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Summary:

The problem the economists in the field of renewable resources face is that of
determining and recommending the harvest intensity that will maximize the economic
value to the consuming society and also maximize the producers' surplus at a level
of production in perpetuity.

The optimal control theoretic approach was employed in this paper to theoreti-
cally answer this problem within the framework of a one country-one renewable resource
with economy of size of resource population.

In order to derive quantitative as well as qualitative results, a quadratic objec-
tive function-linear population-harvest dynamics model and a quadratic objective func-
tion-quadratic population-harvest dynamic model are solved for the optimal harvest
paths over time.

A general conclusion is that if the initial resource population is smaller than
the target population to be determined in the text, the present harvest intensity must
be curtailed to an extent that the resource population can grow to a level that can
sustain the optimal or target harvest. This establishes a principle of conservation of
renewable resources. In this case, a government regulation over the total harvest is

supported. In case the initial population is already greater than the target population,
the competitive harvest is proved to be the optimal harvest. Detailed analyses of the
economy of size effects and the future discount rate effects are presented.
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Dynamic Theory of Renewable Resource Economics

with Economy Population of Size;

Optimal Control Theoretic Approach

T. Takayama*'> and M. Simaan-^*'-

Introduction

Renewable resources such as fish, whale, deer, forest, etc., con-

stitute an increasingly important class of economic resources for the

sustenance and improvement of human welfare on this planet, Earth.

The common characteristics of these resources are (1) that they

are for direct human consumption, and (2) that they can reproduce themselves

with a specific speed of renewal given a specific environment.

In this paper, we develop a dynamic theory of renewable resource

economics that takes these common characteristics into consideration to

establish principle of conservation of this class of resources. Other im-

portant theoretical as well as practical results in this field are obtained.

Since this class of resources embraces a large number of animals,

fish, trees, etc., we deal with them as one species, namely, "fish" in this

paper, without loss of substance.

The problem the renewable resource economists face could be summa-

rlzedas that of determining and recommending the intensity of withdrawal

(harvesting) that will maximize the economic value to the consuming societies

*This work was partially supported by the Ford Foundation Grant lEO

#750-0111.

**Professor of Economics, University of Illinois, at Urbana-Champaign.

***Associate Professor of the Department of Electrical Engineering at

the University of Pittsburgh, Pittsburgh, PA.





and also maximize the producers' prof it, surplus at a level of production

In perpetuity, if it exists at all. Stated differently and narrowly,

some economists consider the following questions are of (theoretical) im-

portance; "(1) What is the optimal rate at which to withdraw fish? (2)

Why might the maximum sustainable yield not be optimal? (3) How do optimal

and competitive behavior differ? and (k) Under what conditions will extinc-

tion occur?" [Peterson and Fisher (1976) [l]]. There are many other questions

that are of practical and theoretical importance. Such questions are: (5)

Is catch regulation necessary (this is actually related to (3) above, and

this will be duscussed fully later)? (6) Is mesh control regulation neces-

sary? (7) What is the optimal catch when economy of size of fish population

exists? and (8) What are the effects of the two hundred miles territorial

waters limit on these questions raised above?

Even though the last question is of overwhelming importance at this

stage of development of international regulations over the Intensity of the

catch of fish, it lies outside of the range of the tool that we employ in

this paper. However, In the near future we plan to grapple with this ques-

tion by using the differential game theoretic approach [ lOJ^

As will be revealed later, question (7) embraces questions (1), (3),

and (^), and our theoretical Investigation in this paper will be completed

if the questions (2), (6), and (7) are answered.

In the next section we formulate our renewable resource economics

problem as that of maximization of the social pay-off subject to fish popu-

lation-catch dynamics and briefly discuss some general properties of the

optimal catch, population, and other related variable, the Lagrangian.

