




ft^y

DYNAMICS OF ROTATION



BV THE SAME A UTHOR

A Study of Splashes

With 197 Illustrations from Instantaneous Photographs

Medium 8vo.

LONGMANS, GREEN AND CO.

London, New York, Bombay, Calcutta, and Madras



DYNAMICS OF ROTATION

AN ELEMENTARY INTRODUCTION

TO RIGID DYNAMICS

BY

A. M. WORTHINGTON, C.B., MA., F.R.S.

FORMERLY HEADMASTER AND PROFESSOR OF PHYSICS AT THE
ROYAL NAVAL ENGINEERING COLLEGE, DEVONPORT

NEW IMPRESSIOJSr

LONGMANS, GREEN, AND CO.

39 PATERNOSTER ROW. LONDON
FOURTH AVENUE & 30TH STREET, NEW YORK

BOMBAY, CALCUTTA, AND MADRAS

1920



r^t̂^

Digitized by the Internet Archive

in 2008 with funding from

IVIicrosoft Corporation

http://www.archive.org/details/dynamicsofrotatiOOwortrich



PREFACE TO THE FIRST EDITION

Many students of Physics or Engineering, who from

want either of mathematical aptitude, or of sufficient

training in the methods of analytical solid geometry, are

unable to follow the works of mathematical writers on

Kigid Dynamics, must have felt disappointed, after master-

ing so much of the Dynamics of a Particle as is given in

the excellent and widely-used text-books of Loney, or

Garnett, or Lock, to find that they have been obliged,

after all, to stop short of the point at which their know-

ledge could be of appreciable practical use to them, and

that the explanation of any of the phenomena exhibited

by rotating or oscillating rigid bodies, so interesting and

obviously important, was still beyond their reach.

The aim of this little book is to help such students to

make the most of what they have already learnt, and to

carry their instruction to the point of practical utility.

As a matter of fact, any one who is interested and

observant in mechanical matters, and who has mastered

the relations between force, mass, and acceleration of

velocity of translation, will find no difficulty in appre-

hending the corresponding relations between couples,

moments of inertia, and angular accelerations, in a rigid
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vi Preface.

body rotating about a fixed axle, or in understanding the

principle of the Conservation of Angular Momentum.

Instead of following the usual course of first developing

the laws of the subject as mathematical consequences of

D'Alembert's Principle, or the extended interpretation of

Newton's Second and Third Laws of Motion, and then

appealing to the experimental phenomena for verification,

I have adopted the opposite plan, and have endeavoured,

by reference to the simplest experiments that I could

think of, to secure that the student shall at each point

gain his first ideas of the dynamical relations from the

phenomena themselves, rather than from mathematical

expressions, being myself convinced, not only that this is

the best way of bringing the subject vividly and without

vagueness before the learner, but that such a, course may

be strongly defended on other grounds.

These considerations have determined the arrangement

of the chapters and the limitations of the work, which

makes no pretence at being a complete or advanced

treatise.

My best thanks are due to those friends and pupils who

have assisted me in the revision of the proof-sheets and in

the working of examples, but especially to my colleague,

Mr. W. Larden, for very many valuable suggestions and

corrections. A. M. W.

Devonport, 31«« OdL 1891.



PREFACE TO THE SIXTH EDITION

The demand for successive editions of this book has

afforded opportunities for considerable improvements

since its first issue. Errors and omissions kindly pointed

out by readers and friendly critics have been rectified,

while the continued use of the book as a text-book with

my own students has enabled me to detect and alter

ambiguous phrases, and in some places to improve the

arrangement of the argument.

The use of the Inertia-Skeleton, introduced on p. 64,

has proved so satisfactory a simplification for non-

mathematical students, to whom a momental ellipsoid

would be only a stumbling-block, and could be used so

readily for further extensions, in the manner indicated

on pp. 122 and 123, that I hope I may be pardoned for

calling attention to it.

Experiments with a gyroscope, made by the students

themselves with Chapter XIII. as guide, have proved very

satisfactory and interesting, and may usefully include

a deduction of the rate of spin from an observation of

the rate of precession, after the moment of inertia of the

wheel has been determined by means of the oscillating

table figured on p. 80.

vll



viii Preface,

In the interests of clear teaching, the convention

(which I am glad to see has been adopted in America)

has been adhered to throughout, of using the word
* pound ' when a force is meant, and ' lb/ when a mass is

meant, and I have ventured to give the name of a * slug

to the British Engineer's Unit of Mass, i.e. to the mass in

which an acceleration of one foot-per-sec.-per-sec. is

produced by a force of one pound.

A. M. W.

Devonport, 11^^ Junt 1906.



CONTENTS.

CHAPTER I.

DEFINITIONS OP TERMS AND PRELIMINARY KINEMATICS.

Page 1. Rigid Body.

2. Angular Velocity.

2. Rate of Revolution.

3. Relation between (y) and (w).

3. Angular Acceleration.

3. Uniformly Accelerated Rotation.

5. Examples.

6. Geometrical Representation of Angular Velocities and A>
celerations.

7. On the Use of the word Moment

8. Definition of Torque.

8. Definition of Equal Torques.

8. Fundamental Statical Experiment.

8. Measure of Torque.

8. Unit Torque.

9. British Absolute Unit of Torque.

9. Gravitation or Engineer's British Unit of Torqua

9. Distinction between * pound ' and ' lb.'

CHAPTER II.

ROTATION UNDER THE INFLUENCE OF TORQUE.

Page 11. Proposition I.

,, 12. Proposition II.

„ 13. Methods of Experimental Verification.



Contents,

Page 14. Variation of the Experiments.

„ 15. Familiar Instances.

„ 15. The Analogue of Mass in Rotational Motion.

,, 17. Rotational Inertia.

,, 17. Definition of the Unit of Rotational Inertia.

„ 18. Examples for Solution.

,, 18. To Calculate the Rotational Inertia of any Rigid Body.

,, 18. Proposition iii.

„ 19. Rotational Inertia of an Ideal Single-particle System.

„ 20. Moment of Inertia.

,, 20. Unit Moment of Inertia.

,, 21. Definition of Angular Momentum.

„ 22. To find the Kinetic Energy of a Rigid Body rotating about a

Fixed Axle.

„ 23. Work done by a Couple.

,, 23. Analogy with the Expression for the Work done by a force

in Rectilinear Motion.

,, 24. Change of Kinetic Energy due to a Couple.

„ 24. Radius of Gyration.

„ 25. Numerical Examples.

„ 30. Note to Chapter ii. D'Alembert*s Principle.

CHAPTER III

DEFINITIONS, AXIOMS, AND ELEMENTARY THEOREMS NECESSARY FOR

DEALING WITH MOMENTS OF INERTIA

—

ROUTH'S RULE AND ITS

APPLICATION.

Page 33. Definition of Moment of Inertia of an Area.

„ 33. Definition of Moment of Inertia of a Volume.

,, 34. Axiom.

,, 34. Illustration.

„ 34. Axiom.

„ 35. Proposition l



Contents, xi

Page 36. Routh's Rule for Finding the Moment of Inertia about an

Axis of Symmetry in certain cases.

, 36. Examples of the Application of Dr. Routh's Rule.

„ 37. Theorem of Parallel Axes.

„ 38. Proposition ii.

„ 39. Applications.

„ 40. Proposition III.

,, 42. Examples for Solution on Chapters i., il., and ill.

CHAPTER IV.

MATHEMATICAL PROOFS OF THE DIFFERENT CASES INCLUDED

UNDER routh's RULE.

Page 46. To Find I for a Uniform Thin Rod about a Perpendicular

Axis through one end.

„ 47. Corollary.

„ 48. Rectangle.

„ 48. Circular Disc.

„ 50. Thin Rod by Integration.

„ 50. Circular Disc by Integration.

„ 51. Moment of Inertia of an Ellipse.

„ 52. Sphere and Cone.

„ 52. Sphere by Integration.

,, 53. Exercises.

CHAPTER V.

rUKTHER propositions CONCERNING MOMENTS OF INERTIA—PRINCIPAL

AXES—GRAPHICAL REPRESENTATION OF INERTIA-CURVilS AND SUB-

FACES—EQUIMOMENTAL SYSTEMS—INERTIA SKELETONS.

Page 55. Proposition iv.

,, 56. Propositions v. and VL

„ 58. Proposition vii.



XI

1

Contents.

Page 60. Graphical Construction of Inertia-Curves and Surfaces.

,, 62. Diagrams of Inertia Curves.

„ 63. Construction of Moment of Inertia Surface,

„ 64. Equimomental Systems—Proposition Viii.

„ 64. Inertia Skeleton—Proposition ix.

CHAPTER VI.

SIMPLE HARMONIC MOTION.

Page 67. Definition of Simple Harmonic Motion.

,, 68. Definition of Period.

,, 69. Definition of Phase.

,, 69. Expression for the Period or Time of a Complete Oscillation.

CHAPTER VII.

AN ELEMENTARY ACCOUNT OF THE CIRCUMSTANCES AND LAWS OP

ELASTIC OSCILLATIONS.

Page 70. Perfect or Simple Elasticity.

70. Hooke's Law.

71. Illustrations of Hooke's Law.

72. Oscillations due to Elasticity.

73. Ratio of Acceleration to Displacement.

73. Expression for the Time of a Complete Oscillation.

74. Applications.

75. Extension to Angular Oscillations.

76. Applications.

76. Equivalent Simple Pendulum.

77. Examples.

79. Oscillating Table for Finding Moments of Inertia.

8L Examples for Solution.



Contents. xiii

CHAPTER VIII.

CONSERVATION OF ANGULAR MOMENTUM.

Page 82. Analogue in Rotation to Newton's Third Law of Motion.

,, 83. Application of the Principle in cases of Motion round a fixed

Axle.

„ 83. First Example.

„ 84. Second Example.

„ 85. Third Example.

,, 85. Fourth Example.

„ 87. Consideration of the Kinetic Energy.

„ 87. Other Exemplifications of the Principle of the Conservation

of Angular Momentum.

„ 88. Graphical representation of Angular Momentum.

„ 89. Moment of Momentum.

,, 89. Conservation of Moment of Momentum.

„ 91. General Conclusion.

„ 91. Caution.

,, 91. Ballistic Pendulum.

,, 93w Examples.

CHAPTER IX.

ON THE KINEMATICAL AND DYNAMICAL PROPERTIES OF THE

CENTRE OF MASS.

Page 94. Evidence of the Existence for a Rigid body of a point pos-

sessing peculiar Dynamical Relatious.

„ 95. Experiments (1), (2), and (3).

„ 96. Experiments (4) and (5).

,, 96. A Couple causes Rotation about an Axis through the Centre

of Gravity.

„ 97. Experiment (6) with a Floating Magnet

„ 98. Experiment (7).



XIV Contents.

Page 99. Definition of Centre of Mass.

,, 100. Proposition I.—(Kinematical.) On the Displacement of the

Centre of Mass.

,, 101. Pure Rotation and Translation.

„ 101. PropositioQ ii. — (Kinematical. ) On the Velocity of the

Centre of Mass.

„ 101. Proposition iii,—(Kinematical.) On che Acceleration of the

Centre of Mass.

„ 102. Summary.

„ 102. Corresponding Propositions about Moments.

,, 103. Proposition iv. On the Resultant Angular Momentum

,, 104. Proposition V. Resultant Moment of the Mass-accelerations.

„ 104. Proposition vi. On the Motion of the Centre of Mass of a

body under External Forces.

„ 105. Proposition vii. On the Application of a Couple to a Free

Rigid Body at Rest.

„ 105. Proposition viii. The Motion of the Centre of Mass- does

not afifect Rotation about it.

,1 106. Independent treatment of Rotation and Translation.

„ 106. On the Direction of the Axis through the Centre of Mass

about which a Couple causes a free Rigid Body to turn.

Caution.

„ 107. Total Kinetic Energy of a Rigid Body.

„ 108. Examples.

„ 110. Examples for Solution.

CHAPTER X.

CENTRIPETAL AND CENTRIFUGAL FORCES.

Page 111. Consideration of the Forces on the Axle.

„ 111, Proposition. Uniform Motion of a Particle in a Circle.

,, 112. Use of the terms 'Centripetal Force' and 'Centrifugal

Force.'

,, 113. Centripetal Forces in a Rotating Rigid Body.

,, 113. Rigid Lamina.

„ 115. Extension to Solids of a certain type.

116. Convenient Dynamical Artifice.



Contents xv

Page 117. Centrifugal Couples.

„ 118. Centrifugal Couple in a body of any shape.

„ 119. Centrifugal Couples vanish when the Rotation is about a

Principal Axis.

,, 121. Importance of Properly Shaping the Parts of Machinery

intended to Rotate rapidly.

„ 121. Equimomental Bodies similarly rotating have equal and

similar Centrifugal Couples.

,, 121. Substitution of the 3-rod Inertia-Skeleton.

,, 123. Transfer of Energy under the action of Centrifugal Couples

CHAPTER XI.

CENTRE OF PEKCUSSIOM..

Page 125. Thin Uniform Rod.

„ 126. Experiment.

„ 127. Experiment.

,, 128. Illustrations—Cricket Bat, Door.

,, 128. Centre of Percussion in a Body of any Form.

CHAPTER XIL

ESTIMATION OF THE TOTAL ANGULAB MOMENTUM.

Page 130. Simple Illustrations.

„ 132. Additional Property of Principal Axes.

,, 133. Total Angular Momentum.

„ 133. The Centripetal Couple.

„ 135. Rotation under the influence of no Torque. The Invarlabia

Axis.

CHAPTER Xm.

ON SOME OF THE PHENOMENA FBESENTEP BT SPINNING BODIEa

Page 136. Gyroscope.

„ 137. Experiments (1), (2), ^nd (3).



xvi Contents.

Page 138. Experiment (4).

139. Definition of Precessioiu

139. Experiment (5).

140. Experiments (6), (7), and (8).

141. Experiments (9) and (10).

141. Precession in Hoops, Tops, etc.

142. Further Experiment with a Hoop.

143. Bicycle.

143. Explanation of Precession.

145. Analogy between Steady Precession and Uniform Motion in

a Circle.

145. Calculation of the Rate of Precession.

148. Observation of the 'Wabble.*

150. Explanation of the Starting of Precession.

152. Gyroscope with Axle of Spin Inclined.

153. Influence of the Centrifugal Couple.

154. Explanationof the eflfects of impeding or hurrying Precession.

154. The Rising of a Spinning Top.

156. Calculation of the 'Eflfort to Precess.'

157. Example (1) Precessional Forces due to the wheels of a

railway-engine rounding a curve.

157. Precessional Stresses on the machinery of a pitching, rolling,

or turning ship,

158. Example (2) Torpedo-boat turning.

159. Miscellaneous Examples.

1 60. Appendix ( 1 ) On the terms A ngular Velocity and Rotational

Velocity.

161. Appendix (2) On the Composition of Rotational Velocities.

161. Appendix (3) The Parallelogram of Rotational Velocities.

164. Appendix (4) Evaluation of the steady precessional velocity

of a gyroscope or top with the axis of spin inclined.

166. Appendix (5) Note on Example (4) p. 86.

166. Appendix (6) On the connection between the Centripetal

Couple and the residual Angular IVTomentun^^



DYNAMICS OF EOTATION.

CHAPTER L

DEFINITIONS OF TERMS AND PKELIMINARY KINEMATICS.

Rigid Body.—A body in Dynamics is said to be rigid

(i.e. stiff) so long as the forces acting upon it do not change

the relative positions of its parts.

We shall deal, at first, chiefly with such familiar rigid bodies

as a fly-wheel turning on its axle ; a cylindrical shaft ; a grind-

stone ; a door turning on its hinges ; a pendulum ; a magnetic

compass-needle ; the needle of a galvanometer with its

attached mirror.

It should be observed that such a body as, for example, a

wheelbarrow being wheeled along a road is not, taken as a

whole, a rigid body, for any point on the circumference of the

wheel changes its position with respect to the rest of the

barrow. The wheelbarrow consists, in fact, of two practically

rigid bodies, the wheel and the barrow.

On the other hand, a sailing-boat may be regarded as a rigid

body so long as its sails are taut under the influence of the

wind, even though they be made of a material that is far

from rigid when otherwise handled.

So also a stone whirled by an inextensible string consti-

tutes, with the string, a single body which may be legarded

as rigid so long as the string is straight.

A



Dynnmus of Rotation,

Angular Velocity.—When a rigid body turns about a

fixed axis, every particle of the body describes a circle about

this axis in the same time. If we conceive a radius to be

drawn from the centre of any such circular path to the

particle describing it, then, if the rotation be uniform, the

number of unit angles swept out in unit time by such a

radius is the measure of what is called the angular velocity

of the body, or its rotational velocity.

The unit of time invariably chosen is the second, and the

unit angle is the 'radian,' i.e. the angle of which the arc is

equal to the radius.

Hence, in brief, we may write

Angular velocity (when uniform)=Number of radians

described per second.

The usual symbol for the rotational or angular velocity of

a body is w (the Greek omega).

"When the rotational velocity is not uniform, but varies,

then its value at any instant is the number of radians that

would be swept out per second if the rate of turning at that

instant remained uniform for a second.*

Rate of Revolution.—Since in one revolution the radius

describes 27r radians, it follows that the number of revolutions

made per second when the angular velocity is w, is — , and

that when a body makes one revolution per second, it

describes 2t unit angles per sec, and has therefore an

angular velocity = w = 27r.

Thus a body which makes 20 turns a minute has an angular

velocity ?^g'<^??=?;.

Tangential 5pced.—The linear velocity {v) of a particle

* See Appendix (1).



Defiriitions of Terms,

describing a circle of radius r about a fixed axis is at any

instant in the direction of the tangent to the circular path,

and is conveniently referred to as the tangential speed.

Relation between v and w.—Since a rotational velocity

<i> radians per sec. corresponds to a travel of the particle over

an arc of length rw each second, it follows that

t? = ro>

or CD = —

.

r

Very frequent use will be made of this relation.

Examples,—(1) A rotating drum 4 feet iu diameter is driven by a

strap which travels 600 feet a minute and without slipping on the

drum. To find the angular velocity

—

600

o) = — = 60 =5 radians per sec,

(2) A wheel 3 feet in diameter has an angular velocity of 10. Find

the speed of a point on its circumference.

= 1*5 X 10 feet per sec.

= 15 feet per sec.

Angular Acceleration.—When the rate of rotation of a

rigid body about a fixed axle varies, then the rate of change

of the angular or rotational velocity is called the angular

or rotational acceleration, just as rate of change of linear

velocity is called linear acceleration.

The usual symbol for angular acceleration is w. Thus w is

at any instant the number of radians per second that are

being added per second at the instant under consideration.

We shall deal at first with uniform angular accelerations, for

which we shall use the less general symbol A.

Uniformly accelerated Rotation.—If a rigid body
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start rotating from rest with a uniform angular acceleration

A, then after t seconds the angular velocity w is given by

o> = A^.

If the body, instead of being at rest, had initially an angular

velocity w^, then at the end of the interval of / seconds the

angular velocity would be

<o = w^+A; (i)

Since during the t seconds the velocity has grown at a

uniform rate, it follows^ that its average value during the

interval, which, when multiplied by the time, will give the

whole angle described, lies midway between, or is the arith-

metic mean between, the initial and final values, i.e. the

average angular velocity for the interval,

2

and the angle described

= (a>^+JAO^

= a)„if+iAj!^ (ii)

By substituting in (ii) the value of t given in (i) we obtain

the equation

(o2=w^2_i.2A(9 (iii),

which connects the angular velocity w with initial velocity w^

and the angle d swept through.

The student will observe that these equations are precisely

similar to and are derived in precisely the same way as the

three fundamental kinematic equations that he has learned to

^ It is not considered necessary to reproduce here the geometrical

or other reasoning by which this is established. See Garnett's

Elementary Dynamics, and Lock's Dynamicsfor Beginners.
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flse in dealing with uniformly accelerated rectilinear motion

of a particle, viz.:

—

v=^U'\-at ..,.»... (i)

s=M^-|-^a/' . ...... (ii)

v'^—u'-\-1as (iii)

Example 1.—A wheel is set gradually rotating from rest with

a uniform angular acceleration of 30 units of angular velocity per sec.

In what time will it acquire a rate of rotation of 300 revolutions per

minute ?

Solution.—300 revolutions per minute is an angular velocity of

300x27r ,. , . , .„ , .. • A • 300x27r——— radians per sec, which will be attained in —-—— - sec.

= !!:sec.= ?i^ sec.= 1-0472 sec.
3 3

Example 2.—A wheel revolves 30 times per sec. : with what uni-

form angular acceleration will it come to rest in 12 sec, and how
many turns will it make in coming to rest ?

Solution.—Initial angular velocity = a)„ = 30 x 2?? = GOtt.

This is destroyed in 12 sec,

.*. angular acceleration= --r^

= -57r

= — 15 "708 radians per sec, each second.

The — sign means that the direction of the acceleration is opposite

to that of the initial velocity w^, which we have tacitly assumed to

be + in writing it equal to GOtt.

The angle described in coming to rest is obtained at once from the

3rd of the fundamental equations now that we know the value of A.
Thus :—

a)2=a,,2 + 2A^
O2=(607r)2-107r5

.-. 107r^=(607r)2

.*. ^= 3607r

=3607r revolutions.

-=180 rovolution a.
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Example 3.—A wheel rotating 3000 times a minute has a uniform

angular retardation of tt radians per sec. each second. Find when it

will be brought to rest, and when it will be rotating at the same

rate in the opposite direction.

3000 revolutions per min. = 3000 x Stt

60

= IOOtt radians per sec,

and will therefore be destroyed by the opposing acceleration tt in 100

sec. The wheel will then be at rest, and in 100 sec. more the same

angular velocity will have been generated in the opposite direction.

(Compare this example with that of a stone thrown vertically up

and then returning.)

Geometrical Representation of Rotational Veloci-

ties and Accelerations.—At any particular instant the

motion of a rigid body, with one point fixed, must be one of

rotation with some definite angular velocity about some axis

fixed in space and passing through the point. Thus the

rotational velocity is, at any instant, completely represented

by drawing a straight line, of length proportional to the

rotational velocity, in the direction of the axis in question,

and it is usual to agree that the

direction of drawing and naming

shall be that in which a person

looking along the axis would find

the rotation about it to be right-

^^^ J
handed (or clockwise). Thus the

line OA would correspond to the

direction of rotation indicated in the fig.

If we choose to conceive a body as affected by simultaneous

component rotations about three rectangular intersecting

axes, we shall obtain the actual axis and rotational velo-

city, from the lines representing these components by the

parallelogram law.

(For illustration and proof see Appendix (2) and (3).
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In the same way rotational acceleration about any axis

fixed in space may be represented by drawing a line in its

direction (with the same convention), and simultaneous

rotational accelerations may be combined according to the

parallelogram law.

On the Use of the word Moment.—The word moment

was first used in Mechanics in its now rather old-fashioned

sense of * importance ' or ' consequence/ and the moment of a

force about an axis meant the importance of the force with

respect to its power to generate in matter rotation about the

axis ; and again, the moment of inertia of a body with respect

to an axis is a phrase invented to express the importance of

the inertia of the body when we endeavour to turn it about

the axis. When we say that the moment of a force about an

axis varies as the force, and as the distance of its line of action

from the axis, we are not so much defining the phrase

* moment of a force,' as expressing the result of experiments

made with a view to ascertaining the circumstances under

which forces are equivalent to each other as regards their

turning power. It is important that the student should bear

in mind this original meaning of the word, so that such

phrases as ' moment of a force ' and ' moment of inertia ' may

at once call up an idea instead of merely a quantity.

But the word ' moment ' has also come to be used by analogy

in a purely technical sense, in such expressions as the * mo-

ment of a mass about an axis,' or ' the moment of an area with

respect to a plane,' which require definition in each case. In

these instances there is not always any corresponding physical

idea, and such phrases stand, both historically and scientifi-

cally, on a different footing.
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Unfortunately the words ' moment of a force ' are regarded

by some writers as the name rather of the product * force X
distance from axis ' than of the property of which this product

is found by experiment to be a suitable measure. But

happily for the learner the difficulty thus created has been

met by the invention of the modern word torque to express

* turning power.'

Definition of Torque.—A force or system of forces which

has the property of turning a body about any axis is said to

be or to have a torque about that axis (from the Latin torgueo,

I twist).

Definition of Equal Torques.—Two torques are said to

be equal when each may be statically balanced by the same

torque.

Fundamental Statical Experiment.—Torques are

found to be equal when the products of the force and the

distance of its line of action from the axis are equal. Experi-

ments in proof of this may be made with extreme accuracy.

The result may also be deduced from Newton's Laws of

Motion.

Measure of Torque.—The value of a torque is the value

of this product. This again is a matter of definition.

Unit Torque.— Thus the unit force acting at unit distance

is said to be or to have unit torque, and a couple has unit

torque about any point in its plane when the product of its

arm and one of the equal forces is unity.



Definitions of the Terms, 9

British Absolute Unit of Torque.—Since in the British

Absolute system, in which the lb. is chosen as the unit of

mass, the foot as unit of length, and the second as unit of

time, the unit of force is the poundal, it is reasonable and is

agreed that the British absolute unit of torque shall be that

of a poundal acting at a distance of 1 foot, or (what is the

same thing, as regards turning) a couple of which the force is

one poundal and the arm one foot. This we shall call a

poundal-foot, thereby distinguishing it from the foot-poundal,

which is the British absolute unit of work.

Gravitation or Engineer's British Unit of Torque.
—In the Gravitation or Engineer's system in this country,

which starts with the foot and second as units of length and

time, and the pound pull {i.e. the earth's pull on the standard

lb.) as unit of force, the unit of torque is that of a couple of

which each force is 1 pound and the arm 1 foot. This may

be called the * pound-foot.' *

Distinction between * pound ' and * lb.*—The student

should always bear'in mind that the word pound is used in

two senses, sometimes as a force, sometimes as a mass. He
will find that it will contribute greatly to clearness to follow

the practice adopted in this book, and to write the word

' pound ' whenever a force is meant, and to use the symbol

* lb.' when a mass is meant.

Axis and Axle.—An axis whose position is fixed rela-

tively to the particles of a body may be conveniently referred

to as an axle.

* On this system the unit mass is that to which a force of 1 pound
would give an acceleration of 1 foot-per-second per second and is a

mass of about 32*2 lbs. It is convenient to give a name to this practical

unit of inertia, or sluggishness. We shall call it a ' slug.'



CHAPTEE II.

ROTATION UNDER THE INFLUENCE OF TORQUE.

The student will have learnt in that part of Dynamics which

deals with the rectilinear motion of matter under the influ-

ence of force, and with which he is assumed to he familiar,

that the fundamental laws of the subject are expressed in the

three statements known as Newton's Laws of Motion. These

propositions are the expression of experimental facts. Thus,

nothing but observation or experience could tell us that the

acceleration which a certain force produces in a given mass

would be independent of the velocity with which the mass

was already moving, or that it was not more difficult to set

matter in motion in one direction in space than in another.

We shall now point out that in the study of the rotational

motion of a rigid body we have exactly analogous laws and

properties to deal with : only that instead of dealing with

forces we have torques ; instead of rectilinear velocities and

accelerations we have angular velocities and accelerations

;

and instead of the simple inertia of the body we have to con-

sider the importance or moment of that inertia about the

axis, which importance or moment we shall learn how to

measure.

It will contribute to clearness to enunciate these corre-

sponding laws with reference first to a rigid body pivoted
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about a fixed axle, i.e. an axis which remains fixed in the body,

and in its position in space ; and although it is possible to

deduce each of the propositions that will be enunciated as con-

sequences of Newton's Laws of Motion, without any further

appeal to experiment, yet we shall reserve such deduction

till later, and present the facts as capable, in this limited case

at any rate, of fairly exact, direct experimental verification.

Proposition I.

—

Tlie rate of rotation of a rigid body revolving

about an axis fixed in the body and in space cannot be changed

except by the application of an external force having a moment

about the axis, i.e. by an external torque.

Thus, a wheel capable of rotating about a fixed axle cannot

begin rotating of itself, but if once set rotating would con-

tinue to rotate for ever with the same angular velocity, unless

acted on by some external torque (due, e.g. to friction) hav-

ing a moment about the axis. Any force whose line of action

passes through the axis will, since this is fixed, be balanced

by the equal and opposite pressure which fixes the axis. It

is true that pressure of a rotating wheel against the material

axle or shaft about which it revolves does tend to diminish

the rate of rotation, but only indirectly by evoking friction

which has a moment about the axis.

It is impossible in practice to avoid loss of rotation through

the action of friction both with the bearings on which the

body is pivoted and with the air; but since the rotation is

always the more prolonged and uniform the more this friction

is diminished, it is impossible to avoid the inference that the

motion would continue unaltered for an indefinite period

could the friction be entirely removed.

The student will perceive the analogy between thia first
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Proposition and that known as Newton's First Law of

Motion.

Proposition II.

—

The angular acceleration or rate of change

of angular velocity produced in any given rigid mass rotating about

an axis fixed in the body and in space is proportional to the

moment about the axis of the external forces applied, i.e. to the

value of the external torque.

