rate during the first days of heating. Its

equilibrium is thus unstable, whereas the layers above the level

of minimum potential temperature are stable. Obviously, the

assumption that A = const throughout the whole air mass is

therefore untenable. Nevertheless, the preceding calculations

give at least a schematic picture of the role that turbulent

mass exchange may play in the transformation of air masses.

Schwerdtfeger's results are represented in Fig. 64
;
but instead of

the potential temperature the temperature has been plotted as a

function of the height.

The problem of a warm air mass moving across a cold surface

has been treated by Taylor.
2 The solution is the same as

(84.4) except that 9i 9 is now negative. Owing to the cool-

ing of the lowest layers of the atmosphere by turbulent mass

exchange, an inversion is formed. This inversion attains

higher altitudes as the cooling spreads upward. Taylor applies

his results to temperature observations above the Newfoundland

Banks. Here, the air that comes from the warmer land is cooled

in contact with the cold oceanic water, and an inversion is

formed. From the height of this inversion and from the esti-

mated time during which the air must have been flowing over

the water Taylor obtained values for A of the order 10 gm cm" 1

sec" 1
. This small value is caused by the very stable stratification

of the atmosphere.
85. Lateral Mixing and Its Study by Isentropic Analysis.

Equation (81.4) shows that the transport of a property in a given

direction is proportional to its gradient in this direction and

1 SCHWERDTFEGER, W., Verdffentlich. Geophys. Inst. Leipzig, 2d ser., 4,

253, 1931. More examples will be found in W. Schmidt, "Der Massenaus-

tausch in freier Luft und verwandte Erscheimmgen."
2 TAYLOR, G. I., Phil. Trans. Roy. Soc. A, 215, 1, 1915.
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to the coefficient of turbulent mass exchange. If the latter is

the same in all directions, the transport must be almost exclu-

sively in the vertical direction, as was assumed in Sec. 81, for

all meteorological elements change much more quickly in this

direction than in the horizontal. 1

The coefficient of turbulent mass exchange in the vertical

direction is roughly of the order of magnitude 10 1 to 10 2 gm cm~ l

see""
2

. Rossby has suggested that the coefficient of turbulent

mass exchange in the horizontal direction may be very much

larger than that of vertical mass exchange and that therefore

eddy viscosity and eddy conductivity might have a great effect,

also, on the horizontal distribution of the properties of the air,

especially on the momentum of motion. For the ocean the

importance of this
"
lateral mixing" appears,well established. 2

Rossby
2 has pointed out that owing to the strong gravitational

stability of the atmosphere shown by the increase of the potential

temperature with the altitude the eddy motions responsible for

lateral mixing will take place along surfaces of equal poten-

tial temperature rather than along horizontal surfaces, which as

a rule intersect the surfaces of equal potential temperature.

Because the surfaces of equal potential temperature are also

surfaces of constant entropy according to Eq. (22.5), at least

for unsaturated air, they may also be called "isentropic
"
surfaces.

In order to study the eddy motions responsible for lateral

mixing and the flow patterns in the free air in general, Rossby
and his collaborators 3 have developed a new method, the so-called

"isentropic analysis," following a suggestion originally made by
Shaw. 4

Isentropic analysis assumes that the air currents in the

free atmosphere move with and within their proper isentropic

surfaces rather than in horizontal planes, an assumption that

may be justified at least over reasonably short periods of time

and as long as nonadiabatic effects such as radiation, condensa-

1 HESSELBERG, T., and FRIEDMANN, A., Verdffentlich. Geophys. Inst.

Leipzig, 2d ser., 1, 147, 1914.
a ROSSBY, C.-G., and collaborators, Bull. Am. Met. Soc., 18, 201, 1937.
8
See, especially, J. Namias, in S. Petterssen, "Weather Analysis and

Forecasting/' Chap. VIII, McGraw-Hill Book Company, Inc., New York,
1940. Or, J. Namias, Air Mass and Isentropic Analysis, X, Am. Met. Soc. t

Milton, Mass., 1940.
4 SHAW, N., Manual of Meteorology, vol. 3, 259, Cambridge University

Press, London, 1933.
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tion, and evaporation can be neglected. Apart from the aerologi-

cal observations of pressure, temperature, and humidity the

upper witids as determined from pilot-balloon observations can

be of assistance in the construction of isentropic charts, as pointed
out by Spilhaus.

1 To determine the intensity of lateral mixing
and to find the trajectories of the air from day to day the dis-

tribution of the specific humidity is plotted on the isentropic

charts. We have thus two "
coordinates/' potential temperature

and specific humidity, to follow the motion of a parcel of air.

For a complete determination of the position a third conservative

property is required. Starr and Neiburger
2 have shown that

the so-called
"
potential vorticity" may be used for this purpose.

This quantity has been introduced by Rossby.
3

According
to Bjerknes's circulation theorem (52.2),

C + 2coF = const

in an autobarotropic fluid. Therefore, the absolute vorticity,

i.e., the vorticity relative to the earth plus the vorticity due to

the earth's rotation, remains constant. In general the stratifica-

tion of the atmosphere is not autobarotropic, but it is possible

to subdivide the atmosphere into sufficiently small layers each

of which may be regarded as autobarotropic. If the vertical

variations of u and v are neglected and if it is assumed that the

hydrostatic equation (6.1) is satisfied, it follows from (47.2) that

dU . dU
,

dU . 1 dp /oe 1\

si+"ji + "ru
- 2a 'm '"---

f ji
<85 - 1)

s + -E + 'S + *---- -;g <85->

--Js
1

<">

Owing to the barotropic relation p = p(p),

A (l\ = - I ^ *P and (\ = - I *B. *P

dy \pj p
2
dp dy dx \p/ p

2
dp dx

Upon differentiating (85.11) partially with respect to x, and

(85.1) with respect to i/, it is found that

1
SPILHAUS, A., Bull. Am. Met. Soc., 21, 239, 1940.

2
STARR, V. P., and NEIBURGER, M., J. Mar. Research, 3, 202, 1940.

8 ROSSBY, C.-G., Quart. J. Roy. Met. Soc., 66, Suppl. 68, 1940.
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dt
^

where

1 + W JL + t,_i

Noting that

the preceding equation is reduced to

(f + 2w sin *>) + (f + 2co sin >) + ~ = (85.2)

The equation of continuity (47.3) may, in view of the present

meaning of d/dty
be written in the form

dp fdu dv\ dpw n

Multiplying by g dz and integrating from the lower boundary
Zo to the upper boundary z\ of the autobarotropic layer,

It must be noted that ZQ and 2:1 may here vary with the time and

with x and y, contrary to page 159 where a fixed level was con-

sidered. Thus

f*
1

dpw j r / \ / \ i ( dz\ dz\

}
g
-te

dz== ff[(pw)l
~ (pw = g

\
pl Tt~^ Tt)

Further,

and
1

gp dz = pi
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Thus, the equation of continuity changes into

d ( N , , N (du . dv

5 (Po
-

Pi) + (Po
- pO

(te
+

Upon substituting the expression for -
f- T- in (85.2), it follows

that

f + 2o> sin

-
Pi

, ox= const (85,3)v '

Although the relative vorticity changes with the latitude and

with the mass p PI of the layer, the expression (85.3) remains

constant. Thus, if the air is brought to a standard latitude (pa

and if the pressure difference po PI is reduced to a standard

Aps, the resulting vorticity $3 may be considered as a char-

acteristic, conservative property, the potential vorticity. The
actual determination of the vorticity is, of course, difficult

in view of the unreliability of the wind observations, but some

progress has been made by Starr and Neiburger.

Grimminger
1 has studied the gradual spread of the lines of

equal specific humidity sideways in moist currents as they

appear on isentropic charts. Under the assumption that this

spread is due to lateral mixing, he finds coefficients of lateral

mixing between 4 X 10 6 and 5 X 10 7 gm cm" 1 sec~2
. These

figures are at least 10 3 times larger than the coefficients of eddy

viscosity in the vertical. Because the vertical gradients of the

temperature and of the horizontal-wind velocity, to mention

only two elements, are only about 102 times larger than the

horizontal gradients, the importance of the lateral mixing as

compared with vertical mixing would be clearly established if

the order of magnitude of Grimminger's figures could be regarded
as final.

In view of the suggested importance of lateral mixing, Rossby
2

has given particular attention to the dynamics of the jet stream

and its applications in meteorology and oceanography. To

1 GRIMMINGEB, G., Tran*. Am. Oeophys. Un., l$th Ann. Meeting, p. 163,

1938.
2 ROSSBT, C.-G., Papers in Physical Oceanography and Meteorology, Mass.

Inst. Tech. and Woods Hole Ocean. Inst., 5, 1, 1936; J. Mar. Research, 1, 15,

1937.
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obtain an idea of the dynamics of such a current without entering

into the details of the mathematical discussion, consider a

current through a fluid originally at rest, as shown in Fig. 65.

The direction downstream is indicated by the full arrow in the

center of the figure. As long as the effect of lateral mixing at

the boundaries of this current is disregarded, the Coriolis force

of this motion must be balanced by a pressure gradient at right

angles to the current, with the higher pressure to the right. Out-

side the current the pressure is uniform.

Owing to lateral mixing the fluid masses to the right and

to the left of the original current must receive a slight acceleration

downstream while the original current loses speed, as indicated

by the broken arrows in Fig. 65. Thus, velocities in excess of the

D i vergenee

Lowerpressure v Convergence

Htgherpressure Divergence
>

V Convergence
FIG. 66. Effect of lateral mixing on a current through a fluid at rest.

geostrophic values are established to the right and left of the cur-

rent axis, whereas the velocity in the axis is less. The Coriolis

force of these excess velocities is not balanced by the original

pressure gradient. Consequently, transversal velocity com-

ponents are produced as indicated by the double-shaft arrows

in Fig. 65. Therefore, in the left half of the current system,

convergence and pressure rise must occur; in the right half,

divergence and pressure fall. The mass distribution becomes

gradually more adjusted to the new velocity distribution pro-

duced by lateral mixing. Farther away from the axis the

transversal velocities must vanish. Thus, a region of divergence
is found at greater distances from the axis on the left side, a

region of convergence on the right side. A trough of low pressure

will form to the left, a ridge of high pressure to the right. Rossby
considers quantitatively the development of this current and its

pressure field, also. It appears that the current system is not

able, by means of the mechanism considered, to build up such

compensating pressure gradients as could offset completely the

Coriolis forces of the motion produced by lateral mixing. As a
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result the current systems of the atmosphere, and similarly of

the oceans, have the tendency to break up into large-scale

anticyclonic eddies to the right of the current and into cyclonic

eddies to the left.

Problems

26. Determine the vertical distribution of dust particles in the steady

case, assuming the same constant sinking velocity for all dust particles and

regarding the density of the air as independent of the altitude.

a. When the coefficient of turbulent mass exchange is constant.

6. When the coefficient of turbulent mass exchange has a finite value at

the ground and increases linearly with the altitude.

27. An air mass in contact with a cold surface is cooled from below by
turbulent mass exchange. Assume that the surface temperature and the

coefficient of turbulent mass exchange are constant and that the tempera-
ture decreases linearly with the altitude before the cooling. At which height

Zmax has the temperature a maximum at a given timo? For how long after

the beginning of the cooling does an inversion exist? At which time is the

altitude zmax of the maximum temperature highest? Determine the expres-

sion for zmax and the temperature at zmax at this time [NOTE: The approxi-

mate relation (9.31) 9 = T -f Tz may be used for the relation between the

potential temperature and the temperature.]

28. Find an expression for the daily temperature period at different alti-

tudes when the coefficient of turbulent mass exchange is independent of the

altitude but is a periodic function of the time having its maximum at the

time of maximum temperature and its minimum 12 hr. later.



CHAPTER XII

THE ENERGY OF ATMOSPHERIC MOTIONS

86. The Amount of Available Energy. The energy required to

set the atmosphere in motion and to maintain the air currents in

spite of the effect of viscosity is ultimately of solar origin. The
manner in which the solar energy is received at the surface of

the earth and in the atmosphere has been described in Chap. V.

According to page 94 the amount of solar energy received

on the average over the whole earth is 0.276 cal/cm
2 min if

Aldrich's value of the albedo is adopted. This is in mechanical

units 0.0193 watt/cm
2

.

1

87. The Atmospheric-energy Equation. Upon multiplying
the three equations of motion (47.2), respectively, by u, v, and w
and adding, it follows that

1 / dp . dp . dp\= 1^^+^^-+^^)
p \ dx dy dz/

d u* + v* +
dt 2

+ (uFx + vFv + wFz)

The components of the external force Fx ,
Fy ,

Fz may now repre-

sent the components of the frictional force. Furthermore, the

vertical component F contains, of course, the acceleration of

gravity g which will be written down separately. Because
w = dz/dty the preceding equation may be written

d (u
2 + v 2 + w 2

,
\ 1 f dp dp

f vFv + wF,) (87.1)

W2 _L y 2 i W2

s is the kinetic energy, and gz the potential energy,

both per unit of mass. If s is the direction of the velocity and c

its intensity, it follows that

1 The reader will remember that the unit of energy in the cgs system is the

erg, 1 erg 10~"7 joule, and the unit of power, i.e., the work done per unit

time, is ergs/sec, 1 erg/sec 10~7 watt.

238
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dp . dp . dpu -4- v 4- w
dx
^

dy
^

dz

= c cos (s,x)
- + cos (s,y)

- + cos (s,z)

..g (87.11)

where dp/ds is the component of the pressure gradient in the

direction of the velocity. Similarly, for the frictional force,

uFx + vFv + wFz
= cF9

Thus, the two expressions on the right-hand side of (87.1)

represent the work done per unit time by the pressure forces and

frictional forces.

To obtain an energy equation that comprises also the variations

of the internal energy, (87.1) may be combined with the first law

of thermodynamics (8.1) for an ideal gas,

Equation (8.1) is here multiplied by the mechanical equivalent

of heat in order to express all forms of energy in mechanical

units. Upon adding (8.1) in its above form to (87.1), it follows

that

-

This equation relates the variation of the heat content of an

(ideal) gas and the changes of its kinetic, potential, and internal

energy. It shows further that the energy spent by expansion, by
motion across the isobars, and the energy loss due to friction have

to be considered, also. It should be noted that (87.2) refers to an

individual fluid particle. Because

ltt~lM<tedy'dz
it follows that

c
ds

""

dt dt
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and Eq. (87.2) can be written in the following form:

If the friction may be neglected, Fg
= 0. When the motion is

steady, dp/dt = 0; and when the changes of state are adiabatic,

dq/dt = 0. With these three assumptions, (87.3) may be inte-

grated with respect to the time,
1

+ 0* + - + Jc T = const (87 -4)
Z p

This equation holds for successive states of an individual particle

or for simultaneous states of different particles on the same

streamline
;
for the motion was assumed to be steady, and thus the

streamlines and the paths of the particles coincide (page 134).

But the constant in (87.4) may, of course, vary from streamline

to streamline.

Equation (87.4) is a generalization of
"
Bernoulli's equation"

^ + QZ + ~ = const (87.41)
L p

for an incompressible fluid. It shows, for instance, that when
the velocity of the particle changes, the pressure must change
in the opposite direction. This explains why an obstacle in the

air flow, such as a building, may produce a noticeable reduction

of the barometric pressure in the case of high wind velocities.

Koschmieder 2 has given examples of measurements in the

observatory on the mountain Schneekoppe where the pressure is

reduced 1 mb when the wind velocity is 17 m/sec and 2 mb when
it is 24 m/sec. The effects vary with the different conditions

under which the barometer is placed, and a separate investigation
is necessary for each observatory.

Topographic obstacles such as mountains give rise to a similar

pressure effect. Koschmieder3 has shown how the topographic
disturbances of the pressure field can be computed from (87.4)

provided that the velocity distribution is known. Examples of

1 BJERKNES, V., Met. Z., 34, 166, 1917.
2 KOSCHMIEDER, H., Met. Z., 47, 317, 1930.
8 KOSCHMIEDER, H., Met. Z., 43, 246, 1926.
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such obstacles consisting of promontories projecting out to sea

and the resulting disturbances have been described by Crossley.
1

88. The Energy of Air Columns. The internal energy of an

air column of unit cross section extending to the level A,

7* = Jcv fQ
h
TP dz (88.1)

where /* is expressed in mechanical units. With the aid of the

hydrostatic equation (6.1),

r S*PO

= ^-V f
9 Jpk

T dp (88.2)

This formula may sometimes be more convenient for the compu-
tation of the internal energy.

The potential energy of the same air column,

=
JT*

gzp dz (88.3)

A simple relation exists between P* and /*. By the hydrostatic

equation (6.1) and by integration by parts,

p* = fpo

zdp = phh + I P dz
Jph /0

Because p = RpT,

P* phh + R I Tp dz

Thus

or because -y
= = X 1, according to Sec. 8,

t/Cv Cv

P* = -phh + (\
-

1)7* (88.5)

It should be noted that in these relations the latent heat of

condensation is not considered.

89. The Dissipation of Energy. The rate of dissipation of

the kinetic energy of atmospheric motion is represented by the

ternr cF9 in (87.2). To obtain an estimate of this term, it may

1
CROSSLEY, A. F., Quart. J. Roy. Met. Soc., 64, 477, 1938.



242 DYNAMIC METEOROLOGY

be assumed that the vertical component w of the velocity can be

neglected and that

,, Id/ du\ , ,; 1 a / dv\
F* = -

TT ( M -5- )
and * = -

5- ( M *- )
p dz \ dz/ p dz\ dz/

as follows from (71.5) and Sec. 74. Upon multiplying by p and

integrating from the surface to infinity, it follows that the rate of

dissipation in an air column of unit cross section,

Upon integrating by parts and assuming that at infinity the

velocity vanishes, it follows that

p [7aw-
Jo

M
[(-sa

,

. , /fift0
.

A =
-"V

M
i
+ v sA-

-
o

M
-sa

+
*>

dz (89 - 2)

The first term on the right-hand side represents the effect of

surface friction, the second the dissipation of energy within the

air column. 1 The latter term appears in the denominator of the

Richardson number (page 200). Therefore, A represents the

total effect of friction at the surface and in the free atmosphere.
To simplify matters, it will be assumed that /x and the pressure

gradient are constant and that the velocity does not change with

time. This implies, of course, that the losses due to the dissipa-

tion of energy are continuously replaced. It follows then, from

(89.1) and (76.1), that

A = + I
~- u dz +2w sin $ vy I pu dz

Jo ox Jo

where v is the geostrophic wind velocity. Above the gradient-
wind level Z), u is very small so that the dissipation occurs mainly
in the layer from the surface to D. Therefore, only the dissipa-

tion AD in the air column up to D will be computed. The

density p may then be considered as constant without causing a

serious error. Because only a rough estimate of A is desired, it

will further be assumed that the wind velocity vanishes a$ the

1 HESSELBBRG, T., Geofys. Pub., 3, 5, 1924.
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earth's surface. Then, aQ
= 45 according to page 204; and,

from (76.7),

u = vQer
a* sin az

v = vg (\ e~ai cos az)

The gradient-wind level D = w/a according to (76.71). When
the surface-wind velocity vanishes, it follows from (89.2) that the

dissipation due to surface friction is zero, but the second term in

(89.2) becomes larger because the increase of the wind velocity

with altitude is greater. The value found for A when u = v =
at the surface is therefore a reasonable estimate of the total

dissipation. Upon substituting the value for u, it follows that

(*D
Az, = 2o> sin <f>

vgp I u dz = - " Sm y p Dvg*(l + e~*) (89.3)
JO 7T

If the integration had been extended to infinity, the term

e~T (= 0.0432) would have dropped out. The dissipation A/>

may be compared with the kinetic energy KD* contained in the

same volume,

-
0.173) (89.4)M

Thus, the ratio

Az> 2w sin <p 1.043

0.827
= -2w sin <p 0.401. (89.5)

At a latitude of about 43.4, for instance, the ratio would be

0.4 X 10~4
per sec, or 0.144 per hr. This figure agrees well with

more accurate estimates by Sverdrup.
1 In approximately 7 hr

the kinetic energy of the frictional layer would be dissipated if it

were not replaced from other sources. If the gradient level is

assumed to be at 1000 m, the frictional layer comprises about

one-tenth the total mass of the atmosphere and, the usual

increase of the wind velocity being disregarded, also about one-

tenth of the total kinetic energy. When the kinetic energy

of the upper layers is used to replace the kinetic energy in the

1 SVERDRUP, H. U., Veroffenttich. Geophys. Inst. Leipzig, 2d ser., 2, 190,

1918.
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factional layer, it would take about 3 days before the energy is

dissipated provided that the rate of dissipation remains the same.

If vg
= 10 m/sec, D = 1000 m, p = 1.2 X 1Q-8 gm/cm3

,

K* = 5 joules/cm
2
, according to (89.4). Thus, A/> = 2 X 10~4

watt/cm
2

. This is about 1 per cent of 0.0193 watt/cm
2
,
the

average amount of solar radiation received at the top of the

atmosphere (Sec. 86) after deducting the losses due to the albedo.

Sverdrup
1 found by a much more thorough discussion that about

2 per cent of the solar radiation is used to replace the losses due

to friction; thus, the figure derived here by a very simple con-

sideration gives at least the right order of magnitude.
90. The Energy Transformations in a Closed System. When

two air masses of different temperatures are lying side by side or

when the potentially colder air lies over the potentially warmer

air, the stratification of the air represents a certain amount of

potential and internal energy. Margules
2 has shown that this

energy may be of the right order of magnitude to account for

the observed kinetic energy. In order to make possible a

mathematical discussion of the problem, he assumes that the two
air masses form a "

closed system." This implies that the two

air masses are enclosed by fictitious walls through which heat or

energy in any other form cannot pass and that the velocity

component normal to these walls vanishes.

In deriving the energy equation for such a closed system, it is

necessary to show that

*- (9(U >

Here L is a mass property of the fluid such as kinetic energy, dr is

a volume element, and the integrations are extended over the

whole closed system. Because d/dt stands for the individual

variation, it follows that

CdL , C dL
'

L f / dL ^ dL
,

dL

j Tt pdr =
J -dt

pdT +
) (

u^ +v ^ +w^
or because the order of the operations d/dt and / may be inter-

changed,

1 SVERDRUP, loc. cit.

8 MARGULES, M., Jahrb. Zent.-Anst. Met. Geodynamik, 40, Suppl. 2, 1903,

Vienna, 1905; Met. Z.. 23, 481, 1906.
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According to the equation of continuity (47.3),

Thus

dp __ (dpu
dt

"
~~\dx

dpv dpw
" ~

The second integral may be transformed by means of Green's

theorem

[/ is the component of U perpendicular to the boundary surface

of the volume under consideration; do- is an element of this

surface. [7 X,
Uv ,

Ut are the components of U parallel to the

x-j y-, and z-axes. The reader who is not familiar with the

theorem (90.2) will have no difficulty in seeing its validity if he

considers U as the velocity multiplied by the density. The equa-
tion states, then, that the divergence (see page 135) of the mass

in the closed system equals the mass transport through its

boundary. Applying (90.2) to the preceding equation, it follows

that

f (dLpu
J (-*r

dLpv

where cn is the velocity component normal to the boundary
surface. cn vanishes according to the definition of the closed

system. Equation (90.1) is thus proved.

To derive Margules's energy equation for a closed system,

(87.2) may be multiplied by p dr and integrated over the volume

of the system. Then, because I p dr = for a closed system,

with the aid of (90.1),
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Here

f c2K* = I p-xdr, the kinetic energy

JP* = I gpz dr
y
the potential energy

7* = I Jc^pT dr, the internal energy

Further,

dj) of) oj)

or, with the equation of continuity (47.3),

1

dx
'

dy
'

dz

Therefore,

according to (90.2). The last integral vanishes in a closed

system. Thus, the energy equation for closed systems becomes,
when the effects of friction are disregarded,

K* + P* + I* = const (90.3)

If (88.5) is taken into account, this equation may be written in

the form

K* - hph + XJ* = const (90.31)

Consider a closed system in which the air is at rest. Let its

potential plus internal energy be P* + /* If a rearrangement
of the stratification occurs, the sum of potential and internal

energy becomes P*' + /*'. If the rearrangement occurs spon-

taneously, the sum of potential and internal energy must decrease

so that a certain amount of kinetic energy K*' may be produced.
If the small variations of the height h are neglected, it follows that

K*' = X(J* - /*') (90.4)
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If M is the mass of the system and c the mean velocity that it

acquires by rearrangement,

K*' = % , (90.5)

so that 5 can be computed. The value of c obtained in this

manner is a maximum value, for some of the kinetic energy

generated will be used up by friction. An example of such an

energy computation will be given in Sec. 91 to show how Margules
has solved such problems.

91. The Energy of Air Masses of Different Temperature Lying
Side by Side. We shall consider 1 two air masses of different

temperature lying side by side (Fig. 66). The surface pressure

and temperature in the colder mass 1 are poi and TOI, and the pres-

Ph Ph

2'

n,
i

f

Po

(a) (b)
Fio. 66. Rearrangement of two air masses of different temperature. (After

Margules.)

sure and temperature at the top of the layer ph and T*i. The
same quantities for the warmer mass are denoted by the index 2,

except the pressure at the top of the layer which is the same for

both masses. To simplify matters, it is assumed that the lapse

rate of temperature is adiabatic in both layers and that the

changes occur adiabatically. The horizontal cross sections of

both masses may be the same, say B/2.
The sum of potential and internal energy of the system attains

a minimum, and therefore the kinetic energy reaches a maximum,
when the colder mass comes to be situated under the warmer

mass, as indicated in Fig. 666. The cross section of each mass is

now B. It may be assumed that the strata in each layer retain

their position relative to each other during the transformation.