In Section 2 we employ a quadratic social pay-off functional which

We avoid our own review of the existing literature In this field.
The reader Is referred to a comprehensive review by Peterson and Fisher [l].
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contains the economy of size effect (for empirical implications of tfiis

effect, see [11]) in its industry supply functional, and a linear first-

order fish population-catch dynamics, and within this framework we answer

the three questions analytically and quantitatively.

In Section 3, the same social pay-off functional as in the previous

section is used, but the population-catch dynamics is assumed as quadratic

in population. Properties of the optimal catch paths such as multiple

equilibria and the related convergence patterns (co-existence of a monotone

stable or unstable convergence and a cyclical asymptotic convergence) are

pointed out in relation to Samuelsonian "universal cycles" [A]. Policy

implications of the conclusions derived from this model are discussed.

In conclusion, we summarize the results and point to future research

topics and directions.

1. Dynamic Formulation of Renewable Resource Economics
Problem with Economy of Population Size

We conceive that the renewable resource population follows a typical

dynamics of the form

(1.1) p = f(p, X, t) , p(0) = Pq given

where

p denotes the population (more clearly, the unit must be expressed

in pounds or tons of the resource at or older than the recruitable

age) ,

p denotes the time derivative of the population,

X denotes the intensity of catch or harvest of the resource, and

t denotes the real time over which the population and catch are

moving and measured.

In this paper we assume that the function f(p(t), x(t) , t) can be

separated into the following two parts:





A

(1.2) f(p(t), x(t), t) = g(p(t), t) - x(t')

where g(t(t), t) Is usually expressed as a function of p(t) only, g(p(t)).

and p = g(p(t)) itself is called the biological growth law [l]. However,

In due recognition of the fact that the population of a renewable economic

resource cannot be observed and measured without interference of human

endeavor for harvesting the resource, we write (1.1) via (1.2) as

(1.3) P= g(p(t)) - x(t),^ p(0) = Pq given.

The society (or societies treated as an integrated single body In

this paper) is considered to maximize its objective. We define the objec-

,SP(p,x),
tlve of our model as the present value of social pay-of f* (or the sum of the

consumers' and producers' surpluses) over the time horizon [O, T), T > 0,

following the market-oriented formulation of Samuelson [3] and Takayama [S

,

10]. That is, the society is assumed to maximize

T. X.

(1.4) TSP(p, x) E ^W^^ n^d^^' t) - P^(p, C, t)}d5dt. X) E /l-t L
j

-rt SP(p,x)dt
Jo

"
where "

"^

P,(^, t) is the market demand function of the catch (= consumption)

5 up to X and time at t, and expresses the dollar value of the fish consumed,

and P (p, 5, t) denotes the industry supply function of the catch time, and

the fish population level. The introduction of p In the industry supply func-

tion is a reflection of "economy of population size" that this industry can

enjoy relative to the Increasing size of the resource.

We now define our dynamic renewable resource economics problem with

economy°population size as
A

2
Hereafter, unless otherwise stated or special emphases are needed

to do so, the time, t. In p(t) and x(t) (and other variables that may be

introduced later) will be omitted.





and
Problem : Find x*(t) that maximizes (l.A) subject to (1.3), p ^ 0, x ^0.

\

The Hamiltonian for this problem (ignoring p ^ and x ^ at this

stage) can be written as

(1.5) H(p, X, t) = SP(p, x) + X(g(p) --x)

where

A(= X(t)) denotes the costate variable or Lagrangian, Based on

(1.5) we can derive the necessary conditions for the optimal ity of x(t)

as follows:

(1.6)

(i) p = g(p) - X, p(0) = Pq given

(m) X= (r -^)X - ^
(iii) pf. - X =

dX

(iv) X(T) = or lim e"'"*^X(t) =0.

From (1.6, iii) we can identify the costate variable X as the

discrepancy between the market value (price) of the unit resource and the

cost of producing or harvesting the same by an individual producer in the

Industry, that is,

(1.7) X(t) = P^(x(t)) - P^(p(t), x(t), t).

