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PREFACE

The great progress of meteorology in recent years has been
largely due to the application of the laws of thermodynamics and
hydrodynamics to the study of the atmosphere and its motions.
It is the aim of this book to give an account of these investigations
and their results, with regard to applications to weather fore-
casting and to research.

No previous knowledge of meteorology is assumed, although
some preliminary training in general meteorology will facilitate
the study of the book. A large number of references to literature
have been given in order to enable the reader to consult the
original papers. The material presented has been the subject of
lecture courses on Dynamic Meteorology given at the University
of Toronto during the past six years as part of the meteoro-
logical course offered by the university in cooperation with the
Meteorological Service of Canada. The scope of the book is, in
the main, a theoretical discussion of the various phenomena,
without a complete descriptive account of the observed phe-
nomena and of the actual practical applications of the theory.
The mathematical technique has been kept as simple as possible.
Readers who are sufficiently well versed in advanced mathe-
matical methods will know how to obtain solutions for many of
the specific problems discussed here by more elegant mathe-
matical methods. Thus, the derivation of the equations of
motion on the rotating earth (Sec. 45) could be shortened greatly
by the use of vector analysis. Where more advanced results
of thermodynamics or of hydrodynamics are used, they have been
explained briefly, but the reader will do well to remember that
this book does not deal with these subjects but with dynamic
meteorology and that for a thorough study of thermodynamical
or hydrodynamical problems, specialized textbooks should be
consulted.

The problems are chosen partly to supplement the text with
material of secondary importance and partly to indicate the
possibilities of practical applications.

v
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The formulas are numbered according to the decimal system.
The number before the period refers to the section in which
the formula appears, the number after the period indicates the
position of the formula in the section. The formula with the
smaller number comes first. Thus (17.21) precedes (17.3), but
follows (17.2).

The author is indebted to Dr. W. Elsasser for permission to
reproduce Fig. 21, to the editors of Nature for permission to
reproduce Fig. 24, to Prof. J. Bjerknes for permission to reproduce
Figs. 45, 79, 80, 86, 89, to Prof. S. Petterssen for permission to
reproduce Figs. 55 to 57, to Sir Napier Shaw and Messrs. Con-
stable and Co. for permission to reproduce Fig. 81, and to
Mr. C. M. Penner and the National Research Council of Canada
for permission to reproduce Figs. 84 and 85. Owing to the
present war, it has been impossible to approach all the authors
and publishers concerned for permission to reproduce diagrams
which appeared in their publications. The author offers his
apologies for this omission and hopes that the permission may be
considered as granted, since proper references are made in each
case and since all these diagrams have originally appeared in
scientific journals.

The author wishes to express his gratitude to Prof. J. Patterson,
controller of the Mecteorological Service of Canada, to Mr. A.
Thomson, assistant controller of the same service, to Prof. C. F.
Brooks, director of Blue Hill Observatory, and to Prof. Sverre
Petterssen, head of the Meteorological Department of the Mass-
achusetts Institute of Technology, for their encouragement dur-
ing the preparation of this book.

Sincere thanks are due to Lt. Haakon Anda of the Royal
Norwegian Air Force for reading the manuscript, and to Mrs.
Haurwitz for her great assistance in preparing the manuscript for
publication.

BerNHARD HAURWITZ.

CAMBRIDGE, MASSACHUSETTS,
August, 1941.
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DYNAMIC METEOROLOGY

CHAPTER 1

THE EARTH. THE EQUATION OF STATE FOR DRY AND
MOIST AIR

1. The Earth and Its Gravitational Field. The earth is
approximately a sphere or, more accurately, a spheroid with an
equatorial radius of 6378.4 km and a polar radius of 6356.9 km.
For almost all meteorological problems the deviation of the
earth from the spherical form may be disregarded, so that the
earth may be assumed as exactly spherical with a radius of
6371 km, approximately. A sphere of this radius has roughly
the same area and volume as the earth.

The angular velocity of the earth’s rotation

2

- —_— = —5 —~1
@ = il doy 7.292 X 1075 sec™1,

The acceleration of gravity that is observed on the earth con-
sists in the actual attraction by the earth diminished by the
effect of the centrifugal acceleration caused by the earth’s rota-
tion. Points near the equator move faster than those at higher
latitudes owing to the earth’s rotation. Therefore, the centrifugal
force decreases poleward, and consequently the total acceleration
of gravity increases. Moreover, owing to the spheroidal shape
of the earth, points at higher latitudes are closer to the center of
the earth. This is an additional reason for the increase of the
acceleration of gravity poleward, for the gravitational force at a
point outside the earth is inversely proportional to the distance
from the center. The total acceleration can be expressed by
the following formula for the acceleration of gravity at sea level
go and at latitude ¢:

go = 980.621(1 — 0.00264 cous 2¢) cm/sec? (1.1)
1
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Because the acceleration of gravity decreases with the square
of the distance from the center, its value g at an altitude z above
sea level is given by

Jo
U ) (12
or g~go(l —3.14 X 10772) if 2z is expressed in meters.
E = 6371 km, the mean radius of the earth.

On mountains, Eq. (1.2) should be replaced by another equa-
tion, owing to the mass of the mountain and the imperfect
isostatic compensation. The consideration of these corrections
would lead too far into geodesy and is not of great importance to
the meteorologist who finds these figures in tables.!

The height z of a point above sea level can also be expressed
by the difference between the potential of gravity at sea level
and at the altitude z. The potential at the altitude z is numer-
ically equal to the work done when the unit of mass is lifted from
sea level up to this height. It is called the geopotential. The
following relation exists between the geopotential ¢ and the
height z:

Y= ﬁ) *gdz (1.3)
according to which, with (1.2),
* dez 2
V=0 | e errem (9

Because 2z < E, the denominator on the right side of this last
equation is very nearly unity so that numerically ¢ is about
10 times larger than z if the meter is used as the unit of length.
In order to obtain approximate numerical equality between the
geopotential and the corresponding altitude the former is usually
expressed in a unit that is 10 times smaller than the one following
from Eq. (1.31). This unit is called the ‘“dynamic meter” or
‘“geodynamic meter.” It should be clearly understood that
the dynamic meter is not an altitude but rather an energy per
unit mass. The hundredth part of the dynamic meter is a
dynamic centimeter, 1000 dynamic meters are a dynamic kilo-

1 “Smithsonian Meteorological Tables,” 5th ed., Smithsonian Institution,
Washington, D. C., 1931. BierenEs, V., “Dynamic Meteorology and
Hydrography,” Tables 1M and 2M, Carnegie Institution of Washington,
Washington, 1910.
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meter, etc. If the height above sea level is expressed in these
units, it is called ‘“‘dynamic height’’ to distinguish it from the
ordinary geometric height. Obviously the following relation
exists between the dynamic height ¢ and the geometric height z:

= 9o 2

V=TT e (14
Because go = 9.8 m/sec? [if go is expressed in centimeter-gram-
second (cgs) units the factor 1{¢ has to be replaced by 1{¢o0l,
¢ is about 2 per cent smaller numerically than z.  With the aid
of (1.4) and (1.1), dynamic heights and geometric heights may be
transformed one into the other. In meteorological practice where
speed is essential, tables are used for this transformation.?

The practical advantage of the dynamic height ¢ over the
geometric height 2z is due to the possibility of combining the
variations of the acceleration of gravity g with the variable y
which measures the elevation (see Sec. 6).

Dynamically, the surfaces of equal potential are more impor-
tant than the surfaces of equal height because the force of gravity
is everywhere normal to the former while it has a component
parallel to the latter. Therefore, a sphere would be in equilib-
rium on a surface of equal potential but would roll toward the
equator on a surface of constant height.

The surfaces of equal geometric and dynamic height intersect
each other, but the inclination is small. The equipotential
surface 20,000 dyn. meters, for instance, descends 107 m from
the equator to the pole.

2. Units of Pressure, Temperature, and Density. Pressure
is defined as the force exerted on the unit area. The unit
of force in the cgs system being the dyne, it follows that the
unit of pressure in the cgs system

Dynes/em? = gm cm™! gec™?

This quantity is too small for practical use in meteorology. A
pressure of 108 cgs units has been called ‘1 bar.”

1 bar = 10° dynes/cm?

1 BJERKNES, op. cil., Tables 3M-6M. ‘Smithsonian Meteorological
Tables,”” Tables 64-68. Linkg, F., ‘“Meteorologisches Taschenbuch,” I,
Tables 26-27, Akademische Verlagsgesellschaft, Leipzig, 1931.
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and in practice the millibar, 7.e., the thousandth part of a bar,
is in most countries used as the unit in which the atmospheric
pressure is expressed

1 mb = 10® dynes/cm?

In addition to the millibar the following expressions are some-
times used:
1 decibar = 107! bar
1 centibar = 102 bar
1 microbar = 10~¢ bar

It may be noted that the centibar is the unit of pressure in the
meter-ton-second system.

In practice the atmospheric pressure is most frequently deter-
mined by the height of a mercury colurhn exerting the same
pressure as the air. Consequently, the pressure observations
are given in units of length, millimeters or inches. Because the
density of mercury is 13.6 and the acceleration of gravity at sea
level and 45° latitude is 980.6 cm/sec?, the pressure of a mercury
column of height 1 mm in cgs units is

1 mm Hg = 10! X 13.6 X 980.6 = 1333 dynes/cm? = 1.333 mb

Similarly, the pressure of a mercury column of height 1 in. is,
because 1 in. = 25.4 mm,

1in. Hg = 33.86 mb

The following scales are used to express temperature: Accord-
ing to the centigrade scale, the freezing and boiling points of
water at ‘““normal”’ atmospheric pressure (760 mm Hg = 1013 mb)
have the values 0° and 100° respectively. According to the
Fahrenheit scale, these two fixed points have the values 32° and
212°. The relation between the two scales is therefore

£°C = 54(t°F — 32) 2.1)

The Réaumur scale according to which the freezing point of
water is 0° and its boiling point 80° is today not used in meteorol-
ogy. According to the absolute temperature scale the freezing
point of water has the value 273°! and the boiling point 373°, so
that the absolute temperature T is, in degrees centigrade,

T = 1°C + 273° (2.2)

1 This figure is sufficiently accurate for all meteorological problems.
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For a discussion of the theoretical foundations of the absolute
temperature scale the reader is referred to the textbooks on
thermodynamics.

The density p is defined as mass per unit volume. Its unit in
the cgs system is gm/cm3. The specific volume v is the volume
per unit mass. It is obviously

P =

(2.3)

© =

3. The Composition of the Atmosphere. Atmospheric air is
a mixture of various gases. The two main constituents in the
lower layers are nitrogen and oxygen which account for 99 per
cent of volume and mass of the air. A critical survey by Paneth!
shows the composition of the air near the surface to be as given
in the following table in abbreviated form:

Volume, | Molecular | Density,| Mass,
Gas . .
per cent weight | air = 1 | per cent
Nitrogen...................... 78.09 28.016 | 0.9670 | 75.51
Oxygen.......coovvvvvvinnn.. 20.95 32.000 | 1.1053 | 23.15
Argon.......cooviviiienaan.. 0 93 39.944 1.379 1.28
Carbon dioxide (variable). ..... 0.03 44.000 1 529 0.046

There are also small traces of neon, helium, krypton, xenon,
ozone, radon, and perhaps hydrogen present.

The table refers to completely dry air. The water vapor of
the air is variable, for water may freeze, condense, and evaporate
at the temperatures encountered in the atmosphere. It there-
fore requires separate consideration (Sec. 5).

The observations indicate that the composition of the atmos-
phere remains virtually unchanged at least up to 20 km. Ozone
becomes more abundant at greater heights, with a maximum
between 20 and 30 km. It has great influence upon the emission
and absorption of radiation in the upper atmosphere, but its
amount is not sufficient to affect the density of the air directly.
At greater altitudes, but probably not below 100 km, lighter
gases must become predominant.2 For the problems of dynamic

1 PaNETH, F. A., Quart. J. Roy. Met. Soc., 856, 304, 1939.

2 CHAPMAN, S., and MILNE, E. A., Quart. J. Roy. Met. Soc., 48, 357, 1928.
Havurwirz, B., The Physical State of the Upper Atmosphere, J. Roy. Astr.

Soc. Can., 1937, 1938. CuaPMAN, S., and Price, W. C., Report on Progress
in Physics, Phys. Soc. London, 8, 42, 1937.
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meteorology the state of the high atmosphere is not important,
at least according to our present knowledge.

4. The Gas Equation for Dry Atmospheric Air. In thermo-
dynamics, it is shown that the following relation exists between
pressure p, density p, and absolute temperature T' of an ideal gas:

*

R
p= ) oT (4.1)
Here B* = 83.13 X 10° ergs/gm degree = 1.986 cal/gm degree,
the universal gas constant, and m is the molecular weight of the
gas. For actual gases, (4.1) holds as long as they are in a state
sufficiently far away from condensation. Therefore, the equa-
tion can always be used for the atmospheric gases at ordinary
temperatures and pressures, with the exception of water vapor.
For a mixture of two or more gases, as, for instance, for
atmospheric air, a similar formula holds. To simplify matters a
mixture of only two components will be considered. The gases
may have the volumes V, and Vs, the masses M, and M,, the
same pressure p, and temperature 7. Because

_u _u
PI"V;‘ and p2 = Ve

it follows from the gas equation (4.1), as long as the gases are
separated in two containers, that
_R*M, _R*M,
p—melT and p—_nfg-VgT
If the containers are brought together and the separating wall
is removed, each gas occupies the whole volume V.

V = V1 + Vz
Consequently the sum of the partial pressures of both gases
_RMg R*Mag Vi Ve
mAm= vy Ity =y tey=v

This relation states Dalton’s law, viz., that the sum of the partial
pressures is equal to the total pressure of a mixture of gases.
The preceding equation may be written
R* M, + M,
=——=—T
m |4
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provided that the ‘“molecular weight of the mixture” is defined by

M1+Mz=_]_‘_{_5+_1‘£2 (4.2)

m m me
Because M, 4+ M, = M, the total mass of the gas mixture
M+ M, _
vV

Thus, the gas equation for a mixture of gases is also given by
(4.1) provided that a mean molecular weight m is introduced
according to (4.2). If the mixture consists of more than two
components, its molecular weight is given by

M S M (4.21)
m =d m;
From the table in Sec. 3 the molecular weight of the air is
found to be m = 28.97 if nitrogen, oxygen, argon, and carbon
dioxide are taken into account.

