


UNIVERSITY OF
ILLINOIS LIBRARY

AT URB 4A-CHAMPAIGN
uGOKG i Au.\G



Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/dynamicmodelofho555brue



Faculty Working Papers

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign



Ko^u?^^*n7H?t^ MaH£e^u\^Nanagement (Third edition, 11

1976), Chapter 19.

Myers, John G. , Stephen Greyser and William Massy, "Th|

ness of Marketing's R&D for Marketing Management:
ment," Journal of Marketing , Vol. 43, January, 1979,1

Sheth, J. N., "The Future of Marketing Models," in Res!

Works for Today's Marketing Problems , (Main Session]

1976), pp. 253 - 261.

Van der Zwan, "The Industrialization of Market Researcl
integration of its Professional Structure," Center fj

Studies, Evasmus University, Rotterdam, 1978.



FACULTY WORKING PAPERS

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

March 30, 1979

A DYNAMIC MODEL OF HOUSING PRODUCTION

Jan K. Brueckner, Assistant Professor,
Department of Economics

#555

Summary

:

This paper derives the optimal development strategy for a housing producer
with perfect foresight in a steady-state environment where dwellings deteriorate
as they age. Under the assumption of zero demolition costs, the solution is an
infinite sequence of identical buildings. Building abandonment is shown to be
possible with positive demolition costs. A solution highlighting the model's
spatial properties is computed using Cobb-Douglas functions.
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by

Jan K. Brueckner

1. Introduction

The last few years have seen the development of the first formal

housing models which explicitly recognize the long-lived, durable nature

of structures. Many of these studies emerged out of the recognition that

important features of urban housing markets cannot be explained by models

which assume that housing capital is perfectly malleable. While the

models reflect a diversity of approaches, the most important differences

lie in the determination of building lives and in the effects of the

aging process. While Anas [1], Arnott [2], and Fujita [7] avoid model-

ling demolition and redevelopment by assuming that structures have in-

finite lives, a building's retirement age is endogenous in the models

of Brueckner [3] and [4], Evans [3j, Fisch [6], Muth [8], and Sweeney

[10]. Brueckner and Muth explicitly analyse the producer's demolition

decision, while Evans and Fisch deduce retirement ages indirectly. The

assumption that quality deterioration is a result of aging also differ-

entiates the models of Brueckner, Fisch, Muth, and Sweeney from the

other analyses, in which dwellings of different ages are qualitatively

the same.

The present paper, in common with my earlier work and the work of

Muth, reflects the belief that a realistic model of durable housing must

incorporate quality deterioration, which appears to be the most important

effect of aging, and must make building lives endogenous by explicitly

treating the producer's decision to demolish a structure. The paper dif-

fers from my earlier work in the behavioral assumption i'or housing pro-

ducers which underlies the analysis. While producer myopia about future
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housing prices was assumed in the earlier papers, producers in the present

analysis are able to predict future prices exactly. While this perfect

foresight assumption makes the model somewhat similar to Muth's, impor-

tant differences remain. First, the analysis is conducted under the open

city assumption, so that utility is exogenous. This simplifies the char-

acterization of market equilibrium, eliminating a source of confusion in

Muth's paper. Second, the producer has an infinite time horizon, and the

further assumption of a steady-state environment yields a simple objective

function. It appears impossible to similarly justify the form of the pro-

ducer's objective function in Muth's analysis. Finally, the housing pro-

duction technology is specified in more detail than in Muth's paper, and

a spatial interpretation of the model is presented.

A principal result of the analysis is that when demolition costs are

zero, the producer constructs an infinite sequence of identical buildings

tfhich are occupied throughout their lives. Building abandonment may

3ccur, however, when demolition costs are positive. In addition, solving

:he model using Cobb-Douglas functions generates a city whose spatial

5tructure closely resembles that of the familiar static city.

The paper is organized as follows. Sections 2 and 3 develop the

general model, and Section 4 discusses extensions. Section 5 contains

•if

:he Cobb-Douglas solution, while Section 6 sketches the structure of

:he myopia model and compares the Cobb-Douglas solutions under myopia

ind perfect foresight. Section 7 presents conclusions.