Thus, if X(t) is found to be positive for an optimal harvest path

or trajectory x*(t) for any finite t, then one can state that until the

target population p" or target catch x''^ when t tends to infinity is reached,

a total catch or harvest control regulation must be implemented to protect

the resource from being privately exploited. We discuss this point in more

detail in the next section.

The external economy effect is reflected in the 9SP/9p term in (1.6,

ii) and also 3SP/8x term. In the next section we will fully discuss this

effect when we explicitly solve our quadratic-linear optimal control prob-

lem with economy of size of the resource population.
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Instead of using a phase-diagram in p - X space of the Quirk and

Smith type [2], we have shown that the population-catch (= harvest)

relationships can be best illustrated on a phase-diagram in p - x space

[7» 9]. For this purpose, one can derive x = h(p, x) function from (1.6),

and trace out optimal trajectories d iagramat leal ly if no analytical solu-

tion is avai lable

Figure 1. Phase-Diagram in P - x Space with Two Equilibria.

In Figure 1 a nonlinear population-catch dynamics and a nonlineo-

(x =)h(p, x) function are used to heuristically derive dynamic trajector, .-

on the p - X space. More detailed analyses of a problem falling in this

category will be made in Section 3 of this paper.

One characteristic that mal<es optimal control theoretical approach

attractive is its capability of answering practical real-life problems

quantitatively. In the next section, we will turn to this type of problem

formulation that renders analytical solutions and conclusions on which

policy decision makers can base decisions.

2. A Quadratic Social Pay-off-Linear Population-Harvest
Dynamics Formulation with Economy of Size

in order to see clearly and quantitatively, the conditions under
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which the optimal catch does exist, their quantitative results and the

qualitative implications, we new turn to a quadratic, market-oriented formu-

lation of our social pay-off function and linear population-catch dynamics

case.

As a basis of constructing the quadratic social pay-off function,

let us assume that the market-demand function and the industry supply

function take the following form: demand function

(2.1) P,(x) = a - Bx
d

where a > and 3 > 0, and supply function

(2.2) P^(p, x) = y - wp + Gx

where y > 0, w > 0, and > 0.

Here, in (2.2), we assume that the (instantaneous) supply function shifts

to the right as the fish population increases.

Now the social pay-off function can be written as

(2.3) T5P(P, x) = / e"''^{(a - ii)x - ~(B + 0)x^ - wpx}dt.

The linear population-catch dynamics is expressed as

(2.4) p = a + bp - x, p(0) = p- given,

where a ^ 0, and b > are assumed.

We can now formulate our problem as:

Problem Q - L : Find x*(t) that maximizes (2.3) subject to {2.k)
,

' ' " ' w

X ^ 0, and p ^ 0.

The necessary conditions accompanying the optimal ity of x*(t) are:





(2.5)

(i) p = a + bp - X, p(0) = Pq given

(ii) X = -(b - r)A - wx

;iii) (a - y) - (6 + 0)x wp - X =

(iv) X{T) = or lim e'^^Xit) = 0.

It is possible to derive solutions of (2.5) for a finite time horizon case,

and we are planning to develop a computer program to do just this in the

near future. In this paper, however, we solve (2.5) for T = <». The de-

tailed derivation of the solutions is documented in the Appendix at the

end of this paper, and the interested reader is referred to it.

For this problem, Problem Q - L„, there exist two solutions: (i)

an unstable and divergent catch solution, and (ii) a stable, monotonical ly

convergent solution.

The unstable, divergent solution can be expressed in a closed-loop

form as

(2.6) x„ = (2b - rUl - 6) p *^^-^ {^ *
(b . S"(b-r)}

a(2b - r)(l - 5)

(2b-r)6 - r

where

(2 « « = V' -
(3 . ^y (;,-,) 0)

and is assumed to be positive. That is, we assume that

(2.8) {(6 + 0)(2b-r) > W and b - r >

One can identify this solution as the path of instantaneous social pay-off

maximization.