Since the universal gas constant R* appears in the equation
mostly divided by the molecular weight m, it will be convenient
to introduce the gas constant for (dry) air

*
R = % = 2.87 X 10¢ cm? sec™2 (deg)—!

6. Atmospheric Water Vapor. In addition to the other gases
enumerated in Sec. 3, atmospheric air contains a certain amount
of water vapor which varies widely with time and locality. As
long as no condensation or fusion is taking place, water vapor
may be treated as an ideal gas. If e is the water-vapor pressure,
My, its molecular weight, m, = 18, p,, its density, 7' its tempera-
ture, according to Eq. (4.1)

= g B =
where m,/m = 0.621. It is convenient to introduce the gas
constant R for (dry) air in (5.1). The temperature 7T of the
water vapor may be assumed as equal to the temperature of the
dry air with which it is mixed. Therefore, it is not necessary to
denote it by a subscript w. In meteorology the density of water
vapor is frequently called ‘“absolute humidity.”
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The total density p of the moist air is the sum of the density
of dry air and of water vapor. The partial pressure of dry
air is p — ¢ when p is the total pressure of the moist air.?
Conseouently

e
p=222° +0621RT RT(1—0.3791-)) (5.2)

This equation shows that moist air is lighter than dry air of
the same temperature and pressure, for the water vapor is lighter
than the air that it replaces.

In problems where only the density of the air is important,
dry air of somewhat higher temperature may be assumed to be
substituted for the actual moist air., This temperature which the
fictitious dry air should have in order to be of the same density as
the actual moist air under the same pressure is called the ‘“ virtual
temperature’” T* According to (5.2),

T

* -t
™ = T=03706/p (5:3)
The density of moist air may then be written
__Dp
p= RT* (5.4)

At a given temperature the water-vapor pressure can rise only
up to a certain maximum, the saturation, or maximum, vapor
pressure en,. If the existing water-vapor pressure e is smaller
than e, evaporation from liquid-water surfaces or ice can take
place; if e = en, an equilibrium is reached between the liquid
(or solid) and the gaseous state; if ¢ > em, condensation? occurs.
Below the freezing point, one has to distinguish between the
saturation pressure over ice and over water.

It should be clearly understood that the fact of saturation is
independent of the presence of other gases besides water vapor.
If water of a certain temperature is brought into a vessel con-
taining no other gas, the water-vapor pressure, by evaporation,
will reach the same saturation value as if air or any other gas

1 But if all water vapor condenses and falls out as precipitation, the result-
ing pressure fall will not be e, for the water vapor by itself is not in hydro-

static equilibrium (see Chap. II, Prob. 1).
1 For modifications of this statement due to the surface tension of water
droplets and the pressure of dissolved substances in water, see Sec. 16.
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were present. The maximum water-vapor pressure depends
only on the vapor temperature. It is, therefore, not strictly
correct to say that the air is saturated with water vapor. Some
justification for such a statement may, however, be found in the
fact that the atmospheric water vapor has the same temperature
as the air of which it forms a part. Because the saturation
pressure depends on the temperature, its magnitude is indirectly
influenced by the air temperature. The expression ‘‘saturated
air” will therefore be used, for its brevity, in the following
discussion.

The variation of e, with the temperature is given in Table I,
(page 341). Tetens! has given an empirical formula for e,, based
on the laboratory measurements. If e,, is the saturation vapor
pressure in millibars and ¢ the temperature in degrees centigrade,

at
em = 6.11 X 107¥0 (5.5)

The constants a and b are as follows:
Over ice,

a=95 b=2655
Over water,

a =17.5, b = 2373

A similar theoretical formula can easily be derived from the
equation of Clausius-Clapeyron for the heat of condensation.?

Besides the absolute humidity, which is used rarely in meteor-
ological practice, the water-vapor content may be expressed by
numerous other quantities. The relative humidity f is the ratio
of the actual vapor pressure to the saturation pressure at the
existing temperature,

f=7 (5.6)
or, according to (5.1),
f= p"—“’ (5.61)

The relative humidity may thus also be defined as the ratio of
the actual absolute humidity to the maximum absolute humidity
possible at the existing temperature.

L TeTENs, O., Z. Geophysik, 6, 297, 1930.

2 See, for instance, D. Brunt, “Physical and Dynamical Meteorology,”
2d ed., p. 103, Cambridge University Press, London, 1939.



10 DYNAMIC METEOROLOGY

The specific humidity q is the ratio of the absolute humidity
(density of water vapor) to the density of the moist air,

=P _ S —
q . 0.621 » = 037% (5.7)
The miring ratio w is the ratio of the absolute humidity to the
density of dry air,
w=-L2 = 0621

Pdry air Y it

(5.8)

The following relations exist between the specific humidity and
the mixing ratio according to their definitions (5.7) and (5.8):

w
q = itw (56.71)
q

w = (5.81)

1-g¢
Because ¢ < p as seen from Table I, which gives the maximum
water-vapor pressures at different temperatures, (5.7) and (5.8)
can in practice be simplified to

g~ w~ 0621 2-‘)’ (5.82)

Mixing ratio and specific humidity are figures without physical
dimensions. Owing to their smallness, it is convenient in prac-
tice to express them in grams of water vapor per kilogram of air
(dry or moist). In Sec. 13, it will be shown that ¢ and w remain
constant for dry-adiabatic changes. These quantities are there-
fore useful for the identification of air masses.

The dew point 7 is the temperature to which the air has to be
cooled, at constant pressure, in order to become saturated.



CHAPTER 11

ATMOSPHERIC STATICS. ADIABATIC CHANGES OF
DRY AIR

6. The Decrease of the Pressure with Elevation. The atmos-
pheric pressure at any level in the atmosphere represents very
accurately the total weight of the air column above the unit area
at the level of observation. At greater altitudes the pressure is
consequently smaller, for there is less mass above the observer.
To find the rate of decrease of the
pressure, consider a vertical air
column of unit cross section (Fig. p-dp zedz
1). At the level z the pressure is P z
p; at the level z + dz, itis p — dp.
The pressure difference is equal to
the weight of the air column of the
height dz. If dz is chosen suffi- 7> 77 777
ciently small so that the density Fre. 1.—Decreaso of the pressure
and the acceleration of the gravity with altitude.

g may be regarded as constant in the height interval under
consideration,

dp = —gpdz (6.1)
This equation is sometimes called the ‘“hydrostatic equation.”
As long as the water-vapor content can be neglected, the density

=P
P = RT (4'1)
which may be substituted in (6.1). If the variation of g with
the altitude is neglected, it follows that

p _ _ 4
» ~ T RT dz (6.11)
and, by integration, that
4%
pP=7pe ° (6.2)
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where p, is the pressure at the earth’s surface. If the tempera-
ture is independent of the altitude, (6.2) may be written

-5
p = poe ET (6.21)

The assumption of a constant temperature in the vertical
direction is a good approximation to the average temperature
distribution in the stratosphere. In the lower part of the
atmosphere, the troposphere, the temperature distribution is rep-
resented better by a function decreasing linearly with the height,

T= To - az

The constant « is called the ‘‘lapse rate of temperature” or the
“‘vertical temperature gradient,” even though the latter expres-
sion should rather be reserved for d7'/dz. ° When the temperature
increases with the altitude, the lapse rate is negative and the
atmosphere shows an ‘“‘inversion’” of the temperature lapse
rate; when « = 0 within an atmospheric layer, the layer is
“‘isothermal.”

If the temperature is a linear function of the height, integration
of (6.2) gives the equation

P = Po (—%)Tg? (6.22)

Upon introducing the geopotential ¥ according to (1.3) in
(6.1), it follows that

dp = —pdy (6.3)

Equation (6.3) can be integrated in the same manner as (6.1).
When the geopotential is used instead of the geometric height,
the variable acceleration of the gravity no longer appears in
the equations.

The influence of the atmospheric moisture content on the
decrease of the pressure with altitude can be taken into account
by using the virtual temperature T™* instead of T. From Eq.
(5.3), it followed that moist air of the temperature T and of the
vapor pressure e has the same density as dry air of the temperature

_ T
1 —0.379(¢e/p)

where T* was the virtual temperature of the air. Therefore,

> (5.3)
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for moist air the temperature T should be replaced in the pre-
ceding equations by the virtual temperature 7'*.

7. Height Computation of Aerological Ascents. The baro-
metric formula is used for the solution of a great number of
practical problems as, for instance, for the height computations
of aerological ascents. Because the aerological data must be

b 3
600 T, 4y H
. \ 3939
N\ w\*v# / 58+
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N N\ Fermperature \ 894
700&1111115&111\‘ ' 11 x 3045
Pressure N
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o
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a
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F1a. 2.—Height computation of an aerological ascent after V. Bjerknes. Toronto,
July 3, 1939. (The ordinate is p°288, not in p for reasons given on page 23.)

quickly available for the daily weather analysis, a number of
methods have been developed for the computation of the height
of any point in the atmosphere for which aerological observations
are available.! Only the method of V. Bjerknes? will be described
here. From the aerological ascents the pressure p, the tempera-
ture T, and the relative humidity f for a number of points in the

1 StivE, G., “ Meteorologisches Taschenbuch,” IT, Akademische Verlags-
gesellschaft, Leipzig, 1933.

? ByerkNES, V., ‘Dynamic Meteorology and Hydrography,” Chap. VI,
Carnegie Institution of Washington, Washington, D. C., 1910.
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atmosphere are obtained. They are plotted on a chart whose
abscissa is the temperature on a linear scale and whose ordinate
is the pressure on a logarithmic scale (7-In p chart). As an
example the airplane ascent made at Toronto on July 3, 1939,
is plotted in Fig. 2 (broken curve).

The data for this ascent are

Pressure, mb................ 990 | 949 | 899 | 760 | 750 | 626
Temperature, deg C.......... 15.9120.018.3| 6.1 | 11.0| 2.8
Relative humidity, per cent...| 81 45 56 89 12 27

The height of the Toronto airport is 187 dyn. meters.

To find the height of each point of observation the virtual
temperature has to be determined first. Because the computa-
tion of this quantity from (5.3) would require, in practice, too
much time, provision has been made on the T-ln p chart to
obtain it more directly. The difference between virtual temper-
ature and temperature is approximately

T - T = 0.379f"—'"~%T—) T

As long as the relative humidity is 100 per cent, the difference
T* — T is a function of pressure and temperature only. There-
fore, the value of T* — T is fixed by the pressure and temperature
of each point on the chart. It is indicated by the distance
between each two successive short vertical lines on every isobar
representing a multiple of 100 mb. For instance, when the
pressure is 700 mb and the temperature +410°C, the virtual
temperature of saturated air would be about +12°C. When the
relative humidity is less than 100 per cent, 7* — T is obtained
by multiplying the difference T* — T for saturated air by f.
In the previous example a relative humidity of 50 per cent would
give a virtual temperature of +11°C. In this manner the
virtual-temperature curve can be plotted quite easily (full curve
in Fig. 2.)

The height may now be expressed in dynamic meters in order
to eliminate the acceleration of gravity g. Upon substituting the
equation of state for moist air (5.4) in (6.3), it follows that

dy = —}{oRT*d(In p)
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and, by integration

_ 1 In p2 _ 1 P
Y2 — 1= — 10 R J;n o T*d(In p) = T(—)RTl_,"‘ln—z-); (7.1)
Here
In p1
(Inpy — Inpa)Thx* = J; T*d(In p) (7.2)
n p2

T\.2* is a suitably defined mean virtual temperature in the layer
between p; and ps. Ti2* can easily be found on the T-In p
chart. Consider, for instance, the virtual-temperature dis-
tribution between 900 and 800 mb in Fig. 2. The integral on the
right-hand side of (7.2) is represented by the area enclosed
between the isobars p; = 900 mb and p: = 800 mb and between
the isotherm ¢t = —273°C (0° abs) and the virtual-temperature
curve. Equation (7.2) shows that the isotherm representing the
mean virtual temperature T* must be chosen so that the area
enclosed between the isobars 900 mb and 800 mb and the iso-
therms —273°C and T'.2* is equal to the area given by the
integral in (7.2). Thus, the shaded triangles in Fig. 2, which
are bounded by the virtual-temperature curve, the isotherm
T1.2* and the isobars 900 mb and 800 mb must be equal. In
practice the mean virtual temperature of a layer can be deter-
mined quite accurately in this manner even if the virtual-
temperature curve is more complicated. The mean virtual
temperatures for the ascent at Toronto on July 3, 1939, are
given in Fig. 2 under the heading T'»*.

The dynamic height difference between two pressure levels
depends only on the mean virtual temperature of the layer. In
practice the height differences between levels whose pressures
are multiples of 100 mb, the so-called ‘““‘standard’’ isobaric sur-
faces, are first determined. Tables giving the dynamic height
differences between standard isobaric surfaces for various virtual
temperatures are available.?

If the pressure p:; is not a standard pressure, (7.1) may be
written

—de — W = L P _ 1 o * P
Hyo = Y2 — ¥s = 10 RT,21n e = 10 R(273° 4+ t*) In -

! BJERKNES, op. cit., Tables 10M-12M. LINKE, F., ‘‘ Meteorologisches
Taschenbuch,” I, Tables 27 and 27b, Leipzig, 1931.
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where p, and ¢, are the pressure and the dynamic height of the
next isobaric surface above or below p; and ¢* is the mean virtual
temperature in degrees centigrade.

Let
Hz,. = HO + AH
where
Ho=RX273In2
P2
and
t*
AH = Ho-27—3'

H, depends only on p: for a given p,. It gives the dynamic
height difference between the two pressures when the mean
virtual temperature is 0°C. The correction AH depends on
the mean virtual temperature and on the dynamic height H, at
0°C. H, and AH can also be obtained from tables.! If the
temperature ¢* is below freezing, AH is negative. In the example
given in Fig. 2 the uppermost layer extends from 700 mb to
626 mb. The dynamic height difference between these two
pressures at ¢ = 0°C is 876 dyn. meters. The correction for a
mean virtual temperature of 5.8°C is 18 dyn. meters so that the
total height difference is 894 dyn. meters. Similarly, it is found
that the earth’s surface is 802 dyn. meters below the 900-mb
surface. Upon adding the height differences (given under the
heading Ay in Fig. 2) successively to the station height the
elevations of the various pressure levels are obtained. They are
given under the heading H in Fig. 2.

