

-

THE

EDINBURGH ENCYCLOPADIA,

DAVID BREWSTER, L. L. D. F.R.S.

adith the agsistame of

GENTLEMEN EMINENT IN SCIENCE AND LATERATURE.

THE

FIRST AMERICAN EDITION,

corrected and improbed be the adrition of mumerous articles relation to

THE INSTITUTIONS OF TIIE AMERICAN CONTINENT,

SCIENCE AND THE ARTS.

IN EIGIITEEN VOLUMES.
Vol. XVII.
\#\#hitadelphian:
PUBLISHED BY JOSEPH PARKER.
1832.

Wilham Brown, Printer.

THE AMERICAN EDITION

OF THE NEW

EDINBURGH ENCYCLOP EDIA.

SCULPTURE

The principle of imitation is founded decp in the nature of man-in nations-as in the individual carly beginning to manifest a decided and happy influence. In the fine arts, this principle supplies at once the source of inspiration, and, to a certain extent, the standard of excellence. Viewed in their general tendency and design, poetry, painting, sculpture, architecture, and even music-all contemplate one end, namely, to awaken associated emotion; while each employs the same means of direct, or of less obvious imitation.

In none of the arts now mentioned, however, is imitation the final object or criterion of the exalted and most refined cfforts of the artist. In all, imitation is merely the instrument of accomplishing high and peculiar cffects; neither in the varied application of the common means does the individuality or essential character ol each reside.

These positions conduct to important conclusions. It is not seldom assumed, that not only is imitation the origin of all art, but that the sole difference between its various branches lies in the manner of imitating. In short, that " painting is silcnt poctry-poctry, a speaking picture;" or, generally, that the abstract idea or image formed in the mind is identical in all, although particular arts may require diversificd or even opposite modes of expression. This theory is partial and erroneous. In each of the arts, a distinction exists not in the manner alone, but still more cssentially in the objects and cxtent of imitation; as also in the facility to be preserved of tracing the sensible architypes or primitive thoughts, on which the associated feeling is cngrafted. The creations by which the poet rouses our sympathies, or sways our affections, of ten but faintly reflect living naturc. Architecture, again, hills the mind with awe or delight, from recalling abstract and undefined perceptions of the majesty or grace of the material world. Musical imitation, though sweet and powerful in effect, is still more vague in principle, and more mysteriously associates the corporeal with the intellectual universe. These arts are thus placed widely remote from the direct imitations and definite aims of painting and of sculpture.

A twofold division of the arts of imitation is thus Vol. XVII. Paet I.
discovered arising from a constitutional distinction m their common and animating principle. To those of onc class, embracing poetry, music, and architec. ture, may be appropriated the name "imitative arts:" while painting and sculpture may not improperly be distinguished as "the arts of design." These terms appear sufficiently cxpressive of the essential difference between the two divisions-the associated impression in the former depending upon general imitation only, while the latter requires a faithful delincation of perfect, doubtless, yct of living nature. In the following pages, the appellation of "fine arts" is exclusively applied to those of the second class.

Painting and Sculpture, although thus assimilated as constituting one of the grand divisions of art, and consequently exhibiting a certain resemblance in their leading principles, are yet discriminated by marked and peculiar characters. In the latter, form and expression constitute the only legitimate objects of imitation; in the former, the representation includes every attributc of external nature. Extent, in the first, always in one, frequently in every direction, is produced by rules of art, abstractly unreal, though true in effect; in the second, dimension and irregularity of superficies arc actually exhibited in absolute or proportional magnitude. Sculpture is more severe, simple, and veracious; Painting more animated and varied, though illusory and conventional in its modes. This imitates, that represents. Though from the addition of colour, as a third element of design, the imitation be more lively, and generally more pleasing than the representation; yet, in respect to intellectual gratification, it may be justly questioned whether the inventions of sculpture do not afford the nobler and more refined enjoyment.

These arts have likewise their points of union as well as of contrast. They happily illustrate the observation of Cicero regarding the mutual blending of the different provinces of human pursuit. In the chart which exhibits the empire of genius, the central portion of each division is strongly marked, but the distant confines melt into each other, nor is it easy to ascertain with precision the exact boundary. Thus in sculpture, relievo approaches the varied composi. A
tion and illusive effects of painting and perspective, while in simple chiar'oscuro, painting adds nothing, save fiction, to the elements of the sister art. But an important distinction is here to be remarked. While the painter derives power from borrowing the simplicity and learned outline of sculpture, even should his works, like those of the Roman masters and fathers of the art, thus acquire a degree of harshness; yet the sculptor cannot transplant one charm peculiar to painting which does not become a meretricious ornament, detracting equally from the unity and dignity of his composition.

Sculpture, or the actual representation of form by its tangible properties, being the more obvious in application, and the casier in execution, was most probably the earlier cultivated of the arts of design.

Respecting its origin, much has been written, great ingenuity displayed, and authors have claimed for: various favourite nations the praise ol invention. The same remark applies equally to all the arts. But here theory appears to be not more judiciously applied, than would be speculations on the priority of inventing sight or hearing. Poetry and music-sculpture and painting, each has its spring in a law of human nature, whose necessary operation is to create desires which point to the respective objects of these arts. The imagination only requires to be stimulated hy* desire, whether natural or artificial, quickly to discover the means of gratification. Accordingly, we shall find it more agreeable to fact, as it certainly is the simpler and more philosophical view, to regard every art as arising insensibly among different nations, and as cultivated independently, though with unequal success, from the earliest period. Nor is similarity of style evidence of continuous imitation. In the infancy of society, men in all countries resemble each other very closely; their wants arc the same, their means of supplying these at first but little varied, and the progress from the naked and minformed savage, to the possessor ol some degree of knowledge and of social combort, is marked by nearly similar gradations. The primitive efforts of invention among every people, as compared with those of other and distant nations, will consequently present little of diversified or peculiar character. The first statues of Egypt and of Greece exhibit almost identical lineaments, and even corresponding attitude, - simply becanse each had to contend against the same difficulties, with nearly equal facilities of surmounting them. If imperfect instruments, unyielding materials, and incxperience of hand, obliged the Egyptian artist to represent his figures in a constrained posture, with the knees puessed together, arms hanging down and close (1. the sides, and this not even in the earliest state ol ${ }^{\circ}$ the art; the same restraints imposed a similar mode ,f representation on the drecian, alhough from the
operation of external causes the advance of genius was very unequal in the two countries. Surcly then it is little less umphilosophical to maintain, that the latter must have been a copyist of the former, than it would be to assert that the wigwam, on the shores of the Maragnon or the Illinois, must have been borrowed from the same plan as the aboriginal hut which subsequently rose into the temple and the portico on the banks of the Eurotas or Cephisus. The but and the wigwam are antitypes of each otber, bccause both are the same primordial rudiment of an art having its scanty origin in necessity, belore exalted by taste into a source of beauty and ol grandeur. The idols of the Findoos, the carvings of the South Sea islanders, are not unlike to descriptions of the carly images of Greece, sculptured by the predecessors of Phidias and of Praxiteles. Does this resemblance arise from reciprocal imitation, from a common instructor* Consistency would require an affirmatise reply. But with equal probability might it be assumed, that the harmonious language and no mean strains of the Maiay bard, are derived from lonia and from Homer.*

All these kindred arts owe their birth to the same law of necessity-necessity of ministering-not to the wants ol the body, but to the more ardent aspirations of the heart and of the affections-to piety, to patriotism, to friendship. In this view, though with excusable vanity they assigned to their own coumtry the earliest knowledge of those delightlul pursuits, the Greeks erinced a true feeling of their native original, by reiling these claims in beatiful allegory. To love, under which name every moble emotion was included, the ancient poets attributed the gift of the arts.

The historian of Sculpture, therefore, who desires to render his labours useful. will, with judicious humility, limit inquiry to a simple cudearour to trace the progress and improvement of the art among the different nations of antiçuity. 'Io amuse with theories of its origin, however ingenious or profound these may appear, is in reality to stop short with a partial view of facts, when a general law is within reach. But in one respect is observed a very marked distinction in the claims of separate states. In the relative degrees of excellence attained there is found a striking liversity; as also in the length of time passed in realizing the same adsances. This inequality it will be especially requisite to notice, while an attempt to explain the catuse may lead to results of utility in the philosophy ol art, exhibiting the union which exists between moral improvement and the lofty excreises of genius, as depending on the political happiness and condition ol man.

In arranging the historical details of any art also. or of any intellectual pursuit, the simple order of thme will generally be found most congenial with the conncetion ol events, and the most instructive to the

[^0]reader. The epochs and eras of art, according io which writers have too freguently divided, rather than classed their materials, where discemible at all, may more commodionsly be resolved into oradual changes, while not undregmently they seen aloge her imaginary. 'The indluence of some stroms and determining impulse, operating a sudden difect on the style and character of invemion or improwement, is to be found occasionally in the progress of individual eminence: but the advance or dectine of general acquirement is on the whole equable and consecutive-less dependent on particular uccurrences, whether fericitous or adverse, than on the richness or porerty ol successive discovery.

In the spirit of these observations, it shall be our object in the lollowing pages to trace the history of Sculpture through the divisions ol ancient and modern art. The first part will be occupied with the narrative of its neglect or encouragement, of excellence and decay, in Egypt and the East, among the Grecks, in Etruria, under the Cicsars, till the extinction ol letters and refinement in Europe. With the rise of the Italian republics we hail the reappearance of Sculpture, and from the loth to the lyth century, a series of interesting, but olten melancholy events, will form the subject of the second part, and close the history with the labours of contemporaries. Our limits necessarily impose brevity in all instances. In many we shall merely touch upon the leading facts; and in that particular section the state of the art in Grecec will include every thing valuable in the ages of antiquity. In part second, the $: 5$ th and 16 th century, and our own times, adorned by the names ol Canova, Elaxman, Thorwaldson, will demand pre-eminent regard.

PARTY.

ANCIENT SCULPTURE。

Section I.-Egyptian Sculpture.
Althongh the sacred Scripturcs, in all cases the earliest and purest fountain of truth, contain the first authentic memorials of Sculpture, we prefer commencing with some account of Egypian art. In drawing conclusions from monuments actually in existence, many of which we have seen and examined, while no Jewish remain is now to be discovered, regularity will thus better be preserved. Ancxamination also ol the style and character observable in the sculptures of Egypt, appears to offer some assistance in collecting the scattered lights which the uncertain touch of scanty or dubious history flings over the mysterious ruins amid which the arts of Babylon and of Persia have been seated.

Egypt, in art, in science, in government, stands alone among the nations of the ancient world. The distinction is, however, a melancholy one, pointing to carly promise umproductive of final eminence, and ending in disappointment. In almost every mode of intellectual exercise, as in every species of knowledge, she had made the first advances long before those states destined to outstrip her had started in the career. But in all these respects, and especially as regards the progress of art, the singularity of her fate is remarkable in this, that the genius which had received or
disenvered the first principles, continued in activity and in constant employment on undertakings \boldsymbol{s}° magnificcuct, withomt progressins-withont partakng in the senerab entightment derived in many instances liom the eximple of its own success. Vigypt, perhaps with justice, has been called the crartie of the arts. understanding by that expression simply priority of cultivation; yet in this their aboriginal seat, doring a period of eighteen conturies, fiom Dlenes to Atexander, they hardly attanced a maturity beyond mere infancy, as regards the highereapablities of invemion. During a lar shorter interval in other climes, sculpture in particular had reached the perlection of ideal beauty. While the utmost skill of the Gireek artis: was rudely capable ol fashioning into a sruare pilla: the represcntations of his country's divinities, the objects of the lergytian's vencration hat assumed no mean resemblance ol the human or conventional form. On the other hand, when the sablime works of a refined age had in Greece ahmost exalted superstition into sentiment, the worshipper in the temples of Aemphis and of thebes still bowed before the hideons deities of his ancestors. "For seven thousand year"," says Pausanias, "legyptian sculpture remained unchanged." "the exaggeration prowes the truth of the preceding observations, and shows that the abscnce of improvement had not cscaped the notice of those who were more nearly contemporaries, and had examined in their almost perlect state the works from which they deduced the conclusion.

Whence then originated this hostile and chilling influcnce which arrested knowledge in mid-progress, which blasted refincment in the very bude The answer to this question iuvolves the late, and will best explain the history of Eigyptian sculpture.

The causes of improvement or of decline in the arts have too scldom becn sought where ouly they are to be founc-in the objects and character of national polity. To ascribe their cultivation to climate-10 disposition, to opportunity of studying beautiful na-ture-to patronagn-to commerce, is to carry inculiry no further than secondary, and at best but favourable influences; to clevate into causes, elfects which regularly proceed from the paramount operation of legislative institutions. Some observations on this subject are the morenccessary, that the imperfection of sculpture in the East, and in Egypt especially, has been attributed to deticiency in those minor and less influential considerations, which may become accessory, nevcr preliminary means of success, or sources of invention.

The government of ancient Egypt, though styled, and perhaps esteemed monarchical, was in reality a theocracy-and in its most rigid, most paralysing form. All knowledge, and consequently all substausial power, rested in the hands of the priests, who constituted a separate order, regulated by distinct laws, and holding communication, and preserving intelligence by means unknown to the people, or even to the sovereign. The mombers of the hicrarchy thus became not only the first legislators, but the precepte being written in a sacred and symbolical language, in ielligible only to themselves, they of necessity remained possessors of the exposition, true or false, real or occasional of the primitive laws. In such a state of things the whole nation were the subjects, and kings merely instruments under the control of those who
were at once the sole depositaries of human authority as also interpreters of the will of heaven. To be perfect, such a system wanted only permanency, and this requisite, except against foreign conquest, was effectually secured. The laws immutable and inexorable, of which the priesthood were the guardians, chained down every form, institution, or practice, once established; determining for ever the condition, and even profession of each family, and of every individual. Religion, business, pleasure, had each allotted hours and prescribed regulations. Frec and voluntary action was unknown; legal inquisition penetrated even that sacred circle, and regulated the duties of domestic privacy. National polity to the minutest details was to be unchanged and unchangeable; like the celestial bodies, whose motions formed the grand object of national science, it was to revolve eternally in the same circle. Nothing once conncted with the system was to suffer decay, and as has been well observed, the very bodies of the dead were to be rendered imperishable.

In contemplating such a system, although we acknowledge the influence of an awful and stern sublimity, yet the feeling is not of that elevating description which grandent, whether moral or physical, generally inspires. The mind, on the contrary, experiences a depressing, an overwhelming sense of individual helplessuess; while, on its immediate subjects, the operation of such a govermment must inevitably lave been, to produce a gloomy sameness of characser, and the most heartless mediocrity of intellect. To improvement of a certain extent in the severer sciences, and in accordance with received opinions, it was not unfriendly; for success in, abstract speculation depends not on enthusiasm which is kindled by external appliances, nor on the tenderer inspirations ol' sensibility. But to those elegantarts which derive their existence and perfection from the susceptibilities of imagination, from the free breathings of genius -the system was death.

Accordingly, in whatever refines, elevates, or soothes the heart, Egyptian art, as appears from the Greck historians, was extremely deficient. In their music and poetry, as in their painting and sculpture, human affections had no place; the modes were severe, unalterable, and consectated solely to a gloomy and unideal religion. Hence the "bitter Esgyt" of the Grecks, not as some explain, indicating the natural saltness of the soil, but because those arts, so cherished them, which are at once the creation and the solace ol sensibility in ardent and exalted minds, there languished and were represucd.

To the progress of architecture, indeed, in some essential respects, this stern polity was not malriendly. In this art, the principles though lew, give rise in tincir varied combination to more than one source ol intellectual pleasure la the Grecian temple are found beanty, grace, proportion, simplicity, harmony, extent. In the mysterious structures of Eisypt vastness and simplicity are the only elements discernible of the grand. From these, however, the most powerful, il not the most relined and agrecable cmotions are experienced; long withdrawing lines, mubroken surfaces, large masses, simple contours, even should the individual forms be destitute of proportion and grace, will always produce grand and solemn effects, capable of being carried to the majestic and sublime.

Thus in viewing the temples scattered over the Thebaid, those very edifices characterised by Strabo as "barbarous monuments of painful labour;"-in contemplating the pyramids whose outline is without variety or contrast, the imagination is exalted to a high pitch of awe and astonishment. But these lofty effects arise from a principle merely accidental, they are not the fruits of intrinsic science or of refined art; they are the inevitable, not the meditated consequents of the system we have described. The eternal durability, to which in all their designs and institutions the hierarchy aspired, necessarily pointed out the selection of a style of architecture, retaining, as the most substantial, only the simplest forms and the largest masses.

These remarks, and our observations generally on the tendency and spirit of Egyptian government as regards the arts, are larther corroborated by the lact, that even to their very measurements, all the sacred edifices of ancient Egypt appear to have been constructed on one and the same unvarying model; without accommodation whatsoever to situation or circumstances.

A system, whose influence thus produced a species of sublimity in architecture, would operate fatally upon sculpture. Attention to durability, regardless ol' clegance as a primary object, enormous masses and extended lines, so imposing in the former, would, in the latter, produce rigid and motionless figures, deroid of sentiment as without beauty. Such, accordingly, is the character of the genuine monuments of Egyptian statuary. The essential elements of the beautiful are present-simplicity and breadth; but beauty is not elicited; it is the simple uninspired by any feeling of the true, the natural or the graceful: breadth without harmony or proportion of parts, exhibiting lifeless and inert magnitude. A remark bearing on their arts generally may, with peculiar propriety, be applied to the sculptures of the Egyptians. that in these we see only the records of power, of patience, and ol labour, not the creations of mind, of taste, or of genius. But sculpture among this people laboured under particular disadrantages. It was considered as exclusively attached to religion, and employed in representations of divinities, priests, and kings-personages to whom only statues were allowed to be erected, for the figures to be found in tombs appear to hare been merely symbolical decorations. Now in all these, even in the last, the forms, modes, and expressions were unalterably fixed-and lixed too from types frequently of the most hideous description, at best ill imagined and little adapted to the objects and spirit ol' the ari. 'This religion also, to the consecration of whose absurdities the noblest of the arts was thus enslaved, was wholly metaphysical and allegorical, not admitting heroworship, which, by mingling images of human sympathy and virtue, with abstract and exalted conceptions, tended so materially to elcrate the style of composition among the Greeks. The Egyptian artist, therefore, even had he been permitted to deviate from his model, had no inducement, and no ennobling source whence to derive beatty. Imagination wanted materials, which neither the subject nor living nature, as he saw it, could supply. Again, sculpture not only suffered from the general disadvantage of hereditary and mochanging professions, a regulation which repressed every thing like
the successful predilections of genius; but as a farther security against the possibility of imnovation, slaves educated under the eye of the priests were entrusted with the execution of the most sacred, and, conscquently, most splendid and important monuments. The art was thus degraded into a servile occupation, and the last hopes of cmincnce, honour and independent reward, extinguished.

These general remarks will, in some measure, supply an explanation of many leading facts, on which much misconception has prevailed, as regards both the perfection and the epochs of sculpture among the Egyptians. Opportunitics will occur herealter of marking the due application of the lights thus obtained. In the meantime it may be observed, that the fact so often quoted to prove the excellence of art amongst this people, and of their posessing unerring canons of proportion, namely, that statues composed of different pieces, worked by distant artists, were yet so accurately wrought as to fit exactly when unit-ed,-if it establish any thing, it is the truth of the preceding observations, and the existence of that o'ermastering despotism we have noticed. For granting the fact, of the truth ol which many doubts might be suggested, on any theory of natural imitation, it is impossible; such mechanical correctness could be attained only where the simplest and most rigid atitudes were fixed by unchanging prescription.

As respects the eras of Egyplian art, accurate discrimination has rarely been attempted. From the earliest times, down to the reign of the Casars, all statues imitating that peculiar manner, have by some been classed as works by Egyptian scupptors, or at least have been adduced as examples of their style; while by others, minute and often imaginary differences have been erected into permanent distinctions; and epochs and revolutions ol taste and execution assumed, which cannot be substantiated from the scanty remains of this interesting but mysterious antiquity.

Two sources evidently remain to us of judging, with sufficicnt accuracy, the labours of the sculptors ol Thebes and of Memphis, -in the ruins scattered throughont upper Egypt-and in the numerons specimens preserved in the galleries of Lurope. Whis latter source derives new importance from the recent additions to the British museum; these not only enable us to contemplate some of the most perfect monuments of Egyptian art, but likewise aftord standards for appreciating and chassing the specimens of other collections.

The vestiges of the greatness and refinement of ancient Egypt are dispersed over a narrow district, extending on both banks of the Nile from the twentythird to the thirty-first degree of sonthern latitude. The island of Phylee, near the cataracts and the ruins of Sais, in the western Delta, may be considered as the boundarics on the south and north of this mysterious vale;-where, amid the wreck of cities, temples, pyramids, and tombs, monuments of forgotten wisclom and departed power, sleep the carly generations of the humane race,-where Moses, and Plato, and Euclid studied.

The progress of colonization or of comquest has followed the course of the Nite northwards: the purest, therefore, because the oldest examples of native taste and skill in the arts are to be looked for in the works of the upper Thebaid, in the temples of Phylee, the
sculptured excavations of Elephantis, the tombs of the kings, and in the stupendous edifices of Carnac and Luxor. In this view the pyramids, as they adorn the neighbourhood ol Nemphis, the second seat of empire, situate much farther north, and built long after the splendour of Thebes, the lirst capital, had passed away, must be regarded as belonging to a more recent age. Into this question, howerer, it is not our province to enter; nor particularly to describe theseremains which, scattered over a length of more than live hundred miles, still strike with wonder and with awe. But among the people ol whom we now speals, sculpture appears to have been inseparably associated with ar chitecture; a mode of determining the relative antionity of works in the formor is thus ascertained.

The eras of scupture in ligypt, as anteady observed. have been repy difterently stated. The division uf Winklemam is the most simple and perspicuous, ant on the whole possesses the greatest share of historical correctacss. Still the method is not free from the com mon objection, that it pays not due resard to the revelutions of mative ate at distimelished from that excellence subsegucanty introduced und engralied upon the mational style. Inhis system, therelore, as well as every other, we are forced io abanton for the same reason. and to adopt the following, which, with some degred of novelty, will, it is hoped, be recommended by tir more uselul adrantages of thuth and simplicity, and by at once presenting an argument resting upon, while i discriminates intrinsir distinctions.
I. Era of original or native Sculpture.
II. Era of mixed or Greco-Egyptian Sculpture
III. Era of imitative Sculpture, improperly denomi nated Egyptian.
I. From the above division of the subject it will ajpear that we admit only one age of art purely Egyprian; that is, during which sculpture can be consider. ed truly indigenous, without any foreign admixture The two remaining epochas are added, in order to embrace the consideration of those details which have been hitherto resarded as furming constituent parts of the Egyptian school, though in fact but partialls connected therewith, and not unfreguently pertainins to works which, except in rude materiats, had neve: been out of laly, and never handled, except by Greek or Roman artists. 'The first or true epoch of scutpture in egypt ascends from the conquest of Cambyses, till all records are lost in the remoteness of antiquity. During this period only were original institu. tions in lull vigour, and public works conducted by national energy, and stamped with national taste.

In illustration ol these views, it first becomes necessary to examine whether the resources of the state and the ingenuity of the people, were adequate to the production of the nmmerous and stupendous works, which must thus be ascribed to the first age. Not only is the answer to this inquiry in the affirmative, but with no degree probability can any other date of erection be assigned. Ve learn from Homer, that in the time of the Trojan war, twelve centuries anterior to our era, Thebes was one of the most magnificent cities then in the world; indeed the terms of the description would induce the beliel of its paramount grandeur. Again, from himself we know that Herodotus admired these very monuments, the ruins of which excite the
wonder of present times. This father of history visited Egyp not quite a century afier the reduction ol that country by Cambyses. Even then the origin of these structures was lost in the obscurity of distant time; conseguently they could not be the erections of an age bater than this monarch, who in fact laboured to destroy them. They were on the contrary universally attributed to the reigns of the early mative princes; of whom Herodotus attempts a long though imperfect enumeration, prior even to Sesostris. Carrying these pretensions to antiquity no higher than Homer's description, which corresponds with the era of Sesostris, we thus gain two fixed points, which supply an interval of seven hundred years from the war of Troy to the invasion of Cambyses, that is from 1200 to 526 , B. C. During the lapse of so many ages, the whole power and riches of Egypt were placed at the disposal of a society of men whose wisdom and learning were proverbial, and whose intelligent and active mbition these very monuments testily. Ancienty Legypt was likewise remarkably poptulous, so as to occasion a saying, "that instead of beauty nature had conferred upon its women the more honourable gift of fertility." Fujoying for a long period the catire commerce of the ancient world, the wealth of this commery must always have been great. Even wha reduced into a Roman province, and despoiled of much of its original importance, the amount of public revenue under the Aintonines was 12500 tatents, or two millions and a half sterling-equiralent to a much larger sum. Of the capabilities, both physical and intellectual, of the ancient imhabitants of Egypt to prodnce the works in question, there can thus exist no reasonable doubts; while by the testimony of history, their erection is restricted to a period not later than now assigned; but if necessary, we might ascend much higher.

We have thus ascertained the limits within which the primitive achool of sculpture in Egypt must have flourished; for in most instances its labours are atrached to, and consepuently have been completed at the same time with the architectural remains, of which they have once constituted the profuse and even lavish ornaments. We are thus enabled to proceed, with no small degree of certainty, to the examination of the genius, character, and principles of this aboriginal style. Jlere the examples may be classed under three divisions; first, colossal statues; secondly, single figures or groups, about the natural size; and, thirdly, hieroglyphical and historical relievos. In each of these, however, is to bediscerned a similar character of invention and finishing, varied only in the degrec of eacellence or mature of the work. Minuteness of individual description is therefore less necessary.

The works of the first class, many of which still remain both entire and in ruins, from their magnitude fix our carliest attention. Indecd, than a statue of granite sixty fect high, there hardly exists an underiaking more laborious or difficult, or an instance more striking of distegard of time and patience of toil. Of these enormous sculptures. some have been rocks hewn imto shape alone, and left adhering by the ir base to the living bed. Of this class the celebrated sphyrx ninety-five feet long and thirty-ceght high, is an example. Others, as the figures in the Memnonium amons the ruins of Thebes, lave been buit of square blocks, first built and afterwards carved into form. The grearer number lave been sculptured from an entire block
finished in the quarries of Upper Egypt, and transported to their site by the waters of the Nile. Most of the smaller works of this age are in sandstone and other softer materials, such as the situation naturally afforded; the great statues are universally of granite, seeming to indicate that in their construction time was disregarded that eternity might be sccured.

Of these colossal sculptures, the most remarkable, or at least the best known to general readers, are the two statues still remaining in the Memnonium. Exclusive of the lower plinth of the rude throne on which it is seated, the altitude of each is fifty feet high; but between the two, and scattered around to some distance, lie the ruins of a still more gigantic figure of red granite. These, by Denon and others, are conjectured to be the remains of the celebrated sounding statue of Memmon, a supposition which is opposed by the inscriptions on one of the others, but is corroborated by the head now in the British museum-the most spleadid specimen of this primitive style in Europe. In both figures the position is exactly the same and may be described as common to all works of this class; the head looking straight forward, arms pressed close to the sides, and hand expanded resting upon either knee, lower limbs perpendicular and apart. This attitude, as will at ouce be perceived, is little calculated to convey any sentiment of ease or of grace; the whole effect, indeed, is stiffiness and constraint. Yet, in these rast though uninformed labours, united as they are with dim and distant recollection, there is something mysteriously grand and solemn. Nor is this produced by association alone. For while it is to be remarked of colossal statues generally, that they exhibit the greatest comparative perfection to which Egyptian sculpture has attained; in them we likewise discover visible approaches to truth and nature, with occasionally, as in the sphynx and the head of Memnon, considerable feeling of the sweet, the tranquit, and the flowing, expression, and contour.

In the second class appear to be comprehended both the carliest and the latest of Egyptian statues. The infant efforts of the art seem to have been exercises on picces hewn from the living rock, in the process of enlarging or of forming those natural caverns or artificial cxcavations which were the original scenes ol' all solemn assemblies and religious festivals, prior to the crection of temples; and during every age, the adomed repositories of the dead. Afterwards statues, thus formed, were loosened from their bed to be transported to distant situations, or were sculptured, in what finally became the general mode, from detached blocks. It is wot here intended to imply that these two manners arc decidedly to be separated, or that the former, beiag discontinued, was superseded by the latter, but simply to express the fact of priority, sufficiently obvious from the habits and history of the people. Hence, perlaps, a circumstance may be explained, intimately connected with the subject, and which has given rise to much discussion. In all Egyptian statues of every proportion, and in every attitude, a pilaster is found at the bank as if supporting the figure. Now in all works belonging to the first manacr, the ground is never entirely removed, the posterior portion always remaining undetached; while it the statue lias been formed by cutting round it to a recess behind, a pilaster is carried upwards to the ceiling, evidently with the original view of increasing strength.

Subsequenly, from that hostility to innovation characterising the system, partly to avoid difficulties of execution, and to obtain a plane surlace for the inscription of hieroglyphics, the aboriginal pillar was retained. Of these two manners in figures composing the second class, numerous specimens remain, especially of the first, as in the excavations of Plilee, Elephantis, Silsilis, and in the tombs of the kings. These also are not only the most ancient but likewise the most authentic; and there can be no question, that of the second kind, many in the different cabincts of Europe are spurious imitations of Egyptian art. In the genuine statues of both kinds still existing on their native site much diversity of style and character prevails. The varietics, however, camot be reduced to any determinate epochas, or regular gradations, as has sometimes been attempted. From the contradictions in time and vicinity of situation in the good and the bad, the disparity in point of merit can properly be ascribed only to individual excellonce or mediocrity in the artists employed-to the purposes contemplated-to the opuIcnce or taste of the projectors.

The profusion with which Relievos were employed merely as decorative parts, without regard to intrinsic beauty, as also the nature of hieroglyphical representation, where only a general resemblance of outhine was studied to the neglect of expression, and the more delicate varieties of form,-necessarily exerted a prejudicial influcuce not only in this department, but generally on the progress of Egyptian sculpture. In this branch of the art, likewisc, as might be expected, where, from the introduction of a number of figures, other principles of design, besides a mere knowledge of form become necessary, the deficiencies of the artist are betrayed more conspicuously. This, however, must be understood with due limitation. In such relievos, sepulchral ones for instance, as eontain few figures, seldom more than threc, and in which the attitude is simple, without violent or complicated aetion, are frequently displayed no mean beautics of ex. ecution and of outline. But on the contrary, in historical relievos, which frequently cover entire walls of immense edifices, representing processions, batles, sieges, all is confusion, fecbleness, and puerility. In the drawing and anatomy the utmost ignorance is manifested; the figures are without joint, and exhibit not the slightest knowledge of balance or spring in motion. Even proportion and magnitude, not to mention perspective, seem to have been utterly disregarded or unknown. The military engines, buildings, soldiers, all appear of the same size, and all cqually near the eye. The hero is certainly distinguished from the rest, but in a way whieh marks the absence of all science, and indecd could bo coneeived or tolerated only among a people whose taste was in the highest degree barbarous. This personage, who is generally in the bloom of youth, that he may stand forth from the vulgar, is always represented at least double the stature of his followers. The circumstance of confounding moral with physical greatness is alone sufficient evidence of the infancy of invention, and proves the Egyptians never to have passed that limit where, by a slight refinement of imitative tact, if the expression may be permitted, a tolcrable resemblance of individual form is accomplished, but where any sustained efforts of abstract imitation is impossible. The hieroglyphics, which form so large a por-
tion of the Egyptian relievos, we have already noticed as destitute of accurate discrimination of form, considered as works of art; but to this latter rank they ought hardly to be elevated; they are more properly to be regarded as conventional representations, dependent on modes and principles equally arbitrary. The praises bestowed on works of this class by Winkleman and others, are to be restricted to the mere excellencics of labour and workmanship. Even in these respects the commendation is often exasperated, not unfrequently misplaced. The gemuine relievos of the primitive age are, without exception, anaylyphics, that is, raised on themsclves, but depressed benath the general surface on which they are engraven. Now we eannot admit the reflinement so generally presumed in this fact, which is considered as evidence of clegant invention, both to deepen the effect to a spectator at a distance, and to guard the work against the injurics ol' time. 'The latter of these reasons may be truc, certainly, not the lormer; for if the shadow be thus stronger, it obscures in an equal degree the contours of the niched figure; also the practice is universal, as well in works which are to be viewed near, as in those placed remote from the eyc. This manner, therefore, is to be regarded as originating in the limited resources of an imperfect art. It is in truth but the first step in improving in the earliest and rudest ol all sculpture, often to be met with in the oldest monuments of this very people, namely, a simple outline of the object very deeply cut on a plane surface. An obvious adrance was to round the included figure, marking the salicut parts, and depressing the bollows. The next step, but more laborious and difficult, especially in hard materials, was to remove the ground, lawing the figures in full and bold relief. This view is so strongly corroborated by the history of the art in Egypt, that any work in reliel of the description, properly so called, must be as. signed to a later era. From not attending to these circumstances, writers have built very crroneous theories on some specimens of bas relief of the usual kind found in the pramids. These were internal decorations merely, and show that the interior of these structures had in some instances been adorned long after their erection.

Our observations have hitherto been confined to the primitive ages, and we have dwelt longer on this period for two reasons. This being the true era of Egyptian sculpture, properly so styled, the preceding remarks have nearly exhausted whatever of interest strictly belongs to the subject; again, few important and authentic monuments of any later date now remain. The second cpoch will therelore not long detain attention. The expression mixed art, which has been sclected to distinguish this epoch, appears sufficiently discriminative, and marks the engrafing of different tastes and styles upon the ancient modes that took place on the conquest of Cambyses, and subsequently under Aleander and his successors. In both cases a change was certainly experienced, still the ancient character predominated: indeed the grounds, already explaincel, on which it was founded were too deeply laid, easily to be shaken. To have introduced any radical imnovation, not only the frame of society must have been dissolved, but the very existence of the nation must have ceased. Under the Persians, as regards sculpture, we conceive, contrary to so
many opinions hazarded in opposition, that no actual additions were made. The influence exerted by their dominion on the art, amounted merely to a negative, to the prohibition of its exercise, the destruction of its early and best monuments, and a consequent deterioration in the few and feeble attempts by artists during the latter years of that dynasty. Mythraism, the prevailing religion of the conquerors, prescribed the use of statues, where only they had been previousJy allowed. Architecture was the only art extensively practised. But the Persian erections were modifications of materials torn from the mighty structures of former ages, not original efforts. Here the impress of the ancient style could not be effaced; while the sculptural embellishments permitted relievos exactly of that description in which the Egyptian artists were the least skilled, and also which was calculated to deteriorate, not to improve.

In little more than a century and a half the empire of the Persians was subverted by the Greeks. But in Alexander the ancient arts of Egypt lound not a patron. The majestic range of cities, temples, and palaces, which bordered the sacred stream of the Nile, became so many quarries of tempting access, whence Alexandria was reared; and the mightiest as well as most rational trophy of Grecian superiority borrowed its grandest and most enduring monuments from the stupendous labours of the first age. The successors of the Macedonian prince pursued the same system; and though in seclusion the Ptolemys might have enjoyed the polished representations of her arts, and cultivated the learning of Greece, we do not find that beyond the precincts of the palace any remarkable effects of their refmement are visible, at least in the statuary of this period. The character in all essential respects remained Egpytian. Nor if considered, as the arts always onght to be, in relation to the political system, could this fate be otherwisc. The objects, purposes, and forms of Egyptian sculpture had long been fixed, and by that rery polity and religion now again partially re-established, in as far as respected the subject under review. We would ascribe then the amelioration of taste and practice, which certainty is to beobserved under the Grecian princes, principally to the removal of the restrictions introduced during the Persian conguest, and the renewed splendour ot' the uncient worship; for as already shown, to sacred purposes only were the maguificent displases ol the art deroted. It is not, however, to be denied, that amid the strongly marked features of indigenous character are to be perceived in the sculptare of this cra, approaches to a himer, more natural and bolder styde ol design, which can be attributed only to an intercourse with dreece. This improvement is most conspicuous in the clothing and action of figures. The drapery, instead of being glued as it were to the body, and in the lemale deities barely dis. tinguishable, by a few small and rigid plaits, now becomes more full and flowing, with some faint indication of selected arrangement. The attitudes exhibit more of mobility, the armas are farther separated from the sides, and the whole design more easy, vigorous, and decided. The chiseling also displays more of energy, but the forms are still destitute of stylo in composition, and discover not the slightest traces of any abstract principle of beauty, cither natural or ifcal.

These brief notices have conducted us rapidly over a course of many centuries, to the third and last era, that of imitative art, under the dominion of the Romans. This epoch may be considered as commencing with the introduction of Isiac mysteries at Rome; but as marking a distinct character in the history of art, the principal works by which it was distinguished are to be referred chiefly to the reign of Hadrian. These works, in strict propricty, have no real connection with Egyptian sculpture. During his abode of two years in that province, and especially by the deification there of his favourite Antinous, this emperor appears to have imbibed a fondness for the arts of Egypt. He accordingly caused imitations ol the sacred statuary of the East to be executed ; and formed in the Canopus, or Egyptian Gallery of his villa, a very complete and numerous collection. The taste was followed, as might naturally be expected, by the wealthy ol his subjects, and imitations were multiplied over the empire. Bit although these sculptures were modelled after the most ancient of the Egyptian forms, the attributes carefully preserved, and even the material, such as basalt, porphyry, granite, brought from natural quarries, yet the artists were Greeks or Italians, and the Grecian character of design is visible in every remaining specimen whose merits entitle it to criticism. Nothing therefore can be mure futile than from these works to deduce conclusions regarding the merits or principles of the art as practised by natives, and in the early ages. It is only in compliance with classing certain details, and from a desire to include under one head whatever has been connected with this particular part of our subject, that this era has not consequently been introduced among the corruptions ol Greek art. So far indeed does our scepticism herc extend, that we doubt whether a single statue near the natural size of genuine Egyptian workmanship has ever been disinterred in Italy or in Europe. Certainly, we are induced from inspection to pronounce the smaller figures in the different Italian collections as belonging to this last period, while the others, however celebrated, such as the Isis of the capitol, are of such a stylc, or rather so destitute of all style, that they may belong to any or to no era. A distinction indeed has been attempted to be established, from the circumstance, that these latter compositions are unadorned by hieroglyphics, and have no pilaster behind. But it will surely be admitted that these accessories would not be more difficult to add, than to imitate the whole form and attitude, and that wherever complete imitation was requisite, these attributes likewise would be affixed.
lrom the preceding account it will appear, that of the various eras under which the history ol Egyptian art has been seduced, one only, extencling from the carhest records to the year 526 B . C. exhibits the true genins and character of sculpture, and has likewise erected the most numerous and the noblest of its monuments. In establishing this principle, we have not been guided by the often fanciful, always deceitiol, analogies discoverable in the varying productions of art, but have been directed by the steady operation of the laws and institutions of society, which govern the spirit and tendency of the arts themselves. The sccond period, from Cambyses to Cleopatra, is mixed in its principles of government as in its arts. Still the master lines of the primitive age were too
widely drawn, and too deeply traced to be obliterated or even much obscured. The persians carried art from, but brought none into Egypt; and had it not been necessary to account Tor the retrogression under their usurpation, perhaps the second era had with more propricty been commenced with the foundation of Alexandria. The close intercousc with (ireece which certainly existed during the whole of this period has been by some attempted to be carried up so high as the reignol' l'sammeticus; and hence, following up the weak partiality of the (ircek historians, Egypt has been denied all clams to originality in the arts. We have already, with due deferenere, reprobated the absurdity of theorising on the invention of arts, originating in the universal leelings of hman mature. But here the genius of breck and ol eastern art are as opposite as light and darkness: granting then the assumption, which people must have been the credi-tor?-Egypt, not Greece; for il this king lived at the time stated by those who maintain the opinions now opposed, the art of sculpture in particular was in a state of far higher advancement in the former than in the latter country. With the Macedonian conquest then, not earlier, commences the active influence of Grecian taste; which, without changing the grave severity, the solemn majesty ol Lgyptian art, softened its sternest and most rigid elements; freed, as far as their consecrated usages would pormit, its forms from conventional stiffness; and inspired some sparks of lile, ol grace and of variety. 'The third and last era has been added in deference to reecived opinions, but it is connceted with the primitice age merely as an imitation with its original.

In Egyptian scupture, thus properly understood, we find little to cxcite that admiration in which travellers and enthusiasts in the cause of antiquity have been prone to indulge. Still we do discover some excellent hirst principles, and occasionally beanty of detail: but both are without rule, and seem the effects rather of chance than of design. or refined perceptions of symmetry. Their best stathes have an elevation of seven heads and a half, and are divided into two equal por-tions- the torso and limbs, at the os pubis; proportions not unpleasing because founded in matnre. 'They show, howerer, nothing of that characteristic beaty which, in the varicd harmony of parts, indicates moral or physical capability. Their figures consequently have nearly all the same character. The proportions, taken more in detail, follow the same principle; yet are often brought ont with considerable propriety and soltness, but without anatomical knowledge, especially of the internal details, the heads ol the bones, the insertions and terminations of the muscles never being correctly indicated. llence the forms appear coarse and inelegant, the limbs heavy and inert, without vigorous marking on the joints; the deeper depressions only and the strongest projections are aimed at, not feclingly touched. From this want of anatomical precision, being in these more easily concealed, perhaps arises the circumstance, that the lemale possess more elegance and beauty than the male statues, and with the exception of the hands and leet, which in both are gross and heavy, the nude in the arms, bosom and limbs of the former is olten moulded with considerable delicacy both of contour and of finishing. With these deficiencies of science, the Egyptian statnes would appear more like abozzate than having Vol. XVII. Part I.
received the last finish, did they not present two redeeming qualities, ever highlyestremed by a cultivated taste; simplicity of composition and great breadth of parts. These, indered, united with sharpuess of chiseling, may be regarded as the peculiar excellence of Egyptian, compared with ancient art generally, and which place its productions among those of eastem art, without a rival next to the labours of Creece.

In Egyptian statues, it is lurther to be obseved, that the attitute is constanty rectilimear, denoting that state of art when pererty of resource limits its search of the beantifial by the differulties of execotion. It is in fact the first rhoice of infant invention, rendered permanent by prescriptive institutions. From the curve being thas manown in the contonl, the action is necessarily angular, whenever the movement is not parallel to the gravitating line of the figure. Hence the arms have but two positions, either hanging close to the sides, or crossed at right angles upon the breast; or sometimes varied by one placed in each posture. Lateral motions are likewise unattempted, the statue standing equally poised on both limbs; with the feet not exactly opposite, one more advanced than the other, and often almost in fiont. In every posture of standing, stting, or kneeling, these remarks apply: hence it is casy to conccive that litte of grace, ease, or animation is ever to be found in the most perfect works: yct we often observe a grave and staid serenity not umpleasing nor deroid of interest.

In the gemine sculptures of Egypt, little of expression or of character is to be found. As in the selec. tion of attitude the artist bas been guided, not by the beatilul, bui by his own timidity of hand, and confined resources, so in expression, seldom more than a vague and general resemblance of emotion has been attempted; such indeed as might be produced by casually arranging symmetrically the diflerent leatures. Although heads are very liequently finished with wonderful labour, the effect is always feeble: this arises from the style ol art, and peculiar character of visage which appear to have constituted the beau ideal of those anciont masters. The features are flat, the commtenance Ethiopian; the first are just sufficiently distinguished to have the effect of separating them, there being no depth of shadow to give contrast and firmuess. The eyes, whether long and narrow, as in the earliest era, or more full and open, as in the Greco-Egyptian period, are flat, and almost equal with the general level of the face, - the nose broad and depressed, -the lips thick, though sometimes toucheed with great softness and delicacy, but always sharp on the outer edges; the cheeks, chin, and ears, large, ill made out, and without feeling. The whole is uniformly surmounted by harsh and disproportioned masses of drapery, which overpower the little effect that would otherwise be produced, and render the expression still weaker. The superior beauty of some of the colossal heads may perhaps be rightly attributed to their being most probably portraits. Consentional art, even in the most skilfiul hands. is rarely pleasing; nature, though rudely imitated, possesses always a degree of beauty.

Respecting the technicalities of Egyptian statuary, some scattered details are to be found in various of the Greek writers. These bints have evidently misled modern critics, who bave applied to the most ancient state of the art, and generally, those refined B
practices which Diodorus and others described as known in their time, many centuries after Egypt had in some neasure become the pupil of Greece. If a conjecture might be hazarded on this subject, it would appear that the Egyptians, in the infancy of their arts, were guided by an outline traced round a buman ingure, whether dead or alive, placed upon the block, and extended llat upon the back, with the arms close to the ribs, exactly as their statues are composed. This supposition will account for the correctness of the gencral proportions, whach would be thus ascertained from nature. Also we can detect no theory of proportional parts difterent from what cond thas be obtained, while those details which theory would preserve, bat which could not be thus measured, are so defective. Of anatomical knowledge, as is evident from their works, they possessed no more than a view of the living form, in its simplest relations, could give. On this subject it is lrequently mantained that the Egyptian artists had carelully studied the strocture of the inferior anmals, as instanced, it is said, in existing specimens; the hypothesis may be true, but certainly the proof adduced is not to be admitted. Less of restriction undoubtedly has been imposed, and more play of imitation allowed in the one case, but equal breadth and correctucss of parts, are to be met with in their representations of the haman as of the brute form; witness the head and shoulders of the Sphinx, and of the Memnon, compared with the lions of the capitol, and others at Rome, so justl! admired as the farest cxamples in this department.

In line, when we contemplate legypt, if not the parent, at least the carliest narse of art-when we view her advances in improvement previous to the existence of many other ancient mations-when we examinc her early monumens-we are struck with womber and astonishment. Bat comparing her with herself -the reign of Sesostis with the dynasty of the Ptolemies, a most melancholy falling offrom early promise is remarked, -every nation whom she had tanght had now outstripped her. Fior is it diflicult to trace the causc-comention and prescription, and intellectual tyramy, had assumed uncontrolled empire over her arts. The first principles were bad, because not founded in nature; the imperfect models thus produced, by superstition consecrated and rendered per-manent-fixed bariers to improvement. The genius of her institutions was to rest satisfied at a point of the easiest access, and thms in science and in art she was contemmed to a hopeless and etermal mediocrity.

Asmbang the era of legyptian att as the first lucid point in the hatory of ancient knowledere, we remark abe raty ol inchligence thus eoncentrated to diverge in opporite disectios, catwand over the regions of Southern issiz, and wisterard oner part of barope. Here in Circece and in laty, the day spring was hated by mints who rejuced in its beame, aml lighed up
 monumemts of Persiat and ol llombotan, she vestienes of this catly illushantion ate two lew and tor fame to enable us, with any degree of accuraty, to determine its progress wroter This comsidration alone, wond not bumever have prevented an attempt, had such an inguiry promised any illustration of the senreal subject: for whatere might have bece the refineencot of these conntrics, their arts, like wanderiner streams, frombaty lessening as they acoede irom the
parent source, must be regarded merely as dertwitions from those ol Egypt, and bringing no increase to the grand tide ol improvenemi. Of ladian, Persian, Baby lonian scapptare, therefore, it sppears unnecessary to enter upon any investigalion. The ruins of Persepolis, for instance, in une paltuce of which a recent thaveller counted upwards of a chousatd sculptures, as well as the excavations ol Eilora; the obelisks, statues, and tombs on the Ganges, all exhinit a corresponding though less perfect stele, and evidently belong to a later age than the simitar works of the Thebaid.

These views, iadieed, are opposed by names who deservedy rank among the first in Engish literature, and who support the priority ol the arts of India, consildering this as the soure ol Eeryptian and ol' Gececian knowledge. One consilemation cmboldens us to differ from authoritics so resprectable. Sir William Jones and Dr. Robertson have brought, in support of their opinion, all that philological and antiguarian erudition could accumulate; but they have failed in examiniag the subject as artists, and bave no: been determined in their tecision by those principles of judgment whichart supplies. Now in this, its only true aspect, the subject presents a very different verw. Both the sculptare and atchitceture of Loyypt licar the impress of unitorm simplicity, and the same forms are preserva ed in the earliest and latest momments. The grand lines of composition are few and simple in the extreme, accessories are sparibety introduced, and beat the same sober, massise, and unpretandiag chanacter. In the sorks of Asiatic art, on the contrary, although exembling those of Egypt in their general design, there appears a style of onmment. replete with complicated detail and pretension. Judring, therefore, according to the acknowledged truths of art. these defects in kecping evidently arise from the saperinduction of the offurling parts upon the screver and simpler master lines of a none primitive composition. Nor can it be replied that in Esypt a whament of Asiatic taste has occasioned this diference, because this would imply a correspondines saperiority in other respects. Now inmere dexterity of hand, the works of this country are more thas equalled by those of India. But the Egyptian artist has never advanced beyond his means; he never attempts what is beyond his knowledtre or practice; and we evidently observe that his science extended not beyond what is accomplished.

From the peculiar interest of the subiect, we might entarge on the state of an among the Jews; but this would likewise be to deviate from strict order and mitity. Much learned conjecure might be quoted, and opinions brought to pass in revicw, amusing perhaps, but hardiy instructive. The Bible, the best authority, iaforms us that Moses was the most accomplished of his nation, and adds, by way of cminence, that he was skilled in all the learning of the Egyptians. From the same source the arts of his people w. re derived; they had been the bondmen of Phatraoh, and knowledge was chexply purchased by temporary slavery. The scriptures every where confirm these views; the molten calf of the wilderness was evidently a symbol of the Eryptian Λ pis, and would necessarily resemble its prototype in form and workmanship, and points out begond dispute the character and origin of Jewish art. The descriptions which occur posterior to this in other parta, both of the historical and pro-
phetical houks, show that taste was not refled by the bapse of time Divery passime in fate peroves the
 the severe and simple gatmote which the fesolence
 on the dreh of litus. the sobe vestiges of Jowish at it resistence.

$\therefore \mathrm{BlHONH} \mathrm{H}$.

Elruseare Sculature

The origin of the ancions inhahtants of Etruria involves a question of more than hathat intacary. even among those historital ingutrits where materidels ate scanty, of if abundant. preplesime and inconsistent. Here both specics of ehthenty are wise enconatred. A lew scattered rays ant of cerain knowledge break tbrough the gloom of time, ami the still deeper obsinrity accumabled by conjectura and inypothesis. These dispersed lighes we shatl chdestume to concentrate Rad to diecet sta adily on the subjoct, irce liom ath adventitions shades ol beory of chimion, in order that the reader may be ematoded to jutse of the real influence exerted by this people on the pugress ol ancient art.

It is universaily conceded. with some exceptions as (1) the extent ol their dominion, that the Etrascans or Thyrentans possessed at an caly period the empire of lady, and mat in of the refinemant of the ancient wordd. But of their poiser and oi their skill a lew imperfect remans alone exist; whie the ir staty amais have reached as through the medimm of the namatives of the Romans their conqueross, of ol the Circeks their rivals. Of these relations the writers are disided between two general opinions: one party afirms that the Thymeneans, assuming the name fiom their leader, came originally and immediately from Lydia; in opposition, it is abserted that Etruria was first peopled by the watatring tribes of the Pelasgic race who finally ard at different bimes settled in laty. On these two opinions, or atudifications of them, modern authors have crected varions, and in many respects conflictins systems into which we do not conter. At the same time, to adopt exchusively either the Eastern or Grecian colonization ol the Etruscan states, will neither accord with contemporas's, nor explain subsequent evelits. Under those circumstances, an endeavour to reconcile the discrepancies of statements which donbless were drawn liom purer and more extensive sources than can now be consulted, appears the only adrisable proceeding.

Of the Nomadic nations who first inhabited Giefece, the lhellenic and Pelassic races were the most powerfob, distinguished by different character and separate Wescent. The lommer, conspicuons for attachment to their mative soil. made cally impromemem in the noble attatanemts which are lostered by setted habits; the latter, of o wandering disposition and matavated manmers, never lecame cminent cibher in Gecece or in italy. But there is undoubted evidence, not denied by any party, that the Etruscans had attained a degrec wi skill in the arts, opulence, security, and wistom in their institutions, white the Greeks were yet in a state ol pastoral ruteness. Into Etrarit, herefore, the most ignorant of the roving tribes of Greece cendel not introduce that scicuce and refincment unknown in
their native country; bor, as distant colonins, is it reasenable to supperse the y cond have ontstripped the

 were secejvel. (on the other hatel, tare modnologe of

 though remote urisin, bat e :hibinme it sysmem atopt-

 cian art. Thesc faces point to onn ouly rombinmot amp
 grations of colemists inte lituria at lispont intorsab and liom thetant scobements. Ghis sixa reconeites the semmine disargeconcat of the chassic authortios. It wonid appear, then, that the north-wentem shores of laty were peopled as catly as any para widemope, and from the same eastern soares. 'forse combes. attachins thomselys to rommerece, batarally kept alise or maperest whatere oll knowied ere hang previously possessed in pearelul shalime to which the predatory, pastoral, and wandering lite of other wibes, tho: gh prehaps cstablished at the same time, prowed fatal. These original seders, who arrived directy from the cast, appear to have becu joined before the time of the 'frojan expedition by mametons bands of the wanderins Pelasti. The two nations acmoto have grudatly coalesecd, the warlike habits of the (ineeks enabling the dirnscans to subjugate almost the whole of the peninsulat, from the comacs of Liguria io the staits of Vessina; while the refnement of the lateer cond not fab to clact a lavourable change on the character of the lomer. It was an crror very likely to be committed, wate the commencement of the mation lew the rise of the empire, and to confound intellcctual with political power. The Etruscans would learn liom their allies the new and more fovely modifications of shder suprerstitions; and, to a poote who hat mace some prostess in the exercises of imagination, powerful chams :wond be presented, ia the early record's of Gjecce, where, to we lie expression of Strabo, all is marbelfons and tragic land.

Abcient listorians of the freatest filelity and ree seareh have patised the wise legistation and equitable government of the Ennstans. The whole of Eumba was separated into twebe dis isions, over each of which presided a chicl magistrate or Leucomon. From has sapreme council of twelve, the menbers chose a kinge, or moie properly commander-in-chid, who. in wa:" conducted to the fied the united amies of the reptiblie. The election of these govemors was vested in the people, and the mation is suld to lave cherished at almost personal hostility whematarybias. The co: stitation oi the Etrascan state thms combaned the dignity athed miva of aristucbace, bith the encrgy abl fredon of popalar govenment. It vas he forme: in be esectite, the latter in priaciper. To this ar. mirable polity, to the security which it assured, to the ematatim it excited, is chichy to be atributed the carly progress of the Eurascabs in art abd riesanec. A pritiople is thus ascerwisel which folly accooms for the superiority of this prople, and which lumishes another prool of the intuence, imsited upon in the commencement of this cosay, that political institutions paercise over the chatacter and productions of nation-
al genius. We do not enter, therefore, into farther discussion on the origin of the inhabitants, by exhibiting the various arguinents in support of the view we have embraced, which might be deduced from a comparison of ancient authors-from the analogies of the Greek and aboriginal dialects of Italy-from the evident union of the Cadmean with a more decidedly oriental, and consequently more ancient character in the Etrusco-Pelasgic alphabet-from the style, and in some instances, as at Pæstum, the situation of Etrusean architectural remains. It is sufficient for the reader to bear in mind, that sculpture in Etruria had attained a degree of excellence prior to any extensive cultivation of the art in Greece.

The remains of Etruscan sculpture are not numerous, and of these some are of doubiful authenticity. The works of national art, taken in general, consist of coins or medals-statues of bronze and marbie-relievos-sculptures-gems-engraved bronze-and paintings.

The coins or medals of the varions Etrurian cities are not only the most numerous, but the most ancient remains of their arts. By means of these, many difficult points in the history and geography of ancient Italy have been, or may be explained. As evidence by which to judge of the refinement and skill of these early ages, many are to be regarded as wonderful examples of beautiful design and delicacy of execution. They are of two kinds, either mythological or merely symbolical in their representations, and appear all to have been cast of a composition, not a pure metal. As mistakes are likely to occur from confounding the colonial Greek or Phenician coins witt: the gennine Etruscan, no observations should be regarded founded on specimens without inscriptions. The practice of constantly placing inscriptions on their works, seems never to have been omitted by the artists of 'Tuscany, and furnishes a very probable presumption respecting the authenticity of their labours.

Etruscan statues are cither of bronze or marble, each of which classes may be again subdivided according to the magnitude of the works. Of bronze figures in miniature, resemblance both of men and animals, examples are commonly to be met with in museums. These probably are images of the household deities, and not unfrequently seem to bave been ornaments merely; but from specimens so minute, it i. not easy to dednce any certain or usclul conclusions. (if bronze statues the size of life, there ate very lew, and of these searcely one has escaped suspicion as to its antiguily. Ol the marble statues, whether large or small, it is excerelingly diffecult to pronomence whether they be laruscan of (ireck.

Relieros bearing the gencral character of Euruscan a.e found in Romere forence, and other parts of Italy. Of these works, the most ane iont are doubthess seperichral monmments, erected prior to the practice of ersmation, as a mode of sepulture b bat we have also arcophars belonging to the latest era, when the artists of lituria may be considered as abmost colonial Gereks. lnterncediate between these two ate various mythological reliever and attars. Of these Winkleman selects as eremine forr, how, if we remember aright, in the mascum of the capitel. Apoltmensis of Isis; a ronnd altar with hore figutes; a spuare altar with the labours of IIercules; and another rognd altar,
or rather mouth of a well. To these recent discoveries have made several additions.

Engraving on gems spems to have been brought to some degree of perfection at an early period both in Italy and Greece. Of this minute art, probably the oldest specimen now in existence represents five of the seven chiets who fought against Thebes. It is a cornelian $7 \frac{1}{2}$ tenths by $5 \frac{1}{2}$ tenths of an inch in the diagonals of the oval facet on which the figures are engraved, three seated and two standing, each having his name affixed. The composition is extremely inartificial, but not unpleasing, although by no means indicating a refined knowledge. Other Etruscan gems, however, have been found, which equal the most expuisite performances of ancient art, -such as the cornelian representing Tydeus drawing the arrow from his leg: and Peleus dressing his haib, engraved on an agate. These three, and Etruscan gems in general, are of that form called Scarabi, from their rescmbiance to a beetle, being oval, nat on the engrated side, and convex on the back. Each is pierced through the longer diameter, leaving it doubtful whether worn suspended as an amulet from the neck, or on the finger as a ring.

One of the most curious remains of Etruscan art, which is aiso the most numerous class, comprises engraved bronzes or putere. These, it is well known, were round, llat and shallow dinhes, from which was poured wise or water daring the sacrifices. The Etruscan paterx are not quite circular, but have a short tapering handle, round which sometimes is brought the slallow brim, so that it forms part of the cup. This hande is peculiar to Etruscan workmanship. On the botom inside, which is perfectly fat, and from four to six inches in dameter, is engraved in deep, broad, and buld lines, wually some mythological composition. Of these designs the style is simple-the lines lew and straight, but exhibiting firmness and correctuess o! hand: with more of power than grace of expression or attitude. These make a near approach to our outhe engravings. except that the strokes have mach more force. Indecd we remember to have examined one at Bologna, representing the birth of Ninerva, from which the brim bad been remored, and being put through a printing press in the usual way, had given off a wery good impression exhibited alone with the original.
"Fo cxamine the biruscan paintings hardly falls under our present limits. Wibh a lew imperfect sepulchat remains at loweminia, they are to be found only on vases if, indece, these latter are not propery to be consitered as belonsing to the colonial Greck schorl. For our own part, we are persuaded that not one of the Necro-Epuscan vaser as they are commonly styled is of a date anterion to the consular forerament. Vancral ceremonies among the ancient inhalitants of laly consisted in simple inhumation, and it was wot till after their intercourse with Carece that the bumber of the body, and the consequent use of nus were introduced. True, vases of magnilicent design and large capacity, appear to have beon consecrated in temples, and employed as ornamonts in honses: but granting some of these to have rached our time, the nature of the subjects represented, or the style of the design, shows that they camot be of a bigher antiguity that the date assigned. Regarded as works of art, these productions can hardly be admired sulficiently. The pictorial representations are
of two kinds, monochromatic shadows, usually black upon a light ground, or monochromatic outlines in simitar style; or the order is reversed, the ground being dark, the figures light, but whole pieces are never executed alier this method. Of these two manners, the outline figures present the more perfect specimens of design, and when the difficulty of tracing an outline at a single stroke in a pigment which admitleat of no repetition, and on a surlace from which no line once impressed could be elliaced-we compare the correcterss, truth, beanty, grace of the forms and cxpression, we are forced to aseribe no ordinary skill and dexterity to the artist, and no common taste and relinement to the age and nation in which such works could be produced. One general observation, bowever, may be recorded; taking these remains universally, the delincations are inlerior to the perceptions of the abstract beaty of forms, perceivable in the shape of the vases themselves; whence perhaps the conclusion may be ventured, that the Etruscans were greater in sculpture than in painting. These observations do not invalidate the high antiquity of Greek vases.

From the spirit of some of the preceding remarks, it might be inferred that little certuinty can be obtained in this incuiry; that much doubt, difficulty, and obscurity is involved in the history of Etruscan sculpture, no one who has studied the subject will deny. But it is equally true. that these doubts and difficulties arise as much from the absurd opimions and interminable wanderings of those who have pretended to elucidate matters, as liom any erroneous principles in the real grounds of judgment. Writers have ventured upon this theme, which requires both taste and knowledge of practical art, who were mere antiquarians; what is even worse, each has his favourite theory to make good. Laying aside all prepossessions, therefore, and with some experience in the application of those principles on which works of art are to be discriminated, we shall find, not only that there is a certain and definite style which peculiarly distinguishes Etruscan design, but also that the remaining labours of this school may be regularly classed, from the degree or kind of excellence which they exhibit.

Art contains within itself, and, if rightly interrogated, will always furnish precepts by which its own productions may be discriminated. In searching for these principles, we must carefully compare the monuments of different nations and those of the same people with each other. We shall thus be able to detect certain pecularities of mode-of expression-of form-certain specialities in the relation between fancy and feeling and nature, which constitute what is termed a national style, or, in other words, characterize the national genius. 'Thus, if we place in contrast certain sculptures found in Italy with others of any age from Greece, there will be perceived considerable diversity in the relations just mentioned, clearly indicating a mental as well as mechanical diversity. These remains, history informs us, can be ascribed only to the early inbabitants of Etruria, and to this diversity is given the name of the Etruscan style. Again, compared among themselves, these remains exhibit intrinsic distinctions of manner or excellence, which enable the examinator to assign them to their respective ages. We thus discover three epochs of art among the Etruscans.

The first or ancient style commences with the origin of the people. It has been assimilated to the Egylu tian, but the resemblance is mest more than that general similarity which characterizes the infancy of invention in every nution. Yet there are distinctions to be traced whicla clearly discriminate the two manners. In the earliest monuments of "lussany may be perereiver an unfettered imaginationessaying its powers in modes feeble indeed, but varied;-ms systematic, as in cast ern art, no conventional representation. In leryptian sculpture every thing scems to spring from a lopeign impulse, whose object is not the alvincement of art, or the imitation of nature; -in Italian statuary, all wears the impress of native volition. The chatacteristics of the lirst epoch are rigidity-ignorance of the naked-feebleness of reliel-perceptions of beataty, especially in the forms of the head, exceedingly inperlect. The contours are composed nearly of straight lines, the limbs are withont joints, and the action forced, yet destitute ol movement. The liace is an im. perfect uval, clongated at the base, and ending in a peak. The eyes, loms and narrow, are placed ollifuc: "as is likewise the month, the external angles in both being drawn downwards. The leatures are llats and here the meagreness of relief is chictly apparent, the eye-balls being nearly on a level with the fromal bone. The general effect thus remains without power, white the indinidual forms are far from pheasing. Yet there is frequently a robustness of design, a vigour and firmness of handling, which, hough destitute of grace, seem to contain the rudiments of those lorcible, masculine, even exaggerated conceptions and execution, the peculiar characteristics of Tuscan art in ever? succeeding age.

The style of the second epoch marks these charac teristics in theil full display: the former leebleness begins to disappear; and in the few remaining examples. though we cannot trace improvement in all its stagec, it may be ascertuined that melioration commenced bs adding boldness to the relicl'. The cause of this it is perhaps casy to discuver in the practice of engraving on precious stones, to which the artists of Etraria were attached from an early period. These works being executed, as they now are, by means of a wheel. depth of depression could be easily made on the sround. while the figures were thus more fully relieved. Observing the powerfal effect obtained, the application of the improvement to works of scuipture generally was obvious. But by such a style of execution, the former defects in design would be rendered only the more apparent. Hence wouk guickly follow improvement in the forms, in the study of nature, and in truth of expression. It is difficult in art. as in every human pursuit, to preserve the just mean. The Tuscans carried to an extreme the discovery which had conduct ed to bolder practice. All soan becomes forced, wo lent, and exaggerated. 'The action is constrained, the movement unatural; the whole aim is effect, and io this every feeling of truth or of simplicity is sacrificed. The proportions arc robust beyond those of na ture: the muscles are constantly in action, and the retiring curves are so deeply impressed, that breadth of parts is every where cut up by alternate ridges and hollows. The bones are learnedly, but so strongly pronounced, as to render the whole effect harsh, dry, and mannered. A want of cliaracter is the recessary consequeace; for the forced and violeut in art always
proce $\begin{aligned} & \text { from inability to express the workings of the }\end{aligned}$ and in any oilher maner that by their most semsible and least intelfectuab signs. The Euruscan style of sculpture is in lise smmar to their arehitecture. Thete is strength, and masseness and power: there is also sigour of concoption, and play of execution: but these is wantar, dehoacy of proportion, nice discrimination of chandeter, and all the pleasing propricty and tepone oi the sweet and gracious in art.

The genaine style of sculpture amoner the ancient Etrurians betongs to the scond epoch. In examining its chatacteristics, we can hardly persuade ontselves that these are not derised from the works produced in the same conmty during the fiteemh and sixteenth renturies. The analogy obstrable in the national genias at such a distance of time and afier so many veissinties, moral, intellectual, and political, is remarkable. and may bercafter demand our notice.

The third epoely embraces that period which markal the gratual disappearance ol the Enriscans from mong the nations of lia! ! 'Ibeir political empire sacese in the rising chommion ol the Romans; the difocimimut: character of their genius was lost in
 ant 12 ... the ancion seyte is stal to be distimbished; for thonegh the Itations wow become imitators of the past. and ri:uh of the lising Encelis. fre the national whe was mever entiad abandomed. During the carly portion of ibis division many tacellent works appear
 and historians seem to refer. Julging from the most pertect remain. the proportiuns were rendered more bightionderacelu!, the forms ant expression of the heads more beatutifat, the execution was softenced indeed yet still retained a degree of exags ration and harshness. The meliopation was temponaty: and pertaps it is not Canc: alone which discerns, in the sucecssions of sub) orguent fectreness, the grataze approaches of pubitcal depression.
 some ith the history of att they sern beaty whase - oincicted with us many mochlatons in the politacal

 fion one to sea, and fromz no extmmity of fady to Otne: This the era of thetr speatest dominion custeponederl whin the infuncy of thetrarts, of at least abla iley. heat de eree of pethement. By the exput-

 Gombinions thon rembisted ol inate partons, Eiruria (Gmumpactan:, Nadia, to which progerny belong the Home, athl Campania. The hat. commaning the whate of the country soubl of the 'tiber, was nether a seHe wos a permathent conduebl. Wise Dorians who
 'Proy, weretice with. W.: at. cient mha'itants, attacked and madnally reetucorl the Jiwnerath power on this whe dhe Dormeran nocdab, towereb, whichare found
 Daples, attest the switht dominime of that nation. In this sombern portion of their cmpite the Eiruscan first minged their arbs with those of (irecece. Fo this anion wo asetibe the acellance of the sculptors of Wagraa (irecia, whow, at a period long subsequent, We schools of hackium and Crotona supplied masters
superior to those of the motier courtry. The frecks rapidly improsed, but discovered slowly. The progress already notic Ly the Eiruscan, was theretore carly appreciated by the Durian colomists of southern Italy; a founclation was thos obtained on which the fervent genins of the latter quackly raised a superstructure of boaty and excellence surpassing any example in the parent state. In the first era of their art then. the adrantages were imparted, not received by the Eitruscars.