Because the mass of each layer remains constant but spreads over

MARGULES, loc. cit.
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twice its former cross section the pressure p 2
'

at any level in the

second mass after rearrangement is given by the relation

PI'
- P =

Similarly, in the first mass,

Pi'
-

PA ~

Thus,

~ I ~ P2 P* /m i \
7>2

= P2 g (91.1)

Pi = Pi + y 2

J
Pl

(91.11)

With the aid of these equations the pressures p$ at the ground
and pa' Sit the discontinuity can be found.' The temperature

Ti and Tj in both layers at any level can be expressed by the

adiabatic equation (8.41),

(91.2)

J = 7
7

2 (
\

TJ = 7
7

2 (91.21)
\P2/

for the relative order within the layers is supposed to be undis-

turbed during the rearrangement. The temperatures T ',

T>', and T,z at the ground and on both sides of the discontinuity

can be found by means of Eqs. (91.2) and (91.21). By the

formula for the internal energy derived in Prob. 29 and Eqs. (90.4)

and (90.5) the kinetic energy K* and the mean velocity can be

found. The numerical calculation is very laborious; for K*'

appears as the small difference of two large figures, and thus the

computation has to be done very accurately.

Margules, however, has also developed a much simpler

approximation formula which gives good results. This formula

will be derived here.

As long as the layers are not too thick, it follows from (91.1),

(91.11), (91.2), and (91.21) that, approximately,

(91.22)
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The internal energy of the system in the original position,

pt>l

and in the final position,

/*' = ^ B ( r ZY dPl
> + r

Q \Jp/ Jph

according to (88.2).

The two integrals in the expression for /*' may be transformed

with the aid of (91.1), (91.11), (91.22), and (91.23)

IT '''"-

Therefore

(91.3)

Even though only the first terms in the expansions (91.22) and

(91.23) for Ti and 7Y have been used, the last formula is correct

to the terms of the second order, as shown by Margules. To
evaluate the integrals, it may be noted that

p

Y^=| A = r r,^
k Pl K Jph p*

The mean temperature in each layer before the rearrangement

may be introduced by the definition that

r*poi _ TPOJ

I Ti dp! = Ti(p i
- ph) and I T2 dp 2

Jph Jph _t - pk)

Thus, the difference of the internal energy before and after the

rearrangement,
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(p02 + PA) I h + fl(poi
-

Ph)

+ Ti(pn -
PA)]

(91.31)

This formula may be simplified still further, for it follows from

(6.1) that, approximately,

P.,- **-

P.,- P,e^-

Ti* and TV are suitably defined "barometric" mean tempera-

tures,

A _ C h
dz

T J 7
1

which differ slightly from the mean temperatures T\ and TV

But, for the purpose of the present calculation, they may be

regarded as identical. The second-order terms in the series for

PQI and ^02 have been included, for the expression (91.3) for

/*_/*' js accurate to the second order. Upon substituting

these approximations for p i and p02 in (91.31) and neglecting a

term of the third order the difference of the internal energies

(9L4)

The mass of the two layers,

M f
P02

~
Ph | POI

_M ~
g V 2

"*"
2 /

""

2 S

for the second-order terms may be neglected here. According to

(90.4) and (90.5),

2

Hence, because \JcvK/R = 1 (Sec. 8),

i T\" f"
9 t * * /r\i tz\
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Because the lapse rate of temperature is the same in both layers,

Tl - f7 = T02
- Toi = AT7

. Further, let Tl + T\ = 22\ Then

(91.6)

This is the maximum velocity obtainable when the two layers

are arranged so that their potential and internal energy becomes

a minimum.

Margules gives the following examples:

The last column gives the values of c computed with the

approximation formula (91.6). The preceding column gives

the figures computed with the exact formula. The agreement
between both values is very good even for an air column 6000 m
high, for which the assumptions on which the approximations are

based are no longer very well satisfied.

The resulting wind velocities are quite considerable even when
it is taken into account that they represent maximum values, for

friction was not considered.

Margules's formula has been used by Schroder 1 to discuss the

energy transformation in a regenerating cyclone. The cyclone

studied by Schroder was already occluded when, through the

infusion of fresh polar air, it acquired new potential and internal

energy. With the lifting of the older polar air masses over the

fresh polar air the newly acquired potential and internal energy
decreases. Schroder shows that this new energy is sufficient to

explain the observed increase of the kinetic energy of the cyclone

even when allowance is made for the loss of energy through
friction. It appears therefore that the kinetic energy of the

motion in cyclones is gained by the transformation of potential

and internal energy of air masses which originally were lying side

1 SCHBSDBB, R., Verdffentlich. Geophya. Inst. Leipzig, 2d ser., 4, 49, 1929.
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by side. But Margules has already pointed out that his calcula-

tions do not show in which manner this transformation takes

place, when the two air masses assume a more stable position.

Starr 1 has extended Margules's theory in this respect under

certain simplifying assumptions. He considers two incom-

pressible fluid layers of different density lying side by side, as

shown in Fig. 66a. In the final state of equilibrium the heavier

mass must be situated under the warmer mass in the form of a

wedge (page 171). The air must move at right angles to the

vertical boundary of the juxtaposed layers in order to assume this

position. This motion gives rise, also, to a velocity component

parallel to the boundary. The final velocity distribution

represents an amount of kinetic energy that is about one-third

of the potential energy released during the readjustment. This

according to Starr, is due to the assumption that the transition

from the initial to the final state proceeds infinitely slowly,

implying the existence of an external retarding agency which

absorbs part of the available energy.

92. The Effect of Water Vapor on the Atmospheric-energy
Transformations. The preceding discussions of the energy
transformations in the atmosphere refer to dry air. Equations
like (90.3) hold, of course, for moist air also, even when con-

densation takes place, for they state the principle of the conserva-

tion of energy; all that is necessary is that the same conditions

absence of friction, and adiabatic walls of the system under con-

sideration hold in the case of moist air as in the case of dry air.

But the internal plus potential energy that is available for the

production of kinetic energy may be very different in columns of

dry air and of moist air, which have the same distribution of pres-

sure and temperature. Thus, a single column of dry air is

unstable provided that the temperature gradient is superadia-
batic 2 but stable if it is less than adiabatic. On the other hand, if

the air is moist, energy can be realized when the column of air

overturns provided that it was conditionally unstable (page 57).

1
STARR, V. P., Monthly Weather Rev., 67, 125, 1939.

2 The computation of the energy to be realized when the layer assumes

a stable stratification has been carried out by Littwin in H. Koschmieder,
"Dynamische Meteorologie," p. 336, Akademische Verlagsgesellschaft,

Leipzig, 1933, and by G. W. B. Normand, Quart. J. Roy. Met. Soc., 64, 71,

1938.
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The important role of water vapor during transformations of

atmospheric energy was stressed by Refsdal 1 and Raethjen.
2

Examples of the order of magnitude of the mean velocities

attained owing to the presence of water vapor were given by Litt-

win. 3 A layer extending from 1000 to 700 mb, with a surface

temperature of 24C, dry-adiabatic lapse rate, and 100 per cent

relative humidity realizes energy corresponding to a mean veloc-

ity of 12.8 m/sec by overturning. The calculation may be carried

out either by the same method as that used by Margules or by the

aid of a thermodynamic chart. In the latter case, it is important
to take into account that during vertical readjustment in a layer

of air of appreciable size both ascent and descent of air must take

place, as already pointed out in Sec. 26.

Problem

29. Find the internal energy of a column of dry air with a constant lapse

rate of temperature. Derive, also, an approximate expression for the inter-

nal energy of an air column of small height. The last expression involves

only the surface pressure, the height of the air column, and, if terms of the

second order are included, the surface temperature.

1 REFSDAL, A., Geofya. Pub., 6, No. 12, 1930.
2 RAETHJEN, P., Met. Z., 51, 9, 1934.

3 LITTWIN, W., Monthly Weather Rev., 64, 397, 1936.



CHAPTER XIII

THE GENERAL CIRCULATION OF THE ATMOSPHERE

93. Survey of the General Circulation. The circulation of the

air at the earth's surface may briefly be described as follows:

In the subtropical regions, easterly winds with components
toward the equator prevail, the NE trade winds of the Northern

Hemisphere and the SE trade winds of the Southern Hemisphere.

They are separated near the equator by a zone of prevailing

calms, the doldrums. Frequently, however, the doldrums are

absent so that the two trade winds are separated by a surface of

discontinuity
1 on which strong rain squalls may occur. Neither

the two trade-wind regions nor the zone of doldrums are strictly

symmetrical to the equator as can be seen from the following

table which shows the position of the three regions during the two

extreme months of the equinoxes, after Hann,
2 for the Atlantic

and Pacific oceans:

The zone of calms is always north of the equator and the SE
trades extend sometimes across the equator into the Northern

Hemisphere. The circulation over the Indian Ocean, which is

not included in this table, is completely modified by the monsoon

circulation.

1 BROOKS, C. E. P., and BRABT, H. W., Quart. J. Roy. Met. Soc., 47, 1,

1921. DURST, C. S., Geophys. Mem., No. 28, 1926. BEALS, E. A., Monthly
Weather Rev., 55, 211, 1927.

2
HANN-SttRiNG, "Lehrbuch der Meteorologie," 4th ed., p. 469, Chr.

Herm. Tauchnitz, Leipzig, 1926.

254
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Beyond the trade-wind region is the zone of prevailing wester-

lies. They are better developed in the Southern than in the

Northern Hemisphere, for in the latter the presence of the great

continental surfaces causes many disturbances. The region of

the westerlies is the region of the migrating cyclones and anti-

cyclones; thus, instead of west winds, winds from other directions

are frequently observed. The persistence of the west winds in

these regions is much smaller than the persistence of the trade

winds. 1 Poleward from the regions of westerlies, beyond lati-

tudes of about 65 to 70, winds with an easterly component

prevail again.

The motion of the air is closely connected with the general

pressure distribution. 2 Near the equator but, like the zone of

doldrums, not quite symmetrically to it, a zone of low pressure is

found, followed in both hemispheres by a zone of high pressure,

the subtropical high-pressure belts. Especially in the summer

hemisphere, these high-pressure belts do not extend continuously

around the earth because high pressure cannot exist over the

heated land. Consequently, the trade winds are also absent

over land. During the winter in the Northern Hemisphere, a

strong anticyclone persists over the Asiatic continent due to the

very cold temperature in the surface layers.

The central regions of the high-pressure belts that coincide

practically with the polar limits of the trade-wind regions

frequently have calms.

In the region of the westerlies, even the mean pressure distribu-

tion is rather irregular owing to the migrating pressure centers.

On the whole the pressure here decreases northward. In the

surface layers of the arctic and antarctic regions the pressure

distribution is anticyclonic owing to the low temperature of the

surface layers. The zones of easterly winds in the polar regions

are therefore not symmetric with respect to the poles, for the

continental masses (Greenland and Antarctica) over which

the greatest cooling of the surface layers occurs are not situated

symmetrically to the poles.

CONRAD, V., in W. Koppen-R. Geiger, "Handbuch der Klimatologie,"

Vol. IB, p. 261, Gebruder Borntrager, Berlin, 1936.

2 Maps of the mean pressure distribution at the surface and aloft will be

found in most textbooks on synoptic and on descriptive meteorology. See

for instance N. Shaw, "Manual of Meteorology," Vol. 2, 2d ed., Cambridge

University Press, London, 1934.



256 DYNAMIC METEOROLOGY

An orientation about the mean wind distribution aloft is best

obtained by considering the mean pressure distribution at higher

levels. Because the wind in the free atmosphere does not

deviate much from the geostrophic wind, the wind field can be

deduced approximately from the pressure field, with the aid

of the equations of Sec. 53. The pressure field at higher levels

90 60 30 30 60
Summer Winter

Fio. 67. Pressure profiles at different altitudes (the short horizontal lines indi-

cate pressure differences of 10 mb).

can be computed from the surface-pressure field and the vertical

temperature distribution, as explained in Sec. 7. Charts of the

upper pressure distribution have been constructed in this manner

by Teisserenc de Bort and by Shaw. 1 The reader is referred to

these maps for details.

Here a more summarizing representation is given in Fig. 67.

This figure shows the pressure profiles in the meridional direction

at six levels up to 20 km, after data given by Wagner.
2

1 SHAW, loc. cit.

* WAGNER, A., in W. Koppen-R. Geiger, "Handbuch der Klimatologie,"
Vol. IF, p. 67.
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The surface-pressure profile shows the features of the surface-

pressure distribution described previously. Because the air

throughout the troposphere is warmer in lower than in higher

latitudes the vertical decrease of the pressure is smaller near the

equator than near the poles. Therefore, the main characteristic

of the pressure distribution at the upper level is a pressure

decrease poleward. Already, at 4 km, the subtropical high and

the slight polar high at the surface have vanished.

The meridional pressure gradients increase at first with the

altitude. They are smaller in summer than in winter, for the

meridional temperature gradients are smaller in summer than in

winter. In the stratosphere the meridional pressure gradient

must eventually become smaller again, for here the temperature
increases northward (see Fig. 24). This effect probably becomes

noticeable above 20 km. 1

It follows from this pressure distribution that in summer the

winds from the pole to the subtropics are predominantly westerly
and very light in the tropics where the inclination of the isobaric

surfaces is small. Only in tropical regions will easterly winds

be found. In winter the winds are mainly westerly over the

whole hemisphere. At high levels above 20 km, where the effect

of the stratospheric temperature increase toward the pole makes

itself felt, easterly winds are to be expected; but, in the present
state of our knowledge, this is merely hypothetical.

An inspection of upper-air pressure charts reveals that the

pressure distribution shown in Fig. 67 and the wind distribution

deduced from it are disturbed considerably by the effect of the

continents. Wind observations from pilot-balloon ascents are

not yet numerous enough to give a complete picture of the

circulation everywhere in the earth's atmosphere. But the

observations so far bear out the deductions made from the pres-

sure distribution.

No cross section showing a scheme of the general circulation

over the whole earth is given here, for it cannot be emphasized
too strongly that the general circulation is not the same every-
where around one and the same parallel. The deviations from

the zonal symmetry can be explained by the distribution of water

and land. But it will be seen in the following sections that these

, G., "Handbuch der Geophysik," Vol. 9 (2), p. 443, Gebruder

Borntrager, Berlin, 1937.



258 DYNAMIC METEOROLOGY

deviations from zonal symmetry are a necessary condition for

the exchange of heat between the warm tropical zones and the cold

polar regions. The asymmetries would also develop on a rotating

globe with a completely uniform surface. Only the location of

the asymmetries, not their existence, is determined by the dis-

tribution of continents and oceans.

94. Application of the Circulation Theorem to the General

Circulation. A satisfactory theory of the general circulation

should explain the air motions outlined in the preceding section

on the basis of the known incoming solar radiation which repre-

sents the source of energy, the known distribution of land and

water, and the known properties of the air. At present, it

cannot be claimed that this problem is even partly solved.

Therefore, in the following discussion, only certain theoretical

considerations will be presented that have contributed or may
contribute in the future to a more thorough understanding of the

mechanism of the general circulation.

For these reasons, older investigations by Ferrel, Siemens,

Overbeck, and others 1 will be omitted. They are very important
for the development of dynamic meteorology as a whole, for they

represent some of the first attempts to apply dynamic principles

to meteorology. But, as far as their direct applications to the

general circulation is concerned, they are only of historical

interest.

On a nonrotating earth with a homogeneous surface heated

at the equator and cooled at the poles the general circulation

would consist simply of a motion from the pole to the equator
in the lower atmosphere, an ascent of the warmer air in the

equatorial regions, a return to the pole in the upper layers, and a

descent of the cooled air in polar regions. Thus, two vortexes

would exist, one in the Northern, the other in the Southern

Hemisphere. The mean intensity of the circulation can be

calculated from the circulation theorem in the form

(52.4)

1 BRILLOUIN, M., "Me*moires originaux sur la circulation g&ierale de

1'atmosphere," G. Carre* et C. Naud, Paris, 1900. ABBE, C., "The Mechan-
ics of the Earth's Atmosphere," 2d collection, 1891, 3d collection, 1910,

Smithsonian Institution, Washington, D. C,
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The second term on the right-hand side of this equation represents

the effect of the earth's rotation which will be considered later.

To study the intensity of the _
general circulation on a non-

rotating earth, a path of in-

tegration may be chosen along p /e

the isobars 1000 and 300 mb,
following Bjerknes.

1

They
coincide approximately with

the surface of the earth and

the cirrus level (9000 m) . The
two verticals with the mean

temperatures Ya and Tl may
be situated at the equator arid

at the pole (Fig. 68). As a

representative value for the

difference of these mean temperatures, Bjerknets chooses

FIG. 68.- -Circulation on a non-rotating
earth.

It follows that

dC
dt

-Tb
= 40C

= 138 X 106 cm 2
/sec

2

Because the length of the vertical branches of the curve can be

neglected, the length of the path is equal to half the circumference

of the earth, 2 X 109 cm. According to (52.1) the mean merid-

ional acceleration

dV
j-

= 6.9 X 10- 2
cm/sec

2

The resulting mean velocities after a given time are shown in the

second line of the table on page 260. These velocities as well

as the quantities to be discussed later are computed under the

assumption that the mean acceleration remains constant. The

circulation would attain a considerable velocity after 6 hr and

would have reached hurricane intensity after 24 hr. The third

line of the table gives the mean meridional displacement. If the

original acceleration is maintained, the air would have moved

1 BJERKNES, V., and collaborators,
"
Physikalische Hydrodynamik,"

p. 645, Verlag Julius Springer, Berlin, 1933.
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one-fourth of the way from the pole to the equator in a day and

would describe the whole closed path from the pole to the equator
and back in 67 hr.

THEORETICAL VELOCITY OP THE GENERAL CIRCULATION

It must, however, be emphasized that even apart from the

effect of the earth's rotation, which will be discussed presently,

the motion could not be maintained at the rate shown. The
acceleration depends on the temperature difference between

the pole and the equator. When a transport of air takes place

between the pole and the equator, the temperature difference is

reduced if it is not reestablished by heating at the equator and

cooling at the pole. As long as the motion is not too fast, the

heating and cooling effects will be capable of maintaining a tem-

perature difference. As the circulation becomes faster, the

temperature difference is diminished. Therefore, the accelera-

tion in its turn decreases. An equilibrium state will be reached

in which the heat transport, owing to the circulation between pole

and equator, just balances the effect of heating and cooling at

low and high latitudes so that the temperature difference remains

constant. The acceleration due to this temperature difference

will then be used, not to speed up the motion, but to overcome

the effects of friction which has been left out of consideration so

far. Thus, a stationary circulation could develop even on a

nonrotating earth.

The existence of such a simple meridional circulation is, how-

ever, impossible owing to the deflective force of the earth's rota-

tion. Both currents, toward the equator in the lower atmosphere
and toward the pole in the upper atmosphere, are subjected to

deviations, toward the right in the Northern Hemisphere.



THE GENERAL CIRCULATION OF THE ATMOSPHERE 261

Instead of deriving the magnitude of these deviations by means
of the second term on the right-hand side of (52.4) the equations
of motion (47.2) will be used directly. The motion considered

so far is, of course, not a motion under balanced forces for the

Coriolis force does not come into play. The air moves rather

in the direction of the pressure gradient, from north to south

in the lower atmosphere and from south to north in the upper

atmosphere. If v is the velocity component in meridional

direction, which has alone been considered hitherto, it follows

from the first equation (47.2), because the direction of the

pressure gradient is meridional, that the acceleration in longi-

tudinal direction is given by

-IT = 2w sin <p v = 2o> sin <p
-~

(94.1)

By integration,

u = 2u sin <p(y ?/ ) (94.2)

when the variation of the Coriolis parameter is neglected.

Equation (94.2) shows the west to east velocity which results

from a displacement in meridional direction. When the dis-

placement is northward, the velocity is directed toward the east

on the Northern Hemisphere; when the displacement is south-

ward, the velocity is toward the west. The zonal velocities

caused by the meridional displacements after certain times are

shown in the third line of the table on page 260. These veloci-

ties are directed toward the east in the upper part and toward the

west in the lower part of the circulation. After 6 hr the zonal

velocity is already almost as large as the meridional velocity, and

after 24 hr it would be three times larger. Equation (94.2) is, of

course, not strictly correct, for the latitude varies during the

meridional displacement. Nevertheless, the importance of the

Coriolis effect is clearly brought out.

The zonal velocity component expressed by (94.2) produces a

Coriolis acceleration 2o> sin <p u which is opposite to the original

circulation acceleration, southward in the higher atmosphere,
northward in the lower atmosphere. The numerical values of

this counteracceleration are given in the fourth line of the table on

page 260. It will be seen that after less than 6 hr the counter-

acceleration is greater than the original acceleration (6.9 X 10~~ 2

cm/sec
2
) caused by the temperature difference between high and
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low latitudes, so that the general circulation should be mainly

parallel to the circles of latitude.

This discussion of the general circulation based on the circula-

tion theorem is, of course, very schematic. The Coriolis force

begins to deflect the meridional motion as soon as the latter

starts. The point of the preceding calculations is that the

atmosphere on the rotating earth cannot circulate in a prevailing

meridional direction but must have a strong zonal component

owing to the effect of the earth's rotation. This strong zonal

component of the motion requires that the meridional component
of the pressure gradient be strong, according to the geostrophic

wind relation which is satisfied with a high degree of approximation.

95. The Meridional Heat Transport. A transport of heat

from equatorial to polar regions must take place, for the tem-

perature difference between pole and equator remains constant

apart from seasonal and other smaller deviations from the mean
value in spite of the greater amount of heat received at the

equator than at the pole. The necessity of a heat transport

from the equator to the pole is directly shown by the table on

page 102. At the latitudes below about 35, the incoming
radiation is greater than the outgoing; at higher latitudes the

reverse is true. The surplus of heat in the zone from to 10 of

latitude must be carried across the parallel 10 latitude, the

surplus of heat in the zone to 20 latitude must be carried

across the parallel 20 latitude, and so on. Up to about 35

latitude the heat transport increases, therefore; at higher lati-

tudes, it decreases because the incoming radiation is here less

than the outgoing so that part of the heat is retained in each

latitudinal belt to make up the deficit.

The total surplus or deficit for each zone can be obtained

from the figures given in the table on page 102. The difference

between incoming and outgoing radiation represents the surplus

or deficit per unit area. It has to be multiplied by the area of the

latitudinal belt in order to obtain the surplus or deficit for the

whole zone. The sum of the surpluses and deficits for all zones

of a hemisphere should vanish. Actually, when Albrecht's fig-

ures (page 102) are used, a net deficit of heat is found. Bjerknes
1

has therefore reduced Albrecht's figures for the outgoing radiation

by about 1 to 2 per cent, so that the net deficit of energy vanishes.
1 BJERKNES. V., and collaborators, op. cit., p. 665, Berlin 1933.
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Bjerknes's figures are given in the following table, but they have

been changed into thermal units. The first three columns show

MERIDIONAL HEAT FLOW AFTER ALBRECHT AND BJERKNES

the incoming and outgoing radiation and the difference between

the two. The fourth column gives the total surplus or deficit for

zones of 10 latitude. The last column contains the flow of heat

across each tenth parallel. The figures are, of course, not very

reliable, for the data on which they are based are known only for a

small part of the earth. Other investigators, as mentioned in Sec.

37, have obtained somewhat different results. Nevertheless, the

above values may be considered as sufficient for a first orientation.

A small fraction of this heat flow may be carried by the ocean

currents. Furthermore, water vapor evaporated in the tropics

and transferred poleward brings energy in the form of latent heat

of condensation to higher latitudes which is released again when
condensation occurs. This form of energy transport seems to be

especially effective in the trade-wind region, according to von

Ficker. 1 The main part of the heat flow must, however, be due

to the direct exchange of air between higher and lower latitudes.

It was shown in the preceding section that no uniform merid-

ional circulation can exist on the rotating earth but that the

motion must rather be zonal, especially at middle latitudes,

where the deflection of air coming from equatorial and polar

regions would reach high values. In conjunction with this zonal

X VON FICKER, H., Sitz.-Ber. preuss. Akad. Wiss. Phys.-Math. KL, 11,

\03, 1936.
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motion a north to south pressure gradient should exist, according

to the geostrophic wind relation. In order to make possible the

meridional wind component required for the heat transport, east

to west pressure gradients must exist, as pointed out by Exner. 1

The appearance of such a pressure gradient dp/dx in (94.1)

counteracts the Coriolis force and therefore either annuls du/dt
or makes it so small that the motion can have an appreciable

meridional component even at middle latitudes. However, such

a zonal component of the pressure gradient cannot have the same

direction all around the earth, for the pressure must be continuous

around the circle of latitude. The pressure gradient must there-

fore be different across different meridians, and the general

circulation which satisfies approximately the gradient-wind
relation must be broken up into a number of smaller circulations

which lie side by side along the meridians, as is shown schemati-

cally in Fig. 69. A circulation of a

similar type is what is actually seen

in the cyclones and anticyclones.

