

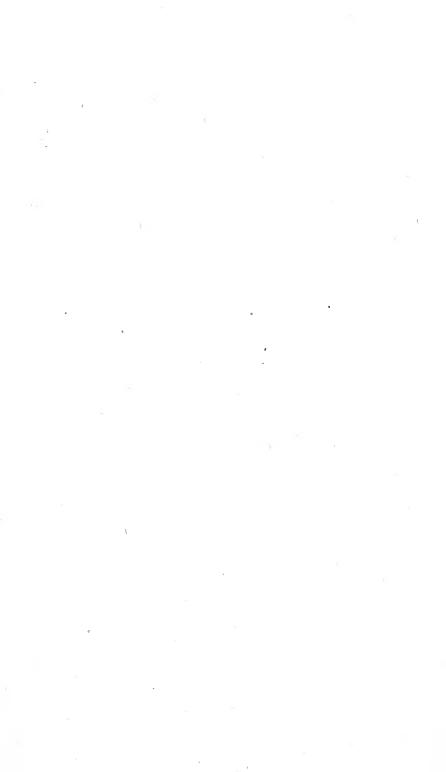
OF THE

Eniversity of Ealifornia.

.Vo.

Division

Range


Shelf

Received


12054

April 18:7

EASY RULES

FOR THE

MEASUREMENT OF EARTHWORKS,

BY MEANS OF THE

PRISMOIDAL FORMULA.

ILLUSTRATED WITH NUMEROUS WOODCUTS, PROBLEMS, AND EX-AMPLES, AND CONCLUDED BY AN EXTENSIVE TABLE FOR FINDING THE SOLIDITY IN CUBIC YARDS FROM MEAN AREAS.

THE WHOLE

BEING ADAPTED FOR CONVENIENT USE BY ENGINEERS, SURVEYORS, CONTRACTORS, AND OTHERS NEEDING CORRECT MEASUREMENTS OF EARTHWORK.

LIBRARY

UNIVERSITY OF

CALIFORNIA

BY

ELLWOOD MORRIS, CIVIL ENGINEER.

PHILADELPHIA: T. R. CALLENDER & CO., THIRD AND WALNUT STS. LONDON: TRÜBNER & CO., 60 PATERNOSTER ROW.

1872.

Entered according to Act of Congress, in the year 1871, by ELLWOOD MORRIS, CIVIL ENGINEER, OF CAMDEN, N. J., In the Office of the Librarian of Congress, at Washington, D. C.

Dedication.

RESPECTFULLY DEDICATED

TO THE

ENGINEERS, SURVEYORS, AND CONTRACTORS

OF

THE UNITED STATES,

BY ONE WHO IS WELL ACQUAINTED

WITH .

THEIR ABILITIES AND WORTH.

TABLE OF CONTENTS,

BY CHAPTER, ARTICLE, PAGE, AND REFERENCE TO ILLUSTRATIONS.

CHAPTER I.

PRELIMINARY PROBLEMS.

Art.	1.	Of the Prismoid Origin probably ancient. Prismoidal Rule, first devised and	7
		demonstrated by THOMAS SIMPSON (1750). Generalized and improved by CHARLES HUITON (1770). Now known as the Prismoidal Formula. A Prismoid defined,	
		described, and illustrated by Fig. 1. The Prismoid, a frustum of a wedge, which latter is itself a truncated triangular Prism. Example of rectangular Prismoids, by Simpson's Rule and other processes.	8
Art.	2.	Simpson's Prismoidal Rule. Applicable chiefly to rectangular and triangular	10
Art.	2	Prismoids, with examples of each. Illustrated by Fig. 2. Hutton's Prismoidal Rules.—His definition of a Prismoid. General Rule, in which	11 12
лп.	э.	the hypothetical mid-section, deduced from the ends, is first introduced by him, thus generalizing the rule, and materially extending its usefulness. Particular Rule, deduced from the wedge. Rectangular Prismoid, composed of two wedges. Initial Prismoids, to determine generality of rule. Applicability of Hutton's Rule to various solids, named by him. Example of computation by General and Par-	12 13 15
		ticular rules; also, by Initial Prismoids. The T Prismoid, example of its compu-	16
Art	4.	tation. Figs. 3, 4, and 5 illustrate this article. The Prismoid adapted to Earthwork.—By Sir John Macneill, C. E. (Fig.6), his figure	18
		of a prismoid composed of a prism and superposed wedge. Demonstrates the Prismoidal Rule, and uses it in an extensive series of Tables (1833).	
Art.	5.	The Prismoid in its Simplest Form.—Computed by several rules. Illustrated by Fig. 7.	20
Art.	6.	Further Illustration of Macneill's Primoid.—Double cross-sectioned in Fig. 8. Con- cise rule for earthwork wedges, confirmed by Chauvenet's Geometry. Brevity of computation of earthwork solids on level ground, by combining the rules for	21
Art.	7.	Wedge and Prism. Wedges applicable also to irregular ground. Irapezoidal Prismoid of Earthwork, considered as two Wedges.—Hutton's Particular	24
Art.	Q	Rule, modified for earthwork. Illustrated by Fig. 9, and by examples.	26
	0.	Areas of Railroad Cross-sections (within Diedral Angles), whether Triangular, Quadrangular, or Irregular.—Triangles and Trapeziums computable by their hights and widths, taken rectangularly, however they may be placed (see Figs. 10, 11, 12, and 13). Exact method of equalizing irregular ground surface, by a single right line (see Figs. 14 and 15). Calculation of areas of cross-sections (Figs. 16 and 17). Very irregular cross-sections require division into elementary figures, these to be separately computed and totalized.	26 28 30 32 33 34 35
Art.	9.	Further Illustration of the Modification of Simpson's Rule, etc.—Example illustrated by Fig. 18. Diagram of Simpson's mid-section, Fig. 19, showing its curious com- position. Diagram of the formulas of Simpson and Hutton, Fig. 19½. Formula deduced from it.	36 37
Art.	10.	Adaptation of the Prismoidal Formula to Quadrature, Cubature, etc., by Simpson and Hutton—Explanation of it by Hutton, under the head of Equidistant Ordi- nates, Fig. 20. Example of two stations of earthwork, Figs. 21 to 26. Coincidence with the Prismoidal Formula. Earthwork calculations by Roots and Squares, explained and illustrated by examples, and by Figs. from 27 to 38; also, by com- parison with other methods. Computation of the passages at grade points, from excavation to embankment, Figs. 39 to 42.	40 42 44 46 47 53
Art.	11.	Cross-sections in Diedral Angles, to find Mid-section, etcIllustrated by Figs. 43 and 44.	55
Art.	12.	To find Prismoidal Mean Area, from Arithmetical or Geometrical Means, from the Mid-section, or by Corrective Fractions.—Examples, illustrated by Figs. 45 and 46.	59
Art.	13.	Applicability of the Prismoidal Formula to other Solids.—The three round bodies computable by it. Examples given and illustrated by Fig. 47. This formula also applies to the three square, or angular bodies.	62

TABLE OF CONTENTS.

		PAGE
Art. 14. Art. 15.	Transformation of Solids into Equivalents more easily Computable Prismoidally— Equivalency explained. With examples illustrated by Figs. 48, 49, 50, and 51. Equivalence of some important Formulas, with that for the Prismoid.—Coincidence	65 68
	of the Pyramidal and Prismoidal Formulas, but you are young that the source of the Pyramidal and Prismoidal Formulas, to a certain extent, and similitude of their results within certain limits. Illustrated by Fig. 52 (in projection), and followed by examples calculated both Prismoidally and Pyramidally, and by other rules; all equivalent in solidity upon level ground.	08
Art. 16.	Summary of Rules and Formulas in Chapter IIndicated by numbers from I. to XII., and by reference to the various articles of the chapter in which they may be found.	74
	CHAPTER . II.	
	FIRST METHOD OF COMPUTATION, BY MID-SECTIONS DRAWN AND CALCULATED FOR AREA ON THE BASIS OF HUTTON'S GENERAL RULE.	
Art. 17.	Generality and accuracy of the Prismoidal Formula. Manner of collecting the field data. Rules for cross-sectioning. Correction for curvature. Vital importance of judicious cross-sectioning. Ground to be sectioned so as to reduce it practically to plane surfaces. Warped surfaces and opposite slopes deemed inadmissible in general. Expression for the Prismoidal Formula, as generalized by HUTTON. Classification of the ground surface. Mensuration by cross-sections, long used by mathematicians, and early adopted by engineers.	79
Art. 18. Art. 19.	Examples in computation by our First Method. Illustrated by Figs. 53 to 64. Connected calculation of contiguous portions of Excavation and Embankment, with the passage from one to the other. Illustrated by Figs. 65 to 71. End sections to have, or receive, the same number of sides before calculation. Observations on mid sections. Importance of verifying all calculations. The Prismoidal Formula, the standard test for solidity. Correction for centres of gravity referred to as a refinement promoting accuracy, but not employed by engineers. This First Method easily applicable to masonry calculations. Borden's Problem, a striking	85 91
	Method easily applicable to masonry calculations. Borden's Problem, a striking example of bad cross-sectioning.	94 96
	CHAPTER III.	
	SECOND METHOD OF COMPUTATION, BY HIGHTS AND WIDTHS, AFTER SIMPSON'S ORIGINAL RULE.	
Art. 20.	Prismoidal Rule, originated and demonstrated by Simpson (1750) for rectangular prismoids. Its transformation for triangular areas. Modification by direct and cross multiplication.	98
Art. 21. Art. 22.	Examples of computation by our Second Method. Illustrated by Figs. 72 to 75. Observations upon Simpson's Rule. Ground surfaces to be equalized to a single line. Peculiar solid where Simpson's Rule fails. See Figs. 81 and 82. Examples of rough ground equalized by a single line. Illustrated by Figs. 43 and 44. Example of a heavy embankment, from Warner's Earthwork, on uniform ground, sloping 15° transversely.	101 104
	CHAPTER IV.	
	THIRD METHOD OF COMPUTATION, BY MEANS OF ROOTS AND SQUARES; A PECULIAR MODI- FICATION OF THE PRISMOIDAL FORMULA, WHICH WILL BE FOUND IN PRACTICE TO BE BOTH EXPEDITIOUS AND CORRECT, IN ORDINARY CASES.	
Art. 23.	Enunciation of the formula used. Comparison with the Prismoidal Formula. Use of Simpson's rule for cubature, as adopted by Hutton. Skeleton tabular arrange- ment of data. Tshulations for solidity. Numbered places for and sections and	108
Art. 24.	ment of data. Tabulations for solidity. Numbered places for end-sections and mid-sections. Example of a heavy embankment and rock-cut (profiled in Fig. 76), and each computed in a body by this method. Relations of the squares of lines, or parts of lines. Re-computation by Roots and Squares of the examples of the start of the section of the section of the squares of the start of the squares of the start of the start of the section of the start of the section of the se	110
Art. 25.	lines, or parts of lines. Re-computation by Roots and Squares of the examples of Chapter II. (illustrated by Figs. 53 to 64), showing their close agreement with this method.	114
	CHAPTER V.	
	FOURTH METHOD OF COMPUTATION, BY REGARDING THE PRISMOID AS BEING COMPOSED OF A PRISM, WITH A WEDGE SUPERPOSED, OR OF A WEDGE AND PYRAMID COMBINED.	
Art. 26.	Macneill's wedge superposed upon a prism to form a prismoid. Formula for wedge and prism to find solidity of prismoid. Discussion of the inclined wedge ($Fig. 79$), and calculation of it.	118
Art. 27. a	Rules for computation by Wedge and Prism. Discussion of the wedge in connection with Chanvenet's Theorem. Illustrated by	122 123
Art. 28. Art. 29.	9 small cuts. Showing the mode of computing various wedges. Examples of Wedge and Prism computation. Illustrated by Figs. 80, 14, 43, and 44. Peculiar solid cross-sectioned (Fig. 81), and in projection (Fig. 82). Examples of modes of computing it.	127 131

TABLE OF CONTENTS.

		PAGE
Art. 30.	The Rhomboldal Wedge and Pyramid introduced. Examples of calculation by using them to find the solidity of a prismoid.	
	The method of using the Rhomboidal Wedge and Pyramid combined. (Figs. 81	135
	Any irregular earthwork, within certain limits, computable by Wedge and Pyramid. Process of computation. Notation of rule. The Rule itself. Its limits of range	137
	Any irregular earthwork, within certain limits, computable by Wedge and Pyramid. Process of computation. Notation of rule. The Rule itself. Its limits of range. Examples of computation by Wedge and Pyramid; direct and reverse. Re-com- puting by this method the examples of Chapter II., and showing their near coin- cidence. Illustrated by Figs. from 53 to 64, in Chapter II.	139
	Example of heavy embankment (from Warner's Earthwork), computed by Wedge and Pyramid.	142
	Peculiar solid again; illustrating Case 2, of the rule for Wedge and Pyramid, which correctly gives its volume.	143
	CHAPTER VI.	
	PROFESSOR GILLESPIE'S FOUR USUAL RULES, WITH THEIR CORRECTIONS, AND A COMPARI- SON OF HIS CHIEF EXAMPLE WITH OUR THIRD METHOD OF COMPUTATION-BY ROOTS AND SQUARES.	,
Art. 31.	The late Professor Gillespie's ability and labors. The four usual rules, which he found in use. 1. Arithmetical Average, a rule very much used, but very incorrect. The correction necessary for true results. Tabulation of an example by the Arithmetical Average, with Gillespie's correction. 2. Middle Areas, rule explained and formula for correction to give true solidity. Tabulation of example by Middle Areas, with correction. 3. The Prismoidal Formula, as generalized by Hutton. The test rule for all. Tabulation of the rule, Gillespie's condemnation of Geometrical Average.	145
Art. 32.	metrical Average, and of Equivalent Level Hights, evidently hasty. Re-computation of example by Geometrical Average, using the grade triangle, and tabulating to intersection of side-slopes. Solidity the same as given by the Pris- moidal Formula, as calculated by Gillespie himself. Generalization from which this rule flows. Equivalent Level Hights. Tabulation of an example by them to intersection of side-slopes. Resulting in solidity the same as by the Prismoidal Formula, calculated by Professor Gillespie.	151
A11. 33.	Five reliable rules for earthworks, deduced from this Chapter. Brief reference to the Core and Slope Method, one of the earliest proposed, and often re-produced, but not in general use.	152
Art. 34.	Tabulated comparison of Gillespie's example by the method of Roots and Squares, agreeing with the Prismoidal Formula, and may be used with Simpson's Multi- pliers. Gillespie's examples usually refer to level ground, and hence are easily computed.	154
	CHAPTER VII.	
	PRELIMINARY OR HASTY ESTIMATES, COMPUTED BY SIMPSON'S RULE FOR CUBATURE.	
Art. 35.	Nature of Preliminary Estimates. Rough and expeditions, but giving quantities proximately correct. Quantities to be always full, but never excessive. Simp- son's rule for cubature. Explanation and notation. Mode of numbering the cross-sections, even and odd. Cuts and Banks to be computed separately, each in a body. General Mean Area to be found, and multiplied by length for volume.	156
Art. 36.	Simpson's Multipliers, their convenience and application. Diagrams indicating a probable construction of the rule for cubature, and its intimate connection with the Primoidal Formula (Figs. 77 and 78.)	158
Art. 37.	Rough profile to be sketched, involving hights and ground slopes. Computation of a Bank by Simpson's Multipliers. Rock-cut calculated in the same way. Both	160
Art. 38.	illustrated by <i>Fig.</i> 76. Reference to the grade prism. Earth cutting, <i>Fig.</i> 29, computed by both Roots and I Squares and the Hasty Process, differing only one and a half per cent.	163
	Tables (four in number) for use in Preliminary or Hasty Estimates.	165
	Following this Chapter, and closing the Book, will be found an extensive TABLE OF CUDIO YARDS to mean areas for 100 feet stations (entirely clear of error, it is believed), giving the Cubic Yards for every foot and tenth of mean area from 0 to 1000, by direct inspection. And being computed accurately to three decimal places, ranges correctly up to 100,000 square feet of mean area, or to a cut 1000 feet wide, and 100 feet deep. Table preceded by explanations, and some examples of its use. This Table also operates as a general one for the conversion of any sum of cubic feet into Cubic Yards, by simply dividing by 100 and using the quotient as a mean area.	173

LIBRARY UNIVERSITY OF CALIFORNIA.

EASY RULES

FOR THE

MEASUREMENT OF EARTHWORKS,

BY MEANS OF THE PRISMOIDAL FORMULA.

CHAPTER I.

PRELIMINARY PROBLEMS.

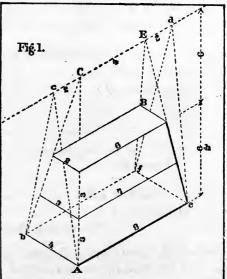
1. Of the Prismoid.—Although this solid probably originated with the ancient geometers—THOMAS SIMPSON (1750), an eminent mathematician of the last century, appears to have been the first, in later days, to demonstrate the rule for its solidity,* now accepted by modern mensurators; and he was soon followed by Hutton, in his quarto treatise on Mensuration,† who by another process again demonstrated the Prismoidal Rule, and at the same time laid the foundations of modern mensuration, in a manner so solid, that it has come down to our time, through various editors and commentators, substantially (in many cases literally) the same as established by Hutton in his famous work of 1770.

Simpson's rule for the prismoid has been variously transformed, and written, and is now generally known by the name of *the prismoidal formula*, of which we will give hereafter the usual expressions, as well as some useful modifications, the same in substance, but often more convenient for practical purposes.

The solid called a Prismoid (from its general resemblance to a prism, and in like manner named from its base, triangular, rectangular, trapezoidal, etc.) is a body contained between two parallel planes,

^{*} Simpson's Doctrine of Fluxions. (1750), 8vo, London.

[†] Hutton's Mensuration. (1770), 4to, Newcastle upon Tyne.


its hight being their perpendicular distance apart, its ends rectangles. and its faces plane trapezoids;—and this seems to be a sufficient definition. As to such form, all prismoids may be reduced or made equivalent; but although this simple definition answers our purpose of introducing the rectangular prismoid, HUTTON'S, Art. 3, is the authoritative one.

This solid is usually the frustum of a wedge; but as the proportions of the ends are changed, it may become a frustum of a pyramid, a complete pyramid, a wedge, or a prism; and hence it is indispensably necessary that the rule for its solidity should also hold for *all* these solids, which, in fact, *it does*.

The ends may be, and often are, irregular polygons, but they must always coincide with the limiting parallel planes; and though the solid may be quite oblique, its hight must be taken normal to the . end planes. The faces are usually straight longitudinally, but this condition is not absolute, since the remarkable formula, deduced from the prismoid for its solidity, applies as well to the volume of many curved solids in an extraordinary manner, of which the limits are not yet known, though more than a century has elapsed since Simpson developed it.

The *mid-section*, included by the usual prismoidal formula, must be in a plane parallel to, and equally distant from, those containing the ends, and is deduced from the arithmetical average of like parts in them. It is entirely hypothetical, or assumed for the purposes of computation, and has no actual existence in the body itself.

The rectangular prismoid (usually regarded as the elementary figure of this solid) is a frustum of the wedge.

(a.)..... Thus the prismoid AB (Fig. 1) is a frustum of the wedge AEC.

The wedge AEC itself being a triangular prism, truncated *twice*, the rectangular prismoid then is a triangular prism, *trebly truncated*: 1st, by two cutting planes, reduced to a wedge; and 2nd, by another plane, to a prismoid (AB), the latter being parallel to the base, and by its section forming the top of the solid at B.

The prismoid, therefore, may be computed as a truncated triangular prism or wedge, and the part cut off deducted, in like manner as the frustum of a pyramid may be calculated as though the pyramid was complete, and then the truncated part computed separately and subtracted, leaving only the solidity of the frustum, subject, like the prismoid, to calculation, by more concise rules, if expedient.

Referring now to Fig. 1.

Let A b c d e f be the original triangular prism, truncated right and left by planes passing through A b and ef, reducing it *first* to the wedge AE; and *secondly*, by passing the plane B 2, parallel to the base e b, leaving as the residual solid, after three truncations, the *Prismoid* AB.

Then, in the wedge AEC, the right section has a base of 4, a hight of 12, and area of 24, which, multiplied by $\frac{1}{2}$ the sum of the lateral edges * (or 6 $\frac{2}{3}$), gives a solidity of 160; while the wedge BCE, cut off, has a base of 2, and hight of 6, in its right section, or area of 6, which, multiplied by $\frac{1}{2}$ the sum of its lateral edges (or 5 $\frac{1}{3}$), gives a volume of 32.

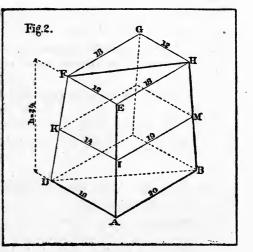
Now, 160 - 32 = 128, the solidity of the Prismoid AB, as is shown (more concisely) as follows:

By Simpson's Rule-

Hts. Widths.	
Base,	2
Top,	2
Product of sums, equivalent to 4 times mid. sec.,	4
Multiplied by $\frac{1}{6}$ h	-
Solidity, $\ldots \ldots \ldots \ldots \ldots = \overline{12}$ (The same as above.)	_

Precisely the same result is also reached by means of the centre of gravity of the right section, flowing with that section along a line

^{*} Chauvenet's Geom. (1871), vii. 22. A wedge, whether trapezoidal or rectangular, being merely a truncated triangular prism, this rule of Chauvenet's is probably the most concise, and best for ordinary use.


curved with an infinite radius, according to Hutton's Problem.* The right section of the prismoid AB (*Fig.* 1) is a plane trapezoid (18 in area), of which (from the dimensions given in the figure) the centre of gravity is found in a perpendicular line, drawn from the middle of A b, and at the distance of $2\frac{3}{2}$ feet vertically from it. Now, the length of a straight line, drawn from face to face of the prismoid, parallel to the plane of the base—also to its edges—and at a vertical distance of $2\frac{3}{2}$ feet, will be $7\frac{1}{2}$ feet, by which the right section (18) being multiplied, we have for the solidity = 128, as before.

2. THOMAS SIMPSON'S Prismoidal Rule .- In his work on Fluxions

and their Applications (1750), Simpson demonstrates the following rule for the solidity of a prismoid, referring to Fig. 2.

This rule for the prismoid, as demonstrated by Simpson, renders the formation of the hypothetical mid-section unnecessary, though containing it, *in effect*, as marked upon the figure, for illustration.

Simpson's Rule is as follows :---Fig. 2.

 $\begin{pmatrix} \text{hight} \times \text{width} \\ \text{of one end,} \end{pmatrix} + \begin{pmatrix} \text{hight} \times \text{width} \\ \text{of other end,} \end{pmatrix} +$

 $\begin{pmatrix} \text{sum of hights } \times \text{ sum of widths} \\ \text{of both ends,} \end{pmatrix} \times \frac{1}{2} \mathbf{h} = Solidity, . . (\mathbf{I}.)$

Here $AB \times AD$ = area of base. $EH \times EF$ = area of top. While the product of their sums = $(AB + EH) \times (AD + EF)$ = four times the area of the mid-section.

EXAMPLE 1.

Let AB and EH be called the *widths*, AD and EF the *hights*, and take the dimensions marked upon *Fig.* 2. Then, by Simpson's rule, we have for the solidity of this *rectangular* prismoid the following:

Widths.	IIts.						
$20 \times$	16 :	=	320	_	area o	f base.	
$_{18} \times$	12 :	_	216	=	do.	top.	
$-\overline{38}$ \vee	28 .		1064	_	four t	imes m	:.

Sums of hts. and widths = $38 \times 28 = 1064$ = four times mid-sec.

Multiplied by $\frac{1}{6}$ h = $\frac{2}{6}^{4}$, . . . = $\frac{1600}{4}$ = sum of areas. Solidity, = $\frac{4}{6400}$ = volume.

(a.).... The above is a *rectangular prismoid*, or one in which all the parallel sections are rectangles. Now, suppose this prismoid to be cut diagonally by a plane, FHBD, dividing it into two *triangular prismoids*, each equal to the other, and to one-half of the rectangular prismoid.

Then $(AB \times AD) = double$ the base; $(EH \times EF) = double$ the top; and $(AB + EH) \times (AD + EF) = eight$ times the midsection.

Hence, Simpson's rule, though applicable to any prismoid, by reducing the ends to equivalent rectangles, seems especially suitable to triangular prismoids, since the double area of every triangle is equal to the product of its hight and width, taken rectangularly; while the product of the sums of those hights and widths, multiplied together, gives eight times the area of the mid-section, without the necessity of forming it by arithmetical averages.

Accordingly, with triangular sections, a slight transformation of this rule will often be more convenient for use with given areas. Thus.

Let double the area of the base = 2 b. """"top = 2 t. Eight times the area of the mid-sec. = 8 m. And the final divisor (12), or if used as above, $\cdot = \frac{1}{12}$ h. Then, to find, in the first instance, the mean area of the prismoid. We have the formula, $\frac{2 \mathbf{b} + 2 \mathbf{t} + 8 \mathbf{m}}{12} = mean area$. (II.) And this mean area, being multiplied by the hight or length (h).

of the whole prismoid between the end planes, gives the solidity.

Thus, in the case of the two triangular prismoids, into which the diagonal plane FB (Fig. 2) divides Simpson's rectangular prismoid, we have, by taking the dimensions marked upon the figure,—the following:

EXAMPLE 2.

Calculation of the triangular prismoid ABDFHE, or of its equal GD = 3200, Solidity.

Hts. Widths. $16 \times 20 = 320 = 2$ b. $12 \times 18 = 216 = 2$ t. Sums, . . $28 \times 38 = 1064 = 8$ m. $12\overline{)1600}$

Mean area, $. = 133\frac{1}{3} \times h = 24 = 3200$, Solidity. And $3200 \times 2 = 6400 =$ the solidity of the whole rectangular prismoid, as above.

3. CHARLES HUTTON'S *Prismoidal Rules.*—In his famous quarto Mensuration (Newcastle-upon-Tyne, 1770), Hutton gives the following definition:

"A prismoid is a solid having for its two ends any dissimilar parallel plane figures of the same number of sides, and all the sides of the solid, plane figures also."

He adds: "It is evident that the sides of this solid are all trapezoids;" and: "If the ends of the prismoid be bounded by curves, as ellipses, etc., the number of its sides, or trapezoids, will be infinite, and it is then called, sometimes, a cylindroid."

Hutton gives two rules for the solidity of the body (so defined), one general, and the other he calls the *particular* rule—he also indicates a third, by means of initial prismoids, which, by a little development, can be made quite useful.

Hutton's General Rule.

In this shape, and nearly in the same words, through Bonnycastle, and other writers on Mensuration, the Prismoidal Formula has come down to our time.

In the work above cited, Hutton also (part iv. prop. 3) shows that

to f the sum of the end areas, and four times the mid-section, gives the mean area of any prismoidal solid, which, multiplied by its length, will equal the solidity.

The *particular rule*, referred to above, is directly deduced from that given by him for the solidity of a wedge.

Thus, referring to Fig. 3 (copied by us from the original work of 1770).

Hutton says, where L and l represent two corresponding dimensions of the end rectangles, B and b the others, and **h** the hight or length of the prismoid,

Then,

A note, on page 163, referring to this, says:

"It is evident that the rectangular prismoid is composed of two wedges, whose bases are the two ends of the prismoid, and whose hights are each equal to that of the prismoid."

It might be added, that the edges of these two wedges are formed by two diagonally opposite sides of the rectangular ends. Fig.3

Hutton notes also,

That $\frac{\mathbf{L}+l}{2} = \mathbf{M}$, and $\frac{\mathbf{B}+b}{2} = m$, the sides of the mid-section, so that the correspondence of the General and Particular Rules becomes evident.

(a.)..... At page 164 of the quarto Mensuration, cited above, reference is made to the General Rule as follows:

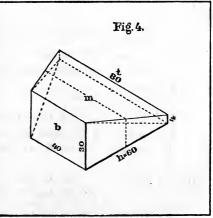
"This rule will serve for any prismoid or cylindroid, of whatever figure the ends may be, inasmuch as they may be conceived to be composed of an infinite number of rectangular prismoids. Which is the General Rule."

This method of considering any prismoid to be composed of a great number of rectangular prismoids, of the same common length, has prevailed from Hutton's time down to the present day.

Thus, we find in Davies Legendre,* chapter on the Mensuration

^{*} Davies Legendre. (1853), 8vo: New York.

of Solids, in treating of prismoids, where he copies Hutton's figure, and both Particular and General Rules,—the following:


"This rule (*the general one*) may be applied to any prismoid whatever. For whatever the form of the bases, there may be inscribed in each the same number of rectangles, and the number of these rectangles may be made so great that their sum in each base will differ from that base by less than any assignable quantity. Now, if on these rectangles rectangular prismoids be constructed, their sum will differ from the given prismoid by less than any assignable quantity. Hence, the rule is general."

In his remarkable chapter on the cubature of curves (Mens., part iv. page 457), Hutton shows that the prismoidal formula is applica-

ble to the frusta of all solids generated by the revolution of a conic section (as well as to the complete solids); also, to all pyramids and cones, and in short to all solids (right or oblique), of which the parallel sections are similar figures.

We will now illustrate Hutton's Rules, by means of a figure and examples, to find the solidity of a prismoid, with very dissimilar ends. (See Fig. 4.)*

1. By General Rule.	1
$40 \times 30 = 1200 = b.$	
$80 \times 4 = 320 = t.$	
$60 \times 17 \times 4 = 4080 = 4$ m.	
6)5600	
9331	
Multiplied by $\mathbf{h} = 60$	
Solidity = $\overline{56000}$	

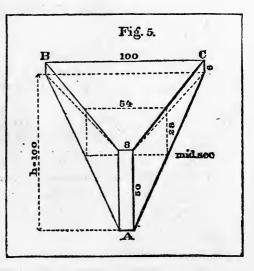
2. By Particular Rule. As . two Wedges 80 402 $\mathbf{2}$ 160 80 80 40 160 20030 4 4800 800 łh 10 1048000 8000 8000 56000 of whole pris-Soliditu moid.

3. By means of Initial Prismoids...... (\mathbf{V}_{\bullet}) (To be further explained.) (1) Areas of ends, b = 1200, and t = 320. LIBRA (2) $\left\{ \begin{array}{l} \text{Hights} = 30\\ \text{Widths} = 40 \end{array} \right\} \mathbf{b} = 4\\ \mathbf{b} = 80 \\ \mathbf{b}$ (3) Assumed squares in larger end, 1200 of 1×1 . UNIVERSIT (4) Ratio of ends, $\frac{\mathbf{t}}{\mathbf{b}} = \frac{320}{1200} = \cdot 2667.$ CALIFOR (5) Proportional rectangles in small end (1200 in number), $\frac{80}{40} = 2$, $\frac{4}{30} = .13333, 2 \times .13333 = .26667 =$ area of these, being equivalent to the ratio of the ends 1 to .2667. [See (4).] (6) Mid-section, dimensions of proportional rectangle, $\frac{1+2}{2} = 1.5$, $\frac{1 + \cdot 13333}{2} = \cdot 5667$, and $1.5 \times \cdot 5667 = \cdot 85 = \text{rectangular area of}$ mid-section of initial prismoid. Then for the solidity of the initial prismoid, by General Rule. Call these areas /

(7) (7)

(b.).... These initial prismoids are supposed to be constructed upon small rectangles in the two ends, equal in number in each, and of proportional areas.

In the base, or larger end (though either end may be used), it will be most convenient to assume these to be squares formed upon the unit of measure, while at the top they must be rectangles proportional both in dimensions and area, by the view we have herein taken (as indicated at (5) above).


The end areas of the main prismoid being always given, or computable, they must be proximately reduced to rectangles before we can properly apply the principle of initial prismoids to calculate, or verify, their solidity;—and the solid will then become, in effect, **a** rectangular prismoid like those of Simpson and Hutton.

In doing this, it will be sufficient to dermine a width and hight, apparently proportional to the shape of the cross section (which in some species of earthwork is extremely irregular),—but this hight and width must be such that, used as factors, they reproduce the given area, even though of themselves they may not be *exactly* geometrical equivalents, for the dimensions of the section.

Having thus (as it were) rectified the solid proximately, we may proceed with it as a rectangular prismoid, by the method of initial prismoids, briefly as follows:—Determine the rectangular hights and widths, such as will proximate the figure, and by multiplication reproduce the areas. Assume one end as base, to be divided into squares of superficial units, and the others into proportional rectangles; upon these con-

struct (or imagine) initial prismoids, and having ascertained the volume of one, multiply by number, for solidity of main prismoid, as shown in detail above. . . (**V**.)

(c.) We will further illustrate this subject by presenting an outline of a T-shaped prismoid; a solid (*Fig.* 5), with a figure so peculiar that none of the usual methods of averaging could even proximate its solidity, which

can only be dealt with by the Prismoidal Formula, or some cognate rules.

This we will calculate as a prismoid by Simpson's General Rule, by Hutton's Particular Rule, and by the Method of Initial Prismoids.

CHAP. I.-PRELIM. PROBS.-ART. 3.

17

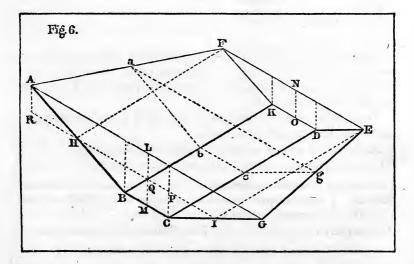
By Hutton's Particular Rule. As two Wedges.	By Simpson's General Rule.
$\begin{array}{ccc}100 & 8\\ \underline{2} & \underline{2}\\ \underline{-}\end{array}$	$\stackrel{\text{Hts. Wds.}}{6 \times 100 \dots = 600}$
$\begin{array}{ccc} 200 & 16 \\ \underline{8} & \underline{100} \end{array}$	Sums, $\overline{56 \times 108} =$
$\begin{array}{ccc} 208 & 116 \\ 6 & 50 \end{array}$	4 times mid-sec. = $\frac{6048}{7048}$
$\begin{array}{ccc}1248 & 5800\\ 100 & 100\end{array}$	$\frac{1}{6} \mathbf{h} \dots = \frac{16^{\frac{2}{3}}}{\text{Solidity}, \dots} = \frac{16^{\frac{2}{3}}}{117466^{\frac{2}{3}}}$
$\begin{array}{c} 6 \underline{) 124800} \\ \underline{20800} \\ \end{array} \begin{array}{c} 6 \underline{) 580000} \\ \underline{966663} \\ \underline{966663} \\ \underline{966663} \end{array}$	
$Solidity = \frac{20800}{1174663}$	

By the Method of Initial Prismoids.—Let their number be 400, the same as the superficies of A. Suppose them constructed upon squares at A. (on a side equal to the unit of measure), and upon proportional rectangles at BC.

Then, $600 \div 400 = 1.5$, the ratio of A. to BC. and of initial squares at one end to rectangles at the other.

And in the 3 main sections of the prismoidal solid, Fig. 5, We have for similar sections of the initial prismoids =

Representative.	I	imensions o	f initial	sec	tions.			Init	tial area	as.	No.	Ma	in areas.
End A	-	squares	of 1	X	1.			=	1.	\times	400	=	400.
"ВС	_	propor.	recta	ns.	12.5	\times	$\cdot 12$	-	1.5	\times	400	==	600.
Mid-section .	-	"	"		6.75	×	•56	=	3.78	Х	400	==	1512.


It will be seen that the main areas result as above calculated ;—and having these and the common length \mathbf{h} , it is easy to compute the prismoid by Simpson's General Rule, as shown before.

We may add here, as being indicative of the difficulty of computing such a solid, by ordinary average rules (which answer tolerably well), in common cases.

That the Arithmetical Mean of the end areas = 500, the Geometrical Mean = 490; while the Prismoidal Mid-section = 1512, and the Prismoidal Mean Area = $1174\frac{2}{3}$; which, multiplied by the length, or hight, $\mathbf{h} = 100$: makes the *solidity*, above = $117466\frac{2}{3}$, or more than *twice as much* as would result from multiplying the arithmetical mean by the length.

4. The Prismoid adapted to Earthwork.—Sir John Macneill, a distinguished English engineer, as early as 1833, soon after the introduction of railroads, when the necessity became apparent of having ready and correct methods at hand for computing the volume of the vast quantities of earth, removed or supplied, in grading them, prepared and published three series of Tables (in 8vo), computed by means of the *Prismoidal Formula*. These Tables were systematically arranged, and have been extensively used abroad.

He considered the Earthwork Prismoid as being composed of a *Prism, with a wedge superposed*: since the lower portion of the cross section of a railroad, canal, or road is generally symmetrical and regular, the ground surface alone being relatively variable.

In this diagram (Fig. 6) the reduced surface of the ground (taken as level, crosswise, or made so) is shown by the plane AFGE, and the cross section of the road by ABCG, these are supposed to be *transparent*, in order to show the road-bed and mid-section, as well as the far end of the trapezoidal prismoid.

Sir John Macneill commences his work, by referring to a representation of the Earthwork Prismoid (copied above), as follows:

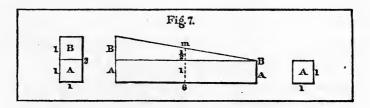
"Let ABCGFKDE represent a prismoid or solid figure, similar to that which is formed in excavations or embankments, in which BCDK represents the roadway, and ABCG, FKDE, parallel cross sections at each end. The cubic content of this solid is equal to

CHAP. I.-PRELIM. PROBS.-ART. 4.

The area ABCG + area FKDE + 4 times area a b c g, Mutiplied by $\frac{CD}{6}$:

"If, then, we suppose a plane, HIEF, to be drawn through the lines HI, and EF, it will be parallel to the base BCKD, and will divide the solid, ABCGFKDE, into two others, one of which will be the regular prism, HBCIFKDE, and the other will be a wedge, the base of which will be the trapezium, AHIG, the length IE or CD, the length of the prismoid, and the edge FE, the breadth of the cutting at the lower end of the section."

The prismoid, then, being assumed as composed of a regular prism, with a wedge superposed, he demonstrates in the usual manner the formula for the volume of these two solids, and shows that by addition they result in *the Prismoidal Formula*, which he uses in the computation of the three series of Tables which form the bulk of his neat octavo volume (London, 1833).


It will be observed that all Macneill's prismoids refer to ground sloping longitudinally, but *level transversely* :—to apply them, therefore, to an irregular surface, it must be first reduced to a level crosswise, or assumed to be so, *practically*.

The above extract from Sir John Macneill's work of 1833 is made, not only for its intrinsic value, but on account of its being the first regular and successful attempt to adapt *the Prismoidal Formula* to the computation of modern earthworks: which is followed out through a series of practical Tables, comprising 239 pages, and extending to 50 feet of hight or depth :---an embankment being considered as an excavation inverted.

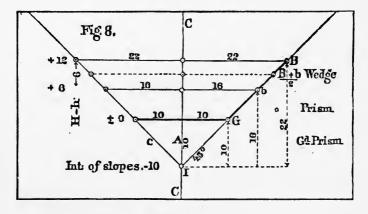
This meritorious work of Sir John Macneill was speedily followed by other writers in England, and later by several in this country.* All, or most of these productions being based upon *the Prismoidal Formula* (or some modification of it), which is now universally acknowledged to be the only consistent and exact method for computing the volume of solids employed in modern earthworks, and even those authors who employ *pyramidal rules* are but using a particular case of the former.

^{*} Bidder, Baker, Bashforth, Henderson, Sibley, Rutherford, Hughes, Huntington, Law, Dempsey, Haskoll, Morrison, Rankine, Graham, Macgregor, and others, in England. While in this country, Long, Johnson, Borden, Trautwine, Gillespie, Henck, Davies, P. Lyon, Cross, M. E. Lyons, Byrne, Warner, Rice, and others (besides the present writer), have dealt with this subject. Amongst these, however, the most comprehensive, and the best in many particulars, is the work of John Warner, A. M., a well printed and handsomely illustrated 8vo, Philadelphia, 1861, containing 28 valuable and useful Tables, and 14 plates of great importance to every student of engineering.

5. The Prismoid in its Simplest Form.—The unexpected manner in which the Prismoidal Formula applies to the cubature of other solids, totally dissimilar in form and appearance (as to the sphere, taking the poles as end sections at zero, and the mid-section as a great circle), justifies its consideration under various aspects, which would be superfluous in any other body, and hence we give below a figure illustrating the Prismoid, in what may be deemed its simplest form (when not contained within a diedral angle). See Fig. 7, where the solid is level transversely, but sloping longitudinally, and may be supposed to represent (proximately) one of Hutton's Initial Prismoids, square at one end, and with a proportional rectangle at the other.

Here the prismoid is composed of a prism on a square base, with a side of 1, and length of 6,—and of a wedge, superposed, with a square back, on a side of 1, its edge also 1, and hight 6,—the common length of the two combined as a prismoid.

 $Let \begin{cases} AA \text{ Represent the prism.} \\ BB \text{ The wedge.} \\ m \text{ The mid-section of the prismoid.} \end{cases}$


Then we have for the volume of this solid, by several of the rules already given.

All, of course, resulting in the same *solidity* for this simple prismoid = 9 cubic feet.

6. Further Illustration of Macneill's Prismoid.—In computing the quantities of earthwork for railroads, etc., it is often useful (and generally desirable) to consider the side slopes, continued to their intersection, above or below the road-bed (as has been done by T. Baker, C. E.,* and other writers), thus forming a constant triangle at the intersection, which is deductive from the general triangular figure formed by the slopes, and ground, in order to obtain the regular cross section of excavation or embankment, from ground to grade; and this triangle also forms the right section of the grade prism, terminating the earthwork solid at edge of diedral angle, formed by the slope planes containing it.

To explain this more clearly, we give a figure in which both end areas are drawn upon the same plane (Fig. 8).

Double cross section of a railroad cut—(in fact, Macneill's prismoid on level ground)—with road-bed of 20, and slopes of 1 to 1.

References.

- A = Altitude of grade triangle.
- B = Level top, sloping forward in 100 feet to b.
- b = Level top of forward cross section.
- G = Grade, or road-bed, 20 feet wide.
- c = Grade triangle, or constant end, of grade prism.
- H h = Breadth of back of trapezoidal wedge.
- r = Slope ratio, or in this case 1.

* Railway Engineering and Earthwork, by T. Baker, C. E. London, 1840. Wherein he develops a very compendious and excellent system of computing the earthwork of railways, which has been extensively copied. CC = Centre line of road.

I = Intersection of side slopes, or edge of diedral angle formed by them.

To find the equivalent level hight—no matter how irregular the ground may be. Let

a = Whole area, to the intersection of slopes.

r =Slope ratio.

h =Equivalent level hight.

Then,
$$\sqrt{\frac{a}{r}} = h$$
.

Let B and b represent the level tops of two cross sections of a railroad cut, 100 feet apart sections, and lying within the same diedral angle of 90°, formed by side slopes of 1 to 1, continued to their intersection, or edge at I.

Now, supposing B and b, to have been originally a very irregular surface, reduced, by any *exact method*, to the level tops represented.

Then, below b we have a regular prism, on a triangular base, extending down to I; and above b, a regular wedge (back and edge parallel), upon a trapezoidal back, of which the base b is equal to the edge b, representing the top of the forward cross section, 100 feet distant.

Then, in the wedge above b, by the properties of that solid, considered as * a truncated triangular prism, and applicable either to rectangular or trapezoidal wedges,

We have,

$$\frac{(\mathbf{B}+b+b)\times(\mathbf{H}-h)}{6} = \frac{(44+32+32)\times(22-16)}{6} = 108.$$

And in the prism below b, down to I (including the grade triangle)-

We have,

Finally, then, we have the mean area of the trapezoidal

earthwork solid, above grade, or road-bed = 264.

Then, $264 \times 100 = 26400$. The solidity of this Prismoid.

^{*} Chauvenet's Geom., vii. 22 (1871), easily reducible to the text.

If more convenient, we might exclude entirely the grade triangle, and stop the calculation at G (the road-bed), but as a system of computation, and in view of the simplicity of the geometrical relations of triangles, it will usually be found best to include the grade triangle as above, and ultimately to deduct it, in some form.

The employment of the method of this article enables us to find a mean area to the prismoid—without using a mid-section—and this mean area, when multiplied by the length, gives the volume of the whole solid.

Thus we may assume any level trapezoidal prismoid of unequal parallel ends (as Macneill does), to be composed of two solids—a prism, with a wedge superposed.

- 1. A Triangular Prism, with a cross section, equivalent to the lesser end, supposing the slopes to intersect, and embracing the grade triangle.
- 2. A Trapezoidal Wedge, superposed upon the prism, having an area of back equivalent to the difference of the ends, its edge being the level top of the smaller, and equal to the base of the back.

The length being common to both partial solids, and to the whole prismoid.

Then, for the mean area of the wedge, we have,

$$\frac{(\mathbf{B}+b+b)\times(\mathbf{H}-h)^*}{6},$$

and for that of the prism to intersection of slopes = $(h^2 r - \text{grade triangle})$, and by addition,[†]

$$({
m B}+b+b) imes ({
m H}-h)\over 6}+(h^2\,r-{
m grade triangle}) imes$$

the common length = The Solidity of the Prismoid . . . (VI.)

Or, in words,—The sum of the mean areas of the prism, and superposed wedge, multiplied by the common length, equals the solidity of this prismoid.

* Chauvenet's Geom., vii. 22 (1871).

† B and b are always the widths between top slopes at the ends.

And H — h (however irregular the ground line of the ends may be) is obtained by dividing the difference of end areas by half the sum of their top widths, or $\left(\frac{B+b}{2}\right)$. See note at foot of this Article 6.

Note.-When the ground surface, or upper side of the superposed wedge, is very irregular (as in Figs. 43 and 44)- ascertain the horizontal widths of each end at top slope. Then the difference between the areas of the two ends is the surface of the back of the superposed wedge, and this, divided by the average of the two horizontal widths above, gives the vertical hight of the back, or altitude of the triangular section, of which the length of the prismoid is the base, giving at once the means of computing its area, and this, multiplied by onethird of the sum of the lateral edges, gives the solidity of the superposed wedge. (Chauvenet, Geom., vii. 22.)

7. Trapezoidal Prismoid of Earthwork, considered as two Wedges.-On ground, either level crosswise, or reduced to an equivalent level by any correct process, an Earthwork Prismoid, within the limits of its slopes, road-bed, and ground surface, may readily be computed as two wedges (Hutton's Particular Rule), without an assumed mid-section, or even the end areas.

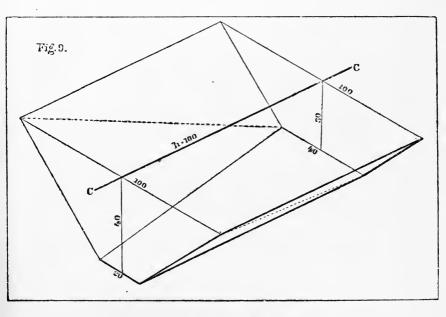
And in this there is some advantage, as the width of road-bed at the end sections may be unequal to any extent, provided the widening is gradual.

Thus, let Fig. 9 represent a regular station of a railroad cut, 100 feet in length, with slopes of 1 to 1, and in the near end section a depth of 40 feet, and road-bed of 20, while in the far one it has a depth of 30, and road-bed of 40 feet wide.

Hutton's Particular Rule, modified for application to earthwork, may be expressed in words at length as follows:

Rule.

In 1st cross section $\begin{cases} Add \text{ road-bed } + \text{ top width } + \text{ road-bed of 2d section ; multiply the sum of these three by level hight of section, and reserve the product.} \end{cases}$


In 2d cross section { Add road-bed + top width + top width of 1st section; multiply the sum of these three by level hight of section, and reserve the product.

Finally, add the two products reserved, and t of their sum is the mean area of the Prismoid, which, multiplied by length = Solidity. . (**VII.**)

Referring to Fig. 9, the line CC is the centre line traced upon the ground, and below it the road-bed gradually widened from 20 to 40 feet, in the length of 100; the figures marked show the dimensions assumed for illustration, and the dotted lines the edges of a plane supposed to be passed, so as to convert this solid into two wedges.

The *nearest* having a trapezoidal *back*, standing on a road-bed of 20, with a hight of 40, and its *edge* being the road-bed of 40 feet wide, belonging to the far cross section.

The farthest wedge, above the dotted lines, having for its back the

far section, standing on a road-bed of 40, with hight of 30, and its *edge* being the top-width of the near cross section, 100 feet wide, *at ground line*.

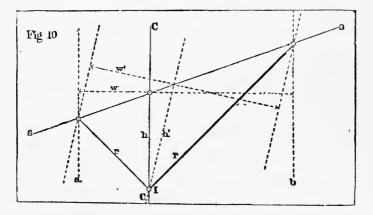
[In Chapter 5 we shall consider further, and more in detail, the subject of *Wedges*; and their application to the computation of earthwork solids, and illustrate it by several examples. Comparing also the results obtained with those derived from the use of HUTTON'S *General Rule*:—which is the accepted standard for accuracy in such work.]

EXAMPLE.

By Our Modification	of Hutton's	By Hutton's Partic	ular Ru	le. (IV.)
Rule	. (VII.)	Reducing Trapezoid		
	. (Mean breadths =	60 =	= 70
1	20		2	2
(100 .		100	7.40
	40		120	140
In 1st cross section \langle			40	100
1	160		$\overline{160}$	$\overline{240}$
	40		40	30
	6400			
			6400	7200
1	40		0100	
- (100 '		6400 7000	
	100		7200	
In 2d cross section (1	3600	
	240		100	
	30	6)1	360000	-
	7200			
		Solidity $\ldots =$	226667	
1	6400			
	.7200			
$\begin{cases} \hat{n} \\ \hat{n} $	13600	-		
Mean Area =	2266.67			
H / HICH HICH -	100			
Solidity =	226667.00			

8. Areas of Railroad Cross-sections (within Diedral Angles) whether Triangular, Quadrangular, or Irregular.

All railroad sections are contained within diedral angles, formed by side slope planes, of a given divergency—determined by the slope ratio (r).—The edge of this diedral angle is a right line, parallel to the grade, and prolonged forward indefinitely from I, the intersection of the side slopes (in a right section), until the end of the cut or fill is attained. Here, at the grade point, it changes its position to a corresponding parallel above, or below, as the case may be. Considering, with Sir John Macneill, an embankment to be, in effect, an excavation inverted, the situation of the edge of the diedral angle, or intersection of the slopes, will generally (in our examples) be found below the road-bed, but always parallel to the grade line, and at the same distance from it, as long as the side slopes continue uniform.


(a.)..... From the geometrical relations of triangles and rectangles, it is obvious that in a triangle situated as in Fig. 10—con-

tained within rectangular axes and their parallels, and divided into two by the central axis h, the area of the whole is equivalent to $\frac{h w}{2}$. — the parallels a and b, to the centre line h, limiting the triangle laterally.

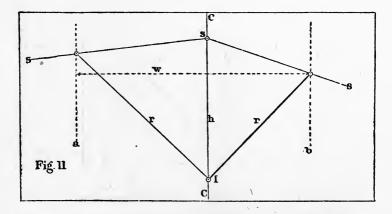
The same rule, precisely, applies to quadrangles, which may always be cut by a diagonal into two triangles.

This rule (*in fact*), equally applicable both to triangles and trapeziums, is that laid down by Hutton (1770) for *trapeziums*.

In Fig. 10,— $h \times w = double area of the whole triangle, whose vertex is at I, the intersection of the slopes, and its sides, the side-slopes, and the ground line. Thus, let <math>h = 20$, w = 45, then $20 \times 45 = 900 \div 2 = 450$, area of whole triangle; but it is often more conve-

nient, in calculations, to use *double areas alone*, until the close of the operation, as in many problems of land surveying.

In a triangle, the direct axes h or h' may take any position, provided the parallels through the lateral vertices are made to follow, and the tranverse axes, w and w', remain rectangular.


But in a quadrangle, the position of the direct axis is fixed by that of the opposite vertices, through which it passes, and with it the axis of width, and its limiting parallels, are also fixed.

In Fig. 10, suppose the direct axis and its parallels to revolve upon I, into the position h', and that h' becomes $22\cdot1$ —then it will be found that w' has become 40.73, and then, $\frac{h' \times w'}{2}$ will be $\frac{22\cdot1 \times 40\cdot73}{2} = 450$, area of whole triangle, as before.

In both these cases, *Figs.* 10 and 11, each figure is divided by the centre line, or direct axis, into two triangles, having a common base, . and contained between parallels to it, drawn through the opposite vertices.

In both Figs. 10 and 11, $h \times w =$ double area of the figure to which they relate,—as these are rectangular factors, for determining the content of the wholly or partially circumscribing rectangles (between the same parallels), of which the triangle or trapezium represented, is each equivalent to one-half.

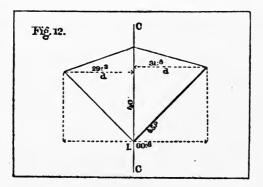
This rule is, in fact, the simplest possible, being, substantially, the definition of a plane surface, length \times breadth (which indicates superficial extension), and from its extreme simplicity, there seems to

be no adequate reason why it should not be more generally employed, for although its application to triangular surfaces necessarily gives double areas,—a division by two is the briefest imaginable.

Right and left of centre each triangle is obviously equal to half the rectangle of the hight and width on that side (the triangle and rectangle having a common base, and lying between the same parallels, a and b), and by addition, the double area of the whole trapezium = hight \times width.

(b.).... In view of the rule just recited, for finding the areas of triangles and trapeziums, by hights and widths, it becomes of some importance to have a concise rule* for determining the *distances out* of the vertices from the axis, when the hight and slopes alone are

 $\mathbf{28}$


^{*} Gillespie, Roads and Railroads (1847), gives rules analogous to ours, but they had long before been known.

given: in this there is little difficulty, as engineers have long been possessed of formulas for the purpose, *similar* to those which will be seen below, referring to *Figs.* 12 and 13,—*and these distances out*, when added together, form the width *w*, of the rule above.

In Fig. 12.
^{Ht. Wid.} Area.
$$f$$

 $\frac{40 \times 60.8}{2} = \frac{2432}{2} = 1216.$

Both in trapeziums and triangles the diagonal \times the sum of perpendiculars from the opposite angles = double area.

Or, centre hight \times the total width = double area.

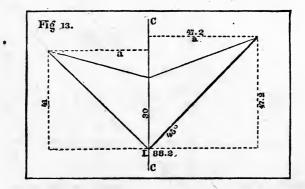
Suppose, in both these figures, the side-slopes, ground-slopes, and centre hight, or axis, given, and the side-slopes intersected at I, then to find the distances out, right and left of centre, take each side separately. Consider the centre line, or axis, to be a meridian (as in a map), imagine also an east or west line, drawn through the origin of each slope (side or ground).

Then,

If the slopes incline towards the same compass quarter:

 $\frac{\text{Hight}}{\text{By difference of nat. tans. of slopes}} = distance \text{ out} = \mathbf{d}.$

If the slopes incline towards adjacent compass quarters:


 $\frac{\text{Hight}}{\text{By sum of nat. tans. of slopes}} = distance \text{ out} = \mathbf{d}.$

These results on both sides of centre, added together, give the total width of the whole trapezium.

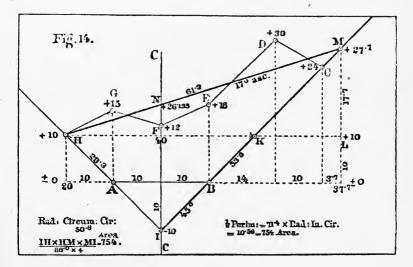
In Fig. 13. $\frac{\text{Ht. Wdt.}}{2} = \frac{\text{Area.}}{2} = 1323.$

These rules also furnish a concise and easy method of finding the half breadths, a matter deemed quite important by foreign engineers.

(c.)..... The side slopes (bounding the diedral angle) remaining plane surfaces as usual in the cross-sections of earthwork, we sometimes find the ground surface very irregular, but even these cases, upon the principle of equivalency, may be correctly dealt with, so as to reduce them easily to the plane figures of the elements of geometry.

Thus, although, as far as we have shown, the rule of $\frac{h w}{2}$, applies

only to a line once broken, so as to change the figure considered, from an oblique triangle into a trapezium; nevertheless, it is not difficult to reduce or equalize a surface line, very much broken, by a single one properly drawn, which shall contain within it an area exactly equal to that bounded by the irregular outline, and thus bring it within the rule.


