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Following this Chapter, and closing the Book, will be found an extensive TABLE OF
CUBIC YARDS to mean areas for 100 feet stations (entirely clear of error, it is

believed), giving the Cubic Yards for every foot and tenth of mean area from to

1000, by direct inspection. And being computed accurately to three decimal

places, ranges correctly up to 100,000 square feet of mean area, or to a cut 1000

feet wide, and 100 feet deep. Table preceded by explanations, and some examples
of its use. This Table also operates as a general one for the conversion of any sum
of cubic feet into Cubic Yards, by simply dividing by 100 and using the quotient
as a mean area,.
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CHAPTER L

PRELIMINARY PROBLEMS.

1. Of the Prismoid. Although this solid probably originated \vith

the ancient geometers THOMAS SIMPSON (1750), an eminent mathe-

matician of the last century, appears to have been the first, in later

days, to demonstrate the rule for its solidity,* now accepted by
modern mensurators ;

and he was soon followed by Hutton, in his

quarto treatise on Mensuration,f who by another process again

demonstrated the Prismoidal Rule, and at the same time laid the

foundations of modern mensuration, in a manner so solid, that it has

come down to our time, through various editors and commentators,

substantially (in many cases literally) the same as established by Hut-

ton in his famous work of 1770.

Simpson's rule for the prismoid has been variously transformed,

and written, and is now generally known by the name of the prismoi-

dal formula, of which we will give hereafter the usual expressions, as

well as some useful modifications, the same in substance, but often

more convenient for practical purposes.

The solid called a Prismoid (from its general resemblance to a

prism, and in like manner named from its base, triangular, rectangu-

lar, trapezoidal, etc.) is a body contained between two parallel planest

*
Simpson's Doctrine of Fluxions. (1750), 8vo, London.

f Button's Mensuration. (1770), 4to, Newcastle upon Tyne.

7
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its hight being their perpendicular distance apart, its ends rectangles*

and its faces plane trapezoids ; and this seems to be a sufficient defini-

tion. As to such form, all prismoids may be reduced or made equiva-

lent; but although this simple definition answers our purpose of intro-

ducing the rectangular prismoid, HUTTON'S, Art. 3, is the authorita-

tive one.

This solid is usually the frustum of a wedge ;
but as the proportions

of the ends are changed, it may become a frustum of a pyramid, a

complete pyramid, a wedge, or a prism ;
and hence it is indispensably

necessary that the rule for its solidity should also hold for all these

solids, which, in fact, it does.

The ends may be, and often are, irregular polygons, but they must

always coincide with the limiting parallel planes ; and though the

solid may be quite oblique, its hight must be taken normal to the

end planes. The faces are usually straight longitudinally, but this

condition is not absolute, since the remarkable formula, deduced from

the prismoid for its solidity, applies as well to the volume of many
curved solids in an extraordinary manner, of which the limits are not

yet known, though more than a century has elapsed since Simpson

developed it.
_____

The mid-section, inclu-

ded by the usual prismoi-

dal formula, must be in

a plane parallel to, and

equally distant from, those

containing the ends, and

is deduced from the arith-

metical average of like

parts in them. It is en-

tirely hypothetical, or as-

sumed for the purposes of

computation, and has no

actual existence in the

body itself.

The rectangular pris-

moid (usually regarded as

the elementary figure of

this solid) is a frustum

of the wedge.

(a.) Thus the prismoid AB (Fig. 1) is a frustum of the

wedge AEC.
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The wedge AEG itself being a triangular prism, truncated twice,

the rectangular prismoid then is a triangular prism, trebly truncated :

1st, by two cutting planes, reduced to a wedge; and 2nd, by another

plane, to a prismoid (AB), the latter being parallel to the base, and

by its section forming the top of the solid at B.

The prismoid, therefore, may be computed as a truncated triangu-

lar prism or wedge, and the part cut off deducted, in like manner as

the frustum of a pyramid may be calculated as though the pyramid
was complete, and then the truncated part computed separately and

subtracted, leaving only the solidity of the frustum, subject, like the

prismoid, to calculation, by more concise rules, if expedient.

Referring now to Fig. 1.

Let Abode/be the original triangular prism, truncated right and

left by planes passing through A b and ef, reducing it first to the

wedge AE ;
and secondly, by passing the plane B 2, parallel to the

base eb, leaving as the residual solid, after three truncations, the

Prismoid AB.

Then, in the wedge AEC, the right section has a base of 4, a hight
of 12, and area of 24, which, multiplied by the sum of the lateral

edges
*

(or 6), gives a solidity of 160 ; while the wedge BCE, cut

off, has a base of 2, and hjght of 6, in its right section, or area of 6,

which, multiplied by i the sum of its lateral edges (or 5i), gives a

volume of 32.

Now, 160 32 = 128, the solidity of the Prismoid AB, as is shown

(more concisely) 05 follows :

By Simpson's Rule
lit*. Widths.

Base, 8 X 4 = 32

Top, 6 X 2 = 12

ums, equivalent to ) + , ^ R ft
.

-J f -I* X O O-4
id. sec., . . . . J

Product of sums, equivalent to
A j.' -J4 times mid.

128

Multiplied by i h. . .i.T ;.**..= 1

Solidity, . . .
:
. >/} . .'J- . *;*;. . = 128

(The same as above.)

Precisely the same result is also reached by means of the centre of

gravity of the right section, flowing with that section along a line

* Chauvenet's Geom. (1871), vii. 22. A wedge, whether trapezoidal or rectangular,

being merely a truncated triangular prism, this rule of Chauvenet's is probably the

most concise,, and fastfor ordinary uw.



10 MEASUREMENT OF EARTHWORKS.

curved with an infinite radius, according to Button's Problem.* The

right section of the prismoid AB (Fig. 1) is a plane trapezoid (18 in

area), of which (from the dimensions given in the figure) the centre

of gravity is found in a perpendicular line, drawn from the middle

ofA 6, and at the distance of 21 feet vertically from it. Now, the

length of a straight line, drawn from face to face of the prismoid,

parallel to the plane of the base also to its edges and at a vertical

distance of 2f feet, will be 7J feet, by which the right section (18)

being multiplied, we have for the solidity
= 128, as before.

2. THOMAS SIMPSON'S Prismoidal Rule. In his work on Fluxions

and their Applications

(1750), Simpson demon-

strates the following rule

for the solidity of a pris-

moid, referring to Fig. 2.

This rule for the pris-

moid, as demonstrated

by Simpson, renders the

formation of the hypo-

thetical mid-section un-

necessary, though con-

taining it, in effect, as

marked upon the figure,

for illustration.

wA.

Simpson's Rule is as

follows: Fig. 2.

(AB X AD) + (EH X EF) + (AB+EH X AD + EF) X
i h = Solidity, (I.)

Or,

/hight X width \
, /hight X width \

,

\ of one end, j

'

(
-*- Al- Jof one end, /

/ sum of bights X sum of widths \

\ of both ends, /

of other end, )

/T \
(I.)

Here AB X AD = area of base. EH X EF = area of top. While

the product of their sums = (AB + EH) X (AD + EF) = four

times the area of the mid-section.

* Button's Mens. (1770), part iv. sec. 3.
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EXAMPLE 1.

Let AB and EH be called the widths, AD and EF the highte,

and take the dimensions marked upon Fig. 2. Then, by Simpson's

rule, we have for the solidity of this rectangular prismoid the fol-

lowing :

Widths. Ht8.

20 X 16 = 320 = area of base.

18 X 12 = 216 = do. top.

Sums of hts. and widths = 38 X 28 = 1064 = four times mid-sec.

1600 = sum of areas.

Multiplied by i h = 2
e
4

,
. . . .

= 4 = i h.

Solidity,
= 6400 = volume.

(a.) The above is a rectangular prismoid, or one in which all the

parallel sections are rectangles. Now, suppose this prismoid to be

cut diagonally by a plane, FHBD, dividing it into two triangular

prismoids, each equal to the other, and to one-half of the rectangular

prismoid.

Then (AB X AD) = double the base; (EH X EF) =. double

the top; and (AB -f EH) X (AD + EF) = eight times the mid-

section.

Hence, Simpson's rule, thojugh applicable to any prismoid, by

reducing the ends to equivalent rectangles, seems especially suitable to

triangular prismoids, since the double area of every triangle is equal

to the product of its bight and width, taken rectangularly; while

the product of the sums of those bights and widths, multiplied to-

gether, gives eight times the area of the mid-section, without the ne-

cessity of forming it by arithmetical averages.

Accordingly, with triangular sections, a slight transformation of

this rule will often be more convenient for use with given areas.

Thus,

Let double the area of the base = 2 b.

top . .-'.; v . . . = 2 t.

Eight times the area of the mid-sec, v ^V *; n' . = 8 m.
And the final divisor (12), or if used as above, . = ^ h.

Then, to find, in the first instance, the mean area of the prismoid.

We have the formula, - - = mean area . . (II.)

And this mean area, being multiplied by the bight or length (h),
of the whole prismoid between the end planes, gives the solidity.
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Thus, in the case of the two triangular prismoids, into which the

diagonal plane FB (Fig. 2) divides Simpson's rectangular prismoid,

we have, by taking the dimensions marked upon the figure, the fol-

lowing :

EXAMPLE 2.

Calculation of the triangular prismoid ABDFHE, or of its equal

GD = 3200, Solidity.
Hts. Widths.

16 X 20 = 320 = 2 b.

12 X IS = 216 = 2 t.

Sums, . . 28 X 38 = 1064 = 8 m.

12)1600

Mean area, . .
= 1331 X h = 24 = 3200, Solidity.

And 3200 X 2 = 6400 = the solidity of the whole rectangular

prismoid, as above.

3. CHARLES HUTTON'S Prismoidal Rules. In his famous quarto

Mensuration (Newcastle-upon-Tyne, 1770), Hutton gives the follow-

ing definition :

"A prismoid is a solid having for its two ends any dissimilar par-

allel plane figures of the same number of sides, and all the sides of

the solid, plane figures also."

He adds :

"
It is evident that the sides of this solid are all trape-

zoids ;" and :

" If the ends of the prismoid be bounded by curves, as

ellipses, etc., the number of its sides, or trapezoids, will be infinite,

and it is then called, sometimes, a cylindroid."

Hutton gives two rules for the solidity of the body (so defined),

one general, and the other he calls the particular rule he also indi-

cates a third, by means of initial prismoids, which, by a little develop-

ment, can be made quite useful.

Button's General Mule.

" To the sum of the areas of the two ends add four times the area

of a section parallel to, and equally distant from, both ends, mul-

tiply the last sum by the hight, and i of the product will be the

solidity, (III.)

In this shape, and nearly in the same words, through Bonnycastle,

and other writers on Mensuration, the Prismoidal Formula has come

down to our time.

In the work above cited, Hutton also (part iv. prop. 3) shows that
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Fig. 3

t of the sum of the end areas, and four times the mid-section, gives

the mean area of any prismoidal solid, which, multiplied by its length,

will equal the solidity.

The particular rule, referred to above, is directly deduced from that

given by him for the solidity of a wedge.

Thus, referring to Fig. 3 (copied by us from the original work

of 1770).

Hutton says, where L and I represent two corresponding dimen-

sions of the end rectangles, B and b the others, and h. the bight or

length of the prismoid,

Then,

(217+1 X B + 27TL X b) X t h =
Solidity,

which is the particular rule, . . . . . .- . (IV.)

A note, on page 163, referring to this,

says:

"It is evident that the rectangular

prismoid is composed of two wedges,
whose bases are the two ends of the

prismoid, and whose hights are each equal
to that of the prismoid."

It might be added, that the edges of

these two wedges are formed by two

diagonally opposite sides of the rectangu-

lar ends.

Hutton notes also,

That - - = M, and - - = m, the sides of the mid-section, so
_ L

that the correspondence of the General and Particular Kules becomes

evident.

(a.) At page 164 of the quarto Mensuration, cited above,

reference is made to the General Rule as follows :

" This rule will serve for any prismoid or cylindroid, of whatever

figure the ends may be, inasmuch as they may be conceived to be com-

posed of an infinite number of rectangular prismoids. Which is the

General Rule."

This method of considering any prismoid to be composed of a great
number of rectangular prismoids, of the same common length, has pre-

vailed from Hutton's time down to the present day.

Thus, we find in Davies Legendre,* chapter on the Mensuration

* Davies Legendre. (1853), 8vo : New York.
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of Solids, in treating of prismoids, where he copies Hutton's figure,

and both Particular and General Rules, the following :

" This rule (the general one} may be applied to any prismoid what-

ever. For whatever the form of the bases, there may be inscribed in

each the same number of rectangles, and the number of these

rectangles may be made so great that their sum in each base will

differ from that base by less than any assignable quantity. Now, if

on these .rectangles rectangular prismoids be constructed, their sum

will differ from the given prismoid by less than any assignable quan-

tity. Hence, the rule is general."

In his remarkable chapter on the cubature of curves (Mens., part

iv. page 457), Hutton shows that the prismoidal formula is applica-

ble to the frusta of all solids

generated by the revolution

of a conic section (as well

as to the complete solids);

also, to all pyramids and

cones, and in short to all

solids (right or oblique), of

which the parallel sections

are similar figures.

We will now illustrate

Hutton's Rules, by means

of a figure and examples, to

find the solidity of a pris-

moid, with very dissimilar

(See Fig. 4.)
*

Kg. 4.

1. By General Rule*

40 X 30 = 1200 = b.

80 X 4 320 = t.

60 X 17 X 4 = 4080 = 4 m.
6)5600

Multiplied by ll

Solidity

60

56000

2. By Particular Rule.
As -two Wedges.

40 80
2 2

160
40

200
4

800
10

48000
8000

8000

Solidity 56000 of whole pris-
moid.
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3. By means of Initial Prismoids...... (V.) (To be further explained.)

(1) Areas of ends, b = 1200, and t = 320.

,ON f Rights = 30 ) , = 4K
(3) Assumed squares in larger end, 1200 of 1 X

t 320
(4) Ratio of ends,

- = =-2667.

UNIT E R S I T

80
(5) Proportional rectangles in small end (1200 in number),

40
2,

= -13333, 2 X '13333
oO

'26667 = area of these, being equiva-

lent to the ratio of the ends 1 to '2667. [See (4).]

1-1-2
(6) Mid-section, dimensions of proportional rectangle,

-- = 1

1 + -13333
5667, and 1 '5 X '5667 = '85 = rectangular area of

b' =1 X 1

mid-section of initial prismoid.

Then for the solidity of the initial prismoid, by General
Rule.

Call these areas

b', m', and t', to

distinguish them
4m' = -85 X 4 . = 3-4

f = -13333 X 2 = -26667

6) 4-66667

Mean area, . . . . = -77778

Multiplied by h . . = 60

Volume of one, *= 46-66680
Mult, by No. initial prismoids, assumed = 1200

(7)

from those of the

main solid.

Solidity of the whole prismoid, as above = 56000-16000

In computing initial prismoids it is necessary to em-

ploy sufficient decimals, but 4 or 5 places are usually

enough.

(b.) These initial prismoids are supposed to be constructed upon
small rectangles in the two ends, equal in number in each, and of pro-

portional areas.

In the base, or larger end (though either end may be used), it will

be most convenient to assume these to be squares formed upon the

unit of measure, while at the top they must be rectangles proportional

both in dimensions and area, by the view we have herein taken (as

indicated at (5) above).
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The end areas of the main prismoid being always given, or com-

putable, they must be proximately reduced to rectangles before we

can properly apply the principle of initial prismoids to calculate, or

verify, their solidity ;
and the solid will then become, in effect, a

rectangular prismoid like those of Simpson and Hutton.

In doing this, it will be sufficient to dermine a width and hight,

apparently proportional to the shape of the cross section (which in

some species of earthwork is extremely irregular), but this hight

and width must be such that, used as factors, they reproduce the

given area, even though of themselves they may not be exactly geo-

metrical equivalents, for the dimensions of the section.

Having thus (as it were) rectified the solid proximately, we may
proceed with it as a rectangular prismoid, by the method of initial

prismoids, briefly as follows : Determine the rectangular hights and

widths, such as will proximate the figure, and by multiplication reproduce

the areas. Assume one end as base, to be divided into squares of super-

ficial units, and the others into proportional rectangles; upon these con-

struct (or imagine) ini-

tialprismoids, and having
ascertained the volume

of one, multiply by num-

ber, for solidity of main

prismoid, as shown in de-

tail above. . . . (V.)

(C.) We will

further illustrate tiiis

subject by presenting an

outline of a T-shaped

prismoid ;
a solid (Fig.

5), with a figure so pecu-

liar that none of the

usual methods of averag-

ing could even proximate
its solidity, which

can only be dealt with by the Prismoidal Formula, or some cog-

nate rules.

This we will calculate as a prismoid by Simpson's General Rule,

by Hutton's Particular Rule, and by the Method of Initial Prismoids.

nu&seo
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By Hutton's Particular Rule.

100
2

200

208
6

1248
100

As two Wedges.

8

2

16
100

116
50

5800
100

6) 124800 6 ) 580000

20800 96666J
20800

Solidity
= 117466S

By Simpson's General Rule.

As a Rectangular Prismoid.

Hts. Wds.

6 X 100 . . =
50 X 8 . . =

Sums, 56 X 108 =
4 times mid-sec.

600

400

6048

7048

Solidity,. . . = 1174661

By the Method of Initial Prismoids. Let their number be 400, the

same as the superficies of A. Suppose them constructed upon

squares at A. (on a side equal to the unit of measure), and upon pro-

portional rectangles at BC.

Then, 600 -*- 400 = 1'5, the ratio of A. to BC. and of initial squares
at one end to rectangles at the other.

And in the 3 main sections of the prismoidal solid, Fig. 5,

We have for similar sections of the initial prismoids =
Representative. Dimensions of initial sections. Initial areas. No. Alain areas.

End A . . . = squares of 1 X 1 . . . . = 1' X 400 = 400.
" BC . . = propor. rectans. 12'5 X '12 = \o X 400 = 600.

Mid-section . = " " 6'75 X '56 = 3'78 X 400 = 1512.

It will be seen that the main areas result as above calculated
;

and

having these and the common length h., it is easy to compute the pris-

raoid by Simpson's General Rule, as shown before.

We may add here, as being indicative of the difficulty of comput-

ing such a solid, by ordinary average rules (which answer tolerably

well), in common cases.

That the Arithmetical Mean of the end areas = 500, the Geomet-

rical Mean = 490
;
while the Prismoidal Mid-section = 1512, and

the Prismoidal Mean Area = 1174s; which, multiplied by the length,

or hight, h. = 100 : makes the solidity, above = 1174662, or more

than twice as much as would result from multiplying the arithmetical

mean by the length.
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4. The Prismoid adapted to Earthwork. Sir John Macneill, a dis-

tinguished English engineer, as early as 1833, soon after the intro-

duction of railroads, when the necessity became apparent of having

ready and correct methods at hand for computing the volume of the

vast quantities of earth, removed or supplied, in grading them, pre-

pared and published three series of Tables (in 8vo), computed by

rn^ans
of the Prismoidal Formula. These Tables were systematically

arranged, and have been extensively used abroad.

He considered the Earthwork Prismoid as being composed of a

Prism, with a wedge superposed : since the lower portion of the cross

section of a railroad, canal, or road is generally symmetrical and

regular, the ground surface alone being relatively variable.

In this diagram (Fig. 6) the reduced surface of the ground (taken

as level, crosswise, or made so) is shown by the plane AFGE, and

the cross section of the road by ABCG, these are supposed to be

transparent, in order to show the road-bed and mid-section, as well as

the far end of the trapezoidal prismoid.

Sir John Macneill commences his work, by referring to a represen-

tation of the Earthwork Prismoid (copied above), as follows :

" Let ABCGFKDE represent a prismoid or solid figure, similar

to that which is formed in excavations or embankments, in which

BCDK represents the roadway, and ABCG, FKDE, parallel cross

sections at each end. The cubic content of this solid is equal to
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The area ABCG -j- area FKDE -f 4 times area a beg,

Mutipliedby^R:
"

If, then, we suppose a plane, HIEF, to be drawn through the

lines HI, and EF, it will be parallel to the base BCKD, and will

divide the solid, ABCGFKDE, into two others, one of which will be

the regular prism, HBCIFKDE, and the other will be a wedge, the

base of which will be the trapezium, AHIG, the length IE or CD,
the length of the prismoid, and the edge FE, the breadth of the cut-

ting at the lower end of the section."

The prismoid, then, being assumed as composed of a regular prism,

with a wedge superposed, he demonstrates in the usual manner the

formula for the volume of these two solids, and shows that by addi-

tion they result in the Prismoidal Formula, which he uses in the com-

putation of the three series of Tables.which form the bulk of his neat

octavo volume (London, 1833).

It will be observed that all Macneill's prismoids refer to ground

sloping longitudinally, but level transversely: to apply them, there-

fore, to an irregular surface, it must be first reduced to a level cross-

wise, or assumed to be so, practically.

The above extract from Sir John Macneill's work of 1833 is made,

not only for its intrinsic value, but on account of its being the first

regular and successful attempt to adapt the Prwmoidal Formula to

the computation of modern earthworks: which is followed out through
a series of practical Tables, comprising 239 pages, and extending to

50 feet of hight or depth : an embankment being considered as an

excavation inverted.

This meritorious work of Sir John Macneill was speedily followed

by other writers in England, and later by several in this country.*

All, or most of these productions being based upon the Prwmoidal

Formula (or some modification of it), which is now universally

acknowledged to be the only consistent and exact method for com-

puting the volume of solids employed in modern earthworks, and

even those authors who employ pyramidal rules are but using a par-

ticular case of the former.

* Bidder, Baker^ Bashforth, Henderson, Sibley, Rutherford, Hughes, Huntington,

Law, Dempsey, Haskoll, Morrison, Rankine, Graham, Macgregor, and others, in England.
While in this country, Long, Johnson, Borden, Trautwine, Gillespie, Henck, Davies, P.

Lyon, Cross, M. E. Lyons, Byrne, Warner, Rice, and others (besides the present writer),

have dealt with this subject. Amongst these, however, the most comprehensive, and the

best in many particulars, is the work of John Warner, A. M., a well printed and hand-

somely illustrated 8vo, Philadelphia, 1861, containing 28 valuable and useful Tables, and

14 plates of great importance to every student of engineering.
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5. The Prismoid in its Simplest Form. The unexpected manner in

which the Prismoidal Formula applies to the cubature of other solids,

totally
1 dissimilar in form and appearance (as to the sphere, taking

the poles as end sections at zero, and the mid-section as a great circle),

justifies its consideration under various aspects, which would be

superfluous in any other body, and hence we give below a figure

illustrating the Prismoid, in what may be deemed its simplest form

(when not contained within a diedral angle). See Fig. 7, where the

solid is level transversely, but sloping longitudinally, and may be

supposed to represent (proximately~) one of Button's Initial Prismoids,

square at one end, and with a proportional rectangle at the other.

1

I
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6. Further Illustration of MacneilUs Prismoid. In computing the

quantities of earthwork for railroads, etc., it is often useful (and gen-

erally desirable) to consider the side slopes, continued to their

intersection, above or below the road-bed (as has been done by T.

Baker, C. E.,* and other writers), thus forming a constant triangle

at the intersection, which is deductive from the general triangular

figure formed by the slopes, and ground, in order to obtain the regu-

lar cross section of excavation or embankment, from ground to grade ;

and this triangle also forms the right section of the grade prism, ter-

minating the earthwork solid at edge of diedral angle, formed by the

side slope planes containing it.

To explain this more clearly, we give a figure in which both end

areas are drawn upon the same plane (Fig. 8).

Double cross section of a railroad cut (in fact, Macneill's pris-

moid on level ground) with road-bed of 20, and slopes of 1 to 1.

Prism.

G^Prism.

lot o/ slopes.-10

References.

A = Altitude of grade triangle.

B = Level top, sloping forward in 100 feet to b.

b = Level top of forward cross section.

G = Grade, or road-bed, 20 feet wide.

c = Grade triangle, or constant end, of grade prism.

H h = Breadth of back of trapezoidal wedge.
r = Slope ratio, or in this case 1.

* Railway Engineering and Earthwork, by T. Baker, C. E. London, 1840. Wherein

he develops a very compendious and excellent system of computing the earthwork of

railways, which has been extensively copied.
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CC = Centre line of road.

I = Intersection of side slopes, or edge of diedral angle formed

by them.

To find the equivalent level hight no matter how irregu-

lar the ground may be.

Let

a = Whole area, to the intersection of slopes.

r = Slope ratio.

h = Equivalent level hight.

Then, \/ = h.
r

Let B and b represent the level tops of two cross sections of a rail-

road cut, 100 feet apart sections, and lying within the same diedral

angle of 90, formed by side slopes of 1 to 1, continued to their inter-

section, or edge at I.

Now, supposing B and b, to have been originally a very irregular

surface, reduced, by any exact method, to the level tops represented.

Then, below b we have a regular prism, .on a triangular base,

extending down to I
;
and above b, a regular wedge (back and edge

parallel), upon a trapezoidal back, of which the base b is equal to the

edge b, representing the top of the forward cross section, 100 feet

distant.

Then, in the wedge above b, by the properties of that solid, consid-

ered as * a truncated triangular prism, and applicable either to rectan-

gular or trapezoidal wedges,

We have,
Mean Area.

(B + 6-f 6)X(H 7<) (44 '+ 32 +32) X (22 16)

-g- -g-
. 108.

And in the prism beloiv b, down to I (including the grade

triangle)

We have,

(/j,

2

r)
= 256. 1

Deduct the grade triangle
= 100.

f

= 15 -

Leaves area of prism (above grade) from G to b = 156.

Finally, then, we have the mean area of the trapezoidal

earthwork solid, above grade, or road-bed = 264.

Cubic Ft.

Then, 264 X 100 = 26400. The solidity of this Prismoid.

* Chauvenet's Gcom., vii. 22 (1871), easily reducible to the text.
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If more convenient, we might exclude entirely the grade triangle,

and stop the calculation at G (the road-bed), but as a system of com-

putation, and in view of the simplicity of the geometrical relations of

triangles, it will usually be found best to include the grade triangle

as above, and ultimately to deduct it, in some form.

The employment of the method of this article enables us to find a

mean area to the prismoid without using a mid-section and this

mean area, when multiplied by the length, gives the volume of the

whole solid.

Thus we may assume any level trapezoidal prismoid of unequal

parallel ends (as Macneill does), to be composed of two solids a

prism, with a wedge superposed.

1. A Triangular Prism, with a cross section, equivalent to the

lesser end, supposing the slopes to intersect, and embracing
the grade triangle.

2. A Trapezoidal Wedge, superposed upon the prism, having an

area of back equivalent to the difference of the ends, its

edge being the level top of the smaller, and equal to the

base of the back.

The length being common to both partial solids, and to the whole

prismoid.

Then, for the mean area of the wedge, we have,

(B + & + ft) X (H A)*

6

and for that of the prism to intersection of slopes (A
2 r grade

triangle), and by addition ,f

the common length = The Solidity of the Prismoid .... (VI.)

Or, in words, The sum of the mean areas of the prism, and super-

posed wedge, multiplied by the common length, equals the solidity of this

prismoid.

* Chauvenet's Geom., vii. 22 (1871).

f B and b are always the widths between top slopes at the ends.

And H h (however irregular the ground line of the ends may be) is obtained by

dividing the difference of end areas by half the sum of their top widths, or
(

+ V
See note at foot of this Article 6.
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Note. When the ground surface, or upper side of the superposed

wedge, is very irregular (as in Figs. 43 and 44) ascertain the hori-

zontal widths of-each end at top slope. Then the difference between

the areas of the two ends is the surface of the back of the superposed

wedge, and this, divided by the average of the two horizontal widths

above, gives the vertical hight of the back, or altitude of the trian-

gular section, of which the length of the prismoid is the base, giving
at once the means of computing its area, and this, multiplied by one-

third of the sum of the lateral edges, gives the solidity of the superposed

wedge. (Chauvenct, Geom.,vii. 22.)