Instead of computing the distance between the surface pressure
and the 900-mb surface the distance between the 900-mb surface
and the 1000-mb surface might have been computed first and
then the distance between the surface of the earth and the
1000-mb surface. To compute the latter the virtual-temperature
curve has to be extrapolated downward, for the 1000-mb surface
is below the ground in the present example. As long as the
surface pressure is not much lower than 1000 mb, this extrapola-
tion will not give rise to an appreciable error.

After the height of the standard isobaric surfaces has been
computed, a curve may be drawn representing the pressure dis-
tribution with height, the pressure-height curve. When the

! BJRRKNES, V., op. cit., Table 9M. LiNkE, op. cit., Table 28.
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linear abscissa is used as the height scale, the pressure-height
curve must be approximately a straight line. This permits the
detection of major errors in the computations. The heights of
intermediate pressure levels can be obtained from the pressure-
height curve with an accuracy that is sufficient for most meteor-
ological purposes.

8. Adiabatic Changes of Dry Air. It is known from physics
that heat is a special form of energy which may be changed into
other forms such as mechanical work, for instance. The unit
of heat is the calorie, or more precisely the gram-calorie. It is
the amount of heat required to raise the temperature of 1 gram
of water 1°C. This amount varies somewhat with the tempera-
ture and the pressure so that the gram-calorie is defined more
accurately as the amount of heat necessary to raise the tempera-
ture of 1 gram of water from 14.5°C to 15.5°C at the normal
pressure of 760 mm Hg. But for meteorology this refinement is
not important. The gram-calorie represents a certain amount
of mechanical energy. Experiments have shown that it is equal
to 4.185 X 107 ergs. Therefore, in order to convert calories into
ergs, one has to multiply by a factor

J = 4.185 X 107 ergs/cal

J is called the mechanical equivalent of heat.
If the amount of heat dq is required to raise 1 gram of a sub-
stance through a change in temperature dT, the specific heat

dq

¢=ar

In the case of gases, one has to distinguish among various specific
heats according to the change of state that the gas undergoes.
If its specific volume is kept constant, the specific heat at constant
volume ¢, has to be considered. If the pressure remains constant
the specific heat at constant pressure c, appears. For air,
¢y = 0.170 cal/gm degree.

The first law of thermodynamics! states that an amount of heat
dq added to a gas is used partly to increase the internal energy
and partly to do work against the outer pressure by expansion
of the gas. In the case of an ideal gas the internal energy depends

L A derivation of the first law for ideal gases will be found in any textbook
on thermodynamics.
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only on the temperature, and the change of the internal energy
is given by ¢, dT. To find the work done by expansion against
an outer pressure p, consider a cylinder with a movable piston
of cross section F (Fig. 3). The forde exerted by the outer
pressure on the piston is pF. When a gas inside the cylinder
expands and moves the piston a distance dz, the work done by
the gas is
pFdr = pdV

where dV is the change of the gas volume. Consequently the
amount of work done by the unit mass is p dv where v is the
specific volume. If the work is to be ex-
pressed in thermal units, it has to be multi-

P
___{_J___ plied by A = 2.390 X 10~% cal/erg, the
Idx reciprocal of the mechanical equivalent of
7 heat.

The first law of thermodynamics applied
to the unit mass of an ideal gas may, there-
fore, be written

Fia. 3.—Computa- _ v
tion of work done by dq =cdl + Ap dv (8'1)
expansion.

Dry air may be regarded as an ideal gas
at the temperatures occurring in the atmosphere; but the water
vapor requires a separate treatment, for it condenses and freezes
at atmospheric temperatures.

Upon substituting here the gas equation (4.1), Eq. (8.1)
changes into

dg = (co + AR) dT — A%’ dp (8.2)

If the pressure is kept constant and only the temperature
changes, the specific heat at constant pressure is obtained. It
follows that

¢y = (%),, = + AR 8.3)

For dry air the specific heat at constant pressure is 0.239.
Actually, the two specific heats of the air are variable, but the
variation is so small that it may be neglected.

Frequently, it can be assumed that during atmospheric
processes the heat content of the air under consideration remains
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unchanged, 7.e., that
dg=0

Such variations are called ‘‘adiabatic.” Strictly speaking, it
has also to be assumed that the variations of the gas are infinitely
slow so that the whole finite change of the gas consists in a
succession of equilibrium states, as is discussed in the textbooks
on thermodynamics (see page 59). Changes of state in the
atmosphere may frequently be assumed to resemble adiabatic
processes, for the loss or gain of heat by radiation or conduction
is often small compared with the change caused by compression
or expansion, especially in connection with vertical motion.
For adiabatic changes, it follows from (8.2) and (8.3) that

T = '—c-;‘ ; (84)
or, by integration, that
T (pY
r_(2) o
where
_AR _ ¢, — ¢ _ 0.288
(53 P '

T, is the temperature at the pressure p,. Upon introducing the
gas equation (4.1) into (8.41), a relation between pressure and
density is obtained,

pp~ = const (8.42)
where

A=22 - 1405
Cy

If the specific volume and temperature are introduced in (8.42)
for the pressure and the density, the adiabatic relation may be

written
Tv-1 = const (8.43)

For the theoretical considerations, it is sometimes useful to
generalize the adiabatic condition dg = 0 by assuming instead
that

dq = cdT

where ¢ is a constant of the dimensions of a specific heat.
Changes of state of a gas that follows this more general condition
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are called ‘““polytropic.” The relation between pressure and
temperature now becomes

T _ p)i
T = (po (8.5)
where
2= Cr =G
Cp — C

and the relation between pressure and density becomes

pp~™ = const (8.51)

Cp — C . .
P is the ‘“‘“modulus” that characterizes each

where \ = —

Cy
polytropic curve. The following polytropic curves are of special
interest: ,

Isobaric curves,

X=0, c=Cp
Isothermal curves,

x=1, c= +oo
Isosteric curves,

A= o, c=c

Adiabatic curves

X = E’—’; c=0
Cy
9. Potential Temperature. The Dry-adiabatic Lapse Rate.
Vertical Stability of Dry Air. The potential temperature
6 of dry air is the temperature that the air would assume if
brought adiabatically from its actual pressure to a standard pres-
sure P that is generally chosen equal to 1000 mb. Consequently

0=T (§>‘ ©.1)

When dry air undergoes adiabatic changes, the potential temper-
ature remains constant. It is a conservative property of dry
air, conservative with respect to adiabatic changes.

A unit of air that moves vertically upward or downward
expands or contracts because the pressure exerted on it by the
surrounding atmosphere decreases or increases. The effects of
vertical motions in the atmosphere are as a rule so marked
that the influence of radiation and convection may be neglected
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and the motion can be assumed to be adiabatic. Then it follows
from (8.4) that the temperature variation of the ascending air
187 _ 14p

T 3z Kpaz

The decrease of the pressure with the altitude dp/dz depends not
on the temperature 7' of the moving air but on the temperature
T’ of the surrounding air, so that, with (6.11),

=-To=-5 (9.2)

Because the ratio /7" is mostly not very different from unity,
the 'decrease of the temperature of the ascending air is very
closely given by

r= gRi‘ = 0.98°C X 10~4/cm = 0.98°C/100 m (9.21)
This quantity is called the ‘‘adiabatic lapse rate” or, more
accurately, the “dry-adiabatic lapse rate.”

If the lapse rate of the air is smaller than the adiabatic lapse
rate, the air is in ‘“‘stable’’ equilibrium. To show this condition,
consider a parcel of air that originally had the temperature of its
surroundings.! It will be assumed that the motion of such a
parcel of air does not disturb the stratification of the environ-
ment, an assumption that is obviously not fully justified if the
motion of the parcel is to be studied.? Such a simplification is,
however, permissible when, as in this case, the static problem
of the stability or instability of the atmosphere is being investi-
gated. If the parcel is lifted, it cools at the adiabatic rate while
the temperature of the surrounding air decreases at a rate less
than the adiabatic. Thus, the displaced air parcel attains at
its new position a temperature lower than the temperature of the
surrounding air. Because the pressures of the displaced air
and of the surrounding air are the same, the density and weight
of the displaced air are greater owing to its lower temperature.
Therefore, it sinks back to its original position. The argument

1 For a rigorous proof, see H. Ertel, “ Methoden und Probleme der dyna-
mischen Meteorologie,” p. 57, Verlag J. Springer, Berlin, 1938.

2 BJERKNES, J., Quart. J. Roy. Met. Soc., 64, 325, 1938. PETTERSSEN, 8.,
Geofys. Pub., 12, No. 9, 1939; ‘“ Weather Analysis and Forecasting,” p. 64,
McGraw-Hill Book Company, Inc., New York, 1940.
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obviously holds also when downward motion takes place, for the
moving parcel of air now becomes warmer than the air surround-
ing it and is therefore lighter and returns upward to its original
position.

If the lapse rate of the air is larger than the adiabatic, on the
other hand, a parcel of air moving upward would arrive in its
new position warmer and lighter than the surrounding air and
would continue to ascend. The air is in “unstable” equilibrium.
It should be understood that even in this case vertical motion
will not start spontaneously. As long as the mass distribution
of the atmosphere is undisturbed, equilibrium prevails. Lighter
air is above heavier air. Only after an initial disturbance has
been brought about will strong vertical motions occur, and in
the case of a less-than-adiabatic lapse rate such a disturbance is
damped by the stable stratification of the air.

If the lapse rate happens to be adiabatic, a particle moved up
or down has always the same temperature as the surrounding air
and is thus always in equilibrium. The equilibrium is “indif-
ferent.” In general the lapse rate of temperature in the atmos-
phere is below the adiabatic, about 0.6°C/100 km.

If the lapse rate is called @, the equilibrium conditions for dry
air may be written in the form

a < T, stable equilibrium
a = T, indifferent equilibrium
a > T, unstable equilibrium

Upon differentiating (9.1) logarithmically and substituting from
(6.11), it is seen that the lapse rate of potential temperature is
related to the lapse rate of temperature by

30

3z
This formula permits one to express the equilibrium conditions
for dry air by the lapse rate of potential temperature. Dry air
is in stable equilibrium when 36/6z > 0, in indifferent equilib-
rium when 806/dz = 0, and in unstable equilibrium when
86/9z < 0. Near the surface of the earth where the pressure
is not very different from 1000 mb, © is approximately equal to
T. Thus, approximately,

0=T+Tz (9.31)

]
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If lines of equal potential temperature are drawn on a pressure-
temperature chart as used in Sec. 7 (Fig. 2), it can be seen at a
glance whether the (dry) air is in stable equilibrium or not. If
the inclination of the ascent curve is steeper than the inclination
of the lines of constant potential temperature, the stratification
is stable; if it is less steep, unstable. Where the inclination
is the same for both curves, indifferent equilibrium exists. The
lines of constant potential temperature are also called adiabats,
for the point representing the pressure and temperature of a
mass of dry air moving adiabatically remains on the same line.
The whole chart is also referred to as an adiabatic chart.

On a chart whose abscissa is the temperature and whose
ordinate is the logarithm of the pressure the adiabats are obvi-
ously not straight lines. If the ordinate were p*, however, the
adiabats would become straight lines as is seen from (9.1).
Because this is convenient for many problems, adiabatic charts
with p* as ordinate have also been constructed. On such charts
the determination of the mean temperature outlined in Sec. 7 is
not quite exact; but the error involved is negligible, especially
when the pressure intervals are chosen not larger than 100 mb.

The previous considerations concerning the stability of dry
air undergoing adiabatic changes can be extended to polytropic
changes in general. If the atmosphere follows a polytropic
law characterized by a modulus X, it is in stable equilibrium
provided that the temperature lapse rate is smaller than

gE _gA— 1 (9.4)

This expression plays for an atmosphere following such a poly-
tropic law the same role as the adiabatic lapse rate for an atmos-
phere following an adiabatic law of compression and expansion.
10. The Influence of Vertical Motion on the Temperature
Lapse Rate and on the Stability of Dry Air. When large-scale
vertical motions take place in the atmosphere, whole layers of
air may be moved up or down so that they are brought under
different pressure and their horizontal cross section is changed.
In anticyclones, for example, a descending motion frequently
takes place under simultaneous spreading of the air layers, as
indicated schematically in Fig. 4, while the relative position
of the layers remains the same. Under these circumstances the
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lapse rate of temperature changes owing to adiabatic expansion.!
The change in lapse rate can be computed quite easily under
the simplifying assumption that the height of the layer con-
sidered is small. The cross section of the layer (Fig. 5) may be A
hefore the change has taken place, © and © + d© the potential
temperatures at the lower and upper
surfaces, p its density, and dz its
height. After the change, let the
cross section be A’, the density p’, the
height dz’; the potential temperature
is not altered as long as the process is
adiabatic. Beccause the mass of the
(L// A AAAIA IS, A\ layer remains constant,

F1a. 4.—Subsiding motion and i
shrinking. AP de' = Alpl dz

Here it is assumed that the height of the layer is small so that p
and p’ may be regarded as independent of the height within the
layer. Owing to the invariance of the potential temperature,

do _dode _ do A’y
dz ~ dz d? ~ dz Ap

When the density is expressed by the pressure and temperature

le+de
| | 6+dé
[ =5 — —
az ’
R dz’ e
s );! ol “
) 6
(a) (6)

Fra. 5.—Variation of the lapse rate of temperature due to vertical motion.

according to the gas equation (4.1), this equation may be written
e _doA'p' T
dZ ~ dzApT

The lapse rate of potential temperature can be expressed by

the lapse rate of temperature according to (9.3),

Ap' T

A p 77’

t Scumint, W., Beitr. Phys. Atm., 7, 103, 1917.

(10.1)

(3] n_ © _
W(F—a)—’T‘(F a)
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Thus
AI pl
/ 3 — —— —

o =T A (T — ) (10.2)
An increase in cross section acts in the same way as an increase
in pressure, i.e., as a sinking of the layer of air; a decrease in
cross section like a decrease in pressure, t.e., as a lifting. For
the rest of the discussion, it will therefore be assumed for the
sake of simplicity that A remains unchanged even though the
change in cross section may actually be as important as
the pressure change. Equation (10.2) then becomes

o =a— (- a) A—p” (10.21)

where
Ap=1p'—p

First the case where T' > a may be considered, ¢.c., where the
temperature distribution is stable originally. When Ap > 0, 7.e.,
when the air descends, o’ < ¢, i.e., the lapse rate becomes smaller,
and when Ap is sufficiently large, o’ may even become zero or
negative. When the lapse rate is negative, the temperature
increases with elevation. Thus an inversion may be formed by
sinking and spreading of the air. This process occurs frequently
in the center of stagnant anticyclones where large inversions
are observed which from their origin are called subsidence tnver-
stons.! Because the stratification is more stable the smaller
the lapse rate is compared with the adiabatic lapse rate, the
result may also be stated by saying that descending motion in
an atmosphere with originally stable stratification increases
the stability of the air. On the other hand, when the air ascends
(or when its cross section decreases), i.e., when Ap < 0, the lapse
rate a’ becomes larger.