In Fig. 14, let ABCDEFGH be the cross-section of a railroad cut, base 20, slopes 1 to 1, intersecting at I, the centre line being marked CC—(this area looks irregular enough, but had it been ten times more so, the process below would have equalized it exactly.)

Then, from the top of the shortest side hight at H (adopted for convenience), draw a line HK parallel to the road-bed, or base AB,

making a level trapezoid 10 feet high upon the section, or ABKH = 300 in area.

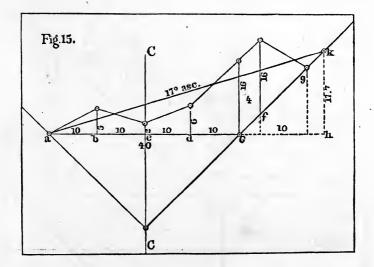
Now, we will find, by a common calculation, the area of the whole cross-section—between base AB, side slopes, and broken ground line —to contain = 654 area. Neglecting in this case the grade triangle at I, as being a common quantity, not affecting the result :—(but adding the grade triangle (100), the area, from the ground line down to the edge of the diedral angle at I = 754).

Then, 654 - 300 = 354, the area of the partial cross-section above HK, extending to the irregular outline, which is to be *correctly equalized*, by a single sloping line drawn from H.

Now, $\frac{354}{\frac{1}{2} \text{ HK}} = 17.7 = \text{LM}$, the altitude of a triangle HKM, on the base HK, which is *exactly equivalent* in area to the partial cross-section above HK.

So that HM is a single equalizing line, drawn from H, equivalent to the broken line of ground, and including the same area exactly. Another way of finding the point M — the terminus of the equalizing line—is the following: $\left\{ \frac{\text{Double area} = 1508}{\text{IH} \times \sin . \text{ of I}} = 53.3 \right\}$ and this is a very concise method, as IH is easily found.*

^{*} This rule will be found useful as a verification of the process of Fig. 14.


If the degree of equivalent surface slope be desired (as it usually is),

Then,
$$\frac{57\cdot7}{17\cdot7} = \cot .17^{\circ} (nearly) = 3\cdot26.$$

The slope of the equalizing line HM being 17° ascending from H, we easily find FN =6.135, and adding FI = 20, we have IN or h =

26.135, and
$$w = 57.7$$
. Then, $\frac{h \times w = 26.135 \times 57.7}{2} = 754$, and

deducting the grade triangle (ABI = 100), we have, finally, the area of the whole cross-section above the road-bed = 654, thus verifying

the original calculation as before given, and, by using the radii of inscribed and circumscribed circles, we can prove it, *if necessary*: (*Fig.* 14).

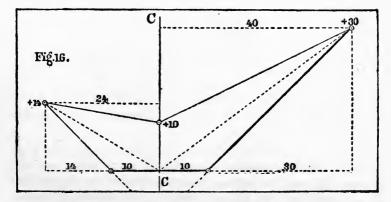
(d.)..... It is sometimes desirable, by means of an equalizing line, to deal with the boundary *alone*, without the rest of the cross-section, and this is not difficult, for we may consider the broken line HKM (*Fig.* 14), or a e g (*Fig.* 15), as a base of ordinates, preserving, however, their parallelism, and taking all the distances horizontally as though the base were straight (see *Fig.* 15); but the process of *Fig.* 14 is generally preferable.

UNIVERSITY CHAP. I.-PRELIM. PROBS.-ART. 8.

CALIFORNIA. It is often useful to equalize a section by a level top line, or slope of 0° . This can be done as shown in Art. 6.

Whole area	•	•	•	•		•	•	•	•	•	. =	a_{*}
Slope ratio	•		•		•	•	•	•			. =	r.
Level hight	•										. =	h.
Then h.												

The ordinates marked upon Fig. 15 are deduced from those of Fig. 14, and the calculations of the irregular area, a e g, are made by successive trapezoids, and double areas, as follows:


Ordinates in $\begin{cases} a+b\\ 0+5 \end{cases}$ b + cc+d d+e $e + f \\ 16 + 16$ f + g = 16 + 05 + 22 + 66 + 16base line, a eg, 7 8 223216 $\mathbf{5}$ broken at e. . . Horizontal distances = 10 10 1010 10apart. . . $\frac{\text{Double areas (total}}{1000} = \overline{50} + \overline{70} + \overline{80} + 220 + 128$ 160706)

Then,*

Sum of double areas = 708Base of equalizing triangle, a e = 40 = 17.7 = h k, as before.

And a k is the equalizing line, ascending from a, with a slope of 17°, which is equivalent to HM, of Fig. 14.

(e.).... We may now briefly refer to the computation of cross-

These are usually taken in the field with the rod, level, and sections. tape; they designate by levels, and distances out, the prominent

^{*} With equal abscisæ, Simpson's well-known rule, or that of Davies Legendre, would conveniently apply.

points, or features of the ground, and fix the intersection of the side slopes, or place of the slope stake, which bounds the limits of excavation or embankment; and on regular ground, the clinometer may be used, but is less correct and satisfactory.

On plain ground, but *three* levels are taken,—the centre and side hights,—and this has been called *three-level ground*. It is the practice of many engineers (and it is a good one) to take angle levels and distances over the edges of the road-bed, this then becomes *five-level* ground; and where more than five levels are necessarily taken, the cross-section is usually deemed *irregular*, though the point where sections become irregular is not well defined, and may be safely left to the judgment of the engineer.

In this case (Fig. 16), the centre and side hights, and the right and left distances out to the slope stakes, are always given, and the calculation becomes simple and rapid.

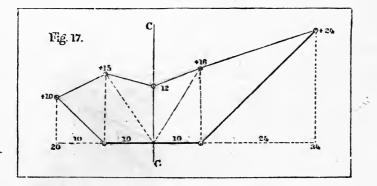
The following is the method long ago used by engineers, and published by Trautwine * and others, twenty years since.

RULE for area of cross-section, with uniform road-bed and centre and side hights given.

Half the centre cutting \times by right and left distance, *plus* right and left cuttings \times one-fourth of road-bed.

Thus, in Fig. 16,	
We have, by this rule,	/ And by using the grade triangle and hights and widths, as in Figs. 10 and 11,
$5 \times 64 = 320.$	
$44 \times 5 = 220.$	We have,
Area. $=$ 540.	$(h = 20.) hw 20 \times 64$
· · · · · · · · · · · · · · · · · · ·	${h = 20. \atop 2} \frac{hw}{2} = \frac{20 \times 64}{2} \dots = 640.$
	w = 64. Less grade triangle. = 100.
· · · · ·	Area. $\ldots = \overline{540}$.
N.4.	

(f.)..... To find the area of cross-sections, where angle levels have been taken,[†] or five-level ground (which angle levels have long been used by engineers, and are recommended by Prof. Davies in his new surveying), we will give an example for illustration, from which the rule of this method will be evident. (See Cross, Eng. Field Book, N. Y., 1855.)


^{*} Trautwine's New Method of Ex. and Em. (1851).

[†] Davies' New Surveying (1870),-cross-section levelling.

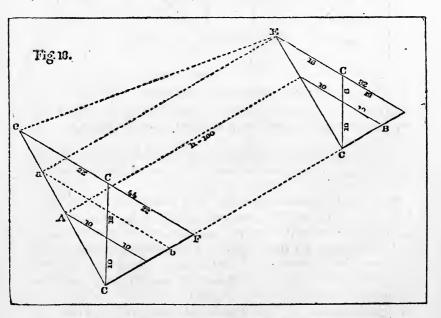
Now, to calculate the area of this cross-section, Fig. 17, by double areas,

We have,		Equivalent to,					
By divid-	$20 \times 15 = 300.$	Triangle, 15×10 . = 150.					
ing the figure	$20 \times 12 = 240.$	Trapezoid, 27×10 . = 270.					
into six trian-	$\langle 34 \times 16 = 544. \rangle$	" 28×10 . = 280.					
gles, or three	$2)\overline{1084}.$	Triangle, $16 \times 24 \dots = 384.$					
	Area. = 542.	2)1084.					
		Area = $542.$					

To compute this area in the usual method by successive trapezoids and deductive triangles, is much longer and less satisfactory.

(g.)..... For very irregular cross-sections, no definite rule can be given,—they are usually reduced to elementary forms, which, being separately computed, and finally totalized, give the whole area in the end.

This reduction is usually made to trapezoids and triangles (additive or deductive), while the calculations are the simplest possible, though, from the multitude of figures, necessarily tedious.


In the most irregular sections, involving heavy rock-work on sidehill,—the several cuttings (or level hights), transversely, are frequently taken at ten feet only, or some such uniform distance apart, and in these cases the mean hights of a number of contiguous trapezoids may be ascertained, and multiplied by the uniform distance (agreeably to the rules of mensuration for irregular areas), and thus abbreviate somewhat the labor of such computations; which, however, in their origin, and indispensable verifications, are often laborious enough, though, fortunately, so simple and elementary as to be within the comprehension of all the members of an engineer party, which enables us to bring many hands to the work.

Not unfrequently, too, in rock-work (proximating a cost of a dollar per cubic yard), it has been deemed necessary to take independent cross-sections, at only *ten feet apart forward*, over the roughest portions of the work.

In that event, although the calculations become voluminous, we have the satisfaction of knowing that the solidity is correctly obtained; since, in such short spaces, no ordinary rules would produce any important variation in the final result; supposing, of course, the cross-sections to be correctly laid out, and measured with accuracy, both horizontally and vertically—a matter of no small difficulty on steep, rocky hill-sides, when cleared for work.

9. Further Illustration of the Modification of Simpson's Rule—(II.), with a Diagram Representing it, and also one of the Regular Formula, and another Modification.

Here let us take the triangular prismoid, cross-sectioned, in Fig. 8 (and shown below), and suppose its length 100 feet (h)—the end

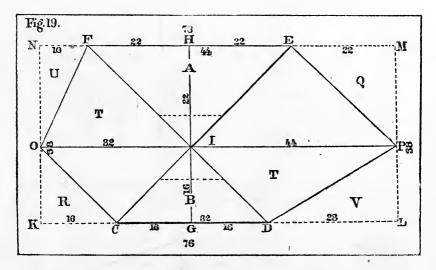
cross-sections being dimensioned as before. With road-bed of 20, and slopes of 1 to 1. The whole, shown in projection, to give a better idea of the nature of *the solid*.

References.

CC	= Centre line and edge diedral angle.
ACCB	= Grade prism.
\mathbf{AB}	= Road-bed, 20.
\mathbf{AE}	= Side-slope plane, 1 to 1.
\mathbf{EF}	= Ground plane, assumed as level.
eab E	= Wedge of Fig. 8.

Then, for the volume of this solid, we have, by the modification of Simpson's Rule (II.),

/ Hights. Widths.
Near end (double area), 22×44 = $968 = 2b$.
Far end, " 16×32 = $512 = 2t$.
8 times mid-section, $$ $.$
= sum hts. \times sum wids. $\int -2000 = 0 m$.
$12)\overline{4368}$
Mean area. $= 364$
Length <i>h</i> = 100
Whole triangular solid to intersection of slopes. \therefore \ldots \ldots \ldots 36400
of slopes
Deduct grade prism under road-bed = 10000
Leaves volume above road-bed, or Trape-
Leaves volume above road-bed, or Trape- zoidal Prismoid of Earthwork. $$ = $26400 = The same$
solidity, as before computed, Art. C.


(a.)..... The transformation or modification of Simpson's Rule (II.) may, in its mid-section term, be conveniently represented by a diagram (perhaps more curious than useful).—Thus, continuing the side-slopes through the intersection, so as to form the end cross-sections, one above the other.

So, in Fig. 19, dimensioned as in Fig. 8, we have,

The	triangle	IEF	=	The larger end section, or area.
"	66	ICD	=	The smaller one.
"	rectangle	KLMN	=	8 times the area of the mid-section,
				or the circumscribing rectangle
				formed by sum of hights \times sum
				of widths.
The	road-beds	s	=	The dotted lines, and may be
				assumed (parallel) anywhere.

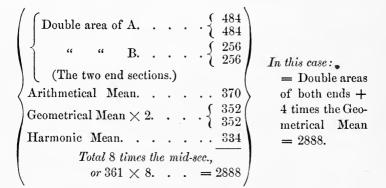
The parallelogram IFEP = Hight × width of larger end, or double area of . A. " " IDCO = Hight × width of smaller, or double area of . . B. " rectangle KLMN = HG × OP, or sum hights × sum widths, = 8 times the mid-section.

Here it is evident that $IH \times FE = Double$ area of larger end section, or = IFEP and IG $\times CD =$ same of smaller = IDCO.

While (CD + FE) \times (GI + IH) = the circumscribing rectangle KLMN = HG \times OP, or the rectangle of sum of hights and sum of widths.

Also,

 $\begin{cases} \left(\frac{\text{HI} + \text{IG}}{2}\right) \times \left(\frac{\text{FE} + \text{CD}}{2}\right), \text{ or } \frac{19 \times 38}{2} = 361, \text{ the mid-sec.} \\ \text{HG} \times \text{OP, or } 38 \times 76 \dots = 2888, \text{ or } 8 \text{ times mid-sec.} \end{cases}$


The triangles Q and R taken together = the Arithmetical Mean of A and B, the end areas = $(16 \times 8) + (22 \times 11) = 128 + 242 = 370$, or $\frac{484 + 256}{2} = \frac{740}{2} = 370$, the Arithmetical Mean.

CHAP. I.-PRELIM. PROBS.-ART. 9.

The triangles T and T are each equal to the Geometrical Mean of the end sections A and $B = \sqrt{484 \times 256} = 352$.

While U and V added together proximately equal the Harmonic Mean between A and B, or = 334.

So that the circumscribing rectangle, KLMN, representing the mid-section term, of Simpson's Transformed Rule (II.), contains, or is composed of, the following areas.

Some curious inferences may be drawn from this diagram, but their practical results can be more concisely obtained in other forms.

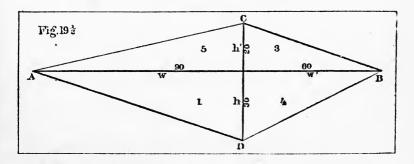


Diagram of the regular Prismoidal Formula of Simpson and Hutton.

As applied to a triangular prismoid, formed by a diagonal cutting plane, from the rectangular prismoid, *Fig.* 2, and shown again in *Figs.* 22, 24, and 52, with side-slopes of $1\frac{1}{2}$ to 1.

- Let 1 (Fig. 191) Be the larger end section (Fig. 22), transformed into an equivalent right triangle.
 - 3 The smaller end (Fig. 24), also transformed :--4 and 5, additive triangles, making up the trapezium ABCD (Fig. 191), equivalent in area to four times the prismoidal midsection (Fig. 23).

From this diagram we readily deduce a simple modification of the prismoidal formula, equivalent in result, for triangular prismoids.

$$\begin{array}{c} \text{Dimensions of} \\ Figs. 22 \text{ and } 24. \\ \begin{pmatrix} h = 30 \times 90 = w \\ h' = 20 \times 60 = w' \\ \text{Length} = 100, \text{ usually.} \\ \end{pmatrix} \\ \textbf{We hw' + \left(\frac{hw' + h'w}{2}\right)} \\ \text{Then,} \quad \frac{hw + hw' + \left(\frac{hw' + h'w}{2}\right)}{6} \times \text{length} = \text{Solidity.} \quad \textbf{VIII.} \end{array}$$

This operates very simply in figures, by direct and cross multiplication of hights and widths.

Substituting the numbers, Solidity = 95000, as hereafter computed, Art. 10 (a).

10. Adaptation of the Prismoidal Formula to the Quadrature and Cubature of Curves, and also Solids, where the Ordinates are equivalent to Sections—by the Method of Simpson, as explained by Hutton.

The eminent mathematician, THOMAS SIMPSON, to whom we are indebted for the Prismoidal Formula, also devised a method for the quadrature of irregular curves by means of equidistant ordinates, or for their cubature, by using equivalent sections of irregular solids, at equal distances, instead of ordinates; such solids being bounded opposite the base by a general curved outline.

This method, although a century old, is still the simplest and best yet known for proximating the area of irregular curves, or the volume of unusual solids,—it has attained great celebrity, and been of much service to philosophers and calculators, ever since its origin in 1750.

It has long been used by military engineers for ascertaining the volume of warlike earthworks, and is regularly quoted in the leading text books of that important profession.*

Also by naval architects in determining the nice problem of the displacement of ships; by mechanical philosophers, like Morin and

^{*} Laisné, Aide Mémoire, du Génie .- Eds., 1831-61.

Poncelet, etc.—by these it has been deemed of much importance, not only for the quadrature of irregular areas, but also for the "Cubature of solids of irregular excavations, embankments, etc."*

It forms a leading feature in Hutton's remarkable chapter on the cubature of curves (who seems to have fully adopted it), under the name of the method of equidistant ordinates.—(See 4to Mens., 1770, sec. 2, part iv. page 458.)—We are much indebted to Hutton for the practical development of this important problem, and he gives several examples of its utility. Amongst others, computing the area of a quadrant of a circle, with radius = 1,—which, by Simpson's method, using 11 ordinates, gives '7817 area, instead of '7854—" pretty near the truth" (says Hutton).

We will describe this method from the—(4to Mens., 1770, p. 458). "If any right line, AN, be divided into any even number of equal parts, AC, CE, EG, etc., and at the points of division be erected perpendicular ordinates, AB, CD, EF, etc., terminated by any curve, BDF, etc."

Then, the sum of the first and last ordinates, *plus* 4 times sum of even ordinates, *plus* 2 times sum of odd ones, \div by 3, and \times by AC, one of the equal parts; the resulting product will equal the area, ABON, "very nearly."

That is to say, if

1	The sum	of the two extreme ordinates.	. = A.	(Transfirm
	"	of all the even numbered " .	. ⇒ B.	(Excepting
ĺ	"	of all the odd numbered " .	. = C.	> the first and
l	The comm	of the two extreme ordinates. of all the even numbered ". of all the odd numbered ". non distance apart of ordinates.	. = D.	last from C.)

Then the rule is,

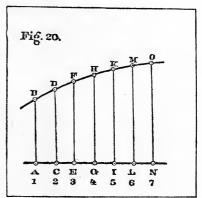
And if more convenient (as it may be), we transform this into its equivalent,

$$\frac{A+4B+2C}{6} \times 2D \text{ (or AE)} = \text{Area, ABON.} \quad . \quad (\mathbf{X}.)$$

n applying this formula, it is desirable to draw a figure, and number all the ordinates (as below), commencing with 1.

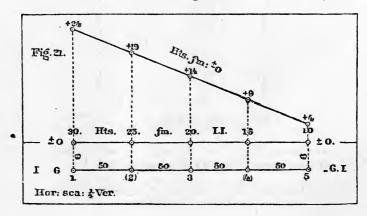
* Morin's Mechanics (Bennett's Trans., 1860).—See also Gregory, Math. Prac. Men. (1825).

"The same theorem will also obtain, for the contents of all solids, by using the sections perpendicular to the axe, instead of the ordinates."


In this form it becomes applicable to excavations and embankments, or any similar solids relating to a guiding line, centre, or base line, to which the cross-sections representing ordinates are perpendicular.

See Fig. 20, copied below from Hutton, page 458.

Hutton's Example 3, p. 462.


"Given the length of five equidistant ordinates of an area, or sections of a solid, 10, 11, 14, 16, 16, and the length of the whole base, 20."

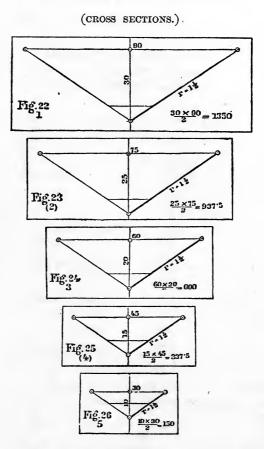
Then, $\frac{26 + 108 + 28}{3} \times 5 = 270.$ "The area or solidity required."

This formula of Simpson (adopted by Hutton) is evidently derived from the Prismoidal Formula, or it may be, originated it, both having the same author, and their precedence unknown.

(a.)..... We will now give an example of Hutton's Method of Equidistant Ordinates (adopted from Simpson),—giving two stations of a railroad cut (each 100 feet long, with a road-bed of 18, and side-

slopes $1\frac{1}{2}$ to 1), shown both in profile and cross-sections. (See Figs. 21 to 26, inclusive.)

The above figure is a profile, or vertical section (of two stations), upon the centre line of a railroad cut, with a road-bed of 18, and sideslopes of $1\frac{1}{2}$ to 1. The horizontal scale (for convenience) being made ¹ of the vertical.

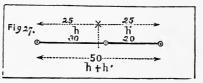

Firstly: Computing each station separately, by Simpson's Rule (II.)

Stations 1 to $3 = 100 = h$.	Stations 3 to $5 = 100 = h$.
Hts. Wids.	Hts. Wids.
$30 \times 90 = 2700 = 2b.$	$20 \times 60 = 1200 = 2b.$
$20 \times 60 = 1200 = 2 t.$	$10 \times 30 = 300 = 2t.$
$\overline{50 \times 150} = 7500 = 8 m.$	$30 \times 90 = 2700 = 8 m.$
÷ by 12)11400	\div by 12)4200
Mean Area = 950	Mean Area = 350
\times by h . = 100	\times by $h = 100$
Solidity in c. ft. = $\overline{95000}$	Solidity in c. ft. = $\overline{35000}$
$\div 27 = 3519$	$\div 27 = 1296$
Deduct Grade	Deduct Grade
Prism for 100	Prism for 100
feet = 200	feet $= 200$
Solidity in c. yds. = $\overline{3319}$	Solidity in c. yds. = $\overline{1096}$

Then, 3319 + 1096 = 4415 cubic yards, whole solidity of cut from 1 to 5 inclusive.

Secondly: Now computing the same, in a body, by Hutton's Rule (X.).

Data.
/ (1350 \
$A = \langle 150 \rangle$
$\left(\mathbf{A} = \begin{cases} 1350 \\ 150 \\ 1500 \end{cases} \right)$
(937.5
$B = \langle \cdot 337 \cdot 5 \rangle$
$(\overline{1275} \times 4 = 5100)$
$ \left\langle \begin{array}{l} \mathbf{B} = \left\{ \begin{array}{c} 937 \cdot 5 \\ 337 \cdot 5 \\ \hline 1275 \times 4 = 5100 \\ 600 \times 2 = 1200 \end{array} \right\rangle $
1500 ± 5100 ± 1200 C. feet.
We have, $\frac{1500 + 5100 + 1200}{6} \times 100 = 130,000$
Now, \div by 27 $4,815$
Deduct Grade Prism, 200×2 stations. = 400
Solidity in cubic yards $\ldots \ldots \ldots = \overline{4,415}$
(The same as above.)


(b.).... The preceding example clearly shows that Hutton's method of equidistant ordinates is merely the Prismoidal Formula extended to several stations, *instead of confining it to one*.

There is another mode of considering this question where the crosssections are *triangular*, and the ground *level transversely*.

Thus, in any station, let h and h' be the end hights from the intersection of the side-slopes to the ground, then, $h^2 r$ and $h'^2 r =$ the corresponding areas (r being the slope ratio, which, in the preceding example = $1\frac{1}{2}$), then omitting r, a common factor, we have in h^2 and h'^2 vertical lines, or ordinates, representative of the end areas, and in $\left(\frac{h+h'}{2}\right)^2$ of the mid-section. The square roots, then, of the areas (however computed, and whatever be the ratio (r) of the side slopes), correctly represent them; since these roots form the side of an equivalent square (or half base of an equivalent triangle, with 1 to 1 side-slopes)—squaring which, obviously re-produces the areas they are the roots of.

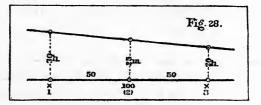
Hence, the end areas being given in any station, or number of stations, their square roots may represent them in Hutton's rule of cubature, and any pair of roots added together, and their sum squared, gives 4 times the mid-section between them; which is precisely what we need in the Prismoidal Formula.

This is evident, from Fig. 27, where we suppose h and h' placed in a continuous line, then, $\left(\frac{h+h'}{2}\right)^2 = \frac{1}{2}$ the square of (h+h'), or equivalent to the pro-

position of geometry—that the square of a whole line equals 4 times the square of half.

 $\begin{cases} \text{Let } h = 30, \text{ and } h' = 20, \text{ then } h + h' = 50, \frac{h + h'}{2} = 25\\ \left(\frac{h + h'}{2}\right)^2 = (25)^2 = \text{ the mid-sec.} = 625, \text{ and } \times 4 = 2500\\ (h + h')^2 = (50)^2 \dots \dots \dots \dots = 2500\\ \text{While } h^2 = 900 = \text{ one end area, and } h'^2 = 400, \text{ the other.} \end{cases}$

Also,


$$\begin{cases} h^{2} + h'^{2} + 2 (h \times h') \\ = 900 + 400 + 1200 = 2500 \\ = (h + h')^{2} \dots = 2500 \end{cases}$$

From all which, we readily draw the following:

Rule.—Compute the end areas at each regular station (numbered upon a diagram on Hutton's plan, by the odd numbers, 1, 3, 5, 7, etc., marking also the even numbers intermediately, which are, in fact, half stations, or the places of mid-sections),—find the square roots of these end areas.—add any two adjacent roots, and their sum squared equals 4 times the area of the mid-section, between the regular stations.

- Let Fig. 28 be the profile of one station of cutting, from intersection of slope to ground.
 - h and h' = The end hights, or representative square roots of the areas, at regular stations, numbered odd.
 - m = The place of the mid-section, numbered even, and represented by its ordinate.

Length = usually, 100, between principal stations.

Whence.

 $\frac{h^2 + h'^2 + 4 m^2}{6} \times 100 = Solidity, by the Prismoidal Formula.$ Or, $\frac{h^2 + h'^2 + (h + h')^2}{6} \times \frac{\text{Length.}}{100} = \text{Solidity.}$. . XI.

Which, for one station, is equivalent to Hutton's Rule.

(c.) So that having the end areas given, we deduce at once the mid-section, by a table of roots and squares,* and can proceed station by station, prismoidally, to find the solidity .- Or combining them as in Hutton's Rule for cubature, we may calculate in a body the whole of a cut or bank.

Thus, taking the preceding example, and tabulating it (see Figs. 21 to 26).

Stat	ions.	Ar	eas.			Even Nos.
Odd.	Even.	Extreme.	Odd Nos.	Roots.	Sums.	Squares, or Mid-sec.
1 3	2	1350	600	36·7423 24·4949	61·24 36·74	Areas. 3750 1350
5		150		12.2475	0011	1000
		1500	600 2			5100
			1200			
	- V -	A.	2 C.			4 B.

This tabulation may be made in any more convenient form, or the data may be written upon the working profile of the line with advantage.

* Such as Barlow's (Prof. De Morgan's Ed., London, 1860), which is the most convenient and extensive,-or any like tables.

CHAP. I.-PRELIM. PROBS.-ART. 10.

Then,

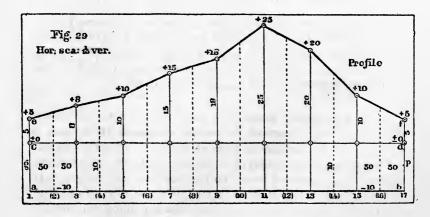
 $\begin{cases} A + 4B + 2C & \text{Mean Area. Length of Sta. Cub. Ft.} \\ \frac{1500 + 5100 + 1200}{6} = \frac{1300 \times 100}{Rule \mathbf{X}} = \frac{130000}{4815} = by Hutton's \\ \text{Now, dividing by 27, = 4815} \\ \text{Deduct grade prism for two stations . . = 400} \\ \text{Leaves solidity in cubic yards (as before) = 4415. From 1 to 5} \\ = 200 \text{ feet.} \end{cases}$

The division by 6 in the first term results in a mean area, which \times by length, gives the solidity—and enables us to use a table of cubic yards to mean areas, as soon as we have found the latter, in order to obtain the cubic yards more readily by inspection.

(d.)..... In further illustration of this important method of computation in earthworks,—we will submit another example, representing an entire railroad cut, with 20 feet road-bed, and side-slopes of 1 to 1, laid off in regular stations of 100 feet, and truncated at both ends in light cutting (at selected stations), so as to secure full cross-sections *throughout*; and also an even number of equal distances (apart sections), each 100 feet, or regular and uniform stations, whatever their length.

These truncations are made before proceeding to the calculation, so that all the cross-sections shall be *complete* (or have some side slope—*however small*—at both edges of the road-bed), which simplifies the main calculation, while in the end the truncated volumes may be computed independently, and added in with the rest.

Again, if the ground should have required the insertion of *intermediates* in any one or more of the regular stations, it will be best to draw a pencil line around all such whole stations upon the diagram, and compute them separately from the main body—the places of such stations being considered vacant for the time (omitting distance, midsection, and end areas, so far as they apply to the assumed vacancy), and thus the cut will be computable under our rule, in one or more masses (as though a single mass originally), according to the number of vacant spaces. A little practice will familiarize this matter better than further explanation, as the object to be attained is evident.


Generally, we may compute the cut, or bank, in one principal mass, and then calculate separately, and add.

- 1. The solidity in the special stations containing intermediates.
- 2. The quantities of work of the same kind, at the passages from excavation to embankment, at both ends of the cut (as will be further explained).

In all such cases (*indeed*, *in all cases of heavy work*), it is necessary to draw diagrams, as below, and these (in cross-sections) will usually have a scale of 20 feet to the inch, which long practice has shown to be entirely suitable; but any preferred scale may be employed, or the cross-section paper in common use amongst engineers—which carries its own scale—and which will be found convenient in many respects, either bound up for the purpose, or in loose sheets, to be ultimately tacked together, including a mile forward, or thereabouts.

Profile of 8 stations of railroad cut; base 20, side-slopes 1 to 1.

- (a b =Intersection of side-slopes, or edge of diedral angle, formed by their planes meeting.
- c d =Grade, or formation line of the road-bed $= \pm 0.0$.
- ef =Surface line of ground, as cut by centre plane.
- $gp = \text{Grade prism} deductive for solidity}$

Regular stations designated by *odd* numbers (1, 3, 5, etc.). Mid-section places by *even* numbers (2, 4, 6, etc.)

The ordinates show the level hights from grade to ground, to which add always the common hight of grade triangle.

Transverse slopes are shown on cross-sections.

7. Regular Stations = 13. 5. 9٠ 11. 13. 15. 17. Cross-section Areas = 232.5 349.2 412.7 720.5 844.8 1085. 259.5 901.5 516-Square Roots = 15.25 18.69 20.31 26.84 29.06 32.94 30.02 22.72 16.09 -33.94 39.00 47.15 55.90 62.00 62.96 52.74 38.81 Sums of Roots Squares of Sums = 1151.9 1521.0 2223.1 3124.8 3844.0 3964.0 2781.5 1506.2 These squares are each equal to 4 times the mid-section, between regular stations.

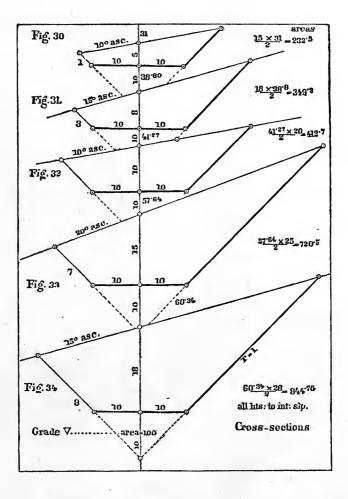
All hights and areas taken to intersection of slopes.

Mean areas computed separately | General Mean Area computed for each regular station, by Simp- by Hutton's Rule, son's Rule.

$$\begin{array}{c}
232 \cdot 5 \\
(1 \text{ to } 3) & 349 \cdot 2 \\
1151 \cdot 9 \\
6)\overline{11733 \cdot 6} \\
Mean Area = 288 \cdot 9
\end{array}$$

$$\begin{array}{c}
349 \cdot 2 \\
(3 \text{ to } 5) & 412 \cdot 7 \\
1521 \cdot 0 \\
6\overline{)2282 \cdot 9} \\
Mean Area = 380 \cdot 5
\end{array}$$

$$\begin{array}{c}
412 \cdot 7 \\
(5 \text{ to } 7) & 720 \cdot 5 \\
2223 \cdot 1 \\
6\overline{)3356 \cdot 3} \\
Mean Area = 559 \cdot 4
\end{array}$$


$$\begin{array}{c}
720 \cdot 5 \\
(7 \text{ to } 9) & 844 \cdot 8 \\
3124 \cdot 8 \\
3124 \cdot 8 \\
6\overline{)4690 \cdot 1} \\
Mean Area = 781 \cdot 7
\end{array}$$

4

$$\frac{\mathbf{A} + 4 \mathbf{B} + 2 \mathbf{C}}{6}$$

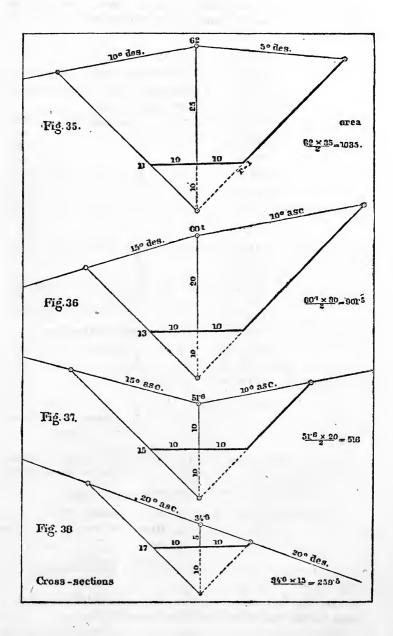
Tabulated for the numerator by successive additions-equivalent to multiplication.

$\frac{1}{2}$	·	•	232·3	- 1	
3		.{	349·9	2	
4			1521.0	5/	
5		.{	412.7 412.7	• •	1 ta 9
6	•	•	2223.1	L	
7	•	.{	-720.5 720.5		
$\frac{8}{9}$			3124.8	3	
9	•	•	844.8	3/	
		6)1	2062.9)	
1 to	9 =	=	2010.5	G	en. Mean
					Area.
	Sepa	rate	Mean	Are	as.
			ſ		38·9
1	to 9]		30.5
-)	-	59·4
			C	78	81.7
Sam	e as	abov	re =	201	10.2

Mean areas computed separately for each regular station, by Simpson's Rule. General Mean by Hutton's Rule. A + 4 B

General Mean Area computed y Hutton's Rule.

$$\frac{\mathbf{A} + 4\mathbf{B} + 2\mathbf{C}}{6}$$


Tabulated for the numerator by successive additions—equivalent to multiplication.

The second secon
/ Bro't over 1 to $9 = 12062.9$
9844.8
3844.0
11 (1085.0
$11 . . \begin{cases} 1085.0 \\ 1085.0 \end{cases}$
3964.0
10 (901.5
$13 \cdot . 39015$
$1 \text{ to } 17 \langle 2781.5 \rangle$
$15 \cdot 5160$
$10 \cdot 10 \cdot 10 \cdot 10^{-10}$
1506.2
17 259.5
6) 30267.9
Gen. Mean Area = 5044.7
Separate Mean Areas.
/Brought over = 2010.5
962.3
001.9
$ 1 \text{ to } 17 \rangle$ $\frac{5510}{699\cdot 8}$
380.3
\setminus Total = 5044.7
(Same as above.)
Then, Mean Area.
5044.7×100 C. yards.
$\frac{36111 \times 100}{27} = 18684.1$
Deduct Grade Prism
for 8 stations =
$370.4 \times 8 \ldots = 2963.2$
Solidity = $\overline{15721}$
in cubic yards from
1 to 17.

So that the final solidity of this cut (as shown) from grade to ground, vertically, and from 1 to 17 (8 stations), horizontally = 15721 cubic yards (excluding for the present the grade passages).—A com-

Mean Area =

380.3

CHAP. I.-PRELIM. PROBS.-ART. 10.

parison of the calculated work, by Separate Mean Areas, and by General Mean Area,—while resulting alike, evinces the superiority of the latter, in point of brevity.

In the tabulation for General Mean Area, it will be observed that the extreme end areas are written but once (equivalent to addition) —the odd numbered areas twice (equivalent to \times by 2), while the even numbered areas are written, in effect, 4 times,—as squares of sums of adjacent representative hights, because in that shape they each equal 4 times the area of the prismoidal mid-section.

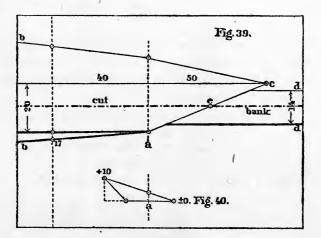
(e.)..... We must now consider the passages from excavation to embankment at both extremities of the cut, near the regular stations, 1 and 17, where it was assumed to be truncated, in order to simplify its computation.

Figs. 39 to 42 show these passages so clearly, in the assumed case, as to need little explanation.

On plain ground the line of passage ac will often be so nearly normal to the centre that, having set the grade peg in the centre line at e (the entrance of the cut), we may place those for the edges of the road-bed (as a and c), at right angles in many cases, where the ground differs in level only a few tenths of a foot; the error being merely a change of some yards from excavation to embankment, which is quite immaterial, since their values differ little per cubic yard.

But where the ground is much inclined, in either direction, the grade pegs a e c must be set on an oblique line, broken at e, if necessary.

Precise rules can scarcely be furnished for such cases, but the quantities being usually small, and the distances short, any of the ordinary methods may be safely employed.


In the case before us, we have made the computation from 17 to a, and from 1 to a, by the Arithmetical Mean, and for the parts from a to c as pyramids.

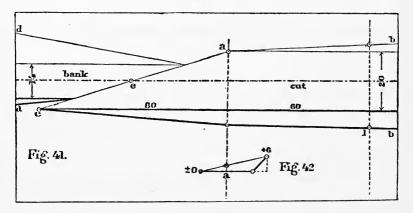
In this manner we have found	the volume of excavation, at the
passage at Fig. 39, to be	$\ldots \ldots = 321$ cubic yards.
And at Fig. 41	= 622 " "
Total, in the whole length of	the passages
(230 feet)	$\ldots \ldots = 943$ cubic yards.

So that, finally, we have for *the solidity* of the entire railroad cut, under consideration, the following result:

From 1 to 17 (as before computed) = 15721 cubic yards. In the passages from excavation to embankment, at both ends (230 feet long in all) = 943 "" Whole solidity of the cut from grade to grade, on both sides . . = 16664 cubic yards.

We will now illustrate the passages from excavation to embankment, at both ends of the cut (shown in profile at Fig. 29.)

In Figs. 39 to 42 all letters refer to similar parts.


1 and 17 = Places of cross-sections, at the selected regular stations, where the cut was truncated, to obtain full work.

- a a =Cross-section, where one edge of road-bed runs to grade.
 - c = Grade point at the other edge, or opposite side.
- a c = Line of junction of cut and bank, at grade level.
- b b = Slopes of cut.
- d d = Slopes of bank.
 - e =Grade point at centre.

Total length of cut between the extreme grade points forming the vertices of the small pyramids at c and c = 1030 feet.

CHAP. I.-PRELIM. PROBS.-ART. 11.

Other modes may be used for treating the question of passages between excavation and embankment, but the above is as simple as any, and may be easily modified for particular cases.

11. With Railroad Cross-sections in Diedral Angles—to find the midsection of the Prismoidal Formula, by a brief calculation from the End Areas, without a Special Diagram.

In all railroad cross-sections, instrumental data of adequate extent are first obtained in the field by well-known processes, and these data enable us in the office, subsequently, to draw them as diagrams, by a suitable scale, and to compute their superficies.

The length of each separate solid of earthwork, and its position upon the centre or guiding line, is also known.

With these given data, the Prismoidal Formula requires the deduction of a hypothetical mid-section, in some form, for use under the general rule, or its modifications.

As mentioned previously, this mid-section is usually derived from the Arithmetical Average of like parts in the end sections, and even in extremely irregular ground, to find this leading section of an Earthwork Prismoid, is not very difficult—when the diagrams of the end cross-sections are correctly drawn—(as in heavy work they always should be), or even from the field notes of the engineer, since the position of every leading point of ground, transversely, is always fixed and recorded by level hights, and distances out from centre, and their average position is always reproduced, *proportionally*, in the midsection.

Nevertheless, some judgment is required in deducing the mid-sections from the end ones, by Arithmetical Means, since the points to

average upon are often in doubt,—the process, too, including finding its area, is like most others connected with earthwork computations, very often tedious, so that some shrewd mathematicians, while conceding the accuracy of this method, when properly carried out, have, nevertheless, deemed it unsatisfactory in some respects.*

It is well, therefore, to have the means of operating with given end areas, to find the mid-section, without the necessity of arithmetically deducing, or even of sketching it.

We, therefore, now submit some rules and examples by which the area of the mid-section may be computed from the ends, without deriving it in the usual way, or drawing for it a special diagram.

These rules are intended only for Earthwork Prismoids, within diedral angles; and though their range is clearly more extensive, the variety of prismoidal solids is so great that it is probably best to limit our rules and examples to the object before us.

The broken ground line of very irregular cross-sections should always be reduced to a uniform slope, by a single equalizing line (or at most by two), containing *exactly* the same superficies, by the method of *Art.* **8**,—and the hights and widths ascertained for each section (by the equalizing line), and verified by multiplication to re-produce the area equalized,—see **8** (a),—these hights and widths enable us at once to compute the volume of the prismoid by Simpson's Rule (their product giving end areas)—(Art. 2 (a))—and the sums of these hights and widths, when multiplied together, producing always 8 times the mid-section (without directly deducing it).

Having given then the end areas, or the hights and widths which produce them, we readily find the Prismoidal Mid-section by the following:

	$\left((1.) \frac{\text{Arithmetical Mean + Geometrical Mean}}{2} \right)$. = Mid-sec.
Rules.	$\left\langle (2.) \frac{(\text{Sum of square roots of end areas})^2}{4} \cdot \cdot \right\rangle$. = Mid-sec.
	(3.) $\frac{\dagger \text{Sum end hights} \times \text{sum end widths}}{8}$.	. = Mid-sec.
	(4.) By the method of Initial Prismoids-Art. 3	(a).

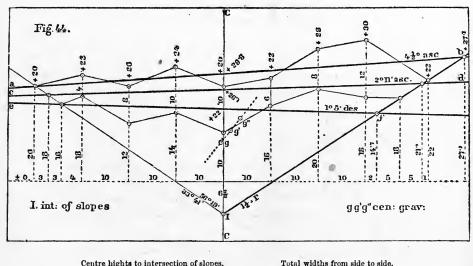
^{*} Warner's Earthwork (1861) .- Davies' New Surveying (1870).

[†] These hights and widths (used in 3) are those connected with the equalizing line of the equivalent triangular section—the product of which, at each cross-section, re-produces exactly the double area of the whole surface, from the side-slopes to the broken ground line; and the product of their sums always equals eight times the mid-section.

Other rules might be given, but these *four* appear to be the simplest and best for use in earthwork, under the view we have herein taken.

Having then found the mid-section, and having the end areas and length previously given, we can easily compute the volume of any earthwork solid, by *the Prismoidal Formula*, or its numerous modifications.

By Geometry, we have $\begin{cases} 1. A \text{ Prism} \dots = Base. \\ A \text{ Wedge, with back} \\ 2. \\ 3. A \text{ Pyramid} \dots = 1 Base. \end{cases}$ Base.


Fig. 43 shows the end cross-sections of one station of a railroad cut, upon irregular ground, both upon one diagram, road-bed 20, sideslopes 1 to 1. Length of station, 100 feet.

Note:

ſ	Both in Figs. 43 and 44 the same letters refer to like parts.										
1	CC	-	Centre line	of rai	lroad, or	guiding	line of	ear	thwork.		
ł	a b	-	Equalizing	line o	f broken	ground	surface	of	larger end .	= 14°	2' slope.
I	ef	===	"	46	"	"	"	of	smaller end .	= 15° 5	7′ "
l	e d		"	"	"	"	"	of	mid-section .	= 14° 5	0′ "

Fig. 44, like the preceding, shows both end sections of a railroad cut, upon one diagram. Road-bed = 20, side-slopes $1\frac{1}{2}$ to 1. Length = 100.

re hights to intersection of slopes.	Total widths from side to side
+ 22.02	66.
+ 26.07	78.7
+ 29.81	90.7

from equalizing line.

In this figure (44) the line ef has a minus slope, which is always the case when the area assumed up to the equalizing point is greater than that to be equalized.

In both of the above figures, I is the intersection of the side-slopes, or edge of the diedral angle, containing the earthwork prismoids.

The constant area of the grade triangle, with side-slopes of 1 to 1 (Fig. 43) = 100. While, with side-slopes of $1\frac{1}{2}$ to 1 $(Fig. 44) = 66\frac{2}{3}$. The road-bed, or graded width, in both cases being 20 feet. The altitude of this triangle for 1 to 1 = 10, and for $1\frac{1}{2}$ to $1 = 6\frac{2}{3}$.

The rules (numbered) above, for the figures *shown*, give the following results:

 $\begin{cases} Fig. 43 gives Mid-sections (1) = 1074.5; (2) = 1074.5; (3) = 1074.4; (4) = 1074.5 \\ Fig. 44 gives Mid-sections (1) = 1015.; (2) = 1014.74; (3) = 1015.22; (4) = 1015. \end{cases}$

The small variations arise from the decimals not being sufficiently extended.

12. To find the Prismoidal Mean Area from the Arithmetical or Geometrical Means, or the Mid-section, by Corrective Fractions of the Square of the Difference of End Hights.

In all cases we suppose the end areas of the Prismoid to be given, and that the Prismoid itself is contained within a diedral angle, the plane angle measuring it being supplemental to double the angle of side-slope, as in the Figs. 43 and 44.

The simplest, and probably by far the most generally employed method of finding a mean area between two others,—is by the Arith metical Mean—which is itself *half the sum of any two magnitudes*.

Adopting the Arithmetical Mean as being the simplest known base, and forming all sections of earthwork by prolonging the planes of the side-slopes to their intersection (or supposing them to be), so as to bring the computed prismoids within diedral angles of given divergency.

We have, from the relations between the sums or differences of the squares, or rectangles of lines producing areas, some rules, which may often be useful in the calculation of earthwork, for cor recting mean areas to be used in finding *the solidity*.

This correction being always equivalent to some fraction of the square of the difference of the end hights.

While these end hights are always to be deemed and taken as the squarroots of the end areas, and are, in fact (as before mentioned), a side of an equivalent square, or half base of an equivalent triangle, having side-slopes of 1 to 1 (or a diedral angle of 90°),—for (we repeat), no matter what may be the ratio of actual side-slope, nor how irregular the ground surface, the square root of the area is invariably the true representative hight which rectifies the section, and which, when squared, reproduces the area.

See Art. 10 (a) (b) etc., where much use is made of these square roots, or representative hights.

Having, then, the end areas given, and their square roots or hights ascertained,

$$D = Difference of hights.$$

 D^2 = The square of the difference of hights.

 $Rules: \begin{cases} (1) \ Arithmetical \ Mean = \frac{\text{Sum end areas}}{2}.\\ Then \ the \ Prismoidal \ Mean \ Area.\\ (2) \ . \ = \ Arithmetical \ Mean \ - \ t \ D^2.\\ (3) \ . \ = \ Mid-section \ . \ . \ + \ \frac{1}{12} \ D^2.\\ (4) \ . \ = \ Geometrical \ Mean \ + \ t \ D^2.\\ Prismoidal \ Mid-section.\\ (5) \ . \ = \ Arithmetical \ Mean \ - \ t \ D^2.\\ Geometrical \ Mean \ - \ t \ D^2.\\ (6) \ . \ = \ Arithmetical \ Mean \ - \ t \ D^2. \end{cases}$

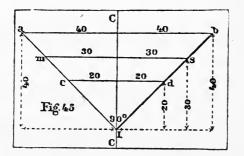
For Fig. 43 these rules give, $\begin{pmatrix} (1) = 1110^{\circ} = \text{Arith. Mean.} \\ (2) = 1086\cdot4 \\ (3) = 1086\cdot3 \\ (4) = 1086\cdot4 \end{pmatrix}$ = Pris. Mean. $\begin{pmatrix} (1) = 1039^{\circ} = \text{Arith. Mean.} \\ (2) = 1022\cdot9 \\ (3) = 1023^{\circ} \\ (4) = 1023\cdot2 \\ (5) = 1074\cdot6 = \text{Pris. Mid-sec.} \\ (6) = 1039\cdot2 = \text{Geom. Mean.} \end{pmatrix}$ = Pris. Mid-sec. $\begin{pmatrix} (6) = 1039\cdot2 = \text{Geom. Mean.} \\ (6) = 991^{\circ} = \text{Geom. Mean.} \end{pmatrix}$

In these numerical illustrations (as in others) slight variations arise from insufficient decimals.

Baker* gives yet another rule for the Prismoidal Mean Areas, as follows:

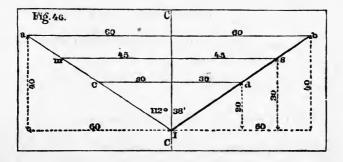
$$\frac{\text{Sum end areas + Rectangle hights}}{3} = \text{Prismoidal Mean.}$$

And we may repeat, as another modification of the *Prismoidal Formula*, arising from this discussion, the following (same as **XI.**, before given):


XII. Solidity
=
$$\frac{(\text{Sum of squares of hights}) + (\text{Square of sum of hights})}{6} \times h.$$

^{*} Baker's Railway Engineering and Earthwork (London, 1848). Other writers have given the same, and it is deducible from Hutton's Mens., Prob. 7, as most of these Formulas are.

CHAP. I.-PRELIM. PROBS.-ART. 12.


This is equivalent to $\frac{2 \text{ (Sum sqs.)} + 2 \text{ (Rect. hights)}}{6}$, or $\div 2 = \frac{(\text{Sum of sqs.)} + (\text{Rect. hights})}{3}$, which is Baker's rule above, or *Bidder's*, as quoted by Dempsey (Practical Railway Engineering (4th edition) 1855).

We may illustrate this matter further by two simple figures.

Here Fig. 45 represents a 1 to 1 side-slope—diedral angle 90°; and Fig. 46 a side-slope of $1\frac{1}{2}$ to 1—diedral angle 112° 38'.

In both these diagrams the same letters refer to like parts.

References.

CC = Centre line. I = Intersection of planes of side-slope. a b = Ground line of one end section. c d = """, of the other. ms = """ of the mid-section.Hights and areas both extend to the intersection at I.

In Fig. 45, The end areas are 1600 and 400—the hights 40 and 20—and by the rules herein, Arithmetical Mean = 1000, Geometrical Mean = 800, Mid-section = 900, Prismoidal Mean Area = 933¹/₂, by all the rules.

In Fig. 46, The end areas are 2400 and 600—the hights = 48.99 and 24.99, being the square roots of the respective end areas—and by the rules herein, Arithmetical Mean = 1500, Geometrical Mean = 1200, Mid-section = 1350, Prismoidal Mean Area 1400, by all the rules.

The areas and hights, in both examples, are contained between the ground lines, and the intersection of the planes of side-slope, or edge of diedral angle, *including the Prismoid of Earthwork*.

13. Applicability of the Prismoidal Formula to find the Solidity of Various Solids other than Prismoids.

The Prismoidal Formula appears to be the fundamental rule for the mensuration of all right-lined solids, and the special rules given, in works on mensuration, for ascertaining the volume of solids in general use, seem like mere cases of the former; though their relation has never been demonstrated in plain terms by mathematicians—so as to connect them *directly*—further than *prisms*, *pyramids*, and *wedges*, which has already been done by the present writer in Jour. Frank. Inst., 1840.

Nevertheless, Hutton (1770) has indicated numerous applications, and various writers have since shown the applicability of the Prismoidal Formula to ordinary solids, and also its coincidence with many special rules of the books, when proper algebraic substitutions are made; and it has been further shown to hold for certain warped solids, to which its application was not expected.*

As an evidence of its remarkable flexibility, we may show, briefly, its application to *the three round bodies*, illustrated by a diagram.

(1) The volume of a cone equals the product of its base $\times \frac{1}{2}$ its hight.[†] The prismoidal mid-section of a cone = $\frac{1}{2}$ the area of the base. The section at the top, or vertex = 0. Then, the sum of these areas used prismoidally = 2 base, which, $\times \frac{1}{2}h$ = base $\times \frac{1}{2}$ hight, which is the geometrical rule.

62

-

^{*} Gillespie, Frank. Inst. Jour. (1857 and 1859) .- Warner's Earthwork (1861).

⁺ Chauvenet, ix. 3, 7, 14, Geom. (1871).—Borden's Useful Formulas (1851).—Henck's Field Book (1854), Art. 112.

CHAP. I.-PRELIM. PROBS.-ART. 13.

(2) The volume of a sphere equals 4 great circles $\times \frac{1}{2}$ its radius.* Now, the prismoidal sections at the poles are both = 0. While four times the mid-section = 4 great circles. Then, the *prismoidal* sum of areas = 4 great circles, which $\times \frac{1}{2}$ hight, or diameter, or $\frac{1}{2}$ radius, is the geometrical rule.

(3) The volume of a cylinder equals the product of its base by its hight.* Now, by the Prismoidal Formula, base + top + 4 times mid-section = 6 base (for all the sections are alike), and 6 base $\times \frac{1}{2}$ $h = \text{base} \times \text{hight}$, which is the geometrical rule.

So that there can be no doubt of the applicability of the Prismoidal Formula to the three round bodies; and in a similar manner it is easy to show its coincidence with many special rules for solids, but a direct mathematical demonstration connecting all these together, and exhibiting their geometrical relations, has never come under the writer's notice; though *indirectly*, and perhaps quite as satisfactorily, this connection has been clearly established for all the leading solids in practical use.

Numerical calculation of the three round bodies, supposing each to have a diameter of 1, and an altitude of 1.

COL	NE.	SPH	ERE.	CYLINDER.		
Prismoidally.	Geom. Rule.	Prismoidally.	Geom. Rule.	Prismoidally.	Geom. Rule.	
Top= '0		Top0	4 great circles	Top = '7854		
Mid.×4 = .7854	Base = '7854	Mid.× 4 =3.1416	= 3.1416	Mid. $\times 4 = 3.1416$	Base . = '785-	
Base= 7854	$1 \times \frac{1}{3}$	Base. $=0^{\circ}$	× 1/3 of 1/2	Base= 7854		
6)1.5708	Solidity = '2618	6)3-1416	Solidity = .5236	6)4.7121	Solidity= 785	
-2618		•5236		×1		
1		1		Solidity = 7854		
Solidity = $\cdot \overline{2618}$		Solidity = .5236				
Ratios of volume 1			2		3	

 $a \ b = \text{The Base.}$ $c \ d = \text{``Top.}$ $m \ s = \text{``Mid-section.}$

The common rules of mensuration are drawn from geometry—but geometry also teaches that a cone, a sphere, and a cylinder, dimensioned and situated as shown by their right sections, in Fig. 47, have

* Chauvenet, ix. 3, 7, 14, Geom. (1871).-Borden's Useful Formulas (1851).-Henck's Field Book (1854), art. 112.

their volumes in the ratio of the numbers 1, 2, and 3.—Now, the above calculations show the same result numerically, which, with the preceding observations, furnish an adequate demonstration.

In like manner we might show that the Prismoidal Formula applies to all the separate geometrical solids, which, when aggregated, form the irregular prismoid known as an Earthwork Solid.

Now, considering this species of solid as a prismoid, within the limits of Hutton's definition (1770), we find that all such admit of decomposition into Prisms, Prismoids,* Pyramids, or Wedges (complete or truncated), or some combination of them, having a common length, or hight, equal to the distance between the end areas or cross-sections, and either separately or together computable by the Prismoidal Formula as a general rule for all.

By a similar analogy (to the three round bodies), we find somewhat like relations to obtain between what we may call the three square or angular bodies; which geometry shows to exist alike amongst them all, the round bodies being referred to the cylinder; the square or angular ones to the cube.—But the wedge requires this special definition, that the edge be double the back.