To fix the ideas, let the student

think first of a wheel rotating about

a fixed shaft passing through its

centre, and to this wheel let us

apply a constant torque by pulling

with constant force the cord AB
wrapped round the circumference.

[It may be well to point out here that if the wheel be accu-

rately symmetrical, so that its centre of gravity lies in the

axis of the shaft, then, as will be shown in the chapter on

the Centre of Mass, since the

centre of gravity or centre of

mass of the wheel does not

move, there must be some other

equal and opposite external

force acting on the body. This

other force is the pressure of the

axle, so that we are really apply-

ing a couple as in Fig. 2 ; but this latter force has no moment
about the axis, and does not directly affect the rotation.]

Our Proposition asserts that

(1) So long as the torque has the same value, i.e. so long

as the cord is pulled with the same force, the
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acceleration of the angular velocity of the wheel

is uniform, so that the effect on the wheel of any

torque, in adding or subtracting angular velocity, is

independent of the rate at which the wheel may

happen to be rotating when the torque is applied.

(2) That a torque of double or treble the value would pro-

duce double or treble the acceleration, and so on.

(3) If several torques be applied simultaneously, the effect

of each on the rotation is precisely the same as if it

acted alone.

Also it follows

(4) That different torques may be compared, not only

statically but also dynamically, by allowing them

to act in turn on the same

pivoted rigid body in a

plane perpendicular to the

axis, and observing the

angular velocity that each

generates or destroys in

the same time.

Methods of Experimental

Verification.—Let an arrangement

equivalent to that of the figure be

made. AB is an accurately centred

wheel turning with as little friction

as possible on a horizontal axis, e.g.

a bicycle wheel on ball bearings.

Round its circumference is wrapped a fine cord, from one

end of which hangs a mass C of known weight (W), which

descends in front of a graduated scale.

FIO. 4.
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It will be observed that C descends with uniform accelera-

tion. This proves that the tension (T) of the cord BC on

the weight is uniform, and from observation of the value

(a) of the acceleration, that of the tension is easily found,

being given by the relation

W-T_a
W 'g

(where ^ is the acceleration that would be produced in the mass

by the force W alone), and T multiplied by the radius of the

wheel is the measure of the torque exerted. Thus the arrange-

ment enables us to apply a known and constant torque.

But since the linear acceleration of C is uniform, it follows

that the angular acceleration of the wheel is uniform.

By varying the weight W, the torque may be varied, and

other torques may be applied simultaneously by means of

weights hung over the axle, or over a drum attached thereto,

and thus the proportionality of angular acceleration to total

resultant torque tested under various conditions.

It will be observed that in the experiments described we

assume the truth of Newton's Second Law of Motion in order

to determine the value of the tension (T) of the cord ; but it

is possible to determine this directly by inserting between

and B a light spring, whose elongation during the descent

tells us the tension applied without any such assumption.

Variation of the Experiments.—Instead of using our

known torque to generate angular velocity from rest, we may

employ it to destroy angular velocity already existing in

the following manner :

—

Let a massive fly-wheel or disc be set rotating about an

axis with a given angular velocity, and be brought to rest by
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a friction brake which may be easily controlled so as to

maintain a constant measurable retarding torque. It will be

found that, however fast or slowly the wheel be rotating, the

same amount of angular velocity is destroyed in the same

time by the same retarding torque ; that a torque r times as

great destroys the same amount of angular velocity in —

of the time; while if a second brake be applied simultaneously

the effect of its retarding couple is simply superadded to that

of the first.

It may be remarked that the direct experimental verifica-

tions here quoted can be performed with probably greater

accuracy than any equally direct experiment on that part of

Newton's Second Law of Motion to which our 2nd Proposition

corresponds^ viz. that 'the linear acceleration of a given body is

proportional to the impressed force, and takes place in the

direction of the force.'

Thus, our second Proposition for rotational motion is really

less far removed than is Newton's Second Law of Motion

from fundamental experiment.

Familiar Instances.—Most people are quite familiar with

immediate consequences of these principles. For example, in

order to close a door every one takes care to apply pressure

near the outer and not near the hinged side, so as to secure

a greater moment for the force. A workman checking the

rotation of any small wheel by friction of the hand applies

his hand near the circumference, not near the axis.

The Analogue of Mass in Rotational Motion.—In
the study of rectilinear motion it is found that if after making

experiments op some giv^n t>ody we pass to another, the"
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same forces applied to the second body do not, in general,

produce in it the same accelerations. The second body is

found to be less easy or more easy to accelerate than the

first. We express this fact by saying that the 'inertia' or

'mass' of the second body is greater or less than that of the

first. Exactly the same thing occurs in the case of rotational

motion, for experiment shows that the same torque applied

to different rigid bodies for the same time produces, in

general, different changes of angular velocity. Thus, the

pull of a cord wrapped round the axle of a massive fly-wheel

will, in say 10 seconds, produce only a very slow rotation,

while the same torque applied to a smaller and lighter wheel

will, in the same time, communicate a much greater angular

velocity.

It is found, however, that the time required for a given

torque to produce a given angular velocity does not depend

simply on the mass of the rigid body. For, if the wheel be

provided as in the figure with heavy

bosses, and these be moved further

from the axis, then, although the

mass or inertia of the wheel, as re-

gards bodily motion of the whole in

a straight line, is unaltered, yet it is

now found to be more difficult to

accelerate rotationally than before.

The experiment may be easily made

with our bicycle wheel of Fig. 4, by removing alternate

tensional spokes and fitting it with others to which sliding

masses can be conveniently attached.

With two wheels, however, or other rigid bodies, precisely

similar in all respects except that one is wc^de of ^ lighter
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material than the other, so that the masses are different, it is

found that the one of less mass is proportionately more easy

to accelerate rotationally.

Hence we perceive that in studying rotational motion we

have to deal not only with the quantity of matter in the

body, but also with the arrangement of this matter about the

axis ; not solely with the mass or inertia of the body, but

with the importance or moment of this inertia with respect

to the axis in question. We shall speak of this for the

present as the Rotational Inertia of the body, meaning that

property of the body which determines the time required for

a given torque to create or destroy in the body a given

amount of rotational velocity about the axis in question.

Definition of the Unit of Rotational Inertia.—Just

as in the Dynamics of rectilinear motion we may agree that a

body shall be said to have unit mass when unit force acting on it

produces unit acceleration, so in dealing with the rotation of

a rigid body it is agreed to say that the body has unit rota-

tional inertia about the axis in question when unit torque

gives it unit angular acceleration, i.e, adds or destroys in it,

in one second, an angular velocity of one radian per sec.

If unit torque acting on the body takes, not one second,

but two, to generate the unit angular velocity, then we say

that the rotational inertia of the body is two units, and,

speaking generally, the relation between the torque which

acts, the rotational inertia of the body acted on, and the

angular acceleration produced, is given by the equation

Angular acceleration ==- ;

—

%r—, —.
Rotational inertia

Just as in rectilinear motion, the impressed force, the mass

B
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acted on, and the linear acceleration produced, are connected

by the relation

A 1 ,• Force
Acceleration= .

mass

Examples for Solution.— (1) A friction brake which exerts a con-

stant friction of 200 pounds at a distance of 9 inches from the axis of

a fly-wheel rotating 90 times a minute brings it to rest in 30 seconds.

Compare the rotational inertia of this wheel with one whose rate of

rotation is reduced from 100 to 70 turns per minute by a friction

couple of 80 pound-foot units in 18 seconds. Ans. 25 : 24.

(2) A cord is wrapped round the axle, 8 inches in diameter, of a

massive wheel, whose rotational inertia is 200 units, and is pulled

with a constant force of 20 units for 15 seconds, when it comes off.

What will then be the rate of revolution of the wheel in turns

per minute? The unit of length being 1 foot, and of time 1

second. Ans, 4*774 turns per minute.

To calculate the Rotational Inertia of any rigid

body.—We shall now show how the rotational inertia of any

rigid body may be calculated when the arrangement of its

particles is known.

We premise first the following :

—

Proposition III.

—

The ^rotational inertia* of any rigid hody

is the sum of the * rotational inertias ' of its constituent parts.

That this is true may be accurately ascertained by trials

with the experimental wheel of Figs. 4 and 5. Let the wheel,

unloaded by any sliding pieces, have its rotational inertia

determined by experiment with a known torque in the manner

already indicated, and call its value I„. Then let sliding

pieces be attached in certain noticed positions, and let the

new value of the rotational inertia be Ii. Then, according

to our proposition, Ii— I, is the rotational inertia of the sliders.

If this be the case, then the increase of rotational inertia
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produced by the sliders in this position should be the same,

whether the wheel be previously loaded or not. If trial be now

made with the wheel loaded in all sorts of ways, it will be

found that this is the case. The addition of the sliders in the

noticed positions always contributes the same increase to the

rotational inertia.

Rotational Inertia of an ideal Single-particle

System.—We now proceed to consider theoretically, in the

light of our knowledge of the dynamics of a particle, what

must be the rotational inertia of an ideal rigid system

consisting of a single particle of mass m connected by a

rigid bar, whose mass may be neglected, to an axis at dis-

tance (r).

Let be the axis, M the particle, so that 0M=7*, and

let the system be acted on

by a torque of L units. v^

This we may suppose to be 2—

—

)
^ *^ .

, - _. , , FIG. 0.

due to a force P acting on the

particle itself, and always at right angles to the rod OM, and

of such value that the moment of P is equal to the torque,

i.«. Pr = L or P= -.
r

The force P acting on the mass m generates in it a linear

P . P .

acceleration a = — in its own direction. — is therefore the
m w

amount of linear speed generated per unit time by the force

in its own direction, and whatever be the variations in this

linear speed (r), — is always equal to the rotational velocity co,

and therefore the amount of rotational velocity generated per
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unit time, or the rotational acceleration, A, is -th of the
r

linear speed generated in the same time,

. . P Pr
t.e. A=—=—».

rm mr^

L

Torque

mr'*

But A= ^q""
. ; (See p. 17.)

rotational mertia

.*. The rotational inertia of a single particle of mass m at a

distance r from the axis=m7''.

Any rigid body may be regarded as made up of such ideal

single-particle systems, and since the rotational inertia of the

whole is the sum of the rotational inertias of the parts, we

see that if wzi, Wj, m„ ... be the masses of the respective

particles, r,, rj, ^-g, . . . their distances from the axis, then

The rotational inertia of the body

= 2(7727'').

This quantity 1{mr*) is generally called the Moment of

Inertia of the body. The student will now understand at

once why such a name should be given to it, and the name

should always remind him of the experimental properties to

which it refers.

We shall from this point onward drop the term ' rotational

inertia,' and use instead the more usual term 'moment of

inertia,' for which the customary symbol is the letter I.

Unit Moment of Inertia.—We now see that a particle
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of unit mass at unit distance from the axis has unit moment

of inertia.

It is evident also that a thin

circular hoop of unit radius

and of unit mass rotatinsro

about a central axis perpen-

dicular to the plane of the

circle, has also unit moment
- ... - ... FIG. 7. no. 8.

of inertia; for every particle

may with close approximation be regarded as at unit dis

tance from the centre.

In fact, I=2(7nr»)

=2(m)

= 1.

The same is true for any segment of a thin hoop (Fig. 8)

of unit radius and unit mass, and it is also true for any thin

hollow cylinder of unit radius and unit mass, rotating about

its own axis.

Thus the student will find it an easy matter to prepare

accurate standards of unit moment of inertia. A thin

cylinder or hoop, of one foot radius and weighing 1 lb., will

have the unit moment of inertia on the British absolute

system. We shall call this the Ib.-foot^ unit. The engineer's

unit is that of one slug (or 32-2 lbs.) at the distance of 1 foot,

i.e. a slug-foot^.

Definition of Angular Momentum.—Just as the pro-

duct mass X velocity, or (mv), in t^ranslational motion is called

momentum, so by analogy when a rigid body rotates about a

fixed axle, the product (moment of inertia) x (angular or rota-
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tional velocity), or (Iw), is called angular or rotational mo-

mentum.* And just as a force is measured by the change of

momentum it produces in unit time, so a torque about any

axis is measured by the change of angular momentum it

produces in unit time in a rigid body pivoted about that axis,

for since A.=^

L=IA.

To find the Kinetic Energy of a rigid body rotat-

ing at)0ut a fixed axle.—At any given instant every

particle is moving in the direction of the tangent to its cir-

cular path with a speed v, and its kinetic energy is therefore

equivalent to Jmz;* units of work, and since this is true for

all the particles the kinetic energy may be written 2(
j.

But for any particle the tangential speed v—rm where r is

the distance of the particle from the axis and w is the angular

velocity

;

.2 -.a

.*. kinetic energy=S—-— units of work,

and in a rigid body a> is the same for every particle

;

.*. the kinetic energy =a)'|2(mr*) units of work,

= JIw' units of work, t

The student will observe that this expression is exactly

* When the body is not moving with simple rotation about a given

fixed axis, w is not generally the same for all the particles, and the

angular momentum about that axis is then defined as the sura of the

angular momenta of the particles, viz. 2(mr-u>).

t It will be remembered that the unit of work referred to will

depend on the unit chosen for I. If the unit moment of inertia be that

of 1 lb. at distance of one foot, then the unit of work referred to

will be the foot-poundal (British Absolute System). If the unit

moment of inertia be that of a 'slug' at distance of one foot, then the

unit of vtox-k referred to will be the foot-pound.
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analogous to the corresponding expression \mv'*^ for the kinetic

energy of translation.

Work done by a Couple.- -When a couple in a plane

at right angles to the fixed axis about which a rigid body is

pivoted, turns the body through an angle ^, the moment of

the couple retaining the same value (L) during the rotation,

then the work done by the couple is L^.

For the couple is equivalent in its effect on the rotation to

a single force of magnitude L acting at

unit distance from the axis, and always at ^'Z^IZ"^^
right angles to the same radius during the //^ ^^\

j\

rotation.
f

< y\
\

* ^^^ } I

In describing the unit angle, or 1 radian, yV / /

this force advances its point of application \^!!^22^^1^^

through unit distance along the arc of the fio. 10.

circle, and therefore does L units of work,

and in describing an angle 6 does ltd units of work.

Analogy with the expression for the work done

by a force, in rectilinear motion.—It will be observed

that this expression for the measure of the work done by a

couple is exactly analogous to that for the work done by a

force in rectilinear motion, for this is measured by the pro-

duct of the force and the distance through which it acts

measured in the direction of the force.

If the couple be L poundal-foot units, then the work done

in turning through an angle 6 is LO foot-poundals. If the

couple be L pound-foot units, then the work done will be L^

foot-pounds.

/
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Change of Kinetic Energy due to a Couple.—
When the body on which the couple acts is perfectly free

to turn about a fixed axis perpendicular to the plane of the

couple, it is easy to see that the work done by the couple is

equal to the change in the kinetic energy of rotation.

For if A be the angular acceleration, w^ the initial, and w

the final value of the angular velocity, then (see equation iii.

p. 4)

2A '

L
T'

and A=y-

... L^=^Ia>'-JI(u/

= Final kinetic energy— Initial kinetic energy.

Radius of Gyration.—It is evident that if we could

condense the whole of the matter in a body into a single

particle there would always be some distance Iz from the axis

at which if the particle were placed it would have the same

moment of inertia as the body has.

This distance is called the radius of gyration of the body

with respect to the axis in question. It is defined by the

relation

M being the mass of the body and equal to the sum of the

masses of its constituent particles.

[We may, if we please, regard any body as built up of a very

great number (n) of eoual particles, each of the same mass,
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which are more closely packed together Avhere the matter

is dense, less closely where it is rare.

Then M=wm and 2(mr'')=m2r',

so thatA;*=m—=—

,

nm n

i.e. k* is the value obtained by adding up the squares of the

distances from the axis of the several equal particles and

dividing by the number of terms thus added together. Tliat

is, we may regard ¥ as the average value of the square of the

distance from the axis to the several constituent equal par-

ticles of the rigid body.]

In a few cases, such as those of the thin hoops or thin hol-

low cylinder figured on p. 21, the value of the radius of

gyration is obvious from simple inspection, being equal to the

radius of the hoop or cylinder.

This is approximately true also for a fly-wheel of which the

mass of the spokes may be neglected in comparison with that

of the rim, and in which the width of the rim in the direction

of a radius is small compared to the radius itself.

Numerical Examples.—We now give a number of

numerical examples, with solutions, in illustration of the prin-

ciples established in this chapter. After reading these the

student should work for himself examples 1, 3, 6, 9, 10, 14,

and 15, at the close of Chapter III.

Example 1.—A wheel weighing 81 Z6s., and whose radius of gyration

is 8 inches, is acted on by a couple whose moment is 5 vound-foot units

for half a minute ; find the rate of rotation produced,

\st Method of <5>o/wfion.—Taking 1 lb. as uuit mass. The unit

force is the pouiidal
;

,-. I( = MP) =81xr^y = 81xilb.-ft.2units = 36unit8.
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Moment of force or torque= 5X5r poundal-ft. units=5x 32= 160

units (nearly)
;

angular acceleration =A = torque ^160^40
moment of inertia 36 9

radians per sec. each second
;

the angular velocity generated in half a minute

=a) =Ai= — X 30 radians per sec.
9

^

400 ,.=-^ radians per sec.
o

400 1 ,= -^ X—- turns per sec,
3 ZTT

= -^ X '1589 turns per sec. = 127r2 turns per minute.
u

2rwZ Method of Solution.—Taking the unit of force as 1 pound, then

the unit of mass is 1 slug = 32 lbs. (nearly),

81
the mass of the body is ^ slugs.

Torque = 6 pound-foot units
;

1 1 , A torque ^ 9 40
.*. angular acceleration = A = t—V^—i^ = 5 -^ o = Trmoment ol mertia 8 9

radians per sec. each second
;

.'., as before, the rate of rotation produced in one half-min.

= 1271 2 turns per minute.

Example 2.

—

Find the torque which in one minute will stop the

rotation of a wheel whose mass is 160 lbs. and radius of gyration

1 ft. 6 in. and which is rotating at a rate of 10 turns per second.

Find also the number of turns the wheel will make in stopping.

1st Solution.—Using British absolute units. The unit of mass ia

I lb., the unit of force 1 poundal.

I = Mfc2 = 160 X (- ) units= 360 units.

Angular velocity to be destroyed= a) = 10 x 27r radians per sec. = 207r
;
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/. this is to be destroj'ed in 60 sec. ; .*. angular acceleration required

SOtT TT ,. , ,x=—-=- radians per sec. each second.

The torque required to give this to the body in question

= moment of inertia x angular acceleration= 360 X 5-

= 1207r poundal-foot units

1207r 15 , ., .= — —=-r TT pound-ft. units.

The average angular velocity during the stoppage is half the initial

velocity, or 5 turns per second, therefore the number of turns made
in the 60 seconds required for stopping the wheel = 60 x 5 = 300.

2nd Solution.—Using Engineer's or gravitation units. The unit

force is 1 pound. The unit mass is 1 slug = 32 lbs. nearly.

T TIT72 160 /3\2 .^ 45 .

I= M.k^=-:r^xi — ) units =— units.

The angular velocity to be destroyed= 10 x 27r radians per sec

The time in which it is to be destroyed is 60 sec;

.*. angular acceleration =A= —^ =- radians per sec. each sec.

The torque required to give this to the body in question

45 IT 15= lxA=— X—-=— TT pound-ft. units as before.

Example 8.

—

A cord, 8 feet long, is tm-apped round the axle, 4 inches

in diameter, of a heavy wheel, and is pulled with a constant force of

60 pounds till it is all unwound and comes off. The wheel is then

found to he rotating 90 times a minute ; find its moment of inertia.

Solution.—Using British absolute units. The unit of mass is 1 lb.

and of force 1 poundal.

The force of 60 pounds = 60 x 32 poundals. This is exerted through

a distance of 8 feet
;

,*. the work done by the force = 8 x 60 x 32 ft. -poundals.

The K.E. of rotation generated = ^ Ioj- = ^ I x I'—-—— j .



28 Dyna77zics of Rotation,

Equating the two we have

ilx 9772=8x60x32;

.•/l = 2_x8x60x32^^_f,,^^.^3^
97r2

It will be observed that this result is independent of the diameter

of the axle round which the cord is wound, which is not involved in

the solution. The torque exerted would indeed be greater if the axle

were of greater diameter, but the cord would be unwound .propor-

tionately sooner, so that the angular velocity generated would remain

the same.

Using Engimer's or gravitation units, the solution is as follows:—
The unit of force is 1 pound and of mass 1 slug.

The work done by the 60 pound force in advancing through 8

feet=8 X 60 = 480 ft. pounds.

The K E. of rotation generated = JTa)- =H x (^^ ^ ^- Vfoot-pounds

of work.

Equating the two we have

ilx97r2=480j
2x480.

2x480x32,

i= ^ .^
(slug-ft."* umts)

97r2
lb.-ft.2 units as before

Example 4.

—

A heavy wheel rotating 180 times a minute is brought

to rest in 40 sec. by a uniform friction of 12 pounds applied at a dis-

tance of lb inches from the axis. How long would it take to be

brought to rest by the same friction if two small masses each weighing

1 lb. were attached at opposite sides of the axis, and at a distance of

two feet from it.

Solution.—1st. Using Engineer's or gravitation units. The unit of

force is 1 pound and of mass 1 slug. In order to find the effect of in-

creasing the moment of inertia we must first find the moment of inei tia

1, of the unloaded wheel. This is directly as the toroue reouired to
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stop it, directly as the time taken to stop it, and inversely as the

angular velocity destroyed in that time. Thus

12x^x40
I — ^^

^ 180 X 2iT

slug-foot^ units.

The moment of inertia in the second case is

l2=Ii + 2mr'

= I +— X22
9

100^8 . ,,
«= 1- ^r^ approximately.

Thus the moment of inertia is increased in the ratio

100 8^

!> ^ "^32

IT

and the time required for the same retarding torque to destroy the

same angular velocity is therefore greater in this same ratio, and is

now 40 sec. +^ x , ka ^ 40 sec. = 40'31416 sec
oZ lUU

Or, using absolute units, thus

The unit of mass is 1 lb., the unit force 1 poundal

—

The moment of inertia Ii of the unloaded wheel is directly as the

torque required to stop its rotation, directly as the time required, and

inversely as the angular velocity destroyed in that time, and is equal

1512x32XpX40
^ 180X2.

lb-^t.^""^ts,

60

^ 32x15x40x60 .^ , . , , »

or 1,= X

—

^ units (approximately)

= Ib.-ft.' units.
IT
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The moment of inertia in the second case

= T2=Ii + 2mr2= ?25? + 8;
TT

/. the moment of inertia is increased in the ratio of

3200 _ 3200
l-o : ;

77 IT

and therefore the time required for the same retarding torque to

destroy the same angular velocity is increased in the same proportion,

and is now
8x_rr

3200'

Note to Chapter II.

In order to bring the substance of this chapter with greater vivid-

ness and reality before the mind of the student, we have preferred to

take it as a matter of observation and experiment that the power of a

force to produce angular acceleration in a rigid body pivoted about

a fixed axle is proportional to the product of the force and its distance

from the axis, i.e. to its moment in the technical sense. But this

result, together with the fact that what we termed the ' rotational

inertia ' of a body is given by 2(mr2), might have been obtained as a

direct deduction from Newton's Laws of Motion. We now give

this deduction, premising first a statement of d'Alembert's Principle,

which may be enunciated as follows :
' In considering the resultant

mass-acceleration produced in any direction in the particles of any

material system, it is only necessary to consider the values of the

external forces acting on the system.*

For every force is to be measured by the mass-acceleration it pro-

duces in its own direction (Newton's Second Law of Motion), and

also every force acts between two portions of matter and is accom-

panied by equal and opposite reaction, producing an equal and

opposite mass-acceleration (Newton's Third Law). The action and

reaction constitute what we call a stress. When the two portions of

matter, between Avhich a stress acts, are themselves parts of the

system, it follows that the resultant mass-acceleration thereby pro-

duced in the system is zero. The stress is in this case called an

internal stress, and the two forces internal forces. But though the

forces are internal to the system, yet they are external, or, as Newton
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called them, ' impressed ' forces on the two particles respectively.

Hence, considering Newton's Second Law of Motion to be the record

solely of observations oji particles of matter, we may count up the

forces acting in any direction on any material system and write them

equal to the sum of the mass-accelerations in the same direction, but

in doing so we ought, in the first instance at any rate, to include these

internal forces, thus

-, / external forces \ , -^ / internal forces ^^^^ /'mass- accelerations^
I in any direction J

^
\}in same direction J ^ I in same direction J

We now see that 2(internal forces)= 0.

Hence we obtain as a deduction

external forces'^ _^ /'mass-accelerations'\

^in any direction/ \ in same direction /'

or 2E= 2(ma).

This justifies the extension of Newton's law from particles to bodies

or systems of particles. If any forces whatever act on a free rigid

body, then whether the body is thereby caused to rotate or not, the

sum of the mass-accelerations in any direction is equal to the sum of

the resoliites of the applied forces in the same direction.

Now, since the line of action of a force on a particle is the same as

the line of the mass-acceleration, we may multiply both the force and

the mass-acceleration by the distance r of this line from the axis, and

thus write

the moment about any axis of "j ( moment of the mass-accelera-

the force, on any particle, [• = S tion, along that line, of the

along any line, J ( same particle,

and, therefore, summing up the results for all the particles of any

system, we have

{moments about any axis of) C moments about the same
all the forces acting on the > = 2 < axis of the mass-accele-

particles of the system ) ( rations of the particles,

„ /moments of the external^ ,^ /moments of the intemalX

°'^i, forces J+^V forces )

= 2 /moments of the mass-X

\ accelerations. /

Now, not only are the two forces of an internal stress between two
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particles equal and opposite, but they are aXoti^ the same straight line*

and hence have equal and opposite moments about any axis what-

ever, hence the second term on the left side of the above equation is

always zero, and we are left with

„ /moments of the external\ ^^ /moments of the massA
\ forces / ~ \ accelerations. /

Now, we may resolve the acceleration of any particle into three

rectangular components, one along the radius drawn from the particle

perpendicular to the axis, one parallel to the axis, and one perpen-

dicular to these two. It is only this latter component (which we will

call ap) that has any moment about the axis in question, and its

moment is rap, where r is the length of the radius.

Thus the moment of the mass-acceleration of any particle of mass

m may be written mrap.

Now, in the case of a particle which always retains the same dis-

tance (r) from the axis, ap is the rate of increase of the tangential

speed 17, and if o) be the angular velocity about the axis, v=r(o. So

that ap= rate of increase of rw.

Also, r being constant, the rate of increase of rw is r times the rate

of increase of o). Hence, in this case, ap=rd), and if, further, the

whole system consists of particles so moving, and with the same

angular velocity, i.e. if it is a rigid body rotating about a fixed axle,

then for such a body so moving

2 (moments of the mass-accelerations)= 2mr-ra>.

»=o)2mr*.

Hence, in this case

2 (moments of the external forces) = angular acc° x 2{mr^

., 1 1 *• External torque
or the angular acceleration= ^.

—-i—

•

2 mr^;

* This is, perhaps, not explicitly stated by Newton, but if it were not

true, then the action and reaction between two particles of a rigid

body would constitute a couple giving a perpetually increasing rotation

to the rigid body to which they belonged, and affording an indefinite

supply of energy. No such instance has been observed in Nature.



CHAPTEE III.

DEFINITIONS, AXIOMS, AND ELEMENTARY THEOREMS NECES-

SARY FOR DEALING WITH MOMENTS OF INERTIA.

ROUTH'S rule and its APPLICATION.

Constant use will be made of the following Definitions

and Propositions.

Definition.—By a slight extension of language we speak

of the moment of inertia of a given area with respect to any axis,

meaning the moment of inertia which the figure would have

if cut out of an indefinitely thin, perfectly uniform rigid

material of unit mass per unit area, so that the mass of the

figure is numerically equal to its area. This dynamical defini-

tion becomes purely geometrical, if we say that the moment of

inertia, with respect to any axis, of an area A, and of which

the indefinitely small parts a^ ttj, a,, . . . are at distance

r„ fj, . . . from the axis, is equal to

=^ar').

It will be observed that the area may be either plane or

curved.

Definition.—In the same way the moment of inertia

about any axis of any solid figure or volume V, of which

Vi r, f, . . . are the indefinitely small constituent parts,

may be defined as
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Axiom.—The moment of inertia of a body with respect to

any axis is the sum of the moments of inertia of any con-

stituent parts into which we may conceive it divided, and

similarly the moment of inertia with respect to any axis of any

given surface or volume is equal to the sum of the moments

of inertia of any constituent parts into which we may con-

ccive the surface or volume divided. This follows from the

definitions just given.

Illustration.—Thus the moment of inertia of a peg-top,

shaped as in the figure, about its axis of re-

volution, is equal to the moment of inertia of

the hemispherical dome of wood ABC+ that

of the conical frustum ABDE+that of the

conical point of steel DE.

Axiom.—It is evident that the radius of

gyration of any right prism of uniform density

about any axis perpendicular to its base is the same as that

of the base. For we may conceive the solid divided by an in-

definite number of parallel planes into

thin slices, each of the same shape as

the base.