The accompanying population dynamics can be written as

(2.9)
2(b-r) ( g +

P " " (2b-r)6 - r \ S +
y , aw

- ^ ""

(3 + 0)(b ^'
(2b-r)6 + r

which has a positive coefficient for p. (2.9) can be integrated out to

give us the following divergent population growth:

(2.10) p(t) = (p(0) - p^)e
(2b-r)(S -H r

^ ^
w ^ w

where

(2.11) p*=(;

1

w(2b-r)

(e + 0)(b-r)

-]/a + y

-JlB + " a +
aw

(B + 0)(b^}

This solution, (2.6), is therefore not stable, and unless the initial

condition is already at pi (the optimal catch at this population is the same

as (2.15) and if p. < p" , v/hich is most likely in the case of many fish
u w

species, and especially almost all whale species, the catch strategy (2.6)

will drive the population toward certain extinction.

A stable, monotonical ly convergent catch solution can be expressed

in a closed-loop form as

O 19^ vWnf^U _ (2b-r)(l + 6) _ 2(b-r) ja + M aw \
(2.12) x:-(p(t))

5 P -
(2b-r)6 + r WTT ^

(3 + 0)(b-r)fw

+ a(2b-r)(l + S)

(2b-r)6 + r

with the following population dynamics

/o ,,s 2(b-r) ia. + \i aw \
^^•^^' P = (2b~r)6 + r )J1~Q ' ^^(B + 0) (b'^rT/

= 2(b-r) (2b-r)6 - r ^
- (2b-r)6 + r " 2 P

(2b-r)6 - r

where

(2.H) (2b-r)6 - r >

b - r >





10

are assumed to guarantee the stability of the population growth and posi-

tivity of the population when t tends to infinity, as the integral of (2.13)

can be written explicitly as

(2.15) p(t) = (p(0) - p^)e
-(2b-r)S ^ r

^ ^
VI i. w

with p* already defined in (2.11).
w

The terminal target population is exactly (2.11), and the corres-

ponding catch is

(2.16) x* =
w

1

w(2b-r)
b(6 + 0)(b-r)

g - y aw /, 2b-r \
FT-9 ^

(6 + 0)(b-r)t^
" b(0+a)(b-r)f

In order to get a clearer picture of this case with economy of

population size, let us compare these results we obtained in this paper

with those without such economy which were already obtained in [9]. The

results without economy of size can also be obtained by driving w to zero

throughout the results obtained in this paper. Thus, since 5 = 1 when

w = 0, we have for (2.6) a singular solution (2.6^) x* = „ ^

which is unstable and drive the population to zero if p_ < p*

where

(^•"'^*"f{KI -^)-

and the population in this case moves along the following path

(2.10-) p(t) = (p(0) - p*)e<^"''^ *= + p:v

which is unstable due to (2.8).

There is a stable optimal catch solution in this case and is

(2.12') x*(p(t)) = (2b-r)p +|-^ (2b-r) L - y _ \
b~ \p"T-0 7.

with the corresponding population movement
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(2.15') p(t) = (p(0) - p*)e"^''^''^^ + p^ ,

which is obviously stable due to (2.8).

The target population and catch are (2.11*) and (2.6'), respectively.

In order to facilitate the comparisons between these two situations, one

with economy of size and the other one without it, let us assume that a = 0.

Due to assumptions (2.14) on demand and supply parameters and on the posi-

tive future discount rate, one can conclude

(2.17)

p* > p*
^w

X" > X"
w

!n other words, if economy of size can be expolited by a new fish-

ing technology, then, in the long run, the fish population and the catch in

perpetuity, and eventually the social pay-off will be larger than when the

economy of size is not exploited.

The effect of the size economy expressed by w on the target popu-

lation is positive as long as w satisfies (2,8). To confirm this statement,

take the partial derivative of p'^ with respect to w to obtain

3p*
(2.18) '^

8w

zD-r

(8 + 0)(b-r)

b -_
w(2b-r)

(3 + e)(b-r)
.