- 1. A Pyramid, with a square base, on a side of 1, and having also an altitude of 1, has a volume $\ldots \ldots = \frac{1}{3}$.
- 2. A Wedge, doubled on the edge, with a square back, on a side of 1, the edge parallel = 2 (or double the back), and an altitude of 1, has a volume $\ldots \ldots \ldots \ldots = \frac{2}{3}$.
- 3. A Cube, or Hexaedron, with its six square faces, each formed upon a side of 1, has a volume = 1.

So that, finally, we have, both in the three round, and in the three square bodies (as defined) where unity is the controlling dimension, like ratios of volume.

Thus, these six bodies,

Cone and	Sphere and	Cylinder	Solids of
) Pyramid.		and Cube.	Circular
	(doubled on the edge).		and
Have the same $= 1$.	2.	3.	Square Bases.

And of each and all of these alike, the Prismoidal Formula gives the Solidity.

* The Rectangular Prismoid being always divisible into two wedges.

CHAP. I.-PRELIM. PROBS.-ART. 14.

14. Transformation of Areas into Equivalent ones, Simpler in Form, and of Solids into Equivalents, more readily Computable by the Prismoidal Formula, or its Modifications.

Hutton hath defined a Prismoid as follows:

"A Prismoid is a solid having for its two ends any dissimilar plane figures of the same number of sides, and all the sides of the solid plane figures also." (Quarto Mens., 1770.)

This is the oldest and best definition of the Prismoid which we are able to find on record.*

Under this definition, for which the General Rule (coinciding with Simpson's) was framed by Hutton, it is clear that we ought not to expect of the Prismoidal Formula the cubature of curvilinear solids, though, by a happy coincidence, it applies to many such, which are not prismoids at all, nor in the least resemble them, geometrically.

But though often true of this remarkable formula, where a correct mid-section can be first obtained, it by no means follows that its numerous modifications (all framed for right-lined solids) will, like their principal, also hold, as it does in many singular cases exactly, and in most others approximately.

It was early discovered that it would materially simplify the computation of irregular prismoids, to transform them into equivalent right-lined bodies, of which the nature was better known, and the forms more regular and simple.

As the calculations for level ground were obviously the most easy, Sir John Macneill, in his Tables of 1833, adopted for the end sections the principle of transformation into level hights, to contain equivalent level areas—and was, in fact, the originator of what has since been known as the Method of Equivalent Level Hights—by means of which, the end sections of irregular prismoids of earthwork are transformed into level trapezoids, which are then employed to compute an equivalent solid of the same length, and transversely level, at top or bottom, according as it may be excavation or embankment—each, however, representing the other, when inverted.

Sir John Macneill has been followed, more or less closely, by most of the authors of Earthwork tables, the bulk of which are applicable to level ground alone, or ground reduced to such ;—though Wanner's System of Earthwork Computation (1861) deals with ground however sloping, or even warped, within certain limits.

^{*} See also Henck's Field Book (1854).—Davies Legendre (1853).—Haswell's Mens. (1863).—Bonnycastle's Mens. (1807).—Hawnev's Mens. (1798). All define the Prismoid as a right-lined solid.

The method of using Equivalent Level Hights (when the crosssection of the ground is not level) has been concisely explained, by a recent writer, to consist *in finding*,*

- 1. "The area of a cross-section at each end of the mass."
- 2. "The hight of a section, *level at the top*, equivalent in area to each of these end sections."
- 3. "From the average of these two hights, the middle area of the mass."
- "And, lastly, in applying the Prismoidal Formula to find the contents."

It is obviously necessary then to understand what is meant by equivalency—and this we find from Geometry.[†]

- 1. "Equivalent (plane) figures are those which have the same surface-measured by the area."
 - 2. "Equivalent solids are those which have the same bulk or magnitude."
 - "Theorem: If two solids have equal bases and hights, and if their sections made by any plane parallel to the common plane of their bases are equal, they are equivalent."

Now, the transformation of triangular prismoids of earthwork, by means of Equivalent Level Hights, meets every point of Professor Peirce's definitions of *equivalency*, and hence the solid they produce may be regarded as *equivalent* to the original defined by Hutton :—in the above theorem, equality of sections evidently means *equality in area*, and not geometrical equality, which is somewhat different.

Some writers have doubted the accuracy of the transformation or *equivalency* produced by Equivalent Level Hights,[‡] but it is because the solids, which they found in error, were either not prismoids at all, or else the data used were *inadequate* to the solution of the problem.

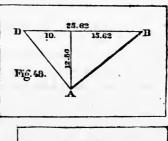
An error in this direction is not surprising; for when we know that the Prismoidal Formula applies correctly to a solid, we are apt to infer that its modifications also do,—and here the error lies.

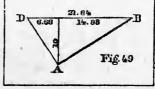
For instance, we know this formula *does apply* correctly to a sphere, but if we test *that solid*, by the method of Equivalent Level Hights, we should find that the end sections being 0, have a hight of 0, and that the mid-section being constructed on a mean of like parts in the

Henck's Field Book (1854).
 † Peirce's Plane and Solid Geom. (1837).
 ‡ Gillespie, Frank. Inst. Jour. (1859).

ends must also equal 0, and hence we might in this way legitimately come to the conclusion that the globe itself had a solidity of 0! This shows that Equivalent Level Hights are *limited* in range.

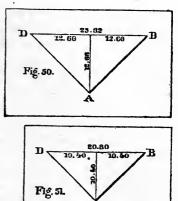
The error obviously is—that all, or most of the transformations and modifications of the Prismoidal Formula, are intended for right-lined solids, "varying uniformly" from end to end, like a stick of timber dressed off tapering, and to all such rectilinear solids they do apply correctly; but not to those which bulge out, or curve in, by laws unknown to Hutton's definition of the Prismoid.


It would be easy to illustrate this by examples, and to show that, confined within proper limits, the usual modifications of the Prismoidal Formula are correct enough for practical use; but they have not the wide range of their principal; nor must they be expected to apply either to the three round bodies, or to warped solids, but only to rightlined ones, varying uniformly, or nearly so, from end to end.


One important point, however, must not be overlooked in applying the Prismoidal Formula (or its modifications) to cases of earthwork: that is, the ground must be properly cross-sectioned; or, have its sections judiciously located, while the hights and distances of its controlling points are correctly measured and recorded, prior to undertaking the calculations of solidity.

It is in this point that Borden's *ridge and hollow problem fails.** Had one or more intermediate cross-sections been adopted there, no difficulty would have existed in its calculation, either by Borden himself, or by subsequent students.

To illustrate this subject, we will give an example, drawn from Simpson's original Prismoid of 1750, on which he founded the Prismoidal Formula, or used to explain it. Art. 2, Fig. 2. (And see Figs. 48, 49, 50, 51.)


Here we will take the Prismoid as being cut *in two*, by the diagonal plane, through DB, so as to divide it into triangular prismoids, and then calculate one of these halves in three ways.

* Borden's Useful Formulas, etc. (1851).-Henck's Field Book (1854).

- By Simpson's Rule, as the half of a rectangular prismoid, dimensioned as in Fig. 2.
- 2. By Hights and Widths, as a triangular earthwork solid, with unequal side-slopes. (See Figs. 48, 49.)
- 3. By Equivalent Level Hights purely as an equivalent triangular prismoid, or earthwork solid, within a diedral angle of 90°, and having equal side-slopes of 1 to 1.

In all these figures the angle $A = 90^{\circ}$.

B and B, Figs. 48 and 49 = 38° 40', and 33° 41'.

(
$$48 \text{ and } 50 = 320.$$

Areas, $\{49 \text{ and } 51 = 216.$

The common hight of the prismoids being h = 24. All the calculations being carried out in detail; all having the same end areas, 320 and 216; and all *dimensioned* as marked upon the figures.

We find, then, by all these calculations, the *Solidity* to be the same = 3200, varying but a few small decimals, and agreeing with the results already ascertained in *Art.* **2**.

This exhibits the *equivalency* we have been discussing (the figures being quite unlike), and might readily be extended to more complicated examples, with a like result.

15. Equivalence of some important Formulas, for computing the Solidity of Triangular Prismoids of Earthwork, contained within Diedral Angles, formed by Prolonging the Side-slope Planes to an Edge.

Equivalent Formulas are those which reach the same results by unlike steps—and in mathematical processes it is often found that a general formula will hold in many cases, usually governed by concise special rules, and yet produce identical results.

This is equivalency, and relates in mensuration especially to the *Prismoidal Formula*, which appears to have a sort of concurrent jurisdiction over the domain of solid geometry, along with the special rules for the volume of each separate solid, producing exactly the same results, though by different steps.

CHAP. I.-PRELIM. PROBS.-ART. 15.

Such is particularly the case in earthwork solids, contained (as they mostly are) in diedral angles formed by uniform planes, called side-slopes, and having a general *triangular* section—two sides being the inclined lateral planes, known as side-slopes (continued to intersect for computation), and these slopes being usually alike in inclination, while the contained angle is equal;—the third side, or ground *line, alone being variable, and often irregular.*

By geometry, triangles having an angle common or equal, and the containing sides proportional, *are similar*; and the areas of similar triangles are always proportional to the squares of any similar or homologous lines, or to the rectangles of such as have like positions and relations to each other :—as the squares of perpendiculars from the equal angles, or their bisectors, the rectangles of containing sides, the product of hights and widths, etc.

Now, these triangular sections of an earthwork solid, extending (for computation) from the ground surface to the intersection of the side-slopes prolonged to an edge, are sections of triangular pyramids, as well as of prismoids; and to such solids the rules for Pyramids, and their frusta, as well as the Prismoidal Formula, and its modifications, apply concurrently, and either may be used at will, with correct results.

These considerations regarding the equivalency of *Pyramidal* and *Prismoidal* Formulas in such cases are important, and require to be well considered by computers of earthwork.

Hutton's definition of the Prismoid is based on three conditions:

- 1. The two ends must be dissimilar parallel plane figures.
- 2. They must have an equal number of sides.
- 3. The faces, or sides of the solid, must be plane figures also.

Usually, says Hutton, the faces are plane trapezoids.

Considering, now, a regular prismoid as being composed of known elementary solids.

Macneill regards it as formed of a prism, with a wedge superposed. Art. $\mathbf{4}$ (and this is also the case with a frustum of a pyramid, turned upon its edge).

Hutton, of two wedges, formed by a single cutting plane passed in a diagonal direction, Art. 3.

The writer, as a triangular prism trebly truncated, Art. 1.

Simpson (the father of the prismoid) gives no special definition, but figures in his work of 1750 a rectangular prismoid (the same or

similar to that adopted and figured by Hutton, 1770); and by a single diagonal plane, convertible into two triangular prismoids. (See Fig. 2.)

Now, as a triangle is the simplest of all polygons, so a prismoid within a diedral angle (triangular in section) may be considered as the simplest of all prismoids, though the rectangular prismoid is nearly so.

The simplest case of the ordinary trapezoidal prismoid of earthwork is in, or upon, ground level transversely.

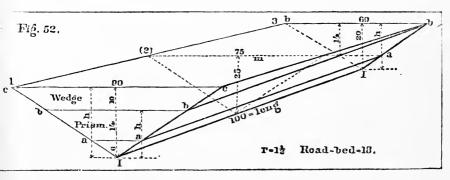
In that case, the cross-sections are level trapezoids, and the solid is obviously composed of a prism and superposed wedge, as in Macneill's solid, Art. 4.

Its volume may be computed by Simpson's, or by Hutton's general rules, because this solid then is strictly a prismoid within the scope of Hutton's definition, and as a whole computable *only* by prismoidal rules.

But suppose the assumed road-bed was taken less and less, until we reached the edge of the diedral angle, and it became zero.

Then, the cross-section from a trapezoid becomes a triangle, and the prismoid changes at once into a frustum of a pyramid—a solid known since the days of Euclid.

This solid becomes then computable by Euclid's geometry, as the frustum of a pyramid—or by Equivalent Level Hights—by roots and squares—by geometrical average—all of which are equivalent, as are the similar rules of Bidder, Baker, Bashforth, and others; or, by wedge and prism, by hights and widths (Simpson), by Hutton's particular rule, by the method of initial prismoids, or, finally, by the *Prismoidal Formula itself*, which always holds *alike* for prismoids, pyramids, or pyramidal frusta.


Hutton (4to Mens., 1770, p. 155) shows that in similar sections of a pyramidal frustum (say triangular) the squares of similar lines, as the bisector of an equal angle (which the centre line of a railroad generally is), are as the areas of the cross-sections, or, conversely, the areas are as the squares of similar lines (Chauvenet's Geom. iv. 7).

Then, from Hutton's prob. 7, cor. 2, we have a formula (for pyramidal frusta) in which, substituting Bidder's and Baker's notation, we have, by a slight reduction, the identical rules given by those authors for the computation of earthwork.*

^{*} Bidder, quoted in Dempsey's Prac. Rail. Eng., London, 1855.-Baker, in his Railway Eng. and Earthwork, London, 1848.

CHAP. I.-PRELIM. PROBS.-ART. 15.

We will now give a diagram to illustrate *the equivalency* of prismoidal and pyramidal formulas.

Fig. 52 represents the full station of earthwork, already shown in *Figs.* 22 and 24, having a road-bed of 18 feet, and side-slopes of $1\frac{1}{2}$ to 1, with other dimensions as marked upon the figures.

Suppose, in all cases (as in Fig. 52), the trapezoidal sections of the ends above the road-bed to be carried down by prolonging the sideslopes to their intersection at I I, the edge of the diedral angle.

 $Let \begin{cases} c c = \text{Top of larger end, and } h = \text{its hight} = 30 \text{ fcet.} \\ b b = \text{Top of smaller end, and } h' = \text{its hight} = 20 \text{ fcet.} \\ I = \text{The intersection of side-slopes, of } 1\frac{1}{2} \text{ to } 1. \end{cases}$

Then, suppose a horizontal plane to be passed parallel to I I, through b b b b, then c c b b b b, the part cut off, is a wedge, its edge being b b, the top of the forward cross-section; while h - h' = the hight of the back c c b b,—and as a wedge it may easily be calculated.

Now, suppose the plane b b b b moves downward, parallel always to its first position at the distance h' from I, then the solid immediately becomes a prismoid—being then a prism with a wedge superposed, as in Art. 4 (or analogous to it).

Continue this parallel movement of the plane downward until we reach the position a a a, assumed for the road-bed, and then we have the precise case of Art. **4**—Sir John Macneill's figure of 1833. To this of course the Prismoidal Formula applies, but the Pyramidal Formulas do not.

Continue on again, with the movement of our supposed horizontal plane downwards, until it comes to I, I, (the junction of the side-slopes), then the solid becomes the frustum of a pyramid, triangular in section, and the wedge is absorbed; nevertheless, a frustum of a pyramid is also in this respect like unto a prismoid, and may, if we choose, be regarded as a prism with a wedge superposed, and forming the top of the solid.

Taking the horizontal plane, supposed to move parallel downwards, at three particular points of its progress,—at b, a, and I,—the calculations for volume would be,

- 1. For the wedge alone = c c b b b b
- 2. "wedge and prism, or prismoid = c c a a a b b.
- 3. " frustum of a pyramid alone, both wedge and prism being merged in it—and in such case this is the simplest and best form of calculation, for volume.

We may here remark that so long as the end cross-sections contain a road-bed of definite width, the solid is a real prismoid, and must be computed as such by prismoidal rules alone; but the moment the angle at I becomes common to both, then the solid becomes a regular frustum of a pyramid, and all the pyramidal rules apply, as well as the prismoidal ones, to which they are strictly equivalent, whenever I, the diedral edge, is common to both.

Now, suppose the case *reversed*, and that the horizontal plane was originally passed through I, I, (edge of diedral angle), and moves gradually *upwards*, parallel.

At every step of its progress, the solid, cut off above I, is always a prism, until *its limit* has been reached, at $b \ b \ b$, the top of the smaller end—here the moving horizontal plane ceases to be longer useful in illustration; and becoming fixed at one end, on the top of the *far end* section as an axis, opens wider and wider at the *near end*, until it attains the line *cc* (the top of the main solid), and completes the wedge we have referred to, *and the pyramidal frustum with it*.

In this position the whole solid is undeniably a prismoid (if we allow to it an infinitesimal road-bed). So, also, it is a frustum of a triangular pyramid, both being strictly equivalent, and both computable by the regular rules for either.*

We will now illustrate this equivalence of the *Prismoidal and Pyramidal Formulas*, in their application to earthwork solids, within diedral angles, by a few examples.

Taking the dimensions of Figs. 22 and 24, with $1\frac{1}{2}$ to 1 side-slopes, and road-bed of 18, for the numbers to be employed—the diedral angle being common to both.

^{*} As might be inferred from Hutton's remarkable chapter on the Cubature of Curves (4to Mens., 1770).

1. Prismoidally.—By the direct and cross multiplication of Hights and Widths. Formula at the end of Art. 9. **VIII.**

Hights
$$\begin{cases} h = 30 \\ h' = 20 \end{cases} \xrightarrow{w = 90} Widths.$$

 $30 \quad 20 \quad 30 \quad 90 \quad 2700$
 $90 \quad 60 \quad 60 \quad 20 \quad 1200$
 $\overline{2700} \quad 1200 \quad 2)\overline{1800} + \overline{1800} \quad 6\overline{)5700}$
 $\overline{950} \times 100 = 95000 =$
Solidity, as before computed.

2. Pyramidally.-By the rules of Baker's Earthwork.

$\frac{30}{30}$	$20 \\ 20$	$30 \\ 20$	$900 \\ 400$	
$\overline{900}$	$\frac{20}{400}$	600	600	
	$= 1\frac{1}{2}$ = 100	n	$ 1900 50 \overline{} $	
i	3)150	_	95000 = Solidity,	as before computed
	50	$\overline{0}$		

3. Prismoidally .- By Simpson's rule, modified for triangular solids.

	Hights.	Widths.						
	$30 \times$	90		2700				
	$_{20}$ $ imes$	60	=	1200				
Sum	s, $50 \times$	150	-	7500				
			12)	11400				
				950	\times	100	=	95000 = Solidity, as
								before computed.

4. Pyramidally.-By Roots and Squares, Art. 10 (c).

End Areas . . = 1350 600 Roots. . . 36.7424.50• 61.24 Sum . . . Square of Sum = 3750 1350 End Areas . 600 6)5700 $950 \times 100 = 95000 = Solidity$, as before computed.

So, we may safely assume that the *Pyramidal Formulas* of Bidder, Baker, and others, the Geometrical Average, Equivalent Level Hights, Euclid's rule for the frustum of a pyramid, etc., *are all* strictly equivalent to the *Prismoidal Formula*, and its modifications, when applied to earthwork solids, *within diedral angles*,—on ground transversely level.

16. Summary of Rules and Formulas from the Preliminary Problems.

It will be found convenient to use, substantially, the same notation for the Prismoidal Formula, and its numerous modifications, wherever practicable.

Thus let $\begin{cases} b = Base, \text{ or area of end assumed for such.} \\ t = Top, \text{ or area at the other end.} \\ m = Hypothetical Mid-section, used in computation.} \\ h = Length or hight of the Prismoid. \\ S = Solidity or volume. \end{cases}$

Then, the Prismoidal Formula can always be in substance expressed by $\frac{b+t+4m}{6} \times h = S$, when a mean area is desired, or by $(b+4m+t) \times \frac{1}{6}h = S$, for rectangular prismoids, or equivalent solids; or, when triangular prismoids are under computation, $\frac{2b+2t+8m}{12} \times h = S$, equivalent in using triangular sections and double areas, to this rule in words: The separate products of hights by widths at each end, plus product of sums of hights and widths at both ends, and the sum of these three products, multiplied by $\frac{1}{12}h = Solidity$.

The following modification of this rule may be sometimes useful in computing the volume of triangular earthwork solids: The products of the direct multiplication of hight by width at each end, plus sum of half products of the cross multiplications of alternate hights and widths a

 $\mathbf{74}$

both ends, multiplied by $\frac{1}{6}h = solidity$ from ground to intersection of slopes, and minus the grade prism = solidity from road-bed to ground.

Many other expressions are assumed for special purposes by the *Prismoidal Formula*; but no matter into what shape it be transformed, the essential idea must always be borne in mind that this formula, in words, concisely is,

"The sum of the areas of the two ends, and four times the section in the middle, multiplied into $\frac{1}{6}h = S$." (Hutton, 1770.)

Such is the simple expression of this celebrated formula—given a century ago—which applies not only to all prismoids, but to all right-lined solids, and many curved ones too.*

SUMMARY.

Article.	Formula,	For rectangular prismoids, or any prismoid, reduced
		to an equivalent rectangular section, we have Simp-
		son's original rule expressed by sides of the end rect-
		angles, referring to Fig. 2, Art. 2. But it is more
		convenient, perhaps, for our purpose, to designate
		these sides relatively, as hights and widths, and in this
		form we may write Simpson's rule as follows:
2.	I.	(Hight \times Width of one end) + (Hight \times Width
		of other end) + (Sum of Hights \times Sum of Widths
		of both ends) $\times \frac{1}{6} h = S.$
		And the transformation of this formula, for use in
		the computation of triangular prismoids (like earth-
		work), placing it in Hutton's form.
		2b + 2t + 8m
2.	II.	$\frac{2b + 2t + 8m}{12} = \text{Pris. Mean Area, and} \times h = \text{Solidity.}$
		For rectangular prismoids, considered as two wedges.
3.	III.	We have Hutton's General Rule for any prismoid,
		$\frac{(b+t+4m)\times h}{6} = S.$
		$\frac{1}{6}$ = S.
3.	IV.	We have also Hutton's Particular Rule.
		$(\overline{2L+l} \times B + \overline{2l+L} \times b) \times \frac{1}{6}h = S.$

^{*} The English engineers have for many years unhesitatingly applied this formula to the warped solids of earthwork. See *Dempsey's* Practical Railway Engineer, 4th edition, 4to, London (1855), pp. 71 to 74. And in this country, Prof. Gillespie (1857), and John Warner, A. M. (1861), have also discussed the subject of Warped Solids of Earthwork.

Article,	Formula.	SUMMARY—Continued.
3.	v .	For unusual and irregular prismoids we have the method of "Initial Prismoids," deduced from Hutton.
6.	VI.	For a prismoid, composed of a prism and wedge, superposed.
		$\frac{(\mathbf{B}+b+b)\times(\mathbf{H}-h)}{6} + (h^2 r - \text{grade triangle}) \times h = \mathbf{S}.$
7.	VII.	For a trapezoidal prismoid of earthwork, taken as two wedges.
		We have the following Rule :
		In 1st cross-section Add road-bed + top-width + road-bed of 2d section; multiply the sum of these three by level hight of section, and reserve the product.
-		In 2d cross-section Add road-bed + top-width + top- width of 1st section; multiply the sum of these three by level hight of section, and reserve the product.
		Finally, add the two products reserved, and $\frac{1}{6}$ of their sum is the mean area of the Prismoid, which, multiplied by length = Solidity.
		For a triangular prismoid of earthwork, we have the following modification of the Prismoidal Formula, operating by direct and cross-multiplication of hights and widths. All hights being taken at centre from ground to intersection of slopes, and all widths from top to top of slopes on both sides of centre.
		Let h and h' = the hights. w and w' = the widths.
9.	VIII.	$\begin{cases} Then, \\ \text{Hights. Widths.} \\ h \times w \\ h' \times w' \\ \text{Length} = 100, \\ \text{usually.} \end{cases}, \text{ and } \frac{hw + h'w' + \frac{hw' + h'w}{2}}{6} \times \\ \text{length} = S. \end{cases}$

UNIVERSIT

CHAP. I.-PRELIM. PROBS.-ART. 16. 4140017

"IBRA

Simpson's Rule, for the Quadrature and Cubature of Curves (adopted by Hutton), and copied from the 4to Mens. (1770).

10. IX.

Article.

Formula.

Sum extreme ordinates = A. " all even " = B. " all odd " = C. Common distance = D. A + 4B + 2C 3 D = area or solidity.

For convenience we may transform this into,

X. 10.

 $\frac{A + 4B + 2C}{6} \times 2D = area \text{ or solidity.}$

To find the solidity of a triangular prismoid byroots and squares.

- h and h' = The end hights or representative square roots of the areas of the ends (between ground and intersection of slopes), at regular stations, numbered even.
 - m = Place of mid-section, represented by its ordinate, and numbered odd.
 - Length = Usually, 100, between principal stations.

 $\frac{h^2 + h'^2 + (h+h')^2}{6} \times \text{length} = S.$

Which, for one station, is equivalent to Hutton's rule above. This is a very important transformation of the Prismoidal Formula, and should be well considered, with the examples in Art. 10.

One of the earliest followers, in the path projected by Sir John Macneill, of using the Prismoidal Formula, with auxiliary tables, for correctly computing the volume of earthwork solids, was G. P. Bidder, C. E., who adopted the obvious plan of imagining the side-slopes to be moved parallel inward, to intersect at grade, and then computing the triangular solid thus formed as a prismoid, or the frustum of a pyramid (both being equivalent in these circumstances); finally, calculating the centre part (or core) as a prism separately, and adding the two for the volume of the whole. The core being computed for one foot wide only,

Article. | Formula

SUMMARY—Continued.

and then multiplied by the width of road-bed intended to be given.* (This is the plan of Macneill's second series of Tables, for various side-slopes, and base of one foot.)

Bidder's formula for the slopes united is, $[(a + b)^2 - ab]_{27}^{22} = S$, in cubic yards for a 66 foot chain, a and b being the hights or depths at the ends.

This is identical with the formulas of Baker, Bashforth, and others, of subsequent writers: $= (a^2 + a b + b^2) \frac{2}{27} = S$, in cubic yards, and is in fact the algebraic expression for the volume of the frustum of a triangular pyramid, demonstrated in all the elements of geometry—supposed to have been originated by Euclid (about 300 B.C.), and known in this country as the method of Geometrical Average.

These formulas are *equivalent* to the following, mentioned in Art. 12.

$$\frac{(\text{Sum of sqs. of hts.}) + (\text{Sq. of sum of hts.})}{6} \times h = S$$
$$= \frac{2 \text{ (Sum sqs.}) + 2 \text{ (Rect. of hights)}}{6}, \text{ or dividing by 2,}$$
$$= \frac{(\text{Sum sqs. of hights}) + (\text{Rect. of hights})}{3} \times h = S,$$

which, for a four pole chain, and cubic yards, becomes equivalent to the formulas above, by introducing the proper fractional multipliers—the hights are the square roots of the areas.

* A similar plan of computing and tabulating the slopes and core separately: the latter on a base of *unity*, to be subsequently multiplied, by any road-bed, is also that of E. F. Johnson, C. E.—the pioneer of Earthwork Tables in this country (New York, 1840)—and has been followed by several other writers; indeed, it is a method so obvious as to be likely to occur to any student. This core and slope *method* originated by Bidder and Johnson (some 30 years ago), and since repeated by numerous writers, is now again reiterated by the latest compiler of Earthwork Tables, E. C. Rice, C. E. (St. Louis, Mo., 1870).

78

12.

XII.

CHAPTER II.

FIRST METHOD OF COMPUTATION BY MID-SECTIONS, DRAWN AND CALCULATED FOR AREA, ON THE BASIS OF HUTTON'S GENERAL RULE.

17..... Since 1833—the date of publication of Sir John Macneill's meritorious volume on the mensuration of earthworks, for canals, roads, and railroads—the investigations of numerous able writers in various countries have shown, conclusively, that the Prismoidal Formula (adopted by Macneill) furnishes the most convenient, if not the only correct rule for the measurement of the immense bodies of material employed in earthworks, and removed from, or supplied to, the irregularities of the ground encountered by the location of lines, under the general name of excavation or embankment.

The writer, as long ago as 1840, in the Journal of the Franklin Institute of Pennsylvania, repeated the demonstration of the formula referred to, by means of a simple figure, and established its connection with the ordinary rules for the volume of the three principal rightlined bodies, known to solid mensuration—the Prism, Wedge, and Pyramid—(to all of which, whether complete or truncated, the Prismoidal Formula correctly applies); these are the elementary solids which enter into the composition of a station of earthwork, and separately, or together, are all computable by the same rule.

He also showed, by numerous examples (worked out in detail) of the leading forms assumed by railroad earthworks, that by means of *hypothetical* mid-sections, *deduced* from the usual cross-sections taken in the field (and diagrammed between them if necessary), the volumes of excavation and embankment solids could be computed correctly without unusual labor, and with more than usual accuracy. This method was made to depend essentially upon two points:*

^{*} Journal of the Franklin Institute (Philadelphia, 1840).

1. "That the formula expressing the capacity of a prismoid is the fundamental rule for the mensuration of all right-lined solids, whose terminations lie in parallel planes, and is equally applicable to each."

2. "That any solid whatever, bounded by planes, and parallel ends, may be regarded as composed of some combination of prisms, prismoids, pyramids, and wedges, or their frusta, having a common altitude, and hence capable of computation by the general rule for prismoids."

All excavation and embankment solids come within the scope of these definitions, and *all* are computable with ease and accuracy by means of the Prismoidal Formula.

These views have met with general acceptance from most practical writers, but many useful transformations and modifications have naturally been indicated; all grounded upon the same formula which appears to have originated with THOMAS SIMPSON, an eminent mathematician, and was demonstrated and published by him (*for rectangular prismoids*) in London, 1750 (Arts. 1 and 2), but generalized and made more useful by HUTTON, in 1770 (Art. 3).

This extraordinary formula is not only the fundamental rule for all right-lined solids, but reaches also to many curved bodies and warped surfaces (as before mentioned), so that it may safely be assumed as correct for all the earthwork solids in common use, which, indeed, are invariably laid out with the view of reducing the ground, however irregular, to equivalent planes (as near as may be), by means of levels and sections, taken at short distances; and though this effort may not be entirely successful in practice, it must be so nearly so that the warped surfaces, remaining involved in the solid, can only differ slightly (if at all) from those for which the Prismoidal Formula is known to hold.

As a general rule, it may therefore be considered as close an approximation to existing facts as is admitted by any convenient method within the present range of human knowledge, and far more accurate than any of the *proximate* rules, which have been extensively employed for the solution of the complicated problems of earthwork.

As a preliminary matter, it is necessary now to make some remarks on the manner of collecting data in the field, for subsequent use in calculating the quantities of earthwork solids.

The centre or guiding line of the road or work having been carefully located upon the ground, and marked off in regular stations—

CHAP. II.-FIRST METH. COMP.-ART. 17.

usually of one hundred feet each—the next operation is to cross-section the work, with level, rod, and tape; most engineers also using the clinometer, or slope level, as an auxiliary, in some stages of the process. The centre line is assumed in all cases to be straight, from point to point, and generally to be a tangent line, to which the cross-sections are perpendicular, but owing to the convergence of the radii upon curves, this is not strictly correct—though within the limits of the work staked out, that convergence is but slight; nevertheless, the cross-sections (before proceeding to level them) should be set out approximately, normal to the tangents, and radial to the curves; and upon all curves, or at least on all of small radius, intermediates at half distance should be placed, or, if the curves are unusually sharp, even at the quarter of a regular station.

Some engineer manuals furnish formula for the correction of quantities upon curved lines,* but they are rarely used; a simple reduction of distance between the cross-sections, or a closer assemblage of them, *being usually deemed sufficient*.

The surface of the ground † is regarded by the engineer as being composed of *planes* variously disposed, with relation to each other, so

* The simplest and most convenient rule for this purpose, is that of Warner's Earthwork (1861). This rule has been adopted, and somewhat simplified, by Prof. Rankine, in Useful Rules, etc. (London, 1866).

The process is: First, to calculate the solidity of the earthwork to the intersection of the slopes (as though the line were straight), and then to multiply it by a factor, which corrects for curvature.

This factor is found thus: $\frac{\text{Difference slope distances}}{3 \text{ Radius of curve.}} \pm 1$. The corrective quotient being added to unity, when the greater slope distance lies outward from the curve, or subtracted, if otherwise.

For example, take a curve of 700 feet radius, lying upon a heavy embankment, along a ground surface sloping uniformly inwards, *towards* the centre of the curve, at the rate of 15°. The road-bed being 24 feet wide, and side-slopes 1½ to 1.

Let the difference of slope distances be 42 feet, the greater being *inwards*, and suppose the whole volume, for straight work = 5917 cubic yards to intersection of slope. Then, 42

 $\frac{32}{3 \times 700} = -.02$, and 1 - .02 = .98, the factor required. Then, $5917 \times .98 = 5799$ cubic yards, and 5799 — grade prism (356) = 5443 cubic yards, the volume, corrected for curvature. The difference in this case, produced by the curvature of the line, being 118 cubic yards, for the station computed.

The correction for other curves would be *inversely* as their radii, and for a 1° curve, similarly situated, about 15 cubic yards, *per station*.

The difference of the *distances* out from the centre are the same thing as Prof. Rankine's difference of slope distances—since the former involve an equivalent quantity on both sides of centre, equal to half the road-bed.

† Journal Franklin Institute (1840).

that any vertical section will exhibit a rectilineal figure, more or less regular. This supposition, though not strictly correct, is sufficiently accurate for practical purposes.

Upon the cross-sections (taken near enough together to define positively the general figure of the surface), sufficient level points are obtained transversely, by *level and rod*, their distances out from centre being simultaneously measured, with a tape line; in this manner, both vertically and horizontally, in relation to established planes, the position of all the points necessary to determine the configuration of the ground is well ascertained.

These points of elevation, or depression, are commonly called *plus* or *minus* cuttings (or simply *cuttings*), and the horizontal distances which fix their relation to the centre are shortly called *distances out*.

The details of the operation of taking the cuttings, or cross-sectioning the work (a matter of vital importance in correct measurement), require good judgment and accuracy; but are so well known to practical engineers as to render unnecessary a description at length. This operation, however, is the absolute foundation upon which the whole fabric of computation rests, and if it be not judiciously executed, all rules are vain.

We may here mention a general maxim, which should never be neglected, if accurate results are desired, viz.: At every change of surface slope, transversely, single cuttings and distances out must be taken; and at every longitudinal change, sections of cuttings, or cross-sections.

Upon very rough ground it is customary to make the lateral distances apart of the cuttings, uniformly 10 feet, which materially facilitates the subsequent calculations; so much so, indeed, that on a rock side hill it is often advisable to use this distance, even though the ground seems not actually to need it; the cuttings and distances out are commonly taken in feet and tenths, and the regular stations of one hundred feet are subdivided by cross-sections into shorter lengths, if the ground requires it, as is frequently the case. One foot being usually the unit of linear measure, one hundred feet a regular station, and the cubic yard the unit of solidity, in earthwork.

Though not indispensably necessary, it will be found convenient in using the prismoidal method of calculation, as well as conducive both to expedition and accuracy, to observe the following rules in "taking the cuttings," as far as the character of the surface will admit, viz.:

CHAP. II.-FIRST METH. COMP.-ART. 17.

1. On side-hill, at each cross-section, where the work runs partly in filling and partly in cutting, ascertain the point where grade, or bottom, strikes ground surface.

2. On every cross-section, take a cutting at both edges of the road, or at the distance out right and left of one-half the base.

3. Always take a cross-section, whenever either edge of the roadbed strikes ground surface, and set a grade peg there to guide the workmen.

4. On rough side-hill, or wherever the ground appears to require it, take the cuttings (not otherwise provided for) at ten feet apart.

5. Wherever the ground admits, place the cross-sections at some decimal division of 100 feet apart, as 10, 20, 30, etc.

6. Endeavor to take the same number of cuttings, in each adjacent cross-section, to facilitate the computation.

7. On plain and regular ground, take three cuttings only-at centre and both slopes.

If these simple directions are observed by the field engineer, and the work carefully done, much labor will be saved, both to him, and to the computer in the office.

In all cases of side-long ground, we suppose it to slope in the same general direction, between the end sections, and do not admit of *oppo*site surface slopes, because, under the general rule, the field engineer would place a cross-section at the point of change slope, and render the consideration of opposite slopes, and the warped surfaces they always produce, *entirely unnecessary*; indeed, by more closely assembling the cross-sections together, we can practically *reduce* even the most irregular surface to a series of planes coincident with it.

Nevertheless, an able writer * has shown that warped solids of a certain kind are computable by *his* rules; and the late Professor Gillespie, in several valuable essays, has demonstrated that hyperbolic paraboloids *at least* could be correctly calculated by the Prismoidal Formula; while English engineers have long used this rule for computing the volume of earthwork solids, *with warped surfaces*; † it appears, however, to be more certain and satisfactory if we confine the operations of this formula to solids bounded by plane surfaces as nearly as circumstances admit; but it is fortunate that our rule is

^{*} John Warner, A. M., Computation of Earthwork (1861).-Prof. Gillespie, Manual of Roads and Railroads, 10th edition (1871).

[†] Dempsey, Practical Railway Engineer (London, 1855).

known to hold for *some* descriptions of warped ground, and hence can hardly fail to proximate results, near unto the truth, however much the surface may be warped, between the cross-sections, if they have been judiciously placed by the field engineer.

a..... The modification of the Prismoidal Formula, which we shall employ in this first method of computation, will be that designed to find *a mean area*, to be subsequently employed by the aid of our Table, at the end, to ascertain the cubic yards of volume.

This formula comes from that generalized by Hutton (1770) through the special mid-section, and is expressed in the beginning of Art. 16 as follows :*

 $\frac{b+t+4m}{6} = Prismoidal Mean, \text{ and } \times h = S \text{ (the Solidity)}.$

Summarily expressed in words as follows; One-sixth the sum of end areas, and quadruple mid-section, multiplied by length, gives the Solidity.

This general formula (identical with one of Hutton's) requires three areas (one, the mid-section, deduced from the others), and also the hight or length of the Prismoid to be given; and by its aid we propose in illustration to furnish five examples of calculation.

- 1. Of a regular station, of three-level ground.
- 2. Of the same length, of five-level ground.
- 3. Of seven-level ground.

4. Of nine-level ground.

5. Of a portion of excavation and of embankment adjacent, with an oblique passage between them, from one to the other.

We here follow a classification of ground nearly resembling that adopted by the late Prof. Gillespie (one of our ablest writers upon earthwork), who enumerates four classes only, under the simple nomenclature of, 1, one-level; 2, two-level; 3, three-level; 4, irregular ground; and under these four classes, he dealt with the problems of earthwork in his excellent lectures "to the Civil Engineering Classes in Union College." †

^{* &}quot;This rule," says Prof. Rankine, in Useful Rules and Tables, 2d edition, London, 1867, p. 74, "applies generally to any solid bounded endwise by a pair of parallel planes, and sideways by a conical, spherical, or ellipsoidal surface, or by any number of planes."

⁺ Manual of Roads and Railroads, 10th edition (1871).

CHAP. II.-FIRST METH. COMP.-ART. 18.

We think, however, that few engineers would be willing to class ordinary *five-level ground* as *irregular*; for such ground would in fact be produced simply by the angle levels commonly taken, which at once convert the plainest *three-level* into *five-level ground*.

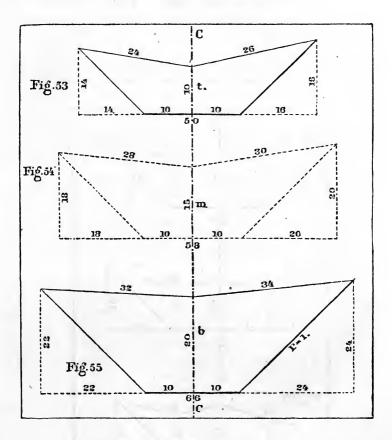
But ground requiring more than five cuttings on one cross-section, all would probably agree in classifying as *irregular*, and such is the view taken by the present writer.

This would bring all ground whatever within the scope of *five classes*, and make but a slight variation in Gillespie's nomenclature. 1. Level ground, where the centre cutting alone is sufficient for volume. 2. Ground slightly inclined, where side-hights only may have been taken. 3. Ordinary ground, requiring centre and side-hights. 4. Same as 3, with the addition of angle levels, or one cutting right and left of centre, besides those at the slope stakes. 5. Irregular ground,—such, or any similar classification would somewhat simplify the matter of earthwork, but it is not *indispensable*. Centre cuttings, or level hights at the centre, are, however, invariably taken in the field, and recorded at the time, whether they be subsequently used or not, so that class 2 would seldom occur on original ground.

The method of measuring the capacity of long irregular solids, by means of normal sections, at short distances, has long been used by mathematicians; of which numerous examples may be found in Hutton (1770), as well as in the demonstration and use of Simpson's rule for quadrature and cubature, referred to in many works, both civil and military.

This method then was naturally adopted by the earlier engineers for the mensuration of earthwork, and has been continued down to the present day with little chance of being superseded; as the areas of the sections, commonly known to the engineer as cross-sections, are not only useful in the computation of solidity, but also in many other ways, during the progress of earthworks; and consequently those rules which disregard the areas of cross-sections, and aim directly at the volume alone of excavation and embankment, are less useful (even if more concise) than those which require the sectional areas to be first computed.

18. Examples in Computation by the First Method.


In computing by this method, the Grade Prism is not required, and is not used, but it may be employed in verification.

Example 1.- We will now give three figures (Figs. 53, 54, and 55), representing three cross-sections, upon one regular station of 100 feet

in length, of a railroad cut with side-slopes of 1 to 1, and road-bed of 20 feet—the other dimensions being as marked upon the figures.

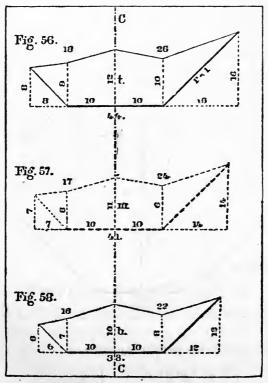
In these, the first and last represent the end cross-sections of the 100 feet station, supposed to have been regularly taken in the field.

The other (Fig. 54) being the hypothetical mid-section, deduced from the end ones, as required by HUTTON'S General Rule.

These cross-sections are marked as follows:

 $\begin{cases} b = 890 \text{ Area.} \\ m = 625 \quad `` \\ t = 400 \quad `` \\ \text{Length, 100 feet} = h. \end{cases}$ Example 1.

CHAP. II.-FIRST METH. COMP.-ART. 18.


And the calculations for solidity are as below:

Calculations,

$$\begin{cases}
890 = b. \\
400 = t. \\
2500 = 4 m. \\
6)3790 \\
\underline{631.7} = \text{Prismoidal Mean Area.} \\
2339.6 = \text{Cubic Yards (by Table) for 100 feet.}
\end{cases}$$

The above example is for plain ground of "three levels," as classed by Professor Gillespie.

Example 2.—We will now give an example of a railroad cut, with the same road-bed (20) and ratio of side-slopes (1 to 1), in *five-level ground*.

The three cross-sections, upon the regular station of 100 feet, are numbered, Figs. 56, 57, and 58, and marked b, m, and t, the middle

one being Hutton's hypothetical mid-section, deduced by Arithmetical Averages from b and t, the cross-sections, assumed to have been taken in the field, with rod, *level*, and tape, in the usual manner.

$$Example 2 \begin{cases} Cross-sections. \\ b = 244 \text{ Area.} \\ m = 286 \quad `` \\ t = 331 \quad `` \\ Length 100 \text{ feet } = h. \end{cases}$$

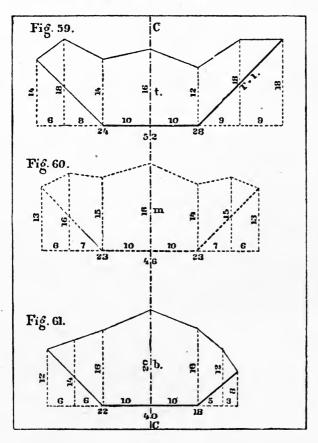
And the calculations for solidity are as follows:

$$\begin{array}{rcl}
244 &= b. \\
1144 &= 4m. \\
331 &= t. \\
\hline
6)1719
\end{array}$$

286.5 = Prismoidal Mean Area.

And for Cubic Yards, in 100 feet long, per Table = 1061.1.

Example 3.—We will now give an example of a railroad cut, similar to the preceding, base 20, slope ratio r = 1, in seven-level ground.


Example 3
$$\begin{cases} \text{Cross-sections and areas.} \\ b = 524 \\ m = 537 \\ t = 551 \\ \text{Length, 100 feet} = h. \end{cases}$$

Calculations for solidity:

$$524 = b.$$

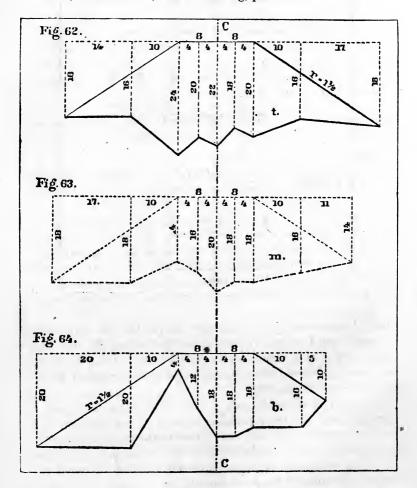
 $2148 = 4 m.$
 $551 = t.$
 $\overline{6)3223}$
 $\overline{537\cdot 2} = Prismoidal Mean Area.$

And for Cubic Yards, in 100 feet long, per Table = 1989.6.

Example 4.—Although embankment is merely excavation inverted, and governed in its computation by precisely the same principles, we will now give an example of embankment on irregular or nine-level ground, road-bed 16, side-slopes $1\frac{1}{2}$ to 1, and ground surface supposed to be jagged masses of rock. CC represents as usual the centre or guiding line of the road, the cross-sections being dimensioned as

marked upon the figures (62, 63, 64), the distance between the end sections being a regular station of 100 feet, and m (Fig. 63) being the *hypothetical* mid-section, deduced from the two others, supposed to have been regularly measured by the field engineer, and furnished to the computer by him from his note book.

The areas of the sections being given, having been previously cal culated in the customary manner.


Example 4 $\begin{cases} Cross-sections and areas.\\ b = 602\\ m = 691\\ t = 786\\ Length, 100 \text{ feet } = h. \end{cases}$

Calculations for solidity;

$$602 = b. 2764 = 4 m. 786 = t. $\overline{5)4152}$$$

692 = Prismoidal Mean Area.

And for Cubic Yards, in 100 feet long, per Table = 2562.9.

As has been observed before, b and t are correlative, and either might be taken as base; the calculations of quantity are usually

CHAP. II.-FIRST METH. COMP.-ART. 19.

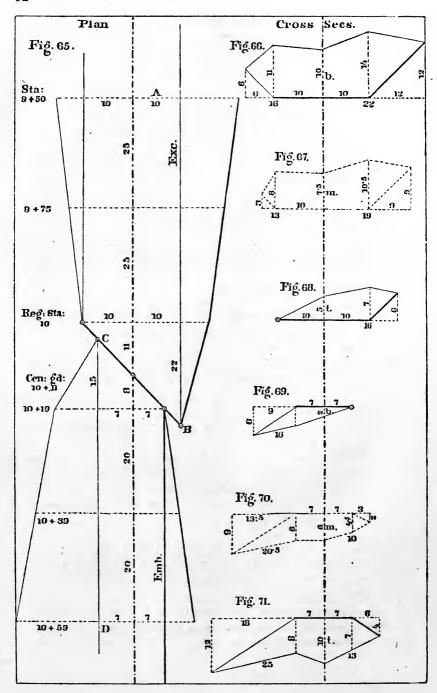
made in the direction in which the numbers run, or the one nearest to us of any pair may be assumed as b, and the other as t—it is quite immaterial which—but during the pendency of the computation, to which they are subject, the special designation must remain for the time unchanged.

The surface of ground, assumed in this example, appears to be *sufficiently irregular* to test any rule (though rougher ones will occur to the memory of most engineers), and we might proceed to give illustrations of such, but enough has been done in this way to indicate the principles on which we work, and which can readily be applied to any case which may occur in practice. Nor does it seem necessary here to define and classify the numerous distinct cases of earthwork the Prismoidal Formula holds for all, and it is left to the judgment of the engineer to make the application.

19. Connected Calculation of Contiguous Portions of Excavation and Embankment, with the Passage from one to the other.

Example 5.—See Figs. 65 to 71.

In Fig. 65, ABC, a portion of a railroad cut, road-bed = 20, sideslopes 1 to 1. BCD, a portion of a railroad *fill*, road-bed = 14, slopes $1\frac{1}{2}$ to 1. Grade points \odot four in number, besides the centre.


In Figs. 66 to 71, six cross-sections, 3 of excavation and 3 of embankment, are shown, and all dimensioned as marked. Fig. 68 is the base of the closing pyramid of excavation in the passage from excavation and embankment, the vertex of which is at the grade point B. Fig. 69 is the base of the closing pyramid of embankment, in the passage from embankment to excavation, the vertex of which is at the grade point C.

The other cross-sections are those necessary to compute the portions of excavation and embankment shown upon the plan, Fig. 65. One of them only is at a regular station, called station (10), Fig. 68, the others are all *intermediates*, supposed to have been required by the configuration of the ground.

The scale is 20 feet to the inch.

On the centre line, the excavation shown is 61 feet in length—but the closing pyramid of cutting runs 11 feet further to its vertex at the grade point B. While in like manner the embankment is 48 feet long on the centre, and the closing pyramid of filling extends 7 feet further to its vertex at the grade point C.

This over-lapping of the closing pyramids is an inconvenience, but it is sometimes *unavoidable*.

CHAP. 11.-FIRST METH. COMP.-ART. 19.

Calculations for Solidity.

Position of Cross-sec- Distances Cross-section
tions upon the centre. apart. Areas, etc.
$9 + 50 \dots 0 \dots 342 = b.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Length $= 50$ 6)1355
225.8 = Prism. Mean Area.
$\overline{418.1}$ = Cubic Yards, by
Table for $\frac{50}{100}$ feet = 418.1
10 + 11 Grade at centre.
(Passage, etc., from Excavation to Embankment.)
/ Closing Pyramid of Excavation, vertex at B, Fig. 65.
Area of base at $10 = 106$. Then,
$\frac{106 + 106 + 0}{6} = \frac{\text{Mean Area.}}{35.3 \times \text{length}, 22} = \text{by Table 130.7} \times \frac{^{22}_{100}}{_{100}} = 28.8$
Total Solidity of Excavation = $\overline{446.9}$
Now, commence the embankment with the closing pyra-
mid in the passage, altitude or length 15 feet, and vertex at
C, Fig. 65. Area of base at $10 + 19 = 46$. Then,
$46 \pm 46 \pm 0$ Mean Area.
$\frac{46 + 46 + 0}{6} = \frac{\text{Mean Area.}}{15\cdot3} \times \text{length}, 15 = \text{by Table 56.7} \times \frac{15}{100} = 8.5$
$10 + 19 \dots 0 \dots 46 = b.$
$10 + 39 \dots 20 \dots 504 = 4m.$
$10 + 59 \dots 20 \dots 215 = t.$ Embankment.
Length = $\overline{40}$ $\overline{6}\overline{)765}$
127.6 = Pris. Mean Area.
$\overline{189.0}$ = Cubic Yards, by
Table for $\frac{40}{100} = 189.0$

And this closes the computation of Cubic Yards in the portion of Excavation and Embankment, from A to D (Fig. 65), including the passage between them, and comprising in all two prismoids and two closing pyramids.

In concluding this branch of the subject, we may mention that as HUTTON defines "a prismoid" to have in its end sections "an equal number of sides" (Arts. 3 and 14), a like number of level hights, or cuttings, ought always to be taken in adjacent cross-sections, but should that have been omitted in the field, additional cuttings may be computed or drawn upon the sections obtained, so that previous to calculating their areas, there shall be the same number of cuttings in all the adjacent cross-sections, and we shall then have for solidity a correct prismoid.

a..... In verifying the work given in the first four examples preceding—illustrated by *Figs.* 53 to 63 inclusive—the end areas and length being correctly given in all, it is only necessary to *prove* the mid-section; as an agreement there necessitates a like result when used with the given data, *prismoidally*, to find the solidity.

This proof may be made either by our 2d method of computation (Hights and Widths), or 3d method (Roots and Squares)—the latter being generally the most convenient, though the former may often be used with advantage.

No single calculation, truly says Prof. Gillespie, ought ever to be relied on by the engineer, and proof of the correctness of every computation should always be obtained before employing it in work.

It is often the case when railroads follow the rugged margins of rivers that many miles of side-hill work present themselves, where the road-bed, located above the flood line, lays in rock excavation on one side, and heavy embankment upon the other—to such cases the preceding method of computation will be found peculiarly applicable; both cutting and filling showing themselves upon the end cross-sections of every station and intermediate, while the mid-section may be *diagrammed* between them with great facility.

In continuing this chapter we may state—That in any right-lined solid whatever, lying between two parallel planes (according to the definition of a prismoid), whenever a mid-section can be correctly deduced between two given end sections, situated in the limiting planes (and by taking pains it always can be), there; our First Method of Computation will be found to apply strictly for solidity.

So that this method is a standard test for all other rules, and has been accepted as such by Prof. Gillespie, and other able writers.

Hence, we may repeat that the formula employed in this chapter is the fundamental rule for the mensuration of all right-lined solids, within parallel planes, and applicable also to many warped figures, and other curvilinear bodies, in a manner so unexpected as to have excited the surprise of some able geometers, whose attention had not been specially directed to that subject before.

CHAP. II.-FIRST METH. COMP.-ART. 19.

Cases often occur in heavy work, where it is evident from the crosssections, that the bulk of the solid under consideration lays considerably on one side of the centre line (or where, in common phrase, the sections are *lop-sided*), and it would seem in such cases as if some correction ought to be made for the position of the centres of gravity (as indicated upon *Figs.* 43 and 44, Chapter I.); for it is most obvious that in a long line of heavy work the path of gravity centres would frequently cross and re-cross the guiding line of the work, and hence would necessarily be longer.

So that if the line of magnitude should be assumed as the true line of calculation, the centres of gravity ought to be assembled upon the centre line, *in effect*, at every station, and this correction would probably be found by multiplying the projections of the points of gravity upon the centre, by their distances from it (+ when on the same side — when opposite); but this is a refinement which has never been employed by engineers, in dealing with the huge masses in question.

What the engineer most needs in earthworks appears to be-not astronomical accuracy, but *the systematic use* of some rule for solidity, which shall always be consistent with itself, and closely proximate the truth, without involving those stupendous discrepancies (mentioned by many writers), as flowing from the employment of the *average* methods, which have been so much (and as it always appeared to the writer) so unnecessarily, used in the ordinary computations of *earthwork*.

The method of computation developed in this chapter finds appropriate application also *in masonry calculations*. In this manner the writer once computed the contents of a heavy stone aqueduct, containing over 4000 perches, with numerous projections and off-sets, and walls battered, *both inside and outside*.

The process taken was by drawing to a scale accurate horizontal plans, at all the off-set levels, at the skewbacks, and other breaks in the contour—deducing mid-sections between these, and multiplying together each set of three, in accordance with the Prismoidal Formula, etc.

This gave a very satisfactory exhibit of the work, and a correct result *in volume*, with less labor, and greater accuracy, than any other modes he found in use at the time.

In calculating stone culverts, and bridge abutments also, this method will be found quite useful.

In fact, in computing the volume of solid bodies of any kind, the engineer will find the Prismoidal Formula to be either strictly correct, or a very close approximation.

b..... We now conclude this chapter by some remarks upon *Borden's Problem*.

Some examples acquire celebrity from being apposite in themselves, for the illustration of important processes, and are consequently copied by others; besides, there is an evident advantage to the reader in re-producing examples, which, having been before discussed, are more generally known; amongst such is *Borden's Problem*, first published by Simeon Borden, C. E. (Boston, 1851), in his "System of Useful Formulæ" (*Art.* 63).

He treats this example at great length (14 pages), and commits some errors, which were subsequently pointed out and corrected in Henck's Field Book (Boston, 1854).

This example was also adopted by John Warner, A. M., in his Earthwork (Philadelphia, 1861, Art. 112), without comment.

The problem appears to have given Mr. Borden some trouble, involving a number of his "*blind pyramids*," and also some errors, as Mr. Henck hath shown.

Nevertheless, it is simply a case of *injudicious cross-sectioning*—for had Borden, instead of attempting to compute its full length of 100 feet, imagined an intermediate at 50 feet (for which he gave all the data necessary), all difficulty would have vanished, and he would neither have stumbled over his own blind pyramids, nor been shortly corrected by a subsequent author.

Indeed, Mr. Borden admits, page 186, of his work of 1851, that "the engineer would be likely to divide the section into two or three" —and this the present writer deems to be not only likely, but absolutely certain.