Thus, if k be radius of gyration of

the basal figure, and M the mass oJ

the prism, the moment of inertia is

MA;' units, and this holds whether

the axis cuts the figure as O2O',, or

does not cut it as OiO'i.

Thus the problem of finding the

moment of inertia of an ordinary

lozenge-shaped compass needle, such

as that figured, reduces to that

o,

o;

via. 12.
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of finding the radius of gyration about 00' of the horizontal

cross-section ABGD.

Proposition I.— The moment of

inertia of a lamina about any axis Oz

pei-pendicular to its plane, is equal to the

sum of its moments of inertia about any

two rectangular axes Ox and Oy in its

plane, and intersecting at the point where the axis Oz meets the

plane of the lamina. Or^

in an obvious notation.

Proof.—From the figure

we have at once

I,=S(7wr')

= l,m{x'+f)

=^mx^-\-^my*

Fia, 14.

Example. — We have al-

ready seen that a thin hoop of radius r and mass m has a moment
of inertia Mr^ about a central

axis perpendicular to its plane.

Let I be its moment of inertia

about a diameter. Then I is

also its moment of inertia abont

a second diameter perpendicular

to the former; .*. by this pro-

position

2I = Mr«i

.. l= Mr2
2

'

i.e., the moment of inertia of

a hoop about a diameter is only

half that about a central ^3ti9 perpendicular to the plane of the hoop.
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Routh's Rule for finding the Moment of Inertia

about an Axis of Symmetry in certain cases.—When
the axis about which the moment of inertia is required passes

through the centre of figure of the body and is also an axis

of symmetry, then the value of the moment of inertia in a

large number of simple cases is given by the following rule of

Dr. Routh :—

Moment of inertia about an axis of symmetry

— AT V ^"""^ ^^ ^^ squares of the perpendicular semi-axes

3, 4, or 5,

Tj_ sum of the squares of the perpendicular semi-axes
or *;

371-375

The denominator is to be 3, 4, or 5, according as the body is

a rectangle, ellipse (including circle), or ellipsoid (including

sphere).

This rule is simply a convenient summary of the results

obtained by calculation. The calculation of the quantity

2(mr') is, in any particular case, most readily performed by the

process of integration, but the result may also be obtained, in

some cases, by simple geometry. We give in Chapter IV.

examples of the calculation in separate cases, and it will be

seen that they are all rightly summarised by the rule as given.

Examples of the Application of Dr. Eouth's Rule.—To find the

radius of gyration in the following cases :

—

(1) 0/ a rectangle of sides (2a) and (2b) about a central

axis perpendicular to its plane.

Here the semi-axes, perpendicular to each other and

to the axis in question, are a and b ; therefore, apply-

ing the rule, we have

(2) Of the same rectangle about a central axis in its plane per-

pendicular to one side (b). Here the semi-axes, perpendicular to
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each other and to the axis in question, are 6 anciO (see fig. 17), (since

the figure has no dimensions perpendicular to its own plane)

;

"
3 ~ 3

*

(3) Of a circular area of radius r about a central axis

perpendicular to its plane. Here the semi-axes, perpen-

dicular to each other and to the axis of symmetry in

question, are r and r

;

/ applying Routh's rule

I.2_!_L-L=1_. rio.r.
*= - 4 2

(4) Of a circular area about a central axis in the plane of the circle.

The semi-axes, perpendicular to each other and to the axis in

question, are r and o ;

.*, applying Routh's rule

4 4

(5) Of uniform sphere about any central axis

5 5

(6) The moment of inertia of a uniform thin rod about a central

axis perpendicular to its length.

I=Massx =Massx—

.

3 3

Theorem of Parallel Axes.—When the moment of

inertia of any body about an axis through the centre of mass

(coincidentwith the centre of gravity *) is known, its moment of

* The centre of gravity of a body or system of heavy particles is de-

fined in statics as the centre of the parallel forces constituting the

weights of the respective particles, and its distance x from any plane

is shown to be given by the relation

_ WiXi + w^^ + w^x^+ . . . +tg,a?«
^~

Wi + w^+ +m;,

_ :^{wx)
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inertia about any parallel axis can be found by applying the

following proposition :

—

Proposition IL—The moment of inertia ofany body about any

axis is equal to its moment of inertia about a parallel axis through

its centre of mass, plus the moment of inertia which the body would

have about the given axis if all collected at its centre of mass.

Thus, if I be the moment of inertia about the given axis,

T^ that about the parallel axis through the centre of mass,

and R the distance of the centre

of gravity from the given axis,

and M the mass of the body.

I= I,+MR».

Proof.—Let the axis of rota-

tion cut the plane of the dia-

gram in 0, and let a parallel axis

no. 18. ^^ through the centre of mass (or

centre of gravity) of the body

cut the same plane in G, and let P be the projection on this

where w^, W2 . . . . are the weights of the respective particles,

and Xi, X2 . . . . their distances from the plane in question.

Now, since the weight (w) of any piece of matter is found by ex-

periment to be proportional to its mass or inertia (w), we may substi-

tute (m) for (w) in the above equation, and we thus obtain

_ _ 2(rwa;)
*~ ^m '

For this reason the point in question is also called the centre of mass, or

centre of inertia.

If the weight of {i.e. the earth -pull on) each particle were not pro-

portional to its mass, then the distance of the centre of gravity from

^(ivx)
any plane would still be ——'

: but the distance of the centre of mass

"Silnix]
from the same plane would be -—: and tha two points would not

then coincide.
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plane of any particle of the body. Let m be the mass of the

particle. OP and GP are projections of the radii from the two

axes respectively. Let PN be perpendicular to OG. Then,

since 0P'=dG*+GP»-20G.GN

;

.-. 2(mOP-=)=2(mOG»)+2(mGP')-26G.2(77?GN)

= MOG''+2(777GP'')-0,

for, since G is the projection of the centre of mass, the posi-

tive terms in the summation 2(mGN) must cancel the negative.

(The body in fact would balance aboub any line through G.)

Thus, I=MIIHV

Applications.—(1) To find the moment of inertia of a door

about its hinges.

Regarding the door as a uniform thin lamina

of breadth a and mass M, we see that its

moment of inertia, about a parallel axis through

Its centre of gravity, is

L=M
«)'+"•=

M
12'

I=MS+M(|y= M|-'.
no. 19.

(2) To find the moment of inertia of a uniform circular disc

about a tangent in its plane.

^^^''+^I,=M (by Routh's rule),

and I=I,+Mr«

=Mg+r«) = M|r«.

(3) To find the moment of- inertia of a uniform
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bar or other prism about a central axis perpendicular to its lengthy

where the bar is not thin.

(For example of a bar-magnet

of circular cross-section suspended

by a fine thread as in the fig.)

For the sake of being able to

deal with a case like this, which

is of very common occurrence,

we shall prove the following :

—

FIG. 21,

Proposition 111.—The moment of .inertia of any uniform

right prism, of anrj cross section whatever about a central axis

perpendicular to the line joining the centres of gravity of the ends,

is equal to the moment of inertia of the same prism considered as

a thin bar, plus the moment of inertia that the prism would

have if condensed by endwise contraction into a single thin slice

at the axis.

Proof—Let g, g^, be the centres of gravity of the ends of

the prism.

g r?; ^
FIQ. 22.

Imagine the prism divided into an indefinite number of

elementary thin slices by planes parallel to the ends. The
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line ^, ^1, contains the centre of gravity of each slice and of

the whole prism. Let r be the distance of any one of these

slices from the centre of gravity (G) of the whole prism, and m
the mass of the slice. Then the moment of inertia i of this

slice about the given axis 00' is, by the theorem of parallel

axes, given by z=z,+mr^,

where \ is the moment of inertia of the slice about a parallel

axis through its centre of gravity
;

.'. the whole moment of inertia I required is

I=2(i,+mr2)

and 2t, is the same as the moment of inertia I, of all the slices

condensed into a single slice ; thus the proposition is proved.

This theorem is of use in questions involving the oscillationg

of a cylindrical bar magnet under the influence of the hori-

zontal component of the earth's magnetic force.
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Examples for Solution.

(Jn <^e.s«, as in all other Examples in the book, the anstvers given

are approximate only. Unless otherwise stated, the value of g is taken

as 32 feet per second each second, instead 0/ 32 19.)

(1) A heavy wheel has a cord 10 feet long coiled round the axle.

This cord is pulled wiih a constant force of 25 pounds till it is all

unwound and comes ofiF. The wheel is then found to be rotating

5 times a second. Find its moment of inertia. Also find how long

a force of 5 pounds applied at a distance of 3 inches from the axis

would take to bring the wheel to rest.

Ans. (1) 16-2 lb.-ft.2 units.

(2) 12-72 sec.

(2) A uniform door 8 feet high and 4 feet wide, weighing 100 lbs.,

swings on its hinges, the outer edge moving at the rate of 8 feet per

second. Find (1) the angular velocity of the door, (2) its moment of

inertia with respect to the hinges, (3) its kinetic energy in foot-pounds,

(4) the pressure in pounds which when applied at the edge, at right

angles to the plane of the door, would bring it to rest in 1 second.

Ans. (1) 2 radians per sec.

(2) 533-3 lb.-ft.2 units.

(3) 33-3 (nearly).

(4) 8-3 pounds (nearly).

(3) A drum whose diameter is 6 feet, and whose moment of inertia

is equal to that of 40 lbs. at a distance of 10 feet from the axis, is

employed to wind up a load of 500 lbs. from a vertical shaft, and is

rotating 120 times a minute when the steam is cut off. How far

below the shaft-mouth should the load then be that the kinetic energy

of wheel and load may just suffice to carry the latter to the surface ?

Ans. 41 -9 feet (nearly).

(4) Find the moment of inertia of a grindstone 3 feet in diameter

and 8 inches thick ; the specific gravity of the stone being 2-14.

Ans. 709-3 lb.-ft.2 units.
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(5) Find the kinetic energy of the same stone when rotating

6 times in 6 seconds. Ans. 303*7 ft.-pounds.

(6) Find the kinetic energy of the rim of a fly-wheel whose exter-

nal diameter is 18 feet, and internal diameter 17 feet, and thickness

1 foot, and which is made of cast-iron of specific gravity 7*2, when
rotating 12 times per minute.

{N.B.—Take the mean radius of the rim, viz. 8f feet, as the radius

of gyration.) Ans. 23360 ft.-pounds (nearly).

(7) A door 7^ feet high and 3 feet wide, weighing 80 lbs., swings

on its hinges so that the outward edge moves at the rate of 8 feet

per sec. How much work must be expended in stopping it ?

Ans. 853*3 foot-poundals or 26*67 foot-pounds (very nearly).

(8) In an Atwood's machine a mass (M) descending, pulls up a

mass (m) by means of a fine and practically weightless string passing

over a pulley whose moment of inertia is I, and which may be

regarded as turning without friction on its axis. Show that the ac-

celeration a of either weight and the tensions T and t of the cord at

the two sides of the pulley are given by the equations

. . .
(i)

. . .
(ii)

. . . (iii)

where r= radius of pulley.

What will equation (iii) become if there is a constant friction of

moment Q) about the axis ?

Ans. a
r^CT-t-f)

I

(9) A wheel, whose moment of inertia is 60 Ib.-ft.* units, has a

horizontal axle 4 inches in diameter round which a cord is wrapped,

to which a 10 lb. weight is hung. Find how long the weight will

take to descend 12 feet. Ans. 11*66 sec. (nearly).

Z)»V<!C<ion«.—Let time required =t sec. Then the average velocity

during the descent is — feet per sec. , and since this has been acquired
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at a uniform rate the final velocity of the weight is twice this. Knowing
now the final velocity v^) of the cord and the radius (r) of the axle we

have the angular velocity a;= - of the wheel at the end of the descent,

and can now express the kinetic energies of both weight and wheel.

The sum of these kinetic energies is equal to the work done by the

earth's pull of 10 pounds acting through 12 feet, i.e. to 12x10 foot-

pounds or 12 X 10 X 32 foot-poundals. This equality enables us to find t.

(10) Find the moment of inertia of a wheel and axle when a 20 lb.

wei<,'ht attached to a cord wrapped round the axle, which is horizon-

tal and 1 foot in diameter, takes 10 sec. to descend 5 feet.

Ans. 1595 Ib.-ft.^ units.

Directions.—Let the moment of inertia required be I Ib.-ft.^ units.

5 .

The average linear velocity of the weight is -r^ i-s.

2x5
Hence final =-TTr- f.s. =1 f.s. =».

space traversed per sec. by point on circumference of axle
Angular velocity (w)= -r-- z

—

\® ^ ^ ' radius of axle

Now equate sum of kinetic energies of weight and wheel to work done
by earth's pull during the descent.

(11) A cylindrical shaft 4 inches in diameter, weighing 80 lbs.,

turns without appreciable friction about a horizontal axis. A fine

cord is wrapped round it by which a 20 lb. weight hangs. How long

will the weight take to descend 12 feet ? Ans. <= 1*50 sec.

(12) If there were so much friction as to bring the shaft of the

previous question to rest in 2 seconds from a rotation of 10 turns per

sec, what would the answer have been ? ^j^ 1-50 gee. x s/^.^' 6167*

(13) Two weights, of 3 lbs., and 5 lbs., hang over a fixed pulley in

the form of a uniform circular disc, whose weight is 12 oz. Find the

time taken by either weight to move from rest through ff feet.

Ans. \ sec.

(14) Find the moment of inertia of a fly-wheel from the following

data :—The wheel is set rotating 80 times a minute, and is then

thrown out of gear and brought to rest in 3 minutes by the pressure
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of a friction brake on the axle, which is 18 inches in diameter. The

normal pressure of the brake, which has a plane surface, is 200

pounds, and the coefficient of friction between brake and axle i^ '6.

Ans. 61890 lb.-ft.2 units.

(15) Prove that when a model of any object is made of the same

material, but on a scale n times less, then the moment of inertia of

the real object is n^ times that of the model about a corresponding

(16) Show that, on account of the rotation of each wheel of a

carriage, the eifective inertia is increased by an amount equal to the

moment of inertia divided by the square of the radius.

(17) A wheel on a frictionless axle has its circumference pressed

against a travelling band moving at a speed which is maintained

constant. Prove that when slipping has ceased as much energy will

have been lost in heat as has been imparted to the wheeL



CHAPTEE IV.

MATHEMATICAL PROOFS OF THE DIFFERENT CASES INCLUDED

UNDER ROUTH'S RULE.

This chapter is written for those who are not satisfied to

take the rule on trust. In several cases the results are ob-

tained by elementary geometry.

On the Calculation of Moments of Inertia.—In

the previous chapter we quoted a * rule ' which summarised

the results of calculation in various cases. We now give, in

a simple form, the calculation itself

for several of the cases covered by

the rule.

(l) To find I for a uniform thin

rod of length (E) and mass (m), per

unit length, about an axis through one

end perpendicular to the rod.

Let AB be the rod, OAO' the

axis.

Through B draw BO perpen-

dicular to the plane OAB and equal

to AB. On BO, in a plane per-

pendicular to AB, describe the

square BODE. Join A to the angles

Conceive the pyramid thus formed,

FIG. 23.

E, D, 0, of the square,

4G
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which has A for vertex and the square for base, to be filled

with uniform matter of which the mass per unit volume is

the same as the mass of the rod per unit length, viz. 771.

Next, conceive the pyramid to be divided into an indefinite

number of very thin slices by planes very near together and

parallel to the square base.

To each slice there corresponds an elementary length of the

rod. Let r be the distance of one of these elements from A,

and s its very small length. Then its mass is w.s., and its

moment of inertia is m.s.r^.y but this is also the mass of the

slice since its area is r* and its thickness is s.

Thus the moment of inertia of each element of the rod is

the same as the mass of the corresponding slice of the pyramid,

and consequently the moment of inertia of the whole rod is

the same as the mass of the whole pyramid,

i.e. 1= volume of pyramid x mass of unit volume

= J area of base X altitude X 7»

= ^'xm;(ia

but m^is the mass of the whole rod=M;

.-. I=MX R'

3

Corollary.—If the rod extended to an equal distance AB'

|0

B^

'o'

no. 24.

on the other side of the axis, the moment of inertia of the

additional length would b(? the same

;
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the whole moment of inertia would now be

I= 2M: 3"'

but 2M would be now the mass of the whole rod.

Hence we see that for a uniform rod of length 2i2, and mass

M about a central axis perpendicular to its length

(It will be observed that this agrees with Routh's

rule.)

(2) Case of a rectangle of sides 2a and 26, turning about a

central axis in its plane, perpendicular to one side {say to the

side of length 2a).

It is obvious at once that the radius of gyra-

tion for the rectangle is the same as that of any

of the narrow strips into which it may be

divided by lines perpendicular to the axis.

Hence L=M'i.

no. 25.

Similarly, about a central axis in its plane,

perpendicular to the side of length 2&, the

moment of inertia I^=M—

(3) Hence, by Proposition I., p. 11, the moment

of inertia about a central axis perpendicular to

the plane of the figure

=Ma^+b^

which again is the expression in Routh's rule.

(4) To find 1 for a uniform thin circular disc of mass M with

respect to a central axis perpendicular to its plane^
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Conceive the circle divided into an in-

definitely large number of very small

sectors (fig. 26), and let % be 'the moment

of inertia of any one of these, then 2t will

be the moment of inertia of the whole

circle.

Each sector may be regarded as an iso-
^*°' ^^*

sceles triangle of altitude r, and bas8 very small in comparison,

and for such a triangle i is easily shown* to be equal to rd—

* The proof may be given as follows :—Let the base BC of any iso

sceles A ABC be of length 2/, and tlie altitude AD be r. Let g be the

centre of gravity of ADC. Complete the parallelogram

ADCF. The moment of inertia i of this parallelogram,

about an axis through its centre of gravity F, perpen-

dicular to its plane is m \3J. 2__l. =m !_+i_ where'^

3 12

m = mass of parallelogram and therefore of A ABC.

By symmetry i* for the A ADC is half this

""2 ^2"*

By the theorem of parallel axes

._. m m r^ + P m r^ + P_in r^-\-P
»*-»»- 2 (F^) = 2 12 2 3t) ~ 2 18

and »A=». + 2
(A^)-=

2 18-^29^-^(2)/
m /r2 P\
'''2 \2 "^e/

m 1^ when I is sufBciently small in
*"2^ comparison with r.

, \ t'l for Ihe whole A ABC = ^ o" ^^®° ^^^ ^*^® "* ^®T s*nall com-

pared with the altitude r. This is the value made use of in the pro-

position.

D
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where m is the mass of the triangle.

I=2i=2mr^

^'^ra

XlVI,

which is the value given by Routh's rule.

Each of these results would have been obtained much more

briefly by integration. Thus, for a uniform thin rod of length,

2/ and mass M turning about

a central axis perpendicular

to its length, the moment of

inertia of any elementary

length, dr at distance r

=mass of element X*"*

dr

Fio. 28.

= M XTT^Xr*

L M
moment of inertia of whole rod= | -^r'^dr

r—

»

In the case of a uniform circular

disc of mass M and radius a

turning about a central axis per-

pendicular to its plane, we may

conceive it divided into a succession

^^
of elementary concentric annuli, each
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1

of breadth dr. If r be the radius of one of these, its moment

of inertia

=mass of annulus X/'

=f/5'-'-r-

Moment of Inertia of an Ellipse.—This is readily

obtained from that of the circle. For the circle ABC of radius

a becomes the ellipse ADC with semi-

iixes a and h by projection, every

length in the circle parallel to OB

being diminished in the ratio ;^vn= ~
OB a

while lengths parallel to OA remain

unaltered. Thus any elementary area

in the circle is diminished in the ratio

-and at the same time brought nearer
a

to OC in the same ratio.

Hence

Moment of inertia of ellipse about major axis=moment of

inertia of circle about same axis X - X -5
a or

Ma» h b*=-j-X-X^
4 a a'

=MX*-X^'
a 4

=Mass of ellipse X —
4
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The moment of inertia of the ellipse about the minor axis

is evidently equal to that of the circle X — , for each ele-

mentary area of the ellipse is at the same distance from this

axis as the corresponding area of the circle, but is reduced in

magnitude in the ratio —

.

(Ji

Hehce

Moment of inertia of ellipse about minor axis

4 a

a 4
a*

=Mass of ellipse X j-.

Combining these two results by Proposition I. p. 35, we

obtain, moment of inertia of ellipse about a central axis per-

pendicular to its plane=M^-t—.
4

In Hicks' Elementary DyTiamics (Macmillan), p. 346, a geo-

metrical proof is given for the

moment of inertia of a sphere,

and, on p. 339 of the same work,

that of a right cone about its

axis is shown geometrically to be

—Mr', where r is the radius of the

base. The proof for the sphere is,

however, so much more readily ob-

tained by integration that we give it

below.

We conceive the sphere divided

into elementary circular slices by

no. 81
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planes perpendicular to the diameter, about which the

moment of inertia is sought, each slice being of the same

elementary thickness dr.

If r be the distance of any such slice from the centre, its

moment of inertia about the said diameter is

mass of slice x^^^^?^'
2

M^Ma^—r'^)dr a*—r*

— ;ra'

o

j(a'-rydr
r=-o

Sa^ lb

asMx4«*
5

=M—^i^ as stated in Routh's Rule.
5

The student who is acquainted with the geometry of the

ellipsoid will perceive that the moment of inertia of an

ellipsoid may be obtained from that of the sphere by projec-

tion, in the same way that we obtained the result for the

ellipse from that of the circle.

Exercises.—Find the radius of gyration of

—

(1.) A square of side a about a diagonal.

Ans. ^^=\^

(2.) A right-angled triangle of sides a and 6, containing the right-

angle about the side a.

Ans. A;2=-—.
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(3.) An isosceles triangle of base 6 about the perpendicular to the

base from the opposite angle.

Ans. ifc2=_

(4.) A plane circular annulus of radii K and r about a central axis

perpendicular to its plane.

R2 + r«
Ans. A;2=:

2

(5.) A uniform spherical shell of radii R and r about a diameter.

Directions.—Write (M)= mass of outer sphere, supposed solid ; (m)

that of inner. Moment of inertia of shell = (M - m)k^ = difference

between the moments of inertia of the two spheres. Also since

^=^, we have m=M-^ and M-m=M-^;=^. Thus all the massesM R^ R3 . R*

can be expressed in terms of one, which then disappears from the

equation.

(6) Prove that the moment of inertia of a uniform, plane, triangular

lamina about any axis, is the same as that of 3 equal particles, each

one-third of the mass of the lamina, placed at the mid-points of the

sides.



CHAPTEK V.

FURTHER PROPOSITIONS CONCERNING MOMENTS OF INERTIA

—PRINCIPAL AXES—GRAPHICAL CONSTRUCTION OF IN-

ERTIA CURVES AND SURFACES—EQUIMOMENTAL SYSTEMS

—INERTIA SKELETONS.

We have shown in Chapters in. and IV. how to obtain the

moments of inertia of certain regular figures about axes of

symmetry, and axes parallel thereto. The object of the

present chapter is to acquaint the student with certain impor-

tant propositions applicable to rigid bodies of any shape, and

by means of which the moment of inertia about other axes

can be determined. The proofs given require the application

of only elementary solid geometry ; but should the student

find himself unable to follow them, he is recommended, at a

first reading of the subject, to master, nevertheless, the mean-

ing of the propositions enunciated and the conclusions reached,

and not to let the geometrical difficulty prevent his obtaining

a knowledge of important dynamical principles.

Proposition IV.

—

In any rigid hody^ the sum of the moments

of inertia about any three rectangular axes, drawn through a given

point fixed in the body, is constant, whatever be the positions of the

axes.

Let Ox, Oy, Oz, be any three rectangular axes drawn

through the fixed point 0. Let P be any particle of the body
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y

B
%

/ ^^^^^_F

^^ .'/>^ \

o^^ V A ^

//< /

and of mass (w), and co-ordinates x, y, z. Let OP = r, and

let the distances AP, BP,

CP, of P from the axes of

X, y and z respectively, be

called r„ r^, and r^

Then the moment of

inertia of the particle P
about X is mrl=m{y' •\-z^)^

„ y is mrlz=m{z^ -\-x^)^

„ zismrl=m{x^-\'y*\

Fia.2SA. therefore, for the whole

body,

the moment of inertia about the axis of a;, or Ij.,= 2my'+2w2'

„ „ „ „ y, or I^, = 2m2''+277ia;'

„ „ „ „ z, or I, =2ma;'+ 2m3/'

Therefore I,+Iy+I,=2(2mxH27wy'+2m0').

Now this is a constant quantity, for

x^-\-y''-\-z^=r^

Therefore ?7w;'+my'+m^*=mr' for every particle.

Therefore ^rnx''+ 2my'+ ^mz"= 2mr'= Constant.

Therefore Ijj+ 1^4-1,= Constant,

and this is true whatever the position of the rectangular axes

through the fixed point.

Proposition V.

—

In any plane through a given point fixed

in the body, the axes of greatest and least moment of inertia^ for

that planej are at right angles to each other.

For let us fix, say, the axis of z ; this fixes the value of I„

and therefore Tj.+Iy= Constant.

Hence, when I^ is a maximum I^ is a minimum for the

plane xy, and vice versd.

Proposition VI.

—

If about any axis (Ox) through a fixed

point of a body, the moment of inertia has its greatest value, then
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ohoui some axis (Oz), at right angles to Oa;, it will have its least

value ; and about the remaining rectangular axis (Oy) tJie moment

0/ inertia will be a maximum for theplane yZj and a minimum for

the plane xy.

For, let ug suppose that we have experimented on a body

and found, for the point 0, an axis of maximum moment of

inertia, Ox. Then an axis of least moment of inertia must

lie somewhere in the plane through O, perpendicular to this,

for if in some other plane through there were an axis of

still smaller inertia, then in the plane containing this latter

axis, and the axis of x we could find an axis of still greater

inertia than Ox, which is contrary to the hypothesis that Ox

is a maximum axis.

Next, let us take this minimum axis as the axis of z. The

moment of inertia about the remaining axis, that of y, must

now be a maximum for the plane yz. For 1^^ being fixed,

If+I»=coiistant, and therefore I^ is a maximum since I, is

a minimum.

Again, I, being fixed, IjB+Iy= constant, and therefore !„ is

a minimum for the plane xy, since I, is a maximum.

Definitions.—Such rectangular axes of maximum, minimum,

ind intermediate moment of inertia are called principal

axes for the point of the body from which they are drawn,

and the moments of inertia about them are called principal

moments of inertia for the point ; and a plane containing

two of the principal axes through a point is called a principal

plane for that point.

When the point of the body through which the rectangular

axes are drawn is the Centre of Mass, then the principal axes

are called, par excellence, the principal axes of the body, and

the moments of inertia about them the principal moments of

inertia of the body.
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It is evident that for such a body as a rigid rod, the moment

of inertia is a maximum about any axis through the centre

of mass that is at right angles to the rod, and so far as we

have gone, there is nothing yet to show that a body may not

have several maximum axes in the same plane, with minimum

axes between them. We shall see later, however, that this

is not the case.

Proposition VII.—To show that the moment of inertia (Iqp)

ahmt any axis OP making angles a, yS, y, with the principal axes

through any point 0, for which the principal moments of inertia

are A, B, and C respectivelyy is

AcosV -|-Bcos'/?-|- Ccos'y.

It will conduce to clear-

ness to give the proof

first, for the simple case of

a plane lamina with respect

to axes in its plane,

Let ahc be the plane

lamina, Ox and Oy any

rectangular axes in its

plane at the point O, and

about these axes let the

moments of inertia be (A')

and {B') respectively, and

let it be required to find

the moment of inertia

about the axis OP, making an angle 6 with the axis of x.

Let M be any particle of the lamina, of mass (w), and co-

ordinates X and y. Diaw MN perpendicular to OP to meet

it in N. Then the moment of inertia of the particle M about

OP is mMN'. Draw the ordinate MQ, and from Q draw QS

no. 24a.
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meeting OP at right angles in S. Then

MN^=OM»-ON»
=a;»+y'-"(OS+SN)'

and OS is the projection of OQ on OP, and therefore equal to

a;cos6^ and SN is the projection of QM on OP, and therefore

equal to y sin^

.-. MN'=a;»+2/»-(a;cos^-f2/sin^)'

=a;'(l-cos»6')+i/Xl-sin'^)-2sin^cos%

=a;'sin' Q 4-y'cos'^^— 2sin0cos^a;y

,*, Iop=SmMN^

=

coB^dlmy^+sm^62mx^— 2&mdcos62mxy

=A'cos'^+B'sin2^-2sin(9cos^2ma:y.

We shall now prove that when the axes chosen coincide with

the principal axes so that A' becomes A and B' B, then the fac-

tor ^mxi/j and therefore the last term, cannot have a finite value.

For since the value A of the moment of inertia about 0, is

now a maximum, Iqp cannot be greater than A, so that A— lot

cannot be a —ve quantity whatever be the position of OP.

i.e. A —Acos^d— Bsm^0-{-2sm9coB6^mxy cannot be— 2;e,

i.e. AsmW^Bsm^9-\-2sindcos6^2mxy cannot he—ve^

now, when OP is taken very near to Ox, so that is infinitesi-

mally small, then also sin^ is infinitesimally small, while cos0

is equal to 1, and so that if "Zmxy has a finite value, the two

first terms of this expression, which contain the square of the

small quantity sin^ may be neglected in comparison with

the last term, and according as this last term is -^-ve or — i;e,

80 will the whole expression be -{-ve or —ve.