In the rare case of originally unstable stratification, « > T,
the effect of upward and downward motions is just the opposite.
Downward motion increases the lapse rate; upward motions
make the lapse rate smaller.

When the lapse rate was originally adiabatic (I' = «) it remains
unchanged. The method can also be extended to air columns
of finite height,? but the lapse rates resulting from vertical

I Namias, J., Harvard Met. Studies, No. 2, 1934.
? Haurwitz, B., Ann. Hydr., 69, 22, 1931.
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adiabatic motion of finite air columns are not very different
from those obtained from the preceding formula (10.21).

For a graphical determination of the change of the lapse
rate in a layer of air that ascends or descends adiabatically, the
adiabatic chart may be used. The full curve AB in Fig. 6
may represent the original pressure and temperature distribution.
When the layer is subjected to vertical adiabatic motion, each
point of AB must move along an adiabat (broken curves). If 4
comes to rest at a pressure pc, and B at pp without a disturbance
of the relative position of the points along AB, the line CD
represents the new stratification of the layer. It may be noted
that owing to the conservation of mass the pressure difference

A

inp
| \\
\\
RN \N.C
Pc \\ <
B N\ Adrabat
>\ X
Adiabat N
pp D
77—

F1a. 6.—Change of the lapse rate in a subsiding layer.

between C and D is equal to the original pressure difference
between A and B if the cross section of the layer remains
unchanged. If the cross section changes, the pressure difference
changes also. The mass remains constant, so that

(ps — pa)A = (pp — pc)A’

11. The Relation between Pressure and Temperature Varia-
tions. Because the surface pressure is the total weight of the air
column above the point of observation, it varies when the mass
of air changes at any level.

It may be assumed that the atmosphere is divided into n
layers of equal height k. If the height h is chosen not too large,
the temperature in each layer may be regarded as constant.
If the surface pressure is po, the pressure at the highest point of
observation nh is p, and the mean temperature in the layer &k
from (k — 1)k to kh is T4, it follows by repeated application of
the barometric formula (6.21) that
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n
B2

Po = pne F=1 (11.1)
This formula expresses the surface pressure by the pressure at
the highest point of observation and by the temperature in the
intermediate layers. Upon differentiating logarithmically with

respect to time, (11.1) becomes

n
apo _ Do apn q 1 8T
CPo  PolPn _ & hpo Z kT (11.2)
The differential quotients with respect to the time may be identi-
fied with the 12-hourly or 24-hourly variations of pressure and
temperature which can be determined by successive aerological
ascents. Formula (11.2) is, of course, correct in so far as it
gives the changes that must occur simultaneously in the different
atmospheric layers if static equilibrium persists. But it has
frequently led to misinterpretations that will be discussed here,
for such a discussion will clarify the mechanism that links the
pressure and temperature variations at various levels in the
atmosphere.!

When the temperature in the intermediate layers remains

unchanged, (11.2) is reduced to

9po _ Po 9pa
% pa ot (11.21)

The pressure variation at the ground is po/p. times larger than
the simultaneous pressure variation at the level nh. For
instance, when in the atmosphere at an altitude where the average
pressure is 250 mb a pressure variation of 5 mb is observed, the
simultaneous pressure variation at the ground where the average
pressure is 1000 mb should be 20 mb. From (11.21), it has been
inferred that the variations of the pressure at greater heights
dominate the surface pressure variations completely, especially
after it was discovered from aerological ascents that the daily
variations of the pressure at greater altitude are of about the
same magnitude as at the ground. Obviously, however, (11.21)
cannot mean that a pressure change dp, at a height where the

. 0 .
pressure is p, causes a surface pressure change g—dp,.. This
n

t Haurwirz, B., and Haurwirz, E., Harvard Met. Studies, No. 3, 1939.
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cannot be correct, for an increase of the pressure dp. shows only
that above the level of the pressure rise the mass increases by
dp./g per unit cross section. As long as no advection takes
place in the lower layers, the mass of the air column increases
Podpn
Pn g

To interpret the meaning of (11.21) correctly, it has to be con-
sidered from a different angle. Suppose that the pressure at the
earth’s surface changes by dpo, which may be assumed positive
in order to have a more concrete picture. This pressure rise
indicates that the total mass of the air column per unit cross
section has increased by dpo/g. If the advection of mass has
taken place at and above an altitude H, the air column below H
is compressed by the added air and a part of the air previously
above H sinks below this level. The change in pressure dp, at
this level H is therefore equal to the weight of the air added at
and above H minus the weight of the air that sinks below H owing
to the compression. The increase of the mass above H, dp./g,
is thus only a fraction of the total mass that has been added
above II. Conscquently the pressure increase at the surface
must be larger than dp, because the variation of the surface
pressure represents the total mass added to the air column. Thus
Eq. (11.21) actually states, not that a pressure variation dp, at
the height where the pressure is p, causes a surface pressure
variation po/p, times larger, but that the total pressure variation
dpo at the level H is diminished proportional to the ratio of the
pressure p./po owing to the compressibility of the atmosphere.

Another misinterpretation of (11.21) concerns the second
term on the right-hand side containing the temperature varia-
tions. If the temperature changes only in the layer k, from
(k — 1)h to kh the surface pressure change, according to (11.21),

18

only by dp./g and not by

opo _ g j PO T} (11.22)

ot R T ot

This equation shows that for one and the same temperature
change at different heights the surface pressure variation is
usually somewhat larger for the temperature changes at higher
altitudes because the temperature usually decreases with height.
However, one and the same temperature variation at a higher
altitude affects a smaller mass when layers of the same thickness
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are considered, on account of the decrease of the air density with
altitude. Therefore, the change of thc total mass of an air
.column should be smaller, the higher the layer in which the
temperature variation takes place. To explain this apparent
paradox, consider the variation of the pressure dp.—. at the bot-
tom of the layer k due to a change of the temperature in the
layer k, while the pressure p; at the top of the layer remains
constant. This variation is expressed by

Opi-t _ _ g 5 Pe-1 9Tk

ot~ T RM7e o (11.23)
According to this expression the pressure variation at the bottom
of any layer due to the temperature variation within the layer
is proportional to the pressure at the bottom of the layer. Con-
sequently, for a layer at greater height the pressure variation is
smaller even though the temperature variation be the same.
But according to (11.21) the surface pressure variation con-
nected with the variation is given by

9po _ Po 9Pi-1
at Pi—1 9l

This equation combined with (11.23) leads back to (11.22).
This rather roundabout derivation of (11.22) shows that the
change in weight of an air column due to the temperature varia-
tion of a given layer is proportional to the pressure at the lower
boundary of this layer. Thus, the effect of a given temperature
change in a layer of given thickness upon the weight of the whole
air column is actually smaller the higher up in the atmosphere
this layer is located, as should be expected considering that less
mass is affected by the temperature variation if it occurs at a
higher altitude. But if equilibrium in the underlying air column
is to be maintained, its mass must also be changed to such an
extent that the surface pressure varies according to (11.22).

12. Computation of the Advection at Great Heights. In
reality the connection between pressure and temperature varia-
tions at different altitudes will be more complicated than was
assumed in Sec. 11. In general the variations in the underlying
layers are not of precisely the right order of magnitude to balance
the change of the weight of the layer k. Therefore the air that
is in this layer, between the heights (k — 1)A and kh, does
not remain there because the underlying air column is com-
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pressed. The vertical motions that are then taking place are
indicated schematically in Fig. 7. It is possible to observe only
the “local”’! temperature variation between the levels (k — 1)A
and kh that is in the layer ABCD before and A’B'C’'D’ after
the advection of air of different temperature. This is the tem-
perature variation that is inserted in (11.22) and (11.23). The
“individual’’! temperature variation that actually accounts
for the change in mass due to advection is the temperature
variation of the air which was at ABCD before the advection
and which is at EFGH after the

D C_kkim_D|___ | advection.
B (k1 G The misinterpretation of
A"~ i B’ (11.22) was thus obviously due
5 toa confusion between local and

E e e s .

individual temperature varia-
tion. ItfollowsthatEq.(11.2),
which was derived from the

T T 7S/ 77 4 . . .
Fia. 7.—Effect of cooling on the posi- barometric formula, 18 unsuit-

tion of a layer of air. able for giving an indication of
the effects of advection on the change of the surface pressure.
The individual pressure variation ér at a surface that consists
always of the same air particles and that moves up or down when
the weight of the overlying air changes would be a more satisfactory
expression of the total advection above this fixed level.  &r is zero
when no advection takes place or when the air is replaced by air
of the same density so that the advection would appear to be zero.
However, since in this case the advection is without effect on
the surface pressure, it is without interest and the failure of ér
to measure the advection in this case is not serious. The quan-
tity or may be called the “advection function.” It was first
discussed by Rossby,? later by Ertel and Sjan-zsi-Li.?

The complete treatment of this problem cannot be given here.
Instead a somewhat simpler problem, a typical example of the
way in which problems of this kind may be attacked,* will be
discussed here.

1 The local variation is that observed at a fixed place while the individual
variation is that observed following one and the same particle of air.

* RussBY, C.-G., Beitr. Phys. Atm., 18, 163, 1927 and 18, 240, 1928.

3 ErTEL, H., and SsaN-zs1-L1, Z. Physik, 94, 662, 1935.

¢ Rosssy, C.-G., loc. cit., 1927.
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It may be assumed that the advection takes place only at a
great height. The problem is to find the temperature and
pressure changes below this level as functions of the altitude.
When these variations are determined, it can be decided by com-
parison with the observed variations whether the assumption is
correct that the advection occurred at a great height only.

The variation of the surface pressure ép, is equal to the total
advection of mass at great heights, expressed by ér. Below the
level of advection the individual pressure change is also equal to
o,

6.-p = or
The operator & stands for a small change of the quantity with
time. The subscript ¢ refers to the individual change, and I
indicates local changes. The local pressure change is equal to
the sum of the individual pressure change and the effect of the
vertical displacement of the air

oip = 6,p + gp 6z = om + gp 02 (12.1)

where 6z is the height variation of the surface on which the
individual pressure change is measured. The condition of con-
tinuity states that the mass p dz of the layer whose thickness was
originally dz is constant, .e., that
0pdz) =0

or

8.0 8(dz)

P + dz 0
For brevity, no change of the cross section is assumed. From
the adiabatic equation (8.42),

p P
Because the adiabatic relation refers to individual particles, 6p
is here the individual pressure change ér. From geometric
considerations, d(éz) = 8(dz). Upon combining the three pre-
ceding equations, it follows that

By integration,
or ("dz

oz = — — — 12.2

? A J; p (12.2)
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where the condition
(62)2m0 = O
has been introduced.

In practice the observed temperature distribution can fre-
quently be replaced with sufficient accuracy by a mean tempera-
ture 7', when the vertical pressure distribution is to be computed.
According to (6.21), it is then

With this relation, (12.2) assumes the simpler form

RT., (po ) o
b= —— 2= —1)— 12.21
gpo \P A ( )
The local pressure change, from (12.1) and (12.2), is
_ _gp [Td
dip = 61r(1 N RTJ; p> (12.3)
If the approximate expression (12.21) is used,
_ 17T P
op = br[l X (1 p())] (12.31)

The local temperature change due to advection at great heights

can be expressed by
p e dT
a1 = 8.1 — bz (12.4)
which is analogous to (12.1) for the pressure. Because according
to the adiabatic relation (8.4) the individual temperature change

is connected with the individual pressure change by

or _ on
T p
the local temperature change, upon putting o = — %’ is
T a p [‘dz
L _ . £ —
T =« > o <1 N TJ:) p) (12.5)

With the simplifying assumption leading to (12.21),

L1 — 2 BIn _£_>]



ATMOSPHERIC STATICS 33

With the aid of (12.2), (12.3), and (12.5) the vertical displace-
ment of a particle and the pressure and temperature variation at
a given altitude due to advection at a higher level can be com-
puted when the original pressure and temperature distribution in
the atmosphere are known. The generalization for arbitrary
polytropic changes is obvious.

Equation (12.2) or, more clearly, (12.21) shows that the alti-
tude of a particle of air decreases when mass is added and
increases when air is taken away at great heights, the changes
in height being greater at greater elevations. The local pressure
change is largest at the earth’s surface where it is, of course, equal
to the total advection and decreases with altitude, as is seen from
(12.3) and (12.31).

Rossby! has given an example that shows very clearly advec-
tion at great heights over Trappes (France) on Apr. 11 and 13,
1912. The results of his analysis are reproduced in the following
table. The first five columns contain the height, the pressure

Pressure Tempera-
Height, U0 L ture, deg. 3ip, aT, — 8z, .,
mb, Apr. .
km 11,1912 abs, Apr. mb deg C m mb
’ 11, 1912
017 990 278 0 +19 - 56 0 +19
1 894 274 1 +15 - 26 10 16
2 788 268.8 +13 - 01 24 16
3 693 262.2 +12 + 45 39 16
4 605 259.6 +11 + 0.7 57 15
5 533 253.9 +11 + 05 77 16
6 465 246.3 + 9 + 0.7 100 16
7 404 239.9 + 8 + 0.9 127 15
8 349 233 5 + 8 + 0.4 157 16
9 301 225.7 + 7 + 01 193 15
10 257 217 5 + 5 + 3 4 234 13
11 220 208 9 + 7 +11.7 282 19
12 187 206.7 + 7 +13 9 338 19

and temperature observed at this height on the first day, and
the change of pressure and temperature at these heights from -
eleventh to the thirteenth. The pressure ° -3 at al’
whereas the temperature falls only in the )

! RossBy, C.-G., loc. cit., 1927.
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only this layer can contribute directly to the increase of the sur-
face pressure. In the upper troposphere the temperature varia-
tion is very small and positive; above 10 km the temperature
has increased considerably. It may therefore be expected
already from the observed data that the advection has mainly
taken place at great altitudes. In order to show that this is the
case, or has been computed from (12.3). If ér were variable, it
would show where advection has occurred. Actually, it has
approximately the same value of 16 mb at all heights for
which observations are available. The pressures observed
during the ascent are given only in whole millimeters of mercury
so that for this reason alone errors of 1 mb are possible in
8:p. Thus, the great increase of the surface pressure appears to
be mainly due to advection in the stratosphere, whereas the
surface layers up to 2 km contribute slightly, owing to the advec-
tion of a cold air mass. The variation of the height of an indi-
vidual particle of air is more than 300 m at 12 km, the highest
point for which observations are available. Because mass has
been added to the air column, the height variation is negative;
each layer of air has been pressed down by the advection.
Rossby has also computed the local temperature change from
(12.5). The agreement with the observed changes is, however,
not very good. This may be due to advection in the lower layer
which is large enough to prevent agreement between observed
and computed temperature changes though it is not large enough
to have a noticeable effect on the pressure variation.