On the north the Etruscans had continually to combat aguinst the Ligurians and Gathls. By those perseverang cnemies that division of their empire called Circtampadana was at korgth reduced. The coins, howerer, still fomm along the shores of the Adriatic. bear witness to the arts and sciences of Eturia. We thus arive at the second epoch in the political history ol his interesting people, when shat up within the bumblaries of Etrmiat Nedia, their ancient seat, and where their admirable polity was best organized. they cnjoyed freedom and seculity. This era, which corresponds not with their political grandeur, coincides with their greatest and most original acquirements in the arts. This was the reign of their second style, hold, masculine, and energetic, it was calculated to atwe and astonish, rather than to sooth or delight the mint. Their architecture partook of the same charocter as their sculpture. The order, whach still beat's their name, sulficiently evinces the massive and powerlu! structures which it was destined to adorn or sasidin. The moblest of all architectural iuventions. the (ifecian Donis, has been derived from this source. Leveretmoden iuscany, the traces of her ancient inhabitmats remain, like those gigamic skeletons of amima's described iy naturalists, but no longer existing athong the onders of life, and which nature creatdi in her primeral strength.

While cach the tweire capitals of Etruria was a schond of ast-at once the rival and the Priend of her ombers-manh cratiting the industry and directing fide atwance of the own--each the Λ thens of ancient Laty: Rome, intion of by he bout spirit of military conducst, boke in upub these intellectual and refined labuars. But force ans momath for sciance; the Romans sufered cewely from bie first (ffects of their pemerits. 'lhe oppostanity, howeber, of crushing the growing pest war allowed to pass away; and Etruria, with her fre imstitetions, her elective magistracy, her solcman isaignia, foll bencath the rude despotism of Pome:

Thas temmated, aro years fifor the foundation of
 aferwarls indeet, that distover that sempture Was partised to considerable extom. Rut it soon ceased to be madied by wational character. The homan dominion how (",hbaced the circuit of ftaly, and all former distinctions were lost. The Greet colonist, and the Toscan fiecman was alibe the vassal ol Rome From this period we agath trace the union of the arts of the two nations, and (ircece bow repaid what bhe formerly bormowed, firs sorn afere the reduction of the Etruscan republics, we conceive the finest specimen: of their sculptare now temaining; to hase been produ. ced. But lbeir common masters did not foster the arts as intenal and native ornaments of their empine. although they could phace a meretricious value upon them, as the spoils of wat, as the prize of the captor.
the evidence of conquest. Under this ungenial patronage the ancient atts of A usonia soon ceased to fourish, and became as if they had mever beene

We might now proced to elass, accordins, to their respective dates, the monumbuts romaining of these interesting periods. Bat withome ensraings of the various subjects, we despais of renderin! the descriptions interesting, or eron intelligithe to the reader. Generally then, we consider the bonze rumans as the most anciont, thongh not minw authentic than the marble scuptures, where these display intrinsic evidences ol the luscan style. All :menments against the antigntity and geanincocss ol the latter dawn from the nature of the matble, on which so much stese has lately been lad, we reseral at loast as extemely suspicions. We wothd atwibate the mandatture of the exquisite foctile vases, called Etruscam, chiclly to the period intervening betwern the expulsion ol the Etruscans from southem Italy, and theirsubjection by the Romans- Wat is, to the sccont epoch of theix arts and empire. Also these vares we believe to have been fabricated by the (areek colonisis only; and it is known that in some places they formed subjects of a qucrative commerce. As appoot of this origin, vases have been found throughout the whole exterat of lower Italy and Sicily, but very few have at any time been discovered in upper laty, Vimally, that no exaggerated importance bas been attached to the atts of the ancient Etruscans, will be sufficientiy apparent from one of many facts; when the Romans capluted Volsinum, one of the twelve capritals of Eturia, they carried away two thousand statues from that city alone.

SECTION III.

Grecien Sculpturc.

The history ofsculpture in Greece naturally divides into two branches of distinct inguirg. We prefer commencing with the chronology, masters, and labours ol the successive schools; the second branch will embrace the consitleration of the principles and theory of the beatifal as conccised by the fircels artists. This arrangement, athough difering liom the metbods ustally followed, seems to promise facility and directness of inference, with a conseguent veraciey of judgment.

The imagimation approaches the subject of Grecion literature, or of Grcciun art, with something like to sacred entbusiasm. The mind anticipates the delight of unfolding, amid examples of perfection, the advances of taste and the march of genius. But, alat the splendon: wh which the general subject is invested, is often but the reflection of brighthess that has passed away-filling the thonghts with lish and beauty, yet leating few memorials of its progress or its anthors. Of those whose conceptious peopled the cities and temples of heir country with a silent, yet breathing population of matchess forms, a liew names alone subsist. From the casual pages dedicated to this narrative, we turn in sorm, not mmixed with indignation, to the ample relations of war and bloodshed, of crime and misery, which history ha so lavishly bequeathed. Is human nature then, really so degraded as to take pleasure in preserving only the mementos of its own depravity; or is good, but an episode in the drama of tuman existence, to be burried over as stay-
ing the main action? Llave the reigns of anty and wisdom been so befef, so lia betwern, that the ! were ol the past is but as one mithty bathe pirer-s.ane every ligure is degtated with liary we comalod with agony-whereevers arm is raised to strake ow wad. where every aye thathes with hate, of donses in thatiop lerhaps it is thes ordered mome derply-mone aftect.
 sate one alone, whose pascos wall wamand lowe and peace and purity amel holianss.
le arriving ancos the arts !a cirece, athomed the
 of the subject, -we dw, howerer, escappe firm batbarisw, and ill some tacubute from ancertamt: Wis like

 We possess the personal narrative ol Pansanian, whose "I Satw," or "which is still to bee seen," compled with the description of the noblest monaments of hanan art, excites the eatia but excusabla regret of the modern reader. The 35 th, and 36 th chapres of Blity present an elogant compendium, evidently drason tion the best sources-not untreguently indeed lion the writhers of those wery artists, by whose hands had been executed the mastorpieces described. Whe perts. oraturs, and philosophers, afford many renorkablo notices, and speak with kintred sympathies of handeed fabours.

In arranging these piecious bequests, we shall dopt a threefold division of the ages whose relics they cmbalm. The first period will extend from the rurle begimnings of sculpture in Greece to the artists imme. diately preceding phicias. The second comptenends an interval ol about 1 zo years, from Pericios to the death of Alexander. The thind embraces those evil days from that conqueror till genius expired in the country of IIramer.

These divisions matk intrinsic revolutions in the progress of art. The first exhibits the rise and perfection of material art, it which firm, not imtelitrence, constituted beanty. The second-a glorious but bried period, displays art in its highest sublimity, when over surpassing and faultess symmetry, was breathed the expression of intcllectuat energy and noblemess. The third, like the last age of man, is decline, fecbleness, and death.

Tirst period.

The imatrination of Greece was poetry from the beginuing. Her consecrated groves-her haunted streams-her flowery plains-the depths of her azure mountains, were constituted at once the resitlence and the representatives of her earliest divintites, heroes, and benefactors. The alliance of mataral objects with the human heart, as sladowing lorth its affections, or as signs of its regrets, is the origin of all exalted art, as it is the purest species of Polytheism. As such a system indicates only the existence, not the presence, far less the form of a deity or departed worthy, it would be cherished only by a people simple in their habits, and ardent in their feelings. Accordingly we discover permanent traces of this simplest and purest superstition solely among the sumny vales and golden isles of Greece; for this her earliest faith has deeply tinctured much of what is most exquisitely descriptive or sentimental in her poetry.

But a belief so refined and untangible in its formsso remotely addressed to the senses, would prove insufficient to maintain an empire over the mind. Men therefore would speedily attempt some method of representing the immediate presence of the objects of their reneration or worship. Their desires in this respect, however, would necessarily be limited by their knowledge. In these primitive ages, objects, rude and unfashioned, would suffice to represent the subject of adoration. Nor is this conjecture, or merely plausible hypothesis. Pausanias states that the ancient divinities of Greece were represented by stones and trunks of trees, unformed by art, and that in his time many of these very stones were preserved in temples, and regarded with great reverence. In the time of Adrian, blocks of stone, formerly the objects of ancient worship, as Apollo, Juno, and Bacchus, were to be seen at Thebes, Argos, Delphi; and the Cupid of Praxiteles-the most famons representative of the god of soft desire, was by Phryne, his farest votary, transmitted to 'lhespia, in order to replace a stone, adored there from the earliest ages. These and many similar instances bave not escaped the notice of some of the Christian fathers.
These were symbols rather than natural representation; but they suggested the first step towards more refined smilitude. As skill improved, the Greeks would attempt to give some regularity ol form to these signs. Accoidingly the next stage in the progress of improrement was to hew the former blocks into syuare rolumnar shapes. Erecting these upon one end, by slow gradations, the artist learned to fashion them into something like a rude outline of the human figure. The extremities, however, seem not to have been attempted, nor were the arms separated from the body, the foldings of the drapery being stiffly marked in decp lines upon the surlace. Such, with varions degrees, no doubt, of individual merit, appears to have been the state ol the art in Greece, when Dedalus, the first sculptor whose name is fally recorded, arrised in that country.

The dircek colonies planted in Ionia, and in the isles of the Egean, quickly surpassed the mother country in wealth and refinement. Of these early establishments, that which first attained to the happiness and consciuent power of sctuled govermment was the Dorian colony in Crete. We have Plato's anthority that the laws promulgated by Minos were not only the most ancicut, but the wisest of contemporary sys. iems; this sentment is fully corroborated by the testimony of tradition, that the gods were born in Crete, and gave laws to the people. Insular sitnation and maritime power gave sccurity agamst foreign invasion; a direct intercourse with Egypt introduced the learning and arts of that country; while external advantages were secured and improved by equitable institutions at home.

The rpulence, wistom, and refinement by which the Cretans were thas preeminently distinguished, did not escape the notice of the A:henian hero 'Theseas, when he visited the court of the second Minos, twelve centuries before Christ. Nor were the causes of these effects unappreciated. On his accession to the throne of Attic: Theseus introduced into his own kingrom the improvements he had admired in Crete. While he gave to his subjects a system of regrular poticy, the arts of elegance which humanize the manners,
and then added dignity to religion, the firmest cement of social order, would not be neglected. Accordingly we are to place the hospitable reception of Dadalus in Athens at the time of the voyage of 'lheseus. Nor can we admit the doubts attempted to be thrown upon the existence of this artist, unless we resolve at once to reject the evidence of classic writers.

The foundation of the furst school of seuppture at Athens, destined long atter to carry the art to its utmost grandeur, is thus ascertained, abomt 1234 years before the present exa. It is not, howerer, io be supposed with some, that Dedalus first introdnced scmpture into Greece, or c'ven into Artica. but simply that he was the carliest master who imstituted something like a school of art, and whose works were lomsp preserved as worthy of notice. We have aldeady remarked, on the litility of arrogating explusive discovery in arts which owe their birth to the natural desires of the heart; white in the present instance the bare capability of appreciating the improvect stele of the Cretan, necessarily implies a certain degree of knowledge and of taste proviously existing among the Athemiats, and corroborating the views abuve recorded.

The performances of Dxdalus were chicfly in wood. Paltsimias, who writes in the end of the second centwry of the Christian era, entumerate not fewer than mine of these labours, the majority of which he had seen and examined. Notwithstanting the injuries of fourteen centuries, and the imperlection of carly taste, these works, and particularly a statue ul llercules at Thebes, are described as possessing sonething ol divine expression. Diodoris enters mone modetails whence it appears that Dexdalus improted upon ancient art, so as to give vivacity to the intitnde by separating the timbs, and raising the arm in varied position from the flanks as also to infuse mone animated expression into the comntenance by upemine the eyes, which before were narrow and blinking. Tíc mention these particulars for two reasons: they prove the existence of anterior art, and because the pass:ge has commonly been misinterpreted, as if refermos to the works of Dxdalus, not to those of his predecessors. This sculptor did not confine bis tatents to one exercise only; he cxcelled in architecture, and being skilled in mechanics appears by ingernion contrivances to have given motion to certan of his figures. as in a dance preserved in copy at Cinossus, decemited by Homer, and reported by tradtion to have been a presen: to Ariadne. This, whothot hasins recourse to the absurd notion ol Aristole abont ruirk ilver. may explain the fables which have been wnited with the story of his adventurous life.

Contemporary with, or more probably anterior to the preceding, was Dibutates. In the hmmbe occupation of a potter at Sicyon, this man became the aecidental possessor of an invention the most important to art, both in its immediate and subsequent eflects. This was the coroplastic art, or the application of soft materials to modellines the representations of sculpture. It was so named from Coru-the daushter of Dibutades, who, inspited by love, traced upon the wall, by means of a lamp, the sharlo ed protile of a favourite youth, as he slept; that in gazing upon this imperfect resemblance, she might solace the hours of absence. Struck with the likeness exhibited in this sketch, her father carcfully filled up the lines with
clay, and thus formed a medallion, which, hardened by fire, was long preserved in Corinth as a most interesting relic. To this pleasing incident the poets have attributed the discovery of painting-another proof of the exquisite taste, and of the delightful charm which, to their poetry,-their arts,-their philosophy even, the Greeks have imparted, by the constant union of sentiment with imagination-of the heart with the understanding.

Contemporary, but not pupil of Dxedalus, was Smilis of Egina, famous by his statues of Juno at Argos and at Samos." Working independently, his style dilfered from that of the Athenian school, while it embraced its improvements. Subseguent to the above, or at least prior to the age of Homer, were Eadzus of Athens, celebrated for three several statues of Niinerva; Icmulius praised in the Odyssey, as having sculptured the throne of Penclope; lipens immortalized as the fabricator of the Trojan horse, whose works both Plato and Pansanias meution; Alexanor, son of the "divine Machaon;" with many others, who must have contributed to works chumerated during the heroic ages, several of whose names might be recovered from ancient authors, but whose works had perished or been forgoten.

During these ages, however, it does not appear that sculpture can be said to have progressed farther than that it was not unpractised. And although Athens was thus distinguished in the outset, yet, for several centuries, neither in Attica nor even in continental Greece, was the art nationally cultivated. Almost to the commencement of the sixth century before Christ, the mother country was dependent chiefly on the casual or invited arrivals of artists from lonia and the islands. From whatever cause assembled, and not unfrequently they were driven from their native soil by political revolutions, ever the cnemy of peaceful studies, these sculptors naturally selected as their abode the commercial cities. Here power secured protection, as riches and luxury afforded reward and employment.

From thesc external circumstances, more than any peculiar predilection or superior refinement in their citizens, we find three schools of art carly established in Sicyon, in Corintb, and in Egina. Sicyon, with its little territory situate upon the sonth-eastern coast of the Corinthian gull, though acceding to the equitable jurisdiction of the Achean confederacy, had long been regarded as an independent and valuable mem-ber-a claim which the opulence, intelligence, and commercial enterprise of her citizens amply supported. The situation of Corinth scemed purposed by nature for the seat of arts, empire, and commerce; commanding the navigation of both seas which wash either shore, her position united by land the two grand divisions of Greece. She would have been the greatest, had she not first become the wealthiest of the Grecian states. The little island, or rather rock of Ægina, rising above the waves of the Saronic gulf, nearly opposite Athens, of which it was a formidable rival, affords a striking illustration of the effects of commercial wisdom. By this, a state, insignificant in itself, was enabled to cover the sea with a navy, and to cherish the arts. especially sculpture, in a school if not the earliest, certainly longest distinguished by originality of style and principles. To these primitive schools, or rather seats of art, we might add

Vol. XVII. Part I.
a fourth, comprehending Chios, Samos, and other islands. These, however, as already observed, were the nurseries from which the preceding were supplied, and merged afterwards into the sehool of lonia.

To one or other of these schools belonged those artists, who, in the ages subseduent to the Trojan war, kept alive, without much refining, the knowlodge transmitted by Dxdalus, bibutades, and Sinilis. Firom the same schools afterwards arose those masters, who, in the 7 th, 6th, and 5th centuries before our era, produced works not without admirers in the most refined ages that followed. Of this later class, we shall proceed to cnumerate in order the principal names, without attempting to reduce them into schools, as from such attempts many contradictions have been introduced into this period.

Rhoccus, the first of this series whose name is recorded, appears, from the testimony of Pliny and concurrent events, to have lived about the first olympiad, or 777 B . C. Ile was a native of Samos, the inventor of modelling properly so termed, and the first who practised his art in brass. For these reasons, father than as meritorious artists, have the names of libeecus, Telecles, and Theodorus his son and grandson, founders of the Samian school, been preserved. Bas reliefs, their workmanship, in golet, brass, ivory, and wood, were extant in the time of Pausanias, exhibiting the bard and dry manner of Egypt, where probably they lad studied. Untess, however, Pliny has mistaken the date, which we here see no reason to suspect, the finishing of the last was very beautiful, since he engraved the emerald, afterwards so celebrated as the ring of Polycrates, and the silver patera dedicated by Crosus to the Delphian Apollo. Great minuteness and delicacy of finish, the effert of painstaking labour, are by no means incompatible with a state ol art, rude in other respects; an observation which seems to have escaped modern authors, and in this particular instance the unobservance has led some unjustly to reject the narrative of the Roman.

In the Chian school we first hear of bronze statues, which, from the durability of the material, were rapidly adopted and multiplied over Greece. These carly works, however, are not to be supposed to have been cast; they were executed with the hammer, in the same manner as may still be seen in Etruscan specimens of different cabinets. There were, indeed, two manners; the earlier, and that which continued to be practised in large figures, consisted in joining the parts of them in laminæ or plates, the interior being probably filled with clay; in the sccond method, used in small statues, the several parts were united in a solid state, most likely brought nearly into shape, and the whole then finished by chiseling, or rather engraying. In both cases the separate portions were at first joined by means of rivets, afterwards by soldering. This latter invention has been assigned to various authors; and after much dispute still remains to be claimed. The matter is intrinsically of slight moment, nor are we disposed to a!!mit the authority of those who talk, of soldering with tin or iron; in fact, artists who could form a statue ol bronzc, would not long remain ignorant of so simple an operation, the utility of which was hourly recurring.

Gitiades, native of Sparta, but a pupil of Sicyon. exercised his profession with success, before the hirst Messenian war, consequently before the 2d year of
the $1+1 /$ olympiad, or $720 \mathrm{~B} . \mathrm{C}$. When Pausanias visited Lacedemon, many of his performances in statLes of bronze, were remaining in that city. Statuary, architect, and poct, Gitiodes mited in his own person all the arts, and in so fire may be styled the Michace Angelo ol those remote ages.

About the twenty-seventh olympiad, and for nearly forty years aterwards, lived Dionysius of Rherginm. and Glancus of Chios, carcfully to be distinguishat from their namesakes of Argos. They were employed chiefly upon the numerous bronze statues placed in the sacred groves of Olympia by Anaxiles, the seneyous entertainer of the heroic Aristomenes and his peopie, after the disastrous termination of the secont Bessenian war. Glaucus is reported to have displayed superior taknes, and to have intuolucat raFigis improvenames, especially a better method of uniting the parts of cast figures: but the fome of his contemporary is remembered in prepernce, as the
 tical figure, together with onc of Ilesion also by Dionysius, was lonsafterwards recosuised by pausanias. Hence it is manikest that the worl has never prossess. ed a genume rasmblance of the renerable fathe of verse. Pliny consilered the numernas busts extant in his time as ideal portraits, in which, though a certain common air and expression were preserocd. the character only, according to the conceptions of the sculptor, not the individual features, were delineated. From the general tenor of the passage jast jefered to in the Greck historian, it would appear that be inclined to believe the bronze, now mentionet, the original whence the primitive idea in all had bean taken. This is further apparent from the lact, that he was able to identify the portrature in its rudest stage. How interesting in this cose to compre those smbline heads of the bapd executed in the best ages of the art, with the lecble imaginings of the scuptur of Rlagitum! To trace not merely the progress of :mprovement, but to mak the successive acquisitions of senius conscorated to emshrine its own luftiest conecplions olits must gilted possescor.

About this time also mast hare been scaptured the soblen statue ol Cypselas, the second of the thece is the history of art; and on the dedication ol which in duc temple of Otympian Jove, the Elitas were, by the : esentment of abe Corinthians, for ever excluded from the lshmean games. Aboll the twenty-ninth obmiat likewise mast have Rourished Aristoctes of (rete, since before the Messenian exites had given to Zancle in Sicily its modern appellation, hais artist had esecuted at Elis a grond ol Hercules combating an "anazon on horsebach. 'The attempting and consummation of such a work as this indicates an alranced state, both of invention and of mechanical skill. Su (early, tarefore as 0,5$)$ yars belore Chmistianity, scafperate mast hene been maderstorn so as univer sally to be practised in its most important anct useful insemions. In cormonation of this semeral conclusion additional partiontars might beadeaced, hat sup"cient ha ; heen denc fos the continnity ol the narrative: in contrmation we may jast glance at the con-- "mpramones condition ol the sander art.

Puintinse accometing to Aintoild, wes intrenducad of forer, bin os we comme the vert incomal
 wnester of Judalus. The first painting most pos.
bably were monochronous, without internal lines of any kind. Hyginon and Dymas were among the lase who practised this kind of art; Charamides "tirst distinguished the male from the lemale form." according to Pliny; and from the same athor we learn hat Eumeus, an Athenian, first atchepted the represpmation olevery object; which expression, though alitte diatk, scems from the coutext to imply, that by this artist human and other figures were lirst grouped in the same piecc. 'lo Philocles, an Esyptian, of to Cleanthes, a Corinthian, is ascribed the introduction of simple outhines circumscribing the object. The discovery was improwed by Telephomes the Sicyonian, and Ardices of Corinth; who lardmencemeded these :imple contours so as to cxpress the matural forms and mankings of the parts movements of the limbs, and PDings of the drapery. Tmprovement wats thas adrancing showly but secturefy wothing was yet to be undeamed; thenext step. throsing in the lights and shadows, so as io gise propction ind relicl, appeared obrious. Unfortunately, however, Cleophantes directed imitation into a wrong conrse, by filhing up the outines with diferent colours lath in tlat. This must have greaty retarded the adrances ol lime melioration, as the practice, by suppressing all internal detath, almost threw the art back to monochromatic re. presentations also it is more iedions to retrace wanderings than to pus! fornard even through obstacles. Irence, though we perceise that in painting. the Greeks had discovered some good principles canlier than in Sclipurare, we do not find hat, in the former, they had actually realized greator imarovement in gencral. At the period indeed of which we now treat, there was a stiking similarity in the character and condition of the respective arts. Objects both in painting and in sculpture were represented in a manmer infoitely tedious, dry, and minute: while the defects of the com. position as a whode were but ill atomed for, be elaborate rendering of the parts, nud by the most scrupulous and ceven wonderfal mishing. The encomiums Lestowed by Pliny upon the pictures of Elotas and Bularchus, both ol whom were anterior to the twentyfilh olympiad, and consequenty contemporaries of some of the sculptors mentioned above, would at first induce the beliet, and actually have been bonght forward at prools of the superior excellence of ancient mantias. It seems, however, not to have occurred to those who mamatin this opinton, that lliny is thus made to contradict himself; and also that in praising the patutings of Dlotas at Ianavium, which were carried wifloy Kero, he spak's of their comparative not of the ar absenta beathey. The batte of Magnete. painted by Bularcisus, and which Candaules lime of Lydia purchased for its werght in gold, may prove the "Pame" in the words of the author just guoted, but certainly not the "pretection" of the art. As the masterpicce of its own aspe, the picture might be highly and justly prized, while, from the laborious minuteness of its details. the price might not be more than a compensation for the time bestowed.

This passion for cxireme finishmay be remarked in every remaning work of the are; of which very ancient colnssal husts in the British musemmare proofs. The taste was introduced and maintained by the limited resources of sculpure itself, by mediocrity in the artist. and by the nature of the ornaments and draiocrics of the time. Belore the flificth olympiad
the (brecks always appetaed abroad armed; at the public sames they assibter naked: but in the retime ment of domossic life they were duthed in light staftis of hande, coton, or woul. These robes were ample,
 white they wer lumber arraged symmetrically so as to form at serte's of triangular plats whe above the otber abong the margin. Soch were the ondinaty vest mems abo of the priests and fandes which were chose ly imitated by artists, and thus was cherished as it had been introduced, a segle ol sculpume, dry, meagre, and latomious.

The school of Sicyon, nearly gan years befone the modern ero, was illustrated by Dipemus and Segllis, the most lamous of her carly masters. They were brothers, natives of Crete, and mowned mo less by their own works, than for the eminence of their pupils, cir cumstances which, together with her priority in the pursuit, acquired for the city of their adopted residence the vencrable appellation of mother of the arts. 'l'be benefits of protection and favorrable estimation were thus mutak. ()n some accomm, however, the senfotors eather retired in resatment or were banished, but specdity recalled, it abodience to the commands of the Pythian oracle. The manner of theipreturn is remarkable, as fornishing an early proof of the operation of a canse, mamly comtributins io the final pertection of art in (itecoc, samedy, the respect and importance attached to the prefession, The works of the brothers were exectuted in andous meterial. metal, wood, isory and matite, of of a compumad of these, by matimg. I minutinse wnl jumina: (sit these ditferent mediots, siocimens were eb le secu in the lime of Punamias, who states also that they seutitured the lamons lydian Ninerva, fote cubits, or six lece hish, ont of oise entire cmorall, and which was extant at Constantinople in the elesenth conury. Fut the fame of Dipanus and Soyllis, as exerting it lading indmance on the protess of improvement. rests upon then hating beea chiclly incommental ian aply-
 stances yet discoreved. :he fotest for the representatons of this art. In Parian marble. statues by these masters, of Juno, Ninerva, with others of the Jesser deties, were admired in the time of piony. exceted the cupidity of Nero, ami are shtrequently described by one of the Christian Pathers fom the great benordion in which they were lack. In propertion, however, as these artists excelied their predecessors in seaims, in an equal cergree cid they rime upon that excess of faish which we have memtond as giving a meagre and studied dfeet to the habrers of this age. The hair arranged in undulating locks on spiral carls, wat laboured as if to be numbered; the drapery disposed in the most rigid ant methodical forms, is elaborated with painfulmanutenss, while the limbs and comtenance stall retain a tasteless chander and expression. let they did introduce rery ondatetabe methortion; their eacotion is muchmore mastedy, and the semerat effect more powerfui, as may be seen in the colos-
 seam, most certamly worlay of theirschool, meost probabty of their own hands. Ol the Sicyonian academy, the most celebrated members were Learchus of [bhe giun, to whom is crroneonsy asigned a stathe ia metal of Jupiter at Sparta, He separate pieces of whith were united by doretails, beiserestemed the most an-
rient bonze in Cibere. Jiacocles. Dontas, Drary rli de, with his bronder Meden, lacectmomians; 'lembus
 the remains of whold, with a remarkathe basobiption, were supposed tw be discoverced in the trat centur? 'The latest and most catelnated of' this sthoml wear limilius, und mone remotely as a scholar Catlon ris Erina.
(of any smople momment excented danine these early arges which hase je been partabaty moticed, the sreatest undoubtedty was the bume or shane of the Amyclean Aporlo in white marble, by Bathyches of Ionian dagnesiat lowe statne itsell was ol inom, himrty cubits hish, whibians every evibence of a evye contenporary with, or eren carlior than the age of Dxalns. Indecd, as resebibed, with bead, hands, and feet only, the trunk being a stuare pillar, it appears to have been intermediate between a sign and a representation; hos furnishing another prool in support of the remarks intuotuctory to the present section. To support a figure of such dimensions, and also as its base contained the oomb of liyacinthes, this theone mast hate been of rast magritude. It was completely cosered with reliews, and adomed with mumerons statues, representing incidents of history and fable, cither allusive to the story of the youth intered within, or selected as appropriate subjects of agrecable ornament. Among these hatter were varions sornes from the immortal verses of Homer, an crijdene, as has been remarber, that these poeme nomst have been koman (1) the spartans lons betore the
 akiois, and (anaments, within the secel !recinets cot the tempte at daydare were ako the labouro of Bo thyc!e whoce greatest work exhilits a singular and logy in the fate of Girecion an 1 of mutern amp for b; cheros of a kimb neary similar were the revisins
 ciser.
 the isle of Chi s, 317 years lothte Chmint, wore C scendunts forma afomile ol celebratelartisio, in which accurdin; to l'iny, scuiptare had heen ciaried lap wat internatitaly from the institution of the Olympars. Their sreatemrandither, Matas, abont the g\%h olym
 applied to his art the beaution mandes of his medi" island. Elichindes mberiterl ind smproved the ecience of his fother, tamsmitios the accomulued es. perdence of two geterations i b his own sun fanther mus, the parent of those wow montioned. Part \boldsymbol{A}^{\prime} this account may appera discordant vith the statement abore, that marble was first gencrally usid in the school of Sicyon. Controversy on this subject mant easily have been avoided by recomiling the dicts. The isian's, and Chios in particular, abound in eacellot marble; the smal furs of the imblar-lomian schand.
 whin therir pupils at Sicyon might wishaty enjo: the merit of introducins the cisonvery butu contilantal Gicuce.

He this an it may, and by no ratio mean=, can the
 lus and fathemus certainly firsthrought sculpuacin marble to a degrec of perfection. "the beanty ef the works excited the refned but ne?dions capidity of Verres and was prized by the polished iaste of the

Augustan age. Disdaining the narrow theatre of their native isle, the brothers proceeded into different countries of Greece, which they filled with admiration of their labours. At Smyrna, Bupalus erected his celebrated statue of Fortune, the first, according to Pausanias, dedicated to that deity, and of which a resemblance, with an inscription, undoubtedly spurious, was discuvered near Bologna, in the 16 th century. Two other inscriptions, both ancient, bearing the name of Bupalus, have been dug up in modern times; one of these on a plinth, found near the crouching Venus, has caused that delicious figure to be ascribed to this artist although evidently of a much later and more refined age. At Smyrna were likewise his Graces in marble gilt, showing how early this practice was introduced; and Pliny mentions with great praise a Diana as appearing stern to approaching, but gracious to retiring votaries. It is the besetting sin of Pliny as a critic in the fine arts to attribute complicated expression to sculpture. It seems not to have occurred to him that simplicity in this respect is not only the highest beauty abstractly considered, but is, in this art, from the nature of the imitation, a constituent and necessary quality. Some modern athors, among whom is Falconet, himself a sculptor, have laboured wery uselessly endearouring to prove how this effect might be produced. If it could be attained, the composition would be so much the more delectire.

Among other labours, these artists modelled a portrait of the poct Hipponax, who is reported to have been extremely ugly, and who, in revenge, wrote a satire against them, so very severe, that in despair they laid violent hands on themselves. This last circumstance we know from Horace, and from the posterior dates of their works, to be lalse. The statue of the satirist, however, from the frightful appearance of the visage, is said to have suggested the original idea of the masks worn by comic actors: for belore they were accustomed to appear upon the stage hav. ing their features ludicrously smeared with vermilion.

At Delos, where they appear to have long remained, the brothers excented many works universally admired; and on which they inscribed the following verse: "The sons of Anthermus will render thee, O Chios, morerenowned than even thy vines have yet done:'A sentiment in the highest degree pleasing, because, while it expresses the candour of true genius, which dares to estimate its own powers, as well as to do justice to the merits of others, it regards personal distinction only as conscerated by union with patriolism abl filial rencration. IIappy Creece, who could thas discover incentives to generous exertion in the finest impalses of human fecling! Need we seek remoter catuses of the moral grandent, the intellectual vigour, the relined perceptions of thy favoured sons!

Subseguent to the filtieth olympiad, all the principhes ol the arts ol design were thus known and exhibitcd throughout (irecec. The rules ol painting were wall umberstood, as may be gathered from the descripdons of works executed prion to this date, and pre:croed even to the age ol the emporors. Portrat painting was much practised, and could boast of able masters, as witness the portrat of sapplen by leon, painted about the forty-fiftiolympiad, and preserving its lireshomes to the time of 'Trajan. Jeron this may be dednecel, not oaly the exercise of the art, but likewise that its professors had skill sullicient to render
their works even more durable than can be effected by any method known at present. Much has been conjectured respecting the painting of the ancients. One thing is certain, that wax was employed to impart adhesion in all instances, and latterly consistency to the colours. To us it therefore appears not improbable, that there were two distinct operations practised in different ages of the art. By the early artists prior to, and about the time of which we now speak, the colours appear to have been used in a dry state, similar to crayons; after the piece was thus finished, a transparent preparation of wax was spread over the whole, so as to secure and preserve the tints. This supposition acquires strength from the fact, that such preparations or washes were employed by the statuaries both in wood and marble. 'These varnishes were of a rose hue, and so hard, that upon the colossal statues of Hercules and A pollo in wood made by Laphaes, a contemporary of Alcxus, this covering remained uninjured in the time of the Antonines. Afterwards encoustie, properly so called, in which the wax was incorporated with the colours, was invented. This discovery, however, must have been made at the latest towatds the sixtieth olympiad, since it is mentioned by Anacreon. The minutencss of that poet's directions would lead us to suspect that he wished to point out in prelerence the latter method, which, from its novelty and lieshness, would add new beanty to the features of his mistress. About the same time, architecture, as we shall have occasion to bhow, was understood not only in its indispensable principles of cquilibrium, proportion, and durability. but also, contray to Titruvius, in those of refned decoration. Sculpture in all its departments, and in all its material principles of imitation, was complete. Engraving on gems had been practised by means of the wheel, from the time of Talus, the relation of Dadalus. Theodorns of Samos had invented the lathe, which was subsequently employed with great dexterity in forming statues of ivory. The superiority of marble was admitted, and the modes of operating with mechanical beanty perfectly known. The art of casting, introduced by the Samian school, had progressirely and prodigiously improved; and at this period exhibited some very refmed operations in the union of differentmetals, as witness the works of Alcon, of Aristonides. of 'I'isagoras. in iron and copper melted together, netals not easily uniting, and difficult of lusion.

Retracing our path ower the ages of these discoberies, how are we struck by the slow and painful growth of human inventions! Fixing undistracted attention upon the life of any one artist now mentioned, how crowded with anxieties and active industry must that span have been! To the individual how momenturs those cares; yet how fecble their results compared with the final sum of knowledge, which, they were valuable only as they contributed to swell, -a lesson of humility to the greatest; yct, again, how precious as a portion of the general experience,-a subject of gratulation to the weakest. How small the dropol liguid nectar with which cach labourer hastens to the hive, yet of such is accumulated the whole treasury ol' sweets. The collective energies and discoveries of a thousand years were reguired to rear the arts of Cerece, not to their perfection, but to the state whence the lirst approaches towards excellence begin
to be apparent. From the era of Dipxnus and Scyllis, in the 4134th of the Julian period, to the 3090th of the samc, being the age of those ancient artists whose scniptures certainly exhibited a rude resemblance to the human form long prior to the performances of Dextalus, there oceurs an interval of 1044 years. During the course of his time, as remarked by Varro with characteristic simplicity, but with that veracity and good sense which distiuguish his unpretending narrative, the arts were invented in Greece.

The first deciled improvement fixed on such principles as enabled succeeding elforts to carry it forward, certainly commences, as already stated, with Dipanus and Scyllis in the 50th olympiad. The advancement regarded chielly a more mastenly execution. This was perbaps in part owing to introducing the stronger marking, necessary to effect in metal, into their marble statues. 'This manner, although productive of harshness, paved the way for a firmness and decision of handling, which subsequently broke in upon the timidity and leebreness of the ancient style. Melioration to a very great extent, not only in the execution, but in the gencral composition and perceptions of bealty, were to be observed in the works of Bupalus and Authermus. On this account, we lave been more copious in the arcoum of these artists. Between the Cretan and the Chian brothers, however, that is from the 50th to the 60th olympiad, many contemporaries were actively engaged in promoting the art. Nor was the coarse of improvement limited to the islands or cities of Greece: in Italy and Sicily, excellent artists were to be found, who carried into those distant settiements the science they had acguired in the schools of the mother conntry. At Rhegiam, Clearchus was celebrated both as :un artist and an instructor. At Agrigentum, Perillus cast the famous ball of Phalaris, afierwards carried of by the Carthaginitus, and restored by Scipio. It must furnish a proof of our not having oferrated the science of this age, that the identical work in question is much praised by Cicero.

During the perioth also, of which we now write, and prior to the 60th olympiad. Pisistratus had already laid the fommation of the futare grandeur of Athens as a school ol scupture. The wisdom, moderation, and inteligence of this wonderful man, evince how unmeaning were the ideas attached by the Grecks to the word tyrant in particular, and furnish a proof in general of the extent to which they were the dupes of names, and of misjudging prejudice. Mappy for Athens had she always been governed by such men; by those who, like Pisistratus, would have respected the essentials of free institutions,- that is, who would have consecrated the resources of the country to promote the national grandeur, and saved her from the worst enemy, her own mob, miscalled frecmen. Our own days are not without their cant and catch-the-vulgar terms, against which governors like Pisistratus are our only saleguard. Round him he collected in Athens the most esteemed artists of the time, among whom Eucharis, the son of Athenian Eubulides, a scuiptor of the last age, and Callon of Elis were conspicuous. By these two was worked the famous statue of Bacchus, in which were preserved the lincaments of their patron, who was at once the most accomplished and the handsomest man of his age. Eucharis rendered himself famous by his statues of athletx and warriors in armour. Callon's greatest
work was in bronze; the statues of thirty-five youths of Messina, who, with their preceptor and flute player, perished in crossing to Rhegium, in order to solemnize a religious cercmony.

Within this pertiod, is to be placed also amother artist of deserved cetchrity, Callimachus, we imento: on the Cormhian capial. In athopting this chronology, dilfering so widely from the received opinion which fixes the date of this invention much later, it will be requisite to condesernd upon some details. First then, the accome ol Vitruvius, who has been followed as the authority in his matter, cannot be correct. He states, that Callimachus, the insentor of the Corinthian order, was the same with the seuptor of the statue of Zeno, the Stoic, and comserpantly who must have lived in the one humdred and twentieth olympiad. But this order was employed by Scopas in a temple erected at the very latest. prior to the one hundred and fourth olympiad, or more than sixty years before the time of Zeno. Such is the negative evidence in support of our position. But, in the second place, there is positise knowiodge that an antist of this name did live at the period now treated of. This information is derived from a relievo. not long since examined by us in the ruscum of the Capitol, on which the name of Callimachus, as the sculptor, is inscribed. This monument, discovered in the ruins of Horta, and representing four ligures chraged in the rites of Bacchus, exhibits the style of ant which has been described as characterizing the era of the fiftieth olympiad. There is the same dryness and rigidity of excention, the same claburate minuteness of detail, and the drapery is arranged in the same symmetrical mamer in triangles. These, cspecially the last, we know were not the peculiarities of any succeeding age. This proves, that a sculptor of the name did live between the fiftieth and sixtieth olympiad: but another step is wanting to the desired conclusion. 'This step is furnished also by a relievo. preserving the adrantage of deducing all the proofs from the art itself. In this bas relief, formerly in the rilla Albani, but of which we judge ony from an engrar. ing, not having been able when at Rome to discoven the original. is represented a muse, accompanied by two other figures. who is rectiving a cup into which a winged genius pours lignid from a vase. The style of this production is in erery respect similar to that in the one just describect. evidenty proving it to be of the same age, and although not inscribed with his name, most probahly also by Callimachus, since the position in one of the figures is almost a rescript from the preceding. What brings this work to bear on the point at issuc is. that behind a wall, in front of which the figures are placed. appears a temple in strong and distinct reliel, with capitals of the Corinthian order. From the force of this evidences it is difficult to es. cape, except by supposing, of which there is no proof or cause to be assigned, that the wall and temple were subseguently added. The subject is certainly involsed in doubt, nor do we assert with confidence: yet as the statement of Vitruvius is cridently untenable, it is therefore extremely probable, rating the evidence at the lowest, that our view of the era of this invention is correct. Callimachus is further praised as master of all the arts of design. and as infusing a greater degree of lightness into his composition than had before been attained.

During the period of fiftyeight years, from the sixtieth olympiad at which the narrative has now arrivrd, to the batte of Alarathon and the early contemporaries of Philias, sculpture was rigorously exercised, and with correspondins improvement. The exercise "as owing to those various political or religious canses which rendered the cultivation of this art essential in most of the drecian states. The melioration, though in a secondary degree depending upon the same causes which cherished the practice ol statuary, was chiefly derived from the excellent mode ol' study, which, with the intuition of genius, the Grecks from the first had discorered and fortumately pursued. Nature is at once the parcnt, the object, and the perfection ol art. Nature, the only source of excellence, furnished to the sculptors of this favoured country their first principles, in opposition to all systems of conventional imitation. The very faults of their early masters, we have scen, sprung from a too great solicitude to render faithinly mimute peculiarities, withoht attending to selection. But about the period which we are now commencing, iconic statues, especially those of the comquerors in their public ganaes, introduced a more generous study of nature, and furnished new rules of att. To the honour of those who had dotained thace crowns, statues, in every limement individual portaits, were erected. This was attended with a wotoll :drantage. The practice necessarily fendered liviag atists fimiliar with the most perfect esumpies of corporeal beauty; white it begreathed to - ccecding atecs a scries of the most valuable, because rewimodels. From these transeripts of the nost beautitaining forms. were afterwards deduced those laws " Proporionam of ordomance, which contributed so wath io the pealcetinn, ath thay constituted one of the

 Wher the perd of abich we are now more imondiate-
 - nams impurtance som titer the sivetieth olympiarl.

 as una in ponsumbion of all the bunas an: instra-

 movely become sabarvicat to the bolity amb of sex net- Daring the ahore pertot, these means and in\because anments ware ind
 - berbent was one of difluse artivity, not an impalse deribul from and shotainal atacongst a fow leading
 or actors wore pearnted and the pownty of anecdote sefms to have been oceasioncel wot so much by inatFntion, as from litue beins wothe of separate notice.

Damuas of Crotona is mentioned with praise as the ernptor of a bromze iconic statme of his celebrated - orapatriot Milo. Amoms the wembetial displays of stengeth attributed to the origimal, it is recorded that he bere this lisure on his stoulders to the site of erece tion at lilis. From a law thon firs introduced, permitt uss a sotue ol an atbleta to be placed in that ci! \because, this work must have bern raecuted soon after the
sixty-first olympiad. Polycletus, the first of the name, studicd under Ageladas of Argos, ol which city he himself was a native, and appears to bave assisted his master in the statue of Cleosthenes, who gainerl the Chariot race in the sixty-seventh olympiach, and was therelore represented in a car. This, consequenily, was one of the most important works yet ventured upon, on which account it is the more to be regretted that an idle dispute has been raised about the date r, ${ }^{\prime}$ the worl, originating apparently from Suidas giving Geladas, and one of the scholiasts Eladas, for Ageladas, who has thus been mistaken for the manter of Phidius. The works of the first Polycletus exhibited rigorous conception, but by Pausanias are blamed as angular and mannered in design, "being square and all nearly alike." Ile had for his pupils Canachus and Aristocles, brothers, heads of the school of Sicyon, each of whom executed one of three muses, esteconed the fimest perlormances till then beheld in Greece; the third was by Ageladas, the master of their common instructor. The work of Aristocles is supposed still to be in existence as the celebrated antique of the Babarini palace which holds the smaller lyre, and is about twice the natmral size. Contemporary with the two last was Ascarus, known by his Jupiter crowned with flowers at Elis; maher later were Nencomus and Soidas of Nanpactus, who conjaintiy funshed a statuc of Diana, lung alemwards removed by order of $\begin{aligned} & \text { dugustus. Mencrmus was ish the ant }\end{aligned}$ thor of a treatise on his art, according to Pling, who has. however, placed both too liw ill alvance.

About the era of the battle of Miswhon, ahhough the work in cpastion was probably execuled subscguenty to that glorions achicrement, lived Eestias, whose statues of the Dioscorides have in modern times accubxe. him fictions renown. The original woak was by order of Augustus, placed in front of the temple of Jupiter, and loy most writers has been descriad as recurcred in the coivasal gronp which, now finced belowe the pontifical pakare. cunstitutes one of the mose valued monnments of liome. It is wonderful how far love of a faronvic opmion will lead even the best informed writers. Wimkleman!, lor instance, percends to find in "those parts tanly anciente" the harshmess of style for whis it iosesions is blamed by Quinctilian. Gthers again daw thoir armanents from the senation where these fernes were lownd, as being the station of the work of that artist. Now in answer to all this, the gronp of Eyseins is distinctly asserted by l'tiny, who had seen it, to have becn of beonze - the figures at lione are of marble: instead of the rinins in the forum-these batter were discovered in the quarter of the Jews. This inguiry here is of importance. These anticues are by the best judses wnsidered to be of the era, if not from the hand of lhadias, and therefore furnish most valuable cridelace whence to determine the highest minciples of art among the Grecks. This subject, also, has something of peculiat interest to us, since from one of these atticpes, with what credit to the national taste others may decide, is copied the national monument evected in the capital, to prepectuate the last glorions but tremendous afort of our arms at Waterloo.
'The victory of Marathon, sained in the thisd year of the seventy-fourth olympiad, or A. ('. seo, inspirad fresh vigour into the genius and institutions of Greece. From this ebent is to be dated the com-
tmencement of an era, perhaps even more important in her moral and intellectat than in her political history. Dreparations had long been making; materials on no small scale fere collected in almost arery lield of mental enterprise: and the lervent spirit of the naton required only an external impulse fally to awaken into mighty splendour its slambering lives. Poetey had already attataed excellence in two of its noblest branches-the epic and lyric: and one year after the batte. tischyms obtained the lime werath placed on the awfial brow ol tragedy. Comperation in prose had loug been practised with a degrec of accuract, and the artists recently mentioned, white early contemporarics of lherycides were in their last years witnesses to the triumph olllerodotus. Philosophy and science had begun to lead men to relish the charms of wistom, and to appreciate the powers of knowledge. Elognence, bons admired as the natural condowment of energetic minds, had made some progress as an açuisition subject to precept. in the arts of design we have already shown the preparations to have been even more ample. 'The fruits of these, indeed, remained in the latter at an immeasurable distance; lor in poetry, llomer, Pindar, Sappho, Anacreon -had respectively attained perfection in their spheres. The fame of the sculptor, however, or ol the painter, rests upon far less independent cxertions of the mind than that of the poet. Their success is determined more by the circumstances of the times, and by national prosperity. Hence the defeat ol the barharians and the resulting consciousness of power-the true Poundation of greatness, with capture of their weadh, which supplied means, must have proved even more adrantageous to scu!pture.

From these analogies we might venture to infer the relative excellence attaned in the several provinces of taste. The series of works in art is limited and very imperfect, especially of the early ages; but the ere have becu preserved progressive examples of poetical composition. The genius of 正schylus was formed prior to the first invasion of the barbarians, he bore arms in the fields both of Marathon and llatea. The youthful Sophocles, whose tender arge was litted only for such gentle service, perfomed in the chorus which celebrated the later victory. Not twenty years had elapsed when the tragic crown was removed from the head ol the warrior bard, amp phaced on the brow of his riral. During the same spirit-stirring period, sculpture was studied with at least equal zeal,-niay it not be assumed with similar success? And that the superiority of the (Edipus of Sophocles, over the Promotheus of 忍schylus was not greater than were the majesty and beanty of the Jupiter or Minerva of lhidias compared with the Jupiter of Eladas, or the Diana of Soidas. The improwement indeed nould not be so conspicuous in the latter as in the former case: for in sculpture, external am, which to the majority is all, had alreatey nearly approached its utmost beauty; there remained to be added only those intellectual refinements, the triumphs ol genius, which, though immeasurably begond the highest eforts of mechanical representation, are yet less generally perceived. This comparison of art with art in opposite provinces, lurnishes a means of ascertaining not only the relative progress, but also the ultimate extent ol excellence.
()f those artists who were the immediate predeces.
sors or early contemporaries of Phidias, who fill up the interval, perhaps in moral gratuelar the bophow
 to the gosmoment of derictes, a fow we the phow
 clude with Nyran, in whome wosk the 'a ati
 with propriety the liwt periol.
 sors with whon th: ;imeritons farmes
pied. (nue of the mast arw rat? *
list, on which latuanias has beato.

 ty-bind and two sucecodins obsmpiads. A perf ance of a dimernt kint, presemed at Sys presenting a Philoctotes, is wemional by bla terms of the hispert almiration. Whe shfäm! chared, and the canse of thest, -a liosterins wome the leg, were expressed with turrible letulty. as the weetators, while they gracel, boll wel thom to be seized with the same pains. 'The figure. the words of cid Emmins. presorved by Cocen

Fijulutu, gucsta, renaitas, fremitilus

But not fiom the merit of individual pieces ond Pythagoras entited on notice. Ilis name is in'inalch assoriated with the genaral adrancement of an. ranking among the inventors of the beantifil tho : ? of abstract proportion which tanght to unite chestoce with tuth; and by the hamonious relation of jait to express playsical intelligence or power. A prowi of the use and adrantages alpeaty pointel out, of iconic statues. He also introduced a bolder ato more decided mechanical prachice, especially in ilo manner of rendering the la:n. which he expressed once firmly, yet softy, and arranged with wastudici grace. Hence some writers have proposed bis is era by which to establish the autiguty of core: works, but unfortunately lor their own views, thems a love of partial system, hey have placed this purion too far in advance.

While pythagoras, Onatas of Fogina, antion ai. . admirable statue of Gelon of Syracuse; (ilatios Egina, who modelled the fanons Theagines of 'i'h sos four hundred times victorious in the publicemmes Critias, whose works replaced the origind statues bronze of LAarmodias and Aristogiton, cartied of Serxes, and restored by ilexander,-while these and many others were celebrated for their representatio: of the human forure, Calamis became still more nowned by his statues of horses. These were likewi iconic statues, a proot how eariy nature was admith as the only guide in cuery branch of sculpure. (u' mis juttil eactio equix. There is, indecd, some an. tion, whether there were not tho artists, bearine: name of Pythagoras. equal in age as in reputaiao. but of different countries. This seems, however. lave been a mistake arising from fliny inadrotembly writing one city for the other, -heontiam for lith gium. Pythagoras was originally a goldsmith: han we may infer, although is is no where directly asscia ed, that he wrourhat exclusively in metal. Vases of his workmanship. of exquisite desigh atd caccuticr. vere, in the time of Nero, covcted by the great ...
articles of the highest luxury. By Quinctilian he is extolled above all his predecessors, and for delicacy of style, placed inferior only to Myron.

The true era of no Greck sculptor is more difficult to ascertain than that of Myron. The difficulty is occasioned both by contradictions among the ancient authorities, and by the imperfect manner in which the subject has been investigated. The principles on which Pliny has fixed his epochs of art, are seldom casy to be discemed. Certainly, they do not rarely appear to be merely arbitrary; nor is the supposition of llegne unfounded, that the Roman, collecting his materials from general history, and finding the principal artists mentioned on the conclusion of the different wars in Grecee, the cessation of hostilities affording a resting place whence the historian could look back on minor occurrences, was led to conceive an imaginary connexion between the enjoyment of peace and advancement in the line arts. According to this theory, he has divided his subject, and, as in the present case, has frequently sacrificed truth to opinion. But his errors here being set aside. the other areient authorities are consistent. As to the moderns, there is on this particular point such trilling about names, —such gratuitous assumption, -such slavish adherence to pre-conceived notions, as subvert every precept of manl criticism, or independent judgment.
It is admitted that Myron studied under Ageladas of Argos. in whose school he was the fellow student of Polycletus and l'ythagoras already mentioned. Consequently. the question here, as involving much of the preceding arrangemeut, demands particular attention. It may be proper to explain, that we have fixed the era of a sculptor liom the time when he is first mentioned as engaged in a work of public estimation. 'This method has been constantly followed where practicable; otherwise. the date ol his most celebrated performance has been assumed as the eia of the author. The only deviation from this plan that has been made, and which will be adhered to, is, where several artists have appeared in the same age, the most eminent has been last mentioned. It must he obvions. that a similar arrangement is the only one calculated to afford just views of a progressive art. Let us observe how these principles apply in the present case. Polycletus has been placed in the 65th olympiad, because then associated in a public work with his master: Pythagoras, a superior contempora1y next; and lastly, Myron lave been noticed. 'I hese, Pliny has also made coeval, hut has placed them in the 87th olympiad, and posterior' to lhidias. This order has either implicity, and to appearance, without examination, been followed by modern writers; or seemingly struck with the inconsistency of the narrative, they lave parsued a midde course, in adhering to the chronology, white, in the conrse of improvement, they have described the labours of Myron as paving the way for the execllencies of Phiclias. But on examinintr the subject more in detail, we find that Myron, in the earlier part of his career, must have been contemporary with Anacreon, since there is still cxtant an "pigram be the poet on the lar-famed heifer of the senptor. Now, the life of Anacreon camoot be extended beyond the 76 oth olympiat, since be was bom in the 55 th and rlied at the age of 85. . 'lhere thas rematas an intoral of more than lorty years between Anacreon and the time in which hyron has hitherto
been placed. Therefore, it is barely possibility that the youth of the latter fell in with the last days of the former; but it is altogether incredible, that a youth should have produced a work perfect in its kind, admired in every era of the art, and in praise of which not fewer than thirty-six poetical compositions have reached our times. Erynna, likewise, a poetess, much earlier than the death of Anacreon, has mentioned this sculptor; while Pausanias, Quinctilian, and Cicero, compare him with those artists only who lived prior to the 87 th olympiad. Lacian alone, who speaks merely of public estimation, makes any reference to a later period. Myron also inscribed his name, and, in the ancient character, upon his statues, both of which circumstances prove their antiquity, as does also the fact, that many of these were executed in wood. This evidence must be hed couclusive against the chronology of Pliny; other opposing arguments, therefore, need not be insisted upon, which might be drawn lrom his own criticisms, as containing remarks utterly irreconcilable with the condition of sculpture, immediately posterior to the age of Phidias.

Myron, a native of Eleutheræ, exercised his profession chicfly at Athens, of which he was a citizen, fuishing his principal works in bronze, and his largest in wood. We have consequently no original work of his hand; but there can be no doubt that the famous Discobolos is preserved to 1 s in more than one excellent copy or repetition in marble. From these, we may deduce a fair estimate of the merits of the inventor. The style of Myron appears to have been distinguished for strengh, encrgy, truth, and seience. The last, indect, like Nichatl Angelo, he hats been blamed as having carried too far, to the sacrifice of simplicity, in studied and diffeult attitude. There is every reason to believe, however, that the statue in question, representing a young man about to launch from his hand the ponderous dise, used in the public games, faithfully exhibits the position adopted by the ancients in this excreise. Also no false piat of muscle, nor any impropriety against the laws of mechanical action, is to be detected; every limb has that movement, calculated to impress and to seconel a forward and elevated impetus. The objection then has probably originated in the misconception ol a passage in Quinctilian, where, speaking of this figure, be employs the worls, "I istortum et claboratum," yet with the obvious intention of commending the novelty and propriety of the composition, in boldly deviating according to the nature of the subject, into untried modes of art.

Iconic statues were by this artist carried to the highest degree of perfection; in which department his portrait of Ladus the foot racer was esteened a masterpiece unsurpassed in every succerding age. Poised on one foot, the most difficilt of all positions, the figure was in the act of springing forward, and in the language of an ancient writer, "breath seemed to agitate his langs; and the form was gazed upon as if hying from its pedestal to smateh the crown of vietory." Besides this, the Athenians much admired the Bacchus and Erethens sculptured by their order: as also an $\Lambda_{\text {pollo }}$ carricd ofi by $\Lambda_{n t o n}$, and in conseguence of a dream, returned by Auguntus. Representations of anmals by Myron were equally admirabe, and appear to have been even more highly valued; his famous heifer has already been noticed. Originally
placed at Athens, it was transported to Rome and remained in the Forum till the days of Procopius in the sixth century. Four oxen behind the temple of Apollo Palatimus, are mentioned by Propertius as little, if at all iuferior, and a log licking his wound, preserved in the temple of Juno, was, like one by Lysippus, esteemed so precious that the lives of the keepers were made responsible for the security of the work. Myron carried mere imitative art to its ntmost extent; but in the management of the hair, as also in some slighter respects, he is represented as having retained much of the dry manner of lormer masters. Sculpture, as the representation of "external form he perfected, but as an instrument of touching the hear-of elevating the imagination, he was unable to call forth its powers. IIc represcuted nature forcibly and with fidelity, but withont grandeur or intellectual expression. Λ_{p} proaches to just conception of abstract beauty may be perceived in the principle which he is said first to have tanght, that propricty of parts was beauty, or in other words, that a work ol art was heautiful as a whote according as the parts in form and proportion were in accordance with their office and destinations. This, in fact, is the essence of corporeal beanty-the highest refinement of material art, and assigns to cxternal form, adependemt of mind, the noblest character and expression of which it is susceptible This is the utmost range attained during the first period, and formed an admirable ground-work for the sublimity, which was added in the following era.

Second I'criod.

The invasion of the Persians, fatel as it had proved to her ancient monuments, became a chicf cause of improvement to the living arts of Greece. Her temples being every where thrown down, the statues of her noblest citizens and most distinguished characters carried ofl or destroycd- very sentiment of religion, of patriotism, and of mivate zeal was interested in replacing monuments so sacred. From the state of knowledge also, this restoration could be accomplished in a manuer the most perfect, lrom a single statue to the most spacious temple. By the combined efforts of sculpture and architecture, the ruined cities, and Athens in particular, rose, phocnix-like, more resplenfent lrom their ashes. An miversal activity in the cause of the arts was thus spread over Greece, which continned with little distinction of school, from the battle ol Platea, to the death of Themistocles. This period embraces the latest and best part of the professional lile of Pythagoras and Myron already mentioncd, with numerous others of inferior note; among these was Eladas, who formed the statue of Jupiter, erceted in honour of that victory, and in whose school Phidias had already become distinguished. Of the style of the intervening age, which thus, coinciding with the pupillage and early labours of this great master, commects the first and second periods of our history, the tions, placed by Themistocles upon the Piraus, and now adoming the arsenal of tenice, afford a fine example. In these, the art has acquired all its external force; and in contemplating the vivacity of attitude, the fidelity and grandeur of detail, the observer may be at a loss to conccive how far room was left for future improvement. To us, indeed, it has occurred, on repeatedly examining these
Vol. XViI. Pame I.
sculptures, that they respire an air of ideality and imaginative composition, not to be formed in huma: figures of the same date. This seems to arise from the mixed forms and expression ol the heads, which, though not to be fomd in nature, yet produre a moble and elevated elfect by assimilating, in a maner more casily felt than defined, is those of man. 'This character is to be praced in all antigue representations of the same species: and as rerards amimals, erenerally, the ancients appear carly thave entertained this as a principle of the ideal. These works were among the few ornaments added by Themistorles; his prudence, satisfied with providing lior the security and power of the capial, wesigned, with ample maths, the care of decoration to his sucecssors.

Every favourable circumstance thas conspiren to render the age of Pericles distinguished in the history of Sculpture. His own lofyy conceptions were in unison with the animated and exalted tone of gemeral feeling in his native city. Ithens, despoiled of her ancient monuments, passionately attached to the chitivation of the line arts, with flowrishing resources, and with such a government, atmost of necessity became the abode of its splendour, as she had beeid the carliest nurse of elegance. Above all-then appeared Phidias in maturity of tatent; and it has lowen a question whether the patron or the artist was the more fortunate in their mutual comection. Necher would have acguired equal renown apart from the other. The commanding mind of the statesman perceivert and rendered available the political adrantages an! wealth of his counry, while, with rare magnatimity, he consecrated both to the promotion of her truest glory. The sculptor seized the inspiration of ant in its most elevated range; he possessed that rarest and highest of all senius which is at once creative and regular-learned and original; having mastered the entire compass of preceding experience and athain-ment-such a spirit adding its own heaven-durived stores. gives to art its lofticst sublimity.

Hitherto we have collected our intelligence liom every conner of (ircece; hencelorth the attention is fixed chiefly upon thens and her scupptors. The subject, in thas becoming more concentrated, is readered also less uncertain: still doubts and difficulties, do occur. There is even considerable diversity of opinion regarding the time of the illmstrious founder of the new school. Phidias, by Pliny, has been placed in the eighty-third olympiarl; an arrangement which, with more than due animatrersion has been censured by Heync and his followers. On his disgrace. the common misfortune of the friends of Pericles over. took the artist also, who became an exile from that ungrateful city, whose prondest monuments, "the wonder of Greece and of the world," he had reared. He died in banishment before the decease of his patrou, which happened in the last year of the cightyseveath olympiad. For the space of filteen years Phidias had been director of the works at Athens. Prior to this he had executed the statue of Jupiter, which was finished according to the ancient authorities, in the cighty-third olympiad, the era adopted by the Roman historian. But to the composition of this colebrated work ten years were devoted, while the circumstance of being chosen for an undertaking of such value and magnitude, necessarily implies that he had already attained eminence in his art. Indeed
there is evidence that he finished, about the seventrserenth olympiad, the famous Nemesis from the block of Parian marble left by the Persians on the plain of Marathon, and which they had vainly thought to have reared into a trophy over Grecce enslaved.

From these facts, it is apparent that the date fixed upon is neither happily selected as respects the individual, nor calculated to display the continnons improvement of taste. At the same time, the principles of judgment are here so obvious, that the correction needs not to be held up as an extraordinary instance of critical acumen; nor can we justly make any other supposition than that Pliny, injudiciously no doubt in this instance, has chosen the conclusion of a celebrated work as the chronological cra of the author: On the other hand, the early labours of Phidias, thus properly extended, justify our previous arrangement of the subject, as they are shown to have corresponded in date with the mature productions of Alyron and Pythagoras. This circumstance explains the near approaches to the highest style made by these artists, while they were surpassed by their later contemporary. In fact, to the perfect imitation and exquisite finishing of these, Phidnas, white he retained all natural beauties, added grandeur of expression, breadth of effect, and nobleness of form.

The works of this "Homer of sculpture" may be divided into threc classes,- Torcutic, that is statues of ivory and other materials, - Stathes in bronzeSculptures in marble. Of these, the first chass, with what justice will subsequently be inquired, has attracted the largest share of attention. The colossal statue of the olympian Jupiter adored at Elis, has been described by every ancient writer whose stibject led him to speak of the arts. Placed in a temple two hundred and thirty feet long by ninety-five in breadth, the figure seemed too gigantic even for these dimensions. From an anecdote preserved by Strabo, we learn that Phidias being interrogated whence he had derived the dirine conception of his composition, replied that the original of his Jupiter was to be found 12. the following verses of Homer.

This is a description of an effect not of an agent; and the atleged saying of the sculptor, so often repeated, if it mean any thing, can merely imply that he conceived in his mind the idea ol a being capable of producing the consequences mentioned. Scated on a splendid throne, the god was represented in an attitude of repose, one hand supporting a figure of victory, the other resting upona bomished seeptre of precious metals. The body naked to the cincture, was composed of ivory, the hair being of gold with an enamelled crown surrounding the awful head; the lower limbs were clothed in a flowing vestment gemmed with golden flowers and other ornaments. Notwithstanding the colossal proportions of a form sixty feet high, every part was finished with the most scrupulous nicety. The throne also which rose above the head of the figure, was most exguisitely sculptured with sacred and historical subjects; while others were painted in their natural colours by Pananus, the brother of Phidias; and the whole further adorned
with precious stones, of which, from an expression of Plato, the eyes also appear to have been composed.

Of dimeneions scarcely inferior, and of the same, or if possible, even superior workmanship and materials, was the Minerva of the Parthenon, the glory of Athens, as the Jupiter was of Greece. The figure of the goddess stood upright, armed, one hand grasping a spear, the other holding an image of victory; at her feet lay a shield covered with the most beantifal sculpture, representing on the convex the Amazonian war, the Athenian leader being a portrait ol Pericles, a cause of the artist's banishment; on the concave were seen the giants warring against heaven. On the golden sandals, with exquisite delicacy, was portrayed the battle of the Centaurs. In the figure itself, the nude was of ivory, the robes and ormaments of gold, exceeding in value L. 9000 Sterling.
such was the admiration attached to these works, that those were esteemed unfortunate who, once in their lives, had not been able to behold and admire. Yet, cxamined according to the precepts of pure sculpture, and in obedience to the rules of refined taste, as cultivated by the Greeks themselves, we question much the legitimacy of the effects produced by these statues.

It is not enough that a work of art does produce on the beholders powerlal impressions; it is indispensable to the superiority of such a work that these impressions arise from the appropriate means permitted to the artist. The neglect or denial of this first virtue of imitative art, has, more than any other canse, been fruitial in extravagance, and destructive of genuine beauty. Now, in these stupendous compositions of Phidias, exposed as they were to the gloom of the ancient temple, their rast proportions from rery magnitude dimly seen, while the varied lustre of the parts added the force of powerful contrast in light shade and colouring, glowing but unearthly, the effect must have been tremendonsly imposing. For exciting awful and undefined ideas of superhuman existencesfor increasing the mysterious terrors of a superstitious derotion, such effects also were adapted; and in so far donbtless as accomplishing the end in view, the works were perfect. But the feeling was meretricious; -it was an influence derived from other sources than the graceful and unmingled sublimity of fine forms and noble expression; it was altogether diverse from the solemn and simple majesty which constitutes the essence of sculptural representation.

Or the future fortunes of the Minerva litule else is known beyond the existence of the statue in the reigns of Constantine and Julian; but respecting the Jupiter various subsequent details have been preserved. The materials composing these statnes required the external covering to be formed merely of veneers; this, from the snall extension and tenuity of the parts, rendered frequent repairs necessary. Accordingly, so carly as the commencement of the Peloponnesian war, soon after the death of Phidias, the Jupiter was repaired and cleated by Damophon, a Messenian artist of considerable reputation, with whose exertions the Eleans were so well satisfied, that they conferred upon him an honourable mark of their esteem. Afterwards a sculptor appears to have been attached to the temple, to whose care the work of repair was cutrusted. In the reign of Julins Casar, as we are informed by Eusebius, the figure was partially dam-
aged by lightning. In the reign of Caligula, Memmius reecived orders to transport this most splendid of heathen divinities to Rome, that the head might be replaced by the portrait of this most abandoned ol emperors and of men. The design ol a remoral was dectared impracticable by artists; and the superstitious lears of the Roman governor were wrotight upon by the contrivances of the priests, who cathoch a roice, apparently issuing from the statue, to denounce the destruction ol the ship on which so satered a freight should be placed. Drom Libanius again we learn, that in the time of Juhan the apostate, the Greck artists were engaged in imitating, with the ntmost scrupulosity, the Jupiter of lhidias in the minute works on gems, which were then the taste. This noble monument was finally transported to Constantinople about the conclusion of the fourth century by Theodositus the Great, who perhaps reconciled his Christian pecjudices by reasuning such as the lollowing verse contains,
> - liceat statuas comsistere puras Artificum magrorum opera. lla pulcherrime nostria Oramenta cluant patma, ne decolor asas In vitium rersem mombenta coingunct artis.