Now, taking the end areas alone (100 feet apart), and disregarding (for the moment) the irregularities of the ground, which ought to have been intercepted and brought out, by an intermediate at 50 feet—we find:

Warner, in Art. 112, of his Earthwork, gives for

the volume = 1155.9 C. Yards. By Hutton's General Rule (as in this chapter) = 1155.9 " Difference = 0

But Henck, in his Engineer's Field Book (after noting Borden's mistake of 360 cubic feet), finds by his own process the solidity =

32,820 cubic feet = 1215.5 cubic yards; or, the former are in a deficiency of — 59.6 cubic yards, an error inadmissible in the quantity before us.

In this problem Borden makes two theoretical suppositions, and two summations of results, based upon his hypothetical view of the effect upon solidity of the irregularities of the ground surface, between the end sections, but he gives no opinion on either.

The Prismoidal Formula of Hutton (computed on the whole station of 100 feet) gives precisely an Arithmetical Mean between the two suppositions of Borden, but is considerably in defect of the true volume as given by Henck's Formula.

And here we come to the point of the importance of properly cross sectioning a solid, before we begin to calculate it;—for if we sketch from Borden's data an intermediate at 50 feet, of which we find the area to be 335.6—then all difficulties are at once resolved, and we proceed prismoidally in a few lines to reach a correct result, which Mr. Borden failed to attain in fourteen pages.

Considered in connection with an intermediate at 50 feet, Borden's Problem stands as follows: Two end areas = 387 and 240. One intermediate area = $335\cdot6$. Now, deducing between these (by Borden's data) the hypothetical mid-sections, required by Hutton's General Rule, we find they have areas of 293.5 and 366.5, and working prismoidally with them we quickly find the solidity of the entire body to be 32,820 cubic feet, or 1215.5 cubic yards—precisely the same as Henck makes it by his own formula, and as Borden would have made it had he been aware of the errors into which his own "blind pyramids" led him.

As this problem is a well-known one, and has not a very irregular appearance in Borden's diagram, we think this a suitable place to urge upon all engineers the great importance of judicious cross-sectioning.

In terminating this chapter, we may safely state that Hutton's General Rule, as applied to earthworks by the methods detailed herein, IS ONE WHICH NEVER FAILS WHEN THE DATA IS CORRECT.

7.

CHAPTER III.

SECOND METHOD OF COMPUTATION, BY HIGHTS AND WIDTHS, AFTER SIMPSON'S ORIGINAL RULE.

20..... The Prismoidal Formula, as originally demonstrated by Simpson (1750)—see Art. **2**—was evidently designed for the rectangular prismoid (Fig. 2)—its end areas were obtained by multiplying together the Hights and Widths; and four times its mid-section by multiplying the sum of the Hights by the sum of the Widths.

To adapt it more conveniently to the triangular prismoids of Earthworks, with side-slopes drawn to intersect each other, the original formula of Simpson (1750), reduced to the form subsequently enunciated by Hutton, as a general rule (1770), is multiplied by 2, on the left side only, changing its divisor at the same time.

Thus,

$$\frac{(b+t+4m) \times h}{6} = S \times 2 = \frac{2b+2t+8m}{12} \times h^* = S.$$

This is the same thing, in effect, as the original formula of Simpson (when arranged for a mean area); for if we suppose the rectangular prismoid (*Fig.* 2) cut in half by a plane through the diagonals of its end areas, FB, etc., so as to convert it into *two triangular prismoids* (each with one right angle), the Hights \times Widths from the right angle would give *double* the triangular area of each end, while *their sums*, multiplied together, would equal 8 times the triangular mid-section, the divisor becoming $6 \times 2 = 12$.

^{*} It would evidently be a much better notation for earthwork to adopt l instead of h, because the greatest extent of an earthwork solid usually lays along the ground (lengthnoise); but Simpson and Hutton, the fathers of these formulas, have both used h—they dealing generally with prismoids of small dimensions, supposed to stand erect upon a base (as in Figs. 1 and 3), and have been followed by most writers, and necessarily for the most part also here; though we have occasionally used l (to avoid confusion), and this must be taken as correllative with the h of Simpson and Hutton, in the cases in which it has been employed; but some care will be needed to avoid confounding the h indicating the length of the prismoid, with the same letter often used as a symbol for hight in cross sections.

CHAP. III.-SECOND METH. COMP.-ART. 20.

Now, as shown in Art. 8, a, it is an equivalent process to imagine the triangular section, partially revolved, so as to bring the edge of the diedral angle downwards, and to cause its bisector (the centre line) to become the perpendicular hight (h) of the cross-section, while the extreme breadth to ground edges of side-slopes, horizontally, becomes the width (w)—then, by Art. 8,* we have $h \times w = double$ area of triangular section to intersection of side-slopes.

This is the position occupied by the triangular areas of the crosssections of the solids forming the earthworks of railroads, the centre line being the bisector, or *hight* (h), and the sum of the distances out, to the ground edges of the side-slopes of an equivalent triangle, being the width (w).

The equivalent triangle is often formed by means of an equalizing line, drawn (for convenience) through the lowest side-hight of the cross-section, so as to form a figure of only three sides, *exactly equivalent* in area to the cross-section of earthwork, which is nearly always more or less *irregular* on the top, and frequently has numerous sides for its ground line;—the side-slopes, however, remaining generally uniform and even, from station to station (see Fig. 14).

The equation for Hights and Widths may often take another form (already mentioned in Art. 9), which, at times, will be found convenient.

$$Let \begin{cases} h = \text{Hight at one end.} \\ h' = & \text{```` other end.} \\ w = \text{Width at one end.} \\ w' = & \text{```` other end.} \\ l' = \text{Length of mass, usually} \\ \text{denoted by } (h) = \\ 100, \text{ generally.} \end{cases}$$

$$Then, \frac{h w + h' w' + \frac{h w' + h' w}{2}}{6} \times l = S.$$

* In any Δ , however situated:—If one angle coincides with the intersection (or origin,) of two rectangular axes (such as a Meridian, and an East and West line, or centre line, and base of levels), and the co-ordinates of the other angles are known (as by their Lat. and Dep., or level hights and distances out); then, the area of any such Δ is easily found.

Thus, calling the first angle 0, and the others in succession 1 and 2.

We have,
$$\frac{(\text{Lat. of } 1 \times \text{Dep. of } 2) - (\text{Lat. of } 2 \times \text{Dep. of } 1)}{\text{Area of } A required}$$

But, in the single case of either rectangular axis cutting the \triangle , then, instead of -between the products (forming the numerator above) put +. With this exception, the

This formula may be briefly called (from a leading feature in the process), the direct and cross multiplication of Hights and Widths, which may be represented as below; and then, $\left(\times \frac{l}{6}\right)$, or one-sixth the whole being taken = Solidity.

Thus,
$$\frac{\begin{cases} h \times w \\ \times \\ h' \times w' \div 2 \end{cases}}{6} = \begin{cases} \frac{h w}{h' w'} \\ \frac{h w' + h' w}{2} \end{cases} \times l = S.$$

Cross Multi-
$$\begin{cases} h \ w' = 23.4 \times 55.5 = 1299 \\ plication. \end{cases}$$

 $k' w = 27.6 \times 47 = 1297 \end{cases}$
 $2)2596$
 $1298 = 1298 \\ 6)3930 \\ k' w = 47 \\ k' = + 27.6 \\ w' = 55.5 \end{cases}$
 $Prism. Mean Area = 655 \begin{cases} Representative product for mid-sec. \\ Including the grade trian. of 100 area. \end{cases}$

2. Proof by Simpson's Formula (modified for triangles).

)	\times 102	12)	7860		-	(
					including	(

Then, the mean area \times length = 100 feet between sections = Solidity = 65,500 cubic feet.

(Prob. V., Young's Analyt. Geom., London, 1833.—Prof. Johnson's ed. of Weisbach, Philada., 1848, article 107.)

rule is general, and finds ready application in computing the areas of irregular cross-sections, and the contents of LAND SURVEYS.

CHAP. III.—SECOND METH. COMP.—ART. 21. 101

21.... Examples of the Application of Simpson's Rule to Earthworks. In further illustration of this subject, suppose Figs. 72, 73, 74, and 75, to be cross-sections upon a railroad line, in stations of 100 feet, apart sections, with road-bed of 20, side-slopes 1 to 1, and other data as dimensioned upon the figures given; with equalizing lines properly drawn, reducing them to equivalent triangles, and with centre hights correctly ascertained.

Then, to find the End Areas to Intersection of Slopes.

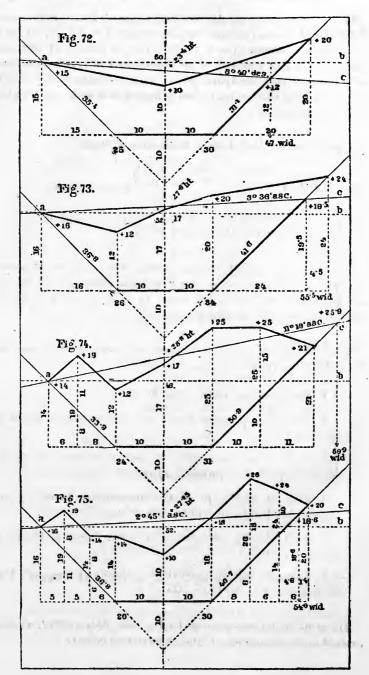
High	ts. Widths.	Sq. Ft.	
Fig. 72 = 23	$\cdot 4 \times 47$:	= 1100	Double Areas
73 = 27	$.6 \times 55.5$	= 1532	in
74 = 28	$\times 8 \times 59.9$	= 1725	Whole numbers
75 = 27	$\cdot 25 imes 54.6$:	= 1488	in Whole numbers.

Or, they may be computed, as is usual with engineers, by means of trapezoids and triangles, as they have been, indeed, in this case for the purpose of *verification*, and found to agree in whole numbers; there being, as usual, small differences in the decimal places.

When the ground surface is *irregular*, as shown in these cross-sections, the successive processes are *as follows*:

1. Find the equalizing line by Art. 8.

2. Ascertain the centre hight from intersection of slopes to equalizing line.


3. Find the extreme width, or sum of distances out, to the edges of tops of slopes, where they cut the equalizing line.

4. Find the *double areas* of the cross-sections, by multiplying together the hights and widths, or $h \times w$.

5. Find 8 times the mid-section, by means of sum of Hights \times sum of Widths.

6. Then, for Solidity, proceed prismoidally, by Simpson's Formula as modified, for triangular solids.

The areas of the cross-sections having been duly verified, we may proceed to the calculation of some examples, as follows:

CHAP. III.-SECOND METH. COMP.-ART. 21.

EXAMPLES.

Figs. 72 and 73.

Hights. Widths. 47 = 110023.4 imes= Double Area of top. $27.6 \times 55.5 = 1532$ " " base. $\overline{51}$ $\times 102.5 = 5228$ = 8 times mid-section. 12)7860 655 = Prismoidal Mean Area. 100 Distance apart sections. 65500 = Solidity in Cubic Feet.

Figs. 73 and 74.

 $\begin{array}{rl} \text{Hights.} & \text{Widths.} \\ 27^{\circ}6 \times & 55^{\circ}5 = 1532 & = 2 \ t. \\ 28^{\circ}8 \times & 59^{\circ}9 = 1725 & = 2 \ b. \\ \hline 56^{\circ}4 \times & 115^{\circ}4 = 6509 & = 8 \ m. \\ & 12 \\ \hline 9766 \\ \hline 814 & = \text{Prismoidal Mean.} \\ \hline & 100 \\ \hline 81400 = Solidity. \end{array}$

Figs. 74 and 75.

Hights. Widths. $28.8 \times 59.9 = 1725$ = 2 t. $27 \cdot 25 \times 54 \cdot 6 = 1488 = 2 b.$ $56.05 \times 114.5 = 6418$ = 8 m.12)9631 803 = Prismoidal Mean. 100 80300 = Solidity.Cub. Ft. Grade Prism to be deducted. 65500 to find the volume, from road-Totalization bed to ground. 80300 227200 = Sum of quantities.Grade Prism. $\frac{197,200}{27} = 7304$ Cubic Yards. (Then, 227,200 - 30,000 =

Tabulated by our 3d Method of Computation (Roots and Squares), the sum of the quantities, from Fig. 72 to Fig. 75 = 227,170 Cubic Feet (including Grade Prism); the slight difference of 30 Cubic Feet

arising from neglect of decimals on both sides ;---had these been carried further, the results would probably have been *identical*, or very nearly so.

We may also *verify* this calculation by means of multipliers, modelled after Simpson's, and applied to the areas, as given in the examples, *as follows*:

Cross-sections figured in Nos. 72, 73, 74, and 75, stations 100 feet.

1		Double				
1	Sta. A	reas, etc.	Mults.	Sq. Ft.		
	72	1100 $ imes$	0.5 =	550		
	8 times mid-sec.	5228 \times	0.5 = 100	2615		
I	73	1532 $ imes$	1 =	1532		
	8 times mid-sec.	6509 \times	0.5 =	3255		
Ι	74	1725 \times	1 =	1725		
Ι	8 times mid-sec.	6418 \times	0.5 =	3209		
	75	1488 $ imes$	0.5 =	744		
I			6)1	13630		
		e .	0	2272		
				100	Double Interva	al.
1	Solidity, in	Cubic I	eet =	227,200,	same as before.	

The intervals are subdivided by the mid-sections into 50 feet spaces, or single interval. The regular stations of 100 feet forming a double interval in this case.

The Grade Prism being deducted (30,000 Cubic Feet), and the remainder divided by 27, we have as before, a volume of 7304 Cubic Yards.

22. Observations upon Simpson's Rule. SIMPSON appears to have framed his rule for application to rectangular prismoids, and as such he demonstrated it in reference to a diagram like Fig. 2, Art. 2—including of course those right triangles which are the halves of rectangles.

He could have had no conception of the vast masses of earthwork needed upon the public works of later days; nor of providing a rule for the mensuration of such; nor, indeed, of the immense range the Prismoidal Formula has since taken.

His rule (see Art. 2), though wonderfully flexible when applied to rectangular or triangular figures, has no leading lines, common with

CHAP. III.—SECOND METH. COMP.—ART. 22.

irregular ground; such surfaces then require to be equalized, by a single line on the principle of Fig. 14^* —converting the sections bounded by them into equivalent triangles before they can be computed by the Hights and Widths of Simpson's Rule, though we find occasionally that trapezium sections also, when not very much distorted, are often computable by the rule mentioned.

But, in applying such a rule to the rude masses of earthwork, so common at the present day, failing cases were to be expected, and the peculiar solid shown in *Figs.* 81 and 82 furnishes an example in point.

Figs. 81 and 82, Chap. V., computed by Simpson's Rule.

/ Hights. Widths.	
$60 \times 40 = 2400$	
$30 \times 60 = 1800$	But, by various
$\overline{90 \times 100} = 9000$	examples, in Arts
	29 and 30, Chap.
Prism. Mean Area $=$ 1100	V., the Solidity =
Common length $. = 100$	130,000 Cubic Feet.
Solidity = $\overline{110,000}$ Cubic Feet.	•

So that, in the case of this peculiar solid, Figs. 81 and 82, Simpson's Rule falls short = 20,000 Cubic Feet.

As the solid referred to has one end section a Rhomboid—the midsection a Pentagon—and the other end a Triangle.

We could hardly expect Simpson's Rule, framed for rectangular and triangular sections, to answer in a case like this, and hence we mention it especially.

For all the solids which present sections, such as Simpson contemplated, his rule is *unquestionably correct*, while it is remarkably plain and simple in its application.

Further to illustrate what may be expected from Simpson's Rule, when applied by *equalizing lines* to rough and heavy sections, we will now compute the cases shown by *Figs.* 43 and 44, Chapter I.

Example, Illustrated by Fig. 43, Chapter I.

Side-slopes 1 to 1. No road-bed designated. Proximate Computation, by Simpson's Rule, to intersection of slopes; other dimensions as in Fig. 43.

> Equalizing line of base $= b = 14^{\circ} 2'$ asc. " top $= t = 15^{\circ} 57'$ asc.

^{*} In substance, this method is found in Hutton's Land Surveying (1770), quarto Mens.

Both these lines being drawn from the lowest side-hight, so as to equalize the areas, as per Fig. 14, Chapter I.

Hights. Widths.
$b = 37.5 \times 80 = 3000$
$t = 25.7 \times 56 = 1440$
$\overline{63.2 \times 136} = 8595.2$
12) 13035.2 -
Prism Mean Area = 1086.3
Length = 100
Solidity $\ldots = \overline{108630}$
Same, by HUTTON $= 108667$
Difference = -37 /

Example, Illustrated by Fig. 44, Chapter I.

Side-slope $1\frac{1}{2}$ to 1. No road-bed designated. Proximate Computation, by Simpson's Rule, to intersection of slopes, other dimensions as in Fig. 44.

(1352 = b.)	/ Equalizing line of the base $b = 4^{\circ} 30'$ asc.
Areas $\langle 726 = t. \rangle$	" " top $t = 1^{\circ} 5'$ des.
Areas $\begin{cases} 1352 = b. \\ 726 = t. \\ \text{Length, 100 ft.} \end{cases}$	Both these lines being drawn from the
	lowest side-hight, so as to equalize the areas,
	as per Fig. 14, Chapter I.
/ н	ights. Widths.
/ 2	$2.02 \times 66 = 1453$
	$9.81 \times 90.7 = 2704$
5	$1.83 \times 156.7 = 8122$
	12) 12279
A Prismoidal A	Mean Area = $1023 \cdot 25$
Length .	= 100
Solidity .	= 102325
	and Pyramid = 102363
	= -38

With several other methods, this proximate calculation agrees within a few cubic yards.

Example from Warner's Earthwork, Art. 86.

A heavy embankment. For details, see Chapter V., near the close.

Areas $\begin{cases} 2411 = b. \\ 907 = t. \\ \text{Length, 100 feet.} \\ \text{Surface slope, 15^{\circ}.} \end{cases}$

CHAP III.-SECOND METH. COMP.-ART. 22.

,	Hights. Widths.	
/	$36.7 \times 131.4 = 4822$	
	$22.5 \times 80.6 = 1814$	
	$\overline{59.2 \times 212.0} = 12550$	
	12)19186	
١	Prismoidal Mean 'Area = 1599	
/	Length $\ldots \ldots \ldots = 100$	\$
	Solidity = $\overline{159900}$ Cubic Feet. (,
I	For Cubic Yards $\div 27$ = 5922	
	Deduct vol. of Grade Prism = 356	
	Solidity $\ldots \ldots \ldots \ldots = \overline{5566}$ Cubic Yards.	
	By Hutton's Rule = 5566	
	Difference = $\frac{+0}{+0}$	
•		

In calculating by Simpson's Rule, the example figured by Figs. 74 and 75—which agrees very nearly with HUTTON—we observe, by reference to the figures, that the ground slope at the end sections differs about 9°. So that we may safely assume that where the equalizing lines (representing the ground) have a nearly similar slope, and in the same direction, which do not differ more than 10° in their inclination, SIMPSON'S Rule may be safely used—this appears to be a sure limit, and we might perhaps go higher.

When the work happens to be upon uniform ground, or the equalizing lines have the same slope, as in the case cited from Warner's Earthwork, where the ground slope itself is uniform at 15° , the results obtained by Simpson's Rule ought to be exact, and they appear to be so.

LIBRARY UNIVERSITY OF CALIFORNIA.

CHAPTER IV.

THIRD METHOD OF COMPUTATION, BY MEANS OF ROOTS AND SQUARES; A PECULIAR MODIFICATION OF THE PRISMOIDAL FORMULA, WHICH WILL BE FOUND IN PRACTICE TO BE BOTH EXPEDITIOUS AND CORRECT, IN ORDINARY CASES.

23..... This method of computation, by Roots and Squares,^{*} appears to be the most rapid and compendious one treated by us, while it requires less data and preliminary work, and agrees in its results (for usual field work) with computations made direct by the Prismoidal Formula, of which, indeed, *it is only a special modification*, more concise and rapid in use, but at the same time *less accurate*. The formula for the Rule of Roots and Squares has been already described in the Preliminary Problems, *Art.* 10, where it is numbered **XI.**, and is *as follows*:

$$\frac{h^2 + h'^2 + \left(\frac{h+h'}{2}\right)^2}{6} \times l = S$$

Where,

 $h^{\prime\prime}$ h^2 = Representative square of area of top, from ground to intersection of slopes = (t). $h^{\prime 2}$ = Representative square of area of base, from ground to intersection of slopes = (b). $(h + h^{\prime})^2$ = Representative square of 4 times mid-sec. = (4 m). l = Distance apart sections—usually designated as (h) by the earlier writers, and hence continued by us to some extent; though l is clearly a more suitable symbol for earthwork, which, with a comparatively small cross-section, extends its length along the ground.

* This method is materially aided in its use by a good Table of Squares and Roots.-Prof. De Morgan's stereotyped edition of Barlow's Tables (8vo, London, 1860) is believed to be *the best:*—a very large edition was published, and this valuable work can be obtained from any of our importing booksellers *at quite a low price*.

When the numbers are large, the well known method of Logarithms gives the simplest process for *Involution or Evolution*.

CHAP. IV.-THIRD METH. COMP.-ART. 23.

Note.—That the hights of the end sections in this chapter are always to be considered as extending from the ground to intersection of slopes, or be representative of such.

The most important item in this notation is $(h + h')^2$, which, by geometry, we know to be equivalent to $4\left(\frac{h + h'}{2}\right)^2$, while $\frac{h + h'}{2}$ is the representative in the mid-section of a line similar to h and h'.

So that this formula (for a single station) is, in fact, equivalent to the Prismoidal Formula, as heretofore expressed, viz.:

$$\frac{t+b+4m}{6} \times h = S,$$

but for *exact work* (our formula above) requires the end sections to be triangles, with a uniform ground slope.

Let us now apply the above formula to an entire cut or bank, to be computed by Hutton's Rule (adopted from Simpson)—see Art. 10, Formula **IX**.

Where
$$\frac{A + 4B + 2C}{6} \times Double interval = S.$$

Here, for a case of 6 single or 3 double intervals, as shown—in the skeleton table—below.

We have, for 3 double intervals or even spaces between stations of equal length:

 $/h^2 + h'^2$. . = A. The sum of extreme sections, each designating one end. $3(h + h')^2$. = 4 B. Mid-sections, standing on even numbers. $2(h')^2 + 2(h)^2 = 2$ C. Regular Cross-sections, standing on odd numbers.

Double Interval = Any one of the uniform spaces, from 1 to 3, or 3 to 5, etc., being the odd numbers where the regular cross-sections stand.

S = Solidity of entire cut of 3 equal stations in length.

Example 1..... Being a simple case (on irregular ground) of three uniform stations, or double intervals, of 100 feet each, the midsections falling in between, and dividing the length of 300 feet into single intervals of 50 feet each; for which we will tabulate the example represented by Figs. 72, 73, 74, and 75, of Chapter III.—in a skeleton table—as follows:

STATEMENTS.	$\frac{h^2}{1}$	$\frac{(h+h')^2}{2}$	h'2 3	$\frac{(h+h')^2}{2}$	$\frac{h^2}{5}$	$\frac{(h+h')^2}{(h+h')^2}$	<u>h'</u> 3 7
Regular stations designated by the numbers of the figures.	72		73		74		75
Places of mid-sections, on even numbers.		2		4		6	
Regular cross-section areas, upon the odd numbers.	550.	-	766.		862.5		744.
Square roots of areas of regular cross-sections.	23.45		27.68		29.37		27.28
Sums of square roots.		51.13		57.05		56.65	
* Squares of sums, or 4 times the proper mid-section.		2615.	46	3255.		3209.	
		Extra decimals thrown together here.			·		

Having given the skeleton table of *data*, we will now tabulate for *solidity* on three different plans, any one of which may be adopted, or in fact any other which truly represents the formula given.

Tabulation :	for	Solidity.
--------------	-----	-----------

On the plan of Art. 10, in Chap- ter I.	By Simpson's Rule (as given by Hutton).	By Multipliers, modelled afte Simpson's.				
Sta. 72. Areas . = 550 4 mid-sec. . 2615 73.	A. 4 B. 2 C. 550 2615 766 744 3255 766 1294 3209 8625 4 B = 9079 8625 2 C = 3257 3257 A = 1294 $_{0)13630}$ 2271-7 100 Double Int. Solidity = 227,170 in C. Feet. Whole length of cut 300 feet.	End areas, and 4 times mid-section. Mults. Results $550 \times 1 = 550$ $2615 \times 1 = 2615$ $766 \times 2 = 1532$ $3255 \times 1 = 3255$ $862 \cdot 5 \times 2 = 1725$ $3209 \times 1 = 3209$ $744 \times 1 = 744$ 6)13630 2271.7 Double Interval = 100 <i>Solidity</i> in C. Feet = 227,177 Whole length of cut 300 feet.				

24. Now, for further illustration :- Take any cut or bank-say of 6 (or any even number of) equal stations-their termini being tem-

* HUTTON and other geometers have shown that the square of any line equals 4 times that of half the line;—and that similar triangles are to each other not only as the squares of their like sides, but also as the squares of any similar lines; and these principles of Geometry lay at the foundation of the method of computation, developed in this Chapter IV. (as already indicated in the Preliminary Problems).

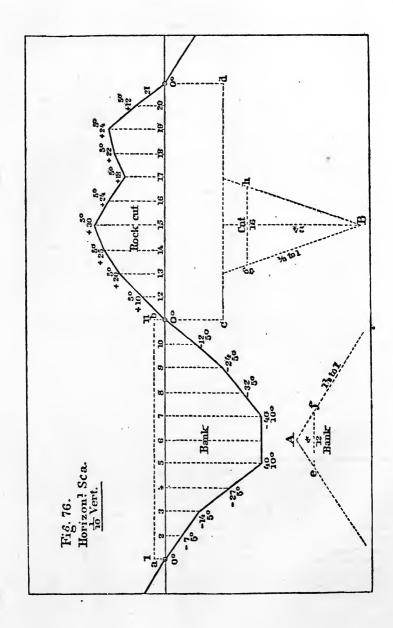
CHAP. 1V.-THIRD METH. COMP.-ART. 24.

porarily numbered in the series of *odd* numbers, while the intermediate spaces (or places of mid-sections) are also temporarily numbered in the series of *even* numbers, and the places of cross-sections and midsections, as well as those of the symbols used in the formula, all regularly marked, *as follows*:

Regular stations.	1	1 1	3	()	5		7	1 1	9	1	11	1	13
Places of cross-secs.	\odot		\odot	· ·	\odot		\odot		\odot		\odot		\odot
" mid-secs.		2		4		6		8		10		12	
Symbols of formula.	h^{g}	$(h+h')^2$	h'3	$(h+h')^{2}$	h^{g}	$ (h+h')^{2} $	1/3	$(h+h')^{3}$	h^{η}	$ (h+h')^2 $	h'^2	$(h+h')^{2}$	h^2

This little skeleton table shows the positions of the representative squares equivalent to the areas of the several regular cross-sections computed, and also of 4 times the proper mid-sections, which belong between them, and it will indicate the manner in which they are combined relatively to the odd numbers, which represent the regular stations; so that having computed the regular cross-sections, we can readily assemble them in a skeleton table, compute from them by Roots and Squares the other data demanded by the formula, and proceed to tabulate for *Solidity*, as has been already shown, and will be more conspicuously exhibited hereafter.

Upon the foregoing principles we will now proceed with an entire piece of heavy embankment, succeeded by a rock cut, as shown in the annexed, *Fig.* 76.


Example 2. . . BANK = 1000 feet long. . . . Fig. 76.

Skeleton Table of Data, Given or Computed.

Regular stations of 100 feet = 1	2	3	4 5	6	7	8	9	10	11
Temporary numbers $\ldots = 1$	3	5	7 9	11	13	15	17	19	21
Regular Cross-section Areas $= 24$	185	495 . 14	67 3123	3123	3123	1978	1197	391	24
Places of mid-secs., inter- mediates at 50 ft. (really). } =	4	6	. 8	10	12	14	16	18	20
V Roots of the Cross-sec- tion Areas }= 4.9	0 13-60	22.25	38·30 55	88 55-8	8 55-88	44-47	34.60	19-71	7 4-90
Sums of Roots = 18	.50 35.8	5 60·55	94-18	111.76	111.76	100.35	79-07	54.37	24.67
Bquares of Sums, or 4 times the Mid-section Areas. } = 342	25 1285.	22 3666+30	8669-87	12490-30	12490-30	10070-12	6252.06	2956-10	608·61

Length of regular stations 100 feet-intervals produced by Mid-sections 50 feet.

* For Figs. 77 and 78, illustrating a supposed basis of the Prismoidal Formula, and its connexion with Simpson's Rule for Cubature (see Chap. VII.).

CHAP. IV.-THIRD METH. COMP.-ART. 24.

Tabulations for Solidity;

By 100 feet stations, or 50 feet intervals.

1.		2. By Multipliers, modelled after Simpson's.
Regular stations	Cross-section	Mults. Results.
of 100 feet.	Areas.	$1 \ldots \ldots 24$
1=	24	$1 \ldots \ldots 342$
4 times mid-section ==	342.25	$2 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot = 370$
2 ={	185 185	$1 \cdot \ldots \cdot \ldots = 1285$ $2 \cdot \ldots \cdot \ldots = 990$
"""=	1285.82	$1 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$_{3}$	495	$1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot = 3007$ $2 \cdot \cdot \cdot \cdot \cdot = 2934$
"" =	495 3666·30	$1 \ldots \ldots = 8870$
4 ={	$1467 \\ 1467$	$2 \dots \dots \dots = 6246$ $1 \dots \dots \dots = 12490$
" "=	8869.87	$2 \ldots \ldots \ldots \ldots = 6246$
5={	3123 3123	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
" " _ (12490	$1 \dots \dots$
	3123	$2 \dots \dots$
6 = }	3123	$1 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
" " =	12490	$1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot = 0202$ $2 \cdot \cdot \cdot \cdot \cdot = 2394$
- (3123	$1 \dots \dots$
$7 \cdot \cdot \cdot \cdot = \{$	3123	$1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot = 2000$ $2 \cdot \cdot \cdot \cdot \cdot = 782$
"=	10070-12	$1 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
8={	1978 1978	$1 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
" "=	6252.06	Proof : 6)89243
9={	1197 1197	Gen.mean area to int.of slopes == 14874 100
	2956-10	Solidity in c. ft. to int. of slopes = 1487400 of
10 == {	391 391	BANK.
" " … —	608-61	
11 =	24	
	8)89243.13	
Gen.mean area to int.of slopes =	= 14874 100	
Solidity in c. ft.to int.of slopes =	=1487400 of	
Sources of the second s	BANK.	
Example 2—Continued. Skeleton To		CUT = 1000 feet long Fig. 76. a, Given or Computed.

Length of regular stations 100 feet; which, by means of the Hypothetical Mid-sections, cover the ground with 50 feet intervals.

			1000							
Regular stations of 100 feet =	11	12	13	14 15	16	17	18	19	20	21
Temporary numbers =	1	8	5	7 9	11	13	15	17	19	21
Regular Cross-section Areas =	192	386	646 8	01 975	768	589	706	771	433	192
Places of mid-secs., inter- mediates at 50 ft.(really). } =	2	4	6	8	10	12	14	16	18	20
$\sqrt{\text{Roots of the Cross-section}}$ =	13-86	19-65	25.42	28.31 31	23 27.71	24.27	26.57	27.77	20-81	13-86
Sums of Roots =	33-51	45-0	7 53-7	3 59-54	58-96	51.98	50.84	54.34	48-58	34.67
Squares of Sums, or 4 times the Mid-section Areas.	1122-95	2 2031.3	0 2886-9	1 8545-01	3476-28	2701.92	2584.70	2952-83	2360-01	1202-01

Tabulations for Solidity:

By 100 feet stations, or 50 feet intervals.

1.		2. By Multipliers, modelled after Simpson's
Regular stations	Cross-section	Mults. Results.
of 100 feet.	Areas.	$1 \ldots \ldots \ldots = 192$
11	. = 192	1 = 1123
4 times mid-section	. = 1122.92	$2 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot = 772$
12		$1 \ldots \ldots \ldots = 2031$
	{ 386	$2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots = 1292$
"	= 2031.30	$1 \ldots \ldots \ldots = 2887$
13	. == { 646	$2 \dots \dots$
	646	1 = 3545
"	. = 2886.91	$2 \dots \dots$
14	$ = \begin{cases} 801 \\ 801 \end{cases} $	1 = 3476
46 46	= 3545.01	$2 \dots \dots$
• • •		$1 \dots \dots$
15	$ = \begin{cases} 975 \\ 975 \end{cases} $	$2 \dots \dots$
"	.= 3476.28	$1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot = 2585$
	(768	$2 \dots \dots$
16	$.=\{ \frac{768}{768}$	$1 \dots \dots$
u u	2701.92	$2 \dots \dots$
	(589	$1 \dots \dots$
17	.= 589	
u u .	. = 2584.70	
	(706	
18	·={ 706	$1 \ldots \ldots \ldots = 192$
" "	. = 2952.83	Proof : 6)37398
19	{ 771	Gen.mean area to int.of slopes = 6233
19	771	100
"	. = 2360.01	Solidity in c. ft. to int. of slopes = 623300 of
20	433	ROCK CUT.
	•={ 433	
. " "	. == 1202.01	
$21 \cdot \cdot \cdot$. =	
	6)37397.89	
Gen.mean area to int.of sl		·
	100	
Solidity in c. ft.to int. of al	opes = 623300 of	
	ROCK CUT.	

25. In the preceding example, the side-slopes of the BANK are $1\frac{1}{2}$ to 1 — road-bed = 12; while in the ROCK CUT, the side-slopes are $\frac{1}{3}$ to 1 — road-bed = 16; and in all these calculations (we repeat), the sectional areas, in every case, are taken from ground line to intersection of side-slopes; and the hights, from the vertex of the common angle thus formed to the line, or lines, representing the surface of the ground.

CHAP. IV.—THIRD METH. COMP.—ART. 25. 115

So that in all such computations—if the contents above or below a given road-bed be desired in the results, then the volume of the grade prism (being included in the summation) must in every case be duly deducted.

The volume of the grade prism depends upon its sectional area, and the length of the bank or cut—these calculations are very simple, and once made, remain unchanged as long as the road-bed and sideslopes continue uniform.

Geometers having shown that the areas of similar triangles are to each other, not only as the squares of like sides, but also as the squares of any similar lines in each, and these often occurring in earthwork solids, when their cross-sections are converted into triangular areas, by the prolongation (to a junction) of the side-slopes, it becomes of importance to classify the relations existing among lines and their squares, as well as the squares and rectangles of their sums and differences ;—this has been well done in J. R. Young's Geometry (London, 1827), in several successive propositions :—Book II., 4, 5, 6, 7, and 8.

Now, suppose any line to be divided into two parts, h and h'—then, by these propositions, we have:

1. $(h + h')^2 = 2 (h + h') \times (\frac{h + h'}{2}).$ 2. $(h + h')^2 = h^2 + h'^2 + 2 h h'.$ 3. $(h - h')^2 = h^2 + h'^2 - 2 h h'.$ 4. $h^2 - h'^2 = (h + h') \times (h - h').$ 5. $h^2 + h'^2 = \frac{1}{2} (h + h')^2 + \frac{1}{2} (h - h')^2.$ 6. $2 (h^2 + h'^2) = (h + h')^2 + (h - h')^2.$

As these lines, or parts of lines, may, and often do, occupy in similar triangles the relation of *like lines*, they become of some consequence in earthwork calculations, and in various forms can be traced through many of the formulas now before the public.

We will now give an example from Warner's Earthwork (Art. 124), to show that small variances may be expected in employing the Rule of this Chapter upon irregular ground :—indeed, it is only in uniform sections that an exact agreement of Rules can be anticipated, but the variations (always small) are not unlikely to balance themselves in computing considerable lengths of line.

($\begin{cases} End areas to grade = 846.5 = 915.5 \\ Grade Triangle to add = 196 = 196 \\ End areas to int. of slopes = 1042.5 = 1111.5 \\ Square Roots = 32.29 = 33.34 \end{cases}$						
Here,	Sums of Roots						
($\begin{cases} Square of sum, or \\ quadruple mid-section = 4308 \\ Length, 100 feet. \end{cases}$						

Then, Prismoidally,

Sum end areas	. = 2154
Quadruple Mid-section	. = 4308
	6)6462
	1077
Length	. = 100
	107700
Off Grade Prism	. = 19600
	27)88100
Solidity in Cubic Yards	. = 3263

As computed by Warner (3274, C. Y.); and also by Hutton's General Rule (3274, C. Y.), the difference made by our Rule of this Chapter is, 11 Cubic Yards, or about $\frac{1}{3}$ of one per cent.

Comparison of the method of this Chapter with the test examples of Chapter II., as computed by Hutton's General Rule (each for 100 feet in length).

1. Three-level Ground.

(See Figs. 53, 54, and 55.)

Computed by Roots and Squares (method of this Chapter) = 2337.6 ". "Hutton's General Rule (Chapter II.) . . . = 2339.6

Difference $\ldots \ldots \ldots \ldots \ldots \ldots = -2$

2. Five-level Ground.

(See Figs. 56, 57, and	58.)	
------------------------	------	--

Computed b	y Roots	and Squares	(this Chapter)		•	. = 1061.1
** **	Hutto	n's General	Rule (Chapter	II.) .	•	. = 1061.1

Difference.

- 0

C. Yards.

C. Yards.

CHAP. IV.—THIRD METH. COMP.—ART. 25.	117
3. Seven-level Ground.	C. Yards
Computed by Roots and Squares (this Chapter)	. = 1990
" " Hutton's General Rule (Chapter II.)	. = 1989.6
Difference	. = + 0.4
4. Nine-level Ground.	C. Yards.
Computed by Roots and Squares (this Chapter)	. = 2562.9
" " Hutton's General Rule (Chapter II.)	. = 2562.9
Difference	. = 0

We will now give another example from Warner's Earthwork, computed by the method of this chapter.

Heavy Embankment (Art. 86).

Areas	. =	2411	907
$\sqrt{\text{Roots}}$. =	49.10	30.12
Sums of Roots .		=	79.22
Square of sum,)			
or quadruple mid-section.	• •	= 6	5276
mid-section.			

Then, Prismoidally,

 $\begin{cases} \text{Sum of ends} & . & . = 3318 \\ \text{Quadruple Mid-sec.} & = 6276 \\ & & 6)\overline{9594} \\ \times \text{ length} & . & . & . = \overline{159900} \\ \div 27 \text{ for C. Yards} & = \overline{5566} = \text{Same as Hutton s Gen. Rule.} \end{cases}$

From the above it will be observed that, with a Table of Powers and Roots at hand, the method of this chapter affords a very convenient and speedy test for volumes, found by other processes, and it is a proximately correct one.

LIBRARY UNIVERSITY OF CALIFORNIA.

CHAPTER V.

FOURTH METHOD OF COMPUTATION, BY REGARDING THE PRISMOID AS BEING COMPOSED OF A PRISM WITH A WEDGE SUPERPOSED, OR OF A WEDGE AND PYRAMID COMBINED.

26..... Sir John Macneill (1833) hath shown that a Prismoid of Earthwork is really a prism with a wedge superposed (as we have already mentioned in Art. 4)—that the wedge is also divisible into two pyramids—and that the formulas for volume, in these three chief bodies of solid geometry, form, by addition, the Prismoidal Formula.

Regarding the Prismoid in this way, and assuming it to have been diagrammed as shown in *Fig.* 8, *Art.* 6 (both end sections upon one drawing), it is easily computable when reduced to a level on the top, and the back of the wedge is a trapezoid, by means of Formula **VI**., *Art.* 6.

This Formula is:

 $\frac{(\mathbf{B}+b+b)\times(\mathbf{H}-h)}{6} + (h^2r - \text{Grade Triangle}) \times l = Solidity,$

to road-bed, and omitting G. T. to intersection of slopes.

Where,

- - 118

In calculating by this Formula we may omit the Grade Triangle if we choose (though we should have to supply a more complicated expression for $h^2 r$), and might, perhaps, somewhat simplify the computation thereby; but *if* used in *area*, we must be careful to account for it in *volume*; while the hights need only be extended from ground to road-bed; though as *their difference only* is used here, that is not material—and altogether we would gain so little by the change as to make it unadvisable.

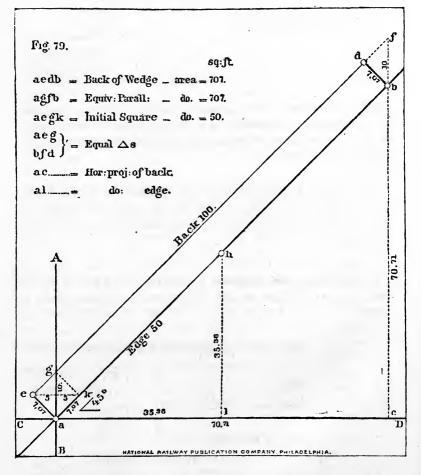
In words, this Formula)

may be expressed as follows: $\begin{pmatrix} Mean Area Wedge + Mean Area of \\ Prism) \times Common Length = Solidity, \\ of the Prismoid, to intersection of slopes, \\ and minus G. T. to Road-bed. \end{pmatrix}$

Inasmuch, however, as a trapezoid is always reducible to an equivalent rectangle, we may consider this matter of the superposed wedge in a more general manner, without the necessity of first reducing the trapezoidal, or triangular, cross-section to a level on the top, or slope of 0° .

Before entering upon this branch of the subject we may, however, state that the reason why, in a wedge with a trapezoidal back, we sum up all the three parallel sides of back and edge \times by hight of back \div by 6, and finally multiply by length for volume—is drawn from the common rule for a wedge—(Twice width of back + edge \times by hight of back \div by 6, and \times by length = Volume.) But in a wedge with a trapezoidal back—the $\frac{1}{2}$ sum of top and bottom parallel sides $\times 2 =$ simply the sum of those parallel sides; and, as in an earthwork solid, the lesser parallel side also (generally) equals the edge, that being the top line of the smaller end section, situated at a distance of the length forward. Hence, B + b + b is usually equivalent to $\frac{B+b}{2} \times 2 + (b$ the length of the edge)—which will be found in substance as a term in Hutton's Rule for wedges (4to Mens., 1770); but more concisely expressed in Chauvenet's Theorem.

References to Fig. 79.*


ad = End view of the back of a rectangular wedge.

af = Equivalent parallelogram, of which a g is the base. and a D the altitude.

^{*} For Figs. 7,7 and 78, see Chapter VII.

a D = Horizontal projection (70.71), or width of a b (the back). a l = Horizontal projection (35.36), or width of a h (the edge) a e g k = The initial square of 50 square feet area, which is contained in the back = $\frac{707}{50}$ = 14.14 times.

 $\begin{array}{c} A B \\ C D \\ \end{array} \left\{ \begin{array}{c} Vertical \ and \ horizontal \\ rectangular \ axes. \end{array} \right.$

The triangles, a e g and b d f, are *identical*, and the one cut off, and the other added, make the two parallelograms, a d and a f, precisely equivalent = 707 area, for each.

CHAP. V.—FOURTH METH. COMP.—ART. 26. 121

a b = Width of back of rectangular wedge, inclined at an angle of $45^{\circ} = 100$.

ah = Width of edge, or top of forward, or smaller, section = 50.

Now (as above mentioned), a trapezoid being always reducible to an equivalent rectangle, we may consider in this place the superposed wedge (with reference to Fig. 79), without the necessity of first equalizing the end cross-sections, by level lines on the top, as will be more clearly seen further on.

However much the back or edge of a rectangular wedge may be inclined from a level plane, the resulting volume is still the same by using their projections upon the horizontal one of two rectangular axes (as C D), instead of the actual widths of back or edge, whilst the hight of the back becomes the base of an equivalent parallelogram, of which the projection is the altitude ;—this will become evident by reference to Fig. 79.

For example, let us now compute the wedge shown in the figure: 1st, As though it were upon a level, and the back a rectangle. 2d, As an oblique parallelogram on the back, and inclined at 45° from a level line.

1. Rectangular back—supposed to be level. Length of wedge = 100. Breadth of back = 100. Edge = 50. Hight of back = 7.071.

Here we have :—Sum of the 3 parallel sides of edge and back \div 3.

{		= Back. = Edge.	Right	Section	$\begin{cases} 7.0'\\ 2)707 \end{cases}$	71 = A $100 = I$ $71 = I$	ltitude. .ength.
	3)250 83 1	= Average	e multiplier		353	*55 83 1	
				Volume	= 29,4	463 = C.	Feet.

Computed after Chauvenet's Theorem (Geom., VII. 22).

2. Oblique-angled Parallelogram for Back, and inclined 45°. Length of wedge. = 100. Hight of back = 10. Horizontal projection of back = 70.71. Horizontal projection of edge = 35.36.

 $\frac{-Sum of the 3 parallel sides or edges}{3} = \begin{cases} -\frac{5000}{3} \\ \frac{70000}{1} \\ \frac{35000}{3} \\ \frac{30000}{17600} \\ \frac{30000}{58000} \\ \frac{30000}{5000} \\ \frac{30000}{5000} \\ \frac{5000}{5000} \\ \frac{5000}{500} \\ \frac{500}{500} \\ \frac{5$

It is evident, from a consideration of the above case of a rectangular wedge, whether level or inclined, that the same process would apply to the trapezoidal wedge (usual in earthworks), either by its reduction to an equivalent rectangular one, or (when diagrammed together) by projecting both sides of the back, and also the edge, upon the horizontal axis, and ascertaining the respective lengths of these three projections, to be used in the computation of volume, by Chauvenet's Theorem,* *instead of their actual measured lengths*,—this is in fact the method of the engineer, who usually disregards the inclination of the ground, and takes all his measures horizontally and vertically.

The *hight* of the back of the inclined wedge being in the case above, ascertained by dividing the known area of the back of the rectangular wedge, by the Arithmetical Mean of the horizontal projections of its top and bottom breadths;—both *equal* in the above rectangular back, but always *unequal* in a trapezoidal one.

With these preliminary observations, we will now give the rule for finding the volume of the superposed wedge in ordinary earthworks, with examples to show how, by the simple addition of the under-prism, the solidity of the entire earthwork, between any two cross-sections of given area, and distance apart, is easily ascertained, in all cases, within a limit hereafter discussed (Art. 29).

27..... Rules for Computation by Wedge and Prism. The data required to be given will be as follows:

^{*} Chauvenet's Geom., VII. 22 (Philada., 1871).

1. Areas of end cross-sections.

2. Distance apart, or common length of wedge and prism.

3. Sum of distances out, to ground edges of side-slopes,—which are, in fact, the projections or horizontal widths of back and edge, as well as the right and left distances of the field engineer.

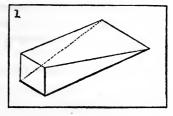
The first is obtained by well-known processes, and the two latter are always supplied by the Field Book of the engineer.

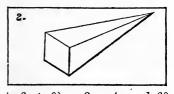
Then, as preliminary steps: (1) Find the difference of the areas of the end cross-sections, which difference is the area of the back of the superposed wedge. (2) Divide this difference of area by half the sum of the widths of the back (or horizontal projections), which gives the vertical mean hight of the back. Now, the lower side of the back (when both sections are diagrammed together) equals the edge (or top-width of the smaller end section) supposed to be forward, at a distance equal to the common length. So that if B = top-width of larger end section, — b will equal its bottom width (and also that of the edge)—so that B + b + b, for the wedge-shaped part, would give the sum of the three parallel edges (or, in reality, their horizontal projections) to be divided by 3, for use in Chauvenet's Theorem.

RULE.—When the width of the large end is equal to or greater than that of the small one.

1.	Vertical mean hight	distance apart sections	~	
		2		~
Sum of th	e three parallel edge	3	Volume of Superposed	Wedge
	3		i oranice of Superposed	n cuyo.

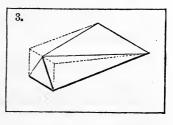
2. Smaller end area \times length (or distance apart sections) = Volume of Prism.

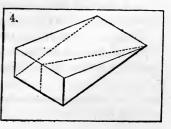

These two results, added together = Solidity of the whole Prismoid.


a..... Prior to giving examples in illustration of our rule, it appears necessary in this place to make some explanations to show the generality of the application of the rule drawn from Chauvenet's Theorem (Geom., VII. 22) for the volume of wedges.

Wedges are always formed by the truncation of triangular prisms, which may be termed *their elementary body*; and are usually designated by the outlines of their backs—as Rectangular, Triangular, Trapezoidal, etc.—*The Initial Wedge* may be assumed to have a square back; by successive transformations of which, several varieties are easily formed.

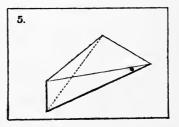
(1) Let the back of a rectangular wedge (or the initial wedge) be a square, on a side of 6, edge 12, length 20.-Then, the right section = $(6 \times 20) \div 2 = 60.-$ One-third of the sum of the lateral edges = $(6 + 6 + 12) \div$ 3 = 8; and $60 \times 8 = 480 =$ Volume of the Square Wedge.


(2) Now, suppose the edge of (1) to be contracted to a point; then, the wedge becomes a pyramid, for which case the rule also holds;-thus, right section == $60 \dots \frac{1}{3}$ sum of edges = $(6 + 6 + 0) \div 3 = 4$; and 60 $\times 4 = 240 = Volume$.

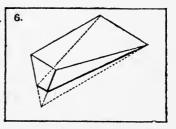

Proof: By the common rule for pyramids, we have, base (6 \times 6) \div 3 = 12; and \times by altitude 20 = 240 = Volume, the same as before.

(3) Suppose the back of the square wedge (1) to be converted into an isosceles triangle, on a base of 6, and hight of 6other dimensions as in (1)then right section $= 60 \dots$ $\frac{1}{3}$ sum of edges = (6 + 0 + 12) $\div 3 = 6$; and $60 \times 6 = 360$ = Volume.

Proof: Now, the inscription of the isosceles triangle, within the square back, evidently cuts off two pyramids, of which the volume of each = $(3 \times 6) \div 2 = 9 \div 3 \times 20$ length $\times 2$ in number = 120 Volume, of pyramids cut away from the square wedge (1); -then, 480 - 120 = 360 = Volume, the same as before.


(4) Now, suppose (1) and (2) to be placed in contact sidewise, then they form together a rectangular wedge, back, 12 by 6; edge, 12; length, 20:-right section $= 60 \dots \frac{1}{3}$ sum of edges $= (12 + 12 + 12) \div 3 = 12;$ and $60 \times 12 = 720 = Volume$.

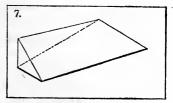
CHAP. V.-FOURTH METH. COMP.-ART. 27.


Proof: By two Pyramids = $(72 \div 3 \times 20 = 480) + (60 \div 3 \times 12 = 240) = 720$, the same Volume; or, by addition of (1) and (2) = 480 + 240 = 720, Volume as before.

(5) Suppose now the vertical sides of the square back of (1) to close in gradually until they meet and coincide in a single vertical line; then the back has vanished, and become a vertical edge, while the original one remains horizontal, dimensioned

along with the other parts as in (1)—and we have right-section $60 \dots \frac{1}{3}$ sum of edges = $(12 + 0 + 0) \div 3 = 4$; and $60 \times 4 = 240 = Volume$ of this peculiar double-edged wedge; which is composed of, or may be decomposed *into*, two pyramids, based on the right-section, as common to both, and each having an altitude of half the edge, or 6 (though such equal division of edge is not essential); hence, we may assume the edge 12 to be a double altitude; and $\left(\frac{60}{3} \times 12\right) = 240 = Volume of both$ —the same as before.

(6) Now, suppose the vertical sides of the square (1) to become inclined (at any angle that will not extinguish the base of the back), say at an angle of $\frac{1}{2}$ to 1 side-slope, thus reducing the base from 6 to 2, then we have the right-section as before = 60 $\frac{1}{2}$ sum of edges = (6 + 2 + 12)

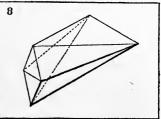


sum of edges = $(6 + 2 + 12) \div 3 = 6\frac{2}{3}$; and $60 \times 6\frac{2}{3} = 400 =$ Volume of Trapezoidal Wedge.

Proof: In this case two triangular pyramids are cut away from the original solid, by the sloping sides, having together a base of 4, and altitude of 6; then, $(6 \times 4) \div 2 = 12$, which $\div 3$ and $\times 20$ common length = 80 Volume cut away—but Volume of (1) = 480 - 80 = residual Volume = 400, as before.

(7) Now, suppose two sides of the square back of (1) to gradually reduce their contained angle, and finally to vanish upon the

diagonal—then the back becomes a right-angled triangle (the side joining the right-angle, say perpendicular to the edge), and this wedge has *two edges* (one original, and the other now formed at the side connecting with the acute angle, both being right-section = $60 \dots \frac{1}{3}$ sum



with the acute angle, both being horizontal edges). Then, the right-section = $60 \dots \frac{1}{3}$ sum of edges $(6 + 0 + 12) \div 3 = 6$; and $60 \times 6 = 360 = Volume$.

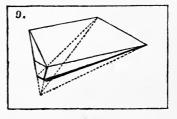
Proof: Divided by a plane *diagonally* through the vertex of the triangular back, and opposite corner of the edge, we may decompose this wedge into two pyramids—the one with a base = the right-section = 60, and altitude = the original edge = 12; then, $60 \times 12 \div 3 = Volume \ldots \ldots = 240$

The other, with a base equal to the triangular back, or $(6 \times 6) \div 2 = 18$, and an altitude = the length = 20; then, $18 \div 3 = 6$, and \times length 20 = Volume . . = 120

(8) A Rhomboid Wedge is computed in a similar manner: —thus, let the rhomboidal back have a vertical diagonal = 12; the other = 4; an edge of 12; length = 20; and the side-slopes being $\frac{1}{2}$ to 1.

Then, the right-section = $\frac{12 \times 20}{2} = 120 \dots \frac{1}{3}$ sum of edges, $\frac{4+12+0}{3} = 5\frac{1}{3}$; and $120 \times 5\frac{1}{3} = 640 = Volume.$

Now, by cutting off from the rhomboid, near the lower angle, any given triangle, we have remaining a *Pentagonal Wedge*.


Thus, suppose we cut off a triangular wedge having the base of its back uppermost = 2; altitude = 3; common length and edge = 20 and 12.

Then its right-section = $\frac{3 \times 20}{2} \times \frac{2 + 12 + 0}{3} = 140$ Volume, cut off. And 640 - 140 = 500 = the Volume of the residual Pentagonal Wedge.

CHAP. V.-FOURTH METH. COMP.-ART. 28.

(9) Let us now consider aTrapezoidal Wedge-dimensioned like (8), with side-slopes of $\frac{1}{3}$ to 1, forming the top of the back, while its base = 2.

Let one side-hight = 12 above intersection of slopes; the other = 6; the edge = 12; and the length = 20.

Now, we may compute this wedge in two parts as follows:

1. As a triangular wedge, above the level of the lowest side-hight.

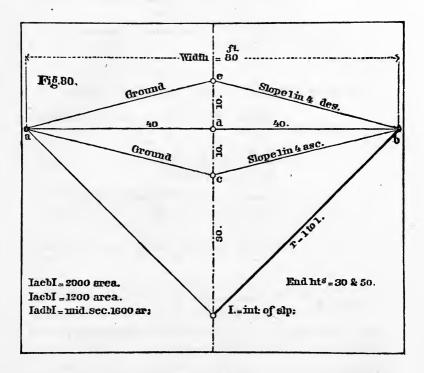
$$\binom{6 \times 20}{2} \times \frac{4 + 12 + 0}{3}$$
. . . . = 320

2. As a trapezoidal wedge, between the level mentioned and the base of the back.

Or, as in (8), we may compute the body as a Rhomboidal Wedge, and deduct the triangular wedge cut away below the base of 2,-as in fact we did in (8),-the resulting volume being 500, the same as herein found.

Finally, we perceive that from (1) the square or initial wedge we may easily deduce several varieties of wedges, and might go further.

After this necessary digression, indicative of the simplicity, generality, and value of Chauvenet's Theorem, we will now proceed to illustrate our own rule (deduced from this theorem), as applied to Earthworks, by several examples.