The considerations leading to (12.3) have been generalized by
Rossby! and Ertel and Sjan-zsi-Li? to allow for advection in the
lower part of the air column. Ertel and Li have shown that the
formula (12.3) holds also in this more general case.

In the preceding discussion the possible effects of a change of
the cross section are neglected. Van Mieghem?® has shown that
these changes are also quite important and have to be taken into
account in a more complete analysis.

1 RossBy, C.-G., loc. cit., 1928.
" * FrreL, H., and Ssan-zsi-Li, loc. cit., 1935. See also H. ErTBL, “ Metho-
" ‘ohleme d- lynamischen Meteorologie,” p. 80, Verlag J. Springer,

". roy. de Belg. bull. class. sct., 6th ser., 26, 243,
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and hence
dp _de
i (13.2)
Therefore,
dq = ¢, dr — AET 4 (13.3)

The same relation for w gm! of unsaturated water vapor is

wdq = Wepw dT — AR wTil»e
My e
Here ¢y = 0.466, the specific heat at constant pressure of
water vapor, and m/m,, is the ratio of the molecular weights of
dry air and water vapor.
According to (13.2),
dp

l7Al m /Al
wdqg = wep dT' — AR;n_.: w7 N (13.4)
By addition of (13.3) and (13.4),

(1 + w) dg = (¢, + wop) dT' — AR (1 + w) T %’?

We may introduce
s o 1T (/oo 1A 195w
c,, A L4 (m/my)w 1 + 1.609w (13.41)
as a specific heat at constant pressure for unsaturated moist
air. .Because w s small, of the order of magnitude 10-2, ¢,*
differs very little from ¢, For adiabatic changes, because

dq =0, AR

T (p o*
qvo - <p0> (13.5)

This equation is for all practical purposes identical with the
cquation for adiabatic changes of dry air (8.41).

In dealing with moist air, it is frequently advantageous to
use the partial potential temperature? which is defined as the
temperature which the air would assume if it were brought
adiabatically from the actual partial pressure of dry air p — ¢
to the standard pressure P = 1000 mb. According to (13.5)

1 This is obviously the mixing ratio of the total amount of (1 + w) gm of
moist air.
2 RossBY, C.-G., Mass. Inst. Tech. Met. Papers, 1, 3, 1932.
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AR
P \o*
6;=T (p — e) (13.6)
Upon comparing this equation with the definition for the potential
temperature (9.1) and disregarding the slight difference between
¢,* and ¢, it follows from (5.8) that

AR
02 = 6(1 + 1.609w) " (13.7)

14. Minimum Inversion. Because the density of water vapor
is less than that of dry air, moist air is lighter than dry air at
the same temperature and pressure. At a boundary surface
where a drier air mass lies over a moister one a certain minimum
inversion is therefore required in order to maintain the purely
mechanical equilibrium, as shown by Margules.!

Let p be the density of the air below and p 4+ Ap the density
of the air above the moisture discontinuity. The condition of
mechanical equilibrium requires that the density decrease with
the altitude. The stability condition is then expressed by

Ap =0

Because the pressure on both sides of the < “~ce of discontinuity
must be the same, the virtual temperature . st increase,

AT* >0
Upon substituting from (5.3), it follows that
AT > - 931 A¢ (14.1)

[/ 1 — 0.379(e/p)

If this condition were not fulfilled, the air above the discontinuity
would be heavier than that below and the stratification would be
unstable. When the water vapor decrcases upward, as, for
instance, on cloud surfaces, the temperature must increase.
The inversion necessary to maintain stability in the case of a
sudden decrease of the water-vapor content is called the ‘“‘mini-
mum inversion.”

If the water vapor increases, the temperature may even
decrease suddenly without offsetting the stable stratification.
The actual temperature differences that result from (13.6) are,

1 MaracuLEs, M., Met. Z., Hann-vol., 243, 1906,
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of course, quite small. With a pressure of 800 mb, a temperature
of 280° abs, and a relative humidity of 100 per cent below and
50 per cent above the inversion, Ae is 5 mb because the maximum
vapor pressure at 280° abs is 10 mb. Therefore, AT = 0.66°C.
The practical significance of such minimum inversions which
ensure the stability of moisture discontinuities is therefore
very slight.

Similar considerations apply also to the case where a gradual
change of temperature and humidity in the vertical direction
is taking place. It can be shown! that in an unsaturated moist
air column the lapse rate of the virtual temperature, instead of
the lapse rate of the temperature, must be lower than the adia-
batic in order to have a stable stratification.

16. Variation of the Dew Point with the Altitude. Con-
densation Level. It was shown in Sec. 9 that air which ascends
adiabatically is cooled, for it does work expanding against the
pressure of the surrounding atmosphere. Therefore, when
unsaturated moist air ascends sufficiently high, it may finally
reach a temperature at which the water vapor contained in the
air represents the saturation value. The height at which satura-
tion is reached is called the ‘“condensation level.” Actually,
the condensation does not necessarily begin as soon as saturation
is reached; supersaturation may occur (see Sec. 16). Neverthe-
less, the condensation level and the corresponding condensation
pressure give at least an idea as to the lowest possible height
at which condensation and therefore cloud formation may be
expected when air ascends adiabatically.

To obtain a working formula for the condensation level, it
will be assumed that a quantum of air ascends adiabatically
without mixing with its surroundings so that its potential
temperature and its mixing ratio remain unchanged. Before
the air is lifted, its dew point 7 is lower than its temperature 7',
for the air is at first unsaturated. During the ascent, not
only the temperature, but also the dew point decreases. The
variation of the dew point with altitude may be obtained from
(5.5) which gives the relation between maximum water-vapor
pressure and temperature. In this formula the maximum vapor
pressure e, may be replaced by the actual vapor pressure e

! BrunT, D., “Physical and Dynamical Meteorology,” 2d ed., p. 44,
Cambridge University Press, London, 1939.
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and the temperature by the dew point 7 so that, by logarithmic
differentiation and using the constants for e. over water,

de _ 7.5In10-237.3dr
e (237.3 + 7)2
Because the mixing ratio remains constant during an adiabatic

process as long as the air is unsaturated it follows from (13.2)
that

de _ dp
€ P
Combining this with the hydrostatic equation!
%’ = — R%, dz
the variation of the dew point in a rising air mass may be written
dr ¢ 1 (237.3 + 7)?

(15.1)

dz_ R 75In10-237.3 (273 + 0

when dew point and temperature are expressed in degrees
centigrade. If sccond and higher vowers of 7/237.3 and t/273
are neglected, (15.1) becomes

dr s 2r
—- 5= 1.71 X 10 (1 + 5373 2-37) (15.11)
Thus the dew point of an ascending quantum of air decreases
much more slowly than its temperature.

At a height z (below the condensation level) the dew point is

therefore approximately

T=T0+(z—‘rz‘> 2
dr

where 7o is the dew point at the surface and ((—1;> the mean

change of the dew point up to the level z. The variation of
the temperature of the ascending air mass with height is approxi-
mately
t =1t — Iz
where T is the adiabatic lapse rate. At the height of the con-
densation level k.,
Te = e

1 T is here the temperature not of the ascending but of the surrounding air.
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This gives for A,

_ to — 7o
he = v (@ /da),, (15.2)
or approximately
he = 121(ty — 79) in meters (15.21)

In Sec. 18, it will be shown how the pressure and temperature
at the condensation level may be detcrmined graphically.
Nevertheless the formula given here will be useful for estimates
of the height at which condensation may occur.

The validity of the approximation formula (15.21) depends
very much on the original assumption that no mixing between
the ascending and the surrounding air takes place so that its
humidity mixing ratio does not change.! This obviously can
not be strictly true. In order to allow for changes of the humid-
ity mixing ratio due to mixing with the surrounding air, it has
been suggested? that not the mixing ratio at the surface but a
mean value for the whole layer through which the air ascends
should be considered, in order to allow for a decrease of the
mixing ratio in the ascending air due to turbulent mass exchange
with the environment.

16. The Role of the Condensation Nuclei. Atmospheric
condensation takes place mostly in the form of water droplets;
only near the ground, condensation on surfaces (plants, rocks,
buildings, ecte.) may sometimes occur. Owing to the surface
tension the maximum vapor pressure over curved surfaces
is larger than over plane water surfaces. Therefore, when
saturation has just been attained with respect to a planc water
surface the vapor pressure is still smaller than the satura-
tion vapor pressure over a curved surface, and a small water
droplet brought into such an atmosphere would evaporate. If
¢’ is the water-vapor pressure over the curved surface, e that
over the plane surface, u the constant of capillarity, m, the
molccular weight of water vapor, ¢ the density of liquid water,
T the temperature, and r the radius of the spherical droplet,
it can be shown? that

1 PETTERSSEN, S., J. Aeronaut. Sci., 3, 305, 1936; ‘“ Weather Analysis and
Forecasting,” p. 54, McGraw-Hill Book Company, Inc., New York, 1940.

2 Woon, F. B., Mass. Inst. Tech., Met. course, Prof. notes, 10, 1937.

3 PresTON, T., “Theory of Heat,” 3d ed., p. 392, Macmillan & Company,
Ltd., London, 1919.
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L ] 7

R ¢ 2u
;n—wTaln—E-e e+ - (16.1)

When ¢'/e is not very different from unity, (16.1) may be written
in the simpler form which was originally derived by W. Thomson!

e — 2um,

The capillarity constant u of water in contact with air depends
on the temperature T as shown by the following table:2

T,degabs....................... 268 273 278 283
podynes/em............ ... ... 76.4 75.6 74.8 74.2

These values hold for a plane surface. The possible variation
of u due to the curvature of the liquid surface will be neglected.
As long as the radius of the drop is large, ¢’ is not very different
from e. But it increases considerably when the size of the
droplet decreases. The ratio 100 X (¢'/e) given in the following
table represents the supersaturation with respect to a plane
water surface when the water vapor is in equilibrium with respect
to water droplets. The temperature is assumed to be 273° abs.

Radius of the drop, cm..... 1072 | 1074 | 1072} 107¢| 5 X |3 X | 107
1077 | 10~7
Supersaturation

100 X (e’/e), per cent....[100.001/100.12|101.2/112.7|127.0[148.9|330.4

This table shows that the atmospheric condensation would
require enormous supersaturation if there were no other forces
counteracting the effect of the surface tension. Actually,
hygroscopic particles are always present in the atmosphere as
has been shown by H. Koehler,® who found that salts are dissolved
in the atmospheric condensation products. A large part of
the nuclei, as, for instance, those consisting of sodium chloride,
may originate by evaporation of ocean spray. Another impor-

1 THomsoN, W., Phil. Mag., 42 (4), 448, 1871.

3 “Smithsonian Physical Tables,” 8th ed., Table 193, the Smithsonian
Institution, Washington, D. C., 1933.

3 KopHLER, H., Medd. Stat. Met. Hydr. Anst., 2, 5, 1925; Geofys. Pub., 2,
1, 6, 1921; Gerl. Beitr. Geophys., 291, 68, 1931. For a complete discussion of
the present knowledge about nuclei see H. Landsberg, ‘‘Ergebn. d. kosm.
Physik,” Vol. 3, Akademische Verlagsgesellschaft, Leipzig, 1938; and M. G.
Bennett, Quart. J. Roy. Met. Soc., 60, 3, 1934,
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tant source of nuclei, especially those containing sulphuric
products, is combustion due to industries. The normal sizes
of the nuclei may lie between 7 X 10~7 and 10~% cm. The
number of nuclei varies, according to obscrvations, between the
orders of magnitude 10° and 10® per cubic centimeter. But
only between 10% and 10* nuclei per cubic centimeter may be
effective in the formation of clouds because the supersaturation
in the atmosphere is much smaller than in the nuclei counters
so that only on the largest and most hygroscopic nuclei are
droplets formed.!

When condensation occurs on such hygroscopic particles, the
droplets that are formed represent solutions of the hygroscopic
substance in water. The water-vapor pressure ¢’ over a solution
is lower than the pressure e over pure water. For a solution of
low concentration containing m’ molecules of the solute and m
molecules of water, it can be shown that

n — m’

e —e= —Cm (162)
Equation (16.2) shows that the equilibrium pressure becomes
smaller the more concentrated the solution. For high con-
centrations, (16.2) no longer holds, but the saturation vapor
pressure continues to decrease with increasing concentration.

Thus condensation nuclei can exist in the atmosphere in the
form of watery solutions of high concentration, for some water
vapor is always present in the atmosphere. When the atmos-
pheric water-vapor pressure increases over the saturation value
with respect to the watery nucleus, more condensation takes
place; the droplet grows even if the relative humidity of the air
is less than 100 per cent with respect to a plane water surface.