The works of Phidias, in bronze, were numerous; so that a question has unnceessarily been agitated whether he ever exereised the art, except in ivory and metal. The general testmony of histor?, corroborating the personal evidence of both (ireck and Roman writers, proves the affrmative. In these materials, however, his labours were ol more gigantic magnitude; and, in bronze especially, his Minerva Polias even surpassed, in this respect, the figures already described. This statue, erect, armed, and grasp)ing a spear, was of such majestic proportions, that the crest of the helmet, towering above the battlements of the Acropolis, might be discerned by the mariner as he rounded the promontory of Sunium. 'This graphic expression, for a distance of twenty-five miles, evinces both the surprising grandeur of the object, and the fime taste of the Attic writers, by whom every thing noble in sentiment or action is constantly associated with local and homelelt impressions. The ornaments, most probably the whole of this statue, were painted by larrhasius,-a prouf that not in the decline, as has been asserterl, but in the meridian of refinement, painting was united with sculpture. Indeed we have ourselves remarked, in the most ancient ruins of Magna Grecia, that eren the severity of Doric arehitecture, to heighten the efPect of particular members, did not disdain to borraw aids also from colour.

Examining the merits of Phiclias in marble sculptures, we enjoy an advantage denied to every other ancient artist. Respecting the most esteemed masterpieces ol antiquity, there still exist doubts not altogether groundless. how lia our judgments are lormed upon the real originals. But in the ornaments of the Parthenon are bebeld the conceptions of the mind, and even in some measure the labours of the hand of the sreat A henian sctalptor. In this our own age and country, we may still admire the identical works, which for seren laundred years formed the unrivalled studies of her artists and writers while yet (ireece could boast of art or letters. From an examination ol ${ }^{\circ}$ the Elgin marbles, then, we shall obtain no imperfect
idea of that style and of those very models which the Grecksthemselves have pronounced we the prondes? achicrement of their genius in sculpture.

In these precious remains are presented, lor om in* spection, both statues and relicvos. The fummer ornamented the two tympana of the Parthenon, which was amphiprostylow, in compliance with the religious institutions of Athens; whike it thas corresponded atso to the other edifices and natural emerance of the Acropolis. On the eastern pediment was represented the birth of Ninerva; on the western her contest witi Neptune. ()l these two compositions we prossess in all, besides fragments, fourteen pieces, consistins on seventeen ligures, more or less mutilated, hee betroning to the western, nine to the castern front. Irom the eentre group of the former, which has fortunatel: been preserved, it appears that the whole was of heroic size, or at the least dombe the proportions of nature. Each figure stood completely detached from the wall. being finished with equal care on all sidrec. In lof e these breathing productions, over whose lrasments taste now mourns with unavailing regret, wers entire. Their destruction commenced in 1687, when, by the howing up of a rurkish magazine during the siege of Athens by the Venctians, the Parthemon, tifl then atmost uninjured, was reduced to a ruin. Thus one of the noblest bequests of the ancient to the modern world-a sacred legacy which more than twenty centurics had respected, and just in the moment when the gilt would have been appreciated, was rudely intercepted by the petty mischief of contemptible an il sembarbarous warlate.
()f the rellevos there are two classes, originally occupying distinct positions on the edifice, and varied also in their respective morles of exccution; yet each bearing the undoubted impress of the same master mind. The temple of the Parthenon was constituted of an exterior peristyle, and of an imer cella. Tho former composed a double portico on the east and wes: fronts; but single on the llanks; the later formed a simple parallelogram, with an entrance in the centre of each end. Two fine situations were thus afforded for sculpture in relief,--the intercolumniations of the outer entablature, and the mabroken frize of the cella. In the Doric order, to which the tempte belonged, the metopes of the portico might have been either plain on variously ormamented. In the present instance, the embellishments represented the combats of Theseus against the Centaurs; a subject most interesting to the Athenians, of frequent occurence in the monuments of Attica, and therefore, exchiding the beauty of form in which art had clothed the conception, sinsularl: appropriate in the mational temple. These designs. of which fifteen have been preserved, display a ver hold relief, approaching to full rommess. The inrention, action, and grouping, are truly admirable. pertaining to the very highest style of senfpture: occasionally the execution is unequal, betaring a timidity and meagreness not easily peconcilade win the lofty character of the composition.

The frize of the cella, a surface of more than eis. teen hundred square feet, corered with the most exquisite relief, exhibited probably the srandest creation ol' art in any age. 'The same subject was comtmed throughont the whole; the national procession at the openiag of the Panathencan festival. Over the principal cintrance on the east the solemn representation

D 2
commenced; here were delineated the principal actors; and to this point an innumerable multitude appeared adrancing in two parallet columns along the flanks of the cella, while, on the western front, as the rear of all, rarious parties were seen,-some hastening to join the right, others the left of the procession. The most varied and animated design pervaded the whole, delineating the living population of Athens on borseback, in chariots, on foot, young and aged, male and female, mingled with functionaries, victims, and sacyed insignia. Over all is diffused a character of clevation and enthusiasm befitting the majesty of a religious rite, and sweetly raising the fidelity of nature to the grandeur of the idcal.

Of the entire composition there still remain about two hundred feet containing specimens from each of the sides and fronts. The relief is flat, erincing, in this respect, the nice discrimination of the artist; since, as the work conld be viewed from a short distance, and only by the secondary light transmitted through the intercolumniations of the peristyle, strong shadows and high projections would have rendered the effect harsh, and obscured the figures.

In addition to the materials of judgment furnished by these more directly and certainly the works of Phidias, we have also in the British Museum, from the private munificence of his majesty, the Phigatian marbles. These, amonnting to about ninety feet in length. lormed part of the frize of the tempte of Apollo, present a similar character of design, and in all probability are from the school at least of Phidias; as Ictinus, the architect of the Parthenon, built also the temple at Phigalia.

The remains now described are the memorials of Scutpture in its utmost perlection, and discover, fully developed, every exalted principle whether of theory or of practice. Grandeur is the prevailing character but it is the grandeur of true simplicity and nature, devoid of ath parade or ostentation of art. The means are forgotten from their very excellence, and in the full accomplishment of the end. The sublimity resembles that prodnced by eloquence, where, on some elevating subject, the orator, earnestly and with unadfected sincerity, labours to impress his own convictions upon the hearts and affections of his auditors. The Sculpture of Phidias, indect, might well be assimilated to the Oratory of Demosthenes, in the truthand reality of its images, and in its power of bearing, the whole soul along in one engrossing feeling. but in the artist all is sweet and gracious: we are willing captires to the witchery of art. In the orator a stem. ness and a severity often induce us to struggle against the potency of his spirit.

Jn this excellence ol uniting the graceful and the pleasing with the encuretic and sublime, consists the sumpussing merit ol Phicias. Vixquisitely delicate in the mimute, he is botd, rigorous, and howing in the great. Ilis gramdenr combines individual delicacy abid scrupulousness of detail, with breadth and greatnes, of'generat effect. In these remains, indeed, as in all architecturad scupture especially, effect has bern studied as a principal atim. Yet nothing appears done bis effect. No eflom-bo exagseration; every thing is consistent with itsell', with the whole, and with nature So exphisite is that arcordance of design, manaer, form, and exerntion, that not one of these coutd be chansed without injury to truth.

This is the rery essence of grandeur in art, giving to its productions an ease, a grace, a vitality, resembling more the spontaneous overflowings of inspiration, than the laborious offspring of invention and science.

In these respects the ancient critics seem justly to have appreciated the character of Phidias. Pausanias, in describing the Parthenon, bestows the highest encomiums on the sculptures by the artist of the colossal Minerva, without mentioning the name, which he conceived to be thus sufficiently designated. Demetrius Phalercus, contemporary of Praxiteles, and who had consequently the adrantage of comparing most directly the two best ages of the art in Greece, says, that onty in the sculptures of Phidias was the magnificent united with the delicate stylc. Plutarch characterizes his works as inimitable for grace and beanty of form. "Nothing," says Cicero, "is more perfect than the statues of Phidias; they enchant the spectator at the first riew." Many other testimonies might be added, assigning to his style, and to it alone, majesty, truth, and grace. By modern writers, hovever, previous to the removal of the remains now described, the merits of Phidias were cstimated with scanty justice. The grandeur of his genius had always been admitted, but not unfrequently his works were chanacterized as retaining a portion of the rudeness and constraint of former ages-as sacrificing beanty to strength and greatness of effect. In giving origin to this censure, Wiaklemann seems to have consulted neither ancient writers, the works of the artist, nor the abstract principles of just criticism. A glance to cither of the two lormer will afford sufficient proof that no other man has united in his works more of the highest exceflences of art. It is in lact this mion which traly constitutes beanty, especially in Scupture, whose sources of pleasing and of moving being few, and derived from the essential elements of form and expression, admit of scparation with peculiar disadrantage. But in each of the fine arts, nay eren in nature, although beauty may exist in an object incapable, from circumstances, of greatness,-yet the tuly grand can never be disjoined foom the beatiful, and that in the highest sense of the term. In the case to be considered, more seductive expression, oreater delicacy ol air, may have been siven to the female statucs ol the succecding school mader Praxiteles; but for that perfect beauty which arises from inclading the essentials of excellence in the most liberal proportion, dignity, gract, richncss, thth, we search successfully in the labours ol lhidias alone.

The attentive study of the works of this artist, supplies the eriterion by which to judge of the sublime and beatiful in Senpoture. The ideal of Phidias is perlice universal nature-nature freed from individuality and acciden. This, the real wbject of art, he vicu's throngh no medium of fancy, he imitates aecording to no conventional principles. He only looks abroad on all existence, refining partiat conceptions and parial modes, by the unering harmony of the whole. The true ideal-the ideat of Phidias-is but the embertied mion of whatever of beathty or perfection still limers amoner the forms of nature, viewed in her laincese models. Nuch, indeed, has been conjectured on the import of certain passages in the classic writers, speaking of the divine archetypes of this sculptor; as il he had dawn his materials from an
abstract idea existing in his own mind independent of reality. The sublimity and truth of such remarks have been praised. We hesitate not to condemn the sentiment as inconsistent with both, and subversive of the genmine excellence of art. In this also we are borne out by the works now considered. In the Elgin marbles, every conception breathes of humane life and action. So intimately does the representation partake of reality, that in the opinion of the venerable President West, "When we view the young equestrian Athenians, the conviction is forced upon us, that they and their horses actually existed such as we see them." From this opinion, no one who has carelully examined these remains will be inclined to dissent. This hipply effect of truth, however: does not arise lrom an imitation of common nature, for every figure respires of an heroic and elevated character. The science with which the forms are composed, the freedom of their movements, the ease of their attitudes, express the same capability of moving in momentary action as possessed by the living models. This is wholly opposed to any thing strained or remote from every day perceptions, and throws over the whole an air of simple reality. But with these essential qualities of merely imitative art, are united perfect symmetry, the most harmonious contours, the grandest composition, the most refined grace and delicacy. Truth is thus the primary constituent in the ideal of Grecian sculpture. Beauty is the perfect expression of this wuth agreeably to the most unblemished forms which gencral nature presents. In this umion of collective excellence and individual verisimilitude, the mind feels and at once acknowledges the presence of the sublinic in art. 'The works of Phidias enable us to unfold these principles in their purest elements, and to trace the modes in which this union is accomplished. It has been the constant aim of this master to ground ideal upon imitative art; to address the imagination by grandeur of composition and perfection of form, while he appealed to the judgment by fidelity of detail and correctness of science. 'The relations under which truth and imagination produce results at once grand and interesting, have been closely sudied and successfully exhibited. To attain this, alter composing his work in the loftiest intelligence of the ideal, this consummate artist has carelully impressed from individual nature, simply and without exaggeration, those fugitive traits of the surface, -as its heshy texture, the foldings of the skin, the swelling of the muscles, the lubricity of the joints, -which influse softuess and animation, and which all can estimate.

In all tiat mercly mects the eye, the Elgin marbles display the finest keeping with the general nobleness of their character. The execution is perfect, simply because the whole composition is so. The finishing is delicate and even minute, because the extreme beatty of the design required to be rendered witb a corresponding care and dexterity. The chiseling is facile, vigorous, and nowing, harmonizing with attitudes and expressions lull ol grace, dignity, and truth. The touch is broad, the shadows deep and firm, corresponding with, while they increase the grandeur of eflect. The style of elesigh is in the strictest acceptation learned; the muscles and marking of the bones are pronounced with a decision and truth we had almost said, unparalleled in any other ancient
specimen. In fact the amatomical science of those fragments surpasses in correctness the most perdect of the statues hitherto discovered. As an experession of action, they are in this respect superior to the Apollo; nor can it be doubted, thourh from matila. tion we camot exactly ascervain, that, as expressive of character, they were at least requal. Vet these, the highest excellences of manual and material art. app pear as if they had been altogrelare unsought; the marble might be supposed spontaneously to have moulded itsell after the most explusite fashion in the very act of obeying the ereative impulse of the artist's mind. So total is the absence of all pretension, that this mastery of touch, this matchless exhibition of skill, is at tirst unseen and unfelt amid the intelligence it conveys, and at last is noticed only as an harmonious element of a perfect whole. When pretension ajpears in the means it is doubly offensive; here, at the same time, the utmost beauty constantly marks the productions of lofty genius. IIomer and Shat:speare in the mere fabric ol their poctry are unrivalled. What more harmonious than their verse; what mort lelicitous than their language! Yet these never abtrude; study, effort, apparent solicitude, is unknown, unsuspected. The numbers flow, the expressions live as the thoughts arose or the feelings kindted in the breast of the bard. The exquisite mechanism ope= rates unobserved. As surrounding imagery is reflected in truest loveliness by the purest and stillest waters, while the medium itself is lost amid the groves and skies which it shadows forth: So art, the mimic of nature, charms the most where this very mimicry is most concealed. In this happy and unobtrusive union of nature and imagination, in remounting without ostentation or comvention to the eternal sources of natural beanty and truc science, Phidias displays the perfectly sublime of art, and stands untivalled among the masters of the ancient world.

We have thus reached an era beyond whose general excellence the genius of Greece never attained is: Sculpture. But this eminence, though princip:lly reached in the age and by the labours of one man, did not fall with its author. The spitit of Phidias continued to animate the disciples whom he had instructed. Indeed the artists whose names adorn the succeeding portion of this period, may be classed into two schools, receiving their distinctive character according as they closely imitated or more distanty followed their illustrious predecessor. In both, the principles were the same; these could not vary: but their application was made to sabjects reguiring ia modified exhibition of certain distinguishing qualities. The grand has been explained as the characteristic of the style of Phidias. Succeeding masters. despaning to rival in this deparment, turned so subjects of it softer nature, gradually creating a school whose leading object was the beautiful.

Agoracritus of Paros, and Alcamenes the Athenian, especially the former, were the farourite pupits of Phidias, and approached nearest to the exacellence of their master. It is not, howerer. casy io determin? the real merits of these disciples. since their work were directed, if not retotiched, by their instructo: and their performances after his death are saic! to have been inferior. The grand reliefs of th: temple of Olympus by 1 goracritus, partook of the heroic character of the Phidian school; but the mo-
celcbrated statues of Alcamenes, the Venus of the sardens, and the Cupid of Thespis, prove the commencing partiality for less heroic subjects. In a contest for supremacy, each of thesc artists submitted a statue of Venus to the judgment of the Athenians, who it is said, partially awarded the prize to their fellow citizen. The rejected labour of Agoracritus, subsecquently changed into an image of Nemesis, clrew more admirers at Ramnus, than its successful rival at Sthens. The statue in part is reported to have been by Phidias himsclf, and its conversion into a representation so opposite, furnishes an illustration of the sentiments of the Grecks regarding the ideal in expression.

At the same period lived Polycletus, the second and most famous of the three who bore that name. Respecting these artists, Pliny and those who follow him, have fallen into great error, admitting only the earliest, and ascribing to him the merits and labours of the threc. In this they have completely confoundd the chronology, and contradicted the principles of art. The talents of the second Polycletus appear to have been of a high order, and his influence on the future state of sculpture considerable. His greatest work was a colossal statue of Jmo, composed of ivory and gold. The figure, in a sitting posture, was rected in the temple of the goddess at Myccux, and is described by Strabo. But the genius ol Polycletus carried him rather to the imitation of the beautiful than of the grand qualities of his art. Excclling all other artists in the case and delicacy of his finish, he was deficient in force; and, to use the words of Quinctilian, as he added more than human grace to the figure of man, so he proved unequal to the majesty - f the dirine form. Dionysius of Halicarnassus, andeed, differs entirely from this criticism, placing this scuptor next in dignity to Phidias. Polycletus himself, bowever. has decided the controversy by the ielection of his subjects from among the young and - he fair. His most celebrated works were the statues af two youths. antique copics of which on gems and , elicros are still cxtant. They were both mude, one binding his head with a fillet, hence called Diadumenos: the other hoking a spear, hence terned Dory--horns, also sald to have been an Iconic statue reper enting ore of the gravels of the king of Persia. there is a question whether this or another statue omposed the celebrated "e canon" from which, as Foom an uncring ruke or measure, all succecding attisis. cuen Lysippus himsclf, took their proportions. Phyy hatas it distinction, Cicero says the figures are the stme. The former wries expressly, the atter in domeilysucther is it likely that an Iconic Cotur, would be selected loe the formation of a standard of abstract proportion. A more interesting inruib" i", what really were those "canons" of att amonst the fircek sculptors, respecting which somuch has hech conjectured

S:w"k with the uncring trath and hamony of the aroportions in the works of the frect sculptors. omit have maintained that they posscossed a secret suowledge of erometrical rules by which their composibumb wore in all cases resulated. Cortain it is That the ancient masters hat compiled treatises on proporicm, and that wo meet with the expression " mathematiat canoms of att" on mote than one ocarton. But when we remark the variety and amima-
tion of atitude in the antique statues, it is difficult to reconcile this playful rivalry of life and nature with the undeviating exactitude of geometrical modes. This has led others into the opposite extreme of asserting the whole of antique art to be the empyricism of talent residing untalight in the hand and eye of genius.
AT: ris nexte thin igtaty quaterias.

The characteristic of true senius, however, is to be indefatigable in labour, while its privilege is to conceal the effort. The perfection which we admire in the production of Greck statuary sprung from the accumulated experience of centuries; rules of proportion in particular were the recorded and methodised results of actual measurements taken from the purest living forms of every age. The Iconic statues of the rictorions athletie, we have already hinted, introduced this practice; and the extreme vigilance of the hellanodists, or judges, appointed to decide on the fidelity of these works in every member, as compared with the living original, sered both to improve her arts, and to direct the physical education of the youth of Greece. But in any state of ingenuity, more especially with the limited resources of carly art, such exactness, without measuring the model, was impossible. Founding on the principle that the corporeal beauty of man consists in the suitableness of the different parts for their destination, artists, by these measurements, were guided in the composition of ideal works: nor can there be a doubt, from the expressions of Diodorus, Lucian, and particularly of Lippocrates, not to insist on the representations on more than one antique gem, that the proportions thas obtained were collected, not only in treatises, but ranged in tables and scales for practical use. Po!ycletus carricd this theory to perfection. Not satisfied with writing upon this interesting subject, he wished practically to illustrate its precepts, and composed the statue which has led to this discussion. The nature of this work has been much misapprehended. To us it appears that in this figure Polycletus intended to represent a perfect furm, whose physical character should display an equal aptitude for crere exercise, where strengith and agility-power and grace, shonk be harmoniously united. Nor does the creation of such a standard seem at all chinuerical, from comparing and combining tables of living measurements with constant relerence to nature. The dilliculty truly would consist not so much in the construction as in the effective application of the abstract rule.

Among the contemporarics of lhidias, a most distinguished place was occupied by Ctesilaus, since be divided with that master and Polycletus the public prize of merit low a statue to be dedicated in the temple of the liphesian Diana. To modern times his name possesses peculiat interest as the reputed anthor of the thipl finest make antigue in existencethe dying gladiator-popularly-but erromeonsly so called.

He kans upon his hamb-his manty brow Comsents to death, but concuers agom: And his draped home sinks gradnally lowAud through liss side the last drops ebbing flaw from the deep gabl, fall heary ous ly one,

Like the first of a lamulerobluwer; and wirn The arena swims belore him-he is gone!

The beanty of position is peculiarly striking as illustrative of proford anatomical linowledge. ithe ligure is neither resting, nor falling, but simply seeking to breathe exactly in the ouly posture in which, from a wound in the thorax, this function can be performed. Into the interminable guestion of the sub. ject represented we enter not; but fiom the grand, learned, and feeling style of this astonishing composition, we hesitate not to place it in the best era of sculpture, being in all respects worthy of that artist, qui nobiles viros nobiliores fecti, and who succeeded in competition with l'hidias. The assigmonent of the work to this particular artist, indecel, rests upon an erroneous application of a passage in Pliny, where he says that "Ctesilaus made the statue of a man wounded and dying in quo possit intelligi guentem restet anima." This description was inconsiderately applied to the statue in guestion. It was casy for subsequent inquirers to observe that the critic spoke of a bronze, not a marble figure. Ifence the origimality of the latter was denied. Whether the premises or the inference be here the more illogical, or how the merits of a work of art can be implicated in the non-application of a passage in an ancient author with which it has no connection, it is impossible to determine. The truth is, we know not the artist, but we must acknowledge the presence of the highest art. Surely those who speak of a copy have not gone morning after morning to the capiol, and have found in this dying hero proofs constanty rencried of the immortal energies of the human mind.

During thirty years from the dealh of Phidias, the Pcloponmesian war raged without intermission, involving as principals or allies cuery state in Greece. In the midst of these hostile commotions, the arts nourished with almost unimpaired rigour. There was united with the sentiment of hostility a spirit of rivalry, which rendered the contention a striving for mastery in cvery excellence. Sculpture, indeed, appears to have participated largely in the fortunes of Athens, and consequently, tovards the close of the contest, suffered some depression. Perhaps the same might be truc of painting also. The cause of this seems to be found in the circumstance, that during this tempestuous interval no new style was attempted, white the principles of the grand and the beautiful in sculpture had emanated from the Athenian school, and thither the artists of all Greece resorted for instruction. Also the imitative arts, in their essential qualities rarely derive any permanent impress from passing events; on the contrary, literature, which more easily borrows its hues from the complexion of the times, received, during the same period, quite a distinctive character; and Attic eloquence especially, then assumed that conciseness and vigour for which its remains are still so eminently distinguished.

More than fifty names of eminent sculptors, including his contemporaries, have been preserved, who flourished from the time of Phidias to the hundredth olympiad. Of these Naucydes was the author of the youth holding a discus, and considering with himself the distance to which his preceding competitor has just attained: Spatium jam immane parabat. Of this figure three antique repetitions still remain, which are
admired for their fine poose the sweethess and wand of contour, and unalfected expression. Patrochs.a. cuted in bronze, thimy-one statues of the Spartan sh nerals and allies at the batte of Regospotamos. Wher we need not incmion.

The style of Sophas constitutes in some measure on intermediate gradation between the Phidian and the school of Praxiteles. Ite was of paros, and though much uncertainty prevails in the dates assumed be dillerent writers, yet since he was one of lisur attist, engaged to atorn the tomb of Mausolus, his fixes the crat the tho2d olympian, or 370 years B. C. Carace, soltness, and truth, distinguished the performances of this artist, of which dualities his Venus and Buchbante were the most celcbrated examples, dividing with the subsequem works of Praxiteles the admiration of (irece. Of Scopas two famous works are saill to bet still extant, the Venus in the Townley collection, and the Niobe at Florence. The former is a standing figure, draped from the cincture by a robe which enfolds the lower limbs only; and whether we regard the beanties of the composition, or its fine prescrvation. is undoubtedly among the most valuable remains on art in the world. Pliny is divided between Scopas and Praxiteles, as to who was the author of the group of Niobe, white the writer in the Anthologia assigns it to the latter.

While mourning o'er my hapless offepring's fate, Stone I became through the celestial hate; The doom revers'd praxiteles has shown 33y whom I live again and grieve in stone!

In this group, which originally consisted of sixteth, figures, and of whose transportation from Greece we know nothing, the style assimilates closely to that of Phidias; there is the same grandeur of effect, dignity of expression, and delicacy, yet breadth of detail. The forms also like his are robust, without being inelegant, awing rather by the majesty of virtue, than subduing by the mere allurements of loveliness. The expression of fear, grief, and consternation in the countenance of the mother, is exquisitely true to nature, without injury to beauty, and worthy of Scopas, who is termed dnusug? os anysaw, artist of truth.
Scopas had for assistants, or rivals in the ercction of the Mausoleum, Leochares Bryaxis and Timothens. These, with other less celebrated names, fill up the interval to the age of Lysippus and Praxiteles, falling in with a very unsettled period in the political history of Grecce. The rise of the Spartan power upon the ruins of that of Athens; the hateful dominion of the thirty; the virtuous struggles of Thrasybulus and Conon, ending in the restoration of liberty with some degree of power; had kept the latter state in continual agitation. Finally, the ambition of Thebes, which. with the solitary exception of lindar, lad added not one gem to the intellectual crown of Greece, rekindled the rage of general hostility. This terminated in the impious battle of Mantinca, where, to gratify the ambition, or hide the disappointment of one man, were assembled for mutual slaughter two of the greatest and most gallant armies Greece had ever seen-men who could have liberated and enlightened the world. Still the arts shed a pure and softening light orer the dreariness of the scene; their brightness, like the dewy arch spanning a troubled sky, might be partially broken and obscured; but elsewhere in every calme:
spat-in Sicily, in Rhodes, in the Greek cities of Italy, the splendour continued unimpaired, or even derired fresh accessions from the distractions of the native schools.

Lysippus ol Sicyon, as is well known, was the contemporary and the favourite artist of Alexander. Coeval with that prince was also Praxiteles; both sculptors belonged to the same age, and the discussions which have been agitated on this subject, seem to have been quite gratuitons. Lysippus wrought exclusively in bronze, but of the six hundred and ten works which he is said to have produced, not one can be proren to remain; the bust at Portici requires to be authenticated; the horses brought from Chios to Constantinople by Theodosius the younger, and since the year 120t. placed in St. Marks at Yenice, have, we think, with justice been pronounced unequal to the fame of their alleged author: We learn from ancient witers, that the style ol Lysippus was more srave and severe than the genius ol contemporary art; and that he secmed desirous of recalling the more solemn grandeur of preceding masters. This predilection would naturally be cherished by his materials and subjects. Colossal and equestrian statues in bronze demanded forceful, vigorous, and dignified composition. His greatest works were the Tarentine Jupiter sixty feet high. of cast metal, and twenty-one equestrian statues ol . Dexander's body guards who lell at the Granicus defending their prince. To Chares also his farourite pupil, is ascribed by Cicero the lamous colossus of Rhodes. But Lysippus proved himself cqual to works the most bcantiful and delicate; lis fumbing was exquisite, his imitation of nature most fathlul, and he cacelled in his knowledge and expression of symmetry. Ol all the artists of this age, his education appears to have been the most complete. Hecommenced his study where art itsell had begun-with nature, and finished them by conlirming and applying the precepts thus obtaned according to the practice of the greatest masters, if, indeed, a greater than himself can be lound. The estecm ol thesander is confrmed by the unamimous testimony of all writers, and, by the admiration in which his works were held, long alter the approbation ol a prince bould have been as nothing. A statue by this artist mpresenting a naked youth preparing for exercise, bat been carrice of Rome in the time of Augustus, beins placed in the baths of Agrippa, it formed the relight ol all ramks. In the reign of 'iberius it was femored bey his order to the imperial palace, but the Romans rose as one man, and, by their remonstrances, cansed the work to be restored. Princersitur, says Play, dummmom altunctum ropusperit.

The indamace exome ised by l'raxiteles apon the progress and chamater of sedipture seems to have been misumterstood. In almost everyage he has metrived praise from cath sueression writer, as an orişinal inbentor, its the discoserre ol a new style. Yet notwithtanding the supreme beanty of his labours, and the aperionty of his genius, we derm this estimate irreronerilable with the history or the philosophy of art Vifh cyual propricy might sappho on Anacteon be : Sed inventors in lyaf poetry, becanse their swectness is not the reajesty of pimdar. It has been shown that all the sublimities of which imitative or infeal ar* is capable, were attaned in the works of Phidias. feron the era of that master, a gradual declension has
been traced from the loftier and severer style to one of gentler subject and softer manner. Without decay of talent, rarious causes might combine to operate this change-fewer opportunities of great undertakings, a gradual revolution in the opinions and usages of society, works of art becoming more the objects of private patronage than ol public munilicence, and consequently of private taste. Likewise, it must be admitted, that in all the various departments in which the human mind can be exercised, there is not to be found in the annals of any mation a lengthened display of the very highest genius. As respects the intellectual empire even of the species, a lew elevated spirits only are placed in the solitary majesty of general eminence. Succeeding aspirants are contented to select some particular province which they may cultivate and render their own. Thus Praxiteles, falling in with the current of general predilection, and following, it may be, the bias of his own mind, resolved to wao exclusively the milder graces of his art. In this pursuit, he proved conspicuously successful. He has caught the happy medium between the stern sublimity which awes, and the beanty which merely sednces-between the extermal allurements of form and the loftier but colder charms of intellectuality. In his, of all the works of antiquity, we especially admire softness united with force and clasticity-where refinement has not degenerated into affectation, nor the elegant into the artificial. Orer his compositions he has diffused a perlect grace-an harmonions movement if the word may be allowed-a volupitous majesty-an cxpression spiritual at once and sensual, conlessed by the coldest heart, satisfying the most fastidious taste, admired by the most trembling modesty.

The truth of this encomium will be borne out by the fine antique repetitions of the statues of this master. Or if of these the Fann so renowned among the ancients under the hame regtanaic be really the Barbarini Faum. and the Thespian Cupid, the same marble now in the capitol, the originals will not detract from the justness of the criticism: they place their author first among sculptors of the school of beaty. The Fan is an example of manly grace and of the finest science, and shows that praxiteles had not selected the gracelul because he could mot have attained the sublime and forcelul. The Cupid is instinct with playlil and clegant lancy: and by a wellknown artifice of Jhryne we possess the artist's own opinion of the superlativeness of this and the former, over every other al' his works. 'The Ipollo Samrocthonos, as the figure about to kill a lizard has been termed, exhibits whatever ol simplicity and elegance can be supposed tw exist in boyhood. In the nascent forms the artist has expressed with astonishing truth the promise of future nobleness, in this encomatering one of the most peatons experiments in his profession, nor in the whole range of ancient art, is it clear that there conld be pointed ont an example of greater difliculty more exquisitely orercome. 'Ta this work Martial aflades in the following epigram.

Spare footish yonth! the cereping insect there,
Heath from thy hand it courts-than hie nore fair.
Praxiteles was the lirst, perhaps the only sculptor who attained to the true ideal-the perlect union of intellectual charm with feminine grace in the repre-
sentations of the "Queen of soft desire." Itis draped and nude, or Coan and Gindian Venus, fixed each a standard from which succeeding invention dared scarcely to depart. In the Medicem, we almost possess the Venus of Cinidos, the admiration of antiquity, and which in this representative "still cnchants the world."

There, too, time froddess loves in stone, and fills
The ar aromat with beanty; we cuhale
The ambersiat aspect, whiill beheld instils
Par of its immotality; the vel
of heaven is half withdrawn; within the pale
We stand, and in that firm and thee behold
What mind can make when nature's solf would biil.

Thir! Period.

The circumstances of binth enabling him to profit by the distractions of the times, had clevated the son of Philip to a situation and to an interference in the affairs ol the world which not his talents, far less his virtues entitled him to hold. Circumstances again. yet more than his own intrinsic weight in the scale, conspired to render the death of Alcxander a memorable epoch in the history ol human transactions. Rather through the fears and jealousies of others than elevated by his own conduct, be had become the sole point of union in an artificial and unuatural system, whose gigantic extent necessarily produced on its dissolution a learlul reaction. Girecece particularly, in conscpucnce of this shock, was exposed to the rapacity and misrule of successive masters. Despots assumed sway over this fair domain oll frectiom and of elegance, not one, but multiplicd in almost every cily.

Literature and the arts, as adding to the splendour of his empire, had been patronised, and merit liberally encouraged by this conqueror. The distant warlare also in which lee was engaged, while it drew off her turbulent spirits, pourd into ber bosom the riches of the cast, thas procuring for (ircace an interval of prosperity and repose. Never had she before displayed a more imposing assemblage of intellectual worthies. Philosophy and scionce, seulpture and painting, every department of mind had its representatise scarcely inferior to the greatest of her lormer names. Surely then the death of a dicspot could not alone have overcast with setted gloom a prospect so glorioust̂ No. If ad the firec institutions of (ircece been then restored: had the moral vigonr, the unshaken patriotism of her better days reappeared, crph amid wars and revolu-tions-contests it may be for existence, not cmpireher genius and her taste, her arts and letters, would have survived with repaired, perhaps augmented, lustre. Amid such struggles they had been nourished. But the sources of corruption lay deep and incurable in the decay of that moral and political constitution, amid whose sterner and nobler livits the arts had sprung up an ornamental blossom; and long did they flourish amid the wecks of liberty-a wreath upon a tomb-a solitary and stunted tree, hiding for a while the unseemly nakedness of the ruin on which it grows.

Sculpture, our more immediate subject. had reached too high a state of cxcellence-was too generally diffused in its exercise and examples, to suffer immediate or conspicuous deterioration. The numerons disciples of Lysippus and Praxiteles, supported for a length of time the unimpaired science derived from

Vol. XVII. Part 1.
their instructors. Indecd, it has been questioned, and with seeming plausibility, whether a single work now exists more ancient than the age subsegume to the death of Alexander. Pliny and his followers have therelore fallen into great croor, in represemting this as the date of a most rapid declension, if not extinction, of taste. Cessmit deinte ars. In assuming the demise of the Macedonian prince, and the dismomberment of his empise, as the era of decline in the history of Grecian sculpture, we, on the contra: ${ }^{\text {en }}$ wish to be understood as pointing to the perired in which the causes of that decline were called more di. rectly into active effect. These catuses, imbed. had lor a length of time heen previously preparing; ')ut the conguests- the riches- the patronage-the cxevitement and spirit of enterprise then operating, retareled their consequences for a season.

The arts of cirece wore imate in the comstitution of her liee states. They depended on-they fell with the vigilance of her magistiates, the incorruptibility of her judges, the bravery of her warriors, and the virbue ol her citizens. It is not from this intonded to maintain an amiable, although erroucous theory, which history contradicts, namely, that the finc atts have never flourished under despotic gesernor's. The reverse is certainly the case; and in hais move than in any other walk of imagination, is the countemance and active assistance ol the cxisting government especially requisite. But we do maintain, that never can these arts flourish where patpiotiom and popular feelings are not the paramount, or at least the obviously paramount principles of the times. The arts themselves must be essentially free. and they must likewise derive their guickening inspiration from a common sentiment of interest, and frece applause of the country. Whaterer might be the knowledge or refined taste, however great the power or liberal the patronage of any prince, without awakening a community of Celing in the people, and the honomrable zeal inspired by the public sorvice and public estimation, his own solitary influence never could ronse into exertion original or contimutis display ol national talent. In sculpture and in painaing. he might indeed, like Louis XlV. create schools of imitators and of tlatterers; but vigorous, truc. original genius lives not to be called forth by the smile al a monarch. As well might be expected in the artificial atmosphere of the hot-house, the beauty and the freshness which bloom amill ghades and groves, freely visited by the pure breath and blessed light of heaven.

These truths are opposed both to the opinions of those who embrace, and ol those who reject the theo ry. Are they consistent with the history ol ar.? Pisastratus and Pericles, during whose respective administrations sculpture and the arts, in the principal school of Greece, first acquired importance. and attained their highest splendour, were absolute rulers of Athens. But the artswere frec. They were appplied exclusively to the public service and agsrandizement, while the roice of their fellow-citizans alune decided upon the merit of artists. So powerful was this last influence, that no work could be placed in its destined situation till after a public discussion and full admission of its excellence. Even Phidias prepared for this award with such trembling anxiety, that during the progress of his works, he was accustomed to listen unseen to the animadversions which E
might be offered. In the Elgin marbles also, parts are finished with a care which, not in the slightest degree contributing to effect in their future position, could have respect only to a close inspection while thus previously exhibited. In the age even of Alesander, the public roice continued to be the sole passport to fane, as it was the sole judge of merit; nor could all the influence of that prince obtain its award for a favourite whom he patronised, and whose failure grieved him more than the loss of a kingdom. Only when the purity of this source of honour was contami-wated-only when a writer, fearing an iniquitous decision, could say to his friends, "Why should I go to the scorching valley of lisa to read before the assembled Greeks: loes not your approbation suffice:" Only then did art fall neyer to rise again? Political causes therefore, as contributing to the adrance of sculpture, were essentially popular among the Greeks. And if we consider the epochs among the moderns, in Rome and Florence, it will be found that Julius II. and Leo X. rendered homage to the majesty of genius, and to the power of public sentiment. These pontifis' reared a school of matchless greatness, becanse they directed Whe energies of the arts to an undertaking which commanded the deepest sympathies of the whole Catholic word. In Florence, the best age of sculpture did not survive the republic, or at least republican forms; the last favour conferred upon his combtry by Michael -ingelo. was to lortily her capital against the armies of her dukes. DIany years afterwards the sculptor was brought back-a corpse to be retumed to his mative carth. There is in the sympathies which stimulate the exercise of talent, as in those which awaken the social affections-a sweet and gracious induence spreading from breast to breast, and uniting man to his fellow. The moral virtues flourishonly in society, and genius lises but in the gencrous admiration of frecmen.

These remarks sufficiently point out the causes of dacline in sculpture after the age of Nexander. Into the few remaining details, or the names of artists whose works arc now unknown, it seems unecessary to enter. We may just observe, that not till every institution belonging to the republican times of Greece, and coery sunction of a generous mature had been trampled upon, was art extinguished in that commer. No: till the Olympic games ceased-till the physical chlucation and matial exereises of the youth were neShected; till the arts. separatecl from national utility and shory, became the amusement of individuals; till there was no longer pablic spirit or patriotic feelingnot tiil all that creates and codears the name of counseg, had sunk under the military despotisin of Rome did (irecece cease to produce artists.

The period of deelime has been differently divided into rarions portions. Each faromable turn ol circumstances which combled the arts to recover a bltie from their deperssion, has been exathed into an epoch. ioneremedens of these transient intervals, we may Wate this metamoly anbjoct into 1 wo periods of Wamad durtion, and stronsly discriminated in their ache Therorgh buh, however, as regards the foronns of soupture, we tiace a simitar declension. Hapiow thens do now and then open upon the art, wh the properet is soon owereast, and the hoper en:hrainel are sono perceived in arise from a briel receral of the praclice of art-nul a revisal of science.

A peace, the temporary triumph of some particular state, the influence of princes, might give a shortlived encouragement, and multiply works, imitations of greater names, but could not recal the principles and influences which to the labours of former ages imparted all their grandeur and excellence.

The first of these periods embraces a space of about two hundred years, from the death of Alexamer to the final reduction of Crecece into a Roman province. The second contains the history of the Roman school of sculpture, which, with various obscurations and revivals, existed to the age of the Antonines, or eren of Gallicnus. The latter division we have considered as properly belonging to the narrative of the decay of Grecian sculpture, because the Roman school of art was formed solely of plundered specimens, aud of transplanted artists from Greece.
Alexander died in the last year of the 114 th olympiad, or 324 B. C. At this time. Lysippus was alive, and Praxiteles survived in the 123d olympiad. For nearly forty years then subsequent to the death of the Placedonian prince, there could thus be no decline of genius, but there certainly was a want of encouragement, and a lamentable lalling of in national enthasiasm for art. These canses would soon perceptibly operate against the production of great and original undertakings: still the excellence of individual performances would display litule. if any, inferiority. If, again, the scholars instructed by these two great men be considered, the perio.l may be greaty extended, during which freece combld have produced sculptors not unworthy of her best days. During this interval must have flourished Cephissodotus, son of Praxiteles, Tauriscus, scuptor of the Toro Farnese. Eubohas, Pamphilus Polyceutus, Agasias, and others. The chronology of Pliny, who assumes the art to have lain dormant in Greece from the 120th to the 150 h olympiad, it is impossible to reconcile with these facts. To one of their Macelonian governors. Demetrius Phalereus, under Cassander grandson of Antipater, the Athenians, in the space of one year, erected three hundred and sizty statues of bronze, a proof at once of their means and their skill. Yet so rapidly dicl their reverse of fortune approach, that a lew years afterwards, having engaged in a contest with Thebes against Sparta, they were tuable, even by a personal tax upon every description ol property, to discharge their quota of the expense. The Ichayn league, and the expiring elforts of Crecce under the last of her heroes, Aratus and Philopamon, seem to have infused some degrec of vigour into the ant. Of these warriors, statues remained to the days of Pausanias; the latter, indeed. is sad to have been paricularly versed in painting, of which a fourishing seliool cxisted in Sicyon, his mative country. The mhapy Etolian war proved most destructive to these prospects, and may be considered as giving a latal blow to the interest of art, since it first taught the Greeks to dispegard the sacted rights of the honoured dead, and the privileges of national genius. In this war, temples were first thrown down, statues destroyed, paintings delaced in (irecece, and by the hands of Grecks.
The suceessors of Aleander in Epryp and Asia certainly endeavoured not merely to mainain, hut to improve the feeble lights of Buropean civilization spreal through these regions by the congucsts and policy of their leader. The courts of the l'tolomies
and of the Selencidic furnished sustenance and protection to the banished sculptors of Grecer; but both in Esypt and Syria, letters were cultivated in preference to art. In these forcign seats also, especially at the court of Alexandra, the principles of the great mastors appear to hase been departed from; and artists, while they multipled works in a taste between Grecian and barbarons, only hastened the corruption of art. At the comrt of Pergamos in Asia Minor, a similar preference for seience was cherished; but down to the time of Attalus, and the seizure of his kinglom thy the Romans, the Perganencan princes continued the most generous and the most judicious of foreign patrous. Sicily, long one of the farourite abodes of art, even during the carly contests of the Romans and Carthaginians, oftered an asplam and encouragement to scuptors. Soom, however, from her shores, as also from the (ireek cities of Italy, the wide spreading despotism of the republic banished the pursuits of elegance. The capture of Syracuse by Marcellus terminated the glory wi Sicily. An these contries, even the Corek langrage became disused; and as the last badge of servitude, permission was solicited to employ the Latin in their public transactions.
In Greece, the Etolian war was doubly unfortunate, destroying the idea of a common conntry, and giving cause to the first introducion of the Romans. For once, however, these soldiers were moderate, or they renerated, eren in their fillen condition, the mother of arts and arms. Uniting with the victorions Achicans, they defeated the Macdomians, and proclamed the Geciancities free. This crent oceured in the 145 th olgmpiad, or 191 B . C. and forms the last bright intereal ia the history of frecian art,- Whe setting beam of a long clondless sun simking into dreary, everlasting nigh. For more than thirly years, Grecce chjoyed liberty and repose. Sculpture, during this interval, acquired new vigour, ancl was exercised by many antists of considerable merit, though far inferior to the masters of former times. Of this age, many names have been preservect, the chicf of whom were Antheus Callistratus, Polycles, Spoliodorus, and Pasitcles. Bat the liberty of Cirece endured only through sufferance. The Romans permitted its enjoyment only because they could take away the blessing at pleasure; or their uttention was engaged by more powerful opposition. The same year in which Carthage fell, the Achean league was dissolved, and Corinth, the capital of the association, levelled with the ground to the sound of Roman trumpets. This ominous peal someded the death-knell of the liberty and arts of Greece.

Before bidding adicu to this part of the subject, one particular incuiry demands attention; to what age are to be assigned the principal remains of classic sculpture now in existence? This investigation is deserving of far more space than can now be afforded; but a few remarks may not be irrelevant. The different opinions which, in this instance, have been hazarded or maintained, may be referred to one or other of the following:- that these remains are copies executed during the imperial government at Rome from Augustus to Titus inclusire, and some cren so low as Ha drian; or secondly, that in the finest pieces we possess the actual originals-productions of the best ages of Greece. The former position is endeavoured
to be proved from the fact, that the artisis whose nanes are inscribed upon some of the most celebrated of these master pieces, oceur in mo writer prion the era of Pliny; while the works themselves camot 3 . traced to any anciont description, or where a comection can be ascertamed, it is between a bronze orisimal of some older master, and the marble now remanings. To these historical dombs, arguments in farour on' it second position are opposed, when from the phitorsphy of art, the stgle of compasition cenhiditing too great perfection almost wadmit of higher exembence, certanly not showing any of the ushal charateristics of works mercly copicd trom others.

Without enterins into the merits of this intereatiog controversy, it may suftione inifefly to state one ona impressions, derived from a aroln examination of the marbles themselves, amblempaing the expeat ences thence obtained, with the analugics supplied by history.

It is difficult, if not impossible to tix beyond even reasonable doubt, the particuiar cra or master of any one of the most estemed antiques. Triofacts, ho: ever, may be clicited with a degree of certatinty. First, that very l'w indeed of the ancient statucs now existing are originals ol celcbrated Grecian masters; but secondly, none of the most estemed of these semains can be ascribed to a period much later than the death of Alesander. From the premises whence these conclusions are derived, all consideraians founded on mere omissions in the limited accounts of Pausanias or llimy are eachuded. The positive evidence of these writers, especially of the former, is very valuable: but as he describes such works onty as existed in Grecce at the period of his worels; and since Pliny's narrative is an abstract, meagre at best. and confessedly inaccurate, argments drawn from omissions, in such cases con have no reight. It remains then simply to show how copries would be preserved while the originals perished; and that the ase we have fixed upon was capable of protucing copies so exquisite. The very care with which precious originals were preservect, and the vencration atteched to them, became active mems, in many respects, the sole means, of their destuction. In fires, in war, during political revolutions, by the fall of edifices, the statues which, being most valuable were placed in the interior, wonld suffer most. Under the later emperors, when all that was most admired in Grecian statuary was to be found in Rome or Italy, and in Constantinople, religious zeal proved more destructive than cither time or warlare. The Iconoclasts would select as objects of peculiar hostility cactly those works over which "the fond idolaters of old" had bent in greatest admiration, and which would now be most highly prized by the cultivated mind. It is easy to perccive how this reasoning applies to the preserration of transcripts from these perished masterpieces. On the death of Alexander, we have seen that the schools of Greece, especially the Athemian, were formed of the disciples of Lysippus and Praxiteles, and that the latter survived that catastrophe many years. For nearly half a century, therefore, there could not be wanting sculptors in Grecece equal to the most perfect works now known. But poilitical convulsions rendered this period unfriendly to the advance of art in the production of original performances. Nor is it too much to say, that original genius.
from this date became more and more rare. At the same time, imitations from the earlier masters were multiplied in every era, as may be proved from the close resemblance existing between innumerable single figures and individual remains which have been copied from the Elgin marbles. The pupils of the two last great sculptors of Greece were employed, then, during this interval, in which the arts, supported solely by individual patronage had first ceased to be the care of the state, in copying, or rather repeating the most admired conceptions of their masters. And to this period we assign the greater part of antique statuary now in the different collections of Europe. Our limits do not admit a more extended detail of proof: but as a general inference, selecting the most beautiful of these works, it may with confidence be affirmed, that whether originals or transcripts, subsequenty to the date assumed, they could not have been exccuted. Considered as a whole, eachi is so perfect; between the intellectual and material (xcellence the harmony is so delightful, so complete, as could be obtained. while yet the art languished only in practice from defect of encouragement, but while talent and skill continued unimpaired. It will be Cound, also, that in works arowedly executed later, although parts separately considered, and portraits especially of the earlier Cresars, may display the highest beauty yet this perlection of the whole, this pervading impress of a rich, vigorous, and accurate sciencc-this imponere totum, the trimply of art is wanting.

But it may be said, if there be original works of the great masters, how are they to be distinguished, what are the grounds of decision, and why should other productions, hitherto perhaps cnjoying efual estimation, be degraded from their rank? These are questions not to be determined without reference to taste merely-a principle always more or less subject to individual modes of thinking and of fecling, or to rules of criticism not fully established, or not universally applicable. Judgment consequently becomes simply an expression of opinion, cutted to deference according to circumstances; begond this a conclusion carght neithe: to be urged nor receited. The least cijectionable criterion of originality seems to be to select a standurd, the merits or authenticity of which (annut reasonably be called into dispute. For such a purpose the Elgin marbles appear on the whole most proper. From these, notwithstanding their mutilafion, to one versed in similar inquiries, it does not seem impossible to elicit a system ol infallible criti(ism applicable alike to characteristic and to excentive art.

Tried by such a standard, while it is compared with itself, and with the history and principles of classic sculpture, a very limited portion indeed of the anticfue statuary now extant will be found to belong to the age of Phidias, of to be from the hand of an orifimal master. Of the former period, we believe there is but one specimen in laly, namely, the Torso ol' the Beluilort; which eompared, for instance, with the Thesens of the Eigin marbles, displays the same botd, deancol, and breathing style of composition, an! is cortainly of the same school, perlaps by the same hamb. Alem his, the Venus de Medici, the Niobe, and the Vems of the capitol, approach nearest to the fes lection of the erancl and simple style of execution,
while the sentiment belongs to the truly beautiful. These are certainly originals of the earlier schools, most probably of Phidias, of Scopas, or of Praxiteles, but not later. With these we rank the Townley Venus or Dione, now in the British Museum. The A pollo we are inclined to consider as a transcript from a bronze original-probably of Lysippus. This opinion is founded not so mach on the inaccuracies of detail, as upon the general bearing of the figure, which scarcely seems not adapted to representation in marble so well as in metal, without external support, in addition to the balance obtained from the disposition of the atitude. This is a principle never neglected by the ancient masters. We not unfrequently discover the most exquisite skill employed to unite grace with strength in this respect. On the contrary, copies from bronzes may be often detected by some unbecoming lragment of marble left adhering between the body and an extended member. In some few instances this delect has been obviated by the introduction, or novel distribution of drapery. In the present case, the Chlamys, wrapped round and deseending from the right arm, has been added in the Apollo, an arrangement which, though not ungracelul, is inconsistent with the action of the figure. The numerous class of antigue sculptures, which may be termed athletic, appear to hare been all copicd lirom bronzes, seemingly from the age of Myron down to that of Lysippus. Of these, one of the most celebrated, is with equal impropricty, syled the highting gladiator or Chatrias. This beatiful form represents a warrior delending himsell against an antagonist who stauds on rantage gromu. Of the Laocoon there is difficulty in speating with assurance: or rather the praise which has been hwished, both by ancient and modern authors, on this remarkable production, creatcs a timidity in expressing a dissent from the almost universal applause. Whatever may be the individual excellence of parte, considered as a whole, the work is in more than one respect laulty. The figrare of Laocoon limself is truly noble; but those of his sons are in every view thequal accompanments. They are, in lact, mere mamikins, deficient in expression, in form, and in anatomical science. The position of the principal fisure is dignitiod, natural, and even awtully imposing; their attitude is ill selected and inellective. While the one is mot unworthy ol the best ages of Grecian art, the others are by mo mans superior to work; executed under the Amonines in almost its latest declinc. The expressivis, indecd, in the former is more powerful in character, than altogether consistemt with that majestic serenity which formed the intellectual ideal of ancient masters. This expression, however, is only atgeneral indication of suffering, and the soul secms strugring to overcome or repress its agony. In the execution there is a meagreness, a dryness, nat to bediscovered in the age to which the high stgle of design can properly be weterred. We are this lost in the contradictions which the work presems; and in what eralived A gesander, with his sons Apollodorns and . thenadorns, to whom the work has been assigned, is by no moans apparent. Whether, with the latian and German crities, we place this period between Phidias and Lysippus, or, with the Prench writers, lix it so low as the lirst century, during the re ign of Titus, the diflicultics remain. The figure of havcoon would do honow eren to the for-
mer of these ages, but it is impossible for a moment to believe that the children could have been executed in an era of the most perlect art; again, these latter may well belong to an epoch of Roman sculpture, but in the reign of Titus no performance can once be compared with the sublime conception of their aged sire.

We shall not pursue further this examination; the application of the staudard proposed, to every remaining specimen of antiquity, may be casily made on the same principtes. The conclusions are here ventured as modest expressions of opinion; let it however be remembered that they are formed on no imaginative theory, but on a comparison of art with itselfthe only criterion by which the works of art can be classed or estimated. One argument, not yet noticed, may be deduced in opposition, from the names inscribed even upon some of the examples we have selected. 'This fumishes an opportunity ol' observing, once for all, that when such inseriptions contradict the chronology implied in the style of the work, the names are certainly not to be considered as those of the original fabricators of the statuc. Indeed, in a rery lew cases only do these names agree with the ordinary tests even of antiquarian criticism. The form of the letters in most, and in some, as the Venus de Medici, grammatical intecuracy indicate a lower age than could possibly have produced such works. These inseriptions, therefore, are either actual lorgeries, a species of literary larceny, or have been affixed on occasion o. repairs or restorations by the Greck artists of the empire. Such repairs we know to have been cffected, in more than one instance, by command of the reiguing emperor.

From the fall of Corinth, Grecce is known in the history of the arts only as the mhappy sonree whence the plundered ornaments of Rome and of the patrician palaces of Italy were torn. Or more unfortmate still, she furnished the talent which, in busts and statnes, was to immortalize the lineaments of her enslavers. Or yet greater degratation, she, the nurse of free born genius, was doomed to impart to their manumitted slaves those noble arts which her haughty concquerors disdained to exercise. Cicero has condemned to perpetual infamy the rapacious cructy of Verres, but in every state of Greece the rapacity, if not the cruetty, was exercised unpunished: even the orator himself did not scruple to beg, as gifts, statues which he could not purchase, and which he knew his more fortunate friends had acquired only by violence. Three thousand statues are reported by ancient writers to have been remored from the isle of Rhodes alone. Corinth was deprived of all; each city yiedled up whatever appeared most precious; and this desecration of her temples, this despoiling of her high places, this general sacking of public teritories, and revolution of private rights, was not finally completed by the republicans. Greece possessed something of value in sculpture till the close of the first century, during the course of which every portable masterpiece clisappeared.

During the latter period of the commonwealth, the practice ol the art, but by Greek sculptors, was introduced at Rome. Scylla, Pompey, Casar, introduced or first patronised, to an extent equivalent to an introduction, the custom of erecting statues to public men. By thus furnishing employment to the actual arts of Grecece, they compensated in some measure
the removal of her ancient treasures; but finished by transferring from lee soil the remembrance of the dead, and the merits of the living. Of all the nations which have hete supremacy on the earth, the homans show the least claims to origimatity, or have least impressed the future fate of the human mind by any bold peculiarities, or staceessful darings of their own genius. The character of their intellectual partakes of the tenor of their warlike achicuements. In both this character staid and regular, but neither novel nor much varied; forming part of one system by which care, perseverance, and discipline supply the place, or indeed deny the exercise of the genceroms but more desultory efforts of wative talent or untutored bravery. In warlare they borrowed their principles from enemies by whom they were first beaten, but who in turn were subdued by the addition ol Roman vigilance to their own science. They lefi nothing to chance-no room was given for surprise, and little for stratagem. Each march was marled out-cach night the camp fortificl-prudence was opposed with success to valour, and they sublued the word by the discipline of the legions, rabher than by the heroism of the soldiers. Hence in the history filloman conquest, we meet with litte of that chivalrous enter-prise-of bold adventure-and high heroic suldiership which give their spirit-stirring interest to the annals of Grecian or eren barbarian wafare. In the regions of imagination and of taste, the progress of thei: genius resembles the march of their arms on the gloice. They have left only modifications of the expuisite materials produced by their predecessors. Tet from the Greeks they have borrowed litile which by care and study has not been improved. The improvement, however, extends only to the labric-not the material, which remains with little alteration and no addition. In fact, had the Romans ceased to exist before the rude ignorance of our lorelathers had borrowed liom their legislative or rather civil code. not one clenent of thought-not one discovery which dignifies his ma-ture-not one inrention which extends his power, would have been lost to man.

If such be nearly the case in literature. in philosophy, and in cre:y brauch depenting upon fancy-in the fine arts the originality of loman genius is still more cireumscribed. The character of the national talent seemed indeed well adapied to succeed in sculp. ture. But three things opposed this: they regarded the art as the pecuiar eminence of a conquered prople, and its productions as fruits of rictory not as triumphs of mind. hence they cherished no genuine cnthusiasm, no rew: respect for its excellencies, they never practised its labours; secondly, their mational manners, and the desire they early affected for being represented in armour, were opposed to the adrancement of sculpture; and thirdy, the amazing achness and beauty of the Greck specimens so profusely lavished throughout lia! ferent to original woriss, which could not eren equal these, and desirous only of portraits. But even the statuary, whether busts or ideal statues, were executed by Greeks, nor docs it appear that a single Romati attained eminence in the art. The history of sculpture indeed among this people is distinguished by two singular yet very similar epuchs.

In the dawn of her rising fortunes, we have seen that Rome was first adorned by the ravished spoils of

Etruscan art: that scuipture there transplanted, soon decayed or was forgotten, among a warlike and unimaginative people. It would answer little purpose, therefore, to cularge on the consular and early republican ages: the past borrowed-the living arts are characterized by Tibullus
"Stabat in exigua ligneus sede Deus."
Ind Cato opposed the introduction of the statuary of Grecce. on the plea, that its dirine forms would expose to ridicule the rade fashionings of their own deities. Is the first era of the art was thus formed by an inefictual attempt to effiliate the genius of conquered Eumbia: so the second exhibits a similar trial, and similar success with subjugated Grecece. The history of sculpture in Rome then is but the melancholy continuation of its fate, closing the last faint glories of Grecian art in a strange land.

The reign of Augustus, like that of Alexander, was farourable to the arts only as respected heir political influence. The crafty successor of Jutins, to conceal the loss of civil liberty, affected to turn the senius of his subjects to intellectual cmpire. From being the mistress of the world by arms, he aspired to renter his capital the scat of elegance and of knowled ge. This was but gilding after forging with exquisite nicety the fuaters of the once haughty and jealous republicans. The objects here were rot those which on inmate, a real lowe of acfrimement secks, yet the extermad offects in revivig the pactice and awarding the professors of the ant at least were tha same. Rome now become the solw field where the scuiptors of Greece, in the exercise of pemaining skill, Pound recompense if not honow. Heace every man of talent began with the first appearance of settled foremment, to repair thither. and the collecting there all the master pieces of fomer and beter days. added a new inducement. Rome then. as now, came to be regarded by every arist, as

> "lise comar"- - "ity of the soul."

Imons the sculpors who this adomed the Augustian whe seremal momes have searhed us. Pateles. Archesi!aus. Zopirus, Evandor, Athenians, or Cirecks, were the must emincut. The first excelled in metal and as at modelter. His silver stathe of Roscins, an infant in the eradle on the point of beine stranged by a serfent an incident in the childhond of the actor: was mich atmired. The vases of Pasiteles, as also those of Zopirus and livander, were highly estemoer. The two latter were likewise emineat for relievos in muctal.

> livandmimashme Mritum degicit.

Dechesilaus ereatly excelled in works of marble: he is waised by llang for his imporoments in mo. dellinge and for the care with which he studed his compesitions in chay or wax, belore attempting to ratize lis conceptions in more durable materials. Sarodescribes, with lively simplicity, a spoup from his hand of one blowk. the property of lacullus, represpating a lioness with copides sporting aromed and Timeins her to drink. The Venas (ienctrix, ordered by Julims Casar ol the same artist, so delighted the acomplished patron, that through impatience to dedirate so beatiful a work, he removed it before the
last finish had been given;-a defect, however, not to be discovered.

But the movements created by the patronage of Angustus of one who could wield for his purposes the energies of the cnlightened world, were too general and too extensive to admit of particular description. Every branch of human pursuit lelt more or less the influence. Nuscums of nature and art crowded the temples; galleries of painting and of statuary assembled whatever was rare, beantilul, or precions in cither: libraries were formed, displaying the whole intellectual riches of human science.

"- Victeres revocirit artes."

As resards our present subject, however the creative spirit could not be recalled. The remains which undoubtedly belong to this era of seupture offer the strongest prool how little can be effected by even the most milimited patronage without the aid of moral causes, in the production of genmine and original talent. To those who extol this reigu as capable of such works as the Apollo, we recommend a comparison ol that divine figure with any statue of Augustus. Surely an inferion artist would not have been employed upon the likeness of the emperor: while other's so much ablur could hase been procured. Compaied with any work havius pretensions to Cirecian anticaty, these statucs are poor in the exweme. Not so the busts of the Roman school, which, without suntering by the contrast, may be confronted with similar morks of the best ages of Greece. In this department only do we discorer undoubted vestiges of ancient genius: and we believe it will be found, that. forming from these remains thearestmate of the state of Poman art genemily, writers on the subject have been led into those wagegerated opinions of its excellence already noticed. These busts indced. from Julius to Gaminnus, through a serise of thace centuriece. present some of the most perfect examples of the art in pontrai. They do not indecd equal in heroic cha:acter one or two remains of Grecece bet we are struck with the most poweritul representaion of indivichal mental rescmblance. Omitting all dry or minute detail in the semupulons renderimg of each separate feature, the artist has addressed himsell to the portraiture of the mind. Jnto the whole movement of the combtenanco is imford a speaking. a characuristic expression, as it the mapble were but the translucent prison of the soul, selting belore us the very actor in those deeds which have formed the studjes of our youthlul years. lout this high perfection applies only to the last period of the commonwealth, when each chicl ol' a division among the conseript fathers could have cmbroiled and would have ruted the world; or extents not beyond the early reign of dugustus, while yet the lice and liery spirits of Pormer times had not learmed to daail belore a master. As we advance, the impress of grandeur and encrgy ol thought becomes moreobscurd. The withering infuence of despotism, or the debarins contagion of prollisacy, spreads a dull and brutal catm over the expression like the mantling of the lake above comuption. The series of the Cosars, indect, as furnishing examples ol art, continues to be lime, but the expression is too olten such as the imargmation cares not-or dreads to explore. The fill of material art keps pace with the decay of internal grandeur. 'The rapid decline ol the only
branch of scuipture in which the Roman school attained eminence, is certainly in a great measure to be attributed to the discouragement imposed by the jealous fear of succeeding emperors, who forbade the erection of busts save in their own honome: but there is too much truth in the lament of Pliny, that when there were no longer images of mind, the lineaments of form also degenerated. Quenium animorun im agines noa sent, wralisuntur them corporrm.

From this series of busts, the style of art during the Augustan age, and the different vicibsitudes which Roman art has undergonc, may be known with great precision. The character of design and of execution is cvidently the same as that by which the last era of art in Grece is distinguished. In the finest specimens there is no evidence of new comergies added by the union of two separate modifications of talent; nor in the most inferior is there any exhibition of the more original, though perhaps ruder, efforts of an aspiring and distinct national taste. Rither or both of these effects must hare been perceivable, on the supposition that there were mative, previons to the migration of Greck artists. Xothing is more casily discriminated than is the vigorous inacemacy of rising art liom the languid correctness of its decline: and every thing in Roman sculpture discovers a progressivestep from a ronditivu of high excellence; exery touch shows what las been, not the ominence for which we are to draw upon futurity. When we compare the latest works exechted in Grece with the earliest productions of the republican and Augustan ages, there appears in each a continuation of the same principles, with such difference as the political and other causes already noticed, can easily reconcile. The style of design during the period of which we now spak, is accordingly marked by a squareness and decision in the arrangement-a boldness and firmness in the pronouncing of the parts evidently derived from the successors of Lesippus and of Praxiteles. The mastery of touch, indeed, is frequenty so bold, as to be redeemed from the impatation of careless and unfinish. ed only by the trutin and vigorons meaning of every stroke. Desterity of mechanical detait is among the last beaties which linger in dectining art; it begins first to disappear in those passing lines of thought and form where litte meets the outward sight, but in which the science and feeling ol the skilful artist are most surely displayed. Striving to recovef these, bat more by practice of hand than by exercise of mind, the succeeding age still lurther degrades art by sendering their productions tame, hard, and laboured. The Augustan age of sculpture hovers between these extremes; the masses are large and fine in distant effect, but the details are not clearly made out. The expression of the eyes is studicd, and, evidently with the intention of producing an imposing air, the eye-ball is made larger than in nature. The hair is particulaty heary, and, though bold in the general arrangement, is harsh, from a want of a proper and just degree of finish. As compared with the sculpture of the preceding ages, there is. indeed, in the works of this school a general character of harshness. An absence of those sweet and llowing lines, which bring the whole contour fulty but graciously upon the sense, yet without palpable obtrusion on the eye; which invest the pure specimens of Greek art with a moring and cranescent shape eluding research,
yet circumscribing beauty with the breathing variety of softness and of life.
Such continuc to be the leading characteristics of Roman art, nuder the immediate successors of Augrostus. The deliets, however, eontinue to increase, and a considerable degradition is to be perceived even during this reign. A baborious and mamered style, in imitation of the sophists, spreal hiom literature to the arts, and introdnced the begiming of the lape toward the second stage of deterionation, where remaining mechanical skin! is wasted on tedious and ineffectual finish-patience of labour supplins the place of vigorous design-and from Augustus io Constantine, the art gradually subsides into worse that pristine lecbleness.

The reign of Nero has been considered as peculiarly favourable to sculpture, and has bech assumed by Pliny as forming ancra in the history of art, which he considers to have been dormant lor nearly forty years. That Nero lavished immense sums upon building, painting, and statuary, is true, - be coliected from Grecee whatever of precious or rare former invaders had spared; but that he improved the actual state, or even retarded the declinc of art, may be questioned. Ifis taste like his monals was ritiated, and to him the aits were objects of luxury and vantey, not sources of intellectual pheasure, of which be was incapable. Nor does it argue much for the state of art in Rome, that Zenodorus, a provincial artist of Auvergue, was called from (iaul to cast the fanoas colossal statue erected in the vestibute of the golden house. The age, however, must have been very far from deficiency of resource or of refuement, in which coudd be produced a bronze figure one humdred feet high, or the heads of Nero, especianty the exquisite likeness as a chitd, now in the llorentine saltery.
The school which llourished in Rome from the termination of the republic to the reign of Nero, alhered strictly to the principies of the Circek masters, allowing for the defects of general inferiority. The founders or principal artists of this school were Diogenes of Λ thens, who finished the statues with which Agrippa adorned the Pantheon. Batrachas and Scauros, scalptors and architects, who buit and adorned the porticos of Octavin, and whose ingenious hicroglyphic cypher is still to be traced in tine frog and the lizard, in the cyes of the rolutes, in some ruins of the forum. This was contrived in order to associate their memory with a building upon which they were prohibited from inscribing their names-the literal meaning of thesc names being the animals thus artfully introduced. Pliny enumerates and praises many others. Philiscus, Pythodorus, Ilermolaus, Artimon, L.sias, sic. whose eact age or labours are not ascertained, but whose names and pupils bring down the art from the republic, through the first eighty years of the Christian era.