2^-"
(3 4-0)(b-r) '(2b-r)

b-t.(3 + 0)(b-r)i

The sign 3p-/3w depends on the economy of size parameter w; that is,
w

(2.19)
9p:w^ ^ accord ingly as
9w >

(3 + 0)(b-r)(3b-r)
w

2(2b-r)
(g - y)(b-r)

2a

This expression reduces, due to (2.8), to a more positive statement:
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3p*
("} Oct's '^

7;— > for any positive w satisfying (2.8), confirming our con-
dw

elusion.

Figure 2 below is based on (2.5) (i) and

(2.22) k = j^ {aw + (b-r) (a - y) } -(b-r)x + ^^j^ P,

summarizes the analytical results

which is derived from (2.5), and/of our case with economy of size in p

space in comparison with the case without the size economy.

X

- X

x*
w

xjp(t))

X'''

Figure 2. Stable and Unstable Solution Paths of the Cases
with and without Economy of Size: Ew and E are Two Target
Population-Target Catch Combinations

Based on the analytical results obtained so far, we can now derive

the following conclusions: (i) Under certain conditions the optimal catch

strategy exists and is smaller than the instantaneous social pay-off maxi-

mization catch (competitive behavior [l]) X (p(t)) on EBw, (2.6), which
w

leads the fish population toward extinction. This shows, within the restric-

tion of the model assumptions, that to enjoy a larger social payoff In the
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long run in perpetuity, the society must limit the catch or conserve the

scarce resource.

Another way to reach this conclusion is to utilize (1.7) in rela-

tion to (2.5). Since for any initial population p(0) (< p*)X*(p(t)) > 0,

and as t tends to infinity, X"(p(t)) converges to zero, the marginal social

value of the unit resource is always larger than the marginal individual

cost of producing (catching) the same. This, under competitive assumptions,

especially the free-entry assumption, will drive the catch to x (p(t)), (2.6),

leading the resource population to zero.

This prompts us to conclude that in the field of renewable resource

economy, the catch control regulation must be implemented. This conclusion

answers questions (l), (3), {^) , (5), and (7).

(2) The mesh size control or regulation argument can be advanced

along the line of [9]- The basic reason for our support for this regulation

is that the optimal mesh-size information is external to individual fisher-

men or producers, and for the best benefit of the whole consuming and pro-

ducing society, this information should be disseminated in the form of regu-

lation similar arguments about the methods of harvesting other renewable

resources can be advanced. This answers question ^)f

(3) The effects of the future discount rate on the optimal catch

and target population are not as straight forward as those of the case

without economy of population size. However, the evaluation of the magni-

tude of 8p"/8r indicates that the effect of a larger r is negative; as the

future discount rate increases. In the latter case referred to above,

the future discount rate has no effect on the target catch or population,

but affects the rate of convergence of the optimal catch and the fish popu-

lation related to the catch. More specifically, we concluded [9] that the

larger the rate, the greater the present catch, and thus the slower the

fish population growth.





It is impossible to answer question (2), "Why might the maximum sus-

tainable yield not be optimal?", raised in the Introduction of this paper

by using quadratic-linear model of this chapter. This leads us to a

nonlinear formulation of our populat ion--catch dynamics, and we now turn to

a quadratic social pay-off-quadratic population-catch dynamic model to

answer this question and explore other implications of the model results.

3. A Quadratic Social-Payoff-Quadratic Population-
Catch Dynamic Model with Economy of Size

Economists have been accustomed to the stability arguments of the

general equilibrium theory, and tend to define the dynamics in the first

place and then argue about the stability of this defined system. This is

typically seen in [8], and [k, 5]. Samuelson, later, made one step further

away from this tradition and developed a two species-(predator-prey) -model

into a minimum problem [6]. In this section we develop a quadratic-

quadratic model with economy size, and point out, in this more general case,

that the maximum sustainable yield cannot be optimal, and then show a way

of generalizing the Samuelsonian universal cycle theory.