Small droplets containing a sufficient amount of the solute
may therefore originate at relative humidities of less than
100 per cent. This has been demonstrated by Pick,2 who
showed that fogs frequently occur at relative humidities of less
than 100 per cent. At first the droplets must remain very small,
for only then can the depression of the vapor pressure due to the
concentration of the solution balance the effect of the surface
tension. For every nucleus, there exists a critical relative
humidity of the air. When this value is reached, the drop can

! FINDEISEN, W., Met. Z., 66, 121, 1938.
? Pick, W. H., Quart. J. Roy. Met. Soc., 67, 238, 1926.
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continue to grow without further increase of the relative humidity
because the effects of the surface tension and of the solute on
the saturation pressure balance each other. When the critical
value of the relative humidity is surpassed, further condensation
depends on the amount of water vapor released by the atmosphere
when the air is cooled. The drops will finally grow by coagula-
tion. Whether electric charges of the drops are important for
coagulation, as suggested by Schmauss and Wigand,! appears
doubtful. Coagulation occurs mainly between drops of different
size, for such drops fall with different speed and move, therefore,
relative to cach other. If the cloud elements were all of the same
size, only turbulent motion could be effective in bringing about
coagulation,? but it appears that the magnitude of the drops
in a cloud varies widely.? )

The observations of rain from clouds, however, seem to
indicate that coagulation cannot produce drops of the size
measured in rain. Bergeron* has thereforec suggested the
hypothesis that rain is formed when ice crystals fall through
clouds of small water droplets. Because the vapor pressure
over ice is lower than over liquid water (sce Table I, Appendix),
evaporated water condenses on the ice crystals. The ice con-
tinues to fall and melts in falling, so that it arrives as rain at the
earth’s surface. This hypothesis is supported by investigations
of Peppler® and Findeisen.® These authors found that rain,
especially rain with large drops, originates as ice condensation.

Because the presence of the condensation nuclei lowers the
freezing point of the water considerably, the formation of ice
crystals cannot take place on condensation nuclei. Separate
sublimation nuclei must be present in the atmosphere. The
nature of these sublimation nuclei is not yet known. But it
seems obvious that they must be solid particles. The order of
magnitude of their linear dimension has been estimated to
10-¢ cm by Findeisen.® Their number per unit volume appears

1ScuMAUss, A., and Wicanp, A., “Die Atmosphire als Kolloid,” F.
Vieweg & Sohn, Braunschweig, 1929.

1 ARENBERG, D., Bull. Am. Met. Soc., 20, 444, 1939.

3 FINDEISEN, loc. cit. Houanrton, H. G., Papers in Physical Oceanography
and Meteorology, Mass. Inst. Tech. and Woods Hole Ocean. Inst., 6, 4, 1938.

¢ BERGERON, T., Un. int. géod. géophys., mét. assoc., 156, 1933.

® PEPPLER, W., Beitr. Phys. Atm., 28, 275, 1936.

¢ FINDEISEN, loc. cit.



CONDENSATION 45

to be considerably smaller than the number of condensation
nuclei.

The structure of the snow particles depends largely on the
state of the atmospheric layers through which they have passed.
Findecisen! has discussed how far it may be possible to draw from
the form of the snow conclusions concerning the structure of
the atmosphere. In particular, when ice crystals fall through
clouds of supercooled water droplets, they coagulate with these
droplets and change gradually into soft hail. It is therefore
possible to deduce from the appearance of such snow particles
the presence of supercooled water in the atmosphere, which
makes icing on aircraft likely.

17. Adiabatic Changes in the Saturated State. Owing to the
presence of hygroscopic nuclei, condensation does not begin sud-
denly when the air has ascended to the ‘“condensation level”
and attained a relative humidity of 100 per cent with respect
to a plane surface of purc water. The actual start of the con-
densation depends on the physical and chemical properties of
the nuclei. In order to obtain droplets of appreciable size,
however, a sufficient amount of water vapor must be released
by the atmosphere. This is possible only when the relative
humidity is close to 100 per cent. Moreover, when the drops
reach an appreciable size, the surface tension is very small and
the concentration of the solute very low, so that the influence of
these two factors on the vapor pressure becomes negligible. For
most purposes, condensation may therefore be assumed to begin
at a relative humidity of 100 per cent.

The main effect of condensation on the adiabatic changes
consists in a decrease of the rate of cooling of the air, for the
cooling due to adiabatic expansion against the outer pressure
is now partly compensated by the release of the latent heat of
condensation.

For the theoretical discussion, it is necessary to assume either
that the condensed water remains in the air and is carried along
by the ascending air? or that all condensed water falls to the
ground as precipitation.* When the condensed water falls

1 FinpEiseEN, W., Met. Z., 66, 429, 1939.

2 Herrz, H., Met. Z., 1, 421, 1884.

3voN Bezoup, W., Sitzb.-Ber. Akad. Wiss. Berlin, p. 485, 1888. NEu-
Ho¥F, O., Abhandl. Preuss. Met. Inst., 1, 6, 1901. FJeLDsTAD, J. E., Geofys.
Pub., 8, 13, 1925.
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out completely, the temperature changes that the air undergoes
are evidently not reversible, for the air when descending again
will be heated according to expression (13.5) for unsaturated
moist air, 7.e., approximately at the dry-adiabatic rate. This
process is called ‘pseudo-adiabatic.”” On the other hand, when
the condensed water is retained in the air, a fraction of the
temperature increase in the descending air will be used to
evaporate the liquid water again during the descent. In this
case, which is called “saturated adiabatic’’ or “‘moist-adiabatic,”
the rate of the temperature increase during the descent is equal
to the rate of the temperature decrease during the ascent. The
process is reversible.

In the following derivation of the thermodynamic relations,
which describe the change of moist air, it will be assumed that
the condensation products are retained in the air so that the
variations are saturated adiabatic.

It will first be assumed that all processes take place at tem-
peratures above the freezing point. This is frequently referred
to as the rain stage.

According to the assumption, the total water content % per
gram of air is constant. It consists of an amount of water
vapor w and of liquid water w;;

W = w + wy
From the first law of thermodynamics for dry air, it follows that

dga = ¢y dT — ART 42—

p—e
Let the heat added to the total water content @ be dq,. This
heat is used in three ways.

1. The amount c(®w — w) dT increases the temperature of the
liquid water. (The specific heat of the water ¢ may be regarded,
with sufficient accuracy, as constant and equal to unity.)

2. The amount L dw is used for the evaporation of liquid
water (L = 595 — 0.5:°C, the heat of condensation).

3. The amount c,wdT increases the temperature of the
saturated water vapor (c, is the specific heat of saturated water
vapor).

Thus, if the change of the volume of the liquid water is

neglected,
dqw = ¢c(b — w) dT + L dw + caw dT



CONDENSATION 47

To find the specific heat of saturated water vapor c,, the fact may
be used that the entropy is a total differential, as shown in Sec. 22.
The entropy change of the water vapor and liquid is dg,,/T. This
expression is a total differential if

9 c(w — w) + cw ] (L)

w T YA

. d (L
—et+1 (T> az.1)

which gives the specific heat of saturated water vapor. Thus

Therefore,

dqw = cw dT + Td(L;,U>

Upon adding the expression for the change of heat of the dry air
and of the water vapor, it is found that the total change of the
heat content of the moist air
Lw —e)

dq = (¢, + cw) dT + Td( T) ART p — = (17.2)
For adiabatic changes, z.e., when dg = 0, this equation may be
integrated and becomes—when the index 0 indicates the initial
stage—

P=¢ _ iDL (Lw_ Eﬁ)
, In P m' In T + AR( T, (17.3)
ere
m = S?—AJERC—’” ~ 3.47(1 + 4.180) (17.4)

Equation (17.3) may be written in different forms. If the pres-
sure is eliminated by

w = 0.621 —2 (5.8)
p—e
it is transformed into
1 Lw Lowo _
ln——-ln——i—mlnTo-{—AR( —T—o—)—O (17.5)

and if w is eliminated, it changes into

p—e _0.621[ Le Lo ]
Po — €0 AR |T(p —e) To(po — eo)

'L -
—m'Ing =0 (17.6)

In
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It should be noted that in Eqs. (17.3), (17.5), and (17.6) w is a
function of pressure and temperature only, for saturation prevails
50 that ¢ is the saturation vapor pressure and therefore a function
of the temperature only.

When the adiabatie, or, to be more accurate, the moist-
adiabatic, ascent of the air continues sufficiently long, the air will
eventually reach the temperature of 0°C. It is known today that
liquid water exists quite frequently in the supercooled state in the
atmosphere. According to Findeisen,! water clouds are more
frequent than ice clouds down to a few degrees below freezing.
Below about —10°C, ice clouds become more numerous. Water
droplets have been observed down to temperatures as low as
—40°C.

Before it was known that supercooling is a rather regular
occurrence in the atmosphere, the treatment of adiabatically
ascending air reaching the freezing point was based on the
assumption that all liquid water begins to freeze and that the
temperature remains constant when the air ascends farther owing
to the released heat of fusion until all the liquid water has been
changed over in the solid state. The name hail stage was given
to this form of the adiabatic changes. In practice the hail stage
is today mostly disregarded, for the phenomenon of supercooling
shows that it frequently does not take place. Moreover, when
the changes during the ascent are pseudo-adiabatic, ¢.e, when all
the condensed water falls out, the ascending air can obviously
not pass through the hail stage.

Below the freezing point the cooling of the moist air produces
snow crystals during the adiabatic ascent if supercooling does not
oceur. Therefore, the stage is called the snow stage.

The equations for the snow stage are analogous to the equations
for the rain stage except that, in all considerations of the rain
stage, ice now takes over the role of the liquid water. Conse-
quently the constants for the water have now to be replaced
by the corresponding constants for ice. Because the specific
heat of ice ¢, = 0.49 at 0°C, it follows that the constant

¢p + a0

m' = 220~ 3.47(1 + 2.050) (17.7)

will replace m’, which appeared in Eqgs. (17.3), (17.5), and (17.6).
! FINDEISEN, W., Met. Z., 66, 121, 1938.
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Instead of the heat of condensation L the heat of sublimation
L, appears. According to Fjeldstad,!

L, = 677 cal/gm

and this value may be regarded as constant. Thus when the
water-vapor content of the air is expressed by the vapor pressure
the equation for adiabatic changes in the snow stage is given
by the equation

ln(p-e)_o.ﬁm(;,g 1 Le 1 )—m"an:o
Po — €o AR Tp—e T Po — €¢ T
(17.71)

or when the water-vapor content is expressed by the mixing
ratio w,

P=C _ i Loy Lo (w0 o
In mﬂ =m" In 7,0 + AR <,1, ‘T'o) (1772)
18. The Application of the Equations for Saturated Adiabatic
Changes to Atmospheric Processes. Pseudo-adiabatic Chart.
In applying the results of Sec. 17 to the atmosphere, it is necessary
to keep in mind the assumptions on which the derivation of the
equations was based. The assumption that the changes are
adiabatic, and its limitations, were discussed in Sec. 8.

It was furthermore assumed that all the water vapor which is
transformed into the liquid or the solid state is retained in the air.
This is obviously not always the case, for precipitation does occur
in the atmosphere. The assumption that all condensation
products are retained is not any more justificd than the other
extreme that they are expelled completely, 7.e., that the changes
arc pseudo-adiabatic. The first alternative was preferred for
reasons of mathematical expediency. When all the water is
retained, the total constant amount of water % appears in (17.2)
whereas when the changes are supposed to be pseudo-adiabatic
@ has to be replaced by w, the variable mixing ratio of the water
vapor. In practice, the difference between the pseudo-adiabatic
and the saturated-adiabatic ascent is, however, negligible at
temperatures above freezing; for @ as well as w is small. Only
when the freezing temperature is reached does the difference
become noticeable, for the air does not go through the hail stage

1 FyeLpsTAD, J. E., Geofys. Pub., 8, 11, 1925.
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when its changes are pseudo-adiabatic but passes directly from
the rain stage to the snow stage. Furthermore, when the ascent
is pseudo-adiabatic, any subsequent descent will follow the dry
adiabatic for all the condensed water is being expelled during the
ascent so that the air becomes unsaturated as soon as it begins to
descend.

The actual computation of the simultaneous changes of pres-
sure, temperature, and moisture content are greatly facilitated
by the use of thermodynamic charts. A simple thermodynamic
chart which permits one at least to find the temperature varia-
tions of dry or unsaturated moist air undergoing adiabatic
pressure changes has already been described in Sec. 9. The
abscissa of this chart is the temperature and the ordinate the
logarithm of the pressure or its 0.288th power.!

With the aid of the relations developed in Sec. 17, lines can
be constructed that give the simultaneous values of pressure
and temperature of ascending saturated air. These lines are
called “saturated adiabats” or ‘pseudo-adiabats’; for the
difference between the two types of changes is negligible, as
pointed out previously. The resulting chart may be referred to
as a ““saturated-adiabatic’’ or a ‘‘ pseudo-adiabatic’’ chart.

The first saturated-adiabatic chart has been constructed by
Hertz.2 It also takes into account the hail stage whose repre-
sentation has been omitted on the charts now in use for the
reasons stated above (page 48). Because the hail stage is
omitted on this chart, the designation ‘pseudo-adiabatic” is
preferable. Figure 8 shows a pseudo-adiabatic chart. The
abscissas are the temperatures in degrees centigrade and the
ordinates the 0.288th powers of the pressures in millibars.
The sloping straight lines are the dry adiabats computed in the
manner explained in Sec. 9.

For the construction of the saturated adiabats, (17.6) can be
used at temperatures above the freezing point. For each moist
adiabat the initial value of p and T may be taken arbitrarily.
The saturation pressure ¢ and the heat of condensation L are
determined by T. Therefore, one value of T belongs to every
given value of p. A mean value may be assumed for w, for

1 Strictly speaking the chart with the coordinate p°*38 ghould not be

called a thermodynamic chart (see p. 81).
! HerTz, loc. cit.
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it has little effect on the size of m owing to its smallness. In view
of the slight difference between saturated- and pseudo-adiabatic
changes the curves constructed with the aid of (17.6) may also
be regarded as pseudo-adiabats. Below the freezing point the
computation of the saturated adiabats may be continued with
the aid either of the same equation (17.6), when it is assumed
that supercooling takes place, or of equation (17.9). The prac-
tical difference arising from the use of these two assumptions is

negligible.
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The saturated adiabats computed in this manner are drawn as
broken curves in Fig. 8. They are sloping more steeply than the
dry adiabats, a fact indicating that the adiabatic temperature
changes due to pressure changes are smaller in the saturated
than in the unsaturated stage. This condition is, of course,
caused by the heat of condensation which compensates partly
for the temperature change due to the adiabatic expansion or
contraction. The compensation is larger the greater the avail-
able amount of heat of condensation. Consequently, the
saturated adiabats are steeper for high temperatures and pres-
sures where the saturation mixing ratio is larger than for lower
temperatures. For very low temperatures where the mixing
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ratio is practically negligible the saturated adiabats are prac-
tically parallel to the dry adiabats.