The reigns of Yespasian, Tilus, and Trajan, were on the whole favomable to Sculpturc. The great works of this period, however, being architectmaltemiples, palaces. and trimphal arches, the sculpture chicfly encouraged was that adapted to the decoration of such erections. This was not calculated to retrieve the lapse of the art, but rather to nourish the deterioration arising from bold and facile execution being preferred to simple and accurate design and natural expression. The bas relief still existing upon?
the frize of the temple of Minerva, in the Forum of Domitian, instances the truth of this remark. As Winklemana has observed, this figure, for their remains only one, has the appearance of having been merely blocked out, so bold and unfinished is the workmanship,-to the justness of which criticism we can bear witness from having frequently drawn and studied this interesting ruin. The few remaining sculptures on the ruined arch of Titus exhibit the same character, but the monument itself is of fine proportion and design. Architecture, indeed, longer jreserved its purity among the Romans than sculpture: such at least appears from the more enduring edifices whose gigantic remains have reached our days. But there is abudant proof from more fragile sonves, that cren early in the reign of Augustus corruption had commenced in this noble art. The great error in the riews introduced by the Roman architects, was a constant aim to lessen the diameter, while they added to the beight of their columns. The priuciple indeed may be generally applied to all supporting members. The solemn grandeur and majestic serenity of the Grecian proportions were thus lost without any increase of lighter grace. The cultivation of such a taste among the Romans becomes the more singular, when considered in connection with the facts, that they were a less imaginative people, less gay in their dispositions than the Greeks, while on the whole, in their grander erections they employed materials of superior mass. In architecture, however, in which mostandard of immediate imitation is fixed from matural prototypes, deviation from abstract symmetry once admitied, license has no acknowledged lounds. There existsa tendency in false taste to substitute in this art ingenious contrivance for elegant skill; hence the principle of deterioration above noticed. The enormons pillars ol the Eyyptians were by the Greeks vefined into proportion uniting sccurity with grace. The Romans, aiming at greater lightnes., then at surprising, lirst reduced this proportion, and linally deriated into almost every barbarity of coluran, paving the way lor the fantastic tricks of the frothic architect, who seems to have placed perfection in sesting at apparent defiance the ordinary laws of suaritation.
In the empire, as respects architecture, there also (sisued a peculiar souce of corruption not known to (incece. la the latter, one patron, namely the state, the expresentative of the public, left the artist unWammelted by the imfleence of private judgment or iadividual tasto. and free to pursue the general principles of ant. In the firmer, the emperors were not only the sute di-pensers of reward, the approvers of merit in works nntontaken by their especial order; but the exumphe of their sowerepn being sollowed by 3: calthy mbjects an! public lunctionaries, who, erecting at ticir own canense, porticos, temples, theatres, angernats fors the probic benclit, clamed and exerrised simitar rights of private patronage. The art was thas no longer the free servant of the public, but sulject to individual taste, against whose exclusive approbation or censure there was found no protection in the common sentiment.

That sone of these causes of decline in architecture had begun to operate sonearly as the reign of Augusuns, is obsious tiom remains, and from pictures recosered from Herculancum and Pompeii, as also from
history. At the period now mentioned, Plutarch informs us, that under Domitian columns of Pentelic marble had been rough hewn at Athens for the temple of Jupiter at Rome, but when finished in their site according to the Roman taste, they had lost their noble proportions, and to an eye practised in the arts of antiquity, seemed abont to be crushed by the building which they supported. This taste appears more incongruous still when viewed in comparison with the contemporary style of sculpture as observable in the fragments of the colossal statue of the same Domitian now in the capitol. These immense masses, buld and larsh, but vigorous in their execution, would indicate a state of art the very reverse of what has now been described, and crince the absence of all uniform or consistent principle.

But althongh corruption was thus at work, the external condition of art was fourishing. Yespasian and Titus erected noble edifices, containing not only the most precious productions ol the chisel and the pencil, from the hands of ancient masters, but also adorned with the works of living artists. Ot these, such names as Comelius Pimes, Accius Priscus, would seem to furnish evidence that, in paintirg at least, natives now began to rival their (irecian instructors. Artists, indeed, edncated in Italy were usually. Preed men: hence our term hiberal arts, and in these or other instances, might, thercfore, have adopted the names of their former masters-an usage not uncommon. Certain it is, that the whole fabric of Roman art, in its principles and practice, still contimed Grecian: while in the succceding reign of Trajat, an era peculiarly favonrabie to the arts of the empire, his favourite architect Apollodorus, as well as the sculptors whose names are known, were Cireeks.

The arts under this emperor partook of the elcments of his personal character. Their applications were grand, substantial, and useful-beaution in execution; but this beanty subservient to mility. Of the grandeur and enduring character of the erections with which he adorned almost every province of the empire, the triumphat arch at Ancona is an instance composed of the largest masses of any classic work in Europe. But even here, in the proportions of the colmms eand ornaments, we detect the falty principle already noticed. Or atility in these works, the harbour of Ancona-of greatriess united with beally, the bistorical column remains an example. Considered as a monument ol labour or of skill, this storied pilla: is one of the most wonderlind restiges of the ancient word. Rising amid the spites and domes of the modern city, it is conspicuous by a certuin venerable simplicity; and thongl, with a diameter of eleven feet, attanins an devation of warly one handred and twenty, the whole is comprosed of only twents-two blocks of white marble. From the hase to tire abacus, the extcrior surface is covered with scmpture in relief, representing the leading events of the Dacian war: internally is a winding stair hewn from the solid blocks, cach of which forms a complete frustum of the pillar. It is this latter adomment which requires our present notice, for in architecture the work constitutes an imovation. These sculptures are contained within a kind of liflet about fon lied broad, making in the height of the shaft twenty-three spiral convolutions. The number of ligures, including elephants, horses, and warlike engines, amounts to some thou-
sands, all wonderfully varied, and forming subjects of study not less interesting to the artist than to the antiquary. The design and executionare correct and vigorous; the relief well adapted to effect, yet without injury to the general outline. The character and style are decidedly Grecian, though the details are defective or usually wanting; yet there appears a strength and decision in the forms, a breadth in the parts, a lacility of hand, and firmness of drawing, which point to their source in the Athenian school. This noble monument, erected by the senate and people, shadowy names! in the commencement of the second century, exhibits the greatest, as it was among the last eflorts, of the true Greck school in Italy.
With the reign of IIadrian in the sevententh year of the second century is introduced a new style of sculpture. From this date commences Roman art, properly so called, the distinguishing chatacteristic of which is extreme minuteness of finish, in this respect differing widely from the genius of the preceding century. Writers on the subject seem in have overlooked, or not to have been acquainted with this fact, and have described the distinctive peculiarity of Hadrian's age as belonging to the arts of the empire generally. There are, as already hinted, two cras in the history of sculpture in ancicnt Italy. Boldness of general effect, without the Grecian delicacy and exquisite skill in the detail, characterize the art under the early Cassars. The sccond stage of decline we have now reached; when, seeking to recover the raried harmony of parts, the correct, yet grand details of ancient masters, but ignorant of their scheme and method of studs, the Roman artist; tell into the dry, the languid, and minute. In a falling art, while the greatest master-pieces had long been produced, and consequcntly, where imitation only could be the highest praise of the best, this path necessarily conducted to fecbleness, imbecility, and final extinction.

Under Hadrian, however, this extreme is jet distant, the downward inclination only is more decisively given. The admiration of this emperor, otherwise possessed of taste, and some knowledge of art, for imitations of Egyptian sculpture proved directly adverse to the recovery of a free and generous mimner. In the sculpture of this period every thing indicates the labour rather of the hand than of the mind. The desiga is borrowed, the exccution is painfully original -the chisel-the file-the drill have been plied with ceaseless care, and with great mechanical dexterity. The hair in particular is often finished with a most wonderful address, as are likewise the eye-brows, which are more elcvated than in works of a better age. The pupil of the eye is marked by a deeply drilled orifice, a peculiarity by which a work of this period may certainly be distinguished from all earlier performances. Over the whole genius and spirit of the art is now diffused an air of research, of studied, and eren affected refinement, which smooths away every characteristic and natural expression. Hence in the contours of the head, and features of the countenance, though the separate parts be diligently rendered, and even more deeply marked than in more happy times; yet the principle of life, the exhibition of mind and soul, is wanting. For the sublime is substituted the difficult; for the elegant the florid; in short, sculpture abundantly proclaims the taste which
preferred Antimachus to Ilomer, Dionysius and 1:avorimas to Demosthenes and Cicero.

The state of art uader Ifadrian, indeed, illustrates in a lorcible manner our former remarks on the influence of individual patronase. Ilis was a mind, action. not great. desirous of knowledge, without the seas? required lor extensive accpuisition: a taste capricions rather than refined, an imaghatim imitative, scaredy original, since the limit of his ronception was bo briats home more directly to the feclinss, babis and mational taste ol his Roman subjects, those arts which hey had been content hitherto to culivate as catotics. Thas, the character of the prince, is exactly that of the genins of his age. Nor coutd it be otherwise in the arts, lor howerer liberal io writers, to artists he pare ed an imperious dictator or envious detractor; painter, sculptor, architect, he conld "bear nu pival naw 'he throne," who wats not the creature of his will. A pol. lodorus, the faromite of his predecessor, paid with lile the opposition which he ventured to make to some plan of a temple proposed by this "imperial mimiof of old Egypt's pilcs." lic has it leen maintaincel that despotism is the clime genial to the arts! Let us not, however, be injust; the remains of this age exhibit in some instances no mean beauties, and are among the latest relics of ancient clegance.

The reign and disposition of the Antonines were rery favonable to the exercise, if not invigorationg to the style of sculpture. Vigour, indeed, could not jow restored, and the splendon was but a temporary di*persion of the darkness fast closing aromd the hovizon of ancient greatness. Beyond this periol. indecol. we need hardly carry ou inquiries. How rapidy the arts had degenerated is crident on comparing the historical column of Trajan with that of Antominns Pius, or more properly of Aurelius. Bothare constructed in the same manacr, the latter being composed of twenty-eight stones, and though of greater diameter, nearly of eciual beight, but in every respert indicative of talem the sculpture is sreatls inferior. The equestrian statue of Marcus Aurelins is indeed one of the noblest monuments ol antiquity, and shows deficiency neither of talent nor resource, but not possessing the means of comparison with any similar work, we canmot ascertain the comparative state of art. The busts of this period, especiatly the portaits of Darcus Aurelins, and Lucius Verus, are exampies of the minute finish now constituting the highest excellence which the genius of the age was capable of producing or of appreciating. Throughout the course of the succeeding reigns this character varies only in its accessions of cold and ummeaning laboriousness. Under Severus a singular fancy arose of marking the comntenance, especially the forehead, with deep furrows, adding still greater rigidity, with a yet more decided retrogression of redeeming excellence. Indeed it is hardly possible to conceive more rapid decay in all the remaining qualities of higher art, than must have taken place between the execution of the bronze equestrian statue of Aurelius, now in the capitol, and that of the sculptures on the arch of Scyerus, half buried amid the ruins of the Forum. The difference is yet greater, because the interval is longer and the inferiority more lamentable, in the bas reliefs on the arch of Constantine, that is, those of the same date, and not carried off from more ancient buildings,
as compared with those on the arch of Severus. Beyond Constantine it would be vain to trace the progress of sculpture. Even the buidding of the eastern capital imparted no revived energies: for alhough the shell was the work of the age, as also the grosser ornaments, the phondered cities of Europe and of Asia supplied the only precious evidence ol relined embellishment. Succeeding emperors pursued the same path, yet some degree of intelligence in art still continued, even to the fall of the empire; but to explore its results, would prove at once a melancholy and prohtless exercise.

PARTII.

Moderix scelptere.

I* the preceding columns we have traced the hisLory of ancient ant till genius appared no longe to animate its efforts. If is not intended to asscrit that art itself becanse extinct; it is impossibie to conctive the cxistence of a prople, ricis and luxurious, among whom the fine arts to a certain dergee had ceased to be cultivated. But when In Italy an imperial master of the world is found pilfering from the virtuous :cord of a predecessor a Rew ornaments to alom the tribute of their applause or of their Aatter, which the living talents of his subjects could not supplywhen her own matchless specth coased to be anderstood in Grece-the ancient amals of human improvement might, as appeared, be closed. Long, dreary, and roid is the daribuess which must clapse before the books can be again unscaled in light. Still the human spirit was at workt the stroke of sculp. ture, rudely directed indeed, might be head femply sounding through the gloom; the pencil yet traced its barbarous mimicry on the chapel and the palace: the legend of the monk, the learning ol the cell, filled the seats where philosophy aud the mases once presided. In the west a series of monments in Italy and Sicily enable us to trace the vitidity, if not the progress of art, from Sylla to Nicholas of Pisa. In the east, the collections of the Byzantine historians, and even the omains now existing in Constantinople, prove a simiLa: fact. The literature of the middle ages evinces. in boh empires, the activity of imagination if not of judgment. The preservation of the classic momments exhibits also a degree of taste, incompatible vith the supposition of those ages persessins no arts af their own. In the commencement of the twelth antus, of even later, matny of the mastor prieces of berek scupture, tansported to the eastera capital by Comstantine and his successors, were to be sera "nimjored; they just caught to rellect for a moment Whe fist ray of returning intelliernce, then sunk for - oor. Tos restrict our remarks in the suhject under A-HCN, 10 the provinces of the west, the kinded stu-
 wh the latme of thone ages emphatically iermed dario.
 If dw tendal baron, an formody the polished elergance At We: is dasen putrician deponded on their aid. Acandos, in the momuments of those ltahan cilies, \therefore No. Jisa, siena, Veroice, whose antiguities anity, is it wro. dacient with modern hintory, we are an dmos: continuous cultivation of hose arts.

An attempt, however, to record and to arrange the scattered evidences, nuknown names, or probable conjectures, with which this space might be filled up. would neither be wise nor entertaining. We pass at once then from the age of Constantine to the revival ol arts and letters in the Italian republics. In rapidly sketching the history of modern sculpture, one chiel' attention is commanded by the genius of Italy, on which the greatest artists of other mations must be content to appear as attondant stars. Our subject will readily admit ol the following division. I. Re. vival of the art, including the sculptors from the 12 th to the termination of the 15th cutury. I]. Perlection - Michael Angelo and his school. III. DeclineBernmi and his followers. IV. Restoration-Canora and his contemporaries.

SECTION 1.

From the preliminary remarks, it will appear that the extinction of the arts in the west has been assumed impropeny as total. Their reviral has in like mamer been too exclusively ascribed to resources derived from the east. From various causes ol parthal judgment, the two grand events which in succession changed both the political and intellectual aspect of western Europe, the invasion of the empire by the Croths, ant the fall of Constantinople, have been represented as exercising immediate and decisive influence on art. The occupation of Italy by the barbarous warriors who oferthtew the loman power, was lollowed, it is said, by the total destruction both of the monnments and the knowledge of learning and relinement. On the other hand, the reappearance of the ants in the twellth, and their splendour in the fiftecnth century, have been attributed, the former to an occasional influx of Greek artists, the latter to the mislortuncs of the eastem capital, whose natives, secking protection in Italy, enlightened the country ol lleir exile.

It may be shown, however, in opposition to the former of these opinions, that in Italy neither the momaments of ancient taste were destroyed, nor the remains of living science exterminated by her conquerors; and that. in the varions principalities into which this conntry was separated, the arts were never entirely lurgoten, but, on the contrary, were caltivated, and by matiocs. The coudierors of this Cairest portion of the empire were less ignorant and brutal than those by whom the distan prosinces were fually ofcapied. They had been reaced in the armies of Rome -they spoke ber langag-they vencrated her grandenr. When the fury ol contest had passed, therelore, when conguest was secure, they were more disposed to encourare than to suppress the uschal arts, or che. gant studies of their more cuticated, but unwarlike subjects. These acquirements in lactaded to their splendonr: and the earliest erections of the conbice chiefs are evident though rude imitations of works of the Cosarc. Of these princes also we have still mmaining several mandates prohibiting the destraction of ancient buidings, and offerins concouragement to those who coukl repair or imatate them. of these - fiones in arebitecture and in scmpture, for these arts were inscparable, a series we bave stated might casily be: selcoted, uniting the reign of the last of the emperors with the establishment of the lirst of the modern
republics. That these essays, such as they are, were the productions of native latians, the names of the architects or sculptors, Bonani, Di, tisatvi, Antelami, Beduini, (Gramonti, Vilizchmi, and many offels, all living previous to the torllih ecmary, furmish evidence.

In regard to the latter atshertion that Iaty borrowed her revining arts from the ribal eapitat, it apperas that so lar fom advancint the pustess of western arl, Comstantinople could send liseld matists superior to those who lhourished in the same age in Italy. During the hartenth and lombenth ecutury, Dante, Petrarch, Buccacio, in energy of intellect far transcend any name which adoms the castern empabe: the country which could produce and retish these had surely nothing to lear from a rivalry in talent. Still more to our present purpose a more momerons and ingenions population, greater and more useful industry animated the Italian republies of this ara, than were contanced within the pate of the bexentine empire. The fall of its capital so fur fom atrancias the progress of westem ant, took face alter many of the happiest effosts ol modern genin, hat abrenty been accomplished. scalpture had opetated worlis which have since been declared wo thy of paradise; achitecture had reared on the bathes of the Arno the herst dome of modern times-the exemplar of that edifice the most majestic erer reared by homan skili.

Is there hen no source whence we may derive modern sculpure at once consistent with the veracity of history, with the philosophy of art itsch, and with the condition of mankind? Revolntions or improvements which deeply and permanently affect the habits ar character of a people can be promoted by great internal changes only. For such then we must search in the prescnt instance, and shall be able to discover another proof of the constant intimacy existing between the social happiness, the moral disnity of man, and his progress in rebmement.

The subjugation of the western empire might have proved an cuent in the highest degree lortunate lor Lurope. In every part of the Roman dominion the powers of genius, moral worth, sucial virlac. alt that dignifies man's nature, had Jong rapidly declined. The engralting then of the rude but honest virtues and energetic character of their conquerors upon the refmement that yet remained to the ltatians, vould have wrought a material improsement. A now impulse would have bearl given, and civilization would hase recommenced as from a new era, Untrapily for this recipracal melioraton, heroughout the wide extent of these conguests, the leutish goverament was unilombly established; than which no system could be more directly opposed to individual happiness or general improvement among the people. The affections and the conergies of the haman heart were atbe benumbed where the haman race acknowledged the sole rebation of tyrant and slase, or its sympathics were roused only in deeds ol violence aml ol hwless power. A deathlike depression overspread the empire of intelligence. Some vital change cond alone break the dismal solitude of the mind. and restore its mobler faculties to activit!. Accordingly, when about the "ummencement of the eleventi century, the cities of Italy theew ofl the the yoke of leodality, and proclaimed themseles independent, the sound oll liberty broke -he unhallowed calm-the waters were moved-the
healiner idfuence was shed abrown-chansiner liom mental destatation and politiond dehasement. la the tran of ferdom sebptote and the arts appeated amome the cations ath matats. The moral history of
 and briniont comtast to ther political amads. '] he

 tisus libery. In the formery are stase ty illastrated

 aystems, bat in the heart ant romstitution of manWhich interest the moblest lewtase in dedence of the dentese rights.
 as pursuits of gemeral concem, ware liom the first

 to the service of relision; next "acrevec on pubtic works, wating wility with mugnifucence: and finally,
 and virtuons charsables. Whate his arquarements were thas prized. the intelligent antist was honoured as the opmame of his combry. haceprocal sympat thes thas gate and necetred inapiratom.

Among the republics of Italy, V'mice carlicst suc-
 took the lead infomding at sehool of mative art. Lavly in the elerenib contury, (1016), her cathedral was begha, the ornancms of is hicha were composed chatdy of hrasments of Grek senpture, relieris, capitals, and cren whole colmans, which the eastern commerce of the lisatis wabled them to procure, and which proved must valuable in the remonation of tazace as buth exciting emalation and supplying models. Thes great buidling was conducted by Boseberto, the lirst architect and sculptor ol cminence in laly: but the motrect rewhes, fom a fracture in the tablet, of an anseription at l'isa has deprived her ol the honour of having grien birth to this lownter of modern art, who has thence umjustly been recorded as a native of 1) ulichium.

Oil the numerons sehools thus established at Pisa. the most distinguished members aflerwards became celebrated by their works in various of the surmonding cities. But the montation of these has been forgutte: in the superior merts of Ni, wo !isano. the slory ail the twelith combry, and mater whom senlpture hist asumas dignity and importance. Ite early Ethached hinself to the study of atiquity. having aemaked the strikiner diference between the I bours of Boschete and fragnents which hasl bees brought foom Cisece. It was from the latter be formed his styke: :med in his works we often tace a very merked esemblance to the chamater and manner of some re. mains still preserved in the cathedral on in the campo Stuto. His principal worts are the pulptionsiena and Pisa, the beatifulbas reliet on the ta acte of th. (athedrals of Owicto and Jucca. Exc. ibn! it is a species of injostice to particularize: ibestiacoce of the genias of Nimolo is to be traced in cerey butaline in italy of thes cras as alco the athors of minor works ol ant, as chape!s, altars, tombs, fomains, relievos, must be rathed as pupits either immediaty or remotely of this school. Of the former class the most cminent were (iovarni, the wo olicolv. and l:ro

With these the science of their master did not languish, as may still be seen in the cathedral of Siena, one of the fincst in Italy, of which the three were the joint architects. In this crection we first read of sculpture being adnitted as a separate profession; and there are still preserved the original rules and regulations of a confraternity of sixty-four sculptors, then first incorporated. The slyle of Giovami howcrer, was considerably diversified from that of his father, his outline being more flowing, his drapery broader and less determined in the folds, and his whole composition more soft and delicate. This artist exerted a degree of inlluence over the arts not only of his native country, but of the whole of Europe where art was known. Even in England in the sculptures prior to Homry ViI, as in the monuments of Qucen Eleanor, it has been thought that the style, if not the very designs, of Giovanni have been discovered.

Before the end of the thirteenth century the cities of Etruria, the ancient seats of the arts, had already matle progress in the study of sculpture. Florence, destined afterwards to become so conspicuous, had not yet from domestic feuds been able to distinguish herself in the arts of peace. When the attention of her citizens was at length directed to the study of clesance, painting at first obtaincd the preference. Cimabuc. born in 1211 , received the rudiments of a baburons ant from some Greek painters who were employed at Florence; he quickiy surpassed his insutuctors, and was himself excelled by his own pupil Giotto. whom he had taken up a shepherd boy in the vale of tmo. Andrea da Pisa, the grandson of Nicolo. was, about the commencement of the fourteenth century invited to Florence, and thus became the father of 'Tuscan sculpture. The works of chis artist, the relievos ol the Campanite, and the bronze fulding doors of the Baptistry, still proclam his meriss; white his sons, Tomasso tml Nino, sustained the seputation of their instructor, and by their pupils vice'y disseminated the art ore: Lombardy, Tenice, and the sonth of Italy. The primitive school of pisa is thus the true source of modern art, for Tehice was at first occasionally assisted by artists from the cast, and subsequently firom Tuscamy. The grand pohical and moral canses which operated so powerfully in wher states, were there compuratively feeble in thereftects. Her proud and exclusise aristocracy wather conserted the arts to the purposes of private magnifirence than emploged them in the sertice of 1. .ifunal greatness. It was this union of the arts with teatimal fecling, while the freshess of newly acquircolibentegate to that sentiment energy and vigour, Which so eminently conduced to their progress in Iaty. Her liee cities had thus adranced in the acquisition of le grant taste, for in 13.5) was establishecl the firs academy of design in lorence, at least two centurics before the rest of larope had started in the ratcer.

The fonmenth century closes the infancy of sculp. Curn: of this period the principal works are relicuos: shatus tre few in tumber, and generally inferior in workmanship. The former are to be regarded among Whone perthmanes and discoveries of one age, which famediately conduct to the improvement and superimity of the suceceding. Thus the relieros on the allars and tombs in the different cities of Tuscany, and of the Turbti and Scaligers a: V'crona; the pul-
pits of Pisa and Siena; the bas reliefs on the cathedral of Orvietto; the decorations of St. Mark's at Venice and the Ducal palace; the sculpture of the Belfry at Florence, above all the bronze folding doors of the Baptistry,-constitute the intermediate gradations while genius was emerging from the barbarism of the dark ages, presenting the steps by which it ascended to the eminence of the two following centuries.

As respects the style of art during these early ages, we find that from the time of Nicholas of Pisa, whose views are frequently drawn from antiguity, a general character of simplicity, of fidelity, and of just expression, begins to appear in sculpture. The mind is never astonished by boldness ol execution, or grandeur of composition; but the art being chiefly dedicated to the service of religion, or to the memory of the dead, there is often in its best labours an air of devotional sincerity, a touching representation of the gentler affections, which solten the heart and awaken the sensibility. The effect is never daringly ventured; it is sought by force of labour-by persevering discovery, rather than produced by any acknowled ged principles of taste or rules of design. But if the creative faculties have seldom been conspichously exerted, we are sometimes agreeably surprised by unexpected beanties of the sweetest power arising from a diligent imitation of nature, which give back the image of the original in all its simple and unpretending reality.
The fifteenth century forms a splendid era in the progress of inteligence. Adrances in moral, intellectual, and political knowledge were then accomplished, which form the gromidwork of no small portion of modern science. In the arts of elegance, especianly in sculpture, the labours of this age will always hoid distinguished ran!. During this interal, love of liberty and of information animated the Italian republics. As il there had also been a commonweald of talent, no single matster so far excelled his contemporaries as to impress upon the are the stamp and bearing of an individual style. The rery opening of the century presents the friendly contest ol six great masters, competitors for the same public work, who had been selected from a still greater number of candidates. Brmelleschi and Chiberti, Florentines, Jacomo della Quercia of Siena, Nicolo Lamberti of' Arezzo, Francisco di Vadambrino a Tuscan, Simone dei Colli, were the arists the chosen to compete for the honour of excenting the bronze folding doors of the baptistry. After a ycar's trial, in which cach produced a panel of the proposed work, representing the sacrifice of Abraham, the specimen of (ihiberti was preferred. The umdertaking thus homourably assigned to his superior merit, occupied forty years of his life, still remaining one of the noblest monuments of modern alt, and declared by Michad Angelo worthy to be the gate of Paradise. The subjects of the one are taken from the Old, and of the other from the New Testament.

Of the other candidates, Bruncheschi afterwards applice chielly to architecture; the remaining Ponr, by their works and the merits of their schools, videly extended and improved the art. Among the crowd of ilhustribus contemporaries, Donatello, bom in 1403, stands lorth pre-eminently conspicuons by the magnitude and excellence of his labours. These are in almost every material capable of receiving the impress of his chisel, and dispersed throughout the principal
cities of Italy. The best are in Florence; among these the statues of St. George, Magdalen penitent, and St. John, are fine examples of grandeur, simplicity, and truth, in composition and expression; white the equestrian statue of Eratmas duke of Nami, in that city, claims notice as the first attempt in the revival of art. But the great superiority of this sculptor is chicfly remarkable in relievos, a department of the art which in the course of this century acquired a degree of perfection that yet remains unsurpassed: nor does it appear easily possible to excel the beauty of those in the church of San Lorenzo, in which this master has represented the most memorable events in the life of the Sariour. The subject seems to have imparted to the genius of the seuppor a portion of its own sacred dignity-of calm and holy feeling. Indeed, to the influence of religions impressions we attribute in no small degree that improvement so conspicuonsi!? this age, the prineipal exertions of which were directed to the representation of Seripture history.

The scholars of Donatelo were rery numerous, for he may be said to have lounded schools in the leading cities of Italy; they may be divided into two classes. The furst comprehends thuse who, without producing much of what was original, have atained reputation as co-iabourers in the most considerable undertakings of their master; such as Simon his brother, fiovami da Pisa the second of the name, Bartoldo, and William of Padua, who travelled into Lirgland. The second division of the school of Donatello consists of his true disciples, who, not servilely following in his train, preserved, or even improved the science ol their instructor. These include many of the leading masters of the time-as at Fborence, Michelozzi, famous in bronzes-Sctignano, whose sculptures are graceful and lovely-the two Russilini, the elder of whom was the first architect of St. Peter's. In Bologna, Niodena, Lombardy, Naples, were scions of the same school; in the last were especially distinguished the two Massicii, Monaco. Cicione and Fiore. Ol the Venetian school, the ornaments were Riccio, who wrought exchusively in bronze, Cavino and Leopardi, scholars also of Donatello. This great artist died in $146 G$, having survived his rival Ghiberti abont eleven years. For nearly three quarters of the century, these two masters presided over sculpture, nor has the lapse of successive centuries dimiaished their just claims to estimation: both excelled in relieros; and Donatello in high, Ghiberti in low relief, have produced models yet unsurpassed-seldom equalled. The influence of the fommer on the art universally was the more direct and cxtensive: but the talents of neither claim such pre-eminence as to obscure the merits of contemporaries, or of immediate saccessors. Improvement was more the effect of general talent than of individual superiority. After their demise, the art was far from languishing in the hands of Luca Della Robbia, Briosco, Lotto the first repairer of the antique -of the Majani, eminent in sculpture and Mosaic-of the Pallajoli, painters and sulptors, instrumental in the introduction of anatomical science-or of Andrea Verrochio, undoubtedly the greatest masterat the close of this century - while towardsits close in the academy of the Medici are to be found Pietro Perugino-Leonardo da Vinci-and more illustrious still, Michael Angclo.

From the Alps to the shores of Calabria sculpture
was thus cultivated with eminent success, while in the other states of Europe the arts still stumbered, or merit not particular examination. Florence was the central point of refinement, where is to be observed most full development of principle with greatest lreedom of execution. Assuming the best works as 1xhibiting the real extent to which science had attimed during this period, we lind the style and characte: of art to be in a high degree elevated as well as pleasing. The simplicity is relined, remote alike from affectation and povery, the skill is great, bat never exereised to astonish or surprise: nature is imitatal with fidelity and by the simplest means; the manner never allures from the subject, so that the wark is long admired before it oceurs to incuite whonce the fascination arises. The great proportion of schature of the fiftenth century is in bronze, a circumsternce which may account for the style of execution minute and delicate, but fregucnty unenergetic and restraned. is respects intellectial merits, the styl: of design is always chaste, often extremely elegrant; the composition judicious and umallected, seddom storngby marked; the expression sweet and calmly dignifed, for rarely is strongly marked passion attemptert. The observeno decided aims at representation ol abstract beaty; the powers ol fancy nre never presumed upon, and seddom roused; but the mind of the atist, 110% no longer wholly occupied in mechanical detail. selects and combines; if the forms and maners are not invested with ideal clevation, the most perfect morlels of real existence are not masuccessfully imitated. Were the extent or object of art confined to the simple representation of nature, sculpture would now rerge on perfection. But, by the genius of the sixtecnth century, there yet remained to be added frenter case and grace of execution, more forcolul athd clevated expression, more refned selection of form, and mo:e of those chamens which imagimation lends to veality
SECTIOX II.

The sixtecnth century, in its commencement, discloses a state ol things highly fuvontable to the advancement of Sculpture. In Italy-ret the only seat ul' art. refnement had becn widely diffused; learning was estecmed, freetom and opulence reigned in the republican cities: prinees and nobles generally showed attachment to elegant splendour, and were ernulous in patronising merit, whether in arts or letters; while. above all, energy and activity were the characteristics of the age perrading every rank. The adranced condition of their atachments enabled scuptors to derive cuery adrantare from these external canses. A new feld likewise was then opened for their exertions. To maintain that miversal sway to which the papal sovereigns had constanty aspired-spirituat weapons and temporal power had in succession been employed; the progress of knowledge had dispetled the terrors by detecting the manallowed mature of the former, and the temper of the times was no longer disposed to bend before the latter. Neans of empire, more congenial to the minds of living men were to be essayed; it was resolved to constitute to Rome the metropolis of religion and of art: to consecrate her monuments by devotion and by taste.

To carry into effect the mighty undertakings, the greatest in modern ages, to which this design gave
birth, Michael Angelo arose. As ibe splendidresolves of lericles to rendur whens the abode of ancient refinement would have porel vain withont the talents of Phidius, so the energy of Juhins, or the clegance of Leo, would not have arabled, mataled by the mind of Buonaroti. The times. the mem, the objects and the consccuences. bear ablaiking besomblunce in boih cases. Is the Greek ecommanat wir chite at temion in chassic art, so, lom the lasurs and genias of the Tuscan, we derive the wat costimate of the
 asserted the assigned preeminnoce by the intrinsic merits and beaty of his productinss tie fater arrests our regard, not ss much fom the pertection of his works, as from naving lett the inpress of andregrular though mighte spirit upan hiown anco the succecting ages. When the attammants of Nothat Angelo are collectively consi!nori. : Whath in the stane indivduat is discove ed the archite of one Cupnathe painter of the Last Judgment- tie retilptor of the Moses, discriminating apulitus are lusin egenorel admirations and to him who thas bears awoy the pam of universal takent, we are inclined ${ }^{\text {of }}$ doncede the formost rank in each separate parsuit. For nearly three lounths of a century he was achoro ledered also as the head atternately of the schosts of liopence, Rome, and renice. When this peremincoce was first assumed, panting was in infane ; the fecble attempts of his master, Ghimandaju. vere viewed with wonder, and onty in the ilescoes of the whapry Nassaccio, had any indications oil an clatated strle previously appeared. The cariouns of the battle of Pisa, and other works of Jichacl Angelo, apouring under these circumstances. suconenly ruint the att in strength, boldness. and scientiac careectuess; to that sublimity which formed Raphati and his compeers. In architecture, though at a later dinh. St. peter's stood, and still stands, alone, whequalted-

```
Yes thon, of templea bild or altars new,
```



```
sincr Sion"s d:scintion, when chtut lie
```



```
O" a wath:mer atpect Nluiest%,
```


In scapture, such supcrionity could not be attancd; here treat excellence harl wheady bean achicued, in some respects litte remained to be added, nor are the addations ulvats improwarats. Dent the style of the diftectat contury. Exatisite in mafiected simpheity, was not edapted to phase in the succeeding age, and under a systen of remement, when the forcible and the inastmative were armitad in preferace io the simple ath the trac. Whe wols ol Buonaroti at forst created ant substumendy fobleded this taste.
 jage to which earlbr anstors bese to be cetimated.
 inges The past thas appeatod tame and lifeless, while contemporaries and sucressens cunstraned to become imatators, successively remained inluriors, Where luws were thas receised lrom the prestiges of an indivichalminch. The characisr of that mand, indeced,
 and ingosing at erenims somptamatic circte, within
whose perilous bound none else durst walk-and where the mighty spirit stift reposes in self-created superiority-in awlul and unshared solitude.

Hence as a scalptor, the fame and esceltence of this artist have been ceagerated. His worlas are far from numerons. and cren of these few are fimisied. Ilis uncerakings were sigatetic-his actisity indomitabie -hns daring bountess, but impatione of stowly progressbe labon!, or fastidionsmess of Rancy, furmed stimines distmetions in his intellectal temperament. In these works, seattered throughout laty, and fomme even in france. two stytes have been supposed to be cabcorered: on at least in his carlier years their anthor is presumed whave lolowed a distinct set of principles fara those whieh guthed his maturer judgraent. Asmatas vepurture, it is sati, may be traced from the simpte wn the naturat towards the exagegerated; and iv elasses of his sendmores have been made at -cording-a position thas illastrated by a learned and cor,unt wrater on the arts. Enu doand che atecus-

 apurmie se nore mostirarsi colorite come nume meschere setmoct. That disersity ol' styte is to be detected, we athut: tut after a carefal examination of esery originah, except two unfmished statues, said to be in France, be are inclinct to tiscredit the existence of any reghiar progresion 'ihe Picta, or Tirgin and dead Saviont, is at unce the lest. the most finished, and the le..st exigserated group ol the author; and so far foom beins insensible of the peculiar characteristics of his style, he tamentect them, and predicted at the close of net the fall which he had thas prepared for the ar

The works of Michael Angelo are now divided between Chomee and Rome. In sculpture, each contains a wastor-pieces the tombs of the Medici in the formore and the untanshed sopulche of Jutins in the latter city. 'lo this belongs the Muses-a record of genius isolated and rendered mavaiting in art by the pectarar mature of its own especial sublimity. Iut whhout enterias minutcly into description. we shall state genemally the impress left on the mind, and the inllucace escricd upon the atts by the genius of this extraordinary man.

The sculpture of Aichael Anselo discovers much that is derived from a liberal and entightened study of sublime and rraceful nature; but still more of those gualitises which arise from the peculiarites of an indivicuat, the 4 gh rich and powerfut imasination. Ilis studies rarely exhbit the simplicity and repose essential to the choractor of an art-mave, dimpuifed, or cren atustere, and posesssimg means conparatively limited and uniform. But lored and constrained attitude, exagserated proportions, mmaturitexpression, are redecmed by a force, an emeres, an entheiasm slsewhere unfelt, wheh give to esory compoction a vitality and power resembling rather the effect of inspiration than of reiterated and laborions dions. Neither with nature nor with the amtige can his works be righely compared. 'They stand isolated by a peculiar sublimity of conception, the matchless monuments of a daring spist forcims present admiration in lespite of calmer judgment. 'rhe first impressions are thas irresistibly powerful, but they are those of surprise, ol astonishment, not of delight or of :ympatiy: The fascination is thas tutickly dis-
pelled, the mind reluctantly yielding to an inflenere, originatiner solely in the imarimaton, and in which the sensibitity has no purtion.
 catipely of the imaginative. Ilis sublimity is sometht ton exclusinely in the volnment and the dansellons. llis design, expression, forms, and atlitudes, hase little communion with nature, at latst with namue in her solemm majesty-her dignified repose-hwe anpretendins simplatity, or in those her mather beatics, which semiment and fecling appreciate. Tise perdection of art, as displayed in the works betope usa eppeats to have been placed in emborlyme the wildebt, the most gloomy, he severest, and most awhinl inat ginings of the mind, unter sbapes the most mascllline and energetic; and in positions the most difficult or uncommon. Both in conception and in exechtion bnonaroti has created astyle adaphod wo display his own powers, but which coak be supparted by these alone. With him the arts were not intitatice, but ereative. Compared with themselves his parabuctions are astonishing evidences of human pown: tricel by matures mates they are everembte lion teatity, not schdom irreghder and fantastical. Visery dhughit exhibits the impress of a mind deliontines in the shand and the wonderful-eager in the puranit of whard modes of existence, and conscions ol powers to exccute the most daring conceptions. This gives to his ideal more of the raguc, but sont siming cmbasiasm which belongs to poetry, than of that sober inspirat tion ansl steady imagery which direct the judgnent and gutae the practice of the sculptor. His creention participates bargely in this umputat and aspiring character of composition. It is rapid ans fervent, but inaccurate in minor details, and tou prominent in generat effect. Intelligence in the maked, breadth of tonch, boldness of maner, give the very ffect of life and movement; but to a display of scicnee, simplicity, and even truth, have been sacrificed. Difficultey seem to have been courted in order to be sumbumted with address; the attitules are consequenty the most remote from sheh as would rolumarily be asmmed, or gracelul design select; they are in it high cource cunstrained, and from an andue exhbition of knowledge - the pedantry of art in rendering them. the forms have more the appearance of anotumical sthelies than the warm fall fignes of hefe "The general chanacier of this style then is every thing but matural; ant stands lorth boldy prominent, challenging admiration, not us a means perfect as it eluctes regard, but as a fina! end, claming in itself a chistinct and paramont exreflence, independent of mature of of imitation and exhibiting its ereations as cridence of separate orizgin,

"Inke life, but not hike mortal lifis to ricu."

The death of alichael Ansclo, in bsit, ernated a blank in the history of art, which neser has and never can be fifled; but in the principles of the art itsilf, in those principles which he himself harl intronncei, the event cansed no change, save that their ministation passed into feebler hands. Daring his lifetime, the seulptors of this era, however various in talent, may be classed as his disriples: for though many approach. and one or two cren excel in some yrality, set they fest generally inferior, while the character and manner of their productions but reflect the style the had invented. Still, among his contemporaries, we are to
distingul hbotwanimitators mereiy, alid pupals, pros

 allowing los: :andal tufrionity in the dirst, with at simitar diaplay wi aze. arnad science: although in

 sethnemers. Bearen di Mente lupre was also an original artist of com jaternde eminowro as is still attested by his best perdmanace the whatix in the church of San Losersos. Amberw Contacti, founder of the school ol horettu, whence many excellent warks then issbed, is an imitator of thechatel Angelo, vill mo nean additions of his own. l'rancisco Rustici, eraiment as a homalur, puph of Leonardo da Vinci, canted the mamer of this sermol into I'rance, and died in l'aris in ljar). Dumias the early part of this century, (itacomo 'lation more popubuly Sansorino, presided over the Venctian schaul with much reputation. The magnificent range of the Piazza di San Narco, is of his rection. Wis style of scu!pture is distinghished for richotss of compesitim, lat is deficiem inpmaty; and though dernherly lismoled on that of the T^{\prime} uscan, whose principhes hansesino had studied at Rome. whence he thed on the sack of that capital by Bombon in 1527 . it dibpiays smater suitness, with less of vigour and oriminality. He survised his master, and was the liead ol' a ntmerous schoul, of which Danese Cattaneo and Alexandro Vitturia were the chief ornaments, the one in arts and letters, the other in having perfected the uscfal practice of working in stucco. In Iombardy and in Naples, similar principles were followed, and with scarcely unçual success: or, in these schools, the less valuable peculiarities of rapicl execution and exuberant fancy were cultivated in preference to leamed design or accuracy of taste, from the splendour ol the respective courts demanding the employment of the arts on objecis of temporary interest. In Nifan, howerer, Aroctino Busti, and especially Guglichmo della Dorm, whose statues of justice and prudence on the tomb of Pand 181. in St. Peter"s have been athitied anomg the best examples of modern sculpture. vere hishly estecmed; ats alsu in Xéples, were Marlino subla ind Girolamo St. Cruce.

Amoner the real disciples of the great Tuscan inaster, the following may be mentioned as the principal: - Ruphael di Monte Lupo, a farontite pupil, by whom are the two statues of the Tirtues un each side of the Stuses in the romb of Jalias I].: Nicolo di Tribulo, at exctllem fomder, whthor of the fine bronze-gates of the eathedral at Bologna: (iiowami dell Opera. rhuse name attests his prolitic genius. and who hat the honour of placing the statue of architecture ${ }^{\prime}$ the tomb of his iusturtor; where in Plorence

[^1]Viciuzo Danti closely and not unequally imitates the style and mazner of his master, as attested by the group of victory chaining a captive in the old Ducal palace, bcing ascribed to him, though the most intelligent judges assign it to the latter, as one even of his most vigorous thoughts. Michael Aagclo certainly did retouch this still unfinished piece; and tradition rightly attributes to his crayon the lines in red chalk visible on the back and shoulders of the figure, where reduction seemed to be required. Bartolomeo Ammanati first studied sculpture with some success, but subsequently transferred his attention to architecture, in which he became eminent. Benvenuti Cchini, a man of the most rersatile powers; his works of sculpture are in metal, of which the Perscus and the Mercury, poiscd on one foot, are the principal. But the greatest of this school still cem ains to be mentioned, Giovanni di Bologna, a Frenchman by birth, an Italian as a sculptor, who, from the maguitude and number of his productions, from the beauty of his style, and the exccllence of his genius, approaches nearest to his master. To the end of the sixtecuth century, this artist occupics the promincut place io the history of sculpture; he terminated the series of illustrious mames of that era, and his last great work, the group of Hercules and the Centanr, erected in 1600, closed the Tuscan school for ever. In examining his performances, we ascertain those advances which were accomplished during the last thirty ycars of this century, while the mande of their great teabber still rested upon the favoured of the disciples: while yet the impetus derived from the mighty movement awakened by one mind had not spent its force. During this space we find the technical part considerably improved, operative art better understood, and its processes facilitated. Hence, though no preceding sculptor can show works more numerous or important, those of Giorami di Bologna discover no marks of haste, no deficiency of a high, and even in some instances exquisite fuish; it is cren apparcnt, that many of the inaccuracies, into which a fervid and impatient spirit hurried his master, hare been avoided. Still in the works of the pupil, in their general siyte and maner, we obscre the growing evils which the example of the instructor introduced, but which supreme genius conscerated or con-ccaled-boll, rapid, and masterly execution-grand and imposing composition preferred to, and even excluding, delicacy of expression-attentive study of truth, and of those sweet and gracious sensibilities through which art becomes the "obvious, not apparent, but retiring" representative of nature-which clevate without startliug the imagination.

Before leaving the subject of lalian sculpture during the sixtecnth century, one name, closely connected with the gencral improvements of art chring this interval, clams some notice, more especially as the merits of Leconardo da Viaci, one of the most yenerable names of the age, seem to have been hardly estimated by the elegant historian of Leo X. On perusing the observations of Mr. Roscoe, the impressions, we think, which are left upon the mind regarding Leonardo, are, that he was a dabbler in varions knowledse, but prolicient in no one branch; a laborious willer, who wasted in useless multiplicity-in chenistry, mechanics, and experimental philosophy, talents
which ought to have rendered him great in art. We confess, however, that the manuscripts of Leonardo which we have seen in the Ambrosian library at Milan, give no mean opinion of his attainments, even in science, the times considered. If in art his productions be few, they are very precious; let it also be remembered that his cartoon of the battle of Pisa, drawn in conjunction with one by Michacl Angelo, was not inferior, if it did not excel, and that these first exhibited truc greatncss of stylc in modern design. In relation then, to the remarks of the English historian, we join with count Cicognara, who conchudes rather a severe criticism in the following words, ci sembia troppo ueardato e non mai dittato da quella matura ciscospectione che tanto distingue lo storico da noi indicato. The common opinion respecting the "Last Supper" repeated by Mr. Roscoe, namely, that the artist was unable to represent the principal figure with a dignity superior to the others, and therefore, left the piece unfinished, is certainly crroncous. The mistake scems to have ori ginated with Fra Bartolomeo of Siena, who, in a book entitled de Tita et Moribus Ueati Stepheni, first relates the circumstance: but, before the appearance of this work, cardinal Frederico Borromeo in 1625, had published a little treatise expressily on this picture, in which he not only says nothing of the head of Christ being left unfuished, but actually praises the expression, venerabile Salu'atoris os althon animi merorem indicit, qui tamon gravissima maderatione occultutus arque supressus intelligiter. This little tract, from its rarity and the fine taste which it displays, is, by the lalians, termed, Aurco Libretto. To the other claims of Lconardo as one of the fathers of modernart, it may be added, that names, cmincnt both as painters and sculptors, received from him their knowledge oi these branches. "Art," indeed, "is jcalous," but at her shrine the derotion of da Vinci was neither without fervour nor mufinitlul, although he conrted, not unsuccessfully, the favours of scicnce, then new to the mind. We trust an endeavour to reconcile these clams with the obscrrations of a living historian whom we hold in high admiration, will be deemed ncither improper in us nor irrelevant to the subject.
Beyond the confines of Italy, the art had yet made few advances worthy of notice; and what little had becn effected was on the principles of the Tuscan school. In England, Spain, and Germany, during the sixteenth century, painting was pationised in prcfercace to sculpture. Torregimo, the envious rival of Michael Angelo, had crected in Westminster Abbey the tomb of Henry VII., for which he received $£ 1000$, a very considerable sum at that time; but this turbulent spirit was inclined rather to brawl with, than to instruct the English in his art; and in the succeeding reigns we find Holbein and Zucchero in high favour; but hear little or nothing of sculptors, with the exception of John of Padna, who acted as master of works about the close of this century. In fact, in the early history of English art, anomalies of a singular nature are encountered. From the seventh to the fifteenth century, four distinct species of architecture may be traced in the sacred and feudal edifices of Britain. During the two succeeding centuries the art declines, nor till the reign of Charles I. is it revived with any degrec of magnificence. Sculpture, in these
early times, was excrcised only as an ornamental branch of architecture, or in tombs; and in each, it is singlar that, taken generally, the sculpture of the thirteenth is superior to the art of the lourteenth or fiftecnth century; that of the sixtecnth exhibits evidences of Italian origin.
Bermudez, the Spanish historian of native artists, has given a splendid account of Sculptors from the sixteenth century upwards. The beautiful ecclesiastical edifices of Spain afforded an extensive lield for sculptural ornament, and it is easy to perceive that those employed with a remarkable success in such embellishments have been exalted by national partiality to the rank of sculptors and artists. This opinion derives confirmation from the fact, that not till 1558 was sculpture, in consequence of a royal edict, allowed the privileges of a liberal profession. About this period Berriguete, after studying under Vasari and Buonaroti, returned to his native country, and at once exalted the arts of Spain to grace, beanty, and correctness. Previously, indeed, she had been indebted to Italy, and Torregiano in his wandering life, alter residing and working for some time, had starved himself in the prisons of the incuisition to escape a horrible death, to which priesteralt and aristocratic insolence had unjustly condemned him. Berrugucte, however, appears to have been the first native artist of Spain who acquired and deserved a high reputation; he lounded a numerous school, of which Paul de Cespiles was the ornament, perhaps the greatest ol Spanish sculptors.

Before the sevententh century, Germany makes no appearance in the history of sculpture. Both in letters and in art she has entered the field at the eleventh hour: in the former, her sons have already effected noble progress; and in the history or plilosophy of the latter, what have we finer than the writings of Winklemann and Lessing? In practical art, however, the Germans are still deficient: nor, perhaps, is that metaphysical enthusiasm-that ideal aspiration by which their national genius is distinguished, well adapted to succeed in the energetic but laborious reatities of sculpture. Or if they do obtain reputation, it will be in that department which forms the most precious portion of their poctry and paintingunadorned representations of sweet and simple nature. The past history of their arts supports this idea in some measure, although it is probable had their enlightenment been such as to enable them to meet the advances of the sixteenth century, the grand and the wonderful in the style of Michael Angelo, would, to the Germans, have possessed irresistible attractions.

In France, the expeditions of Charles VIII. but more especially the close connection between the two countries in the reign of Francis, together with the personal predilections of that monarch, tended to difluse some knowledge of the arts of Italy. French writers have strained hard to elevate their native arts from an early date; and Jacques d'Angouleme is reported to have surpassed Michael Angelo himself in a trial of skill at Rome. Certain it is, that during the sixteenth century no artists out of Italy could have competed successfully with Jean Gougon, author of the celebrated fountain of the Innocents, finished in 1550. He was also an architect and engraver. Of his life little is known, except its termination in the massacre of St. Bartholomew's. Of all his country-
Vol. XVII. Part I.
men and contemporaries, Jean Cousin possesses most grace and delicacy, but to the acruisition of these be has sacrificed strength and correctness. llis works are still to be seen in several of the churches of Paris. German liton displays great enersy and fire, with much beauty of mechanical detail; but his works are affected and destitute of natural expression. Indeed, from its origin we may trace an affected manner in French sculptors, which gives to the style cren of these early masters a peculiar air of nationality, atthough it is evident that the principles in all other re.. spects are derived from Italy. These artists in fact were all pupits, cither mediately or difectly, of the Tuscan school: and Giovanni de Bologna and Francavilla, both French by birth, filled the whole of France with the style and mamer of Buonaroti.

During the sixteenth century, the most brilliant period in the history of modern sculpture, the genius of Michael Angelo thus dominated throughout Europe to the utmost capacity of her living arts. The character of that genius we have fecbly endeavoured to estimate; and we fear, to indiscriminate admirers our estimate may not be deemed so favourable as the gencral voice proclaims. An explanation then of the principles on which we have formed our judgment, seems not uncalled for, nor of the standard with which his works have been compared. Irregularities in the productions of genius have not seldom been caused, and are extenuated by an idea too generally entertained, that to its genuine efforts no established modes of judging are applicable; in like manmer, as rules are inefficient to create its presence. A power certainty resides in superior minds of being a law unto themselves, petimus dumusque rieissim. This privilege of invention, however, or of departure from the more ubvious relations of existence is limited according to the nature of the exercise; in poetry most excursive, in the imitative arts more restrained, and of these. sculpture admits the least deviation from reality: here truth is more especially the criterion of beauty, betcause its imitations are constituted of no itlusive of fects. The objects of this truth are in all the aris two-resemblance and consistency. The former respects the connection subsisting between the representation and the original: the latter regards the agreement of the composition with itself and with the peculiar mode of imitation. In the first case, art is compared with nature, in the second with itself, and in both sculpture is particularly circumscribed in its elements; in resemblance being restricted to form and expression, while, to be consistent, it must be grave, simple, and uniform. The practice of antiquity also, here exerts so paramount an influence, since the art so exclusively belongs to classic times, that it may be justly questioned how far any modern artist can improve by deviating from forms, which rest upon the intrinsic excellence of the examples, and on the pre: scriptive influence of opinions established leng and felt universaliy. An authority thus neither local nor temporary, operates as a precept of immutable taste, as a sentiment of unchangeable feeling, and consequently assumes the certainty and importance of truth.

But from all of these principles, both of nature and of the antique, Buonaroti has departed. Nor can it with justice be urged, as is done in his favour, that his powers are too original-too mighty for subjection to these laws; that by no standard can we estimate. G
by no rules can we judge the most sublime, yet the most daring of modern urtists. who horers on the confines of possible existence, and in whose labours like contending light and darkness, grandeur, and extravagance are often blended. This would imply that he was abore, because he was ignorant ol the principles by which he has been tried. But than Michael Angelo few great names have more extensive obligation to preceding knowledge; he was accuainted whith some of the finest specimens of anticuity, while his predecessors had lelt instances of beauty yet unexeelled. On what grounds then ean we concede to this artist those privileges which Homer, Shakspeare, and others who like them have lived in ignorance of more perfect models, and in the infancy of their respective arts, can alone justly claim:

From the antique, Nichael Angelo has deviated in one most important respect. Of the two elements of sculptural design-form and expression, the Greek artists selected lorm as the object of their imitation. The modern has prefered cxpression, to which we may say he has almost saerificed form. To this, not amy the lorce of associations spanging from the most perfect of human productions was opposed, but the intermal proprieties of the art layour the choice of the ancients. In sculpture all is staid, endaring, actual, movement alone is the only passing object of imitation. Expression, theretore, at least strong expression as the plimary characteristic, both as destructive of symmetry, and as implyiag an effort ungracefal when comected with the umyelding materials, seems not a legitimate element of higher art. Asweety-pleasing, a gentle agitating sentiment, or a nobly repressed feeling, is the genuine expression of sculjture.

From nature Nichael Angelo has departed further, we will senture to say, than any great name on record, whether in literature or in art. Irregularities and imperfections in almost every other instance of lofty senius are forgotten amid the deep thrilling pathos or soothing loveliness of natural representation; but amid the awe-inspiring, the commanding, the overpowering creations of Buonaroti, the soul languishes for nature and simplicity. Ilis forms are of superhoman energy-fit habitations of the fierce and resistless spirits that seem to dwell within; they are not of this world, nor does the heart respond to that interest which with mysterious mastery they exert over the mind; yet their power is confessed- the power of art aut imagination. This great sculptor had marked the perplexities and the constraint under which, amid their fidelity and affecting expression, his predecessors had visibly laboured in their endeavours to unite the inages of living nature with the grand conceptions of jeleal beauty. Orerlooking the productions of , lassic times, in which this mion is so happily acco:nplished, becanse 6 his vigorous rather than relined perceptions its simplicity appeared poverty, he struck dealcsbly into a line of art-where art alone was to be admired-where all was to be new-vehe-men-wonderfil.

Liven the manual poocesses necessary to realize these conceptions were to participate in the ardent temperancent of the mind by which they could have bean impirer! "lhio, indeed. lorms one of the most pencrial sperts in the sculpture of this great artist, that between the animated fimms, the breathing spithe of his composition, and the rapid, the impaticat
execution, there exists the most perfect harmons. The hand scems indignant at the very hardness of the marble that gives 10 its creations their immostality. Jet eren in this respect we discover many technical peculiarities and imperfections. Vrom haring merely sketched, or at most modelled the subject in small; nay, in some instances, with no wher suggestion or guide save the aceidental shape ol" the block, he struck into the marble. Whale the mind, the eye, the hand, were thus in instant exertion; while propriety of expression and beanty of outline, mechanical detail and general effect were at once to be studied. error could hardly be avoided. Hence the want ol propartion so conspicuous in his warks, -hence so few finished, and those commonly presentiag one sole point of view. As regards more individual details, in the salient lines of the contours, the circles have rarely their proper value, and the surfaces want their just fulness. Partly to compensate this deficiency in the advancing curves, partly as a characteristic distinction, which consists in strongly pronouncing the muscles, the retiring lines or muscular depressions are marked with exaggerated depth. Trusting to mechanical dexterity also, and to profound anatomical science, Buonaroti was often seduced to work from memory without reference to the living model. This frequently produces a rigidity, a want ol fecling even in his best performances, paring the way for the introduclion of those conventional modes which finally superseded the diligent study of nature, leading to the abandomment of every genuine principle of soft, gracious, or correct design.

No artist has cuer excrted a more extensire influence, or more dceply impressed his own peculiar spirit uponat. But this influence has not been favourable to its progressive improvement, orevenstationary cxeellence. The imitation of a natural and simple style, cither in literature or the arts, will never prove injurious. But even the excellencies which this recognised, urged as the character required to the extremity of daring, necessarily became sources of error to imitators. A style ol art which thus carried ima. gination to the very verge of possibility, which not only aspired to an excellence alogether distinet from imitation of reality, but introduced a necessity of constantly pursuing novelty: which created a standard of beauty himhly allificial, and in many respects independent ol nature, operated with banefal influence on the future adrancoment and purity of art. 'The works of Dichael Anselo. cxhibitins the principles and lull development of this style, were regarded as the ontr models of imitation. Oriminalig thas began quickly to disappear. The deviations even of his immertiate sucessors from the simple and the beatital were great, because in adopting a standarel thas exclusivel: ideal, they receded more and more from mature.

The inregulaties and defects abo growing out of this sybtem his genius alone had been able to romererate or conceal. Deteriaration thas becomes randiy apparent in the works of inferior imitators who lated to acquire those nobler qualites by which the errons or extravagancies of mishtier spipits are redecmed. From these canses, various in their effects, yet all originating in the system and style of art now explaned, a teeline had visibly taken phace, and exaregeration, and mannerism, had cevdendy commenced at the close of the siateenth century, when the principles of Mi-
chacl Augelo were established in all the sehools of Europe.

$$
\text { SLCCIION } 11 \mathrm{I} \text {. }
$$

Tha devine which is percored to take place in the prodactions of sendpente, eren from the commencement of the serentechth ecntury, is to be aseribed in part to causes pulitical and motal, thoughmorerspeGially to those which origimated in the state of art itscil. butecd, withome the uperation of such external inhlunces, when a hish defore of exrellence has been attained in any intellectual pursuit, internal cosruption never can occasion a sudden or rapiel retrogression; at the same time alape nuder such circumstances always indicatos an inferionity in knowledge or practice. The chaferent states ol Italy, in which the arts had beea cultarated from political motives chichly, were no lunger alive to the same interests. Rome at no period hat possessed a native school, cherishing the ants only as sources of political importance. Plornce no lunger enjuyed her free constitution; and the other states hatd, with the dignity, lont the sentiments of imperadent communities. In boslogna, inded, a new crat ist painting eommenced; but its principles were not calculated to bring back simplicity abd corectness. In fact, the subsoquent ascendency acquired by the school of the Carracci, may be numbered among the means contributing to the dechine of sculpture. Moral causes also operated strongly in directing attention to oher studies, and in forming intellectual habits opposed to those of the artist. A spirit pl philosophical inguiry had gone abruad in the age, furning the genins of the time to mathematics and to science. Nlichael Angelodied at Rome on the day which sate birth to Galiteo at Florence. Nature, as il mavilling to bless the same rpoch with transcenclant powers in opposite provinces, semed to rob the arts in order to enrich philosoplay. Poctry and the Fine Arts depend upon the sarac intellectual temperament, and the same state of socicty seems congenial to both. Nence they have genmally flowished or lillen tugether. But between the spirit of analytical inquiry-ul minte discovery which belongs to scientific investigations, and the ereative fancy which leads to successful exercise of the poct's and the scuptor's art, the dissimilarity is so great that the humamind has never attaned emiwerace in both at one period and among the same peopic.

The commencement of the sevententh century thes promised by no means auspiciously for the future progress of sculpture. A cromd ut undistinguishod names followed the dissolution ol the great Tuscan school; and when an artist of high talent at length appeared, the circumstance proved only the more hurdul from Hrowing splendour around a capricions aud injudicin ons style. Bernini, born at Nuples in 1508 , was endowed by nature with all the qualities requisite for becoming une of the gratest of modera scappors. Nis artist ever displayed happier dispositions for excellins. nor at ancarlier age. Unortunately, however, he aspired to inventioninstead of imitation, and chose ratber to be a founder of a sect than to take his place among the fathers and chiefs of regular art.

To Bernini the beautilul simplicity of ancient taste - ppeared meagre in outline, poor in composition, and
 fered as bein! more forcible in its improusions, but peossessing a haracter too sereve and forbiddinen. Ile amed at clicitins a hird style with distimetise qualities of its wane which should display freatre
 passed the later in suavity and rabe. In puranit of these imasinary and incimpatible exechencies, ho dreviated still further liom the simple, the true, and the naturat. To prodtuce effert was bow the only obe ject of study; crery means of stambines attudude, vols. minous drapery, lored expression, was camploged to strike, to dazzle, to surprise. Stathes wore rampored and drafed after the fashion of patming: and we linllo flowing robes of the bolognese school, the most inn proper lur the sruppor, wre selected as the model which he was to follow. Thms, amid esteater emers engraded upon those of the antectedent age, bermmi, by the introdection of a style rendering less neecessary the science hitherto eqnstituting is redecoming quadity in the scheol of Michael Angelo, and which had tended to maintain an interconrse with this primal source, prepared a more lital separation f:om nature. The powers of a fine and lacile execution, possessed by him in so eminent a desper, recommended or concealed the inmurities of his composition, tending only to render his example the more pornicious. This style was adopted quickly ame almost universally, both as it wats the reigning mode, and as its author, till his death in 1680 , enjoyed such dominating inlluence and exclusive patrunage as rendered him the tyrant of art, to whom all who expected to rise in their profession or in fame, were expected an do homage. The works of bernini in sculpture are very numerous, but all composed in the same pretending and affected style. The group of Apolls and Baphene, exccuted in his eighteenth year, is his mont chaste perlormance. As an architect, the circular culonnade ol St. Jeter's does him more honour than his sculptures.

The most celebrated contemporaries were Alsardi andi Fiammingo, who, among the crowd of imitators, retained the dignity of independent, and the praise in some degree of original, minds. By the former is the largest relievo extant, representiog the invaling army of 1 titia, met in its mareh to Rome by St. Leco. Francis du Quesnoy, bum at Brussels, thence betien hnown by his partial surname fiammingo, is justly crlebrated as the sculptor of chidren. The concere of cherubs at Naples, amd the two infants in a monumont at Rome, are his most admired works: of which latter. Rubens, no mean judise, writes thas: . Nature rather than art appears to hase scolptured them, and the marble is soltened into life." But the comparative purity in the style of these two masters availed little in opposition to the influence ol the resgnints taste. To Demini, but immeasurably bencath him. Rusconi succecded as the great man of the age, the former part of the eighteenth century. 'The greatest work of this artist, executed with ibe assibtance of Momot, le Gros, Maralui, Moratti, ()ttoni, and Rossi, pupils of the last school, athd deeply endowed with its erroneous principles, was the crionsul statuary on Si. John Lateran. With this school torminated in uttes helplessness the further progress ol scalpture durins this era. To the conclusion of the last century. in. deed, a crowd of artisans contimact to bamen ?
seenes of former glory, but their names or performances would furuish neither illustration nor pleasure.

The history of transalpine seulpture during the preceding two centuries, now demands our attention. In France the immediate pupils of Giovanni di Bologna, among whom as chief may be mentioned Adrian, Anzirevelle, Della Bella, and Tacea, fill up the interval of forty years to the commencement of the reign of Lovis XIV. a period highly favourable to French sculpture, in the practice of the art at least. This patronage indeed lormed a part of that national and personal aggrandisement which constituted the political rule of this reign. For the formation of a school of French art, he established academies, endowed professorships, proclaimed rewards, instituted honours, and accomplished the object. But evenduring this the golden age of her intellectual labours, France derived her arts from Italy; and unfortunately they were not the models of a purer age, the monuments of more many taste that engaged imitation. The works of Bernini and of his followers, the prineiples of their design and composition, formed the guides of the French school. In both countries also, similarity of circumstances concurred to int:oduce the same vitiated style of practice and of eriticism.
Of the school of seulpture in France during the reign of Louis XIY. two artists claim to be head. Gerardon, born at Troyes in 1630, and Puget at Marseilles in 1622. The style of the former, though cold and somewhat heary in design, is noble; more correct, firm, and manly, than that ol his contemporaries. He excelled in modelling, which greatly contributed to the perfection of his works, the most remarkable of which are the tomb of Richelien, and the equestrian statue of Louis, both in Paris. His most celebrated pupils were Fremin, Charpentier, Granier, Nourisson. Were the works of Gerardon possessed of more character, and did they less frequently remind us of the productions of former masters, not many names in the history of modern art conld be preferred. Strongly opposed to the disposition of his compatriot appears the character of the fiery and energetic Puget, the farourite of native writers, who are fond of representing him as the Michacl Angelo of France. Inexecution, his style is bold, rapid, and full of movement, but in composition he is studied, in science inaccurate, and in the intellectual beauties of art, in eleration, noblemess, and grace, as also in the choice of forms, defective. The most estecmed work of this artist is the statuc of Milo at Versailles, which indeed exhibits both the beanties and defects of his genius.
To the sehools of these two may be referred, at least in principle, the succeeding artists of Prance; the manner of l'uget, however, was the more popular, an! becomes in some measure characteristic of the national art. Contemporaries of the above were Sarrazin and Ginillain; botio of considerable merit, and of line taste, especially the furmer, as may be scen from the Caryatides of the Lourre. As we adrance to Whe conclusion of the seventecth, and especially in the early portion of the last century, French sculptors become very numerous. Among the artists who flourished during this interval may be mentioned, te Pantre, Desjardins, Coysevanx, Vancleve, and the two Coustou's, of whom (iregoire is highly distinguishe! by the horses in the champs Elysees; Falconet, colctrated for his writings and the equestrian statue
of Peter of Russia at St. Petersburgh. During this period, as the opportunities of exercising it were on a grander scale, the art appeared to be in more flourishing eondition than in Italy; taste in both countries, however, was alike fallen. With Louis terminated the grandeur of French sculpture; under his imbecile suecessor it suffered a rapid decline: yet Bouchardon, the sculptor of greatest merit under this latter reign, possessed no mean talents, as may be seen from the bronze equestrian statue of Louis XIV. of which the horse is a master-piece. Louis XVI. early evinced a disposition to patronise the fine arts, and, previous to the revolutionary excesses, had given direetions for a series of statues of the great men of France. To this series may be considered as belonging the statue of Yoltaire by Pigal, now in the library of the Institute. This figure, without drapery, and, as the living original was remarkable for meagreness of person, copied from a model the most emaciated and squalid to be found, gave occasion to the following epigram:

> Pigal au naturel represente Yoltaire,
> Le squelette à la fois offire L'honme et Liateur, L'oil qui Ie voit, sans parure etrangere Est effrive de sa naigreur.

Pigal's finest work is a statuc of Mercury, which we believe is at Lyons, of which he was a native; he founded a numerous school, of which are Mouchy, Lebrune, Moette, Bocquel, Chaudet, and others, who bring down art to our own times.

In Spain, during the preceding period, many sculptors might be mentioned; but their influence extended not beyoud their own country. their works being little known without the walls of Madrid, Grenada, Cordova, Seville, where they form chiefly the internal decorations of charches. The principles of the Spanish sehool are derived from ltaly. In fiermany, the reputation of Rauchmuller of Vienna, of Leigebe in Silesia, of Schluter at Berlin, Millich, Barthel, and others maintained reputation during the perifod now spoken ol. Ohmmacht, Somenschein, Nall bring the art to contemporaries of the present century.