. The -n function

It is assumed in the analysis that all consumers have the differ-

ntiable strictly quasi-concave utility function u(Q,x) , where Q is
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consumption of housing services and x is consumption of a numeraire non-

housing good. A fundamental assumption is that the utility level of urban

residents is constant over time and equal to u. This is the familiar

open city assumption: u is the constant level of utility in the rural

hinterland and costless migration assures that urban and rural residents

are equally well off. The income y of an urban resident is constant over

time, and w(k) = y-c(k) gives the net income of a commuter living k miles

from the CBD, where c is the time-invariant commuting cost function, with

c' > 0. Although strong, the steady-state assumptions of constant utility

and net income are crucial in the following analysis.

The condition u = u(Q,x) implies x = x(Q) , with -x'(Q) equal to

the MRS at the given point on the u indifference curve. To avoid

needless complexity in the analysis, it will be assumed that the u in-

difference curve approaches the x and Q axes asymptotically. This as-

sumption may be relaxed without affecting the basic arguments which

follow. Now if the price per unit of housing services in a dwelling

with service level Q located k miles from the CBD equals

W <k) - X((»
, (1)

then the occupant's rental payment is w(k) - x(Q) and his consumption of

the non-housing good is x(Q). Eq. (1) thus gives the price per unit

of services which permits the occupant of the dwelling to reach utility

level u. Note that (1) is negative for Q sufficiently small; consumers

will require a negative price to inhabit a dwelling with a low service

level.



Although it is assumed that structural modification of buildings an

the individual dwelling units they contain is possible only through demo

lition and redevelopment, quality deterioration means that the housing

services provided by a dwelling at age x equal a fraction f(T) of the

original service level. The function f satisfies f(0) = 1, f'Ct) < 0, a

f(x) > for x >_ 0. In reality, the rate of deterioration of dwellings

is effected by maintenance, but consideration of this possibility is pos

poned until Section A. It Is clear from (1) that the shrinkage of a

dwelling's service level over time means that its price per unit of ser-

vices varies with time. The goal of the housing producer is to choose

an optimal development strategy taking this variation into account. The

producer in particular will optimize by choosing the operating life and

structural characteristics of each of an infinite sequence of buildings.

Before characterizing the solution to this problem, it is necessary

to derive the function which relates a building's present value of profii

(PVT) per acre (gross of land cost) to the length of its operating life

and structural characteristics. First, it is clear that since the pro-

ducer prefers a zero to a negative rent, a dwelling for which (1) is

negative will be uninhabited. Therefore, the price per unit of housing

services at age t for a dwelling with initial service level q is given bj

" {W

"qf(T)
T ?) »°>- (2)

few the initial output of housing services in a building is given by

1(N,£), where N and £ are the non-land capital and land used in the

structure and H is concave and exhibits constant returns to scale. A
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building's initial output of housing services per acre of land is

h(S) = H(S,1), where S = N/Jt is structural density, and services per

acre for a building of age t is h(S)f(x). Finally, the product of (2)

and h(S)f(x) gives revenue per acre for a building of age x, a quantity

which depends on both the initial dwelling size in the building and its

structural density. Assuming that demolition costs are zero and letting

n denote the constant price per unit of non-land capital, a building's

PVP per acre (gross of land cost) as a function of q, S, and T, the

length of its operating life, is

ir(T,q,S)
fT

max {
W " *ft^

T^
, 0} h(S)f(T)e"

tT
dx - nS, (3)

«<*>

where r is the discount rate. The first term in (3) is the present value

of revenue (PVR) per acre for the structure, while the second term is the

initial non-land capital cost per acre. Let Q be the service level of

— 2
the dwelling which calls forth a zero rent, satisfying w - x(Q) - 0. Not

that Q implicitly depends on k. Since -x' = u„/u.. > 0, w - x(Q) — as

3 -Q. Thus w - x(qf(x)) - as qf(x) 7 Q or as x j f
_1

(Q/q) S m(q) ,

where m' > 0. When q > Q, m(q) is positive and gives the age when the ren

for a dwelling of initial size q reaches zero. The function in implicit-

Ly depends on k. When q > Q, (3) becomes

, rmin{T,m(q)}
Tr(T,q,S) = ^- (w - x(qf(x)))e "dx - nS. (4)