For many computations, it is desirable to have on such a
chart, also, lines representing the atmospheric moisture content
for a given pressure and temperature when saturation prevails.
On the chart under discussion the lines of constant saturation
mixing ratio have been plotted for this purpose (full curves;
steeper than the dry adiabats). These lines are constructed by
means of the equation

e

p—e€

w = 0.621

(5.8)

Because a state of saturation is assumed, e is the saturation pres-
sure of water vapor which depends on the temperature only, so
that w is only a function of p and 7. Below the freezing point,
the saturation vapor pressure cither over water or over ice may be
chosen; for, quite frequently, water occurs in supercooled form
in the atmosphere, also.! The choice is not important; for at
first the difference between the two vapor pressures is quite
small, and at lower temperatures w itself becomes insignificant.
In Fig. 8 the saturation pressure over water has been used. The
figures give the mixing ratio in grams of water vapor per kilogram
of dry air. For a temperature of 12°C and a pressure of 980 mb,
for example, the saturation mixing ratio is 9 gm of water vapor
per kilogram of dry air. When the relative humidity is not
100 per cent, the mixing ratio is obtained by multiplication of the
saturation mixing ratio with the relative humidity. This,
though not strictly correct, is sufficiently accurate; for e < p.
Thus the mixing ratio of air whose pressure, temperature, and
relative humidity are given can easily be obtained from the chart.

The numerous practical uses of the pseudo-adiabatic charts
can be explained best by an example. Consider a unit of air
at a pressure of 980 mb, a temperature of 12°C, and a relative
humidity of 70 per cent. The saturation mixing ratio of this air
is 9 gm/kg, and its actual mixing ratio 6.3 gm/kg. Its dew
point 7 is the temperature to which it would have to be cooled at
constant pressure so that its mixing ratio 6.3 gm/kg becomes the
saturation mixing ratio. Upon following the isobar 980 mb to

1 The effects of surface tension and impurities of the water on the satura-
tion pressure are not taken into account.
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the saturation mixing ratio 6.3 gm/kg, it is found that r = 6.6°C.
Next, the pressure and temperature at the condensation level
may be determined where the air becomes saturated. Because
the air is in the unsaturated stage, it follows the dry adiabat
through the starting point and its mixing ratio remains constant
up to the condensation level, according to Sec. 13. Saturation
occurs when the mixing ratio becomes the saturation mixing
ratio owing to the adiabatic temperaturc dccrease. Conse-
quently, the condensation point is situated at the intersection
of the dry adiabat through the initial point with the saturation
mixing-ratio line representing the actual mixing ratio of the air.
In the example its pressure is 904 mb, and its temperature
5.6°C. These are the condensation pressure and temperature.
It may be noted that the dew point remains always on the same
saturation mixing-ratio line during the unsaturated-adiabatic
ascent. Therefore, these lines are also called ““dew-point lines.”
When the air continues its adiabatic ascent, it will now follow the
saturated adiabat through the condensation point. The tem-
perature 0°C is reached at a pressure of 805 mb. Completely
dry air of the same initial pressurc and temperature would have
been cooled to the freezing point already at a pressurc of 842 mb.
Suppose the air ascends to a height where the pressure is 700 mb.
Its temperature would here be —7°C. The saturation mixing
ratio is here 3.2 gm/kg of dry air as compared with the original
6.3 gm/kg. The surplus of 3.1 gm/kg cither is present as liquid
water and ice (snow) in the atmosphere or has fallen out in part
or completely as precipitation. In this manner the chart affords
also a rough estimate of the possible precipitation intensity.
When all the liquid water and ice (snow) is retained, the air
will undergo the same states in reverse order when it is brought
down to its original pressure. When, on the other hand, all
liquid and ice are precipitated, ¢.e., when the process is pseudo-
adiabatic, the air becomes immediately unsaturated when
descending and follows the dry adiabat through the point at
which the descent started. In the example chosen here, the air
would attain a temperature of 20.1°C if brought back to its
original pressure of 980 mb provided that it has discharged all
its condensation and sublimation products. Its relative humidity
is now only about 21 per cent. The temperature of the air has
risen during the ascent and subsequent descent from 12° to
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20.1°C. This temperature rise is due to the latent heat of
condensation that has been released during the ascent. It may
also happen that the air loses part of its water and snow content
during the ascent so that the descent is first saturated adiabatic
down to a certain pressure and then dry adiabatic.

The best known examples for pseudo-adiabatic changes are
furnished by the foehn and Chinook winds of mountainous
regions, when the air ascends over a mountain range and descends
on the other side.! During the ascent the air cools at the
saturated-adiabatic rate and loses at least a great part of its
water or snow so that on its descent it follows a dry adiabat
during the whole or the latter part of the descent. The foehn
appears therefore as a warm dry wind.

19. Saturated-adiabatic Lapse Rate. The differential equa-
tion for dry-adiabatic changes (8.4) led to the expression (9.2)
for the rate of the temperature change with the altitude of
ascending or descending dry air and to the concept of the dry-
adiabatic lapse rate. In a similar manner the equations of
Sec. 17 may be used to find the rate of the temperature change
with altitude in ascending saturated air which leads to the
saturated-adiabatic lapse rate.

The expression for the saturated-adiabatic lapse rate can,
however, be derived more directly, although the derivation is
not quite rigorous. According to (8.2),

dq=c,,dT—i%”’1dp

for dry or unsaturated moist air. When condensation begins,
let the decrease of the mixing ratio be dw, so that the heat
—L dw is released and increases the temperature of the air. The
minus sign indicates that heat is released when the mixing ratio
decreases. When the presence of water vapor and liquid water
is neglected (except for its production of the latent heat of con-
densation), it follows that
ART

—Ldw = ¢, dT — > dp (19.1)
Equation (19.1) may be compared with (17.2) to ascertain the
simplifications involved. These simplifications are permissible

! LaMMERT, L., Arb. Geophys. Inst. Leipzig, 2(7), 261, 1920. Krick, 1. P.,
Gerl. Beitr. Geophys., 89, 399, 1933.
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here; for only small changes of p, T', and w are considered, whereas
in Sec. 17 an integration was to be performed.
If the pressure variations are due to vertical motions,

5’pl’ - —gdz 6.1)
According to (5.82),

dw _de _dp (5.5

w e ) )

Upon substituting in (19.1) and rearranging, it follows that

e L
A + 0.621 = 555
I"=_d_7.' =g———+————£—lﬂ1 (19.2)
dz +0.621 2% '
cp 621 97

In (6.1) the density of the environment appears. In sub-
stituting (6.1) in (19.1), it has been assumed that the temperature
of the ascending air is not very different from the temperature
of the environment so that both temperatures may be regarded
as equal.

If the snow stage is considered, L in (19.2) stands for the heat
of sublimation.

The expression I' is called the ‘saturated-adiabatic’ or
“moist-adiabatic lapse rate.” Its numerical value depends on
the temperature and pressure. The term de/dT may be obtained
by differentiating (5.5) or using Table I of the Appendix for the
saturation vapor pressure. The following table shows the
saturated-adiabatic lapse rate in degrees centigrade per 100 m for
a few temperatures and pressures:

p = 500 mb, [p = 1000 mb,

T, deg abs| 4.0 /100 m | deg C/100 m
243 0.88
263 0.61 0.74
283 . 0.51
303 - 0.36

The values of the lapse rate below freezing have been computed
for saturation with respect to ice. A graph showing the satu-
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rated-adiabatic lapse rates for different pressures and tempera-
tures has been given by Brunt.!

20. Stability with Respect to Saturated-adiabatic Changes.
Conditional Instability. The saturated-adiabatic lapse rate
plays a similar role in the concept of stability with reference to
saturated-adiabatic changes as does the dry-adiabatic lapse rate in
the case of dry-adiabatic changes. In particular, a column of
air with a lapse rate « is in stable or unstable equilibrium with
respect to saturated-adiabatic changes when o < IV or & > IV,
respectively. There is, however, a complication owing to the
moisture content of the environment. When saturated air
of the initial temperature T is lifted from 2 to z 4+ Az, its tem-
perature becomes?

T — T Az

The temperature of the surrounding air at the level z may be T,
the same as the temperature of the displaced air. The tempera-
ture of the surrounding air at z + Az is

T — aldz

where « is the lapse rate of the surrounding air. The lifted
particle will be stable if its density is larger than that of the air
surrounding it. The density depends not only on the tempera-
ture but also on the humidity. When the surrounding air is also
saturated, stability exists if

a<TI
and instability if

a>T

similar to the case of dry air considered in Sec. 9. If the sur-
rounding air is not saturated, the lifted particle of air is not
necessarily heavier, even though o may be smaller than IV and its
temperature therefore smaller than the temperature of the
surrounding air, for the moister air is lighter than the drier air
at the same pressure and temperature. It is evidently not
sufficient that @ < I'; @ must be smaller by a finite amount that

1 Brunt, D., Quart. J. Roy. Met. Soc., b9, 351, 1933; “Physical and
Dynamical Meteorology,” p. 66.

* The temperature variation of the ascending air depends slightly on the
temperature of the surrounding air, also, as was seen in Sec. 8. But this
small effect may be neglected here.
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depends on the difference in moisture content between the air
and its environment. Thus, although the saturated air will
be unstable when « > I, it is not necessarily stable when
a < T'. However, in the latter case it will at least not be very
far from stability. Therefore, the saturated-adiabatic lapse rate
can in practice be regarded with sufficient accuracy as the limit
between stable and unstable stratification.

When the temperature lapse rate of an air column is inter-
mediate between the dry- and the moist-adiabatic unsaturated
air lifted adiabatically would always be cooler than its surround-
ings and would therefore be in a stable position. Saturated air
would be warmer and, therefore, in an unstable position. This
type of equilibrium which is very common in the atmosphere is
referred to as ‘‘conditional instability.”



CHAPTER IV

FURTHER APPLICATIONS OF THERMODYNAMICS
TO THE ATMOSPHERE

21. The Energy of Thermodynamic Processes. The Carnot
Cycle. The atmosphere as a whole may be compared with a heat
engine that is maintained in motion by being heated in the
tropics and cooled in the polar zones. Similarly, the thermo-
dynamical processes occurring in many of the smaller scale
atmospheric circulations, as, for instance, monsoons or land and
P sea breezes, may be treated as the
actions of a heat engine in which
air is the working substance.

The work done by a gas serving
as the working substance in a heat
engine can be studied by means of
a so-called “indicator’”’ diagram.
The coordinates of such a diagram
are the specific volume and the pres-

Ve s ~Y sure (Fig. 9). The full curve RS in

Fra. 9.—Indicator diagram (pv Fig. 9 may represent the successive

diagram). states of the gas while it is changing

from the state represented by R to S. Because the gas expands

in the direction from R to S, it does work against the outer pres-

sure which will be counted negative; work done on the gas will be

counted positive. The amount of work done by the gas while it
expands from R to S is given by (c¢f. page 18)

— (" pdv (21.1)
Vg

It will be noted that the amount of work depends not only on the
initial and the final state but also on the path itself. If the gas
is then brought back to its original state R along the dotted line
RS, the amount of work done by the gas is

— (" pdv (21.11)
Vs
58
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The whole process that the gas ‘undergoes is called a cyclic
process. The total work done by the gas during the cyclic
process is

_ Vg _ Vp = —
" pdv j; pdv §de (21.12)

The circle through the integral on the right-hand side of this
equation indicates that the integration is to be performed along a
closed curve. When the cycle represented by this curve is com-
pleted, the gas has returned to its original state. The total
amount of work done is measured by the area bounded by the full
and broken curves RS, for the area enclosed between the full
curve RS and the abscissa appears in the first integral on the left-
hand side of (21.12) with a negative sign and in the second
integral with a positive sign. If the cyclic process is performed
in the direction assumed here, counterclockwise, the total work
done is positive (z.e., the work done by the gas is negative), for the
area under the full curve is smaller than the area under the broken
curve. The work done on the gas is larger than the work done
by the gas.

To compute the total work, or energy expended, during a
variation of the gas the thermodynamical law that is followed
during the changes of state has to be specified. One of the most
important cyclic processes in thermodynamics is the Carnot
cycle, which consists of two isotherms and two adiabats. The
heat engine performing such a Carnot cycle may have two heat
reservoirs of the temperatures 7’ and 7"/, which are so large
that their temperatures are not changed when heat is added to
or taken away from them in order to cool or warm the working
substance. The working substance is an ideal gas. It may be
contained in a cylinder one end of which is closed by a piston.
This piston can move without resistance so that no energy is lost
by friction. The changes of state of the working substance are
reversible so that every change, for instance, expansion due to
reduction of the outer pressure acting on the piston, takes place
8o slowly that the piston does not gain any kinetic energy.

The cyclic process that the gas undergoes is represented in
Fig. 10. The gas may at first be in the state characterized by
the point 1 where its temperature is 7'. The temperature of
the gas is kept constant at the temperature 7" by a suitable con-
nection with the reservoir of the temperature 7’. By reduction
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of the outer pressure, it is made to expand. Thus, the gas
does work against the outer pressure. The heat equivalent
of the work is furnished by the reservoir of the temperature 7’.
Because the change of state is isothermal, the work done by the
gas when it expands from 1 to 2 given by the expression

2
Wi =4 fl pdv = ART' an—z (21.2)
1

Because the heat ¢1; added to keep the gas at constant tempera-
ture is equal to the work done by the gas, it follows further that!

Wiz = qu2 (21.21)
Next the gas may expand adiabatically until it reaches the
P 7’ '

(. Adiabat

F1a. 10.—Carnot cycle.

temperature of the second reservoir 7/ (T" < T"). Its repre-
sentation on the indicator diagram describes thereby an adiabat
from the point 2 to 3. Consequently

g3 =0 (21.3)
and, according to the first law of thermodynamics for ideal gases
(8.1),

3

—Wu=4A j; pdv = c(T" — T") (21.31)

Now, the gas is connected with the second reservoir 7’/ and is
compressed isothermally to the specific volume v from which
the original specific volume v, can be reached by adiabatic

compression. Here
Wi = —qu (21.4)

1 The heat as well as the work added to a system will be counted positive.
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The amount of heat ¢34 is taken away from the gas and added to
the reservoir of the temperature 7.
Further,

4
Wae = _Aﬁ pdv = —ART" In>* (21.41)
3

Finally, the gas is compressed adiabatically from the volume v,
to the volume »,, whereby
ga =0 (21.5)
and )
Wi = —co(T" =T (21.51)

The substance has now been brought back to its original state.
The total amount of work done is obtained by adding (21.2),
(21.31), (21.41), and (2.51).