28..... Here follows the calculation of some examples.

Example 1.-Computation by Wedge and Prism, tested by Hights and Widths, under Simpson's Rule

References to Fig. 80.

In this case equal slopes of 1 in 4 form $a \ ridge$ in the larger end section, and $a \ hollow$ in the lesser one.

Dimensioned as shown in the figure annexed.

Data.

	Sq. Ft.
(Differences of areas of end sections	= 800
\langle Widths, or horizontal projections, equal for both s	sections $. = 80$
Distance apart sections	= 100

To find the vertical mean hight of back of wedge.

End Areas = $\begin{cases} 2000\\ 1200 \end{cases}$ Difference of Areas. Half sum of widths = 80) 800 10 = Vertical Mean Hight of Back.

Then, by the Rule above, and Chauvenet's Theorem.

Sum of 3 parallel sides of edge and back \div 3.

Proof, by Hights and Widths (SIMPSON).

Larger cross-section $.=50 \times 80 = 4000 = 2 b$. Smaller " " $.=30 \times 80 = 2400 = 2 t$. Sums of hts. and wids. $=80 \times 160 = 12800 = 8 m$. Divisor $= 12\overline{)19200}$

1600 = Prism. Mean Area.

100 = Common length.

Solidity of entire Prismoid (as above) = 160,000 Cubic Feet.

Note.—By HUTTON'S General Rule we have the same Solidity = 160,000 Cubic Feet.

Example 2.—Let us now take the case figured for another purpose, by Fig. 14, Art. 8.

Large end section = 654 to road-bed only. Small " " . . . = 300 " " " Difference, or area of back of superposed wedge . . } = 354

Supposing the smaller end, at a distance of 100 feet forward, to be ABKH = 300 in area. While the larger end ABCDEFGHA = 654 area. Common length = 100 feet.

Then,
$$\frac{54 + 40}{2} = 47$$
, Mean width of back.
and $\frac{7 \cdot 532 \times 100 \text{ length }}{2} = 376 \cdot 6$
 $\frac{354}{47} = 7 \cdot 532$, Vertical Mean Hight of Back.

9

 $\frac{54 + 40 + 40 = \text{Sum of the three parallel sides}}{3} = 44^{\circ}_{\circ} \text{ feet.}$ Finally, $\begin{cases} 376.6 \times 44^{\circ}_{\circ}_{\circ} \dots \dots = 16822 = \text{Volume of Wedge.}\\ 300 \times 100 \text{ length} = 30000 = \text{```} \text{``Prism.} \end{cases}$ Solidity of the whole Prismoid, from road-bed to ground line from road-bed to group froad-bed to

Now, roughly computing this example, both by Hights and Widths, and by Roots and Squares, we find for the *Solidity* about the same result, the difference being small in the whole body of earthwork considered.

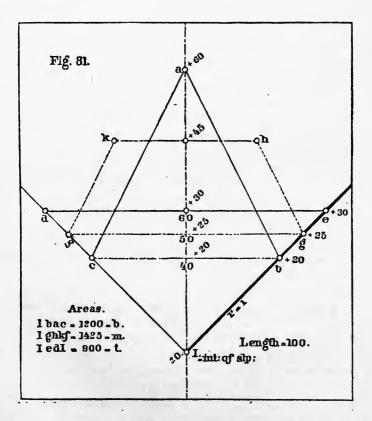
In like manner, roughly calculating *Figs.* 43 and 44, which have very irregular ground lines, with both end sections in each case *dia-grammed upon one figure*. We find that computed by Wedge and Prism, and some other methods, as a proximate test, they *all* coincide within a few cubic yards.

So that this rule for calculating Prismoids of Earthwork by means of a Prism and Wedge, *superposed*, may be accepted as proximately correct in all ordinary * cases, and it is in practice a very simple one, as may be noticed in the examples.

Requiring for data given merely the areas of the end cross-sections, their distance apart, and their total widths across, horizontally, to ground edges of slopes :-- no matter how irregular the surface may be.

In all the computations above (as well as in the methods of preceding chapters), so soon as the mean area of an earthwork solid *is ascertained*, it will be found conducive, both to expedition and to accuracy, to resort with it to the table of cubic yards for mean areas (at the end of the book), to obtain cubic yards, *if they should be required in the resulting volume*.

In this connection it may be observed that the transverse area of the under-prism *being always given in the data* (and usually given as that of the smaller cross-section), whilst the distance apart sections is also known, it is better, where cubic yards are desired *in the ultimate solidity*, always to find them from the table in the manner shown by the directions for its use; and the superposed wedge may be also treated in a similar way by computing *its mean area*.


^{*} Where the cross-sections appear to be unusually distorted, so as to render doubtful, the application of any ordinary rules, then we must endeavor to sketch an accurate midsection, and use our First Method of Computation (Chapter II.)—which never fails when the data is correct.

CHAP. V.—FOURTH METH. COMP.—ART. 29. 131

29..... Although the foregoing rule for the computation of a Prismoid, by Wedge and Prism, is proximately correct in all ordinary cases, it has limits which must be observed, when exact results are sought.—These limits are: That the extreme horizontal width of the smaller end section shall always be equal to, or less than, that of the larger end, and never greater, where our rule is used as written above.

Thus, in all the cases computed in the above examples, the width of smaller end is *less*, except in the figure next preceding, where it is *equal*—but in none of the examples is it *greater*, and hence they are all clearly within the limits of the rule.

In the following figure (Fig. 81), however, the horizontal width of the smaller end is, in this unusual case, greater than that of the

larger one-to such cases then our rule above stated does not apply directly in the form as written.

A consideration of the figure annexed, where both end sections and the mid-section are diagrammed together, will make the reason evident.

It is simply this, that whenever the horizontal top line of the smaller end exceeds in width that of the larger one, or lays above it (in a cut), when diagrammed together in one figure, with the diedral angle common to both, then the smaller end ceases to be the section of a prism, and becomes that of a prismoid.

But as a prismoid is formed of an under prism, with a wedge superposed, we have then in this solid (such as is sectioned in Fig. 81) a prism with two wedges superposed—the upper one carrying the ground surface of the earthwork solid.

The prism in this case has for its cross-section the portion of the solid *below* the line c b, marking the extreme breadth of the larger end section, while the *two* superposed wedges are reversed in position —that in contact with the under prism *having its edge* in the line c b, the width of the larger, while that carrying the ground surface *has its edge* in e d, the width of the smaller end section; and therefore the wedges are reversed in position, though having the same length in common with the prism, which underlies both.

Example 3, Fig. 81.

(Cross-sec		prism below a					
	"	"	smaller end	=	900.			
Data {	"	"	larger end	. ==	1200.			
	Common	length	of all $= 100$	feet;	other	dimensions	as	in
	Fig. 8	1.						

(1) By Prismoidal Formula—First Method Computation, Chapter II. (Hutton's General Rule)—which is an accepted standard for accuracy.

Smaller end section . 900 = t. = 1200= b. Larger Mid-section deduced, being Computation. a mansard figure flat on the top = 1425×4 . . = 5700= 4 m.6)7800 1300 = Prism. Mean Area. 100 =Common length. = 130,000Cubic Feet.

CHAP. V.-FOURTH METH. COMP.-ART. 30. 133

(2) By Chauvenet's Theorem, and our rule drawn from it.

	(1) = The top wedge (at ground) = Right		
	section (40 \times 100 \div 2 = 2000)		
	$\times \frac{1}{3}$ sum of edges = (60 + 40		
	$+ 0 \div 3 = 33\frac{1}{3}$) =	66,667	C. Feet
	(2) = $The intermediate wedge, adjoining the$		
	prism (as in our rule). Difference		
ion	of areas $\div \frac{1}{2}$ sum of widths = 500		
tat	/ $\div 50 = 10$, Mean Hight of wedge.		
Computation.	Then, by the rule (from Chauve-		
Jon	net), $(10 \times 100 \div 2 = 500) \times$		
0	$\frac{1}{3}$ sum of edges = $(60 + 40 + 40)$		
	$\div 3 = 46^{2}_{3}$	23,333	۰ ۵
	(3) = The prism, which underlies both =		
	400 area $ imes$ 100 length =	40,000	"
	Totality of this solid, containing two -		
	wedges and one prism = Solidity =	130,000	C. Feet.

In examining the solid body terminated by the cross-sections figured (in *Fig.* 81), it will be found to be bounded *upon every side* by planes, passed through three common points, so connected that the faces contain *no warped surfaces whatever*.

30. It would appear that in peculiar solids, like that in *Fig.* 81, we might omit *the prism* entirely, and decompose the body into a species of double triangular or rhomboidal wedge (with base of back, and also the edge, common to two triangular wedges superposed, and inverted with their bases in contact, one on the other), and this double triangular wedge, with a single pyramid based upon the smaller end (or in fact on either end), all having a common length, would form the whole earthwork solid, and simplify the calculation in such special cases—*if not in all cases of irregular ground*.

Thus, examining the large end I b a c, we find it to consist of the backs of two triangular wedges, joined together at their bases c b, and having a common edge at 100 feet forward, equal to d e, the top of the smaller end.

Below this double wedge we find a pyramid whose base is I e d I, and vertex at I, with the common length of 100—the calculation of solidity is as follows:

Example 4 (Fig. 81).

(1) The Double (Triangular or Rhomboidal) Wedge.

The mean breadth being common both to the upper and lower triangular part of the larger cross-section, then we have, $\frac{40 + 60 + 0}{3}$ = $33\frac{1}{3}$.

And the whole hight of the double triangular wedge is composed of the hights of the two separate parts = 40 + 20 = 60, forming a Rhomboid.

Then, $\frac{60 \times 100}{2} = 3000 =$ Right Section.

And right section = $3000 \times \frac{1}{3}$ sum edges = $33\frac{1}{3}$. . = 100,000(2) The Pyramid, based on smaller end = $\frac{900}{3} \times 100$. = $\frac{30,000}{130,000}$ Solidity of the whole Prismoid = 130,000(Being the same as in Example 3.)

We might also divide this solid into two wedges and a pyramid by other cutting planes, with the same result. Thus:

Example 5 (Fig. 81).Rt. Sec. $\frac{1}{2}$ sum edges. C. Feet.
(1) Upper Wedge, $\frac{40 \times 100}{2} = 2000 \times \left(\frac{40 + 60 + 0}{3}\right) = 66,667$ Rt. Sec. $\frac{1}{3}$ sum edges.
(2) Intermed. Wedge, $\frac{30 \times 100}{2} = 1500 \times \left(\frac{60 + 40 + 0}{3}\right) = 50,000$ (3) Pyramid underlying both $= \frac{400}{3} = 133\frac{1}{3} \times 100$ length = 13,333Solidity of the whole Prismoid = 130,000
(Being the same as in Examples 3 and 4.)

Suppose now upon the smaller end section (Fig. 81) we place a triangle of 60 feet base, and 10 feet altitude, the vertex representing the termination of the crest of the ridge coming from the apex of the taller section, and thus augment the area of the lesser end to an equality with the other, or make each = 1200 in area—the addition in Solidity being a Pyramid.

Then, although the end areas are now equal, the horizontal widths between the ground edges of the side-slopes remain unequal, as before; the big end having least width.

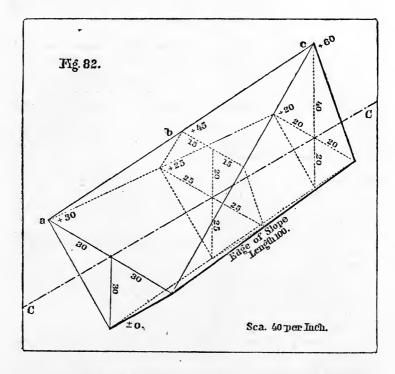
CHAP. V.-FOURTH METH. COMP.-ART. 30.

And the computation of this solid is as follows:

Example 6 (Fig. 81).

By Hutton's General Rule.	By known Geometrical Solids, gov-
$E_{nd} Areas \left\{ \begin{array}{l} = 1200 = t. \\ = 1200 = b. \end{array} \right.$ <i>m</i> , <i>The mid-sec-</i> <i>tion deduced</i> , being a man- sard figure, peaked upon the top = 1500 in area. $\frac{50 + 30}{2} = \frac{4000}{1400} = 4 m.$ $\frac{6)8400}{1400}$ $\frac{100 \text{ Length.}}{100 \text{ Length.}}$ Sol.=140,000 C. Feet.	erned by Familiar Rules. Pyramid (super-added) base 300. Then, $\frac{300}{3} \times 100$ = 10,000 (1) Top Wedge = 66,667 (2) Intermediate Wedge = 23,333 (3) Prism = 40,000 Solidity in C. Feet = 140,000

In all the above examples (except *Example 2*), the computation for *solidity* extends from ground surface to intersection of slopes, without regard to the road-bed. But any width of road-bed may be assumed, the volume of the grade prism ascertained, and being *deducted*, will leave the solidity from road-bed to ground all the same, as if it had been specially calculated in that way.


a..... Of the Rhomboidal Wedge and Pyramid.

A close examination of the solid, cross-sectioned in *Fig.* 81, and shown in isometrical projection by *Fig.* 82, will make it evident that beginning with the larger end section, the three cross-sections required by HUTTON'S *General Prismoidal Rule* will be a Rhomboid, a Pentagon, and a Triangle, dimensioned as shown in the figures.

And the solidity of this body by HUTTON'S Rule, as shown in *Example 3, Art.* 29 = 130,000 Cubic Feet.

It is also evident, from *Example* 4, of this article, that this computation can be made for *solidity* with the same result (130,000 Cubic Feet), by decomposing the body into a Rhomboidal Wedge and two Pyramids, which may be aggregated and calculated *as one*, so that, as in *Example* 4, this solid can be computed as though it were composed of a single Rhomboidal Wedge, having its edge in the width line of the smaller end section; and of a single Pyramid upon a base equivalent to the latter in area, and its vertex at the foot of the rhomboidal

back which forms the area of the larger cross-section, or one equivalent thereto, and standing (as both end sections do) with the vertices of one of their vertical angles coincident with the line of intersection of the side-slopes prolonged.

By means of Wedge and Prism, or Wedge and Pyramid (especially the latter), we have already indicated the process of reaching the volume of an earthwork solid, and we will now continue our examples until the simple combination of Wedge and Pyramid, in computing *solidity* upon the usual earthworks, is fully illustrated.

Although solids resembling Fig. 81 in their cross-sections admit of being easily computed by their own dimensions, either by Wedge, Prism, and Pyramid, or by HUTTON'S General Rule, which is a standard for volume; nevertheless, as earthwork sections generally present themselves in a somewhat different form, it becomes desirable to devise a rule which, within a long range, will apply to all earthwork with uniform slopes, and shall include within its limits the great majority of cases which come under the notice of the engineer.

CHAP. V.—FOURTH METH. COMP.—ART. 30. 137

Extremely irregular and distorted solids, however, have sometimes to be subjected to calculation, which seem almost incommensurable by any fixed rule, and such exceptional cases must be left to independent methods adopted at the time; though it is obvious that any solid may be so sectioned, and divided into limited portions, as to admit of computation by many processes, without material error.

b...... Statement. In any earthwork solid contained within a diedral angle (formed by the intersection of uniform side-slopes), however irregular the ground may be, if the side-slopes continue uniform—and we have given, the length l, the areas of the cross-sections at the ends A and A', and the slope ratio r. We may compute the volume of such solid as a double Triangular, or single Rhomboidal Wedge in combination with a single Pyramid (the latter also usually Rhomboidal but sometimes Triangular).

Process.—Take any pair of irregular cross-sections, judiciously located and measured by the field engineer, so as correctly to define the ground, and of which all the necessary dimensions are known, as well as the distance apart sections.

1. Ascertain the areas of the cross-sections to intersection of side-slopes.

2. Find the proper hight from intersection of slopes, to include one-half the area, also the proper width, and assume this as the base of the back of a double Triangular, or Rhomboidal Wedge in the larger end, and as the edge of the same in the smaller one.

3. Compute from the *larger*, or from *either* end section, a Rhomboidal Wedge, by Chauvenet's Theorem. (See *Example*, *Art.* 27, a, paragraph 8.)

4. Then, to the *solidity* of this Rhomboidal Wedge, add that of a Pyramid, based upon the other end section, and having for its altitude the common length, or distance apart sections. (See rule following.)

The sum of the altitudes of the double triangles (joined at their bases) forms the vertical diagonals, or hights of back, of the rhomboidal wedges, while their horizontal diagonals form the width of back at one end, and of the edge at the other, the angular points of the Rhomboid, vertically, being zero. Either end may be calculated from, while the other area is the base of a pyramid (Rhomboidal, Triangular, or Irregular), having for altitude the common length *l*. For proof of the work we should always make both direct and reverse calcu-

lations, taking either end alternately as the base, and though they will seldom agree *exactly*, owing to the decimals coming in a different order (unless we use a cumbrous number of places); nevertheless, the agreement will be found close enough for a verification of such work.

To compute the Rhomboidal Wedge and Pyramid in an Earthwork. Adopt either end for Base, and call the other the Top = b and t, of former notations.

Present notation:

 $\begin{array}{l} A = \text{Area of cross-section assumed for the Base.} \\ A' = `````Top. \\ l = \text{Common length, or distance apart sections.} \\ These are all the data required to be given, the remainder needed are easily computable. \\ h \\ k' \\ \end{array} \\ \begin{array}{l} \text{Vertical diagonals of the equivalent Rhomboids, into which} \\ h' \\ \end{array} \\ \begin{array}{l} \text{Horizontal diagonals of the same.} \end{array}$

Then, by computation :

$$\begin{cases} h = 2\sqrt{\frac{1}{2}}, h' = 2\sqrt{\frac{1}{2}}, w = \left(\sqrt{\frac{1}{2}}, w\right) \times 2r; \\ w' = \left(\sqrt{\frac{1}{2}}, w'\right) \times 2r. \end{cases}$$

From the foregoing it is evident that w = h r, and w' = h' r. Also, when the slopes are 1 to 1, then $h = \sqrt{2 A}$; if $1\frac{1}{2}$ to 1, $h = \sqrt{\frac{4}{3}A}$; and if 2 to 1, $h = \sqrt{A}$. The use of these will often be convenient.

RULE.—Case 1.—Where width of big end is equal to, or greater than, that of small end.

1 (Half product of vertical diagonal of base, by distance apart sections) \times (One-third the sum of horizontal diagonals of both ends) = Solidity of Rhomboidal Wedge;

or,
$$\left(\frac{h \times l}{2}\right) \times \left(\frac{w + w'}{3}\right) = S.$$

CHAP. V.-FOURTH METH. COMP.-ART. 30.

2 (One-third of area of top) × (Distance apart sections) = Solidity of Pyramid;

or,
$$\left(\frac{\mathbf{A}'}{3}\right) \times l = \mathbf{S}.$$

3. Add together the two solidities above (1 and 2) for the solidity of the entire Prismoid :—from ground to intersection of slopes, and minus the volume of the grade prism, gives solidity from road-bed to ground.

RULE.—Case 2.—Where width of big end is equal to, or less than, that of small end.

- In this case the multiplier for edges (No. 1, Case 1) is to be $\frac{(w+w')+(w-w')}{3}$, instead of simply $\frac{(w+w')}{3}$. While to the volume produced by the Rule of Case 1—modified in the multiplier as just mentioned—we must add a final correction, as follows: (Difference of actual horizontal widths \times Difference of their hights from intersection of slopes) \times length—this final product, added to the volume resulting from the rule above, gives the solidity for Case 2.
- The application of these corrections will be shown hereafter by an example, drawn from the peculiar solid, figured in Figs. 81and 82.
- The results produced by these corrections, when added to those obtained by the Rule of Case 1, will give the solidity, whenever the actual width of the smaller end section does not exceed three times that of the greater one.

Within these limits the rules and corrections above will apply, and they will be found to cover the great majority of practical cases; but where the end sections are even more distorted, we must then compute by Hutton's General Rule, or by the actual dimensions of the solid, decomposing it into elementary bodies.

As the Prism, Wedge, and Pyramid, are the solid elements from which every great-lined body is composed, and into which it may be again resolved, it follows by parity of reasoning (as in the case of the Prismoidal Formula) that for all earthwork solids, bounded by planes, the rules of this chapter hold.

c..... We will now illustrate our method of *Wedge and Pyra*mid, by computing the cases of Chapter II., figured from 53 to 64 inclusive, and all originally computed by HUTTON'S *General Rule*the standard for accuracy.

All of these examples (as indeed is the fact with most others in practice) come under our *Rule and Case* 1—the width of the larger end section being in every instance greater than that of the smaller one. (See Figs. 53 to 64, Art. 18.

Art. 18.—Example, illustrated by Figs. 53 to 55.

 $\begin{array}{l} \text{Given areas} \left\{ \begin{matrix} b = 990 = A \\ t = 500 = A' \\ l = 100 \text{ feet.} \end{matrix} \right\} \quad \begin{array}{l} \text{Vertical diago-} \left\{ \begin{matrix} h = 44\cdot50 \\ h' = 31\cdot62 \end{matrix} \right\} \quad \begin{array}{l} \text{Horizontal dia-} \left\{ \begin{matrix} w = 44\cdot50 \\ w' = 31\cdot62 \end{matrix} \right\} \\ \text{gonals computed.} \quad \left\{ \begin{matrix} w = 44\cdot50 \\ w' = 31\cdot62 \end{matrix} \right\} \end{array}$

The road-bed being 20 feet; the side-slopes 1 to 1 in this case, as in all where r = 1; the Rhomboid becomes a square, and the diagonals equal.

Direct calculations.

 $\frac{h \times l}{2} \times \frac{w + w'}{2} = S. of Wedge.$ $\frac{44\cdot50 \times 100}{2} \times \frac{44\cdot50 + 31\cdot62}{3} \quad \cdot \cdot = 56,471 = Wedge.$ $\frac{A'}{3} \times l = S.$ of Pyramid. = 73,138 Total C. Feet. Deduct Grade Prism . . . $\ldots \ldots = 10,000$ Leaves Solidity of Earthwork $\ldots = \overline{63,138}$ As computed in Art. **18**, Chapter II. $\ldots = 63,170$... = -32Difference . Reverse calculations. $\frac{31.62 \times 100}{2} \times \frac{31.62 + 44.50}{3}$. . . = 40,126 = Wedge. Total. = 73,126 C. Feet. Deduct Grade Prism = 10,000Leaves Solidity of Earthwork $\ldots \ldots = 63,126$ As computed in Art. 18, Chapter II. . . = 63,170 Difference = - 44

The above example represents an earth-cut upon three-level ground.

CHAP. V.-FOURTH METH. COMP.-ART. 30.

Art. 18.—Example, illustrated by Figs. 56 to 58.

This example represents an earth-cut on *five-level ground*, having a road-bed of 20; slopes of 1 to 1; length 100 feet.

Computed by our Rule, Case 1, we have.

Direct calculations.	Reverse calculations.
/Wedge = 24,306	/ Wedge = 27,254
Pyramid . $. = 14,367$	(Wedge = 27,254) (Pyramid = 11,467)
38,673	38,721
2 Deduct G. P. = 10,000	$\langle \text{Deduct G. P.} = 10,000$
Solidity $. = \overline{28,673}$	Solidity. $. = 28,721$
By Art. 18 . = $28,650$	By Art. 18 . $= 28,650$
Difference. = $+23$ C. Feet.	\setminus Difference. = $+71$ C. Feet.

Art. 18.—Example, illustrated by Figs. 59 to 61.

This example represents an earth-cut on seven-level ground, dimensioned as above.

Computed by our Rule, Case 1, we have:

Direct calculations.

Reverse calculations.

/Wedge = 42,048	/Wedge = 42,935
Pyramid . $. = 21,700$	(Pyramid . $. = 20,800$
63,748	63,735
$\langle \text{ Deduct G. P.} = 10,000$	$\langle \text{ Deduct G. P.} = 10,000$
Solidity. $. = \overline{53,748}$	Solidity $. = \overline{53,735}$
By Art. 18 . = 53,733	By Art. 18 . $= 53,733$
Difference = $+15$ C. Feet.	$\int \text{Difference} = + 2 \text{ C. Feet.}$

Art. 18.—Example, illustrated by Figs. 62 to 64.

This example represents an embankment upon nine-level ground, very rough. Road-bed 16 feet; side-slopes 1¹/₂ to 1; length 100 feet.

Areas given $\begin{cases} t = 828\%_3 = \Lambda \\ b = 644\%_3 = \Lambda' \\ l = 100 \text{ feet.} \end{cases}$ Vertical diago- $\begin{cases} h = 33.24 \\ h' = 29.32 \end{cases}$ Horizontal dia- $\begin{cases} w = 49.86 \\ w' = 43.98 \end{cases}$ of slopes, etc. $\begin{cases} l = 100 \text{ feet.} \end{cases}$

Direct calculations.

$\frac{33\cdot 24 \times 100}{2} \times \frac{49\cdot 86 + 43\cdot 98}{3}$.	= 51,987 Wedge.
$\int \frac{644 \cdot 67}{3} \times 100 \cdot \cdot$	$. = \frac{21,489}{73.476}$ Pyramid.
Deduct Grade Prism	= 4,267
As computed in Art. 18, Chapter II Difference	= 69,200

Reverse calculations.

/	$\frac{29.32 \times 100}{2} \times \frac{49.86 + 43.98}{3} \dots \dots = 45,856 $ Wedge.
	$\frac{828.67}{3} \times 100 \dots \dots$
)	Deduct Grade Prism. \ldots \ldots \ldots \ldots $=$ 4,267
	Solidity

d..... We have thus compared the whole four of the examples illustrated in Chapter II., and all computed by HUTTON'S *General Rule*. These we find to agree with the calculations by Wedge and Pyramid, in every instance within a few cubic feet, and had the decimals (into which all these computations run) been carried further, the agreement would probably have been closer.

We will now compute by Wedge and Pyramid the example of a heavy embankment, taken from Warner's Earthwork, Art. 86.

"Prismoid. First end-hight — 28.7; second end-hight — 14.5; surface-slope 15° ; side-slope $1\frac{1}{2}$ to 1; road-bed 24 feet."

 $\begin{array}{l} Data \text{ computed} \\ b = 2411 = \mathbf{A} \\ t = 907 = \mathbf{A}' \\ slopes, \text{ etc.} \end{array} \begin{array}{l} \text{Vertical diago-} \left\{ \begin{array}{l} h = 5670 \\ h' = 3478 \end{array} \right\} \text{ gonals computed.} \left\{ \begin{array}{l} w = 8505 \\ w' = 5217 \end{array} \right\} \\ \text{gonals computed.} \end{array}$

CHAP. V.-FOURTH METH. COMP.-ART. 30.

Direct calculations.

	$\frac{56.70 \times 100}{2} \times \frac{85.05 + 52.17}{3} \dots = 129,673$ Wedge	
	$\frac{907}{3} \times 100$	nid.
)	159,906	
Ì	For Cubic Yards \div 27	
	Deduct volume of Grade Prism = 356	
	Solidity	ards.
	By Hutton's General Rule = 5,566	
1	Difference $=$ +1 C. Y	ard.

Reverse calculations.

$\frac{34.78 \times 100}{2} \times \frac{52.17 + 85.05}{3} \dots =$	C. Feet. 79,542 Wedge.
$\frac{2411}{3} \times 100$	80,367 Pyramid.
	159,909
For Cubic Yards \div 27 =	
Deduct volume of Grade Prism =	356
Solidity $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots =$	5,567
By Hutton's General Rule =	5,566
$\bigcup Difference \ldots \ldots \ldots \ldots =$	+1 C. Yard.

Mr. Warner (in Art. 86 quoted) makes the volume here computed = 5562 Cubic Yards.

e..... All of the above examples come under Case 1, of our Rule, as ordinary earthwork sections usually do. But we will now compute a single example by Case 2—where the width of the greater end is less than that of the smaller one. This condition will be found in the solid figured in Figs. 81 and 82.

In this example, illustrative of the rule in Case 2, the corrections therein named have been duly embodied.

/ Example of Case 2 (Fi	
$\left(\frac{48.98 \times 100}{2} \times \frac{48.98 + 42.42 + 6.56}{3} \right).$. = 80,000 Wedge.
$= \frac{h \times l}{2} \times \frac{(w+w') + (w-w')}{3}$	
$\left\langle \frac{900}{3} \times 100 \ldots \ldots \ldots \ldots \right\rangle$. = <u>30,000</u> Pyramid.
$=\frac{A'}{3} \times l.$	110,000
Final correction, $10 imes 10 imes 20 imes 100$.	
Solidity	
\setminus The same as computed before \ldots \ldots .	. = 130,000

It would appear, then, from the discussion in this chapter, the examples given, and the simplicity and conciseness of the rules for computing earthworks, by means of the *Prism*, *Wedge*, and *Pyramid*, that they deserve to rank amongst the best employed for the purpose.

^{*} Although this solid (*Figs.* 81 and 82) is bounded on all sides by plane surfaces, and is composed simply of a Rhomboidal Wedge, superposed upon a Pyramid—very few of the Rules or Tables, of the numerous writers on Earthwork, furnish means for computing its *solidity*—which can only be readily ascertained by HUTTON'S General Rule, or by decomposition into elementary solids, of which the rules for volume have been long established.

LIBRART UNIVERSITY OF CALIFORNIA.

CHAPTER VI.

PROFESSOR GILLESPIE'S FOUR USUAL RULES, WITH THEIR CORREC-TIONS, AND A COMPARISON OF HIS CHIEF EXAMPLE WITH OUR THIRD METHOD OF COMPUTATION-OR ROOTS AND SQUARES (CHAP-TER IV.).

31..... The late Professor W. M. Gillespie, of Union College, Schenectady, N. Y., was an able teacher of Civil Engineering, and a sound practical writer on that and cognate subjects, as may witness his—Roads and Railroads (1847), 10 editions; Land Surveying (1855), 8 editions; Higher Surveying, etc. (1870), *posthumous*, 1 edition; and numerous valuable papers, read before the American Scientific Association, or printed in scientific journals.

In 1847 he published his first edition of Roads and Railroads, and, as an appendix to it, in about 25 pages, he gave a practical summary of various methods of computing Excavation and Embankment, accompanied by valuable corrections and suggestions, which were together so explicit and so well grounded that this Appendix has become the basis of several works upon the subject, whose authors, without much acknowledgment (often without any), have freely availed themselves of Professor Gillespie's labors.

His work on Roads and Railroads, well printed and cheaply published, has had a great circulation; it has already filled 10 editions, and is probably better known in the offices of engineers, all over this country, than any other similar book. In the Appendix, on Excavation and Embankment, Professor Gillespie recognizes "four usual methods of calculation."

1. Calculation by Averaging End Areas (or Arithmetical Average).

- 2. "" " Middle Areas.
- 3. " " Prismoidal Formula.

4. " " Mean Proportionals (or Geometrical Average).

And we will now proceed to give his views substantially, but not literally, upon these *four rules*, which he found in use when he took up this subject in 1847, and which, indeed, had long before been known, —as follows:

1st. Arithmetical Average.—This consists simply in adding together the areas of any two adjacent cross-sections, taking half their sum for a mean area, and multiplying it by the length of the station, or distance apart sections,—to find the Solidity.

As generally used by engineers, instead of adding the end areas, halving their sum, etc., *they* employ the sum of the two, *or double areas*, and merely double one of the divisors in working for Cubic Yards, *as follows*:

Engineers' Rule.

Take the sum of the areas of any two adjacent cross-sections, multiply these *double areas* by the length (which, if a full station of 100 feet, is done mentally, or by removing the decimal point two places to the right). Divide by 6 and by 9, and the last quotient gives the volume in Cubic Yards.

This Rule has been by far the most used of any other in our country ;—with tables of Cubic Yards, for double areas, it is very expeditious, and has found numerous advocates amongst engineers on account of its simplicity and convenience; it usually gives a result in excess of the truth, and where the disparity of areas is great, very much in excess; even this well-known error has found commendatory advocates, on the ground that it is like the merchant giving good measure to the customer, and that this excess in quantity being well understood, would be compensated for by a reduced price, whenever the work was executed by contract—but these arguments are clearly unsound.

Professor Gillespie has, however, indicated a simple correction, by means of which the result of a computation, by Arithmetical Average can be reduced to the truth.

Thus, let

- d =Difference of centre hights, supposing all the cross-sections to be reduced to an equivalent *level* top.
- $s^* =$ Ratio of the side-slopes (or cot. of angle) s to 1.
- l = Length of the cut or fill between sections.

^{*} Engineers and writers have pretty generally, of late years, agreed to designate the ratio of side-slopes as r (and this we have usually employed), while the symbol s is confined to slopes of ground, or *surface slopes*, but in the present case Professor Gillespie's *notation* is adhered to.

CHAP. VI.-GILLESPIE'S RULES, ETC.-ART. 31. 147

Then, $\frac{s}{6} \frac{d^2 l}{6}$ is the proper correction for the results of Arithmetical Average, which correction, if computed for each mass so calculated, and then *deducted* therefrom, will give *the true solidity*—the same precisely as if calculated direct by the Prismoidal Formula itself.

The chief example computed by Professor Gillespie under the several heads of his subject, has the same data in all, as shown by the first four columns of the following Tables—the cross-sections in all cases being assumed to be equivalent level trapezoids by him.

1. Arithmetical Average.

Table 1, computed in illustration of the corrections proposed, including an entire section of a supposed railroad, 4219 feet in length.

1. Road-bed 50; side-slopes of excavation $1\frac{1}{2}$ to 1; of embankment 2 to 1.

Sta.		in	in	End Areas, or Cross- secs.	tion. ment. CORRECTIONS.						Corrected quanti- ties, agreeing with the Prismoidal Formula.		
	feet.	feet.		Sq. Ft.	i i	outed y verage.	By	$\begin{array}{c c} \text{By Formula} \\ \underline{s \ d^2 \ l} \\ \hline 6 \end{array} \qquad \begin{array}{c c} \text{Amounts in} \\ \text{Cubic Feet.} \\ \text{deductive.} \end{array}$			Excava- tion. C. Feet.	Embkt. Cubic Feet.	
$\frac{1}{2}$	561	0 18		0 1386	388,773		11 ×	18 ° × 561	45,411		343,332		
3	858	20		16 00	1,280,994		11 ×	2" × 858	858		1,280,136		
4	825	0	0	0	660,000		1 <u>1</u> ×	20 ⁹ × 825	82,500		577,500		
5	820		19	1672		685,520	2 ×	19 ⁹ × 820		98,673		586,847	
6	825		8	528		907,500	$\frac{2 \times 1}{2}$	11 ⁹ × 825		33,275		874,225	
7	330		0	0	0.000 505		$2 \times$	8º × 330		7,040	0.000.000	80,080	
	4219	38		+2986 -2200	2,329,767	1,080,140		6	128,799	155,988	2,200,968	1,541,152	

From this Table it will be perceived that the error of the process of Arithmetical Average, in this example, amounts in Excavation to 6 per cent., and in Embankment to 9 per cent., above the true solidity.

2d. Calculation by the Middle Areas.—The second method of calculation is to deduce the middle areas (commonly called mid-sections) of each Prismoidal mass, from the middle hight, or Arithmetical Mean of the extreme hights of the solid, and multiply the middle area thus found by length for volume. The results thus obtained are too small; their deficiency being equal to just half the excess of the first method.

Here the corrective formula is, $\frac{s d^2 l}{12}$; and corrections thus calculated being *added* to the results obtained, by the process of middle areas, would make them coincide with the true volume given by the Prismoidal Formula.

2. Middle Areas.

Table 2, computed and corrected in illustration of the above, including an entire section of a supposed railroad = 4219 feet in length.

2. Road-bed 50; side-slopes of excavation $1\frac{1}{2}$ to 1; of embankment 2 to 1.

	Dis- tance	+	Fill.	Middle Areas.	Middle Exca-	y	CORRECTIONS.				Corrected quanti- ties, agreeing with the Prismoidal Formula:		
Sta.	in feet.	in feet.	in ft.		va- tion.	ment.		Formula d ² l		nts in Feet,	Ex- cava-	Em- bank-	
				Sq. Ft.	Cubic	Feet.		12		tive.	tion.	ment.	
								12	Ex.	Em.	C. Feet.	C. Feet.	
1 2	561	0 18		571·5	320,611		1 <u>1</u> ×	18 ² × 561	22,721		343,332		
3	858	20		1491.5	1,279,707		11 ×	$\frac{12}{2^3 \times 858}$	429		1,280,136		
4	825	0	0	650	536,250		$\frac{1\frac{1}{2}\times}{}$	$\frac{12}{29^2 \times 825}$ 12	41,250		577,500		
5	820		19	655-5		537,510	2 ×	$\frac{12}{19^9} \times 820}{12}$		49,337		586,847	
6	825		8	1039.5		857,587	$\frac{2 \times}{2}$	$\frac{12}{11^9} \times 825}{12}$	•	16,638		874,225	
7	330		0	232		76,560	$^{2} \times$	8 ² × 330		3,520		80,080	
-	4219	38	27	+2713.0 1927.0	2,136,568	1,471,657		12	64,400	69,495	2,200,968	1,541,152	

From the above Table it will be perceived that this process of Middle Areas is a closer one than that of Arithmetical Average; but being in deficiency, while the former was in excess, the difference in this case, from the true solidity, being about 3 per cent. less in Excavation, and about 4 per cent. less in Embankment.

3d. Calculation by the Prismoidal Formula.—The mass of which the volume is demanded is a true Prismoid, and its contents will therefore be given by the well-known Prismoidal Formula.

 $\frac{b+4m+t}{6} \times \text{length} = \text{Volume.}$ Where, $\begin{cases} b = \text{Area of Base.} \\ m = \text{Mid-section.} \\ t = \text{Area of top.} \end{cases}$

CHAP. VI.-GILLESPIE'S RULES, ETC.-ART. 31. 149

Retaining the same data for the example as has been used in the preceding tabulations, and will be continued throughout this discussion, we refer to the following Table (3), where the results obtained from the data given, by means of the Prismoidal Formula, are properly tabulated.

3. Prismoidal Formula.

Table 3, in illustration of the computation by it. Including an entire section of a supposed railroad = 4219 feet in length.

3. Road-bed 50; side-slopes of excavation $1\frac{1}{2}$ to 1; of embankment 2 to 1.

	Dis- tance	Cut.	Fill.	End	Mid- dle	QUA	NTITIES.
Sta.	in	+	-	Areas.	Areas.	Excava- tion.	Embank- ment.
	feet.			Sq. Ft.	Sq. Ft.	C. Feet.	C. Feet.
1 2 3 4 5 6 7	561 858 825 820 825 330	0 18 20 0	0 19 8 0	$\begin{array}{c} & \bigcirc \\ +1386 \\ +1600 \\ \bigcirc \\ -1672 \\ -528 \end{array}$	$ \begin{array}{r} + 571.5 \\ + 1491.5 \\ + 650 \\ - 655.5 \\ - 1039.5 \\ - 232 \end{array} $	343,332 1,280,136 577,500	586,847 874,225 80,080
	4219	+38	27	+2986 -2100	+2714 -1927	2,200,968	1,541,452

This Table 3, computed by the Prismoidal Formula itself, is the standard for all the others, and gives the true solidities in the section of railroad under consideration.

4th. Calculation by Mean Proportionals (or Geometrical Average). --Professor Gillespie says a fourth method, called that of "Mean Proportionals," is sometimes, though very improperly, employed.

He gives the following rule for Mean Proportionals.

Rule.—Add together the areas of the two ends, and a Mean Proportional between them (found by extracting the Square Root of their product); multiply the sum of these three areas by the length of the Frustum, and divide the product by three.*

As used by engineers, in working for Cubic Yards as the result, tnis rule takes a somewhat different shape, as follows:

Rule.—Multiply the sum of the end areas, and the Square Root of their product, by the distance apart, and divide this final product by 9 and by 9.

^{*} This is, substantially, Euclid's Rule for the Frustum of a Pyramid; Davies' Legendre, VII. 18.

The result is always much less than the truth (supposing the areas taken between ground line and road-bed), for it treats as Pyramids, or thirds of Prisms, the wedge-shaped pieces which are really halves of Prisms, and is farthest from the truth when one of the areas = 0.* So far the Professor.

And this is all correct when the cross-sections are limited between road-bed and ground surface; but if they are extended to the intersection of the side-slopes, or edge of the diedral angle containing the earthwork solid, an entirely different state of affairs takes place, for if the road-bed be imagined to be gradually narrowed, so that eventually it vanishes at the intersection of the side-slopes; then, at that point, both Pyramid and Prismoid coincide, or become equivalent, whilst their rules become correlative (or mutually interchangeable), and either may be used with the same results in point of solidity; and this is also the case with the "Equivalent Level Hights," much used by engineers since the publication of Sir John Macneill's work (London, 1833), but likewise condemned by Professor Gillespie, rather hastily as it seems to the writer, and hardly upon sufficient grounds.

It seems singular that this able Professor should have overlooked the facts mentioned above, as he was well acquainted with the method of continuing calculations to junction of side-slopes, *including* the Grade Prism in the earlier stages of the computation, but *rejecting* it at the close (as may be seen in his paper on Warped Solids (1859)).

Now, so long as the cross-section of the earthwork remains trapezoidal in figure, the strictures of Professor Gillespie upon this rule (commonly called the Geometrical Average) are undoubtedly correct; but whenever the cross-section becomes triangular they fail entirely, as also does his similar censure on "Equivalent Level Hights."

In evidence of this, we have tabulated (for ourselves) the same general example as heretofore given-both for the Geometrical

* Now, taking a case of precisely this kind (only continued to intersection of slopes) --hight at one end 34.5, at the other 0, with road-bed of 30 feet, slopes of 2 to 1, a length of 66 feet, and level on the top.

If we compute this solid, either prismoidally, or by the usual rule for wedges, we have for its volume 3205 Cubic Yards in round numbers.

And if we compute it by Baker's Rule (who treats such cases as Frusta of Pyramids, but with the important addition of the Grade Prism), we find the resulting volume to be the same to the nearest Cubic Yard.

For this pyramidal rule see Baker's Earthwork, London, 1848, whose rule is similar to that of Bidder and others, which have always been accepted as correct by English engineers, and most certainly they are so.

CHAP. VI.-GILLESPIE'S RULES, ETC.-ART. 32. 151

Average, and for the Equivalent Level Hights, merely carrying the areas to the intersection of the side-slopes, in both cases, including at *first* the Grade Prism, but *excluding* it after—as a common quantity.

4. Mean Proportionals (or Geometrical Average).

Table 4, in illustration of computation by them, including an entire section of a supposed railroad = 4219 feet in length.

4. Road-bed 50; side-slopes of excavation $1\frac{1}{2}$ to 1; of embankment 2 to 1.

Sta.	Dis- tance in	To the Road-bed.				End An interse o slop	ection f	Geomet- rical Mean Area.	Quantities agreeing with those of the Prismoidal Formula.	
	feet.	Cut.	Fill.	Cut. +	Fill.	Sq. Feet.	Sq. Feet.	Sq. Feet.	Excava. Cub. Feet.	Embank. Cub. Feet.
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	561 858 825 829 825 330 4 219	0 18 20 0 +38	0 19 8 0 -27	$ \begin{array}{r} 16 & \\ 34 & \\ 36 & \\ 33 & \\ 16 & \\ 33 & \\ 16 & \\ 4 & \\ 104 & \\ 3 & \\ \end{array} $	$ \begin{array}{r} 121_{2} \\ 311_{2} \\ 201_{2} \\ 121_{2} \\ \hline 77 \end{array} $. 416.666 1802.666 2016.666 416.666	312.5	$ \begin{array}{r} - & 787.5 \\ - & 1291.5 \\ - & 512.5 \end{array} $	1,280,136	586 847 874,225 80,080 1,541,152

In this Table the Grade Prism is *included* at first, and *excluded* afterwards. Its sectional area is as follows:

Grade Prism of Cut = 416.666 Square Feet. " " Bank = 312.5 " "

To be multiplied for volume by length of mass to which it belongs. Altitudes of the Grade Prism in the Cut = $16\frac{2}{3}$ feet; on Bank = $12\frac{1}{2}$ feet.

In computing quantities by Geometrical Average, the following generalization has occurred to the writer, which indeed may possibly be a germ from which the Prismoidal Formula might have sprung since both the Arithmetical and Geometrical Means were known in the days of Euclid (200 B. c.), while the original Prismoidal Formula (so far as we know) was devised by Simpson, as late as A. D. 1750. Thus,

 $\frac{\text{Double the sum of End Areas + Double Geom. Mean}}{6} \times h = Solidity.$

Let

 $\left\{ \begin{array}{l} \mathbf{A} = \text{Sum of End Areas.} \\ \mathbf{B} = \text{Geometrical Mean.} \end{array} \right\} \begin{array}{l} \text{Then the above} \\ \text{becomes } . . . \left\{ \begin{array}{l} 2\,\mathbf{A} + 2\,\mathbf{B} \\ \mathbf{6} \end{array} \times h = \mathbf{S}. \end{array}$

Or, in its lowest terms, $\frac{A + B}{3} \times h = S$, which is the Geometrical Average; or, in substance, Euclid's Rule for the Frustum of a Pyramid; and by the aid of the Grade Prism strictly applicable to earthworks of a general triangular section in ordinary cases.

5 Equivalent Level Hights.

Table 5, in illustration of computation by them.

5. Road-bed 50; side-slopes of excavation $1\frac{1}{2}$ to 1; of embankment 2 to 1.

Sta.	Dis- t'nce in	To th Road bed.	1-	To into tio of slop	n			Mid. hts. to inter- section of sl'pes.	Mid-secti areas to t	ions, or he inter-	Quantitic ing wit of the Pr Form	h those rismoidal
	ft.	Cnt. F	in.	Cut. +	Fill.	Cut. +	Fill.	Feet.	Sq. Feet.	Sq. Feet.	Excava. C. Feet.	
1	1	I OF	1	162/2		416.666)	1		
2	561	18		342/3		1802.666		+25.666			343,332	
3	858			$36^{2/3}_{-3}$ $16^{2/3}_{-3}$		2016.666		+35.666			1.280,136	
4	825		O	$16\frac{2}{3}$	$\frac{12^{1}}{31^{1}}$	416.666		+26.666			577,500	
5	820		19				1984.5	-22.000		968.0		586,847
6	825		8		201/2		840.5	-26.000		1352 0		874,225
7	330		O		$12\frac{1}{2}$		312.5	-16 500		544.5		80,080
	4219	+38	-27	- 1043/3	-77	+ 4652.654		+87.998 -64.500	+ 3962-998	- 2864.5	2,200,968	1,541,152

In this Table the Grade Prism is *included* in the earlier operations, and *excluded* in the later ones. Its sectional area is *as fallows*:

Grade Prism of Cut = 416.66 Square Feet. " " Fill = 312.50 " "

To be multiplied for volume by the length of mass to which it belongs.

Altitudes of the Grade Prism in the Cut = $16\frac{2}{3}$ feet; on Bank = $12\frac{1}{2}$ feet.

33. From the preceding discussion in the present chapter we are justified in declaring that all the following rules and formulas (detailed above) are equivalent in their results for volume—when pro-

CHAP. VI.-GILLESPIE'S RULES, ETC.-ART. 33. 153

perly corrected and appropriately used; and that they all give the same solidity in the end as No. 3 does, which is the standard for ALL.

- 1. Arithmetical Average to Road-bed (with correction).
- 2. Middle Areas to Road-bed (with correction).
- 3. Prismoidal Formula (the standard for all) to Road-bed, or to the intersection of slopes-either.
- 4. Geometrical Average to intersection of slopes.
- 5. Equivalent Level Hights to intersection of slopes.

All these are fully described above, and the tabular statements bearing the same number show in each case the results of the calculations for volume, agreeing uniformly with the computations for solidity, made by means of the Prismoidal Formula.

In concluding his notices of the method of computing the contents of earthworks, by means of the Prismoidal Formula, Professor Gillespie gives some special rules, transformed from it, which are doubtless valuable in certain cases, but do not appear to be of general application; he also gives formulas for a series of equal distances apart stations, such as are usually found in the location of railroads.

These are intended to be applied to *a central core*, or body of the work, based upon the road-bed, to be calculated by itself, and then *the slopes*, to be computed separately or together, and added in with the core, so as to form finally *the volume of the whole prismoidal mass.*

This idea of separating the core or body from the slopes, calculating them independently, and adding them together, seems to have occurred to a great many engineers,* and forms the theme of nearly a dozen books on the subject of Earthwork Measurements—*here or abroad*.

Indeed, the very first special work on the mensuration of earthworks, which was published in this country—that of E. F. Johnson, C. E. (New York, 1840), adopted this system, and furnished a series of Tables to facilitate its operation ;—it was, however, briefly explained before, in Lieut.-Col. Long's valuable Railroad Manual (Baltimore, 1828), which was the first to treat the subject in this country, and was, in fact, the pioneer of technical railroad literature in the UNITED STATES.

Nevertheless, the method of *Core and Slopes* has never come into general use, though often revived from time to time by new writers, apparently unacquainted with the literature of this subject.

^{*} Amongst others, it is the method of Bidder, who followed Macneill in the earlier days of English railroads.

34.... Comparison of Gillespie's Main Example and the Method of Roots and Squares.

Professor Gillespie's chief example, of a heavy Cut and Fill, forming an entire section of railroad, 4219 feet long, must by this time be so familiar to engineers, and others, in consequence of the extensive circulation of his Manual of Roads and Railroads, since its original publication in 1847, that we have selected it as the most suitable, or at least the best known,* for the purpose of comparison with our Third Method of Computation—that by Roots and Squares.

We therefore give a Table No. 6 (below), which contains in the first 5 columns the data given by Professor Gillespie, and in the last 6 the results of the computation by Roots and Squares, which will be found to agree exactly with those obtained above, by means of the Prismoidal Formula—accepted as being a correct standard for comparison.

6. Comparison of Example, with Roots and Squares.

Including (as before) an entire section of a supposed railroad = 4219 feet in length.

6. Road-bed 50; side-slopes of excavation $1\frac{1}{2}$ to 1; of embankment 2 to 1.

Sta.	Dis- tance in	End Areas in Sq. Ft.	Centre Hights in feet.		End Areas increased by Grade Triangle.	Square Roots of End Areas.	Sums of Square Roots.	Squares of sums, or 4 times the mid- section.	Quantities agree ing with those given by the Prismoidal Formula.	
	feet.	Cut + Fill —	Cut	Fill	Sq. Feet.	Feet.	Feet.	Feet.	C. Feet. C.	Feet.
	ieet.	<u></u>	T		1 41022	1 00.40]
1 2	561	+1386	0 18		$+416\frac{2}{3}$ +1802 $\frac{2}{3}$	+ 20.42 + 42.46	62.88	3954	343,332	
3	858	+1600	20		-201623	+ 44.91	87.37	7634	1,280,136	1
4	825	0	0	0	$+ 416\frac{23}{3}$ - 312%	$+ 20.42 \\ - 17.68$	65.33	4268	577,500	
5	820	-1672		19	-19841%	- 44.55	- 62.23	- 3872	5	86.847
6	825	- 528		8	$- 840\frac{1}{2}$	- 28.99	- 73.54	- 5408		74,225
7	330	0		0	- 3121/2	- 17.68	- 46.67	- 2178		80,080
·	4219	$+2986 \\ -2200$	+38	-27	$+4652^{2}_{3}$ -3450	$+ \frac{128 \cdot 21}{- 108 \cdot 90}$	$-\frac{215\cdot58}{182\cdot44}$	-15856 	2,200,968 1,5	41,152

In the above Table (as in the others), the cross-sections—in the data given—being level trapezoids from ground to road-bed, we neces-

^{*} Besides, this example, originated by F. W. Simms, C. E. (London, 1836), has been before the public for many years, having been first published in our country in Alexander's edition of Simms on Levelling (Baltimore, 1837); from which, or the original, it was copied by Professor Gillespie. In the work above mentioned, Mr. Alexander gives every detail of the computation of this example, by the Prismoidal Formula, at great length, and so indeed does Simms.

CHAP. VI.-GILLESPIE'S RULES, ETC.-ART. 34. 155

sarily *add* in this mode of computation (to intersection of slopes) the Grade Triangle, and *deduct* it again near the close of the operation.

Road-bed 50; side-slopes of excavation = $1\frac{1}{2}$ to 1; of embankment = 2 to 1.

Grade	Triang	le of	'Cut,	area	==	$416\frac{2}{3}$	Sq.	Ft.	—	altitude	=	$16\frac{2}{3}$	Feet.
"	"	"	Fill,	"	_	$312\frac{1}{2}$	"	"		"	=	$12\frac{1}{2}$	"

Where the distances apart stations are uniform in length and even in number, the method of Roots and Squares enables us to employ a very simple modification of Simpson's Multipliers, as has been already shown in Chapter IV., so as to compute with ease and expedition an entire cut or fill, at a single operation, or one station only, at pleasure.

CHAPTER VII.

PRELIMINARY OR HASTY ESTIMATES, COMPUTED BY SIMPSON'S RULE FOR CUBATURE.

35..... Preliminary, and often hasty estimates of earthworks, are constantly required by engineers prior to deciding upon railroad routes, or their modifications, and indeed are *generally* necessary in determining the relative merits of engineering lines—(amongst which there are always *alternatives*)—since few can undertake to settle properly any important questions relating to their comparative value, without some serious consideration, for which the Preliminary Estimates, on various lines surveyed, supply a proximate foundation, by aiding without controlling the judgment of the engineer.

Exploring Lines, preparatory to the final location of a railway, are indispensable, and in a difficult country may extend to tenfold the length of the final line, while the time allowed to engineers being usually extremely short, the estimates of quantities on these Preliminary Surveys are necessarily hasty, and consequently imperfect—but nevertheless demand rapidity in execution, however made.

For this there seems to be no remedy; all we can do is to endeavor to point out a method for hasty estimates, more correct and more expeditious than those usually employed, and to this we shall confine ourselves in the present chapter.

Exploring lines are usually traced with stations at double distance, or 200 feet apart—and, indeed, sometimes on plain ground the distance apart stations has been stretched (to save time) as far as 400 or 600 feet;—and as this last distance is about the longest range which gives distinct vision for the Engineer Levels in use in this country, it ought rarely to be exceeded, as a general rule; while at least, the distance of 200 feet apart stations, or double distance of loca-

CHAP. VII.—HASTY ESTIMATES.—ART. 35. 15

tion, furnishes good information of the ground, and also enables the exploring party to proceed rapidly enough to gain an adequate knowledge of the country, without much loss of time.

Nevertheless, the rules we suggest will apply to any *uniform* distance apart stations of exploring line, which may be deemed advisable by the engineer in charge: but the longer the distance between stations, the less accurate will be the estimate *in general*.

We propose to apply Simpson's celebrated rule for cubature (the accuracy of which is well known) to Preliminary or Hasty Estimates, taking as data the centre hights and surface slopes alone; the former to the nearest foot of hight or depth, from ground to intersection of side-slopes, and the latter to the nearest 5° of average ground slope across the line, leaving special cases to be dealt with by the engineer, according to rules of his own.

We have provided proximate tables (very nearly correct) to facilitate these hasty operations, and would also suggest that, in all cases of Preliminary Estimates, the resulting quantities of earthwork should be augmented ten per cent. — this addition will give full quantities, and has been shown by long experience to be ample to meet the usual contingencies which always arise in the construction, and cannot be foreseen, and of which, in fact, it must be confessed, the engineer in charge (often unknown to himself) almost invariably takes the most favorable view, and hence the greater necessity exists for some appropriate allowance beyond the net result of the calculations.

Simpson's Rule for Cubature, using cross-sections instead of ordinates (as we have before shown), is as follows:

$$\frac{\mathbf{A} + 4\mathbf{B} + 2\mathbf{C}}{3} \times \mathbf{D} = Solidity.$$

(Sometimes 2 D, and 6 for divisor, are used, and are equivalent.)

A = Sum of extreme end ordinates, or sections.

B = Sum of cross-sections standing on even numbers.

C = Sum of """" odd numbers.

D = The common interval, or distance apart sections.

Simpson's rule above is limited to an even number of equal spaces.