The equivalence of (3) and (4) follows because when m(q) < T, the upper

Limit T in (3) may be replaced by m(q) since the integrand is zero for
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m(q) <_ T <^ T. Note that the condition q > Q merely requires that a new

dwelling call forth a positive rent. If this were not the case, the PVR

for the dwelling would be zero since a zero initial rent implies a zero

rent thereafter.

The term h(S)/q in (4) is the initial housing service output per
.

acre for the building divided by initial services per dwelling, which

equals the number of dwellings per acre in the building. Since the

integral is the present value of rent per dwelling, the whole expression

is the PVR per acre for the building. Note finally that as a result of

the steady-state assumptions, the PVP per acre for a building does not

depend on its construction date.

In computing the derivatives of tt with respect to q and T, special

attention must be paid to the min function in the upper limit of inte-

gration in (4) . For T < m(q)

,

*
2
(T, q ,s) = h(s)

|

T

^ [
*-;;<q f t T» ]e-

rT
dT . (5)

For T > m(q)

,

rm(q)
w
2
«.,.S) - MS, rV

f- [

«-'WT»
1

.-r.T
dT

+ w - x(gf(m(q))?
e"

rm(q)
m'(q)

q

- h(S)

m(q)
|_

[

w-x^f(T))
]e
-rTdT

t (6)
3q q

where the last equality follows because w - x(qf(m(q))) = by the defi-

nition of m(q). As q * m" (T) from either direction, the derivatives
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tives in (5) and (6) both approach the expression in (5) evaluated at

q = m (T) . Thus, tt„ exists when q = m (T) and is given by (5). In

view of these results,

n
2
(T,q,S) = h(S)

min{T,m(q)} _/.«.»
[ ^ s ' ]e d-r . (7)

3q q

Similarly, for T < m(q)

,

^(T.q.8) =
W " *^ T)

> h(S)e-
rT

> , (8)

while for T > m(q) , u
1
(T,q,S) =0. As T -»• m(q) from below, it (T,q,S) + 0,

and hence ir
1

exists and equals zero when T = m(q) .

An important concern in the following analysis is whether a build-

ing which is part of an optimal development strategy can have T > m(q)

,

implying that there exists an interval at the end of a building's life

where rent is zero and the building is vacant. It is clear from (8) that

If the optimal development strategy calls for it.. > for a given build-

ing, then the building is torn down before its dwelling rent falls to

zero: abandonment will not occur.

3. The producer's optimization problem

Suppose a housing producer acquires a plot of land in an urban area

and considers development strategies consisting of Infinite sequences of

buildings. Letting T.,q.,S. be the operating life and structural char-

acteristics of the j building, the PVP per acre at time zero from the

development strategy characterized by the infinite sequence

{Ti'V S
I
}
i=l,2,3,...

is g^en by
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-rT *-r(T +T )

wtt^q^S^ + ir(T
2 ,q2>

S
2
)e

1
+ Tr(T

3
,q

3
,S

3
)e +... (9)

Note in (9) that T +. . .+T._, gives the construction date of the i

building and hence that ir(T ,q.,S ) exp(-r(T
1
+. . «+T. ,)) is the PVP per

acre from the i building discounted back to time zero. Note also that

(9) implicitly requires that buildings be constructed back-to-back, dis-

allowing intervals where the land sits vacant. It is easy to see, how-

ever, that any development strategy with vacant intervals is dominated

by one without vacant intervals.