7. Trapezoidal Prismoid of Earthwork, considered as two Wedges.
On ground, either level crosswise, or reduced to an equivalent level

by any correct process, an Earthwork Prismoid, within the limits of

its slopes, road-bed, and ground surface, may readily be computed aa

two wedges (Hutton's Particular Rule), without an assumed mid-sec-

tion, or even the end areas.

And in this there is some advantage, as the width of road-bed at

the end sections may be unequal to any extent, provided the widening
is gradual.

Thus, let Fig. 9 represent a regular station of a railroad cut, 100

feet in length, with slopes of 1 to 1, and in the near end section a

depth of 40 feet, and road-bed of 20, while in the far one it has a

depth of 30, and road-bed of 40 feet wide.

Hutton's Particular Rule, modified for application to earthwork,

may be expressed in words at length as follows :

Rule.

Add road-bed -f- top width + road-

r .,
. ,. I bed of 2d section; multiply the sum

In 1st cross section -< v i i i ^
of these three by level hight of sec-

tion, and reserve the product.

Add road-bed -j- top width + top

T m I
width of 1st section ; multiply the sum

In Id cross section - xl
- , , , , \ *_of these three by level hight of sec-

tion, and reserve the product.

Finally, add the two products reserved, and i of their sum is

the mean area of the Prismoid, which, multiplied by length =
Solidity (VII.)
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Eeferring to Fig. 9, the line CC is the centre line traced upon the

ground, and below it the road-bed gradually widened from 20 to 40

feet, in the length of 100
;
the figures marked show the dimensions

assumed for illustration, and the dotted lines the edges of a plane

supposed to be passed, so as to convert this solid into two wedges.

The nearest having a trapezoidal back, standing on a road-bed of

20, with a hight of 40, and its edge being the road-bed of 40 feet

wide, belonging to the far cross section.

The farthest wedge, above the dotted lines, having for its- back the

far section, standing on a road-bed of 40, with hight of 30, and its

edge being the top-width of the near cross section, 100 feet wide, at

ground line.

[In Chapter 5 we shall consider further, and more in detail, the

subject of Wedges ; and their application to the computation of earth-

work solids, and illustrate it by several examples. Comparing also

the results obtained with those derived from the use of BUTTON'S

General Rule: which is the accepted standard for accuracy in such

work.]
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EXAMPLE.

By Our Modification of Hutton's

Rule (VII.)

In 1st cross section

In 2d cross section

20
100
40

160
40

6400

40
100
100

240
30

7200

6400
7200

6)13600"

Mean Area = 2266-67

100

By Button's Particular Rule. (IV.)
Reducing Trapezoids to Rectangles.

Mean breadths = 60
2

120
40

160
40

70
2

140
100

240
30

6400 7200

6400
7200

Solidity . .

13600
100

6)1360000

226667

Solidity . . = 226667'00

8. Areas of Railroad Cross-sections (within Diedral Angles]
whether Triangular, Quadrangular, or Irregular.

All railroad sections are contained within diedral angles, formed by
side slope planes, of a given divergency determined by the slope

ratio (r). The edge of this diedral angle is a right line, parallel to

the grade, and prolonged forward indefinitely from I, the intersection

of the side slopes (in a right section), until the end of the cut or fill

is attained. Here, at the grade point, it changes its position to a

corresponding parallel above, or below, as the case may be. Consid-

ering, with Sir John Macneill, an embankment to be, in effect, an

excavation inverted, the situation of the edge of the diedral angle, or

intersection of the slopes, will generally (in our examples) be found

below the road-bed, but always parallel to the grade line, and at the

same distance from it, as long as the side slopes continue uniform.

(a.) From the geometrical relations of triangles and rect-

angles, it is obvious that in a triangle situated as in Fig. 10 con-
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tained within rectangular axes and their parallels, and divided into

two by the central axis h, the area of the whole is equivalent to
2i.

the parallels a and b, to the centre line h, limiting the triangle

laterally.

The same rule, precisely, applies to quadrangles, which may always
be cut by a diagonal into two triangles.

This rule (in fact), equally applicable both to triangles and trape-

ziums, is that laid down by Hutton (1770) for trapeziums.

In Fig. 10, h X w = double area of the whole triangle, whose ver-

tex is at I, the intersection of the slopes, and its sides, the side-slopes,

and the ground line. Thus, let h = 20, w = 45, then 20 X 45 =
900 -f- 2 = 450, area of whole triangle ;

but it is often more conve-

nient, in calculations, to use double areas alone, until the close of the

operation, as in many problems of land surveying.
In a triangle, the direct axes h or h' may take any position, pro-

vided the parallels through the lateral vertices are made to follow,

and the tranverse axes, w and w', remain rectangular.
But in a quadrangle, the position of the direct axis is fixed by that

of the opposite vertices, through which it passes, and with it the axis

of width, and its limiting parallels, are also fixed.

In Fig. 10, suppose the direct axis and its parallels to revolve upon
I, into the position h', and that h' becomes 22*1 then it will be found

thatuf has become40'73, will be
22>1 X 40 '73

450j

area of whole triangle, as before.
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In both these cases, Figs. 10 and 11, each figure is divided by the

centre line, or direct axis, into two triangles, having a common base,

and contained between parallels to it, drawn through the opposite
vertices.

In both Figs. 10 and 11, h X w = double area of the figure to

which they relate, as these are rectangular factors, for determining
the content of the wholly or partially circumscribing rectangles

(between the same parallels), of which the triangle or trapezium

represented, is each equivalent to one-half.

This rule is, in fact, the simplest possible, being, substantially, the

definition of a plane surface, length X breadth (which indicates

superficial extension), and from its extreme simplicity, there seems to

be no adequate reason why it should not be more generally employed,

for although its application to ^triangular surfaces necessarily gives

double areas, a division by two is the briefest imaginable.

Right and left of centre each triangle is obviously equal to half the

rectangle of the hight and width on that side (the triangle and rect-

angle having a common base, and lying between the same parallels,

a and b), and by addition, the double area of the whole trapezium =
hight X width.

(b.) In view of the rule just recited, for finding the areas

of triangles and trapeziums, by hights and widths, it becomes of some

importance to have a concise rule* for determining the distances out

of the vertices from the axis, when the hight and slopes alone are

*
GHlespie, Roads and Railroads (1847), gives rules analogous to ours, but they had

long before been kiwion.
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given : in this there is little difficulty, as engineers have long been

possessed of formulas for the purpose, similar to those which will be

seen below, referring to Figs. 12 and 13, and these distances out, when
added together, form the width w, of the rule above.

In Fig. 12.

Ht. TTid.

40 X 60-8 2432

2

Area.

1216.

Both in trapeziums and triangles the diagonal X the sum of per-

pendiculars from the opposite angles = double area.

Or, centre Light X the total width = double area.

Suppose, in both these figures, the side-slopes, ground-slopes, and
centre hight, or axis, given, and the side-slopes intersected at I, then

to find the distances out, right and left of cejitre, take each side sepa-

rately. Consider the centre line, or axis, to be a meridian (as in a

map), imagine also an east or west line, drawn through the origin of

each slope (side or ground).

Then,

If the slopes incline towards the same compass quarter :

Hight
^5 jr& j p-j

= distance out = cL
By difference of nat. tans, of slopes

If the slopes incline towards adjacent compass quarters:

Hight
^ -7 F~l

= distance out d.
Uy sum oi nat. tans, of slopes

These results on both sides of centre, added together, give the total

width of the whole trapezium.
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In Fig. 13.

Ht. Wdt. Area.

30 X 88-2 2646

2
"

2
* 1323.

These rules also furnish a concise and easy method of finding the

half breadths, a matter deemed quite important by foreign engineers.

(C.) The side slopes (bounding the diedral angle) remain-

ing plane surfaces as usual in the cross-sections of earthwork, we
sometimes find the ground surface very irregular, but even these

cases, upon the principle of equivalency, may be correctly dealt with,

so as to reduce them easily to the plane figures of the elements of

geometry.

Thus, although, as far as we have shown, the rule of
, applies

only to a line once broken, so as to change the figure considered, from

an oblique triangle into a trapezium ; nevertheless, it is not difficult

to reduce or equalize a surface line, very much broken, by a single one

properly drawn, which shall contain within it an area exactly equal to

that bounded by the irregular outline, and thus bring it within the

rule.

In Fig. 14, let ABCDEFGH be the cross-section of a rail-

road cut, base 20, slopes 1 to 1, intersecting at I, the centre line being

marked CC (this area looks irregular enough, but had it been ten

times more so, the process below would have equalized it exactly.')

Then, from the top of the shortest side hight at H (adopted for

convenience), draw a line HK parallel to the road-bed, or base AB,
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making a level trapezoid 10 feet high upon the section, or ABKH =
300 in area.

Now, we will find, by a common calculation, the area of the whole

cross-section between base AB, side slopes, and broken ground line

to contain = 654 area. Neglecting in this case the grade triangle at

I, as being a common quantity, not affecting the result : (but adding
the grade triangle (100), the area, from the ground line down to the

edge of the diedrul angle at I = 754).

Then, 654 300 = 354, the area of the partial cross-section above

UK, extending to the irregular outline, which is to be correctly equal-

ized, by a single sloping line drawn from H.

40
7-

Clrcum:Gr:
n-S

Area I

*Tr* xT!al:Ia.Cir.

Now, = 17-7 LM, the altitude of a triangle HKM, on

the base HK, which is exactly equivalent in area to the partial cross-

section above HK.
So that HM is a single equalizing line, drawn from H, equivalent

to the broken line of ground, and including the same area exactly.

Another way of finding the point M the terminus of the equaliz-

f Double area = 1508 IM
ing line is the following : \

= 53'3 ] and

( IHXsin.ofI
this is a very concise method, as IH is easily found.*

VI)

4,,
* This rule will be found useful as a verification of the process of Fig. 14.
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If the degree of equivalent surface slope be desired (as it usually is),

Then, ^- = cot. 17 (nearly)
= 3'26.

The slope of the equalizing line HAI being 17 ascending from H,
we easily find FN =6'135, and adding FI = 20, we have IN or h =

26-135, and w = 57'7. Then,
h X iv = 26-135 X 57-7

754, and

deducting the grade triangle (ABI = 100), we have, finally, the area

of the whole cross-section above the road-bed = 654, thus verifying

the original calculation as before given, and, by using the radii of

inscribed and circumscribed circles, we can prove it, if necessary :

(Fig. 14).

(d.) It is sometimes desirable, by means of an equalizing

line, to deal with the boundary alone, without the rest of the cross-

section, and this is not difficult, for we may consider the broken line

HKM (Fig. 14), or aeg (Fig. 15), as a base of ordinates, preserving,

however, their parallelism, and taking all the distances horizontally

as though the base were straight (see Fig. 15) ;
but the process of Fig.

14 is generally preferable.
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It is often useful to equalize a section by a level top line, or slope

o/0. This can be done as shown in Art. 6.

Whole area = a.

Slope ratio = r.

Level hight = h.

Then h

The ordinates marked upon Fig. 15 are deduced from those of

Fig. 14, and the calculations of the irregular area, a eg, are made by
successive trapezoids, and double areas, as follows :

Ordinates in f a _}_ J b -\- C C + d d + e 6 +/ / +^
Ease

3

Hne7ai!l + 5 5 + 2 2 + 6 6 + 16 16+16 16 +
broken at e. . . . ( 5 7 8 22 32 16

10 10 10 10 4 10

50+70 + 80+220+128 + 160

Then,*

Sum of double areas = 708
T5 1- r^ =

\ -77.
= 1 r7 = ft A:, as before.

.base or equalizing triangle, a e = 40

And ak is the equalizing line, ascending from a, with a slope of

17, which is equivalent to HM, of Fig. 14.

(6.) We may now briefly refer to the computation of cross-

Horizontal distances

part

Double areas (total

70S)

sections. These are usually taken in the field with the rod, level, and

tape; they designate by levels, and distances out, the prominent

* With equal abscisao, Simpson's well-known rule, or that of Davies Legendre, would

conveniently apply.

3
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points, or features of the ground, and fix the intersection of the side

slopes, or place of the slope stake, which bounds the limits of excava-

tion or embankment
;
and on regular ground, the clinometer may be

used, but is less correct and satisfactory.

On plain ground, but three levels are taken, the centre and side

hights, and this has been called three-level ground. It is the prac-
tice of many engineers (and it is a good one) to take angle levels and

distances over the edges of the road-bed, this, then becomes five-level

ground; and where more than five levels are necessarily taken, the

cross-section is usually deemed irregular, though the point where

sections become irregular is not well defined, and may be safely left

to the judgment of the engineer.

In this case (Fig. 16), the centre and side hights, and the right and
left distances out to the slope stakes, are always given, and the calcu-

lation becomes simple and rapid.

The following is the method long ago used by engineers, and pub-
lished by Trautwine * and others, twenty years since.

KULE for area of cross-section, with uniform road-bed and centre

and side hights given.

Half the centre cutting X by right and left distance, plus right

and left cuttings X one-fourth of road-bed.

Thus, in Fig. 16,

We have, by this rule,

5 X 64 = 320.

44 X 5 = 220.

Area. . = 540.

And by using the grade triangle and

hights and widths, as in Figs. 10 and 11,

We have,

20 X 64
.=640.

w 64. J Less grade triangle . = 100.

Area. . = 54a

(f.) To find the area of cross-sections, where angle levels

have been taken,f or Jive-level ground (which angle levels have long
been used by engineers, and are recommended by Prof. Davies in his

new surveying), we will give an example for illustration, from which

the rule of this method will be evident. (See Cross, Eng. Field

Book, N. Y., 1855.)

* Trautwine's New Method of Ex. and Em. (1851).

f Davies' New Surveying (1870), cross-section levelling.
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Now, to calculate the area of this cross-section, Fig. 17, by double

areas,

Equivalent to,

Triangle, 15 X 10

We have,
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Not nnfrequently, too, in rock-work (proximating a cost of a dollar

per cubic yard), it has been deemed necessary to take independent

cross-sections, at only ten feet apart forward, over the roughest por-

tions of the work.

In that event, although the calculations become voluminous, we

have the satisfaction of knowing that the solidity is correctly obtained ;

since, in such short spaces, no ordinary rules would produce any

important variation in the final result
; supposing, of course, the

cross-sections to be correctly laid out, and measured with accuracy,

both horizontally and vertically a matter of no small difficulty on

steep, rocky hill-sides, when cleaned for ivork.

9. Further Illustration of the Modification of Simpson's Rule (II.)>

with a Diagram Representing it, and also one of the Regular Formula,

and another Modification.

Here let us take the triangular prismoid, cross-sectioned, in Fig. 8

(and shown below), and suppose its length 100 feet (A) the end

Tig 18.

e.---*

cross-sections being dimensioned as before. With road-bed of 20, and

slopes of 1 to 1. The whole, shown in projection, to give a better

idea of the nature of the solid.
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References.

CC = Centre line and edge diedral angle.

ACCB = Grade prism.

AB = Road-bed, 20.

AE = Side-slope plane, 1 to 1.

EF = Ground plane, assumed as level.

ea&E = Wedge of Fig. 8.

Then, for the volume of this solid, we have, by the modification of

Simpson's Rule (II.),

Ilightg. Widths.

Near end (double area), 22 X 44 . . . = 968 = 2 b.

Far end,
" 16 X 32 '. . . = 512 = 2*.

8 times mid-section, . . 38 X 76 1

. , > = zooo = o in.= sum hts. X sum wids. j

12)4368

Mean area. . . =* 364

Length h. . . = 100

Whole triangular solid to intersection )

of slopes. .' /
Deduct grade prism under road-bed. . .

= 10000

Leaves volume above road-bed, or Trape- )

-j i r> -j f 77- ti 7 r 20400 = The same
zoidal Prismoid of Earthwork. . . j

solidity, as before computed, Art. 6.

(a.) The transformation or modification of Simpson's Rulo

(II.) may, in its mid-section term, be conveniently represented by \\

diagram (perhaps more curious than useful). Thus, continuing the

side-slopes through the intersection, so as to form the end cross-sec-

tions, one above the other.

So, in Fig. 19, dimensioned as in Fig. 8, we have,

The triangle IEF = The larger end section, or area.
" " ICD = The smaller one.

; .

"
rectangle KLMN = 8 times the area of the mid-section,

or the circumscribing rectangle
formed by sunn of hights X sum

of widths.

The road-beds . . . = The dotted lines, and may be

assumed (parallel) anywhere.
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The parallelogram IFEP = Higlit X width of larger

end, or double area of . A.
IDCO = Hight X width of smaller,

or double area of. . . B.
"

rectangle KLMN = HG X OP, or sum Lights X
sum widths, = 8 times the

mid-section.

Here it is evident that IH X FE = Double area of larger end

section, or = IFEP ...... and IG X CD = same of smaller =
IDCO.

While (CD + FE) X (GI + IH) = the circumscribing rect-

angle KLMN = HG X OP, or the rectangle of sum of hights and

sum of widths.

Also,

/HI -f- IG\ "/FE + CD^ 19 = 861, the mid-sec.
< \ 2 /

/N
V 2

( HG X OP, or 38 X 76 = 2888, or 8 times mid-sec. :

The triangles Q and R taken together = the Arithmetical Mean ofA
and B, the end areas = (16 X 8) -f (22 X 11) = 128 + 242 = 370, or

484+256 740 , .,. 4
.

, lf
j-

= = 370, the Arithmetical Mean.
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The triangles T and T are each equal to the Geometrical Mean of

the end sections A and B = \^484 X 256 = 352.

While U and V added together proximately equal the Harmonic

Mean between A and B, or = 334.

So that the circumscribing rectangle, KLMN, representing the

mid-section term, of Simpson's Transformed Rule (II.)* contains, or is

composed of, the following areas.

Double area of A.

" " B.

C 484
'

\ 484

f 256

( 256

(The two end sections.)

Arithmetical Mean...... 370

Geometrical Mean X 2. . .

-{352
Harmonic Mean....... 334

Total 8 times the mid-sec.,

or 361 X 8. = 2888

In this case :

= Double areas

of both ends +
4 times the Geo-

metrical Mean
= 2888.

Some curious inferences may be drawn from this diagram, but their

practical results can be more concisely obtained in other forms.

Diagram of the regular Prismoidal Formula of Simpson and Hutton.

As applied to a triangular prismoid, formed by a diagonal cutting

plane, from the rectangular prismoid, Fig. 2, and shown again in Figs,

22, 24, and 52, with side-slopes of li to 1.
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Let 1 (Fig. 19*) Be the larger end section (Fig. 22), transformed
into an equivalent right triangle.

3 The smaller end (Fig. 24), also transformed : 4 and 5,

additive triangles, making up the trapezium ABCD (Fig.
19 J), equivalent in area to four times the prismoidal mid-
section (Fig. 23).

From this diagram we readily deduce a simple modification of the

prismoidalformula, equivalent in remit, for triangular prismoids.

Higlits. Widths.

-P.. f h = 30 X 90 = w
Dimensions of <%

Figs. 22 and 24. J .
/\

j

K = 20 X 60 == w'

(^
Length = 100, usually.

Then, - - x length = Solidity. . VIII,

This operates very simply in figures, by direct and cross multiplica-
tion of hights and widths.

Substituting the numbers, Solidity 95000, as hereafter computed,
Art. 10 (a).

10. Adaptation of the Prismoidal Formula to the Quadrature and
Cubature of Curves, and also Solids, where the Ordinates are equivalent
to Sections by the Method of Simpson, as explained by Hutton.

The eminent mathematician, THOMAS SIMPSON, to whom we are

indebted for the Prismoidal Formula, also devised a method for the

quadrature of irregular curves by 'means of equidistant ordinates, or

for their cubature, by using equivalent sections of irregular'solids, at

equal distances, instead of ordinates
;
such solids being bounded oppo-

site the base by a general curved outline.

This method, although a century old, is still the simplest and best

yet known for proximating the area of irregular curves, or the volume

of unusual solids, it has attained great celebrity, and been of much
service to philosophers and calculators, ever since its origin in 1750.

It has long been used by military engineers for ascertaining the

volume of warlike earthworks, and is regularly quoted in the leading

text books of that important profession.*

Also by naval architects in determining the nice problem of the

displacement of ships ; by mechanical philosophers, like Morin and

* LaisnS, Aide Memoire, du G6nie. Eds., 1831-61.
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Poncelet, etc. by these it has been deemed of much importance, not

only for the quadrature uf irregular areas, but also for the ''Cubature

of solids of irregular excavations, embankments, etc." *

It forms a leading feature in Button's remarkable chapter on the

cubature of curves (who seems to have fully adopted it), under the

name of the method of equidistant ordinates. (See 4to Mens., 1770,

sec. 2, part iv. page 458.) We are much indebted to Hutton for the

practical development of this important problem, and he gives several

examples of its utility. Amongst others, computing the area of a

quadrant of a circle, with radius = 1, which, by Simpson's method,

using 11 ordinates, gives *7817 area, instead of '7854 "pretty near

the truth
"

(says Hutton).

"We will describe this method from the (4to Mens., 1770, p. 458).

"If any right line, AN, be divided into any even number of

equal parts, AC, CE, EG, etc., and at the points of division be

erected perpendicular ordinates, AB, CD, EF, etc., terminated

by any curve, BDF, etc."

Then, the sum of the first and last ordinates, plus 4 times sum of

even ordinates, plus 2 times sum of odd ones, -f. by 3, and X by AC,
one of the equal parts ;

the resulting product will equal the area,

ABON, "very nearly."

That is to say, if

The sum of the two extreme ordinates . . = A.
|

,-,

" of all the even numbered "
. . =* B.

f 11 *u jj u j />. r tne " rst anc>" of all the odd numbered "
. . = C. I .

mi T- A / T T-X last irom (j. )

The common distance apart of ordinates . . = D. I

Then the rule is,

A + 4B + 2C
X D (or AC) = Area, ABOK . . . (IX.)

And if more convenient (as it may be\ we transform this into its

equivalent,

A + 4B + 2C D (or AE) _ AreRj ABOK m m (Xj

n applying this formula, it is desirable to draw a figure, and num-

ber all the ordinates (as below), commencing with 1.

* Morin's Mechanics (Bennett's Trans., I860). See also Gregory, Math. Prac. Men.

(1825).
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" The same theorem will also obtain, for the contents of all solids,

by using the sections perpendicular to the axe, instead of the ordi-

nates."

In this form it becomes applicable to excavations and embankments,
or any similar solids relating to a guiding line, centre, or base line,

to which the cross-sections representing ordinates are perpendicular.

See Fig. 20, copied below from

Hutton, page 458.

Button's Example 3, p. 462.

" Given the length of five

equidistant ordinates of an area,

or sections of a solid, 10, 11, 14,

16, 16, and the length of the

whole base, 20."

Then,

26 + 108 -f 28
X̂ 5 = 2/0.

" The area or solidity required"

This formula of Simpson (adopted by Hutton) is evidently derived

from ike Prismoidal Formula, or it may be, originated it, both having
the same author, and their precedence unknown.

(a.) AYe will now give an example of Hutton's Method of

Equidistant Ordinates (adopted from Simpson), giving two stations

of a railroad cut (each 100 feet long, with a road-bed of 18, and side-

+ 24)

Fig.a

Hor: sea: Vcr.
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slopes U to 1), .shown both in profile and cross-sections. (See Figs.

21 to 26, inclusive.)

The above figure is a profile, or vertical section (of two stations),

upon the centre line of a railroad cut, with a road-bed of 18, and side-

slopes of 1J to 1. The horizontal scale (/or convenience) being made

t of the vertical.

Firstly : Computing each station separately, by Simpson's Rule (II.)

Stations 1 to 3 = 100 = h.

Ills. WIds.

30 X 90 = 2700 = 26.

20 X 60 = 1200 = 2 t.
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(CROSS SECTIONS.)

(b.) The preceding example clearly shows that Hutton's

method of equidistant ordinates is merely the Prismoidal Formula

extended to several stations, instead of confining it to one.

There is another mode of considering this question where the cross-

sections are triangular, and the ground level transversely.

Thus, in any station, let h and h' be the end hights from the inter-

section of the side-slopes to the ground, then, 7i
2 r and hf2 r = the cor-

responding areas (r being the slope ratio, which, in the preceding

example = 1), then omitting r, a common factor, we have in A2 and

hn vertical lines, or ordinates, representative of the end areas, and in

(
-

J
of the mid-section.
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The square roots, then, of the areas (however computed, and what-

ever be the ratio (r) of the side slopes), correctly represent them;

since these roots form the side of an equivalent square (or half base

of an equivalent triangle, with 1 to 1 side-slopes) squaring which,

obviously re-produces the areas they are the roots of.

Hence, the end areas being given in any station, or number of

stations, their square roots may represent them in Hutton's rule of

cubature, and any pair of roots added together, and their sum squared,

gives 4 times the mid-section between them
; which is precisely what we

need in the Prismoidal Formula.

This is evident, from Fig.

27, where we suppose h and k'

placed in a continuous line, then,

_v_

/h -4- h'\
2

. . ,, *+~ 50
(

-
j
= \ the square of (h -^^

-f hf

), or equivalent to the pro-

position of geometry that the square of a whole line equals 4 times the

square of half.

f Let h = 30, and h' = 20, then h -f h' = 50,
h + h'

= 25

4-^)'= (25)
2 = the mid-sec. = 625, and X 4 = 2500 \

(A + h')*
= (50)' = 2500 j

VWhile /i
2 = 900 = one end area, and hn = 400, the other.

Also,

( h2 + h'
2

-f 2 (h X h')
*)

J = 900 -f 400 -f- 1200 = 2500 I

(= (h + hj ,, .
;

.. . = 2500 j

From all which, we readily draw the following:

Rule. Compute the end areas at each regular station (numbered

upon a diagram on Hutton's plan, by the odd numbers, 1,

3, 5, 7, etc., marking also the even numbers intermediately,

which are, in fact, half stations, or the places of mid-sec-

tions), find the square roots of these end areas: add any
two adjacent roots, and their sum squared equals 4 times the

area of the mid-section, between the regular stations.
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Let Fig. 28 be the profile of one station of cutting, from intersection

of slope to ground.

h and h' = The end hights, or representative square roots of

the areas, at regular stations, numbered odd.

m The place of the mid-section, numbered even, and repre-

sented by its ordinate.

Length = usually, 100, between principal stations.

. 28.

Whence,
h* + h'

2 + 4m? Length.

6
X 100 = Solidity, by the Prismoidal Formula.

XI.

Which, for one station, is equivalent to Hutton's Ride.

(C.) ...... So that having the end areas given, we deduce at once

the mid-section, by a table of roots and squares,* and can proceed

station by station, prismoidally ,
to find the solidity. Or combining

them as in Hutton's Rule for cubature, we may calculate in a body the

whole of a cut or bank.

Thus, taking the preceding example, and tabulating it (see Figs.

21 to 26).

Stations.
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Then,

A -f- 4B -f 20 Mean Area. Length of Sta. Cub. Ft.

1500 + 5100 + 1200 __ 1300 X 100 = 130000 = by Hutton's

6 Rule X.
'Now, dividing by 27, = 4815

Deduct grade prism for two stations . . = 400

Leaves solidity in cubic yards (as before) = 4415. From 1 to 5

= 200 feet.

The division by 6 in the first term results in a mean area, which X
by length, gives the solidity and enables us to use a table of cubic

yards to mean areas, as soon as we have found the latter, in order to

obtain the cubic yards more readily by inspection.

(d.) In further illustration of this important method of

computation in earthworks, we will submit another example, repre-

senting an entire railroad cut, with 20 feet road-bed, and side-slopes

of 1 to 1, laid off in regular stations of 100 feet, and truncated at

both ends in light cutting (at selected stations), so as to secure full

cross-sections throughout; and also an even number of equal distances

(apart sections), each 100 feet, or regular and uniform stations, what-

ever their length.