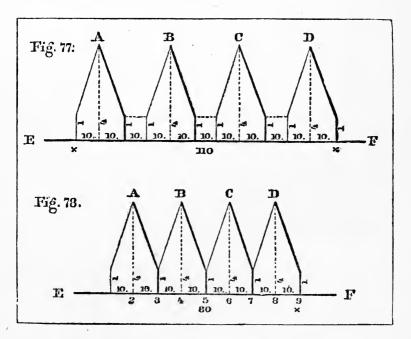
And it must be observed that in its application it is always best to prepare a rough profile of the line run, and under the regular numbers to pencil forward, from the beginning of the cut or fill to be computed, the series of numbers 1, 2, 3, 4, etc. No. 1 always standing at the place of beginning; it is this series of numbers, so arranged, which are referred to in the rule above as *even and odd*.

By this rule it is best to compute *entire and separately* each cut and each fill encountered by the line; and if the whole number of *equal* intervals or stations, in any cut or fill, should be *an odd number*, then one station of the common length, at beginning or end (or indeed any where deemed most suitable), should be struck off temporarily, and reserved for separate calculation; while the body of the work thus reduced, to an even number of common intervals, comes directly within the rule, and can be calculated as a whole, while the detached station, computed by itself, may be added in near the close of the operation.

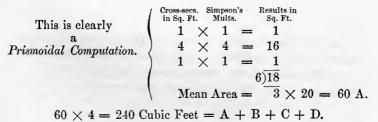
It will always be found briefer and better in using this and similar rules, to aim first at finding a General Mean Area, which, multiplied by the proper length or distance, will give the solidity; but it is still better, having the General Mean Area in square feet, to use our Table at the end when the result is desired in Cubic Yards.

36.¹.... Instead of employing Simpson's Formula, as it stands above, it will be often more convenient to use the multipliers which represent it—these are known as *Simpson's Multipliers*,* and are as follows:

For	two e	qual in	térvals,	apart se	ections, I	Mults.	$= 1, 4, 1. \begin{cases} \text{Divisors 6; quot} \\ \text{Areas; factors} \\ = double inter \end{cases}$	for length
66	four	66	"	46	66	46	= 1, 4, 2, 4, 1. (Divisors 3;	quotient.
66	six	64	44	66	44	66	= 1, 4, 2, 4, 2, 4, 1. Mean Areas; f	actors for
	eight		46	44	46	44	= 1, 4, 2, 4, 2, 4, 2, 4, 1. length $=$ sin	gle inter-
66	ten	"	66	"	44	46	= 1, 4, 2, 4, 2, 4, 2, 4, 2, 4, 1. [val.	


The first set of multipliers, their divisors, and factors for length, are clearly those of the Prismoidal Formula, which evidently forms the basis of this famous rule.

Indeed, it is easy to show by diagrams how this rule may probably have been formed, by the eminent mathematician, with whom it originated, about the year 1750; and also how intimately it appears to be connected with the Prismoidal Formula.


* Rankine's Useful Rules and Tables, 2d edition, London, 1867, page 64.

See Figs. 77 and 78, following.

Suppose Figs. 77 and 78 to represent front views of four planes, A, B, C, D, or of four solids with a thickness of *unity*, all standing on the level base line EF, and that their respective ordinates, or cross-sections (correllative in Simpson's Rule for Cubature), are *dimensioned* as marked upon the figures.

1. Suppose the solids to be separated from each other by the distance of 10 feet (or any other), and let each be computed independently by means of Simpson's Multipliers, or as they are all exactly alike, let one be computed and multiplied by 4, as follows:

2. Now, suppose the solids to be slid along the base line EF. until they come in actual contact with each other, as shown in Fig. 78. Then it becomes evident that the intermediate sections at odd numbers (1, 3, etc.), which, in the detached solids, Fig. 77, were used but once, are here, when combined, to be used twice; while the mid-sections, or those at even numbers, are to be used four times, and the extreme end sections only once each; so that they become, in effect, when treated thus, the Multipliers of Simpson; while the divisor is changed to 3, because the common interval is reduced one-half ;---and the volume of the four solids, when aggre-gated together, so as to form a single body, would be computed by Simpson's Rule, or by his Multipliers, as follows :

By Simpson's Rule, $\frac{2+64+6}{3} \times 10 = 240$, as above.

Secs.

Mults.

Sq. Ft.

By Simpson's Multipliers, ith 8 equal intervals.	$ \begin{vmatrix} 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 1 \\$	******	$1 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \\ 4 \\ 1$		$ \begin{array}{c} 1\\ 16\\ 2\\ 16\\ 2\\ 16\\ 2\\ 16\\ 1\\ 3\\ 72\\ \end{array} $
General Mean	Are	α.		=	24
Common Inter	rval			-	10
Result same as	befo	re.		-	240 C. Feet.

As Simpson's Rule is an important one, we hope the above digression to explain it fully, and the foundation on which it rests, will be excused by the reader.

37. Having then taken off from a rough profile of the line run the centre hights to the nearest foot, and from the field notes ascertained the average surface slope at each station to the nearest 5°, we enter Tables 2, 3, and 4, and obtain the triangular areas to the intersection of the side-slopes (supposed to be prolonged to meet), to the nearest foot of area, for rock cutting, earth cutting, or embankment-each of

CHAP. VII.-HASTY ESTIMATES.-ART. 37.

161

these, that we may require, we set down separately in a column, and where a case occurs of a hight exceeding the limits of the Tables named, then we resort to the initial triangles of Table 1, by means of which the area due to any hight *whatever* may easily be ascertained; then, if we find we have an *even* number of equal stations, we apply Simpson's Multipliers to the column of areas, and speedily compute *the solidity*.

But if the equal intervals or stations are found to be *uneven* in number, strike off one station temporarily for independent calculation, and then the number of intervals becoming *even*, we are ready to apply Simpson's Multipliers, in a column parallel to that of areas, and beginning at 1, as 1, 4, 2, 4, 2, 4, etc., multiplying each cross-section by its proper factor, and placing the results in a third parallel column, which we sum up and divide the total by 3 (giving a Mean Area as the quotient), add to this the mean area of the station reserved (if any), which gives a General Mean Area, to be multiplied by the equal interval, or length of station—say 200 feet, or whatever distance has been adopted and used as a common interval or station —the result will be cubic feet, from which cubic yards (if desired) can easily be found.

But, inasmuch as the quotient of 3 (with the mean area of the reserved station (if any) added in) is a General Mean Area—usually in square feet—it will be found more convenient, and usually more accurate, to use it in connection with our Table 5, at the end of the Book, to find the cubic yards which may be desired, according to the directions preceding the Table.

We will now proceed to give examples of the process above explained, and for this purpose we will take the adjacent bank and rock cut, profiled on Fig. 76, Art. 24, as being an appropriate example of this expeditious method of computing an embankment, or an excavation in a single body, with sufficient accuracy for the purpose contemplated, and without unusual delay.

Fig. 76. BANK.

Here we find the Bank to be 1000 feet in length between the grade points, or 5 intervals of 200 feet each; the number of intervals being *uneven*, we must temporarily omit one station to bring this case within the rule; let the station omitted, and to be calculated independently, be from 5 to 7 = 200 feet.

			Tal	bulati	ion.		
Sta.	Areas.	:	Mults		Sq. Feet.		
1	24	X	1		24		
3	495	×	4	-	1980		
5 and 7 united.	3123	×	2	=	6246		•
9	1197	\times	4	=	4788		
11	24	Х	1	=	24		
			3	3)	13062		
					4354	= Partial	Mean Area.
	-						

Add area of reserved station.

The hight of the embankment and the surface-slope at 5 and 7 being the same, this reserved station is a *Prism*, of which the base, or sectional area, is 3123 square feet, and length = 200 feet .

$1 \operatorname{eng} \operatorname{eng} - 200 \operatorname{reet} \cdot \cdot \cdot \cdot$	-	· 0120	- mean Alea, leserveu
			station.
\ General Mean Area	=	7477	Square Feet.
		200	Common Interval.
Solidity	=	1495400	Cubic Feet.
Ör,	-	55385	Cubic Yards.
Tabulated, by Roots and			
Squares, in 100 feet stations .	=	55088	66 66
Difference about the half of			•
one per cent. more	=	+297	"

Toan Aroa recorned

Tabulated by Roots and Squares in 100 feet stations, as though for a final estimate, the Bank in our example contains 55,088 Cubic Yards, while by our hasty process the result is 55,385 Cubic Yards, or 297 Cubic Yards more. As this difference is but little more than the half of one per cent. upon the true amount, it can hardly be considered as excessive for a method as brief and simple as that under consideration here.

Fig. 76. Rock-Cut.

The Rock-Cut, like the Bank connected with it, and tabulated above, is 1000 feet in length between the grade points, or 5 intervals of 200 feet each, which, being an *uneven* number, we must tempora-

CHAP. VII.-HASTY ESTIMATES.-ART. 38.

rily omit one station, and calculate it separately, to make the number of intervals *even*, and bring it within the scope of Simpson's Rule. Let the station reserved be from 19 to 21 = 200 feet.

			Ta	bula	tion.	
Sta.	Areas.		Mults.		Sq. Feet.	
11	192	\times	1		192	
13	646	Х	4	-	2584	
15	975	\times	2	==	1950	
17	589	Х	4	=	2356	
19	771	Х	1	_	771	
				3)7853	•
				-	2618	=

Station reserved from 19 to 21, to make the number of intervals even, as required by the Rule of Simpson.

$ \left\{ \begin{array}{c} 19 = 771 \times 1 = 771 \\ 20 = 433 \times 4 = 1732 \\ 21 = 192 \times 1 = 192 \\ \hline 6)2695 \\ \hline Mean Area = 449 \end{array} \right\} $	1	449		Area, ion.	reserve	ed
General Mean Area	=	3067	Square	e Feet.		
		200	Comm	on Int	erval.	
Solidity	=	$\overline{613400} =$	22718	Cubic	Yards.	
Tabulated by Roots and						
Squares, in stations of 100 feet	=	623298 =	23085	""	"	
Diff. about $1\frac{1}{2}$ per cent. less	=	9898 =	-367	""	"	

38..... It will be observed that in the preceding computations the *Grade Prism* is not taken into the account, as it is deductive on both sides, and the only object in hand *is a comparison*.

The triangular section, or area of the Grade Prism, is the minimum area found, in the methods of computation which go down to the junction of the side-slopes, and always occurs when the road-bed comes to grade, or the level hight on the centre line is 0.

And we *repeat*, it is necessary to be careful that the volume of the Grade Prism (always included in the earlier steps of such calculations) is duly deducted before the close of the operation, in order to determine *the solidity above* the road-bed in cutting, or *below* it in filling.

Partial Mean Area.

We may here add that the earth cutting profiled ante, and there correctly computed by Roots and Squares, if calculated with Simpson's Multipliers by the hasty process above given, in stations of 200 feet, as though it were part of an *exploring line*, would give as follows:

Volume of Grade Prism omitted in both.

(Tabulated	ante, in	100 fe	et statio	ns.							18684
Į	"	by our	Hasty	Process,	200	feet	stat	tions	3.	•	. =	18378
l	Difference	about	1½ per	cent. les	8.				•	•	. =	306

So that this brief and hasty process, being very expeditious and proximately correct (usually varying only 1 or 2 per cent. from the truth), may be safely accepted as adequate for the determination of the quantities of earthwork, which may be needed in rough estimates, or for the comparison of exploring lines.

For the purpose of furnishing additional aid in expediting Preliminary Estimates, we annex four small Tables, which will be found quite convenient.

TABLES.

LIBRARY

UNIVERSITY OF

CALIFORNIA.

TABLES

1, 2, 3, and 4.

For use in Hasty or Preliminary Estimates.

Viz: 1. Initial Triangles to a hight of *unity*, and various side and surface slopes.

Triangular Areas to Intersection of Slopes.

	Side-slopes.			Surface	-slopes.	
2.	Rock Cut 1 to 1, and	0°,	5°,	10°,	15°,	20°.
3.	Earth Cut 1 to 1, and	"	"	" "	"	"
4.	Embankment and	"	"	"	66	"

In using Tables 2, 3, and 4, the centre hight is generally to be taken to the nearest foot (though tenths might be used), and the ground surface slope to the nearest 5° —these being thought sufficient for rough estimates—and if the centre hight should exceed the limits of the Tables, then, by using the Initial Triangles of Table 1, the area of the cross-section for any hight *whatever* can be easily ascertained. If the centre hights necessarily contain tenths of feet, they may be proportioned for by the columns in the Tables for that purpose.

Note.—All the triangular areas in Tables 2, 3, and 4, extend from ground line to junction of side-slopes *prolonged*, or edge of the diedral angle, which, with ground surface, bounds on every side the earthwork solid. The road-bed, or grade line, may be assumed to cross the triangle at any given distance from the angle of intersection; but the volume of the Grade Prism must always be ascertained and deducted at the close of the operation, in every calculation involving the triangular areas of the Tables. The altitude of the Grade Triangle is invariably = road-bed $\div 2 r$, and its area will be found opposite to this hight in the 0 column of the Tables.

TABLE 1.

Initial Triangles, to a hight of unity, with side-slopes of $\frac{1}{2}$ to 1 for Rock; 1 to 1 for earth; $1\frac{1}{2}$ to 1 for embankment; and ground surface slopes of 0°, 5°, 10°, 15°, 20°. All computed to six places of decimals, and all extending from ground line to intersection of sideslopes.

	Side-sl	opes.		Ground Surface-slopes.						
		Cot.	Tan.	0 o	50	100	15°	20°		
Ratio.	Angle.	of Trian	. Tables.	Tan. = '0	Tan. = '0875	Tan. = ·1763	Tan. = '2679	Tan. = '364		
$\frac{1}{3}$ to 1 1 to 1 $\frac{1}{2}$ to 1	71° 34′ 45° 33° 41′	0·3333 1 1·5	3 1 ·6666	0•3333333 1 1·5	1.007713	$\begin{array}{c} 0.334457 \\ 1.032088 \\ 1.613298 \end{array}$	1.077350	1.1526		

Note.—A similar Table may easily be extended to any other side, or surface-slope, and such extension would often be found useful to the engineer.

Application of the above Table.

Rule.—For any given hight, to find the triangular area, when conditioned as above.

Multiply the Square of the Given Hight by the Tabular Area of the Initial Triangle.

Example.

Let the given hight be 26.4 feet, the side-slope 1 to 1, and the ground surface-slope 20°.

Then, $(26\cdot4)^2 \times 1\cdot152663 = 803\cdot36$ square feet = area of triangle required.

TABLES.

Triangular Areas, in square feet, for side-slopes of $\frac{1}{2}$ to 1, to intersection of slopes. $(r = \frac{1}{2})$ Slope angle = 71° 34'.

	Surfslope 0°.		Surfslo	pe 5°.	Surfslope 10°.		Surfslop	e 15°.	Surfslope 20°.		Hight in
iu feet.	Areas.	Pro. for 1.			Areas.	Pro. for ·1.				Pro. for '1.	feet.
1	•3333	.03	•3336	.03	•3345	.03	3357	*03	•3383	.03	$\frac{1}{2}$
$\frac{2}{3}$	$\frac{1\cdot 3333}{3}$	·10 ·17	1.3	·10 ·17	1·3 3	·10 ·17	1·3 3	·10 ·17	1·4 3	·10 ·17	$\frac{2}{3}$
4	5·3333	-17	3 5	23	5	-23	5	-23	5	-24	4
5	8-3333	•30	8	.30	8	.30	8	.30	8	•30	5
6	12	•37	12	•37	12	.37	12	•37	12	•37	6
67	16.3333	•43	16	•43	16	•43	16	•44	17	•44	7
8	21.3333	•50	21	•50	21	•50	22	•50	22	•51	8
9 10	27 33·3333	•57 •63	27 33	•57 •63	27 33	·57 ·64	27 34	•57 •64	28 34	•58 •64	9 10
11	40-3333	·70	40	•70	41	.70	41	.71	41	.71	11
12	48	.77	48	•77	48	.77	48	•77	49	•78	12
13	56.3333	*83	56	•83	57 66	*84 *90	57 66	·84 ·91	57 66	*85 *91	13 14
14 15	65 [.] 3333 75	•90 •97	65 75	·90 ·97	60 75	-90	76	-91	76	-91	14
16	85.3333	1.03	85	1.03	86	1.04	86	1.04	87	1.05	16
17	96.3333	1.10	96	1.10	97	1.10	97	1.11	98	1.11	17
18	108	1.17	108	1.17	108	1.17	109	1.18	110	1.18	18
19	120.33333	1.23	121	1.23	121	1.24	121	1.24	122	1.25	19
20	133-3333	1.30	133	1.30	134	1.30	135	1.30	135	1.31	20
21 22	147	$1.37 \\ 1.43$	147 161	1·37 1·43	148 162	1·37 1·44	148 163	1·37 1·44	149 164	1·38 1·45	21 22
23	$161 \cdot 3333 \\ 176 \cdot 3333$	1.20	176	1.50	177	1.50	178	1.51	179	1.52	23
21	192	1.57	192	1.57	193	1.57	194	1.58	195	1.59	24
25	2 18.3333	1.63	209	1.63	209	1.64	210	1.64	212	1.66	25
26	225.3333	1.70	226	1.70	226	1.70	227	1.71	229	1.72	26
27	243	1.77	243	1.77	244	1.77	245	1.78	247	1.79	27
28	261.3333	1.83	262	1.84	262	1.84	263	1.85	265	1.86	28
29	280.3333	1.90	281	1.90	281	1.91	282	1.91	285	1.93	29
30	300	1.97	300	1.97	301	1.97	302	1.98	305	2.00	30
81 32	$320 \cdot 3333$ $341 \cdot 3333$	$2.03 \\ 2.10$	32 1 342	2·04 2·10	322 343	2·04 2·11	323 344	2·05 2·12	325 346	2.06 2.13	$\frac{31}{32}$
33	363	2.10	363	2.17	361	2.17	366	2.18	368	2.20	33
34	385.3333	2.23	386	2.24	387	2.24	388	2.25	391	2.27	34
35	408.3333	2.30	400	2.30	410	2.31	412	2.32	415	2.34	35
36	432	2.37	433	2.37	434	2.38	436	2.39	439	2.40	36
37	456.33333	2.43	457	2.44	458	2.44	460	2.45	463	2.47	37
38	481.3333	2.50	482	2.50	483	2.51	485	2.52	489	2.54	38
39 40	507 533-3333	2.57 2.63	508 534	2·57 2·64	509 535	2.58 2.64	511 538	2.59 2.66	515 541	2·61 2·67	39 40
41	560.3333	2.70	561	2.70	562	2.71	565	2.72	569	2.74	41
42	588	2.77	589	2.77	590	2.77	593	2.79	597	2.81	42
43	616.3333	2.83	617	2.81	618	2.77 2.84	621	2.86	625	2.88	43
44	645.3333	2.90	616	2.90	648	2.91	651	2.92	655	2.94	44
45	675	2.97	676	2.97	677	2.98	680	2.99	685	3.01	45
46	705.3333	3.03	706	3.04	708	3.04	711	3.06	716	3.08	46
47	736.3333	3.10	737	3.10	739	3.11	742	3.13	747	3.15	47
48 49	768 800:3333	3·17 3·23	769 801	3·17 3·24	771 803	3.18	774 807	3·19 3·26	780 812	3.21 3.28	48 49
50	833-3333	3.30	831	3 31	836	3.31	840	3.33	846	3 35	50
Hight in feet.	Surfslop		Surfslo		Surfslope	·	1		Surfslop		High in feet.

TABLE 2-Rock-cut.

Triangular Areas, in square feet, for side-slopes of 1 to 1, to intersection of slopes. (r = 1.) Slope angle = $\cdot 45^{\circ}$.

Hight in	Surfslope 0°.		Surfslo	pe 5° .	Surfslop	e 10°.	Surfslop	e 15°.	Surfslop	e 20 °.	in
feet.	Areas.	Pro. for '1.	Areas.	Pro. for '1.	Areas.	Pro. for ·1.	Areas.	Pro. for '1.	Areas.	1 for .1.	feet.
$\frac{1}{2}$	1·0000 4	·10 ·30	1.0077 4	.10 •30	1·0321 4	·10 ·31	1.0773	·11 ·32	1.1527 5	·12 ·35	1 2
3	9	•50	9	-50	9	-52	10	•54	11	*58	3
4 5	.16	•70	16	.70	17	.72	17	.75	18	•81	4
5	25	•90	25	•90	26	•93	27	.97	29	1.04	4 5 6
6 7	36 49	$1.10 \\ 1.30$	36 49	1·11 1·31	37 51	$1.14 \\ 1.34$	39 53	1·19 1·40	42 56	1·27 1·50	
8	64	1.20	64	1.21	66	1.55	69	1.62	74	1.73	8
9	81	1.70	82	1.71	84	1.75	87	1.83	93	1.96	9
10	100	1.90	101	1.91	103	1.96	108	2.02	115	2.19	10
11	121	2.10	122	2.12	125	2.17	130	2.26	139	2.42	11
$\frac{12}{13}$	144	$2.30 \\ 2.50$	145 170	$\frac{2\cdot 32}{2\cdot 52}$	149 174	$2.37 \\ 2.58$	155 182	2·48 2·69	166 195	2.65 2.88	12 13
14	169 196	2.70	198	2.72	202	2.79	211	2.91	226	3.11	14
15	225	2.90	227	2.92	232	2.99	242	3.12	259	3.34	15
16	256	3.10	258	3.15	264	3.20	276	3.34	295	3.57	16
17 18	289 324	3·30 3·50	291 327	3∙33 3∙53	298 334	3·41 3·61	311 349	3·56 3·77	333 373	3·80 4·03	17 18
19	361	3.70	364	3.73	373	3.82	389	3.99	416	4.27	19
20	400	3.90	403	3.93	413	4.02	431	4.20	461	4.20	20
21	441	4.10	444	4.13	455	4.23	475	4.42	508	4.73	21
22	484	4.30	488	4.33	499	4.44	521	4.63	558	4.96	22
23 24	529 576	4·50 4·70	533 580	4·53 4·74	546 594	4.64 4.85	570 621	4·85 5·06	610 664	5·19 5·42	23 24
25	625	4.90	630	4.94	645	5.06	673	5.28	720	5.65	25
26	676	5.10	681	5.14	698	5.26	728	5.49	779	5.88	26
27	729	5.30	735	5.34	752	5.47	785	5.71	840	6.11	27
28 29	784	5·50 5·70	790	$5.54 \\ 5.74$	809	5.68 5.88	845 906	$5.92 \\ 6.14$	904 969	6·34 6·57	28 29
30 30	841 900	5.90	848 907	5.95	868 929	6.09	970	6.36	1037	6.80	30
31	961	6.10	968	6.15	992	6.30	1035	6.57	1108	7.03	31
-32	1024	6.30	1032	6.35	1057	6.20	1103	6.79	1180	7.26	32
33	1089	6.50	1097	6.55	1124	6.71	1173	7.00 7.22	1255 1333	7.49	33 34
34 35	1156 1225	6·70 6·90	1165 1234	6·75 6·95	1193 1264	$6.91 \\ 7.12$	1245 1320	7.43	1412	7·72 7·95	35
36	1225	7.10	1306	7.15	1338	7.33	1396	7.65	1494	8.18	36
37	1369	7.30	1380	7.36	1413	7.53	1475	7.86	1578	8.41	37
38	1444	7.50	1455	7.56	1490	7.74	1556	8:08	1665	8.64	38
39 40	1521 1600	7·70 7·90	$\begin{array}{c} 1533\\ 1612 \end{array}$	7·76 7·96	1570 1651	$7.95 \\ 8.15$	1639 1724	8·29 8·51	1753 1844	8·88 9·11	39 40
41	1681	8.10	1694	8.16	1735	8.36	1811	8.73	1938	934	41
42	1764	8.30	1778	8.36	1820	8.57	1900	8 94	2033	9.57	42
43	1849	8.50	1863	8.56	1908	8.77	1992	9.16	2131	9.80	43
44	1956	8.70	1951	8.77	1998	8.98	2086	9·37	2232 2334	10.03	44
45 46	2025 2116	8·90 9·10	2041 2132	8·97 9·17	2090 2184	9·18 9·39	2182 2280	9·59 9·80	2334 2439	$10.26 \\ 10.49$	45 46
	2116 2209	9.10	2132	9.37	2184	9.60	2380	10.02	2546	10.49	47
48	2304	9.20	2322	9.57	2378	9.80	2482	10.23	2656	10.95	48
49	2401	9.70	2420	9.77	2478	10.01	2587	10.45	2768	11.18	49
	2500	9.90	2519	9.97	2580	10.22	2693	10.67	2882	11.41	50
light	Surfslop	00	Surfslop	50	Sunf along	100	Surfslop	150	Sarf slon	200	Hight in
in feet.	Surislop		Sur1810]	00	Suri-stope	10%	Surr-stop	10.	Barr-stop	·	feet.

TABLE 3-Earth-cut.

168

ł

TABLES.

Triangular areas, in square feet, for side-slopes of $1\frac{1}{2}$ to 1, to intersection of slopes. $(r = 1\frac{1}{2})$ Slope angle = 33° 41'.

TABLE 4-Bank.											
Hight in	Surfslope 0°.				Surfslop	e 10°.	Surfslop	Surfslope 15°.		e 20°.	in
feet.	Areas.	Pro. for '1.	Areas.	Pro. for '1.	Areas.	Pro. for '1.	Areas.	Pro. for '1.	Areas.	Pro. for '1.	feet.
1	1.5000	•15	1.5267	.15	1.6133	•16	1.7900	.18	2.1378	.21	1
23	6	•45	6	•46	6	•48	7	•54	9	•64	$\frac{2}{3}$
3	13.5	.75	14	.76	15	.81	16	•89	19	1.07	3
4	24	1.05	25 38	1.07	26	1.13	29	1.25	34	1.50	4
5	37·5 54	1·35 1·65	38 55	$1.37 \\ 1.68$	40 58	1·45 1·78	45 64	$1.61 \\ 1.97$	54 77	$\frac{1.92}{2.35}$	5 6
7	73.5	1.95	75	1.98	79	2.10	88	2.33	105	2.78	7
6 7 8	96	2.25	98	2.29	103	2.42	115	2.68	137	3.21	7 8
9	121.5	2.55	124	2.59	131	2.74	145	3.04	173	3.63	9
10	150	2.82	153	2.90	161	3.06	179	3.39	214	4.06	10
11	181.5	3 ∙15	185	3.20	195	3.39	217	3.76	259	4.49	11
12	216	3.45	220	3.51	232	3.71	258	4.12	308	4.92	12
13	253.5	3.75	258	3.82	273	4.03	302	4.47	361	5.34	13
14	294 337·5	4.05	299	4.12	316	4.36	351	4.83	419	$5.77 \\ 6.20$	14 15
15 16	384	4·35 4·65	344 391	4·43 4·73	363 413	4.68 5.00	403 458	5·19 5·55	481 547	6.63	16
17	433.5	4.95	441	5.04	466	. 5.32	517	5.92	618	7.05	17
18	486	5.25	495	. 5.34	523	5.65	580	6 26	693	7.48	18
19	541.5	5.55	551	5.62	582	5.97	646	6.65	693 772	7.91	19
20	600	5.82	611	5.95	645	6.29	716	6.98	855	8.34	20
21	661.5	6.15	673	6.26	711	6.61	789	7.34	943	8.76	21
22	726	6.45	739	6.56	781	6.94	866	7.69	1035	9.19	$\frac{22}{23}$
23 24	793•5 864	6·75 7·05	808	6·87 7·17	853	7·26 7·58	947 1031	8·05 8·41	1131 1231	9 62 10.05	23 24
24 25	937.5	7.35	879 954	7.48	929 1008	7.90	1118	8.41	1336	10.47	25
26	1014	7.65	1032	7.79	1090	8.23	1210	9.13	1445]	10.90	26
27	1093.5	7.95	1113	8.09	1176	8.55	1304	9.48	1558	11.33	27
	1176	8.25	1197	8.40	1265	8.87	1403	9.84	1676	11.76	28
29	1261.5	8.55	1284	8.70	1357	9.19	1505	10.20	1798	12.18	29
30	1350	8.85	1374	* 9.00	1452	9.52	1610	10.52	1924	12.61	30
	1441.5	9.15	1467	9.31	1550	9.84	1719	10.91	2054	13.04	31
	1536	9·45 9·75	1563	9.62	1652 1757	10·16 10·48	1832 1948	11·27 11·63	2189 2328	13·47 13·89	32 33
	1633·5 1734	10.05	1662 1765	9·92 10·23	1865	10.48	2068	11.99	2328	14.32	33 34
	1837.5	10.35	1870	10.53	1976	11.13	2192	12.35	2619	14.75	35
	1944	10.65	1978	10.84	2090	11.45	2319	12.70	2770	15.18	36
	2053 5	10.95	2090	11.14	2208	11·77 12·10	2449	13.06	2926	15.60	37
38	2166	11.25	2204	11.45	2329	12.10	2584	13.42	3087	16.03	38
	2281.5	11.55	2322	11.76	2453	12.42	2721	13.78	3251	16.46	39
40	2400	11.85	2442	12.06	2581	12.74	2863	14.14	3420	16.89	40
	2521.5	12.15	2566	12.36	2711	13.06	3008	14.50	3593	17.31	41
	2646	12.45	2693	12.67	2845	13.39	3156	14.85	3771 3952	17.74	42 43
	2773·5 2904	12.75 13.05	2823 2955	12 98 13-28	2982 3123	13·71 14·03	3308 3464	15.21 15.57	3952 4138	18·17 18·60	40
	3037.5	13.05	3091	13.28	3266	14.05	3623	15.92	4329	19.02	45
46	3174	13.65	3230	13.89	3413	14.68	3786	16.28	4523	19.45	46
47	3313.5	13.95	3372	14.20	3563	15.00	3952	16.64	4722	19.88	47
48	3456	14.95	3517	14.50	3716	15.32	4122	16.99	4925	20.31	48
49	3601.5	14.55	3665	14.81	3873	15.64	4296	17.35	5132	20.74	49
	3750	14.85	3816	15.12	4032	15.97	4473	17.71	5344	21.16	50 Hight
Hight in	Surfslo	00 00	Surfslo	no 50	Surfslop	. 100	Surf alon	a 150	Surf-slop	e 20º	in
feet.	Buil610	Po 0.	Dui 1610	Po 0	Sar Brop		Sur Biop				feet.
Acces			1	-							

TABLE 4-Bank.

TABLE OF CUBIC YARDS

IN FULL STATIONS, OR LENGTHS OF 100 FEET.

CALCULATED FOR EVERY FOOT AND TENTH OF MEAN AREA,

FROM O' TO 1000' SUPERFICIAL FEET.

Note.-On every page of the Table, the columns on both sides headed M.A. contain the Mean Areas, in square, or superficial feet.

The horizontal lines at top and bottom show the tenths of square feet of Mean Area.

And the figures in the body of the Table, computed to three places of decimals, are the Cubic Yards (for 100^o feet), corresponding to the feet and tenths of Mean Area, indicated in the side columns, and lines of tenths at top and bottom.

EXPLANATION OF THE TABLE OF CUBIC YARDS, To Mean Areas, in lengths of 100^o feet, and of its Applications.

This Table is computed to facilitate the conversion into *Cubic Yards* of the content of any solid 100 feet in length, of which the *Mean Area* in superficial feet has been ascertained. It applies *directly* to all Mean Areas from 0 to 1000 square feet (including tenths of feet), and being calculated to three decimal places, it extends *indirectly* to 100,000 superficial feet of Mean Area, as will be shown hereafter.

EXAMPLE 1. Cubic yards for full stations (100°) To find the Cubic Yards, belonging to $579^{\cdot 8}$ sup. ft. of Mean Area, for a full station, or length of 100[•] feet:

Opposite 579 and under 8 we find the content, or *solidity*.....=2147 407 cubic yards. Which is equal to

> 579^{•8} sq. ft. of Mean Area \times 100[•] feet long, and divided by 27.

EXAMPLE 2. Cubic yards for short stations (-100.) / Let the Mean Area of any solid, be $98^{.7}$ sq. ft. and its length 84 ft. lineal : (being a short station). Then at $98^{.7}$ we find $365^{.556}$ cubic yards, which being multiplied by $\cdot 84$ taken decimally, gives $365^{.556} \times \cdot 84$= $307^{.067}$ cubic yards.

Equal to... $\frac{98 \cdot 7 \times 84}{27}$.

EXAMPLE 3. Cubic yards for long stations (+ 100[.])

This Table is especially useful in the computation of the Earthwork of Railroads, and other Public Works, where cross-sections have been taken normal to a guide line, at distances (generally) of 100[•] lineal feet (or full stations), and the Mean Area calculated in superficial feet and parts: but it is also applicable to any solid of which the mean section is known in square feet, and the length 100[•] feet, or any decimal part thereof.

For, if the distances apart of cross-sections, or lengths of stations, be more, or less, than 100 feet, we have only to take them *decimally*, as in the above examples, and by a simple multiplication, of the tabular quantity, belonging to the known area, the correct number of cubic yards will be ascertained.

The Table being calculated to *three* places of decimals, readily admits of being used for Mean Areas, much exceeding its direct range of 1000 superficial feet (as follows):

EXAMPLE 4. Suppose the Mean Area to be 98,967^{.4} sq. ft. (representing a cut 98^{.9} feet deep, and 1000[.] feet wide).

> Then for 98,900[•] (by moving the decimal point of the tabular quantity of cubic yards for 989[•] two figures to the right)—

	We have, area 98,900 = 366,296 ³ cubic yds.	
1	Add 67.4 249.6 "	
	Total, for sq. ft 98,967.4 = 366,545.9 " "	
	Equal to $\frac{98,967.4 \times 100}{27}$.	

Again, take a Mean Area, of 100,048.9 sq. ft. (representing a cut 100' feet deep, and 1000' feet wide).

Then for 100,000 sq. ft. (by moving the deci-

mal point of the tabular quantity of cubic yards for 1000 two figures to the right), We have, 100,000 Area = $370,370 \cdot 4$ cub. yds. Add $48 \cdot 9$ " = $181 \cdot 1$ " " Total for.....100,048 $\cdot 9$ " = $370,551 \cdot 5$ " " Equal to... $\frac{100,048 \cdot 9 \times 100}{27}$.

Example 4, shows the easy application of the Table, to Mean Areas, which may be called immense, by merely moving the decimal point, and a simple addition, as shown above.

Other methods of using the Table will occur to the reader, but the examples given seem sufficient for illustration.

Much pains have been taken to make this Table correct, to the nearest decimal, and we believe it may be safely depended on.

Note.-Besides its special application to Earthworks, the extensive Table following is also a general Table for the conversion of any sum of Cubic Feet into Cubic Yards. Thus, in the example at page 103, the reduced quantities of Cubic Feet sum up 227,200 - 30,000 =197,200 Cubic Feet.

In such cases we have only to cut off two figures from the right (or ÷ by 100), and we have 1972, the mean area, which, in 100 feet length, would have produced the quantity given.

With 197.2 we enter the Table following, and find 730.370 Cubic Yards; now, moving the decimal point one place to the right, we have 7303.70 Cubic Yards, or in round numbers, 7304 Cubic Yards, as already given on page 103.

In like manner the Cubic Yards for any sum whatever of Cubic Feet can readily be obtained, and the Table being in itself strictly correct, the result will be reliable.

1 .

TABLE OF CUBIC YARDS, in full Stations, or lengths of 100 feet: for every foot and tenth of Mean Area, from 0 to 1000 Superficial Feet.

	foot and tenth of Mean Area, from 0 to 1000 Superficial Feet.										
.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A
	0.000	0.070	0.741	1.111	1.481	1.852	2.222	2.593	2.963	3.333	0
0	0.000	0.370	4.441	4.815	5.185	5.556	5.926	6.296	6.667	7.037	1
1	3.704	4.074		8.519	8.889	9.259	9 630	10.	10.370	10.741	2
2	7.407	7.778	8.148	12.222	12.593	12.963	13.333	13.704		14.444	3
3	11.111	11.481	11.852	12.222	12.393	16.667	17.037	17.407	$14.074 \\ 17.778$	18 148	3 4
4	14.815	15.185	15.556			20 370	20.741	21.111			45
5	18.519	18.889	19.259	19.630	20.		24.444		21.481	21.852	
6	$22 \cdot 222$	22.593	22.963	23.333	23.704	24.074	28.148	24.815	25.185	25.556	6
7	25 926	$26 \cdot 296$	26.667	27.037	27.407	27.778		28 519	28.889	29.259	3
8	29.630	30.	30.370	30.741	31.111	31.481	31.852	32.222	32.593	32.963	1
9	33.333	33.704	34.074	34.444	34.815	35.185	$35 \cdot 556$ $39 \cdot 259$	35.926	36-296	36.667	_
.0	37.037	37.407	37.778	38.148	38.519	38.889	39-259	39.630	40.	40.370	10
1	40.741	41-111	41.481	41.852	42·222	42.593	42.963	43.333	43.704	44.074	1
2	44.411	44.815	45.185	45.556	45.926	46.296	46.667	47.037	47.407	47.778	1
3	48.148	48.519	48.889	49.259	49 630	50.	50.370	50.741	51.111	51.481	1
4	51.852	52 222	52.593	52.963	53.333	53.704	54.074	54.444	54.815	55.185	1
5	55.556	55.926	56.296	56.667	57.037	57.407	57.778	58.148	58.519	58.889	1
6	59.259	59.630	60.	60.370	60.741	61.111	61.481	61.852	62.222	62.593	1
7	62.963	63.333	63.704	64.074	64.444	64 815	65 185	65.556	65.926	66-296	1
8	66.667	67.037	67.407	67.778	68.148	(8.519	68.889	69.259	69.630	70-	1
9	70.370	70.741	71.111	71-481	71.852	72.222	72.593	72.963	73.333	73.704	î
0	74.074	74.444	74.815	75.185	75.556	75.926	76.296	76.667	77.037	77.407	2
	14:014	14.333	14.019	10 100	10 000	10 520	10 200	10 001	11 001	11 201	2
21	77.778	78.148	78.519	78.889	79-259	79.630	80.	80.370	80.741	81-111	2
22	81.481	81.852	82.222	82.593	82.963	83.333	83.704	84.074	84.444	84.815	2
23	85.185	85.556	85.926	86.296	86.667	87.037	87.407	87.778	88.148	88.519	2
24	88.889	89.259	89.630	9.1	90.370	90.741	91.111	91.481	91.852	92.222	2
25	92.593	92.963	93.333	93.704	94.074	94.144	94.815	95.185	95.556	95 926	2
26	96.296	96.667	97.037	97.407	97.778	98.148	98.519	98.889	99.259	99.630	2
27	100.	100.370	100 741	101-111	101.481	101.852	102.222	102.593	102.963	103.333	2
28	103.704	104.074	104.444	104.815	105.185	105.556	105.926	106-296	106.667	107.037	2
29	107.407	107.778	108.148	108.519	108.889	109.259	109.630	110-	110.370	110.741	2
30	111-111	111.481	111.852	112.222	112.593	112.963	113-333	113.704	114.074	114.444	3
31	114-815	115-185	115.556	115.926	116.296	116.667	117.037	117.407	117.778	118-148	3
32	118.519	118.889	119 259	119.630	120	120.370	120-741	121.111	121.481	121.852	3
33	122.222	122.593	122.963	123.333	123.704	124.074	124.444	124.815	125.185	125.556	
34	125.926	126.296	126.667	127.037	127.407	127.778	128.148	128.519	128.889	129-259	
				130.741	131.111	131.481	131-852	132.222	132.593	132.963	
35	129.630	130· 133·704	130.370	100 121	134.815	135-185	135.556	135.926	136-296	136.667	
36	133.333		134.074	134·444 138·148		138:889	139-259	139.630			
37	137.037	137.407	137.778		138.519		142.963		140	140.370	
38	140.741	141-111	141.481	141.852	142.222	142.593		143.333	143.704	144.074	
39	144.444	144 815	145.185	145.556	145.926	146-296	146.667	147.037	147.407	147.778	1 :
40	148-148	148.519	148.889	149.259	149.630	150	150.370	150.741	151-111	151-481	1
41	151-852	152.222	152.593	152.963	153-333	153.704	154.074	154.444	154.815	155.185	4
42	155*556	155.926	156-296	156.667	157.037	157.407	157.778	158.148	158.519	158.889	4
43	159.259	159.630	160-	160.370	160.741	161-111	161.481	161.852	162.222	162.593	
44	162.963	163.333	163.704	164.074	164.444	164.815	165.185	165.556	165.926	166.296	
45	166.667	167.037	167.407	167.778	168.148	168.519	168.889	169.259	169.630	170	
46	170.370	170.741	171-111	171.481	171.852	172.222	172.593	172.963	173.333	173.704	
47	174.074	174.444	174.815	175.185	175.556	175.926	176-296	176.667	177.037	177.407	
48	177.778	178.148	178.519	178.889	179.259	179.630	180.	180 370	180.741	181-111	
49	181.481	181.852	182.222	182.593	182.963	183.333	183.704	184.074	184.444	184.815	
50	185.185	185.556	185.926	186-296	186.667	187.037	187.407	187.778	188.148	188.519	
	100.000	160.050	100 000	100	100.050	100.7 17	101.111	101.401	101.050	100.000	
51	188.889	189.259	189.630	190.	190-370	190-741	191.111	191.481	191.852	192.222	
52	192.593	192.963	193-333	193.704	194.074	194.444	194.815	195.185	195.556	195.926	
53	196-296	196.667	197.037	197.407	197.778	198.148	198.519	198.889	199.259	199.630	
54	200.	200.370	200.741	201.111	201.481	201.852	202.222	202.593	202.963	203-333	
55	203.704	204.074	204.444	204.815	205.185	205.556	205.926	206-296	206.667	207 037	
56	207.407	207.778	208.148	208.519	208.889	209.259	209.630	210	210.370	210.741	
57	211.111	211.481	211.852	212.222	212.593	212.963	213.333	213.704	214.074	214.444	
58	214.815	215.185	215.556	215.926	216-296	216.667	217.037	217.407	217.778	218.148	
59	218.519	218.889	219.259	219.630	220.	220.370	220.741	221.111	221.481	221-852	
C0	222-222	222.593	222-963	223-333	223.704	224.074	224.444	224.815	225-185	225.556	
M.A.	•0	•1	.2	•3	•4	•5	•6	.7	•8	•9	M

.

CUBIC YARDS TO MEAN AREAS FOR 100 FEET IN LENGTH.

	COMIC		05 10		1110111	IS FUE	100 1				
M.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A.
61 62 63 64 65 66 67 68 69 70	$\begin{array}{c} 225 \cdot 926\\ 229 \cdot 630\\ 233 \cdot 333\\ 237 \cdot 037\\ 240 \ 741\\ 244 \cdot 444\\ 248 \cdot 148\\ 251 \cdot 852\\ 255 \cdot 556\\ 259 \cdot 259\end{array}$	$\begin{array}{c} 226 \cdot 296\\ 230 \cdot \\ 233 \cdot 704\\ 233 \cdot 7407\\ 241 \cdot 111\\ 244 \cdot 815\\ 248 \cdot 519\\ 252 \cdot 222\\ 255 \cdot 926\\ 259 \cdot 630\end{array}$	$\begin{array}{c} 226{\cdot}667\\ 230{\cdot}370\\ 234{\cdot}074\\ 237{\cdot}778\\ 241{\cdot}481\\ 245{\cdot}185\\ 248{\cdot}889\\ 252{\cdot}593\\ 256{\cdot}296\\ 260{\cdot} \end{array}$	$\begin{array}{c} 227 \cdot 037 \\ 230 \cdot 741 \\ 234 \cdot 444 \\ 238 \cdot 148 \\ 241 \cdot 852 \\ 245 \cdot 556 \\ 249 \cdot 259 \\ 252 \cdot 963 \\ 256 \cdot 667 \\ 260 \cdot 370 \end{array}$	$\begin{array}{c} 227\cdot407\\ 231\cdot111\\ 234\cdot815\\ 238\cdot519\\ 242\cdot222\\ 245\cdot926\\ 249\cdot630\\ 253\cdot333\\ 257\cdot037\\ 260\cdot741 \end{array}$	$\begin{array}{c} 227 \cdot 778\\ 231 \cdot 481\\ 235 \cdot 185\\ 238 \cdot 889\\ 242 \cdot 593\\ 246 \cdot 296\\ 250 \cdot \\ 253 \cdot 704\\ 257 \cdot 407\\ 261 \cdot 111\end{array}$	$\begin{array}{c} \textbf{228\cdot148}\\ \textbf{231\cdot852}\\ \textbf{235\cdot556}\\ \textbf{239\cdot259}\\ \textbf{242\cdot963}\\ \textbf{242\cdot963}\\ \textbf{246\cdot667}\\ \textbf{250\cdot370}\\ \textbf{254\cdot074}\\ \textbf{257\cdot778}\\ \textbf{261\cdot481} \end{array}$	$\begin{array}{c} 228 \cdot 519 \\ 232 \cdot 222 \\ 235 \cdot 926 \\ 239 \cdot 630 \\ 243 \cdot 333 \\ 247 \cdot 037 \\ 250 \cdot 741 \\ 254 \cdot 444 \\ 258 \cdot 148 \\ 261 \cdot 852 \end{array}$	$\begin{array}{c} 228\cdot889\\ 232\cdot593\\ 236\cdot296\\ 240\cdot\\ 243\cdot704\\ 247\cdot407\\ 251\cdot111\\ 254\cdot815\\ 258\cdot519\\ 262\cdot222\end{array}$	$\begin{array}{c} 229 \cdot 259\\ 232 \cdot 963\\ 236 \cdot 667\\ 240 \cdot 370\\ 244 \cdot 074\\ 247 \cdot 778\\ 251 \cdot 481\\ 255 \cdot 185\\ 258 \cdot 889\\ 262 \cdot 593\end{array}$	$\begin{array}{c} 61 \\ 62 \\ 63 \\ 64 \\ 65 \\ 66 \\ 67 \\ 68 \\ 69 \\ 70 \end{array}$
71 72 73 74 75 76 77 78 79 80	$\begin{array}{c} 262 \cdot 963\\ 266 \cdot 667\\ 270 \cdot 370\\ 274 \cdot 074\\ 277 \cdot 778\\ 281 \cdot 481\\ 285 \cdot 185\\ 288 \cdot 889\\ 292 \cdot 593\\ 292 \cdot 593\\ 296 \cdot 296\end{array}$	$\begin{array}{c} 263\cdot333\\ 267\cdot037\\ 270\cdot741\\ 274\cdot444\\ 278\cdot148\\ 281\cdot852\\ 285\cdot556\\ 289\cdot259\\ 292\cdot963\\ 296\cdot667\\ \end{array}$	$\begin{array}{c} 263 \cdot 704 \\ 267 \cdot 407 \\ 271 \cdot 111 \\ \cdot 274 \cdot 815 \\ 278 \cdot 519 \\ 282 \cdot 222 \\ 285 \cdot 926 \\ 289 \cdot 630 \\ 293 \cdot 333 \\ 297 \cdot 037 \end{array}$	$\begin{array}{c} 264 \cdot 074 \\ 267 \cdot 778 \\ 271 \cdot 481 \\ 275 \cdot 185 \\ 278 \cdot 889 \\ 282 \cdot 593 \\ 286 \cdot 296 \\ 290 \cdot \\ 293 \cdot 704 \\ 297 \cdot 407 \end{array}$	264·444 268·148 271·852 275·556 279·259 282·963 286·667 290·370 294·074 297·778	$\begin{array}{c} 264 \cdot 815\\ 268 \cdot 519\\ 272 \cdot 222\\ 275 \cdot 926\\ 279 \cdot 630\\ 283 \cdot 333\\ 287 \cdot 037\\ 290 \cdot 741\\ 294 \cdot 444\\ 298 \cdot 148 \end{array}$	265.185 268.889 272.593 276.296 280. 283.704 287.407 291.111 294.815 298.519	265.556 269.259 272.963 276.667 280.370 284.074 287.778 291.481 295.185 298.889	265.926 269.630 273.333 277.037 280.741 284.444 288.148 291.852 295.556 299.259	266.296 270. 273.704 277.407 281.111 284.815 288.519 292.222 295.926 299.630	71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90	$\begin{array}{c} 300 \\ 303 \\ 704 \\ 307 \\ 407 \\ 311 \\ 111 \\ 314 \\ 815 \\ 318 \\ 519 \\ 322 \\ 222 \\ 325 \\ 926 \\ 329 \\ 630 \\ 333 \\ 333 \end{array}$	$\begin{array}{c} 300 \cdot 370 \\ 304 \cdot 074 \\ 307 \cdot 778 \\ 311 \cdot 481 \\ 315 \cdot 185 \\ 318 \cdot 889 \\ 322 \cdot 593 \\ 326 \cdot 296 \\ 330 \\ 333 \cdot 704 \end{array}$	$\begin{array}{c} 300 \cdot 741 \\ 304 \cdot 444 \\ 308 \cdot 148 \\ 311 \cdot 852 \\ 315 \cdot 556 \\ 319 \cdot 259 \\ 322 \cdot 963 \\ 326 \cdot 667 \\ 330 \cdot 370 \\ 334 \cdot 074 \end{array}$	$\begin{array}{c} 301 \cdot 111 \\ 304 \cdot 815 \\ 308 \cdot 519 \\ 312 \cdot 222 \\ 315 \cdot 926 \\ 319 \cdot 630 \\ 323 \cdot 333 \\ 327 \cdot 037 \\ 330 \cdot 741 \\ 334 \cdot 444 \end{array}$	301.481 305.185 308.889 312.593 316.296 320. 323.704 327.407 331.111 334.815	$\begin{array}{c} 301 \cdot 852\\ 305 \cdot 556\\ 309 \cdot 259\\ 312 \cdot 963\\ 316 \cdot 667\\ 320 \cdot 370\\ 324 \cdot 074\\ 327 \cdot 778\\ 331 \cdot 481\\ 335 \cdot 185\end{array}$	$\begin{array}{c} 302 \cdot 222\\ 305 \cdot 926\\ 309 \cdot 630\\ 313 \cdot 333\\ $17 \cdot 037\\ $20 \cdot 741\\ 324 \cdot 444\\ $28 \cdot 148\\ $31 \cdot 852\\ $35 \cdot 556 \end{array}$	$\begin{array}{c} 302 \cdot 593\\ 306 \cdot 296\\ 310 \cdot\\ 313 \cdot 704\\ 317 \cdot 407\\ 321 \cdot 111\\ 324 \cdot 815\\ 328 \cdot 519\\ 332 \cdot 222\\ 335 \cdot 926 \end{array}$	$\begin{array}{c} 302 \cdot 963\\ 306 \cdot 667\\ 310 \cdot 370\\ 314 \cdot 074\\ 317 \cdot 778\\ 321 \cdot 481\\ 325 \cdot 185\\ 328 \cdot 889\\ 332 \cdot 593\\ 336 \cdot 296 \end{array}$	$\begin{array}{c} 303\cdot 333\\ 307\ 037\\ 310\cdot 741\\ 314\cdot 444\\ 318\cdot 148\\ 321\cdot 852\\ 325\cdot 556\\ 329\cdot 259\\ 332\cdot 963\\ 336\cdot 667\\ \end{array}$	81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100	$\begin{array}{c} 337\cdot 037\\ 340\cdot 741\\ 344\cdot 444\\ 348\cdot 148\\ 351\cdot 852\\ 355\cdot 556\\ 359\cdot 259\\ 362\cdot 963\\ 366\cdot 667\\ 370\cdot 370\end{array}$	$\begin{array}{c} 337\cdot 407\\ 341\cdot 111\\ 344\cdot 815\\ 348\cdot 519\\ 352\cdot 222\\ 355\cdot 926\\ 359\cdot 630\\ 363\cdot 333\\ 367\cdot 037\\ 370\cdot 741 \end{array}$	$\begin{array}{c} 337 \cdot 778 \\ 341 \cdot 481 \\ 545 \cdot 185 \\ 348 \cdot 889 \\ 552 \cdot 593 \\ 356 \cdot 296 \\ 360 \cdot \\ 363 \cdot 704 \\ 367 \cdot 407 \\ 371 \cdot 111 \end{array}$	338.148 341.852 345.556 349.259 352.963 356.667 360.370 364.074 367.778 371.481	$\begin{array}{c} 338 \cdot 519 \\ 342 \cdot 222 \\ 345 \cdot 926 \\ 349 \cdot 630 \\ 353 \cdot 333 \\ 357 \cdot 037 \\ 360 \cdot 741 \\ 366 \cdot 148 \\ 368 \cdot 148 \\ 371 \cdot 852 \end{array}$	$\begin{array}{c} 338\cdot889\\ 342\cdot593\\ 346\cdot296\\ 350\cdot\\ 353\cdot704\\ 357\cdot407\\ 361\cdot111\\ 364\cdot815\\ 368\cdot519\\ 372\cdot222\end{array}$	$\begin{array}{c} 339 \cdot 259 \\ 342 \cdot 963 \\ 346 \cdot 667 \\ 350 \cdot 370 \\ 354 \cdot 074 \\ 357 \cdot 778 \\ 361 \cdot 481 \\ 365 \cdot 185 \\ 368 \cdot 889 \\ 372 \cdot 593 \end{array}$	$\begin{array}{c} 339{\cdot}630\\ 343{\cdot}333\\ 347{\cdot}037\\ 350{\cdot}741\\ 354{\cdot}444\\ 358{\cdot}148\\ 361{\cdot}852\\ 365{\cdot}556\\ 369{\cdot}259\\ 372{\cdot}963 \end{array}$	340 [.] 343 ^{.7} 04 347 ^{.4} 07 351 ^{.1} 11 354 ^{.8} 15 358 ^{.5} 19 362 ^{.2} 22 365 ^{.9} 26 369 ^{.6} 30 373 ^{.3} 33	340·370 344·074 347·778 351·481 355·185 358·889 362·593 366·296 370· 378·704	91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110	374.074 377.778 351.481 385.185 388.889 392:593 396:296 400. 403.704 403.704	396.667 400.370	404.444	375.185 378.889 382.593 386.296 390. 393.704 397.407 401.111 404.815 408.519	375.556 379.259 382.963 386.667 390.370 394.074 397.778 401.481 405.185 408.889	394·444 398·148 401·852 405·556	376·296 380· 383·704 387·407 391·111 394·815 398·519 402·222 405·926 409·630	376.667 380.370 384.074 387.778 391.481 395.185 398.889 402.593 406.296 410.	$\begin{array}{c} 377\cdot037\\ 380\cdot741\\ 384\cdot444\\ 388\cdot148\\ 391\cdot852\\ 395\cdot556\\ 399\cdot259\\ 402\cdot963\\ 406\cdot667\\ 410\cdot370\\ \end{array}$	$\begin{array}{c} 377\cdot407\\ 381\cdot111\\ 384\cdot815\\ 388\cdot519\\ 392\cdot222\\ 395\cdot926\\ 399\cdot630\\ 403\cdot333\\ 407\cdot037\\ 410\cdot741 \end{array}$	107
111 112 113 114 115 116 117 118 119 120	$\begin{array}{c} 411 \cdot 111 \\ 414 \cdot 815 \\ 418 \cdot 519 \\ 422 \cdot 222 \\ 425 \cdot 926 \\ 429 \cdot 630 \\ 433 \cdot 333 \\ 437 \cdot 037 \\ 440 \cdot 741 \\ 444 \cdot 444 \end{array}$	418.889 422.593 426.296 430. 433.704 437.407 441.111	422.963 426.667 430.370 434.074 437.778 441.481	415.926 419.630 423.333 427.037 430.741 434.444 458.148 441.852		$\begin{array}{c} 416 \cdot 667 \\ 420 \cdot 370 \\ 424 \cdot 074 \\ 427 \cdot 778 \\ 431 \cdot 481 \\ 435 \cdot 185 \\ 438 \cdot 889 \\ 442 \cdot 593 \end{array}$	417.037 420.741 424.444 428.148 431.852 435.556 439.259	413.704 417.407 421.111 424.815 428.519 432.222 435.926 439.630 443.333 447.037	414.074 417.778 421.481 425.185 428.889 432.593 436.296 440. 443.704 443.704	414·444 418·148 421·852 425·556 420·259 432·963 436·667 440·370 444·074 447·778	$ 113 \\ 114 \\ 115 \\ 116 \\ 117 $
M.A.	•0	•1	•2	•3	•4	•5	6	.7	•8	•9	M.A.
	• MEAN AREAS 61 to 120.										