On reviewing what has been saicl, it will appear that in the fifteenth entury, the fine arts became important as national causes: till this date they had flourished in conneetion with those of utility, rather than from abstract feeling of the pleasures awakened, or the moral impressions enforced by the great and the elegant. White seuplure in particular was thus cultivated with the ardour inspired by a Presh object, it was improved by the vigorous efforts of unworn and unshaekled intellect. Hence it has been the singular fate of the seulptors of this period, to have ereated models in those that followed, while they have continued models themselves; to have remaned originals, in succeding ages of originality. During the sixteenth contury, political causes, more remotely connected with real patriotism, an ostentatious desire of splendour, not an unalfected love of refinement, operated in the promotion of the arts; and the artificial excitement seems to have imparted a protion of its spirit to its effects. Sculpture, indecd, was praetised with the magnificence and saccess, which power, riches, and talents, will assuredly command; but parity and simplicity of design disappeared in proportion as peculiar ideas of grandear and novelty
were pursued. Genius hovered on the very confines of credibility; its creations derived their clements exclusively from an imagination awful and imposing; but the sympathies of human feeling were overwhelmed, not a wakened, by those visionary forms of gloomy sublimity and power. Art was raised to regions where nature was unknown, and where the very highest exertions of intellect and fancy could hardly maintain empire or preserve interest. It fell therefore with him who had placed it on this dangerous height. While every preceding deviation from nature and simplicity was exaggerated in the sculpture of the two following centuries, the grandeur and originality which hat redecmed mithor imperfections were lost in the feeble hands of imitators. Nature was everywhere abandoned, conceit and affectation usurped the names of taste and of grace; and the solitary quality which finally remained-dexterity of hand, was calculated only to increase absurdity and mamerism, by affording facility of execution to every capricious novelty.

From the age of Michael Angelo inclusive, we find that the desire of novelty, a continued endeavour to extend the boundaries of the art by the introduction of imaginary perlections inconsistent with its real character and excelfence, were the rocks on which was made fatal shipwreck ol truth, of simplicity, and beanty. These imagined improvements were directed to the acquisition of two grand objects. A style of composition was aimed at more purely ideal, less connected with nature than is to be found in the remains of the ancient, or in the works of the early modern masters, or than is consistent with the principles of art. As characteristics of this imaginative style, the proportions are enlarged, the expressions forced, and power and energy are given destructive of grace and of reality. This was more especially the style of the Tuscan school. In the second place, sculpture was sought to be assimilated to painting, and merit was estimated by the extent to which imitation in this respect was carried-in difficulty and variety of effect, and in complicated detail, and in volume of drapery, and latterly even in facility of production. This taste necessarily cherished the mechanical powers of execution, in preference to the unobtrusive beauties of purity and correctuess of design. This style began decidedly to display itself in the school of Bernini; and subsequently sculptors excelled, or rather were less inferior, according to the manner of the painter whom they followed as a model; till finally imitating Pietro da Cortona, and even Carlo Marratti, they rendered statues contused masses of cumbrous drapery, from which heads and extremities protruded often with little apparent comection. Still the chisel was wielded in a bold and even skilful manner; but moral beauty, sentiment, and truth, -chaste design and graceful composition had long ceased to animate the proofs of its mastery.

SECTION IV.

To correct, or perhaps to avoid the corruptions of taste and false principle, is in all cases more arduous than to clevate to higher excellence a rising art. In addition to this general difficulty, two peculiar obstacles opposed the renovation of Sculpture. The aberrations first to be repressed were exactly those which appeared to indicate genius and spirit. Exterior
qualities, by which alone the many judge, were in no respect deficient; indeed, an exuberance of executive dexterity and management existed, first to be reduced, consequently the preliminary steps to reformation would seem to imply diminished freedom and energs. In the second place, the line arts sonerally, and our subject in particular, had sullered from a system of criticism, origimated in France under Louis XIV. which had long vitiated the public mind, and misted the judgment of the artist by false refinement and conventional principle. Towards the end of last century, however, more perfect discoveries of classic remains, aided by the writings of a few entightencd authors, had begun to excite a morement towards a happier order of things. To sculpture, the influence hat not extended; this art was in the hands of those who, educated in former abuses, wanted the patience and the discrimination either to perceive the evil, or to apply the favourable occuprences of the time. Reformation in art has never been accomplished by mere imitation of examples, however excellent; nor by only adopting rules in opposition to methods less pure. Some mind of uncommon firmness and good setise is required, who, beginning the art with nature, brings to the work of reformation all the original powers, with more of severe judgment than have distinguished the greater proportion of even the fathers of invention. Such a mind had not yet assumed its enlightening carecr. At Rome, then the only school, il school it might be named, hardly any work save a copy was attempted; or if by chance an artist aspired to an original composition, a performance was exhibited, made up of plagiarisms from ancients and moderns, combined in an union of extravagance and conceit. Such were the labours of Penma, of Pacilli, of Lebrua, of Pacetti, of Rhigi, of Angellini; and without promise of rising merit, the art seemed last verging to extinction.
Such was the condition of Sculpture, when, in 1787, was exposed to view at Rome a work declared at once by the intelligent, "of all the monuments of modern times to approach nearest to the beanty of ancient taste." This was the tomb of Clement XIV. the celebrated Ganganelli, a work ranking among those memorable productions which mark the commencement, while they announce the continuance of a new and better era. Standing itself nobly conspichous, it is but one step from barbarism, yet directs the eye to a lengtheneci prospect of renovated grandeur and beauty; the first fruits of one of those rare minds just described, more rave than even original genius, whose fire, tempered with steady judgment and patient correctness, shows them born to redeem and to elevate a fallen age. The Sculptor was Antonio Canoya.
The education of this artist, self-conductec and amid difficulty of every kind, completed with successful perseverance, alone supplies ample proof of transcendant talent, and of those qualities we have pointed out as necessary in one who aspires to reform a degraded art. Fallen upon evil days, descended of obscure parentage, remote from all means of adrice or instruction, he raised himself to the highest honours. and greatest of all, became the true restorer of prostrate taste. Canova was born, in 1757, at Possagno, a distant and till then unknown hamlet of the territory of Treviso. Here he was intended by his friends
for the humble situation, hereditary fo: two generations in his family, of stone-cutter to the village. A happier destiny however awaited him. Having early discovered marks of docility and talent, he was permitted, through the benevolent recommendation of the proprietor, to attend upon a Venetian artist. Hen employed on some stone ornaments at a neighbouring vila. In his fifteenth year, repairing to raice, party atided by the same patron, and hating procured a yorkshop in the cloisters of a convent, he struggled forvard; prudence and industry preserved independuce, and merit at lengh procured friends whom tirtue ever alterwats retained. At Rome, whither he had rentured to procced. his only certain means of support beines a small pension granted for three years by the Venetian senate, he greatly recommended himself to the disceming few, by the classic elegance and purity of his first production-the group of Theseus and the Alinotaur. On this account he was sclected to execute the monument already noticed.

The works of Canova are to numerous to almit lere of particular description, or of minute examination. The impression is yet fresh upon the memory, when representations of them arranged in his funeral hall might well have been deemed the labours of successive periods, and of a race of sculptors, not the productions of one short life-the creations of a single mind. Neither have we forgotten, while now writing on the subject, that the undertaking has been sone into, only because we have seen and examined on the spot each of these exquisite masterpieces, and that to enjoy this advantage a very cousiderable portion of Europe must be traversed. These works, thus in number so imposing, and so widely extending the inthence of their individua excellence, may be class. ed as follows:

1. Heroic compositions, or subjects ol masculine wirength and character.
2. Compositions in which sofuess and grace predominate as distinctive attributes.

1II. Nonumental erections and sculptures.
IV. Relicros chichy in model.

In the first of these deparments only has the superiority of Canova been questioned: or rather, while ais claims have been unirersally secognised in productions of softer grace and loveliness, his powers seem icss generally appreciated in the sublimities of severe and masculine composition. He has been admitted a master of the beatiful-bardly of the grand: the Praxiteles-not the Philias of modern art. This , pinion, causes mercly exteinsic and unconnected with the genius or labours of the artist concurbed to origiante and in mainain. Notwithstanding an early preShection for this espectal branch of his profession, as appears from his own letters, and from the choice of nabyece where that choice was left free, more than forty years, and those the best of life, hat passed away, before a proper opportunty occurred of eratifring this inclination or of proving his capabilities. Ti.as his fame was first established as the senlptor of he soder affections and more lemederms of nature. The worl? is parsimonious of praise, nor is it easy to pess those linits which puhbic: opinion has set to its conn shifeage. Subjects of gentler character seem al. so to lo more generally pleasing in Scutpture; hence
while his works in this class have been spread widely by numerous repetitions, his labours in the more elerated style have remained in the originals. But it may be justly doubted how far Canora is not even stiperior to himsell in the grander attributes and highcr walks ol'art. By not one, but many, sroups and single statues, he has attaised, innobility of fom, correchess of science, strength of character, harmonious design, and, wirere demanded. forceful expression some of the best effects and loftiest aims of Sculpture. Nor is this mercly a generol character: individual works may be instanced, in cach of which. while the intrinsic requisites of excellence ate conspictious, some especial constituent of gratness is remarkable. In manly and sigorous beauty oi form, wheregrace and elegance are justiy distinguished from the clitminate, we have the Persebs ; not unworthy of its immediate prototype, the Apoilo. In strength, in forceful expression, and perfection of science, there is the group of the Pugilists, in its peculiar range the most classic work of modern times. In harmonious and noble compositiona untied with grandeur of action, the Theseus combating the Ccntaur, offers an admirable example; nor does the whole extent of three preceding centuries afford a happier combination of poetic feeling and natural fect. For the terible in expression and suffring, the Hercules and Lycas carries sculpture to its atmost limits in the representation of passion, yet without extravagance. These, with the Palamedes, the llector and the Ajax, the Paris, and others that might be added, all belong to the grand style of art, fumishing a scries of works in only one of several departments unparalleled in the history of any single man; while in the heauties of sustained effect-of leamed design-of boldness and exquisise delicacy of execution, thoy may chatlenge comparison with the style of any lomer age. On leaving the regions of poetry and fable, to whose heroic imaginings he has thus given high embodiment, we find that in the fathful portrature of the erreat or the senerable realities of human life. Canora has proved himself an equal master. The statue of Napoleon is a most majestic figure, conbining the ideal in composition with molividual and striking resemblance. Of dignity inspiring veneration, the knecting figure of Pius VI. which received the wery last touches of the artist;-of sedate energy and classical arrangemem, that of Washington, fumish fine examples. In modern art, what more worthy of the highest praise than the characteristic firmmess of good intation which respires in the statue of Gangancll? (18 than the solema and afictiog fecbleness of Rezzonico, which speak heir sole suppert to be in religion?

In the second division of his works, Canova remains not only untegualled but unrivalled in ont days. Ilis compositions have entiched modernart with the most ghwing conceptions of degance and grace-baised and yet nore relined by the expression of some clevating or endearing sentiment.

$$
\begin{aligned}
& \text { Shargi intosno ci omesta dolcerza } \\
& \text { Che inamoi ate non ha chi pensi vile. }
\end{aligned}
$$

In all the elements of the beautiful-in form, attitude and expression, Canova is Eencrally-often precminculy, happy. 11 is forms, if not always possessing the highest ideal elevation, are never mean now common: they are ever graceful selections from mat
thre rendered with every beatifal aid of art. Contours simple and continuous, vet varied and llowing, are sustained by profonnd anatomical scicoce, still without harshmess or severity. His femate forures atre thus equally removed from the flimsy allocetations of his immediate predecessors, as from the ton porbst and austere perportions ol the 'luscan schonl. It is in those compositions which admit of at diret comparison with the antigue, where we sometimes remark most decidedly a deviation into the meagre and the cold, when dignity is to be mited with sweetness in the female form: a defect arising lionm at want of harmony between the just height and fulness of the figures. Ol this the Venus exhbits a remarkable instance, where we look in vain for that sustaned maturity of beaty which charms in her (irecian rival, lor those inexpressibly soft, yet firm anl full rudines, meeting but eluding the eye, rounded into life, and lost in the animated marble. In regard to expression in the department of the spraceful, the idea of Canova appears to have been to unite the two elements of senfptural design, keeping each in dne subordination to the other; hence his female statues hate more of expeession than the antique, and less than those of the mo. dern schools. But in this expresshon, though be is always true, he is not often simple, except where nothing beyond mere placidity is attempted:-effort is not unfrequently too disceruible, the experssion is too claborately pleasing to please, and thoagh we acknowledge the presence of mach sumity, there is little of fecling. The attainment ol that inctable charm, grace, in all its various constituents ol attituele-composi-tion-character-arrangement-appears to have been the leading object of Cunora's study, and of which he has proved himself a perfect master. In every pat of each of his numerous works, eren tu the smallest ornament, all is the emanation of the same renned taste and cultivated mind. Indeed he has been charged with runsing into the extreme of aftecting studical elegance-of a laboured and fastidious relinement. And without doubt, his graces would be too ornate, were not the whole effect productive of the most inimitable case:-ease proceding from the very perlection of habour. The attitudes have all the fecedom and truth of nature-yet they are not in reatity the positions which nature would readily sumgest or assume, but which graceful art would select as the most uncommon or the most attractive. The choice las final. ly, but not obviously been determined, after much thought and many trials. Even to the mimutest fold of drapery the same principle extends: all is the perfection of art, not the simple imitation of nature but it is art by which art itself is best conceatod. and which to its creations lends the cachambent of mature's own swectest graces.

In the third division of his works Canova displays all the peculiar excellencies of his genins, whth more of orginality and simplicity than is perlaps to be fourd in his uther labours. This class may be dinded into two; architectural elevations supporting colossal statues-and simple tablets in relievo with se ulpures the size of life. Of the former, the tombs of the popes at Romse, of Alheri at Florence, and of the archchuchess Maria Clristina at Vienna, are magnif. cont examples, and may be compared in magnitude. as in excellence, with any similar works ol modern art. The monument of Garganelli has already been
moticed as amouncing the dawn of peviving purity; Hat ol Kezzonico Clement XIl\}. Sollowed and cats. farmed the sfuries of the coming day. Farom thase the monument ol the archoluchess is of a vibaracie wably difirent, and indeed stands alone in the ambels of sculpture. A simple peramid represents the ser pulchire; powards the dark and open chtrance, a pro cession of cight figures with funcreal cmblems, and bearing to its last earthly resting place the urn of the deceascl, appears to move with silent amel stealthy pace. Here reisti a simplicity and pathos which spocak dinectly to the heart; and il we may judere frome the impression made upon our own feelings, merecont of mortality erer better accomplished is purpose, whether to avaken regret for departed virtuc-or to whby its own perfection-that here exists an intel ligence in man which shall live beyond the grave.

The mommental relievos constitute a numeronm and very beantilul class of works, and though composed of nearly the same slender clements of design, a female form mowning over a bust of an urn, yet they exhilfit mach diversity ol character and arrans. ment, with great excellence ol execution. With on: exception they are all bassi relievi, extremely classi cal in design, and may be said to hatwe been invernem by Canosia, since we trace rescmblance only on onremain of Grecian sculpture. In many cases, how ever, greater furce might have been given, il the contours, instead of melting gradually into the plane of the tablet, had been terminated by a perpendicular outline, as in several of the riwst admired specimens of antiquity. A fimer and more vigorous cffec would thus haverelieved the whole piece, which oftes resembles a highly finished picture, where the light is too egually difused without just equivalent of shadow. Fro this the grant relievo on the monument of the Countessa de O'liara uffers a most splendia exception.

Not, however, till 1ran, as a relaxation from se berer labones, ilid Canovaturn his studies :o relicro properly so called, nor, excepi in one o: two instan ces, did be execute any example in marbic. But in this beautiful department of the art, he motelled nu merous subjects from listury, poetry : wh ny:iholosy all displaying the same pure taste and severcly rest lar judgment as appear in more fmishol works. Pua devoling his powers to more arduous pursuits, he iff open this career for the excrtions of others.

There still remains to be cxplaitued unt distinction characteristic of the works before us: namely. the unt form and exquisite beauty of the execution. Thes wite the dexterity and vigour of hatathens, which formed the praise of Michacl Angelo and fiornin: with a delicacy, clegance, and uruth, abtorether ans exclubively their own. Canoya appars to hove bec: the first to remark, certainly the earleest 15 imitate this excellence in the models of antignity. wit excei lenee of the very highest import, wotso of itsebi, bu" because it can be rendered pleasing onty when anite! with intrinsic beauty of composition and vemaciven science. A statue deficient in the hisetoep qualtios of art, would by nice finish be rentlere: ont the more ungraceful. In sculpture, works of the sraatest merit alone admit with advantare the extomal embellishment of the surface. Themost jubluet stathers of anticquity are alou the most highly wrough: Dati modern artists cither studied general effec: to the cis-
regard of beautiful finish; or in the endeavour to attain minute excellence, fell into the dry and the laboured. For Canova it seemed to be reserved to combine grandeur and breadth of effect with the most delicate touch and the most careful detail. To him modern practice is indebted for this most valuable precept, elicited from a comparison of the antique with nature; namely, that from whatever resources the figure may be composed and brought nearly to a termination, the last touches, the final surface, must be faitlifully copied from individual nature. This principle has in every instance guided his hand in the mechanical details. Another may be distinguished which has uniformly traced the gracious and sweetly flowing outlines of his statues; namely, the ternary combisation of members in a whole-or that law of arrangement, which in the living as in the inanimate world, seems to create beauty by the relation of a primary and two secondary forms. To the former of these laws is to be ascribed the yielding and clastic, the almost living surfaces of Canova's statues; to the latter, their delightful propriety and just ordomance of parts, yet devoid of all obvous symmetrical or artificial balancing of masses or attitudes. The exquisite purity of surface and lubricity of contour thus produced, gave rise to the supposition, that less legitimate operations of secret washes or preparations were employed. But though he certainly did make experiments on this subject with a view of discovering the processes with which there is reason to believe the Greek artists were acquainted, yet over his own works was merely poured a solution of pumice stone, or emery in water, in order to equalize the effects of light, and to take ofl the glare of recent finish. In the construction of the clay and stucco models, the rete and the gessi of the Italian sculptors, Canova likewise introduced the most important improvements; being the first who employed models fully and carefully completed, and the exact size of the intended marble, even in cases of colossal proportions. By this means the labour of the sculptor has been incredibly abridged, and his valuable time saved: for thus the formation of the statue to a very high degree of forwardness may be salely committed to the mere labourer. In short, not one branch of his profession was left by Canova unexercised nor unimprored.

The preceding series of his works, which, including busts and portraits, amounts to upwards of two hundred, fully establishes this, as these works exhibit the same merit in every department of the art, and in each separately, attaining a degree of eminence alone sufticient to insure immortality to any single artist. In this view there can be no hesitation in pronouncing Canova the most indefatigable; nor, when we consider the influence of these labours, and of the principles which they illustrate and enforce, the greatest of modere sculptors. Yet in estimating truly the rank and constituchts of his genins, there arises no small difficulty. The very fecundity of that mind diffusing its richness over every province of the art, and in each varied character constandy displaying by the same dedmirable judgmem and fine taste, increases this difficulty by blending into one harmonious whole the marked fualities and outbreakings of peenliar cnergies usually indicative of lofty powers. Hence we might be inclined to pronounce his genius distinguished more by correctness than by fire. Yet though
such really seems externally to be the character impressed upon their exercises, of his powers generally, the estimate would be erroneous. Itis genius wanted neither fire nor enthusiasm-his imagination was uncommonly active, and stored with materials; but over the treasures thus lavishly poured forth, judgment and taste presided in severe scrutiny. Hence, though in composition rapid and encrgetic, in correcting and finally determining, he was slow or even fastidious; often changing, but always improving. With Dante he could truly have said

> L' ingegno affreno
> Perche non corra che virtu no guidiPiu non mi lascia gire il fren' dell'irte.

Such an intellectual organization is by means favourable to that grandeur, usually associated with our ideas of the highest gevius, which hurrics alike the artist and the spectator beyond the bounds of reality; which, deriving its very mastery from daring disregard of rule, grasps with clangerous hardihood those aspiring graces, pardoned only when successful, and even then, however they may elevate the individual, not enriching art with useful examples or solid acquisitions. But such a mind was eminently fitted for exalting fallen taste, especially for succeeding in the serene majesty and regular magnificence which constitute the true greatness of sculpture. Hence in the labours of Canova there is to be found this superiority, that his march is uniformly diguified and consistent; correct without coldness, if he rarely attain the beight of sublimity, he never falls beneath himself or into the extraragant in the pursuit. Compared with the ancicnts, he remains inferior, in as far as he has, like every modern, been indebted to the precepts and the examples of Cireece. But his was no servile imitation, to have studied constantly their works, to have discovered and applied their principles, forms his greatest praise, and constitutes one of the most essential services ever rendered to sculpture. Among the moderus, Canora claims pre-eminence as being the first to cstablish the grounds of progressive improvement on genuine and universal principles of art. The greatest names whose labours illustrate former ages, either wrought without principles-their skill was merely personal, and the same comb thus closed over the knowledge and the possessor; or they were at hest but founders of partial theorics, and of exclusive schools. By the sculptors living prior to the sixteenth century, accuracy of imitation was the only essential generally known and practised. The masters of that splendid era combined with forceful execution, the magnificence ol elevated-but of peculiar theory. Before Canova, no one had exhibited in his own works a just harmony between the several requisites of excellence, nor had given in practice rules conducting to general and underiating results. From a degraded and lost condition he not only elevated art to a state of perfection, such as may be compared with its brightest periols, but fouded this improvement on principles that lead progressivedy to greater excellence, or at least camot bear to errur since they conduct to nature. $1 t$ is this remounting to the cternal sources of truth and beanty, this influence of universal principle, this cxhibition of unclangeable and uniform art, which will render the works of Canova a
standard in all ages to come-inseparably associating his merits with the future history of sculpture.

We approach with respectful diffidence our more immediate contemporarics. A few notices of those names who already belong to posterity may, however, prove not unacceptable.
Among the Italian sculptors, - conscquently among the masters of Europe, Thorwaldsen has obtained the first place since the death of his ithustrious contemporary above mentioned. The life of this artist displays a striking instance of the powerful volitions and deep-toned sensibilities of genius. Thorwaldsen was born at Copenfagen in 1771-2. His fither, a builder in that city, possessing some knowledge of the arts, began early to cultivate the turn displayed by young Albert for sculpture. The years of chitdhood were passed in modelling and in carving architectural ornaments at home; on carly enteriug a student in the academy of fine arts, in which professors, enjoying pensions from the government, are bound to give instruction without fees, he soon became distinguished; on every occasion carrying off the prizes proposed as the rewards ol industry and merit. In his seventeenth year an extraordinary gold medal happened to be offered for the best relievo on the subject of sacking the temple at Delphi. The competitors were placed in separate apartments, and thus shut up from external communication, were to finish their respective pieces, or to relinguish the contest. The latter resolution, it is said, had almost been adopted by our youthful aspirant, whose feelings were so tremblingly alive to the peculiarity of his situation, that after hours of fruitless solicitude, he had not been able ceven to make an attempt. At length the flow of inspiration came; Thorwaldsen produced a model, not only unanimously declared the best ous the occasion, but of such preeminent excellence as to cutitle him to the award of the great gold medal assigned to the most accomplished pupil of the Danish academy. To this honour a pension was also joined for assisting the holder in foreign travel. It was thought advisable, however, that on accollit of inexperience, some time should be permitted to elapse before this latter adrantage should be embraced. Accordingly, for some years Thorwaldsen remained at Copenhagen, where be executed several works of great promise. When at length he set out for Italy, having landed at Naples, the most longing desire of returning to his native land seized his mind; and not without difficulty was he prevailed upon, in the first place at least, to visit Rome. The sight of this venerable capital, and the lriendly offices of some of his countrymen whom he there met, seem to have in part reconciled him to absence. But a new anxiety arose, and threatened to put a stop to all future hopes. He saw and ardently appreciated the rich treasures of art contained in that city; but the perfections of past excrtions, far from stimulating, overwhemed his spirit. He despaired of ever accomplishing an effort which should deserve mention in the place where these were to be found, and deep melancholy preyed upon his mind. For more thun a twelvemonth he remained in a state of depressing irresolution, during which studies were thrown entirely aside, or resumed only to increase his mental sufferings, and almost to confirm into permanent disability the temporary diffidence of high-wrought leeling. The encouragement and advice of friends, his own ardent

Vol. XViI. part I.
aspirations after honest fame, conquered at lengeth this painlal semtiment. Once more he addressed himself to his art, and produced the statue of 1 ason, : work which waramed the most honobrable expectations, although the artist was yet personally so litute known, that he limself was ask"d by one at a latgo party if he knew the young bane who had just persduced the admired moded of dason. Other labomes followed, and the fame of Thorwadsen was cstablish. ed by the two statues of Mars and Adomis, carly of very opposite but of great beauly. Amongs the fore most to acknowledge and to praise the merits of these performances, was Canova, the sole individual who had reason to feel alarm from the success of such a rival. Canova, in 1809, received an order from thr Danish monarch for four Bassi relievi, to be placed in the cathedral of Copenhagen; this order he declined, representing the justice of employing equal ability in a subject. Nor was the conduct of Thorwaldsen less noble.

> Siut let not sculpture painting-ppesy,
> Nor they, the milly maters of these spells,
> Detain us, -our first homage is to virtue.

Among the masterpicces of Thorwaldsen, cxecuted since the full establishment of his reputation, may be enumerated, the Graces-the exquisite allegories of Night and Aurora in relicvo- the statue of Mercury as a shepherd-the trimph of Alexander, a relievo, ordered by Napoleon for the vice-royal palace at Milan-and, lasty, the colossal statues of Christ and the Apostles, commissioned for his native city. From these works, a just estimate of the Danish sculptor', powers may be formed. The character of these powers is certainly of a very elevated rank, but we apprehend is not to be placed so high as has often been done. The genius ol Thorwaldsen is forcible, yet its energy is derived more from the peculiarity than from the real excellence of his manner. Itis ideal reminds us less of antiquity or of nature than of his own mind -it is the offspring of an imagination seeking forcible impression in singular combinations, rather than in general principles, and therefore hardly fitted to exert a lasting or bencficial influence on the progress of art. Itis aims appear bitherto to have been chicfly directed to the attainment of simplicity and of imposing effect. That the former quality, so essential to genuine sculpture, is in many instances very successfully preserved, will not be denied; but the simple differs widely from the meagre and the rude; and in the works of the Danc, the distinction is not always observed. This cespecially appears in those compositions wherein grace should be the predominant feeling; these are too anstere, and without due refinement of character. The forcible, too, often approaches the exaggerated, as is particularly apparent in the air and contours of the heads, which. though grand and rigorous, are rately found to harmonize in the principles of thesc effects, with the majesty and regularity of general nature. In strong contrast with the powerful conception thus displayed in the heads, is the feebleness frequently conspicuous in the attitudes and forms. The first have a lietleness of manner, a cramped and studied action: while the second want firmuess, sustained effect, and fulness of conton: Ot the beauties and defects of Thorwaldsen's style the Mercury may be pointed out as an admirable exam-
ple, and as best known, from several models in this country. The figure is seated in the act of unsheathing a sword, with which to slay Argus, whom he had just lulled to sleep by the sweet melody of a pipe still held in his hand. The general idea of the figure is beautiful, we would say poctical in no ordinary degree. The head is of exquisite beauty, the prescriptive forms of antiquity being here too obviously associated to permit wide deviation. But when we scrutinize the more particular conduct ol the piece, it is far from corresponding in manly character and science with these external excellencies. The attitude is too studiously contrasted-too artificially balanced; while, witha prettiness ol action utterly unequal to the effort, he is attempting to draw a ponderous falchion, by slightly pressing the scabluard between his heel and the trunk against which he leans. The forms likewise are poor and feeble, without vigorous renclering, and destitute of their lull roundness of outline. This last is the leading defect in the modelling ol' Thorwaldsen, which probably has arisen from his greater practice in relief. It is in this latter department that his genius is most unexceptionably to be aimired. The frize representing the tritmphal entrance into Babylon, notwithstanding an occasional poverty of invention, is one of the grandest compositions in the world; while nothing can exceed the delicacy of execution, and poetic feeling, in the composition of the Night, or the Aurora. But in statues, Thorwaldsen excels in those only whose lineaments and expression admit of uncontrolled imagination, and which may not be tried by regular principles or natural effect. Inence, in this department, the A postles are by far the most excellent of his works, bocause the subject admitted novel or even uncommon modifications of the imagination. In short, Thorwaldsen possesses great, but singular, and in some respects erratic genius. His powers of fancy excel those of execution; his conceptions seem to loose their value and their freshmess in the act of realizement. As an indiridual artist, he will command, and he descrves a ligh rank among the names that shall go down to posterity. As a sculpto:, however, who will intuence, or has extended the principles of his art, his pretensions are not great; or shonld that influence and these pretensions not be thus limited, the standard of genume amb miversal excellence will be so lar depreciated.

The presem school of Italy has hitherto proved hard!y worthy of these two great leaders. In the pursuit of certain mistaken notions of refnement, vigour and simplicity of churacter bave been lost. The numerous imitatos of Cunova hate omitted the study ol his learned principhes, and too often have lullowed with exaggeraterl eflect the only labing towards which he inclines-elaborate srace. In liench sculpture, as in painting, the modern school cxhibits more of science than of fecling Like I'oussin, the artists of the present day seem on have so long devoted their attenton the thrms of the antigue. that they have forgoten livins natura bat unlike their illastrious Fountyman, they have labed to babize the sentiment of antiquity. 'lhey hase imatated bathlulty the cold and comect hamanents-the canous ol art but the esseme which wites art th nature-which brathes inon firerian stathary the mach of lili-has estapert. In (inmany, the studios of Vichma and Bombappear[.] to us deserted liom wht of cacunagement; in the
younger Shadoff, who died in the prime of manhood, that country lost an artist of high promise. His Filatrice, or gitl spinniug, ranks among the most exquisite imitations of simple nature which modern times have produced.

If hitherto little has been said of British sculptors, two circumstances will explain the cause of this silence. Till the present age could boast of native artists, sculpture amongst us was an exotic-cultivated by foreigners, constituting no portion of national glory, and regarded with few or no national sympathies. Again, whatever efforts have been accomplished, these, except, in one or two instances, have produced no influence on the general progress of taste. In architecture, indeed, during the reign of Charles I. this country undoubtedly excelled every other in point ol classical purity, il not in matrnitude ol unclertaking. But the refinement was short-lived; the stern enthusiasm of the true-the coarse hypocrisy of the pretended republicans, and the turbulent spirits of all, rendered England an ungenial clime for the arts of elegance. Subseçuently, Cibber, Roubilliac, Schee-macher--all our celebrated sculptors,-were foreigners. Bacon, Banks, Jusson of the last age, were natives, and of merited celebrity; still their isolated labours tended slightly towards the formation of a school of British sculpture. By the distinguished masters of the present day this has been effected; and il we do not equal our neighbours on the Continent in the number, or probably in the separate cxcellence of works, yet speaking ol the principles which guide the practice of otr sculptors, and of the progress already made, we hesitate not to affirm, that this school has produced names equal to any in modern arts and that at this moment, in rectitude and sobriety of precept -in the walk which has hitherto been followed, where nothing is yet to be unlearned, and which must infullibly conduct to the very perfection of sculpture, the British school is the first in Enrope. To particularize individual names might seem invidions, and would certainly prove an uggrateful task; but Flaxman we have matappily lost; he too surely belongs to posterity; and Chantrey confessedly stands at the heat in the province he has selected. In the sculpture of portrats, we have already spoken of the artists of iugustus' reign, and we know not if, since that period, any has ever so nearly approached the last lingering excenence of Creece as Chantrey. Indeed, the gencral cffect of his busts and portraits, as regards their admirable representation of character, "La scultura del chore." as it has been expressed, the works of the $\operatorname{longlish}$ artist are not unlike, and not inlerior to those mentioned of that perisel.

Flaxman has more widely extended the inthence of his genius-more intimately comected his labours with general improvement, than any other English sculptor. Towards the propitions revolution which has been described as taking place about the conclasion of last century he contributed; and had he then continued to remain in Italy, wonld have divided honours not uncqually with the great reformer of taste. As it is, the artists and intelligent critics of that country admit his claims, regretting only their want ol due acquaintance with his works. One of the most judicions of Italian writers thas speaks of Flaxman: * (ili debbe moltissimo, poi che yuanto di lui cognosce servi grandamente a stediare da una certa letargia
monotona, efar risurgerc it gusto dello stile aureo, e severo dell' antichiti ch' egli seppe applicare alle sue invenzionc." Even in carly youth, lilaxman was distinguished from the crowd, by devotion to the study of the antique, and by tearless but judicious disregard ol' those fielble andi conventional modes by which allt was then disgraced. Ne was among the lirst, if not the carliest, to anvaken the long dormant encrgics of sculpturc-to mite are anew with nature, and with its own best examples. The simple, the grand, and the serere of the ancient remains he made his own; nor is there sue name among; all those now chancrated, who in these attributes has excelled the best works of our countryman. Since the ages of Grecian genims, we no where find geater meaning-more deep feeling of truth, with less pomp of art, than in the sculpure of llaxman. Wacelling both Canova and Thorwaldsen in the inventive powers of the mindin all that constitutes the epic of alt-he is inferion in the grace and facility of execution. Had his mechanical capabilities in modelling and in finishing equalled the loftiness ol his conceptions and the purity of his taste, no sculptor of modern times would have enjoyed higher fime than Flaxman.

We omit with regret, yet not unadmired, not a few names of living Eingiish sculptors. In favour of these, however, we again repeat, that, looking prospectively -founding our remarks as much on what may beas on what has been, no scirool in Europe can at this moment boast of happier auspices, of more vigorous practice, or of sounder principle. The noble and manly character of sculpture agrecs with our mational genits, harmonizes with our free institutions, and finds in our history sources of bightest inspiration. But to realize these adrantages, let onte style, especially here, be truly british; we have hitherto taken too much of our principles and of our criticism in the fine arts from others. Let us in future depend on ourselves. Let the British sculptor take nature, and antiquity, of which he possesses now the most perfect cxamples in existence-let him take these as his sole guides-and he mast excel.
J. S. MI.

SCURVY. Sce Medicine.

SCUTAR1, or Iskemerae, a large fortifed town of European Turkey in Albania, is situated on the river Bojanc, at the south east extremity of the lake of Scutari, which is about 16 miles long and 7 broad. The town is divided into four quarters, and has several mosques and Greek churches. It is the see of a bishop, and the capital of a pachalic. The plain on which it stands is one ol the richest in Albania, abounding in vines and olives, and adorned with mmerous hamlets and country honscs. lopulation 12,000, composed ol Turks, Grecks, and Albanians. Distance from Constantinople 448 west.

SCUTARI, the Chrysopolis of the ancients, a large lown of Asiatic Turlies, in the province of Natolia, beantifully situated opposite to Constantinople on the Bosphorus, on the slope of several hails, and richly intermingled with trees. The strait here resembles a large lake surrounded with large cities. This town being the rendezrous of the caravans from the interior of Asia, carries on a considerable trade. The summits of the hills above the town command the finest views of Constantinople and the adjacent country. It
is a fashion among the Turks at Constantimople to be interred at Scutari. Popnation 34,000 .

SCIILA, now Cape Scigho, a rocky promontory at the entratere of the strat ol Messina, which separates Sicily from ha territory of Naples. Projectin! into the sea, and stomming the waters as they dow through the narrowest part of the strait, a formidate current is produced, which, with an opposite wind, has a tendency to drive wessels on the opposite roclis of Charybdis. The smather rocks near the base of the promontory increase the danger; and the tremendons noise of the waters dashing against the caverns. strikes terror into the inexperienced mander. The height of the rock is abont 200 fect. See Mressw.
SCYLAX, an ancient geographer, was born at Caryanda in Coria; and according to Suidas, was the anthor of a Periplus of the cuasts beyoud the Pillars of Hercules, of a book respecting the Heraclides, a description of the Circuit of the Earth, and an Answer to Polybius's Ilistory. This Periplus, which is still extant, is a short survey of the coasts of the Mediterrancan, the Euxine, and part of the west coast of Africa, as surveyed by llamo. According to IIerodotus, Scylax, along with others, was employed by Darius, son of ilystaspes, 10 discover the embouchure of the river Indus. "Proceeding," says Lerodotus, - from the city of Caspatyrus, and the lactyian territory, they sailed down the river in an easterly direction to the sea, and then continuing their royage on the sea westward, hey armived on the $50 t h$ March, at the place where the king of Egypt despatched the Phenicians to circumnarigate Lybia. After their royage, Darins subdued the Indians, and opened the navigation of the sea." Some authors are of opinion, that the extant Peimplus was not the production of the Scylax mentioned ber lierolotus. It was edited by Vossius in 16.39, by Grono:ius 1697, and by lludson in 169s. Sce the Athcmam, vol. iv. p. 32 .

SCYTHIA is the name given in ancient times to an extensive country, extending from the 25 th to the 116 h degree of east longitude, and from the Circassian mountains to the Aretic circle. It was divided into Scythia in Europe and Scythia in Asia, these divisions being separated by the two Sarmatios in Cipcassian Turkey. See Incimt Lnieris. Hist. vol. in.
SDilles, or Sdili Sce Deles.
SEA. Sce Phestcaf Gegmaphe.
SEA, Dead. Sec Asphatites.
SEA, Phosphoreseevce of the, Sce Piospmorescence.
SEA WEED. Sce Agmeritche.
BEAD. Sec Mazolugi.
 thon Anhand Pempatices and Pachecs Nam.
SEBASTLAN, ST. a frontier town of Span, in the province of Biscay. It is situated at the mouth of the litteriver Urumea, and between two arms of the sea, about ten miles from the mouth of the Bidassoa, which separates rance from Spain. The town contains 20 strects, several of which are wille, strat, and paved with large smooth stones. There are here three churches, five convents, an hospital, and a naval academy. The town is flamed with bastions and half moons, and the citadel occupics a conical and bare eminence, ascended by a sp:aious path. The harbour, enclosed by two moles. holls only about in merchant vessels. There were here five manafacto11 2
ries ol hides and leather, some tan-yards, and a mannlactory of anchors and cables for the royal navy, when this city was taken by the british on the SIst of August, 1813 , (see Fravie and Spane.) It was almost cntirely laid in asbes, but has since been rebuilt. Population 12,000 . East longitude $1^{\circ} 58^{\prime} 30^{\prime \prime}$; north latitude $43^{\circ} 10^{\prime} 30^{\prime \prime}$.

SEB.istidNi, St. See Brazil.
SECEDERS, the name given to a numerous and highly respectable body of Presbyterians who have sccedcd or withdrawn themselves from the Established Church of Scotland. This secession took place in August. 1753, in consequence of a decision of the General Assembly, carried by the casting vote of the moderator, by which Mr. E. Erskine of Stirling, Mr. W. Wilson of Perth, Mr. A. Moncrieff of Abernethy, and Mr. J. Fisher, minister of Kinclaven, were expelled from the Chureh of Scotland for the boldness with which they attempted to alter the law of patronage. The Assembly, which met in May, 1734, empowered the Synod of Perth and Stirling to receive the ejected ministers into communion with the church, and to restore them to their respectire charges. This resolution, however, was accompanied with the express direction, that the synod should not take upon them to judge of the legality or formality ol the former procedure of the church's judicatories in relation to the affair, or cither approve or censure the same. Although this resolution was a couplete triumph to the seceding clergy, yet they refused to return to the chuach courts on this ground; and they published their reasons lor this relusal, and the conditions on which they were willing to retum into the bosom of the elourch. Having created themselves into an ecclesiastical court, under the namerol the Associuted Presbytery, they published what they called an Act, Declaration, and Testimuny, to the doctrine, worship, government, and discipline of the Church of Scotland. They were now joined by other four of the brethren, and the Associated Presbytery consisted of eight clergrmen. As the congregation of these individuals had become very numerous, the General Assembly of 1738 ordered the eight ministers to be served with a libel, and to appear before the Assembly of 1739. They accordingly appeared as a constituted Presbytery, and having declined the Assembly's jurisdiction, they instantly withedrew. The Assembly ol 1740 deposed them from the office of the ministry, but they erected regular meeting houses, where they exercised their clerical functions till their death.

In 1745 the Seceders had become so numerous that they formed one Synod, consisting of three dimerent Presbyteries. In 1747 , however, a controversy arose among them respecting the legrality of the burgess oath, in which burgesses professed "the true religion presently professed within the realm, and authorised by the laws thereof." The presbytery, who asserted the lawfuness of the oath, were called Burghers, and those who conemmed it Amtiburgher Siceders: and under these mames they formally separated into two distinct communions. This separation continued till within these few years, when an union took place, and the two elasses of seceders were fembited under the name of the C'uited Issoriete Siynoll of the Secossion ('hurch, comsisting, in 1827, oi 19 peshyteries and 3.33 rhumbes. About so congregations of the Burgher signod refused to cater into the union, and now
form the Original Burgher. Associate Synod; and I6 congregrations of the Antiburghers likewise refused, and form the Constilutional Presbytery, or Original Antiburghers. These different bodies have each Professors of Theology, by whom their students are instructed in theological literature.

The Relief Seceders, who separated from the Church of Scotland solely on the ground of churchpatronage, now consist of 84 congregations. They have now a Professor of Divinity of their own, their students having been till lately instructed by the Professors of Theology in the Established Church. All the clergy of these different sects of Seceders are welleducated and highly respectable individuals, and are in no respects inferior to the Established clergy, either in theological or in secular learning. See our article Scotland.

SECOND-SIGHT, or Tarsch in Gxlic, is the name given to one of the superstitions of our countrymen in the Highlands of Scotland.

The person who possesses this extraordinary faculty is supposed to see, in his mind's cyc, events which are taking place at a distance, and even those which are to take place at some remote period.

The visions which are thas presented to the eye, or to the imagination, relate to subjects of all degrees of importance, from the most trifing to the most interesting: and sometimes they are so truly ludicrous that a person who is disposed even to be credulous, cannot fail to regard them as the inventions either of weak or of wicked minds.

Disposed as we are to consider the second sight as a gross superstition, we should not have deemed it necessary to occupy our pages with ally account of it, had it not had its peculiar locality in our own country. In a Scottish work, howerer, foreigners may expect to hind some notice of a Scottish superstition, and, on this ground, we have ventured to give our readers some idea of its nature and pretensions. It appears to us that many of the facts which have been brought forward in support of the existence of a second-sight may be simply admitted without adopting the conclusion to which they are supposed to lead. There are few men of warm imaginations and contemplative natures, who are not in the habit of seeing in their mind's eye vivid dramatic representations, in which their relations and lriends gencrally perform the most conspicuous parts. Without being able to trace the association, how often do we see a friend or a relation sinking beneath the wase, fulling in battle, suffering ander the hands of the exccutioner, or stretched a likeless corpse on a bed of sickness. These pictures are often presented to us in all the freshness of reality, but frequenty in the most mutilated and imperfect state. We cannot tell how the drowning man fell into the sea, in what battle the victim bleeds; lor what erime our lriend has suffered, or of what disease he has died. We merely see him in one or other of these distressing situations, and so singular is the ambiguity which accompanies these visions, that the person thus seen may be one of two fliends: he may bear the name of one and yet have the appearance of another; he may stand to us in the relation of a parent or achitd, and yet some circumstance may attond the vision which proves that he is neither. The mind. in short, of an idle, dreaming, and fanciful man, who is not cugrossed by the carcs and active
business of life, is continually at exercise, roaming wherever it listeth, and covering its track with creations and visions of all kinds. When a friend suffers or dies, he can scarcely fial to have anticipated his agomies; when an umexpected event occurs, he must have encountered something convertible into it among his day dreams. When an eneny lands on his coasts, he is likely to have seen him in the offing during his nocturnal cruises. $1 l^{\circ}$ our Ilighland seers had put on record all their visions, and given us an account of those which were not realized, as well as of those which appeared to them true, we should doubtioss have been able to explain their second-sight by the ordinary doctrine of probabilities.

Although we do not think that any other explanation of second-sight is necessary than the abore, yet we doubt not our readers may be gratified with the following observations on the subject by I)r. Beattie and Dr. Johnson, on the opposite sides of the question.
"The Highlands of Scolland," says Dr. Beattie, "are a picturesque but a melancholy country, having long tracts of mountainous desert covered with dark heath, and often obscured by misty weather; narrow valleys thimly imbabited, and bounded by precipices resounding with the fall of torrents; a soil so rugged, and a climate so dreary, as in many parts to admit neither the amusements of pasturage no! the labours of agriculture; the mournful dashing of waves along the friths and the lakes that intersect the country; the portentons noises which every change of the wind, and every increased climimution of the waters, is apt to raise in a lonely region full of echoes, and rocks, and caverns; the grotesque and ghastly appearance of such a landscape by the light of the moon; objects like these diffuse a gloom over the fancy, which may be compatible enough with occasional and social merriment, but cannot fail to tincture the thoughts of a native in the hour of silence and solitude. If these people, notwithstanding their reformation in religion, and more frequent intercourse with strangers, do still retain many of their old superstitions, we need not doubt but in former times they must have been much more enslared to the horrors of imagination when beset by the bugbears of popery and paganism. Most of their superstitions are of a melancholy cast. That of second-sight, by which some are still supposed to be baunted, is considered by themselves as a misfortune, on account of the many dreadful images it is said to obtrude upon the fancy. It is said that some of the Alpine regions do likewise lay claim to a sort of second-sight. Nor is it wonderful if a lively imagination, immured in deep solitude, and surrounded with the stupendous scenery of clouds, precipices, and torrents, should dream (even when they think themselves awake) of those fow striking ideas with which their loncly lives are diversitied; of corpses, funcral processions, and other subjects of terror; or of marriages, and the arrival of strangers, and such Jike matters of more agrceable curiosity. Let it be observed also, that the ancient Highlanders of Scot land had hardly any other way of supporting themselves than by humting, fishing, or war-prolessions that are continually exposed to fatal accidents. And hence, no doubt, additional horrors would often haunt their solitude, and a deeper gloom overshadow the imagination cren of the hardiest native. That any of
these visionaries are apt to be swayed in their dectarations by sinister views we will not say; but this may be said with confidence, that none but ignorant peoplte pretend to be sitted in this way. And in then it may be nothing more, perhaps, than short fits ol sudden sleep or drowsiness, attended with lively dreans, and arising from some bodity disorder, the effect ol illeness, low spirits, or a gloomy imagination. For it is atmitted even by the most credulous Ifightandere, that as knowledge and industry are propadated in their country, the second sight disappears in proportion: and nobody ever laid claim to the fachley who was much employed in the intercourse of social life. Nor is it at all extraordinary that one should have the appearance of being awake, and should even think one's self so, during those fits of dosing, that they should come on suddenly, and while one is engaged in some business. The same thing happens to persons much fatigued, or long kept awake, who irequently fall aslcep for a moment, or for a long space, white they are stanting, or walking, or riding on horseback. Add but a lively dream io this slumber, and (which is the frequent effect of disease,) take away the consciousness ol having been asleep, and a superstitious man may casily mistake his dream for a waking vision; which, however, is soon forgotten when no subsequent occurrence recals it to his memory; but which, if it shall be thought to resmble any future event, exalts the poor dreamer into a Ilighand prophet. This conceit makes him more recluse and more melancboly than ever, and so feeds his disease. and multiplies his visions, which, if they are not dissipated by business or society, may comtinue to haunt him as long as he lives, and which, in their progress through the neighbourhood, receive some new tinctures of the marvellous from erery mouth that promotes their circulation. As to the propletical nature of this second-sight, it canmot be admitted at all. That the Deity should work a miracle, in order to grive intimation ol the frivolous things that these tales are made up of, the arrival of a stranger, the nailing of a collin, or the colour of a suit of clothes; and that these intimations should be given for no end, and to those persons only who are idle and solitary, who speak Gaclic, or who live among mountains and deserts, is like nothing in nature or providence that we are acquainted with, and must therefore, unless it were confirmed by satisfactory prool (which is not the case), be rejected as absurd and incredible. These visions, such as they are, may reasonably enough be ascribed to a distempered fancy, and that in them, as well as in our ordinary dreams, certain appearances shoutd, on some rare occasions, rescmble certain cvents, is to be expected from the laws of chance: anc secms to have in it nothing more marvellous or supernatural, than the parrot, who deals out his scurrilities at random, should sometimes happen to salute the passenger by his right appellation."

To these objections Dr. Johnson replies, that b: presuming to determine what is fit. and what is beneficial, they presuppose more knowledge of the universal system than man has aitained: and therefore de pend upon principles too complicated and extensive for our comprehension; and that there can be no security on the consequence when the premises are not understood; that the second-sight is only wonderful because it is rare, for, considered in itself, it involves
no more difficulity than dreams, or perhaps than the regular exercise of the cogitative faculty; that a general opinion of communicative impulses, or visionary representations, has prevailed in all ages and all nations; that particular iastances hare been given with such eridence, as neither Bacon nor bojle has been able to resist: that sudden impressions, which the event has verified, have been felt by more than own or publish them: that the second sight of the llebrides, implies only the local frequency ol a power, which is nowhere totally unknown; and that when we are unable to decide by antecedent reason, we musl be content to yield to the force of testimony. By pretension to second sight no proht was ever sought or gained. It is an involuntary affection, in which neither hope nory fear are known to have any part. Those who profess to feel it do not boast of it as a privilege; nor are they considered by others as adrantageously distinguished. Fhey have no temptation to feign, and their hearers have no motive to encuratge the imposturc."

SECTIONS, Conir. See Conic Sections.

SECTOR. called by the French the Compass of Proporion, is the ame of a mathematical instrument in common use for determining the proportion between simila: quantities.

It consists of two flat less, or rules, made of wood, brass, or ivory, which, being moveable round a common axis or joint. represent the radii of a circle. Thence the donble lines which beloug to the sector can be made to fit all radiuses and all scales, whereas common single lines are suited only to one radius or scale.

The sector depends on the fourth Proposition of the ETh Bonk of Euclid, or the XVIIth Proposition of section IV. of our article Cicometnr, where it is demonstrated thet cyuiangular triangles have their homologous sides proporionals. Let, for example, the lines BD. BC. Gfonetry. Plate CCLXXIl. Fig. 22.) represcat the legs of the sector which open and -hut ruad is as a center and let BA, BE be equal Wrinise or distances from the contre of motion 13: then, if the points $C, D: E, A$, be joined, the lines Zh, CD. will be paralle!, and consequently, the triantles $13, \therefore$ E. BDC, similar hence, $B X: A E=13 D$: DC: and therefore. if 13 A be the hall, thited, or fourth, Ec. of BD. AE, will be the haif. thipd, or fourth, $\& \in$. of DC. Comsecuenty. if BA be the chord. sise. or tancent. of any number of degrees to the radius $B D$. NE will be the same namber of degrees to the radius路。

The scales commonly cheraren upon the best sec©o"; are divelad into sincle and dumble. The single voules der the come und used in the same manner as ibone put upon finulris Scale. which we have fully described in cur article Nowonta. They have no comuction with the property of he sector, bat are merely pat on on hill up asefally the vacant spaces which are not ncenpred by the fimble states. 'The - whe wher ropsict of two similar single scales, rach fohis is ensrated whe wo the same face of the
 vanmentacat posision upon the leqs.
The foblowion shat show the matare of the scabes

The single scales above-mentioned may be all used whether the sector is open or shut, but the double scales cannot be used without opening the sector.
The method of laying down the double scales by means of tables calculaied on purpose, will be found in James Ferguson's Silcet Errerises, or in Dr. Brewster's edition of Fergusniz's Works, vol. v. pp. $287-$ 304.

1. On the Line of Lincs, and the mothot of using ii.

Each scale of the linc of lines is divided into ten equal parts, which may be called Divisions of the first orider. Each of these great divisions is subdivided into ten other equal parts, which may be denominated Divisions of the second order; and each of these is again dirided by shorter lines into two parts, whieh may be called Divisions of the third order.

Vhen the whole liac of lines represents 10 parts, then the primary divisions represent units, and the sceondary divisions represent looth parts, and the divisions of the third obder 200 h parts.

When the whole line represents a 100 , then the secondary divisions represent units or looth parts of the whole, and the divisions of the third order 200th parts of the whole.

If the whole line represents 200 th parts, then the smallest divisions are units, or gooth parts of the whole.

1. In order to divide a giren line into any number of equal parts, for example 5 , take the given line in your compasses, place one point on the 5 of one scale of the line of lines, and open or shut the sector till tac proint of the other foot lalls on 5 on the opposite scale of the line of lines, then the distance befwen 1 and 1 of the same scale will be the fifth part of the eriven line, of the ith part of the piven line will be the difference between the given line, and the distance ol the points 4 and 4.

If the given line is too long to be applied to the sector, divile only ! or d of it by s, and the double or gutchuple of the result will be the filth part of the whote.
2. 'To form a scale of a given length to contain a reiven number of equal parts. If the seale to a plan
is 8 inches long, and contains 120 poles, let it be required to obtain suck a scale from the sector. Hasillg opened it, make the distance between 6 and 6 of the linc of lines $=\frac{12}{2}$, equal to 4 inclies $\left(=\frac{8}{2},\right)$ and the line of lines will now give the required scalle.
3. To divide a line, for example, one 7 inches long into two parts of any assigned proportion, ats 3105 , take 7 inches, the lenglt ol the line, and set it liom 8 to $8=3+5$, and the distances of the divisions 3.3 and 5.5 will be the parts reguired.
4. 'To find a third proportional to two given lines, for example 2 and 8 , take in the compasses the lateral distances of the second term 8 from the centre or axis of motion of the sector, and setting one foot on the division expressing the first term, viz. 2 , open the sector till the other foot falls on 2 on the other leg. The sector remaining in this position, take the transverse distance of 8 and s, and this distance measured laterally from the centre will be 32 , the number required for $2: 8=8: 32$.
5. To lind a fourth proportional to three lines, as 3,6 , and 8 . Open the sector till the transerse distance of 3 is equal to the lateral distance ol 6 from the centre, or some part of it; then the transverse distance will give 16 , the fourth proportional required for $3: 6=8: 16$.
6. To open the sector so that the two scales of lines shall form a right angle. As every triangle whose sides have the ratio of 3,4 , and 5 , is a right angled one, take betwcen the points of the compasses the fatcral distance from the centre to the division marked 5 , and set one foot on the division maded 4 on one of the scales of limes. Open the sector till the other foot falls on the division marked 3 on the other scale of lines, and the sector will stand at right angles to each other.
7. To find a mean proportional between two lines, for example, between 20 and 80. Place the two scales at right angles, and taking in the compasses 50 , half the sum of the two lines, apply one foot to 30, the half difference, the other foot will reach to 4 , the mean proportional wanted, for $20: 40=40: 80$.
8. To diminish a line of' 13 inches in the proportion cll 6 to 5 . Open the sector till the transierse distance ol 6 and 6 is equal to the lateral distance of 5 and 5. Mark the point where 3 inches taken from the centre as a lateral distance reaches, and the transverse distance at that point will be the line required.

The operations of subtraction, multiplication, and division, may be performed by the line of lines; but as this process is of no atility. We shall nut occupy our pages with any account of it.

2. On the Scale of Chorls, and its use.

This is the most generally useful of all the double scales in the sector.

1. To open the sector till the two scales of chords make an angle ol any number of degrees, lor example, 35°. Take in the compasses the distance from the centre or joint to 35°, the proposed number of degrees, and having opened the sector thll the transverse distance from 60° to 60° on each leg is equal to the distance in the compasses, the scales will malie an angle of 35°.
2. To find the inclimation of the two scales of chorels when the sector is opened. With the compasses lay the distance from the two brass promes at wand 60° from the centre abong one of the scales of choreds, and the dugrecs indicaled will be the angle requided
S. To detemme the andes made by the extermat or intermal edges of the sector, lay a stratsht edsed ruler from 60° to 60°, ol the lime of chords, and hav intry taken in the compasses the distance between the paints where the edge of the raber cuts the inner edges of the scetor, lay this distance atons the dine of chords from its centre, and the desrees indicated will be the angle of the intemal edges of the sector which will also be that ol the extemal edtes, as these edres are respectively paralle.

Hence the sector may be used as an instrument for taking angles, by putting sights on its outer edses. It may also be used in many cases as a gaunometer for measuring the angles ol crystals.
4. 'To lay ofl an angle of any number ol degrees. such as 42° less tian $6 r^{\circ}$. At any opening of he sec. tor, but the wider the better, take the transwerse distance of 60° and 60° on the line of chords, and with this as a radius describe the arch of a cirele. "1ake the transerse distance ol 42^{3} and 42°, and pat this distance on the arch deseribed. Fromits extremities draw two straight lines to the centre of the circle, and these lines will contain an angle of 42°. When the degrees are above 60 , as 129 . taking one half or one thited ol them, so that they may be below 60 , viz. in this case 129
-- $=43^{\circ}$, and haring described an arch as befure. take the transverse distance of 43° and 4.3° from the scale of chords, and having set it thrice on the arch, and drawn lines from the extremitics of the triple arch, they will form an angle of $12 y^{2}$.
5. To fand the inclination of two given lines, describe an arch round the vertex or point of intersec. tion. and open the sector till the distance from 60^{5} to 60° is equal to the radius of the above arch, then taking the chord ol the arch, or the distance between its cxiremities in the compasses. set it on each scale ol the Jine of chords till cach point of the compass fall on the said disision, the degree thus iodicated will bee the incliaation requined.
6. To lay down an arch of any magnitucte on the circumberence of a circle. Naving found the radius of the circle, open the scetor till the distance of 6 , and 60° be equal to that radius, then take in the compasses the chord of the given number of degrees un cachleg of the sector, and lay it olt on the circumlerence of the given circle.

By his operation a polyson of any number of side* may be inscribed in a circle. If, lor example, the po lygon is required to have 2) sides, then the chon! of one of its sides will be $\frac{360}{20}=18^{6}$, whichs taken ... above descriled, and set round the ci:cumferetor. will divide it into twonty parts. By joining the cillferest points thas found, the polygon will be formei.
3. On the Scales of Sines. Tangents and S"e inato, atw their use.

1. As all the scales of chords. sinen. tangemi.. and secants are laid down to the sance radius, we cin o-
tain for any radius within the compass of the sector, the chord, sine, tangent and secant of any number of degrees by one adjustment ol the sector. If, for example, we require them for 20°, we have only to take the given radius, and set it from 60° to 60° on the line of chords, from 90° to 90° on the line of sines; from 45° to 45° on the line of tangents, brass points being inserted at all these places, and then take from the proper scale the transverse distance of 20° to a given radius.
2. To find the chord of 80°, which is a greater number than 60°, the highest in the sector, take the transrerse distance of 40° or half the arc, and lay it down twice on the circumference of a circle of the given radius, the distance between the extreme points of this double arch taken in the compasses will be the chord of 80°.
3. To find to a given radius the tangent of 70° greater than 45°, the highest on the sector take the given radins, and set it transversely from 45° to 45° on the upper scales of tangents marked $45,50,60,70$, 75 , then take the transverse distance of 70° from the same scale for the tangent required.
4. To find the secant of an arch, for example, of 20°, open the sector till the given radius taken in the compasses is the transverse distance between 0° and 0°, or the inner termination of the scalcs, then the transverse distance between 20° and 20° will be the secant required. The secant of any number of degrees may be found from the line of sines thus; but this can only be done when the radius of the circle can be made a transverse distance to the cosine of the given number of degrees. Let the giren radius be two inches, and let the sccant of 76° be wanted. Make the radins two inches a transverse distance to the sine of 14°, the complement of 76°, then the transverse distance of 90° to 90° will be the secant of 76°.

4. On the Line of Polygons, and its usc.

The line of polygons is placed at the two internal edges of the sector, and is numbered from 4 to 12. These lines are drawn to meet the imner lines of the line of chords, and the line of lines, and the reckoning is to be made from these lines.

1. To inscribe in a circle a regular polygon, viz. a decagon or figure of ten sides, open the sector till the transverse distance of 6 and 6 is equal to the diameter of the circle, then the transverse distance of 10 and 10 will be the side of a decagon, which may be inscribed in the circle. In the same way, any other polygon may be inscribed provided its sides do not exceed 12 .
2. To describe upon a given line a regular polygon, such as an octagon, open the sector till the given line is a transterse distance 108 and 8 ; then take the transverse distance of 6 and 6 , and with this radius describe round the extremities of the line as centres small ares of a circle intersecting each other. Round the point of intersection as a centre, and with the same radius, describe a circle which will of course pass through the extremities of the given line, and in this circle the octagon may be described by repeating the given line round its circumference.

The sector is an instrument of great use in dialling,
in projecting solar and lunar eclipses, in the orthographic and stereographic projections of the sphere. The reader is relerred for more minute information respecting its structure and use to Bion on the Construction of Mathematical Instruments, Robertson's Treatise of Mathematical Instruments; but particularly to a separate treatise on the Compass of Proporion by M. Ozanam.

SECTOR, DIP, the name of an instrument contrived by Dr. Wollaston* for measuring the angle of dip, or the depression of the visible horizon below the horizontal plane passing through the eye of the observer. The following very distinct description of the instrument itself, and ol the method of using it, is given by Captain Basil Hall in his royage to Loochoo.
"A perspective view of the dip sector, is shown in Plate CCCCLXXXVII. Fig. 1, and a plan of it with the telescope removed in Fig. 2. In Fig. 2, A and B represent the two reflecting glasses at right angles to the plane of the instrument, and also nearly at right angles to each other. It is clear that when the plane of the instrument is held vertically, an eye situated at E, and looking through the unsilvered part of the glass A, at a distant point C, will at the same time see by joint reflection from both glasses, another distant point D at 180° from C; and I will appear to correspond with C , if a suitable motion be given to the index glass B by the tangent screw F.

The instrument may now be supposed to measure the arc CZD. If the points C and D be each three minutes farther from the zenith than 90° the entire angle will then excced 180° by double that quantity. The relative position of the glasses then corresponds to $180^{\circ} 6^{\prime}$, and the six minutes of excess would be shown on the arc at F if there were no index error. But by reason of the index error, the real quantity will not be known till a similar observation has been made with the instrument in an opposite direction. If the instrument be now inverted, so that the unsilvered glass is "ppermost, the are intended to be measured is CND, or the sum ol the distances of the points C and D from the nadir instead of the zenith, which of course falls short ol 180° by as much as the former arc exceeded that quantity.

The difference of the two ares is consequently twelve minates, and il the index be now moved till the objects C and D appear to correspond, the amount of this double difference will be shown by the change of position of the vernier.

Hence it is eridently unecessary that the index error should be previously known, and even preferable that its amount should be such as to avoid the needless introduction of negative quantities by positions on different sides of zero.

In the preceding description, it is supposed that the eye is looking directly through the unsilvered glass at the horizon, and that it also perceives the opposite horizon after two rellections; but an inspection of the ligure will show that the observer's head would necessarily intercept the rays from the horizon behind him. 'ro obviate this, both the direct and the rellected rays are received in coming from the unsilvered glass (and after passing through the ficld glass of the telescope) on a mirror placed at an angle ol 45°, which
reflects them to the eyc. By this ingenious contrivance, the obstruction is removed, and the opposite points of the horizon may be both seen at one moment.

In practice it is most convenient to direct the telescope to the same part of the horizon in both cases. Thus, if the east and west parts of the horizon be observed, and that the index grlass be uppermost, and telescope pointing to the west, he observer is on the south side, and his lace must be turned to the north. When the instrument is inverted, if the observer turn himself round at the same time, so as to lace the south, then the telescope will be pointed as belore to the west; but since the index glass is now undermost, the inferior are will now be measured precisely as if his lace were to the north, but with the advantage of the same lights seen in the ereet position of the instrument.

In using this instrument at sea for the first time considerable dificulty arises firom the constant change in the plane of the instrument from the perpendicular position, in which it is absolutely necessary that it should be held, in order to obtain a correct observation. What at first appears to be a defect, however, is a real adsantage, namely, that whenever it is held in the least degree out of the vertical plane, the two horizons (that secn direct, and the rellected one) cross each other, and it is only when the plane is vertical that the horizons can appear parallel.

The object is to get the two horizons to coincide exactly, and for this purpose it will olten be necessary to have them of different shades. This is managed, as in the sextant, by means ol the screw, which raises or lowers the telescope. When the telescope is brought nearer to the plane of the instrument, the rellected horizon becomes dark and distinct, but when screwed off it becomes fainter, and is not so well de. fined. Practice alone can teach the degree of intensity which is most farourable. In general, it is best to have one horizon dark, and the other light; then bring them very nearly to coincide, and wait till the ship is steady, at which moment a slight tonch of the tangent screw brings them exactly to cover one another. It will happen, of course, that when the coincidence is perfect, there is only one horizon to be seen, and a doubt remains whether all is right, but a slight motion of the instrument, by making the horizons cross each other, defines then at once.

It is advisable to take several observations, and the safest way is to take one first with the index glass uppermost, and then with the instrument inverted, after which to return to the first, and so on for two or three times each way."

SECTOR, Asmonomical, the name of an instrument contrived by Mr. George Grabam, for taking differences of right ascension aud declination, which are too large to be observed with a micrometer in a fixed telescope. A full description of it, with a drawing, will be found in Smith's optics, vol. ii. p. 350.

SECTOR, Zexime, the name of an instrument for measuring small angles near the zenith. A very fine instrument of this kind, constructed by Ramsden and Berge, has been described by Major Mudge in the Phil. Trausactions for 1803, p. 383. The following abstract of this description has been given by Dr. Yonng.
"The cxternal frame of the instrument is of mahoVol. XVII, Part I.
gany, constituting a truncated pyramid, on a lase of six feet square, tapering to a vertex of three. She internal liame, which immediately supports the sector, revolves on a vertical axis, terminating below in a cone, which rests in a conoidal cavity, convex to the axis, and above in a cylinder, passing through an octagonal aperture in the upper frame. As it turns, its motion is indicated by an azimuth circle attached ${ }^{\prime \prime}$ the lower part of the external frame, and it may br brought into the direction ol the meridian by a telrecope fixed in the plate of the arrh. 'The telescope of' the sector is eiglat leet long, and its aperture four inches; the axis is like that of a transit instrument, the plumb-line passes through two perlorations in it, and is adjusted by means of a serew with a jointed handle, and a long bent microscope with specula, so as to bisect a point marked on a plate of mother of pearl, precisely in the axis of the instrument; this plate is properly illuminated by the same lamp that serves for the micrometer wires of the telescope, its light being reflected downwards upon the wires from an oblique surface covered with plaster of Paris.
'The piyots ol' the sector's axis are of bell metal. they rest in Y's, firmly athached to the frame; their sliding horizontally is prevented by a lixed friction wheel on one side, and a spring supporting a friction-wheel on the other; four cylindrical braces are emploved to fix the telescope firmly to the axis; and the bending of the axis is still farcher obviated by levers with courterpoises, acting by means of friction-wheels. closeto the tube of the telescope, so as to leave somuch of the weight ouly to be supported by the pirots as is necessary to keep the instrument steady. The telescope is moved by strings and pullies, and is retained in any given situation by weights. A long spirit lovel is employed lor bringing the axis into a position truly horizontal.

The areh is divided into portions of fire minutes each, marked by points, on golden pins. let in at each division. A fine line was struck when the telescope was properly supported on the pivots; the instrument being then removed, the diameter of the circle of which this arc was a part, was ascertained. and one sixteenth of this, being taken as extremels near to the chord of $7^{\circ} 10^{\prime}$, was laid off on cach side zero; and this are was verified by comparison with another, obtained, by means ol continual bisections, from an are of 60°. The micrometer screw carries a head dividcd into 59 parts. nearly corresponding to secondis: the half of the arc on one side zero was found to contain only a single second more than the other purtion.

The greatest error that could be observed from it difference of temperature in different parts of the observatory, was lound to be little more than half a second for an are of tive degrees. The observations of the zenith distances of the various stars employed. were completed in October 1802; and the instrumen: was brought back to London without having sustained the least perceptible injury."