Now, whether the small angle ^ is -{-ve or —w, cos^ is

always -\-ve, and ^{rnxy) is always constant ; neither of these

factors then changes signs with 6 ; but sin^ does change sign

with 6; so that, the last term, and therefore the whole ex-

pression is — ve when ^ is --ve and very small.

Hence it is impossible that 2mxy can have a finite value,
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But Irnmj is constant whatever be the value of ^, and there-

fore is zero or infinitesimally small even when Q is finite;

therefore, finally,

Iop=^cos2^+^sin2^

[If we prefer to describe the axis OP as making angles a

and y8 with the rectangular axes of x and y respectively.

Then in the above proof we have everywhere cosa for cos^,

and cos/5 for sin^, and

Iop=^cos 2a+5 cos2/3.]

The proof of the general case for the moment of inertia

lop of a solid body of three dimensions about any axis OP,

making angles a, ^ and 7, with maximum, minimum, and

intermediate rectangular axis, Oa;, Oy, Oz is exactly analogous

to the above, only we have

0M»=a;'+2/'+s', instead of OM»=a;»+y*

and ON=a:cosa-l-ycos/3+2;cosy, instead of ON=a:cosa+ycos^,

and co3*a4-cos*^-|-cos'y=l, instead of cos''a+cos'j8=l,

whence it at once follows that instead of the relation

Iop=^'cos'a-f ^'cos'/?— 2cosacos/i^2wia:y,

we obtain

Iop=^'cosV+^cos'/34-(7cos'7— 2cosacos^2ma:y

— 2cos/?cosy 2m?/2!— 2cosycosa27n2!a:.

And, as before, when A'=Ay and B'=Bi or C=C, each of

the last three terms can be shown to be, separately, vanishingly

small, and therefore finally

Iop=^cos'a+^cos'/3+ C'cos^'y.

Graphical Construction of Inertia-Curves and

Surfaces.

—

Definition.—By an ' inertia-curve ' we mean a

plane curve described about a centre, and such that every

radius is proportional to the moment of inertia about the axis

through the centre of mass whose position it represents.

Similarly, a moment of inertia surface is one having the same

property for space of three dimensions.
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It is evident that we can now construct such curves or

surfaces when we know the principal moments of inertia of

the body.

(I.) Construction of the inertia curve of any plane lamina for

axes in its plane.

Draw OA and OB at right angles, and of such lengths that

they represent

the maximum

and minimum

moment of in-

ertia on a con-

venient scale,

and draw radii

between them

at intervals of,

say, every 10°.

Then mark off

on these in succession the corresponding values of the

expression

OAcos'^-t-OBsin'^,

(which may be done graphically by a process that the student

will easily discover), and then draw a smooth curve through

the points thus arrived at. In this way we obtain the figure

OA
of the diagram (Fig. 25a) in which the ratio ^^ was taken

Ux>

2
equal to -. Complete inertia curves must evidently be sym-

metrical about both axes, so that the form for one quadrant

gives the shape of the whole.

If OA were equal to OB the curve would be a circle, for

if maximum and minimum values of the radius are equal, all

values are equal

no. 25a.
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Figure 26a shows in a single diagram the shape of the

,(2)

Fio. 26a.

curves when -^-j. has the vahies — , —, -, and — respectively.
Ui> o 2 1



Principal Axes. 63

(II.) Condrudion of Moment of Inertia Surface.—Let any

section through the centre of mass be taken, containing

one of the principal axes of the body (say the minimum axis

O^), and let the plane zOO of this section make angles AOC=
6 and BOG=(90°— ^) or <^, with the axes of x and y respec-

rio. 27a.

tively. Then, from what has been said, the intersection OC
of this plane with that of xy will be a maximum axis for the

section ZOO, and the value loo o^ the moment of inertia about

it will be

Iqc=^cos'^+-Scos'<^.

Let the length of OD represent this value. The length of any

radius OP of the inertia curve for the section is

^cos'a-f Scos'^+Ccos'y.

Let the angle COP, or 90°— 7, which OP makes with the

plane of xy be called 5. Then cos'a=cos'AOP

OP OP OD*

OP* OD>^OP'
=cos'^cos'8

OB* OB" OD*
and cos'/?=cos"BOP=====x^=cos'<^cos'a



64 Dynamics of Rotation,

Therefore lop =^cos^^cos'8+5cos''<^cos^S+Ccos'y

= IqcCOs'^S+ (7cos*y.

Therefore the inertia curve for the section zOC may he drawn

in precisely the same way as for a plane lamina, and this result

holds equally well for all sections containing either a maxi-

mum or minimum or intermediate axis.

Inspection of the inertia curves thus traced (Fig. 26a) shows

that there is, in general, for any solid (except in the special

case when the curve is a circle), only one maximum axis

through the centre of mass, and one minimum axis, with a

corresponding intermedij^te axis.

Equimomental Systems.—Proposition Ylll.—Any

two rigid bodies of equal mass, and for which the three principal mo-

ments of inertia are respectively equal, have equal moments of inertia

about all corresponding axes. Such bodies are termed equimomental.

That such bodies must be equimomental about all corre

sponding axes through their centres of mass follows directly

from the previous proposition ; and since any other axis must

be parallel to an axis through the centre of mass, it follows

from the theorem of parallel axes (Chapter iii. p. 37) that in

the case of bodies of equal mass, the proposition is true for

all axes whatever.

Any body is, for the purposes of Dynamics, completely

represented by any equimomental system of equal mass.

Inertia Skeleton.—Proposition IX.

—

For any rigid

body there can be constructed an equimomental system of thres

uniform rigid rods bisecting each other at right angles at its centre

of masSy and coinciding in direction with its principal axes.
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For let aa\ hh\ cd (Fig. 27a) be three such rods, coiuciding

respectively with the principal axes, Ox, Oy, Oz^ and let the

moment of inertia of aa' about

a perpendicular axis through

Obe A'

while that of hV is B'

and that of cd is C
Then, for the system of rods,

If, therefore, the body in

question has corresponding

principal moments A, ^, C

equimomental therewith when

B-\-a=A
a'hA'=B
A'+B'=0

''X

the system of rods becomes

(i)

(ii)

(iii)

These three equations enable us to determine the values of

A', By and (7, to be assigned to the rods.

By addition we have,

or A'\B'^(y=::\{A^B^C)

whence subtracting B'+C=A
we have A'=i(B+C^A)
and similar expressions for B' and C

Such a system of rods we may call an inertia skeleton. Such

a skeleton, composed of rods of the same material and thick-

ness, and differing only in length, presents to the eye an

easily recognised picture of the dynamical qualities of the

body. The moment of inertia will be a maximum about the

£
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direction of the shortest rod, and a minimum about the

direction of the longest.

[It may be mentioned that, for convenience of mathematical

treatment of the more difficult problems of dynamics, advan-

tage is taken of the fact that any solid can be shown to be

equimomental with a certain homogeneous ellipsoid whose

principal axes coincide with those of the solid. Also that if

we had chosen to trace inertia curves by making the radius

everywhere inversely proportional to the radius of gyration^

i.e. to the square root of the moment of inertia, then the curve

for any plane would have been an ellipse, and the inertia-

surface an ellipsoid.]



CHAPTER VI.

SIMPLE HARMONIC IMOTION.

The definition of Simple Harmonic Motion may be

given as follows :

—

Let a particle P travel with uniform speed round the cir-

cumference of a fixed circle, and let N be the foot of a per-

pendicular drawn from P to any-

fixed line. As P travels round the

circle N oscillates to and fro, and

is said to have a simple harmonic

motion.

It is obvious that N oscillates

between fixed limiting positions

N, Ni which are the projections on

the fixed line of the extremities

A and B of the diameter parallel

to it, and that at any instant the

velocity of N is that part of P's

velocity which is parallel to the fixed line, or, in other words,

the velocity of N is the velocity of P resolved in the direction

of the fixed line. Also the acceleration of N is the accelera-

tion of P resolved along the fixed line.

Now the acceleration of P is constant in magnitude, and

always directed towards the centre C of the circle, and is

equal to — =7-(u' (PC)a>' ; consequently the acceleration of
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N= (u'xtlie resolved part of PC in the direction of the fixed

line=w' X (NO), being the projection of C on the fixed line.

Thus we see that a particle with a simple harmonic motion

has an acceleration which is at any instant directed to the

middle point about which it oscillates, which is proportional

to the displacement from that mean position, and equal to

this displacement multiplied by the square of the angular

velocity of the point of reference P in the circle.

We shall see, very shortly, that the extremity of a tuning-

fork or other sonorous rod, while emitting its musical note of

uniform pitch performs precisely such an oscillation. Hence

the name ' Simple Harmonic'

The point in the figure corresponds to the centre of

swing of the extremity of the rod or fork, and the points

N„ Ni to the limits of its swing.

The time T taken by the point N to pass from one ex-

tremity of its path to the other, and back again, is the time

27r
taken by P to describe its circular path, viz., — . This is

defined as the * Period,* or * Time of a comjplde oscillation

of N. It is evident that if at any instant N have a position

such as that shown in the figure, and

be moving (say) to the left, then

27r .

after an interval ~ it will a'^rain be
o>

°

in the same position and moving in

the same direction.

Hence the time of a complete

swing is sometimes defined as the

interval between two consecutive

passages of the point through the

same position in the same direction

p
Fio. 33.
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The fraction of a period that has elapsed since the point N
last passed through its middle position in the positive direc-

tion is called the phase of the motion.

Since the acceleration of N at any instant

=NOxo)2
= displacement x w^

2 acceleration at any instant

"corresponding displacement

or, abbreviating somewhat,

0)= / acceleration

V displacement*

Consequently

Since 1 =—
0)

'p_.2^X /displacement

V acceleration
*

acceleration

The object of pointing out that the time of oscillation has

this value will be apparent presently.

It must be carefully noticed that to take a particle and to

move it in any arbitrary manner backwards and forwards

along a fixed line, is not the same thing as giving it a simple

harmonic motion. For this the particle must be so moved as

to keep pace exactly with the foot of the perpendicular drawn

as described. This it will only do if it is acted on by a force

which produces an acceleration always directed towards the

middle point of its path and always proportional to its dis-

tance from that middle point. We shall now show that a

force of the kind requisite to produce a simple harmonic

motion occurs very frequently in elastic bodies, and under

other circumstances in nature.



CHAPTEE VII.

AN ELEMENTARY ACCOUNT OF THE CIRCUMSTANCES AND

LAWS OF ELASTIC OSCILLATIONS.

I. For all kinds of distortion, e.g.—stretching, compress-

ing, or twisting, the strain or deformation produced by any-

given force is proportional to the force, so long as the

strain or deformation is but small. Up to the limit of de-

formation for which this is true, the elasticity is called

'perfect' or * simple*: 'perfect,' because if the stress be

removed the body is observed immediately and completely

to recover itself; and 'simple,' because of the simplicity of

the relation between the stress and the strain it produces.

In brief

—

For small deformations the ratio --—:- is
strain

constant.

This is known in Physics as Hooke's Law. It was

expressed by him in the phrase ' ut tensio sic vis.'

Illustrations of Hooke's Law.

m\

¥
FIG. 84.

(1) If, to the free end A of a long thin horizontal lath, fixed at the

other end, a force w be applied which depresses the end through a

small distance d, then a force ^w will depress it through a distance

2d, Sw through a distance Zd, and so on.

70
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(2) If the lath be already loaded so as to be already much bent, as

in the fig., it is, nevertheless, true if the breaking-strain be not too

nearly approached, that the application of a small additional force at

A will produce a further deflection proportional to the force applied.

But it must not be expected that the original force w will now produce

the original depression dj for w is now applied to a different object,

viz., a much bent lath, whereas it was origin-

ally applied to a straight lath.

Thus w will now produce a further depression

d'

and 2w „ „ „ 2(Z'

3m; „ „ „ 3d'

where d' differs from d.

(3) A horizontal cross-bar is rigidly fixed

to the lower end of a long thin vertical

wire; a couple is applied to the bar in a

horizontal plane, and is found to twist it

through an angle 6 : then double the couple

will twist it through an angle 20, and so on.

This holds in the case of long thin wires of

Bteel or brass for twists of the bai through

several complete revolutions.

(4) A long spiral spring is stretched by

hanging a weight W on to it (Fig. 37).

If a small extra weight w produces a small extra elongation «,

Then „ 2w „ „ 2<5,

and „ 3w „ „ 3«,

and so on.

Similarly, if a weight w be subtracted from W the shortening

will be e,

and „ 2uj „ „ „ 2«,

and so on.

This we might expect, for the spring when stretched by the weight

Gj-

-OTn
5^

no. 36.
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Ww is so slightly altered from the condition in which it was

when stretched by W, that the addition of w must

produce the same elongation e as before ; therefore

the shortening due to the removal of w must be e.

From these examples it will be seen that the

law enunciated applies to bodies already much dis-

torted as well as to undistorted bodies, but that the

value of the constant ratio
stress

Fio. 87.

corresponding small strain

is not generally the same for the undistorted as for

the distorted body.

2. If a mass of matter be attached to an elastic

body, as, for instance, is the weight at A in

Fig. 35, the cross-bar AB in Fig. 36, or the

weight W in Fig. 37, and then slightly displaced

and let go, it performs a series of oscillations

in coming to rest, under the influence of the force

exerted on it by the elastic body. And at any

instant the displacement of the mass from its

position of rest is the measure of the distortion

of the elastic body, and is therefore proportional to the stress

between that body and the attached mass.

Hence we see that the small oscillations of such a mass are

performed under the influence of a force which is propor-

tional to the displacement from the position of rest.

3. We shall consider, first, linear oscillations, such as those of

the mass W in Fig. 37, and shall use for this constant ratio

——^^^H£ the symbol R, the force being expressed in
displacement

absolute units. It will be observed that E measures the

resisting power of the body to the kind of deformation in

question. For if the displacement be unity, then R=the
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corresponding force : thus, E is the measwe of resistance tJie

body offers when subjected to unit defoi'maiion.^

We shall consider only cases in which the mass of the elastic

body itself may be neglected in comparison with the mass M
of the attached body whose oscillations we study.

4. If the force be expressed in a suitable unit, the accelera-

tion of this mass at any instant is , and is directed

towards the position of rest. Since the mass M is a constant

quantity, and since the ratio -=-.—

=

is constant and
displacement

equal to K ; therefore, also the ratio ^^^£^I^£^^ is constant
displacement

and = |.

5. Now it is, as we have seen, the characteristic of Simple

Harmonic Motion that the acceleration is proportional to the

displacement from the mean position.

Consequently we see that when a mass attached to an

elastic body, or otherwise influenced by an * elastic ' force, is

slightly displaced and then let go, it performs a simple

harmonic oscillation of which the corresponding Time of

a complete oscillation = 27r^
/displacement

V acceleration

6. Hence (from § 4) we have for the time of the complete

linear oscillation of a mass M under an elastic force,

T= 2;r /IVR
whatever may be the 'amplitude' of the oscillation, so long

as the law of 'simple elasticity' holds.

* This is sometimes called the modulus of elasticity of the body for

the kind of deformation in question, as distinguished from the modulus

of eiasticitv of the tmJmtance.
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7. Applications.—(l) A 10 Ih. mass hangs from a long thin

light spiral spring. On adding 1 oz. the spring is found to be stretched

1 inch; on adding 2 ozs., 2 inches. Find the time of a complete small

oscillation of the 10 lb. weight.

Here we see that the distorting force is proportional to tlie dis-

placement, and therefore that the oscillations will be of the kind

examined. We will express masses in lbs., and therefore forces in

poundals. Since a distorting force of ^^ pounds ( = 3|= 2 poundals)

produces a displacement of ^^ ft.

.-. the ratio ,. f^^^^ =E= -|- = 24.
displacement jV

= 4'05 sec. (approximately).

(2) A mass of 20 lbs. rests on a smooth horizontal plane midway

between two upright pegs, to which it is attached by light stretched

elastic cords. (See fig.)

SO lbs

FIO. 38.

It is found that a displacement of ^ an inch towards either peg

calls out an elastic resistance of 3 ozs., which is doubled when the

displacement is doubled. Find th( time of a complete small oscilla-

tion of the mass about its posUion of rest.

force 3 X^ X 32 abs. units.
Here K=

^j^pig^^g^g^^^- ^
^144

.-. T= 27r. /M -Stt /20;V R V 144 sec.

r= 2*34 sec. (approximately).

8. The student will now perceive the significance of the

limitation of the argument to cases in which the mass of the

elastic body itself may be neglected. If, for example, the
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spring of Fig. 37 were a very massive one, the mass of the

lower portion would, together with W, constitute the total

mass acted on by the upper portion ; but as the lower portion

oscillated its form would alter so that the acceleration of each

part of it would not be the same. Thus the considerations

become much more complicated.

Hence, also, it is a much simpler matter to calculate, from

an observation of the ratio R, the time of oscillation of a heavy

tvQ. 39.

mass W placed on a light lath as in the figure, than it is to

calculate the time of oscillation of the lath by itself.

9. Extension to Angular Oscillations.—Since any

conclusion with respect to the linear motion of matter is true

also of its angular motion about a fixed axle, provided we sub-

stitute moment of inertia for mass ;

couple for force

;

angular distance for linear distance

;

it follows that when a body performs angular oscillations

under the influence of a restoring couple whose moment is

proportional to the angular displacement, then the time of a

complete oscillation is

^Vi '''

where I is the moment of inertia with respect to the axis of

oscillation and R is the ratio =— ,.
P.

: the
angular displacement

couple being measured in absolute units.
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M)
FIO. 40.

Applications.—(l) Take the case of

a simple pendulum of length 1 and mass m.

Wlien the displacement is 6, the moment

of the restoring force is

m<7 X OQ (see fig.)

=mgl sin 6

=mgl 6 ii 6 is small.

• Tt— "^o^T^e"^ of couple _''^^^^^nr
corresponding displac*" 6

Also 1—ml^

V ri,lg

as also may be shown by a special inves-

tigation, such as is given in Garnett's

Dynamics, Chap. V.

(2) Next take the case of a body of any

shape in which the centre of gravity G is

at a distance I from the axis of suspen-

sion 0.

As before, when the body is displaced

through an angle 6, the moment of the

restoring couple is mgl sin 6=mgl 6 it 6

is but small, and

p_moment of couple_mg'Zd_ ,

angular displac*" " *

6

T=27r /X

no. 41.

10. Equivalent Simple Pendu-

lum.—If K be the radius of gyra-

tion of the body about the axis
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of oscillation, then I= ?'Jv-, and

Let L be the length of a simple pendulum which would have

the same period of oscillation as this body. The time of a com-

plete oscillation of this simple pendulum is 27r / -. For this to

be the same as that of the body we must have

or L =
K-*

Hxamples.—(l) A thin circular hoop of radius r hung over a
peg swings under the action of gravity in

its own plane. Find the lejujth of the

equivale7it simj)le pendulum.

Here the radius of gyration K is given

byK2= r2 + /2.

And the distance I from centre of gravity

to point of suspension is equal to r.

.'. length of equivalent simple pen-

dulum, which is equal to

" + 7-2 ^ riQ. 42.

is, in this case, —
The student should verify this by the experiment of hanging,

together with a hoop, a small bullet by a thin string whose length is

the diameter of the hoop. The two will oscillate together.

(2) A Korizontal bar magnet^ of moment inertia I, makes n complete

oscillations per sec. Deduce from this the value of the product Mil
where M is the magnetic moment of the magnet, and H the strength

of the eartWs horizontal field.

Let ns be the magnet. {See Fig. 43.) Imagine it displaced through

an angle 6. Then since the magnetic moment is, by definition, the

value of the couple exerted on the magnet when placed in a uniforn\

field of unit strength at right angles to the lines of force, it follows
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that when placed in a field of strength H at an angle 6 to the lines

of force the restoring couple

=MH sin B.

=MH^ when 6 is small.

. -p ^ restoring couple_MH^
angular displac'-

~ B

=MH.

And T= 27rV R

N.B.

MH
orMH=^\

-The student of physics will remember that

by using the same magnet placed mag-

netic E. and W., to deflect a small needle

situated in the line of its axis, we can

M
H*

by combining the result of an oscilla-

tion-observation of MH with that of a

find the value of the ratio Thus

M
deflection-observation of — , we obtain

Kio. 43. the value of H at the place of observa-

tion.

(8) A bar magnet oscillates about a central vertical axis under the

injiuence of the earth's horizontal Jield^ andperforms 12 complete small

oscillations in one minute. Two small masses of lead, each weigh-

ing one oz., are placed on it at a distance of 3 inches on either side of

the axis, and the rate of oscillation is now reduced to 1 oscillation in

6 seconds. Find the moment of inertia of the magnet.

Let the moment of inertia of the magnet be I oz.-inch^ units.

Then the moment of inertia of the magnet with the attached masses

is 1 + 2x1 x3-=(I + 18) oz.-inch2 units.

The time of a complete oscillation of magnet alone is 5 sec.

Thus 27r

and 2fr

\/e~'
/l + l

V R
6.
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/l + 18_6V —1 s"'

1 + 18 36
0' -T"^25*

.-. 1= 40.909 oz.-mch2 units.

II. Oscillating Table for finding Moments of

Inertia.—A very useful and convenient apparatus for find-

ing the moment of inertia of small objects such as magnets,

galvanometric coils, or the models of portions of machinery

too large to be directly experimented upon, consists of a flat

light circular table 8 or 10 inches in diameter, pivoted on a

vertical spindle and attached thereby to a flat spiral spring

of many convolutions, after the manner of the balance-wheel

of a watch, under the influence of which it performs oscilla-

tions that are accurately isochronous. See, Fig. 4:3a.

The first thing to be done is to determine once for all the

moment of inertia of the table, which is done by observing,

first, the time T^ of an oscillation with the table unloaded,

and then the time Ti of an oscillation with a load of known

moment of inertia Ix—e.g. the disc may bfe loaded with two

small metal cylinders of known weight and dimensions placed

at the extremities of a diameter.

Then, since

and Ti= 27r^ /L±l»V R

Tj'-T/
I^ having thus been determined, the value of I for any object

laid on the disc, with its centre of gravity directly over the
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axis, is found from the corresponding time of oscillation T
by the relations

T=27r^/irV R

audT=27r /l±LV li

whence 1=1
q^2 rp

Fio. 43a,
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Examples for Solution.

(1) A thin heavy bar, 90 centimetres long, hangs in a horizont:il

position by a light string attached to its ends, and passed over a

peg vertically above the middle of the bar at a distance of 10 centi-

metres. Find the time of a complete small oscillation in a vertical

plane containing the bar, under the action of gravity.

Ans. 1'766 , . . . seconds.

(2) A uniform circular disc, of 1 foot radius, weighing 20 lbs., is

pivoted on a central horizontal axis. A small weight is attached to

the rim, and the disc is observed to oscillate, under the influence of

gravity, once in 3 seconds. Find the value of the small weight.

Ans. 1*688 lbs.

(3) A bar magnet 10 centimetres long, and of square section 1

centimetre in the side, weighs 78 grams. "When hung horizontally

by a fine fibre it is observed to make three complete oscillations in

80 seconds at a place where the earth's horizontal force is '18 dynes.

Find the magnetic moment of the magnet.

Ans. 202*48 . . . dyne-centimetre units.

(4) A solid cylinder of 2 centimetre radius, weighing 200 grams, is

rigidly attached with its axis vertical to the lower end of a fine wire.

If, under the influence of torsion, the cylinder make 0*5 complete

oscillations per second, find the couple required to twist it through

four complete turns. Ans. 3200 Xtt^ dyne-centimetre units.

(5) A pendulum consists of a heavy thin bar 4 ft. long, pivoted

about an axle through the upper end. Find (1) the time of swing
;

(2) the length of the equivalent simple pendulum.

Ans. (1) 1*81 seconds approximately; (2) 2*6 feet.

(6) Out of a uniform rectangular sheet of card, 24 inches x 16

inches, is cut a central circle 8 inches in diameter. The remainder is

then supported on a horizontal knife-edge at the nearest point of the

circle to a shortest side. Find the time of a complete small oscilla-

tion under the influence of gravity (a) in the plane of the card
; (6) in

a plane perpendicular thereto.

Ans. (a) 1*555 seconds
; (6) 1*322 seconds.

(7) A long light spiral spring is elongated 1 inch by a force of 2

pounds, 2 inches by a force of 4 pounds. Find how many complete

small oscillations it will make per minute with a 3 lb. weight

attached. Ans. 1527



CHAPTEE VIII.

CONSERVATION OF ANGULAR MOMENTUM.

Analogue in Rotation to Newton's Third Law of

Motion.—Newton's Third Law of Motion is the statement

that to every action there is an equal and opposite reaction.

This law is otherwise expressed in the Principle of the

Conservation of Momentum, which is the statement that

when two portions of matter act upon each other, whatever

amount of momentum is generated in any direction in the

one, an equal amount is generated in the opposite direction

in the other. So that the total amount of momentum in any

direction is unaltered by the action.

In the study of rotational motion we deal not with forces

but with torques, not with linear momenta but with angular

momenta, and the analogous statement to Newton's Third

Law is that 'no torque, with respect to any axis, can be

exerted on any portion of matter without the exertion on

some other portion of matter of an equal and opposite torque

about the same axis.

'

To deduce this as an extension of Newton's Third Law, it

is sufficient to point out that the reaction to any force being

not only equal and opposite, but also in the same straight line

as the force, must have an equal and opposite moment about

any axis.

The corresponding principle of the conservation of angular

momentum is that by no action of one portion of matter

82
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on another can the total amount of angular momentum, about

any fixed axis in space, be altered.

Application of the Principle in cases of Motion

round a fixed Axle.—We have seen (p. 21) that the

' angular or rotational momentum ' of a rigid body rotating

about a fixed axle is the name given, by analogy with linear

momentum (mv), to the product Io>, and that just as a force

may be measured by the momentum it generates in a given

time, so the moment of a force may be measured by the

angular momentum it generates in a given time.

1st Example of the Principle.—Suppose a rigid body

A, say a disc whose moment of

inertia is Ij, to be rotating with

angular velocity (o^ about a fixed

axle; and that on the same shaft

is a second disc B of moment of

inertia Ij, and which we will at

first suppose to be at rest. Now,

imagine the disc B to be slid along

the shaft till some projecting point

of it begins to rub against A. This

will set up a force of friction be-

tween the two, the moment of

'which will at every instant be the

same for each, consequently as much angular momentum as is

destroyed in A will be imparted to B, so that the total

quantity of angular momentum will remain unaltered.

Ultimately the two will rotate together with the same

angular velocity 12 which is given by the equation

no. 44.

m Q:
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If the second disc had initially an angular velocity Wj, then

the equation of conservation of angular momentum gives us

Ii+Ia
'

which, it will be observed, corresponds exactly to the equation

of conservation of linear momentum in the direct impact of

inelastic bodies, viz. :

—

(Wli+ wig)V— mxVx + 7712^2.

2nd Example.—A horizontal disc whose moment of

inertia is I„ rotates about

a fixed vertical axis with

^
I angular velocity Wi. Imagine

a particle of any mass to be

detached from the rest, and

no. 45. connected with the axis by

an independent rigid bar whose mass may be neglected. At

first let the particle be rotating with the rest of the system

with the same angular velocity w,. Now, let a horizontal

pressure, always at right angles to the rod and parallel to the

disc, be applied between them so that the rotation of the

particle is checked, and that of the remainder of the system

accelerated {e.g. by a man standing on the disc and pushing

against the radius rod as one would push against the arm of a

lock-gate on a canal), until finally the particle is brought to

rest. By what has just been said, as much angular momentum

as is destroyed in the particle will be communicated to the

remainder of the disc, so that the total angular momentum

will remain unaltered. We may now imagine the stationary

non-rotating particle transferred to the axis, and there again

attached to the remainder of the system, without affecting



Conservation of Angular Afoinenlum. 85

the motion of the latter. If 1 2 is now the reduced moment

of inertia of the system, and Wj its angular velocity, we have,

by what has been said,

l2«a=Ii<»i

II

Or, we may imagine the particle, after having been brought

to rest, placed at some other position on its radius, and

allowed to come into frictional contact with the disc again,

till the two rotate together again as one rigid body. If I3 be

now the moment of inertia of the system, we shall have

Ist03= l2a)2= Ii<ai,

or 0)3=0)1 X

3rd Example.—Suppose that, by the application of a force

always directed towards the axis, we

cause a portion of a rotating body to slide

along a radius so as to alter its distance

from the axis. By doing so we evidently

alter the moment of inertia of the system,

but the angular momentum about the

axis will remain constant.

For example, let a disc rotating on a

hollow shaft be provided with radial

grooves along which two equal masses

can be drawn towards the axis by means

of strings passing down the interior of the shaft. It is clear

that each of the moveable masses as it is drawn along the

groove is brought into successive contact with parts of the

disc moving more slowly than itself, and must thus impart

angular momentum to them, losing as much as it imparts.