					.	- 1	- 1		0		35.4
M.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A.
121	448.148	448.519	448.889 452.593	449·259 452·963	449.630 453.333	450.	450.370	450-741	451.111	451.481	121
$\frac{122}{123}$	451.852 455.556	452·222 455·926	456-296	456.667	457.037	453·704 457·407	454.074 457.778	454·444 458·148	454·815 458·519	455.185 458.889	$\frac{122}{123}$
124	$459 \cdot 259$	459.630	460.	460.370	460.741	461.111	461.481	461.852	462.222	462.593	121
125	462.963	463.333	463·704 467·407	464.074 467.778	464·444 468·148	464·815 468·519	465·185 468·889	465.556 469.259	465.926	466-296	125
126 127	466.667 470 370	467.037	471.111	471.481	471.852	472:222	472.593	405 259	469.630 473.333	470. 473.704	$\frac{126}{127}$
128	474.074	474.444	474.815	475.185	475.556	475.926	476-296	476.667	477.037	477.407	128
129 130	477·778 481·481	478·148 481·852	478.519 482.222	478.889 482.593	$479 \cdot 259$ $482 \cdot 963$	479.630 483.333	480· 483·704	480·370 484·074	480.741 484.444	481.111 484.815	129 130
100	401.401	101 002	102 222	102 000	102 000	100 000	100 101	101011	101 111	104 010	100
131	485·185	485.556	485-926	486.296	486-667	487.037	487.407	487.778	488.148	4\$8.519	131
132	488.889	489.259	489.630	490.	490.370	490-741	491.111	491.481	491.852	492.222	132
133 134	492·593 496·296	492.963	493·333 497·037	493.704 497.407	494.074 497.778	494·444 498·148	494·815 498·519	495·185 498·889	495.556 499.259	495 926 499.630	133 134
135	500	500.370	500.741	$501 \cdot 111$	501.481	501.852	502.222	502.593	502.963	503.333	135
136	503.704	504.074	504.444	504.815	505.185	505.556	505.926	506.296	506.667	507.037	136
137 138	$507 \cdot 407$ $511 \cdot 111$	$507 \cdot 778$ $511 \cdot 481$	508.148 511.852	508.519 512.222	508·889 512·593	509.259 512.963	509-630 513-333	510 [,] 513 [,] 704	510.370 514.074	510.741 514.444	137 138
139	514.815	515.185	515.556	515.926	516-296	516.667	517.037	517.407	517.778	518.148	139
140	518.519	518.889	519.259	519.630	520.	520.370	520.741	521.111	521.481	521.852	140
141	522·222	522·593	522.963	523·333	523.704	524.074	524-444	524·815	525·185	5 25 · 556	141
142	525.926	526.296	526.667	527.037	527.407	527.778	528.148	$528 \cdot 519$	528.889	529.259	142
143	529.630	530 [.] 533.704	530·370 534·074	530·741 534·444	531 111 534-815	531·481 535·185	531.852 535.556	532·222 535·926	532-593 536-296	532.963 536.667	143
144 145	533·333 537·037	537.407	537.778	538 148	538.519	538.889	539.259	539.630	540	540.370	144
146	540.741	541.111	541.481	541.852	542.222	542.593	542.963	543.333	543.704	544.074	146
147 148	544·444 548·148	544·815 548·519	545-185 548-889	545·556 549·259	545.926 549.630	546·296 550·	546.667 550.370	547.037 550.741	547·407 551·111	547.778 551.481	147 148
149	551.852	552.222	552.593	552.963	553.333	553.704	554.074	554.444	554.815	555.185	149
150	555.556	555.926	556-296	556.667	557.037	557.407	557-778	558.148	558·519	5 58·889	150
151	559-259	559.630	560.	560.370	560.741	561.111	561.481	561.852	$562 \cdot 222$	562.593	151
152	562.963	563.333	563.704	564.074	564.444	564.815	565-185	565.556	565.926	566-296	152
153	566.667	567.037 570.741	567·407 571·111	567·778 571·481	568·148 571·852	568.519 572.222	$568 \cdot 889$ $572 \cdot 593$	569·259 572·963	569.630	57(r 573·704	153
$154 \\ 155$	570·370 574·074	574.444	574.815	575.185	575.556	575.926	576.296	576.607	573-333 577 037	577.407	154 155
156	577.778	578.148	578.519	578.889	579.259	579.630	580.	580.370	580.741	581.111	156
157 158	$581 \cdot 481$ $585 \cdot 185$	581.852 585.556	582·222 585·926	582·593 586·296	582.963 586.667	583·333 587·037	583·704 587·407	584.074 587.778	584·444 588·148	584-815 588-519	157 158
159	588.889	589.259	589.630	590-	590.370	590.741	591.111	591-481	591.852	592-222	159
160	592.593	592.963	5 93·333	593.704	594 074	594.444	594-815	595.185	595-556	595.926	160
161	596-296	596-667	597.037	597.407	597.778	598.148	598-519	598-889	599-259	599 630	161
162	600.	600.370	600.741	601-111	601.481	601.852	602.222	602.593	602.963	603.333	162
163 164	603.704	604.074	604·444 608·148	604·815 608·519	605·185 608·889	605.556	605.926 609.630	606·296	606.667	607.037	163
165	$607 \cdot 407$ $611 \cdot 111$	$607.778 \\ 611.481$	611.852	612-222	612.593	609·259 612·963	613.333	610- 613-704	610·370 614·074	610·741 614·444	164 165
166	$614 \cdot 815$	615.185	615.556	615.926	616.296	616.667	617.037	617.407	617.778	618.148	166
$\frac{167}{168}$	$618.519 \\ 622.222$	$618 \cdot 889$ $622 \cdot 593$	619 259 622 963	619.630 623.333	620- 623-704	620·370 624·074	620.741 624.444	621·111 624·815	$621 \cdot 481$ $625 \cdot 185$	621.852 625.556	167
169	625.926	626-296	626.667	627.037	627.407	627.778	628·148	628.519	628.889	629.259	169
170	629.630	630 [.]	630.370	630.741	631.111	631.481	631.852	632.222	632.593	632.963	170
171	633-333	633.704	634.074	634.444	634.815	635-185	635.556	635.926	636-296	636-667	171
172	637.037	637.407	637.778	638.148	638.519	638.889	639.259	639.630	640.	640.370	172
173 174	640·741 644·444	641·111 644·815	641·481 645·185	641.852 645.556	642·222 645·926	642·593 646·296	642.963 646.667	643 333 647:037	643·704 647·407	644·074 647·778	173 174
175	648.148	648 519	648.889	649.259	649.630	650	650.370	650.741	651.111	651.481	174
176	651.852	652.222	$652 \cdot 593$	652.963	653.333	653.704	654.074	654.444	654.815	655.185	176
177 178	655.556 659.259	655·926 659·630	656·296 660·	656-667 660-370	657.037 660.741	657·407 661·111	657·778 661·481	658·148 661·852	658·519 662·222	658-889 662-593	177
179	662.963	663.533	663.704	664.074	664.444	664.815	665.185	665.556	665.926	666-296	179
180	666.667	667.037	667.407	667.778	668.148	668 519	668-889	669.259	669.630	670.	180
M.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A.
		-		MEAN	AREA	18 121	to 180	•		•	

CUBIC YARDS TO MEAN AREAS FOR 100 FEET IN LENGTH.

M.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A.
101	670.370	070-741	671.111	671.481	671.852	672-222	672.593	672.963	070.000	673.704	101
181		670.741		675.185	675.556	675.926	676.296	676.667	673.333	677.407	181
182 183	674.074	674.444	674.815	678.889	679.259	679.630	680.	680.370	677.037		182
	677.778	678.148	678.519 682.222	682.593	682.963	6-3-333	683.704	684.074	680.741	681·111 684·815	183
184	681.481	681.852	685.926	686.296	686.667	687.037	687.407	687.778	684.444	688.519	184
185	685·185 688·889	685.556		690.	690.370	690.741	691.111	691.481	688·148	692.222	185
186	692.593	689·259 692·963	689 630 693·333	693.704	694 074	694 444	694.815	695.185	691.852	695.926	186
187	696.296			697.407	697.778	698.148	698.519	698.889	695.556	699.630	187
188		696.667	697.037	701.111	701.481		702.222	702.593	699.259		188
189	700.	700.370	700.741			701.852			702.963	703.333	189
190	703.704	704.074	704.444	704.815	705.185	705.556	705.926	706-296	706.667	707.037	190
191	707.407	707.778	708.148	708.519	708-889	709.259	709.630	710	710 370	710.741	191
192	711.111	711.481	711.852	712.222	712.593	712.963	$713 \cdot 333$	713.704	714.074	714.444	192
193	714.815	715.185	715.556	$715 \cdot 926$	$716 \cdot 296$	716.667	717.037	717.407	717.778	718.148	193
194	718.519	718.889	719-259	719.630	720	720.370	720.741	721.111	721.481	721.852	194
195	722.222	$722 \cdot 593$	722.963	723.333	723.704	724 074	724.444	$724 \cdot 815$	725.185	725.556	195
196	725.926	726-296	726.667	727 037	727.407	727.778	728.148	$728 \cdot 519$	728-889	729.259	196
197	729.630	730	730.370	730.741	731.111	731.481	731.852	$732 \cdot 222$	732.593	732.963	197
198	733.333	733.704	734.074	734.444	734 815	735.185	735.556	735.926	736-296	736.667	198
199	737.037	737.407	737.778	738.148	738.519	738.889	739.259	739.630	740	740.370	199
200	740.741	741.111	741.481	741.852	742.222	742.593	742.963	743 333	743.704	744.074	200
201	744-441	744.815	745.185	745.556	745.926	746.296	746 667	747.037	747.407	747.778	201
201	748.148	748.519	748.889	749.259	749.630	740.290	750.370	750.741	747·407 751·111	751.481	201
	751.852			752.963	753.333	753.704	754.074	754.444		755.185	202
203		752.222	752.593		757.037	757.407	757.778	758.148	754.815	758 889	
204 205	755.556	755.926	756.296	756.667	760.741	761.111	761.481	761.852	758.519	762.593	204 205
	759·259 762·963	759.630 763.333	760	760.370	764.444	764.815	765.185	765 556	762.222	766-296	
206			763.704	764.074			768-889		765.926		206
207	766.667	767.037	767.407	767.778	768.148	768.519	772.593	769.259	769.630	770.	207
208	770.370	770.741	771.111	771.481	771.852	772.222	776.296	772.963	773-333	773·704 777·407	208 209
209	774 074	774.444	774.815	775.185	775.556	775.926	780	776.667	777.037	701.111	
210	777.778	778.148	778.519	778.889	779-259	779-630	180	780.370	780.741	781.111	210
211	781.481	781.852	782.222	782.593	782.963	783-333	783.704	784.074	784.444	784.815	211
212	785.185	785.556	785.926	786.296	786.667	787.037	787.407	787.778	788.148	788-519	212
213	788-889	789.259	789.630	790-	790.370	790.741	791 111	791.481	791.852	792.222	
214	792.593	792.963	793.333	793.704	794.074	794-144	794.815	795.185	795.556	795.926	
215	796-296	796-667	797.037	797.407	797.778	798.148	798.519	798.889	799 259	799.630	
216	800.	800.370	800.741	801-111	801.481	801.852	802.222	802.593	802.963	803.333	
217	803.704	804.074	804.444	804.815	805.185	805.556	805.926	806-296	806 667	807.037	
218	807.407	807.778	808.148	808 519	808.889	809-259	809.630	810	810.370	810.741	
219	811-111	811.481	811.852	812.222	812.593	812.963	813.333	813.704	814.074	814.444	219
220	814.815		815.556	815.926	816-296	816.667	817.037	817.407	817.778	818.148	
0.01	010 110	010 000				000 050	000-541	001.111		001.070	001
221	818·519 822·22·2		819.259	819.630		820·370 824·074	820.741 824.444	821-111 824-815	821.481	821.852 825.556	
$\frac{222}{223}$			822.963	823.333	823.704	824.074	824.444	824-815	825.185	825 556	
	825.926			827.037	827.407				828.889		
224	829.630		830.370	830.741	831.111	831.481	831.852 835.556	832.222			
225	833-333			834.444	834.815	835.185				836.667 840.370	
226	837.037		837.778	838-148	838.519	838-889	839-259	839.630			
227	840-741		841.481	841.852	842.222	842.593	842.963	843.333		844.074	
228	844.444			845.556	845.926	846-296		847.037	847.407	847.778	
229	848.148			849-259	849.630	850	850·370 854·074		851.111	851.481	229
230	851.852	852-222	852.593	852.963	853-333	853.704	894.074	854.444	854.815	855-185	230
231	855.556	855-926	856-296	856.667	857.037	857.407	857.778	858.148	858.519	858-889	231
232	859-259			860.370		861-111	861.481	861.852		862.593	
233	862.963		863-704			864-815		865.556			
234	866.667		867.407	867.778							234
235	870.370			871.481							
236	874.074		874.815							877.407	
237	877.778						880	880.370		881-111	
238	881.481							884.074			
239	885.185					887.037	887.407	887.778	888.148		
240	888-889				890.370	890.741	891.111	891.481	891.852		
M.A.	•0	•1	•2	•3	•4	•5	•6	.7	•8	•9	M.A
_	1	1	1	1	1	1	1	1	1	1	1

M.A.	•0	•1	•2	•3	•4	•5	•6	.7	•8	•9	М.А.
241	892.593	892.963	893.333	893.704	894.074	894.444	894.815	895.185	895.556	895.926	241
242	896-296	896.667	897.037	897.407	897.778	898.148	898.519	898.889	899.259	899.630	242
243	900	900.370	900.741	901.111	901.481	901.852	902.222	902.593	902.963	903.333	243
214	903.704	904·074 907·778	904·444 908·148	904·815 908·519	905·185 908·889	905·556 909·259	905·926 909·630	906·296	906-667 910-370	907-037 910-741	$\frac{244}{245}$
245 246	907·407 911·111	911.451	911.852	912.222	912.593	905 205 912 963	913.333	913.704	914.074	914.444	240
247	914.815	915.185	915.556	915.926	916-296	916.667	917.037	917.407	917.778	918.148	247
248	918·519	918.889	919 ·259	919.630	920	920.370	920.741	921.111	921.481	921.852	248
249	922.222	922.593	922·963 926·667	923·333 927·037	923704 $927\cdot407$	924·074 927·778	$924 \cdot 444$ $928 \cdot 148$	924.815 928.519	925.185 928.889	$925 \cdot 556$ $929 \cdot 259$	249
250	925.926	926-296	920 001	921.031	521 401	921 110	970.140	920 019	920 009	029 209	250
251	929.630	930.	930.370	930.741	931-111	931-481	931.852	932-222	932.593	932.963	251
252	933·333	933.704	934.074	$934 \cdot 444$	934.815	935.185	935.556	935.926	936-296	936.667	252
253	937.037	937.407	937.778	938.148 941.852	$938\ 519$ $942 \cdot 222$	938·889 942·593	939·259 942·963	939-630 943-333	940.	940.370 944.074	$\frac{253}{254}$
$254 \\ 255$	940.741 944.444	941·111 944·815	941·481 945·185	941.852	942.222	942.993	942.903	945.555	$943 \cdot 704$ $947 \cdot 407$	944.074	$\frac{254}{255}$
256	948.148	948.519	948.889	949.259	949.630	950	950.370	950.741	951-111	951-481	256
257	951.852	952 222	952.593	952.963	953.333	953.704	954 074	954.444	954 815	955.185	257
258	955-556	955.926	956-296	956667	957.037	957.407	957.778	958.148	958.519	958.889	258
259 260	959·259 962·963	959.630 963.333	960· 963·704	960·370 964·074	960·741 964·444	961·111 964·815	961-481 965-185	961.852 965.556	962·222 965·926	962·593 966·296	$\frac{259}{260}$
200	902.903	903.000	303 104	304 014	301 111	904 010	200 100	800 000	900 920	000 200	200
261	966-667	967.037	967.407	967.778	968-148	968·519	968-889	969-259	969-630	970.	261
262	970-370	970.741	971.111	971.481	971.852	972.222	$972 \cdot 593$	972 963	$973 \cdot 333$	$973 \cdot 704$	262
263	974.074	974.444	974.815	975.185	975.536	975-926	976-296	676.667	977.037	977.407	263
264 265	977.778 981.481	978.148 981.852	978·519 982·222	978-889 982-593	979·259 982·963	979-630 9-3-333	980 983.704	980·370 984·074	980.741 984.444	$981.111 \\984.815$	$\frac{264}{265}$
266	985.185	985.556	985.926	986.296	986.667	957.037	987.407	987.778	988.148	988.519	266
267	988.889	989.259	989.630	990.	990-370	990.741	991.111	991.481	991.852	992.222	267
268	992.593	992.963	993.333	993.704	994.074	994-444	994.815	995-185	995-556	995.926	268
269 270	996·296 1000·	996 667 1000-370	997.037 1000.741	997·407 1001·111	997.778 1001.481	998·148 1001·852	998.519 1002 222	998.889 1002.593	999-259 1002-963	999.630 1003.333	$\frac{269}{270}$
210	1000	1000 310	1000 141	1001 111	1001 431.	1001 002	1002 222	1002 395	1002 903	1000 000	210
	1003.704	1004.074	1004.444	1004.815	1005-185	1005.55€	1005-926	1006-296	1006-667	1007.037	271
		1007.778	$1008 \cdot 148$	1008.519	1008.889	$1009 \cdot 259$		1010		1010.741	272
		1011-481	1011-852		1012·593 1016·296	1012.963 1016.667	1013*333 1017·037	1013.704 1017.407	1014.074 1017.778	$1014 \cdot 444$ $1018 \cdot 148$	$273 \\ 274$
274	1014.810	1015·185 1018·889	1019-259		1010-290	1020.370	1020.741	1021.111	1021.481	1018/148	274
	1022.222	1022.593	1022.963	1023.333	1023.704	1024.074	1024.444	1024.815	1025.185	1025.556	276
277		1026-296	1026.667	1027.037	$1027 \cdot 407$	1027.778	1028.148	1028.519	1028.889	$1029 \cdot 259$	277
278	1029.630			1030.741	1031-111	1031.481	1031.852	1032.222	1032.593	1032.963 1036.667	278
$279 \\ 280$		$1033 \cdot 704 \\ 1037 \cdot 407$	1034.074 1037.778	1034-144	1034-815 1038-519	1035.185	1035.556 1039.259	1035-926 1039-630	1036-296	1030.007	279 280
	1001 001	1001 101		1000 110	1000 010	1000 000	1000 000	1000 000	1010	1010 010	200
281		1041-111		1041.852	1042-222		1042.963	1043-333		1044.074	281
282		1044.815			1045.926	1046-296		$1047 \cdot 037$	1047-407	1047.778	282
		1048.519 1052.222			1049.630 1053.333	1050. 1053.704	1050.370 1054.074	1050.741 1054.444	$1051.111 \\ 1054.815$	1051-481 1055-185	$\frac{283}{284}$
		1055-926			1057.037	1057.407	1057.778	1058.148			285
286	1059-259	1059.630	1060	1060.370	1060.741	1061-111	1061-481	1061.852	1062-222	1062.593	286
287	1062.963		1063.704	1064.074	1064.444	$1064 \cdot 815$			1065.926	1066-296	287
$\frac{288}{289}$	1066.667 1070.370		1067-407 1071-111	1067.778 1071.481	1068.148 1071.852	1068.519 1072.222	$1068 \cdot 889$ $1072 \cdot 593$	$1069 \cdot 259$ $1072 \cdot 963$	1069.630 1073.333	1070 [.] 1073.704	288 289
290	1074.074	1074.444			1075-556	1075.926		1076 667	1077.037	1077.407	289
291 292	$1077 \cdot 778$ $1081 \cdot 481$	$1078 \cdot 148$ $1081 \cdot 852$	1078.519 1082.222	1078-889	1079-259	1079.630	1080	1080-370		$1081 \cdot 111$ $1084 \cdot 815$	291 292
292 293	1081.481		1082-222	1082-593 1086-296		$1083 \cdot 333$ $1087 \cdot 037$	$1085 \cdot 704$ $1087 \cdot 407$	1084.074 1087.778		1084-815	
294	1088.889		1089.630		1090-370	1090.741		1091-481		1092.222	
295	1092.593	1092.963		1093.704	1094.074	1094.444	1094.815	1095.185	1095.556		
296 297	1096-296		1097.037	1097-407		1098.148		1098-889		1099.630	
$\frac{297}{298}$	1100- 1103-704	1100.370 1104.074	1100·741 1104·444	1101-111 1104-815		1101.852 1105.556				$1103 \cdot 333$ $1107 \cdot 037$	297 298
299	1107.407	1107.778	1108.148	1108.519				1110.250	1110.370		
300	1111-111	1111.481	1111.852	1112.222				1113.704	1114.074	1114-444	300
M.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A.
				MEAN	AREA	18 241	to 300).			

	•0		.2	•3	1 . 1	.5	•6		.0 1	0	
M.A.	•••	•1	•%	•3	•4	•5	-0.	•7	•8	•9	M.A.
301	1114-815	1115.185	1115.556		1116-296	1116 667		1117.407	1117.778	1118.148	301
		1118.889	1119.259	1119 630	1120.	1120.370	1120.741	1121.111	1121-481	1121.852	302
		1122.593		$1123 \cdot 333$		1124.074	$1124 \cdot 444$			$1125 \cdot 556$	303
		1126.296	1126.667		1127 407	1127.778		1128.519		$1129 \cdot 259$	304
	1129.630	1130	1130-370	1130.741		1131.481			$1132 \cdot 593$	$1132 \cdot 963$	305
	1133-333 1137-037	$1133 \cdot 704$ $1137 \cdot 407$	1134.074 1137.778	$1134 \cdot 444$ $1138 \cdot 148$			$1135 \cdot 556 \\ 1139 \cdot 259$	1135.926	1136-296	1136.667 1140.370	306 307
			1141.481			1142.593	1142.963	1143.333	1140.	1144.074	307
			1145.185			1146.296	1146.667	1147.037	1147.407	1147 778	309
			1148.889			1150.			1151-111	1151.481	310
311	1151-859	1159.999	1152.593	1159-063	1153-333	1153.701	1154.074	1154.144	1154-915	1155.185	311
		1155-926			1157.037	1157.407	1157.778	1158-148	1158.519	1158-889	312
		1159-630		1160.370		1161-111	1161.481	1161.852	1162.222	1162.593	313
314		1163-333	1163.704	1164.074	$1164 \cdot 444$	1164.815	1165.185	1165.556	1165.926	1166.296	314
315	1166.667	1167.037	1167.407	1167.778	1168.148	1168.519	$1168 \cdot 889$	1169.259	1169.630	1170.	315
		1170.741			1171.852	$1172 \cdot 222$	1172.593		$1173 \cdot 333$		316
					1175-556 1179-259	1175.926	1176-296	1176.667	1177.037	1177.407	317
	1177·778 1181·481				1182.963	1179.630 1183.333	1180 [.] 1183.704	1180.370 1184.074		1181-111	318 319
	1185.185			1182-595		1185.555	1187.407	1187.778	1184.444	1184.815 1188.519	320
	1100 100	1100 000	1100 020	1100 200	/	1101 001		1101 110	1100 140	1100 010	010
321	1100.000	1100.050	1100.000	1100.	1190.370	1100.741	1191-111	1101-501	1101 050	1100.000	0.01
	1188-889 1192-593			1190· 1193·704	1190-370	1190.741 1194.444	1194.815			1192.222	321 322
	1196.296	1196.667			1197.778	1198.148	1198-519				323
		1200.370			1201.481	1201.852	1202.222	1202.593			
325		1204.074	1204.444	$1204 \cdot 815$	$1205 \cdot 185$	1205-556	1205.926	1206-296		1207.037	325
	1207.407	1207.778	1208.148	1208.519	$1208 \cdot 889$	1209.259	1209.630	1210.	1210.370		326
327	$1211 \cdot 111$	1211.481	1211.852	$1212 \cdot 222$	$1212 \cdot 593$	$1212 \cdot 963$				1214.444	327
			1215.556			1216.667	1217.037 1220.741	$1217 \cdot 407$ $1221 \cdot 111$			328 329
			1219·259 1222·963		1223.704	1220.370 1224.074	1224.444			$1221 \cdot 852$ $1225 \cdot 556$	329
000	1000 000	1222 050	1222 303	1440 000	1220 104	144 014	1441 111	1224 010	1220 100	1220 000	000
331	1225.926	1226-236	1000.007	1007-007	1227.407	1005.550	1228.148	1000-510	1000.000	1000.070	331
				1227.037 1230.741	1231.111	$1227 \cdot 778$ $1231 \cdot 481$	1228.148		1228.889 1232.593		331
				1231-444	1234-815	1231-481	1235.556				333
					1238.519	1238-889	1239.259	1239.630		1240.370	334
	1240.741	1241.111	1241.481		1242-222	1242.593	1242.963			1244.074	335
	1244.444	1244.815	1245.185	1245.556	$1245 \cdot 926$	1246-296	1246.667	1247.037	1247.407	1247.778	336
		1248.519			1249.630	1250	1250.370	1250.741	$1251 \cdot 111$	$1251 \cdot 481$	337
	1251.852			$1252 \cdot 963$	1253-333	1253.704	1254.074	1254.444	1254.815		
	$1255 \cdot 556 \\ 1259 \cdot 259$	1259.630	1256-296	1256.667	1257.037	1257.407	1207-778	1258-148 1261-852	1258.519 1262.222		
010	1209 209	1209 000	1260.	1260.370	1200 741	1261.111	1201 401	1201-002	1202-222	1262.593	046
041	1000 000	1000 000					1005 105				0.00
			1263.704			1264-815	$1265 \cdot 185$ $1268 \cdot 889$		1265-926		
	$1266 \cdot 667 \\ 1270 \cdot 370$	1207.037		1267.778 1271.481	1208.148	1268.519 1272.222	1208 889		$1269 \cdot 630$ $1273 \cdot 333$	1270· 1273·704	342
	1274-074	1274.444	1274.815	1275.185	1275.556	1275.926	1276-296	1276-667		1277-407	344
	1277.778	1278.148	1278.519	1278.889	1279-259	1279 630	1280.	1280.370		1281.111	345
	$1281 \cdot 481$	1281.852	$1282 \cdot 222$	1282.593	1282.963	1283.333	1283.704	1284.074			346
	1285.185		1285.926	1286-296	1286.667	1287.037	1287.407	1287.778			
	1288-889			1290	1290-370	1290.741	1291.111	1291.481		1292.222	
	1292·593 1296·296	1292.963	1293.333	1293.704	1294.074	1294.444	1294·815 1298·519				
500	1290.290	1290.001	1297.037	1297.407	1297.778	1298.148	1790.019	1298-889	1299-259	1299.630	350
0.51	1000	1000 050					1000.000		1000.000		0.57
$\frac{351}{352}$	1300· 1303·704	1300.370 1304.074		1301.111	1301.481 1305.185	1301-852	$1302 \cdot 222$ $1305 \cdot 926$		1302-963 1306-667		351 352
353		1304.074	1304·444 1308·148	$1304 \cdot 815$ $1308 \cdot 519$		$1305 \cdot 556$ $1309 \cdot 259$	1309.630	1306-296	1306.667		353
354		1311.481	1308.148	1312.222				1313.704			
	1314.815	1315-185	1315.556	1315.926			1317.037	1317.407	1317.778	1318-148	
356	$1318 \cdot 519$	$1318 \cdot 889$	1319.259	1319.630	1320-	1320.370	1320.741	$1321 \cdot 111$	1321.481	1321.852	356
357	1322.222	1322.593	1322.963	1323-333		1324.074	1324.444	1324.815		1325.556	
358	1325.926	1326-296	1326.667	1327.037		1327.778	1328.148	1328.519		1329-259	358
359 360	1329.630 1333.333	1330· 1333·704	1330·370 1334·074	1330.741 1334.444		$1331 \cdot 481$ $1335 \cdot 185$	$1331 \cdot 852$ $1335 \cdot 556$	1332·222 1335·926			359 360
	•0										
M.A.	.0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A.
				MEAN	ARE	48 301	to 360	•			

M.A.	•0	•1	•2	•3	•4	•5	•6	.7	•8	•9	M.A.
361	1337.037	1337.407	1337.778	1338-148		1338-889		1339.630	1340	1340.370	361
362 363	1340·741 1344·444	$1341 \cdot 111$ $1344 \cdot 815$	1341·481 1345·185	1341-852 1345-556	1342·222 1345·926	1342.593 1346.296	1342.963 1346.667	$1343 \cdot 333 \\ 1347 \cdot 037$	$1343 \cdot 704$ $1347 \cdot 407$	1344.074 1347.778	362 363
364		1348.519	1348.889	1349-259		1340 290	1340.037	1347-087		1351.481	364
365	1351.852	1352.222			1353.333	1353.704	1354.074	1354.444		1355-185	365
366	1355.556	$1355 \cdot 926$	1356-296	1356.667		$1357 \cdot 407$	1357 778	$1358 \cdot 148$		1358.889	366
367		1359.630			1360.741	1361-111	1361.481	1361.852		1362.593	367
$\frac{368}{369}$	1362·963 1366·667	1363.333	1363.704 1367.407	1364.074	1364.444 1368.148		$1365 \cdot 185 \\ 1368 \cdot 889$	$1365 \cdot 556 \\ 1369 \cdot 259$	1365.926 1369.630	1366·296 1370·	368 369
370		1370.741		1371.481		1372.222			1373.333	1373.704	370
0.0	1010 010								1010 000	1010101	010
371	1051-071	1374-444	1074-015	1075-105	10-5.570	1057-000	1050.000	1070.005	1077.005	1078.404	0=1
$\frac{371}{372}$		1374-444		1375.185	1375.556	1375.926 1379 630		1376.667	1377-037	1377.407	371 372
373		1381.852	1382.222	1382.593			1383.704		1384-444		373
374		$1385 \cdot 556$	1385.926	1386-296	1386.667	1387.037	1387.407	1387.778	1388-148		374
375		1389.259		1390	1390.370	1390-741	$1391 \cdot 111$	1391.481	1391.852		375
376	1392.593	1392.963	1393.333		1394.074	1394.444			1395.556		376
$377 \\ 378$		$1396 \cdot 667$ $1400 \cdot 370$		1397.407	1397.778	1398.148 1401.852	1398.519		1399.259		377 378
379		1404.074			1405-185		1405-926			1407.037	379
380		1407.778					1409.630		1410.370		380
381	1411-111	1411-481	1411-852	1412.222	1419-503	1.119-063	1413-333	1413.704	1414.074	1414.444	381
382		1415.185		1415.926			1417.037		1417.778		382
383	1418.519	$1418 \cdot 889$	1419.259	1419.630	14:20.	1420.370	1420.741	1421.111	1421.481	$1421 \cdot 852$	383
384	1422-222		1422.963		$1423 \cdot 704$		1424.444		1425.185		
385	$1425 \cdot 926$ $1429 \cdot 630$	1426.296	1426.667		1427.407	1427.778		1428.519			385
386 387	1429.030		1430·370 1434·074	1430.741	1431-111 1434-815	$1431 \cdot 481$ $1435 \cdot 185$	1431-852 1435-556	$1432 \cdot 222$ $1435 \cdot 926$	1432.593 1436.296	1432.963 1436.667	386 387
388	1437.037	1437.407	1437.778		1438.519	1438.889	1439.259	1439.630		1440.370	388
389	1440741	1441.111	1441.481		1442.222	1442.593	1442.963	1443.333	1443.704	1444.074	389
390	1444.444	1444.815	1445.185	1445.556	1445.926	1446-296	1446.667	1447.037	1447.407	1447.778	390
391	1448.148	1448.519	1448:889	1449-259	1449.630	1450	1450.370	1450.741	1451-111	1451.481	391
392				1452.963	1453-333	1453.704		1454.444			592
393		1455.926	1456-296	1456.667			1457.778		1458.519		393
$\frac{394}{395}$		1459.630 1463.333	1460 [.] 1463.704	1460·370 1464·074	1460.741 1464.444		1461-481 1465-185		1462·222 1465·926		394 395
396	1466.667	1467.037	1467.407	1467.778	1468.148		1468-889	1469-259	1469.630		396
397		1470.741	1471-111	1471.481	1471.852	1472-222	1472.593	1472.963	1473.333	1473.704	397
398	1474.074	1474.444	1474.815	1475.185	1475.556		1476-296	1476.667	1477.037	1477.407	398
399 400	1477 778	$1478 \cdot 148 \\ 1481 \cdot 852$		1478.889	1479·259 1482·963	1479.630	1480	1480.370	1480.741	1481-111 1484-815	399
400	1401.401	1401 002	1462.222	1482.993	1482.903	1483-333	1480.104	1484.074	1481.444	1484.815	400
401 402	1485-185	1485.556	1485.926		1486.667	1487.037	1487-407		1488-148		401
402		1489·259 1492·963	1489.630	1490· 1493·704	1490·370 1494·074	1490·741 1494·444	1491.111	1491·481 1495·185	1491.852 1495.556		402 403
404		1496.667	1497.037	1495.407			1498.519	1495 185	1499.259		403
405	1500.	1500.370	1500.741	1501.111	1501.481	1501.852	1502-222	1502.593	1502.963	1503-333	405
406	1503.704	1504.074	1504.444	1504.815	1505.185	1505.556	1505.926	1506-296	1506.667	1507.037	406
407 408	1507·407 1511·111	1507 778 1511 481	$1508 \cdot 148 \\ 1511 \cdot 852$	1508.519 1512.222		1509-259 1512-963	1509.630	1510· 1513·704	$1510 \cdot 370$ $1514 \cdot 074$		407 408
409	1514 815	1515-185		1512-222	1516.296	1512.963	1517.037	1517.407	1517.778		
410		1518.889		1519.630		1520.370		1521.111	1521.481		410
411	1522.222	1522.593	1599.069	1509.999	1523.704	1524.074	1524.444	1524-815	1525.185	1525-556	411
412	1525.926	1526-296	1526.667	1527.037	1523.104	1527.778	1528.148	1528.519	1528.889		412
413	1529.630	1530.	1530.370	1530.741	1531-111	1531.481	1531.852	1532.222	1532.593	1532.963	413
414	1533-333	1533.704	1534.074	1534-444	1534.815	$1535 \cdot 185$	1535.556	1535.926	1536-296	1536.667	414
415 416			1537.778		1538-519	1538-889	1539-259		1540· 1543·704	1540·370 1544·074	415
416	1540·741 1544·444	1541-111 1544-815	1541.481	1541.852 1545.556	1542·222 1545·926	1542.593 1546.296	1542.963 1546 667	1543·333 1547·037	1543.704	1544.0.4	416
418	1548.148		1548.889	1549.259	1549.630	1550.	1550.370	1550.741	1551-111	1551.481	418
419	1551.852	1552-222	1552.593	1552.963	1553-333	1553.704	1554.074	1554.444	1554.815	1555-185	419
420	1555-556	1555-926	1556-296	1556-667	1557.037	1557-407	1557.778	1558-148	1558.519	1558-889	420
M.A.	•0	•1	•2	•3	•4	•5	•6	.7	•8	•9	M.A.
											1
				MEAN	AREA	18 361	to 420				

180

RULES FOR THE MEASUREMENT OF EARTHWORKS.

M.A.	•0	•1-	.2	•3	•4	•5	•6	•7	•8	•9	M.A.
421	1550-259	1559.630	1560.	1560.370	1560.741	1561.111	1561.481	1561.852	1569-999	1562.593	421
422		1563-333		1564 074	1564.444				1565.926		422
423	1566.667							1569.259	1569.630	1570	423
124	1570 370	1570.741	1571.111	1571.481	1571.852		$1572 \cdot 593$	$1572 \cdot 963$	1573-333	$1573 \cdot 704$	424
125		1574.444	1574.815	$1575 \cdot 185$	1575 556	$1575 \cdot 926$	1576-296			1577.407	425
126	1577.778				$1579 \cdot 259$					$1581 \cdot 111$	4 26
427	1581.481				1582.963	$1583 \cdot 333$		1584.074		$1584 \cdot 815$	427
428						1587.037	1587.407	1587.778		1588.519	428
429 430	1588.889						$1591 \cdot 111$ $1594 \cdot 815$			1592.222	429
FOR	1992.993	1592.963	1993.333	1593.704	1594.074	1594.444	1994.919	1999-189	1595 [.] 556	1999-926	430
131					1597.778					1599.630	431
132					1601.481		$1602 \cdot 222$	$1602 \cdot 593$	1602.963	$1603 \cdot 333$	432
33		1604 074			1605.185			1606-296		1607.037	433
134		1607.778				1609-259		1610	1610.370		434
435		1611.481			1612.593		1613.333	1613.704	1614.074	1614.444	435
436 437		1615-185		1615·926 1619 630	1616-296	1616.667		$1617 \cdot 407$ $1621 \cdot 111$	1617.778	1010.140	436
438		1618.889 1622.593			1623.704				$1621 \cdot 481$ $1625 \cdot 185$		437 438
439		1626-296			1627.407	1627.778		1628.519		1629.259	439
440	1629.630	1630			1631.111			1632.222	1632.593	1632.963	440
	1020 000	1000	1000 010	1000 1 11	1001 111	1001 101	1001 002	1002 222	1002 000	1002 000	110
441			1634.074						1636-296		441
442		1637.407			$1638 \cdot 519$	$1638 \cdot 889$	$1639 \cdot 259$		1640	1640.370	442
443	1640.741	1641.111	1641.481		1642.222	1642.593			1643.704	1644.074	443
414	1644.444		1645.185	1645.556			1646.667	1647.037	1647.407	1647.778	444
445 446		$1648 \cdot 519$ $1652 \cdot 222$		$1649.259 \\ 1652.963$		1650	1650.370 1654.074	1650.741		1651.481	445
440 447	1651.852 1655.556	1652.222		1656.667		1653.704		1658.148	1654.815	1658.889	446
448	1659.259	1659.630		1660-370		1661.111	1661.481		1662.222	1662.593	
449	1662.963		1663.704	1664.074		1664.815		1665.556		1666-296	
450	1666-667	1667.037		1667.778		1668.519	1668-889		1669.630	1670	450
$\frac{451}{452}$		1670.741		1671.481		1672.222	1672.593		1673-333		
452 453		1674.444			1675.556	1675.926	1676-296 1680-	1676.667 1680.370	1677.037	1677.407	452 453
403 454	1677-778	1678·148 1681·852		1678.889 1682.593	$1679 \cdot 259$ $1682 \cdot 963$	$1679 \cdot 630$ $1683 \cdot 333$		1680.370		$1681 \cdot 111$ $1684 \cdot 815$	
455	1685.185	1685.556		1686-296	1686.667	1687.037	1687.407	1684.074	1688-148	1684.815	
456	1688.889	1689.259	1689.630	1690	1690.370	1690.741		1691.481	1691.852	1692.222	
457		1692.963	1693-333	1693.704	1694.074	1694.444		1695.185			
458		1696.667		1697.407	1697.778		1698-519	1698-889	1699.259		
459	1700.		1700.741		1701.481		1702-222	1702.593		1703.333	
460	1703.704	1704.074	1704-144	1704.815	1705.185	1705.556	1705-926	1706-296	1706.667	1707.037	460
461	1707-407	1707.778	1708.148	1708-510	1708-889	1709-959	1709-630	1710	1710-370	1710-741	461
462		1711.481			1712.593						
463		1715-185			1716-296			1717.407			
464		1718-889					1720.741	1721.111		1721.852	464
465		1722.593		1723-333		1724.074	1724.444	1724.815		1725.556	465
466	1725.926	1726-296	1726.667	1727.037	1727.407	1727.778	1728.148	1728.519	1728.889	1729.259	466
467	1729.630	1730	1730-370	1730.741	1731-111	1731.481	1731.852	1732-222	1732.593	1732.963	467
468	1733-333		1734.074	1734.444	1734.815						
469	1737.037			1738-148	1738.519	1738-889	1739-259			1740.370	
470	1740.741	1741-111	1741.481	1741.852	1742-222	1742.593	1742.963	1743-333	1743.704	1744.074	470
471	1744.444	1744.815	1745.185	1745-556	1745-926	1746-296	1746.667	1747.037	1747.407	1747.778	471
472		1748-519		1749-259				1750.741			
473	1751.852	1752-222	1752-593	1752.963	1753-333		1754.074	1754.444	1754.815	1755.185	
474	1755-556		1756-296		1757.037	1757.407	1757.778	1758.148	1758-519		
475	1759-259	1759-630	1760	1760-370	1760.741	1761-111			1762-222	1762-593	475
476	1762.963					1764.815			1765-926		5 476
477	1766.667			1767.778		1768-519			1769.630	1770	477
478	1770.370			1771.481							
479 480	1774·074 1777·778					1775.926		1776-667 1780-370			
		•1	•2	•3	•4	•5	•6	•7	•8	•9	
M.A.	•0										M.A

M.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A.
481	1791-101	1781.852	1782.222	1799-509	1782.963	1769-999	1799 504	1791-074	1794-444	1701.01*	481
482		1785.556	1785.926	1786.296				1787.778		1788.519	481
483		1789.259	1789 630	1790		1790.741			1791.852	1792.222	483
484	1792.593	1792.963	$1793 \cdot 333$	1793.704	1794.074	1794.444	1794.815	1795.185	1795-556	1795-926	4-4
485		$1796 \cdot 667$	1797.037	$1797 \cdot 407$		1798.148			$1799 \cdot 259$	1799-630	485
486	1800	1800.370	1800.741	1801.111	1801.481	1801.852	1802-222	$1802 \cdot 593$		1803-333	486
487 488		1804.074 1807.778	1804.444		1805.185			1806.296		1807.037	487
489		1811-481	1811.852		$1808 \cdot 889$ $1812 \cdot 593$				1810-370 1814-074	1810.741 1814.444	488
490		1815-185	1815.556	1815 926	1816-296		1817.037	1817.407	1817.778	1818.148	490
											100
491	1010-510	1010.000	1010-050	1010 000	1000.	1000 070	1000.741	1007 111	1001 401	1001.000	101
491	1818.919	1818-889	1819-209	1819 030	1820° 1823.704		1820.741		1821.481		491 492
493		1826-296		1827.037		1827 778		1828.519			493
494	1829.630		1830.370		1831-111			1832 222	1832.593		494
495		1833.704	1834.074	1834.444		1.35.185		1835.926	1836-296	1836 667	495
496		$1837 \cdot 407$	$1837 \cdot 778$	1838.148	$1838 \cdot 519$			1839.630		1840.370	496
497		$1841 \cdot 111$		1841.852	$1842 \cdot 222$	$1842 \cdot 593$		$1843 \cdot 333$		1844.074	497
498		1844.815		1845.556	1845.926	1846.296	1846.667	1847.037		1847.778	498
499 500		1848.519	1848.889		1849.630	1850		1850-741	1851-111		499
500	1851.852	1852-222	1852.593	1852.903	1853-333	1803.104	1894.014	1854.444	1994.819	1855-185	500
501		$1855 \cdot 926$						1858.148		$1858 \cdot 889$	501
502		1859.630		1860.370		$1861 \cdot 111$		$1861 \cdot 852$		$1862 \cdot 593$	502
503 504		1863-333	1863.704	1864.074				1865-556		1866-296	503
505	1866.667	1867.037 1870 741	1867.407		1868.148			1869-259		1870	504
505		1874.444	$ 1871 \cdot 111 \\ 1874 \cdot 815 $	1871.481	$1871 \cdot 852$ $1875 \cdot 556$	1872.222		1872.963 1876.667	1873.333	$1873 \cdot 704$ $1877 \cdot 407$	505 506
507		1878-148	1878-519	1878-889	1879 259	1879.630		1880-370	1880.741	1881.111	507
508		1881.852	1882-222	1882.593		1883-333	1883.704	1884-074	1884-444	1884-815	508
509		1885.556	1-85.926		1856.667	1887.037	1887.407		1888-148		509
510	1888.889	$1889 \cdot 259$	1889.630	1890.	1890 370	1890.741		1891-481			
511	1892-593	1892-963	1893-333	1893.704	1894-074	1894-444	1894.815	1895-185	1895-556	1895-926	511
512	1896-296	1896.667	1897.037	1897.407	1897.778	1898-148				1899.630	
513	1900*	1900-370		1901-111	1901.481	1901.852			1902.963		513
514		1904.074		1904.815	1905.185	1905.556	1905-926	1906-296		1907.037	514
515		1907.778			1908-889	1909-259		1910.	1910.370	1910.741	515
516		1911-481	1911-852		1912.593	1912-963				1914-444	516
517 518	$1914 \cdot 815$ $1918 \cdot 519$	1915-185 1918-889	$1915 \cdot 556$ $1919 \cdot 259$	1915.926	1916 296	1916.667	1917.037		1917.778	1918-148	517
519	1922-222	1913-889	1919-259	1919.630 1923.333	1920* 1923-704	1920-370 1924-074		1921.111	1921.481	1921-852 1925-556	518 519
520		1926-296	1922 903	1923.333	1923 104	1924.074	1928-148	1924 815		1929-259	520
	1040 040	1040 200	1040 001	1521 001	10. 101	1021 110	1040 110	1520 010	1020 000	1020 200	020
501	1000 000	1000									
$521 \\ 522$		1930* 1933:704	1930-370	1930.741		1931-481		1932-222	1932-593	1932-963	521
523		1937.407	1934.074 1937.778	1934-444 1938-148	1934-815 1938-519	1935-185 1938-889	1935-556 1939-259	1935-926 1939-630	1936-296 1940-	1936-667 1940-370	522 523
	1940-741	1941-111	1011-181		1942-222		1942.963	1943-332	1940	1944.074	524
525	1944.444	1944.815	1945-185		1945-926	1946-296	1946.667		1947-407	1947.778	525
526		1948.519	1948-889		1949.630	1950	1950.370	1950 741		1951-481	526
527		1952-222			1953-333		1954.074	1954-444	1954.815	1955-185	527.
		$1955 \cdot 926$		1956.667			1957.778		1958-519		
529		1959.630			1960.741	1961-111	1961.481	1961.852	1962-222	1962.593	
530	1962-963	1963-333	1963.704	1964.074	1964-444	1964.815	1965.185	1965.556	1965-926	1966-296	530
			•								
531		1967.037			1968-148			1969-259			531
532		1970.741	1971-111	1971-481		1972.222	1972.593	$1972 \cdot 963$	1973-333	1973.704	532
$\frac{533}{534}$	1974.074	1974-444	1974.815	1975-185	1975-556	1975-926		1976-667	1977.037	1977-407	533
535 535	1977.778 1981.481	1978-148 1981-852	1978.519	1978-889	1979-259	1979.630	1980	1980.370	1980-741	1981-111 1984-815	534
536			1982-222 1985-926	1982·593 1986·296	1982-963 1986-667	1983-333 1987-037	1983·704 1987·407	1984.074 1987.778	1984-444 1988-148	1984-815	535 536
537	1988-889	1989-259	1989.630	1986-296	1980.001	1987-037	1991.111		1998-148	1988-519	537
538	1992.593	1992.963		1993.704	1994.074	1994.444			1995.556	1995-926	538
539	1996-296	1996-667	1997-037	1997.407	1997.778		1998.519	1998-889		1999.630	539
540	2000	2000.370	2000.741		2001.481	2001.852	2002-222	2002-593		2003-333	540
<u></u> М.А.	•0	•1	•2	•3	•4	-5	-6	.7	•8	•9	M.A.
			1	MEAN	AREA	8 481	to 540				

1.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A
541	2003.704	2004.074	2004.444	2004.815	2005.185	2005.556	2005.926	2006-296	2006.667	2007.037	541
			2008.148					2010		2010.741	542
543	2011.111	2011.481	2011.852	2012-222	2012.593	2012-963	$2013 \cdot 333$	2013.704	2014.074	2014 444	543
	$2014 \cdot 815$		2015.556	2015-926	2016-296					2018.148	544
		2018.889				2020.370			2021.481	$2021 \cdot 852$	545
		2022-593					2024.444	2024-815		2025.556	546
		2026-296				2027.778		2028.519		2029.259	547
	2029.630 2033.333	2030			$2031 \cdot 111$ $2034 \cdot 815$	$2031 \cdot 481$ $2035 \cdot 185$	$2031 \cdot 852$ $2035 \cdot 556$		2032.593	$2032 \cdot 963$ $2036 \cdot 667$	$548 \\ 549$
	2033 333 2037 037	$2033 \cdot 704$ $2037 \cdot 407$		$2034 \cdot 444$ $2038 \cdot 148$		2035.185	2039-259		2036-296 2040-	2030.007	550
550	2031-031	2037-407	2031-118	2038-148	2030 019	2038 889	2009 209	2039 030	2040	2010 310	000
551	2040.741	2041.111	2041.481	2041.852	2042-222	$2042 \cdot 593$	2042.963	2043.333	2043.704	2044.074	551
552	2041.144				2045.926	2046-296	2046.667	2047.037	2047.407	2047.778	552
553	$2048 \cdot 148$	2048.519	2048-889	2049-259	2049.630	2050.	2050.370	2050.741	2051.111	$2051 \cdot 481$	553
554	$2051 \cdot 852$	2052-222	$2052 \cdot 593$	$2052 \cdot 963$	2053.333	$2053 \cdot 704$	2054.074	2054.441	$2054 \cdot 815$	$2055 \cdot 185$	55-
	2055.556	$2055 \cdot 926$	$2056 \cdot 296$	2056.667	2057.037	$2057 \cdot 407$	2057.778	2058.148	$2058 \cdot 519$	$2058 \cdot 889$	55
	2059-259	2059.630	2060	2060.370	2060.741	2061.111	2061.481	2061.852	2062-222	2062.593	556
	2062-963			2064.074	2064.444	2064.815	2065.185	2065.556	2065.926		557
	2066.667 2070.370	2067.037 2070.741	$2067 \cdot 407$ $2071 \cdot 111$	$2067 \cdot 778$ $2071 \cdot 481$	$2068 \cdot 148$ $2071 \cdot 852$	2068·519 2072·222	2068-889 2072-593	$2069 \cdot 259$ $2072 \cdot 963$	2069.630 2073.333	2070· 2073·704	558 559
		2070-741		2071.481	2071-852	2072-222		2072-905	2073-333	2077.407	560
000	2011011	2014 111	2014-010	2010 100	2010 000	2010 020	2010 200	2010 001	2011 001	2011 301	000
561	2077.778	2078-148	2078.519	2078-889	2079-259	2079.630	2080.	2080.370	2080.741	2081-111	561
562	2081.481	2081.852		2082.593	2082 963	2083-333	2083.704	2084.074	2084.444		565
563	2085.185	2085.556		2086-296	2086:667	2087.037	2087.407	2057.778	2088.148	2088.519	56
561	2088.889	2089-259		2090.	2090.370	2090 741	2091.111	2091.481	$2091 \cdot 852$		56
565	$2092 \cdot 593$		$2093 \cdot 333$	2093.704	2094.074	2094.444	$2094 \cdot 815$	2095-185	2095-556		56
566	2096-296	2096.667	2097.037	$2097 \cdot 407$	2097.778	$2098 \cdot 148$	2098.519	2098.889	$2099 \cdot 259$		56
567	2100		2100.741	$2101 \cdot 111$	2101.481	2101.852	2102.222	2102.593	2102.963	2103-333	56
568	2103.704	2104.074	2104·444 2108·148	2104.815	2105.185	2105.556		2106-296		2107.037	56
569 570	$2107 \cdot 407$ $2111 \cdot 111$			2108.519	2108.889	2109·259 2112·963			2110.370 2114.074		569
570	2111-111	2111.481	2111.852	2112-223	2112-393	2112.905	2119.999	2113-104	2114-074	2114.444	1 910
571	2114.815	2115-185	2115.556	2115.926	2116-296	2116.667	2117.037	2117.407	2117.778	2118.148	57
572		2118.889					2120.741		2121.481		57
573	2122.222	2122.593	2122.963		2123.704				$2125 \cdot 185$	2125.556	
574	2125 926	2126-296	2126.667	2127.037	2127.407	2127.778	2128.148			2129-259	57.
575	2129.630	2130	2130.370	2130.741	$2131 \cdot 111$	2131.481					
576			2134.074	2134.444	2134.815		2135.556	2135.926	2136-296	2136.667	57
577	2137.037			$2138 \cdot 148$		2138-889		2139.630		2140.370	
578	2140.741			2141.852	2142.222						
579	2144.444										57
580	2148.148	2148.519	2148.889	2149.259	2149.630	2150	2150-510	2150.741	2151-111	2151.481	58
581	2151-852	2152-222	2152-503	2152.963	2153-333	2153.704	2154.074	2154.444	2154-815	2155-185	58
582		2155.926									
583	2159-259			2160-370					2162.222	2 2162.593	58
584	2162.963	3 2163-333	3 2163.704			2164.815	2165.185	2165.556	2165-926	$5 2166 \cdot 296$	
585		2167.037	2167.407	2167.778	2168.148	2168.519	2168.889		2169.630	2170.	58
586	2170.370	2170.741	2171.111	2171.481			2172.59	3 2172-963	12173-333	3 2173.704	58
587	2174.07	2174.444	2174.815	2175.185	2175.556				2177.037	2177.407	58
588		3 2178-148				2179.630		2180.370		2181.111	
589		2181.852									
590	2180-183	2185.556	2185.926	2186-296	2186.667	2187.037	2187.407	2187.778	2188-148	2188-519	1 0
591	2188-889	2100-050	2189.630	0100.	9100.270	2190.741	2191.111	2191.481	0101-950	2 2192-222	5
591 592	2188 88				2190-370			2191.48		5 2192.222	
593 593	2192.09					2194.44				2199.63	
594	2200	2200.370						2202.593		3 2203-333	
595	2203.704			2204-81							
596	2207.407			3 2208-519			2209.630	2210	2210.370	2210.741	5
597	2211.111					3 2212 963	2213-33	3 2213.704	2214.07-	4 2214.444	1 5
598	2214-813	2215-185	2215.556		5 2216·296	2216.667	2217 037	2217.407	2217.778	8 2218.148	3 5
599	2218.519	2218.889	2219-259			2220.370				1 2221.852	
600	2222*222	2 2222-593	3 2222-963	3 2223-333	3 2223.704	2224.074	2224.44	2224.81	5 2225.18	5 2225.550	6
M.A.	•0	•1	.2	•3	•4	•5	•6	.7	•8	•9	M.