The number of cyclones and anti-

cyclones indicated in Fig. 69 is, of

course, arbitrary, and the sym-
metrical distribution does not

correspond to what is observed in

nature. On a completely homoge-
neous earth the distribution of the

cold and warm currents would be

accidental, although presumably

symmetrical. Owing to the differ-

ences on the surface of the earth,

however, the location of the cold and

warm currents is largely determined by the position of land and

sea. Consequently the distribution of the large centers of high
and low pressures is also fixed, as manifested by the semiperma-
nent centers of action such as the Aleutian and Icelandic lows

or the Pacific high.

It appears, therefore, that for a thorough study of the general

circulation not much is gained by assuming as a "first approxi-
mation "

that the surface of the earth is uniform, because the

1 EXNER, F. M., "Dynamische Meteorologie," 2d ed., pp. 215-218, Verlag
Julius Springer, Vienna, 1925.

FIG. 09. Scheme of the general
circulation between lower and

higher latitudes; H = high, L =*

low, W = warm current, C =
cold current. (After Exncr.)
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distribution of water and land gives a valuable clue to the distri-

bution of warm and cold currents.

Jeffreys
1 arrived at the same conclusion as Exner, viz., that the

general circulation cannot be symmetrical around the pole, by
means of a different argument. The atmosphere must con-

tinually lose or gain momentum by friction. If the momentum
in the direction of the earth's rotation is counted positive, air

moving eastward faster than the earth's surface loses momen-

tum, whereas the air moving westward gains momentum by
friction. In a steady state, these gains and losses must be

compensated. The only effective process that can bring about

compensation of the gains and losses is the interchange of

momentum with air coming from other latitudes. The inter-

change of momentum depends on the velocity in the meridional

direction. With purely zonal isobars, a meridional velocity

component can exist only in the lowest layers of the atmosphere,

owing to friction, as follows from Sec. 76. Jeffreys has shown
that this component is much too feeble to produce an interchange
of momentum sufficient to replace the losses of momentum by
friction. If the pressure distribution is not purely zonal, the

meridional component of motion can be much stronger and

thus it is possible to compensate for the frictional losses of

momentum by transfer of momentum from other regions where

momentum is gained.

96. The Meridional Heat Transport as a Form of Turbulent

Mass Exchange. It is possible to consider the meridional

transport of heat as the effect of a horizontal turbulent mass

exchange in the direction from the equator to the pole as has been

shown by Defant2 and others. 3 The general circulation of the

atmosphere may then be regarded as a turbulence phenomenon
on a very large scale. Though in the ordinary problems of

turbulence the eddies responsible for the mixing of air of different

properties are small, their dimensions being measured in meters,

the migrating cyclones and anticyclones must be regarded as

1 JEFFREYS, H., Un Gfodts. Gtophys. Int., 5 erne assemble g6n. Lisb.,

1933; Proc.-Verb. de I'Ass. de Mil., II, p. 219.

2 DEFANT, A., Geografiska Annaler, 3, 209, 1921; Sitz.-Ber. Akad. Wi88.

Wien., 130, 383, 1921.

3 EXNER, op. cit., p. 239. ANGSTROM, A., Arkiv Mat., Astron. Fysik, 19,

A, No. 20, 1925. LETTAU, H., Gerl. Beitr. Geophys., 40, 390, 1931; Ann.

Hydr., 62, 152, 1934; Beitr. Phys. Aim., 23, 45, 1935.



266 DYNAMIC METEOROLOGY

the turbulent eddies of the general circulation. Obviously, the

analogy is rather crude, for one of the important points of the

ordinary theory of turbulence is that the number of turbulent

eddies in the current is so large that one is justified in speaking of

mean conditions. The migrating cyclones and anticyclones are,

of course, not numerous enough to determine a statistical mean

eddy. Nevertheless, the analogy is useful, for it permits the

computation of a coefficient of turbulent mass exchange for the

meridional heat transport that gives a numerical expression

for the intensity of the general circulation.

The expression for the transport of heat S in the meridional

direction,

by analogy with (81.41). The specific heat of air at constant

pressure is cp,
the coefficient of turbulent mass exchange is A, the

temperature is T, and the earth's radius is E, and the latitude

is <p. It is permissible to use the temperature here instead of the

potential temperature, for the variation of the pressure in the

horizontal direction is sufficiently small not to affect the following

estimates.

When the meridional heat transport S and the meridional

temperature gradient for a given latitude are known, the coeffi-

cient of turbulent mass exchange A for this latitude can be found.

According to the table on page 263, the heat flow across 40

latitude is 66 X 10 13
cal/sec. This amount of heat passes per

second through a vertical surface erected on the parallel of 40

latitude. To find the heat flow per square centimeter through
this surface it may be assumed that its height is 5 km. An
accurate value of the height is not needed, for only the order of

magnitude of A is to be determined. Because the circumference

of the parallel 40 is 3.07 X 109
cm, it follows that S = 0.430

cal/cm
2 sec. The meridional temperature gradient can be

assumed as 5C/1000 km or 5 X 10~8
C/cm, according to

Fig. 24. Because cp = 0.24, A = 4 X 107 gm/cm sec, approxi-

mately. This value of A is 10 5 to 10 6 times larger than the

figures given in Chap. XI for the coefficient of turbulent mass

exchange in the vertical direction and at least 100 times larger

than the coefficient of lateral mixing (Sec. 85), for the dimensions
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of the "turbulent eddies" of the general circulation are much

greater.

This value of A represents, of course, only the order of magni-

tude; for the meridional temperature distribution depends not

only on the atmospheric but also on the oceanic circulation, and

heat is also transported with the water vapor as latent heat of

condensation. Nevertheless, our estimate agrees well with the

results obtained by other authors and may be considered reliable

as far as the order of magnitude is concerned.

Defant has also determined A directly by means of Eq. (81.5)

(81.5)Ft

Such a method is practicable in the present instance when each
"
turbulent element," i.e., each cyclone and anticyclone, can

be observed directly. The order of magnitude of A is the same
as previously.

The coefficient of turbulent mass exchange of the general

circulation changes with the latitude. Lettau 1 has given the

following figures from an investigation based on the observations

in the Northern Hemisphere during the polar year 1932 to 1933:

97. The Cellular Structure of the General Circulation. It

has already been pointed out that the general circulation of the

atmosphere must be broken up into a number of smaller circula-

tions in order to permit a heat transport between lower and

higher latitudes, as shown in Fig. 69, after Exner. The different

circulation cells cannot extend all the way from the pole to the

equator, for the air would then acquire very large zonal velocities

owing to the conservation of angular momentum.

V. Bjerknes and his collaborators2 have given a model of

a cellular subdivision of the atmosphere that does not con-

tradict the theoretical considerations restricting the air motion

over the globe and that is in agreement with the observations.

1 LETTAU, H., Beitr. Phys. Aim., 23, 45, 1936.
2 BJERKNES, V., and collaborators, op. cit., p. 680.
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Their scheme is partly reproduced in Fig. 70. The zonal section

at 30 north latitude (Fig. 70a) shows a cell whose width has

been assumed arbitrarily 90 in longitude. The particles move

around their orbits in anticyclonic sense, ascending while they

are in the tropical easterly current and descending in the westerly

current north of 30 latitude. The orbital planes are therefore

ascending toward the west. It follows that the air having com-

pleted the southern, ascending branch of its anticyclonic orbit

Zonal cross section, 30 N

(a)

Meridional cross section

60 30 90 60 30
(b) (d)

FIG. 70. The cells of the general circulation, (a), (6) Orbits of the particles;

(c), (d) isobars. (After Bjerknea.)

has been lifted so that, according to Sec. 27, it has become less

stable. Consequently, precipitation may be expected here.

This agrees with the observations. On the whole the sub-

tropical high-pressure belt is very dry, but, at the western end

of each anticyclonic cell, showers occur frequently.

The inclination of the orbital planes may be about 1:10,000,

so that the vertical amplitudes owing to the orbital motion may
reach 1 km. The orbital planes are inclined most in the middle

troposphere, at about 5 km altitude, and less near the surface

of the earth and near the tropopause. The tropopause represents
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the upper boundary of the cells. Therefore, the uppermost
air in the troposphere must move tangentially to the tropopause,
and the latter obtains the form shown in Fig. 70a.

Figure 70c shows the isobars corresponding to the motion of

the air in the cells provided that the wind does not deviate much
from the gradient-wind motion. The axis of the anticyclone

is not quite vertical but is inclined toward the west. The

highest surface pressure is displaced to the east of the center of

the cell, as indicated by the observations.

The boundaries between the different cells are surfaces of dis-

continuity between different air masses whose inclination can be

calculated from the formulas of Chap. VIII. A sufficient

number of aerological observations to indicate the existence of

these cell walls have been made only in the North Atlantic

west of the African coast where the cell wall forms the boundary
between the NE trade winds on the easterly end of the Azores

and the upper SW antitrade winds on the westerly end of the

high at greater altitudes over Africa. The trade-wind circulation

in this region has been studied very thoroughly by Sverdrup
1

and by von Ficker. 2 Both found that the loss of heat is mainly
due to radiation and that heat is added mainly in the form of

latent heat of evaporation from the ocean.

The meridional projection of the orbital paths that the particles

describe in these anticyclonic cells is shown in Fig. 706. The
direction of the meridional component of the motion is the same
as was deduced in Sec. 94 for the circulation on a nonrotating
earth that is heated in equatorial and cooled in polar regions.

The position of the isobars in the meridional cross section is

shown in Fig. 70d.

This simple picture of the anticyclonic cells of the lower lati-

tudes requires some modifications if the cells are not stationary but

moving eastward. The orbital paths of the particles are then

trochoidal curves. But the direction of the meridional com-

ponent of the circulation that takes care of the heat transport

and is driven by the temperature difference between low and

high latitudes remains unchanged by the superposition of a

translatory motion.

1
SVERDRUP, H. U., Veroffentlich. Geophys. lust. Leipzig, 2d ser., 2, 1, 1917.

2
FICKER, H. VON., Veroffentlich. Met. Inst. Univ. Berlin, Vol. 1, No. 4,

1936; Sitz.-Ber. preuss. Akad. Wise. Phys.-Math. Kl., 11, 103, 1936.
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Similar considerations may be applied to the stationary lows

at about 60 latitude, such as the Icelandic and Aleutian lows;

but a comparison with the observations is here not possible,

for in the mean-pressure charts not only the effects of these

stationary lows but also those of the migrating cyclones of the

polar and arctic fronts make themselves felt. Closed orbits

even in the stationary lows are at these latitudes found only
in the lower troposphere. Owing to the meridional temperature

gradient the current in the upper troposphere is mainly from

west to east with superimposed sinusoidal oscillations in the

meridional direction (see page 166).

On a planet with a homogeneous surface the position of the

various cells of the general circulation would be arbitrary. On
the earth, however, with its surface varying .between water and
land the position of the cells is determined largely by geographical
factors.



CHAPTER XIV

THE PERTURBATION THEORY OF ATMOSPHERIC
MOTIONS

98. Disturbed and Undisturbed Motion. The mathematical

solution of most problems of dynamic meteorology is exceedingly
difficult owing to the many factors that have to be taken into

account. In classical hydrodynamics the fluids that are investi-

gated are as a rule considered as incompressible and homogeneous,

i.e., of the same density everywhere. Moreover, the effects

of the earth's rotation are mostly neglected. In the atmosphere,

however, these factors are of importance and have to be taken

into consideration.

Even the mathematical study of an incompressible, homo-

geneous fluid on a nonrotating earth presents great difficulties.

This is due to the fact that in the equations of motion (47.2),

terms of the second degree appear, viz., u
,

. . .
,
w The

OX uZ

solution of such second degree differential equations is very

difficult, but linear differential equations can be handled com-

paratively simply according to standard methods,
In many problems, it is fortunately possible to reduce the

hydrodynamic equations to a linear form. The motion that is

to be studied can often be treated as a small perturbation super-

imposed on an undisturbed state of the atmosphere. Such

problems arise, for instance, in the theory of the origin of extra-

tropical cyclones. According to the theory of V. Bjerknes and

his collaborators, cyclones develop as small wave perturbations

at the boundary between two air masses of different density and

velocity, as will be discussed in detail later (Sec. 109). If such

a wave is unstable, its amplitude increases and a cyclone develops.

Thus, the first mathematical problem to be solved in connection

with the development of cyclones is that of the stability of waves

at a surface of discontinuity. These waves have, at the begin-

ning, small amplitudes so that the wave motion may be regarded
as a small perturbation superimposed on a comparatively simple

271
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undisturbed motion. In the case of the cyclone problem, it

may be assumed that the undisturbed motion is geostrophic.

V. Bjerknes
1 has shown how the hydrodynamic equations can

be brought into a linear form when such perturbations are

studied. The method of linearization of the hydrodynamic

equations had been used prior to Bjerknes, but Bjerknes first

developed the method systematically for both compressible and

incompressible fluids. In the following sections, some relatively

simple examples of the perturbation theory will be given which

will enable the reader to understand, among other things, the

background of the wave theory of cyclones. For a complete

exposition of the perturbation theory and its results the reader

is referred to
"
Physikalische Hydrodynamik," by V. Bjerknes

and his collaborators.

99. The Perturbation Equations. In deriving the perturbation

equations, the following assumptions are made:

1. Not only the total disturbed plus undisturbed motion

satisfies the hydrodynamic equations but also the undisturbed

motion alone.

2. The perturbations are so small that terms of the second

order in the perturbation quantities can be neglected with respect

to terms of the first order in the perturbation quantities.

In order to avoid too lengthy calculations, we shall further-

more assume, in all examples, that the fluid is incompressible.

It will be convenient throughout this chapter to write for the

a>, 2/-, and z-components of the vector of the earth's rotation

ftx ,
12V ,

and 12*. In a coordinate system whose #-axis makes an

angle with the east direction,

& = o> cos v> cos /3, ft, = wsiny? (99.1)

according to the footnote on page 125.

The variables of the undisturbed motion will henceforth

be indicated by capital letters, the variables of the disturbed

motion by small letters, and the variables of the total motion

by small letters with a bar. Then, according to the principle

of superposition,

u= U + u, v = V + v, w = W + w, p = P + p
(99.2)

1 BJERKNES, V., Beitr. Phys. Aim., 13, 1926; Geofys. Pub., 5, No. 11, 1929.



THEORY OF ATMOSPHERIC MOTIONS 273

Because the fluid is incompressible, the density is the same in

the disturbed and in the undisturbed motion. These quantities

satisfy the three equations of motion (47.2)

du . . du ,
_ du

,
_ du . n ^ , A-~ . 1 dp

^+ U
B-x
+V

B-y
+W ^ +2^W - 2^=--

p fx

+ +,w+aj + aorf-aiw--!!* (99.3)
dt dx dy dz p dy

dw
,

_ dw
,

_ dw
,

. dw
,

_ _ _ . 1 dpw-^r T- z
-

y
-- -

dt ox dy dz p d

and the equation of continuity (47.3) for an incompressible fluid

f +
M6w = Q (994)dx dy dz

'

According to assumption 1 the same equations (99.3) and (99.4)

are satisfied by the undisturbed motion alone. It is not neces-

sary to write these equations down explicitly, for they are

obtained from (99.3) and (99.4) by introducing capital letters

for the variables.

To find the perturbation equations, the expressions (99.2)

have to be inserted in (99.3) and (99.4). Thus, it follows, for

instance, for the third equation of motion (99.3) that

dW
,

dw
,

dW dW dw dw dW dW

dw
,

dw
, jrrdW . dW . n7 dw ,

dw

In this rather lengthy equation the terms that are underlined

once satisfy by themselves the equation for the undisturbed

motion and cancel each other. The terms that are underlined

twice are of the second degree in the perturbation quantities

and may be neglected. Upon applying the same reasoning to

the other two equations of motion, it follows that

du
, T1 du . ^du , fjrdu . dU

,

dU . dU

p dx
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dt
^

dx
^

dy
^

dz
^

dx
^

dy

- 2ttxw = -
(99.5)

p y

dw
, rr dio

, Tr dw , TJ7 aw ,
dTF

,
dW

,
.--L 77 --L y --L }^ --L. U--U V- + W-
dt
^

dx, dy
^ dz^ dx

^
dy

^
dz

p dz

Similarly, the equation of continuity can be written when the

terms are omitted that satisfy the equation of continuity for the

undisturbed motion,

At a first glance, it might appear that the perturbation equations

(99.5) and (99.6) are more complicated than the original equa-
tions. However, it should be remembered that in these equations

the undisturbed velocity may be regarded as known. The

system of Eqs. (99.5), and (99.6) is actually simpler than the

system (99.3) and (99.4) because the former contains only
linear terms. Furthermore, when we consider special examples
of perturbations superimposed on undisturbed motions, many
of the terms in (99.5) and (99.6) will drop out, as will be seen in

the later sections of this chapter.

100. The Boundary Conditions. To complete the system of

perturbation equations the boundary conditions have to be

introduced. A boundary of the fluid may be given by the

equation

J(x, y, z,
=

(100.1)

The boundary must always be formed by the same particles;

otherwise, it would dissolve. If the coordinates of a particle

in the boundary after a very short time interval dt are x + dx,

y + dy, z + dz, the new coordinates must satisfy the same

equation. Therefore,

J(x + dx,y + dy, z + dz, t + dt)
=

or, developing into a Taylor series,

/(*, y, M) +<b + * + * + *-o
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Since dx/dt, dy/dt, dz/dt are the total velocities, disturbed and

undisturbed, it follows in view of (100.1) that

If the boundary surface is an internal surface between .two fluid

masses of different density and velocity, two equations of the

form (100.2) must be satisfied at the surface of discontinuity.

They are obtained by substituting for u, v, and w the velocity

components at the boundary first in one, then in the other

layer.

In many cases the equation of the boundary surface will be

given explicitly; in others, it may have to be determined by
dynamical considerations. Thus, the pressure at the boundary
surface must be the same on both sides [see (60.1)] of the bound-

ary. If the pressure on one side of the boundary is p and on

the other side p',

p - p' = (100.3)

When the boundary surface is a free surface bounded by a region

with constant pressure, the dynamic condition may be written

p = const (100.31)

In order to fit the boundary condition (100.2) into the system
of perturbation equations, the equation for the undisturbed

boundary may be written

F(x, y, z,t) =0 (100.4)

while

f^F+f (100.5)

Thus / represents the effect of the perturbation on the position

of the boundary surface.

Because the undisturbed motion must satisfy the undis-

turbed boundary condition, it follows that

Upon substituting from (99.2) and from (100.5), the boundary
condition (100.2) becomes, if terms of higher order are neglected,
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When the equation for the boundary surface in the form (100.3)

is to be used, / must be replaced by the difference of the per-

turbation pressure p p
f and F by the difference of the undis-

turbed pressures P P'.

(MM)

Some elementary examples of the perturbation method will

be given in the following sections of this chapter.

A further approach to reality would be obtained by including

the frictional terms in the perturbation equations, but for many
important meteorological problems the effects of friction appear
to be of secondary importance.

101. Wave Motion at the Free Surface of a Single Layer.

Gravitational Waves. As a first example we shall consider the

wave motion in a single layer. The effect of the earth's rotation

may be neglected. The bottom of the layer may be a rigid

surface at the height 2 = 0; the upper free surface is a horizontal

plane in the undisturbed case, for the isobaric surfaces are

horizontal if the effect of the earth's rotation is disregarded.

Thus, the equation for the free surface in the undisturbed motion

has the form

z - h = (101.1)

where h is the depth of the layer.

In the undisturbed case the fluid may move with the constant

velocity U along the x-axis. It should be noted that this is not

a geostrophic motion, for the earth's rotation is neglected. The
fluid system represents, rather, water flowing in a channel of

very great width. Under these conditions, only the third of

Eqs. (99.3) remains for the undisturbed motion.

0--i-, (101.2)

It may be assumed that the motion does not depend on the

^-coordinate, and thus the perturbation equation (99.5) for the

^/-component can be omitted. The motion is two-dimensional

in the vertical zz-plane. At all points with the same x- and
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z-coordinates the velocity and the pressure are the same even

though y is different.

With these simplifications the perturbation equations (99.5)

are reduced to

\d

--
(101.3)

p dZ
^ '

du . dw

Since V and p are assumed to be constant, this system of linear

differential equations has constant coefficients. The solutions

are therefore exponential or trigonometric functions. In order

to study wave perturbations in the x-direction, the following

form of the solution may be assumed:

u = A cos (x cf)e^
a

A

w = C sin ~ (x
-

c()ei* (101.31)
A

p = D cos (x ct)ei*
A

A
9 Cy and D are constants on which the amplitudes of u

y
w and

p depend. The constant X is the wave length, and c the wave

velocity. The constant 7 determines the variation of the

amplitudes with the height. When the expressions (101.31)

are substituted in (101.3), one obtains the result

+A ^ (c
-

U) sin ^ (x
-

d)e*'
- + ~^ sin^ (x

- ct)"A A p A A

_ c^ (c
- U) cos~ (x

-
ct)tr"

= - - T cos ^ (*
-

<*)*
A A p A

- A sin (x
-

ct)ef + \C sin (x
-

ci)e^
=

A A A

Division of the first and third of these equations by

sin -^ (x

and of the second equation by cos
-^- (x ct)e^

z shows that the
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expressions (101.31) satisfy the differential equations (101.3)

provided that

, 2ir
, m 27r D

A -r- (c
- V) = -r- -

A A p

~ 2?r , TA D
C -(c-U)=y 7
A %* r,A 1 -*

We shall express A and D by C, the constant factor of the vertical

velocity. From the third equation, it follows that

A = ^ C (101.4)
ZTT

and from the second equation that

D = p ^(c
- V)C (101.41)

Substitution of these expressions in the first equation leads to

the condition that

2

(101.42)

This condition is fulfilled in the first place if

c = U

i.e., if the wave travels with the speed of the undisturbed current,

in other words, if the wave is at rest with respect to the moving
fluid. This rather special case will not be considered further.

The condition (101.42) is further satisfied if

7 =
y (101.43)

Either of these alternatives gives a particular solution. Choosing
first the positive sign and using (101.4) and (101.41),

27T 2r-
u = C cos -r- (a? cf)e

x

A

w = C sin ^ (x
- d)e** (101.5)A

2ir 2-
p = p(c C7)C cos (x cf)e

*

A
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With the negative sign,

u = C' cos -^ (re ct)e
**

A

w = C' sin ^(x- ct)e~
s

(101.51)
A

p = _p(c _ U)C' cos ^ (*
-

cOe'
2
**

A

The amplitude is denoted by C' in (101.51) in order to indicate

that it is arbitrary and not necessarily equal to C.

Any linear combination of the two particular solutions (101.5)

and (101.51) is a more general solution. Because C and C'

are arbitrary in any case, it is not necessary to multiply them

by arbitrary factors before adding in order to obtain the most

general linear combination. [Strictly speaking, the expressions

(101.5) and (101.51), C and C1

being omitted, are particular

solutions.]

Thus, the general solution of our problem is given by

u = (Ce^ - C'e~
2

^) cos ^ (a;
-

ct)A

w = (Ce** + C'e~
2

^) sin ^ (*
-

ct) (101.6)A

p = p(c
-

U)(Ce
2^ - C'e'

2

**) cos ^ (*
-

ct)A

These expressions have to satisfy the boundary conditions, at

the rigid lower surface and at the free upper surface.

Without referring to the general boundary conditions of the

preceding section, it is obvious that at the rigid lower boundary
where z = the velocity normal to the boundary must vanish.

Because the boundary is horizontal, it follows that

w = for =

or

C = -C'

according to the second of Eqs. (101.6).

The undisturbed pressure at any level z is given by

P = gp(h
-

z)
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as follows from (101.2) and from the condition that the pressure

vanishes at the free surface. 1 The height of the free surface is h

in the undisturbed state. In the disturbed state, let the height
be z. The equation for the free surface becomes, according to

(101.31) and (101.6),

p + p = gp (h
-

z) + p(c
- U)C(e^ + <T

2

^) cos ~ (x
-

ct)
A

= const

This expression can be simplified. Because p is a small quantity
and the height z of the disturbed free surface is only slightly

different from the height h of the undisturbed free surface, only
an error of higher order is committed when z is replaced by k

in the term representing p. This simplified equation for the

free surface is to be substituted in the boundary condition

(100.7) which in the present case reduces to

In this equation the height of the disturbed boundary may be

replaced by h in the expression for w. It follows, then, from the

boundary condition that

27T 2^ -2^- 2^ -2T*

or

(c C/)
2 = ~- tanh 2?r r-

,
. e* - e~x

tanh x = -
1

--
where the hyperbolic tangent

Thus,

c= U Jjtanh2irJ (101.7)
\ &ir A *

The wave velocity c consists of two terms. The first of these

terms, [/, states that the wave system is carried along by the

1 The condition that the pressure at the free surface is equal to a constant

different from zero would not alter the following calculations.
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current. It is called the convective term. The second term

represents the effect of gravity as shown by the factor g. It is

called the dynamic term because it contains the force acting on

the wave. These surface waves are also called
"
gravitational

waves,
"

for gravity is the force governing the wave motion.

If the fluid in the undisturbed state is at rest, U =
0, the wave

may travel in the positive or negative ^-direction as shown by
the alternative sign before the dynamic term in (101.7). The
wave velocity is the same in both cases. It depends on the wave

length X and on the depth of the fluid.