4th Example.—A mass M rotates on a smooth horizontal

FIO. 46.
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plane, being fastened to a string which passes through a small

hole in the plane, and which is held by the hand. On slacken-

ing the string the mass recedes from the

^^^^ axis and revolves more slowly ; on tighten-

ing the string the mass approaches the

axis and revolves faster. [See Appendix, p. ic^l

Here, again, the angular momentum Ia>

^M o will remainconstant, there being no externa]

force with a moment about the axis to in-

\ crease its amount. But it is not so apparent

^^^ in this case how the increase of angular

^^g ^y
velocity that accompanies the diminution of

moment of inertia has been brought about.

For simplicity, consider instead of a finite mass M a par-

ticle of mass m at distance r from the axis when rotating with

angular velocity w. The moment of inertia I of the particle

is then mr^ and the angular momentum =Iw

but ria=.'o the tangential speed

;

.'. the angular momentum =mrz;,

thus for the angular momentum to remain constant v must

increase exactly in proportion as r diminishes, and vice versa.

In the 6ase in question the necessary increase in v is effected

by the resolved part of the central pull in the direction of the

motion of the particle. For the instant this pull exceeds the

value 1^^ j of the centripetal force necessary to keep the

particle moving in its circular path, the particle begins to be

drawn out of that path, and no longer moves at right angles

to the force, but partly in its direction, and with increasing

velocity, along a spiral path.
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This increase in velocity involves an increase in the kinetic

energy of the particle equivalent to the work done by the force.

Consideration of the Kinetic Energy.—It should

be observed, in general, that if by means of forces having no

moment about the axis we alter the moment of inertia

of a system, then the kinetic energy of rotation about that

axis ia altered in inverse proportion. For, let the initial

moment of inertia I, become Ij under the action of such forces,

then the new angular velocity by the principle of the con-

servation of angular momentum

is toj = Wj X =i

and the new value of the rotational energy is JliwJ

= Jl2a>?X \

= (original energy) x —i.

la

The student will see that in Example 2, p. 84, the stoppage of

the particle with its radius rod in the way described involves

the communication of additional rotational energy to the disc,

and that, in Example 3, the pulling in of the cord attached

to the sliding masses communicated energy to the system,

though not angular momentum.

Other Exemplifications of the Principle of the

Conservation of Angular Momentum.—(i) A juggler

standing on a spinning disc (like a music-stool) can cause his

rate of rotation to decrease or increase by simply extending

or drawing in his arms. The same thing can be done by a

skater spinning round a vertical axis with his feet close

together on well-rounded skates.
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(2) When water is let out of a basin by a hole in the

bottom, as the outward parts approach the centre, any rota-

tion, however slight and imperceptible it may have been at

first, generally becomes very rapid and obvious.*

(3) Thus, also, we see that any rotating mass of hot matter

which shrinks as it cools, and so brings its particles nearer to

the axis of rotation, will increase its rate of rotation as it cools.

The sun and the earth itself, and the other planets, are pro-

bably all of them cooling and shrinking, and their respective

rates of rotation, therefore, on this account increasing.

If the sun has been condensed from a very extended nebu-

lous mass, as has been supposed, a very slow rate of revolu-

tion, in its original form, would suffice to account for the

present comparatively rapid rotation of the sun (one revolu-

tion in about 25 days).

Graphical representation of Angular Momentum.
—The angular momentum about any line of any moving

body or system may be completely represented by marking

off on that line a length proportional to the angular momen-

tum in question. The direc-

tion of the corresponding

rotation is conveniently in-

dicated by the convention

that the length shall be

named in the direction in

which a right-handed screw

would advance through its

nut if turning with the same

rotation. Thus OA and OB
in Figs. 48 and 49 would represent angular momenta, as

^ It can be shown that other causes besides that mentioned may
also produce the effect referred to.

no. 48.
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shown by the arrows. Since a couple has no moment about

any axis in its plane and has the same moment about every

axis perpendicular to its plane, and is measured by the

angular momentum it generates in unit time about any such

axis, it follows that a line drawn parallel to the axis of a

couple and of a length proportional to its moment, equally

represents both the couple and the angular momentum it

would generate in unit time, and hence the angular momenta

generated by couples can be combined and resolved exactly

as we combine or resolve couples. Thus if a body whose

angular momentum has been generated by the action of a

couple and is represented by OA, be acted on

for a time by a couple about a perpendicular

axis, this cannot alter the angular momentum

about OA, but will add an angular momentum

which we may represent by OB perpendicular

to OA. Then the total angular momentum

of the body must be represented by the

diagonal OC of the parallelogram AB (Fig.

50). And in general the amount of angular

momentum existing about any line through

is represented by the projection on that line of the line

representing the total angular momentum in question.

Moment of Momentum.—The phrase * angular or rota-

tional momentum' is convenient only so long as we are

dealing with a single particle or with a system of particles

rigidly connected to the axis, so that each has the same

angular velocity ; when, on the other hand, we have to con-

sider the motions of a system of disconnected parts, the

principle of conservation of angular momentum is more con-
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veniently enunciated as the * conservation of moment of

momentum.'
By the moment of momentum, at any instant, of a particle

about any axis is meant the product (mi^) of the resolved

part imv) of the momentum in a plane perpendicular to the

axis, and the distance (p) of its direction from the. axis ; or

the moment of momentum of a particle may be defined and

thought of as that part of the momentum which alone is

concerned in giving rotation about the axis, multiplied by

the distance of the particle from the axis. Since the action

of one particle on another always involves the simultaneous

generation of equal and opposite momenta along the line

joining them (see Note on Chapter ii.), it follows that the

moments about any axis of the momenta generated by such

interaction are also equal and opposite. Hence in any system

of particles unacted on by matter outside there is conserva-

tion of moment of momentum, or, in algebraical language,

^{mvp)— constant.

The moment of momentum of a particle as thus defined is

easily seen to be the same thing as its angular momentum iw.

For, as we have seen—see Appendix (1)—a>= ^ and i (by

definition) =mr^
,\ i(i)=mvj).

General Conclusion.—The student will now be prepared

to accept the conclusion that if, under any circumstances, we

observe that the forces acting on any system cause an altera-

tion in the angular momentum of that system about any given

fixed line, then we shall find that an equal and opposite altera-

tion is simultaneously produced in the angular momentum

about the same axis, of matter external to the system.
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Caution.—At the same time he is reminded that it is only

in the case of a rigid body rotating about a fixed axle that

we have learned that the angular momentum about that axle

is measured by Io>. He must not conclude either that there

is no angular momentum about an axis perpendicular to the

actual axis of rotation ; or that Iw will express the angular

momentum about an axis when a> is only the component

rotational velocity about that axis.

Thus if a body, consisting of two small equal masses mm,

united by a massless rigid rod

be rotating, say right-handedly,

about a fixed axis oy, bisecting

the rod and making an acute

angle with it, then it is evident

that, at the instant represented

in the diagram, though the rota-

tion is about oy and has no com-

ponent about ox, yet, on account

of the velocity of each mass per-

pendicular to the plane of the

paper there is actually more

angular momentum (left-handed) about ox than there is

(right-handed) about oy.

This point will be fully discussed in Chapter xii.

FIG. 51.

Ballistic Pendulum.—In Robins's ballistic pendulum,

used for determining the velocity of a bullet, we have an

interesting practical application of the principle of conserva-

tion of moment of momentum. The pendulum consists of a

massive block of wood rigidly attached to a fixed horizontal

axle above its centre of gravity abou^ which it can turn
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freely, the whole being symmetrical with respect to a vertical

plane through the centre of mass perpendicular to the axle.

The bullet is fired horizontally into the wood in this plane of

symmetry perpendicular to the axle, and remains embedded

in the mass, penetration ceasing before the pendulum has

moved appreciably. The amplitude of swing imparted to

the pendulum is observed, and from this the velocity of the

bullet before impact is easily deduced. Let I be the moment

of inertia of the pendulum alone about the axle, M its mass,

d the distance of its centre of gravity from the axis, and let

Q be the angle through which the pendulum swings to one

side.

Then, neglecting the relatively small moment of inertia of

the bullet itself, the angular velocity o) at its lowest point is

found by writing

Kinetic energy of^ mork subsequently done

pendulum \— \ against gravity in rising

at lowest point, J I through angle ^,

JI(u''= M(7(^(l-cos^),

an equation which gives us w.

Now, let V be the velocity of the bullet before impact that

we require to find, m its mass, and I the shortest distance

from the axis to the line of fire. Then writing

moment of momentum about^ _ rangular momentum about

axis before impact, J
"~

\ axis after impact,

we have mvl=\ia^

which gives us v.

The student should observe that we apply the principle of

conservation of energy only to the frictionless swinging of the

pendulum, as a convenient way of deducing its velocity at its

lowest point. Of the original energy of the bullet the greater

part is dissipated as heat inside the wood.
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In order to avoid a damaging shock to the axle, the bullet

would, in practice, be fired along a line passing through the

centre of percussion, which, as we shall see (p. 124), lies at

a distance from the axis equal to the length of the equivalent

simple pendulum.

Examples.

(1) A horizontal disc, 8 inches in diameter, weighing 8 lbs., spins

without appreciable friction at a rate of ten turns per second about

a thin vertical axle, over which is dropped a sphere of the same

weight and 5 inches in diameter. After a few moments of slipping

the two rotate together. Find the common angular velocity of tha

two, and also the amount of heat generated in the rubbing together

of the two (taking 772 foot-pounds of work as equivalent to one unit

of heat). Ans. (i) 7 '6 19 tarns per sec.

„ (ii) -008456 units of heat.

(2) A uniform sphere, 8 inches in radius, rotates without friction

about a vertical axis. A small piece of putty weighing 2 oz. is

projected directly on to its surface in latitude 30° on the sphere and

there sticks, and the rate of spin is observed to be thereby reduced

by iV- Find the moment of inertia of the sphere, and thence its

specific gravity. Ans. (i) 7J oz.-foot2 units.

„ (ii) -0332.

(3) Prove that the radius vector of a particle describing an orbit

under the influence of a central force sweeps out equal areas in equal

times.

(4) A boy leaps radially from a rapidly revolving round-about

on to a neighbouring one at rest, to which he clings. Find the

eflfect on the second, supposing it to be unimpeded by friction, and
that the boy reaches it along a radius.

(6) Find the velocity of a bullet fired into a ballistic pendulum from
the following data :

—

The moment of inertia of the pendulum is 200 lb. -foot^ units, and
it weighs 20 lbs. The distance from the axis of its centre of gravity

is 3 feet, and of the horizontal line of fire is V feet ; the bullet

penetrates as far as the plane containing the axis and centre of mass
and weighs 2 oz. The cosine of the observed swing is ^.

Ans. 950*39 feet per sec.

(taking ^= 32-2.)



CHAPTEE IX.

ON THE KINEMATICAL AND DYNAMICAL PROPERTIES OF THE

CENTRE OF MASS.

Evidence of the existence for a Rigid Body of a

point possessing peculiar dynamical relations.

—

Suppose a single external force to be applied to a rigid body

previously at rest and perfectly free to

move in any manner. The student will

be prepared to admit that, in accordaiice

with Newton's Second Law of Motion,

the body will experience an acceleration

proportional directly to the force and

inversely to its mass and that it will

begin to advance in the direction of the

applied force. But Newton's Law does not tell us explicitly

whether the body will behave differently according to the

position of the point at which we apply the force, always

assuming it to be in the same direction.

Now, common experience teaches us that

there is a difference. If, for example, the

body be of uniform material, and we apply

the force near to one edge, as in the second

figure, the body begins to turn, while if we
FIG. 53.

, i n 1 • 1 ^

apply the force at the opposite edge, the

body will turn in the opposite direction. It is always possible,

however, to find a point through which, if the force be ap-

94

Fio 52.
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plied, the body will advance without turning. The student

should observe that if, when the force was applied at one

edge of the body, as in Fig. 2, the body advanced without

turning, precisely as we may suppose it to have done in

Fig. 1, this would not involve any deviation from Newton's

Law applied to the body as a whole, for the force would still

be producing the same mass-acceleration in its own direction.

It is evidently important to know under what circum-

stances a body will turn, and under what circumstances it will

not.

The physical nature of the problem will become clearer in

the light of a few simple experiments.

Experiment 1.—Let any convenient rigid body, such as a walking-

stick, a hammer, or say a straight rod conveniently weighted at one

end, be held vertically by one hand and then allowed to fall, and

while falling let the observer strike it a smart horizontal blow, and

observe whether this causes it to turn, and which way round ; it

is easy, after a few trials, to find a point at which, if the rod be struck,

it will not turn. If struck at any other point it does turn. The ex-

periment is a partial realisation of that just alluded to.

Experiment 2.— It is instructive to make the experiment in another

way. Let a smooth stone of any shape, resting loosely on smooth

hard ice, be poked with a stick. It will be found easy to poke the

stone either so that it shall turn, or so that it shall not turn, and if

the direction of the thrusts which move the stone without rotation be

noticed, it will be found that the vertical planes containing these

directions intersect in a common line. If, now, the stone be turned

on its side and the experiments be repeated, a second such line can

be found intersecting the first. The intersection gives a point through

which it will be found that any force must pass which will cause

motion without turning.

Experiment 3.—With a light object, such as a flat piece of paper or

card of any shape, the experiment may be made by laying it, with a

very fine thread attached, on the surface of a horizontal mirror dusted

over with lycopodium powder to diminish friction, and then tugging
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at the thread ; the image of the thread in the mirror aids in the

alignment. The thread is then attached at a different place, and a

second line on the paper is obtained.

If a body, in which the position of the point having these

peculiar properties has been determined by any of the

methods described, be examined to find the Centre of Gravity,

it will be found that within the limits of experimental error

the two points coincide. This result may be confirmed by

the two following experiments.

Experiment 4.—Let a rigid body of any shape whatever be allowed

to fall freely from rest. It will be observed that, in whatever position

the body may have been held, it falls without turning (so long at any

rate as the disturbing effect of air friction can be neglected). In this

case we know that the body is, in every position, acted on by a

system of forces (the weights of the respective particles) whose resul-

tant passes through the centre of gravity.

Experiment 5.—When a body hangs at rest by a string, the direc-

tion of the string passes through the centre of gravity. If the string

be pulled either gradually or with a sudden jerk, the body moves

upward with a corresponding acceleration, but again without turning.

This is a very accurate proof of the coincidence of the two points.

We now pass to another remarkable dynamical property,

which may be enunciated as follows :

—

' If a couple he applied to a non-rotating rigid body that is

perfectly free to move in any manner^ then the body will begin to

rotate about an axis passing through a point not distinguishable

from the centre of gravity.'

This very important property is one which the student

should take every opportunity of bringing home to himself.

If a uniform bar, AB,

y^ G R free to move in any man-
I

•
I

A
' y" ner, be acted on by a couple

,10.54. whose forces are applied
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as indicated, each at the same distance from the centre of

mass G, then it is easy to believe that the bar will begin to

turn about G-. But if one force be applied at A and the other

Fio. 55. v\Q. 56.

^
at G itself, as in Fig. 55, or between A and G, as in Fig. 56,

then it is by no means so obvious that G will be the turning

point. The matter may be brought to the test of experiment

in the manner indicated in the following figure.

V

^s=

no. 67.

Experiment 6.—A Magnet NS Ues horizontally on a square-cut

block of wood, being suitably counterpoised by weights of brass or

lead, 80 that the wood can float as shown in a large vessel of still

water. The whole is turned so that the magnet lies magnetic east

and west, and then released, when it will be observed that the centre

of gravity G remains ^ vertically under a fixed point P as the whole

^ The centre of gravity must, for hydrostatic reasons, be situated

in the same vertical line as the centre of figure of the submerged part

of the block.

G *
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turns about it. It is assumed here that the magnet is affected by a

horizontal couple due to the earth's action.

We now proceed to show experimentally that when a rigid

body at rest and free to move in any manner is acted on by

forces having a resultant which does not pass through the

centre of Gravity,

then the bodybegins

to rotate with an-

gular acceleration

abofui the centre of

Gravity, while at the

same time the centre

of gravity advances

in the direction of

the resultant force.

Experiment 7.—Let

any rigid body hanging

Fio. 68w freelyat restby a string

be struck a smart

blow vertically upwards. It will be observed that the centre of gravity

rises vertically^ while at the same time the body turns about it, unless

the direction of the blow passes exactly through the centre of gravity.

[It will be found convenient in making the experiment for

the observer to stand so that the string is seen projected

along the vertical edge of some door or window frame. The

path of the Centre of Gravity will then be observed not to

deviate to either side of this line of projection. The blow

should be strong enough to lift the centre of mass considerably,

and it is well to select an object with considerable moment of

inertia about the Centre of Gravity, so that though the blow is

eccentric the body is not thereby caused to spin round so

quickly as tP strike the string and thus spoil the experiment]
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We have now quoted direct experimental evidence of the

existence in the case of rigid bodies of a point having peculiar

dynamical relations to the body, and have seen that we are

unable experimentally to distinguish the position of this

point from that of the centre of gravity. But this is no proof

that the two points actually coincide. Our experiments have

not been such as to enable us to decide that the points are not

in every case separated by -^^^ inch, or even by yjg- inch.

"We shall now proceed to prove that the point which has

the dynamical relations referred to is that known as the

Centre of Mass, and defined by the following relation.

Let TWi, mj, ma, ... be the masses of the constituent particles

of any body or system of particles; and let Xi, a^aj ajg, . . . be

their respective distances from any plane, then the distance

a of the centre of mass from that plane is given by the

- miaji 4-^23^2+ . . .

relation x—
mi+mj+mj-f . .

^'^ ^= ^'
That the centre of mass whose position is thus defined

coincides experimentally with the centre of gravity, follows,

as was pointed out in the note on p. 38, from the experimental

fact, for which no explanation has yet been discovered, that

the mass or inertia of diff'erent bodies is proportional to their

weight, i.e. to the force with which the earth pulls them.

Our method of procedure will be, first formally to enunciate

and prove certain very useful but purely kinematical pro-

perties of the Centre of Mass, and then to give the theoretical

proof that it possesses dynamical properties, of which we have

selected special examples for direct experimental demon*

stration.
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By the student who has followed the above account of the

experimental phenomena, the physical meaning of these pro-

positions will be easily perceived and their practical import-

ance realised, even though the analytical proofs now to be

given may be found a little difficult to follow or recollect.

Proposition I.—(Kinematical.) On the displacement of

the centre of mass.

If tJie particles of a system are displaced from their initial

positions in any directions, then the displacement d experienced by

the centre of mass of the system in any one chosen direction is con-

nected with the resolved displacements di, d^, d^, . , , of the

respective particles in the same direction by the relation

^_m,d,+m^di-\- .... -fmA
Wi+m,+ .... +?w„

^ ^(md)
or d= -^—-.

zm
Proof.—For, let any plane of reference be chosen, perpen-

dicular to the direction of resolution, and let x be the distance

of the centre of mass from this plane before the displacements,

x' its distance after the displacements,

T"v,«« - 2(7wa;) . - ^m(x-\-d)

^(mx) 2{md)
~ 2m * 2m

••• ^-^=^=^^- Q.E.D.

If ^{md)=o, then d=o, i.e. if, on the whole, there is no

mass-displacement in any given direction, then there is

no displacement of the centre of mass in that direction.
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Definitions.—If a rigid body turns while its centre of

mass remains stationary, we call the motion one of pure

rotation.

When, on the other hand, the centre of mass moves, then

we say that there is a motion of translation.

Proposition II.— (Kinematical.) On the velocity of

the centre of mass of a system. If v,, Va, v^ ... be the

respective velocities in any given direction at any instant of the

particles of masses mj, m„ mj, etc., of any system, then the

velocity v of their centre of mass in the same direction is given by

the relation

This follows at once from the fact that the velocities are

measured by, and are therefore numerically equal to, the

displacements they would produce in unit time.

Proposition III.—(Kinematical.) On the acceleration of

the centre of mass. If ai, a^, . . . be the accelerations in any

given direction, and at the same instant of the respective particles

of masses m^, m^ . . . of a system, then the acceleration a

of their centre of mass in the same direction at thai instant, is

given by the relation

zra

This follows from Proposition II., for the accelerations are

measured by, and are therefore numerically equal to, the

velocities they would generate in unit time.
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Summary.—These three propositions may be conveniently

summed up in the following enunciation.

/- mass-disjplacements\

The sumofihe resolutes in anydirectionofthe < momenta >

\ mass-accelerations J

of the particles of any system is equal to the total mass of the

r displacement \

system multiplied hy the < velocity > , in the same direction,

\ acceleration )

of the centre of mass.

Corresponding to these three Propositions are

three others referring to the sum of the moments about any

r mass-displacements \

axis of the-( momenta > of the particles of a system,

V mass-accelerations /

and which may be enunciated as follows :

—

*The algebraic sum of the moments about any given fixed

r mass-displacements \

axis of the < momenta > of the particles of any system

\ mass-accelerations )

is equal to the sum of the moments of the same quantities about a

parallel axis through the centre of masSj plus the moment about

the given axis

C displacement \

of the\ velocity >of the centre of mass, multiplied by the

^ acceleration ^

77ites5 of the whole system.

Since the moment of the mass-displacement of a particle has

no special physical significance, we will begin at the second

link of the chain and give the proof for the angular momenta.
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Proposition IV.— (Kinematical.) The angular momentum

of any system of particles about any fixed axis, is equal to the

angular momentum about a parallel axis through the centre cf

muss + the angular momentum which the system would have about

the given axis if all collected at the centre of mass and moving

with it.

Proof.—Let the plane of the diagram pass through a

particle P and be perpendicular to the given fixed axis and

let G be the pro-

jection on this ])lane

of the centre of

mass. Join OGr.

-^^ S.

Let PQ represent

the resolute {v) of
1 ~ ~ ^ /

the velocity of P in
O

FIG. 59.

the plane of the diagram ; PS the resolute v' of this velocity

perpendicular to OG. Draw OM (=p) perpendicular to

PQM; GT parallel to PQ and GN (=/) parallel to GM.

Then the angular momentum of P about 0=pmv=mvx

OM=zmv(TM.-^OT)=mrp'-{-mvOG^=p'mv+mv'OG.

Therefore, summing for all the particles of the system,

Total angular momentum about = ^(pm.v)= ^(p'mv)-\'

'2(0Gmv')=2{p'mv)-\-0G'2(mv')= ^(p'mv)-\-0Gv^mj where v'

is the velocity of the centre of mass perpendicular to OG.

This proves the proposition.

Corollary.—If the centre of mass is at rest v'=0 and "Spmv

=2p'mv, thus the angular momentum of a spinning body

whose centre of mass is at rest is the same about all parallel

txes. It is very important that the student should realise
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this. He will easily associate it with the fact that the

angular momentum measures the impulse of the couple that

has produced it, and that the moment of a couple is the

same about all parallel axes.

Proposition V.—(Kinematical). In exactly the same way,

substituting accelerations for velocities, we can prove that

2(pma)= ^p'ma+0Ga'2w.

Proposition VI.—(Dynamical.) On the motion of the

centre of mass of a body under the action of external forces.

We shall now show that

The acceleration in any given direction of the centre of mass of

a material system

algebraic sum of the resolutes in that direction of the external forces~
mass of the whole system

For, by Newton's Second Law of Motion (see note on

Chapter II),

(the algebraic sum of the ex-\ _ /the algebraic swn of the mass-\

ternal forceSf ) \ accelerations^ J

2E=2(?7ia);

hit by III. 2(ma)=a2m;

- 2E
2.m

which is what we had to prove.

This result is quite independent of the manner in which the

external forces are applied, and shows that when the forces

are constant and have a resultant that does not pass through
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the centre of mass (see Fig. 53), the centre of mass will,

nevertheless, move with uniform acceleration in a straight

line, so that, if the body also turns, it must he about an axis

through the centre of mass.

Proposition VII.—(Dynamical.) The application of a

couple to a rigid body at rest and free to move in any manner, can

only cause rotation about some axis through the centre of mass.

For, by Proposition VI,

Acceleration of centre of mass=——

,

but in the case of a couple 2E=0 for every direction, so that

the centre of mass has no acceleration due to the couple,

which, therefore (if the body were moving), could only add

'rotation to the existing motion of translation.

Proposition VIII.— (Dynamical.) When any system of

forces is applied to a free rigid body, the effect on the rotation

about any axis fixed in direction, passing through the Centre of

Mass and moving with it, is independent of the motion of the

Centre of Mass.

For, by the note on Chapter 11. , p. 32,

2 (moments of the mass- \ ^ ,, . r ..
^

, . ,
Resultant moment of the

accelerations about any > = ^ , .

. „ - . - I external forces,
axis fixed in space)

'

or '2(pma)= li

but, by Proposition V. (see Fig. 59, p. 103),

^pma)=^p'ma)+0G l{ma')

.\ l(pma)+OGr ^ma')=h.
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If, now, the centre of mass be, at the instant under considera-

tion, passing through the fixed axis in question (which is

equivalent to the axis passing through the Centre of Mass

and moving with it), OG=0 and the second term vanishes

and 2(1^ma) =Ly

i.e. the sum of the moments of the mass-accelerations about

such a moving axis = resultant moment of the external forces,

precisely as if there had been no motion of the Centre of

Mass. This proposition justifies the independent treat-

ment of rotation and translation under the influence

of external forces.

On the direction of the Axis through the Centre

of Mass, about which a couple causes a free Rigid

Body to turn.—Caution.—The reader might be at first

disposed to think that rotation must take place about an

axis perpendicular to the plane of the applied couple, especially

as the experiments quoted do not reveal the contrary ; but

it should be observed that the experiment of the floating

magnet was not such as would exhibit satisfactorily rotation

about any but a vertical axis.

It is not difficult to show that rotation will not in general

begin about the axis of

the couple. To fix the

ideas, let us imagine

a body composed of

three heavy bars cross-

ing each other at right-

Fio. 60.

angles, at the same

point 0, which is the

centre of mass of the

whole system, and let
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the bar AB be much longer and heavier than either of the

other two CD and EF, and let this massive system be

embedded in surrounding matter whose mass may be

neglected in comparison.

It is evident that the moment of inertia of such a system is

much less about AB than about CD or EF, or that it will be

easier to rotate the body about AB than about CD or EF.

Hence, if a couple be applied, say by means of a force through

the centre of mass along EF, and an equal and opposite force

at some point P on the bisector of the angle DOB, then this

latter force will have equal resolved moments about CD and

about AB. But rotation will begin to be generated more

rapidly about the direction of AB than about that of CD,

and the resulting axis of initial rotation will lie nearer to

AB than to CD, and will not be perpendicular to the plane

of the couple. In fact, the rods EF and CD will begin to turn

about the original direction of AB, considered as fixed in

space, while at the same time the rod AB will begin to rotate

about the axis CD, considered as fixed, but with a more slowly

increasing velocity. We shall return to this point again in

Chapter xii.

Total Kinetic Energy of a Rigid Body.—When a

body rotates with angular velocity (w) about the centre of

mass, while this has a velocity (v), we can, by a force through

the centre of mass destroy the kinetic energy of translation

(JMt;') leaving that of rotation (i^Iw*) unaltered. Thus,

the total kinetic energy =JMt;'+ |Ia>".

In the examples that follow on p. 110, this consideration

often gives the readiest mode of solution.
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Examples.

(1) Two Tnasses M and m, of which M is the greater, hang at

the ends of a weightless cord over a smooth horizontal peg, and move

under the action of gravity ; to find the acceleration of their centre of

mass and the upward pressure of the peg.

Taking the downward direction as + ve, the acceleration of M is

M
while that of m is —gM-m Hence substituting in theM +m ----- - ^ M+m'

general expression for the acceleration of the centre of mass,

^i,., 5^?^ we have

-

_

My(M - m) -mgr(M - m) _ (M-m)^
^

(M + m)2 ~^(M + m)2*

The total external force which produces this acceleration is the sura

of the weights - the push P of the peg
;

.-. (M + m)^-P = (M + m)^P^"'^^'
'{M +mf

'(M+m)2

i^!^ absolute units of force.M +m

(2) A uniform solid sphere rolls without slipping down a plane

inclined at an angle 6 with the horizontal ; to find the acceleration of

its centre and the tangential force due to the friction of the plane.

It is evident that

if there were no

friction the sphere

would slide and not

roll, and therefore

that the accelera-

tion (a) of the cen-

tre C, which we
wish to find is due

to a total force mg
sin ^ - P parallel to

no. 60a.
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the plane, where P is the friction.

^_. ^>^sin—-—^ y^ijere m = the mass of the sphere,m
p= gr sin ^ - - . . . . (i)

Now, the moment of the force (P) with reference to a horizontal axis

through C is Pr, and, therefore, calling the angular acceleration of

the sphere A, and its radius of gyration fc,

Pr=AI=AxTOA:2 , (ii)

P^Ai2
" m r

,'. substituting in (i)

. . k¥-

r

Now, since the sphere is at any instant turning about the point of

contact with the plane, we have ©=— and A= - (iii)

T T

/. substituting in the equation, we get

a=gsme-—j

In the case of a sphere F=^^——^=-—r*

5 5

5
^

7

Hence, equating the total force to the mass-acceleration down the

plane,

mg sin 6 -F^mg sin 6 x -

2P=—-mgrsiu^.