= —ARTIn 22 — ART" In %
V1 V3

for the contributions along the adiabats cancel each other. By
virtue of the adiabatic relation (8.43),

T, 3 A1 V4 A—1
Fe0

W = —AR(T" — T") 1;12—2 (21.6)
1

Hence,

Because 7" > 7" and vy > v, W < 0; 7.e.,, work is done by
the substance. In the indicator diagram the work is represented
by the area 1234. While the working substance remains
unchanged, a certain amount of heat g, has been taken away
from the first reservoir and the amount ¢34 has been added to
the second reservoir. From (21.2) and (21.41), it follows that
the absolute value of the heat taken away from the first reservoir
is larger than the amount added to the second, for the tempera-
ture during the first isothermal change is higher than during the
second.

The ratio of the work done by the gas to the amount of heat
deducted from the first reservoir is called the “efficiency’ 79
of the engine.

=1- > (21.7)
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22. Entropy. From the discussion of the Carnot cycle in
the preceding section, it is seen that

‘IT‘,“ + -;’—‘ =0 (22.1)
A similar relation holds for any reversible cyclic process. In
Fig. 11, such a process is represented in a p-v plane. This
cycle may be broken up into a number of Carnot cycles, as
indicated in the figure where the full curves represent the adiabats
and the broken curves the isotherms. Along the adiabats,
no heat is taken away from or added to the substance. There-
fore, all that needs to be shown is that when the subdivision is
made sufficiently small the
amount of heat added or sub-
tracted along the isotherm be-
tween two adiabats is equal to
the amount of heat added or
subtracted along the part of the
original cycle between these two
adiabats. Consider, for in-
stance, the isotherm BC and the
part AC of the original cycle,
»v If ABC is regarded as a cyclic
Fia. 11.—Entropy during a reversible process, the total work per-
cyclic process.
formed during this cycle is re-
presented by the area ABC and the heat added along AC and
BC is proportional to the length of these curves. Along the
adiabat AB, no heat is added. Therefore, the sum of the heat
added along BC and along AC must be equal to the work done
during the cycle change. This work is equal to the area of the
triangle which becomes small of higher order than the length of
the sides of the triangle when the adiabats and the isotherms are
drawn at smaller and smaller intervals. It follows that

?

gsc + gca = quantity of higher order

Consequently, when both curves are traversed in the same
direction, :
gsc = Qac + quantity of higher order

Thus, the heat added on the infinitely small line AC of the original
cycle may be replaced by the heat added on the isotherm BC.
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By repeating this reasoning for the whole cyclic process, it is
seen that the result expressed by (21.1) for the Carnot cycle can
be extended to an arbitrary reversible cycle.!

Hence,

E %?— = quantity of higher order

T is the temperature of the isotherm along which the small
amount of heat Aq has been added to the system. When the
steps between the points are made infinitely small, the summation
has to be replaced by an integration, and the difference between
the heat added along the cycle and along the isotherms vanishes.

f 9 _ o (22.2)

From (22.2), it follows that [dg/T between two given points
A, and A is independent of the path. To show this, two such
paths may be combined in a cyclic process by changing the
direction in which the changes of state take place along one of
the paths. When irreversible changes of state take place,

as shown in textbooks on thermodynamics.

The quantity qu/ T counted from an arbitrary origin is
called the ‘“entropy’’ of the system

¢ = f Ci/‘! + const (22.3)

According to Nernst’s theorem the entropy vanishes for 7' = 0,
but in meteorology it is not necessary to take this fact into
account. The importance of the entropy is due to the fact that
it is independent of the path, 7.e., of the particular law which the
change of state follows. From (22.2) it follows that d¢ is a total
differential. In Sec. 17, this fact was used to formulate the
adiabatic relation for the ascent of saturated air.

1In g similar manner, it can be shown that the expression (21.6) for the
efficiency of a heat engine performing a Carnot cycle holds for any reversible
cyclic process.
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Changes of state are called ‘‘isentropic” if d¢ = 0. They
satisfy the condition that dg¢ = 0 and are therefore always
adiabatic. The converse is not necessarily true, for isentropic
changes must also be reversible. The reversibility implies
that the variation of state is so slow that it may be considered
as a succession of equilibrium states. The so-called “adiabatic
changes’ in metcorology are really isentropic changes, for they
are assumed to be reversible, as already pointed out in Sec. 8,
where the equation for dry-adiabatic changes was derived.

If the first law of thermodynamics in the form (8.2) is sub-
stituted in (22.3), integration shows that the entropy of dry
air

6 — o =c, 1n77,— — AR 2 (22.4)
0 Do

Here ¢ is the arbitrary value of the entrbpy at the pressure p,
and 7. Shaw! has suggested that for metecorological purposes

=0
when T = 100° abs. and p = 1000 mb would be a suitable
choice.

When the definition of the potential temperature (9.1) is
introduced, (22.4) may be written

6 — ¢o=c,ln 2 (22.5)
o,

Thus the entropy of dry air is proportional to its potential
temperature. Because ¢, has the dimensions calorie per gram and
degree, Kq. (22.5) gives the entropy in caloric units. To obtain
it in mechanical units, it must be multiplied by the mechanical
equivalent of heat.

The entropy of moist air can be obtained directly from (17.2).
Division of this equation by 7' and integration show that

. ) In & 4 Lw _ Lawo
(¢__¢0)—f71_(cp+cw)lnTo+ T Ty

— ARl 2 =% (2256)
Po — €g
The moist air may be regarded as consisting of dry air and water
vapor. Hence, the entropy variation of the dry air

18uaw, N., ‘““Manual of Meteorology,” Vol. 3, p. 247, University Press,
Cambridge, 1933
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(4’ - ¢0)dry air = (¢ - ¢0)mom ar — CW In 7.,7—; -_ <I_47’Lf) —_ {J;;‘:‘:B>
(22.7)

When the moist air undergoes an isentropic process, it follows,
because the second term on the right-hand side is small, that

(¢ - ¢0)dry air = — (lez —_ —I-J;;—f-:lg) (22.71)

23. Energy Released by the Adiabatic Ascent of Air. When
a parcel of air ascends or descends, its temperature and density
are in general different from that of the surrounding air whereas
the pressures are the same,

P=rp
The variables marked with a prime refer to the ascending quan-

tum of air, the variables without a prime to the surrounding air.
For the surrounding air the hydrostatic equation holds so that

= 1 ap
0= 32 (6.1)
The air in vertical motion is not in equilibrium with the air sur-
rounding it, for its density p’ is different from the density p of the
environment. The acceleration to which the unit mass of the
air in vertical motion is subjected is given by

Upon substituting for dp/dz from (6.1) the acceleration becomes

’ ’
.op—p _ T -T
g p/ =49 T

(23.1)

When the air is moist, 7" and T are virtual temperatures; but
here the effect of the moisture content on the density may be
neglected. The work done by the unit mass' when moved a
distance dz

dw =g¢ 1’_7—_2’ dz (23.2)

1 It should be noted that we are considering now the work done by the
ascending mass as positive, not the work done on the mass as in Sec. 21.
To indicate this difference the notation W is used.
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or, according to (6.11),
dW = —AR(T" — T)dlnp (23.21)

The conversion factor A is added so that W is expressed in
thermal units.

When the air ascends through a colder environment, 77 > T;
dW >0 during ascending
motion, energy is liberated,
whereas energy is expended
when the air ascends through
a warmer environment where
T <T.

Equation (23.21) shows how

the energy necessary to lift a
parcel of air from a pressure

> level p; to another level p, may

Fia. 12.—Energy released during be represented on an adiabatic

the adiabatic ascent of dry or unsatu- chart (7-In pchart). InFig. 12,
rated air and of saturated air. ACB represents the observed
temperature distribution. When air rises from p, to p., it follows
the adiabat from A to B. At B, it is again in equilibrium. The
work done by lifting the air is

inp
v

P,

P,

—ARJ;':' (T" = T)dInp

This integral is equal to the area enclosed by the adiabat AB
and the temperature-pressure curve ACB. In the present
example the temperature 7" of the moving parcel of air is larger
than the temperature 7' of the environment except at A and B
while d In p is negative. The integral is consequently positive;
energy has been released during the ascent.

The preceding considerations may be extended to the vertical
motions of moist saturated air. Equation (23.21) would remain
unchanged, but the temperature 7" of the parcel of ascending air
would follow a moist adiabat instead of a dry adiabat as before.
In Fig. 12 an example is also shown where the air first follows
a dry adiabat from 4 to D. At D the saturation stage is reached
and the air follows now the saturation adiabat DE. The external
temperature distribution is indicated by ACBE. 1In this example
the temperature is again always higher than that of the surround-
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ing air so that energy is released. At E the temperature of the
ascending air and that of the air surrounding it become equal
again so that a new equilibrium position is reached.

The stability or instability of an atmospheric temperature
distribution and the gain or loss of energy during vertical motion
depend on the position of the pressure-temperature curve rela-
tive to the adiabat. When this curve is to the right of the adia-
bat, the atmospheric layer is in stable equilibrium and energy
must be supplied to lift air, when the ascent curve is to the left
of the adiabat, the equilibrium is unstable and energy is released
during vertical motion.

24. Equivalent Potential Temperature and Equivalent Temper-
ature. The adiabatic relation for dry air led to the definition of
the potential temperature (Sec. 9), which remains constant as
long as the changes of the air follow the dry adiabat. The use-
fulness of the potential temperature for air-mass analysis is,
however, restricted, for the potential temperature varies when
condensation takes place during the adiabatic process. But
with the aid of the relations developed in Sec. 17, it is possible
to introduce a quantity, the equivalent potential temperature,
that remains constant during moist-adiabatic changes. The
cquivalent potential temperature is realized if the air is first
lifted dry adiabatically to the condensation level, then lifted
pseudo-adiabatically to the pressure zero so that the water
vapor condenses and falls out, and is finally brought adiabatically
to the standard pressure of 1000 mb. To formulate this defini-
tion of the equivalent potential temperature mathematically the
slight difference between the rain and the snow stage can be
disregarded. Furthermore, ¢ may be neglected with respect
to ¢, in Eq. (17.3). This does not cause a serious error and is
correct in any case if the changes of state of the air are pseudo-
adiabatic. It follows that

c,,lnT+%v—ARln(p—e)=C (24.1)

where C is a constant. Upon introducing the partial potential
temperature from (13.6) and putting ¢,* = c,,

¢pln 6 — ARInP+£’TLU= c (24.11)
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If the air is at first unsaturated, its partial potential temperature
remains constant up to the condensation level. Above the
condensation level, (24.11) holds. Lifting the air further the
water vapor condenses and falls out until w = 0 when p = 0.
The partial potential temperature, which is then attained, is
the equivalent potential temperature

C=c,In6g— AR P (24.2)
Upon combining (24.11) and (24.2), it is found that
O = (‘)d(f;[;—;" (24.3)
or if the temperature is introduced again from (13.6),
P \AE Lw»
0 = T(p ~ ) o7 (24.31)

When the air whose equivalent potential temperature is to be
computed is not saturated, the temperature at the condensation
level has to be inserted in the exponents in (24.3) and (24.31)
instead of the actual temperature.

It is sometimes convenient to use the ‘““equivalent tempera-
ture” T'g, which is realized by bringing the air from the pressure
zero dry adiabatically not to the standard pressure of 1000 mb
but to its original partial pressure.

Consequently,
Te _(p=e\o _ T
o= (—P ) = % (24.4)
or, with (24.3),
Lw
Ty = TeoT (24.5)

This definition of the equivalent potential and equivalent tem-
perature has been given by Rossby.! It has the advantage that
it shows clearly the conservative property of O with respect to
saturated adiabatic changes.

There are other, slightly different definitions of T’z and Ok.
According to (24.5), approximately

Ts — T =LY% (24.6)
Cp

1 RossBY, C.-G., Mass. Inst. Tech. Met. Papers, 1, 3, 1932.
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This relation, which according to Rossby’s definition is only an
approximation, has been taken as the definition of the equivalent
temperature by Robitzsch! who followed some earlier ideas of
von Bezold.? Robitzsch’s definition states that the equivalent
temperature is the temperature which the air assumes when all
its water vapor condenses at constant pressure and the latent
heat of condensation is released. Rossby has pointed out that
it is impossible to visualize this process physically.

Robitzsch defines further as the equivalent potential tempera-
ture the equivalent temperature that the air assumes when it is
brought dry adiabatically from its original pressure to the
standard pressure of 1000 mb. It follows as the definition

equation that
O = TE (2) (247)

This equation may be regarded as a simplification of (24.31).

Because Rossby’s and Robitzsch’s definitions are different,
the values for Ox and Tz are also different. For example, let
p = 1000 mb, 7' = 302° and w = 14 X 1073, so that the air is
just saturated. Then the difference between 7'» and T would
be 36.1°, according to Rossby’s formula (24.5), and 34.2°, accord-
ing to Robitzsch’s formula (24.6).

Petterssen® retains the names ‘“equivalent temperature”
and ‘““equivalent potential temperature’ for Robitzsch’s defini-
tion and refers to Rossby’s as the ‘“pseudo-equivalent” and
“potential pseudo-equivalent temperature,” to indicate that
the changes of air are pseudo-adiabatic. Stive! calls the quanti-
ties as defined by Rossby ‘‘pseudotemperature’” and “pseudo-
potential”’ temperature. A very exhaustive discussion of the
possible definitions and their conservative properties has been
given by Bleeker.® In practice the diffcrences are mostly quite
negligible.

1 RoBiTzscH, M., Met. Z., 46, 313, 1928.

2VoN BezoLp, W., “Gesammelte Abhandlungen,” Vol. 10, Friedrich
Vieweg & Sohn, Brunswick, 1906.

3 PETTERSSEN, S., “ Weather Analysis and Forecasting,” p. 24, McGraw-
Hill Book Company, Inc., New York, 1940.

4 Stive, G., ‘“Handbuch der Geophysik,” Vol. 9 (2), p. 238, Gebriider
Borntréager, Berlin, 1937.

5§ BLEEKER, W., Quart. J. Roy. Met. Soc., 86, 542, 1939.
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26. Wet-bulb Temperature and Wet-bulb Potential Temper-
ature. The atmospheric humidity is measured either by the hair
hygrometer or by the psychrometer. The psychrometer con-
sists of an ordinary thermometer showing the temperature of
the air and another thermometer whose bulb i