These truncations are made before proceeding to the calculation,

so that all the cross-sections shall be complete (or have some side

slope however small at both edges of the road-bed), which simplifies

the main calculation, while in the end the truncated volumes may be

computed independently, and added in with the rest.

Again, if the ground should have required the insertion of interme-

diates in any one or more of the regular stations, it will be best to

draw a pencil line around all such whole stations upon the diagram,
and compute them separately from the main body the places of such

stations being considered vacant for the time (omitting distance, mid-

section, and end areas, so far as they apply to the assumed vacancy),
and thus the cut will be computable under our rule, in one or more

masses (as though a single mass originally), according to the number

of vacant spaces. A little practice will familiarize this matter better

than further explanation, as the object to be attained is evident.



48 MEASUREMENT OF EARTHWORKS.

Generally, we may compute the cut, or bank, in one principal

mass, and then calculate separately, and add.

1. The solidity in the special stations containing intermediates.

2. The quantities of work of the same kind, at the passages from

excavation to embankment, at both ends of the cut (as will

be further explained).

In all such cases (indeed, in all cases of heavy work), it is necessary

to draw diagrams, as below, and these (in cross-sections) will usually

have a scale of 20 feet to the inch, which long practice has shown to

be entirely suitable
;
but any preferred scale may be employed, or the

cross-section paper in common use amongst engineers which carries

its own scale and which will be found convenient in many respects,

either bound up for the purpose, or in loose sheets, to be ultimately

tacked together, including a mile forward, or thereabouts.

Profile of 8 stations of railroad cut; base 20, side-slopes 1 to 1.

a b = Intersection of side-slopes, or edge of diedral angle, formed

by their planes meeting.

c d Grade, or formation line of the road-bed = + O'O.

ef = Surface line of ground, as cut by centre plane.

gp = Grade prism deductive for solidity

Tig. 29 /



f

CHAP. I. PRELIM. PROBS. ART. 10. 49

The ordinates show the level hlghts from grade to ground, to which

add always the common hight of grade triangle.

Transverse slopes are shown on cross-sections.

f Regular Stations = !

Cross-sectirm Areas = 232*5

I Square Boott = 15 25 1

1 Sums of Roots = 33-94

3- 5- 7' 9' 11' 13- 15- 17-

349-2 412-7 720-5 844-8 1085- 901-5 516- 259-5

18-69 20-31 26-84 29-06 32-94 30-02 22-72 16-09

39-00 47-15 55-90 62-00 6296 52'74 38-81

Squares of Sums = 1151-9 1521-0 2223-1 3124-8 3844-0 3964*0 2781-5 1506-2

^ These squares are each equal to 4 times the mid-section, between regular stations.

All hights and areas taken to intersection of slopes.

Mean areas computed separately
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Mean areas computed separately

for each regular station, by Simp-

son's Kule.

(9 to 11)

Mean Area =

(11 to 13)

Mean Area =

(13 to 15)

Mean Area =

(15 to 17)

Mean Area =
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F5|.35

cot

00'

Fig. 38

Cross -sections
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parison of the calculated work, by Separate Mean Areas, and by
General Mean Area, while resulting alike, evinces the superiority of

the latter, in point of brevity.

In the tabulation for General Mean Area, it will be observed that

the extreme end areas are written but once (equivalent to addition)

the odd numbered areas twice (equivalent to X by 2), while the

even numbered areas are written, in effect, 4 times, as squares of

sums of adjacent representative hights, because in that shape they each

equal 4 times the area of the prismoidal mid-section.

(6.) We must now consider the passages from excavation

to embankment at both extremities of the cut, near the regular sta-

tions, 1 and 17, where it was assumed to be truncated, in order to sim-

plify its computation.

Figs. 39 to 42 show these passages so clearly, in the assumed case,

as to need little explanation.

On plain ground the line of passage a c will often be so nearly
normal to the centre that, having set the grade peg in the centre line

at e (the entrance of the cut), we may place those for the edges ofthe

road-bed (as a and c), at right angles in many cases, where the ground
differs in level only a few tenths of a foot; the error being merely a

change of some yards from excavation to embankment, which is quite

immaterial, since their values differ little per cubic yard.

But where the ground is much inclined, in either direction, the

grade pegs aec must be set on an oblique line, broken at e, if neces-

sary.

Precise rules can scarcely be furnished for such cases, but the

quantities being usually small, and the distances short, any of the

ordinary methods may be safely employed.

In the case before us, we have made the computation from 17 to a,

and from 1 to a, by the Arithmetical Mean, and for the parts from

a to c as pyramids.

In this manner we have found the volume of excavation, at the

passage at Fig. 39, to be = 321 cubic yards.
And at Fig. 41 = 622 "

Total, in the whole length of the passages

(230 feet) = 943 cubic yards.
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So that, finally, we have for the solidity of the entire railroad cut,

under consideration, the following result :

From 1 to 17 (as before computed) = 15721 cubic yards.
In the passages from excavation to

embankment, at both ends (230
feet long in all)

= 943 " "

Whole solidity of the cut from grade
to grade, on both sides . . . = 16664 cubic yards.

We will now illustrate the passages from excavation to embank-

ment, at both ends of the cut (shown in profile at Fig. 29.)

In Figs. 39 to 42 all letters refer to similar parts.

1 and 17 = Places of cross-sections, at the selected regular stations,

where the cut was truncated, to obtain full work.

a a = Cross-section, where one edge of road-bed runs to grade.

c = Grade point at the other edge, or opposite side.

a c = Line of junction of cut and bank, at grade level.

bb Slopes of cut.

d d = Slopes of bank.

e = Grade point at centre.

Total length of cut between the extreme grade points forming the

vertices of the small pyramids at c and c = 1030 feet.
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Other modes may be used for treating the question of passages
between excavation and embankment, but the above is as simple as

any, and may be easily modified for particular cases.

11. With Railroad Cross-sections in Diedral Angles to find the mid-

section of the Prismoidal Formula, by a brief calculation from the End

Areas, without a Special Diagram.

In all railroad cross-sections, instrumental data of adequate extent

are first obtained in the field by well-known processes, and these data

enable us in the office, subsequently, to draw them as diagrams, by a

suitable scale, and to compute their superficies.

The length of each separate solid of earthwork, and its position

upon the centre or guiding line, is also known.

With these given data, the Prismoidal Formula requires the deduc-

tion of a hypothetical mid-section, in some form, for use under the

general rule, or its modifications.

As mentioned previously, this mid-section is usually derived from

the Arithmetical Average of like parts in the end sections, and even

in extremely irregular ground, to find this leading section of an Earth-

work Prismoid, is not very difficult when the diagrams of the end

cross-sections are correctly drawn (as in heavy work they always
should be), or even from the field notes of the engineer, since the posi-

tion of every leading point of ground, transversely, is always fixed

and recorded by level bights, and distances out from centre, and their

average position is always reproduced, proportionally, -in the mid-

section.

Nevertheless, some judgment is required in deducing the mid-sec-

tions from the end ones, by Arithmetical Means, since the points to
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average upon are often in doubt, the process, too, including finding

its area, is like most others connected with earthwork computations,

very often tedious, so that some shrewd mathematicians, while con-

ceding the accuracy of this method, when properly carried out, have,

nevertheless, deemed it unsatisfactory in some respects.*

It is well, therefore, to have the means of operating with given end

areas, to find the mid-section, without the necessity of arithmetically

deducing, or even of sketching it.

We, therefore, now submit some rules and examples by which the

area of the mid-section may be computed from the ends, without

deriving it in the usual way, or drawing for it a special diagram.

These rules are intended only for Earthwork Prismoids, within die-

dral angles ;
and though their range is clearly more extensive, the

variety of prismoidal solids is so great that it is probably best to limit

our rules and examples to the object before us.

The broken ground line of very irregular cross-sections should

always be reduced to a uniform slope, by a single equalizing line (or

at most by two), containing exactly the same superficies, by the method

of Art. 8, and the bights and widths ascertained for each section

(by the equalizing line), and verified by multiplication to re-produce

the area equalized, see 8 (a), these bights and widths enable us at

once to compute the volume of the prismoid by Simpson's Rule (their

product giving end areas) (Art. 2 (a) ) and the sums of these

bights and widths, when multiplied together, producing always 8

times the mid-section (without directly deducing it).

Having given then the end areas, or the bights and widths which

produce them, we readily find the Prismoidal Mid-section by the

following :

x Arithmetical Mean -f Geometrical Mean
(1.) = . = Mid-sec.

2

(Sum of square roots of end areas)
2

_
.

tSum end bights X sum end widths ,_, ,

(3.)
. . Mia-sec.

(4.) By the method of Initial Prismoids Art. 3 (a).

I

* Warner's Earthwork (1861). Davies' New Surveying (1870).

f These bights and widths (used in 3) are those connected with the equalizing line

of the equivalent triangular section the product of which, at each cross-section, re-pro-

duces exactly the double area of the whole surface, from the side-slopes to the broken

ground line; and the product of their sums always equals eight times the mid-section.

Rules.
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Other rules might be given, but these Jour appear to be the simplest

and best for use in earthwork, under the view we have herein taken.

Having then found the mid-section, and having the end areas and

length previously given, we can easily compute the volume of any

earthwork solid, by the Prismoidal Formula, or its numerous modifi-

cations.

1. A Prism . = Base.

By Geometry, we have

for the mid-sections of

f A Wedge, with back ^

2. < and edge equal and > = i Base,

v. parallel . . . . J

3. A Pyramid = 1 Base.

Fig. 43 shows the end cross-sections of one station of a railroad cut,

upon irregular ground, both upon one diagram*, road-bed 20, side-

slopes 1 to 1. Length of station, 100 feet.

g g'g" cent: of grav:

Centre higbts to intersection of slopes.

-f 37-5

4- 31-6

+ 25-7

from equalizing line.

Total widths from side to side.

80

68

56
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Note:

Both in Figa. 43 and 44 the same letters refer to like parts.

CC = Centre line of railroad, or guiding line of earthwork,

a b sm Equalizing line of broken ground surface of larger end .

/ = " " " " " of smaller end .

d = " " " " " of mid-section .

14 2' slope.

, 15 57'
"

14 50' "

Fig. 44, like the preceding, shows both end sections of a railroad cut,

upon one diagram. Road-bed = 20, side-slopes 1 i to 1. Length = 100.

Centre bights to intersection of slopes.

+ 22*02

+ 26-07

+ 29-81

from equalizing line.

Total widths from side to side.

66-

78-7

90-7

In this figure (44) the line ef has a minus slope, which is always
the case when the area assumed up to .the equalizing point is greater

than that to be equalized.

In both of the above figures, I is the intersection of the side-slopes,

or edge of the diedral angle, containing the earthwork prismoids.

The constant area of the grade triangle, with side-slopes of 1 to 1

(Fig. 43) = 100. While, with side-slopes of 11 to 1 (Fig. 44) =
66f. The road-bed, or graded width, in both cases being 20 feet.

The altitude of this triangle for 1 to 1 = 10, and for IHo 1 = 6f.
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The rules (numbered) above, for the figures shown, give the follow-

ing results :

( Fig. 43 gives Mid-sections (1) = 1074-5; (2) = 1074-5 ; (3) = 1074-4 ; (4) = 1074-6

\ Fig. 44 gives Mid-sections (1) = 1015' ; (2) = 1014-74 j (3) = 1015-22; (4) = 1015-

The small variations arise from the decimals not being sufficiently

extended.

12. To find the Prismoidal Mean Area from the Arithmetical or

Geometrical Means, or the Mid-section, by Corrective Fractions of the

Square of the Difference of End Hights.

In all cases we suppose the end areas of the Prismoid to be given,

and that the Prismoid itself is contained within a diedral angle, the

plane angle measuring it being supplemental to double the angle of

side-slope, as in the Figs. 43 and 44.

The simplest, and probably by far the most generally employed
method of finding a mean area between two others, is by the Arith

metical Mean which is itself half the sum of any two magnitudes.

Adopting the Arithmetical Mean as being the simplest known

base, and forming all sections of earthwork by prolonging the planes

of the side-slopes to their intersection (or supposing them to be), so

as to bring the computed prismoids within diedral angles of given

divergency.

We have, from the relations between the sums or differences

of the squares, or rectangles of lines producing areas, some rules,

which may often be useful in the calculation of earthwork, for cor

recting mean areas to be used in finding the solidity.

This correction being always equivalent to some fraction of the square

of the difference of the end hights.

While these end hights are always to be deemed and taken as the squart

roots of the end areas, and are, in fact (as before mentioned), a side of

an equivalent square, or half base of an equivalent triangle, having

side-slopes of 1 to 1 (or a diedral angle of 90), for (we repeat), no

matter what may be the ratio of actual side-slope, nor how irregular

the ground surface, the square root of the area is invariably the true

representative hight whichx rectifies the section, and which, when

squared, reproduces the area.

See Art 10 (a) (b) etc., where much use is made of these square

roots, or representative hights.



60 MEASUREMENT OF EARTHWORKS.

Having, then, the end areas given, and their square roots or hights

ascertained,

D = Difference of hights.

D2 = The square of the difference of hights.

Rules:

(1) Arithmetical Mean
Sum end areas

(2)

(3)

(4)

(5)

(6)

Then the Prismoidal Mean Area.

. . = Arithmetical Mean I D2
.

. . = Mid-section . . . -f ^ D2
.

. . s=s Geometrical Mean + J D2
.

Prismoidal Mid-section.

. . = Arithmetical Mean J D2
.

Geometrical Mean.

. . = Arithmetical Mean \ D2
.

^

For Fig. 43 these rules give, For Fig. 44 these rules give,

(1)=1039- =Arith. Mean.

(2) = 1022-9
)

(3) = 1023- V= Pris. Mean.

(4)
= 1023-2 )

(5) = 1014-8 = Pris. Mid-sec.

(6)= 991- =Geom. Mean.

In these numerical illustrations (as in others) slight variations

arise from insufficient decimals.

Baker* gives yet another rule for the Prismoidal Mean Areas, as

follows :

(1)
= 1110-
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2 (Sum sqs.) + 2 (Rect. hights)
, or -f- 2 =This is equivalent to

(Sum of sqs.) -f- (Rect. hights)
,
which is Baker s rule above, or Bid-

der's, as quoted by Dempsey (Practical Railway Engineering (4th

edition) 1855).

We may illustrate this matter further by two simple figures.

Here Fig. 45 represents a 1 to 1 side-slope diedral angle 90 ; and

Fig. 46 a side-slope of H to 1 diedral angle 112 38'.

In both these diagrams the same letters refer to like parts.

/ ..LJ

References.

CO = Centre line.

I = Intersection of planes of side-slope.

a b = Ground line of one end section.

c d = " "
% of the other.

m s
" " of the mid-section.

Hights and areas both extend to the intersection at I.



62 MEASUREMENT OF EARTHWORKS.

In Fig. 45, The end areas are 1600 and 400 the higlits 40 and
20 and by the rules herein, Arithmetical Mean =
1000, Geometrical Mean = 800, Mid-section = 900,
Prismoidal Mean Area = 933, by all the rules.

In Fig. 46, The end areas are 2400 and -600 the hights = 48'99

and 24'99, being the square roots of the respective
end areas and by the rules herein, Arithmetical

Mean = 1500, Geometrical Mean = 1200, Mid-sec-

tion = 1350, Prismoidal Mean Area 1400, by all thg

rules.

The areas and hights, in both examples, are contained between the

ground lines, and the intersection of the planes of side-slope, or edge
of diedral angle, including the Prismoid of Earthwork.

13. Applicability of the Prismoidal Formula to find the Solidity of

Various Solids other than Prismoids.

The Prismoidal Formula appears to be the fundamental rule for the

mensuration of all right-lined solids, and the special rules given, in

works on mensuration, for ascertaining the volume of solids in general

use, seem like mere cases of the former
; though their relation has never

been demonstrated in plain terms by mathematicians so as to con-

nect them directly further than prisms, pyramids, and wedges, which

has already been done by the present writer in Jour. Frank. Inst.,

1840.

Nevertheless, Hutton (1770) has indicated numerous applications,

and various writers have since shown the applicability of the Pris-

moidal Formula to ordinary solids, and also its coincidence with many
special rules of the books, when proper algebraic substitutions are

made; and it has been further shown to hold for certain warped

solids, to which its application was not expected.*

As an evidence of its remarkable flexibility, we may show, briefly,

its application to the three round bodies, illustrated by a diagram.

(1) The volume of a cone equals the product of its base X i its hight.'f

The prismoidal mid-section of a cone = \ the area of the base. The

section at the top, or vertex = 0. Then, the sum of these areas used

prismoidally
= 2 base, which, X i h = base X i hight, which is

the geometrical rule.

*
Gillespie, Frank. Inst. Jour. (1857 and 1859). Warner's Earthwork (1861).

f Chauvenet, ix. 3, 7, 14, Geom. (1871). Borden's Useful Formulas (1851). Henck'a

Field Book (1854), Art. 112.
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(2) The volume of a sphere equals 4 great circles X i fa radius.*

Now, the prismoidal sections at the poles are both = 0. While four

times the mid-section = 4 great circles. Then, the prismoidal sum

of areas = 4 great circles, which X i hight, or diameter, or radius,

is the geometrical rule.

(3) The volume of a cylinder equals the product of its base by its

hight.* Now, by the Prismoidal Formula, base -f- top + 4 times

mid-section = 6 base (for all the sections are alike), and 6 base X ^

h = base X hight, which is the geometrical rule.

So that there can be no doubt of the applicability of the Prismoidal

Formula to the three round bodies; and in a similar manner it is easy

to show its coincidence with many special rules for solids, but a direct

mathematical demonstration connecting all these together, and exhib-

iting their geometrical relations, has never come under the writer's

notice
; though indirectly, and perhaps quite as satisfactorily, this con-

nection has been clearly established for all the leading solids in prac"

tical use.

Numerical calculation of the three round bodies, supposing each to

have a diameter of 1, and an altitude of 1.

CONE.
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their volumes in the ratio of the numbers 1, 2, and 3. Now, the

above calculations show the same result numerically, which, with the

preceding observations, furnish an adequate demonstration.

In like manner we might show that the Prismoidal Formula applies

to all the separate geometrical solids, which, when aggregated, form

the irregular prismoid known as an Earthivork Solid.

Now, considering this species of solid as a prismoid, within the

limits of Button's definition (1770), we find that all such admit of

decomposition into Prisms, Prismoids,* Pyramids, or Wedges (complete

or truncated), or some combination of them, having a common length,

or hight, equal to the distance between the end areas or cross-sections,

and either separately or together computable by the Prismoidal Formula

as a general rule for all.

By a similar analogy (to the three round bodies), we find somewhat

like relations to obtain between what we may call the three square or

angular bodies; which geometry-shows to exist alike amongst them

all, the round bodies being referred to the cylinder; the square or

angular ones to the cube. But the wedge requires this special defini-

tion, that the edge be double the back.

1. A Pyramid, with a square base, on a side of 1, and

having also an altitude of 1, has a volume . . . ..
= |.

2. A Wedge, doubled on the edge, with a square back, on a

side of 1, the edge parallel
= 2 (or double the back),

and an altitude of 1, has a volume = I.

3. A Cube, or Hexaedron, with its six square faces, each

formed upon a side of 1, has a volume = 1.

So that, finally, we have, both in the three round, and in the three

square bodies (as defined) where unity is the controlling dimension,

like ratios of volume.

Thus, these six bodies,

( Cone and

\ Pyramid.

Sphere and

Wedge
(doubled on the edge).

Cylinder "]
Solids of

and Cube.
|

Circular

and

ra"oTof
th
voiuml

= 1- 2 - 3 J Square Bases.

And of each and all of these alike, the Prismoidal Formula gives the

Solidity,

* The Rectangular Prismoid being always divisible into two \vedges.
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14. Transformation of Areas into Equivalent ones, Simpler in Form,
and of Solids into Equivalents, more readily Computable by the Pris-

moidal Formula, or its Modifications.

Hutton hath defined a Prismoid as follows:
" A Prismoid is a solid having for its two ends any dissimilar

plane figures of the same number of sides, and all the sides of

the solid plane figures also." (Quarto Mens., 1770.)

This is the oldest and best definition of the Prismoid which we are

able to find on record.*

Under this definition, for which the General Rule (coinciding with

Simpson's) was framed by Hutton, it is clear that we ought not to

expect of the Prismoidal Formula the cubature of curvilinear solids,

though, by a happy coincidence, it applies to many such, which are

not prismoids at all, nor in the least resemble them, geometrically.

But though often true of this remarkable formula, where a correct

mid-section can be first obtained, it by no means follows that its

numerous modifications (all framed for right-lined solids) will, like

their principal, also hold, as it does in many singular cases exactly, and

in most others approximately.

It was early discovered that it would materially simplify the com-

putation of irregular prismoids, to transform them into equivalent

right-lined bodies, of which the nature was better known, and the

forms more regular and simple.

As the calculations for level ground were obviously the most easy,

Sir John Macneill, in his Tables of 1833, adopted for the end sections

the principle of transformation into level hights, to contain equivalent

level areas and was, in fact, the originator of what has since been

known as the Method of Equivalent Level Hights by means of which,

the end sections of irregular prismoids of earthwork are transformed

into level trapezoids, which are then employed to compute an equiva-

lent solid of the same length, and transversely level, at top or bottom,

according as it may be excavation or embankment each, however,

representing the other, when inverted.

Sir John Macneill has been followed, more or less closely, by most

of the authors of Earthwork tables, the bulk of which are applicable

to level ground alone, or ground reduced to such
; though Watner's

System of Earthwork Computation (1861) deals with ground how-

ever sloping, or even warped, within certain limits.

* See also Henck's Field Book (1854). Davies Legendre (1853). Haswoll's Mens.

(1863). Bonnycastle's Mens. (1807). Hawnev's Mens. (1798). All define the Pris-

moid ni a right-lined solid.

5
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The method of using Equivalent Level Hights (when the cross-

section of the ground is not level) has been concisely explained, by a

recent writer, to consist in finding*

1.
" The area of a cross-section at each end of the mass."

2.
" The hight of a section, level at the top, equivalent in area to

each of these end sections."

3.
" From the average of these two hights, the middle area of

the mass."
"
And, lastly, in applying the Prismoidal Formula to find the

contents."

It is obviously necessary then to understand what is meant by

equivalency and this we find from Geometry.f

1 .

"
Equivalent (plane) figures are those which have the same

surface measured by the area."

2. "Equivalent solids are those which have the same bulk or

magnitude."
" Theorem: If two solids have equal bases and hights, and if

their sections made by any plane parallel to the

common plane of their bases are equal, they are

equivalent."

Now, the transformation of triangular prismoids of earthwork, by
means of Equivalent Level Hights, meets every point of Professor

Peirce's definitions of equivalency, and hence the solid they produce

may be regarded as equivalent to the original defined by Hutton : in

the above theorem, equality of sections evidently means equality in

area, and not geometrical equality, which is somewhat different.

Some writers have doubted the accuracy of the transformation or

equivalency produced by Equivalent Level Hights,J but it is because

the solids, which they found in error, were either not prismoids at all,

or else the data used were inadequate to the solution of the problem.

An error in this direction is not surprising ;
for when we know that

the Prismoidal Formula applies correctly to a solid, we are apt to

infer that its modifications also do, and here the error lies.

For.instance, we know this formula does apply correctly to a sphere,

but if we test that solid, by the method of Equivalent Level Hights,

we should find that the end sections being 0, have a hight of 0, and

that the mid-section being constructed on a mean of like parts in the

* Henck's Field Book (1854). f Peirce's Plane and Solid Geom. (1837).

J Gillespie, Frank. Inst. Jour. (1859).



CHAP. I. PRELIM. PROBS. ART. 14. 67

ends must also equal 0, and hence we might in this way legitimately

come to the conclusion that the globe itself had a solidity of ! This

shows that Equivalent Level Hights are limited in range.

The error obviously is that all, or most of the transformations and

modifications of the Prisrnoidal Formula, are intended for right-lined

solids,
"
varying uniformly

" from end to end, like a stick of timber

dressed off tapering, and to all such rectilinear solids they do apply

correctly ;
but not to those which bulge out, or curve in, by laws

unknoivn to Huttoris definition of the Prismoid.

It would be easy to illustrate this by examples, and to show that,

confined within proper limits, the usual modifications of the Prismoidal

Formula are correct enough for practical use
;
but they have not the

wide range of their principal; nor must they be expected to apply
either to the three round bodies, or to warped solids, but only to right-

lined ones, varying uniformly, or nearly so, from end to end.

One important point, however, must not be overlooked in applying
the Prismoidal Formula (or its modifications) to cases of earthwork:

that is, the ground must be properly cross-sectioned; or, have its sections

judiciously located, while the hights and distances of its controlling

points are correctly measured and recorded, prior to undertaking the

calculations of solidity.

It is in this point that Borden's ridge and holloiv problem fails*

Had one or more intermediate cross-sections been adopted there, no

difficulty would have existed in its calculation, either by Borden him-

self, or by subsequent students.

To illustrate this subject, we will

give an example, drawn from Simp-
son's original Prismoid of 1750, on

which he founded the Prismoidal

Formula, or used to explain it.

Art. 2, Fig. 2. (And see Figs. 48,

49, 50, 51.)

2.1. 82

Here we will take the Prismoid as

being cut in two, by the diagonal

plane, through DB, so as to divide it

into triangular prismoids, and then

calculate one of these halves in three

ways.

Fig. 49

* Borden's Useful Formulas, etc. (1851). Henck's Field Book (1854).
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1. By Simpson's Rule, as the

half of a rectangular pris-

moid, dimensioned as in

Fig. 2.

2. By Hights and Widths, as a

triangular earthwork solid,

with unequal side-slopes.

(See Figs. 48, 49.)

3. By Equivalent Level Hights

purely as an equivalent tri-

angular prismoid, or earth-

work solid, within a diedral

angle of 90, and having

equal side-slopes of 1 to 1.

In all these figures the angle A = 90.
B and B, Figs. 48 and 49 = 38 40', and 33 41'.

'

48 and 50 = 320.

The common hight of the prismoids being h = 24. All the calcu-

lations being carried out in detail
;

all having the same end areas,

320 and 216; and all dimensioned as marked upon the figures.

We find, then, by all these calculations, the Solidity to be the same
= 3200, varying but a few small decimals, and agreeing with the

results already ascertained in Art. 2.

This exhibits the equivalency we have been discussing (the figures

being quite unlike), and might readily be extended to more compli-

cated examples, with a like result.

15. Equivalence of some important Formulas, for .computing the

Solidity of Triangular Prismoids of Earthwork, contained within

Diedral Angles, formed by Prolonging the Side-slope Planes to an Edge.

Equivalent Formulas are those which reach the same results by
unlike steps and in mathematical processes it is often found that a

general formula will hold in many cases, usually governed by concise

special rules, and yet produce identical results.

This is equivalency, and relates^ in mensuration especially to the

Prismoidal Formula, which appears to have a sort of concurrent juris-

diction over the domain of solid geometry, along with the special

rules for the volume of each separate solid, producing exactly the

same results, though by different steps.
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Such is particularly the case in earthwork solids, contained (as

they mostly are) in diedral angles formed by uniform planes, called

side-slopes, and having a general triangular section two sides being

the inclined lateral planes, known as side-slopes (continued to inter-

sect for computation), and these slopes being usually alike in inclina-

tion, while the contained angle is equal ; the third side, or ground

line, alone being variable, and often irregular.

By geometry, triangles having an angle common or equal, and the

containing sides proportional, are similar ; and the areas of similar

triangles are always proportional to the squares of any similar or

homologous lines, or to the rectangles of such as have like positions

and relations to each other : as the squares of perpendiculars from

the equal angles, or their bisectors, the rectangles of containing sides,

the product of hights and widths, etc.