Two extreme cases may be considered separately. With

increasing #, tanh x tends to unity. Thus, as th*e depth h

of the fluid increases relative to the wave length X, (101.7)

becomes

(101.71)

This relation is known as the formula for the velocity of waves

in deep water derived by Stokes. The expression "deep" water

is perhaps somewhat misleading. For if 2ir - ^ 2.5, the formula
A

(101.71) may be used with an error of about 1 per cent, for

tanh 2.5 = 0.987

But, in this case,

h ^ 0.4X (101.72)

Thus the expression (101.71) for the wave velocity in deep water

may be used as soon as the depth of the water is more than

four-tenths of the wave length.

For sufficiently small values of x,

. , e* - e~x 1 + x - (1
-

rr)tanh x = - = -75 rn = x
e* + e~x 1 + x + 1 x

Equation (101.71) is then reduced to

c = U Vgh (101.8)

provided that h is sufficiently small compared with X. The
formula (101.8) gives the velocity of "long waves" in shallow
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water. It was derived by Lagrange. The above approximate

expression for tanh x is correct to 1 per cent if x g 0.150 or if

h ^ 0.024X (101.81)

If the height of the homogeneous atmosphere (Prob. 3)

H = ^5
9

where R = gas constant for air, TQ
= surface-air temperature

is substituted for A in (101.8),

c= v VRTl (101.9)

With a surface temperature of 20C, \/RT~Q = 290 m/sec. The

velocity of sufficiently long waves in the atmosphere is equal to

the Newtonian velocity of sound \/RT^ at least in an incom-

pressible, homogeneous atmosphere. V. Bjerknes
1 has shown

that the velocity of long waves is equal to the Newtonian velocity

of sound in any autobarotropic atmosphere. This more general

validity of the result is easily understandable, for in any auto-

barotropic atmosphere as well as in an incompressible, homo-

geneous atmosphere a particle displaced from its original position

is in equilibrium with its new surroundings.

102. Wave Motion at an Internal Surface of Discontinuity.

Shearing Waves. We shall now consider the wave motion at an

internal surface of discontinuity between two fluid layers. The

density and the undisturbed velocity may be p and U in the lower

layer and p' and U f

in the upper layer. It follows that

P > P'

for the lower layer must be heavier than the upper layer to

ensure a stable stratification. In the atmosphere, similar condi-

tions are found at inversions where a warmer layer of air is

situated above a colder one. The effect of the earth 'a rotation

will again be neglected. This is permissible as long as the

trajectories of the particles do not extend over too large an area.

The surface of discontinuity is horizontal as long as the motion

is undisturbed. If the undisturbed boundary is chosen as the

zt/-plane, its equation can be written

2=0
1 BJBRKNBS, V., Geofys. Pub., 3, 3, 1923.
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It will further be assumed that both layers are infinitely deep,

so that the lower layer extends toward z = oo and the upper
one toward z = + oo . Thus the effects of a lower rigid boundary
and of an upper free surface are eliminated. The practical

applications, however, are not seriously limited by this assump-
tion if the waves are not too long; for, according to (101.72),

the depth of a layer need be only four-tenths of the wave length

in order to be considered as infinitely deep. A layer 1 km thick

may still be considered as infinitely deep if the waves are 2.5 km
long.

The perturbation equations of the problem are again of the form

(101.3), and the general solution is therefore given by (101.6).

The perturbation motion should not become infinite at an

infinitely great distance from the surface of discontinuity. It

follows that for the lower layer, where z ^ 0, C" = 0. With this

boundary condition at infinity the solution for the lower layer is

reduced to

u = Ce** cos -
(x ct)

A

w = Ce
2T
*sin ^ (x

- ct) (102.1)
A

p = p (c U)Ce ** cos -^ (x ct)A

Similarly, for the upper layer, C = 0. Because the quantities

referring to the upper layer are denoted by dashes

uf = -C'e~
2T

*"cos^(z
-

ct)A

W' = C'e~*'*sm ^(x- ct) (102.2)A

p'
= _p'(c _ V')C'e~

2
** cos ^ (x

-
ct)A

Besides the two boundary conditions which state that the

perturbation motion should remain finite at z = +00 and oo
9

there are two more conditions at the internal surface of dis-

continuity. These conditions may be used in the form (100.8).

The equation of the internal boundary can be written, according
to (100.2), in the form
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P-P'+p-p' = -g(p - p')z + [p(c
- U)C

+ p'(c
-

U')C'} cos ^ (x
-

ct)
= (102.3)

A

In this equation, the exponentials e ** and e ** should appear
in the expressions for p and p

f

. Here z denotes the height of the

disturbed surface of discontinuity. But only an error of higher

order is committed by putting z = 0, for the position of the

disturbed surface of discontinuity deviates only slightly from

the undisturbed position z = 0.

Upon substituting (102.3) into (100.8) and in the equation

expressing the corresponding condition for the upper layer, it

follows that

^ (c
-

V)[P (c
- V)C + P'(c

-
V')C']

-
g(P

-
p')C =

(102.31)

(c
-

U')[P (c
- U)C + p'(c

- inC'} - g(P
-

P')C' =

These equations have been simplified by choosing for w and w r

the value at the undisturbed internal-boundary surface instead

of the value at the actual disturbed position which involves

again only an error of higher order. Upon equating the ratios

of C/C" following from these two equations the relation between c

and X becomes, after simplification,

-
p')

= o

or, upon rearranging,

c'(p + p')
-

2c(PU + p'tf') + f/ 2
p + C/'V - g (p

-
p')

=

(102.4)

Thus,

c _ p^ + p^ jxTETTl^W (1025)p-hp \27Tp-i-p (p-rp)

The expression for the wave velocity consists again, as in the pre-

ceding section, of a convective and a dynamic term. The convec-

tive term represents the mean value of the undisturbed velocity in
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both layers. The dynamic term is due to the effect of the gravita-

tional force of the earth and due to the wind difference on both

sides of the surface of discontinuity. Because such a wind differ-

ence is called a "shear," its effect on the wave motion may be

called the "shearing effect."

If p'
=

o, (102.5) becomes identical with (101.71), the formula

for the wave velocity on the free surface of one layer whose depth
is infinite.

To discuss the implications of (102.5), some special cases

may be considered. If

U = U' =
0,

(102.51)

This formula differs from the corresponding formula (101.71)

for waves at the free surface of an infinitely deep fluid by the

factor A/- r- /
The waves are purely gravitational in both

\p-rP
cases. Since p = P/RT and //

= P'/RT' where P -
P',

(102.51) may be written

(102 '52)

If T' = 283 abs above the surface of discontinuity and T = 273

abs below, \mT~TTm
~ 0.13. Thus, for the same wave length,

internal waves are considerably slower than waves at the free

surface.

When p' > p, i.e., when the upper fluid is heavier than the

lower one, c becomes imaginary, and the argument of the periodic

function in (102.1) and (102.2) is complex. The perturbation

quantities change then from periodic to exponential functions

-ct -~ct
of the time, containing terms multiplied by e x and by e x

.

The latter terms decrease with time, and the former increase.

Because the perturbation increases with time, the waves are

unstable. This result is, of course, to be expected in view of the

gravitational instability of the stratification.

The directions of the horizontal perturbation velocities uf

and u in the upper and the lower layer are opposite. From the
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first equation of (102.31), it follows that

C p'c
2

or, with (102.51),

Therefore, Eqs. (102.1) and (102.2) show that the horizontal

components of the perturbation motion have opposite signs in

both layers. The result holds also if U and U' are different

from zero.

If the density in both layers is the same but the wind velocity

is different,

c,+^ ,-< (102 .6)

Because the dynamic term of the wave velocity depends now
on the wind shear, these waves are called

"
shearing waves/'

They are also unstable, for the dynamic term is imaginary.

The waves whose velocity is represented by the more general

formula (102.5) are of a mixed shearing and gravitational type.

They are stable if the expression under the square root is posi-

tive, i.e., when

.

g (p
-

Thus, sufficiently small waves are unstable, owing to the effect

of shearing. If the temperature is introduced in (102.61)

instead of the density,

X *>A -
(F -

T)(T' + T)

The following table gives the limiting wave length for instability

when T = 273 abs. Shorter waves are unstable, and longer ones

stable.

For longer waves the effect of the gravitational stability on

the stratification, which is represented by the first term under

the square root of (102.5), becomes more effective, and the

waves become stable when (102.61) is satisfied.



THEORY OF ATMOSPHERIC MOTIONS

LIMITING WAVE LENGTH, m

287

103. Billow Clouds. If the velocity of the waves c = 0, the

wave length can be determined from the observable wind

velocities and densities. Because the time factor in the expres-

sions for the perturbation quantities then vanishes, the motion

is steady. The length of the waves under these conditions is

most easily found from (102.4). If c = 0, it follows that

. __ 27T U*P +
A

g P
~

P'

or if the temperature is introduced instead of the density,

(103.1)

g

V'*T

T' - T (103.2)

Atmospheric waves to which this formula may be applied are

mainly observed in the form of billow clouds which appear at

the boundary of an inversion. It may be assumed that the cloud

system moves with the mean velocity of the upper

and lower layer so that the wave velocity vanishes in a coordinate

system moving with the velocity
-

^
- of the cloud system.

Condensation and cloud formation take place where the air

ascends, while the sky is clear where the wave motion causes

descent of air. When the temperatures and wind velocities

are observed above and below the inversion, the wave length
can be computed and compared with the observed wave length.

Wegener
1

first made such a comparison. The observed wave

1 WEGENER, A., Beitr. Phys. Aim., 2, 55, 1906-1908.
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lengths are, in general, smaller than the computed ones, the

difference being larger the smaller the amount of the inversion.

Haurwitz 1 has shown that this is due to the assumption that the

atmosphere is incompressible and that the only variation in

density occurs at the inversion. In making this assumption,

the stability of the atmosphere is taken into consideration only

in so far as it is due to the density discontinuity at the inversion
;

and, consequently, the computed wave lengths are too large.

In reality the stability of the atmosphere is in part due to the

fact that the actual lapse rate is smaller than the adiabatic.

This stabilizing effect can be taken into account if the atmosphere
is treated as a compressible fluid. The computed wave lengths

are then in much better agreement with the observed ones,

as shown in the following table. The first column of this table

gives the date of the observation, the second the temperature

discontinuity, the third the wind discontinuity, the fourth the

observed wave length, and the fifth and sixth the computed wave

lengths under the assumption of an incompressible and com-

pressible fluid.

WAVE LENOTHS OF BILLOW CLOUDS*

* HAURWITZ, B., Met. Z., 48, 483, 1931.

Such billows may sometimes be responsible for periodic ceiling

fluctuations, as pointed out by Jacobs. 2

104. An Example of Inertia Waves. We shall next consider

the effect of the earth 's rotation. To simplify matters the

1 HAURWITZ, B., Oerl Beitr. Geophys., 34, 213, 1931; 37, 16, 1932.
1
JACOBS, W. C., Monthly Weather Rev., 66, 9, 1937.
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motion at the pole will be studied. Here, only the vertical

component % = co of the earth's rotation does not vanish, and

therefore no complications due to the horizontal components
arise. The fluid is again assumed to be incompressible and

homogeneous. It may be enclosed between two rigid horizontal

boundaries

z = Q and z h

Under these conditions, oscillations are possible in a homo-

geneous, incompressible fluid only if the whole fluid system

rotates, as will be seen below.

In the undisturbed state the fluid may be at rest; thus, accord-

ing to (99.3),

n 13P= -- -T
--

g
p dz

In the disturbed state the variables may again be regarded as

independent of the ^-coordinate. The perturbation equations

become, with the aid of (99.5),

du 1 dp- 2uv = --
-/-dt p ox

+ 2u -

_
dt p dz

du . dw
-dx
+

~dz~

=

In these equations the ^/-component of the velocity v has been

included, although it has been assumed that it is independent
of y and only a function of x, z, and L If v were assumed equal

to zero, u would also vanish according to the second equation;

w could be only a function of x according to the equation of

continuity. However, since the fluid has rigid horizontal

boundaries, it follows that

w = if z = and z = h (104.2)

as is obvious without reference to the more general boundary
conditions of Sec. 100. Thus, w would have to vanish too if it

were only a function of x. Therefore, it must be assumed that

v 7* 0, if the effect of the earth's rotation is taken into account.

Owing to the earth's rotation the motion no longer takes place
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in a vertical plane, as in the examples considered in the two

preceding sections.

The boundary conditions (104.2) show that w cannot be a

true exponential function of z as in the preceding sections.

Actually, if a dependence of the form e^* were to be assumed, the

subsequent calculation would show that y must be imaginary
in order to satisfy (104.2). The dependence on z must be given

by a trigonometric function. If we assume that

w ~ sin f nw r) when n =
1, 2, 3,

the boundary conditions are satisfied. From (104.1), it is seen

that u, v, and p must then be proportional to, cos ( mr r ! There-

fore, let

u = A cos ~ (x cf) cos ( mr r
)

t;
= B sin ~ (x cf) cos f UTT r

)

27T / A (1 4 ' 3)

w = C sin (z cO sin ( n?r r
)

p D cos
-^ (x ct) cos f /ITT r

)

where -4, 5, C, and D are constants as in the preceding section.

When n =
1, w vanishes at the lower and upper boundaries.

For larger n, it vanishes also at h/n, 2h/n, , (n l)h/n.

These horizontal surfaces represent n 1 nodal planes of the

vertical motion; u, v, and p have maxima or minima on these

planes.

Upon substituting (104.3) in (104.1), it follows that

^cA -2o>B = ~Z>
A P A

- ^ cB + 2<A =
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If A, B, and D are expressed by C, according to the fourth of

these equations,

. Xn
A =

PTT '

according to the third equation,

and according to the second and fourth equations,

(104.31)

(104.32)

(104.33)

Upon substituting these values for A, J5, and D in the first

equation, a relation for the determination of c is obtained,

TTtt X 2n 47TC/&
/ ~ __ f

* _____ - - - -

h wch X 2n

Thus,

c = ~X -^ (104.4)
TT Vl + (4A

2
/n

2X 2
)

When o> = 0, i.e., when the effect of the earth's rotation is dis-

regarded, c = and no oscillation is possible, for u, v, and w
are then independent of the time. Furthermore, the amplitude D
of the perturbation pressure would vanish since it is proportional

to c. Only a stationary wave pattern of the streamlines could

exist if w =
0, but no oscillation. The rotation is essential for

this type of wave motion.

The greater the height of the layer, the smaller the velocity

of these waves for one and the same wave length. When nodal

planes of the vertical motion exist, n > 1, the wave velocity

is the same as in a layer corresponding to the distance between

two nodal planes. This is to be expected, for each nodal plane

can be replaced by a rigid boundary. Upon choosing h 8 km,

approximately the height of the homogeneous atmosphere
under average conditions, the following velocities are found

for various wave lengths:
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Because the period of the oscillation

X
r =

c

it follows that

T = -
(104.41)

Because 2ir/u is the length of the sidereal day at the pole, Eq.

(104.41) shows that the period of the oscillations considered in

this section cannot be smaller than half a sidereal day. At
latitudes different from that of the pole, co is multiplied by the

sine of the latitude, sin (p. Because 2ir/u sin y is the length of

the pendulum day, the period at any latitude must be larger than

half the pendulum day.

106. General Discussion of Inertia Waves. The type of

wave motion considered in Sec. 104 is due to the Coriolis force

of the earth's rotation and could not exist in its

absence. Because the Coriolis force is due to

inertia of the mass, the name "
inertia waves" has

been given to oscillations of this type by V.

Bjcrknes
1 and Solberg.

2 Inertia plays here a role

similar to that of gravitation in reference to the

wave types considered in the preceding sections.

In view of the importance of the inertia waves

for the understanding of the wave theory of

cyclones, this wave type may be considered from

another angle.

If a hollow cylinder of circular cross section is

partly filled with a fluid and rotated around its

axis, the fluid will be set in rotation, too, owing
to friction at the walls and at the bottom of the

cylinder. The free surface forms a parabolic

surface, this being the equilibrium surface of a

fluid subjected to the influence of gravity and

centrifugal force. When the rotation is

sufficiently fast, the fluid is pressed very strongly against the

walls of the cylinder and its surface assumes a practically cylindri-

1 BJERKNES, V., and collaborators, op. cit., p. 422.
2 SOLBERG, H., and BJERKNES, V., Avh. Norske Vid. Akad., Math.-Nat.

Kl.
9 vol. I, No. 7, 1929.

FIG. 71.
Effect of rota-

tion on the sur-

face of a fluid.

Full curve,
alow rotation;
broken curve,
fast rotation.
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cal shape, as shown schematically in Fig. 71. The gravitational

force is so much smaller than the centrifugal force that its effect

becomes negligible if the rotation is sufficiently fast. Thus,
instead of the horizontal surfaces of fluids which occur when the

influence of gravity is preponderant, the fluid in the rapidly

rotating cylinder has a practically vertical surface due to the

action of the centrifugal force in the horizontal direction. If

such a vertical fluid surface is subjected to a small disturbance, a

wave motion will originate. This process is quite analogous to the

formation of waves on a horizontal surface
;
in this case, however,

the energy of the wave motion is gravitational, whereas in the

case of the rotating cylinder the centrifugal force replaces the

gravitational force.

The simple inertia waves between two rigid horizontal bound-

aries on the rotating earth which were derived in the preceding
section are stable, for c cannot become complex, according to

(104.4). However, a more general discussion of the stability

or instability of the inertia waves is necessary in view of their

importance for the cyclone problem.
1

Consider a fluid mass rotating around a vertical axis with

the angular velocity TJ which is only a function of the distance R
from the axis of rotation. If the fluid is enclosed between rigid

horizontal boundaries and if 17
= w = const everywhere, we have

just the case considered in the preceding section; but this simpli-

fying assumption will be abandoned now.

The angular momentum of a mass is constant if no forces are

acting on it (Sec. 44).

rjR* = const (105.1)

where R is the distance from the axis of rotation. If the particle

is displaced to a distance R + r from the axis while retaining its

angular momentum, its angular velocity becomes i/, and

(R + r)V =

(105 ' 2)

The centrifugal force acting on the displaced particle is

1 See also V. Bjerknes and collaborators, op. cit., pp. 163-167.
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The centrifugal force on the surrounding fluid mass at the distance

R + r is

1**(R + r)

where t?* is the angular velocity of the fluid at the distance

R + r from the axis. Stability prevails when the centrifugal

force on the surrounding fluid is larger than that on the dis-

placed mass,

*(R + r) >D2R 3 (105.4)

For if (105.4) is satisfied, the displaced particle will be pushed
back to its original position because the centrifugal force acting

on it is smaller than the centrifugal force on the surrounding air.

While being forced back, the particle acquires kinetic energy and

therefore will overshoot its equilibrium position. In this manner
a stable oscillation to and fro about the equilibrium position is

brought about. This type of stability is called dynamic stability.

If the centrifugal force acting on the particle were larger than

the centrifugal force acting on the environment, the particle

would be moved farther from its original position. The dis-

tribution of the angular velocity would tend to create instability.

If finally the centrifugal force on the particle were equal to that

on the surrounding fluid, no force would be acting on a displaced

fluid particle; it would everywhere be in indifferent equilibrium.

The stability condition (105.4) can also be written in the form

rj*(R + r)
2 > 7/ft

2
(105.5)

which states that stability with respect to small perturbations

exists if the angular momentum increases outward. This

condition is fulfilled, for instance, when the angular velocity is

constant. If the angular momentum is constant, we have indif-

ferent equilibrium; if the angular momentum decreases outward,

instability prevails.

The stability condition in the form (105.5) may be applied to

the earth's atmosphere in order to decide if the effect of inertia

on atmospheric wave motion is stabilizing or not. The distance

from the axis

R = E cos <p
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where E is the earth's radius and ^ the latitude. The total

angular velocity

where is the angular velocity relative to the earth, and co

the angular velocity of the earth's rotation. The stability

condition (105.5) becomes

$* + co) cos2
<p* > (A + w) cos 2

<p when *>*<?? (105.6)

As long as the angular velocity X relative to the earth vanishes,

the condition is certainly satisfied. But even if ^ is different

from zero, it is always very much smaller than u>, except near the

poles. At 60 latitude, for instance, the velocity due to the earth 's

rotation is about 232 m/sec, and the wind velocity is one-tenth or

one-twentieth of this amount. In general, therefore inertia

waves in the atmosphere are stable, and the effect of the Coriolis

force on atmospheric wave motions is stabilizing.

106. Large-scale Oscillations of the Atmosphere. In Sec. 58

(page 163), it was pointed out that, in large atmospheric dis-

turbances, convergence and divergence must arise even if the

wind field is geostrophic, owing to the increase of the Coriolis

force with the latitude. It was shown in a qualitative fashion

that, owing to this effect, a pressure field with west-east isobars

on which sinusoidal disturbances are superimposed would move
toward the west.

Instead of using the perturbation equations (99.5) and (99.6)

directly to solve this problem, we may apply Eq. (85.2) here,

jt (f + 2co sin v) +
(j|

+
g) (? + 2ca sin ,)

= (85.2)

where f
=

^
-- - Bars are added to the velocity components
OX O}/

in order to indicate that they refer to the total disturbed plus

undisturbed motion. The fluid will be considered incompressible

as heretofore. The ar-axis of the coordinate system points

toward the east, the y-axis toward the north, and the 2-axis

vertically upward. We shall further assume that the total

motion consists of an undisturbed zonal current U of constant
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velocity
1 and a horizontal perturbation motion with the com-

ponents u and v

u = U + u, v = v, w = (106.1)

The components of the perturbation velocity may be so small

that terms containing them in the second or higher order can be

neglected. Because w =
0,

^f + 5^ = (106.11)

and

/* * *\
F + 2w sin <p)

= (106.2)

The Coriolis parameter o> sin <p depends only on y owing to the

orientation of the coordinate system

/ \ sri ?? 2co cos <p , ON_ (2w sln )
= A__J = __^_ = ff (106.3)

<r varies also with the latitude; but, in the following calculation,

this variation will be neglected. From (106.2), it follows that, if

terms of second and higher order in the perturbation quantities

are omitted,

The equation of continuity for the perturbation motion,

^+^ -o
dx
^

dy

can be satisfied by putting

= -
f*

=
f* (106.5)

dy dx ^ '

where ^ is a stream function. Then (106.4) becomes

1 ROSSBY, C.-G., /. Mar. Research, 2, 38, 1939. Sec also B. Haurwitz,

. Mar. Research, 3, 35, 1940.
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A solution of this equation can be assumed in the form

$ = C cos -*
(x ct) cos -^ y (106.6)

A d

X is the wave length, and 5 may be called the width of the

disturbance although it represents actually the width of two

adjoining centers in which the motion is in opposite directions.

Upon substituting (106.6) in (106.51), it follows that

(106.61)^ ^ A V '* \ 9 \ f>
4?r

2 X 2 + 5 2

The velocity c of the disturbance is composed of the geostrophic

wind current U and a dynamic term that depends on the lati-

tudinal variation <r of the Coriolis parameter. This dynamic
term increases with the wave length and toward the equator.

It decreases as the ratio X/5 increases.

The total number of waves n around the circumference of the

earth at the latitude is given by

nX = 2irE cos <p

Substitution in (106.61) shows that

TT
c = U - ,cos3

X 2
/6

2 (106.62)

If the lateral extent of the disturbance is infinite 8 = oo, i.e.,

if the perturbation does not depend on y, the following values of

U c are obtained at different latitudes and for different wave
numbers :

WAVE VELOCITIES FOR DIFFERENT WAVE NUMBERS AND AT DIFFERENT
LATITUDES. AFTER ROSSBY
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If the lateral extent of the disturbance is not infinite, the

figures of the preceding table are reduced by the factor > 2 /*2'1 -f- A I Q

Equation (106.61) shows that the disturbances become

stationary when

X = 27T (106.7)

Some stationary wave lengths at different gradient-wind veloci-

ties and different latitudes when d = <x> are shown in the follow-

ing table.

STATIONARY WAVE LENGTH

U, m/sec-

When the disturbance is of finite width, the stationary wave

lengths are larger. If, for instance, the width is equal to the

wave length, the stationary wave lengths are 40 per cent larger.
1

The preceding formulas explain to a certain extent the behavior

of the so-called "centers of action/' like the Icelandic and the

Aleutian lows, and the Pacific and Azores highs. If (106.7) is

satisfied, the center remains stationary. But if the eastward

drift U of the general circulation becomes stronger than necessary,

according to (106.7), the center will be displaced eastward; if U
becomes smaller, the center will be displaced westward. The
zonal velocity U of the general circulation or the meridional

pressure gradient to which U is closely related by the geostrophic

wind relation is therefore an important index of the motion of the

semipermanent centers of action that dominate the large-scale

developments of the weather. 2

1 HAURWITZ, B., Am. Geophya. Un. Trans., (2) 263, 1940.
* ALLEN, R. A., Quart. J. Roy. Met. Soc., 66, Suppl., 1940.
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The disturbances determined by the preceding formulas may
arise spontaneously, i.e., without the action of a generating force.

They are free disturbances, analogous to the free oscillations of a

vibrating system. The heterogeneities of the earth's surface, in

particular, the unequal distribution of water and land, tend to

set up perturbations whose location is determined by these

geographical factors. These heterogeneities may be treated as

external forces that give rise to forced disturbances, analogous
to the case of the forced oscillations of a vibrating system.

Particularly strong disturbances will be caused by those forces

whose dimensions are close to the dimensions of a free disturbance.

The dimensions take over the role that the period has in the case

of resonance of vibrating systems, for the forces due to the sur-

face heterogeneities of the earth are independent of the time.

The previous formulas are developed for a flat earth. Obvi-

ously, when disturbances of such dimensions as those in the

table for stationary wave lengths (page 298) are considered, this

assumption is hardly justified except as a first approximation.