The producer's problem is to maximize (9) by choice of the infinite

sequence {T ,q ,S .}._, ^ subject to the conditions I. »S. > 0,
l l l i~i ,Z,.3,..» 11

q. > Q, 1*1,2,3,... This is a dynamic programming problem with an in-

finite horizon, and we have

i; * *
Theorem : The sequence {T.,q.,S } , „ „ which maximizes (9) is

given by

(T*,q*,S*) = (T*,q*,S*) 1=1,2,3,...

where (T*,q*,S*) maximizes

n(f,q,S)(l-fe-
rT

+ e'
r2T

+ e"
r3T

+ ...)- «< T^> . (10)

1-e

kit A* **
Proof ; By the Principle of Optimality, the sequence {T. ,q ,S }._„ _

1 X X X -c. f j f •

which maximizes
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* A
-rT -r(T -FT )

TT(T
2
,q

2
,S

2
)e + Tr(T

3
,q3

,S
3
)e

-r(T*+T +T )

+ 7r(T
A ,q4

,S
4
)e + ...

-rT -rT
= e

X
<>(T

2
,q

2
,S

2
) + ir(T

3
,q

3
,S

3
)e

-r(T
2
+T

3
)

+ 7T(T
A ,q

4
,S

4
)e

J +...). (11)

* * *.
is equal to {T

.
,S.,q.} _ _ But since the infinite series on the RHSXIX X Z ) J) * •

•

of (11) is identical to (9) except for the index of summation, it fol-

kk kJc kk k k k
lows that (T

±
,q

±
,S

±
) = C^^^^, q±-l»

S
±-l^ * i=2 > 3 »-«-» which gives

(T
i
,qi

,S
i

)
=

*Ti-l,qi-l
,S
i-l?»

i=2 > 3"" This rneans T
2

= T
l»

T
3

= T2»

* * * * *
and so on, implying T = T„ = T,= . . . , and similarly for q and S

.

,

i=l,2,3,... Thus, since the optimal sequence is constant, the objective

function may be written as (10)

.

Q.K.D.

The constancy of the optimal sequence means that the housing pro-

ducer constructs an infinite sequence of identical buildings. This re-

sult is due, of course, to the steady-state assumptions; the above proof

requires that the tt function is independent of time. In a changing

environment, this independence would disappear, and objective function

would fail to collapse into a simple expression. In this case, advanced

techniques from dynamic programming might be used to find the limit of

the optimal sequence as i * °°, which could be used to approximate the

characteristics of a given building in the sequence. However, the com-

plexity of the it function would make this a difficult undertaking.

It is interesting to note that the objective function (10) is of

the same form as the one used by Samuelson [9] in his well-known attempt
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to settle the controversy over how long a forest should grow before it

is cut. He argued that any formulation of the problem vhich is not

based on an infinite time horizon ignores the correct opportunity costs.

Maximising (10) with respect to T, q, and S yields the first-order

3conditions

^(T.q.SXl-e"^) = re"
rT

TrCT,q,S) (12)

ir

2
(T,q,S) = (13)

rr

3
(T,q,S) = . (14)

It is interesting to note that Eq. (12) follows from two opposing effects

_rT 2
of an increase in T. Dividing through by (1-e ) , the LHS becomes

—rT
it.. /(1-e ), which gives the increase in PVP per acre from an increase

—rT —rT 2
in T holding all the discount weights fixed. The RKS becomes re Tr/(l-e ) ,

which gives the decrease in PVP resulting from a decrease in all the

discount weights, holding it fixed. Only when the increase in PVP from

increasing ir is balanced by the decrease in PVi 1 from decreasing the

discount weights is T at an optimal level for given values of q and S.

Eq. (12) also directly gives an important property of the solution:

PROPERTY 1: NO BUILDING ABANDONMENT. Each building in the
optimal sequence is occupied throughout its life.

This follows because (12) implies ir. > at the optimum, which, referring

to (8) , gives T* < m(q*). This mean that dwelling rental is positive

throughout a building's life and h^nce that the building is always occu-

pied. The intuition behind this result is that since there is no bene-

fit from allowing a building to stand beyond age m(q) and the opportunity
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cost of doing so (the foregone revenue from a new building) is positive,

abandonment can never be optimal.

Building abandonment is a serious problem in a number of American

central cities, but Property 1 establishes that the phenomenon is not

part of an optimal development strategy under the assumptions of the

model. It will be seen in Section 4 that the introduction of demolition

costs leads to a different conclusion.