The social pay-off function can be defined exactly the same as

(2.3) , that is

T

(3.1) SP(p, x) = /"e"""^ |(a - y)x - i(3 + e)x^ - wpx} dt.

The fish population-catch dynamics that this society ought to observe

conscientiously can be written as

2
(3.2) p = f (p, x) = a + bp - cp - X, p(0) = Pq given,

where a ^ and b, and c are assumed to be positive constants.

The society is assumed to maximize the social pay-off, (3.1),

constrained by the dynamics equation (3.2). Within this framework we

define our dynamic optimization problem as:
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Problem Q - : Find x*(t) that maximizes (3.1) subject to (3.2),

p 2; and X ^ 0.

The necessary conditions accompanying the optimal ity of x(t) are:

(i) p = a + bp - cp - X, p(0) = Pq given

(ii) X = - (b - r - 2cp)X - wx

(iii) (a - y + wp) - (B + 0)x - X =

(iv) X(T) = or lim e"'''^A(t) =

t-*oo

(3.3)

By differentiating (iii) with respect to time t and eliminating X,

X, and p (using (i) and (ii)), one can get (see [7] for a formula).

(3.M
X =

^j^-g- [aw + (b-r) (a - y) + {(2b-r) - 2c (a - y) } p - 3cwp
3 +

+ 2c($ + 0)px - {(b-r) (6 + 0) + 2w} x] = h(p, x)

The quadratic equations represented by

(3.5) f(p, x) = a + bp - cp^ - X =

and

(3.6) h(p, x) = 0,

once solved simultaneously for x* and p" will give us the steady-state

solutions at which the system may be stable or unstable. There are, in

general, three solutions for the pair of equations above. All three

solutions may be imaginary, or real, or any combination of these extremes,

Equation (3-5) is a parabola such as shown in Figure 1. While

(3.6) can be expressed by the following rectangular hyperbola

/, y^ _ aw + (b-r) (g - y) + A{(b-r)(B + 0) + 2w} /2c (g + 0)
^^•'' ""

(b-r)(B + 0) + 2w - 2c(6 + 0)P

with A defined in (3.9) below and with the fol lowing two axes;
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A vertical axis represented by

(t R\ n - (b-r)(g + 0) + 2w
(3-^^ P 2c(3 + e)

—

and another axis represented by

(3.9) X = - Ub-r) - 2c(a ~ y) - ^-|i^ {(b-r) (B -^ 6) f 2w}

2c(B + e)

,
3w _ A 3w

2(6 + 0)P~ "2c(6 + 0) 2(8 + or '

The most likely cases are

(a) The numerator in (3.7) is negative, or

(b) The numerator in (3.7) is zero, or

(c) The numerator in (3-7) is positive and p In (3.8) is positive,

A in (3-9) is negative, and the coefficient of p in (3.9) is positive.

It is almost certain that the maximum sustainable yield (M's in

Figure 3) is not the optimal population or the optimal catch. This answers

question(2)raised in the introduction.

In Figure 3(A), E. is a saddle-point-like equilibrium point similar

to those we dealt with in Section 2 of this paper. E„ and E_ are asymptoti-

cally stable equilibrium points similar to E in Figure I. In Figure 3

(A'), E is an asymptoticaHy unstable equilibrium point.

In Figure 3(B), E, is like E^ in Figure 3(A), and E„ is like E.

In Figure 3(A)

.

In Figure 3(C), E. and E„ are saddle-point-like equilibria. ,

and E_ is a stable equilibrium. Figure 3(C) shows only one saddle-point-

l ike equi

1

ibrium.