Now, these triangular sections of an earthwork solid, extending

(for computation) from the ground surface to the intersection of the

side-slopes prolonged to an edge, are sections of triangular pyramids, as

well as ofprismoids ; and to such solids the rules for Pyramids, and

their frusta, as well as the Prismoidal Formula, and its modifica-

tions, apply concurrently, and either may be used at will, with correct

results.

These considerations regarding the equivalency of Pyramidal and

Prismoidal Formulas in such cases are important, and require to be

well considered by computers of earthwork.

Hutton's definition of the Prismoid is based on three conditions:

1. The two ends must be dissimilar parallel plane figures.

2. They must have an equal number of sides.

3. The faces, or sides of the solid, must be plane figures also.

Usually, says Hutton, the faces are plane trapezoids.

Considering, now, a regular prismoid as being composed of known

elementary solids.

Macneill regards it as formed of a prism, with a wedge superposed.
Art. 4 (and this is also the case with a frustum of a pyramid, turned

upon its edge).

Hutton, of two wedges, formed by a single cutting plane passed in

a diagonal direction, Art. 3.

The writer, as a triangular prism trebly truncated, Art. 1.

Simpson (the father of the prismoid) gives no special definition,

but figures in his work of 1750 a rectangular prismoid (the same or
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similar to that adopted and figured by Hutton, 1770); and by a

single diagonal plane, convertible into two triangular prismoids.

(See Fig. 2.)

Now, as a triangle is the simplest of all polygons, so a prismoid

within a diedral angle (triangular in section) may be considered as

the simplest of all prismoids, though the rectangular prismoid is

nearly so.

The simplest case of the ordinary trapezoidal prismoid of earthwork

is in, or upon, ground level transversely.

In that case, the cross-sections are level trapezoids, and the solid is

obviously composed of a prism and superposed wedge, as in Macneill's

solid, Art. 4.

Its volume may be computed by Simpson's, or by Button's general

rules, because this solid then is strictly a prismoid within the scope

of Hutton's definition, and as a whole computable only by prismoidal

rules.

But suppose the assumed road-bed was taken less and less, until we

reached the edge of the diedral angle, and it became zero.

Then, the cross-section from a trapezoid becomes a triangle, and the

prismoid changes at once into a fmstum of a pyramid a solid known
since the days of Euclid.

This solid becomes then computable by Euclid's geometry, as the

frustum of a pyramid or by Equivalent Level Hights by roots and

squares by geometrical average all of which are equivalent, as are

the similar rules of Bidder, Baker, Bash forth, and others
; or, by

wedge and prism, by hights and widths (Simpson), by Hutton's par-

ticular rule, by the method of initial prismoids, or, finally, by the

Prismoidal Formula itself, which always holds alike for prismoids,

pyramids, or pyramidal frusta.

Hutton (4to Mens., 1770, p. 155) shows that in similar sections of

a pyramidal frustum (say triangular) the squares of similar lines, as

the bisector of an equal angle (which the centre line of a railroad

generally is), are as the areas of the cross-sections, or, conversely, the

areas are as the squares of similar lines (Chauvenet's Geom. iv. 7).

Then, from Hutton's prob. 7, cor. 2, we have a formula (for pyra-

midal frusta) in which, substituting Bidder's and Baker's notation,

we have, by a slight reduction, the identical rules given by those

authors for the computation of earthwork.*

* Bidder, quoted in Dempsey's Prnc. Rail. Eng., London, 1855. Baker, in his Rail-

way Eng. and Earthwork, London, 1848.
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We will now give a diagram to illustrate the equivalency of prismoi-

dal and pyramidal formulas.

Fig. 52.

Road-Tied-lO.

Fig. 52 represents the full station of earthwork, already shown in

Figs. 22 and 24, having a road-bed of 18 feet, and side-slopes of li to

1, with other dimensions as marked upon the figures.

Suppose, in all cases (as in Fig. 52), the trapezoidal sections of the

ends above the road-bed to be carried down by prolonging the side-

slopes to their intersection at I I, the edge of the diedral angle.

( c c = Top of larger end, and h = its hight = 30 feet.

Let\bb = Top of smaller end, and h' = its hight = 20 feet.

( I = The intersection of side-slopes, of 1J to 1.

Then, suppose a horizontal plane to be passed parallel to 1 1, through

bbb b, then ccbbb b, the part cut off, is a wedge, its edge being b b,

the top of the forward cross-section
;
while h h' = the hight of the

back c c b b, and as a wedge it may easily be calculated.

Now, suppose the plane b bb b moves downward, parallel always to

its first position at the distance h
f

from I, then the solid immediately
becomes a prismoid being then a prism with a wedge superposed, as

in Art. 4 (or analogous to it).

Continue this parallel movement of the plane downward until we
reach the position a a a, assumed for the road-bed, and then we have

the precise case of A rt. 4 Sir John Macneill's figure of 1833. To
this of course the Prismoidal Formula applies, but the Pyramidal For-

mulas do not.

Continue on again, with the movement of our supposed horizontal

plane downwards, until it comes to I, I, (the junction of the side-slopes),

then the solid becomes the frustum of a pyramid, triangular in sec-

tion, and the wedge is absorbed ; nevertheless, a frustum of a pyramid
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is also in tins respect like unto a prismoid, and may, if we choose, be

regarded as a prism with a wedge superposed, and forming the top

of the solid.

Taking the horizontal plane, supposed to move parallel downwards,

at three particular points of its progress, at b, a, and I, the calcula-

tions for volume would be,

1. For the wedge alone = ccb bbb
2.

"
wedge and prism, or prismoid = ccaaabb.

3.
"

frustum of a pyramid alone, both wedge and prism being

merged in it and in such case this is the simplest and

best form of calculation, for volume.

We may here remark that so long as the end cross-sections contain

a road-bed of definite width, the solid is a real prismoid, and must be

computed as such by prismoidal rules alone; but the moment the

angle at I becomes common to both, then the solid becomes a regular

frustum of a pyramid, and all the pyramidal rules apply, as well as

the prismoidal ones, to which they are strictly equivalent, whenever I,

the diedral edge, is common to both.

Now, suppose the case reversed, and that the horizontal plane was

originally passed through I, I, (edge of diedral angle), and moves

gradually upwards, parallel.

At every step of its progress, the solid, cut off above I, is always a

prism, until its limit has been reached, at b b b b, the top of the

smaller end here the moving horizontal plane ceases to be longer

useful in illustration; and becoming fixed at one end, on the top of

the far end section as an axis, opens wider and wider at the near end,

until it attains the line cc (the top of the main solid), and completes

the wedge we have referred to, and the pyramidal frustum with it.

In this position the whole solid is undeniably a prismoid (if we

allow to it an infinitesimal road-bed). So, also, it is a frustum of a trian-

gular pyramid, both being strictly equivalent, and both computable by

the regular rules for either*

We will now illustrate this equivalence of the Prismoidal and Pyra-
midal Formulas, in their application to earthwork solids, within

diedral angles, by a few examples.

Taking the dimensions of Figs. 22 and 24, with 1 to 1 side-slopes,

and road-bed of 18, for thfe numbers to be employed the diedral

angle being common to both.

* As might be inferred from Button's remarkable chapter on the Cubature of Curves

(4to Hens., 1770).
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1. Priwnoidally. By the direct and cross multiplication of Hights

and Widths. Formula at the end of Art. 9...... VIII.

TT . ( h = 30 \s w = 90 ) w . ,,,

Hights
| /t

, = 20X u'' = 60 j
Wldths -

30 20 30 90 2700

90 60 60 20 1200

2700 1200 2)1800 + 1800

6)5700

950 X 100 =- 95000 =
Solidity, as before computed.

2. Pyramidally. By the rules of Baker's Earthwork.

30
30

900

r

I



74 MEASUREMENT OF EARTHWORKS.

5. Finally, by Warner's Earthwork, Art. 112.

Hts. Wds.

Difference = 10
j ^ x 60 }

Difference = 30 -

Sums . 50 X 150 . . = 7500

937-5 = 1st term.

X 100 = 95000 =
Solidity.

So, we may safely assume that the Pyramidal Formulas of Bidder,

Baker, and others, the Geometrical Average, Equivalent Level Rights,
Euclid's rule for the frustum of a pyramid, etc., are all strictly equiva-

lent to the Prismoidal Formula, and its modifications, when applied to

earthwork solids, within diedral angles, on ground transversely level.

16. Summary of Rules and Formulas from the Preliminary Problems.

It will be found convenient to use, substantially, the same notation

for the Prismoidal Formula, and its numerous modifications, wher-

ever practicable.

b = Base, or area of end assumed for such.

t = Top, or area at the other end.

Thus
let^

m = Hypothetical Mid-section, used in computation.
h = Length or hight of the Prismoid.

S = Solidity or volume.

Then, the Prismoidal Formula can always be in substance expressed

by ^
- X h S, when a mean area is desired, or by

(b -f 4 m -\- f) X i h S, for rectangular prismoids, or equivalent

solids; or, when triangular prismoids are under computation,

2 b + 2 t f 8 ?TI----- X h = fe, equivalent in using triangular sections

and double areas, to this rule in words : The separate products of hights

by widths at each end, plus product of sums of hights and widths at both

ends, and the sum of these three products, multiplied by ^ h = Solidity.

The following modification of this rule may be sometimes useful in

computing the volume of triangular earthwork solids : The products

of the direct multiplication of hight by width at each end, plus sum of

half products of the cross multiplications of alternate hights and widths a*,
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both ends, multiplied by h = solidity from ground to intersection of

slopes, and mimis the grade prism = solidity from road-bed to ground.

Many other expressions are assumed for special purposes by the

Prismoidal Formula ; but no matter into what shape it be transformed,

the essential idea must always be borne in mind that this formula, in

words, concisely is,

" The sum of the areas of the two ends, and four times the sec-

tion in the middle, multiplied into h = S." (Hutton, 1770.)

Such is the simple expression of this celebrated formula given a

century ago which applies not only to all prismoids, but to all right-

lined solids, and many curved ones too.*
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Article.



Article Formula.

CHAP. I. PRELIM. PROBS. ART. 16. -

SUMMARY Continued

10.

10.

IX.

10. XI.

Simpson's Rule, for the Quadrature and Cubature

of Curves (adopted by Hutton), and copied from the

4to Mens. (1770).

Sum extreme ordinates = A.
"|

"
all even " = B. [A-f 4B + 2C

"
all odd " = C.

[

~3~~
Common distance = D.

J D= area or solidity.

For convenience we may transform this into,

X 2 D = area or solidity.

To find the solidity of a triangular prisraoid by
roots and squares.

' h and h' = The end hights or representative

square roots of the areas of the ends (between

ground and intersection of slopes), at regular

stations, numbered even.

m Place of mid-section, represented by its ordi-

nate, and numbered odd.

Length = Usually, 100, between principal sta-

tions.

&' -f fr'
2 + (h + hj vx ,

|^
- X length = S.

"Which, for one station, is equivalent to Hutton's

rule above. This is a very important transformation

of the Prismoidal Formula, and should be well con-

sidered, with the examples in Art. 1O.

One of the earliest followers, in the path projected

by Sir John Macneill, of using the Prismoidal For-

mula, with auxiliary tables, for correctly computing
the volume of earthwork solids, was G. P. Bidder,

C. E., who adopted the obvious plan of imagining the

side-slopes to be moved parallel inward, to intersect at

grade, and then computing the triangular solid thus

formed as a prismoid, or the frustum of a pyramid

(both being equivalent in these circumstances) ; finally,

calculating the centre part (or core) as a prism sepa-

rately, and adding the two for the volume of the whole.

The core being computed for one foot wide only,
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CHAPTER II.

FIRST METHOD OF COMPUTATION BY MID-SECTIONS, DRAWN AND
CALCULATED FOR AREA, ON THE BASIS OF BUTTON'S GENERAL

RULE.

17 Since 1833 the date of publication of Sir John Macneill's

meritorious volume on the mensuration of earthworks, for canals,

roads, and railroads the investigations of numerous able writers in

various countries have shown, conclusively, that the Prismoidal For-

mula (adopted by Macneill) furnishes the most convenient, if not the

only correct rule for the measurement of the immense bodies of mate-

rial employed in earthworks, and removed from, or supplied to, the

irregularities of the ground encountered by the location of lines,

under the general name of excavation or embankment.

The writer, as long ago as 1840, in the Journal of the Franklin

Institute of Pennsylvania, repeated the demonstration of the formula

referred to, by means of a simple figure, and established its connection

with the ordinary rules for the volume of the three principal right-

lined bodies, known to solid mensuration the Prism, Wedge, and

Pyramid (to all of which, whether complete or truncated, the Pris-

moidal Formula correctly applies) ;
these are the elementary solids

which enter into the composition of a station of earthwork, and sepa-

rately, or together, are all computable by the same rule.

He also showed, by numerous examples (worked out in detail) of

the leading forms assumed by railroad earthworks, that by means of

hypothetical mid-sections, deduced from the usual cross-sections taken

in the field (and diagrammed between them if necessary), the volumes

of excavation and embankment solids could be computed correctly

without unusual labor, and with more than usual accuracy. This

method was made to depend essentially upon two points :

*

* Journal of the Franklin Institute (Philadelphia, 1840).

79
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1. "That the formula expressing the capacity of a prismoid is

the fundamental rule for the mensuration of all right-lined solids,

\vhose terminations lie in parallel planes, and is equally applica-

ble to each."

2.
" That any solid whatever, bounded by planes, and parallel

ends, may be regarded as composed of some combination of

prisms, prism oids, pyramids, and wedges, or their frusta, having
a common altitude, and hence capable of computation by the gen-

eral rule for prismoids."

All excavation and embankment solids come within the scope of

these definitions, and all are computable with ease and accuracy by
means of the Prismoidal Formula.

These views have met with general acceptance from most practical

writers, but many useful transformations and modifications have

naturally been indicated
;
all grounded upon the same formula which

appears to have originated with THOMAS SIMPSON, an eminent mathe-

matician, and was demonstrated and published by him (for rectangular

prismoids) in London, 1750 (Arts. 1 and 2), but generalized and

made more useful by HUTTON, in 1770 (Art. 3).

This extraordinary formula is not only the fundamental rule for

all right-lined solids, but reaches also to many curved bodies and

warped surfaces (as before mentioned), so that it may safely be

assumed as correct for all the earthwork solids in common use, which,

indeed, are invariably laid out with the view of reducing the ground,

however irregular, to equivalent planes (as near as may be), by means

of leyels and sections, taken at short distances
;
and though this effort

may not be entirely successful in practice, it must be so nearly so that

the warped surfaces, remaining involved in the solid, can only differ

slightly (if at all) from those for which the Prismoidal Formula is

known to hold.

As a general rule, it may therefore be considered as close an

approximation to existing facts as is admitted by any convenient

method within the present range of human knowledge, and far more

accurate than any of the proximate rules, which have been extensively

employed for the solution of the complicated problems of earthwork.

As a preliminary matter, it is necessary now to make some remarks

on the manner of collecting data in the field, for subsequent use in

calculating the quantities of earthwork solids.

The centre or guiding line of the road or work having been care-

fully located upon the ground, and marked off in regular stations
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usually of one hundred feet each the next operation is to cross-section

the work, with level, rod, and tape; most engineers also using the

clinometer, or slope level, as an auxiliary, in some stages of the pro-

cess. The centre line is assumed in all cases to be straight, from point

to point, and generally to be a tangent line, to which the cross-sec-

tions are perpendicular, but owing to the convergence of the radii

upon curves, this is not strictly correct though within the limits of

the work staked out, that convergence is but slight ; nevertheless, the

cross-sections (before proceeding to level them) should be set out

approximately, normal to the tangents, and radial to the curves ;
and

upon all curves, or at least on all of small radius, intermediates at half

distance should be placed, or, if the curves are unusually sharp, even

at the quarter of a regular station.

Some engineer manuals furnish formula for the correction of quan-

tities upon curved lines,* but they are rarely used
;
a simple reduction

of distance between the cross-sections, or a closer assemblage of them,

being usually deemed sufficient.

The surface of the ground f is regarded by the engineer as being

composed of planes variously disposed, with relation to each other, so

* The simplest and most convenient rule for this purpose, is that of Warner's Earth-

work (1861). This rule has been adopted, and somewhat simplified, by Prof. Rankine,

in Useful Rules, etc. (London, 1866).

The process is : First, to calculate the solidity of the earthwork to the intersection of

the slopes (as though the line were straight), and then to multiply it by a factor, which

corrects for curvature.

Difference slope distances
,

This factor is found thus :
-- --

'jbl The corrective quotient
6 Radius of curve.

being added to unity, when the greater slope distance lies outward from the curve, or

subtracted, if otherwise.

For example, take a curve of 700 feet radius, lying upon a heavy embankment, along
a ground surface sloping uniformly inwards, towards the centre of the curve, at the rate

of 15. The road-bed being 24 feet wide, and side-slopes 1 J to 1.

Let the difference of slope distances be 42 feet, the greater being inwards, and suppose
the whole volume, for straight work = 5917 cubic yards to intersection of slope. Then,

= -02, and 1 -02 = -98, the factor required. Then, 5917 X *98
6 X < ""

cubic yards, and 5799 grade prism (356) = 5443 cubic yards, the volume, correctedfor
curvature. The difference in this case, produced by the curvature of the line, being 118

cubic yards, for the station computed.
The correction for other curves would be inversely as their radii, and for a 1 curve,

similarly situated, about 15 cubic yards, per station.

The difference of the distances out from the centre are the same thing as Prof. Ran-

kine's difference of slope distances since the former involve an equivalent quantity on

both sides of centre, equal to half the road-bed.

f Journal Franklin Institute (1840).

6
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that any vertical section will exhibit a rectilineal figure, more or less

regular. This supposition, though not strictly correct, is sufficiently

accurate for practical purposes.

Upon the cross-sections (taken near enough together to define posi-

tively the general figure of the surface), sufficient level points are

obtained transversely, by level and rod, their distances out from

centre being simultaneously measured, with a tape line ; in this man-

ner, both vertically and horizontally, in relation to established planes,

the position of all the points necessary to determine the configuration

of the ground is well ascertained.

These points of elevation, or depression, are commonly called plus
or minus cuttings (or simply cuttings), and the horizontal distances

which fix their relation to the centre are shortly called distances out.

The details of the operation Staking the cuttings, or cross-sectioning

the work (a matter of vital importance in correct measurement),

require good judgment and accuracy ;
but are so well known to prac-

tical engineers as to render unnecessary a description at length. This

operation, however, is the absolute foundation upon which the whole

fabric of computation rests, and if it be not judiciously executed, all

rules are vain.

We may here mention a general maxim, which should never be

neglected, if accurate results are desired, viz. : At every change of sur-

face slope, transversely, single cuttings and distances out must be taken ;

and at every longitudinal change, sections of cuttings, or cross-sections.

Upon very rough ground it is customary to make the lateral dis-

tances apart of the cuttings, uniformly 10 feet, which materially

facilitates the subsequent calculations ;
so much so, indeed, that on a

rock side hill it is often advisable to use this distance, even though
the ground seems not actually to need it; the cuttings and distances

out are commonly taken in feet and tenths, and the regular stations

of one hundred feet are subdivided by cross-sections into shorter

lengths, if the ground requires it, as is frequently the case. One foot

being usually the unit of linear measure, one hundred feet a regular

station, and the cubic yard the unit of solidity, in earthwork.

Though not indispensably necessary, it will be found convenient

in using the prismoidal method of calculation, as well as conducive

both to expedition and accuracy, to observe the following rules in

"taking the cuttings," as far as the character of the surface will

admit, viz. :
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1. On side-hill, at each cross-section, where the work runs

partly in filling and partly in cutting, ascertain the point where

grade, or bottom, strikes ground surface.

2. On every cross-section, take a cutting at both edges of the

road, or at the distance out right and left of one-half the base.

3. Always take a cross-section, whenever either edge of the road-

bed strikes ground surface, and set a grade peg there to guide

the workmen.

4. On rough side-hill, or wherever the ground appears to

require it, take the cuttings (not otherwise provided for) at ten

feet apart.

5. Wherever the ground admits, place the cross-sections at

some decimal division of 100 feet apart, as 10, 20, 30, etc.

6. Endeavor to take the same number of cuttings, in each
*

adjacent cross-section, to facilitate the computation.

7. On plain and regular ground, take three cuttings only at

centre and both slopes.

If these simple directions are observed by the field engineer, and

the work carefully done, much labor will be saved, both to him, and

to the computer in the office.

In all cases of side-long ground, we suppose it to slope in the same

general direction, between the end sections, and do not admit of oppo-

site surface slopes, because, under the general rule, the field engineer

would place a cross-section at the point of change slope, and render

the consideration of opposite slopes, and the warped surfaces they

always produce, entirely unnecessary ; indeed, by more closely assem-

bling the cross-sections together, we can practically reduce even the

most irregular surface to a series of planes coincident with it.

Nevertheless, an able writer * has shown that warped solids of a

certain kind are computable by his rules
;
and the late Professor

Gillespie, in several valuable essays, has demonstrated that hyper-
bolic paraboloids at least could be correctly calculated by the Pris-

raoidal Formula
;
while English engineers have long used this rule

for computing the volume of earthwork solids, ivith warped surfaces;^

it appears, however, to be more certain and satisfactory if we confine

the operations of this formula to solids bounded by plane surfaces as

nearly as circumstances admit; but it is fortunate that our rule is

* John Warner, A. M., Computation of Earthwork (1861). Prof. Gillespie, Manual

of Roads and Railroad?, 10th edition (1871).

f Dempsey, Practical Railway Engineer (London, 1855).
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known to hold for some descriptions of warped ground, and hence can

hardly fail to proximate results, near unto the truth, however much
the surface may be warped, between the cross-sections, if they have

been judiciously placed by the field engineer.

a....... The modification of the Prismoidal Formula, which we
shall employ in this first method of computation, will be that designed
to find a mean area, to be subsequently employed by the aid of our

Table, at the end, to ascertain the cubic yards of volume.

This formula comes from that generalized by Hutton (1770) through
the special mid-section, and is expressed in the beginning of Art. 16

as follows :
*

Summarily expressed in words as follows; One-sixth the sum of

end areas, and quadruple mid-section, multiplied by length, gives the

Solidity.

This generalformula (identical with one of Hutton's) requires three

areas (one, the mid-section, deduced from the others), and also the

hight or length of the Prismoid to be given; and by its aid we pro-

pose in illustration to furnish five examples of calculation.

1. Of a regular station, of three-level ground.

2. Of the same length, offive-level ground.
3. Of seven-level ground.

4. Of nine-level ground.

5. Of a portion of excavation and of embankment adjacent,

with an oblique passage between them, from one to the other.

We here follow a classification of ground nearly resembling that

adopted by the late Prof. Gillespie (one of our ablest writers upon

earthwork), who enumerates four classes only, under the simple

nomenclature of, 1, one-level; 2, two-level; 3, three-level; 4, irregular

ground; and under these four classes, he dealt with the problems of

earthwork in his excellent lectures
"
to the Civil Engineering Classes

in Union College." f

* " This rule," says Prof. Rankine, in Useful Rules and Tables, 2d edition, London,

1867, p. 74,
"
applies generally to any solid bounded endwise by a pair of parallel planes,

and sideways by a conical, spherical, or ellipsoidal surface, or by any number of

planes."

j-
Manual of Roads and Railroads, 10th edition (1871).
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We think, however, that few engineers would be willing to class

ordinary five-level ground as irregular ; for such ground would in fact

be produced simply by the angle levels commonly taken, which at

once convert the plainest three-level into five-level ground.

But ground requiring more than five cuttings on one cross-section,

all would probably agree in classifying as irregulary aiid such is the

view taken by the present writer.

This would bring all ground whatever within the scope of five

classes, and make but a slight variation in Gillespie's nomenclature.

1. Level ground, where the centre cutting alone is sufficient for vol-

ume. 2. Ground slightly inclined, where side-high ts only may have

been taken. 3. Ordinary ground, requiring centre and side-hights.

4. Same as 3, with the addition of angle levels, or one cutting right

and left of centre, besides those at the slope stakes. 5. Irregular

ground, such, or any similar classification would somewhat simplify

the matter of earthwork, but it is not indispensable. Centre cuttings,

or level bights at the centre, are, however, invariably taken in the

field, and recorded at the time, whether they be subsequently used or

not, so that class 2 would seldom occur on original ground.
The method of measuring the capacity of long irregular solids, by

means of normal sections, at short distances, has long been used by
mathematicians

;
of which numerous examples may be found in Hut-

ton (1770), as well as in the demonstration and use of Simpson's rule

for quadrature and cubature, referred to in many works, both civil

and military.

This method then was naturally adopted by the earlier engineers
for the mensuration of earthwork, and has been continued down to

the present day with little chance of being superseded ;
as the areas

of the sections, commonly known to the engineer as cross-sections, are

not only useful in the computation of solidity, but also in many other

ways, during the progress of earthworks
;
and consequently those rules

which disregard the areas of cross-sections, and aim directly at the

volume alone of excavation and embankment, are less useful (even if

more concise} than those which require the sectional areas to be first com-

puted.

18. Examples in Computation by the First Method.

In computing by this method, the Grade Prism is not required, and

is not used, but it may be employed in verification.

Example 1. We will now give three figures (Figs. 53, 54, and 55),

representing three cross-sections, upon one regular station of 100 feet
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in length, of a railroad cut with side-slopes of 1 to 1, and road-bed of

20 feet the other dimensions being as marked upon the figures.

In these, the first and last represent the end cross-sections of the

100 feet station, supposed to have been regularly taken in the field.

The other (Fig. 54) being the hypothetical mid-section, deduced from

the end ones, as required by HUTTON'S General Rule.

Bg.53

~
...._

3--
"/t

These cross-sections are marked as follows:

b = 890 Area.

m = 625 "

t = 400 "

Length, 100 feet

1 Example 1.
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And the calculations for solidity are as below:

890 = b.

400 = t.

2500 = 4 in.

Calculations,

631'7 = Prismoidal Mean Area.

2339-6 = Cubic Yards (by Table) for 100 feet.

The above example. is for plain ground of "three levels" as classed

by Professor Gillespie.

Example 2. We will now give an example of a railroad cut, with

the same road-bed (20) and ratio of side-slopes (1 to 1), in five-level

ground.

The three cross-sections, upon the regular station of 100 feet, are

numbered, Figs. 56, 57, and 58, and marked b, m, and t, the middle
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one being Hutton's hypothetical mid-section, deduced by Arithmetica\

Averages from b and t, the cross-sections, assumed to have been taken
in the field, with rod, level, and tape, in the usual manner.

Cross-sections.

b = 244 Area.

Example 2 m = 286 "

t = 331 "

Length 100 feet = h.

And the calculations for solidity are as follows :

244 = b.

1144 = 47M.

331 = t.

6)1719

286*5 = Prismoidal Mean Area.

And for Cubic Yards, in 100 feet long, per Table = 1061-1.

Example 3. We will now give an example of a railroad cut, simi-

lar to the preceding, base 20, slope ratio r = 1, in seven-level

ground.

Cross-sections and areas.

b = 524

m = 537

* = 551

Length, 100 feet = h.

Example 3

Calculations for solidity :

524 = b.

2148 = 4 m.

551 = t.

6)3223

537-2 = Prismoidal Mean Area.

And for Cubic Yards, in 100 feet long, per Table = 1989'6.

Example 4. Although embankment is merely excavation inverted,

and governed in its computation by precisely the same principles, we

will now give an example of embankment on irregular or nine-level

ground, road-bed 16, side-slopes 1J to 1, and ground surface supposed

to be jagged masses of rock. CC represents as usual the centre or

guiding line of the road, the cross-sections being dimensioned *
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Fig.
59

marked upon the figures (62, 63, 64), the distance between the end

sections being a regular station of 100 feet, and m (Fig. 63) being the

hypothetical raid-section, deduced from the two others, supposed to

have been regularly measured by the field engineer, and furnished to

the computer by him from his note book.