The simple derivation given here can also be extended to a

spherical earth, and it is possible to take into account at the same
time the variation of or with the latitude. 1 The results are the

same qualitatively, but the quantitative results are different.

Problems

30. Find the wave velocity at the internal boundary between two homo-

geneous incompressible fluid layers enclosed between rigid lower and upper
boundaries when the depth of each layer is small compared with the wave

length and when the fluid is at rest in the undisturbed state. The effect of

the earth's rotation should be neglected.

31. Find the wave velocity in an incompressible homogeneous fluid layer

with a rigid lower boundary and a free upper surface when the undisturbed

current increases linearly with the elevation. The effect of the earth's

rotation should be neglected. In particular, what are the expressions for

the wave velocity in a very shallow and in a very deep fluid layer?

1 HAUBWITZ, B.. /. Mar. Research, 3, 254, 1940.



CHAPTER XV

AIR MASSES, FRONTS, CYCLONES, AND ANTICYCLONES

107. Ak Masses. A study of the weather maps shows that

the properties of the air are often nearly the same over areas

extending many thousands of miles. Such a uniform body of

air is called an "air mass." The homogeneity is due to the life

history of the air mass. When air stagnates for a considerable

interval of time in a region where the earth's surface is homo-

geneous, it assumes uniformly the properties of this part of the

earth's surface. The principal regions in which formation of air

masses takes place are the tropical and subtropical zones on the

one side, the arctic and subarctic regions on the other side.

Consequently, the two principal types of air mass are the tropical

and the polar air masses. In middle latitudes the uniformity
of conditions and the light winds are generally lacking so that no

or only less important source regions are found here.

The tropical and polar air masses may be further subdivided,

according to whether the source region is a land or a water sur-

face. In the first case the air is called
"
continental/' in the

second case "maritime." Continental air masses are, of course,

drier than maritime air masses, other things being equal.

For a complete description of air masses, their origin and their

properties, the reader is referred to the textbooks on weather

forecasting.
1 The very brief remarks made here are intended

only as an introduction to the discussion following.

The two main processes active in the formation of air masses

are turbulent mass exchange and radiation. Turbulent mass

exchange transports heat from the ground and the lowest layers

upward (Sec. 84). Similarly, the effects of the cooling process
are extended upward. But in this case the transfer will not be
so strong because cooling from below increases the vertical

*For instance, S. Petterssen, "Weather Analysis and Forecasting/'
McGraw-Hill Book Company, Inc., New York, 1940; J. Namias, "Air Mass
and Isentropic Analysis," 5th ed., American Meteorological Society,

Milton, Mass., 1040.

300
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stability of the air. Thus, the turbulent heat transfer is reduced,

especially if an inversion is formed (page 231). Besides heat, the

water vapor evaporated from the surface into the lowest layers

of the ground is also carried upward by turbulent mass exchange.
The role of radiation in the development of air masses becomes

particularly important when the effect of the turbulent heat

transport is very small, as in polar air that is cooled at the ground

(Sec. 39).

Once the air mass leaves its source region, it undergoes a

continuous transformation. In general, tropical air masses

moving toward higher latitudes come gradually in contact with

cooler parts of the earth's surface. Thus, their temperature is

lowered, first at the ground, so that the vertical stability is

increased. Polar air masses advancing over warmer ground are

heated from below so that their actual stability decreases (Sec.

84). Considerations of the life history of the air masses lead

to the
"
differential

"
classification of air masses; the classifica-

tion according to source regions is called the
"
geographical'

1

classification.

Simultaneously with the heating or cooling of the advancing
air mass, there is also, as a rule, a change of its moisture content.

Generally speaking, a tropical air mass moving over a cooler sur-

face will lose water vapor by condensation owing to cooling,

whereas polar air will gain water vapor by evaporation. After

these variations have gone on for some time, the air-mass proper-

ties are changed to such an extent that the air mass is given a

special designation showing its transitional state.

A modification of temperature and humidity of air masses is, of

course, brought about by vertical motions, also. If these

motions take place adiabatically, the temperature increases with

descent and decreases with ascent. Similarly, variations of the

density of the water vapor, the absolute humidity, occur. In

order to follow the air masses from day to day it is necessary to

use
"
conservative

"
properties, as, for instance, equivalent

potential temperature and wet-bulb potential temperature (see

Sees. 24 and 25) which do not vary appreciably during adiabatic

changes. Of course, nonadiabatic effects such as turbulent mass

exchange or radiation also modify these so-called
" conservative

"

properties. This fact has to be taken into account in analyzing
weather maps.
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108. Fronts and Their Origin. In one and the same air mass,
there is, according to the meaning of the term "air mass," very
little or no change of the properties of the air in the horizontal

direction. But in passing from one air mass to another a change
of the properties must necessarily occur, and the rapidity of the

change depends on the width of the zone of transition. When
the air masses are in their respective source regions, the variation

of the properties from air mass to air mass will be closely equal
to the regular average gradient determined by the mean distribu-

tion of the meteorological elements over the globe. When one or

both of the air masses move from their source regions toward each

other, the zone of transition becomes smaller, and the gradient

of the properties larger. When the zone of transition becomes

sufficiently small so that it appears as a line on the weather map,
it is called a "front" and may be treated as a sharp line. An
accurate criterion of when a zone of transition should be called a

front cannot be given;
1 such a criterion would obviously depend

on the density of the network of observing stations. However, it

may be stated that transitional zones whose width is smaller than

50 mi may be regarded as fronts. Wider zones are frequently

called "frontal" zones. It is necessary, of course, that across

the front or frontal zone a significant change of the property take

place.

Strictly speaking, a front is the intersection between the

frontal surface which separates two air masses of different

properties and the ground, although the term "front" is often

used to designate the whole surface of separation, also. The

dynamic and kinematic principles determining the position and

the motion of frontal surfaces have been considered in Chaps.
VIII and IX.

In order to form a frontal surface, two air masses of different

properties must come sufficiently close together for a sharp and

narrow zone of transition to come into existence. The kinematic

conditions underlying the formation of atmospheric fronts have

been studied by Bergeron,
2
Bjerknes,

3 and Petterssen. 4 Pet-
1
See, for a detailed discussion, T. Bergeron, Oeofys. Pub., V, No. 6, 1928.

1 BERGERON, loc. cit.

8 BJERKNES, V., and collaborators,
"
Physikalische Hydrodynamik," 9,

176, Verlag Julius Springer, Berlin, 1933.
4
PETTBRSSEN, S., Geofys. Pub., 11, No. 6, 1935; "Weather Analysis and

Forecasting," Chap. Y



AIR MASSES, FRONTS, AND CYCLONES 303

terssen considers a property a which for the sajce of simplicity

may be regarded as conservative. The distribution of a in the

horizontal is given by a function a (x, y) and can be represented

on the map by a family of curves given by the condition that

a = const. These curves will, in general, move across the map.
If they move in such a manner that they tend to produce a

discontinuity along a line on the chart, a front may be formed

and we have "frontogenesis."

The frontogenetical effect may be measured by the variation

of da/dn with time, n being the direction at right angles to the

curves a. The line of frontogenesis must always consist of the

same particles; otherwise, the maximum frontogenetical effect

would always act on new air, and no front would form. Thus,
the variation with time of da/dn must be the individual variation,

and the frontogenetical effect may be expressed by

'-() <">

In order to have frontogenesis, F must be positive, and the

conditions for F to have a maximum along the line of fronto-

genesis must be satisfied. If F is negative in a given area, any

existing fronts are weakened and eventually are dissolved and

we have "frontolysis."

If v8 and vn are the velocity components parallel and normal

to the isopleths of a, (108.1) may be written explicitly

The vertical velocity component can be disregarded, at least as

long as frontogenesis at the ground is considered. Because a

is a conservative property, its individual variation vanishes,

da da
,

da
,

da n /ino rtX

T*
=

-jl +Vs-^- +vn =
(108.2)

at dt as dn '

Upon carrying out the differentiation in (108.11) and eliminating

da/dt with the aid of (108.2), it follows that

'-- <*
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Since da/dn > 0, frontogenesis occurs when vn decreases in the

direction of increasing values of a. If vn increases in the direction

of increasing values of a, frontolysis takes place. These qualita-

tive rules are easily derived directly by means of simple sketches.

It may now be assumed that the velocity field is linear; thus,

the velocity components can be written in the form

u = UQ + MIX + u%y
v = v + vix + v<ty

The choice of a linear velocity field is, of course, a serious restric-

tion of the generality of the subsequent results. But the above

expressions for the velocity components may also be regarded as

the first terms of a Taylor series for u and y, and therefore the

of c/i/atottion

(a.) (b)
FIG. 72. Deformation in a linear field of motion.

results may be applied to the neighborhood of a point for which

the development of u and v into a Taylor series holds.

Furthermore, linear fields of motion seem to predominate in

regions where the distribution of the isobars shows a saddle point,

and in such areas fronts frequently form.

By a suitable choice of a coordinate system the above expres-

sions for the velocity components may be written

(108.4)
u = UQ + ax + bx cy

v = VQ ay + by + ex

The terms UQ and t>o represent a translatory motion, and the

terms ax and ay a, deformation,

dxw ^^

The x-component of the deformation velocity is positive in the

positive x-direction and negative in the negative x-direction, and
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therefore the rr-axis is the axis of dilatation (Fig. 72a). Similarly

the y-axis is the axis of contraction (Fig. 726). The terms

bx and by measure the diver-

gence of the field (Sec. 50)

E + l
and cy and ex its vorticity

(Sec. 51)

dv

dx

du

In Order to Substitute the ex-
Fl(J> 73. Transformation of the

pression for the linear field of expression for the frontogenetical

motion (108.4) in the expression

for the frontogenetical effect (108.3), vn has to be transformed.

Let \l/ be the angle between the axis of dilatation and n (Fig. 73).

Then

vn = u cos ^ + v sin

and

Thus

+
* I \J w

i i
l/C/

sin w [ cos \!/ H sin
\dy dy

or upon substituting from (108.4) and simplifying,

F = - ^ (a cos 2$ + 6) (108.5)

If the angle x between the direction of a and the axis of dilatation

is introduced,

X - 90 + *

F = 2
(a cos 2X - (108.51)
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It will be noted that the frontogenetical effect depends only on

the divergence b and on the deformation a, but not on the

translatory motion and on the vorticity.

The sign of F is determined by the angle x F vanishes along

a line given by the equation

cos 2X
' = (108.6)

F > if at a given point x' > X > x' ;
and F < if

T - x' > X > x'-

In the first case, da/dn increases, in the second case it decreases.

Thus, there are, in general, two symmetrical sectors in which

F > and two in which F < 0. These sectors are shown in

Fia. 74. Frontogenetical and frontolytical sectors. (After Petterssen.)

Fig. 74. The two sectors whose boundary lines make the angle

x' with the positive and negative axes of dilatation are called the

"frontogenetical sectors" (shaded in Fig. 74); the other two are

called the "frontolytical sectors" by Petterssen. Consider the

point P on the isopleth a. The angle x between the tangent
on a in P and the axis of dilatation is larger than x'. The field is

therefore frontolytical at P. At P', on the other hand, it is

frontogenetical, for x < x' Along the line F =
0, the angle

between the tangents on the a-lines and the axis of dilatation

is x'.

When there is no divergence, 6 = 0, and x' = 45. When the

field of motion is convergent, b < 0, and x' > 45; when it is
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divergent, b > 0, and x' < 45. When b = a, dv/dy = 0, x' =
and frontogenesis does not occur. Similarly, in the case 6 > a,

which is theoretically possible, (108.6) cannot be satisfied; but it is

seen from (108.51) that F < everywhere.
For a practical application of these deductions, it is necessary

to determine the divergence b and the deformation a of the field.

In order to determine the line of frontogenesis in a given case,
one has to determine along which line F has a maximum. For
details and examples the reader is referred to Petterssen's

publications cited previously.
109. The Wave Theory of Cyclones. When a frontal surface

has developed in the atmosphere, wave motion may start on such

a surface spontaneously, just as wave motions originate at the

boundary between water and air.

It had already been suggested by Helmholtz,
1

although not in

a very definite form, that cyclones, at least cyclones of extra-

tropical latitudes, originate as small wave perturbations at

surfaces of discontinuity. But the wave theory of the origin of

qyclones has primarily been developed by V. Bjerknes and his

collaborators from both the theoretical and the observational

side. 2

In order to show that the wave theory can explain the forma-
tion of cyclones, it must first be investigated whether waves of

the right length and velocity originate in the atmosphere and
whether such waves are unstable. In the case of unstable waves
the amplitudes which are very small in the original wave per-
turbation increase with time until the cyclone loses its wave
character and becomes a vortex like the fully developed cyclones
found on the weather maps. The mathematical problems
arising out of a study of these instability conditions are very

difficult, and it cannot be claimed that a complete solution has

been reached. But important results have been obtained which
make it certain that unstable waves of the right length and

velocity and with the correct fields of motion can originate at the

atmospheric surfaces of discontinuity. A complete presentation
of these investigations is beyond the scope of this book. But it is

possible to show with the aid of the results of the preceding

1
HELMHOLTZ, H., Sitz.-Ber. Akad. Wise. Berlin, 647, 1888.

2
BJERKNES, V., and collaborators, op. cit.
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chapter that the existence of the postulated waves is highly

plausible.

According to Sec. 102, waves of very short length will be

unstable when the surface of separation between the two fluids

represents also a wind discontinuity. Such a wind shear is, as a

rule, found at frontal surfaces so that sufficiently small frontal

waves will be unstable. With increasing wave length, however,
the effect of gravitational stability becomes stronger and over-

compensates the effect of shearing instability. It depends
on the magnitude of the wind and temperature discontinuity at

which wave length the transition from the unstable to the stable

type occurs. The table on page 287 shows that the wave length

of the longest unstable waves of the mixed gravitational and

shearing type is less than 10 km at the temperature and wind

discontinuities occurring in the atmosphere, so that the effects of

shearing and gravitation alone cannot account for the formation

of cyclone waves.

Actually, the limiting value of the wave length of the unstable

waves is still smaller than would appear from the table on page

287, where the gravitational stability is due only to the heavier

fluid being underneath the lighter one. In the atmosphere,

however, each layer for itself is, at least as a rule, in stable

equilibrium; for the actual lapse rate of temperature is smaller

than the adiabatic. Thus, the gravitational stability of the

atmosphere is really larger than the stability represented by
the superposition of two incompressible fluid layers of different

densities.

As longer waves are considered, the effect of the deflecting

force of the earth's rotation becomes more important and the

waves are now of a mixed shearing, gravitational, and inertia

type. Of course, the inertia effect acts on short waves also; but

its influence becomes noticeable only for longer waves. It was

shown in Sec. 105 that the inertia effect in the earth's atmosphere
acts as a stabilizer on the wave motion, for the angular momen-
tum shows a stable distribution.

The deflecting force of the earth's rotation has, however,

another important, more indirect effect on the stability of the

waves. Because it acts perpendicular to the earth's axis it has

a horizontal component everywhere except at the equator. This

component causes an inclination of the perturbation motion to
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the vertical as shown by (104.33) which represents the y-com-

ponent of the perturbation motion. The inclination increases

with the scale of the motion, and in long cyclonic waves the

motion is predominantly horizontal. This tilting of the plane
of the perturbation motion leads to the formation of unstable

waves, in the following manner: The stable character of the

longer waves of a mixed gravitational and shearing character is

due to the difference in weight of the oscillating particle and its

environment; thus, it depends on the amplitude of the vertical

oscillation. As the wave motion becomes more horizontal with

3000-

JC

500-

10-

Dimensions of the perturbation motion become larger

Dynamic stability greater than the effect cf//?e

shearing instability Stable waves again.

Orbital motion stillmore horizontal

Therefore shearing instability again greater
than gravitational stability Unstable eye/one

Inertia becoming effective, turning orb/tal

surface towards the horizontal, but sti/Istable

Gravitation predominant Stable

Shearing predominant. Unstable.

FIG. 75. Schematic representation of the stability conditions of atmospheric
waves. (The indicated wave lengths are very rough approximations and are

not drawn to scale.)

increasing wave length, the stabilizing eifect of gravitation

decreases. Mathematical analysis shows that waves whoso

length is of the order of 500 km are unstable. The shearing

instability for waves of these dimensions is greater than the

gravitational and dynamic stability combined. With still

longer waves, of about 3000 km, the eifect of the stable distribu-

tion of angular momentum (dynamic stability, page 294) increases

further, and thus still longer waves are stable. These con-

siderations concerning the stability and instability of atmos-

pheric waves are summarized in the preceding schematic table

(Fig. 75). The cyclone waves must obviously be those types in

which the shearing instability is larger than the gravitational

stability owing to the tilting of the plane of the perturbation
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motion by the Coriolis force. Thus, unstable waves of the right

length to explain the formation of wave cyclones may form in the

atmosphere. Because these waves are unstable, their amplitudes
must increase until a fully developed cyclone is formed. The

theory shows also that these waves have velocities of the same

order of magnitude as the nascent cyclones, that the velocities

are directed eastward, and that the motion of the air is of the type
observed in nascent cyclones.

From the wave character of the cyclones, it follows that the

velocity of a cyclone is not simply the mean of the velocities

in the cold and in the warm current but that it depends also on a

dynamic term (page 281) which represents the effects of gravita-

tional stability, dynamic stability, and shearing instability.

The wave theory of cyclones is sufficiently far advanced to

enable us to assert that it has been proved that the formation of

cyclones as waves at a frontal surface is possible. Nevertheless, a

great number of difficult problems remain to be solved.

It was pointed out before that our qualitative considerations

refer to incompressible fluids only. The gravitational stability

of the atmosphere is greater than that of a fluid system consist-

ing of two homogeneous layers of different densities. Solberg
1

has taken the compressibility into account by considering iso-

thermal layers of air which follow the adiabatic law of compres-
sion and expansion . The assumption of an isothermal atmosphere
makes mathematical analysis easier but implies that the gravita-

tional stability is greater than in the actual atmosphere with its

linear lapse rate of temperature. In consequence of this assumed

greater gravitational stability the computed limit of instability

lies at somewhat longer waves than in the actual atmosphere.
But the assumption of isothermal layers does not change the

main result, that unstable waves of the type of the observed

cyclone waves can form in the atmosphere.
The frontal surfaces occurring in nature are, of course, not

sharp mathematical discontinuities as assumed in the theoretical

investigations but narrow zones of transition in which the

properties of the air change rapidly but continuously. However,
it has been shown that, in general, wave motions are practically

the same whether there is a sharp discontinuity or a transitional

zone, provided that the thickness of the transitional zone is small
1 BJERKNES V., and collaborators, op. tit., Chap. XIV.
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compared with the wave length.
1 For cyclone waves, this

condition is always fulfilled.

A somewhat more serious deficiency of the wave theory of

cyclones which has not been mentioned so far is the assumption
that the lower cold and the upper warm layer have boundaries

parallel to the frontal surface (Fig. 76a). This assumption
eliminates the mathematical difficulties that arise from the frontal

surface intersecting the ground, and the cold air forming a wedge
under the warmer air (Fig. 766).

Solberg
2 has given a solution for a fluid system of the form

shown in Fig. 766. However, a discussion of this solution has

not been undertaken owing to the mathematical difficulties.

Stream
'surface

(a) (b) (c)

FIG. 76. Solidification of stream surfaces. Position of the boundary:
(a) in the theory, (b) in the atmosphere, (c) after solidification of the stream

surface.

Another investigation of this problem was published by Kotschin,
3

who neglected the vertical accelerations and assumed that both

the cold and the warm mass are bounded by a rigid upper surface.

Kotschin was able to show that waves of the dimensions of the

cyclones can be unstable under atmospheric conditions when
the cold air lies in the form of a wedge under the warm air.

However, Solberg has raised certain objections against the valid-

ity of Kotschin's work; for the vertical acceleration terms are

omitted, and thus the problem cannot yet be considered as

solved completely.

Another, somewhat circuitous, method of approach has been

chosen by V. Bjerknes and Solberg.
4 They found during their

investigations that some of the stream surfaces along which the

motion of the air particles takes place are practically horizontal

1 HAUKWITZ, B., Veroffentlich. Geophys. Inst. Leipzig, 2d ser., 5, 52-53,

73-74, 1932.
s SOLBERG, H., Geofys. Pub., 5, No. 9, 1928.
8 KOTSCHIN, N., Beitr. Phys. Aim., 18, 129, 1928.
4 BJBBKNES, V., and collaborators, op. cit., Chap. XTV.
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for an extent of the dimensions of a cyclone, about 2000 km.

Now, a stream surface can be assumed as rigid, for the fluid

motion is parallel to it, by definition. Such a stream surface is

shown in Fig. 76c. If this stream surface is solidified and

regarded as the surface of the earth, a very close similarity is

obtained between the conditions in the fluid system in the

rectangle (Fig. 76c) above the solidified stream surface and the

actual conditions in the atmosphere at a frontal surface. The cold

air lies in the form of a wedge under the warm air, and the wave
motion near the surface is almost parallel to the horizontal

stream surface which may be identified with the earth's surface.

Farther away from the surface of discontinuity the agreement
with reality is, of course, less satisfactory, for the curvature

of the solidified stream surface will be stronger. But mathe-

matical analysis has shown that the intensity of the wave motion

decreases exponentially with the distance from the surface of

discontinuity, at least in the case of a compressible fluid of stable

stratification such as the atmosphere. The field of motion is,

therefore, dynamically most important at the frontal surface and

loses its significance comparatively rapidly in lateral and vertical

direction. Thus, the method of solidifying stream surfaces is

more satisfactory than it might appear at first. This line of

attack, however, can be regarded only as preliminary. It will be

necessary, also, to study directly the problem of a wave motion at

a frontal surface inclined to the ground, in order to obtain a final

solution and to find reliable criteria for the stability or instability

of observed waves.

The investigations thus far have dealt only with waves on a

rotating plane. In view of the large dimensions of cyclones the

spherical shape of the earth should be taken into account, too.

An extension of the wave theory of cyclones appears necessary
in this respect, although it is hardly to be expected that any

fundamentally new results will be obtained when the earth is

treated as a sphere.

110. Further Development of the Extratropical Cyclones.
The Occlusion Process. When an unstable wave has developed
at a frontal surface, the life history of the cyclone cannot be

studied much longer by means of the perturbation method. The

perturbation method assumes that the perturbations are small

compared with the undisturbed motion. This assumption is no
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longer justified when the unstable wave has attained the dimen-

sions of a fully grown cyclone. The further cyclonic development

is, of course, well-known from empirical studies, and a brief

description will be given here. For more information the reader

is referred to the textbooks on synoptic meteorology.
The front on which the cyclone wave develops runs as a rule

in a west-easterly direction parallel to the isobars of the undis-

turbed current, but of course other directions occur, also. The
west-east direction is preferred; for the horizontal pressure

gradient is mainly in the meridional direction, and therefore the

undisturbed geostrophic motion is from the west. The front

separates a warmer southerly air mass with an eastward velocity

from a colder northerly mass which moves either westward or

Low
> Cold

i in Am 1 1 o Front

Warm

High
FIG. 77. Initial, undisturbed state of cyclone development.

also eastward but with a smaller velocity than the warm mass

(Fig. 77). The latter alternative occurs much more often, but in

either case the vorticity at the frontal surface is cyclonic. When
a wave perturbation occurs at the frontal surface, the shape of the

front and of the isobars will become similar to that shown in

Fig. 78a. The front is distorted into a wave and the isobars, or

at least some of them, show a bulge toward the south, forming a

region of somewhat lower pressure where the warm air has

advanced northward. When this wave is unstable, the ampli-

tude of the frontal distortion increases and the region of low

pressure deepens (Fig. 786). The front now forms a sector of

warm air which is, in general, in the southern part of the cyclone.

The stages represented by Fig. 78a and b are those to which the

theoretical considerations of the preceding section apply. The

cold air ahead of the warm sector is separated from the warm
air by the warm front, and the cold air behind the warm sector

by the cold front. The vertical cross section through the cyclone
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south of the center shows the two wedges of cold air between

which the warm air is situated.

The warm air ascends over the cold air along the warm-front

surface, and thus cloud and rain are formed ahead of the warm
front. The wedge of cold air behind the cold front lifts the

warmer air, and rain occurs behind the cold front, also. The

Higher pressure

Cole/2
Warm sector

(a.) (b)

Cold Cold Cotd

Cc)
FIG. 78. Development of a wave cyclone. Upper figures: isobars (full

curves) and fronts (dotted) at the surface. Lower figures: vertical cross sections

south of the cyclone center.

resulting distribution of the rain areas are shown schematically
in Fig. 79. Experience has shown that, in the wedges of cold

air, subsidence and a simultaneous spreading of the air take place
so that the areas covered by cold air increase while the warm
sector becomes smaller and smaller. Finally, the cold front

catches up with the warm front, at first near the center of the

cyclone, then farther away from it. This process is called the

occlusion process of the cyclone, and the part of the front where
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the cold front has caught up is called the occlusion. The begin-

ning of the occlusion process is shown in Fig. 78c, and a more
advanced stage in Fig. 78d. During the occlusion process the

warm air is gradually lifted over the cold wedges as shown in

the lower part of Fig. 78c and d. The juxtaposition of cold and

warm air represents a certain amount of energy, as explained

in Chap. XII. As the warm mass is lifted, the amount of

internal and potential energy is dimin shed and transformed into

other forms of energy, mainly kinetic, to maintain the circulation

of the cyclone. When the occlusion process is completed, the

cyclone represents a vortex with symmetrical temperature
distribution which finally disappears owing to the effects of eddy
and surface friction.