[This question might also have been solved from the principle of

the Conservation of Energy.]
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Examples for Solution.

(1) Show that when a coin rolls on its edge in one plane, one-third

of its whole kinetic energy is rotational.

(2) Show that when a hoop rolls in a vertical plane, one-half of its

kinetic energy is rotational

(3) Show that when a uniform sphere rolls with its centre moving

along a straight path, f of its kinetic energy is rotational.

(4) Find the time required for a uniform thin spherical shell to

roll from rest 12 feet down a plane inclined to the horizontal at a

slope of 1 in 50. Ans, 8 seconds (nearly).

(5) You are given two spheres externally similar and of equal

weights, but one is a shell of heavy material and the other a solid

sphere of lighter material. How can you easily distinguish between

khem?

(6) A uniform circular disc, half an inch thick and 12 inches in

radius, has a projecting axle of the same material half an inch in

diameter and 4 inches long. The ends of this axle rest upon two
parallel strips of wood inclined at a slope of 1 in 40, the lower part

of the disc hanging free between the two. The disc is observed to

roll through 12 inches in 53*45 seconds. Deduce the value oig correct

to 4 significant figures. Ans. gr = 32*19 /.s.s.

(7) What mass could be raised through a space of 30 feet in 6

seconds by a weight of 50 lbs., hanging from the end of a cord passing

round a fixed and a moveable pulley, each pulley being in the form of

a disc and weighing 1 lb, Ans. 84*02 lbs.

Instructions.—Let M be the mass required. Its final velocity at the
30

end of the six seconds will be twice the mean velocity, i.e. 2 xV /•*•
6

= 10/. 5. From this we know all the other velocities, both linear and
angular—taking the radius of each pulley to be r. Equate the sum of

the kinetic energies to the work done by the earth's pull. Remember
that the fixed pulley will rotate twice as fast as the moveable one.

(8) A uniform cylinder of radius r, spinning with angular velocity

a), about its axis, is gently laid, with that axis horizontal, on a hori-

zontal table with which its co-eflicient of friction is /*. Prove that it

will skid for a time -—^ and then roll with uniform velocity ^.
3/xgf "^3



CHAPTER X.

CENTRIPETAL AND CENTRIFUGAL FORCES.

We have, so far, dealt with rotation about a fixed axis, or

rather about a fixed material axle, without inquiring what

forces are necessary to fix it. We shall now consider the

question of the pull on the axle.

Proposition.—Any particle moving with uniform angular

velocity w round a circle of radius r must have an acceleration rco^

towards the centre, and must therefore be

acted on by a force mrm^ towards the

centre, where m is the mass of the

particle.^

Let us agree to represent the

velocity {v) of the particle at A by

the length OP measured along the

radius OA at right angles to the direc-

tion of the velocity. Then the

velocity at B is represented by an equal length OQ measured

along the radius OB, and the velocity added in the interval

is (by the triangle of velocities) represented by the line PQ.

If the interval of time considered be very short, B is very near

to A and Q to P, and PQ is sensibly perpendicular to the radius

* Since w= -, ru}^= _, and it is proved in text-books on the dynamics

of a particle, such as Gamett's Elementary Dynamics and Lock's

Dynamics, that the acceleration of a point moving uniformly in a circle

with speed v is towards the centre, and is — : thus the Student will be

already familiar with the propositior^. We give, however, a rather

difiereot proof.

Ul
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OA, and therefore the velocity it represents is along this

radius and towards the centre. This shows that the addition

of velocity, i.e. the acceleration, is towards the centre.

Let the very short interval in question be called {di).

Then PQ represents the velocity added in time {dt\ i.e. the

acceleration X {di).

PQ_ acceleration x {di)
•*• OP V

But^ = angle POQ=a>((^0

acceleration X (c?0_ /^a
V

— \ f

acceleration =t;o>=r(i>*.

Hence, if the particle have a mass tw, the centripetal or

centre-seeking jorce required to keep it moving with uniform

speed in a circle of radius r is a force of— or mrtii^ units.

The unit force is here, as always, that required to give

unit acceleration to unit mass. Thus, if the particle has a

mass of m lbs., and moves with speed v feet per second in

a circle of radius r feet, the force is — or mra>' poundals
;

while if the particle have a mass of m grams and move with

velocity of v centimetres per second in a circle of radius r centi-

metres, then the centripetal force is m— dynes.

Illustrations of the use of the terms ' Centripetal

Force' and * Centrifugal Force.'—A small bullet whirled

round at the end of a long fine string approximates to the

case of a heavy particle moving under the influence of a

centripetal force. The string itself is pulled away from the

centre by the bullet, which is said to exert on it a centrifugal

force. Similarly a marble rolling round the groove at th^
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rim of a solitaire-board is kept in its circular path by the

centripetal pressure exerted by the raised rim. The rim, on

the other hand, experiences an equal and opposite centrifugal

push exerted on it by the marble.

In fact, a particle of matter can only be constrained to

move with uniform angular velocity in a circle by a centri-

petal force exerted on it by other matter, and the equal and

opposite reaction exerted by the body in question is in most

cases a centrifugal force. Thus, when two spheres attached

to the ends of a fine string rotate round their common

centre of gravity on a smooth table, each exerts on the string

a centrifugal force. In the case, however, of two heavenly

bodies, such as the earth and moon, rotating under the influ-

ence of their mutual attraction about their common centre of

gravity, the force that each exerts on the other is centripetal.

We cannot in this case^ermre anything corresponding to the

connecting string or to the external rim.

Centripetal Forces in a Rotating Rigid Body.—
When we have to deal, not with a single particle, but with a

rigid body rotating with angular velocity w, and of which the

particles are at different distances, r,, rj, r„ etc., from the

axis, it becomes necessary to find the resultant of the forces

(mirito*), (TTijrjw'), etc., on the several particles.

Rigid Lamina.—We take first the case of a rigid lamina

of mass M turning about an axle perpendicular to its plane.

Here all the forces lie in one plane, and it is easily shown

that the resultant required is a single force, through the centre

of mass of the lamina, and equal to MEw', where R is the

distance from the axis to the centre of mass
;
[and MRw',

again, is equal to M— , where V is the speed of the centre
\\

of mass in its circular path].
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This may be shown at once from the following well known

proposition in Statics : * If two forces be represented in

Fio. 63. Fio. 64.

magnitude and direction by m times OA and n times OB,

then their resultant is represented in magnitude and direc-

tion by (m+w) times OC,

C being a point which

divides the line AB, so

that the ratio "^^-Z
CB m

•B (For proof sec Greave's

Stalks, p. 18.) For let

A and B be any two

particles of the lamina, and let their masses be m and w,

then the force along OA is mw^OA, and that along OB is

fiw'OB; therefore, by the proposition quoted, the resultant

force is (m-{-7i)(o'OC, and passes through 0, which, since it

divides the distance AB inversely as the masses, is the centre

of mass and centre of gravity of the two particles. This

resultant may next be combined with the force on a third

particle of the rigid system, and so on till all are included.
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Exlension to Solids of a certain type.—By piling

up laminae whose centres of gravity all lie on the same

Fio. 7a

line parallel to the axis, as indicated in the diagrams (Figs.

66-70), we may build up solids of great variety of shape, and
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by then combining resultants on the several laminae, we see

that in order to keep the body rotating with uniform angular

velocity, we require only a single force passing through its

centre of gravity, and directed towards the axis and equal to

MRw*, where M is the mass of the whole body.

The requisite force might, in such a case, be obtained by

connecting the centre of gravity of the body to the axis by a

string. The axis would then experience a pull MRw', which

changes in direction as the body rotates.

If the axis passes through the centres of mass of

all such laminae, then R= 0, and the force disappears, and

the axis is unstrained. It is often of high importance that

the rapidly rotating parts of any machinery shall be accu-

rately centred, so that the strains and consequent wear of

the axle may be avoided.

Convenient Dynamical Artifice. — It should bo

observed that the single force applied at the centre of mass

would not supply the requisite centripetal pressure to the

individual particles elsewhere if the body were not rigid.

If, for example, the cylinder AB rotating as indicated

about 00' consisted of loose smooth particles of shot or

sand, it would be necessary to enclose these in a rigid case

in order that the single force a])plied at G should maintain

equilibrium. The particles between G and A would press

against each other and against the case, and tend to turn it

round one way, while those between G and B would tend, by

their centrifugal pressure, to turn it the other way. Now, it is

very convenient in dealing with problems involving the con-

sideration of c<?ntripetal forces to treat the question as one
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of the equilibrium of a case or shell, which we may regard as

possessing rigidity,

but no appreciable

mass, and which

is honey - combed

throughout by min-

utecells,within which

the massive particles /

may be conceived to ^

lie as loose cores

exerting on the cell-

centiifugal

y (MRw~)

riQ. 71.

walls

pressures, whose re-

sultant must be bal- ot

anced by some ex-

ternal force, or system of forces, if the equilibrium is to be

maintained. By the aid of this artifice, for the use of which

the student will find plenty of scope in the examples that are

given in the text-books of Garnett, or Loney, or Lock, already

referred to, the problem of finding the forces necessary to

maintain equilibrium may be dealt with as one in Statics.

Centrifugal Couples.—Let us now, using the method of

this artifice, consider the revolution about the axis 00' of a thin

uniform rod AB (Fig. 72). So long as the rod is parallel to the

axis, a single force at its centre of gravity G suffices for equi-

librium; but if the rod be tilted towards the axis, as shown in

the figure, then it is evident that the centrifugal forces on the

part AG are diminished, while those on GB are equally in-

creased (the force being everywhere proportional to the dis-

tance from the axis) ; hence the resultant now to be sought
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no. 72.

is that of the system indicated by the arrows in the figure,

which is easily seen to be, as before,

a single force of magnitude MEw',

but which now passes through a

point in the rod between G and B,

and therefore has a moment about

G. Such a force is equivalent to

an equal parallel force through G,

together with a couple in a plane

containing G and the axis. Such

a couple is called a Centrifugal

Couple. It is evident that though,

when the rod is parallel to the axis

(attached to it, for example, by a

string to the centre of mass),

there is no centrifugal couple, yet the

equilibrium, though it exists, is un-

stable, for the slightest tilt of either end of the rod towards

the axis will produce a centrifugal couple tending to increase

the tilt. It is for this reason that a stick whirled by a cord

attached to its centre of mass always tends to set itself

radially.

Centrifugal Couple in a body of any shape.—With a

body of any shape whatever rotating about a fixed axis, the

same conclusion is arrived at, viz., that the centrifugal forces

(due to the interior mass on the outside visible shell) are

equivalent always to a single force MRa>* applied at the centre

of mass of the body, and a couple in a plane parallel to the

axis; but the axis of this couple will not, except in special

cases, be perpendicular to the plane containing the centre of

gravity and the axis of rotation.
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This result may be reached by taking, first, any two par-

ticles of the body, such as A and B in the diagram, of masses

m and n respectively, and

showing that the centrifugal

forces 'p and ^ exerted by each

are equivalent to two forces

along CA' and CB' (the direc-

tions of the projections of y
and 2 on a plane perpendicular

to the axis and containing the

centre of mass of the two

particles), together with the

two couples py and qc[. Then

the two coplanar forces along

CA' and CB' have, as before

(see p. 114), a resultant

(m+ri)(u'CG, while the two

couples combine into a single

resultant couple In a plane

parallel to or containing the axis of rotation but not parallel

to CG. In this way, taking all the particles in turn, we

arrive at the single force through the centre of mass of the

whole and a single couple.

Centrifugal Couples vanish when the rotation is

about a Principal Axis, or about an Axis parallel

thereto.—It is obvious that in the case of a thin rod (see

Fig. 72) there is no centrifugal couple when the rod is either

parallel or perpendicular to the axis of rotation, which is then

a principal axis (or parallel to a principal axis), and it is easy

to show that for a rigid body of any shape the centrifugal

couples vanish when the rotation is about a principal axis.
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rio. 73a.

Froof.—Let us fix our attention on any particle P of a body

which rotates with uniform positive angular velocity Wy, about

a fixed axis Oy passing through the

centre of mass of the body. Let

O^ and Oz be any two rectangular

axes perpendicular to Oy. The

centripetal force on the particle is

always equal to mrin^ (see Fig.YSA),

and its component parallel to Ox is

—mxiHy^ (negative in sign because

it tends to decrease a:), and this

changes the value of the momentum

of the particle perpendicular to the

plane yz. The moment about Oz

of this component of the centripetal force is —iHymxy and

measures the rate at which angular momentum is being

generated about Oz. The sum of the moments of such com-

ponents for all the particles of the body is — (u/2ma:y, and this

with its sign changed, or in^^mxyy is the measure of the centri-

fugal couple about Oz. Now l.mxy vanishes when either x or

y is a principal axis of the body (see pp. 59 and 60). Heuc3

there is no centrifugal couple when the body rotates about a

principal axis.

It follows that a rigid body rotating about a principal axis,

and unacted on by any external torque, will rotate in equili-

brium without the necessity of being tied to the axis. But in

the case of bodies which have the moments of inertia about

two of the principal axes equal, the equilibrium,, as we have

seen, will not be stable unless the axis of rotation is the axis

of greatest moment.
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Importance of properly shaping the parts of

machinery intended to rotate rapidly.—In coimecLion

with this dynamical property of principal axes, the student

will now recognise the importance of shaping and balancing

the rotating parts of machinery, so that not merely shall the

axis of rotation pass through the centre of mass, but it shall

also be a priiici])al axis^ since in this way only can injurious

stresses on the axle be completely avoided.

Equimomental bodies similarly rotating have

equal and similar centrifugal couples.—Pvw/.—Let

^u t/u ^i be any three rectangular axes of the one body

(1), and iCa, ^2* 2^2 the corresponding axes of the other (2), and

let A', B', C be the respective moments of inertia about these

axes. Then about any other axis, in the plane xy making

any angle a with (x), ^ (= 90°— a) with (?/), and 7 (= 90°)

with {z)f the moment of inertia of (1) is (as we see by refer-

ring to p. 60),

A'cos' a-fB'cos'yS— 22wza;iyi, cos a cos )8,

while that of (2) about a corresponding axis is

A' cos* a-fB'cos'jS— 227wa:2?/aCosacosy8

(for the terms involving cosy as a factor disappear since

cos 7= COS 90°= 0), and, since the bodies are equimomental,

these two expressions are equal, therefore

2mxiyi= l.mx^yi.

Therefore for equal rates of rotation about either x or y, the

centrifugal couples about {z) are equal, and this is true for all

corresponding axes.

Substitution of the 3-rod inertia-skeleton.—This

result justifies us in substituting for any rotating rigid body
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its three-rod inertia-skeleton, the centrifugal couples on which

can be calculated in a quite simple way. We will take first

a solid of revolution, about the axis of minimum inertia C.

For such a body the rod C is the longest, and the two rods

A and B are equal, and these

two, together with an equal

length measured off the cen-

tral portion of the third rod

(C), combine to form a system

dynamically equivalent to a

sphere for which all centri-

fugal couples vanish about

all axes ; there thus remains

no. 78a for consideration only the

excess at the ends of the rod (see Fig. 73b). The centrifugal

couple is in this case obviously about an axis perpendicular

to the plane (xy) containing the rod C and the axis of rota-

tion (y), and its value, as we have seen, is w'^mxy; now if r be

the distance of a particle from the origin 0, a:=r sin Q and

!/=r cos ^, .'. iii^^mxy-=iii^ sin 6 cos B ^mr^, and

2mr'=moment of inertia about z of the projecting ends

of the rod C
=moment of inertia of the whole rod about a perpen-

dicular axis— the moment of inertia of rod A about

a perpendicular axis,

=i(A+B-C)-J(B+C-A) (see p. 65)

=A-0
Therefore the centrifugal couple= a>*(A— C) sin ^cos 0.

If had been the axis of maximum moment of inertia then

the rod would have been the shortest of the three rods instead

of the longest, and we should have had a defect instead of an
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excess to deal with, and the couple would have been of the

opposite sign and equal to w'(C— A) sin ^cos Q.

We shall make use of these results later on in connection

with a spinning-top and gyroscope. (See Appendix.)

If all three moments of inertia are unequal, we could

describe a sphere about the shortest rod as diameter, and

should then have a second pair of projections to deal with.

We could find, in the way just described, the couple due to

each pair separately and then combine the two by the parallelo-

gram law. We shall, however, not require to find the value

of the couple except for solids of revolution.

Transfer of Energy under the action of Centri-

fugal Couples.—Returning again to our uniform thin

rod as a conveniently

simple case, let us

suppose it attached

in the manner indi-

cated in either figure

(Figs. 74 and 75), so

as to turn freely in

the framework about

the axle CC, while

this rotates about

the fixed axis 00'.

The rod, if liberated

in the position shown,

while the frame is

rotating, will oscillate under the influence of the centrifugal

couple, swinging about the mean position ah. It is impos-

Bible in practice to avoid friction at the axle CO', and these
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oscillations will gradually die away, energy being dissipated

as frictional heat. To the question, Where has this energy

come from ? the answer is, From the original energy of rota-

tion of the whole system, for as the rod swings from the

position AB to the position aJ, its moment of inertia about

00' is being increased, and this by the action of forces

having no moment about the axis, consequently, as wo saw

in Chapter viii. p. 87, the kinetic energy due to rotation

about 00' (estimated after the body has been fixed in a

new position) must be diminished in exactly the same pro-

portion. Thus,

O if the whole

system be rotat-

ing about 00',

and under the

influence of no

externaltorque,

and with the

rod initially in

•

°
no. 75. the position

AB, then as the

rod oscillates, the angular velocity about will alternately

decrease and increase ; energy of rotation about the axis 00'

being exchanged for energy of rotation about the axis CC



CHAPTER XL

CENTRE OF PERCUSSION.

X

^, G

Let a thin rod AB of mass m be pivoted at about a

fixed axle perpendicular to its length, ^
and let the rod be struck an impulsive

blow (P) at some point N, the direc-

tion of the blow being perpendicular

to the plane containing the fixed axle

and the rod, and let G be the centre of

mass of the rod (which is not neces-

saiily uniform).

Suppose that simultaneously with

the impulse (P) at N there act at G
two opposed impulses each equal and

parallel to (P). This will not alter the

motion of the rod, and the blow is seen

to be equivalent to a parallel impulse

(P) acting through the centre of mass G,

and an impulsive couple of moment PxGN. On account of

the former the body would, if free, immediately after the im-

pulse be moving onwards, every part with the velocity v=.

_1P}_

iP)_

B
Fio. 76.

(P)

m ' On account of the latter it would be rotating about G

.,, , , ., (P)XNG
with an angular velocity <o=^—^^ .

125
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Thus the velocity of any point, such as on the opposite

side of G to N, will, on one account, be to the left (in the

figure), on the other to the right. If these opposite velocities

are equal for the point 0, then will remain at rest, and the

body will, for the instant, be turning about the axle through

0, and there will be. no impulsive strain on the axle. We
shall investigate the length x that must be given to ON that

this may be the case. Call OG (/) and let the radius of

gyration of the bar about a parallel axis through the centre

of mass be (^), then GN=a;— Z.

The velocity of to the left is -.
m

right=Za,=£2il^:i:i)

These are equivalent when

i.e. when
Ix-

li?

= 1

I.e. when x=-—J—

;

It

' T'

^M

no. 77.

But this (see p. 77) is the length of the

equivalent simple pendulum. If, therefore,

the bar be struck in the manner described

at a point M whose distance from the axis

is the length of the equivalent simple

pendulum, there will be no impulsive action

on the axle. M is then called the Centre of

Percussion of the rod.

Experiment.—If a uniform thin rod {e.g. a

yard measure) be lightly held at the upper end

0, between the finger and thumb as shown, and
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then struck a smart horizontal tap in the manner indicated by the

arrow, it will be found that if the place of the blow be above the

point M, situated at \ of the length from the bottom, the upper end

will be driven from between the fingers in the direction of the

blow (translation overbalancing rotation), while if the blow be below

M the rotation of the rod will cause it to escape from the grasp in

the opposite direction. If, however, the rod be struck accurately

at M, the hand experiences no tug.

It is easy to show that from the point of support to M
is the length of the equivalent simple pendulum, either by cal-

culation (see Art. 12, p. 76), or by the direct experimental

method of hanging both the rod and a simple pendulum of

length OM from a pivot run through the rod at 0, and observ-

ing that the two oscillate synchronously under the action of

gravity.

It is evident that, even though the blow

(P) be delivered at the right point, yet there

will be an impulsive force on the axle unless

(P) be also delivered in the right direction.

For example, if the blow were not perpen-

dicular to the rod, there would be an impul-

sive thrust or tug on the axle, while again,

if the blow had any component in the plane

containing the axle and the rod, the rod

would jamb on the axle.

We have taken this simple case of a rod

first for the sake of clearness, but the student

will see that the reasoning would hold equally well for all

cases in which the fixed axle is parallel to a principal axis

through the centre of mass, and the blow delivered at a point

on this axis, and perpendicular to the plane containing the

axle and the centre of mass. Such cases are exemplified by

Fio. 78.
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K .

Fia. 79.

(i.) A cricket bat held in the hand as by a

pivot, and struck by the ball somewhere in the

central plane of symmetry, and perpendicular to

the face.

(ii.) A thin vertical door struck somewhere

along the horizontal line through its centre of

mass, as is the case when it swings back against

a * stop ' on the wall when flung widely open.

We see that the right position for the stop is

at a distance of \ of the breadth of the door

from the outer edge. (See Fig. 80.)

It is evident that the blow must be so

delivered that the axis through the centre of mass about

which the body, if free, would begin to turn, is parallel

to the given fixed axle, otherwise

the axle will experience an im-

pulsive twist, such as is felt by a

batsman or a racquet-player when

the ball strikes his bat to one

side of the central plane of

symmetry.

For this reason, too, a door

that is brought up as it swings

by a stop screwed to the floor,

experiences a damaging twist at

its hinges even though the

stop be placed at the right

j.,a. 80. distance from the line of hinges.

Centre of Percussion in a Body of any Form.

—

We have seen (p. 106) that a free rigid body, acted on by a
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couple, will begin to rotate about an axis through its centre of

mass, but not in general perpendicular to the plane of the

couple, and it is evident that when a body can only turn about

a fixed axle, and is struck by an impulsive couple, the axle

will experience an impulsive twist of the kind described

unless it is parallel to this axis of spontaneous rotation.

Hence it is not possible, in all cases of a body turning about a

fixed axle, to find a centre of percussion ; and a criterion or

test of the possibility is the following :—Through the centre

of mass draw a line parallel to the fixed axle. Rotation

about this line will, in general, involve a resultant centri-

fugal couple. If the plane of this couple contains the fixed

axle, then a centre of percussion can be found, not otherwise.

The significance of this criterion will be apparent after a

reading of the next chapter.^ It is easy, by imagining the

body to be replaced by its inertia-skeleton of three rectangular

rods, to see that if the fixed axle is parallel to one of the

three rods, i.e. to one of the principal axes, there is always an

easily found centre of percussion for a rightly directed blow.

N.B.—It should be observed that when once rotation has

begun there will be a centrifugal pull on the axle, even

though the blow has been rightly directed ; but this force

will be of finite value depending on the angular velocity

imparted, and will not be an impulsive force. Our investi-

gation is only concerned with impulsive pressures on the

axle.

* See also Appendix, p. 168.



CHAPTER XIL

ESTIMATION OF THE TOTAL ANGULAR IVIOMENTUM.

It may not be at once apparent that rotation about a given

fixed axle may involve angular momentum about an axis

perpendicular thereto.

To explain this let us take, in the first instance, two simple

illustrations.

Referring to Fig. 75, p. 124, let the rod AB be rotating

without friction about the perpendicular axle CC, while at

the same time the forked framework which carries CC is

stationary but free to turn about 00', and that when the rod

is, for example, in the position indicated, its rotation about

CC is suddenly stopped.

It is clear that in this case the sudden stoppage cannot

affect the angular velocity of the other parts of the system

about 00', for it can be brouglit about by the simple tighten-

ing of a string between some point on the fixed axle 00' and

some point such as A or B on the rod, or by impact with

a smooth ring that can be slipped down over the axle 00'

as indicated in Fig. 81, i.e, by forces having no moment

about 00'.

In order to test whether, in any case, the sudden stoppage

130
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of rotation about CC shall affect the angular velocity of other

parts of the system about 00', it is sufficient to inquire

whether, when the rotation is only about CO', the sudden

stoppage involves the action of any impulsive couple

about 00'.

In the case of the thin rod just examined the impulsive

couple required is entirely in the plane of the axis 00', being

a tug at one place, and a thrust transmitted equally through

each prong of the fork in another, and therefore has no

moment about 00',

no. 81.

But if we suppose the simple bar to be exchanged for one

with projecting arms EF and GH, each parallel to CC and

loaded, let us say, at the ends as indicated in the figure, then,

on the sudden stoppage of the rod by the ring as before, the

momentum of the loads at F and H will tend to produce rota-

tion about AB, and therefore pressures at C and C which will

change the angular velocity of CC about 00'. It is evident,

jn fact, that though we allow ourselves to speak of the

loaded rod as simply rotating about CC, yet that each of the
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loads at F and H have angular momentum about 00', and

that when we suddenly stop the rotation about CO', we also

suddenly destroy this angular momentum about 00', which

requires the action of an impulsive couple about 00', In

the illustration in question this couple is supplied by other

parts of the system, the reaction on which causes them to

take up the angular momentum about 00' that is lost by

the masses at F and H.

The reader will see that in the first case the amount of

angular momentum existing at any instant about 00' is not

affected by the simultaneous rotation about CC, while in the

second case it is. He will also notice that CO' is a principal

axis in the first case, but not in the second.

Additional Property of Principal Axes.—Now it is

easy to show by analysis that, for a rigid body of any shape,

notation about any given axis will in general involve angular

momentum about any axis at right angles thereto, but not wJien one

of the two is a principal axis.

Let P (Fig. 73a, p. 120) be any particle of mass m, of a body

which is rotating, say, in a -\-ve direction, about the axis Oy,

with angular velocity Wy. The velocity of P is perpendicular

to r, and equal to rwy ; the component to this perpendicular

to the plane fljy, which alone has any moment about Ox, =X(j)y,

and its moment about Ox='-'(OyXy (negative because the rota-

tion would be counter-clockwise as viewed from 0), and

therefore the moment of momentum of the particle about

Ox=—(j)ymxy, and summing for the whole body, the re

Bultant angular momentum about 0x=—i0y2mxy, which
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vanishes when either Ox or Oy is a principal axis of the

^ody.^ Similarly there is angular momentum about Oz

equal to ^o)y1myz, which also vanishes if Oz or Oy is a

principal axis

Total Angular Momentum.—It will now be clear that

even when a body rotates in rigid attachment to an axis

fixed in space, unless this axis is a principal axis the angular

momentum about it will not be the whole angular momentum,

for there will be some residual angular momentum about

perpendicular axes which we must compound with the other

by the parallelogram law to obtain the whole angular

momentum. This completes the explanation of the fact

already noticed on p. 107, that a body free to turn in any

manner will not, when acted on by an applied couple, always

begin to rotate about the axis of that couple. The axis of

rotation will be such as to make the axis of total angular

momentum agree with that of the couple.

The Centripetal Couple.—When we put together the

result of the analysis just given with that of p. 120, we see

that we have shown that

(i) ^loy^^mxy measures the moment of the centripetal

couple about z

;

(ii) "(Oy^mxy measures the contribution of angular

momentum about x due to the rotation about y

;

and

(iii) —(Oyljnyz measures the contribution about z.

* If the rotation aboutCC (Fig. 81) had been suddenly arrested when
the loaded rod was perpendicular to 00', each load would then have
been at the instant moving parallel to 00', and there would have been
no moment of momentum about 00'. 00' woyld at this instant have
been paralUl to a principal axis of the body
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Whence we see that

The moment of the centripetal couple about 0=(OyXthe con-

tribution of angular momentum about x.

Since the moment of a couple is greatest about an axis

perpendicular to its plane, it follows that when, through the

swinging round of the body, the contribution of angular

momentum about x reaches its maximum value, at that

instant z is the axis of the couple, whose forces are thus

seen to lie in the plane

containing the axis of

rotation and the axis of

totalangularmomentum.

(See Appendix, p. 164.)

We will now find in

.L_ another way the residual

^ angular momentum and

the centrifugal couple.

Let us take, for example,

the case of a solid of

revolution rotating with angular velocity a> about an axis Oy

making an angle with the minimum axis C. The centri-

petal couple is in the plane yx containing the axis C, and its

moment about ^!=a>x angular momentum about x. (See

Fig. 8lA.)

The angular velocity cu may be resolved into two com-

ponents about the principal axes, viz., w sin Q about OA and

(0 cos Q about OC. The angular momentum about OA is

then A(o sin ^, and about OC is Cw cos 0} The sum of the

* It is only because OA and OC are each principal axes that we can

write the angular momentum about them as equal to the resolved part

Qf the angular velocity x the moment of inertia.