Using the result T* < m(q*) and (4), (7), and (8), the conditions

(12) -(14) become

-rT

h(s)
w - x(qf (T)) l^e

m hJS^
q r q

T
(w - x(qf(T)))e~

r '

t

dT - nS (15)

T

t

_ w-x(qf(T)) _ x , (qf(T))]f(T)e
-rT

dT = Q (16)
qf(T)

h'(S)
f

T

q Jo
(w - x(qf(T)))e~

rT
dx = n (17)

Eq. (17) says that holding T and the initial dwelling size fixed, the

present value of the marginal cost per acre of increasing S, given by

n, should equal the present value of the marginal revenue per acre from

doing so. A diagram is useful for deriving the implications of (16).

Figure 1 shows the u indifference curve and the point (0,w) on the x

axis. It is easy to see that the absolute value of the slope of the

line connecting (0,w) to any point (Q,x(Q)) on the indifference curve

is (w - x(Q))/Q, the price per unit of housing services for the dwelling

with service level Q. For example, the line connecting (0,w) to

(Q,x(Q)) is horizontal since w - x(Q) = 0. Further inspection of Figure 1
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shows that the slope of the. line tangent to the indifference curve and

the slope of the line connecting the curve to (0,w) are equal only at

A A AAA A

the point (Q,x(Q)). Formally, -(w - x(Q))/'q = x'(Q). For Q > Q,

the line connecting (0,w) to the indifference curve is steeper than the

tangent line (-(w - x(Q))/Q < x'(Q))> while for Q < Q, the reverse is

true (-(w - x(Q))/Q > x'(Q)). Note finally that (w - x(Q))/Q is maximal

A

for Q = Q; the slope of the line connecting (0,w) to the indifference
A

curve decreases monotonically as Q approaches Q from above, reaches a

A A

minimum at Q, and increases monotonically as Q decreases below Q.

This means that a dwelling with service level Q calls forth a higher

4
price per unit of services than a dwelling of any other size. Note

A

that Q implicitly depends on k. These facts yield

PROPERTY 2: INITIAL AND TERMINAL DWELLING SERVICE LEVELS
A

BRACKET Q. The initial and terminal dwelling service
A

levels q* and q*f(T*) satisfy q*f(T*) < Q < q*

.

A A

To establish Property 2, suppose, q* <_ Q, which gives q*f (t) < Q for

t > 0. This inequality implies, using the above results from Figure 1,

that -(w - x(q*f (i)))/q*f (t) > x'(q*f(-r)) for t > 0, which means the

integrand in (16) with q = q* is positive for t > and hence that the

integral itself is positive. Thus, for fixed T, the solution to (16)

A

must satisfy q* > Q. This argument can be repeated, however, unless

A A

q*f(T*) < Q. If this inequality fails to hold, then q*f(t) > Q

for <_ x < T*, with the results that the integrand in (15) with q = q*

is negative for <_ x < T* and the integral with T = T* is negative.

A

Therefore, the solution to (15) -(17) must satisfy q*f(T*) < Q < q*. An

implication of Property 2 is that since the dwelling service level starts
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above and ends below Q, the price per unit of services in the dwelling

first increases and then decreases, reaching a maximum when the service

level equals Q.

Since the optimal building characteristics q*, S*, and T* are all

implicit functions of k, the spatial properties of an urban area describee

by the model may be derived in principle through comparative static cal-

culations. Unfortunately, these calculations yield ambiguous results;

systematic variation of q*, S*, and T* over space cannot be established.

In spite of this general indeterminary, solution of the model using spe-

cific functional forms can produce a city with straightforward spatial

properties, as will be seen below in Section 5. In addition, if it is

assumed that the price per acre of agricultural land is constant and

equal to R , the size of the urban area described by the general model

may be deduced in a standard fashion. Since the urban land price

equates the PVP per acre net of land cost to zero, the land price R

is given by Tr(T*,q*,S*)/(l-e~ ). which is implicitly a function of k.