SEDLITZ Waters. Sec Mineraj. Witers.
SEGESTAN, or Seistas, an independent proviace in the east of Persia, bounded on the north by Candahar and Khorasan, and on the south by Mekran and Balouchistan, is 300 miles long and 160 broad. Iwas once one of the finest provinces ol the empir". but the sand winds from Mekran and Balouchistan,
which blew for 120 days during the hot months, have reduced it to the most desolate condition. The banks of the Heermund, which rising in Cabul, fiows through the province into the lake of Durrah, consist of a valley from one to two miles broad, which is cultivated and covered with verdure and brushwood. On each side of it rise perpendicular cliffs, which bound the arid desert, intersected with one or two ranges of monatans, which form the rest of the province. Along the valley are great numbers of ruined towns, villages, and forts; and at one of these was Eulcanput, a noble palace in a state of good preservation. The Heermand is 400 yards wide and very deep, and its water is remarkably fine. Captam Christic describes the remains of a city called Poollsee as immense. 'The principal place of' Seistan is Doorhak, the residence of the prince, in east long. $63^{2} 10^{\prime}$, and north lat. 31°. It is situated 10 miles from the river, and is small and compact, thoush the ruins ol it cover a great surface. It has a grool bazatr, and is populuns. The country round produces wheat, barley, and good pasturage. The revenues of the prince are so, 000 rupecs, and his military force suou men. The ruins of a very large city called Peshawaroon stand 25 miles north of Dooshat; and a few miles beyond it are the ruins of Joaen. Ferral, a large walled town 65 miles hrom Dooshak, stands in a fertile valley, on a river which runs into the lake Zerreh. The city of Kubbees, about ten dars journey from Dooshak, stands in the midst of the aried plain abore mentioned, filten days journey from Ker. man, and sixteen from Yezd. See Kimetn's Memoir of the Persiun Eupire, p. 189-194.

SEGNA, a iree sea-port town of Norkchia, under the protection of Austria. It stands on the Adriatic, at the mouth of a narrow valley, surrounded with marble hills. It is ill built, ill paved, and ill fortilied, and is exposed to such violent winds from the mountains, that the sea in the channel of Segna, opposite the ralley, is seldom calm. The soil scarcely supplies provisions for two months of the year, and water is brought from a spring twelse miles distant. Such a ciay, therefore, camot prosper, and yet it is said to contain 6000 souls. Last long. $16^{\circ} 3^{\prime}$, north lat. $45^{\circ} 4^{\prime}$.

SEGO. Sec Africi, and Bambari.
SbGOMIA, a town of Spain, in Ohd Castile, and capital of a prosince of the same name, is situated on a rocky eminence between two steep valleys, one of which is watered by a brooli called Clamares, and the other by the river Erusma, which is crossed by five handsonie bridges. It is supposed to resemble a ship vith its stern the cast. It is betweon three and forer miles in circuit, and is surrounded withatureted Yoomish watl. The streets are natrow, erooked, and irterulat, and in some plates steep, but the suburbs are built on more level ground.
berovia, which is an episcopal sec. contains a number of churches and convents, and wher public buildings. The Mint is a handsome ectilice, the operadons of which are carried on by hydratulic machinery. The town-house is handsome, having two compartments in front, with domble rows of doric pillars. The cathedral is a mixture of Gothic and creek architecture. It was built in the 1 oh century, and has its principal altar of marlse. "The convent of the Cumelites, and that of the Capuchins, with a sub-
terrancous chapel, are good buiddings. The alcazar, the residence of the Castilians, and celebrated as the place where Alphonso composed his astronomical tables, is a venerable ancient pile, containing apariments fretted with MLosaic work still fresh.

The greatest curiosity of Segovia is its arqueduct, which, though supposed by some to be Egyptian, is more probably the work of Licinius or 'lrajan. It begins with a large stone basin, fifty yards from the town, the water of which it conveys to an open canal to the streets. It is built of rough square freestones, with cement, and consists of a long range of 75 arches, the first of which is fourteen fect six inches long, and the last, at the coment of St. Francisco, thirty-three feet six inches, At this place there begins a domble row of arches, one above another, extending east and west, and crossing the valley and the plain ol Azoquejo. 'The greatest height of this is eighty feet ien inches. The whole aqueduct contains 159 arches, sustained by pilasters, most of which are six feet eleven inches in fromt, and nine feet four inches on the immer side. Alter distributing its water 10 different parts of the town, the aqueduct terminates at the Alcazar. ihe magnificent appearance of that the buihling is disfgured by houses built against its pilasters. This city, situated in the midst of the tinest sheep pasturage, has been long distinguished for its cloth and woollen manufactures. It is said that 34,000 persons were once employed in them, but they have greatly declined. The quantity of cloth at present manufactured is stated to be about 4000 pieces. coarse and line. Dycing is atso extensively carried on, and delf ware, paper, and lead, are among its other manufactures. It has an extensice trade in wool, which is brought from Villacastin, and sent to different poris, particularly Bibboz. The number of families is estimated at $50^{\circ} 0$, and the population at only 10,000 . There is an antllery school, and several hospitals in the town. West long. $4^{\circ} 1^{\prime}$ North lat. $41^{\circ} 3^{\prime}$.

SEINE, the name of a department in the north ol ${ }^{\text {n }}$ France. It cmbraces litle mole than Paris, the capital. It includes three arrondissements, viz. Paris, St. Denis, and Sceaux, forming a square of about sixteen miles. The population is 70,000 , exclusive of Paris, which contains, according to the census of 1827, 890,431 inhabitants.

SEINE, Lowfr, the name of a department in the north of France, containing the north cast part of Normandy. It is bonderl on the N. W. by the Egglish channel, on the cast by the departments of the Somme and the Oise, and on the sonth by that of the Eure and the Calvados, from both of which the river Seine divides it. It ocrupies about 2500 square mites. Its surface is generally level or molnatime. The coast consists of sandy downs, and the soil, though generally suited to corn and pasture, does not favour the culture of the vine. Ilemp, flax, and coleseed are cultivated. Black cattle, horses, cheese and butter, are exported. The principal fruits are pears and apples. The Scine, the Argens, and the Bresle, are the principal rivers. The chief towns are Rouen, the capital, Dieppe. Havre de Grace, Yvelot, and Neufehatel. The contributions in the yar 1803 were $9.104,+17$ francs, and its expenses $50,0,260$. The population in 1827 was 683,295 , being an increase of 32,491 since 1822.

SEINE and Mirns, one of the departments in the north of France, bounded on the north by the departments ol the Oise and the Aisme, on the cast by that of the Marne and the . Dube, on the south east ly those of the Youne, on the south by that ol the Loiret, and on the west by those of the Loire and the Seine and Oise. It occupies about 2,300 square miles. Its surFace consists of gently undalatime plain i, which juoduce wheat, barley, oats, fax, hemp, and wiacs in small quantities. it is watered by the Seme, the Marne, the Yonne, the Great and litate storin, and sereral smatler streams; the catal of Briate, which joins the Seine and the Loire crosses the southern part of it. (Sec Navication Imasm.) Its chicl towns are Melun, the chicl place, loontamblean, Meaw, Provins, and Coulomicrs. The contributions in 180.3 were $5,126,616$ fiancs, and the expenses 30,318 . Its population in 1827 was 318,200 , being an incerase ol 15,059 since 1822.

SblNE and Oise, a department in the noth ol France, bounded on the north ly the deparmemt of the Oise, on the cast hy that of the Seine and Name, on the south by that of the Loitct. and on the west by those of the Eure and the Eure ol L.oire. It occupies an area ol $2 z 00$ squationiles. which are levelore sentIy undulatins. It produces wheat, barley, oats, hemp, and flax, but vines are ratsed in small quantity. The chief rivers are the Scive and the Oise. The principal manufactures are those ol porcelain at Sevres, of calicoes at Joui, and ol arms and cloclas at Versailles. The most important towns are Versalles, the chicf place, Dtampes, Mantes, Pontoisc, Corteil, and Ram-
 francs, and the expenses, t4s.92s. lophation in 182. 440,571 , being an increase of 16,301 since 1822 .

SEISTAN. See Sermetin.
SELBE anciently Sumbur, a market town of CugIand in the west riding of lomshire is sitwated on the south or right bank of the river Ouse, which is crossed by a very handsome wooden bridge, which openslor the admission ol vessels into the river, which is here navigable for ships of barden. It consists ol' three streets in the shape of the letter X reversed. The principal one, be wimang at the foot of the bridge, is the road to Leede, and the other leads 10 Smath and Thornc. The anciemt and ill-built houses of the town are now repacing by those of more modern uspect. The church, which fomed part of the abbey foanded by William the Comqueror, is of various styes of architcture. The boly and the mave are Noman. The chureh has the form ol a cross, the shatt of which is 267 leet long, and its transept 100 leet. The principal manufactures in this place are those of ships, leather, sail-cloth, and iron troods. A sery consider. able trade in ressels of gonn buthen, has been created with London, IIull, and Lymn. by means ol a canal from the Ouse to the Aire. Pumber of houses in the town and parish 840. P'opulation in 1821, 4299. Sec the Beanties of Englant and IV ales.

SELDOEN, JonN, honoured by (irotius with the appellation of the "(ilory ol' England," was an eminent scholar and politician. He was born at Salrington in Sussex in 1584. De was educated at Chichester, and after studying fote years at (Ofurd, be ontered the inner tomple, where he acquired great reputation by his learning.

His furst work was entitled. Inalekion . Anelo Pritunnicou, achoonological summary of Finglish history down to the concuest. 'This was followed by linslonel's
 and linglish treatise on the origin and progress of Englishlaw. His largest linglish work, a treatise on Titles of Itroism, which appeared in 1609, obtained him great litme; and it 1617 he contered upon a hew field, and made himself known theonghout burope by his work De Diis Sigre, a work of great leanning and research.

The next work of our author's was a /fistory of Ty/hes published in 161\%. in which he opposed the clam ol divine right to tythes made by the clevey ol those days, and therefore cxposed himself to the hostility of that body. He was accused betore kin:s James, and beines called before the Archbishopol Cat. terbury, be was induced to sign a declaration ol his regrei for what he had done. This erent secms to have prepared him for that resistance to civil tyranm, which formed a striking leature in the rest of his life.
la the contest between the king and the parliament which he assembled in 1621. Sedden was a leadines acent in drawiner up the splendid remonstrances ol that body. He accordingiy lell under the royalresentment and was committed to prison. Beiner dis. charged on his own petition, he resumed his peacefnl pursuits, and publishedin liaz, the historical work of Eadmer of Canterbury.

Jn lazo, he was elected one of the members of parliament low fancrster, and he also enjoyed a scat in that house in the two first parliaments of Charles I. In the second of these parliaments he was appointed to support artiches of impeachment arganst the Duke of Buckingham. It alterwards took up the canse of Sir Edward Hanmpen; and in 1628 , he was employed by the Ilouse of Commons to justify by facts its resolation respecting the right of the subject to his liberty and property. Amid these engrossins pursuite. he
 which appeared in 1627 .

On thedisiolation of parliament, Sclden was one of the eight members of the flouse of Conmons, who were thrown into the Tower. on a chatge of serlitor. Having refused to purchase his freedom to the shisho est submission, he was removed to the jiarshaisea prisom, and then to the Gatehouse, ant, atong with his companions, was allowed to go at hage on batil til! 163, when they were lully liberatal.

During this contnement, Sedden composed his work, De fateressionthes in bone Difuncei at Loce Ebreorum, which appeared in 1631, atd was ruphintall in $163 h^{\text {, with }}$ a new treatise D ducecssione $i:$ Iomtibcretum I:bracoum.
id disputc having arisen with the Dutch respectint the hering fishery on the Imitiah chast. Sediden was induced by Archbishop Land to draw uphis treatise.
 wher to the work of Crotins. cutit!ed The fitamon. King James read and apprused ei' this "opro. vilach appeared in 1635. and the object of which was to prove, "that the ibrtish hate an hereditaty uninterrupted right to the sovereinnty of their seas. con-
 Lop their latent posterity."

Haring for some years deroted most of hiv time :o

[^2]Hebrew literature, he published in 1640 his work De Jure Naturali et Gentium juxta Disciplinam Elrearum, which contains a copions digest of the laws and institutions of the Jews.
In 1640 , Selden was chosen one of the representatives of the university of Oxford to the long parliament. He took an active part in reforming the abuses of the clay, but he was well affected to the constitution both in church and state, and he opposed the violent attempts of both the contending factions. In 1643, he was appointed by the House of Commons keeper of the records in the Tower, and likewise one of the lay members of the Westminster Assembly of divines.
From this period till the time of his death, our author published the following works.
Entychii Eeyptii Origines Ecclesiax sure, a transladion from the Arabic.

De Amo Civili I'ttris Ecclesixe uxor Ebraica.
An edition ol Fleta.
De Synedriis I'eterm Ebraroman.
Findicio de Scriptiore maris elduse, which was the last production of his pen.

Selden died in 1654, in the seventy-first year of his age, and was interred in the tenple church, where a monument is erected to his memory.
His works have been collected and published in 1726, in three vols. Jolio, with a life of the author in Latin, by Dr. David Wilkins.

SELENOGRAPHY, from geam the moon, and $2 g^{20 a n}$, "description, is that branch ol astronomy which treats of the hanar surfaces. See our anticle Astronoms, Vol. If. p. 623. 636. Pur very full details respecting this curious subject, and also Ferguson's Astronomy, edited by Dr. Brewster, App. rol. ii. Since these details were published, Prolessor Lohman of the military academy of Dresden, has published an athas of lumar maps, which represcnt the whole visible surfaces of the lusar globe, with an accuracy and precision beyond any thing that has yet been attempted. See Dr. Brewster's Journal of Science, January, 1825, col. ii. P. 172.

SELECCIA, an ancient city of Asia, built by Selencas, one of Alexander's generals, about forty-five miles north of ancient babylon, and on the west bank of the Tigris.

Suadea, the port of Antioch, and about four miles distant, is considered by Browne the African traveller, is identical with Siclencia, while Mr. Jackson, author of the "Journey from India," regards Bagdad as the site of the ancient Scleucia; several coins of scleacas having beenfound in that city. A description of Suadea will be found in Brown's Trevels in . Ifrica, p. 391.

Shlikikk. Ahemandir, the name of a celcbrated Scottish traveller, whose adventares form the subject of Rotinson Crusec, was born at largo in the county of Fife, about 1676 and was brought up to the profession of a sailor. As sailing master of the Cingue Ports galley, he left England in 170.3, and in September of the same year, he set sail from Cork in company with the St. Cicorge of twenty six guns, Captain Bampier, with a vicw of cruising against the Spaniards in the Sonth Seas. lickering, the captain of Selkirk's
ship, died on the coast of Brazil, and was succeeded by Lieutenant Stradling. From Juan Fernandez, to which they proceeded after doubling Cape Horn, they were compelled to fly by the sight of two French ships of thirly-six guns each, and left on the island five of Stradling's men, who were taken by the French.

Dampier and Stradling having separated on the coast of America, in consequence of a quarrel in May 1:04, Stradling returned to Juan Fernandez in September. Here Selkirk and he had a quarrel, in consequence of which the former resolved to remain on the island.

When the galley was about to leave the island, Selkirk's resolution began to fail, but though he requested Stradling to receive him on board, this inhuman officer denied his request, and left him behind, with his clothes, some belding, a gun, with a litule powder and ball, and a fcw books, and mathematical instruments.
In this solitary situation, "the monarch of all he surveyed," he was seized with melancholy, and often resolved to put an end to his life. After enduring this species of wretchedness for 18 months, his mind began to reconcile itself to the sadness of its condition, and he chased away the weary hours by building huts and honting the wild goats of the island. He amused himsclf with training young kids and other animals as his companions, and when his drapery had lost its folds. he replaced it by the skins of the goats whose Hesh had served him for foorl. la this desolate condition Sellirk spent four yours and four months. During that time he had eaught 1 cion goats, half of whom he had set free after slitting them in the ear.* While pursuing a goat with great eagerness, he caught it at the edge of a precipice, over which he fell through a great height. After lying. as he computed, three days senseless, be recorered, and found himself so much brised, that he was scarecly able to crawl to his habitation. The only other adventure which happened to him was the arrival of a Spanish ship, the crew of which saw him at a distance. Dreading, however, to fall into their hands, he exertdd himsell to escape, and, by climbing a wee with much foliage, be succeeded with great difficulty, after having been shot at by the Spaniards. On the 2 d Pebruary 1 too, Selkink was delighted with the sight of two ships approaching the island. 1laving recognised them to be English, he lighted a signal fire, and he had exen the happiness of finding that they were Euglisha privateers, the Duke and the Duchess from Bristol, commanded by Captains Rogers and Courtney. Solkink was kindly received by his countrymen; and, alter continning a formight at the island, they all embarked, and suiled by the way of the East ludies for Dengland, where they arrived on the 1st October 1711; atere plundering a town on the coast ol Persia, and taking a Manilla ship off California. During this crnise, Selkirk was appointed by Captain Rogers master's mate of the Duke. Although Selkirk had performed his derotions with great regularity yet his language had become scarcely intelligible when be was lirst taken from the ishand. The curiosity of the putlic having been greatly excited thy the naration of his extraordinary adrentures, Selkirk put an ac-

[^3]count of them into the hands of that celebrated writer Daniel Defoe, who, in place of publishing them as a true narrative, made them the ground work of the interesting story of Robinson Crusoc. The future history of Selkirk is not known, but so late as 1798 , the chest and musket which Sclkirk had with him on the island of Juan Fernandez, were in the possession of his grand-nephew, John Selkirk, a weaver at the village ol' Largo.

SEIKIRK, a royal burgh of Scotland, and capital of the county of the same name, is fincly situated on a commanding eminence below the confluence of the rivers Yarrow and Ettrick, and about $1 \frac{1}{2}$ mile above the junction ol' their united streams with the '「weed. This town has of late been greatly improved, and contains scveral good houses. The principal buildings are a new town-house, with a handsome spire and clock, and containing apartments for the Sheriff court and the business of the burgh. A new prison has been erected at the back of the town. It is encircled with a lolty wall, which incteses an arcat accessible to the prisoners. 'The other buildines are the parish chareh and the Secession meeting-house. The principal mandactories here are an inkle one, which has been long established, and at tan-work; and the making of stockings and the spiming of woollen yarn are carried on to a considerable extent.

This burgh has been celebrated by the devoted bravery ol its citizens at the batte ol' Flodden. Ol 100 who followed James $1 V$. to the fiedd, only a dew survived. A standard taken from the English on the occasion, by a member of the corporation of weaters, is still in their possession; and the sword of Villiam Bryclone, the town clerk, who led the citizens to the battle, and who was knighted lor his valour, is still in the possession of his descendant, an inhabitant of Sclkirk. The English were so exasperated at the bravery of that band of citizens, that they Jaid Selkirk in ashes. James ${ }^{r}$. howerer, in reward of their eminent services, granted them a thousand aeres of Sel kirk Forest, which are now worth about L. 1500 per annum, and are divided into a great number ol small properties. In their ammal survey of this tract, the Engtish standard is carried beforc the corporation of weavers.

A battle was fought on Philiphangh, opposite to the town, on the 15 th September, 1645 , in whict General Lesly completely defeated the Marcuis of Montrose.

Selkirk unites with Pecbles, Lanark, and Linlithgow, in sending a member to Parliament. The town is governed by two bailies, a dean of guild, a treasurer, and 29 councillors, in all 33. The revenuc derived from three large commons, mills, feus, and other sources, is about L. 1000 anmually.

The vicinity of Selkirk, towards the united streams of the Yarrow and Ettrick, is beautiful; and a fine view of it is obtained from the town. The chicf object of interest here is the ruin of Newark Castle, situated on a peninsula formed by the Yarrow, which has cut its course through rugged rocks enveloped in wood. Haining, the seat of John Pringle, Esq. of Clifton, is situated close to Selkirk; and Mair, the seat ol Alexr. Pringle, Esq. of TVhitebank, situated on the banks of the Tweed, is celebrated for its picturesque beauties. Sunderland Hall is beautifully situated at
the junction of the Tweed and the Etrick, about two miles below Selkirk.

SELKKIRKSIJRRL, or EqTROCK lonest, lies nearly in the middle of the southern division of' Scotland. It is bounded on the north by Jeeblesshire and Mid. Lothian; on the east hy Roxburghshire, on the south by the latter and Dumfriesshire, and on the west by Peeblesshire. The boundary line on the west and south is very irregular, Solkirkshire being dowetailed into the neighburing counties in these directions in the most unaccountable manner. From this rause, although it is one of the least comnties in the kingdom, its greatest length and breadth are considerable. From Phawhope Pen, a high mountain at the source of the Eittrick, to the heights of Caddo water, on the north-east boundary, is nearly 30 mides; and from Borthwickbrae to the foot ol (ilensax, where it reaches within a short distance of l'cebles, may be nearly 20. Yet it contuins only about 260 sjuare miles, or about 166,000 acres.

This shire is divided, according to its natural features, into thre dates or valleys, by two ridges ol mountains rumincr N. Li. by li.. bat diverging as they retire towards the west, and an undulated hat muin fathing from the southern heights of the lettrich towards the water ol borthwick; the upper part of which is green hill pasture, and is mostly included in the county. The water of Ate, with some tributary streams, rises in this muir from many small lakes. On all this side of the Ettrick there are no hills of any great height, and the ground is much covered with heath. The higher elevations on the midlle ridge between the Eurick and Yarrow reach from 1700 to nearly 2000 lect above seabevel. The northern ridge between Yarrow and 'Tweed is more lofty, and has of course a wider base, and the diverging and minor valleys are of greater extent. Besides these. Selkirkshire is properly surounded from the northeast to the south by a range of mountains that form part of the great central chain that sinks into the sca between East Lothian and Berwickshire. Nany of these rise to a height considerably above 2000 l'ect Through these mountains, the Twed issmes from Pceblesshire, or 'Tweeddale, leavings on its right Blackhouse heirgis, and passing on its left under Windlestrae Law; the one 2370, and the other neatly 2300 leet above the sea. These monntains extend towards the south, and corcr the sources of the larrow and Ettrick. As the two minor ridges, belore mentioned, branch off, dacir character is chatnged, and they form around the winding lakes of St. Mary a mingled group of lofty hills, smooth and ruund, and clothed with herbage, the fine green ol which refreshes and delights the eyc. All this, connected with the enbosomed lakes, sives to them in a summer evenins a singular character ol softness and guietnde and pastoral beanty almost peculiar to the district. In winter, when covered witl undrilted snow, the scene rises towards grandeur and sublimity. As there are no rocks, the pure white of the splendid envelope is mbroken, there is nought save the majestic forms of the mountains, and their azure shadows to arrest the eye, and from different eminences to the northward. the view can never fail to be decply impressive on a mind capable of enjoring the silent sublimity of nature. It is likely Burns had this scenc in his mind when he wrote

Whik maniac winter rages der
The hills, whence classic Yarow fows,
Rousing the turbid toments roar, or sweeping wild a waste of snows.

The main riser is the Tweed, (sce Peeblesshirl.) Which flows through the northernmost ol the three valleys for ten or twelve miles. This, although not the richest, is, to a waveller, the finest part of the commy. The river itself, with its "crystal streams," often fringed with trees, is beautilul, and its lively and murmuring current has a cheerful effect. The hills rise more abruptly than clsewhere, and are ornamented with almost ehough of matural wood, extending with litte intermption along the skirts of the sobthern hills, while old hollys, haw horms, and ashes, the hardy remains of a former race, are scattered among the rocks and shingle, along the steep declivities of those on the north. Besides, the picturesque ruins of the old baronial castle of Elibank, and four or five gentlemen's seats, each of different styles of beauty, greally tend to soften the wildness of this mountainous valley. Asone aseends the Tweed, below its junction with the Eitrick, by a sudden turn of some miles to the south, it seems to fall into, and be subsidiary to the valley of the lesser river; the Et trick by its direction towards the southwest appearing to be a continuation of the strath of the Tweed.

The length of the Ettrick to its highest source is about 50 miles. For the first ten or twelve, the banks of the water are partially covered with natural wood, mixed with plantations. and now and then even scattered remains extend to the sides of the hills. This alternation of wood and pasture, and arable fields, with the town of Sclkirk overhanging the river on the south. Bowhill, a line seat of the Duke ol Buccleugh's, on the slope of a mountain that divides it from the Yanow on the north, one or two old towers, and the escellent cultivation of the haughs and lower grounds, give this part of the valley a character of varied beauty and richness. The vallers of most of the tributary rivers in Scotiand, at their junction, are bounded by moantans that are dry, heathy, and comparatively barem: and such are those separating the Ettuck and the Yarow, and between the later and the Twed. The middle ald upper part of the valley ol Ettrick is perhaps the most beautilul pastoral district in the kingdom. 'The hills arealmost without exception ol' the finest deepegreen monntain pasture, on which are spreach thonsands of sheep, and for many miles the valley opens into wite haughs of great fertility, where atre seen many herds ol fine cattle.

The head of the yarrow is properly lorned by se -cral glens, and slopes, and cleughs that open upon Si. Slary's looch and the $[$ oulh of the Lones, and send beir streams tosupply its waters. The prineipal of these is called Megrat. It is a clark valley, having all we chatracters of a widd deep hightand glen rising by momberes someres amones the highest stmmis of the sreat range abredy mentioned. It hows Bnto St. Xary's loch thengh a wact of line meadow tated, the hills on cach sthe which are skited with buslins and old natural woul: but it is ahogether in lechbosshire, the shore ol the lake lomming the boun-
dary line for a little way. After leaving those beautiful pieces of water, farrow flows among hills and cultivated haughs, where there is little of the picturesque for cight or nine miles, yet it is similar to the Ettrick in its general character. It has more heath on the hills, and dewer haughs in the valley: but its hills are likewise gren, and its haughs are fertile, and for several miles, it will yield to lew waters* in Scotland in varied and romantic beanty, until it joins the Ettrick below the castle of Newark, and Bowhill already mentioned, which is situated in riew ol both waters. Through most of this part of its course it clashes through a rocky channel, while its banks and the sides of the sumounding hills are covered with fine natural wood, and a magnificent extent of old pines and forest trees.

The water of Ale belongs to Roxburghshire, but it draws its sources from a number of small lochs in the extensive muirs between the Ettrick and Borthwick. These lakes are mostly full of shell marl, and of great valuc, had they lain near the cultirated country. It may be mentioncd as not a little curious, that they have all the VVestmoreland appellation of meve or muir, as it is here pronounced, attached to their mames: as Kingsmuir loch, Alemuir loch, Akermuir loch, Hellmuip loch, Eic.

Borthwick, in its upper course, belongs to both Sellarkshime and leviotdale. It rises like the rest among green grassy hills, on the borders of Dumfriesshire. Rankleburn rises contiguous to the Ale and the Borthwich, and has a claim to notice only because there is situated the farm that gives a title to the duke of Buccleugh, the proprictor of twothirds of the comm

Ciad ruas for twentr miles though Mici-Lothian, and only bounds Se! ${ }^{\text {birkshine tor a few miles before it }}$ joins the Tweed. This part of its course is well wooded and beautiful, and as it rums through and drives the machinery of the village of Galashicls, it probably conduces more to the wealth and industry of the district than all the rest.

The lowest part of the county at the side of the Tweed, is nearly 300 feet above the sca. The county town, and Thirlentane castle, mod St. Nary's loch, are all seo. The highest farm housc on the Etrick is mare than rom, so, as may be expectod. the climate of Sclkirkshire is wet, boisterous, and stomy; and ahthough protected on the west by a high range of moumains, yet the west and south-west winds ratse "ith much violence, generally bringing rain to the greater part of the district. As most of the lesser rivers run lowards the cast and north-cast, the cold simls from these points blow up the valleys with littie obstruction.

The following is the average of seven years, abstructed liom a very accurate register of the weather kupt at the furm house of isowerhope, on the north side of Sit. Mary's loch. The height above the sea is, according to Ainsile, 360 fect. It is to be repretted that a register of the thermometer is not included. Abner with the register is kejet a memorandam of the lirst appearane and howerine of several of the deepest rooted plants, and the first appearance of frog spawn.

[^4]| | W. | S. W. | N. W | E. | S.E. | N. 1. | N. | S. | $\begin{aligned} & \text { inys } \\ & \text { fus" } \end{aligned}$ | Itain. | Snow. | Ammal average of the baryancter. | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average No. of days ycar.? ly, for seven yeirs, the? wind blows. | 75 | 105 | 37 | 26 | 19 | 21.4 | 1.1 | 20 | 167.6 | 13. | 43.4 | 1821 1822 1823 18.2 | 29.38 29.3 29.4 29.31 | 1825
 1826
 1827
 4001 | $\begin{array}{r}49.81 \\ 29.88 \\ 29.42 \\ \hline 20.4\end{array}$ |

On the 26 th of February 1810, the barometer stood at 30.8 , and on the 20 th December 1821, it stood at 27.8 .

The following is from a register kept at Tinnis, about eight miles down the Yarrow, and 60 feet lower. Therm. at $8 \mathrm{~A}, \mathrm{~m}$, and 10 p . m .

For the yetr 1827.

Fair days. Rain and snow. Mean heat. Mean of harometer. 17194 24.23 29.12*
At Thirlestane castle, on the banks of the Ettrick, and about 650 feet above the level of the sea, a very accurate register of the thermometer has beon kept by Lord Napier since 1821, of which the following are the results. Thirlestane castle is situated in W. Long. $S^{\circ} 9^{\prime}$, and in N. Lat. $55^{\circ} 26^{\circ}$.

Mcan Temp.		Mesm temperature of			Autumn.
		Winter.	Spring.	Summer.	
1821	$44^{\circ} 9$	36°	$42^{\circ} 3$	54° S	$47^{\circ} 3$
1822	$45^{\circ} 4$	$36^{\circ} 3$	$43^{\circ} 9$	$56^{\circ} 9$	$44^{\circ} 9$
1823	$40^{\circ} 7$	$35^{\circ} 3$	41°	52°	$46^{\circ} 5$
1824	$42^{\circ} 2$	$35^{\circ} 7$	39°	52°	$42^{\circ} 3$
Mean	$44^{\circ} 05$	$35^{\circ} \mathrm{s}$	$41^{\circ} 55$	$53^{\circ} \mathrm{8}$	$45^{\circ} 25$

Frosty mornings are prevalent even until the first of June, and it is only in rare seasons that the carly varieties of apples and pears ripen properly. But in the valley of the Tweed, and the vicinity of Galashicls, which is lower and better sheltered, the temperature is greater; here there is less rain than its clevation and mountainous neighbourhood might seem to warrant, and of late years, when the summers have been warmer, plumbs, peaches, and even nectarines, have come to good llaborr. Iluwever, there are reasons for thinkingt this may be attributed to the superior care and cultivation oi mudern tines.

Around Sclkirk and Catashiels, even the hills are subjected to the plough. Here wheat is raised even as a cousiderable part of the rotation; and such has been the improvement in the cultivation of the "golden grain," and so well is every process of its management now understoud, that it has often been raised 60 ths . per Winchester bushed, roo leet above sat level. Niden is of mate octurence, and mont is considered a proof of carclessness, awd is still mure seldom to be secre.

In the upper ralleys of Ettrick and Tarrow, tillaçe is confined to the haughs and low ground contignous. Although the attention is chiefy deroted to sheep and cattle, yet as most of the farmers must keep a pair of horses to drive fuch, and secure their crops of hay, they find it proftathe and more convenient to have betwecn 20 and 50 acres in a rotationol tumips, balle,
hay, and oats, which otherwise might perhaps be more economically kept in pasture. for which the moisture and lateness of the climate renders it better adapted. Yet in lavourable seasons, more luxuriant crops ate nowhere to be met with: and, indecd, throughout the county generally, arriculture is as well understood and practised as in any district of the lingdom.

A small stout breed of horses was common to Selkirkshire and Teviotdale in former times, sorne of which were capable of great action, and which, it may be regretted, have been superseded, during the last filty years, by crossing with horses from Lanarkshire, and in consequence, those now used for the plough much resemble that breed, but not so wergh:y and powerful.

There is an excellent breed of cattle, but more fit 'for feeding than for milk," it having been the custom for many years past to purchase the bulls from Northumberland, of a breed perhaps too fine for the wet climate, and exposed pastures. Dairy farming is not practised.
between fifty and sixty years ago, the blackfaced sheep, with coarse wool, were general, excepting on a few of the lowest furms near the meeting of the rivers, and thes were for some time totally changed for the Cheviot breed. In 1793, when Dr: Douglas wrote his excellent surver, the whole number ol sheep in the comnty were about 118,0)", of which 36,0 j. were then backfaced. Ten years ago there were nome. Of late, a few farmers have again had recourse to them, as the low price has rendered the wool the original cause of their banishment) of less consecuence; and on the most upland farme, they are now conlessed to be a surer and more profitable stock. 'There ar: at present about 2300 of the original breed, and they ate likely to be increased. In the meantime. şeat attention and skill is directed to the improvement of both kinds; and this has been stimulated and kept up principally though the benevolent and patriotic cxe:tions of Lord Napier, who, at the cond of the wa:. returning from sea, rebuilt the "mountain home" of his ancestors, and betook himsell to sheep-larminm, as a rational amusement. By his lordship's infuence. a pastoral socicty was formod, which is rery mamerus, inchuding many from the aljoining districts. It has a great anaual meetiag, and dintributes preminn s for the best catte and horses, as well as sheep. It may now safely be arerred, that in no district of Scotland is so much skill and care directed to shep farming. Perhaps, ia some respects, this has befn carricd too far. A great proportione pariculatr of he western part of the county, consisis of a derp soft
clay along the slopes of the hills, and forming the bottom of the narrow valleys. For almost one half the year, this kind of soil was formerly surcharged with water, and it was never in a dry state. A kind of rush called sprett, and a scirpus called pry, (juncus articulutus and scirpi, var. sp.) occupied the ground almost exclusively. These sloping bogs were carefully drained, and another kind of herbage took possession. But the pry is an evergreen, and the sprett begins to spring in the end of April; and so they were found when most wanted. Again, it was discovered that the moles with which the rich dry green pasture was overpun, and amually toplessed, became partial to the newly drained bogs. and tapped the dans, and let out the water. Alole-catchers were introduced from Lancashire; and in twenty years, a mole became as rare as a hedgehog. Some of the old people go the length of saying, that since the bogs were drained, and the moles destroyed, their farms have meither lept so many sheep, nor fed such fat lambs as formerly. Norcover, a vexations disease has, within the same period, been gradually increasing, * ascribed by many to the above causes. But we have not room to be more minute, although the subject is both curious and interesting in many respects. \dagger

The transition series of rocks, and that of remarkable uniformity, prevails throughout the whole of Selkirkslire. It is entirely schistose, consisting of gray wacke and slate, with one interesting exception So be afterwards mentioned. \ddagger The stratification is regular, on a great scale, running fom S. W. to N. E. with various dips. At Newhouse Lymns, about seren miles above Selkirk, where the Etrick has cut its way through the barrier of an ancient lake to the lepth of a hundred feet. the thin strata of gray wacke and soft slate is bent to a curve of more than 220°. The same phenomenon is to be observed on the Yarow below Newark, in the direction of the strata, and about four miles distant. Near the junction of both rivers, the gray wacke contains so much iron that it is of a brownish yellow for a thickness of 800 yards or more. The town of Selkirk is partly founded on another rariety, containing many veins of neary spar. Mountainous masses of leidspar and feldspar-porphyry rest upon the schistose rocks near the junction of the formation. These masses reach zearly in one direction lrom St. Abs's Head to near Selkirk; but do not enter the county. Dirrington Eaws and Colding Knolls in Berwickshire, and Eilden E1月1/s and Whitelaw Kips, consist of this rock. δ
A curions anomaly occers in the N. W. of the coanty. Along the !ofly range already mentioned that separates it from Peeblesshire, there run thick strata of beauiful porphyry of various shades of co--our. from nearly hlood-red to brownish yellow. It is buesed first ox crlying the clay slate that has been
long wrought for sale at Grieston, a mile west from Traquair. The direction is through the centre of Windlestrxlaw. The schistus and it continue overlying one another for a distance of nearly three miles across; the most southerly porphyry being near Hollylee. But what renders this more interesting, there is found alternating, with this porphyry thin strata of flinty slate, clear gray porphyry, gneis, and granite. Now stratified granite is mentioned by Prolessor Playfair, as having been discovered by Sir James Hall and himself in Fasuct Water in Lammermoor, and he mentions it as having been found likewise at Loch Ken in Galloway. There is therefore great probability that the granite and gneis of these three places are a continuation of the same strata, for the intermediate point is nearly in a line with the other two, and not far from the line of direction of the under and overlying slate and gray wacke. The flinty slate has been observed in glens connected with the bead of the Yarrow in the requisite direction. Both the later and the gray porphyry are of great hardness; the porphyry ringing like metal when struck on a large block, and taking a high polish, and the slate giving fire with steel. Sometimes the gray wacke runs into amygdaloid, and veins of black carbonaceous slate, intermixed with pyrites, occur in divers places. Pieces ol' insulated galena have been found in the course of the porphyretic strata near Traquair, and trials to find lead have been made repeatedly without success. A considerable quantity of ore of antimony was found in digging a well at Traquair manse. No limestone has yer been discovered, but in two or three places there are springs supersaturated with carbonate of lime, and generally in lines, indicating, that in their way to the surface they pass over considerable masses of calcareous rock.

Probably owing to the uniformity of the rocky structure, the botany of the district is likewise very uniform. Notwithstanding that the mountains rise to a considerable eleration, few alpine plants are found. The Rubus Chumemorus is plentiful in several places in the massy hollows between the higher summits, Sedum cchephium, Saxifragu stellaris and Oppositifolia, are met with near the limits of the country with Dumiriesshire. The more rare plants in the district are Circeal ulpina, in the shingle on s. E. verge of St. Ma:y's Loch, C: Luttionn, near Gled-des-weel on Tweedside; Trollius Emopeus, and Conicus heterophylhes, in a bushy clough falling into Douglas burn; Drosera rotomdifolie, in Deucher hope; Thalicterm alpinum, at Newhouse lymas; Sedum villosum, Douglas burn; Itydrocolyle culgeris, below Oakwood; Md hampyrum syluaticem, in Newhouse-bank and on Glen heights.

The remains of the ancient natural woods, of which, including the bosky cleughs in the uplands,

[^5]there is not more than 600 or 700 acres in all, are made up of oak, ash, elm, (montemns.) birch, alder, hagberry, (P. pethes) holly, slocthorn, hawthorn, hazle, mountain ash, aspin (rare) ivy, honeysuckle, and four or five species of roses, and a number of willows. Sometimes a solitary mountain ash has ontived its cotemporaries, and is found over:shadowing a rocky cleugh, 1500 , and in one solitary instance, even near 2000 feet above sea level. Travellers who attend to such matters have often been struck with the numbers of targe and ancient hollies which remain along the steep and shingly faces of the tills on the north side of the 'Tweed, from Yair to LIollylee, with here and there a haw horn, semingly of equal furation, where a modern hedge of either could hardly be raised in a lifetime even with great trouble and expense.

Since the draining of the bogs along the sides of the higher valleys, which were covered formerly with Juncus arliculatus and carices, these plants have given place to Aira cespitosa and some Agrostidie on the clay, and groves of tall C'ardens Polestris on the mossy ground. The latter is a valuable acquisition to the sheep in late springs, when they scoop out the roots even an inch or two below the surface; but the former allhough an evergreen, they seem to refuse on such soils as this aliosether, probably because it has got up with too rank luxuriance. As a remedy, some farmers have tried burning it in spring, some mowing in early summer for hay, and some have stopt the drains that they may rather have the Jencus and cariees the former inhabitants."

Little can now be said of the wild animals of Ettrick Forest. It is likeiy that in ancient times the Urus had been common, for skulls of that animal have frequently been fomd in the marl mosses along with those of the stag, \dagger and another extinct species of deer with palmated antlers, of a size which seem to indicate the bearers to have been as large as a blood horse. 1 The wolf and the wild boar had beencommon, for several places bear their nanes to this day. Foxes in the memory of old people were very destructive, but now few of them ceen attack lambs. The wild eat is nearly if not altogether extinct.

Two species of mice have occasionally been met with, which as yet have been overlooked by scientific naturalists. One inbalits the tops of the highest mountains, is a little larger than the Alus syludicus. The fur lias a silky softness and lustre, and as the animal is turned round it falls open by its weight in a shed alons the body, being apparently attached to the skin by a filament of extraordinary fineness and clasticity. The other is ol'a size between his and the Mus aquatious, has, like them, a short tail and ears; the tail tipped with white. It has very large strong grooved semicircular teeth, and inhabits the low grounds, but is extremely rare. Only three have been observet, one of which, when ruming, stopped
at times and stood upright with its fore paws over its eyes like a weasel or syuirrel. It was known and distinguished by a mole catcher, who hat sometimes, at though rarely, canght it in his traps. Rabbits sem to have grahnally ascented the rivers, and in the bower part of the county bave increased so much as to have become a muisance.

Bieds, migratory and resident, are similar to those of the adjoining districts. The black srouse was not uncommon seventy or cighty years aso, but from some unknown cause left this part of the comatry, but were again introduced as well as pheasants by the late Duke of Buccleugh, both of which have become uncommonly numerons. Partridges and hares are plentiful, and red grouse or minfoult remarkably so on the heathy grounds. The green and grey plover are likewise common, but not so the woorlcock. The dotterel sometimes breeds on the higher mountains adjoining I'eeblesshise. There is hardly such a sariety of small bieds as in the neighbouring counties.

Salmon, grils, whitling, many subspecies of trout, lampreys, ecls, pike, minows, barbels, sticklebacks. are found in the rivers, but fir from so numerous as Jormerly: and pike, percl, eels, and some excellent varieties of trout inhabit the fochs.

In ancient times, the sherifflom of Selkirk was known by the general name of The Forest. or sometimes Ettrick Forest, although in the oldest deeds relating to it, it appears to have been divided into Selkirk Forest, Ettrick Forest, and the Forest of Traquaire or Strathquaire, and is so designated by Robert I. when he made a grant of the lands to the famous Sir James Douglas. Upon the attainture of the family of Douglas in 1455, these foreses were again annexed to the crown, in the immediate possession of which and of its tenants they remained until alienated by royal charter after the restoration. We find that upon the 24th May 1503, James IV. granted the forest of Ettrick and the town of Newark as dower to his queen Margaret of England. In 1529, we hind from Leslic that James V. had 10,000 sheep \cdot - going in the Etrick Forest, in kecping by Andrew Bell. who made the king so rool count of them as they hat gone in the bounds of Fife."

In consequence of the whole county being anciently the property of the king, or of the Abbey of Aletrose, the proprietors hold their lands by charter fromr the crown. Two-thirds belong to the Duke of Buccleugh, the rest is divided among twenty-seren other freeholders. The valued rent is E 80, ,507. 1 ss. 6 d . Scottish money; and in 1812, the real rent was £41, 160,10 s. sterling. The land remt was then divided among forty-four estates, nine of which were above $\mathscr{L} 2000$ Scots, twenty between $£ 2000$ and $\mathbb{E} 50 n$. and fiftecn below $\mathfrak{£} 500$. About wo-fifths of the county is under entail.

The office of sheriff was hereditary in the ancient

[^6]famity of Murray of Philliphaugh. Sir Walter Scott was deputed to that office in 1801.

The principal towns in Selkirkshire are Selkirk, already described, and Galashiels, one half of which nearly is in Roxburghshire. Galashiels is situated on the south bank of the river Gala, with the exception of a part of it called Buckholm side, which stands on the north bank, and is in Roxburghshire. It is a neat thriving town, and contains many good and substantial houses, most of which are covered with slate. A new street, containing many handsome houses, has been just finished (1828,) facing the Gala. The Gala is here crossed by two bridges, one of stone, and the other a private suspension one of iron wire, which was the first that was erected in liritain. The merit of the construction is due to Mr. Richard Lees, an extensive woollen manufacturer, whose works are sithated on both sides of the Giala, and who conceived the idea of constructing a foot bridge to form a communication between them. It was accordingly erected in November 1816. The length is 111 feet, and it cost 240. Galashiels has been long celebrated for its woollen manufactures, which being at first very coarse, and of a grey colonr, were known throughout Scotland by the rame ol " Galashiels Grey." Broad cloths, lowever, of crery degree of fineness have been for some years manufactured in the town. A considerable quantity of the wool produced in the country is manufactured at Galashiels. Water power is employed. The parish church of Galashiels is a neat modern building. There is also a Relicf meeting house in the town.

There are very few objects of antiquity in this county. In the eastern part of it there are the remains of seven British stations, erected upon heights, and having a slightly elliptical lorm; and in the midst of several of these there is a Roman camp in the parish of Roberton. One of the most remarkable remains of the Britons is the battle fence or "Catrail," which consists of a large fence with a rampart on both sides. It is about 28 miles long, and its construction can only be reliered to the Romanised Brituns, who, after the departure of the Romans, were obliged to defond the coantry from the invasion of the Saxons on the east during the fifth century. Some of the fuined castles and moss grown towers, erected some of them in the 12 ch century, are not of sulficient interest to merit description.

The population seems to have increased since Dr. Vichoster's return in 1755, as Collows:

1755	$:$	4622
1793	$:$	$4646 *$
1811	$:$	6143
1821	$:$	6637

Sblitzer Whier. See Mherat Waters.
blinAliA, a gold mine in lambouk, is a small hill abont 200 leet high, and 5000 in circuit, The gold occurs in a reddish sandstone, and also in a sofid bed of red marble. Though the richest mine, therefore, in Bambouk, it is of secondary value. See Bamboek.

SEMENDRLA, the name of a town and fortress of Duropean Turkey, in Servia. It stands on the south
side of the Danube, and is defended by an old eastle. It was once the residence of the kings of Servia. Population 9000; east longitude, $20^{\circ}, 41^{\prime}$, north latitude, $44^{\circ}, 52^{\prime}$.
SEMIPADIIS. See Assyria.
SEMLIN, a town of Sclavonia, near the confluence of the Save and the Danube. It is the seat of the transit trade between Turkey and Selavonia. The archbishop of the Greek church resides here, and the Austrian commander of the frontier military district. Population 8000 .
sLENECA, Lucius Anveus, a celebrated ancient philosopher, was born at Corduba in Spain. about the beginning of the Christian era. He was elueated at Rome, and his father, who was himself eminent as an orator, instructed him in the study of eloguence. The study of philosophy, however, soon engrossed all his attention, and though he at first joined the Pythagorean sect, yet he afterwards connected himself more closely with the Stoics. He had açuired considerable reputation at the bar, but it is said that he relinguished it out of fear of the vengeance ol' Caligula, who was himsellambitious of rhetorical fame. Having obtained the office of questor, and risen to distiaction in the court of Claudins, he was accused by Messalina of an adulterous comection with Julia, the daughter of Germanicus, and was sent to Corsica, where he spent eight years in cxile. All the philosophy which he had acquired could not inspire him with resignation and patience, and he is said to have complained of his lot, and even to have made abject application to the Emperor for pardon.

When Claudius married his second wife Agrippina, Seneca was, at her reguest, recalled from banishment, and aftel being elcrated to the pratorship, he was appointed tutor to her son Nero. As the accoumt of his political life has been already given under our article Roman Empine, we have only to add that, being commanded by Nero to put an end to his existence, he expired, by opening his veins, in the year 65. His wife, Paulina, had refused every consolation, and had resolved to die the same death with her husband; she had even opened her veins; but the Emperor would not allow her this comfort, and she never recovered from the loss of blood which she had suffered before the arrival of the imperial prohibition.

From the great monificence of Nero, Seneea acquired prodigious wealth. He possessed innumerable villas. Ilis house and garden were the most splendid in Rome, and he had money laid out at interest in every part of the world. If we believe Dio, he had no less than $£ 250,000$ sterling at interest in Britain, and the calling in of this sum is said to lave been one of the causes of a war with that nation. In the midst of all this wealth, however, Seneca led an abstemiots and quiet life.

The philosophical works of Seneea consist of 126 Epistles, and of separate treatises on Consolation, Anger, Providence, Tranquillity of Mind, Constancy, Clemency, the Shortness of Life, a llappy Life, Retirement, and Benefits. His treatise on Consolation was written in Corsica, and was addressed to his mother, Helvia, and his friend Polybius. The tragedies extant under his name, are supposed by some to have
been written for amusement during his exile, as he himsell says, modo se levioribus stuliis iti oblectusse; but they are generally supposed not to be his. The 17 Epistles from Seneca to St. Panl are obviously spurious. The last editions of his philosophical works are those of Lipsius, the Variorum, 3 vols. 8 vo. the Leipsic, 2 vols. 8ro. and the bipontinc edition. His seven vols. of Natural Questions, included in this edition, contain some curious observations on Egypt and the Nike, which makes it probable that he had travelled in the carly part of his life.

[^7] being traversed 65 miles $b y$ the Erie canal, and from Leing the drain of the lake region of the western part of New York. The valley of the Seneca is, perhaps, as a body of productive soil unsurpassed, and cmbracing about 3600 sguare miles, sweeps over great part of the comnties ol Ontario, Wayne, Lutes, Tomkins, Seneca, Cayuga, Courthad and Onondago connties. This region contains the saline tract of Onondago, though otherwise not very productive in minerals, though gypsum has been discorered. Creographically it extends from N. lat. $42^{\circ} 15^{\prime}$ to $43^{\circ} 12^{\prime}$, and is traversed between the Crooked and Seneca lakes by the meridian of Washiugton City. In regard to climate the Seneca valley is remarkable as sloping from south to north. 'The surface of Crooked lake is a sma!l fraction above 700 feet, whilst the junction of the Seneca and Oneida rivers rises only about 200 above the ocean level. The country dramed by the sources of Crooked, Seneca, and Cayuga lakes is elevated upwards of one thousand feet abore the tide levelinlludson, consequently the higher and lower extremes of the Sencea ralley differ in temperature above two degrees ol Fahrenheit lirom mere relative height, and gives a more rigorous climate to the southern than to the northern border. See next Article.

SENEC A, lake of the United States in New York, extending in a direction of nearly north and south, from N. lat. $42^{\circ} 23^{\prime}$ to $42^{\circ} 54^{\prime}$, and nearly on the meridian of Washington City. It is 36 miles long, and from $1 \frac{1}{2}$ to $2 \frac{1}{2}$ miles wide, with depth sufficient
for the navigation of large vessels. The sources of this lake are some small creeks of Yates, Steuben, and 'Tioga commties of New York, rising on a comparatively elevated table land and rushing from ledero (o) ledge soosi libls w the level of the lake, 4.5 lieet above that of the ocean. The waters of Seneca are discharged lrom its northeast angle, and in a course of 12 miles and fall of $12+$ feet reaches the level and are lost in the northern extremity of Cayuga lake.

The countryadjacent to both these lakes, and indeed the whole surface composing the southern part of the Seneca valley, exhibit a series of high, bollly swell. ing thongh seldom precipitous hills, extending from SE. by S. to NV. by N., nearly parallel to the lakes. The intervening valleys are evidently mere continualions of those of the lakes themselves, giving to that section of New Vork a very peculiar physiognomy. From the head of Seneca lake at the mouth of Catherince creek, to Newtown ot the Chemung branch of Susquehmmah, is in a direet line 20 miles, and thongh the circumjacent hills rise to upwards of one thousand, the summit level between the points is only 885 leet above the oceanic level. A canal of practicable execution, has been projected to unite the Seneca lake to the Chemung river by the designated route.

Politically, Seneca lake tonches Tioga county south; has Tomkins and the southern part ol Seneca county along its eastern, and Steuben, lates, and the southcastern part of Ontario along the western border. The fine picturesque village of Geneva, traversed by the meridian of TVashington City, stands on the northwest angle of Seneca lake, and is one of the very few borrowed names of places in the United States which has an appropriate local application.

SENECA, county ol New lork, bounded N. by Vayne county, NE. by Seneca river, li. by Cayuga lake, S. by "omkins county, W. by Seneca lake, and NW. by Ontario county. Length 32 , and varying in Widnh from 6 to 12 miles; area about 300 square miles. The sonthern part high and hilly, between the Seneca and Cayura lakes; northera traversed by the Clyde branch of sencea river, comparatively level. Soil fertife, and in its natural state covered by a dense forest. Chiet villages Ovid and Waterloo: the former in the sonthern part, and latier on the outlet ol Seneca lake.

Central lat. $12^{\circ} 50$ N. Central long. 10^{\prime} E. from Washiagton City. The principal waters of this county have been given in the delincation of its boundaries, and it may suffice to observe, that from its limited breadth and having the two fane lakes of Seneca and Cayuga as its castern and western limits, traversed by the outlet of the former, and on its north-eastern angle by the Frie canal, that Seneca county of New lurk is one of the most navigable inland counties of the Cnited States.
SENECA, county of Ohio, on both sides of Sandusky river, having Sandusky county N., WoodNW., Hancock SWV., Crawford S., and Huron E. Length from west to east 30 , breadth 18 miles, and area 5 : square miles. Chief village or seat of justice Tiffir. Centrallat. $41^{\circ} 08^{\prime} \lambda$. Long. W. from Washington City $6^{\circ} 12^{\prime}$. Face of the country level or gently waring, soil fertile. In great part unsettled. Dakby.

[^8]already briefly described in our article Parsteal. Geography. The early part of its collse, and of its tributaries, is througls a rugged country, intersected by numerous rivers and streams, whose sands contain mach gold dust, which is extracted by the women by the process of agitation. For a distance of about 69 leagucs from its mouth, below Podor. its descent is said not to exceed tro and a hall fect. It is here bordered by rast woods, the residence of monkeys and parrots of all kinds. The entrance of the river is delended by a formidable bar of sand, a little under water. Belore it throws itself into the sea, it forms the Isle of Senegal in St. Louis, alount 1000 paces long, and 60 broad. The eastera branch of the river is here about 800 yards across, and the western one from 100 to 400 yards.
SENEGAL, Goyrnment of, is the name given by the French to their settement on the island, at the mouth of the above river. This settement was founded in 1635, under Louis XIV. and the fort thas receised the name of Fort Louis. Although the island is merely a mass of white and burning sand, constant1y in motion, set its securit; from attack recommended it as the site of the colony. The streets, which are regular, consist of huts or thatched cottages, among which are some flat roofed houses of stone. As the island is perfectly baren, it is supplied with every thing from the continent.
In 1787 , the white inhabitants amounted to about 60, and the military to abont goo. The free Mulato and Negro population was estimated at 2400 , and the domestic and habouring slaves at 2400 . These, with $t 200$ negroes always ready for embarliation to the West Indies, constituted a population of abour 6000 .
As gum Senegal has been found superior to all other gums, it is one of the principal objects of commerce at Fort Louis. The forests of Acacia. From which this gum exudes, are called Sabel, Al Fatack, and El llicbar, the first producing the white gum, which is the most esteemed, and the uther two the red gum. The trees are about 18 or 20 feet high, and three feet round. The gum begins to exude about the toth of Norember, when the periodical rains are over. No incision is needed, but the gum lows from the cracks in the bark, and generally in drops about the size of a partridge's egg. Thesc drops are always transparent and brilliant at the part where they are broken off; and when they have been in the mouth it lew seconds, they have all the limpidity of purc quartz.

Early in December the Noors leave their habitations in the desert to the care of old men, and a few servants to tend the catte, and set out in a turiultuons cavaleade of horsemen, camel drivers, and pedesnitus. They then encamp, on the borders of the gum forest, and, during a harvest of about six weeks, they fill their kathern sacks with the gum.

The great glm tair is hell on a desolate plain of White and moving sands on the north bank of the Sebegab, between b'odor and St. Louis. The lrench merchants repair thather wat the arrival of the Atoers. On the morning of the fair a conlused and distant neise is first heard, and abont noon the whole flan is covered with an army of mon, camels, oxen, and goats, surromeded with clonds of dust, with all dowhbugage, wives, and chathen. The kings are nomeded then hones, and theis wives are carted
on a few chosen camels, highly caparisoned. A band of Mours, equipped with muskets and lances, escort this morinskingdom. When the tumult of the assemblage has sabsided, and their camps failly pitched, a camon is fired as a signal for the commencement of the fair. Lies and threats of all kinds are employel by the Moors to obtain a high price for their gum, for which they receise in exchange East India cotton goods called pieces ol Guinea. Between 1785 and 1787 the French obtained 800,000 bs. of gram exclusive of 400,000 carried to Purtendick, and sold to the English. It is sold in kantars of about 500 lbs . and costs about two-pence per pound.

In 1786, there were exported from Senegal cloves valued at $2,640,000$ livers, gold valued at $90,000 \mathrm{li}$ rres, and ivory and miscellaneous articles valued at 130.000 livres.

In 1756 this colony was taken by Britain, and was afterwarls ceded to us in 1763. The French, however. retook it in 1759, and were allowed to retain it till the peace of 1783. They again lost it during the revolutionary war, but it was celled to them at the restoration of the Bourbons.

Senni. Sce Materia Medica.

SENNAAR, one of the divisions of Nubia in eastern Africa, is bounded by Abyssinia on the east and south, on the west by Darliur, and on the north by Dongola and the independent districts of Nubia. The part of Semaar between the Nile and the river Tacazze formed what was called by the ancients the Island of Meroc.

The kingdom of Semaar was founded in 1504 by a body of Shillock negroes. It has thece principal goverments tributary to it, viz. El-aice or Alleis, Kordofir, and Fazucio.
Ef-aice, including the origimal country of the Shillock Negroes. The Bahr-el-abiad spreads itself over the turritory, and by a great number of small channels it forms mumerous litte islands. on eath of which is a village, the union of which constitutes the town of Et-aice. The inhabitants, Leing all fishermen, possess a number of boats like canoes, in which they sail up and down to the cataracts. It was by means of these boats that the Shillock Negroes succeeded in conguering the Arabs in 1504.

Nordofan is next in importance to El-aice. The revenue consists chicfly in the slaves which are procured from Dyre and Tegla. Being nearest to Darfur, it has often been taken from Semaar and retaken.

Fazuclo is bounded on the west by the river El-aice, and on the east by the Nile, and on the south by the mom tains of Fazuclo, where the great cataracts are. The greater part of the revenue of Fazucto is derived from grod obsaned from the mometains.

The tertitory of Sematar is remarkably fertile to a considerabic distance from the banks of the riter. In the rainy season, about the end of August, the appearance is delightat, the corn springs ip, and the whote country appears a level green park, imterspersed with lakes, and decorated with grouph of villages. Through this immense plain llows the Nile, above a mile broad and full to the very brim. Upon the cessation ol the rains the Dhoura ripens, the lakes become putrid and full of vermin, and poisonous winds, and burning sands, and sultry basts desolate the plain.
The principal places are Scmaar the capital, and

Halfaia, a large, handsome, and pleasant town, built with clay, in north lat. $15^{\circ} 45^{\prime} 54^{\prime \prime}$, and cast hy $32^{\prime \prime}$ 49'15". The houses are terraced at the top, and are about 300 in number. It stands upon a large circular peninsula, and surrounded by the Nile, which is about half a mile from the town. It derives its principal support from a manufacture of coarse colton cloths, which serve lur small money throughout the lower parts of Atbara. The people eat cats, and also the sea horse and crocodile. Their salt is extracted from the earth. Aira is another place about three or lour miles from Semmar; it is surrounded with white sand which is sown with millet. Shaddly, about twelve: miles to the north north west ol Semmar, is a collection of villages; it received its name from a saint, who directed large pits to be dug, and plastered closely up with clay, for the purpose of being filled with grain when it was cheapest. 'These pits, called matumores, were plastered up at top. They occur in great numbers throughout the plain, and when there is any prospect of corn frowing dear, they are opened, and the corn sold at a low price. Abont 24 miles to the north of Shaddly, is another more extensive establishment of the same lind, called Wed-aboud.

To the westward of Shatdly and Aboud, as far as the Abiad or El-aice, the country is covered with trees, which makes it an excellent station lor camels. Near Shaddly are two momatain districts, viz. JibbelMoia, or the mountains of water, and Jibbel-Segod, or the Gold Momntains; the lirst is a considerable ridge of hills closely united and of the same height, and the second is a broken ridge, unequal and irregular. They are full of inhabitatuts, who enjoy a fine climate.

The dress ol the people of Semmar consists of a long shirt of blue cotton cloth, which reaches to the feet, and the unly difference between that of the men and women is, that the men have the neck left bare, while the others have a shirt neck, which is buttoned like ours. Both men and women go barelooted in the house. They anoint themselves, at least once a day, with camels' grease, mixed with civet, and they sleep all night upon a bull's hide, and in a shirt dipped in grease.

Bread of flour or millet, is the dict of the poorer sort. The hormed cattle are the largest and finest in the world, and are very fine, but camels' flesh is the common meat sold in the market. The liver ol the camel, and the spare rib are universally caten raw. Hogs' flesh, though not sold in the market, is pub. liely eaten.

Dysenteries, intermitent ferer, epileptic and scirrhous livers are the principal diseases. The small pox is sometimes 12 or 15 years absent. They have a process of inoculation called buying the small pox.

The county has very little trade; the principal article of consumption is the blue cotton cloth from Surat. Their commerce consists chiefly in exchanging the productions of the interior of Africa with those of Arabia and Egypt. The articles from Africa are gold dust called 'libber, civet, Rhinoceros' horns, ivory, ostriches' feathers, glass and slaves. The gold is deemed the finest and best in Africa. They receire also spices, hardware, and toys, particularly black beads from Venice.

SLNNAAR, a city of Africa, and the capital of the above kiugdom, is situated on the banks of the

Bahree Azrek, a riser ol Abyssinia, about zon miles before it falls into the Abiad, or chiel brathe he the Nile. The houses are poorly built, consistine mer. of clay intermixed with a little straw. They are all one story high, exerept those of the ollicers of statc, which are two stories hisfh. They have llat parapet roofs, though in other parts of the kingdom the rools are conical to keep oll the heavy rains. The palace is encircled with a lofty brick wall, but the buildinges which compose it hate neither order nor beatty. Splendid carpets are among theirprincipalomaments. Mr. Bruce has recorded the very simsular lact, that neither horses, mules, asses, nor any domestic animal was bred in the town, or in any district scrual miles round it. Few of these animals can live there all the year round, but must be carried every half year to the sands, distant about four miles. At this place, Adelan, the actuat ruler, kept his stud in grood condition. A dreadful malady also prevails among the chitden: and it is saicl that there is a constant importation of slaves from the south in order to keep up the population. When the river overllows its banks, the houses near its banks are inundated, and are gencrally destroyed in consequence ol the melting of the clay walls. Population about 160,000 . The thermomete: is said by Bruce to rise sometimes to 119° in the shade. East long. $33^{\circ} 30^{\prime} 30^{\prime \prime}$. North lat. $13^{\circ} 31^{\prime} 36^{\prime \prime}$. See Bruce's Tranels.

SENS, a town of France, in the department of the Yonne, is agreeably situated on the slope of a hill, and is watered by the Yonne and the Vaune. Belore the Revolution it was the see of an archbishop, and contained 16 l'arish churehes, and 14 abbeys and convents. The cathedral is a very fine piece ol architecture, and its interior has been much admired. It contains the tomb of the dauphin, son of Louis XV., and that of Chancellor Dupradt. There is a library and museum belonging to the college. It carries on a trade in wine, corn, wood, coal, and hemp. Population 9000.

SEQUATCHE, small river of the United States in Tennessee, rises in Bledsoc, and lowing thence into Marion, which latter it traverses, and crossing the boundary line between Tennessee and Georgia, enters Tennessee tirer on the extreme northern border of the latter, alter a comparitive course ol sixty miles. It is a mountain stream, rising and flowing between two lateral ridges ol Cumberland mountain. Darei.

SERAMPORE, a town of Bengal belonging to Denmark. It is agreeably situated on the west bank of the Dhagarutti or llougly river. The territory which belongs to it is about a mie long and hall a mile broad, stretching along the banks of the river. The houses are seldom above two stories high, and are built of brick, and plastered with mortar. They have balconies, Venetian windows, and flat roofs. it handsome church is the principal public building. The town is not fortifed; but there is near the llagstaff a battery of 12 pieces of camon. A very uriffing trade is carried on between this place and China and Europe. Being a sanctuary for creditors, which are British subjects, it is priacipally supported by them and by the missionaries. East long. $89^{\circ} 26^{\prime}$. North lat. $22^{\circ} 45^{\prime}$.

SERIES.

Sommes, in Murysis. is a number of quantities arrasoded in a certam order or succession, and so relater! that each succeeciins quantity may be known from these which precede it.

The quantities which compose a strics are called its tornks, and that relation which is observable among *hetein, by which they may bu successively determined, is catted the luni of the seize s.
Series are denominated, according io the nature of

$$
\begin{array}{lll}
1, & 2, & \frac{1}{2}, \text { sc. } \\
\text { i, } & \frac{1}{2}, & \frac{1}{3}, \\
\frac{1}{4}, \text { sc. }
\end{array}
$$

trenumerical serics, and

$$
\begin{array}{cccc}
r^{3}, & x^{3}, & x^{2}, \text { Eट. } \\
\frac{1}{n}, & \frac{b^{2}}{a^{2}}, & \frac{b^{3}}{a^{3}}, & \frac{5 c c}{a^{3}}
\end{array}
$$

are alsormatal series.
The lary of these series are searally obrious upor inspection, and there is no difioculty in continuing them to any"nmber of tems.
soriea are vanimsty denominated in reference io theis lomas.

An writhurtiont grrire is one in which each term is found ! \because und ding to or suxtracting trom the precedins iom the sume ruantity. Such are the followin:

$$
\begin{aligned}
& \begin{array}{llll}
\text { i, } & 2, & 3, & 4, \\
\therefore, & \ddots & \text { o. } & 12, \\
\text { inc. }
\end{array} \\
& n, n+d, a+2 d, a+3 n, \text {, ác. } \\
& \text { (},\|-l,\|-2 d, \|-3 d, \text { \& }
\end{aligned}
$$

A eromptrirn! briter is ane in which each term is fund by matiolyiar the procedins torm by the samu Juantity. Such are the lollomins:

$$
\begin{aligned}
& 2 . \quad 4, \quad \text { If. isc. } \\
& \text { ". Hit, "It. "I • Ec. }
\end{aligned}
$$

a Som: the mutipiter in tho former, and or the $1+\cdots e r$.

In liammand ariey is one in which the reciprocal of each term is found by adding 1 , or subtracting from the reciprocal of the preading term the same 'stantily Suchare

$$
\begin{aligned}
& 1, \frac{1}{i}, \frac{1}{3}, \frac{1}{4}, \text { isc. } \\
& \frac{h}{4}, \frac{b}{\pi+b}, \frac{h}{a+i l}, \frac{h}{n+3 l}, \text { isc. }
\end{aligned}
$$

the ruantity added heing 1 in the former, and $\frac{d}{b}$ in the latier.

Thene three series are commonly called proseressions. Fior a detaited account of their properties, see dorot-mzs.

A renerrints suires is a seneral class, of which a ferometrical scries is a praticular example. As each trom of a seometrical saries is produced by multiWhars the precerding term by a constant quantity, so in a recurring series sach erom is fouml is multiplyings a rertain mumber of the terms which immediately frecerle it by as many constant ruantities. Thus let \therefore and I be any two successive terms of a recurring series, and hit it and b bethe constant multipliers, the
next term will be $\boldsymbol{A}+\boldsymbol{d}$ B. Let this be called C, that is, let $\theta-B \div B=C$; then the succecding icrm is a $B+b \mathrm{C}$.. ggain, let $a \mathrm{~B}+b \mathrm{C}=\mathrm{D}$, and the following term i, a $\mathrm{C}+\ell \mathrm{D}$. and so on.