FIQ. 81a.
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resolutes of these about Ox is

— Atosin ^cos ^+C(ucos ^sin^=--(A— C)a)cos ^sin 9.

This multiplied by w or — ta2(A— C) sin Q cos ^ is therefore

the moment of the centripetal couple about z required to

maintain the rotation. This result with the sign changed

is the value of the centrifugal couple, and agrees with that

obtained in a different way on p. 122.

Rotation under the influence of no torque.—

A

rigid body of which one point, say its centre of mass, is

fixed can only move by turning about that point, and at any

instant it must be turning about some line, which we call

the instantaneous axis, passing through that point. Every

particle on that line is for the instant stationary, though,

in general, it will be gaining velocity (such particles will in

fact have acceleration but not velocity). Hence after a short

interval of time these same particles will no longer be at rest,

and will no longer lie on the instantaneous axis. If, however,

the axis of rotation is a principal axis, and no external forces

are acting, there will be no tendency to move away from it,

for there will be no centrifugal couple. We thus realise that

if such a body be set rotating and then left to itself its future

motion will depend on the direction and magnitude of the

centrifugal couple. After it is once abandoned, however, the

axis of total angular momentum must remain fixed in space
;

it is therefore often termed the invarialle axis.



CHAPTER XIII.

ON SOME OF THE PHENOMENA FRESENTED BY

SPINNING BODIES.

The behaviour of a spinning top, when we attempt in any

way to interfere with it, is a matter that at once engages and

even fascinates the attention. Between

the top spinning and the top not spin-

ning there seems the di (Terence almost

between living matter and dead. While

spinning, it appears to set all our pre-

conceived views at defiance. It stands

on its point in apparent contempt of

the conditions of statical stability, and

w^hen we endeavour to turn it over,

seems not only to resist but to evade us.

The phenomena presented are best

studied in the Gyroscope, which may

be described as a metal disc AB (see

Fig. 82) with a heavy rim, capable of

rotating with little friction about an

axle CD, held, as shown in the figure,

by a frame, so that the wheel can turn

either about the axle CD, or (together with the frame CD)

about the axle EF, perpendicular to CD, or about the axle

m

FIG. 82.
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GH, perpendicular to every possible position of EF, or the

wheel may possess each of these three kinds of rotation

simultaneously.

The axle CD we shall refer to as the axle of spin, or axle (1),

the axle EF we shall call axle (2), and the axle GH, which in

the ordinary use of the instrument is vertical, we shall call

axle (3). Suppose now the apparatus to be placed as shown in

the figure, with both the axle of spin and axle (2) horizontal,

and let rapid rotation be given to it about the axle of

spin CD.

Experiment 1.—If, now, keeping GH vertical, we move the whole

bodily, say by carrying it round the room, we observe that the axle

of rotation preserves its direction unaltered as we go. This is only

an Illustration of the conservation of angular momentum. To change

the direction of the axle of spin would be to alter the amount of

rotation about an axis in a given direction, and would require the

action of an external couple, such as, in the absence of all friction, is

not present.

Experiment 2.—If, while the wheel is still spinning, we lift the

frame-work CD out of its bearings at E and F, we find we can move
it in any direction by a motion of translation, without observing any-

thing to distinguish its behaviour from that of an ordinary non-rotat-

ing rigid body : but the moment we endeavour in any sudden manner

to change the direction of the axle of spin an unexpected resistance

is experienced, accompanied by a curious wriggle of the wheel

Experiment 3.—For the closer examination of this resistance and

wriggle let us endeavour, by the gradually applied pressure of smooth

pointed rods (such as ivory penholders) downwards at D and upwards

at C, to tilt the axle of spin—axle (1)—from its initial direction,

which we will again suppose horizontal, so as to produce rotation

about EF—axle (2). We find that the couple thus applied is resisted,

but that the whole framework turns about the vertical axle GH

—

axle (3)—and continues so to turn as long as the pressures are applied,

ceasing to turn when the couple is removed : the direction of the
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rotation about axle (3) is counter-clockwise as viewed from above when
the spin has the direction indicated by the arrows. (See Fig. 83.)

Experiment 4.—If, on the other hand, we endeavour by means of a

gradually applied horizontal couple to impart to the already spinning

wheel a rotation about axle (3), we find that instead of such rotation

taking place, the wheel and its frame begin to rotate about the axle

(2), and continue so to rotate so long as the couple is steadily applied.

The direction of this rotation is that given in Fig. 84 below, and

Fio. 83. Flo. 84,

the effects here mentioned may be summarised by saying that with

the disc rotating about axle (1) the attempt to impart rotation about

a perpendicular axle is resisted, but causes rotation about a third axle

perpendicular to both.

In each diagram the applied couple is indicated by straight arrows,

the original direction of spin by unbroken curved arrows, and the

direction of the rotation produced by the couple by broken curved

arrows.

It should be noticed that it is only for convenience of

reference that we suppose the axis of spin to be initially hori-

zontal. Had this axis been tilted, and axle (3) placed per-

pendicular to it, the relation of the directions would be the

same.

Definition.—The rotation of the axle of spin in a plane per-

pendicular to that of the couple applied to it is called a pre-
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cessional motion—a phrase borrowed from Astronomy—and

we shall speak of it by that name. The application of the

couple is said to cause the spinning wheel to ' precess.'

Rule for the direction of Precession.—In all cases

the following Kule, for which the reason will be apparent

shortly, will be found to hold.

The Precession of the axle of spin tends to convert the existing

spin into a spin about the axis of the couple, the spin being in tht

direction required by the couple.

Experiment 6.—The actions just described may be well exhibited
by attaching a weight at or D, as in the accompanying figure

no. 85. no. 8A,

(Fig. 85), or still more strikingly, by supporting the frame CD on a
point P, by means of a projection DK, in whose lower side is a
shallow conical hollow, in the manner indicated in the figure (Fig. 86).



1 40 Dynamics of Rotation.

If the wheel were not spinning it would at once fall, but instead of

falling it begins when released to travel with precessional motion round

the vertical axis HP, and even the addition of a weight W to the

framework at C will, if the rate of spin be sufficiently rapid, produce

no obvious depression of the centre of gravity of the whole, but only

an acceleration of the rate of precession round HP. It will, indeed,

be observed that the centre of gravity of the whole does in time

descend, though very gradually, also that the precession grows more

and more rapid.

Each of these effects, however, is secondary, and due, in

part at any rate, to friction, of which we can never get rid

entirely.

In confirmation of this statement we may at once make the

two following experiments.

Experiment 6.—Let the precession be retarded by a light hori-

zontal couple applied at and D. The centre of gravity at once

descends rapidly. Let the precession be accelerated by a horizontal

couple. The centre of gravity of the whole begins to rise. Thus

we see that any friction of the axle GH in Fig. 85, or friction

at the point P in Fig. 86, will cause the centre of gravity to

descend.

Experiment 7.—Let Experiment 6 be repeated with a much smaller

rate of original spin. The value of the steady precessional velocity

will be much greater. Hence we see that friction of the axle of spin

might account for the gradual acceleration of the precessional velocity

that we observe.

Experiment 8.—Let us now vary the experiment by preventing

the instrument from turning about the vertical axle (3), which

may be done by tightening the screw G (Fig. 82), the base of the

instrument being prevented from turning by its friction with the

table on which it stands. If we now endeavour as before to tilt

the rotating wheel, we find that the resistance previously experienced

has disappeared, and that the wheel behaves to all appearance as if

not spinning.
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Experiment 9.—But if the stem GH be held in one hand, while with

the otlier a pressure is applied at C or D to tilt the wheel, its 'effort

to precess ' will be strongly felt.

Experiment 10.—Let us now loosen the screw G again, but fix the

frames CD, which may be done by pinning it to the frame EF, so as

to prevent rotiiiion about the axle EF. It will now be found that

if, as in Experiment 4, we aj^ply a horizontal couple, the previously

felt resistance has disappeared ; but here, again, the ' effort to precess'

will be strongly felt if the framework CD be dismounted and held in

the hand, and then given a sudden horizontal twist.

Precession in Hoops, Tops, etc.—It needs only the

familiarity that most of us obtain as children with hoops,

tops, bicycles, etc., to recognise that we have in these also the

very same phenomenon of precession to explain Thus, when

a hoop rolling away from us

is tilted over to the left, it

nevertheless does not fall as

it would if not rolling. Since

the centre of gravity does not

descend, the upthrust at the

ground must be equal to the

weight of the hoop, and must /^' ^
constitute with it ^ couple ^^^--"'^

"

tending to turn the hoop over.

We observe, however, that

instead of turning over, the hoop turns to the left, i.e. it

takes on a precessional motion.

If we forcibly attempt with the hoop-stick to make it turn

more quickly to the left, the hoop at once rears itself upright

again (compare Experiment 6).

It is true that when the hoop is bowling along a curved

path of radius R in an inclined position, as shown in the
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figure, there is a couple acting on it in a vertical plane, due to

the centrifugal force ^ , and the lateral friction of the

ground. But this will not account for the curvature of the

track, nor can it be the sole cause of the hoop not falling over,

for if the hoop be thrown from the observer in an inclined

position, and spinning so as afterwards to roll back towards

him, it will be observed not to fall over even while almost

stationary, during the process of 'skidding,* which precedes

the rollinGf back.o

Further Experiment with a Hoop.—It is an instruc-

tive experiment to set a small light hoop spinning in a ver-

tical plane, in the air, and then, while it is still in the air, to

strike it a blow with the finger at the extremity of a horizon-

tal diameter. The hoop will at once im^ over about that

diameter. If the experiment be repeated with the hoop not

spinning, the hoop will not turn over, but will rotate about a

vertical diameter. This experiment will confirm the belief in

the validity of the explanation above given of the observed

facts.

That a spinning top does not fall when its axis of spin is

tilted is evidently an instance of the same kind, and we shall

show^ (p. 154) that the behavipur of a top in raising itself from

an inclined to an upright position is due to an acceleration of

the precession caused by the action of the ground against its

peg, and falls under the same category as the recovery of posi-

tion by the hoop, illustrated in experiments 4 and 6 with the

gyroscope.

* See also p. 70 of a Lecture on Spinning Tops, by Professor John

Perry, F.R. S. Published by the Society for Promoting Christian Know-

ledge, Charing Cross, London, W.C.
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Bicycle.—In the case of a bicycle the same causes operate,

but the relatively great mass of the non-rotating parts (the

framework and the rider) causes the effect of their momentum

to preponderate in importance. It is true that when the

rider finds himself falhng over to his left, he gives to his

driving-wheel, by means of the handles, a rotation to his left

about a vertical axis, and that this rotation will cause a pre-

cessional recovery on the part of the wheel of the erect

position. How considerable is this effort to precess may be

readily appreciated by any one who will endeavour to change

the plane of rotation of a spinning bicycle wheel, having first,

for convenience of manipulation, detached it in its bearings

from the rest of the machine. But if the turn given to the

track be a sharp one, the momentum of the rider, who is

seated above the axle of the wheel, will be the more power-

ful cause in re-erection of the wheel. It should also be

noticed that the reaction to the horizontal couple applied by

the rider will be transmitted to the hind wheel, on which it

will act in the opposite manner, tending to turn it over still

further, and at the same time to decrease the curvature of the

Fio. 88,

track, and thus the effect of the centrifugal and friction couple

already alluded to in reference to the motion of a hoop.

Explanation of Precession.—That the grounds of

the apparently anomalous behaviour of the gyroscope may be

fully apprehended, it is necessary to remember that the

principle of the conservation of angular momentum implies
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(i) That the application of any external couple involves tne

generation of angular momentum at a definite rate about the

axis of the couple ; and (ii) That no angular momentum about

any axis in space can be destroyed or generated in a body

without the action of a corresponding external couple about

that axis. Now, if the spinning wheel were to turn over

under the action of a tilting couple as it would if not spinning,

and as, without experience, we might have expected it to do,

the latter of these conditions would be violated. For, as the

wheel, whose axis of spin was, let us suppose, originally hori-

zontal, turned over, angular momentum would begin to be

generated^ about a vertical axis without there being any

corresponding couple to account for it; and if the tilting

continued, angular momentum would also gradually disappear

about the original direction of the axle of spin, and again

without a corresponding couple to account for it.

On the other hand, by the wheel not turning over in

obedience to the tilting couple, this violation of condition (ii)

is avoided, and by its precessing at a suitable rate condition

(i) is also fulfilled. For, as the wheel turns about the axis

of precession, so fast does angular momentum begin to appear

about the axis of the couple as required.

1 When the wheel is simply spinning about axis (1) the amount of

angular momentum about any axis in space drawn through its centre, is

{see p. 89) proportional to the projection in that direction of the length

of the axle of spin. Or again, the amount of angular momentum
about any axis is proportional to the projection of the circular area

of the disc which is visible to a person looking from a distance at

its centre along the axis in question. Thus, if the axis were to

begin to be tilted up, a person looking vertically down on the wheel

would begin to see some of the flat side of the wheel. The student

\iill find this a convenient method of following with the eye and

estimating the development of angular momentum about any axis.
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Analogy between steady Precession and uniform

Motion in a Circle.—To maintain the uniform motion of

a particle along a circular arc requires, as we saw on p. Ill,

the application of a force, which, acting always perpendicular

to the existing momentum, alters the direction but not the

magnitude of that momentum. Similarly, for the mainten-

ance of a steady precession, we must have a couple always

generating angular momentum in a direction perpendicular

to that of the existing angular momentum, and thereby alter-

ing the direction but not the magnitude of that angular

momentum.

We showed (pp. Ill, 112) that to maintain rotation with

angular velocity w in a particle whose momentum was mv,

required a central force of magnitude mviHy and we shall now

find in precisely the same way, using the same figure, the

value of the couple (L) required to maintain a given rate of

precession about a vertical axis in a gyroscope with its axle

of spin horizontal.

Calculation of the Rate of Precession.—Let w be

the rate of precession of the axle of spin. Let I be the

moment of inertia of the wheel about the axle of spin.

Let 12 be the angular velocity of spin.

Then 112 is the angular momentum of the wheel about an

axis coinciding at any instant with the axle of spin.^

It is to be observed, that in the absence of friction at the

pivots, the rate of spin about the axle of spin remains

imaltered.

^ The student is reminded that, on account of the already existing

precession, the angular momentum about the axle of spin would not

be 10 if this axle were nut also a principal axis, and ^t right-angles

to the axis of precession (see p. 132).

K
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Let us agree to represent the angular momentum 112 about

the axle of spin when in the position OA by the length OP
measured along OA. Then the angular momentum about

the axle when in the position OB is represented by an equal

length OQ measured along OB, and the angular momentum
added in the interval is re-

presented by the line PQ.

If the interval of time con-

sidered be very short, then

OB is very near OA, and PQ
is perpendicular to the axle

OA. This shows that the

ansrular momentum added,

and therefore the external

couple required to maintain the precession, is perpendicular

to the axle of spin. >

Let the very short interval of time in question be called

{di)^ then PQ represents the angular momentum added in time

(c//), t.tf. (the external couple) x idi),

PQ_ external couple x (txV)

•'• op~ m •

But ^=angle POQ=a,(rf/);

. external couple X {di) , •,..

'• w-
—^-^='»(''"'

or external couple= Iflw.

The analogy between this result and that obtained for the

maintenance of uniform angular velocity of a particle in a

circle becomes perhaps most apparent when written in the

following form :

—

^ Tq rotate the linear fliQwejitum mv with angular velocity
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w requires a force perpendicular to the momentum of magni-

tude mv.w.

' While

* To rotate the angular momentum Ifi with angular velocity w

requires a couple, about an axis perpendicular to the axis of

the angular momentum, of magnitude I12(u.'

Since then L=Ifl(o

_ L^

or the rate of precession is directly proportional to the mag-

nitude of the applied couple, and inversely as the existing

angular momentum of spin.

That the rate of precession (w) increases as the rate of

spin 12 diminishes has already been shown (see Experiments

5 and 7).

But the result obtained also leads to the conclusion that,

when the rate of spin is indefinitely small, then the rate of

precession is indefinitely great, which seems quite contrary to

experience, and requires further examination.

To make this point clear, attention is called to the fact

that our investigation, which has just led to the result that

w=_^, applies only to the maintenance of an existing precession^

and not to the starting of that precession from rest. Assum-

ing no loss of spin by friction, it is evident that there is more

kinetic energy in the apparatus when precessing especially

with its frame, than when spinning with axle of spin at rest.

In fact, if i be the moment of inertia of the whole apparatus

about the axle, perpendicular to that of spin, round which

precession takes place, the kinetic energy is increased by the

amount Jf(o', and this increase can only have been derived

from work done by the applied couple at starting. Hence,
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in starting the precession, the wheel must yield somewhat to

the tilting couple.

Observation of the *Wabble/—This yielding may be

easily observed if, when the wheel is spinning, comparatively

slowly, about axis (1), we apply and then remove a couple

about axis (2) in an impulsive manner, for example by a

sharp tap given to the frame at C. The whole instrument

will be observed to wriggle or wabble, and if close attention

be paid, it will be noticed that the axle of spin dips (at one

end), is quickly brought to rest, and then begins to return,

swings beyond the original (horizontal) position, comes quickly

to rest, and then returns again, thus oscillating about a mean

position. Meanwhile, and concomitantly with these motions,

the framework CD begins to precess round a vertical axis,

comes to rest, and then swings back again. The two motions

together constitute a rotation of either extremity of the axle

of spin. If the rate of spin be very rapid, these motions will

be found to be not only smaller in amplitude, but so fast as

not to be easily followed by the eye, which may discern only

a slight 'shiver' of the axle. Or, again, a similar effect may

be observed to follow a sudden tap given when the whole is

precessing steadily under the pressure of an attached extra

weight.

It will probably at once, and rightly, occur to the reader

that the phenomenon is due to the inertia of the wheel and

its attached frame, etc., with respect to rotation about the

axis of precession. To any particular value of a tilting couple,

and for a given angular momentum of spin about axis (1),

there must be, as we have seen, so long as the couple is

applied, an appropriate corresponding value for the preces-
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sional velocity, but this velocity cannot be at once acquired

or altered. The inertia of the particles remote from the axis

of precession enables them to exert forces resisting preces-

sion, and we have seen as an experimental result (Experi-

ments 6 and 8), that when precession is resisted the wheel

obeys the tilting couple and turns over, acquiring angular

velocity about the axis of the couple. But the parts that

resist precessional rotation must, in accordance with the

principle that action and reaction are equal and opposite,

themselves acquire precessional rotation. Hence, when the

impulsive couple, having reached its maximum value, begins

to diminish again, this same inertia has the effect of hurrying

the precession, and we have also seen in Experiment 6, that

to hurry the precession is to produce a (precessional) tilt

opposite to the couple inducing the precession, and this action

destroys again the angular velocity about the axis of the

applied couple which has just been acquired. The wabble

once initiated can only disappear under the influence of

frictional forces.^ Thus the wabbling motion is seen to be

^ We can now see in a general way in what manner our equation

must be modified if it is to represent the connection between the

applied couple and the rate of precession during the wabble. The
yielding under the applied couple implies that this is generating

angular momentum about its own axis by the ordinary process of

generating angular acceleration of the whole object about that axis,

and thus less is left unbalanced to work the alternative process of

rotating the angular momentum of spin. In fact, if our equation is to

hold, we must write (in an obvious notation)

L-l2W2=wx angular momentum about horizontal axis perpendicular

to the axis of the couple.

But the motion being now much more complicated than before, the

angular momentum about the horizontal axis that is being rotated

can no longer be so simply expressed. As we have seen, it is not inde-

pendent of COj*
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the result of forces tending first to check and then to

accelerate precession, a phenomenon that has been already

observed. But to observe one phenomenon, and then to

point out that another is of the same kind, cannot explain

both, and it is still desirable to obtain further insight into

the physical reactions between the parts, which enables a

couple about axle 2 to dart precession about axle 3, and vice

Explanation of the Starting of Precession.—

Suppose that we look along the horizontal axis of spin at

the broad-side of the disc spinning as indicated by the arrow

(Fig. 90), and that there is applied to it a couple about axle

(2) tending, say, to make the upper half of the disc advance

towards us out of the plane of the diagram, and the lower

half to recede. We shall show that simultaneously with the

rotation that such a couple produces about axle (2), forces are

called into play which start precession about (3).

All particles in quadrant (1) are increasing their distance

from the axis (2), and therefore (see pp. 85 and 86) checking

the rotation about (2), producing, in fact (on the massless

rigid structure within the cells of which we may imagine

them lying as loose cores), by reason of their inertia, the

effect of a force away from the observer applied at some

point A in the quadrant. Similarly, all particles in quad-

rant (2) are approaching the axis (2), and therefore by their

momentum perpendicular to the plane of the diagram are

accelerating the rotation about (2), producing on the rigid

structure of the wheel the effect of a pressure towards the

observer at some point B. In like manner, in quadrant (3),

in which the particles are receding from axis (2), they exert
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1

on the rigid structure a resultant force tending to check the

rotation about (2),

equal and opposite to O)
that exerted at A,

and passing through

a point C similarly-

situated to A. Again,

in quadrant (4) the

force is away from the

observer, is equal to

that at B, and passes

through the similarly

situated point D.

These four forces con-

stitute a couple which

does not affect the rotation about (2), but does generate pre-

cession about (3).

On the other hand, when precession is actually taking place

about axis (3), we see, by dealing in precisely the same way

with the several quadrants, and considering the approach or

recession of their particles to or from axis (3), that the spin

produces a couple about axis (2) which is opposed to and

equilibrates the external couple that is already acting about

axis (2), but which does not affect the rotation about axis (3).

If, when precession about (3) is proceeding steadily, the

external couple about (2) be suddenly withdrawn, then this

opposing couple is no longer balanced, and the momentum

of the particles initiates a wabble by causing rotation

about (2).i

' Some readers may tind it easier to follow this explanation by
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Gyroscope with Axle of Spin Inclined.—It will be

observed that we have limited our study of the motion of the

spinning gyroscope under

the action of a tilting

couple fo the simplest

case of all, viz., that in

which the axle of spin is

perpendicular to the ver-

tical axle, which there-

fore coincides with the

axis of precession. If we

had experimented with

the axle of spin inclined

as in Fig. 91, then the

axis of precession, which,

as we have seen, must

always be perpendicular

to the axis of spin, would

have been itself inclined,

and pure rotation about it would have been impossible owing

to the manner in which the frame CD is attached to the

vertical axle. The former precessional rotation could be

resolved into two components, one about the vertical axis

which can still take place, and one about a horizontal axis

which is prevented.

Now, we have seen that the effect of impeding the preces-

sional rotation is to cause the instrument to yield to the

imagining the disc as a hollow massless shell or case, inside which each
massive particle whirls round the axis at the end of a fine string, and
to think of the way in which the particles would strike the flat sides

of the case if tins were given the sudden turn about axle 2.
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tilting couple. Hence we may expect to find that the sudden

hanging on of a weight, as in the figure, will cause a more

marked wabble of the axle of spin than would be produced

by an equal torque suddenly applied when the axle of spin

was horizontal. This may be abundantly verified by experi-

ment. It will be found that if the instrument be turned

from the position of Fig. 91 to that of Fig. 85, and the same

tap be given in each case, the yield is far less noticeable in

the horizontal position, although (since the force now acts on

a longer arm) the moment of the tap is greater ; and if other

tests be applied, it will be observed that the quasi-rigidity of

the instrument, even when spinning fast, is notably dimin-

ished when the axle of spin is nearly vertical, i.e. when

nearly the whole of the precession is impeded.

Pivot-friction is liable to be greater with the axle of spin

inclined, and this produces a more noticeable reduction of

the rate of spin, with a corresponding increase of tilt and

acceleration of the precession, which (as we show in the

Appendix) would otherwise have a definite steady value.

The precession also is now evidently a rotation about an axis

which is not a principal axis of the disc, and on this account

a centrifugal couple is called into play, tending, in the case

of an oblate body like the gyroscope disc, to render the axle

more vertical, i.e. to help the applied couple, if the weight

is hung at the lower end of the axle, as in the figure, but

to diminish the couple if the weight is hung from the

upper end.

It must be remembered, however, that the disc of a gyro-

scope can only precess in company with its frame, CD, and the

dimensions and mass of this can be so adjusted that the disc

and frame together are dynamically equivalent to a sphere,
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every axis being then a principal axis as regards a common

rotation of disc and frame. In this manner disturbance

by the centrifugal couple may be

avoided.

In deah'ng with a peg-top moving

in an inclined position with proces-

sional gyration about a vertical axis

(see Fig. 93), such centrifugal forces

will obviously need taking into ac-

count. With a prolate top, such as

t hat figured, the effect of the centri-

fugal couple will be to increase the

applied couple and therefore the rate

of precession ; with a flattened or

oblate top like a teetotum, to

diminish it.

The exact evaluation of the steady

precessional velocity of gyroscope or

top with the axis of spin inclined

will be found in the Appendix.
FI03. 92 AND 93.

Explanation of the Effects of Impeding or Hurry-

ing Precession.—Though we have throughout referred

to these effects as purely experimental phenomena, the ex-

planation is very simple. The turning over of the gyroscope,

when the steady precession is impeded, is itself simply a

precessional motion induced by the impeding torque. Kefer-

ence to the rule for the direction of precession (p. 139) will

show that the effect either of impeding or hurrying is at once

accounted for in this way.

The Rising of a Spinning Too.—^Ve have already
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(p. 142)" seen that this phenomenon would follow from the

action of a torque hurrying the precession, and have intimated

that it is by the friction of the peg with the ground or table

on which the top spins that the requisite torque is provided.

We shall now explain how this friction al force comes into play.

The top is supposed to be already spinning and precess-

ing with its axis in-

clined as indicated in

Fig. 93. The relation

between the directions

of tilt, spin, and pre-

cession is obtained by

the rule of page 139,

and is shown by the

arrows of Fig. 94, repre-

senting the peg of the

top somewhat enlarged.

The extremity of the

peg is always somewhat rounded, and the blunter it is, the

farther from the axis of spin will be the part that at any in-

stant is in contact with the table. On account of the preces-

sional motion by which the peg is swept bodily round the

horizontal circle on the table, this portion of the peg in contact

with the table is moving forwards, while, on the other hand, on

account of the spin, the same part is being carried backwards

over the table. So long as there is relative motion of the

parts in contact, the direction of the friction exerted by the

table on the peg will depend on which of these two opposed

velocities is the greater. If the forward, precessional velocity

is the greater, then the friction will oppose precession and

increase the tilt ; while if the backward linear velocity due

^%On
-:^.

no. ©4.
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to the spin is the greater, then the peg will skid as it sweeps

round and the friction will be an external force aiding pre-

cession, and the top will rise to a more vertical position.

When the two opposed velocities are exactly equal, then the

motion of the peg is one of pure rolling round the horizontal

circle : there is then no relative motion of the parts in con-

tact, parallel to the table, and the friction may be in either

direction, and may be zero.

With a very sharp peg, of which the part in contact with

the table is very near the axis of spin, the backward linear

velocity will be very small, even with a rapid rate of spin

;

so that such a top will less readily recover its erect position

than one with a blunter peg. Also on a very smooth surface

the recovery is necessarily slower than on a rough one, as

may easily be seen by causing a top which is spinning and

gyrating and slowly erecting itself on a smooth tray, to move

on to an artificially roughened part.

The explanation here given, though somewhat more de-

tailed, is essentially the same as that of Professor Perry in

his charming little book on Spiniiing Tops already referred to,

and is attributed by him to Sir William Thomson.

We will conclude by recommending the student to spin, on

surfaces of different roughness, such bodies as an egg (hard-

boiled), a sphere eccentrically loaded within, and to observe

the circumstances under which tlie centre of gravity rises or

does not rise. Bearing in mind the explanation just given,

he should now be able to accownt to himself for what he will

observe, and to foresee what will happen under altered con-

ditions.

Calculation of the * Effort to Precess.'—We saw,
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in Experiments 9 and 10, that when precession is prevented

an ' effort to precess ' is exerted by the spinning body against

that which prevents it. Thus, in the experiments referred

to, pressures equivalent to a couple were exerted by the axle

of the spinning wheel on its bearings.

If 0) be the rate at which the axle of spin is being forcibly

turned into a new direction, the;i wlfi is the rate at which

angular momentum is being generated about the axis per-

pendicular to the axis of <o and to that of 12, and is therefore

the measure of the torque exerted by the bearings, and of the

reaction to which they are themselves in turn subjected.

Example (l).—A railway-engine whose two driving-wheels have

each a diameter d( = 7 feet) and a moment of inertia I( = 18500 Ib.-

foot^ units) rounds a curve of radius r( = 528 feet) at a speed ^( = 30

miles per hour). Find the effort to precess due to the two wheels.

Solution—
O = --T = 12'57 radians per second.

^ 44 1 ,.
a> =— = rr— =— radians per second.

r 528 12 *^

/. Moment of couple required = 2lQa) absolute units.

= 1200 pound-foot units

(very nearlyj.

Applying the rule for the direction of precession, we see that this

couple will tend to lift the engine off the inner rail of the curve.

[We have left out of consideration the inclination which, in prac-

tice, would be given to the wheels in rounding such a curve, since

this will but slightly affect the numerical result.]