The areas of the sections being given, having been previously cal

culated in the customary manner.

Example 4

Cross-sections and. areas.

b =602
m = 691

* = 786

Length, 100 feet h.
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Calculations for solidity ;

602 = b.

2764 = 4 m.

786 = t.

6)4152

692 = Prismoidal Mean Area.

And for Cubic Yards, in 100 feet long, per Table = 2562*9.

Fig. 62.

. 63.

17. 10

1

10

As has been observed ^before, b and t are correlative, and either

might be taken as base
;

the calculations of quantity are 'usually
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made in the direction in which the numbers run, or the one nearest

to us of any pair may be assumed as b, and the other as t it is quite

immaterial which but during the pendency of the computation, to

which they are subject, the special designation must remain for the

time unchanged.

The surface of ground, assumed in this example, appears to be suf-

ficiently irregular to test any rule (though rougher ones will occur to

the memory of most engineers), and we might proceed to give illus-

trations of such, but enough has been done in this way to indicate the

principles on which we work, and which can readily be applied to

any case which may occur in practice. Nor does it seem necessary

here to define and classify the numerous distinct cases of earthwork

the Prismoidal Formula holds for all, and it is left to the judgment
of the engineer to make the application.

19. Connected Calculation of Contiguous Portions of Excavation and

Embankment, with the Passage from one to the other.

Example 5. See Figs. 65 to 71.

In Fig. 65, ABC, a portion of a railroad cut, road-bed = 20, side-

slopes 1 to 1. BCD, a portion of a railroad^, road-bed = 14, slopes

1 to 1. Grade points four in number, besides the centre.

In Figs. 66 to 71, six cross-sections, 3 of excavation and 3 of

embankment, are shown, and all dimensioned as marked. Fig. 68 is

the base of the closing pyramid of excavation in the passage from

excavation and embankment, the vertex of which is at the grade

point B. Fig. 69 is the base of the closing pyramid of embankment,
in the passage from embankment to excavation, the vertex of which

is at the grade point C.

The other cross-sections are those necessary to compute the portions

of excavation and embankment shown upon the plan, Fig. 65. One
of them only is at a regular station, called station (10), Fig. 68, the

others are all intermediates, supposed to have been required by the

configuration of the ground.
The scale is 20 feet to the inch.

On the centre line, the excavation shown is 61 feet in length but

the closirlg pyramid of cutting runs 11 feet further to its vertex at the

grade point B. While in like manner the embankment is 48 feet

long on the centre, and the closing pyramid of filling extends 7 feet

further to its vertex at the grade point C.

This over-lapping of the closing pyramids is an inconvenience, but

it is sometimes unavoidable.
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Plan Cross jSecs.

Fig.es.

Sta:
9+ SO

9+75
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Calculations for Solidity.

Position of Cross-sec- Distances Cross-section

tions upon the centre. apart. Areas, etc.

9 + 50 ... ... 342 = b.
"]

9 + 75 ... 25 ... 907 = 4 w. [

10 Reg. Sta. . . 25 . . . 106 = t. }~
Excavation.

Length = 50 f>)1355

225'8 = Prism. Mean Area.

418-1 = Cubic Yards, by
Table for /& feet = 418'1

10+11 Grade at centre.

(Paf9aget etc., from Excavation to Embankment.)

Closing Pyramid of Excavation, vertex at Br Fig. 6&
Area of base at 10 = 106. Then y

1 C\f _L 1 Oft i f\
Mean Area.

tJp
-= 35-3 Xlengthy22=by Table 1307 Xr2 2o= 28'8

Total Solidity of Excavation = 446*9

Now, commence the embankment with the closing pyra-

mid in the passage, altitude or length 15 feet, and vertex at

C, Fig. 65. Area of base at 10 + 19 = 46. Then,

AP _|_ Afi _l_
^ean AreR-LL Z = 15-3 X length, 15= by Table 56'7 X T\ft

= 8*5

10 + 19 . . '. ... 46 = b.

10 + 39 . .-. 20 ... 504 = 4m.

10 + 59 ... 20 ... 215-5 = t. } Embankment.

Length =40 6)765'5

127 '6 = Pris. Mean Area.

189-0 = Cubic Yards, by

.
Table for ffo = 189'0

Total Solidity of Embankment = 197'5

And this closes the computation of Cubic Yards in the portion of

Excavation and Embankment, from A to D (Fig. 65), including the

passage between them, and comprising in all two prismoids and two

closing pyramids.

In concluding this branch of the subject, we may mention that as

HUTTON defines
" a pri&moid

"
to have in its end sections

" an equal

number of sides" (Arts. 3 and 14), a like number of level hights, or
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cuttings, ought always to be taken in adjacent cross-sections, but

should that have been omitted in the field, additional cuttings may
be computed or drawn upon the sections obtained, so that previous
to calculating their areas, there shall be the same number of cuttings in

all the adjacent cross-sections, and we shall then, have for solidity a correct

prismoid.

a In verifying the work given in the first four examples

preceding illustrated by Figs. 53 to 63 inclusive the end areas and

length being correctly given in all, it is only necessary to prove the

mid-section
;
as an agreement there necessitates a like result when

used with the given d&ta,prismoidally, to find the solidity.

This proof may be made either by our 2d method of computation

(Rights and Widths), or 3d method (Roots and Squares) the latter

being generally the most convenient, though the former may often

be used with advantage.
No single calculation, truly says Prof. Gillespie, ought ever to

be relied on by the engineer, and proof of the correctness of every

computation should always be obtained before employing it in work.

It is often the case when railroads follow the rugged margins of

rivers that many miles of side-hill work present themselves, where

the road-bed, located above the flood line, lays in rock excavation on

one side, and heavy embankment upon the other to such cases the

preceding method of computation will be found peculiarly applicable ;

both cutting and filling showing themselves. upon the end cross-sec-

tions of every station and intermediate, while the mid-section may be

diagrammed between them with great facility.

In continuing this chapter we may state That in any right-lined

solid whatever, lying between two parallel planes (according to the

definition of a prismoid), whenever a mid-section can be correctly

deduced between two given end sections, situated in the limiting

planes (and by taking pains it always can be), there,' our First Method

of Computation will be found to apply strictly for solidity.

So that this method is a standard test for all other rules, and has been

accepted as such by Prof. Gillespie, and other able writers.

Hence, we may repeat that the formula employed in this chapter

i? the fundamental rule for the mensuration of all right-lined solids,

within parallel planes, and applicable also to many warped figures,

and other curvilinear bodies, in a manner so unexpected as to have

excited the surprise of some able geometers, whose attention had not

been specially directed to that subject before.
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Cases often occur in heavy work, where it is evident from the cross-

sections, that the bulk of the solid under consideration lays consider-

ably on one side of the centre line (or where, in common phrase, the

sections are lop-sided), and it would seem in such cases as if some

correction ought to be made for the position of the centres of gravity

(as indicated upon Figs. 43 and 44, Chapter I.) ;
for it is most obvious

that in a long line of heavy work the path of gravity centres would

frequently Gross and re-cross the guiding line of the work, and hence

would necessarily be longer.

So that if the line of magnitude should be assumed as the true

line of calculation, the centres of gravity ought to be assembled

upon the centre line, in effect, at every station, and this correction

would probably be found by multiplying the projections of the points

of gravity upon the centre, by their distances from it (-f when oil

the same side when opposite) ;
but this is a refinement which has

never been employed by engineers, in dealing with the huge masses

in question.

What the engineer most needs in earthworks appears* to be not

astronomical accuracy, but the systematic use of some rule for solidity,

which shall always be consistent with itself, and closely proximate
the truth, without involving those stupendous discrepancies (men-
tioned by many writers), as flowing from the employment of the

average methods, which have been so much (and as it always appeared
to the writer) so unnecessarily, used in the ordinary computations of

earthwork.

The method of computation developed in this chapter finds appro-

priate application also in masonry calculations. In this manner the

writer once computed the contents of a heavy stone aqueduct, con-

taining over 4000 perches, with numerous projections and off-sets, and

walls battered, both inside and outside.

The process taken was by drawing to a scale accurate horizontal

plans, at all the off-set levels, at the skewbacks, and other breaks in

the contour deducing mid-sections between these, and multiplying

together each set of three, in accordance with the Prismoidal For-

mula, etc.

This gave a very satisfactory exhibit of the work, and a correct

result in volume, with less labor, and greater accuracy, than any other

modes he found in use at the time.

In calculating stone culverts, and bridge abutments also, this

method will be found quite useful.
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In fact, in computing the volume of solid bodies of any kind, the

engineer will find the Prismoidal Formula to be either strictly correct,

or a very close approximation.

b We now conclude this chapter by some remarks upon
Borden's Problem.

Some examples acquire celebrity from being apposite in themselves,

for the illustration of important processes, and are consequently

copied by others
; besides, there is an evident advantage to the reader

in re-producing examples, which, having been before discussed, are

more generally known
; amongst such is Borderis Problem, first pub-

lished by Simeon Borden, C. E. (Boston, 1851), in his
"
System of

Useful Formulae" (Art. 63).

He treats this example at great length (14 pages), and commits

some errors, which were subsequently pointed out and corrected in

Henck's Field Book (Boston, 1854).

This example was also adopted by John Warner, A. M., in hia

Earthwork (Philadelphia, 1861, Art. 112), without comment.

The problem appears to have given Mr. Borden some trouble,

involving a number of his
" blind pyramids," and also some errors, ag

Mr. Henck hath shown.

Nevertheless, it is simply a case of injudicious cross-sectioning for

had Borden, instead of attempting to compute its full length of 100

feet, imagined an intermediate at 50 feet (for which he gave all the

data necessary), all difficulty would have vanished, and he would

neither have stumbled over his own blind pyramids, nor been shortly

corrected by a subsequent author.

Indeed, Mr. Borden admits, page 186, of his work of 1851, that
" the engineer would be likely to divide the section into two or three

"

and this the present writer deems to be not only likely, but absolutely

certain.

Now, taking the end areas alone (100 feet apart), and disregarding

(for the moment) the irregularities of the ground, which ought to

have been intercepted a*nd brought out, by an intermediate at 50

feet we find :

Warner, in Art. 112, of his Earthwork, gives for

the volume . . . = 1155'9 C. Yards.

By Hutton's General Rule (as in this chapter) = 1155'9 "

Difference . . . . =

But Henck, in his Engineer's Field Book (after noting Borden's

mistake of 360 cubic feet), finds by his own process the solidity
=
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32,820 cubic feet = 1215*5 cubic yards ; or, the former are in a

deficiency of 59*6 cubic yards, an error inadmissible in the quan-

tity before us.

In this problem Borden makes two theoretical suppositions, and

two summations of results, based upon his hypothetical view of the

effect upon solidity of the irregularities of the ground surface, between

the end sections, but he gives no opinion on either.

The Prismoidal Formula of Hutton (computed on the whole sta-

tion of 100 feet) gives precisely an Arithmetical Mean between the two

suppositions of Borden, but is considerably in defect of the true vol-

ume as given by Henck's Formula.

And here we come to the point of the importance of properly cross

sectioning a solid, before we begin to calculate it; for if we sketch

from Borden's data an intermediate at 50 feet, of which we find the

area to be 335*6 then all difficulties are at once resolved, and we pro-

ceed prismoidally in a few lines to reach a correct result, which Mr.

Borden failed to attain in fourteen pages.

Considered in connection with an intermediate at 50 feet, Borden's

Problem stands as follows : Two end areas = 387 and 240. One

intermediate area = 335*6. Now, deducing between these (by Bor-

den's data) the hypothetical mid-sections, required by Button's Gen-

eral Rule, we find they have areas of 293*5 and 366*5, and working

prismoidally with them we quickly find the solidity of the entire body
to be 32,820 cubic feet, or 1215*5 cubic yards precisely the same as

Henck makes it by his own formula, and as Borden would have made

it had he been aware of the errors into which his own "blind pyra-
mids" led him.

As this problem is a well-known one, and has not a very irregular

appearance in Borden's diagram, we think this a suitable place to

urge upon all engineers the great importance ofjudicious cross-sectioning.

In terminating this chapter, we may safely state that Button's

General Rule, as applied to earthworks by the methods detailed

herein, is ONE WHICH NEVER FAILS WHEN THE DATA is CORRECT.

7



CHAPTER III.

SECOND METHOD OF COMPUTATION, BY HIGHTS AND WIDTHS, AFTER
SIMPSON'S ORIGINAL RULE.

20....... The Prismoidal Formula, as originally demonstrated

by Simpson (1750) see Art. 2 was evidently designed for the rect-

angular prismoid (Fig. 2) its end areas were obtained by multiply-

ing together the Sights and Widths; and four times its mid-section

by multiplying the sum of the Hights by the sum of the Widths.

To adapt it more conveniently to the triangular prismoids of Earth-

works, with side-slopes drawn to intersect each other, the original

formula of Simpson (1750), reduced to the form subsequently enun-

ciated by Hutton, as a general rule (1770), is multiplied by 2, on the

left side only, changing its divisor at the same time.

Thus,

2 _ ~~
This is the same thing, in effect, as the original formula of Simp-

son (when arranged for a mean area) ;
for if we suppose the rectan-

gular prismoid (Fig. 2) cut in half by a plane through the diagonals

of its end areas, FB, etc., so as to convert it into two triangular pris-

moids (each with one right angle), the Hights X Widths from the

right angle would give double the triangular area of each end, while

their sums, multiplied together, would equal 8 times the triangular

mid-section, the divisor becoming 6 X 2 = 12.

* It would evidently be a much better notation for earthwork to adopt I inttead of h,

because the greatest extent of an earthwork solid usually lays along the ground (length-

wise) ;
but Simpson and Hutton, the fathers of these formulas, have both used h they

dealing generally with prismoids of small dimensions, supposed to stand erect upon a

base (as in Figs. 1 and 3), and have been followed by most writers, and necessarily for

the most part also here ; though we have occasionally used I (to avoid confusion), and

this must be taken as correllative with the h of Simpson and Hutton, in the cases in

which it has been employed; but some care will be needed to avoid confounding the h

indicating the length of the prismoid, with the same letter often used as a symbol for

{light In cross sections.

98
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Now, as shown in Art. 8, a, it is an equivalent process to imagine
the triangular section, partially revolved, so as to bring the edge of

the diedral angle downwards, and to cause its bisector (the centre line)

to become the perpendicular hight (h) of the cross-section, while the

extreme breadth to ground edges of side-slopes, horizontally, becomes

the width (w) then, by Art. 8,* we have h X w = double area of

triangular section to intersection of side-slopes.

This is the position occupied by the triangular areas of the cross-

sections of the solids forming the earthworks of railroads, the centre

line being the bisector, or hight (Ji), and the sum of the distances out,

to the ground edges of the side-slopes of an equivalent triangle, being
the width (w).

The equivalent triangle is often formed by means of an equalizing

line, drawn (for convenience) through the lowest side-bight of the

cross-section, so as to form a figure of only three sides, exactly equiva-

lent in area to the cross-section of earthwork, which is nearly always
more or less irregular on the top, and frequently has numerous sides

for its ground line
;

the side-slopes, however, remaining generally
uniform and even, from station to station (see Fig. 14).

The equation for Hights and Widths may often take another form

(already mentioned in Art. 9), which, at times, will be found convenient.

h = Hight at one end.

h' = " " other end.

w = Width at one end.

w' = " other end.

I = Length of mass, usually

i,HO denoted by (//)
=

100, generally.

7 ,, t
. hu! + h' w

h w -f h' w' -f - '

Then, X I= S.
o

Let

* In any A, however situated : If one angle coincides with the intersection (or

origin,) of two rectangular axes (such as a Meridian, and an East and West line, or centre

line, and base of levels), and the co-ordinates of the other angles are known (as by their

Lat. and Dep., or level bights and distances out) ; then, the area of any such A is easily
found.

Thus, calling the first angle 0, and the others in succession 1 and 2.

(Lat. of IX Dep. of 2) -(Lat. of2X Dep. of 1)We have, J L_ J = Area of A required.

But, in the single case of either rectangular axis cutting the 6, then, instead of

between the products (forming the numerator above) put -f . With this exception, the
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This formula may be briefly called (from a leading feature in the

process), the direct and cross multiplication of Hights and WidtJis, which

may be represented as below
;
and then, (x ~),

or one-sixth the whole

being taken = Solidity.

Thus,

For example, take Figs. 72 and 73 (dimensioned as marked).

1. By Direct and Cross Multiplication of Hights and Widths.

( h w = 23-4 X 47 . . . . = 1100 Double area.
'

\h'w'= 27-6 X 55-5 . . . . 1532 "

and

Crossoss Multi- fW = 23-4 X 55'5 = 1299 \
plication. \ h' w = 27'6 X 47 = 1297 J

Let

h = + 23-4

w = 47
h' -B + 27-6

vf = 55-5

2)2596 f
Kepresenta-

1298 = 1298 I tive product

6)3930 I for mid-sec.

( Including the

Prism. Mean Area = 655 < grade trian.

of 100 area.i

2. Proof by Simpson's Formula (modified for triangles).

Eights. Widths.

23-4 X 47 = 1100

27-6 X 55-5 = 1532

51 X 102-5 = 5228

12)7~860

Prism. Mean Area 655 05 above, including

grade triangle.

Then, the mean area X length = 100 feet between sections

Solidity
= 65,500 cubic feet.

rule is general, and finds ready application in computing the areas of irregular cross-sec-

tions, and the contents of LAND SURVEYS.

(Prob. V., Young's Analyt. Geom., London, 1833. Prof. Johnson's ed. of Weisbach,

Philada., 1848, article 107.)



CHAP. III. SECOND METH. COMP. ART. 21. 1Q1

21 Examples of the Application of Simpson's Rule to Earthworks.

In further illustration of this subject, suppose Figs. 72, 73, 74, and

75, to be cross-sections upon a railroad line, in stations of 100 feet,

apart sections, with road-bed of 20, side-slopes 1 to 1, and other data

as dimensioned upon the figures given ; with equalizing lines properly

drawn, reducing them to equivalent triangles, and with centre hights

correctly ascertained.

Then, to find the End Areas to Intersection of Slopes.

Hights. Widths. Sq. Ft.

Fig. 72 = 23-4 X 47 = 1100

73 = 27-6 X 55-5 = 1532

74 = 28-8 X 59-9 = 1725

75 = 27-25 X 54-6 = 1488
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EXAMPLES.

Figs. 72 and 73.

(Hights.

Widths.

23-4 X 47 = 1100 = Double Area of top.

27-6 X 55-5 1532 = " "
base.

51 X 102-5 = 5228 = 8 times mid-section.

12)7860

655 = Prismoidal Mean Area.

100 Distance apart sections.

65500 = Solidity in Cubic Feet.

Figs. 73 and 74.

Rights. Widths.

27-6 X 55-5 = 1532 = 2 t.

28-8 X 59-9 = 1725 =26.
56-4 X 115-4 = 6509 = 8 m.

12)9766

814 = Prismoidal Mean.

100

SHOO = Solidity.

Figs. 74 and 75.

Hights.

28-8

27-25
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arising from neglect of decimals on both sides
;

had these been car-

ried further, the results would probably have been identical, or very

nearly so.

We may also verify this calculation by means of multipliers,

modelled after Simpson's, and applied to the areas, as given in the

examples, as follows:

Cross-sections figured in Nos. 72, 73, 74, and 75, stations 100 feet.

Double

Sta. Areas, etc. Mults. Sq. Ft.

72 1100 X 0-5 = 550

8 times mid-sec. 5228 X 0'5 = 2615

73 1532 X 1 = 1532

8 times mid-sec. 6509 X 0'5 = 3255

74 1725 X 1 = 1725

8 times mid-sec. 6418 X 0'5 = 3209

75 1488 X 0-5 = 744

6)13630

2272

100 Double Interval.

Solidity, in Cubic Feet = 227,200, same as before.

The intervals are subdivided by the mid-sections into 50 feet

epaces, or single interval. The regular stations of 100 feet forming a

double interval in this case.

The Grade Prism being deducted (30,000 Cubic Feet), and the

remainder divided by 27, we have as before, a volume of 7304 Cubic

Yards.

22. Observations upon Simpson's Rule. SIMPSON appears to have

framed his rule for application to rectangular prismoids, and as such

he demonstrated it in reference to a diagram like Fig. 2, Art. 2

including of course those right triangles which are the halves of

rectangles.

He could have had no conception of the vast masses of earthwork

needed upon the public works of later days ;
nor of providing a rule

for the mensuration of such
; nor, indeed, of the immense range the

Prismoidal Formula has since taken.

His rule (see Art. 2), though wonderfully flexible when applied to

rectangular or triangular figures, has no leading lines, common with
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irregular ground; such surfaces then require to be equalized, by a

single line on the principle of Fig. 14* converting the sections

bounded by them into equivalent triangles before they can be com-

puted by the Rights and Widths of Simpson's Rule, though we find

occasionally that trapezium sections also, when not very much dis-

torted, are often computable by the rule mentioned.

But, in applying such a rule to the rude masses of earthwork, so

common at the present day, failing cases were to be expected, and the

peculiar solid shown in Figs. 81 and 82 furnishes an example in point.

Figs. 81 and 82, Chap. V., computed by Simpson's Rule.

Eights. Widths.

60 X 40 = 2400

30 X 60 = 1800

90 X 100 = 9000

12)13200"

Prism. Mean Area = 11QO

Common length . = 100

Solidity . . . . = 110,000 Cubic Feet.

But, by various

examples, in Arts

29 and 30, Chap.

V., the Solidity =
130,000 Cubic Feet.

So that, in the case of this peculiar solid, Figs. 81 and 82, Simp-
eon's Rule falls short = 20,000 Cubic Feet.

As the solid referred to has one end section a Rhomboid the mid-

section a Pentagon and the other end a Triangle.

We could hardly expect Simpson's Rule, framed for rectangular and

triangular sections, to answer in a case like this, and hence we men-

tion it especially.

For all the solids which present sections, such as Simpson con-

templated, his rule is unquestionably correct, while it is remarkably

plain and simple in its application.

Further to illustrate what may be expected from Simpson's Rule,

when applied by equalizing lines to rough and heavy sections, we will

now compute the cases shown by Figs. 43 and 44, Chapter I.

Example, Illustrated by Fig. 43, Chapter L

Side-slopes 1 to 1. No road-bed designated. Proximate Computa-

tion, by Simpson's Rule, to intersection of slopes ;
other dimensions as

in Fig. 43.

Equalizing line of base = b = 14 2' asc.

top = t = 15 57' asc.

* In substance, this method is found in Button's Land Surveying (1770), quarto Mens.
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Both these lines being drawn from the lowest side-hight, so as to

equalize the areas, as per Fig. 14, Chapter I.

Hights. Widths.

f 1500 = 6. i = 37.5 x 80 = 3000

Areas < 720 = t. t = 25-7 X 56 = 1440

(Length, 100 feet. 63'2 X 136 = 8595*2

Prism Mean Area = 1086*3

Length ....== 100

Solidity . . . . = 108630

Same, by BUTTON = 108667

Difference . . . = 37

Example, Illustrated by Fig. 44, Chapter I.

Side-slope Is to 1. No road-bed designated. Proximate Computa-

tion, by Simpson's Rule, to intersection of slopes, other dimensions as

in Fig. 44.

Equalizing line of the base b = 4 30' asc.

top t = 1 5' des.

Both these lines being drawn from the

lowest side-hight, so as to equalize the areas,

as per Fig. 14, Chapter I.

Highta. Widths.

22-02 X 66 = 1453

29-81 X 90-7 = 2704

8122

f 1352 = 6.

Areas < 726= t.
%

(Length, 100ft.

51-83 X 156-7 =
12) 12279

Prismoidal Mean Area = 1023'25

Length = 100

Solidity = 102325

By Wedge and Pyramid = 102363

Difference . . . . . =
~

38

With several other methods, this proximate calculation agrees within

a few cubic yards.

Example from Warner's Earthwork, Art. 86.

A heavy embankment. For details, see Chapter V., near the close.

(2411

= b.

907 = t.

Length, 100 feet

Surface slope, 15.
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Hignts. Widths.

36-7 X 131-4 = 4822

22-5 X 80-6 = 1814

59-2 X 212-0 = 12550

12)19186

Prismoidal Mean "Area . . = 1599

Length = 100

Solidity
= 159900 Cubic Feet.

For Cubic Yards -5- 27 . . = 5922

Deduct vol. of Grade Prism = 356

Solidity
= 5566 Cubic Yards.

By Hutton's Rule . . . . = 5566

Difference =

In calculating by Simpson's Rule, the example figured by Figs. 74

and 75 which agrees very nearly with BUTTON we observe, by
reference to the figures, that the ground slope at the end sections

differs about 9. So that we may safely assume that where the

equalizing lines (representing the ground) have a nearly similar

slope, and in the same direction, which do not differ more than 10 in

their inclination, SIMPSON'S Rule may be safely used this appears to

be a sure limit, and we might perhaps go higher.

When the work happens to be upon uniform ground, or the equal-

izing lines have the same slope, as in the case cited from Warner's

Earthwork, where the ground slope itself is uniform at 15, the

results obtained by Simpson's Rule ought to be exact^andf they appear

to be so.
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CHAPTER IV.

THIRD METHOD OF COMPUTATION, BY MEANS OF ROOTS AND SQUARES J

A PECULIAR MODIFICATION OF THE PRISMOIDAL FORMULA, WHICH
WILL BE FOUND IN PRACTICE TO BE BOTH EXPEDITIOUS A!ND

CORRECT, IN ORDINARY CASES.

23 This method of computation, by Roots and Squares,*

appears to be the most rapid and compendious one treated by us,

while it requires less data and preliminary work, and agrees in its

results (for usual field work) with computations made direct by the

Prismoidal Formula, of which, indeed, it is only a special modification,

more concise and rapid in use, but at the same time less accurate.

The formula for the Rule of Roots and Squares has been already
described in the Preliminary Problems, Art. 10, where it is num-
bered XI., and is as follows:

-g-
- X / = S.

Where,
h* = Representative square of area of top,

from ground to intersection of slopes
=

(f).

h-
2 = Representative square of area of base,

from ground to intersection of slopes = (b).

(h -f h'y = Representative square of 4 times mid-sec. = (4m).
I = Distance apart sections usually desig-

nated as (h) by the earlier writers,

and hence continued by us to some

extent ; though I is clearly a more

suitable symbol for earthwork, which,

with a comparatively small cross-sec-

tion, extends its length along the

ground.

* This method is materially aided in its use by a good Table of Squares and Roots.-

Prof. De Morgan's stereotyped edition of Barlow's Tables (8vo, London, 1860) is

believed to be the best: a very large edition was published, and this valuable work can

be obtained from any of our importing booksellers at quite a low price.

When the numbers are large, the well known method of Logarithms gives the simplest

process for Involution or Evolution.
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Note. That the bights of the end sections in this chapter are

always to be considered as extending from the ground to intersection

of slopes, or be representative of such.

The most important item in this notation is (h -f /i')

2

, which, by

geometry, we know to be equivalent to 4
^

-
j ,

while -

is the representative in the mid-section of a line similar to h and h'.

So that this formula (for a single station) is, in fact, equivalent to

the Prismoidal Formula, as heretofore expressed, viz. :

but for exact work (our formula above) requires the end sections to

be triangles, with a uniform ground slope.

Let us now apply the above formula to an entire cut or bank, to

be computed by Mutton's Kule (adopted from Simpson) see Art. 10,
Formula IX.

Where
A +4B-f 20

^ I)vM6 interval = S.
D

Here, for a case of 6 single or 3 double intervals, as shown in the

skeleton table below.

We have, for 3 double intervals or even spaces between stations of

equal length :

A2
-f 7t'

2
. . .

= A. The sum of extreme sections, each desig-

nating one end.

3 (h -f h')
2

. . = 4 B. Mid-sections, standing on even numbers.

2 (h'y + 2 (7i)
2 = 2 C. Kegular Cross-sections, standing on odd

numbers.