FIQ. 79. Rain areas in a fully developed cyclone. (AJter J. Bjerknea and

Solberg.)

Occasionally, very cold air is introduced into the occluded

cyclone. Then the old cold air, which has been in the cyclonic

circulation for a long time and which has become relatively

warm, acts as a new warm sector. In this situation the occluded

cyclone can increase its kinetic energy again. This process is

referred to as
"
regeneration

"
of the cyclone. Such a regenerated

cyclone has been investigated by Schroder 1 with the aid of

Margules's formulas for atmospheric energy transformations

(Chap. XII).
As a rule, cyclones appear not singly but in groups of about

three to six (Fig. 80), as shown by Bjerknes and Solberg.
2 From

the wave nature of the nascent cyclone, it is easily understandable

that not only one but a number of waves develop at a frontal

surface. The first of these cyclones travels farthest to the north,

1 SCHRODER, R., Verdffentlich. Oeophys. Inst. Leipzig, 2d ser., 4, 49, 1929.
2 BJERKNES. J., and SOLBERG, H., Geofys. Pub., 3, No. 1, 1922.
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and each successive cyclone is younger and appears farther

to the south. The front is thus displaced farther south. Such
a cyclone series is called a cyclone "family." It appears most

regularly over northern oceans in winter. Finally, the individual

cyclone family is terminated by an out-

break of the polar air extending far to

the south.

Some of the ideas suggested by the

wave theory of cyclones had already
FIG. so. Cyclone family, been proposed in similar form in earlier

(After J. BJerknes and
papera but the Norwegian School

ijOLQ6TQ,) i i t

arrived at their theory mainly independ-

ently and were the first to formulate a well-developed theory
based on observations and on the principles of mathematical

physics.

About the middle of the last century, Dove 1 found that the

weather in the temperate latitudes is dominated by the motions

<
Rainfallfrom ascendingair g

Minimum of Reamfallfrom

pressure converging air

W-
Ramfallfrom

Cold
displacedairW ^

StoSE
FIG. 81. Cyclone model. (After Shaw.)

[)f polar and equatorial currents whose essential difference is their

temperature. A still greater similarity to the principles of the

polar-front theory is shown in the publications of Blasius,
2 who

explains the precipitation on the basis of the surfaces of dis-

continuity as they would be called today between the polar

1 DOVE, W. H.,
"
Meteorologische Untersuchungen," Sander'sche Buch-

tiandlung, Berlin, 1837.
2
BLASIUS, W., "Storms, Their Nature, Classifications and Laws," Porter

ind Coates, Philadelphia, 1875. See also H. VON Ficker, Sitz.-Ber. preuss.
A.kad. Wiss., Phys.-Math. KL, p. 248, 1927.
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and equatorial air masses. Bigelow
1 ventured the opinion that

cyclones may be produced as vortices when a cold northerly and

a warm southerly current meet. Finally, the reader is referred

to Fig. 81 which represents a cyclone model published by Shaw 2

in 1913. In this schematic drawing many of the essential

features of the later cyclone model of Bjerknes are found.

111. The Barrier Theory. Besides the wave theory of cyclo-

genesis a number of other theories have been advanced to explain

the origin of cyclones.

According to Exner's hypothesis,
3 the existence of a tempera-

ture discontinuity in the air is regarded as a condition necessary
for the formation of a cyclone, as in the wave theory. He con-

C o Id
'////////,

Warm
(a)
FIG. 82. Exner's barrier theory of cyclogenesis.

siders an outbreak of polar air where a cold mass from the polar

region intrudes in the region of westerly winds in the temperate

latitudes, as shown in Fig. 82a. The cold air moves either

westward or much more slowly eastward than the warmer air

of the temperate latitudes. It acts as a barrier to the motion

of the warm air, and therefore Exner's theory is referred to as the

barrier theory. Because the faster moving warm air to the east

of the cold tongue retains its velocity owing to inertia, the pres-

sure is here reduced considerably. The formation of the region

of low pressure changes the direction of the air motion at A, 5,

and C, as indicated in Fig. 82fr, so that a cyclonic vortex develops.

Because, the cold tongue C forms part of this cyclonic vortex, its

direction of motion becomes also mainly eastward.

1 BIGELOW, H., Monthly Weather Rev., 30, 251, 1902.
2 SHAW, N., "Forecasting Weather," Constable & Company, Ltd., London,

1913.
3 ExNEB, F. M., "Dynamische Meteorologie," 2d ed., p. 339, Verlag

Julius Springer, Vienna, 1925.
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In a similar manner a continent, especially a mountainous

continent, may act as a barrier, Exner refers in particular to

Greenland and suggests that the Icelandic minimum to the east

of the southern tip of Greenland may originate as a barrier

effect.

However, it appears doubtful that the pressure deficit in the

lee of the barrier is strong enough to lead to cyclogenesis except

in very special cases. A mathematical analysis of Exner's theory

that would give a reliable estimate of the pressure deficit has not

yet been undertaken. The calculations on page 240 take into

account only the static pressure effect, not the pressure decrease

due to divergence behind the barrier.

112. The Convection Theory. The simultaneous existence

of a cold and a warm current of air is regarded as necessary for

cyclogenesis according both to the wave theory and to the barrier

theory. The convection theory suggests an entirely different

mechanism. When the air over a limited portion of the earth is

heated until its temperature is higher than that of the surrounding

air, it will begin to rise. As long as it is unsaturated, it cools

at the dry-adiabatic rate of 1C/100 m. The lapse rate of the

surrounding air is, in general, considerably smaller than the dry-

adiabatic. The air, therefore, cannot rise to very high levels, for

it will soon reach equilibrium with its surroundings. For

instance, if its temperature is originally 12C higher than the

temperature of the environment and if the lapse rate in the sur-

rounding air is 6C/km, it can reach an altitude of only 3 km.
There the temperature of the ascending and the surrounding air

become equal. If saturation is reached during the ascent,

however, the rate of cooling is diminished considerably, and the

air may rise to much greater heights. The importance of the

moisture content of the air for the formation and maintenance

of cyclones was emphasized especially by Refsdal,
1
although

from a different point of view.

The mass deficit created by the ascent of air must be com-

pensated by the inflow of air toward the regions over which the

ascent takes place. When such convergence toward a center

takes place on the rotating earth, the air acquires a cyclonic

vorticity, as follows directly from (85.2) (see also page 293).

1 REFSDAL, A., Geofys. Pub., 6, No. 12, 1930.
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The same result can also be derived in more elementary fashion

from the principle of the conservation of angular momentum 1

(see Sec. 44). If a particle of air is at first at rest with respect

to the earth at a distance r
f from the center of convergence, its

momentum is r'
2
o> sin <p where o> is the angular velocity of the

earth's rotation and <p the geographic latitude. When the par-

ticle arrives at r, it has acquired a tangential velocity component
v relative to the earth, and its angular momentum is now

vr + r2w sin <f>

Upon equating both expressions for the angular momentum, it

follows that

t; = (y
- r\ co sing (112.1)

Convergence, r
f > r, therefore produces cyclonic rotation, and

divergence anticyclonic rotation. This is also true for the

Southern Hemisphere, for there the direction of cyclonic and

anticyclonic rotation is opposite to the direction in the Northern

Hemisphere.
We shall assume that the ascent due to convection takes place

only in a central core while the outer part of the air column

shrinks, so that its outer radius decreases from RQ to R (Fig. 83).

Then an inner circle with radius r' outside the core consisting of

fluid particles will shrink to r. Because the mass in the annular

region between RQ and r' must remain constant,

7r(#o
2 - r'

2
)
= w(R

2 - r2
)

or

r'2 - r2 = #o2 - # 2

Upon substituting in (112.1), it follows that

v = Ro*~ R *

cosing (112.2)

The resulting velocity distribution in the outer part is inversely

proportional to the distance from the center. But in the central

core a different law holds for the velocity distribution, and the

velocity does not become infinite at the center.

1
See, for instance, D. Brunt,

"
Physical and Dynamical Meteorology,"

2d ed., p. 300, Cambridge University Press, London, 1939.
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The cyclone is a region in which the pressure is lower than

in the surrounding air. Therefore, the air that converges toward

the center and ascends must be carried away at greater altitudes.

The air may be removed by an upper current with a velocity and

direction of motion different from that of the air flow in the lower

atmosphere.

However, it seems unlikely that an appreciable number of

extratropical cyclones are caused by convection and convergence.

It is difficult to visualize a sufficiently strong heating in tem-

perate latitudes, especially during the winter when the cyclones

are most frequent. Furthermore, most extratropical cyclones

are associated with frontal systems even in their earliest stages.

The convection theory seems more promising as an explanation

FlQ. 83. Horizontal shrinking of an air column and the generation of rotation.

of the origin of tropical cyclones, which will be discussed in

Sec. 115.

On the other hand, it is not entirely impossible that different

cyclones have different modes of origin; thus, some may actually

represent homogeneous vortices at their beginning, not only after

the occlusion process is completed. These cyclones would then

belong to a different category from the wave cyclones. The only

common characteristics would be the center of low pressure, and

the cyclonic direction of motion.

113. The Conditions in the Upper Levels. The theories of

cyclogenesis discussed in the preceding sections do not take into

account the processes in the higher levels of the troposphere and
in the stratosphere. It is a priori plausible that a close con-

nection must exist between the variations in the upper and lower

atmospheric levels over pressure systems. The pressure at any
altitude represents with a great degree of accuracy the weight

per unit area of the total air above the level. Consequently, the
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pressure variations at any height represent the total effect

of the mass variations in the higher layers. The theoretical

foundations for the discussion of these variations are contained

in Eq. (58.3). The last term of this equation shows how the

lower layers can affect the pressure at a higher level when vertical

motions occur. The relation between pressure and temperature

changes has been discussed already in Sees. 11 and 12.

W. H. Dines 1 has expressed the connection between different

variables by a number of correlation coefficients 2 which are

partly given in the following table. The data are based on

observations over Europe. The notation is as follows:

Po = pressure at mean sea level

P9
= pressure at 9 km

TQ = temperature at surface

!To_4 = mean temperature from surface to 4 km
Tm = mean temperature from 1 to 9 km
Hc

= height of tropopause
Tc

= temperature at tropopause

CORRELATION COEFFICIENTS

(After W. H. Dines)

The surface pressure shows very little correlation with the sur-

face temperature, for the upper layers contribute also to the sur-

face-pressure variation. Even the correlation between the

surface pressure and the mean temperature up to 9 km is not

very strong, but it is greater than the correlation with the mean

temperature of the layers up to 4 km. More clearly pronounced

1
DINES, W. H., Geophys. Mem., No. 13, p. 67, 1919.

2 If x is the deviation of each member of one series of observations from

the mean value and y the same for the other series, the correlation coefficient

is Z(xy)/<\/'2x*2y*. It lies between -f 1 and 1.
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is the correlation between the surface pressure and the pressure

at 9 km. Equally large is the correlation with the height of the

tropopause. Tc denotes the temperature at the tropopause, that

is at a variable height. In general, the temperature at the

tropopause increases as the height of the tropopause decreases,

and vice versa, as indicated by the negative correlation coefficient

between Hc and Tc . Because the correlation between P and H
is positive, the correlation between PO and Tc is negative.

Of the other correlations the one between Pg and Tm deserves

special attention for its magnitude. When the pressure at 9 km
is high, the temperature in the layer between the earth's surface

and 9 km elevation is also high. When the pressure at this

altitude is low, the mean temperature in the layer up to 9 km is

also below normal. A close connection exists, also, between

P9 and Hc and between Hc and Tm . All these correlations are

positive, and the deviations from the mean are thus all in the

same direction.

Similar, although somewhat smaller, correlation coefficients

have been computed by Schedler,
1 also from the European

observations. The correlations between the meteorological

variables over North America are of the same magnitude.
2 In

order to obtain a more detailed picture of the simultaneous and

subsequent variations of pressure and temperature at different

levels during the passage of centers of high and low pressure at the

ground, Penner 3 divided each pressure center into three regions,

the east side, the center, and the west side, following a method
first used by Schedler 4 and later by Haurwitz. 1 Because the

centers move as a rule from west to east, these regions may be

called the "front/' the "center," and the "rear" of the low and
of the high. This notation indicates the order in which the

regions pass over the point of observation. The available

aerological observations for the investigated station are then

arranged in six groups according to the position of the observing
station. For each group the mean value of the pressure and

temperature at various levels is computed. The curves obtained

1 SCHEDLBR, A., Beitr. Phys. Atm., 7, 88, 1917.
8 HAURWITZ, B., and TURNBULL, W. E., Can. Met. Mem., 1, 3, 1938.

HAURWITZ, B., and HAURWITZ E., Harvard Met. Studies, No. 3, 1939.

PENNER, C. M., Can. J. Res., A19, 1, 1941.
4
SCHEDLER, A., Beitr. Phys. Atm., 9, 181, 1921.
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by plotting these data in the order in which the regions pass

over the point of observation may be considered as mean baro-

grams and thermograms at different levels. Penner has used

radio soundings made at Sault Sainte Marie, Mich., for the

construction of these curves. The conditions over Europe and

over North America are quite similar as can be seen from a com-

parison of the results of the investigations of Schedler and
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FIG. 84. Pressure variation at different altitudes over Sault Sainte Marie

during the passage of highs and lows. ///, L L r front, center, and rear of a

low; H/ t Hc , Hr of a high. H = height of the tropopause. (After Penner.)

Haurwitz, respectively. Penner's curves, which are reproduced
in Figs. 84 and 85, may therefore be regarded as representative

for north-temperate latitudes in general.

The curves of Fig. 84 show clearly that the pressure extremes

are progressively retarded with increasing altitude in the tropo-

sphere. Above 12 km, however, in the stratosphere, the retarda-

tion decreases again so that the position of the maxima and

minima becomes more nearly equal to that of the surface pressure.

The temperature extremes (Fig. 85), on the other hand, occur
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earlier at higher levels throughout the troposphere. At the

10-km level the temperature curve is very irregular. Above

this level the phase of the temperature curve is opposite to the

phase in the troposphere. The minima of the temperature

in the stratosphere take place approximately over the region of

maximum temperature in the lower layers, and vice versa. It

appears, thus, that the temperature variations at 10 km some-

ie
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Fio. 85. Temperature variations at different altitudes over Sault Sainte

Marie during the passage of highs and lows. L/, Lc , Lr
- front, center, and

rear of a low; #/, HCt Hr of a high. Th = temperature at the tropopause.

(After Penner.)

times follow the pattern of the tropospheric temperature variations

and at other times the pattern of the stratospheric temperature

variations. The variation of the height of the tropopause (Fig.

84) follows very closely the variation of the pressure at the levels

near the tropopause, as is indicated by the correlation coefficient

0.84 between P 9 and He, according to Dines. The temperature

at the height of the tropopause, i.e., at a variable height, runs

parallel to the temperature at 12 km and opposite to the height

of the tropopause, as might be expected.
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Direction ofmotion

The results that are expressed in Dines's correlation coefficients

and in Penner's curves are based on statistical investigations of a

great number of observations. Such a statistical analysis has the

advantage that it shows the average course of events in the

atmosphere, whereas the study of a particular weather situation

cannot reveal whether this situation is typical or not. The study
of a great number of individual cases is necessary before one can

arrive at a conclusion about the relative frequency of different

cases. On the other hand, a statistical investigation must

necessarily smooth out many of the differences between the

individual cases. This may
lead to an oversimplification of

the picture. A corroboration

and a refinement of the statis-

tical results by the investigation

of individual cases are therefore

obviously necessary.

The number of such investi-

gations is not yet so great as

would appear desirable, owing
to the difficulties in obtaining

sufficient data from the upper
air. Nevertheless, these stud-

ies, and especially the ones by
J. Bjerknes and Palm&i,

1 have

kobars and
fronted the

surface

Upper wave

Air mass
ctdvection

^Warm
front

Surface

barogram
FIG. 86. The surface-pressure varia-

tion during the passage of a young
cyclone. (After J. Bjerknes.)

shown that the statistical picture of the relations between the

pressure and temperature variations in the upper and the lower

atmosphere is largely correct.

We shall briefly discuss in which manner the statistical results

fit into the picture of a wave cyclone. Figure 86 shows, after

Bjerknes, how the variation of the surface pressure during the

passage of a young cyclone is brought about by the changes due

to the passage of cold and warm masses and by the upper pressure

wave. The upper part of the figure gives the distribution of the

isobars and fronts at the surface. The broken straight line

indicates the successive positions of the station for which the

1
See, for instance, J. Bjerknes, and E. Palm6n, Geofys. Pub., 12, No. 2,

1937; E. PALM^N, Soc. Sci. Fenn. Comm. Phys.-Math., 7, 6, 1933. Some of

the results mentioned below have been presented in a course of lectures by
Dr. J. Bjerknes at the Meteorological Office, Toronto, in August, 1939.
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barogram Is derived. The effect of the warm and cold front

on the surface pressure is shown by the curve called "air-mass

advection," which can be computed according to Sec. 65. The

pressure falls under the warm-front surface until the frontal

passage occurs at the ground. While the station is in the warm

sector, the pressure would remain constant. With the arrival

of the cold front the pressure starts to rise again. Upon the effect

of the air-mass advection the upper pressure wave must be

superimposed, which represents the influence of the mass varia-

tions of the upper layers on the surface-pressure variation. This

is obtained by deducting the pressure effect of the polar-front

advection from the surface barogram. The maximum of the

upper pressure wave occurs over the warm-front surface. This

agrees with the statistical results shown in Figs. 84 and 85

according to which the temperature in the upper troposphere is

high in the rear of an anticyclone, the same area over which

the upper pressure reaches a maximum. The minimum of the

upper pressure wave is placed over the cold air behind the cold

front, which agrees also with the statistical results, since Figs. 84

and 85 show that the lowest pressure in the upper troposphere is

situated over the rear of a low where the temperature of the upper

troposphere is also lower. The result of the superposition of the

upper wave and the pressure effect of the polar-front advection is

shown in the lowest curve of Fig. 86, marked "surface barogram."
The surface pressure is falling throughout the warm sector until

the arrival of the cold front, when it attains its minimum. At

higher levels the pressure continues to fall so that the pressure

minimum occurs here later.

In occluded cyclones the effect of the air-mass advection is not

so strong. The upper wave, on the other hand, is more strongly

developed over old occluded cyclones, and the retardation of the

minimum pressure with respect to the surface is therefore less.

In the statistical data of Figs. 84 and 85 the conditions in young
and old cyclones are, of course, not separated.

In young cyclones the isobars in the upper troposphere run

mainly from west to east and the disturbance that appears as a

frontal cyclone at the ground is marked only by a wavelike

elongation of the isobars in northerly and southerly direction.

The tropopause height shows only a slight variation. As the

cyclone grows older and becomes occluded, the upper pressure
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field deepens and some of the isobars may even become closed.

Simultaneously the height variation of the tropopause increases

considerably.

Palm&i 1 has suggested that the large height variation of the

tropopause may not always be due to an actual motion of this

surface. He assumes, instead, that during the vertical motion

the tropopause is dissolved in certain regions while it is formed in

others. It follows from Eq. (10.21) that the lapse rate decreases

when a layer of air is lowered, whereas it increases if the layer

is lifted adiabatically. If the tropopause is defined as the surface

where the vertical lapse rate of temperature first decreases

below a certain value, it would then be necessary to regard the

tropopause as being at a different level. This implies that over

regions with strong vertical motions the tropopause will not

appear as a continuous surface, but rather in a discontinuous

form as shown in Fig. 87. The full thick curves represent the

tropopause; the broken thick

curves indicate heights at which

the temperature-height curve of

an aerological ascent would show --

a marked change of the vertical .5?

lapse rate of temperature which,

however, would not be regarded
as the tropopause according to the

\
\

High Low High

customary definition. The thin Fl - 87
'T^

ultI
J

)l

f V popaU8e -

, , Al .,. (After Palmen.)
broken curve gives the position

of the tropopause if the possibility of its dissolution and re-

formation at another level is overlooked. Such cases of a

multiple tropopause have been reported by J. Bjerknes,
2
Palm&i,

2

Mieghem,
3 and others.

114. The Theories of the Coupling between the Variations, in

the Higher and the Lower Atmosphere. The various hypotheses

concerning the coupling between the variations in the upper
and the lower atmosphere may be divided into two groups. In

one the variations in the upper atmosphere, at the tropopause,
and in the stratosphere are regarded as the cause of the variations

below; in the other, the atmospheric processes in the lower

1 PALMEN, loc. cit.

2 BJERKNES, J., and PALMED, loc. cit.

3 VAN MIEGHEM, J., Mtm. inst. roy. Belg., Vol. 10, 1939.
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troposphere are considered as the cause of the variations above.

Stiive's "thermocyclogenesis"
1 may be taken as typical for

the first group. Sttive starts out from the fact that the pressure

in the stratosphere decreases toward the pole (see Fig. 67).

If the tropospheric mean temperature Ttr were constant in the

meridional direction, the horizontal pressure gradient in the

stratosphere would give rise to a very large pressure gradient

at the surface as follows immediately from the barometric

equation (6.21) by differentiation with respect to the latitude,

J_ ?P* = I d/P _ gz dTtr

PQ d(f> p d<f>

As long as T tr is constant, the ratio of the pressure gradients at

the surface arid in the stratosphere is equal to the ratio of the

L e G N o
.......

Upper
isobars

---
Pressure

effect of
the lower

layers

" Surface ____ ________
isobars

FIG. 88. First stage of thermocyclogenesis. (After Stilve.)

pressures at these levels. The decrease of the tropospheric

mean temperature northward, however, partly compensates
the stratospheric pressure effect (note that dp Q/d<f> and dp/d<p

are negative), so that the surface-pressure gradient in the meridio-

nal direction is much less strong than in an atmosphere without

meridional temperature gradient. Stlive considers first the

effect of meridional oscillations of the air in the stratosphere,

alternately northward and southward (Fig. 88, dotted lines).

The field of pressure in the stratosphere has now a wedge of

high pressure where the air has been displaced northward

and a trough of low pressure where the air has been displaced

southward.

The pressure effect of the lower tropospheric layers increases

toward the north. Upon adding this to the stratospheric

pressure distribution, centers of low pressure are formed at sea

level over the areas where the stratospheric air moves south and

E, G., Beitr. Phys. Atm. t 13, 23, 1926.
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centers of high pressure where the stratospheric air moves north

(Fig. 88, full curves). As the surface-pressure centers are

formed, the air in the troposphere is set in motion, too. Accord-

ing to the geostrophic wind relation, which is assumed to hold,

the tropospheric air moves in a southerly direction on the west

side of a low and on the east side of a high and in a northerly
direction on the west side of a high and on the east side of a

low. The southward motion of colder tropospheric air increases

the tropospheric pressure effect on the west side of the low and
on the east side of the high, and thus the center of the surface

high moves toward the east. Similarly, the surface low is

displaced forward with respect to the upper trough of low pres-

sure by the current of warmer air on the east side of the low and
on the west side of the high. If these pressure systems pass

over a given station, the extreme values of the surface pressures

will precede the extremes at greater heights, as is actually

observed. The forward displacement of the pressure extremes

at greater heights in the stratosphere found by Penner (Fig. 84)

was not known when Stiive developed his hypothesis of therrno-

cyclogenesis and is not taken into account although his hypothe-
sis may conceivably be extended to cover this phenomenon.
The forward displacement of the temperature extremes in

the higher troposphere is not so easily explained as the retarda-

tion of the pressure extremes. If the stratospheric troughs

and wedges are the cause, the surface lows and highs the second-

ary effect, the stratospheric motions, and therefore the tempera-
ture changes, in the stratosphere will occur earlier than the

temperature changes in the lower atmosphere. But the matter

is complicated by the fact that the motion in the lower layers

must begin simultaneously with the upper motion, not only
after the latter have caused an appreciable deformation of the

upper temperature and pressure fields.

Stiive arrived at his hypothesis by graphic addition of each

of the successive stratospheric pressure fields to the corresponding

tropospheric pressure effect. His conclusions are based on the

barometric formula and on the geostrophic wind relation. If

the latter assumption were to hold exactly, no local pressure

variations could occur at the earth's surface (page 160); thus,

Stiive's theory can hardly give a satisfactory interpretation of

the relation between the upper and lower atmospheric layers.
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The explanation of the pressure variations is a dynamic problem.
It seems impossible to solve such a dynamic problem by the

barometric equation, which is taken from atmospheric statics,

and by the geostrophic relation which assumes a balance between

the Coriolis and pressure-gradient force.

The concept according to which the atmospheric disturbances

in the lower levels are caused by variations in the upper atmos-

phere is closely connected with the theory of
"
stratospheric

steering," in which it is assumed that the motion of the surface

Stratosphere

W

00

W'a r me r a

Colder air

c<0
C>0

Pohr front

Surface

E

FIG. 89. Coupling between polar front waves and tropopauae waves in the

initial stage. (After J. Bjerknes.)

pressure is steered by the pressure distribution at high levels,

especially in the stratosphere.

A scheme of atmospheric development that starts out from a

consideration of the variations in the lower atmosphere has been

developed by J. Bjerknes.
1 In the absence of perturbations

the polar front can be regarded as a plane ascending northward.