Noting w' (k) < and using the envelope theorem, 3R/3k < follows

directly from (4). As usual, the distance k to the urban periphery is

the value of k at which the urban land price falls to R .
A

The urban history implied by the model is easily sketched given the

previous discussion. The city occupies the land out to k indefinitely,

with each ring being rebuilt at constant intervals exactly as it was

originally constructed. Structural density and initial dwelling size\

need not be simple functions of distance, and the possibility of varia-

tion of T* with k means that the age of buildings at a given instant in

the city's history may vary erratically over distance. Finally, urban
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population is constant at its original level throughout the city's

history.

4. Extensions of the model

This section discusses two extensions of the model: positive demo-

lition costs and endogenous building maintenance. If demolition costs

per acre are given by D(S), an increasing function" of structural density,

then the PVP per acre for a building is ir(T,q,S) - D(S)e~
r

, and the

optimality conditions are (13) and

^(T,q,S)(l-e"
rT

) = re~
rT

(TT(T,q,S) - D(S)) (18)

*
3
(T,q,S) - D'(S)e"

rT
- . (19)

It may be shown that any solution to (13), (18), and (19) with it.. = n-D *

fails to satisfy the second-order condition. Therefore, an interior max-

imum must be characterized by tt.. > 0, implying T* < m(q*) . A second

possibility is that the optimal T is infinite. If (13) and (19) are

solved for q and S as functions of T, then T* = °° will result if, sub-

stituting for q and S, the LHS of (18) exceeds the RHS for all T > 0.

This will be the case, for example, if ir(T,q,S) - D(S) < for all T, q,

and S. Generally, it appears that if D is sufficiently large compared

to tt, it will be optimal to avoid ever incurring demolition costs by

setting T* = «. The producer will construct one building which is

abandoned at age m(q*) and sits vacant thereafter. Summarizing these

results gives

PROPERTY 1': POSSIBLE BUILDING ABANDONMENT. When demolition
costs are positive, the optimal development strategy consists
of either an infinite sequence of identical buildings which
are always occupied or one building which is eventually
abandoned

.
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The striking feature of Property l
1 is that it offers an explanation of

urban blight which differs from the common market failure hypothesis.

Abandoned buildings may be part of an optimal development strategy when

demolition costs are positive.

A second modification of the model is the assumption that the rate

of shrinkage of a dwelling's service level is a function of the level of

maintenance z, which is constant over the dwelling's life. In particular,

it is assumed that z is an argument of f, with 8f/8z > 0. Letting the

per acre flow of costs associated with a maintenance level z in a structure

be g(S,z), with g. , g„ > 0, the ir function is modified accordingly, and

the first-order condition for choice of z is

r
T

[-h(S)x'(qf(T;z))f
2
(T;z) - g2

(S,z) ]e"
rT

dx = . (20)

Eq. (20) says that the present value per acre of marginal maintenance

costs equals the present value per acre of marginal revenue due to

maintenance. Although (17) must be modified slightly, introduction of

building maintenance does not alter any earlier results.

5. A model solution using Cobb-Douglas functions

Assuming H(N,£) h N^1"3
, 0<fi<l, which gives h(S) - S

S
,

u(Q,x) = Q
1"*^6

, 0<6<1, and u = 1, which give x(Q) = o/
9-1'' 6

, and

~*CtT 7
f(x) = e , an explicit solution to (15) -(17) can be calculated.

Equation (16) may be solved for q as a function of T, yielding

-rT»
,„ v6-l f a(l-e ),6-l , , ,.

q ** (6w) [—a Ztf^ '

r(l-e )
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where t a = r - a(l-6)/6 < r.
8

Setting (w - Q
(9~1)/e

)/Q = ((e-l)/9)(f
1/6

* 8/ ( 6 —1)
yields Q = (6w) . Since the discussion in Section 3 showed that

A

the q which solves (16) for arbitrary 1 > exceeds Q, the second term

on the RHS of (21) must exceed one, which, noting 6/(9-1) < 0, requires

a^"£
> < 1 , (22)

r(l-e )

for T > 0. Using a < r, (22) may be verified directly.