In like manner, if the series be produced by three constant multipliers, each term may be found from We thee terms which immediately precede it. Let d. Li, and C, be the three consecutise terms, r, b, c, the three constant multipliers. and let I, E, I. ©e. be the terms which immediatel: succeed C. Then be lave

$$
\begin{aligned}
& \mathrm{D}=a \mathrm{I}+b \mathrm{~B}+c \mathrm{C} \\
& \mathrm{~B}=a \mathrm{~B}+b \mathrm{C}+c \mathrm{D} \\
& \mathrm{I}=a \mathrm{C}+b \mathrm{D}+c \mathrm{~B} \\
&-=- \\
&-=-
\end{aligned}
$$

and the process would be similar if the series were senerated by four or more constant multipliers.

In a recurbins series the system of constant multipliers is called the scule of relution, and the series is suid to be atemorins series of the first, second, third, or min order, according as the number of constant multipliers in the scale of relation is $1,2,3$, or m.

It is evident that a recurring series of the first order is a beometrical stries.

When powers of the same letter or species enter all the terms of a series as factors, the series is called an ascradines or deserndine serics with respect to this quantits. according as the exponents of the power increase or decrease. Thus the following is an ascending serics with respect to x, and a descending one with respect io a.

$$
a^{12}, a^{2 n},-1, a^{n},-2 x^{2}, a^{\pi},-3 x^{3}, a x c .
$$

The seratel torm of a scries is an algebraical formula, which is usually a function of the quantities which are ensaged in the series, and a general symbol n, dencing the place of any serm or its numerical order relatively to some term which is considered as the first term of the series. or the point of depar:ure to which the places of all the other terms are referred. Thus in the last example, if (am be considered as the first term, it appears that the number which is subtracted lrom m in the exponent of a in each term is equal to the number of preceding terms, and therelore is one less than the number which denotes the place of the term itself: and the exponent of x in each term is the number which is subtracted from m in the exponent of a in the same term. Thas if n denote the numerical order of any term T, we have $n_{n}-(n-1)_{n-1}$
$\mathrm{I}=u \quad \underset{ }{\prime}$.
It is obvious that the formula which expresses the general term of a scries also expresses its lum, and that the terms of the series may be found by substitut ing the successive integers 1, 2, 3, wic. for n in this formula.

The terms of a scrics are gencrally connected together by the algebraical signs + or -, and it is to the whole thus connected that the term series is applicd.

A scries generally arises from some analytical process to which a function or formula has bcen submit-
led, and this process is called derolnpment; the funte formula is said to be docalopert, and the resultinis serios is called its divelopment.

There are severisl metheslofof development arlapted to the various forms which fractions may assume. The principal and the mest penerisl of these are the method of indelorminete rodfirients and the theorem of Cagrange. Under the lateer is compratiented geveral methods which aresemetmes romumeratel sparately: such as, the mothese of division, the binomat thersrem, 'Iaylor's theorem, Maclaurin's theorem, éce. These metheds the reater will find explatined in the
 rations of taese processes will atse be fondod ith several of nur mathematical atticles, as, "Inoonotoneabi, Looranhtass, sxc.

The summution of a serives is that proremg ley whicta the algerbeaical sum of any number of its lewme or -ven of the whole series eranturest al irgeritum, may be found.

 athalyses, frem the time of Walles, whe serem dirse w
 which its importance dematela, bo the preant diss. Say detailed arocount of theor varions motherts of summation, which ha:c: bown properasel by mexto in
 fonet it expectient to imporse on soch a diacuagion in
 fi:w examples, bllustratibe of "rane of the primeripal mectionds.

 loring supuasrel infurite.

Wet the scticy be expereasm! tha,

$$
\frac{1}{a+\frac{1+d}{a r}+\frac{n+\ldots d}{n}+\frac{n-1}{n}+}
$$

$$
\begin{aligned}
& \frac{1}{n r^{2}}+\frac{1}{n,}+\cdots=\frac{d}{u, i}-\frac{d r}{r} \\
& l_{i+}^{l}+\cdots=\frac{l}{a r+a r^{2}}
\end{aligned}
$$

 press this sum by S, we have
$S=\frac{a r}{a^{0}(r-1)}+\frac{d}{a-1}\left\{1+\frac{1}{r}-\frac{1}{r}+\frac{1}{r}+\right\}$
The serime whaten the berarketa. in he wernat mem-
 which $\frac{1}{r}$ is the constant mulipliar. Iisum concinu. ed in influitum, therefore $\frac{T}{r-a}$ Hence we shtain

$$
\begin{aligned}
& S=\frac{\pi r}{\prime \prime}(r-1)+\frac{d r}{n^{\prime}(r-1}, \\
& \text { or's } \begin{array}{c}
\operatorname{ar}(r-11+\operatorname{dr} \\
\text { a'r }-1,2
\end{array}
\end{aligned}
$$

The same methout of eummation may be appolient pe

 summatuon of :rermetrical eratios:

 belu-b:

$$
1+\frac{2}{2}+r^{2}-1
$$

Hatan wefond

$$
+r^{2}+r+\frac{i}{r}+\cdots
$$

llonec

$$
\begin{aligned}
& \frac{1}{2}+2_{2}^{2}+2_{2}^{2}+2+\cdots \\
& 1+2+2+2+\cdots
\end{aligned}
$$

231r! is $8, r, 10$.
 wer, titaro

$$
\frac{1}{r}+r^{2}+r+r_{r}^{6}+\cdots
$$

\qquad
Hencer benemt

$$
\begin{aligned}
& \frac{1}{2}+\frac{r}{2}+\frac{1}{1}+\cdots \\
& 1+3+i
\end{aligned}
$$

and go en.

This method of summation by adlition was proposed by James Bernoulli, in a tract De Seriebus Infinitis, published with his. Ar:s Conjectundi. Bas. 1713.

Another method of summation suggested by the Bernoullis on the same principle, is summation by subtraction. of which the following is an example.

To find the sum of en infinite series of reciprocal triangular numbers. Let the series be

$$
S=\frac{1}{1}+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\cdots
$$

Divide both members by 2 , and we obtain

$$
\begin{aligned}
& \frac{\mathrm{S}}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\cdots \\
& \\
& =\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\cdots \\
& =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots
\end{aligned}
$$

$\therefore \frac{S}{2}=\left\{1+\frac{1}{4}+\frac{1}{3}+\frac{1}{4}+, \& c.\right\}-\left\{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+, \& c.\right\}$

$$
\therefore \frac{\mathrm{S}}{2}=1 \quad \therefore \mathrm{~S}=2
$$

In the preceding examples, we have applied these methods of addition and subtraction only to cases in which the series were continued in infinitrm. We can, however, frequently employ them for the summation of a finite number of terms of a series. Numerous instances of this occur in trigonometry. The following are examples of it.

Ex. To find the srm of the sines of a series of arcs in arithmelical progression.

Let the proposed series be
$\sin A+\sin (A+(x)+\sin (A+2 x)+\cdots$ $\operatorname{Sin}[A+(n-1) x]=S . \quad[1]$
Let both members be multiplied by $-2 \sin \frac{2}{3} x$.

Hence

$-2 \sin \frac{1}{4} x \sin \mathrm{~A}-2 \sin \frac{1}{2} x \sin \left(\mathrm{~A}+{ }^{r}\right)-\sin \frac{1}{2} x \sin (\mathrm{~A}+2 x)-\cdots-2 \sin \frac{1}{4} x\left(\sin [\mathrm{~A}+(n-1) x]=-2 \sin \frac{1}{2} x \cdot \mathrm{~S}\right.$.
Every term of this series is of the form $-2 \sin \frac{1}{4} x \sin (1+m x)$,
and by the principles of trigonometry, we have

$$
-2 \sin \frac{1}{2} x \sin (\mathrm{~A}+m x)=\cos \left(\mathrm{A}+\frac{2 m+1}{2} x\right)-\cos \left(\mathrm{A}+\frac{2 m-1}{2} x\right) .
$$

by substituting successively $0,1,2,3 \ldots(n-1)$, for in in this formula we shall obtain the values of the successive terms of the above series, and it is plain that except the first and last they will mutually destroy each other; so that the result will be

$$
\begin{gathered}
-\cos \left(A-\frac{1}{2} x\right)+\cos \left(A+\frac{2 n+1}{2} x\right)=-2 \sin \frac{1}{2} x \\
\therefore \mathrm{~S} \sin \frac{1}{2} x=\sin \left(A+\frac{n-1}{2} x\right) \sin \frac{n}{2} x \\
\therefore \mathrm{~S}=\frac{\sin \left(A+\frac{n-1}{2} x\right) \sin \frac{n}{2} x}{\sin 2}
\end{gathered}
$$

which is the sum required.
If $\mathrm{t}=x$, the series becomes

$$
\sin x+\sin 2 x+\sin 3 x+\sin n x=\mathrm{S}
$$

and we have

$$
S=\frac{\sin \frac{x+1}{2} r \sin \frac{n}{2} \cdot r}{\sin x}
$$

It will be perceived that the artifice by which the summation of this series has been brought under the methods of addition and subuaction, is by converting it into another series, wey hem of which being double the prodact of ter simes, admits of being resolved into two simple casimes, with diflerent signs. In this casco one of the cosimm into which each term is resolved, destors one of the conines into which the next term is resolved: so that howerer morons the terms of the scries may be, the wat resula can only contain one of the cosines of the first pair, and one of the last pair. If the last cosine cominually diminished or approwhed any value as a limit, as the number of turme in the series increases, we should beentitled to cone hat that the sum of the proposed series continuad wit infinimu. would be experssed by the lirst cosine and the limiting value of he last. If we assume that
the sum of the series is expressed by the first term alone, it is equivalent to assuming that the last term diminishes without limit.

This, however, is not the case; the last cosine alternately increases and diminishes, aud changes its sign as the are changes its relation to an exact multiple of the circumference; and therefore the series increases and decreases alternately, and approaches no limiting state. In other words, the series not being convergent, does not admit of having its sum assigned when the number of its terms are limited.

If r be commensurable with the circumference, or 2π, the series will be periodic: that is, after a certain number of terms, the same terms will continually recur in the same order. Let the least integers in the ratio of x to 2π be $m^{\prime}: n^{\prime}$; so that

$$
n^{\prime} x=z m^{\prime} \tau .
$$

In that ease, when the series [1] has been continued to n^{\prime} terms, the $\left(n^{\prime}+1\right)^{\text {mh }}$, term will be

$$
\sin \left(A+2 m^{\prime} x=\sin \left(A+2 m^{\prime} \tau\right)=\sin A\right.
$$

In like manuer, the fullowing term will be
$\operatorname{Sin}\left[A+\left(n^{\prime}+1\right) x^{\prime}\right]=\sin \left(1+x+2 m^{\prime} 7\right)=\sin (A+x$, which is equal to the second term of the series, and so the terms from the $\left(n^{\prime}+1\right)^{\text {th }}$ to the $2 n^{\text {th }}$ inclusive, will be equal to those from the lirst to the $n^{\text {th }}$ inclusive.
In this case, the value of the period of the series may be found by substitutimg $\frac{2 n^{\prime} \tau}{n^{\prime}}$ for x, and n^{\prime} for n in the value of S, already found; which gives

$$
\mathrm{S}=\frac{\sin \left(A+\frac{\left(n^{\prime}-1\right) m^{\prime} x}{n^{\prime}}\right) \sin m^{\prime} x}{\sin \frac{m^{\prime} x}{n^{\prime}}}
$$

If $\frac{m^{\prime}}{n^{\prime}}$ be not an integer, the value of S must $=0$, for $\sin m^{\prime} r=0$, and $\sin \frac{m^{\prime} \tau}{n^{\prime}}$ cannot $=0$. Therefore, in
this case, the terms of the period matually destroy each other, or the whole period might be divided into two periods, the terms of which differ only in their signs. Hut if $\frac{m^{\prime}}{n^{\prime}}$ be an integer, then $\sin \frac{m^{\prime}}{n^{\prime}} r=0$; and the value of S assumes the form $\frac{0}{0}$. In this case x is an exact multiple of the cireumference, and the terms of the series are all equal to sin A , which is itself the period.

One meanine of "the sum of a periodic series continued al infinitum," would evidentiy be the product of the value of the period, and an infinite interger, or the period added to itself rel inf. It may, however, be considered, that if continued al inf. cevery term of the period has as strong a clam as its last term to be considered as the last term of the series. The sum ol a periodic series, whose period $=0$, continued ad inf. is therefore susceptible of as many different values as there are diferent terms in its period. If the last term of the series be the lirst term of the period, that term will be equal to the sum. If the last term of the series be the second term of the period, the sum of the serics will be the sum of the first two terms of the period; and if the last term of the series be the third term of the period, the sum of the series will be the sum of the first three terms of the period, and so on. It is, therefore, evident, that the variety of values of which the sum of the series is susceptible, whether continued al inf. or not, is limited by the number of different terms in the period.

Now the sum of the series continued al inf. is sometimes said to be a mean of all its different values, or to be the sum of all the different values divided by their number. We shall give an instance of this in the series of which we have already obtained the sum.

If n ' be the number of different terms in the series, we shall obtain the n^{\prime} different values of the sum by successively substituting $0,1,2, \cdots \cdots n^{\prime}$ for n in the equation.
$\cos \left(A-\frac{1}{2} x\right)-\dot{\cos }\left(\mathrm{A}+\frac{2 n+1}{2}, k\right)=2 \sin \frac{1}{2} x \cdot \mathrm{~S}$
Let S^{\prime} be the sum of all the corresponding values of S. Since the sum of all the corresponding values of $\cos \left(A+\frac{2 n+1}{2} x\right)$, is the period, which by hyp $=0$ we have

$$
\begin{gathered}
n^{\prime} \cos \left(\mathrm{A}-\frac{1}{2} x\right)=2 \sin \frac{1}{2} x \cdot \mathrm{~S}^{\prime} \\
\therefore \frac{\mathrm{S}^{\prime}}{n^{\prime}}=\frac{\cos \left(\mathrm{A}-\frac{1}{2} x\right)}{2 \sin \frac{1}{2} \cdot x}
\end{gathered}
$$

This is the value of S which would be obtained by neglecting the last cosine in the investigation already instituted, and it hence appears that we cannot infer that the sum of the series del inf: has this value, except when the series is periodic, and its period $=O$, and even then the sum of the series has this value only in the sense above explained, which is, that the sum ad inf. is susceptible of as many different values as there are terms in the period, and that which is found above is its mean value, or the sum of all its different values divided by their number.

In general, however, the summation of a scrics continued ad inf. is, properly speaking, an analytical process wich is the reverse of development. As development is the process by which a function expressed in Vol. XVII. Part I.
linite terms is converted into a series, so summution is that process by which, when a serics is firen, the function by whose development it was obtained may be assigned. 'The wodd smmation cannot be literally applited to this process. cexept in the case where the series comerers. for, weapt in this case, there camme be an aritmotical equabity betwern the lunction and the series. This will wery evilently appear by an "xample. Let 1 be divided by (1 - 1) by the ordinaty rules of algebraical division, and vecobain

$$
\frac{1}{1-u}=1+a^{2}+u^{2}+a^{3}+a^{2}+\cdots-a^{2} \text { inf. }
$$

If a be greater than unity, the second membre of this equation is an inlinitely great positive quantity, while the first member is a finite negative quantity, In this case mo actual equality can subsist, and the sign only signifies that the first member is the function by whose development the serics in the secand member is obtained.

The method used in the last examples may sometimes be applied to the summation of a finite number of terms of a numerical series as in the followins example.

Let the series be

$$
S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+
$$

continued to n terms.
The nth term will cridently be- $(2 n-1) \frac{1}{(2 n+1)}$
We have

$$
\begin{aligned}
1-\frac{1}{3} & =\frac{2}{1.3} \\
\frac{1}{3}-\frac{1}{5} & =\frac{2}{3.5} \\
\frac{1}{5}-\frac{1}{7} & =-\frac{2}{5.7} \\
\cdot \cdot \cdot & =\cdot \cdot \\
\cdot \cdot \cdot & =\cdots \\
\frac{1}{2 n}-1 & \frac{1}{2 n+1}=\frac{2}{(2 n-1)} \frac{2}{(2 n+1)}
\end{aligned}
$$

The sum of the first members of these equalities is evidently $1-\frac{1}{2 n+1}$ since all the other terms mutually destroy each other, and the sum of the second members is 2 S . Heuce we obtain

$$
\begin{aligned}
2 \mathrm{~S} & =1-\frac{1}{2 n+1}=\frac{2 n}{2 n+1} \\
& \therefore \mathrm{~S}=\frac{n}{2 n+1}
\end{aligned}
$$

But by far the most gencral method for the summation of serics is that which is derived from the principles of the calculus of differences, which we shall now briefly explain and illustrate by examples.

If the successive terms of a series be expressed by u_{1}, u_{2}, u_{3}, sxc. u_{x}, the number at the foot of the letter denoting the place of the term, the sum of all the terms from u_{1} to u_{x} inclusive, may be expressed thus. $S u_{r}$. Thus we lave

$$
\mathrm{S} u_{f}=u_{1}+u_{2}+u_{3}+\cdots+u^{2}
$$

In like manner
$\mathrm{S} u_{r}+{ }_{n}=u_{1}+u_{2}+u_{3}+\ldots+u_{2}+n_{r}+1+\ldots u_{r}+{ }_{1}$
Subtracting the former from the latter, we have

$$
\mathrm{S} u_{x}+n-\mathrm{S} u_{x}=u_{x}+_{1}+u_{x}+_{2}+u_{x}+{ }_{\mathrm{L}}+\ldots u_{x}+
$$

by which we may express the sum of any number of terms of a series, commencing and terminating at any proposed terms.

If $n=1$, we have
But

$$
\mathrm{S} u_{x}+1-\mathrm{S} u_{x}=u_{x}+1
$$

$$
\begin{gathered}
\Delta\left(\mathrm{S} u_{x}\right)=\mathrm{S} u_{x}+1-\mathrm{S} u_{x} \\
\therefore \Delta\left(\mathrm{~S} u_{x}\right)=u_{x}+1 \\
\therefore \mathrm{~S} u_{x}=\Sigma u_{x}+1+\mathrm{C}
\end{gathered}
$$

C being an arbitrary constant.
When $x=\mathrm{O}, \mathrm{S} u_{x}=\mathrm{O} . \therefore \mathrm{O}=\Sigma u_{1}+\mathrm{C}$
subtracting this equation from the last, we have

$$
\mathbf{S}_{u_{x}}=\mathbf{\Sigma} u_{x}+_{1}-\mathbf{\Sigma} u_{1}
$$

Hencc it appears that the summation of a series depends on the integration of $u_{x}+_{1}$ and u_{1} considered as differences.

In like manner, if the sum of the serics from the wth to the x th term, including the latter, be required, we have

$$
\mathrm{S} u_{1}-\mathrm{S} u_{n}=u_{n+1}+u_{n+2}+\ldots u_{1}
$$

But by what has just been proved

$$
\begin{gathered}
\mathrm{S} u_{x}=\Sigma u_{1}+1-\Sigma u_{1} \\
\mathrm{~S} u_{n}=\Sigma u_{n}+1-\Sigma u_{1} \\
\therefore \mathrm{~S} u_{t}-\mathrm{S} u_{n}=\Sigma u_{t}+1-\Sigma u_{n+1}
\end{gathered}
$$

We shall now give some examples of the application of these principles, to the summation of series.

Ex. 1. To determine the sum of a series of figurate mumhers of the first, seeond, and successive orders, besiming uith unity in each serits.

For the figurates ol the first orcice we have

$$
\begin{gathered}
\mathrm{S} u_{x}=1+2+3+\cdots x \\
\therefore u_{1}=x \\
\therefore \mathrm{~S} u_{x}=\Sigma(x+1)+\mathrm{C}
\end{gathered}
$$

But by the calculus of differences we have

$$
\Sigma(x)=\frac{x^{2}}{2 h}-\frac{x}{2}
$$

Changing x into $x+1$, and h into 1 , we have

$$
\begin{gathered}
\Sigma u_{t}+1=\frac{(x+1)^{2}-x}{2}+\mathrm{C} \\
\therefore \Sigma u_{1}=\frac{1}{2}+\mathrm{C}
\end{gathered}
$$

bubtracting this from the former we have

$$
\begin{gathered}
\sum u_{1}+1-\Sigma u_{1}=\frac{x(x+1)}{1 \cdot 2} \\
\therefore 1+2+3 \ldots+x=\frac{x(x+1)}{1 \cdot 2}
\end{gathered}
$$

For the figurates of the second order

$$
\begin{gathered}
u_{0}=\frac{x(x+1)}{1 \cdot 2} \quad u_{x}+1=\frac{(x+1)(x+2)}{1 \cdot 2} \\
\Sigma u_{x}+{ }_{1}=\frac{x(x+1)(x+2)}{1 \cdot 2 \cdot 3}+\mathrm{C} \\
\therefore u_{x}=\frac{(x+1)(r+2)}{1 \cdot 2 \cdot 3}
\end{gathered}
$$

noconstant being added, because when $x=0, S u_{r}=0$.
In gencral, for the figurates of the n horder we have
$n^{\prime}+1=\frac{(r+1)(x+2)}{2} \frac{(x+3)}{3} \frac{\cdots \cdots(x+n)}{\cdots}$

$$
\begin{aligned}
\therefore & \Sigma u_{x}+1=\frac{x \cdot(x+1)(x+2) \cdots\left(\frac{(x+n)}{1 \cdot} \frac{n}{n}\right.}{n} \\
& \therefore \mathrm{~S} u_{x}=\frac{x(x+1)}{1} \frac{(x+2) \cdots(x)}{\cdots} \frac{(x+n)}{n+1}
\end{aligned}
$$

which is a general formula for the fgurates of any order.

The following theorem, established in the calculus of differences, is of considerable use in the summation of series.

Let the successive terms of the series be signified as before, and let x be the number of terms whose sum is required, so that

$$
\mathrm{S} u_{x}=u_{\mathrm{t}}+u_{2}+u_{3} \ldots \ldots+u_{x}
$$

Let $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \ldots .$. be respectively the firse terms of the first, second, third, Scc. differences; then will the sum of x terms be expressed by

$$
\begin{aligned}
\mathrm{S} u_{x} & =x u_{1}+\frac{x(x-1)}{1 \cdot 2} \mathrm{D}_{1}+\frac{x(x-1)(x-2)}{1 \cdot 2 \cdot 3} \mathrm{D}_{2} \\
& +\frac{x(x-1)}{1 \cdot \frac{(x-2)(x-3)}{2} \mathrm{D}_{3}+\& \mathrm{c} .}
\end{aligned}
$$

In all cases where we can arrive at a constant difforence this series will be finite, and give the exact sum.

Ex. 1. Let the series be the squares of the successire integers.

$$
\begin{gathered}
\mathrm{S} u_{x}=1^{2}+2^{2}+3^{2} \cdots x^{2} \\
\therefore u_{1}=1, \mathrm{D}_{1}=3 \mathrm{D}_{2}=2 \mathrm{D}_{3}=0
\end{gathered}
$$

In this case D_{2} is constant, and
$\mathrm{S} u_{x}=x+\frac{x(x-1)}{1 \cdot 2} \cdot 3+\frac{x(x-1)(x-2)}{1 \cdot 2 \cdot 2} \cdot 2$.
Ex. 2. Let the series be the cubes of the successive integers.

$$
\begin{gathered}
\mathrm{S} u_{1}=1^{3}+2^{3}+3^{3}+\ldots x^{3} \\
\therefore u_{1}=1, \mathrm{D}_{1}=7 \mathrm{D}_{2}=12 \mathrm{D}_{3}=6 \mathrm{D}_{4}=0 \\
\therefore \mathrm{~S} u=x+\frac{x(x-1)}{1 \cdot 2} \cdot 7+\frac{x(x-1)}{1 \cdot \frac{(x-2)}{2}} 12 \\
+\frac{x(x-1)(x-2)}{1} \cdot \frac{(x-3)}{4} \cdot 6
\end{gathered}
$$

If we investigate this by the method of integration we shall obtain a remarkable result.

$$
\begin{gathered}
\Sigma(x+1)^{3}=\frac{(x+1)^{4}}{4}-\frac{(x+1)^{3}}{3}+\frac{(x+1)^{2}}{4} \\
=\left(\frac{x(x+1)}{1 \cdot 2}\right)^{2}
\end{gathered}
$$

Hence we find

$$
1^{3}+2^{5}+3^{5} \ldots \ldots+x^{3}=\left(\frac{x(x+1)}{1} \frac{2}{2}\right)^{2}
$$

But also

$$
\begin{gather*}
1+2+3 \ldots \ldots+x=\frac{x(x+1)}{1 \cdot \frac{2}{2}} \\
\therefore(1+2+3 \ldots+x)^{2}=\left(\frac{x(x+1)^{2}}{1 \cdot 2}\right) \\
\therefore 1^{3}+2^{3}+3^{3}+\ldots \ldots+x^{3}= \\
(1+2+3+\ldots \ldots+x)^{2} \tag{D.L.}
\end{gather*}
$$

Serinagur, the name of a province in Nepath, situated between East long. 77° and 80°, and North lat. 30° and 32°, and about 120 miles longe and 60) hroad. 'The province consists generally of wooded hills and bare rocks, but the valleys, which are very conthed, are highly fermite. The oak and most of the trees and fruits of burope grow here, and wild elephants abound in the woods. The principal mincral productions are a grod deal of copper and some goll.

The trade with the surmunding districts is carried on by means of shecep and goats, cach of which carries about 12 lbs. of borax in a small sack. Flocks of 100 or 200 may be seen at a time, attended by shepherds and their dogs; and, conducted by a stout ram, haviug a large bell, they wavel at the rate of 10 or 15 miles per clay. Belore the invasion of the state by the Nepanlese it was governed by a llindoo prince, whose revenue was about $1.65,000$ per annum. In 1809, after a bloody battle fought at Ciuradwara, the Rajah of Nepaul made himself master of Serinagur, and hold it in subjection by a military force. Alter the conguest of Nepaul by the British in 1816, the prince of Serinagur was re-established in his dominions, and the province may therefore be considered as under the British protection.

SERINAGUR is the capital of the above principality. The city stands in the centre of a valley 3 miles long, watered by the river Alcananda. It is about $\frac{3}{3}$ ths of a mile long, and its streets are narrow and dirty. The houses, which are of rough stone and mud, are slated. With the exception of the palace ol the Rajah, which is four stories, the houses are only two stories high. The river, which is crossed by a bridge of ropes, is only about 80 yards wide in the dry season. The celcbrated temple of Ishwara stands on the opposite side of the river. With the excep. tion of about 70 Mahomedan fimilies, the inhabitants are chielly llindoos. During the rainy season loreiguers quit the city on account of its insalubrity. East Jong. $79^{\circ} 18^{\prime}$ North lat. $80^{\circ} 11^{\prime}$.

SERINGAPATAM, or, Shrf-Rugh-pitis, a celebrated city ol llindoostan, and fomerly capital of the province of Mysore. It is situated at the height of $\therefore 412$ feet above the level of the sea, at the upper end of an island in the river Cavery, four miles long, and tour and a half broad. The river is hereflef leet deep, and flows over a rocky bed. On the western side ol this island stood the fortress, which occupied a space of 2000 yards, and contained magnificent palaces, lofty mosques, and regular outworks. Protected on its north and south sides by the liver, a single rampart was found sulficient to defend this fort. But in 1792, the cast and west faces, which were much weaker, were strengthened by double walls and ditches, by a circular work on the south east angle, by several formidable cavaliers, and by outworks before the gates. The rampart, which is very narror, is from 20 to 53 feethigh, and the whole of the revetement, with the exception of the north-west portico, consists of large oblong pieces of granite laid transversely in the walls with cement. A glacis ol stone stretches along the northern face of the fortress, and the ditches are cut out of the solid rock. There are very few buildings of any importance within the fort, and those in the town are generally mean. The Sultan's palace is a magnificent building, in the Asiatic style of architecture; but it is deformed by a lofty wall, and the unfinished
buidlings which surround it. The sreat mosspur, which is covered with the fincst chumam, is adomed with lofty minarets. The ruins of the old Nysore palace have been converted into a military storehouse.
lat the island is a colobrated temple dedicated to Vishom, and in the beautilal rarden called the Lobll Bang, a handsome nausoleum, kept in repair by the Madras government, has been erected over the remains ol Ilyder Ally and his son Tippoo.

Before the siege of Seringapatam, 'ol which we have given some account in our article .lysoris, the population ol the city and the island is said to have amounted to 150 , 000 , including the garrison, but in the year following it was reduced to 32 , ono. serin. gapatam now belongs to the British. It is the resiclence ol a judge and collector, and is defended by at strong garrison. The mean annual temperature of this place is $77^{\circ} 06$. See Edinburgh Journal of Sorchee, No. x. p. 249.

SERPIEN゙M, Sce Ormodogy.

SERPLNTINE, See Minfmalogrlinex, andalso the E'dinburgh Tronsections, rol. x. part 1, and D) A . Brewster's \%oumal of Scionce, vol. i. p. 1, and vol. iii. p. 112, 126 . The three interesting papers here retered to are by Mr. Haidinger, Mr. Lyell, and Mr_{C} Herschel. See also Sermiand.

SERTORIUS. See Roman Empher.

SERVETUS, Michart, a learned and unfortunate theologian, who has become celebrated principally liom his having fallen a victim to the grossest religious intolerauce. As we have given a lull account of this transaction (which las been greatly misrepresemted by the Anti-Calvinists) in our article Carris: it is unnecessary 10 resume the subject at present.

Servetus was born at Villa Nueva in Arragon, in 1509 , and he was burned at Geneva on the 25th ()rtober 1553.
He was not only an able man but a leamed phrsician; and he is said to have made the nearest approich to the discovery of the circulation of the blood, having clearly mentioned the circulation of the blood through the langs in his work J) Restitutione C'hristimizizi. A life ol Servetus, in a series ol letters to Dr. Norse from Dr. Vanderkemp will be lound in the Jomelly Iequasitory, vol. v.

SERVIA, usually Mersi Supericr, is a province of ' Turke! in Lurope L3elgrade, already described, is its capital. Sce Terkey.

SERTIUS TULLIU'S. See Roman Empraf.
SESOSTRRS. Sece Einipt.
SESSION, Court of. See Scotmand.
SETMO. Sce Egypr.
SETCIIUEN. Sce Craxi.
SETTLL, a market town of England, in the west riding of Yorkshine, is sitmated on the eastem bank of the river Ribile, which is here crossed by a stome bridge. The principal street is built on the high road lrom Skipton to Kirby Lonsdale, and has several grood stone houses. The smaller streets which branch from it to the north, are irrecrular and poorly buil. The marke place is spacious, and the church. which is a plain edifice, is at (iiggleswick, on the other side of the river. Ilse cotton mills here give employmen: to many of the inhabitants. The town stands very singularly at the bottom of an almost perpendicular limestone rock, the summit of which commands a
fine prospect. Number of houses in the township in 1821 was 281. and the population 1508. See The Beauties of Englend and Hides, vol. vi.

SETUBAL or St. Ubes, anciently Cedobriga, a seaport town of lortugal in the province of Estramadura, situated in a bay of the Atlantic, at the mouth of the river Sandao. Having been destroyed in the carthquake of 1775 , it was rebuitt in a better style, and contains several good strcets with commodious houses. The whole of the town was Portified with a mound, a strong citadel called St. Philips with an excellent stream of water, besides the strong fort of Outao, and two small forts. There are in the town fiyc churches, two hospitals, an arsenal, eleven monasteries, and an academy, founded by John V. It has a good harbour, capable of receiving any ships of burthen. It carries on a great export trate in lemons, olives, oil, Xuscadel wine. but particularly bay salt, of which about 200,000 tons are ammally made here, and sent to the north of Europe. In 1796, 531 vessels catered the harbour, and as many cleared out of it. Population 12,000 . West Long. $8^{\circ} 33^{\prime}$. North Lat. $38^{\circ} 29^{\prime}$.

SETASTAPOL, a seaport town of Russia in the Crimes, situated on a small bay of the Black Sea. After falling into the condition of a Taptar village, from being one of the principal towns of ancient Colchis, it has again risen into importance as a station of the Russian heet. Its harbour is ranked with those of Maltia and Port Mahon, and it is furnished with docks, dock yards, an arsenal. barbacks, and a lazaretto. The chici bay rums abont 700 fathoms into the land, and has a depth of about 1 He 1 fathoms. It is wholly free of shoals, and is compleicly shettered. This place has increased very rapidy. Population about ynoo. East Long. $34^{\circ} 11^{\prime}$. Worth Lat. 43° $41^{\circ} .30^{\prime \prime}$.

SEVEN OAss, a market tom of England, in Keut, is situated on a gentle eminence. neat the river Derwent. The town consists chieny of two spacious streets in the form of the letter Y. Many of the houses are large and pespectable looking buildings. inhabited by families in independent circumstances. The ancient market house stands near the midtle of the IIigh Street. The church, which bas an elevated situation at the south end of the town, is a large and handome edilice. and loms a conspicturs object for many mites around. The charitable estahishments are im hospital and fres grammar schoul, fonded by Willian de Sevenoke, Lord Alagor of Lomdon in 144. lle is said to have bern Pond on the strects, and cducated by a person of this town. It was subse(luently farther colowed by Queen Elizabeth, and is said to have a revenue of essoo a year. It possesses six exhibitions to either of the Universities. About thiste-two elderly trates people find an asylum in the hospital, which has also sixtern out-pensioners. Mills lave lately been established here for weaving silk, which give employment (1) many of the inhabitauts. The town house derives its chiel suppory from the constant influx of company on ther way to Tunbridge. Population of the cown about 1 coon. See llasted's Hhiotory of Kent, and the Brautics of Einglend emb Unles, whe viii.

SEVERN, Remb. See Exiamb.
shevern, Vale of the. Sec Eiglasd.

SEVIER, county of the United States in Tennessee, traversed by French Broad, and drained in part by Pigeon river: bounded SE. by Smoky mountain or North Carolina; SW. by Blount county of Tennessee, NIV. by Knox, NE. by Jefferson, and E. by Cocke countics, Length 33 , mean breadth 20 , area 660 square miles. Surface hilly and migh be designated monntainous. Chicf town Sevierville. Central lat. $35^{\circ} 50^{\prime}$ N.; long. W. from Washington City $6^{\circ} 3.4^{\prime}$. Sevierville stands on Pigeon river twenty-five miles NE. by E. from Knoxville, N. lat. $31^{\circ} 52^{\prime}$.

Darbs.

SEVilLE, anciently Hismus, a larse city of Spain, in Andalusia. It is situated on a berutiful and extensive plain on the banks of the Gaudalquivir. The city is of a circular form, and is surromded by an old and high wall, consisting of indurated cement, about five or sis. feet in circumlerence, flanked with 166 turrets, and entered by 12 gates. The interior of the eity is chiefly built in the Moorish style, the strects being so narrow that a person extending his arms can touch the houses on either side. The streets are crooked and ill pared, though the houses are tolerably well built. Aany of the houses have large conets with a fountain in the centre, and are surounded with galleries, in which the fimilies live in summer when they do not spread tents in the courts. The houses, though highly embelifhed in the interior, have a sery mean aspect when seen from the streets.
Seville contans many fane public buildings, 30 churches, 84 convents, aind 24 hospitals, besides the edifices for civil and commercial pluposes. The cathedral is a magnificent pile of (iothic building, erected in 1401. Its tower, 550 feet high, is demed the frest in spain. It was built in $1: 68$, and is of such casy ascent, and so wide, that two horsemen may rite up abreast. On the top of it is the Giralda, a brazen image, which, with its palmb branch, weighs about $1 \frac{1}{1}$ tons, yet moves with the slightest change of wind. The cathedral is 480 lect long by 263 wide, and ite height is 126 teet. It is lighted by 80 windows "ith paintal glass, executed by Arnao of Fianders. It contaned 82 aturs. the treasures of this ehurch were, before the revolution, of considerable valuc; but we lear that its fine pictures, its extensive library, and its decorations of gold, silver, and precions stones, have been plandered by its mereiless inaders. The organ has 50 pipes more than the famous one at Haerlem, and it is filled with air by a man walking backwards and forwards on an inclined plane. When the different pair of bellows are thas filled they supply the lull organ 15 minutes.

Many of the monasteries in Seville are distinguished for their architectural beanty: that which belongs to the Franciscans is on the most extensive scale; of its 15 cloisters many are spacious and clegan, with apartments lor 200 monks. The convent of Buenavista, on the opposite side of the Ginadalquivir, commands a view of the momtains of Benda ro miles distant, and of the Sierra Morena equally remote. The hospital of Lat Sangre, intended for female pationts, is much admired for its frome, which has sculptured upon it three fine figures of Faith, Hope, and Charity. The wards are spacious, and the whole establishment is remarkable for its neatness.

The principal secular buiddings are the Alcazar or royal palace, hailt by the Moors, the Lonja or Exchange, the Roman aqueduct, the Torre del Ore, and the Plaza de Foros. The Alcazar, erected by the Moors, and extended by several Christian princes, is a spacious building, having a mean caternal appearance. lts interior comains various courts, with galleries, fountains, and baths. The garden, decomated with fountains and evergrens, has its walks paved with mable, and is sad whate andergone no change since the time of the Moors. A collection of Roman antiquities brought from the ancient town of Italica in the neighbourhood, occapies one of the saloons. The Lonja or Exchange, designated by Herera in 1568, is an edifice of the Tuscan order, finely sitnated in the centre of a square. It is a quatrangle of 200 fect, having round it a corridor or spacious gallery, decorated with lanic, and supported with the same number of Doric columns. Though built for an exchange, it has been used as a repository ol the old official correspondence with America, which contains collections of letters lrom Cortez, Dizarro, and other Spanishgenerals. The aqueduct, or Canos de Carmone, built in the time of the Romans, brings water to the city from a distance of eight miles, and has 410 arches. According to Mr. Swinburne, it is ugly and crooked, the arches are unequal, and the architecture neglected. The conduit is so leaky that a rivulet is formed by the waste water, and yet the supply is so copions as to afford water to several mills. and give amost every house in town the bencfit of it. There is still preserved here a large hause, the residence of a Mourish chief, in perfect preservation. The walls are adorned with a sort of tactwork, and the workmanship on plaster is without a haw, though above five centuries old.

The university of Seville was lounded in 1502, and counted among its members the celebrated Arius Aontanus. The discoveries and improvements of modern seience have not yet enlightened this seat of leaming. The maber of under srablates is extended 10 abont 200 . There is an institution here called St. Elmo, founded by the son of Christopher Columbus, and appropriated to the education ol young men for the sea. There is also here an academy for the arts of painting, sculpture, and architecture, and an aconomical society, both of which were founded by Comnt Campomanes. About 200 pupils attend the first of these institutions.

Seville was long celebrated for its silk manufactures, but they elcelined in the middle and end of the 17 th century. The number of looms lately at work is about 2500 , the silk being brought from Granada and Valencia. 'The other articles of mambacture are coarse woollen cloths, leather, tobacco and sulff. The suuff' manufactory belongs to government, and occupies a large buidding 200 yards long by 185 broad. The interior consists of as courts, round which are disposed the various apartments. Horses and mules are employed to drive the mills, which amount to 100. There is also a cannon foundry here belonging to government.

After the diseosery of America, the monopoly of its trade was confered on Saville, but owing to the obstruction which ressels of bureden experienced in the navigution of the (idadalguivir. this monopoly was translerred to Corli\%. Large ressels are stopped at Lacar, the very month ol the river. and those drawing more than ton lee of water are obliged to load and unload eight miles below Seville. The principal exports are wool, getat and kill bise, oranges, liquorice, oil and silk. The ligurner exported is nearly arot tons, and a considerable pre ol it is said to be purchased by the London porter brewers. The articles imported are Linglish manulacures, Nuremberg wares, Bilboa iron, and artirles ol colonish produce from South America. The country round Scville is very fertile, but the chimate is ins:lubrious, generating agues and malignant ferers. The scorching solano fiom the Alrican deserts is begond measure oppressive in summer.

Serille has well built suburbs, one of which called 'Triana, on the west side ol the river, has a communication with the city by a bridge of boats. The handsome promenade called Alaneda, has three walks planted with trees, and is ornamented with seats and fountains.

The population of the city is stated by Townsend at 80,269, by Laborde at $9(6,000$, and by others at 100,000. West long. $5^{\circ} 38^{\prime} 37^{\prime \prime}$. North lat. $37^{\circ} 24^{\prime}$ 26". Sce Townsend's Travels in S'min, Laborde's Tiete of Spotin, Burgoanne's Trotels, and Swinburne's Trueds.

SEVRES, Depampane of the Two, a department in the north-west of France, embracing about a third of the old province of l'oitou. It is bunded by the deparments ol the Neuse and Loire, on the north; by that of Charente and Lower Charente, on the south: by that of Vendee, on the east; and by Vicnme, on the west. Its superficial extent is 585,273 hectares, or about 250 sequare miles. It is traversed from \therefore. E. to S. W. by a chaia of lofty wosoded mountains. The south-west part af it is marlyy; but the rest of the department has a very lirile soil, which produces wheat, barley, rye, oats, buck wheat, and maize. Tobaceo is partially cultivated. Chesmuts abound in dificrent places: almonds occur in warm aspects, and hops grow wild in the neighbourhood of Niort. The pasturage is good, and horses, cattle, and shecp are reared in considerable numbers. The department is watered by the two Seves, the Dive, the Loire, the Thouc, and other smaller streams. Among the valuable minerals are iron, antimony, saltpetre, marble. \&c. The manulactures consist of pottery, woollen, and cotton goods, leather, saltpetre, and paper. The principal towns are Niort the capital, with 16,000 inhabitants, Parthenay, with 3213, Thouars, with 2035, and Melle, with 1800.

Population in 1822			279,845
Ditto in 182\%		.	288,240
Increase in five years		-	8,395

There are 490 inhabitants for every 100 hectares.

SEXTANT.

Sextant is the name given to a graduated instrument, the divided arch of which is, in place of being a whole arch, or a Quadrant, only a sectens, or sixth part of a circle.

Jnstruments, whose divided limb is a whole circle, have been already fully described in our article CinCLE; and those which are only the quarter of a circle, have been described under the article Quadkint. We shall herefore limit ourselves at present to an account of Hadley's sextant, and other analogous instruments which have been invented since the preceding articles have been published, ogether with a description of the various artificial horizons.

CliAP. J.

DESCRIPTION OF SEXTANTS

The history of the sextant having been already detailed in our artiele on Navigaton, we shall ad! nothing farther on this subject, but proceed to the description of Hadley's instrament.

Section F.-Descripfion ame ase of Hudly's Sextame.

This valuable instrument is shown in Fig. 5 of Plate CCCCLXXXVII. The contrivance of it is founded on his obvious principle in Catoptrics: that if the rays of light diverging from, or converging to, any point, be reffected by a plane polished surface, they will, after the rellection, diverge from or converge to another point on the opposite side of that surface, at the same distance from it as the first; and that a line perpendicular to the surface passing through one ol these points, will pass through both. Hence it follows, that if the rays of light enatted from any point of an object be successirely reflected from two such polished surfaces, then a third plane, perpendicular to them both, passing through the emitding point, will also pass througheach of its two sucressive images made by the rellections; and that these thre points will be at equal distances from the common intersection of the three planes: and if two lines he drawn through that common intersection, one from the orioninal point in the objeet, the uther from that mage ol it which is made by the second retlection, they will comprehend an angle double that of the inclination of the two polished surfaces.
1.e: RJFI and RGl, Plate CCCCLXXXVII. Fig. 3. represent the sections of the plane of the figure by the polished surfaces of the two specula BC and DE, crecteri perpendicularly thereon, meening at R : which will be the point where their common sections, perpendicalar likewise to the same plane, passes it; and Blli is the angle of their inctination. Lect $A F$ be a ray of light from any point of an object A falling on - be peint F of the first suerabum lice, and thencerethected inte the line $l^{\prime}(i$, and at the point (a of the cerond speculam bli. rellected arsain into the line (ik, prodnce (if and k fibathwards to N and N, the (wo surcessime repeschtations of the point A; and Haw RA, liM. aurl RN.
Since the pront I is in the plase of the frobure, the
point M will be so also, by the known laws of Catoptrics. The line FAI is equal to FA, and the angle MFA double the angle HFA, or MFII; consequently RMt is equal to RA, and the angle MRA double the angle HRA, or MRII. In the same manner the point N is also in the plane of the figure, the line RN equal to RM, and the angle MRN double the angle MRI, or IRN; subtract the angle MRA from the angle MRN, and the angle ARN remains equal to double the difference of the augles MRI and MRHF, or double the angle IIRI, by which the surface of the speculum DE is rechined from that of BC ; and the lines $1: A$, RM, and RN are cqual.

Corol. 1. The image N will continue in the same point, although the two specula be turned togetber circularly on the axis R, so long as the point A remains elevated on the surface of BC : provided they retain the same inclination.

Corol. 2. If the eye be placed at L, (the point where the line $A F$ continued cuts the line $G K$; the points A and N will appear to it at the angular distance ALN, Which will be equal to ARN. For the angle ALN is the difference of the angles FGN and GFL; and FGN is double F (il, and GFL double GFR, and consequently their difference double FRG or IIRI, therefore L is in the circumbrence of a circle passing through A, N, and I.

Corol. 3. If the distance $A P$ be infinite, those points A and N will appear at the same angular distance, in whaterer points of the figure the eye and specula are placed, provided the inclination of their surfaces remains unaltered, and their common section parallel to itself.

Corol. 4. All the parts of any object will appear to an eye viewing them by the two successive reflexions as before described, in the same sitnation as if they had been turned together circularly round the axis at R, (keeping their respective distances from one another, and from the axis, with the direction HI, i. e. the same way the second speculum DE reclines from the first BC.

C'orol. 5. If the specula be supposed to be at the centre of an infinite sphere, oljects in the circumference of a great circle, to which their common section is perfendicular, will appear remored by the two reflexions, through an arch of that circle, equal to twice the inclination of the specula, as before said. But objects at a distance lrom that circle will appear demoved through the similar areh of a parallel: therelore the ehange of their apparent place will be measured by an arch of a great circle. whose chord is to the chord of the areh equal to double the inclination of the specula, as the cusines of their respective distances from that circle are to the radius; and if these distances are very small, the diflerence between the apparent translation of any one of these objects, and the trandation of those which are in the circumference of the great circle aforesaid, will be to an arch equal to the versed sine of the distance of this object from that circle, nearly as double the sine of the angle of inclination of the spectita, is to the cosine of the same.

For let OBC, Fig. 4. in the annexed figure, represent an infinite sphere, at whose centre R are placed the two specula inclined to one another in any given angle, and let their common section coincide with the diameter ORC. Let BAN be the circumference of a great circle, to the plane of which the common section of the specula ORC is perpendicular, and 3 R its radius; let $b a n$ be the circumference of a circle parallel to $13 A N$, and at the distance from it $13 b$; draw $b \mathrm{D}$ the sine, and $b t$ the cosine of the arch $\mathrm{B} b ; 13 \mathrm{D}$ is the versed sinc of the same.

Let A be a point of an object placed in the circumfercuce of the great circle BAN, and N the point in which its image is formed by the two stocessive reflexions as before described; and let a be a point of another object placed any where in the circumberence of the parallel $b a n$, and n its imase; and let $a b n$ be an arch of a great circle passing through the points a and n. The point a is at the same distance from the great circle BAN, as the point b, i, c. at the distance is b. Draw AR, AN, RN, $a r, a n, r n, a R$, and $n \mathrm{R}$.

By the fourth corollary the figures ARN and ar n are similar, and consequenty the line $A N$ is to the lime $a n$ as $A R$ or BR is to $a r$ or $b i, i, c$. as the radius is to the cosine of the distance $13 b$. But AN^{+}is the chord of the arch AHN of the great circle BAN, equal to the translation of the point A, or double the inclination of the specula, and $t n$ is the chord of the arch $a h n$ of a great circle measuring the angle $a \mathrm{R} n$, by which the point a appears removed by the two reflexions, to an eye placed in the centre R. Therefure the translation, or apparent change of place, of the point a is measured by an arch of a great circle, whose chord is to the chord of the arch AIIN, (equal to double the inclination of the specuta,) as the cosine of its distance from the great circle BAN is to the radius.
from any point C of the circumlerence OBC draw the chords $C N$ and C C , to the same side of the point C, and equal io the chords AN and a n respectively, draw the radius RM, and from R and m draw RQ and $m \mathrm{P}$, both perpendicular to CN1, and cutting it in Q and P . RQ is the cosine, and CMI double the sine of half the angle MRG, or ARN, or of the angle of inclination of the specula. The little arch M m will represent the difference of the apparent translations of the objects in A and a; and if it be very small, may be looked on as a straight line, and the little mised triangle if $m \mathrm{P}$ as a rectilinear one, which will be similar to RME, because RM is perpendicular to Nm and $\mathrm{R}(\mathrm{P}$ to CMI, and the angles at Q and P right angles.

The line CP may be taken as equal to $\mathrm{C} m$ and MP as the difierence of the lines $\mathrm{C} M \mathrm{ll}$ and $\mathrm{C} m$. Therefore the little arch $M m$ is to the line M1P nearly as RMI to RQ; hut CM (i.e. AN) was to C m (i. e. en n) as BR to $b r$, and the difference MP, of CM and $C m$, to the difference BD of BR and $b r$, as CM to BR. Therefore 11 m , the difference of the apparent translations, is to 13 D , the versed sine of the distance $\mathrm{B} b$. or to an arch equal to it, in the compond ration of RAl the radius to RQ, the cosine of the angle of inclination of the specula, and CAI double the sine of the same to BR the radius, i. e. as CM to RQ.

The olservation may be corrected by one easy operation in trigonometry, as will appear from the first part of this corollary, viz. by taking the half of the
angle observed and then finding another angle whose sine is to the sine of that half, as the cosine of the distance $\mathrm{B} b$ is to the radius: this angle doubled, will be the truc distance of the object. But as this operation, though easy, will reguire the use of figures, the method of approximation is better, because by that, the observer retaining in his memory the proportion of the sines of a few particular arches to the radius, may easily estimate the correction withont figures, when the angle is not great, and by a line of artifitial numbers and sines, may always determine it with greater exactness than will cyer be necessary.

When the angle observed is very near 180 degrere, the correction may be omitted; for then it will be casy to keep the plane of the instrment so near that of the before mentioned great circle, as not to want any, if the situation of that circle be known; il it be not, the observer, when he sees the two objects together, may turn the instrument on the axis of the telescope till he finds that position of it by which he obtains the least angle; and this (if the specula are set truly perpendicutar to the plane of the instrument) will always happen when the objects appear to coincide in the line g h, as expressed in the ligure.

The instrument consists of an octant 1 BC, Figure 5, having on its limb BC, an arch of 45 degrees. divided into 90 parts or haff degrees, each of which answers to a whole degree in the oluscrvation. It has an index ML moveable round the centre to mark the divisions; and upon this, near the centre, is fixed a plane speculum EF perpendicular to the plane of the instrument, and making such an angle with a line drawn along the middle of the index, as will be most convenient for the particular uses the instrument is designed for; (for an instrument made according to Figure 5, the angle L.F 11 may be of aboll 63 degrees.) 1 KGH is another smaller plane speculum, fixed on such part of the octant as will likewise be determined by its particular use, and having its surface in such direction, that when the index is brought to mark the beginning of the divisions (i. $e .0^{\circ}$) may be exactly parallel to that of the other; this speculum beins turned towards the observer and the other from him. PR is a telescope, fixed on one side of the octant, haring its axis parallel to that side, and passing near the middle of one of the edges IK or IH of the speculam IKGil; so that hall its object glass may receive the rays rellected from that speculnom, and the other hali remain clear to receive them from a distant object. The two specula must also be disposed in such a manner that a ray of light coming from a point near the middle of the first speculum may fall on the middle of the second in an angle of 70 degrecs or thereabouts, and be thence reflected into a line parallel to the axis of the telescope, and that a clear passage be left lor the rays coming from the object to the speculum $\mathrm{E} \cdot \stackrel{?}{ }$ by the side HG. ST is a dark glass fixed in a frame, which turns on the pin V' by which means it may be placed before the speculum EF, when the light of one of the objects is too strong: of these there may he several. In the distinct base of the telescope represented by the circle abodef, are placed three hairs, two of which, $a c$ and $b d$, are at equal distances from and parallel to the line $g h$, which passes through the axis, and is parallel to the plane of the octant: the third $f c$ is perpendicular to $g h$ through the axis.

The instrument, as thus described, will serve to
take any angle not greater than 90 degrees: but if it be designed for angles from 90 to 180 degrees, the polished surface of the speculum EF, ligure 5, must be turned towards the observer; the second IKGH must be brought forward to the position NO so as to receive on its midde the rays of light from the middle of the first, in an angle about 25 degrees, their surfaces being perpendicular to one another when the index is brought to the end of the divided areh next \mathbb{C}; and this second must stand live ou six inches wide of the first, that the head of the observer may not intercept the rays in their passage towards it, when the angle to be observed is near 180°. The smaller speculum is lixed perpendicularly on a round brass plate, toothed on the edge, and may be adjusted by an endless screw.

In order to make an observation, the axis of the telescope is to be directed towards one of the objects, the plane of the instrument passing as near as may be through the other, which must lic to that hand of the observer as the particular form ol the instrument may require; viz. the same way that the spectum FF does from IKGiI, il it be comprosed according to this figure and description. The general rule is, that when the index is brought to the begimning of the scale, (i. e. to 0° when the instrument is clesigned for angles under 90°, or to 90° when it is designed for angles lrom 90° to 180°); if then a line be imagined to be drawn on it, parallel to the axis of the telescope, or lime of direction of the sight, so as to point towards the object seen directly; whichever way this line is carrice by the motion of the index along the arch from 0° toward 90° in the first case, or lrom 90° towards 180^{2} in the second, the same way the object seen by reffexion ought to lie from that which is seen directiy. The ubserver's eye being applied to the telescope, so as to keep sight of the first object; the index must be moved baekward and lorward till the second object is likewise brought to appear through the telescope, about the same distance from the hair $c f$ (Figure 6) as the first: if then the objects appear wide ol one another, as at i and k, the instrument must be turned a little on the axis of the telescope, till they come cren or very nearly so, and the index must be removed till they unite in one, or appear close to one another in a line parallel to $c f$, both of them being kept as near the line $g h$ as they can. If the instrument be then turned a little on any axis perpendicular to its plane, the two images will move along a line parallel to $g h$, but keep the same position in respect of one another; so that in whatever part of that line they may be observed, the accuracy of the observation will be no otherwise affected than by the indistinctuess of the oljects. If the two objects be not in the plane of the insumment, but equal1y elevated on, or depressed below it, they will appear pogether at a distance from the line of h, when the index mates an argic somethins grater that their neatest distance in a great circle; and the error ol the obsemation will increase nearly in proportion to the square of their distance from that liae, but may be comected by help of the lifh corollary. Suppose the hatrs o e and $b d$, rach at a distance from the line of ergual to lof of the lucal leneth of the objectslass, so as 10 comprehend between them the inage of an olject whose breath to the naked eye is a little tato than x^{4}; and tee the imares of the objects ap-
pear united at cither of those hairs; then as the cosine of balf the degrees and minutes matked by the index is to the doubled sine of the same, so is one minute to the error which is always to be subtracted from the observation. Other hairs may also be placed in the area abc $d e f$, parallel to $g h$, and at distances from it proportional to the square roots of the numbers $1,2,3,4$. Ecc. and then the errors to be subtracted from the same observation made at cach of those hairs respectively will be in proportion to the numbers $1,2,3,4,8 c$. This correction will always be exact enough if the obscrer takes care (especially when the angle comes near 180°) to keep the plane of the instrument from varying too much from the great circle passing through the objects. When the angle is very near 180° the correction may be omitted, for then it will be easy to keep the plane of the instrument so near that of the before mentioned great circle, as not to want any, if the situation of that circle be known; il' it be not, the observer, when he sees the two objects together, may tura the instrument on the axis ol the telescope till he finds that position of it by which he obtains the least angle; which (if the specula are set truly perpendicular to the plane of the instrument) will always happen where the objects appear to coincide in the line $g h$, as shown in Fig. 6.

Such is Mr. Had!ey's own description of the original sea octant, as it was called, for measuring the distances of the sun and moon from any of the fixed stars, for which purpose he proposed that it should be placed upon a stand. He has described, however, a modification of it, by which it may be held in the hand without any other support, and in which the telescope is to magnify for or tive times. The object of this was to measure the altitude of the sun, moon, and stars, from the visible horizon at sea. It differed lrom the loregoing instrument, chielly in placing the specula and telescope with regard to the sector and tubes. In the new form the line drawn along the middle of the index lalls on the anterior surface of the larger speculum at an angle of about 4 or 5 degrees. The axis of the telescope or the line of sight lalls on the surface ol the second speculum at an angle of about 70 or 71 degrees. It has also a third speculum, to be used when the angle is greater than 90 degrees, for observing the sun's altitude, by means of the opposite part ol the horizon. On this the line of direction of the sight falls at an angle of about 32 or 33 degrees.

Various improvements on this admirable instrument have been made since the time of its invention. Grant, Ewing, Dollond, Magellan, Ramsden, Mayer, Borda, and some of our living artists, have also improved it. It has been modified in various ways; but whether it is in the form of a quadrant, a sextant, or a circle, the principle is always the same, viz. the reflexion of mirrors placed at different distances on the plane of the instrument. In our article Checes, the reader will find the lillest details of all the most important improvements which the rehecting circle has undergone. Iladles's quadiant, as now litted up, and the method of using it, is shown in lis, 7 , where FG is the divided limb, Fill the moveable index, E the index-glass or mirror, D the horizom-glass, and b the sight or eye-boke, where the eye of the observer is applied. When a telescope is used, it is placed in the posilion bl3. 'lac horizon-grlass consists of a trans-
parent hali, and a reflecting half, as deseribed by Hadtey. In taking the altitude of the sum, let bathe the visible horizon, and st the sun. The sun's rays SCE fall on the mirror at F , which is turned round, by moring the index Ell thll we ray ED, which it reflects, reaches the eye it b, after a secoud retlexion from the rellecting half of the horizon-glass D . The observer then keeps moving the index, till the lower or upper limb of the sun thas seen by reflexion is coincident with of touches the visible horizon. The vernier Il on the index will thens point out the altitude of the limb of the sum observed. If'S is the moon, and A a lixed star, the limb of the moon is brought to touch the star in the same mancr, and their distance is thus obtained. When it is rectuiped to measure an augle between 90 and 180 degrees, a second fixed speculum is plated at K , so as to be at righ angles to the morcable one E in its remotest situation. It will then produce a deriation of two right angles in one of the objects. Thus it's is a star, and another star nearly opposite to it , the :ays l : will be reflected in the direction EK, and agaia in the dirction $\mathrm{K} \rho$ to the cye at e, which carries it in the dircetion e a. This is called the back obscrvation, which is of great use when coasting along shows which interept the horizon of the sea, on the side in which the sun is; lut the difficulties attending the rectilication of the nirrors is so great that they are rately used, and are even suppressed upon most sextants. \dagger
When the sun is obsented, or when the light of one of the objects is stronger than that of the other, the light is reduced by coloured glasses placed between E and D, as shown at © in lig. 1t, or between E and K .

II. Descriphon of Piofissor Rmici's Prismatic Sextani.

This rery ingronous instrument is represented in Plate COCCLXXXiM, Jigs. s, 9, 10. In 「ig. з. ABC is a prism placed before the object glass 1 , on that its base AB is in a line with the axis of the teles. cope directed to the distamt object Q. The paratel rays from the object falling upon the face BC, will be refracted towards the base 13 , where they will be totally rellected, and will cmerge from the face AC in lines parallel to their first dipection. These rays falling upon the object glass E of a telescope, will form ati image of the object (r), which will cond ide with the dirct inage of the same object formed by the rays which pass below the prism. This coinciflace will give the zero of the scale which measures the angular separation of these two images. If the prism is now turned round its edge A in the direction BCA, it will show new objects in succession coincilent with the object O , until the side $\mathrm{A} C$ shall be parallel to the objeet glass E. We shall now have the super-position of all those points that are 90° distant from the puine Q, and therelore it is evident that we can thus measure all angular distances as far as 90° and a little more, as far indeed as 102° with common glass.
If we now place before the other half of the object glass a second prism equal to the first, but moveable in a contrary dircetion, the two images of Q will be
both seen by refexion; and by the continued movements of the two prisins we can carry the measure of an anfle to the double of the greatest angle measured by one prism alouc, that is to 2^{2}, if the prism is of common glass.

From this theory of the new sextant, its construc. tion and use will be reatily understord. In the perspective drawing of it in Fis. 0 , AlB) is a sector. greater than a ghadrant, of lour inches radius. It is divided into lo', which by a vernier is suldivided itito 10". Round the contre C revolves the index (E , which carries the vernier at one end, and the is, sce ics rectangular prismla at the other, with its edere se directed to the centre, and perpendicular to the plame of the limb. The other prism II, similar to the first, is fixed on the instrument, so that when the index marks zrro, the larger faces of the two prisms are perfectly paraltel, and nearly in contact. A telescope Non the arm IL is moved about the centre C, and on the plane of the sector. The divisions are read oft by a miceoscop: 21. By this double motion of the telescope parallel to the limb, the object glass ean receive a sceater guantity of rays from one prism than from the other, so that we may by this means render the images of two objects equally luminous when they happen to be of different berghtaesses. This elfect is similar to what is obtained in Hadley's sextant by the elevation or depression of the telescope on the limb. If an equality of light is not thus obtained, we must apply to the objeet glass of the telescope the cover A', hatl of the aperture of which rematins uncovered, while the other half is filled with at plain coloured glass. This glass being turned towards the prism which vellects the most luminous object, win cmathe us to obtain the necessary equalization of tha lisht.

The error of collimation may be detected in this instrement in three different was.

1. By the coincidence of the two images of the same object, the one direct and the other refecter. The sun's disk is the best object, wht any terrestral object will answer if more than yards distune for at this distance the parallax becomes visible.
S. Dy the cuincidence of two imaces of the sata. object externally rellected from two small fuces of the prism, lor when the two isosceles and rectangular prisms haring their greater sides parallel at zero, hane their smaller sides parallel so as to give coincitem inages, we hate an angle of 00
2. By meaturing two angular distancen of two ob jects diamenically upposite to each wher. The eacess or defect of the sum of these $1: 30$ ang!es upon 180^{2}, will give half the angle to be added to or suttracted from the zero point given by the vemier, \vdots_{1} order to have the true zero or the error of collimation.

If we compare this last verification with the fiest. and find a difference, it must arise from an error in the division of the limb.

If the telescope is inclined the common section of the reflecting planes of the prisms. the fourth part of the trangle will have for its sine, the sine of the fourth part of the angle gira by the instrument mat tiplied by the cosine of the inclimation of the aris.

[^9]Let SR, ST be the two reflecting planes, whose common section is SQ; let SV' bisect the angle of the two planes. let $A B$ be perpendicular $S Q$ and $A D=$ $\mathrm{AB}=1$. From D let lall DII perpendicular to BA . and from D and B the perpendiculars $D E$ and $B C$ upon SB, and draw EA, CA, and HF parallel CB. Now il B.L is the axis of the telescope, the angle formed by two coincident objects by reflesion, is quadruple the angle CAB or twice the motion of the index. But if the angle has the obliquity $\mathrm{D} A$, the true ang!e is the quadruple of the angle DAF, although the inder gives the same angle as it had marked before. To find the error then, it is sufficient to determine the value of the angle DAE by means of the known angles CAB and BAD. By this construction we have AH: $\mathrm{HE}=\mathrm{AB}: \mathrm{BC}$, or since $\mathrm{HF}=\mathrm{DE} \cos \mathrm{DAH}: \sin$. $D A E=1: \sin . C A B$, we have $\sin . \mathrm{DAE}=\sin . \mathrm{CAB}$ cos. DAIf. From this formula it appears that the greatest error must take place when CAB is 45°. In this ease, if the axis of the telescope is inclined 1^{2}, the angle observed will be $179^{\circ}, 55^{\prime}, 50^{\prime \prime}$, instead of 180: but this error, produced by a defective position of the telescope, is reduced to nothing, if we make the obscration in that part of the field of the telescope where the slightest contact of the objeets takes place.

The adrantages of this instrument may be thus enumerated.

1. While the greater number of the sextants now made measure only to 124°. Amici's sextant can measure $18 j^{\circ}$. The former will not take donble meridian altitudes of the sun at Genon from the Th May till the 8th August, and under the equator they can never be used for this purpose, but the latter will take their altitudes under the tropics and eren at the zenith.
2. The points zero and 90 degress ean be verified in Amici's sextant.
3. When an artificial horizon is usec, the telescope alwas rests in a horizontal position, so that the observer may sit at his ease before it, whatever be the altitude of the star he is observing.
4. At sea we may take all the altitudes of two opposite horizons, both the anterior and the posterior, the mean of which will correct the inequalitics of refraction.
5. In Hadley's mirrors fully one hall' of the light is lost by reflexion, whereas in the prisms very litule light is lost.
6. The mirrors are subject to faws and cracks, and sometimes to the loss of the quicksilver, whereas nothing can injure the prisms unless a force which breaks them to pieces.
7. Amici's sextant has no parallax for objects near the observer, owing to the great proximity of the prisms.
8. The greatest of all admantares is, that we can make the buck observation with Amici's instrument without adding a thind prism. See Baron Kach's Correspondence .1stronomique, vol. vi. p. 55.4 .

Cuap. HI--g methicial homzons.

In olserving the altitudes of eelestial bodies, it is necessary to see the apparent lorizon, but as this is always obscured in foggy weather, and sometimes
even in clear weather cannot be seen from the interposition of the coast, or $6 . \operatorname{li}$ island, it became of great consequence to be possessed of what is called an artificial horizon. These have been constructed of ? great variety of forms, such as vessels filled with mercury, oil, or tar. pendulums, plumb lines, and levels; some of the most uscful of these we shall proeced to describe.

Sect. I.-On the Common Fluid . D.tificiel Horizon.

The common artificial horizon consists of a shallow vessel mearly fillecl with mercury. or with any viscid fluid, sucin as treacle. tar, oil, sec. lustead of using a fluid, Troughton makes them of black glass. as in Fig. 11. and levels them by means of the screws SSS, with a bubble laid upon the surdice. Dollond constructs them as in Fig. 12. with a plate m of elear glass, concave beneath, and filled with spirits $p 9$. so as to serve as a lerel. 'These two Porms of the horizon are prelerable in cases where the tremor disturbs the mercury or trancle. Themethod of using the artificial horizon is shown in Fig. 1.3. where KL is the horizon and $f f$ of the sextant. The image of the sun reflected at b from the nereury or tar passes through the horizon shass d to the eye at M, and is made to coincide with the image of the sun reflected from the index glass c, and scen by the eye at MI. The angle thus measured is Rall, which will be twice the angle $\mathrm{S} b \mathrm{~K}$ or RSL. In Fig. T. with the veal horizon the angle observed is 35°, but in Fis . 13 , with the artificial horizon, the angle is 0°. The artificial horizon will answer only for objects at a very great distance, as there will be a paralas corresponding to its distance MO from the eye.
In windy weather it is neeessary to protect the surface of the mereury or tar from being rufled by means of a cover or ronf, MiNO, Tig. 14, consisting of two plates, $11 \mathrm{~N}, \mathrm{JW}$), of parallel slass inclined neary at right angles. After one obscrvation the roof should be reversed, and another observation made in order to correct any error arising from want of parallelism in the surface of the plates of glass.

Seet. II.-Description of Serson's Nemaical Top.