Double Interval Any one of the uniform spaces, from 1 to 3, or

3 to 5, etc., being the odd numbers where the regular cross-sec-

tions stand.

S = Solidity of entire cut of 3 equal stations in length.

Example 1...... Being a simple case (on irregular ground) of

three uniform stations, or double intervals, of 100 feet each, the mid-

sections falling in between, and dividing the length of 300 feet into

single intervals of 50 feet each
;
for which we will tabulate the exam-

ple represented by Figs. 72, 73, 74, and 75, of Chapter III. in a

skeleton table as follows :
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porarily numbered in the series of odd numbers, while the interme-

diate spaces (or places of mid-sections) are also temporarily numbered

in the series of even numbers, and the places of cross-sections and mid-

sections, as well as those of the symbols used in the formula, all

regularly marked, as follows :

Regular stations.

Places of cross-sees.

" mid-sees.

Symbols of formula

10
6

1

(h+h'f\ h* (/i+A')
3

|

10 19

This little skeleton table shows the positions of the representative

squares equivalent to the areas of the several regular cross-sections

computed, and also of 4 times the proper mid-sections, which belong
between them, and it will indicate the manner in which they are

combined relatively to the odd numbers, which represent the regular

stations
;
so that having computed the regular cross-sections, we can

readily assemble them in a skeleton table, compute from them by
Roots and Squares the other data demanded by the formula, and

proceed to tabulate for Solidity, as has been already shown, and will

be more conspicuously exhibited hereafter.

JJpon the foregoing principles we will now proceed with an entire

piece of heavy embankment, succeeded by a rock cut, as shown in

the annexed, Fig. 76.

Example 2. ... BANK = 1000 feet long. . . . Fig. 76.

Skeleton Table of Data, Given or Computed.

Length of regular ftationi 100 feet intervals produced by Mid-sections 50 feet.

Regular stations of 100 feet = 1 2 3 45 6 7 8 9 10 11

Temporary numbers . . . = 1 3 5 7 9 11 13 15 17 19 21

Regular Cross-section Areas = 24 185 495 1467 3123 3123 3123 1978 1197 391 24

Places of mid-sees., inter- \

mediates at 50 ft. (really). J

the Cross-sec-)

11' ||

4-90 13-60 22-25 38-30 55'88 55'88 44-47 34-60 19-77 4-90
tion Areas /

"

gums of Roots = 18-50 35-85 60-55 94-18 111-76 111-76 100-35 79-07 64-37 24-67

Squares of Sums, or 4 time

the Mid-section Areas.
342-25 1285-22 3666-30 8869-87 12490-30 12490-30 10070-12 6252-06 2956-10 608-61

* For Figs. 77 and 78, illustrating a supposed basis of the Prismoidal Formula, and

its connexion with Simpson's Rule for Cubature (see Chap. VII.).
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Tabulations for Solidity ;

113

1.

Regular stations

of 100 feet.

1 ...
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Tabulations for Solidity :

By 100 feet stations, or 50 feet intervals.

1.

Regular stations -~-

of 100 feet.

n . . . . .

4 times mid-section . . .

Gen.mean area to int.of slopes

Solidity in c.ft.to int. of slopes

Cross-section
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So that in all such computations if the contents above or below

a given road-bed be desired in the results, then the volume of the

grade prism (being included in the summation) must in every case

be duly deducted.

The volume of the grade prism depends upon its sectional area,

and the length of the bank or cut these calculations are very simple,
and once made, remain unchanged as long as the road-bed and side-

slopes continue uniform.

Geometers having shown that the areas of similar triangles are to

each other, not only as the squares of like sides, but also as the

squares of any similar lines in each, and these often occurring in

earthwork solids, when their cross-sections are converted into trian-

gular areas, by the prolongation (to a junction) of the side-slopes, it

becomes of importance to classify the relations existing among lines

and their squares, as well as the squares and rectangles of their sums

and differences
;

this has been well done in J. R. Young's Geometry

(London, 1827), in several successive propositions : Book II., 4, 5,

6, 7, and 8.

Now, suppose any line to be divided into two parts, h and h' then,

by these propositions, we have :

1. (h + hj = 2 (h + h') X

2. (h + lij = A2

-{- h* + 2h h'.

3. (h hj = h2

-f h 2/i h'.

4. 7i
2

h"
2 = (h -f h') X (/* h').

5. 7i
2
-f h'* = l(h + h'y -f l(h /O

2
-

6. 2 (/i
2

-f 7i'
2

)
= (h + hj + (h h')\

As these lines, or parts of lines, may, and often do, occupy in simi-

lar triangles the relation of like lines, they become of some conse-

quence in earthwork calculations, and in various forms can be

traced through many of the formulas now before the public.

We will now give an example from Warner's Earthwork (Art.

124), to show that small variances may be expected in employing the

Rule of this Chapter upon irregular ground : indeed, it is only in

uniform sections that an exact agreement of Rules can be antici-

pated, but the variations (always small) are not unlikely to balance

themselves in computing considerable lengths of line.
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C End areas to grade . . . . = 846'5 . . = 915.5

J Grade Triangle to add . . . = 196 . . = 196

( End areas to int. of slopes . . = 1042'5 . .
= IIH'5

H&r6) Square Roots = 32'29 . . = 33'34

Sums of Roots. . ,>,V^H^ . . = 65'63

Square of sum, or

quadruple mid-section = 4308

\ Length, 100 feet.

Then, Prismoidally,

Sum end areas ...'.... = 2154

Quadruple Mid-section . . . . = 4308

6)6462

1077

Length = 100

107700

Off Grade Prism = 19600

27)88100"

Solidity in Cubic Yards . . . .
= 3263

As computed by Warner (3274, C. Y.) ;
and also by Button's

General Rule (3274, C. Y.), the difference made by our Rule of this

Chapter is, 11 Cubic Yards, or about $ of one per cent.

Comparison of the method of this Chapter with the test examples

of Chapter II., as computed by Button's General Rule (each for 100

feet in length).

1. Three-level Ground.

(See Figs. 53, 54, and 55.) c . Yards.

Computed by Roots and Squares (method of this Chapter) = 2337'6
" Button's General Rule (Chapter II.) . . . = 2339.6

Difference = 2

2. Five-level Ground.

(See Figs. 56, 57, and 58.)

Computed by Roots and Sqirares (this Chapter) . . . . =

" " Button's General Rule (Chapter II.) . . . =

Difference =
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3. Seven-level Ground. c. Yards

Computed by Roots and Squares (this Chapter) . . . . = 1990'
" " Button's General Rule (Chapter II.) . . . = 1989'6

Difference =
-f- 0'4

4. Nine-level Ground. c. Yards.

Computed by Roots and Squares (this Chapter) . . . . = 2562*9
" Button's General Rule (Chapter II.) . . . = 2562'9

Difference
=

We will now give another example from Warner's Earthwork,

computed by the method of this chapter.

Heavy Embankment (Art. 86).

Areas = 2411 907

\/Roots~ . . . . = 49-10 30-12

Sums of Roots = 79'22

Square of sum, ^
or quadruple >....= 6276

mid-section. )

Then, Prismoidally,

Sum of ends . . . = 3318

Quadruple Mid-sec. = 6276

6)9594

X length . . . . = 159900

-T- 27 for C. Yards = 5566 = Same as Hutton s Gen. Rule.

From the above it will be observed that, with a Table of Powers

and Roots at hand, the method of this chapter affords a very convenient

and speedy test for volumes, found by other processes, and it is a proxi-

mately correct one.



CHAPTER V.

FOURTH METHOD OP COMPUTATION, BY REGARDING THE PRISMOID AS

BEING COMPOSED OP A PRISM WITH A WEDGE SUPERPOSED, OR OF A
WEDGE AND PYRAMID COMBINED.

26....... Sir John Macneill (1833) hath shown that a Prismoid

of Earthwork is really a prism with a wedge superposed (as we have

already mentioned in Art. 4) that the wedge is also divisible into

two pyramids and that the formulas for volume, in these three

chief bodies of solid geometry, form, by addition, the Prismoidal

Formula.

Regarding the Prismoid in this way, and assuming it to have been

diagrammed as shown in Fig. 8, Art. 6 (both end sections upon one

drawing), it is easily computable when reduced to a level on the top,

and the back of the wedge is a trapezoid, by means of Formula VI.,
Art. 6.

This Formula is :

-
+ (Vr_ Grade .

Triang]e) x t _ Solidityi

to road-bed, and omitting G. T. to intersection of slopes.

Where,

B = Top-width of back, or larger parallel side of trapezoid,

measured horizontally.

b = Bottom-width of back, or lesser side of trapezoid, equal

also to the edge, which is the horizontal top-width

of smaller end section, at a distance forward = to

the common length of wedge and prism.

H and h = Vertical hights of the end sections to intersection of

slopes.

H h = Hight of back of wedge.

r = Ratio of side-slopes to unity, or cot. of slope angle.

h2 r = Area of prism to intersection of slopes, and less Grade

Triangle = area of section from ground to road-bed.

118
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In calculating by this Formula we may omit the Grade Triangle

if we choose (though we should have to supply a more complicated

expression for A2

r), and might, perhaps, somewhat simplify the com-

putation thereby; but if used in area, we must be careful to account

tor it in volume; while the bights need only be extended from ground
to road-bed

; though as their difference only is used here, that is not

material and altogether we would gain so little by the change as to

make it unadvisable.

In words, this Formula
^

may be expressed as jot- V (Mean Area Wtdge -f Mean Area of

lows : ) Prism) X Common Length= Solidity,

of the Prismoid, to intersection of slopes,

and minus G. T. to Road-bed.

Inasmuch, however, as a trapezoid is always reducible to an equiva-

lent rectangle, we may consider this matter of the superposed wedge
in a more general manner, without the necessity of first reducing the

trapezoidal, or triangular, cross-section to a level on the top, or

slope of 0.
Before entering upon this branch of the subject we may, however,

state that the reason why, in a wedge with a trapezoidal back, we

sum up all the three parallel sides of back and edge X by hight of

back -i- by 6, and finally multiply by length for volume is drawn

from the common rule for a wedge (Twice width of back -j- edge

X by hight of back -r- by 6, and X by length = Volume.} But in a

wedge with a trapezoidal back the sum of top and bottom parallel

sides X 2 = simply the sum of those parallel sides ; and, as in an

earthwork solid, the lesser parallel side also (generally) equals the

edge, that being the top line of the smaller end section, situated at a

distance of the length forward. Hence, B + b + b is usually equiva-

lent to X 2 -f (b the length of the edge) which will be found
2i

in substance as a term in Button's Rule for wedges (4to Mens., 1770) ;

but more concisely expressed in Chauvenet's Theorem.

References to Fig. 79.*

a d = End view of the back of a rectangular wedge.

af = Equivalent parallelogram, of which a g is the base,

and a D the altitude.

* For Figs. 7 and 78, see Chapter VII.
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a D = Horizontal projection (7O71), or width of a b (the back).

a I = Horizontal projection (35'36), or width of a h (the edge)

a e g k = The initial square of 50 square feet area, which is con-

707
tained in the back =

A B f Vertical and horizontal

C D \ rectangular axes.

50
= 14*14 times.

Fi 79.

aedb *, Back ofWedge _ area =701.

agfb EqqiV:FaTall: _ do. 707.

aegk c=: Initial Square _ do. 50.

aeg
Ŝ' = Equal ^Xa

b/d J

ac ..^a JHor.'projrofTjaclc

al * do: ede.

as.

:o

The triangles, a eg and 6 df, are identical, and the one cut off, and

the other added, make the two parallelograms, a d and a/, precisely

equivalent = 707 area, for each.
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a b = Width of back of rectangular wedge, inclined at an angle

of 45 = 100.

a h = Width of edge, or top of forward, or smaller, section = 50.

Now (as above mentioned), a trapezoid being always reducible to an

equivalent rectangle, we may consider in this place the superposed

wedge (with reference to Fig. 79), without the necessity of first equal-

izing the end cross-sections, by level lines on the top, as will be more

clearly seen further on.

However much the back or edge of a rectangular wedge may be

inclined from a level plane, the resulting volume is still the same by

using their projections upon the horizontal one of two rectangular

axes (as C D), instead of the actual widths of back or edge, whilst the

hight of the back becomes the base of an equivalent parallelogram,

of which the projection is the altitude
;

this will become evident by
reference to Fig. 79.

For example, let us now compute the wedge shown in the figure:

1st, As though it were upon a level, and the back a rectangle. 2d,

As an oblique parallelogram on the back, and inclined at 45 from a

level line.

1. Rectangular back supposed to be level. Length of wedge =
100. Breadth of back = 100. Edge = 50. Hight of back =
7-071.

Here we have : Sum of the 3 parallel sides of edge and back -r- 3.

100 )_.-, f
7-071 = Altitude.

100 }
-

100 = Length.
50 = Edge. Right Section 1

2)707-100

83i = Average multiplier * . . = 83

Volume = 29,463 = C. Feet

Computed after Chauvenet's Theorem (Geom., VII. 22).
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2. Oblique-angled Parallelogram for Back, and inclined 45. Length

of wedge.= 100. Hight of back = 10. Horizontal projection of

back = 70*71. Horizontal projection of edge = 35'36.

-Sum of the 3 parallel sides or edges

~1T~

70 '71 1 -R v f 10 = Altitude.

70-71 I
"

100 = Length.
35-36 = Edge. Eight Section 1

2^1000

3)1778

58-927 = Average multiplier . = 58-927

Volume = 29,463

It is evident, from a consideration of the above case of a rectan-

gular wedge, whether level or inclined, that the same process would

apply to the trapezoidal wedge (usual in earthworks), either by its

reduction to an equivalent rectangular one, or (when diagrammed

together) by projecting both sides of the back, and also the edge,

upon the horizontal axis, and ascertaining the respective lengths of

these three projections, to be used in the computation of volume, by
Chauvenet's Theorem,* instead of their actual measured lengths, this is

in fact the method of the engineer, who usually disregards the incli-

nation of the ground, and takes all his measures horizontally and

vertically.

The hight of the back of the inclined wedge being in the case

above, ascertained by dividing the known area of the back of the

rectangular wedge, by the Arithmetical Mean of the horizontal pro-

jections of its top and bottom breadths
;

both equal in the above

rectangular back, but always unequal in a trapezoidal one.

With these preliminary observations, we will now give the rule

for finding the volume of the superposed wqdge in ordinary earth-

works, with examples to show how, by the simple addition of the

under-prism, the solidity of the entire earthwork, between any two

cross-sections of given area, and distance apart, is easily ascertained, in

all cases, within a limit hereafter discussed (Art. 29).

27 Eulesfor Computation by Wedge and Prism. The data

required to be given will be as follows :

* Chauvenet's Geoin., VII. 22 (Philada., 1871).
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1. Areas of end cross-sections.

2. Distance apart, or common length of wedge and prism.

3. Sum of distances out, to ground edges of side-slopes, which

are, in fact, the projections or horizontal widths of back and

edge, as well as the right and left distances of the field engineer.

The first is obtained by well-known processes, and the two latter

are always supplied by the Field Book of the engineer.

Then, as preliminary steps: (1) Find the difference of the areas

of the end cross-sections, which difference is the area of the back of the

superposed wedge. (2) Divide this difference of area by half the

sum of the widths of the back (or horizontal projections), which gives

the vertical mean hight of the back. Now, the lower side of the

back (when both sections are diagrammed together) equals the edge

(or top-width of the smaller end section) supposed to be forward, at

a distance equal to the common length. So that if B = top-width of

larger end section, b will equal its bottom width (and also that of

the edge} so that B + b -p- b, for the wedge-shaped part, would give

the sum of the three parallel edges (or, in reality, their horizontal

projections) to be divided by 3, for use in ChauveneVs Theorem.

RULE. When the width of the large end is equal to or greater than

that of the small one.

1. Vertical mean hight X distance apart sections

~2~
Sum of the three parallel edges T. .

5
a- = Volume of Superposed Wedge.o

2. Smaller end area X length (or distance apart sections) = Vol-

ume of Prism.

These two results, added together = Solidity of the whole Prismoid.

a Prior to giving examples in illustration of our rule, it

appears necessary in this place to make some explanations to show

the generality of the application of the rule drawn from Chauvenet's

Theorem (Geom., VII. 22) for the volume of wedges.

Wedges are always formed by the truncation of triangular prisms,

which may be termed their elementary body ; and are usually desig-

nated by the outlines of their backs as Rectangular, Triangular,

Trapezoidal, etc. The Initial Wedge may be assumed to have a square

back; by successive transformations of which, several varieties are

easily formed.
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(1) Let the back of u rectan-

gular wedge (or the initial wedge)

be a square, on a side of 6, edge

12, length 20. Then, the right

section = (6 X 20) -T- 2 = 60.

One-third of the sum of the lat-

eral edges = (6 + 6 + 1 2) -H

3 = 8
;
and 60 X 8 = 480 ==

Volume of the Square Wedge.

(2) Now, suppose the edge of

(1) to be contracted to a point;

then, the wedge becomes a pyra-

mid, for which case the rule also

holds; thus, right section =
3 = 4; and 6060 i sum of edges = (6 -f 6 + 0)

X 4 = 240 = Volume.

Proof: By the common rule for pyramids, we have, base (6

X 6) -* 3 = 12
;
and X by altitude 20 = 240 = Volume, the

same as before.

(3) Suppose the back of the

square wedge (1) to be con-

verted into an isosceles triangle,

on a base of 6, and hight of 6

other dimensions as in (1)

then right section = 60

i sum of edges= (6 -f -f 12)
-r- 3 = 6

;
and 60 X 6 = 360

= Volume.

Proof: Now, the inscription of the isosceles triangle, within the

square back, evidently cuts off two pyramids, of which the volume

of each = (3X6)-f-2 = 9-v-3X20 length X 2 in number
= 120 Volume, of pyramids cut away from the square wedge (1) ;

then, 480 120 = 360 = Volume, the same as before.

(4) Now, suppose (1) and (2)

to be placed in contact sidewise,

then they form together a rect-

angular wedge, back, 12 by 6;

edge, 12
; length, 20 : right sec-

tion = 60 i sum of edges= (12 +12 + 12) -3 = 12;

and 60 X 12 = 720 = Volume.



CHAP. V. FOURTH METH. COMP. ART. 27. 125

Proof: By two Pyramids = (72 +- 3 X 20 = 480) -f (60 -*

3 X 12 = 240) = 720, the same Volume; or, by addition of (1)

and (2) = 480 -f 240 = 720, Volume as before.

(5) Suppose now the vertical

sides of the square back of (1) to

close in gradually until they

meet and coincide in a single

vertical line
;
then the back has

vanished, and become a vertical

edge, while the original one

remains horizontal, dimensioned

along with the other parts as in (1) and we have right-section

60 J sum of edges = (12 -f + 0) -*- 3 = 4
;
and 60

X 4 = 240 = Volume of this peculiar double-edged wedge;

which is composed of, or may be decomposed into, two pyramids,

based on the right-section, as common to both, and each having

an altitude of half the edge, or 6 (though such equal division of

edge is not essential) ; hence, we may assume the edge 12 to be

a double altitude; and (~ X
12)

= 240 Volume of both

the same as before.

(6) Now, suppose the vertical

sides of the square (1) to become

inclined (at any angle that will

not extinguish the base of the

back), say at an angle of i to 1

side-slope, thus reducing the base

from 6 to 2, then we have the right-

section as before = 60 ...... I

sum of edges = (6 + 2 -f 12) 6t ;
and 60 X 6 =

400 = Volume of Trapezoidal Wedge.
Proof: In this case two triangular pyramids are cut away from

the original solid, by the sloping sides, having together a base of

4, and altitude of 6
; then, (6 X 4) -4- 2 = 12, which -f- 3 and

X 20 common length = 80 Volume cut away but Volume of

(1) = 480 80 = residual Volume = 400, as before.

(7) Now, suppose two sides of the square back of (1) to gradu-

ally reduce their contained angle, and finally to vanish upon the
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diagonal then the back be-

comes a right-angled triangle

(the side joining the right-angle,

say perpendicular to the edge),

and this wedge has two edges (one

original, and the other now
formed at the side connecting
with the acute angle, both being horizontal edges). Then, the

right-section
= 60 i sum of edges (6 -f -f- 12) -t- 3

= 6
;
and 60 X 6 = 360 = Volume.

Proof: Divided by a plane diagonally through the vertex of

the triangular back, and opposite corner of the edge, we may
decompose this wedge into two pyramids the one with a base

= the right-section
= 60, and altitude = the original edge =

12
; then, 60 X 12 -4- 3 = Volume = 240

The other, with a base equal to the triangular back, or

(6 X 6) -i- 2 = 18, and an altitude = the length = 20
;

then, 18 -T- 3 = 6, and X length 20 = Volume . . . = 120

Total Volume of both Pyramids =360
the same as before.

(8) A Rhomboid Wedge is

computed in a similar manner :

thus, let the rhomboidal back

have a vertical diagonal = 12;

the other = 4
;
an edge of 12;

length = 20
;
and the side-slopes

being $ to 1.

Then, the right-section =
12 X 20

~2~~
120 X fr

=120 ...... i sum of edges,

= 640 = Volume.

44-12
;
and

Now, by cutting off from the rhomboid, near the lower angle,

any given triangle, we have remaining a Pentagonal Wedge.

Thus, suppose we cut off a triangular wedge having the base

of its back uppermost = 2
; altitude = 3

; common length and

edge = 20 and 12.

Then its right-section
= ?-><

2 - 2 + 12
X = 140 Vol-

ume, cut off. And 640 140

Pentagonal Wedge.

500 = the Volume of the residual
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(9) Let us now consider a

Trapezoidal Wedge dimensioned

like (8), with side-slopes of i to

1, forming the top of the back,

while its base = 2.

Let one side-high t = 12 above

intersection of slopes; the other

= 6
;
the edge = 12

; and the

length = 20.

Now, we may compute this wedge in two parts as follows:

1. As a triangular wedge, above the level of the lowest

side-hight.

x
12

320

2. As a trapezoidal wedge, between the level

mentioned and the base of the back.

2+12

Total Volume

180

500

Or, as in (8), we may compute the body as a Ehomboidal

Wedge, and deduct the triangular wedge cut away below the

base of 2, as in fact we did in (8), the resulting volume being

500, the same as herein found.

Finally, we perceive that from (1) the square or initial wedge we may
easily deduce several varieties of wedges, and might go further.

After this necessary digression, indicative of the simplicity, gen-

erality, and value of Chauvenet's Theorem, we will now proceed to

illustrate our own rule (deduced from this theorem), as applied to

Earthworks, by several examples.

28. Here follows the calculation of some examples.

Example 1. Computation by Wedge and Prism, tested by Hights
and Widths, under Simpson's Rule
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References to Fig. 80.

In this case equal slopes of 1 in 4 form a ridge in the larger end

section, and a hollow in the lesser one.

Dimensioned as shown in the figure annexed.

2000 area.

JacliI 12OO area.

Tadbl =mid.8ec.16OO ar;

-sr

I.=ini: of sip:

Data.

Sq. Ft.

( Differences of areas of end sections......... = 800

< Widths, or horizontal projections, equal for both sections . = 80

I Distance apart sections ............ . = 100

To find the vertical mean hight of back of wedge.

C 2000 )
End Areas =

j -^oo f
Difference of Areas.

Half sum of widths -

80) 800

10 = Vertical Mean Hight of Back.
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Then, by the Rule above, and Chauvenefs Theorem.

Sum of 3 parallel sides of edge and back -r- 3.

80 ) -p , f f Vertical Mean
}.
= Back. 10 = < TJ. , , /, -r, i80

j ( Right of Back.
80 = Edge. Right Section i 100 = Common length.

3)240 2)1000

80 = Average breadth 500 = Area of right sec.

Right section X Mean breadth = 500 X 80 . . . = 40,000 = Volume of Wedge*
Smaller end area = 1200 X 100, length . . . . = 120,000 = " " Prism.

Solidify of entire prismoid = 160,000 Cubic Feet.

Proof, by Hights and Widths (SIMPSON).

Hights. Widths.

Larger cross-section . = 50 X 80 = 4000 =26.
Smaller " "

.
= 30 X 80 = 2400 = 2 1.

Sums of his. and wids. = 80 X 160 = 12800 = 8m.

Divisor 12)19200

"T600 = Prism. Mean Area.

100 = Common length.

Solidityof entire Prismoid (as above) = 160,000 Cubic Feet.

Note. By BUTTON'S General Rule we have the same Solidity -=*

160,000 Cubic Feet.

Example 2. Let us now take the case figured for another purpose,

by Fig. 14, Art. 8.

Areas.

Large end section -= 654 to road-bed only.

Small " " = 300 "

Difference, or area of back 1
__

of superposed wedge . )

Supposing the smaller end, at a distance of 100 feet forward, to be

ABKH = 300 in area. While the larger end ABCDEFGHA =
654 area. Common length = 100 feet.

Widths.

fU _L 4ft

Then, -~-- = 47, Mean width of back.

, 7-532 X 100 length
Ri^ on -

and = oTo'b

= 7-532, Vertical Mean Hight of Back.
47



130 MEASUREMENT OF EARTHWORKS.

54 -4- 40 -f 40 = Sum of the three parallel sides

^r- .
= 44f feet

o

p . ( 376-6 X 44f . . . = 16822 = Volume of Wedge.a y>
\ 300 X 100 length == 30000 = " " Prism.

Solidity of the whole Prismoid, \
~~

f j i j 4 j T C = 46822 = Cubic feet to road-bed.
jrom road-bed to ground line J

or 56,822 to inter-

section of slopes.

Now, roughly computing this example, both by Hights and Widths,

and by Roots and Squares, we find for the Solidity about the same

result, the difference being small in the whole body of earthwork con-

sidered.

In like manner, roughly calculating Figs. 43 and 44, which have

very irregular ground lines, with both end sections in each case dia-

grammed upon one figure. We find that computed by Wedge and

Prism, and some other methods, as a proximate test, they all coincide

within a few cubic yards.

So that this rule for calculating Prismoids of Earthwork by means

of a Prism and Wedge, superposed, may be accepted as proximately
correct in all ordinary* cases, and it is in practice a very simple one,

as may be noticed in the examples.

Requiring for data give,n merely the areas of the end cross-sections,

their distance apart, and their total widths across, horizontally, to

ground edges of slopes : no matter how irregular the surface may be.

In all the computations above (as well as in the methods of pre-

ceding chapters), so soon as the mean area of an earthwork solid is

ascertained, it will be found conducive, both to expedition and to

accuracy, to resort with it to the table of cubic yards for mean areas

(at the end of the book), to obtain cubic yards, if they should be

required in the resulting volume.

In this connection it may be observed that the transverse area of

the under-prism being always given in the data (and usually given as

that of the smaller cross-section), whilst the distance apart sections

is also known, it is better, where cubic yards are desired in the ulti-

mate solidity, always to find them from the table in the manner shown

by the directions for its use; and the superposed wedge may be also

treated in a similar way by computing its mean area.

* Where the cross-sections appear to be unusually distorted, so as to render doubtful,

the application of any ordinary rules, then we must endeavor to sketch an accurate mid-

section, and use our First Method of Computation (Chapter II.) which never fails when

the data is correct.
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29 Although the foregoing rule for the computation of a

Prismoid, by "Wedge and Prism, is proximately correct in all ordinary

cases, it has limits which must be observed, when exact results are

sought. These limits are: That the extreme horizontal width of the

smaller end section shall always be equal to, or less than, that of the larger

end, and never greater, where our rule is used as written above.

Thus, in all the cases computed in the above examples, the width

of smaller end is less, except in the figure next preceding, where it is

equal but in none of the examples is it greater, and hence they are

all clearly within the limits of the rule.

In the following figure (Fig. 81), however, the horizontal width

of the smaller end is, in this unusual case, greater than that of the

Pig. 81.

larger one to such cases then our rule above stated does not apply

directly in the form as written.
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A consideration of the figure annexed, where both end sections and

the mid-section are diagrammed together, will make the reason

evident.