A feature clearly different from the results we obtained in the

or divergent
previous model is the asymptotically (cyclically) converge ngvatch paths

or even a limit cycle
generated by this model. For instance, in Figures 3(A), (A'), or (B) , we

A

have one such equilibrium. In Figures 3(A) or (B) , if the initial fish
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p

1 P \ P

Figure 3. Phase-Diagrams and Possible Optimal Paths of Problem Q-Q^.
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population is smaller than p the stable monotonical ly converging path

will lead the catch-population to E. . However, if the initial population

is greater than p , say p^ , then a completely different path will lead the

catch-population toward E with ever oscillating movements around E„. A local

limit cycle is also a possibility CsJ .

As a limiting case of Problem Q - Qw we can construct a model with

a quadratic social pay-off function without economy of size and a quadratic

population-fish dynamics (Problem Q - Q) . As one can easily prove that the

phase-diagram can be constructed by the following p - x dynamics:

(3.10) (i) p = a + bp - cp - X, p(0) = Pq given

(ii) X = (b-r)
( e + "7

g - yi

a + G

Figure k. Equilibria of Problem Q - Q and Optimal
Catch-Population Character ist ics

.

By setting x = 0, we have a familiar expression already derived elsewhere

[9]. In this case, E^ equilibrium possesses a similar stability and in-

stability properties as a saddle-point-like equilibrium point. However,

E_ exhibits a completely stable equilibrium. For instance, if the popula-

tion is greater than pf , the optimal catch is exactly the same as the

"competitive" catch. As the industry maintains this competitive catch, the





population monoton I ca 1
1
y converges to p* along bTE- . If the population is

beyond p* (but smaller than P) , the optimal catch will be still the compe-

titive catch, which will bring the population to pt along B.E- path.

Thus BTf- , and B,^- paths are for the resource population abundance

case. Due to the lack of economy of size, the target catches are exactly

the same irrespective of the population as long as it lies in between P^ and P

In contrast to Problem Q - Q , no oscillating, asymptotic convergence is

observed. The comparison above reveals that the asymptotically stable path

converging to E_ is also a competitive path. Thus, in the case in which the

population is already large enough and the population-catch dynamics exhibits

an absolute decreasing return to scale, the optimal catch coincides with the

competitive catch.

It may be almost impossible to solve (3.3) for clean analytical

solutions. However, for practical problems falling in this category, graphi-

cal methods or some other methods may be available to derive the optimal

trajectories.

This model clearly points out a way of generating a Voltera-Lolka

type differential equations system extensively treated by Samuelson [k , 5, 6].

A prey is a prey, and follows its own population dynamics (although this

population dynamics itself may depend on how the predator catches it--

mesh-size regulations, hunting regulations, etc. (for further discussion see

[9]). The predator catches the prey with certain technology and related

cost. And, finally, the consuming society pays for the prey to enjoy the

social benefit. Naturally, a large number of cases may emerge if we care-

fully investigate individual preys—human consumption relationships. Even-

tually, we may be able to identify where the fish population is located on the

p axis, what are the market demand and supply relationships, etc. to deter-

mine and recommend at what intensity should harvest our scarce, renewable

resource, and how to adjust the catch intensity so that we will be able to
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enjoy the maximum social benefit in the long run.

Concluding Remarks

In this paper we have developed a dynamic model of renewable re-

source economics with economy of size of resource population, and solved

one model with a quadratic social pay-off function and a linear populatio;'-

catch dynamics. We have also attempted to analyze a model with a quadratic

social pay-off function and a quadratic population-catch dynamics.

Several conclusions v;ere drawn within the framework of our models.

and they will be summarized below.

1. As the socially most desirable catch or harvest intensity indicates,

the total catch or harvest must be regulated and controlled along the o;^ti-

mal catch trajectory, due to the clear-cut discrepancy between the margi-- .

social value product (market price) of a unit of the resource and the mar-

ginal individual cost of producing the same.

2. The larger the effect of economy of size (Problem Q - L ), the larger

the target resource population and the target catch (if the society fcllovv?

the optimal catch trajectory).

3. The so-called "conpetitive" cotch is alvjays larger than the socially

optimal catch, and eventually leads the resource population to sure extir.