A vertical cross section from west to cast through the atmosphere
north of the polar front at the surface shows the frontal surface

as a horizontal straight line with the warmer air above and the

colder air below. The tropopause whose height decreases north-

ward appeal's likewise as a horizontal straight line. When
wave motion begins at the polar front, it appears as a sinusoidal

1 BJERKNES, J., and collaborators, op. cit., pp. 741-755.
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line in the cross section (Fig. 89). Because the warmer air aloft

moves faster than the colder air below, the warm air ascends on

the westerly side of the wave crests and descends on the easterly

side. The amplitude of this forced vertical motion of the warmer
air decreases with the altitude, as follows from its nature as a

wave motion and as is borne out by the observations. The
vertical motion decreases consequently with the altitude,

dw/dz < 0, over the west side of the wave crests and increases

with the altitude, dw/dz > 0, over the east side; for w is here

negative, and its absolute value decreases with the height.

This gives rise to cyclonic and anticyclonic vorticity according
to Eq. (85.2)

% (f + 2 sin rf = - + 2W sin tp)[^ + ^] (85.2)

The Coriolis parameter may here be regarded as constant, and
the fluid may be assumed as incompressible; therefore, according
to the equation of continuity (47.3),

dw __

~dz

~~

\dx
'

dy

Then

-~ =
(2co sin <f> + f)

At first, f == 0. Because p > in the Northern Hemisphere,

dt/dt > 0, and cyclonic rotation develops according to (114.1)

where dw/dz > 0; d$/dt < and anticyclonic rotation develops

where dw/dz < 0. For the Southern Hemisphere the same result

holds. The horizontal streamlines that result thus and their

positions relative to the troughs and crests of the frontal surface

are shown in the lowest part of Fig. 89. Consequently, merid-

ional oscillations are superimposed on the west-easterly motion

of the warm air. The meridional oscillations extend into the

stratosphere. The height of the tropopause and the pressure

in the stratosphere decrease northward. Therefore, the tropo-

pause and the stratospheric pressure are lowest where the air

has moved farthest south and highest where the air has moved
farthest north. Under these circumstances, the wave crests

and troughs of the tropopause do not coincide with the wave
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crests and troughs of the polar front (Fig. 89). The latter may
be identified with the high and low pressure at the earth's sur-

face. Thus, the retardation of the height of the maxima and

minima of the tropopause and of the pressure extremes in the

lower stratosphere with respect to the surface pressure (Fig. 84)

can be accounted for.

With the beginning of the wave motion in the warm air, the

boundaries of the regions where dw/dz > and dw/dz < no

longer coincide exactly with the crests and troughs of the frontal

wave but are displaced westward. This westward displacement

is compensated, however, by the higher eastward velocity of the

warm air than of the cold air. The regions of cyclonic and

anticyclonic vorticity move toward the east of the positions that

they occupied in the initial stage. Therefore, the phase differ-

ence between the tropopause wave and the polar-front wave
which would be 90 according to Fig. 89 becomes smaller and

changes with time. The variation of the phase difference is

important for the deepening of the cyclone. The closer together

the upper and lower pressure minimum occur the deeper the

low at the ground will become, as is easily seen from Fig. 86.

Frequently, the upper wave persists for some time after the

occlusion of the cyclone; thus, on the weather map, a cyclone
without frontal structure is observed.

The displacement of the temperature extremes forward with

altitude may be explained by the increasing wind velocity with

the altitude. The completely opposite course of the tempera-
ture variations in the troposphere and the stratosphere would

appear to be a consequence of the reversal of the meridional

temperature gradient at the transition from the troposphere
to the stratosphere. In the troposphere, advection from the

north brings colder air, in the stratosphere, warmer air; advec-

tion from the south brings warmer air in the troposphere, colder

air in the stratosphere.

Both theories, the theory of stratospheric steering and the

polar-front theory, lead to about the same conclusions concerning
the coupling between the lower and the upper layers. This

is to be expected, for the variations at one level imply variations

at other levels which must start practically simultaneously.

Consequently, the atmosphere cannot be segregated into different

parts. No particular layer can assume a predominant role.
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Schmiedel 1 refers in this connection to the investigations of

Weickmann and his collaborators who have shown that very

frequently the pressure variations (and therefore the weather)

are dominated by periodic variations. These variations must

be interpreted as oscillations of the whole atmosphere, with

simultaneous wave motions at the polar front and at the

tropopause.

So far in the explanation of the interaction between the differ-

ent atmospheric layers, only the effects of the meridional dis-

placements have been considered. It is, however, highly

probable that vertical motions contribute a considerable share

to the upper pressure variations. Meridional displacements of

air could produce only wedges of high and troughs of low but

not closed pressure centers which are at least sometimes observed

in the upper atmosphere. From Eq. (58.1), it follows that

owing to vertical motion alone,

Ascending motion through the level h brings, therefore, an

increase of the pressure at h, and descending motion a fall of the

pressure. Such vertical motions have been suggested by Palm&i

(see page 327) as an explanation for the multiple tropopause.

It is quite possible that the low altitude of the tropopause behind

the surface center of low and its high altitude behind the surface

center of high are in part due to descending motion in the rear

of the cyclone and to ascending motion in the rear of the anti-

cyclone. The effect of vertical motion on the pressure can be

quite large. The density at 10 km is approximately 0.4 X 10~3

gm/cm 3
. If the vertical velocity is 1 cm/sec, the pressure

variation would be 4 mb/3 hr. It is therefore very likely that

vertical motions contribute considerably to the observed pressure

variations at the tropopause.

A completely satisfactory theory of the coupling between

the oscillations of the polar front and of the tropopause would

have to treat the atmosphere as consisting of three layers, the

cold air lying in the form of a wedge on the surface, the warm air

separated from the cold air by the polar-front surface, and the

1 SCHMIEDEL, K, Veroffentlich. Geophys. Inst. Leipzig, 2d ser., 9, 1, 1937.
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stratosphere separated by the tropopause from the lower atmos-

phere. Such a model of the structure of the atmosphere though
still rather schematic is more general than the two-layer system

generally considered in the wave theory of cyclones (Sec. 109).

But even this simpler two-layer problem has not yet been com-

pletely solved, owing to its mathematical difficulty. It is

therefore hardly to be expected that a complete solution of the

three-layer problem will be forthcoming soon, although some

progress may be made in this direction.

116. Tropical Cyclones. In tropical cyclones the wind velocity

is much higher than in the extratropical cyclones of temperate
latitudes. The pressure at the center of the tropical cyclones

reaches sometimes very low values, 920 mb and less; but similarly

low values have also been observed in -temperate latitudes,

according to Hann and Suring.
1 The characteristic difference

between tropical and extratropical cyclones is the pressure

gradient which is much steeper in tropical cyclones, for their

diameter is considerably smaller than the diameter of extra-

tropical cyclones.

Tropical cyclones rarely form closer to the equator than at

5 to 6 latitude, which indicates that the horizontal component
of the Coriolis force is an important factor in their development.
It seems that the tropical cyclones develop over the sea only.

The tropical cyclones move generally in a westerly to north-

westerly direction in the Northern Hemisphere. Many assume

a north-easterly or northerly direction at latitude 20 to 25,
and thus their track resembles a parabola. When they reach

higher latitudes, about 30, their diameter increases. Con-

sequently the pressure gradient becomes less steep, and the

tropical cyclone often changes into an extratropical cyclone.

The tropical cyclones do not show the characteristic dis-

tribution of temperature and precipitation associated with

fronts which is found in the cyclones of temperate latitudes.

Nevertheless, many writers believe now that tropical cyclones

originate at frontal surfaces between air masses of different

temperature and motion like the extratropical cyclones
2 and

some observational evidence is cited to support this view.

I VON HANN, J., and SPRING, R., "Lehrbuch der Meteorologie," 4th ed.,

p. 222, C. H. Tauchnitz, Leipzig, 1926.
2 NOBMAND, C. W. B., Gerl. Beitr. Geophya., 34, 233, 1931.
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Accbrding to Rodewald 1 a place particularly favorable to the

origin of tropical cyclones is a so-called "triple point," which is

a point where three air masses meet. Deppermann 2 found in a

study of 18 cyclones originating east of the Philippines that one-

third were linked up with such a triple point.

It is very probable that any asymmetries of temperature
which may have been present in the nascent state of a tropical

cyclone escape observation; for the beginning of the storms that

take place over the oceans is rarely observed, and a fairly dense

network of stations is required to discover these asymmetries.
If the tropical cyclones start as waves at a frontal surface, their

development will be very similar to that of the extratropical

cyclones described in Sees. 109 and 110, although probably
much more rapid.

A peculiarity of many tropical cyclones is the calm center,

the so-called "eye of the storm." When the center of a tropical

cyclone passes over a given locality, the wind which has been

very violent dies down suddenly, either to an absolute calm

or at least to a much lower velocity, and the precipitation ceases.

There have even been cases reported of the sky clearing. The
diameter of the eye of the storm may be about 10 to 30 mi.

The frequency of the tropical cyclones is very small compared
with the frequency of the extratropical cyclones. They occur

almost exclusively during the warm season, whereas the cyclones

of temperate latitudes are stronger and more frequent in winter.

We have already mentioned that some observations seem to

indicate that tropical cyclones have warm sectors in their

nascent stage and may thus start as waves at a frontal surface,

analogously with the extratropical cyclones (Sees. 109 and 110).

It is, however, quite possible that in tropical cyclones which

appear in regions of strong vertical convection the cyclonic

rotation is developed in the manner suggested by the convection

theory (Sec. 112). The velocity distribution represented by
(112.2) seems to be realized to a good degree of approximation
in a considerable number of tropical cyclones.

The convergence causing the tropical cyclone is presumably
started by the ascent of air in a region which in the subsequent

1 RODEWALD, M., Met. Z., 53, 516, 1936.

DBPPERMANN, C. E., Philippine Weather Bureau, Manila Central

Observatory, 1939.
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development of the storm becomes the central calm. Such an

ascent of air must frequently occur in the tropics when the

surface-air temperature has been raised considerably. Especially

over water the air will be very moist. After having risen a short

distance or even at the beginning of the ascent, it will cool not

at the dry- but at the moist-adiabatic rate. Thus, the tempera-
ture difference between the central core and the outlying region

may be maintained up to considerable heights. In general, how-

ever, showers are all that such ascent will lead to. Only if the

ascent takes place over a sufficiently large region may the hori-

zontally inflowing air travel sufficiently long distances for an

appreciable cyclonic rotation to originate, owing to the conserva-

tion of angular momentum. It may also happen that with each

local convection current a small rotation/ is set up and that a

tropical cyclone forms when the conditions are favorable for the

amalgamation of these small vortices. The conditions for the

formation of a tropical cyclone instead of local showers appear
to be fulfilled only rarely, for the observations show that tropical

cyclones are rather infrequent phenomena.
With the aid of either the wave theory or the convection theory,

it is easily explained why cyclones do not form close to the

equator. The effect of the earth's rotation vanishes here. It

is this effect that produces unstable waves by turning the plane
of motion into the horizontal and that generates the rotational

velocity. It is hardly necessary to state that not all tropical

cyclones must originate in the same manner and that the con-

vection theory may account for the formation of some tropical

cyclones and the wave theory for others.

The air that converges toward the central region must flow

out of the cyclone at higher levels, for the low surface pressure

indicates a mass deficit. Durst and Sutcliffe 1 have pointed
out that the horizontal pressure gradient must decrease with the

altitude, for the cyclone does not reach throughout the whole

atmosphere. The air ascending near the central core will

therefore ascend to levels where its centrifugal force is too strong
for the existing pressure gradient; consequently, the air obtains

an outward component, and thus the low surface pressure near

the center is created.

1 DURST, C. S., and SUTCLIFFE, C. R., Quart. J. Roy. Met. Soc., 64, 75,

1938.
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A satisfactory explanation of the calm center has not yet

been given. Brunt 1
suggests that the wind energy near the

center may be annihilated by the viscous dissipation of energy.

Haurwitz2 has shown that owing to the strong outward action

of the centrifugal force the gradient-wind level is reached at

considerably lower altitudes than in extratropical cyclones (see

page 209). This effect is particularly strong close to the center

of the vortex. It is evident that no ascending motion takes

place in the eye of the storm, for no precipitation is observed

here.

The height of tropical cyclones, that is, the level up to which

an appreciable pressure gradient exists cannot be less than that of

the extratropical cyclones. Otherwise, it would be necessary
to assume very much higher temperatures near the central core

of the storm than outside. 3 The rather scanty aerological data

do not show such temperature increase.

116. Anticyclones. In some respects, anticyclones are the

counterpart of cyclones; the pressure increases toward the center,

and the circulation of the air is, roughly speaking, opposite to

that found in cyclones. But even a superficial study shows that

anticyclones are not simply cyclones with the opposite direction

of pressure gradient and wind, as their name implies. On

page 154, it was shown that the wind velocity and the pressure

gradient in an anticyclone cannot exceed a certain limiting value

which decreases toward the center if a balance is to exist between

pressure-gradient force, Coriolis force, and centrifugal force.

Any weather map shows that, actually, pressure gradients and

winds, especially in the central part of anticyclones, are weak.

The air temperature at the surface is often lower in anticyclones

than in cyclones. Before upper-air data were available the

opinion was widely held that the low-pressure areas are due to

the smaller weight of a column of warmer air, whereas the high-

pressure areas are due to the greater weight of air at a lower

than normal temperature. Hann, however, showed with the

aid of observations from mountain observatories that this view

is untenable and that as a rule anticyclones are warmer than

cyclones. The following table, which contains values of pres-

1 BRUNT, op. cit.
t p. 305.

2 HAURWITZ, B., Gerl Beitr. Geophys., 47, 206, 1936.
8 HAURWITZ, B., Monthly Weather Rev., 63, 45, 1935.



338 DYNAMIC METEOROLOGY

sure, temperature, and density for cyclones and anticyclones over

Europe, published by W. H. Dines,
1 shows that, throughout the

whole troposphere, cyclones are actually colder than anticyclones ;

only in the stratosphere is the opposite true. The temperature
and density at the surface are not given, for in such a statistical

investigation stations of different elevations are used. More-

over, the surface temperature is very much affected by the proper-
ties of the ground and is not representative of the true air

temperature. The air temperature in the surface layers of anti-

cyclones often sinks considerably, especially at night and during
the winter, owing to the clear sky which allows a very strong

radiational cooling. But these low temperatures are only
surface phenomena in a very large group of anticyclones, and
at a height of only 1 km the anticyclone is. already warmer than

the cyclone.

PRESSURE, TEMPERATURE, AND DENSITY IN CYCLONES AND ANTICYCLONES

(After W. H. Dines)

1
DINES, W. H., Geophys. Mem., Met. Off., London, 13, 69, 1919.
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Hanzlik 1 found from a study of anticyclones over Europe
that there are two types, cold and warm. The warm anti-

cyclones occur more.frequently over Europe; but it seems that,

at least in winter, cold anticyclones are more frequent over

North America. In warm air the pressure decreases less rapidly

than in cold air. Consequently, warm anticyclones extend

much higher than cold anticyclones. The latter are, in fact,

mostly very shallow structures which extend only through the

lower part of the troposphere. At greater heights a low pressure

is frequently found over the surface high, as shown in the case

of an anticyclone in polar air over North America by Haurwitz

and Noble. 2 In this instance, a strong surface high over the

western part of Canada and the northern United States had

already disappeared at the 5000-ft level, and at 14,000 ft a

strong center of low pressure was situated in about the same

position as the surface high.

Khanewsky 3 and Runge,
4 who studied the origin of high

anticyclones, found that there are often two air currents side

by side, a colder north-easterly and a warmer south-westerly

current. Runge suggested that, in the transitional zone between

these two opposing currents, anticyclonic rotation may develop.

The Coriolis force deflects each current to its right so that

between the two currents the air must ascend vertically. The

pressure will then increase until the pressure gradient balances

the Coriolis force. Though Hungers explanation of the origin

of the anticyclone is rather vague, it deserves attention because

it does not derive the field of motion from the pressure field,

as is all too frequently done, but attempts rather a dynamic

explanation of the field of pressure as a consequence of the

field of motion.

The origin of anticyclonic rotation as a banking effect on the

right side of a current as suggested by Rossby has been dis-

cussed on page 236.

Another point that may be of importance in respect to the

development of high anticyclones has been brought out by Durst. 6

1 HANZLIK, S., Denkschrift. Wien. Akad. Wise., 84, 163, 1908; 88, 67, 1912.
8 HAURWITZ, B., and NOBLE, J. R. H., Bull Am. Met. Soc., 19, 107, 1938.
3 KHANEWSKY, W., Met. Z., 46, 81, 1929.
4 RUNGE, H., Met. Z., 49, 129, 1932.
* DURST, C. S., Quart. J. Roy. Met. Soc., 59, 231, 1933.
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He found that the rotational velocity around the center of high

pressure increases with altitude. Because subsidence occurs

in the anticyclone, air with a higher velocity is brought down to

levels where the pressure gradient and the comparatively small

centrifugal force cannot balance the Coriolis force which is

directed toward the center so that a component in this direction

results. This inflow tends to compensate for the outflow due

to friction near the ground. Consequently, the warm anti-

cyclone may exist for a considerable time. But Brunt 1
points

out that these warm anticyclones are not necessarily always

very stable systems, and he quotes in particular a case of a

well-established anticyclone of Sept. 15, 1932, which disappeared

unexpectedly within 2 days.

The cold anticyclones are obviously due to the excess weight
of the cold air. It should, however, be noted, also, that in the

high, warm anticyclones the air is denser than in the high, cold

cyclones, as can be seen from the table on page 338. The density

depends not only on the temperature, but also on the pressure.

The higher pressure in anticyclones more than compensates the

effect of the higher temperature.

In the warm anticyclones the temperature in the stratosphere

is below the average. It has been suggested that the greater

weight of the cold stratospheric air produces the higher surface

pressure in spite of the higher temperature in the lower layers.

Southerly currents in the stratosphere would transport colder

air northward and would cause a rise of the pressure at the

surface, as described on pages 328 to 330 in connection with

Stiive's hypothesis of cyclogenesis.

On the other hand, Bjerknes's theory of the coupling between

the variations in the upper and lower layers of the atmosphere

(page 330) explains how a low, cold anticyclone over a dome of

cold air spreads higher up into the stratosphere, owing to the

development of anticyclonic vorticity over the west side of the

dome of cold air.

1 BRUNT, op. cit.
t p. 381.



APPENDIX
TABLE I. SATURATION PRESSURE OF WATER VAPOR, MILLIBARS

(After H. H. Landolt-R. Bornstein,
"
Physikalisch-chemische Tabellen,"

5th ed., p. 1314, Verlag Julius Springer, Berlin, 1923)

a. Saturation Pressure over Water

6. Saturation Pressure over Ice
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TABLE II. NUMERICAL CONSTANTS

Equatorial radius of the earth 6378.4 km
Polar radius of the earth 6356.9 km
Radius of the sphere having (ap-

proximately) the same area and

volume as the earth E 6371.2 km
Angular velocity of the earth's

rotation w 7.292 X 10" B sec" 1

Acceleration of gravity at sea level

and 45 latitude - 980.621 cm/sec a

Universal gas constant R* 83.13 X 10s
ergs/deg

- 1.986 cal/deg

Molecular weight of the air m = 28.97

Gas constant for air R = 2.87 X 106 cm 2
/sec

2 deg
Molecular weight of water vapor . . mw = 18

Heat of condensation of water

vapor L - (595 - b.C) cal/gm

Specific heat of dry air at constant

volume cv 0.170 cal/gm deg

Specific heat of dry air at constant

pressure cp
= 0.239 cal/gm deg

Ratio of the specific heats of air . . . A cp/c v
= 1.405

Mechanical equivalent of heat. . . . J 4.185 X 10 7
ergs/cal

Heat equivalent of work A - I// - 2.39 X 10~ cal/erg

Specific heat of water vapor at con-

stant pressure cpw * 0.466 cai/gm deg
Heat of fusion of water L< = 79.7 cal/gm

Specific heat of ice c- 0.49 cal/gm deg
Heat of sublimation L9

= 677 cal/gm
Wien's constant (law of displace-

ment) a 0.2892 cm deg
Stefan-Boltzmann constant <r 5.70 X 10~ 5

erg cm" 2 sec" 1 deg" 4

- 0.817 X 10~ 10 cal/cm"2 min" 1
deg"

4

Solar constant /o = 1.94 cal/cm 2 min
Coefficient of molecular viscosity

of the air at 0C and 760mm Hg /*
- 1.71 X lO"4 gm cm" 1 sec" 1
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Absorption of terrestrial radiation,

94-96, 97

Absorption coefficient, of the atmos-

phere, generalized, 98

of carbon dioxide, 98

dependence on pressure and tem-

perature, 98-99

of liquid water, 96

of water vapor, 95-99

Acceleration, centrifugal, 1, 118, 123,

152

effect on horizontal motion, 155-

166

of gravity, 1, 119, 342

(See also Force)

Adiabatic chart, 23, 81

Adiabatic processes, in dry air,

17-19

in the saturated state, 45-49

in the unsaturated state, 36-38

Adiabats, dry, 23

pseudo, 50

saturated, 50

Advection at great heights, 29-34

Advection function, 30

Aerogram, 82

Air, "saturated," 9

Air masses, 300-301

cooling by radiation, 106

formation of, 300

transformation by turbulent mix-

ing, 226-231

Air-mass charts, 83

Albedo, 93-94, 99

Analysis, isentropic, 232

kinematical, 180-187

Anticyclone, 152, 337-340

Asiatic, 255

cold, 339, 340

Anticyclone, limiting velocity in,

154, 337

origin of, 339

temperature of, 337, 338

warm, 339, 340

Atmosphere, composition of, 5

homogeneous, 35, 282

Autobarotropy, 134, 140

B

Baroclinic stratification, 133

effect on circulation, 141

Barotropy, 133

coefficient of, 133

Barrier theory, 317-318

Beer's law, 95, 97

Bernoulli's equation, 240

Billow clouds, 287-288

Black body, 85

Blueness of the sky, 91

Boundary conditions, 274, 276

Calorie, 17

Capillarity constant of water, 42

Carnot cycle, 5961
Centers of action, 264, 298

Centibar, 4

Characteristic curves of the pressure

field, 181

acceleration of, 183

velocity of, 182

Chinook, 54

Circle of inertia, 153

Circulation, 135-137

general, 254-270

application of theorem, 258-262

asymmetry of, 257, 264, 265

cellular structure, 269

as a form of large-scale turbu-

lent mixing, 265-267

347
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Circulation integral, 141

practical evaluation, 143

transformation of, 142, 144

Circulation theorem, of Kelvin, 139

of V. Bjerknes, 140-258

Coagulation of water droplets, 44

Condensation level, 39

Condensation nuclei, 41-44

Conservation of angular momentum,
119-121, 319

Conservative properties, 301

equivalent-potential temperature

as, 67

mixing ratio as, 36

potential temperature as, 20

specific humidity as, 36

wet-bulb potential temperature

as, 73

Convection theory, 318-320

Convergence, 135

Correlation coefficient, 321

Coupling between variations in the

upper and the lower atmos-

phere, 327-334, 340

Curl, 137

Curve, characteristic of the pressure

field, 181

acceleration, 183

velocity, 182

Cyclone, 152

moving and pressure distribution,

163-165

rain areas in, 315

tropical, 334-337

velocity in, 310

Cyclone family, 316

Cyclostrophic motion, 154

D

Dalton's law, 6, 35

Deformation, 304

Density, 5

of moist air, 8

Derivatives, individual, 128

local, 192

Dew point, 10

Dew point, variation with altitude,

39-41

Dew-point lines, 53

Discontinuity, of the first order, 167

of zero order, 167

Divergence, 135, 160

Doldrums, 254

Dust, vertical distribution of, 127

E

Earth, angular velocity of rotation,

1,342

ellipsoidal figure, 118

radius of, 1, 342

Efficiency of a heat engine, 61

Ekman spiral, 206, 207

Emission layer, 104

Energy, of atmospheric motions,
238-253

dissipation of, 241-244

effect of water vapor on, 253

internal, 17, 241, 246

kinetic, 238, 243, 246, 253

potential, 238, 241, 246

released by adiabatic ascent, 65-

67

of thermodynamic processes, 58

transformations in closed systems,
244-251

Entropy, 62-65

of dry air, 64-65

of moist air, 64

and potential temperature, 64

of water vapor and liquid water,

47

Equation, of continuity, 129

of energy, atmospheric, 238, 239

hydrodynamic, 127-130

linearization, 272

for mean motion with super-

imposed turbulent motion,
193-195

for viscous fluids, 190

hydrostatic, 11

of motion on a rotating globe, 118

physical, 131

of state for ideal gases, 6
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Equilibrium conditions, for dry-

adiabatic changes, 21-22

for saturated-adiabatic changes,

56

Erg, 238

"Eye of the storm," 335

Foehn, 54

Force, centrifugal, arid inertia waves,
293

and vertical wind distribution,

209-210

Coriolis, 124-126

effect on cyclone waves, 308

deflecting, 124r-126

frictional, 215

Frictional layer, height of, 212

Front, 168

acceleration at, 173-176

formation of, 302

motion of, 187

orientation in a geostrophic wind

field, 179

origin, 302-307

pressure distribution at, 169-170

pressure tendencies at, 176-178

(See also Surfaces of disconti-

nuity)