It is simply this, that whenever the horizontal top line of the

smaller end exceeds in width that of the larger one, or lays above it

(in a cut), when diagrammed together in one figure, with the diedral

angle common to both, then the smaller end ceases to be the section of a

prism, and becomes that of a prismoid.

But as a prismoid is formed of an under prism, with a wedge super-

posed, we have then in this solid (such as is sectioned in Fig. 81) a

prism with two wedges superposed the upper one carrying the ground
surface of the earthwork solid.

The prism in this case has for its cross-section the portion of the

solid below the line c 6, marking the extreme breadth of the larger

end section, while the two superposed wedges are reversed in position

that in contact with the under prism having its edge in the line c b,

the width of the larger, while that carrying the ground surface has its

edge in e d, the width of the smaller end section
; and therefore the

wedges are reversed in position, though having the same length in com-

mon with the prism, which underlies both.

Example 3, Fig. 81.

Cross-section of prism below c b = 400.
" " smaller end = 900.

Data
{

" "
larger end = 1200.

Common length of all = 100 feet; other dimensions as in

Fig. 81.

(1) By Prwnoidal Formula First Method Computation, Chapter
II. (Button's General Rule) which is an accepted standard for

accuracy.

Smaller end section . . . = 900 = t.

Larger
" "

. . .
= 1200 = b.

Mid-section deduced, being

a mansard figure flat on

the top = 1425 X 4 . . = 5700 = 4 m.

6)7800

T300 == Prism. Mean Area.

100 = Common length.

Solidity ....... = 130,000 Cubic Feet.
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(2) By Chauvenet's Theorem, and our rule drawn from it.

I (1) = The top wedge (at ground) = Right
section (40 X 100 -H 2 = 2000)

X i sum of edges = (60 + 40

+ -H 3 = 33i) = 66,667 C. Feet-

(2) = The intermediate wedge, adjoining the

prism (as in our rule). Difference

of areas -f- siim of widths = 500I
I
S, Then, by the rule (from Chauve-

net), (10 X 100 -s- 2 = 500) X

50 = 10, Mean Hight of wedge.

Tl

a
i sum of edges = (60 + 40 + 40

-f- 3 = 463) = 23,333

(3)
= The prism, which underlies both =

400 area X 100 length . . . . = 40,000
" "

Totality of this solid, containing two

wedges and one prism = Solidity
= 130,000 C. Feet.

In examining the solid body terminated by the cross-sections figured

(in Fig. 81), it will be found to be bounded upon every side by planes,

passed through three common points, so connected that the faces con-

tain no warped surfaces whatever.

30. It would appear that in peculiar solids, like that in Fig. 81.

we might omit the prism entirely, and decompose the body into a

species of double triangular or rhomboidal wedge (with base of back,

and also the edge, common to two triangular wedges superposed, and

inverted with their bases in contact, one on the other), and this

double triangular wedge, with a single pyramid based upon the

smaller end (or in fact on either end), all having a common length,

would form the whole earthwork solid, and simplify the calculation

in such special cases if not in all cases of irregular ground.

Thus, examining the large end I b a c, we find it to consist of the backs

of two triangular wedges, joined together at their bases c b, and hav-

ing a common edge at 100 feet forward, equal to d e, the top of the

smaller end.

Below this double wedge we find a pyramid whose base is I e d I, and

vertex at I, with the common length of 100 the calculation of

solidity is as follows:
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Example 4 (Fig. 81).

(1) The Double (Triangular or Rhomboidal) Wedge.

The mean breadth being common both to the upper and lower tri-

angular part of the larger cross-section, then we have,
o

-= 33*.

And the whole hight of the double triangular wedge is composed
of the hights of the two separate parts = 40 -f~ 20 = 60, forming a

Rhomboid.

Then, - -^ - = 3000 = Right Section.

C. Feet.

And right section = 3000 X * sum edges = 33* . . . = 100,000

(2) The Pyramid, based on smaller end = X 100 . = 30,000

Solidity of the whole Prismoid = 130,000

(Being the same as in Example 3.)

"We might also divide this solid into two wedges and a pyramid by
other cutting planes, with the same result. Thus :

Example 5 (Fig. 81).

Rt. Sec. % sum edges. C. Feet.

(1) lfe*r l*dfc*L>^?- 2000 x(
4 +

f
+

)
= 66,667

Rt. Sec. % sum edges.

(2) termed. W^e, 5*1? = 1500 x(
60 + 4

3

+
)
= 50,000

(3) Pyramid underlying both = ---== 133* X 100 length
= 13,333

Solidity of the whole Prismoid = 130,000-

(Being the same as in Examples 3 and 4.)

Suppose now upon the smaller end section (Fig. 81) we place a

triangle of 60 feet base, and 10 feet altitude, the vertex representing the

termination of the crest of the ridge coming from the apex of the taller

section, and thus augment the area of the lesser end to an equality with

the other, or make each = 1200 in area the addition in Solidity

being a Pyramid.

Then, although the end areas are now equal, the horizontal widths

between the ground edges of the side-slopes remain unequal, as before ;

the big end having least width.
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And the computation of this solid is as follows:

Example 6 (Fig. 81).

135

x 4 =6000 = 4 m.

6)8400

1400 Pris. Mean.

100 Length.

Sol.= 140,000 C. Feet.

By known Geometrical Solids, gov-

erned by Familiar Rules.

Pyramid (super-added) base 300.

Then,
300 Length.

X 100 = 10,000

(1) Top Wedge = 66,667

(2) Intermediate Wedge . . . = 23,333

(3) Prism . . = 40,000

Solidity in C. Feet . . = 140,000

By Hutton's General Rut

,
= 1200 = t.

Find Areas . .

in, The mid-sec-

tion deduced,

being a man-

sard figure,

peaked upon
the top =
1500 in area.

50 + 30 _

40 X 20 = 800

?!2L_5 = 75

A of 25' =625
~1500

In all the above examples (except Example 2), the computation
for solidity extends from ground surface to intersection of slopes,

without regard to the road-bed. But any width of road-bed may
be assumed, the volume of the grade prism ascertained, and being

deducted, will leave the solidity from road-bed to ground all the same,

as if it had been specially calculated in that way.

a Of the Rhomboidal Wedge and Pyramid.

A close examination of the solid, cross-sectioned in Fig. 81, and

shown in isometrical projection by Fig. 82, will make it evident that

beginning with the larger end section, the three cross-sections required

by HUTTON'S General Prismoidal Rule will be a Rhomboid, a Penta-

gon, and a Triangle, dimensioned as shown in the figures.

And the solidity of this body by BUTTON'S Rule, as shown in

Example 3, Art. 29 = 130,000 Cubic Feet.

It is also evident, from Example 4, of this article, that this compu-
tation can be made for solidity with the same result (130,000 Cubic

Feet), by decomposing the body into a Rhomboidal Wedge and two

Pyramids, which may be aggregated and calculated as one, so that, as

in Example 4, this solid can be computed as though it were composed
of a single Rhomboidal Wedge, having its edge in the width line of

the smaller end section; and of a single Pyramid upon a base equiva-

lent to the latter in area, and its vertex at the foot of the rhomboidal
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back which forms the area of the larger cross-section, or one equiva-

lent thereto, and standing (as both end sections do) with the vertices

of one of their vertical angles coincident with the line of intersection

of the side-slopes prolonged.

Kg. 82

Sea. TOT Inch.

By means of Wedge and Prism, or Wedge and Pyramid (especially

the latter), we have already indicated the process of reaching the vol-

ume of an earthwork solid, and we will now continue our examples
until the simple combination of Wedge and Pyramid, in computing

solidity upon the usual earthworks, is fully illustrated.

Although solids resembling Fig. 81 in their cross-sections admit of

being easily computed by their own dimensions, either by Wedge,

Prism, and Pyramid, or by HUTTON'S General Rule, which is a stan-

dard for volume; nevertheless, as earthwork sections generally pre-

sent themselves in a somewhat different form, it becomes desirable to

devise a rule which, within a long range, will apply to all earthwork

with uniform slopes, and shall include within its limits the great

majority of cases which come under the notice of the engineer.
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Extremely irregular and distorted solids, however, have sometimes

to be subjected^ to calculation, which seem almost incommensurable

by any fixed rule, and such exceptional cases must be left to inde-

pendent methods adopted at the time
; though it is obvious that any

solid may be so sectioned, and divided into limited portions, as to

admit of computation by many processes, without material error.

b Statement. In any earthwork solid contained within a

diedral angle (formed by the intersection of uniform side-slopes),

however irregular the ground may be, if the side-slopes continue uni-

form and we have given, the length I, the areas of the cross-sections

at the ends A and A', and the slope ratio r. We may compute the

volume of such solid as a double Triangular, or single Rhomboidal

Wedge in combination with a single Pyramid (the latter also usually
Rhomboidal but sometimes Triangular).

Process. Take any pair of irregular cross-sections, judiciously

located and measured by the field engineer, so as correctly to define

the ground, and of which all the necessary dimensions are known, as

well as the distance apart sections.

1. Ascertain the areas of the cross-sections to intersection of

side-slopes.

2. Find the proper hight from intersection of slopes, to include

one-half the area, also the proper width, and assume this as the

base of the back of a double Triangular, or Rhomboidal Wedge
in the larger end, and as the edge of the same in the smaller one.

3. Compute from the larger, or from either end section, a

Rhomboidal Wedge, by Chauvenet's Theorem. (See Example,
Art. 27, a, paragraph 8.)

4. Then, to the solidity of this Rhomboidal Wedge, add that

of a Pyramid, based upon the other end section, and having for

its altitude the common length, or distance apart sections. (See

rule following.) .

The sum of the altitudes of the double triangles (joined at their

bases) forms the vertical diagonals, or hights of back, of the rhomboi-

dal wedges, while their horizontal "diagonals form the width of back

at one end, and of the edge at the other, the angular points of the

Rhomboid, vertically, being zero. Either end may be calculated from,

while the other area is the base of a pyramid (Rhomboidal, Triangu-

lar, or Irregular), having for altitude the common length I. For

proof of the work we should always make both direct and reverse calcu-
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lations, taking either end alternately as the base, and though they
will seldom agree exactly, owing to the decimals coining in a different

order (unless we use a cumbrous number of places) ; nevertheless,

the agreement will be found close enough for a verification of such

work.

To compute the Rhomboidal Wedge and Pyramid in an Earthwork.

Adopt either end for Base, and call the other the Top = b and t, of

former notations.

Present notation :

A. Area of cross-section assumed for the Base.

A! = " " " " "
Top.

I = Common length, or distance apart sections.

These are all the data required to be given, the remainder needed

are easily computable.

h \ Vertical diagonals of the equivalent Rhomboids, into which

h' J the end areas are transformed.

, > Horizontal diagonals of the same.

Then, by computation :

From the foregoing it is evident that w = h r, and w' = h' r.

Also, when the slopes are 1 to 1, then h = \/2 A; if 1 to 1,

h = V-fAT; and if 2 to 1, h = VAT The use of these will often be

convenient.

RULE. Case 1. Where width of big end is equal to, or greater

than, that of small end.

1 (Half product of vertical diagonal of base, by distance apart

sections) X (One-third the sum of horizontal diagonals of

both ends) = Solidity of Rhomboidal Wedge ;
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2 (One-third of area of top) X (Distance apart sections)
=

Solidity of Pyramid ;

3. Add together the two solidities above (1 and 2) for the solidity

of the entire Prismoid : from ground to intersection of slopes,

and minus the volume of the grade prism, gives solidity from
road-bed to ground.

RULE. Case 2. Where width of big end is equal to, or less than,

that of small end.

In this case the multiplier for edges (No. 1, Case 1) is to be

(w + w') + (w w) . (w + ,, ..

-, instead of simply
- -

. . While to
6 6

the volume produced by the Rule of Case 1 modified in the

multiplier as just mentioned we must add a final correction,

as follows : (Difference of actual horizontal widths X Difference

of their hights from intersection of slopes) X length this

final product, added to the volume resulting from the rule above,

gives the solidity for Case 2.

The application of these corrections will be shown hereafter by
an example, drawn from the peculiar solid, figured in Figs. 81

and 82.

The results produced by these corrections, when added to those

obtained by the Rule of Case l,will give the solidity, whenever

the actual width of the smaller end section does not exceed three

times that of the greater one.

Within these limits the rules and corrections above will apply, and

they will be found to cover the great majority of practical cases; but

where thl end sections are even more distorted, we must then com-

pute by Mutton's General Rule, or by the actual dimensions of the

solid, decomposing it into elementary bodies.

As the Prism, Wedge, and Pyramid, are the solid elements from

which every great-lined body is composed, and into which it may be

again resolved, it follows by parity of reasoning (as in the case of the

Prismoidal Formula) that for all earthwork solids, bounded by planes,

the rules of this chapter hold.

C...... We will now illustrate our method of Wedge and Pyra-

mid, by computing the cases of Chapter II., figured from 53 to 64

inclusive, and all originally computed by HUTTON'S General Rule-

the standard for accuracy.
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All of these examples (as indeed is the fact with most others in

practice) come under our Rule and Case 1 the width of the larger

end section being in every instance greater than that of the smaller

one. (See Figs. 53 to 64, Art. 18.

Art. 18. Example, illustrated by Figs. 53 to 55.

Given areas f b = 990 = A
^

Vertical diago- ( h = 44-50 1 Horizontal dia- ( w = 44'50
j

to intersection It = 500 = A'
[

nals computed. \ h' = 31-62 J gonals computed. \wf = 31-62 J

of slopes, etc. ( I =100 feet. J

The road-bed being 20 feet
;
the side-slopes 1 to 1 in this case, as

in all where r = 1
;
the Rhomboid becomes a square, and the diago-

nals equal.

Direct calculations.

h X I w + *? o~ X = S'

44-50 X 100 44-50 + 31-62

-g

- X
g
-

. . = 56,471

A7

- x I = & of Pyramid.o

500

-^ X 100 ........... = 16,667 = Pyramid.

Total . ...... . .. > . . = 73,138 C. Feet.

Deduct Grade Prism ........ = 10,000

Leaves Solidity of Earthwork ..... = 63,138

As computed in Art. 18, Chapter II. . . = 63,170

Difference ......... = 32

Reverse calculations.

31-62 X 100 - 31-62 + 44-50

^
- X-

g
-

. . . .
= 40,126 == Wedge.

QQA~ X 100 ........... = 33,000 = Pyramid.

Total.....
.
...... = 73,126 C. Feet.

Deduct Grade Prism ........ = 10,000

Leaves Solidity of Earthwork ..... = 63,126
'

As computed in Art. 18, Chapter 11... = 63,170

Difference ......... = 44

The above example represents an earth-cut upon three-level ground.
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Art. 18. Example, illustrated by Figs. 56 to 58.

141

This example represents an earth-cut on -five-level ground, having a

road-bed of 20 ; slopes of 1 to 1
; length 100 feet.

Computed by our Rule, Case 1, we have.

Direct calculations.

Wedge . . = 24,306

Pyramid . .
= 14,367

38,673

Deduct G. P. = 10,000

Solidity . = 28,673

By Art. 18 . = 28,650

Difference. = + 23 C. Feet.

Reverse calculations.

(Wedge

. . = 27,254

Pyramid. . = 11,467

38,721

, Deduct G. P. = 10,000

j Solidity. . = 28,721

[
EyArt. 18 .

= 28,650

\ Difference. = -f 71 C. Feet.

Art. 18. Example, illustrated by Figs. 59 to 61.

This example represents an earth-cut on seven-level ground, dimen-

sioned as above. .

Computed by our Rule, Case 1, we have:

Direct calculations. Reverse calculations.

Wedge . . = 42,048

Pyramid . . =* 21,700
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Direct calculations.

33 '24 >< 10
X = 51,987 Wedge.

2 o

644 '67
X 100 . ;'

v

v "'
-* kiv V * . . = 21,489 Pyramid.

73^476

Deduct Grade Prism. . . .'..'. . . = 4,267

Solidity . . . = 69,209 C. Feet.

As computed in Art. 18, Chapter II. . . . = 69,200

Difference . ... C "!'.
= ~+~9 C. Feet.

Reverse calculations.

29-32 X 100 49-86 + 43-98

2 3
= 45,856 Wedge.

828-67

3
X 100 .....= 27,622 Pyramid.

73,478

Deduct Grade Prism. -
." = 4,267

Solidity
= 69,211 C. Feet.

As computed in Art. 18, Chapter II. ... = 69,200

Difference = -f 11 C. Feet,
t

d We have thus compared the whole four of the examples
illustrated in Chapter II., and all computed by HUTTON'S General

Rule. These we find to agree with the calculations by Wedge and

Pyramid, in every instance within a few cubic feet, and had the deci-

mals (into which all these computations run) been carried further,

the agreement would probably have been closer.

We will now compute by Wedge and Pyramid the example of a

heavy embankment, taken from Warner's Earthwork, Art. 86.

" Prismoid. First end-hight 28'7
;
second end-hight 14'5

;

surface-slope 15
; side-slope H to 1; road-bed 24 feet."

Data computed f b 2411 = A ~\ Vertical diago- f h = 56-70
j

Horizontal dia- f w = 85-05
J

to intersection of -I t 907 = A' > nalg computed. { h' 34'78 j gonals computed. ( w' = 5217 }

slooes.etc. U= 100 feet. )
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Direct calculations.

56 '7

9

X 10
X **+* . . . = 12% Wedge.L o

- X 100 = 30,233 Pyramid.

159,906

For Cubic Yards -=-27 = 5,923

Deduct volume of Grade Prism = 356

Solidity = ~5,567C. Yards.

By Hutton's General Rule = 5,566

\ Difference = + 1 C. Yard.

Reverse calculations.

34-78 X 100 52-17 + 85-05 **
X . . . = 7y,o4J

< 100 . = 80,367 Pyramid.

Jf9,909.
For Cubic Yards -r- 27 = 5,923

Deduct volume of Grade Prism = 356

Solidity = 5^67

By Hutton's General Rule = 5,566 .

Difference = -f 1 C. Yard.

Mr. "Warner (in Art. 86 quoted) makes the volume here computed
: 5562 Cubic Yards.

6 All of the above examples come under Case 1, of our

Rule, as ordinary earthwork sections usually do. But we will now

compute a single example by Case 2 where the width of the greater
end is less than that of the smaller one. This condition will be found

in the solid figured in Figs. 81 and 82.

In this example, illustrative of the rule in Case 2, the corrections

therein named have been duly embodied.
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Example of Case 2 (Fig. 81).*

4W8_XJOO x
4M>8+ 4*42 + 6-66

_ _ =

h X I (tfl + tip + (M i*Q

QAA
irr X 100 ............ = 30,000 Pyramid.
o -
=^ x i. 110,000

Final correction, 10 X 10 X 20 X 100 . .
= 20,000

Solidity . . . . . . . "... .
= 130,000 C. Feet.

The same as computed before ...... = 130,000

It would appear, then, from the discussion in this chapter, the

examples given, and the simplicity and conciseness of the rules for

computing earthworks, by means of the Prism, Wedge, and Pyramid,

that they deserve to rank amongst the best employed for the purpose.

* Although this solid (Figs. 81 and 82) is bounded on all sides by plane surfaces, and

is composed simply of a Rhomboidal Wedge, superposed upon a Pyramid very few of

the E,ules or Tables, of the numerous writers on Earthwork, furnish means for comput-

ing its solidity which can only be readily ascertained by BUTTON'S General Rule, or by

decomposition into elementary solids, of which the rules for volume have been long

established.



.=r sp*

CHAPTER VI.

PROFESSOR GILLESPIE'S FOUR USUAL RULES, WITH THEIR CORREC-

TIONS, AND A COMPARISON OF HIS CHIEF EXAMPLE WITH OUR
THIRD METHOD OF COMPUTATION OR ROOTS AND SQUARES (CHAP-
TER IV.).

31 The late Professor IV. M. Gillespie, of Union College,

Schenectady, N. Y., was an able teacher of Civil Engineering, and a

sound practical writer on that and cognate subjects, as may witness

his Roads and Railroads (1847), 10 editions; Land Surveying

(1855), 8 editions; Higher Surveying, etc. (1870), posthumous, 1

edition
;
and numerous valuable papers, read before the American

Scientific Association, or printed in scientific journals.

In 1847 he published his first edition of Roads and Railroads, and,

as an appendix to it, in about 25 pages, he gave a practical summary
of various methods of computing Excavation and Embankment,

accompanied by valuable corrections and suggestions, which were

together so explicit and so well grounded that this Appendix has

become the basis of several works upon the subject, whose authors,

without much acknowledgment (often without any), have freely

availed themselves of Professor Gillespie's labors.

His work on Roads and Railroads, well printed and cheaply pub-

lished, has had a great circulation; it has already filled 10 editions,

and is probably better known in the offices of engineers, all over this

country, than any other similar book. In the Appendix, on Excava-

tion and Embankment, Professor Gillespie recognizes "four usual

methods of calculation"

1. Calculation by Averaging End Areas (or Arithmetical Average).

2.
" " Middle Areas.

3.
" " Prismoidal Formula.

4.
" Mean Proportionals (or Geometrical Average).

And we will now proceed to give his views substantially, but not

literally, upon these four rules, which he found in use when he took

up this subject in 1847, and which, indeed, had long before been known,

as follows:
10 145



146 MEASUREMENT OF EARTHWORKS.

1st. Arithmetical Average. This consists simply in adding together
the areas of any two adjacent cross-sections, taking half their sum
for a mean area, and multiplying it by the length of the station, or

distance apart sections, to find the Solidity.

As generally used by engineers, instead of adding the end areas,

halving their sum, etc., they employ the sum of the two, or double

areas, and merely double one of the divisors in working for Cubic

Yards, as follows :

Engineers' Rule.

(Take

the sum of the areas of any two adjacent cross-sections,

multiply these double areas by the length (which, if a full station

\ of 100 feet, is done mentally, or by removing the decimal point
/ two places to the right). Divide by 6 and by 9, and the last quo-

\ tient gives the volume in Cubic Yards.
<A

This Rule has been by far the most used of any other in our coun-

try ;
with tables of Cubic Yards, for double areas, it is very expedi-

tious, and has found numerous advocates amongst engineers on

account of its simplicity and convenience ;
it usually gives a result

in excess of the truth, and where the disparity of areas is great, very

much in excess; even this well-known error has found commendatory

advocates, on the ground that it is like the merchant giving good
measure to the customer, and that this excess in quantity being well

understood, would be compensated for by a reduced price, whenever

the work was executed by contract but these arguments are clearly

unsound.

Professor Gillespie has, however, indicated a simple correction, by
means of which the result of a computation, by Arithmetical Aver-

age can be reduced to the truth.

Thus, let

d = Difference of centre hights, supposing all the cross-sections to

be reduced to an equivalent level top.

3* -= Ratio of the side-slopes (or cot. of angle) s to 1.

I = Length of the cut or fill between sections.

* Engineers and writers have pretty generally, of late years, agreed to designate the

ratio of side-slopes as r (and this we have usually employed), while the symbol is con-

fined to slopes of ground, or surface slopes, but in the present case Professor Gillespie's

notation is adhered to.
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s d? I

Then, ^
is the proper correction for the results of Arithmetical

Average, which correction, if computed for each mass so calculated,

and then deducted therefrom, will give the true solidity the same pre-

cisely as if calculated direct by the Prismoidal Formula itself.

The chief example computed by Professor Gillespie under the sev-

eral heads of his subject, has the same data in all, as shown by the

first four columns of the following Tables the cross-sections in all

cases being assumed to be equivalent level trapezoids by him.

1. Arithmetical Average.

Table 1, computed in illustration of the corrections proposed,

including an entire section of a supposed railroad, 4219 feet in length.

1.' Road-bed 50; side-slopes of excavation 1J to 1; of embank-

ment 2 to 1.

Sta.

~r
2

3

4

5

6

7

t
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s d2
1

Here the corrective formula is,; and
3.22

corrections thus calcu-

lated being added to the results obtained, by the process of middle

areas, would make them coincide with the true volume given by the

Prismoidal Formula.
2. Middle Areas.

Table 2, computed and corrected in illustration of the above, including-

an entire section of a supposed railroad = 4219 feet in length.

2. Road-bed 50
; side-slopes of excavation 1 J to 1

;
of embank-

ment 2 to 1.

Sta.
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Retaining the same data for the example as has been used in the

preceding tabulations, and will be continued throughout this discus-

sion, we refer to the following Table (3), where the results obtained

from the data given, by means of the Prismoidal Formula, are pro-

perly tabulated.

3. Prismoidal Formula.

Table 3, in illustration of the computation by it. Including an
entire section of a supposed railroad = 4219 feet in length.

3. Road-bed 50
; side-slopes of excavation 1 to 1

; of embank-
ment 2 to 1.
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The result is always much less than the truth (supposing the areas

taken between ground line and road-bed), for it treats as Pyramids,
or thirds of Prisms, the wedge-shaped pieces which are really halves

of Prisms, and is farthest from the truth when one of the areas = 0.*

So far. the Professor.

And this is all correct when the cross-sections are limited between

road-bed and ground surface
;
but if they are extended to the inter-

section of the side-slopes, or edge of the diedral angle containing the

earthwork solid, an entirely different state of affairs takes place, for if

the road-bed be imagined to be gradually narrowed, so that eventu-

ally it vanishes at the intersection of the side-slopes; then, at that

point, both Pyramid and Prismoid coincide, or become equivalent,

whilst their rules become correlative (or mutually interchangeable),

and either may be used with the same results in point of solidity ; and

this is also the case with the "Equivalent Level Hights," much used by

engineers since the publication of Sir John Macneill's work (London,

1833), but likewise condemned by Professor Gillespie, rather hastily

as it seems to the writer, and hardly upon sufficient grounds.

It seems singular that this able Professor should have overlooked

the facts mentioned above, as he was well acquainted with the method

of continuing calculations to junction of side-slopes, including the

Grade Prism in the earlier stages of the computation, but rejecting it

at the close (as may be seen in his paper on Warped Solids (1859) ).

Now, so long as the cross-section of the earthwork remains trape-

zoidal in figure, the strictures of Professor Gillespie upon this rule

(commonly called the Geometrical Average) are undoubtedly correct;

but whenever the cross-section becomes triangular they fail entirely, as

also does his similar censure on "
Equivalent Level Hights."

In evidence of this, we have tabulated (for ourselves) the same

general example as heretofore given both for the Geometrical

* Now, taking a case of precisely this kind (only continued to intersection of slopes)

hight at one end 34-5, at the other 0, with road-bed of 30 feet, slopes of 2 to 1, a length

of 66 feet, and level on the top.

If we compute this solid, either prismoidally, or by the usual rule for wedges, we have

for its volume 3205 Cubic Yards in round numbers.

And if we compute it by Baker's Rule (who treats such cases as Frusta of Pyramids,
but with the important addition of the Grade Prism), we find the resulting volume to be

the same to the nearest Cubic Yard.

For this pyramidal rule see Baker's Earthwork, London, 1848, whose rule is similar

to that of Bidder and others, which have always been accepted as correct by English

engineers, and most certainly they are so.
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Average, and for the Equivalent Level Higlits, merely carrying the

areas to the intersection of the side-slopes, in both cases, including at

first the Grade Prism, but excluding it after as a common quantity.

32 By these Tables we find the solidity of Gillespie's exam-

ple to be precisely the same as computed by him with the Prismoidal

Formula (Table 3 above), and which he has very properly adopted as

the correct standard for all.

4. Mean Proportionals (or Geometrical Average).

Table 4, in illustration of computation by them, including an entire

section of a supposed railroad = 4219 feet in length.

4. Road-bed 50
; side-slopes of excavation 1 to 1

; of embank-

ment 2 to 1.

Sta.



152 MEASUREMENT OF EARTHWORKS.

Thus,

Double the sum of End Areas -f- Double Geom. Mean
6

X h = Solidity.