M.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	М.А.
601	2225-926	2226-296	2226.667	2227.037	2227.407	2227.778	2228.148	2228.519	2228.889	22:29:259	601
602	2229.630	2230	2230-370	2230.741	2231.111	2231.481	2231 852	2232.222	2232.593	2232.963	602
603	2233-333	2233.704	2234.074	2234.444	$2234 \cdot 815$	2235.185	2235-556	2235.926	2236-296	2236.667	603
604	2237.037	2237.407	2237.778	2238-148			2239-259	2239.030		2240.370	604
605	2240.741	$2241 \cdot 111$	2241-481	2241.852	$2242 \cdot 222$	$2242 \cdot 593$	2242.963	$2243 \cdot 333$	2243.704	2244.074	605
606	2244:444			2245.556	$2245\ 926$	$2246 \cdot 296$	2246.667	2247.037	2247.407	2247.778	606
607	2248.148	2248.519		2249.259	2249.630	2250	2250.370	2250.741		2251.481	607
603	2251.852	2252-222	2252-593 2256-296	2252.963 2256.667	2253-333 2257-037	2253.704 2257.407	2254.074	2254.444	2254.815	2255 185	608
6)9 610	2255 156 2259 259	$2255 \cdot 926$ $2259 \cdot 630$		2200.007	2260.741	2261 111	$2257.778 \\ 2261.481$	2258.148 2261.852	2258.519 2262.222	2258-889 2262-593	609
010	2209.209	2200 000	2200	2200 010	2200 1 11		2201 401	2201 002	2202.222	2202.993	610
611	2262-063	2263-333	2263-704	2264.074	2264.444	2264.815	2265-185	2265.556	2265-926	2266-296	611
	$2266\ 667$		2267.407	2267.778	2268.148		2268-889	2209.259	2269 630	2270	612
613	2270.370		2271-111	2271.481	2271.852	2272-222	2272.593		2273-333		613
614	2274.074	2274-141	$2274 \cdot 815$	2275-185	2275.556	2275-926	2276-296	2276.67	2277.037	2277.407	614
615	$2277 \cdot 778$	2278.148	2278.519	2278.889	$2279 \cdot 259$	2279.630	2280	2280-376	2280.741	$2281 \cdot 111$	615
		2281.852		$2282 \cdot 593$	$2282 \cdot 963$	2283-333	2283-704	2284.074	2284.444	2254.815	616
	2285.182		2285.926	$2286 \cdot 296$	2286 ± 67	2287 037	2287.407	2287.778		2288.519	617
618	2288-889	2280·259 2292·963	2289.630	2230	2290.370	2290.741	2291.111	2291.481		2292-222	
$619 \\ 620$	2292 593		2293.333	2293·704 2297·407	2294.074	2294·444 2298·148	2294.815 2298.519			2295·926 2299 630	619 620
00	2230 230	2250 001	2201 031	2291-401	2251 110	2298.148	2200 015	2200 009	2209 200	2200 000	0.10
621	23^0.	2300.370	2300.741	2301-111	2301.481	2301.852	2302-222	2302-503	2302.963	2303-333	621
		2304.074		2304-815	2305-185	2305.556	2305-926			2307.037	622
623	23.)7.407	2307.778	23)8.118	2308.519		2309.259	2309 630	2310	2310.370		623
624	2311 111		2311.852	2312.222	2312.593	2312.963	2313-333	2313.704		2314.444	624
625	2314815	2315.185	2315.556	2315.926	2316.296	2316.667	2317.037	2317.407	2317.778	2318-148	625
626	2318519		$2319 \cdot 250$	2319.630	2320	2320.370	2320.741	2321.111	2321.481		
62 T	2322-222	2322.533	2322.963	$2323 \cdot 333$	2323 704	2324.074	2324.444	2324.815	2325-185	2325.556	627
		2326.296		2327.037	2327.407	2327.778	2328.148		2528.889	2329.259	
62) 630	2329.630	2330	23:30:370	2330.741	2331.111	2331-481	2331.852			2332.963	
0.00	2339,939	2353.101	2334.074	2334-444	2334.815	2335-185	2335.550	2335-926	2336-296	2336-667	€30
631	2337.037	9937-107	2337.778	0000.140	2338-519	000.000	2339-259	2339.630	2340	2340.370	631
	2357 037	2341.111	2001-118	$2338 \cdot 148$ $2341 \cdot 852$	2342.222	2338-889 2342-593	2342.965	2043-000			
633	2314.414	2344-815	2345-185	2345.556	2345 926	2346.296	2346.667	2347 037	2347.407		
631		2348.519	2318.889	2343.250	2349 630	2350	2350.370	2350.741		2351.481	
	2351.852		2352.593	2352.963	2353.333	23:3 704	2354.074	2254.444			
636		2355 926	2356-295	2356.667	2357.037	2357.407	2357.778	2358.148		2358 889	
637	$2359 \cdot 259$	2350.630	2360°	2360-370	2360.741	2361.111	2361.481	2361.852	2362-222		
638	2362.963	2363-333	2363.704	2364.074	2364.444	2064.815	2365.185	2365.556			
639 640	2366.637	2367.037	2367.407	2367.778	2368.148	2368-519			2069-030		639
0.40	2370.370	2370.741	2371.111	2371.481	2371.852	2372-222	2572-593	2372.963	2373-333	2373 704	640
641	2274-074	2374.444	2374.815	2375.185	2375-556	0077 000	2376-296	2376.667	2377.037	2377-407	641
612	2377.778		2378.519	2378 889		2379.630		2310101	23 0 741		642
613	2351-481	2381.852	2382.222	2382.593	2382.963	2383.333	2353.704	2384.074			
614	2385.185	2385.556	2385-926	2386-296	2386.667	1387 037	2387.407	2357.778			
615		2389-259	2389.630	2390	2390.370	2390.741	2391.111	2091-481	2391.852		
616		2392.963	2393-333	2393.704	2394.074	2394.414	2394.815	2295-185	2395.556		
617	2396-296	2395·667		2307.407	2397.778		2398.519		2399.259		
618 679	2400· 2403·704	2400.370	2403.741		2401.481	2401.852	2402.222	2402.593			
650	2403.704	2404.074	2404.444	2404.815	2405-185				2406.667	2407.037	649
000	2401 401	2+01-118	2408.148	2408.519	2408.889	2409-259	2409.630	2410	2410.370	2410 / 41	650
651	2111.111	9111.191	2411-852	0 110-000	0110-200	0110.000	0119.000	0112.004	9114-074	2414.444	651
051	2:14:815	2115-185	2411-852 2415-556	2412.222		2412-963 2416-667			2117.778		652
653	2118-519	2118.883	2419 259	2419.630		2120.370		2121.111		2421-8:2	653
(51	2122.222	2:22:593	2'22.963	2423.333		2121.074	2121.444	2424-815		2425 556	654
655	2125.923	2120-296	2423.667	2127.037	2:27.407	2427.778	2428.148	2428.519	2428.889	2429 259	655
656	212).63)	2130	2430.370	2430.741		2431.481	2131.852	2432-222	2432.593		656
657	2133-333	2433.704	2434.074	2434 444	2134-815	2135.185	2435.556		2436-296	2436.667	657
658 659	2137.037	2437.407	2437·778 2441·481	2438-148	2438.519	2438-889	2439-259	2439 630	2140	2440·370 2444·074	658 659
600	2114.114	2444.815	2441.481 2445.185	2441.852	2442 222	2442.593 2446.296	2446.667	2443·333 2447·037	2443 104 2447 407	2447.778	660
M.A.	•0	•1	•2	•3	•4	•5	•6	.7	•8	•9	M.A.
		-1	1			•3	.0				.A.
				MEAN	AREA	IS 601	to GGC				

-	00171	CYAR.			ARE	15 1 01	1001		In Inter	G.I.M.	
M.A.	•0	•1	•2	•3,	•4	•5	•6	•7	•8	•9	M.A.
661			2448-889	2449.259	2449.630	2450		2450.741	2451.111	2451.481	661
662		2452.222	2452.593	2452.963			2454 074	2454.444		2455.185	662
$663 \\ 664$		$2455 \cdot 926$ $2459 \cdot 630$		2456-667 2460-370	2457.037 2460.741	$2457 \cdot 407$ $2461 \cdot 111$		$2458 \cdot 148$ $2461 \cdot 852$	2458.519 2462.222	2458.889 2462.593	$\begin{array}{c} 663 \\ 664 \end{array}$
665		2463.333							2465.926		665
666		2467.037		2467.778	2468.148				2469.630		666
667 668	2470-370	2470.741 2474.444	2471.111	2471.481		$2472 \cdot 222$ $2475 \cdot 926$	2472·593 2476·296		2473-333 2477-037	$2473 \cdot 704$ $2477 \cdot 407$	667 668
669	2477.778	2478.148		2478.889	2479.259		2480	2480.370		2481.111	669
670		$2481 \cdot 852$			$2482 \cdot 963$	$2483 \cdot 333$	$2483 \cdot 704$	2484.074		2484.815	670
671	$2485 \cdot 185$	$2485 \cdot 556$			2486.667		$2487 \cdot 407$	$2487 \cdot 778$	2488·148	$2488 \cdot 519$	671
672 673	2488.889				2490.370	2490.741	2491.111 2494.815	$2491 \cdot 481$ $2495 \cdot 185$	2491.852	2492·222 2495·926	672
674	2492·593 2496·296			2493 704 2497 • 407	2491·074 2497·778	2494·444 2498·148			$2495 \cdot 556$ $2499 \cdot 259$		673 67#
675	2500.		2500.741	2501.111	2501.481	2501.852	2502.222	$2502 \cdot 593$	$2502 \cdot 963$		675
676		2504.074			2505.185					2507.037	676
677 678		$2507 \cdot 778$ $2511 \cdot 481$	2508·148 2511·852		2508.889 2512.593		2509.630 2513.333	2510· 2513·704	2510.370 2514.074	2510.741	677 678
679			2515.556		2516.296		2517.037	2517.407		2518.148	679
630		2518.889	$2519 \cdot 259$	2519.630	2520	2520.370	2520.741	$2521 \cdot 111$		$2521 \cdot 852$	680
681		$2522 \cdot 593$					$2524 \cdot 444$	$2524 \cdot 815$		$2525 \cdot 556$	681
682 683	2525.926 2529.630	2526·296 2530·	2526.667 2530.370	2527.037 2530.741	$2527 \cdot 407$ $2531 \cdot 111$	$2527 \cdot 778$ $2531 \cdot 481$	2528·148 2531·852	$2528 \cdot 519$ $2532 \cdot 222$	2528.889	2529-259 2532-963	682 683
681		2533.704	2534.074	2534.444	2534.815	2535.185	2535.556		2536.296	2536.667	684
685	2537.037	$2537 \cdot 407$	2537.778	2538.148	2538.519	2538.889	2539.259	2539.630	2540.	2540.370	685
686	2540.741	2541.111	2541.481		2542.222	2542.593	2542.963 2546.667	2543.333	2543.704	2544.074	686
687 688	2548.148	2544.815 2548.519	2548.889	2545.556 2549.259	$2545 \cdot 926$ $2549 \cdot 630$	2546·296 2550·		2547.037 2550.741	2547·407 2551·111	2547·778 2551·481	687 688
689						2553.704	2554.074	2554.444	2554.815	2555.185	689
690	2555-556	2555.926	2556·296	2556.667	2557.037	2557.407	2557.778	2558.148	2558.519	2558.889	690
691	2559-259	2559.630	2560.	2560-370	2560.741	2561.111	2561.481	2561.852	2562.222	2562.593	691
692	2562.963	2563.333	$2563 \cdot 704$	2564.074	2561.444	$2564 \cdot 815$	2565.185	2565.556	2565.926	2566-296	692
693		2567.037	$2567 \cdot 407$	2567.778	2568.148	2568.519	2568.889	2569-259	2569 630		693
694 695	2570.370	2570.741 2574.444	$2571 \cdot 111$ $2574 \cdot 815$	2571·481 2575·185	2571.852 2575.556	2572-222	2572.593 2576.296	2572.963	2573·333 2577·037	2573·704 2577·407	694 695
696				2578-889	2579.259	2579.630	2580	2580.370		2581-111	696
697		$2581 \cdot 852$		2582.593	$2582 \cdot 963$	$2583 \cdot 333$		2584.074	2584.444	2584.815	697
698 699	2585.185	2585.556	2585 • 926 2589 • 630	2586·296 2590·	2586.667 2590.370	2587.037 2590.741	2587·407 2591·111	$2587 \cdot 778$ $2591 \cdot 481$	2588·148 2591·852	2588·519 2592·222	698 699
700	2592.593	2592.963	2593-333	2593.704	2591.074	2594.444	2594.815	2595.185	2595.556	2595.926	
701		2596.667		2597.407	2597.778	2598-148	2598.519	2598.889		2599.630	
702	2600.	2600.370		2601.111	2601.481	2601.852 2605.556	2602-222	2602.593	2602.963	2603·333 2607·037	702
$703 \\ 704$		2604.074				2605.556		2610	2606.667		703
705	2611.111	2611.481	2611.852	2612.222	2612.593	2612.963	2613-233	2613.704	2614.074	2614.444	705
7:16		2615.185				2616.667	2617 037	2617.407	2617.778		706
707 708	2618.519	$2618 \cdot 889$ $2622 \cdot 593$			2620· 2623·704		2620·741 2624·444	2621.111 2624.815		2621.852	
709	2625.920	3 2626-296	2626.667	2627.037	2627.407	2627.778	2628.148	2628.519	2628.889	2629.259	709
710	2629.630	2630	2630.370	2630.741	2631.111	2631.481	2631.852	2632-222	2632.593	2632-963	710
711	2633-333	2633-704	2634.074	2634.444	2634.815	2635-185	2635.556	2635-926	2636-296	2636.667	711
712	2637.637				2638.519		2639-259	2639.630	2640	2640.370	
713	2640.741	2641.111	2641.481	2641.852	2642.222	2642.593	2642.963		2643.704		
714	2644·444 2648·148				2645.920	2646-296 2650-	2646.667	2647.037	2647·407 2651·111	2647·778 2651·481	
715		2 2652.222		2652.963	2653.333	2653.704	2654.074	2654.444	2654-815	2655-185	
717	2655-556	3 2655.926	2656-296	2656.667	2657.037	2657.407	2657.778	2658.148	2658.519	2658.889	717
718	2659.259	2659.630 2663.333		2660·370		2661.111 2664.815		2661.852			
719 720	2062-962							2669.259			720
M.A		•1	.2	•3	• • 4	•5	1 .6	.7	•8	•9	M.A.
	1 11	1	<u> </u>	1	1	10 000	-		!	1	·
				MEAN	AKE	AS 661	10 720	•			

CUBIC YARDS TO MEAN AREAS FOR 100 FEET IN LENGTH.

M.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A.
721	2670-270	2670-741	2671.111	2671+481	9671-859	2672.999	2672-502	2672.963	9672.200	2673-704	721
722	2671-074	2671.444	2674.815	2675.185	2675-556	2675-926	2676-996	2676.667	2677.037		722
723	2677.778	2678.148	2678.519	2678 889	2679.259				2680.741		723
724	2681.481	2681.852	2682.222				2683.704		2684.444		724
725	2685.185	2685.556	2685.926							2685.519	725
726	2688.889	$2689 \cdot 259$	2689.630	2690.	2690.370	2690.741	2691.111	2691.481	$2691 \cdot 852$	2692.222	726
727	2092.593	2692.963	2693.333	2693.704	2694.074	2694.444	2694.815	2695.185	2695.556	2695.926	727
728	2696-296	2696 667	2697.037	2697.407	2697.778	2698.148	$2698 \cdot 519$	2698.889	2699.259	2699.630	728
729	2700-	2700.370	2700.741	$2701 \cdot 111$	2701.481	2701.852	2702.222	2702.593	2702.963	2703 333	729
730	2703.704							2706-296			730
1											
731	2707.407	2707.778	2708.148	2708.519	$2708 \cdot 889$	2709-259	2709.630	2710	2710.370	2710.741	731
732	2711.111	2711.481	2711.852	2712.222	2712.593	$2712 \cdot 963$	2713-333	2713.704	2714.074	2714.444	732
733	2714.815	2715.185	$2715 \cdot 556$	$2715 \cdot 926$	2716.296	2716.667	2717.037	$2717 \cdot 407$	2717.778	2718-148	733
784	2718.519	$2718 \cdot 889$	$2719 \cdot 259$	2719.630	2720	2720.370	2720.741	2721.111	2721.481	2721.852	734
735	$2722 \cdot 222$	$\begin{array}{c} 2722 \cdot 593 \\ 2726 \cdot 296 \end{array}$	2722.963	2723.333	2723.704	2724.074	2724.444	2724.815	2725.185	2725.556	735
736	2725.926	$2726 \cdot 296$	2726.667	2727.037	2727.407	2727.778	2728.148	2728.519	$2728 \cdot 889$	2729.259	736
737	2729 630	2730	2730-370	2730.741	$2731 \cdot 111$	$2731 \cdot 481$	2731.852	2732.222	$2732 \cdot 593$	2732.963	737
738	2733.333	$2733 \cdot 704$	2734.074	2734.444	2734.815	$2735 \cdot 185$	$2735 \cdot 556$	2735-926	2736-296	2736.667	738
739					$2738 \cdot 519$	$2738 \cdot 889$	2739.259	2739.630	2740	2740.370	739
740	2740.741	2741.111	2741.481	2741.852	2742.222	2742.593	2742.963	$2743 \cdot 333$	2743.704	2744.074	740
741	$2744 \cdot 444$	$2744 \cdot 815$	$2745 \cdot 185$	$2745 \cdot 556$	2745.926	$2746 \cdot 296$	2746.667	2747.037	2747.407	2747.778	741
742			$2748 \cdot 889$	$2749 \cdot 259$	2749.630	2750°	2750.370	2750.741	2751.111	$2751 \cdot 481$	742
743	2751.852	$2752 \cdot 222$	$2752 \cdot 593$	$2752 \cdot 963$	2753.333	$2753 \cdot 704$	2754.074	2751.444	2754.815	2755-185	743
744		$2755 \cdot 926$	$2756 \cdot 296$	2756-667	2757.037	$2757 \cdot 407$	2757.778	2758 148	2758-519	$2758 \cdot 889$	744
745		2759.630	2760	$2760 \cdot 370$	2760.741	2761.111	2761.481	$2761 \cdot 852$	2762-222	$2762 \cdot 593$	745
746	2762.963	$2763 \cdot 333$	2763.704	2764.074	2764.444	2764.815	2765.185	2765 556	2765.926	2766-296	746
747	2766.667	2767.037	2767.407	2767.778	2768.148	2768.519	2768-889	$2761 \cdot 852$ $2765 \cdot 556$ $2769 \cdot 259$	2769.630	2770	747
748	2770.370	2770.741	2771.111	2771.481	2771.852	2772.222	2772.593	2772.963	2773.333	2773.704	748
749	2774.074	2774.444	$2774 \cdot 815$	2775.185	2775.556	2775.926	2776-296	2776.667			749
750	2777-778	$2778 \cdot 148$	$2778 \cdot 519$	$2778 \cdot 889$	2779.259	2779.630	2780	2780.370	2780.741	2781.111	750
751		$2781 \cdot 852$		$2782 \cdot 593$	2782.963	$2783 \cdot 333$		2784.074		2784.815	751
752		$2785 \cdot 556$		2786.296	2786.667	2787.037	2787.407	2787.778	2788.148	2788.519	752
753	2788.889	$2789 \cdot 259$	2789.630	2790	2790.370	2790.741	2791.111	2791.481	$2791 \cdot 852$	2792-222	753
754		2792.963		2793.704	2794.074	$2794 \cdot 444$	2794.815	2795.185	2795-556	2795.926	754
755	$2796 \cdot 296$			2797-407	2797.778	2798.148	2798.519	2798 889	2799-259	2799.630	755
756	2800*	2800.370	2800.741	2801.111	2801.481	2801-852	2802.222	2802·593 2806·296	2802.963	2803.333	756
757	$2803 \cdot 704$	2804.074	2804.444	$2804 \cdot 815$	2805.185	2805.556	2805.926	2806-296			
758	$2807 \cdot 407$	2807.778	2808-148	2808.519	2808.889	$2809 \cdot 259$	2809.630	2810	2810.370	2810.741	758
759	2811-111	2811.481	2811.852	$2812 \cdot 222$	2812.593	$2812 \cdot 963$	2813-333	2813-704	2814.074	2814.444	759
760	2814.815	2815-185	2815.556	$2815 \cdot 926$	2816-296	2816.667	2817.037	2817:407	2817.778	$2818 \cdot 148$	760
761	2818.519	$2818 \cdot 889$	$2819 \cdot 259$	2819.630		2820.370	2820.741	2821.111			761
762			2822.963			2824.074	2824.444	$2824 \cdot 815$	2825.185	$2825 \cdot 556$	762
763			2826.667					$2828 \cdot 519$			763
764	2829.630		2830.370					2832-222		2832.963	764
765		2833.704						2835.926			765
766 767		2837.407						2839.630		2840.370	766
	2840741	$2841 \cdot 111$ $2844 \cdot 815$	2841.481	2841.852	2842.222	2842.593	2842.963	2843.333			767
768 769	2844.444	2844 815	2845.185				2846.667	2847.037	2847.407	2847.778	
770	2848 148	2848.519	2848.889 2852.593	2849.259	2849.630	2850	2850.370			2851.481 2855.185	
110	2001.002	-004 444	2002 090	2802.903	2000.000	2803.104	2854.074	2854.444	2854.815	2855-185	770
	0000	00000									
771	2855.556	2855.926	2856-296			2857.407		$2858 \cdot 148$	2858.519	2858-889	771
772	2859.259	2859.630	2860*	2860.370		2861.111	2861.481		2862.222	2862.593	772
773	2802.963	2863-333	2863.104	2864.074	2864.444	2864.815	2865.185	2865.556	2865-926	2866-296	773
774	2800.007	2807.037	2867.407		2868.148		2868.889	2869-259	2869.630	2870	774
775		2870.741			2871.852			2872 963		2813.104	775
776	2011014	2874.444	20/4'815		2875.556					2877.407	776
777	2011-118	2878.148	2818.919		2879-259		2880	2880.370	2880.741	2881.111	777
778		2881.852						2884.074	2884.444		778
779 780	2885-185 2888-889	2885.556 2889.259	2889.620	2886·296 2890·	2886*667 2890·370	2887.037 2890.741	2887.407 2891.111	2887.778 2891.481	2888·148 2891·852	2888.519 2892.222	779
M.A	•0	•1	•2	•3					•8		
A.A	-0	.1	-%	•3	•4.	•5	•6	•7		•9	M.A.
			:	MEAN	AREA	IS 721	to 780).			

185

M.A.	•0	•1	•2	•3	•4	•5	•6	.7	•8	•9	M.A
781	2892.593	2892.963	2893-333	2893.704	2894.074	2894.444	2894.815	2895.185	2895.556	2895.926	781
782	2896.296	2896 667				2898 148				2899.630	782
	2900.	2900.370			2901.481					2903.353	783
784	2903.704			2904.815	2905.185	2905.556	2905.926	2906-296	2906.667	2907.037	784
785	2907.407			2908'519		2909-259		2910	2910.370	2910 741	785
786	2911.111	2911.481					2913-333		2914.074	2914.444	7.80
787									2917.778	2918.148	787
788	2918.519	$2918 \cdot 889$			2920			2921.111	2921.481	2921.852	78
789					2923.704	2924.074	2924.444	2924-815	2925 185	2925-556	78
790	2925.926	2926-296	2926.667	2927.037	2927.407	2927.778	2928.148	2928-519	2928-889	2929-259	79
791	2929.630			2930-741			2931.852	2932-222	2932•593	2932 [.] 963	79
792		2933.704	2934.074				2935-556	$2935 \cdot 926$	2936-296	2936.667	79
793		$2937 \cdot 407$		$2938 \cdot 148$				2939 630	2940	2940.370	79
794		$2941 \cdot 111$		$2941 \cdot 852$	2942.222		2942.963		2943.704	2944.074	79
795				2945.556		2946-296				2947.778	79
796				2949·259 2952·963		2950 2953 704	2950·370 2954·074		2951.111 2954.815	2951-481 2955-185	79
797 798	2951.852					2955.104	2954 014	2958.148	2958.519	2955-185	79
799	2959 259				2960.741	2961.111	2961.481	2961.852	2962.222	2962.593	
800	2962.963				2964.444		2965.185	2965.556	2965.926	2966-296	80
000	2002 000	2000 000	2000 101	2001 011	2001 111	2001 010	2000 100	2000 000	2000 020	2000 200	00
801				2967.778	2968-148		2968-889		2969-630		80
802	2970.370				$2971 \cdot 852$		2972-593	2972 963			80
803		2974-441		2975.185	2975.556	2975-926	2976-296	2976.667	2977.037	2977.407	80
801		2978.148	2978-519	2978-889	2979-259	2979.030	2980	2980-370	2980.741	2981.111	80
$\frac{805}{806}$	2981-481 2985-185		2982 222 2985 926	2982·593 2986·296	2982-963 2986-667	2983-333 2987-037	2983·704 2987·407	2984.074 2987.778	2984·444 2988·148		80
807		2989.259		2990.290	2990 370	2990.741	2991.111	2991.481	2991.852		
808		2992.963			2994.074	2994.444	2994.815	2995.185	2995.556		
809	2996-296				2997.778		2998.519		2999 259		
810	3000.	3000-370		3001-111	3001.481	3001.852	3002-222		3002.963		
811	2002.704	3004.074	2004.444	2004-015	2005-105	3005.556	2005-026	2006-206	3006.667	3007.037	81
811		3004.074					3009.630		3010.370		
813		3011.481									
814		3015.185					3017.037	3017 407	3017.778	3018.148	
815		3018-889		3019.630		3020-370			3021.481	3021.852	
816	3022-222										
817	3025.926				3027.407	3027.778		3028.519			
818	3029.630		3030.370			3031.481		3032.222			
819		3033.704			3034.815	3035.185	3035.556	3035.926	3036-296	3036-667	81
820	3037.037	3037.407		3038-148	3038.519	3038-889	3039-259	3039 630	3040	3040.370	
821	3010-711	3041-111	3041-491	3041.852	2012.220	3042-503	3042.963	3043-333	3043.704	3014-074	82
822		3044.815				3042 393		3047.037	3017-407	3047.778	8
823		3048.519		3019 259				3050.741	3051-111	3051.481	
824		3052-222				3053.704			3054-815		
825		3055-926			3057.037	3057.407	3057.778	3058.148	3058-519		
826	3059-259	3059.630	3060-	3060-370	3060.741	3061.111	3061.481	3061.852	3062-222	3062.593	8
827	3062.963	3063.333	3063.704	3064.074	3064.444	3064.815			3065-926		
828	3066.667	3067.037	3067.407	3067.778	3068.148	3068-519	3068-859				82
829	3070-370										
830	3074.074	3074.444	3074.815	3075-185	3075.556	3075-926	3076-296	3076-667	3077.037	3077.407	8
831	3077.778	3078-149	3078-519	3078-889	3079-250	3079.630	3080.	3080-370	3080.741	3081-111	8
832	3081.481			3082.593							
833	3085-185				3086-667	3087.037	3087.407	3087.778		3088-519	
834	3088.889	3089-259			3090.370	3090.741	3091.111	3091.481	3091.852	3092-222	
825	3092.59:	3 3092.96	3093-333	3093.704	3094.074	3094.444	3094-815	3095.185	3095-556	3095-926	
836	3096-296	3096·667	3097.037	3097.407	3097.778	3098.148	3098-519	3098 889	3099-259	3099.630	0 8
837	3100-	3100.370	3100.741	3101.111	3101.481	3101.852			3102.963		
838	3103-704	3104.074	3104.444	3104.815	3105.185			3106-296		3107.037	
839	3107.407		3108-148	3108-519	3108-889	3109-259	3109.630		3110.370		
840	3111.111	3111.481	3111-852	3112-222	3112.593	3112.963	3115-333		3114.074		8
M.A.	•0	•1	.2	•3	•4	•5	•6	.7	•8	.9	M.

M.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A.
841	3114-815	3115-185	3115.556	3115.926	3116-296	3116:667	3117.037	3117.407	3117.778	3118.148	841
842	3118-519	3118.889	3119.259	3119.630	3120	3120.370		3121.111	3121.481	3121.852	842
843	3122.222		3122.963	3123.333	3123.704	3124.074	3124.444	3124-815	3125.185	3125.556	843
814	3125.926	3126.296	3126.667	3127.037	$3127 \cdot 407$	3127.778	3128.148	3128.519	$3128 \cdot 889$	$3129 \cdot 259$	844
845	3129.630	3130	3130.370	3130.741	$3131 \cdot 111$	3131.481	3131.852	$3132 \cdot 222$	$3132 \cdot 593$	3132.963	845
846	3133-333	3133.704	3134.074	3134.444	3134.815	3135.185	3135.556	3135.926	3136-296		846
847	3137.037	$3137 \cdot 407$	3137.778	3138.148	3138.519	3138.889	3139.259	3139.630	3140*	3140.370	847 848
848 849	3140741	3141.111	$3141 \cdot 481$ $3145 \cdot 185$	9115-556	3142-223	3142°093 2116:900	2146-667	3143 333	3145'704	3144.074	848
	3148.148	3148-510	3148-889	3149-259	3149-630	3150	3150:370	3150-741	3151.111	3151-481	850
000	9140 140	0140 010	0110 000	0140 200	0110 000	0100	0100 010	0100 / 11	0101 111	0101 101	000
851			$3152 \cdot 593$								851
	3155.556	3155.926	3156-296	3156.667	3157.037	$3157 \cdot 407$	3157.778	3158-148	3158.519	3158-889	852
	3159.259			3160-370	3160.741	3161-111	3161.481	3161-852	3162.222	3162.993	853 854
$854 \\ 855$	3162.963		3163.704 3167.407						3169.630		855
856	3170-370	3170-741	3171-111	3171.181	3171-859	3100 010	3100 000	3172-063	3173-333	3173.704	856
857		3174-444	3174.815	3175.185		3175.926		3176.667	3177.037	3177.407	857
858			3178.519			3179.630	3180	3180.370	3180 741	3181-111	858
859	3181 481	$3181 \cdot 852$	$3182 \cdot 222$	3182.593	3182.963	3183.333	3183.704	3184.074	3184.444	3184.815	859
860	3185.185	3185.556	3185.926	$3186 \cdot 296$	3186.667	3187.037	$3187 \cdot 407$	3187.778	3188.148	3188.519	860
861	3188.889	3189-259	3180-630	3190.	3190.370	3190.741	2101.111	2101-191	$3191 \cdot 852$	3102-222	861
862		3192.963	3193-333		3194.074			3195-185	3195.556	3195-926	862
863		3196.667				3198.148			3199.259		863
861	3200	3200.370	3200.741	3201.111	3201.481	3201.852	3202.222	3202.593	3202.963		864
865		3204.074	3204.444	3204.815					3206.667		865
866			$3208 \cdot 148$					3210.	3210.370	3210.741	866
867	3211.111	3211.481	3211.852		3212.593	3212.963	3213.333		3214.074		867
868	3214.815	$3215 \cdot 185$	$3215 \cdot 556$		3216-296	3216.667		3217.407		3218.148	868
869		3218-889		3219.630	3220		3220.741	$3221 \cdot 111$	3221.481	3221.852	869
870	3222.222	3222-593	3222.963	3223.333	3223.704	3224.074	3224.444	3224.815	3225.185	3225.556	870
871			3226.667			3227.778	3228.148	3228.519	3228.889	3229.259	871
872	3229.630		3230.370		3231.111	$3231 \cdot 481$	3231.852	3232-222	3232.593	3232.963	872
873		$3233 \cdot 704$	3234.074	3234.444		3235-185			3236-296	3236.667	873
874		3237.407	3237.778	3238-148	3238.519	3238.889			3240	3240 370 3244 074	874
875 876	3240 741	3241·111 3244·815	3241.481	3241.852	3242·222 3245·926	3242·593 3246·296		3243·333 3247·037	3243.704 3247.407	3247.778	875 876
877		3248.519			3249.630		3250-370		3251.111		877
878			3252.593	3252.963	3253-333	3253-704					878
879		3255.926			3257.037	3257.407					879
880		3259.630			3260 741		3261.481			3262.593	880
881	2000.082	0.000.000	2282.701	9984-071	0001.111	0001-015	0005.105	DARE.FFC	900E 00E	2266.206	881
881	3202.903	3203 333	3263·704 3267·407	3204 074	3264.444	3201-815	3203 189	3205.500	3203 920	3200.290	882
883			3271-111								853
884			3274.815							3277.407	884
885	3277.778	3278.148	3278-519	3278-889	3279-259	3279-110	3280	3280-370	3280.741	3281.111	885
886	3281.481	3281.852	3282.222	3282.593			3283.704	3284.074	3284.444	3284-815	886
857			3285.926		3286-667	3287.037	3287.407	3287.778	3288.148	3288.519	887
888	3288.889		3259.630		3290.370	3290.741		3291.481	3291.852	3292.222	
889	3292.593	3292-963	3293.333	3293.704	3294.074	3294 444		3295-185	3295.556	3295.926	
890	3296-296	3296.667	3297.037	3297.407	3297.778	3298.148	3298.519	3298.889	3299.259	3299.630	890
801	3300.	0000.070	0000.845	0001 11-	0001 401	anot ore	0000 000	0000 700	0000.000	2202.220	001
891					3301.481	3301-852			3302.963	3303-333	891 892
892 893	3307-407	3301-074	3304.444	3304-815		3305-556	3305·926 3309 630		3306.667	3310 741	892
894	3311-111	3311-491	$3308 \cdot 148$ $3311 \cdot 852$	3310.000	9919.509	3319.069	2313.333	3313-704	3314-074	3314.444	894
895	3314-815	3315-185	3315.556	3315-926	3316-206	3316-667	3317 037	3317.407	3317.778	3318.148	895
896	3318.519	3318.889	3319.259	3319-630	3320*			3321.111		3321.852	896
897	3322.222	3322.593	3322.963	3323.333	3323 704	3324.074	3324.444	3324.815	3325.185	33:25.556	897
898	3325.926	3326.296	3326.667	3327.037	3327.407	3327.778	3328.148	3328.519	3328.889	3329.259	898
899	3329.630	3330	3330.370		3331.111	3331 481	3331.852	3332 222	3332.203	3332.963	899
900	3333-333	3333.704	3334 074	3331.444	3334.815	3335-185	3335.556	3335-926	3336-296	3336.667	900
M.A	•0	•1	.2	•3	•4	•5	•6	.7	•8	•9	M.A.

8

M.A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A.
M.A.		•1	•%	•3	•4	•9	••			•9	M.A.
901	3337.037	3337.407	3337.778	$3338 \cdot 148$	$3338 \cdot 519$	3338-889	$3339 \cdot 259$	3339.630	3340.	3340.370	901
902	3340.741			$3341 \cdot 852$				$3343 \cdot 333$	3343.704	3344.074	902
903				$3345 \cdot 556$		$3346 \cdot 296$	3346.667			3347.778	903
904 905	3348.148 3351.852		3348·889 3352·593	$3349 \cdot 259$ $3352 \cdot 963$		3350	3350.370 3354.074			3351.481	904
905	3355.556		3356-296			3353.704 3357.407	3357.778	3358.148		$3355 \cdot 185$ $3358 \cdot 889$	905 906
907	3359-259	3359 630	3360*	3360.370		3361.111	3361.481	3361.852		3362.593	907
908	$3362 \cdot 963$	3363.333	3363.704	3364 074	3364.444	3364.815		3365.556	3365.926	3366-296	908
909		3367 037	3367-407		3368.148	3368.519					909
910	3370.370	3370.741	$3371 \cdot 111$	$3371 \cdot 481$	3371.852	3372-222	3372.593	3372.963	3373·333	3373.704	910
911	3374.074	$3374 \cdot 444$	$3374 \cdot 815$	$3375 \cdot 185$	$3375 \cdot 556$		$3376 \cdot 296$	3376.667	3377.037	3377.407	911
912 913		3378.148		3378-889	3379.259	3379.630	3380*	3380.370		3381.111	912
913		3381.852 3385.556				3383·333 3387·037		3384.074		$3384 \cdot 815$ $3388 \cdot 519$	913 914
915		3389.259		3390.		3390.741		3391.481		3392.222	915
916	3392.593	$3392 \cdot 963$	3393-333	3393.704	3394.074	3394.444	$3394 \cdot 815$	3395.185	$3395 \cdot 556$	3395.926	916
917			3397.037		$3397 \cdot 778$		3398.519	3398.889	$3399 \cdot 259$	3399-630	917
918 919	3400· 3403·704		3400 741	3401.111	5401.481	3401.852 3405.556		3402·593 3406·296	3402.963	3403.333	918
920		3404.074 3407.778		3404·815 3408·519		3409.259			3406.667 3410.370	3410.741	919 920
020	0101 101	5101 110	0100 110	510 015	0100 000	0100 200	0100 000	0110	0110 010	5110 / 11	920
921	9117-111	9411-401	9411-050	9110.000	3412.593	9410-009	9419.999	9419-704	3414.074	3414.444	0.07
921	3414.815	$3411 \cdot 481$ $3415 \cdot 185$	3411.852 3415.556	3412.222	3412.593	3412.963	3417.037	3413.704	3414.074 3417.778	3414.444	921 922
923	3418.519			3419 630	3420	3420.370		3421.111			923
924	3422.222	3422.593	3422.963	3423.333	3423.704	3424.074	3424.444	3424.815	3425.185	3425.556	924
925	3425.926	$3426 \cdot 296$	3426.667			3427.778					925
926 927	3429.630	3430. 3433.704	3430.370	3430.741	3431.111	3431.481	3431.852 3435.556		$3432 \cdot 593$ $3436 \cdot 296$		926
928			3437.778		3438.519		3439.259		3430 296	3440.370	927 928
929		3441-111	3441.481	3441.852	3442.222	3442.593	3442.963	3443.333		3444.074	
930	3444.444	3444.815		3445.556	3445.926	3446-296	3446.667	3447.037	3447.407	3447.778	930
931	3448.148	3448.519	3448.889	3449.259	3449.630	3450.	3450.370			3451.481	931
932		3452.222							$3454 \cdot 815$		932
933 934		3455.926			3457.037	3457.407			3458.519		
935		3459.630 3463.333		3460.370		3461.111 3464.815					
936	3466 667	3467.037	3467.407	3467.778		3468.519				3470	936
937	3470.370	3470.741	3471.111	3471.481	3471.852		3472.593	3472.963	3473.333	3473.704	937
938		3474.444		3475.185	3475.556	3475.926				3477.407	
939 940	3477.778	3478·148 3481·852	3478.519	3478.889	3479.259	3479 630	3480.	3480.370	3480.741	$3481 \cdot 111$ $3484 \cdot 815$	
540	3401 401	0101 002	0102.222	3462-595	0102 900	0400 000	0100 101	0401 014	3484.444	0404 010	940
0.11							0.405 405				
941 942	3485-185	$3485 \cdot 556$ $3489 \cdot 259$	3485.926	3486-296	3486 667		3487.407	3487.778 3491.481	3488.148	3488.519	
943	3492.593	3492.963	3403-333	3490	3494.074	3490.741	3494.815	3491.481	3491.852	3492.222	942 943
944	3496-296	3496 667	3497.037	3497.407	3497.778	3498.148	3498.519	3498.889	3499.259	3499.630	944
945	3500	3500.370	3500.741	3501.111	\$501.481	3501.852	3502.222	$3502 \cdot 593$	3502.963	3503.333	945
946 947	3503·704 3507·407	3504.074	3504.444	3504-815	3505 185	3505.556	3505.926	3506.296	3506.667	3507.037	
947	3511.111	3507.778	3508.148 3511.852	3508·519 3512·222	3508-889 3512-593		3509·630 3513·333	3510· 3513·704	3510.370 3514.074		
949	3514.815										
950	3518.519					3520.370				3521.852	
											1
951	3522.222	3522.593	3522.963	3523-333	3523.704	3524.074	3524.444	3524.815	3525-185	3525.556	951
952	3525.926	3526.296	3526.667	3527.037	3527.407	3527.778	3528.148	3528.519	3528.889	3529.259	952
953	3529 630		3530.370		3531.111	3531.481					
-954 955	3533·333 3537·037									3536.667 3540.370	
956		3541.111		3541.852	3542.222	3542.593	3542.963		3543.704		
957	3544.444	3544.815	3545-185	3545.556			3546.667	3547.037	3547.407	3547.778	
958	3548.148	3548.519	3548.889	3549.259				3550.741	3551.111	$3551 \cdot 481$	
959 960		3552-222		3552.963			3554.074 3557.778				
		3555-926	3556.296	3556.667	3557.037	3557.407	0001-118	3558.148	3558.519	3558.889	960
M.A.	•0	•1	.2	•3	•4	•5	•6	.7	•8	•9	M.A.
	1	1	1		1		1	I		1	1
MEAN AREAS 901 to 960.											

CUBIC YARDS TO MEAN AREAS FOR 100 FEET IN LENGTH.

1. A.	•0	•1	•2	•3	•4	•5	•6	•7	•8	•9	M.A.
961	3559.259	3559.630	3560.	3560.370	3560.741	3561.111	3561-481	3561.852	3562.222	3562.593	961
962		3563.333	3563.704					3565.556	3565.926	3566.296	962
963	3566.667							3569.259			963
964	3570.370		3571.111		3571.852			3572.963			964
965	3574.074		3574.815				3576-296		3577.037		965
966		3578.148	3578.519		3579-259	3579.630			3580.741	3581.111	966
967		3581.852				3583 333	$3583 \cdot 704$	3584.074	3584.444	3584.815	967
968				3586-296	3586.667	3587.037	3587.407	3587.778	3588.148	3588.519	968
969		3589.259		3590		3590.741	3591.111	$3591 \cdot 481$	3591.852	3592.222	969
970	3592-593	3592.963	3593-333	3593.704	3594.074	3594-444	3594-815	3595•185	3595+556	3595-926	970
971	3506-206	3596.667	3597.037	3597-107	3597.778	3598-148	3598.519	3598.889	3599.259	3599-630	971
972	3600			3601.111		3601.852		3602.593			972
973	3603.704			3604-815				3606-296		3607.037	973
974				3608.519			3609-630		3610-370		974
975				3612.222				3613.704			975
976				3615.926					3617.778		976
977				3619.630				2621.111	3621.481	$3621 \cdot 852$	977
978								3624.815	3625.185	3625.556	
979		3626-296			3627.407	3627.778	3628.148	3628.519	2628.889	$3629 \cdot 259$	
980	3629.630	3630.	3630.370	5630.741	3631.111		3631.852		3632-593		980
981	202.999	2622-701	3631-074	3634-444	3634-915	9895-195	3635-556	3635-026	3636-296	3636-667	981
982	13637-037			3638 148			3639-259			3610 370	
983		3641.111		3641.852				3643.333		3644.074	
984	3644.444			3645.556			3646.667		3647.407	3647.778	
985		3648.519			3649 630	3650	3650.370		3651-111	3651.481	985
986				3652.963				3654.444			
987		3655.926						3658.148			
988		3659.630			3660 741		3661.481		3662.222		
989		3663.333			3664.444			3665.556			
990	3666.667				3668 148	3668.519				3670	990
991	3670-970	3670.741	3671-111	3671.481	2671-870	3672.222	3672.593	3679.042	3673-333	3673.704	991
992		3674.444			3675.556			3676.667		3677.407	
993		3678.148			3679-259				3680 741		
994		3681-852			3682.963			3684 074			
995				3686-296		3687.037		3687.778			
996		3689-259			3690.370			3691.481			
997		3692.963						3695-185			
998		3696-667						3698-889			
999	3700			3701-111					3702.963		
1000		3704.074						3706-296			
M.A	•0	•1	•2	•3	•4	•5	•6	.7	•8	.9	M.A

NOTE. — This Table having been carefully computed by the Author, through the usual method of successive additions, and verified in the manuscript, was set up by a skilful printer, and the proofs examined, and re-examined, until they were thought to be free from error; *finally*, the plates were cast, and the revises taken from them submitted, page by page, to the scrutiny of a competent Civil Engineer, who examined the whole, figure by figure, and ultimately reported but few slight mistakes, which were immediately corrected in the plates themselves; so that every precaution having been taken to secure accuracy:—the Author feels justified in declaring his belief, *that the Table above is entirely clear of any material error*.

189

SCIENTIFIC BOOKS,

PUBLISHED BY

D. VAN NOSTRAND,

23 MURRAY STREET, and 27 WARREN STREET,

NEW YORK.

- PLATTNER'S MANUAL OF QUALITATIVE AND QUANTI-TATIVE ANALYSIS WITH THE BLOWPIPE. From the last German edition, revised and enlarged. By Professor TH. RICHTER. Translated by Prof. HENRY B. CORNWALL, E. M. Illustrated with eighty-seven woodcuts and one lithographic plate. 560 pages, Svo. Cloth. \$7.50.
- LOWELL HYDRAULIC EXPERIMENTS—being a selection from Experiments on Hydraulic Motors, on the Flow of Water over Weirs, and in Open Canals of Uniform Rectangular Section, made at Lowell, Mass. By J. B. FRANCIS, Civil Engineer. Third edition, revised and enlarged, including many New Experiments on Gauging Water in Open Canals, and on the Flow through Submerged Orifices and Diverging Tubes. With 23 copperplates, beautifully engraved, and about 100 new pages of text. 1 vol., 4to. Cloth. \$15.
- FRANCIS (J. B.) ON THE STRENGTH OF CAST-IRON PIL-LARS, with Tables for the use of Engineers, Architects and Builders. Svo. Cloth. \$2.
- USEFUL INFORMATION FOR RAILWAY MEN. Compiled by W. G. HAMILTON, Engineer. Fourth edition, revised and enlarged. 570 pages. Pocket form. Morocco, gilt. \$2.
- WEISBACH'S MECHANICS. New and revised edition. A Manual of the Mechanics of Engineering, and of the Construction of Machines. By JULIUS WEISBACH, PH. D. Translated from the fourth augmented and improved German edition, by ECKLEY B. COXE, A. M., Mining Engineer. Vol. I.—Theoretical Mechanics. 1 vol. 8vo, 1100 pages, and 902 woodcut illustrations, printed from electrotype copies of those of the best German edition. \$10.

ABSTRACT OF CONTENTS.—Introduction to the Calculus—The General Principles of Mechanics—Phoronomics, or the Purely Mathematical Theory of Motion—Mechanics, or the General Physical Theory of Motion—Statics of Rigid Bodies—The Application of Statics to Elasticity and Strength—Dynamics of Rigid Bodies—Statics of Fluids— Dynamics of Fluids—The Theory of Oscillation, etc.

"The present edition is an entirely new work, greatly extended and very much improved. It forms a text-book which must find its way into the hands not only of every student, but of every engineer who desires to refresh his memory or acquire clear ideas on doubtful points."—The Techno-Logist.

D. VAN NOSTRAND'S LIST OF SCIENTIFIC BOOKS.

- A TREATISE ON THE PRINCIPLES AND PRACTICE OF LEVELLING. Showing its application to purposes of Railway Engineering and the Construction of Roads, etc. By FREDERICK W. SIMMS, C. E. From the fifth London edition, revised and corrected, with the addition of Mr. Law's Practical examples for Setting Out Railway Curves. Illustrated with three lithographic plates and numerous woodcuts. 8vo. Cloth. \$2.50.
- PRACTICAL TREATISE ON LIMES, HYDRAULIC CEMENTS, AND MORTARS. Containing reports of numerous experiments conducted in New York City, during the years 1858 to 1861, inclusive. By Q. A. GILLMORE, Brig.-General U. S. Volunteers, and Major U. S. Corps of Engineers. With numerous illustrations. Third edition. 8vo. Cloth. \$4.
- COIGNET BETON, and other Artificial Stone. By Q. A. GILLMORE, Major U. S. Corps Engineers. Nine plates and views. Svo. Cloth. \$2.50.
- A TREATISE ON ROLL TURNING for the Manufacture of Iron. By PETER TUNNER. Translated and adapted. By JOHN B. PEASE, of the Pennsylvania Steel Works. With numerous engravings and woodcuts. 1 vol. 8vo, with 1 vol. folio of plates. Cloth. \$10.
- MODERN PRACTICE OF THE ELECTRIC TELEGRAPH. A Hand Book for Electricians and Operators. By FRANK L. POPE. Fifth edition. Revised and enlarged, and fully illustrated. Svo. Cloth. \$2.
- TREATISE ON OPTICS; or, Light and Sight Theoretically and Practically Treated, with the application to Fine Art and Industrial Pursuits. By E. NUGENT. With 103 illustrations. 12mo. Cloth. \$2.
- THE BLOW-PIPE. A System of Instruction in its practical use, being a graduated course of Analysis for the use of students, and all those engaged in the Examination of Metallic Combinations. Second edition, with an appendix and a copious index. By Professor GEORGE W. PLYMPTON, of the Polytechnic Institute, Brooklyn. 12mo. Cloth. \$2.
- KEY TO THE SOLAR COMPASS and Surveyor's Companion; comprising all the Rules necessary for use in the Field. By W. A. BURT, U. S. Deputy Surveyor. Second edition. Pocket Book form. Tucks. \$2.50.
- MECHANIC'S TOOL BOOK, with practical rules and suggestions, for the use of Machinists, Iron Workers, and others. By W. B. HARRISON, associated editor of the "American Artisan." Illustrated with 44 engravings. 12mo. Cloth. \$2,50.
- MECHANICAL DRAWING. A Text-Book of Geometrical Drawing for the use of Mechanics and Schools, in which the Definitions and Rules of Geometry are familiarly explained; the Practical Problems are arranged, from the most simple to the more complex, and in their description technicalities are avoided as much as possible. With illustrations for Drawing Plans, Sections, and Elevations of Buildings and Machinery; an Introduction to Isometrical Drawing, and an Essay on Linear Perspective and Shadows. Illustrated with over 200 diagrams engraved on steel. By WM. MINIFIE, Architect. Eighth edition. With an appendix on the Theory and Application of Colors. 1 vol., 8vo. Cloth. \$4.

D. VAN NOSTRAND'S LIST OF SCIENTIFIC BOOKS.

A TEXT BOOK OF GEOMETRICAL DRAWING. Abridged from the octavo edition, for the use of Schools. By W. MIMFIE. Illustrated with 48 steel plates. New edition, enlarged. 1 vol., 12mo. Cloth. \$2.

"It is well adapted as a text-book of drawing to be used in our High Schools and Academies where this useful branch of the fine arts has been hitherto too much neglected."—Boston Journal.

- TREATISE ON THE METALLURGY OF IRON. Containing outlines of the History of Iron manufacture, methods of Assay, and analysis of Iron Ore, processes of manufacture of Iron and Steel, etc., etc. By H. BAUERMAN. First American edition. Revised and enlarged, with an appendix on the Martin Process for making Steel, from the report of Abram S. Hewitt. Illustrated with numerous wood engravings. 12mo. Cloth. \$2.50.
- IRON TRUSS BRIDGES FOR RAILROADS. The Method of Calculating Strains in Trusses, with a careful comparison of the most prominent Trusses, in reference to economy in combination, etc., etc. By Brevet Colonel WILLIAM E. MERRILL, U. S. A., Major Corps of Engineers. With illustrations. 4to. Cloth. \$5.
- THE KANSAS CITY BRIDGE. With an account of the Regimen of the Missouri River, and a description of the Methods used for Founding in that River. By O. CHANUTE, Chief Engineer, and GEORGE MORISON, Assistant Engineer. Illustrated with five lithographic views and 12 plates of plans. 4to. Cloth. \$6.
- CLARKE (T. C.) Description of the Iron Railway Bridge across the Mississippi River at Quincy, Illinois. By THOMAS CURTIS CLARKE, Chief Engineer. Illustrated with numerous lithographed plans. 1 vol., 4to. Cloth. \$7.50.
- AUCHINCLOSS. Application of the Slide Valve and Link Motion to Stationary, Portable, Locomotive, and Marine Engines, with new and simple methods for proportioning the parts. By WILLIAM S. AUCHIN-CLOSS, Civil and Mechanical Engineer. Designed as a handbook for Mechanical Engineers, Master Mechanics, Draughtsmen, and Students of Steam Engineering. All dimensions of the valve are found with the greatest ease by means of a PRINTED SCALE, and proportions of the link determined without the assistance of a model. Illustrated by 37 woodcuts and 21 lithographic plates, together with a copperplate engraving of the Travel Scale. 1 vol., 8vo. Cloth. \$3.
- GLYNN ON THE POWER OF WATER, as applied to drive Flour Mills and to give motion to Turbines and other Hydrostatic Engines. By JOSEPH GLYNN, F. R. S. Third edition, revised and enlarged, with numerous illustrations. 12mo. Cloth. \$1.25.
- HUMBER'S STRAINS IN GIRDERS. A Handy Book for the Calculation of Strains in Girders and Similar Structures, and their Strength, consisting of Formulæ and Corresponding Diagrams, with numerous details for practical application. By WILLIAM HUMBER. 1 vol., 18 mo. Fully illustrated. Cloth. \$2.50.

*** Any of the above Books sent free, by mail, on receipt of price.

My new Catalogue of American and Foreign Scientific Books, 72 pages, 8vo., sent to any address on the receipt of *Ten* cents. ESTABLISHED 1820.

WM. J. YOUNG & SONS,

SUCCESSORS TO

Wm. J. Young. Wm. J. Young & Son, Wm. J. Young & Co.,

MATHEMATICAL AND ENGINEERING

INSTRUMBNT

MANUFACTURERS,

No. 43 NOBTH SEVENTH ST.,

PHILADELPHIA.

TRANSITS, LEVELS, SOLAR GOMPASSES, ETC.,

Of most approved construction, with latest improvements in both Instruments and Telescopes.

Instruments constructed on scientific principles, guaranteed to afford greatest strength and durability with least weight.

Tapes, Chains, Draughting Instruments, and all supplies for Field and Office.

Especial attention of Engineers called to Profile Field Book. T. R. CALLENDER.

JOHN P. HUNT

T. R. CALLENDER & CO., Publishers, Booksellers and Newsdealers, N. W. COR. THIRD AND WALNUT STREETS, PHILADELPHIA. GENERAL SUBSCRIPTION AGENCY For American, English and French Newspapers and Magazines.

Subscriptions received for all the American and Foreign Scientific Magazines and Periodicals. Among them the following, at the annexed prices, United States currency :—

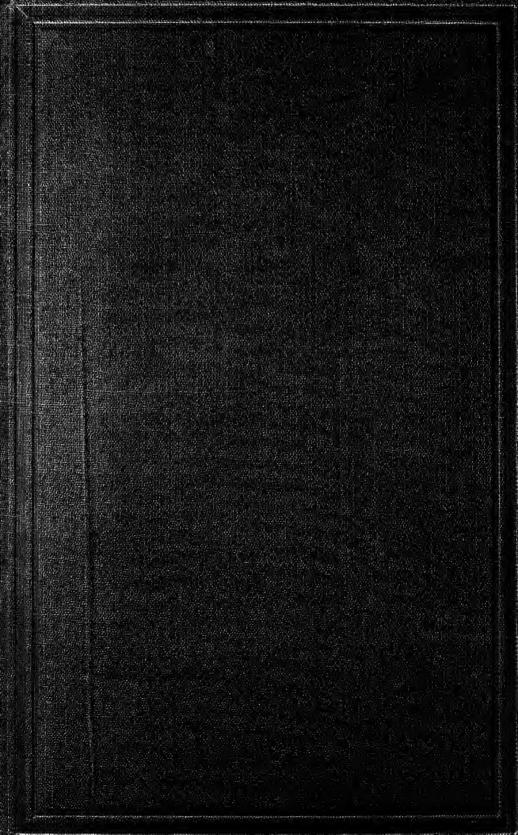
Appleton's Monthly	00
Chemical News12	00
Colburn's United Service Maga-	
zine22	00
English Mechanic	00
English Mechanic and Mirror of	
Science 6	00
Geological Magazine10	00
London Artisan7	00
London Builder13	00
London Engineer, including Sup-	
plements	00
London Engineering12	00
London, Edinburgh and Dublin	
Journal of Phil. Science21	00
London Mining Magazine14	00
London Mechanics' Magazine12	00
London Monthly Microscopical	
Journal19	00
London Nature 6	00
London Nautical Magazine 7	00
London Popular Science Review. 5 London Mining Journal14	00
London Mining Journal14	00
London Railway Times14	00
London Chemist and Druggist,	
3.C 41.1	00
London Geological Magazine 9	00
Micriscopal Monthly 9	00
Monthly	00
" " Geological	1.1
Society10	00
Quarterly Journal of Micriscopical	
belence	00
Scientific American 3	00
Van Nostrand's Ecletic Engineer-	
ing Magazine 5	00
Workshop (The) 5	50

Album indusiriel et de la chaussure\$ 5 00 Ameublement (l') et l'utile reunis. Noir 7 50 do. Couleur.....12 50 Annales du Conservatoire imperial des arts et metiers.....10 00 Architecture allemande au XIX le Moituer des batiments reunis. 7 50 Garde-Meuble (le.) Noir..... 5 65 Couleur 9 00 Gazette des architectes et du batiment.....12 50 Guide [le] du carrossier.....12 09 Journal de Menuiserie.....12 00 Journal des Brasseurs 7 00 Jonrnal des Chapeliers et de la Chapellerie..... 7 00 Journal-Manuel de Peintures appliquees a la decoration des monuments apartments, maga-Moniteur de la bijouterie 7 00 Moniteur de la brasserie...... 6 00 Moniteur de la chapellerie ou l'Echo des applications qui se rapportent a cette industrie..... 6 00 Moniteur de l'horlogerie 7 00 Moniteur des Architectes.....12 50 Moniteur des marbriers-sculpteurs 7 00 Revue general de l'architecture et . des travaux publics..... 20 00

Catalogues of Scientific and Mechanical Works furnished on applieation. T. R. CALLENDER & CO.

UNIVERSITY OF CALIFORNIA LIBRARY

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW


MAR 17 1915

6 Feb'52AI

24 m 5 9 [1

30*m*-1,'15

YC 13 UNIVERSITY OF CALIFORNIA LIBRARY