Substituting (21) into (17) yields

1 1 1 _1_

s= (
EU-ey -g

(e
e
w)

(l-8)(l-^) a(l-e~
rl

)
]

(l-9)(l-{5) l-e^ jl-S m)
r(l-e

_aT
)

and substituting (21) and (23) into (15) yields, after considerable

manipulation, the equation which gives T*:

, + Mir2i . 3ii=e!!i
. (24)

9 ... alv
r(l-e )

It is easily seen that the RHS of (24) is increasing in T as a result

of (22), and l'Hopital's rule establishes that the RHS approaches unity

as T * 0. Since the LHS of (24) exceeds one, these results establish

that there exists a unique positive T* which satisfies (24). Substitut-

ing T* into (23) gives S*, and substitution of (24) in (21) gives

q* = t(e+e(i-8))w]
6/(1~e)

.

The spatial properties of the Cobb-Douglas city are easily inferred.

First, since (24) does not involve k, T* is independent of k. This fact,

in addition to w' (k) < 0, gives 3q*/5k > and 3S*/3k < using (21) and

(23) . The city thus bears a striking resemblance to the familiar static

urban area: structural density falls off as distance to the CBD increases
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and initial dwelling service levels are larger farther from the CBD.

Furthermore, the constancy of T* means that at any point in the city's

history, all its structures will have the same age. These results sug-

gest the interesting and natural conclusion that the only important

qualitative difference between a static city and a dynamic Cobb-Douglas

city in a steady-state environment is the uniform cyclical aging of

structures in the latter.

6. A model with producer myopia

While perfect foresight is in many ways a more attractive behavioral

assumption than myopia, a model with perfect foresight is not useful for

exploring dynamic processes such as the spatial growth of a city and

residential succession in a multi-class city, which are investigated in

Brueckner [3] and [4], The reason is that these phenomena cannot be

generated in a steady-state environment like the one assumed in this

paper. In order to contrast the perfect foresight model with its more

versatile counterpart, this section develops the myopia model under

the steady-state assumptions. The earlier applications of the model

assumed, of course, that income and utility change over time.

A myopic producer assumes that a dwelling's price per unit of ser-

vices will remain stationary forever at its current level. In addition,

at the construction date, the producer expects a building to last forever.

Under these assumptions, the expected PVP per acre for a new building

when f(t) = e is

Jn

w " x(^ h(S)e-
(a+r)T

dT - nS -
w " x((*> &&- - nS. (25)

q q a+r
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While (w - x(q))/q, the initial price per unit of housing services, is

expected to persist forever, (25) reflects the producer's awareness that

a building's service level will decline with age. To maximize (25), the

a

producer sets q equal to Q, the dwelling size which calls forth the

highest price per unit of housing services. The condition which gives

structural density is then

A

W V ((^ h'(S) = (a+r)n . (26)

Q

As the building ages, its price per unit of services falls, contra-

dicting the producer's expectations. When the expected PVR per acre,

based on myopic extrapolation of the current price per unit of services,

equals the price per acre for the land used in the structure, the producer

is indifferent between continuing to operate the building and demolishing

it and selling the land (demolition costs are zero) . The land price R

is equal to the maximized value of (25) , the expected PVP per acre for

a new developer. Letting S denote the solution to (26), a building's

demolition age is consequently given by the T which satisfies

w - x(qe-«
T
) Mi! £

-aT^M, ^ 5 R . (2?)

Q
a+r

Q
a+r

The LHS of (27), which is expected PVR at T, comes from integrating

(w - x (Qe )) , ,„. -ax , _, ,. .
-1 ^ \»t

t-h(S)e , expected revenue per acre at x, weighted
Qe

by the discount factor e , from x = T to x = °°. Note that the

price per unit of housing services at T, (w - x(Qe~ ))/Qe~ , is

expected to persist indefinitely.
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The comparison of initial dwelling sizes under myopia and perfect

foresight is immediate since Q < q*. While the myopic housing pro-

ducer chooses the initial dwelling size to maximize the initial price

per unit of services, a producer with perfect foresight avoids the re-

sulting monotonic decrease in price by choosing a larger initial dwell-

ing size.