Frontogenesis, 303-307

Frontolysis, 303-307

Froude's number, 191

G

Gas, ideal, 6

Gas constant, for dry air, 7, 342

universal, 6, 342

Geopotential, 2, 12

Geostrophic wind, 145-147, 149,

156, 157, 202

Gradient wind, 151-154

Gradient-wind level, 205, 209, 210

Gram calorie, 17

Green's theorem, 245

H

Hail-stage, 48

Heat, mechanical equivalent of, 17,

342

Heat, latent, of condensation, 46,

342

of fusion, 342

of sublimation, 49, 342

specific, of air, at constant volume,

17, 342

at constant pressure, 18, 342

of ice, 48, 342

of saturated water vapor, 46, 47

of water, 46

Heat balance, terrestrial, 99-101

Heat transfer, in meridional direc-

tion, 262-267

by turbulent mass exchange, 100

Heat transport, by condensation

products, 101, 263, 269

Height, dynamic, 3

Height computation of aerological

ascents, 13-17

High, Azores, 298

Pacific, 264, 298

High-pressure belt, subtropical, 255,

268

Humidity, absolute, 7

relative, 9

specific, 10, 36

Indicator diagram, 58

Instability, conditional, 57

convective, 76-78

latent, 75-76

potential, 76-78

shearing, 310

Inversion, 12

minimum, 38-39

nocturnal, 107

subsidence, 25

Irrotational motion, 138, 144

Isallobar, velocity, 184

Isentropic processes, 64
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Isobars, 146 N
acceleration, 183

steady motion along circular iso- Nernst's theorem, 63

bars, 150-155 Normand's propositions, 71, 72, 73

velocity, 183

O
J

Occlusion process, 314

Jet stream, 236 Oscillations, of the atmosphere, large

Joule, 238 scale, 295-299

meridional, in the stratosphere,

K 332

Outbreak of cold air, height of, 35

Kirchhoff's law, 85 Ozone, 5, 90

Land and sea breeze, 144

Lapse rate of temperature, 12

adiabatic, 20

autoconvective, 35

dry-adiabatic, 20

saturated-adiabatic, 55

Lateral mixing, 232

Low, Aleutian, 264, 270, 298

Icelandic, 264, 270, 298

M

Meter, dynamic, 2

Millibar, 4

Mixing, lateral, 232, 233

Mixing length, 195, 198

coefficient of, 235

Mixing ratio, 10, 36

Model experiments, 190, 192

Modulus of a polytropic curve, 20

Moist-adiabatic lapse rate (see Lapse

rate, saturated-adiabatic)

Momentum, angular, interchange of,

265

Momentum transfer after Prandtl,
195-197

Monsoon, 255

Motion, accelerated, 155-159

laminar^ 192

turbulent, 192-195

Mountain and valley wind, 144

Perturbation equations, 272-274

Perturbation theory, assumptions,
272

Piezotropy, 131-133

Planck's law, 85

Polytropic changes of state, 20

Pressure, decrease with elevation,

11-13

Pressure centers, velocity of, 186

Pressure gradient, 127

effect of vertical variation of, on
frictional wind, 207-209

meridional, 256, 257

Pressure-height curve, 16

Pressure units, 3, 4

Pressure variation, and cyclostro-

phic effect, 162

due to divergence and conver-

gence, 159-160

due to vertical motions, 333

forecasted from equation of con-

tinuity, 160, 166

individual, 30

and latitudinal effect, 163

local, 30

and temperature variation, 26-29

vanishing in a geostrophic wind

field, 160

Pseudo-adiabatic chart, 50-54, 81

Pseudo-adiabatic processes, 46, 49

Psychrometer equation, 70
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R

Radiation, black body, 81

differential equations of atmos-

pheric, 110

net outgoing, 106

geographical distribution of,

101-104

nocturnal, 106, 108-110

rate of cooling due to, 105

Radiation chart, 105

Radiation currents, 104

Radiation equilibrium, 111, 113

Radiative transfer, Schwarzschild's

equations for,' 111

Rain stage, 46-47

Rankine vortex, 166

Regeneration of cyclones, 251, 315

Reynolds number, 191

Richardson number, 200, 242

Rossby diagram, 83

Roughness parameter, 198, 202

3

Saturated adiabats (see Adiabats)

Saturated adiabatic processes (see

Adiabatic processes)

Saturation water vapor pressure,

8-9, 341

over droplets, 42

over salt solutions, 43

Scattering of radiation, 91

Similarity, dynamic, 190, 191, 211

Snow stage, 48

Solar constant, 87, 342

Solar radiation, depletion in the

atmosphere, 89, 90

distribution, in the absence of the

atmosphere, 89

intensity, 86

mean values, 88, 89, 94, 238

Solenoids, 141, 175

Solidification of stream surfaces, 312

Stability, and angular momentum,
294, 308

dynamic, 294, 309

gravitational, 308

Stability conditions, for dry air, 22

for saturated air, 56

(See also Instability)

Steering, stratospheric, 330

Stefan-Boltzmann's law, 186

Stokes' theorem, 138, 141

Stratosphere, 12

effect of meridional oscillations on

the, 328, 330

pressure and temperature varia-

tions in, 322-325

and radiation, 111-113

Stream function, 135

Stream lines, 134

Stresses, eddy, 195, 196

shearing, 188, 189

Sublimation nuclei, 44

Subsidence, 24, 340

Subsidence inversion, 25

Supercooling, 45, 48

Supersaturation, 42

Surface, equipotential, 3

isentropic, 232

isobaric, 147

Surface tension, effect on saturation

pressure, 41

Surfaces of discontinuity, boundary

condition, 168

definition, 167

in a geostrophic wind field, 170-

173

in a gradient wind field, 179

inclination of, 168, 172, 173

(See also Front)

T

Temperature, dew point, 10

equivalent, 68

equivalent-potential, 68, 74

partial potential, 37

potential, 20, 64

pseudo-equivalent, 69

pseudo-wet-bulb, 73

pseudo, 69

pseudo-equivalent, 69

pseudo-wet-bulb, 73

units, 4

virtual, 8, 12, 14
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Temperature, wet-bulb, 70

wet-bulb-potential, 73

Temperature gradient, vertical (see

Lapse rate)

Temperature variation, daily, 221-

226

individual, 32

local, 32

Tephigram, 81

Thermocyclogenesis, 328-329

Thermodynamic charts, 78-82

Thetagram, 84

Trade winds, 254, 263, 269

Transmission coefficient, 92

Tropopause, 111

height variations, 321, 323

multiple, 327

Troposphere, 12, 111

Trough line, definition, 184

velocity, 185

Turbidity, atmospheric, 93

Turbulence, statistical theory, 197

Turbulent mass exchange, 216

coefficient of, 218, 219, 232

variation with altitude, 226

variation with time, 226

cooling from below by, 231, 237

differential equation of, 221

heating from below by, 227-231

meridional heat transport as a

form of, 265-267

U

Undisturbed motion, equations of,

273

Variation, diurnal, of temperature,

221, 237

of wind, 213-215

Velocity potential, 135

Velocity profile, 188

Viscosity, coefficient of, 189, 199,

207, 266, 267

vertical variation, 210-212

eddy, 196

internal (molecular), 196

Volume, specific, 5

Vorticity, definition of, 137, 138

at frontal surfaces, 175

potential, 233, 235

transfer, 197

W
Water vapor, absorption of radiation

by, 90

atmospheric, 7-9

Watt, 238

Wave, gravitational, 281, 285

inertia, 288-295

instability of, 285, 286, 307

shearing, 285, 286

Wave cyclones, 309-312

Wave motion, at the free surface of

a single layer, 276-282

at an internal surface of discon-

tinuity, 282-287

Wave theory of cyclones, 307-312

Wave velocity, in an autobarotropic

atmosphere, 282

convective term, 281, 284

in deep water, 281

dynamic term, 281, 284

in a layer with changing wind

velocity, 281, 299

of long waves, 281

Wedge of high pressure, definition of,

185

velocity, 185

Weight, molecular, of air, 7, 342

of water vapor, 7, 342

Westerlies, 255

Wien's law, 86

Wind, diurnal variation, 213-215

geostrophic, 145-147

gradient, 151-154

isallobaric, 157-159, 166

thermal, 148, 166

vertical variation, above the sur-

face layer, 201-212

within the surface layer, 197-

201

Zone of transition, 167, 176, 302



SOLUTIONS TO PROBLEMS
1. According to (6.22),

T
"

(T*

Thus, the following values are obtained for z, T, and e:

Already at 2 km the computed vapor pressure would be larger than the

saturation pressure according to Table I! (Concerning the general impossi-

bility of the establishment of Dalton's law in a nonisothermal atmosphere
even in the absence of mixing see also R. Emden,

"
Thermodynamik der

Himmelskorper," p. 402, B. G. Teubner, Leipzig and Berlin, 1926, reprinted

from Encyklopadie der mathematischen Wissenschaften, Vol. 6, (2), p. 24.)

2. According to (6.22) and (4.1),

L ..

Po

The autoconvective lapse rate = g/R - 3.41C/100 m. Such lapse rates

are observed only next to the surface of the earth during times of strong

insolation. It should be noted that the atmosphere is still in unstable

equilibrium, even if the lapse rate is autoconvective and that a disturbance

will always lead to a rearrangement of the air layers when the original lapse

rate was greater than the adiabatic, not greater than the autoconvective

lapse rate.

3. If PO is the surface pressure, TQ the surface temperature, and p the

surface density,

PO *=* RpoTo

Because po is the density of the homogeneous atmosphere at every level,

Regarding g aswhere H is the height of the homogeneous atmosphere.

constant,

353
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The same result is obtained from Prob. 2 by computing the height at which

the temperature has fallen to absolute zero if the lapse rate of the tempera-
ture is autoconvective. If T = 283 abs, H - 8280 m.

4. According to (6.21) and (4.1),

QZ

VL-RTp RT
e

Differentiating logarithmically with respect to the time,

1 <* __!?! 4. JL.*L
~p dt

~
T at RT* dt

Thus ^ - where z -
dt g

5. From (6.21) and (6.22)

By differentiation and rearrangement,

dp _ g a(H -
/t)

77
~
R (To

-
a/0*

A variation of the height of the tropopause as assumed in the problem may
be connected with a considerable variation of the surface pressure (see

B. Haurwitz, in Verfiffentlich. Geophys. Inst. Leipzig, 2d ser., 3, 272, 1927).

6. Assume a constant mean temperature Tm up to the level h to which the

outbreak of cold air extends. Assume further that the pressure above this

level remains constant. By logarithmic differentiation of (6.21),

dp* _ g h
- -

If the variation of the mean temperature dTm is not known from aerological

data, it will often be possible to estimate it from observations of the surface

temperature. The height h of the outbreak of cold air (or of a mass of warm
air) can then be computed from the above formula (see also Sec. 65).

7. According to (23.1), g - g
~^

where T' is the temperature of the moving parcel, and T of the surrounding
air. From (9.2),

dT' - T'

~fo~
~r

"r

(Note that in Sec. 9 the meaning of T' and T was reversed). By integration
of the last equation,
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where TV and To are the temperature of the parcel and the air surrounding it

at the starting level, 2 0. Upon substituting the last relation in (23.1),

it follows that

~ Of

-m z

if the exponential is expanded according to the binomial theorem and only
first-order terms are retained. Consider first r > a.

Putting

J2 T r -
A -

fji i rp m
-to * o * o /. A ,\

z - -- J-
(l
- cos 40

where the constants of integration are chosen so that z = and dz/dt 0,

when t ~ 0. The amplitude is larger, the larger the initial temperature
difference between the moving parcel of air and the air surrounding it, and

larger, the smaller the difference between the existing and the adiabatic

lapse rate. The length of the period 2ir/A is inversely proportional to

V'r If T < a, putting

-
ffTjT1*

if r - a,

TV - To

When F ^ a, z increases or decreases continuously with time so that the

motion is unstable, whereas it is stable when r > a.

The practical application of these calculations is severely restricted, for

only a simple parcel of air is considered, without any reference to the motion

of the surrounding air. A more adequate treatment is possible by hydro-

dynamical methods.

8. Subtract the second of Eqs. (40.1) from the first, integrate over the

whole spectrum, and note the condition of radiation equilibrium (40.2).

9. According to (44.1),

ra
(X + o>) cos 2

<p const

Upon differentiating logarithmically, it follows that, with sufficient accuracy,

dX - -2(X + )
~

If dr > 0,

dX < 0, motion toward the west
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If dr < 0,

d\ > 0, motion toward the east

The resulting velocities are comparatively small.

10. If a is the constant vertical lapse rate of temperature, it follows from

(6.22) that

V -(T \t
P~

~
\rJ

This is the geometric equation from which it is seen that the atmosphere is

barotropic. In order to have autobarotropy, the physical equation must be

a piezotropic equation identical with the preceding geometric equation. If a

polytropic equation of the form (8.5), p/po = (T/T<*y, is chosen as physical

equation, the atmosphere is autobarotropic provided that

. _ Ra
K
~~7

and

11. Let V(r) be the velocity of the circular flow. Consider the circulation

along the following closed curve in the fluid : from a point A along a circle of

radius r\ to a point B (length of the arc AB xn where x is the angle that the

radii through A and B make at the center), then along the radius through B
to a point C at a distance r\ ra from B (n > ra), and from C along the

circle of radius r% to the point D on the radius through A (length of the arc

xr2) and back to A. The circulation along this path is xnF(ri) xrjF(r a),

for the velocity is perpendicular to the radius. Because the motion is

irrotational when the circulation vanishes, the statement made in the

problem is correct.

12a. With the aid of the gas equation (4.1), it follows from (52.21) that

P J J P \9x By By

Substituting from (9.1),

dp R

The last expression can easily be changed into a form analogous to the

integral in (52.3).

126. Upon eliminating the pressure in the last equation by (9.1), it follows

that

R
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These two forms for the circulation integral may often be more suitable for a

discussion of atmospheric circulations than the expression containing the

gradients of pressure and specific volume.

13. The components of the thermal wind at a level z are under the assump-
tion suggested in the problem, according to (55.31) and (55.32),

u - u . 9* * dT
2o> sin <p T dy

_ gg 1 dT
v VQ

2w sin <f> T dx

Thus, the velocity of the thermal wind

gz l_
AT

Vth
2w sin <? T An

where AT is the temperature difference between two consecutive isotherms

and An their distance. According to (53.21) the geostrophic wind

1 Ap
9

p2o> sin <p An

and

Vth gz AT
S~

~
RT* P

A^"

Thus, in order to find the thermal wind, the wind velocity may be read off

the geostrophic scale, the isotherms being treated as if they were isobars.

The figure obtained for the wind velocity has to be multiplied by the factor

given by the preceding equation. The thermal wind is parallel to the

isotherms and in such a direction that the colder air is to the left and the

warmer air to the right if one faces in the direction of the wind (in

the Northern Hemisphere). To find the geostrophic wind at the level z, the

thermal wind has to be added vectorially to the geostrophic wind at the

surface. (For a detailed discussion, see E. M. Vernon and E. V. Ashburn,

Monthly Weather Rev., 66, 267, 1938.)

14. The barotropic relation may be given in the form p =
p(p). Then,

upon differentiating (53.11) with respect to z, it follows that

dv

T*
= '

With the aid of (53.13),

^If^fl^.-Ifl^^aO
p dp

ff dx p
9
dp dx

In the same manner, it is found that du/dz = in a barotropic atmosphere.
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15. According to (53.21),

2o> sin <p v
- -~
P dx

Along the isentropic surface (denoted by the suffix 0),

< is the geopotential, and (d$/dx)Q the variation of the geopotential of the

isentropic surface in the ^direction. According to (9.1), along an isentropic

surface,

i/0p\ ..I/aA
p \dxjQ T \dx JQ

Thus,

(See R. B. Montgomery, Bull. Am. Met. Soc., 18, 210, 1937, and A. F. Spil-

haus, ibid., 21, 239, 1940, for details.)

16. According to (56.5) and (53.23),

dz 1 (v*_- _ f

dr g \ r

.

2o> sm

where the index of t; is omitted. Because the velocity is continuous at R,

v =
t\r when r < R
R*

v as y when r > R

If o is the height of the isobaric surface at the center, r =

ij* 4- 2o> sin <p ij q .--
* r ' + *

in the inner part of the vortex, r < R. When an isobaric surface ends at the

earth's surface, the integration constant Zo is negative. In the outer part of

the vortex,

The integration constant z\ stands for the height of the isobaric surface at

the distance R from the center. Because the isobaric surface must be con-

tinuous across the circle of radius R,

* . **
z\ so H
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17. Let Ap be the pressure interval between two consecutive isobars, Ap
the tendency interval between two consecutive isallobars, and An the dis-

tance between the isobars and the isallobars, respectively. Then, according

to (53.21), the geostrophic wind

1 lAp
Vg S ' T5"
8

2o> sin ^ p An

According to (57.6) the isallobaric wind

(2o>sin <p)* p An

and

i/ 1 Ap
vg

""
2w sin v> Ap

Thus, in order to find the isallobaric wind, the wind velocity may be read

off the geostrophic scale, the isallobars being treated as if they were isobars.

The value obtained for the wind velocity has to be multiplied by the conver-

sion factor n : ~r" The direction of the isallobaric wind is toward the
2o> sin <? Ap

greatest fall of pressure (see E. Gold, Quart. J. Roy. Met. Soc., 61, 127, 1935).

18. From (58.2), it follows that

dpo I du . dv

Upon choosing the x-axis in the direction of the wind, dp /dt p du/dx.
Because dp Q/dt - 1 mb/3 hr and po ** 1000 mb, it is found that

~ - 10-7 sec- 1 - 1 cm/sec/100 km.

Such a small variation of the wind cannot be observed.

19. According to the equation of continuity (47.3),

(*
-'0

du dv\ dpw

Integrating between the surface and the level h,

Po
-

Ph (du dv-- ~ -

Choosing the ir-axis in the direction of the wind,

Let po Ph 100 mb, PA 10~8 gm/cm 8
. Because Wk 10 cm/sec or

larger,

^ - 10-<sec-i - 10 m/sec/100 km, or larger
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20. According to (60.33),

dy ^ (dp/to) i
~

dx
**

(dp/dy)i
-

(dp/dy) t

Note that x is the direction toward the east. Upon substituting from the

geostrophic wind relation (53.11) and (53.12), it follows that

tan * - $? - """ ~
dx piUi P2&2 T^UI TiUt

$ denotes the angle between the front and the E-direction, and v and u are

the N- and E-components of the wind.

21. If (56.5) and (60.31) are used, it follows that

dz ^ 2o>8Jn <p(vipi v 2pg) 4- (pi^i
2 p&f)/r

dr
**

g(pi
- p 2)

Here the index of the tangential velocity component has been omitted

and the small terrh due to the vertical component of the Coriolis force in the

denominator has been neglected.

22. Let ku, kv be the components of the frictional force, k being a

proportionality factor. Then, instead of the geostrophic equations (53.21)

and (53.22), the equilibrium conditions become

2w sin <p v + ku = -~
p Ox

2u sin <f> u -f- kv =

Note that the ^-direction coincides with the (positive) pressure gradient.

It follows that

\/v2 + u2 *=

V(2sin *>)
2 + & 2 P dx

The wind velocity is now smaller than without the effect of friction. The

angle between wind velocity and the x-axis

. /Tr N v 2o> sin <p
tan (V,x) = -

Thus, now the wind does not blow parallel to the isobars but has a component

toward lower pressure, u 7^ -. . 9 .

T
.
-~

(see C. M. Guldberg and* '

(2w sin ^)
2
-f k z

p dx
^ 6

H. Mohn, "fitudes sur les mouvements de l'atmosphere,
J>

I, A. W. Brogger,

Oslo, 1876).

23. According to (76.7), after some trigonometric transformations,

t;
ff(cos sin )
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24. If Ff and Fv denote the components of the fractional force, it follows

from (76.4) that

Fx
-

-j-r
= 2o> sin <p v'

dz*

fJL d*U

p <

Note that near the surface the fFictional force must be in the fourth quad-

rant, for Fx > 0, and Fv < 0. Equation (76.7) shows that

tan (F, x) -
j

1- = -
^
= - tan f az + a -

Thus,

for the other possible solution (F, x) = ir I az -f T
J
would imply

that the frictional force near the earth's surface is in the second quadrant.
Because is the angle between the negative pressure gradient (negative

x-axis) and the wind, the angle between the frictional force and the direction

opposite to the wind at the surface is ir/4 (see D. Brunt, Quart. J. Roy. Met.

Soc., 46, 174, 1920).

At the gradient-wind level, (F, x) = TT. The frictional force at this

level is in the direction of the negative x-axis, whereas the wind is in the

direction of the positive i/-axis.

Thus the simple assumption of Guldberg and Mohn on which Prob. 22 is

based is not fulfilled.

25. Because d*vg/dz* vanishes, there is no frictional wind component
under these assumptions above the gradient-wind level, except for the

insignificant component given by Eq. (76.7).

26. In the steady case the amount of dust s sinking with the velocity c

through the unit area per unit time must be equal to the amount of dust

transported upward by turbulent mass exchange,

A-p
dz

a. When A = const,

z
s = 8oe A

b. When A = k (z -f- a),

o \ a

27. According to (84.4),
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where 60 and 81 are the potential temperatures of the air at the ground before

and after cooling begins. If T is the temperature, To and T\ the surface tem-

peratures before and after the cooling begins, a the lapse rate of T, and

a T y, approximately,

- To - az - (T9
-

Ti) \l
- E (

*
)1 approximately.

L \\r(A/p)tJ Jr(A/p)t

The temperature is greatest at the height where

It follows that

f,
A A,, fT ~Ti 1- 4 t In .

P L -sA(

It is easily seen that this condition gives the height of maximum temperature,

not of minimum temperature. A maximum temperature exists as long as

Later the temperature decreases everywhere from the ground upward.

Upon putting dz*mvs./dt 0, it is found that m x is highest at the time

At this instant,

and

T - To - (ST.
- TO [^ + 1 - JBf

(V|)]
- To - 0.86(T

28. Let ~ - a (l -f cos vt). If r - < +
*
sin v^,

P v

the equation for turbulent mass exchange becomes

dT d*T
a?

~ a a?

and it follows according to (83.3) that

T - J5c-x* cos (vi + tawvt -\z) where X - ^~-

29. According to (88.2) and (6.22),
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To obtain an approximation, substitute again from (6.22),

(. h\i&+ l

'\"^-^; J
7* -

Upon developing into a power series and omitting terms of higher than the

second degree in ah/To, it follows that

30. The solution for each layer is of the form (101.6). Let the internal

surface of discontinuity be where z Q and let h be the depth of the lower

fluid. Then w 0, when z A. Thus,

-

de + C2e -

Upon introducing a new constant K, it follows that, in the lower layer,

rr i r Z ~\- h . 2w / . xw A sinh 2ir
^ sin (x d)
A A

p pc.K cosh 2?r ?-r cos -
(x ct)A A

and in the upper layer, because w where =
A',

rr t r 2 /l' . 2lT , .v

to' = A' sinh 2?r - sin (x ct)
A A

p'
*=

p'c2ir cosh 2ir r cos ~ (x ct)
A A

Upon applying the boundary condition (100.8) (note that we may put in

the perturbation quantities z as a sufficiently good approximation), it

follows that

~ c' (PK cosh 2,r \
- p'K' cosh 2w }

-
g(p

- p')K sinh 2r ^ -
A \ A A / A

and

^ c fPK cosh 2r ~ -
p'TiT' cosh 2ir ~) + ^(P

- P')#
' sinh 2ir~ -Ay A A j A

Because the ratio K/Kf must be the same in both equations and, for small

values of h/\ coth 2r -
g-

T>

-^(P -P') -0
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and

1 dP
31. In the undisturbed state, g - The perturbation equations

p 02

are, according to (99.5) and (99.6),

du . T7 du
,

dry 1 dp
-4- (J L

If) 88

dt dx dz p dx

4. TJ -~
dJ da; p d2

Hx ~dz

"""

Let rj f/o 4- 62 where C7 is the undisturbed velocity at the rigid lower

boundary, z 0. Assume that

u ** A (z) cos (x ct)

w = C(2) sin --
(x d)

A

2W
P ss3 U\Z) COS ~T"~ (X ~~~ Ct)

A

Upon substituting the expressions for u, w, and p in the perturbation equa-

tions, if follows that

and

(c
- U)C" - (~V (c

- U)C -
\ A /

Excluding the possibility that c 7 =
0,

or, because w? at the rigid lower boundary where z **
0,

C = K sinh 2r -

The height of the fluid layer may be denoted by h. Then the equation of

the free upper surface is given by

P -f p - -0p(* -A) +x- p &sinh2ir + (c
- Uj cash tor

^ A A

cos (* ci)A
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Here h has been substituted for z in the term for p (see page 280). Upon
applying the boundary condition (100.8) it follows that

(c
- Uh)* + (c

- UK) ^ tanh 2ir - g tanh 2<*\
-

ZTT A. ZTT A

where /i has been substituted for z in w. Thus,

rr X& * v, o *
_L 1 1^^Tl v /i\

2
, 0A. uo /l

c UK j- tanh 2?r - \ 75-2 ( tann 2* -
J
+ s- tanh 2rr -

If the layer is very shallow,

TT bh

If the layer is very deep,

On introducing plausible values for b in these expressions, it will be found

that the effect of the vertical variation of the undisturbed current is in

general very slight. (See B. Haurwitz, Veroffentlich. Geophys. Inst. Leipzig,

2d ser., 6, 67, 1931.)