Similar stresses are produced at the bearings of the rotating

parts of a ship's machinery by the rolling, pitching, and turn-

ing of the ship. In screw-ships the axis of the larger parts

of such machinery are in general parallel to the ship's keel,

and will therefore be altered in direction by the pitching and
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turning, but not by the rolling. There appear to be no

trustworthy data from which the maximum value of w likely

to be reached in pitching can be calculated.

As regards the effect of turning, the following example, for

which the data employed were taken from actual measure-

ments, shows that the stresses produced are not likely in any

actual case to be large enough to be important.

Example (2).—A torpedo-boat with propeller making 270 revolu-

tions per minute, made a complete turn in 84 seconds. The moment
of inertia of the propeller was found, by dismounting it and observ-

ing the time of a small oscillation, under gravity, about a horizontal

and eccentric axis, to be almost exactly 1 ton-foot^. Required the

processional torque on the propeller shaft.

Solution—
270 X 27rQ =—-—— = 28"3 radians per second.

60 ^

O— 1

1

to = — = _— radians per second.
84 147

1 = 2240 lb. -foot2 units.

.•, torque required = iQto absolute units.

= 2240 X 28-3 x il poundal-foot units,
147

= 148*4 pound-foot units (very nearly).

This torque will tend to tilt up or depress the stern according to the

direction of turning of the boat, and of rotation of the propeller.
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MISCELLANEOUS EXAMPLES.

L Find (a) the total angular momentum, (6) the position of the

axis of total angular momentum, (c) the centrifugal couple in the two

following cases :

—

(i) A uniform thin circular disc of mass M and radius r, rotating

\vith angular velocity to about an axis making an angle B

with the plane of the disc.

(ii) A uniform paraUelipiped of mass M and sides 2a, 26, and 2c,

rotating with angular velocity (o)) about a diagonal.

2. A wheel of radius (r) and principal moments of inertia A an(?

B, inclined at a constant angle {&) to the horizon rolls over a horizontal

plane, describing on it a circle of radius R, in T sec. Find (1) the

position at any instant of the actual axis of rotation and the angular

velocity about it
; (2) the angular momentum about this axis

; (3)

the total angular momentum
; (4) the position of the axis of total

angular momentum
; (5) the magnitude of the external couple

necessary to maintain equilibrium.

3. Referring to Fig. 85, p. 139, if the moment of inertia of the

spinning gyroscope about CD is 3000 gram-cm.^ units, and ii

CD = 10 cm. and the value of the weight hung at D = 50 grams, and

the rate of precession is observed to be 1 turn in 25 seconds, find the

rate of spin of the gyroscope.

4. What would be the answer to the last question if the axis of

spin had been inclined at an angle of 45°, as in Fig. 91, p. 152, the

moment of inertia of the wheel about EF being 1800 gram-cm.^ units,

and the principal moments of inertia of the frame CDEF being 2000

and HOG units respectively ?



APPENDIX

(1) ON THE TERMS ANGULAR VELOCITY AND
ROTATIONAL VELOCITY.

We can only speak of a hody as having a definite angular

velocity with respect to an axis, when every particle of the

body has the same angular velocity about that axis, i.e.

where the body, at the instant under consideration, is

actually rotating about the axis in question. Thus for a

hody angular velocity means always rotational velocity, and

either term may be used indifferently.

But a particle may have a definite angular velocity with

respect to an axis about which it is not rotating.

Thus let P be a particle in the plane of the paper, moving

with some velocity V, which may be inclined to the plane of

the paper, but which has

a resolute v in the plane ^/
of the paper in the direc- y;:^

tion APB (say). Let Qyx^
be any axis perpendicular g ^r^

to the plane of the paper. r^^- ^^'

In any infinitesimal interval of time (dt) let the particle be

carried from P to a point whose projection on the plane of

the paper is F; then W= vdt. In the interval {dt) the

projection of the radius vector has swept out the angle

POP' (= c?^), and ^ is called the angular velocity of the
CLt

particle about the axis 0, at the instant in question.

, . , , dd Z.POF
The measure of this angular velocity (<^)=^=—^7~ ^

dt
" rdt

"
rdt " dt r r*
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Thus the angular velocity (w) of any particle with respect to

any axis at distance r, is obtained by finding the resolute {v) of

its velocity, in a plane perpendicular to the axis, and draw-

ing from the axis a perpendicular (p) on the direction of this

resolute, then w=^^

(2) ON THE COMPOSITION OF ROTATIONAL VELOCITIES.

Definition,—If a rigid body is rotating about some axle

A, fixed to a frame, while the frame rotates about some axle

B, fixed to a second frame, which in its turn rotates about a

third axle C, fixed (say) to the earth, then the motion of the

body relative to the earth's surface at the place where is

fixed, is said to be compounded at any instant of the three

simultaneous rotations in question about A, B, and C, con-

sidered as fixed in the positions they occupy at that instant.

A similar definition applies to any number of simultaneous

rotations.

(3) THE PARALLELOGRAM OF ROTATIONAL VELOCITIES.

Enunciation.—If the motion of a rigid body of which one

point is fixed may at any instant he described by saying that

it is rotating about the intersecting axes OA and OB toith two

simultaneous rotational velocities represented by the lengths OA
and OB then, at the instant in i

question, the actual motion of y^
the body is a rotation about and n/ , ^

represented by OD, the diagonal / ^ "- ^ ^ ^

of the parallelogram AB. b/ p^S^^

Proof—Let <dx be the ^'r--^^ ^-^-""^^^

r

(right - handed) rotational /^^-""'^^'^^ " ^ - V '

'^

velocity about OA, and (Oy q" a m -J

be the (rightrhanded) rota- nQ.'i^

tional velocity about OB. Then the linear velocities of D on

account of each separate rotation are perpendicular to the

L
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plane of the diagram and the resultant linear velocity of

D, towards the reader, is

=DM X K.OA—DN x K.OB (where K is a constant depend-

=K(DMxOA—DNxOB) ing on the scale of repre

=K (area AB—area AB) sentation)

=0.

.-. The point D is at rest, i.e. OD represents the axis of

rotation in direction. Also the actual rotational velocity w

about OD is represented in magnitude by OD, for

The linear velocity of a particle at A=wAP
but also „ „ „ „ =a>yAN'.

.-. (DAP=(OyAN'

= K.OB.AN'
=K X area AB.

=Kx2x area of AOAD.
=K.ODxAP

.-. a,=K.OD

i.e.. OD represents the resultant rotational velocity on the

scale already chosen.

The resultant OD may now be combined with a third

component rotational velocity OC in any other direction

and so on to any number of components.

Conversely^ any rotational velocity may be resolved ac-

cording to the parallelogram law into three independent

rectangular components, as intimated in the text (p. 6).

The Parallelogram of rotational accelerations

follows at once as a corollary, and thus rotational velocity,

and rotational acceleration are each shown to be a vector

quantity.

It is important, however, that the student should realise

that rotational displacements, if of finite magnitude, are not

vector quantities, for the resultant of two simultaneous or

successive finite rotational displacements is not given by the
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parallelogram law, and the resultant of two such successive

finite displacements is not even independent of the order in

which they are effected.

To convince himself of this, let the reader place a closed

book on its edge on the table before him, and keeping one

corner fixed let him give it a right-handed rotation of 90°,

first about a vertical axis through this corner, and then about

a horizontal axis, and let him note the position to which this

brings the book. Then let him replace the book in its

original position and repeat the process, changing the order

of the rotations. He will find the resulting position to be

now quite different, and each is different also from the

position which would have been reached by rotation about

the diagonal axis.

Hence we cannot deduce the parallelogram of rotational

velocities from that of finite rotational displacements as we can

that of linear velocities from that of finite linear displacements.

Composition of simultaneous rotational velocities about parallel

axes.—The student will easily verify for himself that the

resultant of simultaneous rotational velocities w^ and w^ about

two parallel axes A and B is a rotational velocity equal to

a>a+w^ about a parallel axis D which divides the distance

between A and B inversely as (d^, and w^g.

If ilia and w^ are equal and opposite (graphically repre-

sented by a couple) then the resultant motion of every

particle of the rigid body is easily seen to be a translation

perpendicular to the plane containing the two axes and
equal to the rotational velocity about either multiplied by
the distance between them.

A farther extension is now also easy, and the student will

realise that just as any system of forces reduces to a single

force through some arbitrarily chosen point and a couple,

80 any system of simultaneous rotational velocities of a rigid

body about any axes whatever, whether intersecting or not,

reduces to, or is equivalent to, a rotational velocity about an



1 64 Dynamics of Rotation,

axis through some arbitrarily chosen point, together with a

motion of translation.

(4) PRECESSION OF GYROSCOPE AND SPINNING TOP

WITH AXIS INCLINED.

The value (w) of the steady precessional velocity of a gyro-

scope whose axis is inclined at an angle Q to the vertical,

where an external tilting couple of moment L is applied

about the axis EF (see Fig. 91) may be found as follows.

Referring still to Fig. 91, let the vertical axis of precession

be called (y) and the axis EF of the couple, («), and the hori-

zontal axis in the same plane as the axle of spin (a;). Let C
be the moment of inertia of the disc about the axle of spin,

A its moment about a perpendicular axis, and let 12 be the

angular velocity of spin relative to the already moving frame.

(1) Let the dimensions of the ring have been adjusted in

the way mentioned on p. 153 so that the rotation about y in-

troduces no centrifugal couple. Then the value of the angular

momentum about (x) is simply Ci2 sin ^, and to rotate this

about (y) with angular velocity (w) will require a couple (L)

about (z) equal to wCft sin 6.

Whence a)=--__^.W sm 6

It follows that with a gyroscope so adjusted the rate of steady

precession produced by a weight hung on as in Fig. 91 will

be the same whether the axis be inclined or horizontal for

the length of the arm on which the weight acts, and therefore

the couple L, is itself proportional to sin 6.

N.B.—The resolute of w about the axis perpendicular to

EF and CD isA as before (p. 147).

(2) Let the ring and disc not have the adjustment men-

tioned, and let the least and greatest moments of inertia of
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the ring be C and A' respectively. If the disc were not

spinning in its frame, i.e. if 12 were zero, we should require

for equilibrium a centripetal couple (see p. 122) equal to

—(A— C)a)'sin ^cos ^— (A'— C')co''sin^cos^. On account of

the spin an additional angular momentum C12 sin Q is added

about a^ to rotate which requires an additional couple

cdCI2 sin Q. Whence the total couple required

=L=Cfi(osin^-(A-C-A'-0Vsin6'cos^,
which gives us w.

In the case of a top precessing in the manner indicated in

Fig. 96, the tilting couple is myl sin 0, and the only differ-

ence in the solution is

^ that there is no frame,

sothat A'=OandC'=0.
But it will be observed

that our 12 still means

the velocity of spin rela-

tive to an imaginary

frame swinging round

with the top. The quad-

ratic equation for co thus

becomes mgl = C12a> —
(A-CKcos^.
We might, if we had

preferred it, in each case

have simply found by

(fftgr)

no. 97.

resolution the total angular momentum about (x) after the

manner of page 134, and, multiplying this by o>, have obtained

the value of the couple about z. But by looking at the matter

in the way suggested the student will better realise the fact

that the centripetal couple is that part of the applied couple

which is required to rotate the angular momentum contri-

buted about X by the precessional rotation itself.
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(5) NOTE ON EXAMPLE (4) p. 86.

A VERY simple and beautiful experimental illustration, which

is almost exactly equivalent to that indicated in the text, is

the following :

—

Let a long, fine string be hung from the ceiling, the lower

end being at a convenient height to take hold of, and let a

bullet or other small heavy object be fastened to the middle

of the string. Holding the lower end vertically below the

point of suspension let the string be slackened and the bullet

caused to rotate in a horizontal circle. On now tightening

the string the diameter of this circle will contract and the

rate of revolution will increase ; on slackening the string the

reverse happens [Conservation of Angular Momentum]. The

kinetic energy gained by the body during the tightening is

equivalent to the work done by the hand + a very small

amount of work done by gravity, since the smaller circle is in

a rather lower plane than the larger.

(6) ON THE CONNEXION BETWEEN THE CENTRIPETAL

COUPLE AND THE RESIDUAL ANGULAR MOMENTUM.

It is convenient to think of the centripetal force which acts

on any uniformly rotating particle of mass m (see fig. 97) as the

force which is required to rotate

\^v the momentum {mv) of the particle

at the required rate. The force

-^r =imriD^=mrn)'X(o=invx<Of i.e. the

centripetal ioTce=the momentum to

I be rotated x rate of rotation.

'^°- ^*- Now consider a simple rigid

system consisting of two particles of mass m and m' con-

M

nected by a mass-less rigid rod, and let this be rotating
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with angular velocity a> about a fixed axle Oy passing

through the centre of mass 0. Take Ox in the plane of the

paper as the axis of a:,

Pi

KIO. 09.

and the axis Oz perpen-

dicular to the plane of

the paper. First let the

rod be perpendicular to

Oy. Oy is then a prin-

cipal axis. There is

no angular momentum
about any line in the

plane xz, and no centri-

petal couple. Next let

the rod be inclined as shown, and let it be passing through
the plane xy. Oy is no longer a principal axis, and there is now
a centripetal couple (of moment ymx(ii^^y!m'oiiii)^= (ji^^mxy)

and also angular momentum about Ox (the value of which is

ymxu)-\-ym'x(o=(oI,mxy). At the instant in question there is

no angular momentum about

Oz, for each particle is moving

parallel to 0^, but after a

quarter-turn the amount of

angular momentum at present

existing about Ox will be

found about O^. Thus the

total residual angular mo-

mentum is rotated by the cen-

tripetal couple whose value is

equal to the residual angular

momentum rotated x the rate of

rotation. It should be ob-

served that during the quarter-turn from x to z^ the cen-

tripetal couple will also gradually destroy the angular

momentum previously existing about Ox.

The same is true even in the most genepl case of a body

Fia. 100.
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of three unequal moments of inertia, rotating about any

non-principal axis, Oy, through the centre of mass O. For

the residual angular momentum {(Oy^mxy) about Ox, when
combined by the parallelogram law with that about Oz
(equal to (Dy^mzy) will give a total residual angular momentum
about some line OP in the plane xz. The centripetal couple

is in the plane yOP, and equal to the angular momentum
about OP X the rate of rotation.

Explanaiion of the criterion for centre of Percussion

:

—
The reader will now be better able to realise the signi-

ficance of the criterion for the existence of a centre of

percussion given on p. 129.

Let him think of a uni-

form, rectangular, thin

board ABCD swinging

freely about a fixed axle

AB along its upper hori-

zontal edge, and loaded

with a uniform massive

diagonal bar BD. We
wish to find if, and where,

the front of the board can be struck, so as to give no impul-

sive shock to the axle, and we have already learnt that the

blow must be struck at right angles to the board, and so

that the board, if free, would begin to rotate about EOF
drawn through the centre of mass O parallel to the axle AB.
Further we know that both for board and rod separately,

and therefore for the two together, the blow must be

delivered at a distance § of BC from the fixed axle.

But where the lar rotates about EF, it will have left-

handed angular momentum about GH also, and if we struck

our blow at P on HG, we could not impart any such angular

momentum, which therefore could only be derived from an

impulsive pressure of the axle forward at B and backward
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at A. If, however, we shift P to the left, to some point P',

keeping it always at the same distance from AB, we can

give the angular momentum required about GH. The axle

will then experience no strain, and it is easy, when the

masses of board and rod are known, to calculate the shift

required which fixes the position of the centre of pressure.

In this case every particle of the system, when rotation

begins, moves perpendicularly to the paper, and there is no

angular momentum about an axis through at right angles

to the paper. But if the bar, still centred at 0, were inclined

to the board at any angle (other than 90°), there would be

suddenly acquired angular momentum also about an axis

through 0, parallel to the blow, which could not be imparted

by the blow, but only by impulsive pressures up and down
at A and B. Hence in this case there would be no centre

of percussion.

Thus the criterion is that with rotation about EOF, the

axis of total residual angular momentum shall be HG, i.e.

shall be in the plarie containing the fixed axle and the centre of

mass, and therefore, as we have seen, the centrifugal couple

must lie in this plane, and this is the form in which the

criterion was given—not because the centrifugal forces come

into play, but because it is generally easier from inspection

to form a fairly accurate impression of the position of the

plane of the centrifugal couple than it is to realise the

direction of the residual angular momentum.
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Artifice (dynamical), for questions
involving centripetal force, 116.

Atwood's machine, 43 (8).

Axes, of greatest and least moment
of inertia, 56.

principal, 57, 132.

theorem of parallel, 37.

Axis, 9.

about which a couple causes
a free rigid body to rotate,

96, 105.

instantaneous, 135.

invariable, 135.

Axle, 9, 137.

Axle, pressure on, 126, 129.

of spin, 137.

Bar, see Rod.
Bat (cricket), centre of percussion

of, 128.

Bicycle, 143.

Boat (sailing), a rigid body, 1.

Body (rigid), 1.

centre of gravity of, 37.

centre of percussion in, 128.

centrifugal couple in, 118.

centripetal force in, 113.

efifect of couple on, 96, 105,

106.

equimomental, 64, 121.

modiilus of elasticity of, 73.

motion of, with one point
fixed, 2, 6.

point of, having peculiar
dynamical relations, 94-98.

spinning, 136-158 ; see also

Gyroscope and Top.
total kinetic energy of, 107.

Brake (friction), 15.

Carriage, effective inertia of,

45 (16).

Centre (of gravity), 37, 96, 97
(footnote).

Centre (of inertia), 38 (footnote).

Centre (of mass), 38 (footnote),

94-110,99.
acceleration of, 101, 104.

displacement of, 100.

velocity of, 101.

Centre(ofpercussion), 125-129, 126,
criterion for, 129, 168.

Compass needle, moment of

inertia of, 34.

X71
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Couple, change of kinetic energy
due to, 24.

effect of, on free rigid body,
96, 105, 106.

on spinning body, 139.

restoring, 75.

unit, 9.

work done by, 23.

Couple (centrifugal), 117-120.

effect of, on peg-top, 154.

of equimomental bodies, 121.

transfer of energy under
action of, 123.

Couple (centripetal), 133.

connection of, and residual

angular momentum, 166.

elimination of, in gyroscope.
153.

Curve, precessional force due to

wheels of railway engine round-
ing a, 157.

Curves (inertia), graphical con-

struction for, 60-64, 66.

Cylinder (thin hollow), radius of

gyration of, 25.

D'Alembbrt's Principle, 30.

Deformation, proportional to

force, 70.

unit of, 70.

Disc, moment of inertia of, 39, 50.

kinetic energy of rolling,

110(1).
Displacement of centre of mass,

100.

ratio of acceleration to, in

simple harmonic motion, 73.

Door, 15, 42 (2) and (7).

centre of percussion of, 128.

moment of inertia of, 39.

Earth, rotation of, 88.

Effort to precess, calculation of,

156.

Elasticity, modulus of, 73 (foot-

note).

perfect or simple, 70.

Ellipse, moment of inertia of, 51.

Ellipsoid, moment of inertia of,

53.

Energy, transfer of, under action
of centrifugal couple, 12.3.

Energy (kinetic), change of, due to
couple, 24.

due to variation of

the moment of inertia, 87,
166.

of precessing spinning body,
147.

of rolling disc, 110 (1).

of rolling hoop, 110 (2).

of rolling sphere, 110 (3/

total, of rigid body, 107.

Engine (railway), precessional

force due to wheels of, on a
curve, 157.

Examples, on angular oscillations,

76-78.

on angular velocity, 3.

on conservation of angular
momentum, 83-86, 87.

on effort to precess, 157.

on equivalent simple pen-
dulum, 77, 78.

on properties of centre of

mass, 108, 109.

on radius of gyration, 53.

on rotational inertia, 18,

25-30.

on simple harmonic motion,
74.

for solution, 42-45, 53, 54,

81, 93, 110, 159.

on turning of ship, 158.

on uniform angular accelera-

tion, 6, 6.

Experiments, on behaviour of

spinning bodies, 137, 138, 142.

on centre of percussion, 126.

on equality of torque, 8.

on existence of rotational

inertia, 16.

on floating magnet, 97.

on Hooke's Law, 70, 71.

on point of a body having
peculiar dynamical relations,

94-98.
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Experiments on precession, 139-

141.

on proportionality of torque
and angular acceleration, 13, 14.

on value of rotational inertia,

I 18.

Figure (solid), moment of inertia

of, 33, 60.

Flywheel (with light spokes and
thin rim), radius of gyration
of, 25.

Foot-pound, 22 (footnote).

Foot-poundal, 9, 22 (footnote).

Force, centrifugal, 111-124.

centripetel, 111-124, 112,

113.

connection between centri-

fugal and centripetal, 112.

elastic, 73.

moment of, 7, 8.

precessional, due to wheels
of railway engine rounding a

curve, 157.

turning power of, 7.

Fork (tuning), motion of, 68.

Friction, 11.

brake, to check rotation, 15.

entirely removed, 11.

moment of, 11.

pivot, effect on gyroscope,

153.

Gravity (centre of), %te Centre
(of gravity).

Gyration (radius of), aec Radius
(of gyration).

Gyroscope, 136.

with axle of spin inclined,

152, 164.

Hogke's Law, 70.

Hoop, equivalent simple pendulum
of, 77.

experiments with, 141, 142.

kinetic energy of rolling, 110

(2).

moment of inertia of thin, 35.

precession of, 141.

Hoop, radius of gyration of thin,

25.

Ideal single particle system, 19.

Inertia, 16.

the cause of wabble of spin-

ning body, 148.

curves, graphical construc-

tion for, 60-64, 66.

effective, of a carriage, 45

(16).

skeleton, 64, 121.

surfaces, 60-64, 66.

Inertia (rotational), 17, 19,' 30.

calculation of, of rigid body,
18.

relation of, with torque and
angular acceleration, 17.

unit of, 17.

Inertia (moment of), 7, 20, 34.

about any axis, 38, 58.

of area, 33, 48.

axes of greatest and least, 56.

calculation of, 46.

of compass needle, 35.

of disc, 39, 48, 50.

of door, 39.

effect of change of, on kinetic

energy, 87, 166.

of ellipse, 51.

of ellipsoid, 53.

general case for, of solid, 60.

of hoop, 35.

of lamina, 35, 54, 58.

maximum and minimum, 56.

of a model compared to that
of real object, 45 (15).

of a peg-top, 34.
principal, 57.

of prism, 34, 40.

by oscillating table, 79.

of rod, 37, 40, 46, 50.

Routh's rule for, 36.

skeleton, 64, 121.

of solid figure, 33.

of sphere, 37, 52.

sum of, of rigid body about
three rectangular axes, 55

surface, 63.
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Inertia (moment of), unit, 20.
of wheel and axle, 44 (10).

JnoGLEB (spinning), 87.

Lamina, centrifugal force in rigid,

113.

inertia curve for, 61.

moment of inertia of, 35, 54,
58.

Lath, bending of, 70, 71.

time of oscillation of, 75.

Law (Hooke's), 70.

Laws of Motion (Newton's), 10.

analogues in rotation to, 11,

12, 18, 82.

Lb., distinction of, with pound, 9.

Lb. -foot 2, 21.

Machinery, importance of proper
shape for rapidly revolving, 121.

pitching and rolling effect

on, of ship, 157.

Magnet, oscillating, 41, 77, 78.

floating, 96.

Mass, acceleration, 102.
analogue of, in rotational

motion, 25.

centre of, see Centre (of mass).
displacement, 102.

moment of, 7.

proportional to weight, 38
(footnote).

unit of, 9 (footnote).

Model, moment of inertia of, com-
pared to real object, 45 (15).

Moment of area, 7.

of friction, 11.

of force, 7, 8.

of inertia, sec Inertia (mo-
ment of).

of mass, 7.

of mass displacement of par-
ticles, 102.

of momentum, 89.

Momentum (angular), 21.

about principal axes, 134
(footnote).

Momentum,connection of residual,

with centripetal couple, 166.

conservation of, 82.

graphical representation of,

88.

moment of, 89.

of system of particles, 103.

total, 130-135, 133.

Motion, Laws of, see Laws of

Motion (Newton's).
precessional, 138.

round a fixed axle, 83.

simple harmonic, 67-69, 73.

of tuning fork, 68.

Needle (compass), moment of

inertia of, 34.

Newton's Laws of Motion, %et

Laws of Motion (Newton's).

Oscillation, angular, 75.

of cylindrical bar magnet, 41.

elastic, 70-81.

of heavy spiral spring, 75.

Parallelogram of rotational

velocities, 6, 161.

of rotational accelerations, 7,

162.

Peg-top, 8te Top.
Pendulum, ballistic, 91, 93 (5).

equivalent simple, 76.

simple, 76.

Percussion (centre of), see Centre
(of percussion).

Period of simple harmonic motion,
68.

Phase of simple harmonic motion,
69.

Plane (principal), 57.

Planets, rotation of, 88.

Pound, distinction of, with lb., 9.

foot, 9.

two senses of word, 9.

Poundal, 9.

foot, 9.

Power (turning), see Torque.

Precession, 139, 164.



Index, 175

Precessiou, aualogy of, aud uniform
motion in a circle, 145.

calculation of rate of, 145.

direction of, 139.

eflFect of hurrying or imped-
ing, 154.

effect of, on wheels of railway
engine rounding a curve, 157.

explanation of, 143.

in hoops, tops, etc., 141.

starting of, 150.

Pressure, impulse, on axle, 126,

129.

Prism, moment of inertia of, 34,

40.

Radian, 2.

Radius (of gyration), 24.

of annulus, 54 (4).

of area, 36, 37.

of flywheel with light spokes
and thin rim, 25.

of square about diagonal,

53(1).
of thin hollow cylinder, 25.

of thin hoop, 25.

of triangle, 53 (2), 54 (3).

of uniform sphere, 37.

of uniform spherical shell,

54 (5).

of various solid figures, sec

Moment of inertia.

Rectangle, moment of inertia of,

36, 48.

Resistance of a body submitted to

unit deformation, 73.

Revolution (rate of), «€e also

Rotation.

effect of torque on, 11.

Rod, moment of inertia of, 40, 46,

48, 50.

motion of sonorous, 68.

rotating loaded massless, 91.

Rotation, composition of, 6.

effect of torque on rate of,

11.

' , about principal axis

on centripetal couple, 119.

Rotation, effect of, of free rigid

body independent of motion of

centre of mass, 105.

pure, 101.

rate of, 2.

under the influence ot

torque, 10-32.

under the influence of

no torque, 135.

uniformly accelerated, 3.

of water escaping by-

hole in basin, 88.

Routh's rule for moments of in-

ertia, 36.

examples of, 36, 37.

Second, 2.

Shell, radius of gyration of spheri-

cal, 54 (5).

Ship, effect of rolling and pitching
on machinery of, 157.

Shrinking, effect of, of cooling

bodies on rotation, 88.

Skater (spinning), 87.

Skeleton (inertia), 64, 121.

Skidding of hoop, 142.

Slug, 9 (footnote).

Slug-foot 2, 21.

Speed (tangential), 2.

Sphere, moment of inertia of, 52.

rolling along inclined plane,

108, 110.

Spring (spiral), stretching of, 71.

oscillation of heavy, 74.

Square, radius of gyration of,

63 (1).

Stone whirled by string, a rigid

body, 1.

Strain proportional to force, 70.

Stress, relation to strain, 70.

precessional, on machinery
of pitching, rolling, or turning
ship, 157.

Substance, modulus of elasticity

of, 73.

Sun, rotation of, 88.

Surface (inertia), graphical con-

struction for, 60-64, 66.
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Table (oscillating), for moments
of inertia, 79.

Tin^e, of complete oscillation, 68,

73,75.
unit of, 2, 9.

Top (peg), centrifugal couple in,

154.

moment of inertia of, 34.

behaviour of spinning, 136,
142.

precession of spinning, 141.

rising of spinning, 155.

Torque, 8.

action of, on spinning top,

154.

application of known and
constant, 14.

British absolute unit of, 9.

comparison of different, 13.

effect of, on rate of rotation,

11.

effect of several simultane-
ous, 13.

engineer's unit of, 9.

equal, 8.

equality of, 8.

gravitational unit of, 9,

measure of, 8.

• proportionality of, with an-

gular acceleration, 12, 30.

relation of, with acceleration

and rotational inertia, 17*

retarding, 15.

unit, 8.

Translation, 101,

Triangle, radius of gyration of,

53 (2), 54 (3).

Unit of angle, 2.

of force, 9.

of length, 9.

of mass, 9 (footnote).

moment of inertia, 20, 21.

of rotational inertia, 17.

of time, 2, 9.

of torque, 9.

of work, 9, 22 (footnote).

Velocity (angular or rotational),

2, 160.

composition of, 6, 161, 163.

destruction and generation

of, by torque, 14.

geometrical representation

of, 6.

parallelogram of, 6, 161

of centre of mass, 101.

Wabble of spinning top, 148.

Water rotation in escaping by
hole in basin, 88.

Weight and mass, 38 (footnote).

Wheel and axle, moment of in-

ertia of, 44 (10).

Wheelbarrow not a rigid body, 1

Work done by a couple, 23.

unit of, 22 (footnote).
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