Let

( A = Sum of End Areas. "I Then the above f 2 A + 2 B

\ B = Geometrical Mean. / becomes . .-\ 6

Or, in its lowest terms,
- - X h = S, which is the Geometrical

o

Average; or, in substance, Euclid's Rule for the Frustum of a Pyra-
mid

;
and by the aid of the Grade Prism strictly applicable to earth-

works of a general triangular section in ordinary cases.

5 Equivalent Level Higlits.

Table 5, in illustration of computation by them.

5. Road-bed 50; side-slopes of excavation 1J to 1; of embank-

ment 2 to 1.

r

Sta.
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perly corrected and appropriately used
;
and that they all give the

same solidity in the end as No. 3 does, which is the standard for ALL.

1. Arithmetical Average to Road-bed (with correction).

2. Middle Areas to Road-bed (with correction).

3. Prismoidal Formula (the standard for all) to Road-bed, or to

the intersection of slopes either.

4. Geometrical Average to intersection of slopes.

5. Equivalent Level Hights to intersection of slopes.

All these are fully described above, and the tabular statements

bearing the same number show in each case the results of the calcu-

lations for volume, agreeing uniformly with the computations for

solidity, made by means of the Prismoidal formula.

In concluding his notices of the method of computing the contents

of earthworks, by means of the Prismoidal Formula, Professor Gilles-

pie gives some special rules, transformed from it, which are doubtless

valuable in certain cases, but do not appear to be of general applica-

tion; he also gives formulas for a series of equal distances apart sta-

tions, such as are usually found in the location of railroads.

These are intended to be applied to a central core, or body of the

work, based upon the road-bed, to be calculated by itself, and then

the slopes, to be computed separately or together, and added in with

the core, so as to form finally the volume of the ivhole prismoidal mass.

This idea of separating the core or body from the slopes, calculating
them independently, and adding them together, seems to have occurred

to a great many .engineers,* and forms the theme of nearly a dozen

books on the subject of Earthwork Measurements here or abroad.

Indeed, the very first special work on the mensuration of earth-

works, which was published in this country that of E. F. Johnson,

C. E. (New York, 1840), adopted this system, and furnished a series of

Tables to facilitate its operation ;
it was, however, briefly explained

before, in Lieut.-Col. Long's valuable Railroad Manual (Balti-

more, 1828), which was the first to treat the subject in this country,

and was, in fact, the pioneer of technical railroad literature in the

UNITED STATES.

Nevertheless, the method of Core and Slopes has never come into

general use, though often revived from time to time by new writers,

apparently unacquainted with the literature of this subject.

* Amongst others, it is the method of Bidder, who followed Macneill in the earlier

days of English railroads.
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34. . . 1 . . Comparison of Gillespie's Main Example and the Method^

of Roots and Squares.

Professor Gillespie's chief example, of a heavy Cut and Fill, form-

ing an entire section of railroad, 4219 feet long, must by this time

be so familiar to engineers, and others, in consequence of the exten-

sive circulation of his Manual of Roads and Railroads, since its origi-

nal publication in 1847, that we have selected it as the most suitable,

or at least the best known* for the purpose of comparison with our

Third Method of Computation that by Roots and Squares.

We therefore give a Table No. 6 (below), which contains in the

first 5 columns the data given by Professor Gillespie, and in the last

6 the results of the computation by Roots and Squares, which will be

found to agree exactly with those obtained above, by means of the

Prismoidal Formula accepted as being a correct standard for com-

parison.

6. Comparison of Example, with Hoots and Squares.

Including (as before) an entire section of a supposed railroad

4219 feet in length.

6. Road-bed 50; side-slopes of excavation II to 1
;
of embank-

ment 2 to 1.

Sta.
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sarily add in this mode of computation (to intersection of slopes) the

Grade Triangle, and deduct it again near the close of the operation.

Road-bed 50
; side-slopes of excavation = 1 J to 1

;
of embank-

ment = 2 to 1.

Grade Triangle of Cut, area = 416f Sq. Ft. altitude = 16$ Feet.
"

Fill,
" = 312 " " " = 12*

"

Where the distances apart stations are uniform in length and even

in number, the method of Roots and Squares enables us to employ a

very simple modification of Simpson's Multipliers, as has been already

shown in Chapter IV., so as to compute with ease and expedition an

entire cut or fill, at a single operation, or one station only, at pleasure.



CHAPTER VII.

PRELIMINARY OR HASTY ESTIMATES, COMPUTED BY SIMPSON'S RULE

FOR CUBATURE.

35 Preliminary, and often hasty estimates of earthworks,

are constantly required by engineers prior to deciding upon railroad

routes, or their modifications, and indeed are generally necessary in

determining the relative merits of engineering lines (amongst which

there are always alternatives} since few can undertake to settle pro-

perly any important questions relating to their comparative value,

without some serious consideration, for which the Preliminary Esti-

mates, on various lines surveyed, supply a proximate foundation, by

aiding without controlling the judgment of the engineer.

Exploring Lines, preparatory to the final location of a railway, are

indispensable, and in a difficult country may extend to tenfold the

length of thefinal line, while the time allowed to engineers being usually

extremely short, the estimates of quantities on these Preliminary Sur-

veys are necessarily hasty, and consequently imperfect but neverthe-

less demand rapidity in execution, however made.

For this there seems to be no remedy ;
all we can do is to endeavor

to point out a method for hasty estimates, more correct and more expe-

ditious than those usually employed, and to this we shall confine our-

selves in the present chapter.

Exploring lines are usually traced with stations at double distance,

or 200 feet apart and, indeed, sometimes on plain ground the dis-

tance apart stations has been stretched (to save time) as far as 400

or 600 feet ;
and as this last distance is about the longest range

which gives distinct vision for the Engineer Levels in use in this

country, it ought rarely to be exceeded, as a general rule; while at

least, the distance of 200 feet apart stations, or double distance of loca-

156
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tion, furnishes good information of the ground, and also enables the

exploring party to proceed rapidly enough to gain an adequate know-

ledge of the country, without much loss of time.

Nevertheless, the rules we suggest will apply to any uniform dis-

tance apart stations of exploring line, which may be deemed advisable

by the engineer in charge: but the longer the distance between sta-

tions, the less accurate will be the estimate in general.

We propose to apply Simpson's celebrated rule for cubature (the

accuracy of which is well known) to Preliminary or Hasty Estimates,

taking as data the centre hights and surface slopes alone; the former

to the nearest foot of hight or depth, from ground to intersection of

side-slopes, and the latter to the nearest 5 of average ground slope

across the line, leaving special cases to be dealt with by the engineer,

according to rules of his own.

We have provided proximate tables (very nearly correct) to facili-

tate these hasty operations, and would also suggest that, in all cases

of Preliminary Estimates, the resulting quantities of earthwork should

be augmented ten per cent.: this addition will give full quantities,

and has been shown by long experience to be ample to meet the usual

contingencies which always arise in the construction, and cannot be

foreseen, and of which, in fact, it must be confessed, the engineer in

charge (often unknown to himself) almost invariably takes the most

favorable view', and hence the greater necessity exists for some appro-

priate allowance beyond the net result of the calculations.

Simpson's Rule for Cubature, using cross-sections instead of ordi-

nates (as we have before shown), is as follows:

i --Jt X D = Solidity.o

( Sometimes 2 D, and 6 for divisor, are used, and are equivalent.)

A = Sum of extreme end ordinates, or sections.

B = Sum of cross-sections standing on even numbers.

C = Sum of " " " " odd numbers.

D = The common interval, or distance apart sections.

Simpson's rule above is limited to an even number of equal spaces.
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And it must be observed that in its application it is always best to

prepare a rough profile of the line run, and under the regular num-

bers to pencil forward, from the beginning of the cut or fill to be

computed, the series of numbers 1, 2, 3, 4, etc. No. 1 always stand-

ing at the place of beginning ;
it is this series of numbers, so arranged,

which are referred to in the rule above as even and odd.

By this rule it is best to compute entire and separately each cut and

each fill encountered by the line
;
and if the whole number of equal

intervals or stations, in any cut or fill, should be an odd number, then

one station of the common length, at beginning or end (or indeed any

where deemed most suitable), should be struck off temporarily, and

reserved for separate calculation
;
while the body of the work thus

reduced, to an even number of common intervals, comes directly within

the rule, and can be calculated as a whole, while the detached sta-

tion, computed by itself, may be added in near the close of the ope-

ration.

It will always be found briefer and better in using this and similar

rules, to aim first at finding a General Mean Area, which, multiplied

by the proper length or distance, will give the solidity ; but it is still

better, having the General Mean Area in square feet, to use our Table

at the end when the result is desired in Cubic Yards.

36 Instead of employing Simpson's Formula, as it stands

above, it will be often more convenient to use the multipliers which

represent it these are known as Simpson's Multipliers* and are as

follows :

For two equal int6rvals, apart sections, Mults.

( Divisors 6; qiiot?ent,Mean
I, 4, l.< Areas

; factors for length
( = double interval.

" four"
" " " " = 1, 4, 2, 4, 1.

f
Divisors 3; quotient,

six ' " " " " = 1. 4, 2, 4, 2, 4, 1. J
Mean Areas

;
factors for

eiaM " " " " " = 1, 4, 2, 4, 2, 4, 2, 4, 1. 1 length = single inter-

ten " " " " " = 1, 4, 2, 4, 2, 4, 2, 4, 2, 4, 1. [veil.

The first set of multipliers, their divisors, and factors for length, are

clearly those of the Prismoidal Formula, which evidently forms the

basis of this famous rule.

Indeed, it is easy to show by diagrams how this rule may probably

have been formed, by the eminent mathematician, with whom it

originated, about the year 1750
;
and also how intimately it appears

to be connected with the Prismoidal Formula.

* Rankine's Useful Rules and Tables, 2d edition, London, 1867, page 64.
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See Figs. 11 and 78, following.

Suppose Figs. 11 and 78 to represent front views of four planes, A,

B, C, D, or of four solids with a thickness of unity, all standing on

the level base line EF, and that their respective ordinates, or cross-

sections (correllative in Simpson's Rule for Cubature), are dimen-

sioned as marked upon the figures.

Tig. 77;

10, 10. I 10. 10. jtO. I 1O. 1O. 10. 30

31O

Kg. 73.

1. Suppose the solids to be separated from each other by the dis-

tance of 10 feet (or any other), and let each be computed

independently by means of Simpson's Multipliers, or as they
are all exactly alike, let one be computed and multiplied by

4, as follows :

This is clearly
a

Prismoidal Compulation.

Cross-sees. Simpson's Results in

in Sq. Ft. Mults. Sq. Ft.

X 1

X 4

X 1

= 1

= 16

6)18

Mean Area = 3 X 20 60 A.

60 X 4 = 240 Cubic Feet =
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2. Now, suppose the solids to be slid along the base line EF,
until they come in actual contact with each other, as shown

in Fig. 78. Then it becomes evident that the intermediate

sections at odd numbers (1, 3, etc.), which, in the detached

solids, Fig. 77, were used but once, are here, when combined,

to be used twice; while the mid-sections, or those at even

numbers, are to be used four times, and the extreme end sec-

tions only once each
;
so that they become, in effect, when

treated thus, the Multipliers of Simpson ; while the divisor

is changed to 3, because the common interval is reduced

one-half; and the volume of the four solids, when aggre-

gated together, so as to form a single body, would be com-

puted by Simpson's Rule, or by his Multipliers, as follows:

By Sim
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these, that we may require, we set down separately in a column, and

where a case occurs of a hight exceeding the limits of the Tables

named, then we resort to the initial triangles of Table 1, by means of

which the area due to any hight whatever may easily be ascertained
;

then, if we find we have an even number of equal stations, we apply

Simpson's Multipliers to the column of areas, and speedily compute
the solidity.

But if the equal intervals or stations are found to be uneven in

number, strike off one station temporarily for independent calcula-

tion, and then the number of intervals becoming erent we are ready
to apply Simpson's Multipliers, in a column parallel to that of areas,

and beginning at 1, as 1, 4, 2, 4, 2, 4, etc., multiplying each cross-sec-

tion by its proper factor, and placing the results in a third parallel

column, which we sum up and divide the total by 3 (giving a Mean
Area as the quotient), add to this the mean area of the station

reserved (if any), which gives a General Mean Area, to be multiplied

by the equal interval, or length of station say 200 feet, or whatever

distance has been adopted and used as a common interval or station

the result will be cubic feet, from which cubic yards (if desired)

can easily be found.

But, inasmuch as the quotient of 3 (with the mean area of the

reserved station (if any) added in) is a General Mean Area usually

in square feet it will be found more convenient, and usually more

accurate, to use it in connection with our Table 5, at the end of the

Book, to find the cubic yards which may be desired, according to the

directions preceding the Table.

We will now proceed to give examples of the process above

explained, and for this purpose we will take the adjacent bank and

rock cut, profiled on Fiy. 76, Art. 24, as being an appropriate exam-

ple of this expeditious method of computing an embankment, or an

excavation in a single body, with sufficient accuracy for the purpose

contemplated, and without unusual delay.

Fig. 76. BANK.

Here we find the Bank to be 1000 feet in length between the grade

points, or 5 intervals of 200 feet each
;
the number of intervals being

uneven, we must temporarily omit one station to bring this case within

the rule
;

let the station omitted, and to be calculated independently,

be from 5 to 7 = 200 feet.

11
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Tabulation.

Sta. Areas.

1

3

Mults.

24 X 1 =
495 X 4

5 and 7 3123 X 2 =
united.

9 1197 X 4 =
11 24 X 1 =

Sq. Feet.

24

1980

6246

4788

24

3)13062
4354 Partial Mean Area.

Add area of reserved station.

The hight of the embank-

ment and the surface-slope at

5 and 7 being the same, this

reserved station is a Prism, of

which the base, or sectional

area, is 3123 square feet, and

length = 200 feet ....

General Mean Area. . .

Solidity .-....
;

>'--.-;

Or,
;

; .:

Tabulated, by Roots and

Squares, in 100 feet stations .

Difference about the half of

one per cent, more

= 3123 = Mean Area, reserved

station.

= 7477 Square Feet.

200 Common Interval.

= 1495400 Cubic Feet.

= 55385 Cubic Yards.

= 55088

= -f297
" "

Tabulated by Roots and Squares in 100 feet stations, as though for

a final estimate, the Bank in our example contains 55,088 Cubic

Yards, while by our hasty process the result is 55,385 Cubic Yards,

or 297 Cubic Yards more. As this difference is but little more than the

half of one per cent, upon the true amount, it can hardly be consid-

ered as excessive for a method as brief and simple as that under con-

sideration here.

Fig. 76. ROCK-CUT.

The Rock-Cut, like the Bank connected with it, and tabulated

above, is 1000 feet in length between the grade points, or 5 intervals

of 200 feet each, which, being an uneven number, we must tempora-
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rily omit one station, and calculate it separately, to make the number
of intervals even, and bring it within the scope of Simpson's Rule.

Let the station reserved be from 19 to 21 = 200 feet.

Tabulation.

Sta. Areas. Mults.

11 192 X 1

13 646 X 4

15 975

17 589 X 4

19 771 X 1

Station reserved from 19 to

21, to make the number of in-

tervals even, as required by
the Rule of Simpson.

19 = 771 X 1 = 771
20 = 433 X 4 = 1732
21 = 192 X 1 = 192

6)2695

Mean Area = 449

General Mean Area

Solidity . . . .

Tabulated by Roots and

Squares, in stations of 100 feet

Diff. about 1 per cent, less

Sq. Feet.

= 192

= 2584
= 1950

= 2356

= 771

3)7853

2618 Partial Mean Area,

449

3067

200

Mean Area, reserved

station.

Square Feet.

Common Interval.

= 613400 = 22718 Cubic Yards.

= 623298 = 23085 "

= 9898 = 367 "

38 It will be observed that in the preceding computations
the Grade Prism is not taken into the account, as it is deductive on

both sides, and the only object in hand is a comparison.

The triangular section, or area of the Grade Prism, is the minimum

area found, in the methods of computation which go down to the

junction of the side-slopes, and always occurs when the road-bed

comes to grade, or the level hight on the centre line is 0.

And we repeat, it is necessary to be careful that the volume of the

Grade Prism (always included in the earlier steps of such calcula-

tions) is duly deducted before the close of the operation, in order to

determine the solidity above the road-bed in cutting, or below it in

filling.
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We may here add that the earth cutting profiled ante, and

there correctly computed by Roots and Squares, if calculated

with Simpson's Multipliers by the hasty process above given, in sta-

tions of 200 feet, as though it were part of an exploring line, would

give as follows :

Volume of Grade Prism omitted in both.
C. Yards.

/Tabulated

ante, in 100 feet stations == 18684
"

by our Hasty Process, 200 feet stations . . . = 18378

i Difference about H per cent, less = 306

So that this brief and hasty process, being very expeditious and

proximately correct (usually varying only 1 or 2 per cent, from the

truth), may be safely accepted as adequate for the determination of

the quantities of earthwork, which may be needed in rough estimates,

or for the comparison of exploring lines.

For the purpose of furnishing additional aid in expediting Prelimi-

nary Estimates, we annex four small Tables, which will be found

quite convenient.
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TABLES CALIFORNIA.
1, 2, 3, and 4.

For use in Hasty or Preliminary Estimates.

Viz: 1. Initial Triangles to a hight of unity, and various side and

surface slopes.

Triangular Areas to Intersection of Slopes.

Side-slopes. Surface-slopes.

2. Kock Cut i to 1, and 0, 5, 10, 15, 20.

3. Earth Cut 1 to 1, and " " " "

4. Embankment and "

In using Tables 2, 3, and 4, the centre hight is generally to be

taken to the nearest foot (though tenths might be used), and the

ground surface slope to the nearest 5 these being thought sufficient

for rough estimates and if the centre hight should exceed the limits

of the Tables, then, by using the Initial Triangles of Table 1, the area

of the cross-section for any hight whatever can be easily ascertained.

If the centre hights necessarily contain tenths of feet, they may be

proportioned for by the columns in the Tables for that purpose.

Note. All the triangular areas in Tables 2, 3, and 4, extend from

ground line to junction of side-slopes prolonged, or edge of the diedral

angle, which, with ground surface, bounds on every side the earthwork

solid. The road-bed, or grade line, may be assumed to cross the tri-

angle at any given distance from the angle of intersection ; but the

volume of the Grade Prism must always be ascertained and deducted

at the close of the operation, in every calculation involving the trian-

gular areas of the Tables. The altitude of the Grade Triangle is

invariably = road-bed -f- 2 r, and its area will be found opposite to

this hierht in the column of the Tables.
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TABLE 1.

Initial Triangles, to a hight of unity, with side-slopes of i to 1 for

Rock; 1 to 1 for earth; 1& to 1 for embankment; and ground sur-

face slopes of 0, 5, 10, 15, 20. All computed to six places of

decimals, and all extending from ground line to intersection of side-

slopes.

Side-slopes.
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Triangular Areas, in square feet, for side-slopes of i to 1, to intersec-

tion of slopes, (r
= i) Slope angle = 71 34'.

TABLE 2Ri>ck-cirt.

Hight
iii
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Triangular Areas, in square feet, for side-slopes of 1 to 1, to inter-

section of slopes, (r = 1.) Slope angle = *45.

TABLE 3 Earth-cut.

Hight
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Triangular areas, in square feet, for side-slopes of

section of slopes, (r
= H.) Slope angle = 33 41'.

to 1, to inter-

TAJ1LE 4 Bank.

Right



TABLE OF CUBIC YARDS
IN FULL STATIONS, OR LENGTHS OF WO FEET.

CALCULATED FOR EVERY FOOT AND TENTH OF MEAN AREA,

FROM 0- TO 1000' SUPERFICIAL FEET.

Note. On every page of the Table, the columns on both sides headed M.A. contain the

Mean Areas, in square, or superficial feet.

The horizontal lines at top and bottom show the tenths of square feet of

Mean Area.

And the figures in the body of the Table, computed to three places of decimals,

are the Cubic Yards (for 100- feet), corresponding to the feet and tenths of Mean

Area, indicated in the side columns, and lines of tenths at top and bottom.

EXPLANATION OF THE TABLE OF CUBIC YARDS,
To Mean Areas, in lengtJis of 100* feet, and of its Applications.

This Table is computed to facilitate the conversion into Cubic Yards

of the content of any solid 100 feet in length, of which the Mean Area,

in superficial feet has been ascertained. It applies directly to all

Mean Areas from 0' to 1000' square feet (including tenths of feet),

and being calculated to three decimal places, it extends indirectly to

100,000* superficial feet of Mean Area, as will be shown hereafter.

EXAMPLE 1.

Cubic yards for

full stations

To find the Cubic Yards, belonging to 579'
8

sup. ft. of Mean Area, for a full station, or length
of 100- feet :

Opposite 579' and under *8 we find the con-

tent, or solidity =2147'407 cubic yards.

Which is equal to

579-
8

sq. ft. of Mean Area X 100' feet long,

and divided by 27.

170
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EXAMPLE 2.

Cubic yards for

short stations

(-100-)

EXAMPLE 3.

Cubic yards for

long stations

(+ 100-)

/ Let the Mean Area of any solid, be 98* T

sq. ft.

and its length 84 ft. lineal : (being a short station).

Then at 98'
7 we find 365*556 cubic yards,

which being multiplied by '84 taken decimally,

gives 365-556 X '84 =307'067 cubic yards.

Equal to...
*7X*

Again, let the Mean Area be 88*
6 and the

length 259- feet (or a long station) ;
then for 88'

6

sq. ft. of Mean Area, we have 328*148 cubic

yards, which multiplied by 2*59 (decimal)

gives =849-903 cubic yards.

Equal to...
88-6 X 259-

27-

Th is Table is especially useful in the computation of the Earth-

work of Railroads, and other Public Works, where cross-sections

have been taken normal to a guide line, at distances (generally) of

100- lineal feet (or full stations), and the Mean Area calculated in

superficial feet and parts: but it is also applicable to any solid of

which the mean section is known in square feet, and the length 100*

feet, or any decimal part thereof.

For, if the distances apart of cross-sections, or lengths of stations,

be more, or less, than 100' feet, we have only to take them decimally,

as in the above examples, and by a simple multiplication, of the

tabular quantity, belonging to the known area, the correct number
of cubic yards will be ascertained.

The Table being calculated to three places of decimals, readily ad-

mits of being used for Mean Areas, much exceeding its direct range
of 1000- superficial feet (as follows) :

EXAMPLE 4. Suppose the Mean Area to be 98,967*
*

sq. ft. (repre-

senting a cut 98'
9
feet deep, and 1000" feet wide).

Then for 98,900' (by moving the decimal point
of the tabular quantity of cubic yards for 989'

two figures to the right)

We have, area 98,900' = 366,296-
3
cubic yds.

Add 67-
4= 249- 8 "

Total, for sq. ft... 98,967' <= 366,545-

Equal to '-
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Again, take a Mean Area, of 100,048'
9

sq. ft. (representing a cut

100- feet deep, and 1000' feet wide).

Then for 100,000 sq. ft. (by moving the deci-

mal point of the tabular quantity of cubic yards

for 1000* two figures to the right),

We have, 100,000 Area == 370,370'
4
cub. yds.

Add
48;

9 " = 181'
l " "

Total for 100,048'
9 " = 370,551'

5 " "

Equal to... 100^X100,

Example 4, shows the easy application of the Table, to Mean

Areas, which may be called immense, by merely moving the decimal

point, and a simple addition, as shown above.

Other methods of using the Table will occur to the reader, but the

examples given seem sufficient for illustration.

Much pains have been taken to make this Table correct, to the

nearest decimal, and we believe it may be safely depended on.

Note. Besides its special application to Earthworks, the extensive

Table following is also a general Table for the conversion of any sum

of Cub.ic Feet into Cubic Yards. Thus, in the example at page 103,

the reduced quantities of Cubic Feet sum up 227,200 30,000 =
197,200 Cubic Feet.

In such cases we have only to cut off two figures from the right

(or H- by 100), and we have 1972, the mean area, which, in 100 feet

length, would have produced the quantity given.

With 197*2 we enter the Table following, and find 730'370 Cubic

Yards
; now, moving the decimal point one place to the right, we

have 7303-70 Cubic Yards, or in round numbers, 7304 Cubic Yards,

as already given on page 103.

In like manner the Cubic Yards for any sum whatever of Cubic

Feet can readily be obtained, and the Table being in itself strictly

correct, the result will be reliable.
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TABT.E OF CUIilC YARDS, in full Station*, or length ft of 1OO fret: for every
foot ami ti-nth of Menu Arm, from O to 1OOO Snjurftcinl Fret.

M.A.
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CUBIC YARDS TO MEAN AREAS FOR WO FEET IN LENGTH.

M.A.
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CUBIC YARDS TO MEAN AREAS FOR 1OO FEET Iff LENGTH.

M.A.
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CUBIC YARDS TO MEAN AREAS FOR WO FEET IN LENGTH.

M.A.
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CUBIC TARDS TO MEAN AREAS FOJl 1OO FEET IN LENGTH.

M.A.
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CUBIC YARDS TO MEAN AREAS FOR 1OO FEET IN LENGTH.

M.A.
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CUBIC YARDS TO MEAN AREAS FOR 1OO FEET IN LENGTH.

M.A.
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CUBIC YARDS TO MEAN AREAS J OR 1OO FEET IN LENGTH.

M.A.
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CUBIC YARDS TO MEAN AREAS FOR WO FEET IN LEXGTIT.

M.A.
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CUBIC YARDS TO MEAN AREAS FOR WO FEET IN LENGTH.

M.A.
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CVTtIC YARDS TO MEAN AREAS FOR 1OO FEET IN LENGTH.

M.A.



184 RULES FOR THE MEASUREMENT OP EARTHWORKS.

CUBIC YARDS TO MEAN AREAS FOR 1OO FEET IN LENGTH.

M.A.
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CUBIC YARDS TO MEAN AREAS FOR 1OO FEET IN LENGTH.

.M.A.
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CUBIC YARDS TO MEAN AREAS FOR WO FEET IN LENGTH.

M.A.
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CTTJilC YARDS TO MEAN AREAS FOR WO FEET IN LENGTH.

M.A-
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CUBIC YARDS TO MEAN AREAS FOR 10O FEET IN LENGTH.

M.A.
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CVJSIC YARDS TO MEAX AREAS FOR 1OO FEET IN LENGTH.

M.A.
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Van Nostrand's Ecletic Engineer-
ing Magazine 5 00

Workshop (The) 5 50

Album indusiriel et de la chaus-
sure $ 5 00

Ameublement (!') et Putile reunis.
Noir 7 50

do. Couleur 12 50
Annales du Conservato)re imperial

des arts et metiers 10 00
Architecture allemande avi XIX
me 12 00

Batiment (le.) Journal general
des travaux publics et prives et

leMoituer des batiments reunis. 7 50
Garde-Meuble (le.) Noir 5 65
Couleur 9 00
Gazette des architectes et du bati-

ment 12 50
Guide [le] du carrossier 12 00
Journal de Menuiserie 12 00
Journal des Brasseurs 7 00
Journal des Chapeliers et de la

Chapellerie.. 7 00
Journal-Manuel de Peintures ap-

pliquees a la decoration des
monuments apartments, maga-
sins, etc., etc., 11 00

Magisin de meubles, publiant, 48

planches par an. Moir 7 50
Couleur 15 00
Moniteur de la bijouterie 7 00
Moniteur de la brasserie 6 00
Moniteur de la chapellerie ou

1'Echo des applications qui se

rapportent a cette Industrie 6 00
Moniteur de 1'horlogerie 7 00
Moniteur des Architectes 12 50
Moniteur des marbriers-sculpteurs 7 00
Revue general de 1'architecture et

. des travaux publics 20 00

Catalogues of Scientific and Mechanical Works furnished on appli-
cation.

T. R. CALLENDER & CO.
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