,

1 1 on

.

k. The effects of the future discount rate on the target population and

the target catch are nil when there is no economy of size, but is most

likely negative with economy of size, however, the larger future discount

rate increases the present catcli and delays the convergence of the popula-

tion to the target population, in the no economy of size case. In the

economy of size case (Problem Q - L ), the effects are not definite.
w

5. Other conclusions such as the need for mesh-size regulations or those

related to catch or harvest methods must be implemented due mainly to the
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fact that the information of such a technical nature is external to the

Individual producers.

6. The maximum sustainable yield is not likely for the (steady-state)

optimal target catch (Problem Q - L or Problem Q - Q )

.

7. Our nonl inear model (Problem Q - Q ) suggests that there are (steady-

state) equilibrium points other than the saddle-point-like equilibrium

point (Problem Q - L ). Oscillating, asymptotically stable , or unstable

equilibrium or even a limit cycle can coexist with the other.

The dynamic optimal control formulations of renewable resource

economics, developed in this paper, open up various avenues to future re-

search in this field.

A natural extension of our single resource-single country formulations

is a multiple resources -single country formulation. Another extension is a

single resource (or multiple resources) -mult
i
pie nations formulation. A

one fish species-two countries formulation has been attempted and some

results have been obtained in [10], when there is no size economy. This

can be extended to the case in which economy of size exists.

It goes without saying that it Is more to the satisfaction of many

theorists and practitioners of economics J_f_ ^'^^ quadratic-linear form can

be generalized and still obtain rich quantitative results. We can strive

for It, and here we have an ever increasing need for interdisciplinary work

ahead of us.

Fisheries theorists and technicians, those in forestry science,

other disciplines related to renewable resources, economists specializing

or interested in these fields, optimal control theorists, differential

game theorists and practitioners in these fields, and policy decision makers

in these fields, can work together to make regulations and controls in these

areas technically, economically, and politically viable and sound.
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Append ix

The Hamlltonian of Problem Q - L is defined as
w

1 2
H = (a - y)x - 7r(3 + Q)x + wxp + A(a + bp - x) .

w /

The necessary conditions for the optimal ity of the catch x are given by

(2.5) or

(i) p = a + bp - X, p(0) = Pq given

(i i) X = -(b-r)X - wx

(ifi) (a - TJ) - (B + 0)x - X =

(iv) X(T) = or lim e"''^X(t) =

(A.l)

Assuming the closed-loop (feedback) control of the following form

(A. 2) X = Kp + E

hold, we can derive the following identity:

{k + bK - K^ + (b-r)K - -^1^^ }p + E + (b-r)E - KE + aK

-
Q ^ Q

{aw + (b-r) {a - y) }= .

(for detailed derivation procedures, see [?])•

Assuming K(t) and E(t) converges to some constant as t tends to

infinity, that is K = 0, E == 0, v^e get the following two equations:

'(i) -K^ + (2b-r)K - i|^^ =

(A. A) \

P + fc)

:ii) (b-r)E - KE + cK - g-—^ |(b-r) (a - y) - aw} = .

i.

Solving (A.A)(i), we get

(A.5)
.

and

(ii) K2 =^~V 'V -(6 + oHZb-r)}





E, and E„ , below, are obtained by solving (A.A)(li) by using

K, and K^, respectively

a(2b-r)(1

'l (2b-r)5 + r

(A. 6)

_ _ a(2b-r)(1 + 5) 2(b-r) (/a - y \ . aw )
t, - -r^. ^r- - (2b-r)6 + r\\& + 6/ (g + 0) (b-r)/

and

E_ =
a(2b-r)(l - 6) 2(b-
(2b-r)6 - r T2b

(b-r) / /a - \i \ aw \

-r)6 - r ^6 + 0/ (6 + 0)(b-r)/
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By using K. and E^, we get X"(p(t)), (2.12), and K^ and E- result in x in

(2.6). p and p* expressions corresponding x*(p(t)) and x. are easy to obtain,
w w
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