Structural densities may be compared using the Cobb-Douglas assump-

tions of Section 5, which give111
s = (liizeV-B (6

e
w)
(W) U-e>

(ct+r)
l-e

. (28)
n

It is easily shown that S > S* as long as u+r < 1. Furthermore, under

the Cobb-Douglas assumptions, the demolition-age condition (27) reduces 1

1+ i%§i =e (r-a)T
g (29)

Since the condition (24) which solves for T in the perfect foresight case

may be written

1 + B(l-6? = a(l-e~
rT

) e
(r-a)T

< e
(r-a)T

^ (3Q)
9

r(l-e"
aT

)

where the inequality follows from (22), it follows that exp((r-a)T*)

exceeds the LHS of (29). Since r > a, this means that T, the value

of T which satisfies (29), lies below T*. Thus, the operating life of

buildings is longer under perfect foresight than under myopia. Since

the myopic producer does not correctly take account of opportunity cost,

we would expect T* t T. Intuition, however, appears incapable of pre-

dicting the direction of the inequality relating T* and T.
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For a detailed development of the myopia model without the steady-

state assumptions, see Brueckner [3],

7 . Conclusion

In this paper, the assumptions of constant income, commuting cost,

and utility allowed the rigorous formulation of the optimization problem

for a housing producer with perfect foresight and an infinite time hor-

izon. Under the assumption of zero demolition costs, the solution called

for an infinite sequence of identical buildings, each of which is occu-

pied throughout its life. Although dwelling rent declines over the life

of a building, the solution required that the price per unit of housing

services in each dwelling first increase and then decrease as the dwellir

ages. Building abandonment was shown to be possible with positive demo-

lition costs. Solution of the model for Cobb-Douglas utility and pro-

duction functions showed that the spatial properties of an urban area

described by the model can be similar to the properties of a static city.

Although the difficulties created by relaxing the steady-state as-

sumptions were noted above, the characterization of an optimal develop-

ment strategy in a dynamic environment is obviously an important goal

for future research. If this problem can be solved, our understanding

of urban dynamics will be more nearly complete.



Footnotes

For simplicity in the sequel, PVP per acre is taken to be gross
of land cost unless otherwise specified.

2 —
The existence of Q is guaranteed by the assumption that the In-

difference curve approaches the axes asymptotically.

3
We assume the second-order condition, which requires that the

—rT
Hessian matrix of ir/ (1-e '

) is negative definite at the solution to

(12)-(14), is satisfied.

4
Note that the existence of Q is guaranteed by the assumption that

the indifference curve is convex and approaches the axes asymptotically.

5
Letting L(T,q,S) = (ir(T,q,S) - D(S)e

_rT
)/ (l-e~

rT
) , it is easily

shown that L-
1

= L„.. = L-.. = when both sides of (18) equal zero. Thus

the determinant of the Hessian matrix of L is zero and the second-
order condition is not fulfilled at a solution where it = tt-D = 0.

I am indebted to Randolph Lyon for an intuitive argument which
;

suggested Property I 1
.

Computations with a CES utility function proved intractable.

8
When a = 0, (20) becomes q - (ew)

e/(e ""1)
[(l-e~

rT
)/rT]

6/ (e_1)
, and

similar modification of (22), (23), and (24) is also necessary.

9
The following argument establishes (22) . Consider the function

f(v) = (l-e~ )/v. For v ^ 0, f*(v) has the same sign as l+y-e^,
where y - vT. It is easily seen that since the exponential function is

v
convex and tangent to the line 1+y at y = 0, the inequality 1+Y<e holds
for y i* 0, implying that f'(v) is negative for v ^ 0. Although f(0) is

undefined, l'Hopital's rule establishes that lim f(v) exists and equals
v-K)

T. Therefore , f is decreasing monotonically and a < r implies
f(a) > f(r), establishing (22). A similar argument verifies

—rT
(1-e )/rT < 1 for the case where a = (see footnote 8).
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