Mr. Serson who was lost on board his majesty's ship Vietory about the middle of the last century, observed that when a top was spun, its upper surlace directed itself in the course of tho minutes alter it was set up in a true horizoatal pane: that this pane was not at all disturled by any inclination or motion of the box on which it was placed, and therefore that it might be of great adrantage as an artificial horizon.* When it was spun in the open air it continued 3.5 minutes in motion, but when it revolved in racho its motion lasted two hours und sirtecn minutes, preserving itself perfectly horizontal for three quarters of an hour.

Serson's top, which is represented in Fig. 15. consists of three parts, the top itself, CD revolving on the pivot p at the end ol the vertical axis $\mathrm{P} \rho$; the agate cup MN in which it revolves, and the apparatus AB by which it is put in motion. The top CD is a hollow cylinder about $2 \frac{1}{2}$ inches in dianetes, and 2 inches high, the upper surface is a speculum, and
the lower edge has a small rim inside to make it heavier. The axis ${ }^{\prime} p$ is square at top, and the pivot p a cone of about 60°, and made of very hard stecl. The cup ol'agate is about an inch in radius. When it is in use the whole is plated in a mahogany box, and a cover of glass is put on to keep oll the wiad.

In order to put it in motion, the brass frame $A 13$ rests with steady pins upou the edge of the mahograny box, so that the spindles s is immediately above l^{\prime}, the lower end sof the spindle is a hollow square, which receives the square end l' of the axis. 'The spitadle S shas always a tondency to rise up by the action of the spring L through which it passes, the four prongs of the spring resting on the top of the frame. A lever E is brought over the knob S, at the top of the spindle, and keeps the spindle down so as to bring its lower end upon r^{2}. A ribband llfs passes through a hole in the lever (i, shown separately; and the end G of the ribband being put into the hole K in the spindle $\mathrm{S} s$, the ribband is coiled round the spindle. It is then pulled by the end 11 , so as to put the spindte and the top in rapid motion, and when G quits \mathbb{K} it pulls back the lever GF, and consequently draws the lever E from the top, S of the spindle, so as to permit the spindle to rise by the action of the spring L, and quit the axis l^{\prime} of the top, which it leaves in rapid rotation.

This top, as made by more than one of the best artists, was tricd at sea above 60 years ago by some of the first naval officers, but the hopes ol' success which were entertained were disappointed.

Mr. Weir, many gears afterwards, revived this subject, and his instrument, made by the order, and at the expense of the board of Longitude, was wied in a king's ship by himself and an astronomer appointed by the admiralty. It was found that when the ship had any motion, the top could not be depended on, to the amonnt of sereral degrees, ahhough it performed on shore to a smatler number of mimutes. Nr. Weir's machinc recpuited a man to kecp it in motion while observanons were made with it. The reflecting surface was fully 12 inches in dameter. The glass rested its weight on a blunt point supported from a chest below. 'The train of whels that gave motion to the glass were connected to the lateer by means of leather thongs; and the motion of the ship stretching one of the thongs, and relaxing the opposite one, drew the glass from its due position through the angle above mentioned.

About the beginning ol 1818 , Mr. Troughton began his experiments on the namical top. His first efforts were very flattering: for by means of an easy adjustment, he brought the planes of rellexion and rotation parallel to each other, which it recuires good workmanship to effect. The form which Mr. Troughton gave to the top was that of a hollow cylinder of brass, open at the bottom, and terminated above by a circle of dark glass. The immer diameter of the cylinder was 41_{2}^{1} inches, the outer diameter 4_{10}^{6} inches, its height $1 \frac{1}{2}$ inch, and the diameter of the reflecting glass $4 \frac{1}{2}$ inches. Mr. Troughton alierwards surrounded the cylinder with a solid brass ring, lastened to it by four projecting arms. The upper surface of the ring was on a level with the circle of black glass, which formed the surface of the top; and the inner curved surface of the ring was concentric with the outer curved surlace of the top. In this form the top was sent out to the Arctic Regions with Captain Ross,
but it did not give such satisfactory results as were expected. Mr. Troughton has since improved it, by giving it the form of an inverted frustum of a conce. The base or lower sulface of the frustum is about, inches in dimeter, the upper surlace abont t inctres, and its height about inches. The thickuess of the metal which forms the come is $1-8$ hot an inch. 'llos retlecting flame which occupits the whote upper surface of the conical frustum, rests in a stecl cup hatb an inch wide, and on a stopl poime which descend" about hall an inch below the upper surface of the lims tum. The top is pett in motion by an appemetus athat logous to that used by Serson: lant in plat of a rithbated, a serics of wheels is used, the dirst and larece of which is put in motion by a winchor hamble plare on its circmmerence. The velocity of the circentor rence ol the base has been calculated at about or milns an hour.

ficiul IIかrizon.

The instrument consists of two parts, une of whith is a copper disk, six inches in diamoter, with thee feet. 'rhe second part is a cylindrical cover or dram, which performs the part of the glass rouf in the common horizons for sheltering the fluid from the axtion of the wind. From the middle of the dirst part, or copper disk, there rises a hollow cylinder ol white iron $4^{\frac{1}{2}}$ inches high, and $2 \frac{1}{3}$ inches in diameter. Upon this cyliader, which is open ut top, there is placed a small round disk of white iron, (or of buxwood, whe: mercury is used,) which goes into the top of the cylinder. bit is prevented from descending by a ledge on whichitrests. This disk contains the mercurs, wime, or prepared syrup. Which is employch. These cylisders are adjusted in such a manner. that the sudfac of the flud is exactly $2 \frac{1}{2}$ inchos above the in'st d:al. On the copper disk are fixed two brackets. to which is fastened the cylindrical roof or drum. This drutn, which is made of white iron, is sis inches in diameter. and $2 \frac{1}{2}$ wide, and is so placed that its centre is in the surface of the fluid in the round disk. In the midde of the width of the drum, there are two bands of white iron, perforated by two circular openings diametrically upposite to one another, and an inch in diameter, the one lor letting in the incident rays, and the other for letting out the reflected ones. They have a circular motion by a rack and pinion on the surfacc of the drum, for the purpose of being adjusted to the height of the sun or the star.

When there is not much motion in the air. tho small funnels, or truncated cones, are placed in the small tubes in the circular apertures, and these have the effect of protecting the fluid surface from every agitation. When the wind is considerable, the funnels are kept on, and a small glass with parallel faces is placed at the end, by which means the incilent rays are admitted; but if the wind is very high, the funnels are taken off, and a piece of wire gauze is placed in the tube. This permits the external air to be in regtilat communication with the internal air, which is lavourable to the accuracy of the observation.

Sect. IV.- Description of the Level Scatetnt.

Among the various contrivances for artificial hone zons as applied to the sextant, one of the simples: is I 2
that shown in Fig. 16, which is a view of part of a sextant constructed by Mr. Troughton. A small level LL is fixed between the inder glass E and the horizon glass D, and there is a hole in the side of the brass tube containing the level through which the bubble can be seen by the observer at E , by reflexion in the horizon glass, as shown in Fig. 17. where a line r is drawn across the glass where the contact is to be made, at the same time that the imarge of the bubble is to be bisected by the same line. This apparatus is said to have griven the altitude within 5 minutes of the truth.

Secr. V.—Descripion of Mr. N. Idam's Inverting Scxtant Zelescope, with Nuutical Eyc-Tube.
" This telescope, represented by AB, Plate CCCCLAXXVIT. lig. 18, consists of three parts; viz. 1st. The eye-tube AL, to the lower side of which a spitit-devel $\%$ is attached by the serews o, p, passing through the extremities $(\dot{C}$ and $)$ of the frame of the level tube: $2 d$, The object ube FB , which is attached to the sextant by the screw at 2 ; and, St, 'i he midde, or comecting tube FF, represented separately by GEI, lig. 19, ol which the part ElI enters the object tube, at F , and the part EG is screnedinto the cye tube at E by means of the sorew EK, and thus brings the small glass (imto its proper place at b near the field of the telescope. The reduced diameter of the part Gik permits the upper side if of the level tule to enter 1.8 of an inch within the lower side of the eye tube, and thas brings the bubble, scen diroctly through the ege glass at A, as near as possible to the fied of the telescope. In the contre of the field two cross hairs of silk intersect cach other at right angles, the one horizontal and the other vertical; and the puint of their intersection is adjusted cxactly into the line of rision through the telescope by means of ine setew nails c, d, acting on the diaphragm, the edge of which, seen at ϵ, is filed quite thin on the farthe side. for the purpose of more easily admitting the dimet light ol' a lamp through the aperture, ab, to illuminate the cross hairs at night. $k i, q r$, and $s t$. ate roctangular aprotures in the frame of the level whe, and t r is a rellecior placed below $\& t$ to illuminate the spinits, and to shor more distinctly the position of the bubble. The lines f and s are painted on the leeve tabe at opposite extremities of the bubble, whon it is in the middle; and, as the level is applied so that the line f is placed at the focal distance of the c!e glass, the eye end of the bubble can be distinctly sexn at f. and at $1-\mathrm{sel}$ ol an inch ou either side of it. Whon, therfore, l l, the upper side of the level tube is adjusted parallel to $A B$, the line of vision through the telescope, al the eye end of the bubble be observed, and krpt at f, the lime of vision AD must then be truly horigontal, or parallel to the horizon. In order to take the adtudes at sea by a guadrant or sextant, furnisled with this telescope and level, which may be made capalte of distinguishing $10^{\circ \prime}$, the observer should hold the sextant, as usuat, in a vertical plade, passing through the celestial object whose altitude is ropuiret. the telescope being horizontal, and then being the refiected image of the sun, moon or star, into the held by the motion of the index on the limb of the instrument, which, after some experience, be trill generally be able to do upon the first or second
trial. When the celestial object is thus brought into the field, and the near end of the bubble seen at f in the level tube, the observer should clamp the index on the limb, and, by means of the tangent serew, while the nearend of the bubble is kept at f, bring the lower limb of the observed object to touch the horizontal hair passing through the centre of the lield; the required altitude of the lower limb of that object, affected only by refraction, will then be lound, as usual, on the limb of the sextant.

To enable the observer to keep the eye end of the bubble at f till the required contact is observed, a light mahogany rod, about $2^{\frac{1}{2}}$ feet in lengit, attached to the sextant, and parallel to the telescope, is pressed against some fixed object on deck, which euables him gently to elevate or depress the telescope till the bubble is brought into the required position, and kept there as long as may be necessary. For this purpose, an iron staunchion, about six licet in lensth, should be made to screw, when reguired, into dilierent parts of the deck near midship, with a sliding projection, about two or thee inches in length, which may be fixed by a finger-screw at any reguired height, so as to aford a comvenient prop, asainst which the sextant rod may be pressed by the obsewer when taking observations. To show the cross hairs, and the position of the bubble, when taking hight observations, a small lamp. made for this purpose, is applied to the right side of the eve tube by meaths of a brass rod fixed to the lamp, which slides in a square socket, attached to the cylinder on the right ol the holder of the telescope. The quanity of light thrown upon the bubble and cross hairs, is easily increased or diminished. by moving the lamp rod a little forvard or backward in the socket. The same lamp, when detached, enables the obscrer to read ofl his observations.

The screw om, acting through the near end C of the level frame, gives it its rertical adjustment: and the two screws at p, acting horizontally a \quad ainst each other brough the farther end D, give it its lateral adjustment. The accuracy of the veltical adjustment may be examined by comparing meridian altituces of a celestial object, taken by means of the level, with those taken at, or nearly at, the same time, by means of an artificial horizon. At sea. the accuracy of this adjustment may be examined by moving the index backwards off the limb, as many minutes as are eciual to the dip of the horizon, and then observing whether the reflected borizon of the sea is brousht up to the horizontal hair in the centre of the hedd, when the eye end of the bubble is at f in the level tube; if not, its distance $-1-$ from it is equal to the ertor of the vertical adjustment, which may either be corrected by the serew, or allowed for, like an index error of the sextant.
'To examine the latter adjustment, screw the object tuhe lill limly into the sextant holder of the telescope by means of the screw at y, or fix it steadily, by other means, in a horizoutal position, which is casily determined by the vertical adjustment of the level. Move the united eye and middle tube a few degrees round in it to the right and lef; and observe whether the bubble, formerly in the middle, now moves to cither end of the level tube. If it does not, the lateral adjustment is already made. Il' it does, correct the obscrved motion by means of the adjusting screws at p. If this adjustment is not made, a slight deviation of
the plane of the sextant from the vertical plane, which the observer cannot detect, when shiut out from the horizon of the sea, may cause a considerable error in the observed altitude. To prevent this, let a plummet be suspended behind the plane of the sextant, which will readily detect any deviation of the instrument from the vertical plane.
If Ell, the middele tube of the telescope, be moved forward or backward in the object tube Fl3, so as to place the object glass a litue too near, or too far from the cross hairs in the centre of the field, the image of the observed object may thus be brought nearer to or farther from the cye than the intersection of these cross hairs, without casing any apparent indistinctness of the inage. In this case, when the eye is slighty clevated or depressed, it will cause the contact of the image with the horizontal hair to appear cither too close or too open, and may therely cause an crror of one or more minutes in the observation, according to the distance of the image on cither side of the cross hairs.

To avoid this source of error, care must be taken to mark on the middle tube bil a liae se to which the middle tube should be moret, so that the image of a celestial object may be lormed exartly at the cross hairs; for then, any clevation or depression of the eye will cause no sensible change of the apparent contact of the limb of the image with the horizontal hair. The proper distance of the object glass is a constant quantity for all celcstial objects, but it varins with the distance of terrestrial objects. As consiterable care and application are necessay, in order to a.c quine correctness and facility in the practice of this method of observation, it will be proper, when practicable, that the observer shouid accustom himself to tate obserrations by this method on shore, before he proceeds to sca."

Sect. VI.-Itcomat of Di. Dicecter's Improverient upan the Cimutical Eye Zobe.

In using the preceding very ingentous instrument, the cye sees, by direct vision, the contact of the sun with the horizontal wire, and by chlifuc vision the contact of the bubble with one or both of the marks on the level. This donble and cimataneous observation is difficult to make: but independent of this difticulty, there is a pmperty of ision. in virtue of which an object seen ohbiquely disappears, as i? it had been completely aminilated.
On this and other grounds, says Dr. Mrewster, Mr. Adam's cye tube has alwas appeared to me susceptiWe ol improvement. 'The first idea of this kind which occurred to me is shown in Fig. 20. where the field of view, ABCD, is contracted, and consists oí a peiforation in the rellecting mirror. The parts are then ad justed, so that when the wire AB touches the sum, the buble AMBN is concentric with the field of view ACBl). This approsimation of the bubble to the observed limb of the sum is an obsious adramarge; but as it is liable the the obectina formerly stated against oblique vision, I thought of the method shown in Ei . 21. In this method I dispense entirely with a metuh. lic refiector, and I form the image of the bubble by a plate of parallel glass PD, lying between the eye and the ficld CD , and inclined 45° to the axis of the tube. By this means the bubble EF may be brought in con-
tact with the wire AB; and the parts are adjusted, so that the axis of the telescope is horizontal when the wire $A B$ is in contact with the lower end of the bub. ble aud the upper limb of the sun. The only objec. tion to this construction is, that the glass plate Pl) reflects little light; but this may be completely remedied, by placing the darkening glass anterior to the field of view, or by throwing an additional light upon the bubble of the level.

For farther information on sextants and artificial horizons, sce Hooke's reflecting quadrant, in his . Inimethersions on Heceins, 4to, lomad. 16ts; Newtun's paper on a Rieflectins Instonumt Like Itudloy: Phit. T'runs. 17.ap, p. 153; Hadley's Sextant, in Whil. Truas. 1731, p. 147, and 1732, p. 32; Ewing's Im. proverneat of Iludty's equedrant, Imerican 'T̈rensuctions, vol. i. P. 126; Maskelyne on Hetilly's 'quatront in Mit. 'l'ans. 172, p. 99; Masellan Hescription des Octory of Sertens Anstuix, fto: Atwood's Theory of statunts in Phil. Trans. 1781, p. 375: Ladlam on Thellyy's Quatrme, svo; Ward on Correting the Sewtunt for the liuck observation, Flhil. Trank. 1753, wol. sxaviii. p. 167 : Lecigh in Phil. T'mans. 17.30, vol. x1. p. . He: Short on Serson's Top, Phil. T'rans. 17.51, p. S5z; Lituce's .Lfificial horizon. in hixh Transactions, vol. viii. p. at; Gould's J'atent Retijicial Horizon, Reqertory of .lits, ii. rol. i. p. 28; Mir. Adam's Sextant in Edinhursh Journal of Scicace, No. vii. p. 95; Dr. Brewster's Improvement on it, ho. No. aii. p. 2su; Ducom's Arificial Horizon, It. No. ג. p. 841.

Shiddows, Colocred. Sce Optics.
Shaftesbury, Fhesy and Thmp Eami, of. Sce Coomer, Avmovy Ishary

SHAFTLSBCRY, or Shaston, a borough and market town of England, in the coumty of Dorset, is agrecably situated on a very hish hill, which commands extensive views in Dorsetshire, Somersetshire. and Wiltshire. The principal strects are built on the roals from Wincanon, Warminster, Salisbury, Blandford, and Sherbourne, forming as it were a star. The honses are generally built of stone fuarried on the neighbourins eminences; but they have a poor appearance, and the streets are narrov and irregular. The most important public buiddings are four churches, St. l'eter's, IIoly Trinity, St. James', and St. Rumbold; St. Pcter's, distinguished by the elegance of its proportions, as well as by its ornaments, is defaced by modern alterations. Part of the high embattled wath which enclosed the park and the abley church still remains. The town-hall is a handsome building supported on fire arches. There are als, here thec meeting houses for Presbeterians, Methodists, and Quakers. The water which supplies the town is brought from the adjomins parish of Ciilingham on horses' backs. They have therefore in several houses rast reservoirs for holding rain water. Lately, howerer, very good water has been obtained at the depth of 125 feet.

The charitable establishments here are a freeschool, alms-houses for 16 women and in men. and other theee of great antiquity converted into a poors' house.

The only manufacture in Shaftes'ury is that of silk buttons, which gives emploment: to about 10. persons.

The gorernment of the town is resicd ia a corpe
ration, composed of a mayor, recorder, 12 aldermen, a bailiff, and common councilmen. It sends to parliament two members, elected by about 300 voters paying scot and lot.

The eminence to the west of the town, called Castle Green, is supposed to have been the site of a castle. A small mount on the brow of this hill has been regarded as a Roman work. Mlany Roman coins have been found in the town. Population in 1821, 583 houses, 63.4 lamilies, 388 in trade, and 2903 inhabitants.
shagreen, or Chagreen, is the name of a kind of grained leather made in Astracan by the Tartars and Armenians, and much prized for forming covers for cases, books. ©c. It is a close and solid substance, covered over with papille or little roundish grains. The lollowing method of preparing it is a brief abstract of the method descrited by Professor Paitas.

The hinder back piece of the hides of horses and asses is cut off immediately above the tail, in the Corm of a crescunt. The only part that is useful is about a Russian ell and a hall across the loins, and a short ell along the back. The skins thus cut are soaked for several days in pure water till the hair drops off. They are then extended, and the hair and epidermis remuved with a scraper. Aiter a second soakia; the flesh side is similitly scraped, and the whofe cleaned till nothing but the pure fibrous tissue rem:ins. The skins thus prepared are stretched in a wut state on wooden frames, wh the Resh side downwarls. and over the upper side are scattered the hard, bluck, and smooth seeds of the chennpodimn aloum, or couse fint. I piece of feit is then spread over them, and the scerls are trodden futo the leather. The frames are then placed ageinst a wali with the seedy tices mext if, and in this war they are perlectly dried. When the unprossed seeds are beaten off, the skin is Din of incentations, which produce the grain of the shagteen.

The uried skins are nest scraped with a piece of shamp imon bent like a hook. till all the inequalities are :emoved, and this process is repeated with a huer scraper till only fant impressions of the seeds remain.

Iat this condition the skin is put into water for 24 hours, and the effect of this is to swell the faint impressions of the secd, and raise it above the surface acted upon by the scrapers, a considerable part of which has been removed. Tbe depressed parts which bave lost none of their subsance being thus elevated, constiture the grain of the shagrees.

The skins are now imbersed several times in a strong warm ley, obtained by hoiling a strong alkaline earth called schtust. They are then piled upon one another white warm, and in some hours they swell and becomessilt. They are afterwards rendered exceedingly white and bectutiful by $2: 4$ hours immersion in a atrong pirkle of sath.

The next step in the process is to give the skins their final colou:. The following is the method for the most common colder, which is sea-green. Let the skins, when taken from the pickle, have their Ilesh or unprepared sides well washed with a saturated sofution of sal ammoniac. A thick layer of copper mings is :hen stresed ofor them. Each skin being onled up in a piece of felt, the rolls are all laid together
in proper order, and pressed down for 24 hours by some heavy body. During the time the sal ammoniac has dissolved a sufficient quantity of the coppery particles sufficient to give the skin a sea-green colour.

In order to give the blue colour, two pounds of finely powdered indigo are dissolved in cold water. Five pounds of pounded alakar, or crude soda, is then dissolved in it , along with 2 lbs . of lime and 1 lb . of pure honey. The whole is put several days in the sun and often stirred. The skins to be dyed blue are to be moistened only in the strong ley of schora, and not in the salt brine. When moist they are filled up and sewed together at the edge, the flat side being innermost, and they are dipped thrice in the remains of an exhansted kettle of the same dye, the superfluous dye being each time squeezed out, and after this process they are dipped in the fresh dye prepared as above, which musi not be squeezed out. The skins when dried and pared are finished.
In order to make black shagreen, the skins when moist from the pickles are thickly bestrewed with pulverized ga! nuts, and then folded together and laid over each other for twenty-four hours. Each skin is nest dipped several times in a new ley of the schore, after which they are again bestrewed with rounded gall nuts, and placed in heaps till the galls have thoroughly penetrated them. When freed from the dust of the galls by beating. they are rubbed over on the shagreen side with meited sheep's tallow, and exposed to the suaz to imbibe the grease. When the superfluous particles hare been scoured by a blunt wooden scraper, and the skins have lain some time, the shagreen is moistened on both sides with a solution of sulphate of tin, by which it receives a beautiful black.

In orler to make white shagreen, the skins are first moistened on the shagreen side with a strug solution of alum, and then daubed over on both sides with a pastemade of hour. The paste, when dried, is washed of with alum water, and the skin is then dried in the san. When the skins have imbibed sheep's talbow, as described in the last paragraph, the superdhous fat is scraped off with a blunt wooden instrument, when the skins are wet with warm water.

This white shagreen is intended for rectiving a dark red colour. In this case the skins must not be immersed in the solution of sehore, but after being whitened they are washed in the pickle of common salt for 24 hours. About a pound of the best dried tschugarn. (setbia irmodes,) is now beiled a full hous in about four common pailfuls of water, which thus acquires a greenish hue. The herb being taken out, half a pound of pounded cochineal is put into the kettle, and the liquor boiled a full hour with frequent stirring. About 15 or 20 drachms of orchil is added, and after a little more boiling the kettle is removed. The skinstakeu from the pickle are then placed over each other in troughs, and the dye liguor is poured over them lour times, and rubbed into them with the hands. The lifuor is expressed each time, atter which they are dried, and are much more valuable than any of the other kinds of slagreen.
Shagreen has sometimes been made of the skins of fishes, such as the angel fish, the greater dog lish, and the sea call:

The best shagreen is that which is brought from Constantinople, which is of a brownish colour; the white is not estemed grood. Shagreen is frequently
counterfeited by Morocco, but the counterfeit is distinguished by its pecling oll, which the other never does. Sce M. B. Valentini Mesrom Mhescorem, \&e. p. 439. Ray's Signopsis, D/cm. Quedr. p. 63. Willoughby's lihhyol. and lallas's Tracels. See also our article A strasian.

SHAlNT, or Holy Isies, three small islands of the llebrides, or Western lslands of Scotland, are situated in the (hamel between the islands of Lewis and Sky, in the parish of Lochs, and county of Inverness. One of them called Ituen Moutir, or St. Mary's Island, has a small chapel mpon it, dedicated to the Virgin Mary, and exhbits traces of havingheen more populous than at present. 'These islands are remarkable for their sheep and pasturage. lior the purpose of breeding the cattle one lamily resides in a wretched hut. The mincral Warcllite was lirst lound in Scotland on this island.

SHAKSPEARE, Whans, the eelebrated father of the English drama, was born at Stratford-uponAron, on the asd April 1501. About ten weeks after his birth the plague brokr out in the town, but fortunately did not reach the bouse where be lay. LIe was the son of Jolm Shakspeare, a considerable deater in wool, and whose l'amily "were of grod ígure and fashion." llis mother was the daughter and heir of Robert Arden of Wellingcote. He appears to have been bred for some time at a free schoot, where he is said to have acquired what Latin he was master of. Being designed to follow his lather's profession, he left school to assist him in his business.

About the eighteenth year of his age young Shakspeare married Am Hathaway, a lady eight years older than himself, and daughter of a substantial yeoman residing at Shotiory, a hamict tu Stratiord. By her he had three daughters, Susamah, baptized May 26, 1583, and Judith and Hannah, twins, who were born on the 2d February, 1584 th.

About this time our Poet, according to Rowe, fell into bad company, and aided his associates in carrying deer Irom the park ol Sir Thomas Lacy of Charlcote, near Stratford. A prosecution was on this account raised agtimst him, and carried on with such severity that he was obliged to fly from home, to avoid arrest and imprisonment. \dagger On this account he went to London, where he had a relative and linsman, Thomas Green, a "celebrated comedian." 1lere he seems to have accepted of a subordinate office in the theatre, and it is said that he was hirst engaged while the play was acting to hold the horses ol those who had rode to the theatre.

From this bumble oecupation Shakspeare soon rose to that oll an actor, as appears lrom some old plays in which his name is printed among those of the chaet prayers. We are not informed, however, of the parts whieh he acted; but it is said that the pare which he performed best was that of llamlet's glost, and that
 it. 'There is reason to believe that he frepormed the part of Oled Kaowell in ban Johnson's Liviy lom in
 monly played the parts of old men. Solite at 100 , his name appeat's among the phayers of is+m Johnson's tragedy ol 'Scjanus.

It is a remarkable circumstance that neithor ohw name of his liest play, nor the date of its publionton is positively known: and the greatest uncertanty oxists relative to the chronological order in which the whole series ware composed, ated, or published.

Wre are indebted to Natonc for the first attempe to assign to them the dates of their composition; but as onr learned countrymath, the late Mr. ficome Chatmers, has controverted some of his pessitions, We shath give a table and the dates afixed to the differem plays by both these authors.

* According to John Aubrey, who was entered a student at Osford in 1642, only 26 years after Shakspeare's death, and who says that he derived his information from some of his neighbours, "his father was a butcher, and when he was a boy he exercised his father's trude, but whea he killed a calf he would do it in a high style, and make a speech."
\dagger Shakspeare is said to have reflected upon Sir Thomas by writing a satirical ballad, which so exasperated the baronet, that he carried on the process against him with double eagerness, and foreed him to quit Stratford. The lirst stanza of this billad is said to lave been preserved by tradition, and to have been as follows:

A Parliament Member-a Justice ol' Peace,
At home a poor Scarecrow-at London :wasse.
Irlowsie is Lucy as some folke miscall it,
Then Lucy is lowsie whatever befull it. He thinks himself greate,
Yet an asse in lis state,
We allow by his ears, but with asses to mate.
If Lucy is lowsie, as some folks will have it,
Sing lowsic Lucy whatever befall it.
\& Malone is of opinion that the First Part of Lienry VI. published in 1589, was not written by shakspeare, though it might have been corrected by him.

| Othello | - | - | - | - | 1611 | 1614 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| The Tempert | - | - | - | - | 1612 | 1613 |
| Twelfh Xight | - | - | - | - | 1614 | 1613 |

Besides the preceding plays, thity-fice in number, Shakspeare wrote the following poetical pieces, which were published separately.

Venss and Adonis, printed in
The liape of Lucrece
The lassionate pilgrim
A Lover's Complant
A Collection of Sonnets

150 .
1599
$15!9$
without chate
1609

The first and second of these pooms were dedicated, as the first piece of my invention, to Henry Wriothesley, Earl of Southampton, who, according to the statement of Sir William D'Avenant, presented Shakspeare with the sum of $\mathfrak{f} 1000$ to make some purchascs. Queen Elizabeth and Fins James I. seem also to have been well aware of the great talents of our dramatist. Queen Elizabeth frequently commanded his plays to be acted belore leer, and she ras so much delighted with the character of Falstaff in the 1st and ad parts of Henry IV. that she requested the poet to represent the fat hight in love. In this way he was led to compose the Merry lives of Vindsor. King James likewise attended the performance of several of Shakspeare's plars, and, as Sir William D', Arenant intorms us, Shenield, Duke of Buckinghan, wrote with his own hand an amicalde letter to the poet.

At the commencement of the reign of this monarch, Shakspeare had become onc of the principal managers of the playhouse, an oflice which he continued to fill for several years. As scon, however, as he had acquired a moderate fortune, he quitted the stage, and gare up all other enployment, that he might spend the rest of his life in rumal pursuits. He accordingly went to Stratiord in 1612, where he had purchased a house called Fow Place, in which be spent the rest of
his life as a private gentleman. The only event which distu:bed the serenity of his latter days was the great fire at Stratford in 1614, which consumed the greater part of the tom, and from which he had the good fortunc to preserve his own residence.

In the begiming of the year 1516, Shakspeare seems to hare anticipated his approaching dissolt tion. He then made his will, ${ }^{*}$ and he died on the anniversary of his birthday, on the $23 d$ April 1616. On the second day after his death he was intered among his aucesters on the north side of the chancel of Stratford chureh, where the monument erected to his memory still remains. It is partly of marble and partly of stone, and consists of a hall length bust of the poet, with a cushion before him, placed under an ornamental canopy, between two columas of the Corinthian order, supporting an entablature on which is sculptured in bold relief the shakspeare arms and crest. Bencath the bust are the fullowing lines:-

Judicio Pyprom, arenio Neroaten, aric ,1hurmum,

Stay prasenger, why eoost thoy by so fast, INeid, if thon canst, whene ensious death hath plast Withan this monment, blaksperare: with whome (2vick nature dide: whone name loth deck y sombe Far more than coste: sich all yt he hath writt Leaves lwias art, ho pase to scre his witt.

U保. Into Ini. 1010 . Tituis 53, die 23 Aprid.
The foilowing inscripion, which tradition ascribes to Shakspare himself, is on the hat stone which covers his grave:-

Cond frent, for Jesmas suke forbeare, To dists the dast encloused heare: Blest be the man that spares thene stones, fime cursi be he that nuves m." bones

Malone is of opinon that this imprecation might
 bequ:ests:

 fo the right hacirs of me the said IV illant shakspeate.
 'Ihomach limsel, lisqs he further bequeathed the whole of his "goods, chattles, leases, jewels, abd houschohl stutl" whatsocver," after the pryment of bis elebts, legucs, and fimeral expenses, with the exception of his "secomb best bed with the limenture" which constituted the only bequest he made to his mife, and that by insertion after the will was writien out.
have been suggested by the dread that his remains might some day or other "be added to the immense pile of human bones deposited in the charnel house at Stratford."

In the year 1740 , a magnificent monument was erected at Westminster Abhey at the public expense, to the memory of Shakspeare. A very large sum for this purpose was obtained from the exhibition of the tragedy of Julius Cocsar at the Theatre-Royal, Drury Lane, on the $28 t h$ April 1738.

The first collection of the plays of Shakspeare was published in London in 1623, in folio, by lsaac Jaggard and Ed. Blount, under the title of"'Ms. William Shakspeare's Comedies, llistories, and Tragedies." It was edited by John Hemynge and Henry Condell, and was dedicated to the Earl of Pembroke and the Earl of Montgomery. On the title page is an engraving of the poet by Martin Droeshout and on the opposite page are the following lines by Ben Jonson.

> This figure that thou here seest put,
> It was for gentle shakspeare eut,
> Whercin the grawer had a strife
> With nature to outdoo the life:
> O, could he but hase drawn his wit
> As well in prose as he hath hit
> His face; the print would then surpasse
> All that was cyer eut in brasse,
> But since he cinnot, reader, looke
> Not on his picture, but his booke.

A second folio edition of Shakspeare was published in 1632, a third in 1664 , and a fourth in 1685 , and not many years ago, the first edition was reprinted in close imitation of the original, by Vernon and Hood, London.

In 1709 Nicolas Rowe published an edition in 7 vols. 8 vo. to which was prefixed a biographical memoir of Shakspeare. Another edition, by the same editor, appeared in 1714 in 9 vols. 12 mo .

In 1725° Pope publisled an edition in 6 vols. 4to. with critical and commendatory notes; and in 1725, the same editor published another edition in 10 vols. 12 mo . with additional notes and corrections.

In 1733 Theobald brought out an elaborate edition in 7 vols. 8 vo., and a second in 1740 in 8 vo. with corrections and additions.

In 1744 Sir Thomas Hanmer published an edition in 6 vols. 4to.

In 174.7 Warburton published his edition in 8 vols. 8 yo.

In 1765 Dr. Johnson published an edition in 8 vols. 8vo. with an able preface on the character of Shakspeare's writings.

In 1766, Stevens published the Old Plays in 4 vols. 8yo.

In 1768, Mr. Capell published an edition in 10 vols. crown 8 ro.

In 17\%1, Sir Thomas Hanmer published a second and improved edition in 6 vols. 4 to.

In 1773 Jonhson and Purves published conjunctly an edition in 10 vols. 8 ro. of which a second edition appeared in 1778 , and a third in 1785 , revised and corrected by Mr. Reed.

In 1786, Joseph Roan published the first volume of the Dramatic Works of Shakspeare, with notes. This work was completed in 6 vols. 8 so. in 1799.
Vol. XVII. Parir I.

In 1784 , there was published by Stockdale an edition in 1 vol. royal 8 vor. witl a copious index of passages by the Rew. Mr. Ayscough.

In 1788, appeared Bell's edition in 20 vols. 12 mo .
In 1770, Nabune published his edition in 10 vols. crown 8vo.

In 1773 , a fourth edition, revised and augmented. was published by Mr. Stecrens in 15 vols. svo.

In 1803 , there was published a filth edition in :3 vols. 8 ro. from the text, and with the notes ol Johnson, Stecvens, and Reed. Another edition of the work appeared in 1813.

In 1805, an edition was published in 10 vols. 8:0. with a piefatory essay by Alexander Chalmers, 1. S. A. In this edition each play is illustrated with a prime designed by Fuseli.
besides these editions, a splendid one was published by Boydell in 9 vols. Colio, embellished with :of engravings, executed by the most eminent artists. A quarto edition of the work was also printed. An cedition of Shakspeare, printed by Whittingham, has also been published in 1814, in 7 vols. 18 mo. illustrated with 230 engraviugs on wood, with remarks on the life and writings of Shakspeare, by John Butters, F. S. A. It has been calculated that at least luof, 0 on copies of Shakspeare's works have been printed and sold.

The following excellent character of Shakspeare as a Dramatic Writer, has been drawn up by the able pen of Dr Johnson.
"Shakspeare is above all writers, at least above all modern writers, the poet of nature; the poct that holds up to his readers a faithlul mirror of manners and of life. His characters are not modified by the customs of particular places, unpractised by the rest of the world; by the peculiar writers of studies or professions, which can operate but upon small numbers; or by the accidents of transient, factitious, or temporary opinions: they are the genuine progeny of common humanity, such as the world will always supply, and observation will always find. Iis persons act and speak by the influence of those general passions and principles by which all minds are agitated, and the whole system of life is continued in motion. In the writings of other poets a character is too often an individual; in those of Shakspeare it is commonly a species.

It is from this wide extension of design that so much instruction is derived. It is this which fills the plays of Shakspeare with practical axioms and domestic wisdom. It is said of Euripides, that every verse was a precept; and it may be said ol Shakspeare, that from his works may be collected a system of civil and economical prudence. Yet his real power is not shown in the splendour of particular passages but by the progress of his fable, and the tenor of his dialogue: and he that tries to recommend him by select quotations, will succeed like the pedant in Hierocles, who, when be offered his house for sale, carried a brick in his pocket as a specimen.

Upon every other stage the umiversal agent is love, by whose power all good and evil is distributed, and every action quickened or retarded. But love is only one of many passions; and as it has no great influence upon the laws of life, it has little operations on the dramas of a poet who caught his ideas from the hiring world, and exhibited only what he saw before N
him. He knew that any other passion, as it was regular or exorbitant, was a cause of happiness or adversity.

Characters thus ample and general were not easily discriminated and preserved; yet perhaps no poet ever kept his personages more distinct from each other.

Oher dramatists can only gain attention by hyperbolical or aggravated characters, by labulous and unexampled excellence or deprarity, as the writers of romances invigorated the reader by a giant and a dwarl: and he that should form his expectations of human affairs from the play or from the tate, would be equally deceived. Shatspeare has no heroes, his scenes are occupied only by men, who act and speak as the reader thinks that he should himself have spuken and acted on the same oceasion: even where the asency is supermatural, the dialogne is level with life. Oher writers dioguise the most matnal passions and most Crequent incideats: so that he who contemplates them in the book will not know then in the worh: Shakspeare approximates the remote, and fomiliarizes the wouderful. The ebent which he represents will not happen. int if it ricre pussible, its tifects wou!d probably be such as le has assigned; and it may be said, that he has not unty shown human natu:e as it acts in roal exigence: but as it would be found in trials to which it camot be exposed.

This, therefore, is the paise of Shakbpeare, that lis drama is the minor sifle: that he who hat swayL lis inagimution in follo ing the phatoms wheh cibo writers raise ur) befon hime new here be cured of his delierons ecstacies by readies haman sentiments in haman language, by riwus from which a hemat may estimate the tmasactions of the works, ant a confessor predict the progress of the passions."

Those who with for farthor infomation respecting the life and writings of Shakspeare, may consult, in addition to the works mentioned in the course of the perctaing ondine, the folloninss-. 2 rimite to Strat-

 ? ith Lemmintom" wo the The Gent Jotw, by Zachary

 ing if Shulapuor, by the Rov. Du. Rathand Famer. 'ihere edi, in of this work were paldished by the authon hamself, and it has been sime frecuenty meprint-

 182 F.

SHAMMY, or Cunmors, a soft and highly prized kind of leather, prepared lrom the skin ol the Chamois, or Antelope l'upicupre, alrcady fully described in our article Mazology.

An imitation of the shammy leather, by using sheep, goat, and kid skins, has been long successlully carried on about Orleans, Marseilles, and Thoulouse, and it there constitutes a particular profession under the name of Chamoisure. The following is the method employed:

ITaring washed arat draincd the skins, and strewed guick lime over the fleshy side, they are then folded in two lengthwise, the wool beins outwards, and left to ferment 3 days, or 15 days, if they have been dried after haying. When again washed out and drained, they are half dried, latid on a wooden horse, and the wool stripped off; they are then laid lor $2 t$ honrs in a pit, in which the lime, from having been used before, had lost a great part of its strengeth. Tiohen taken out amb allowed to drain $2 x$ honrs more they are put into a pit with stronger line, they are then taken out, drained, and put in again by turns, a process which is contianed for six weeks in summer, or three months in winter. in order to dispose them to take oil. At the end of this period they are laid on the wooden horse, and are made softer by pecling off the surface of the skin on the wool side. Being now made into parcels, they are steeped a wight in the river in summer, but longer in winter, and are then stretehed six ur seven above one anotirer on the wooden horse, and the kuife passed strongly over the fiesh side, in order to remove any superfluous matter, and give smoothmess to the skin. Then they are steeped, as before, in the river, and the same operation is repeated on the wool side: they are then thrown into a tub of water with bran in it, which is brewed among the skins till the greatest part stick to them. and then separated into distinct tubs thll they swell and rise of themselves above the water. By this means the remains of the lime are cleared out: they are hen wrang ont. humg up to diy on ropes, and sent to the mill with the quantity of oil neecssary to scour them: the best oil is that of stock fish. Here they are first thown in bundles into the river for twelse hours, then laid in the mill trough, and lulled without oil till they be well soltened: then vited with the ham one by one, and thas lormed imto parcels each, whichate milled and dried on cords a second time ; then a third, and then oiled again and dried. This process is repeated as ohen as necessity requires when dume if there be ally moistare remaining, they are dried in a stove and marle up into parcels wrapt up in wool after some time tirey are opened to the air, but wrapped up again as before, till shich time as the oil seems to have lost all its lorce, which it ordinarily does in athours. The skins are then returned lrom the mill to the chamoiseer to be scoured: which is done by putting them in a lixivium of wood ashes, working and beating them in it with poles, and leaving them to steep till the ley has had its cfiect, then they are wrong out, stecped in another lixivinm, wrung agan: and this is repeated till all the grease and oil be expelled. When this is done, they are half dried and passed orer a sharl edged iron instrmment placed perpendicular in a block which opens, solens, and makes them delicate. lastly they are thorodibly daced and passed over the same agran;
which finishes the preparations, and leaves them in the form of shammy.

In the same manner kid and goat skins are shammoised, excepting that the hair is taken off without the use of any lime; and that when brought from the mill they underges a particalar preparation ealled ramalling, which is the most delicate and dificult of all. It consists in this that as soon as the skins are brought from the mill, they are steeped in a pit lixivium, taken ont. stretched on a wooden leg, and the hair is seraped off with the knife. This makes them smooth and causes them in working to cast a kind of fine knap. 'The great difficulty ol this process is to scrape the skin with sufficient evenness.

SllANNON, see IbElandr.
Sllanschlle of Shascrit Language, sece our article language.
shalidnslleig, sce Orkney Islands.
Sll ARK, sec I'mitholag.
SIIARPL, James, Archbishop of St. Audrews, was born in lois, and was desectuded from a respectable family in the comnty of Banfl. Bcing intended for the chureh, he was cducated at the university of Aberdeen. In 1635, when the solemm league and covenant was formed, he united with several of the learned men of the university in opposing it, and from the umpopularity which this cast buon him he retired to England.

The commencement of the civil wars indnced him to return to his native county, where through the inllucnce of Lord Oxenford and Lord Kelly, who was delighted with his conversation, he obtamed a professorship in the university of'St. Andrews. 'The Liat of Crawford soon afterwards gave him the charch of Crail, where be performed the lunctions of the ministry in an exemplary maner.

Attached to the name of royaty, Mr. Sharpe had for some time maintained a correspondence with the king, and on the death of the pretender, he had frequent commanication with General Monk. I'resious to the restoration, the presbyterians semt Mr. Sharpe to London, in order to support their cause, and at the request of Cencral Nonk and the principal Scottish presbyterians, he was sent over to the king at bredu, in order to prevail upon bim to establish presbyterionism in Scotland. Epon his retam lrom this mission he declared to his constituents that "he had foum the king very affectionate to Scotland, and resolved not to wrong the sctled government ol the church: but he apprehended they were mistaken who wede about to cstablish the presbyterian governmema."

After the nonconditional restosation of Charles. both he and his ministers resolved upon tlee re-cstablishment of prelacy, and Mr. Sharre was prevaled uron to abandon the canse of his comstitnem's, hy the bribe of the Archbishoprick of St. Andrews.

Thus convicted ol perfly by his own acts, the name of the archbishop became odious thomghout Seutfand. Many of the wanton cructies which were atterwards perpetrated, were ascribed to his imfucme: and it is at least certain, that after the batte of Pentgand, when he had received an order f:om the king to stop the execution, he kept it in his posstestion for sume time before be gave it to the criminal.

The object of such general detestation as the archbishop hadnow become was not likely to escape from popular rengeance. Une Eitithell, a preacher, and
mardent zealot, resolved to assassinate him. Ite fired a pistol at him while sitting in his coach in Widn burgh, bat the bishop of Ortaney raising his hand at the instant intermpled the ball. The assassin walked leisurely home, and, hrowing off his distruise, atgain mixed with the crowd.

Some years afterwards the archbishop observed a person looking at him with untasual sternness, and suspectieg his design, ordered him inte custody. Tiwn loaded pibtols were found woon him, and, upon examination, it proved to be Nitichell. A pardon was offered to him by the primate if he would contess his crime. Mitchell complied with the request, bu: hecdless of his promise: the arehbishop carricd him before the council. A promise of pardon was again offered him by the council if he would discover his ac. complices. This he also did, but it appeared that only one man, who had dicd since, was acquainted with his intentions.

The culprit was nextbrought before a court of justice and being eommanded wmake a third confession he declined. After suffering imprisomment for several years he was again wied, and convicted by his own confession. He urged in his defonce the illegaljty of the evidence, and the promise of pardon which had been twice made to him: but the council having taken on oath that they had given no such promise Nitchell was condemned and executed.

This unprincipled traneaction, which was carried through by the influence of the primate, was destined to meet with speedy punishment. In the year 1:5: one Carmichach, a servant of the archhishop, having made himself odious to the presbyterians, nine men entered into a plan of waylaying him in Magus mair, about three miles from St. Andrews. White they were laying in ambuch for the servant, the primate himself appeared with very lew attendants. This was considered as a deelaration of heaven in their farour, and calling out "The Lord has delivered him into our hands." they ran up to the carriage, and fired at him withont effect. They then tore him from his carriage, and despatched him with their swords, regardless of the tears and supplications of his danstace by whom he was attonded. Although this mureer, lur which no apology can be made. was entirely w:ipemedtated, yet the whole body of the presbyterians Was accased of being parties to the crime, and several judividuals who were entirely imocent, sufferd death, as the perpetrators of the deed.

SlliRl', Abraham, a celebrated English math matician and astronomer, was boris in 1855, at I.if the Norton, neal Bradford. Itaring beenapprentom to a merchant in Manchester, he deroted ali hivelsure to mathematico, and açuired such a passion for them. that, with the conseat of bis master. he abap. doned his profession, and wene to Liverpoot to :ro. sue his mathematical studies.

Maving heard of Shapps mathematical scyute. ments, a London merchan', in whose house the cur. brated astronomer Ifamstead resided, ensagar hias to kecp his books. In this situation onr amther in guired the frieniship of l'lanstead, thruagh wime minucnce he oftained atherativesituation in the dock-
 nere of too high an order whe throsh and ay ubu: such an occupation, and Mr. Vhamstead Eccoadingy took him as his ond ussistant. Joring a great ma
chanical genius，he was employed in the construction of the nural scxtant， $6 \frac{1}{2}$ feet radius，which he finished in 1689 ，in the course of 14 months，to the entire sa－ tisfaction of Mr．Flamstead．See our article Gradua－ TION．

While in this situation Mr．Sharp assisted the as－ tronomer royal in writing the celebrated catalogue of $30 n 0$ fixed stars；but owing to the fatigue of nightly observation，and to the weak state of his constitution， his health was greatly impaired，and he retired to his house at Norton．

When he had sufficiently recovered from his indis－ position，he titted up an observatory ol his own，and furnished it with telescopes，the lenses of which he ground and adjusted with his own hand．

Our author likewise assisted Flamstead in comput－ ing most of the tables in the second volume of the Historia Celestis，and he executed fine drawings of the constellations which were sent to Amsterdam to be engraved，but though done by the hand of a master， the originals are said to have far exceeded them in minuteness and beauty．
In the year 1717 ，Mr．Sharp published a work en－ titled Geomelry Improved，illustrated with a variety of copperplates，neatly engraved by his own hands． This work contained，1．A large table of segments of circles，with the method of its construction and its uses in the solution of various different problems，and 2．A concise treatise of Polyedra or solid bodies of many bases．

Mr．Sharp was never married，he spent his life in a recluse manmer，and exhibited many singularities which it would be out of place here to record．He died on the 18th of July 1742 ，in the $91 s t$ year of his age． See the General Biography，and Hutton＇s Dictionary， for farther inlormation．

SHARPE，Granvide，celebrated for his unwea－ ried exertions in the great cause of the abolition of the slave trade，was born in 1734，and was the son of Nark Sharpe，Archdeacon of Northumberland，and the grandson of John Sharpe，archbishop of York． He was educated for the bar，but he did not follow the law as a profession．He was the author of some works of little importance．He died in July 1803，in the zoth year of his age．On the 6th July 1826 a bust of him by Chantry was placed in the Council Room at Guikliall，with the following inscription：－

> GRANVILLE SHARPE, to whom
> Fingland owes the glorious verdict of her
> highest Court of Law, that
> the slave whonets his foot on birish grouncl
> becomes at that momentJにばに.

The details of his lile will be found in the Monthly and Girntlemun＇s Maguzine the Edindurgh Revicu，vol． xii．Clarkson＇s Mistory of the Aholition of the Sluce Trade，and Rees＇Cyclopidied，Art．Suanee．

SHAT－cl－ARAB，or CnAT－cl－aRab，Arabic nane of the Euphrates and＇Tigris below their junction． As delincated in our modern maps，these two rivers form their main junction at N ．lat． 31° nearly，and about long． $47^{\circ} \mathrm{E}$ ．from London．In a country ol
moving sands and flat surface，and on which the ef－ forts of human labour have been often exerted in the lapse of perhaps 40 centuries，great changes must have taken place．Pliny as quoted by Malte Brun，sup－ posed the Euphrates to have once entered the Persian Gulf without receiving the Tigris and Ahwas．This opinion Niebuhr has revived，but the probability is that similar to the Mississippi and Red river in the United States，and the Ganges and Burrampooter in Asia，that the Euphrates and Tigris having one com－ mon recipient，always mingled their waters，though extensive revolutions may have taken place in partial channels．In their actual state，the Euphrates and Tigris unite as already stated．The union is made below Korna，where the stream turns to north－east a few miles，and receiving the Gyndes or Ahwas from the north，turns to SE．，passes Bassorah，and after a course of about 100 miles falls by three principal and several smaller mouths into the Persian Gulf．The southern channel is the deepest，but shifting sands render the entrance of this great river dangerous． The tide ascends the Shat－el－Arab into the Euphrates and Tigris．

Darby．

SHATV，George，an eminent British naturalist， was born at Bieston in Buckinghamshire，where his father was vicar，on the 16 th December 1751．In 1765 he entered Magdalene Hall，Oxlord，and in 1772 he took his degree of M．A．Although he was ordain－ ed deacon in 1774，and performed his duties regular－ ly at two chapels，yet he quitted the clerical profes－ sion，and went to Edinburgh，where he studied medi－ cine for thrce years．Upon his return to Oxford，he was appointed by Dr．Sibthorp，deputy botanical lec－ turer，and on the death of that gentleman he would have succecded to the chair，had it not been a law that no person in holy orders could be elected．After taking his degree of bachelor and doctor of medi－ cine，in 1787 he went to London to practise as a plyy－ sician．On the establishment of the Limnean Soci－ ety，he was made one of the vice－presidents，and he afterwards contributed various papers to its transac－ tions．

In 1789 ，Dr．Shaw began the Naturalist＇s Miscel－ lany，a monthly publication，which he continued to superintend till his death．In the same year he was elected a fellow of the Royal Society of London，and in 1791 he was appointed deputy－kepper of natural history in the British Museum．

Between the year 1792 and 1796，he published the different parts ol a work，entitled Musxi Leveriani Ex？－ plicatio Anglicu ot Latinu operat et studio Georgii Shau， M．D． Fi R．S．Aldhontur figure eleganter sculpte ot colorotix．Impensis Jacoli P＇urkinson．He also pub－ lished in＂the Zoology ol＇New IIolland，＂and a work entitled＂Cimelia Physica，＂＂Deseriptions of the Quadrupeds，Birds，sc．＂of which Miller had pub－ lished the drawings in 60 large plates．

In the year 1800，Dr．Shaw began his principal work，entitled＇＂General／／oology，or Natural History， with plates from the best authorities，and most select specimens．＂Of this work nine rolumes were pub－ lished in the author＇s lifetime，and the ninth was left ready for publication．

In 1807，Dr．Shaw published in two vols．8vo．a
course of Zoological Lectures which he had delivered in 1806 and 1807. Upon the death of Dr. Gray in 1807, he was promoted to the situation of keeper of natural history in the British Museum, an office which he filled till his death. When Dr. Hutton and Dr. Pearson projected, in 1809, an abridgment of the Philosophical Trunsuctions, Dr. Shaw undertook the department of matural history. In the discharge of this duty he abridged 1500 distinct articles, in which he inserted the Limean and specific names with occasional amotations and frequent references. This was the last separate work in which our author was engaged. An illatess, which lasted but for a few days, carried him off on the 22d July 1813, in the 62d year of his age. See the Gentlemun's Maguzine, 1813, p. 290, and our article Mazologs.
SHAWL GOAT, is the name given to the goat of Thibet, which is merely a variety of the common goat. Its wool, however, is celebrated for its excellent quality, being the material from which the fine Indian shawls are manufactured. As some attempts, though unsuccessful, have been made to introduce them in Scotland, our readers will naturally expect some information on the object.

The animal has a large head, long and slightly bent horns, which lie backwards, and a straight back, with delicate limbs. The coat consists of a thick external covering of long coarse hair, which conceals the fue wool, which is curled up close to the skin; the fleeces are shorn with a knife about the end of spring, they are then sorted according to the colour and quality. The long hairs are all picked by the hand from the wool; the wool is then washed in a warm and weak solution of pot ashes, and afterwards in water; it is then bleached on the grass, carded and prepared for spimning. The wool to be dyed receives its colour before carding: It is then dyed a second time before spinaing, and once more when manufactured into the shawl. In Tartary it is spun by the hand with the distaff and spindle, and great care is taken not to spin the thread too hard, as the soltuess of the shawl depends upon this being properly done. A superfine shawl requires 5 lbs. of wool, a shawl of the second quality requires 3 lbs ., and one of inlerior quality 2 lbs .

An attempt was made some years ago to imitate the Indian shawls in this comntry. For this purpose some bales of shawl wool were imported, but the Norwich manufacturers could not spin it so as to produce a thread of equal fineness and quality with that from the merino lamb's wool, though the staple was at least five times as long. Mr. Main of Bow Lane, however, contrived machinery by which he produced threads superior even to those of Thibet manufacture.

The Duke of Athol made two attempts, one in 1815, and a second in 1816, to naturalize the shawl goat at Blair and Dunkeld in Scotland. Mr. Dunlop of Balnakeil in Sutherland, made another attempt in 1817. His Hock was entirely black. It prospered for two years, and was purchased by some persons in France.
Mr. Macpherson Grant of Ballindalloch made another experiment in 1816, but the result of this does not scem to have been more favourable than those which have already been mentioned.

A more detailed account of these attempts will be found in a paper by Dr. Macculloch, in Brande's Journal, vol. ix. p. 330.

SIIFEP, See Agrueulture, Index, and our Article Mazoleogy.

SlIELRNESS, a sea-port and market town ol lingland, on the Isle of sheppey and county ol Kent, is situated at the moth of the River Medway.

In order to defend the entrance of this river, a fort was erected at Sheerness in the time of Charles II. In 1667 the works were greatly strengthened, but the Dutch having sent a fleet to the port in 1668, destroyed the fortifications, and having sailed up, the Medway as high as Upnor Castle, did considerable damage to the shipping. This hostile enterprize induced the government to erect a regular fortress, and to mount it with a line of large and leary cannon. Several smaller lorts were built at the same time at different parts on the banks of the river, and since that time Sheerness has been progressively strengthened by new works, and now constitutes a regular garrison, commanded by a governor, lieutenant-governor, and fortmajor. Adjacent to the fort is the king's yard or dock for repairing vessels, and for building lirigates and smaller ships from 40 guns downwards. The chapel is a modern building erected by government for the use of the garrison, but all marriages and burials are performed at Minster.

A number of old line of battle ships have, for a considerable time, been stationed as breakwaters. They are inhabited by about 80 families, and present a very singular aspect to the stranger, from the chimnies being raised 38 feet of brick from the lower gun decks.

The chief supply of water having been brought in vessels from Chatham, the garrison and the inhabitants were often put to great inconvenience from the scarcity of that necessary article. It was resolved, therefore, by the Board of Ordnance in 1781, to sink a well within the fort. After digging to the depth of 323 feet, the auger with which they were boring dropped down, and the water rushed up with such velocity that the workmen could scareely be drawn up in time to save them from being drowned. In six hours it rose 189 feet, and in a few days it rested within 8 feet of the top. The supply since that time has never failed. The water is of a pure and soft quality, and its temperature is somewhat higher than that of other wells. Population in 1821, 817, a decrease having taken place from the reduction in docking and ordnance establishment. See Hasted's Mistory of hent, the Betertics of England and Weles, vol. vii. and our article Kent.
SHEFFIELD, a large manufacturing town of England in Yorbshire, is situated on an eminence at the confluence of the Sheaff and Don, each of which is crossed by a stone bridge, that of the former consisting of one arch, and the other, called Lady bridge, with six arches. Sbefield extends about a mile in length from north to south, and nearly as much in breadth from east to west. It occupies principally an oblong hill, but it stretches over the adjoining valleys. and again ascends the hills at cach ead. In the old part of the town, the streets are narrow, but they are in general regular, running in a direct line, and containing many respectable, handsome, and uniformls built houses.
The principal public buildings are the town hall, the cutlers' hall, the general infirmary, the barracks. the assembly rooms and theatre, three churches and
a chapel, and seven dissenting meeting-houses, besides a unitarian church, and one for methodists, one for quakers, and one for Roman catholics. The town hall is a handsome new edifice built of stone, and stands in Castle Strect near the fish market place. The cutlers' hall, buitt in 1776 , stands on the south side of St. Peter's church-yard. The general infirmary begun in 1793, is a splendid, large, and commodious building. buitt of tine white freestone. It stands about hall a mile to the west of the town. It was finished in a few years from poors' funds dericed from subsoriptions and legacies. The situation is very healthe, and the establishment is in every respect on the very best footing. Near the hanks of the lon, on the north east of the town, are the military barracks, which were built abon the same time as the infirmary. The boidding forms a very bandsome pile, with an esplanade in front. The assembly room and theatre are comtained in an elegant building in Norfolk Street, on the south side of the town. They were first created in 1762, but they were taken down and rebuilt on a greater scale. The churches are St. Deter's, or Trinity church, St. Paul's, and St. James's, and the chapel of the Duke of Norfolk's hospital. St. Peter's, which is the parish church, stands near the centre of the town. and is a gothic buidding with a spire. The Shrewsbury chapel, containing a monument of the carl of Shrewsburs, is on the south side of the chancel. At the entrance to the same di:ision of the church is intered William Walker of Darnel, who is said to have been the executioner of Charles l., but who is supposed by Mr. Humter to have been the translator of the I Indicix contra 'Tyrannos. St. Panl's is a handsome fircek buidding, fmished only in 17:l, hough hegran in 1720. St. James's Church, built hy subseripticn. was finished onty abont 1790. The chapel of the 1) uke of Norfolk's Hospital is very large, and of an cctagonal lom. It was opencd in lrat. The hospitaliscm. Which stands on the castern ide of the Sheaff, $\because a s$ lounded in 1G:0, by Henry, Larl of Nornich, but was more amply endowed in 1760 by Edrard Duke of Noffolk. It consists of two quadrangles, carh containing eigliteen dwollings for the accommodation of eighten men, and as many women, each of wiom reccises five shallings a-trece, with clothing ant coals. Bhere is atoo unother hospital for poor rathers. fonnded in 1700, by Mr. 'Thomas Ilollis of 1.ondon: a frece grammar school, arected in $1640:$ a wisiar sethool for poos boys, and wo charity schools, won lor loys. and another for erits. There are likeyise in shandelt two scharals, one on liclles ath the wher on Tancaster's phan. In the first, 450 boys and $\therefore 0_{0} 3_{1} 1 \mathrm{~s}$ are taught, am in the second :oo boss, and (a) rith.
\therefore hars matherphece wibh eonvenient shanthes.

 and what of tion bew canal liom lomstry, quencel in
 - ma, fine catrsing on which it is particularly adapt-

 Whaty 'I ho hadware mandactures ol Shedicdd

sist of cutlery, and plated goods, the former comprehending the trades ol making cdge tools, joiner's tools, files, fenders, anvils, knives and forks, penknives, pockethnives, razors, seissors, snuffers, saws, scythes, hay and straw knives, sickles, sheers, awl-blades, bellows, mails, halts, inkstands, buttons, cases, combe, logether with the refining of steel. Uuder the head of plated goods, are comprehended candlesticks, teaurns, coffee pots, saucepans, tankards, cups, and rarious articles of table furniture. Lenses and optical instruments are also manalactured here: and there are in the town and its vicinity, extensive foundries for iron, brass, and white metal.

Since the year 1299^{-}, Sheficld seems to have been the staple for iron manufactures; but for sereral centuries its trade was very limited, and consisted chiefly of the manufacture of sheath knives, scissors, scythes, and sickles. Early in the sixteenth century, iron tobacco boxes, and Jews' harps were manufactured; and in 1625 , the master manufacturers were incorporated by the title of "The Company of Cutlers of ILallamshire," which is the only corporate body in Sheffield. Previous to 1750 , the manulacures had not extended beyond Great Britain; but in that year, Mr. Broadbent opened a direct trade with the continent, which was greatly facilitated by the opening of the river Don in 1751, and within three miles of the town. The silver plating of brass and copper articles was now begun by Mr. Bolsorer; and in 1658 , the silrer plated manufacture was set on loot by Mr. Hancock, on the most extensive scale. The wealth and population of the town increased with great rapidity, and have adranced with progressive steps, till Sheffeld obtained its present elevated condition among the trading manulacturing towns in Britain.

During the civil wars, Sheffield was defended by a castle; but upon its surrender to the parliamentary army, it was demolished.

The scenery in the neighbourhood of Sheffeld is of a variegated and romantic eharacter. The ruins of Sheffeld manor-house, the ancient seat of the Earls of Shrewsbury, and the place of Cardinal Wolsey's residence, a short time belore his death, is situated about $\frac{1}{2}$ mile to the east of the town. Whatncliffe parts, the seat of \therefore. A. Stuart Vortley, now Lord Wharncliffe, stands on the Don, about six miles 10 the north-west of the town. It is remarkuble for the clegance of the mansion honse, and the beanty of its grounds. 'The view of Sheftield, from the height oser which it is entered from Vakefichd, is very fine. There are some alum mines in the neighbourhood, and in the vicinity of the town is a quarry which yicldsexcellent griadstones lor cutlery.

$$
\begin{array}{rrrr}
\text { Population in } 180 \mathrm{~s} & 31,314 & \text { Increace. } \\
1811 & 35,840 & 4526 . \\
\mathrm{I} 8: 1 & 4,157 & 6317 .
\end{array}
$$

Sec Xithen's Description of the Comatiy round Manchater. 1795, and the Dicumies of Englend and Wiales, vol. xi.

SHElABC, rounty of the United States in Ohio, bounded N. by Allen. E. by Logan, S. by Miami, SW. by Harke, and N. W. be Mercer: it is about "onal to at scuare of twenty miles, or comprises an
area of 400 square miles. This county is watered by the sources of Great Miami River. Population, 1820, 2,106. Seat of justice Sydney. Central 1.at. $40^{\circ} \underset{\sim}{2} 0^{\prime} \mathrm{N} .$, Lonģ. Wr. Prom Washington City $7^{\circ} 12^{\prime}$.

SHELBY , combty of the United States in Kentucky, bounded N. by Ifenry county, L. by Pranklin, S. by Salt river or Nelson, SW: by Bullit, and by Jelferson W. Lengin 26 , metn widh 20 , and area 531 square miles. 'the surface ol this county is broken, with a productive soil, drained by the extreme worthern hranehes of Salt river. Seat ol justice Shelbyville. The centre of the county is at N. Lat. $38^{\circ} 1 \mathrm{i}^{\prime}$, Long. W. from Washington City $8^{3} 07^{\prime}$. D'opulation, 1820 , 21,017.

SlleLB ${ }^{\text {r }}$, county of Tennessee cecupying the south-west angle of the state, havineflardeman county Fi. and Madison N, the Mlississippi river IV. and the state of Mississippi sonts. Wength 3.t, width 30 , and area 1,020 square miles. This large county is yet but thimly inhabited, having by the census of 1524 , $35+$ inhabitants, or only one th near three square miles. The western border, along the left bank of the Mississippi river, is in pate composed of that overnowed, though very productivesoil. That particular feature called Blalls here bear the margin of the Mississippi, at the mouth of Woll viver, where formerly stood Fort Pickuring, now the village of Nemphis. These Bluffs hase from the Mississippi the aspect of hills, but are, however, ouly the western termination of the general level of the interios country, aud are really parts of an immense butress, reachins from Baton Rouge 20 near the enoush of Ohio. Woif and Loosahatchie rivers rise in !lardeman, enter and traverse Shelby comite, and unite immediately above their common inllux into the Mississippi at Nemphis.
the 1 3th degree of Lobg. W. from Washington City, and N. Lat. $35^{\circ} 10^{\prime}$, mate in the western part of this comm: The chmate is here constherably whin the limit ol cotton cultivation, which with ladian com are the principal objects of fumming. Seat of justice Ralcigh.

SILEABI, connty of the C'nited States in Indiana, on the waters of the blue river branch of Whaterber, having Rash county E. . Decatho SE., Rarihnomew S. Johnson W., Starion NMV., and Nadison N. Leagth from nowis to sonth 2 , breadth 18 and area, 4.32 spuare miles. Shelbyvilte, the seat ol jastice and prineipal post office, stames on blae riser, 25 mites SE. from Indianopolis, N. Lat. $3 y^{2} 31^{\prime}$, and Long. W. from Washingion City is wn
 having the Coosa river L., Diblommey to, Tuspaloosa

 1890, 2416 . Chicl village or seat of justice shelbyville. Central fat. $33^{\circ} 1^{-\prime} \mathrm{N}$. , Long., W'ashingion City, $9^{\circ} 42^{\prime}$ W.

SHELBS, county of the United States in the central part of the state of lllinois, boundarise not known to the writer. By the pout office Respister, the seat of justict, Shelbyville, is 35 miles from Vandalia, the seat of government for the state.

SHENANDOAH, river of the United States in Virginia, rising at N. Lat. $37^{\circ} 50$, in the extreme sonthern angle of Augusta comnty. The various sonrces, howerer, spread over, and elsain the far

Mratio part of Augusta and leockingham commice. In the latter rises also a large though secontary branch, the Nomb-Fork. Bolh strmans issue separately from lackingham, and fowing nearly paraltel to each other, in a motherast diection, ower Shemandoah county, the North Fouk inllects to the east ant joing the main stream wear the south-rast borter of Drederick conme. At their jumetion the: Shemandeath has fown by comparative romars about con, and the North Fork for mitres. Now a tme mosumain river, the Shenandoah, comtinues its dimetion the thonth. cast 40 miles, over l'rederick am Joderorn commete to its finall intlux intes the Potomar, at l!apues's l'ory, $39^{\circ} 13^{\prime} \mathrm{N}$, having traversed $8 z^{\prime}$ of latitute. 'The
 is 182 feet above tide wator in the lattery ame compar. ing the sources of the former with those of dines river, the clevation oll their dividing gromml mus: be

 lalls upwayds of dight an hamedred fet.

This were and its branches thow from the fone and ley between the blue Ridge and Liulatimy momman: the sources of the man stream in its cutire conrse draining the north-west slopes of the furmer monastain. The Shenandoah valey in particulur, comperise an area of very nearly ? 50 s symare miles, and b: the census of $18 \mathrm{a}^{\circ}$, it then sustamed a popatation of nearly so, ogu inhalitathe of 32 to the square; excest. ing the general distributive pophlatom ol Viresinis 16109 . Occupying a part of the speat limestone region stretching atong the northwest base of the blue Indge, the shmamdonh ratley is a froin and fruit producing combtr, and in a state of very rapid improvement. The climate it muse be evident from its northern slope, is, in respect to temperature, inverse to the latitude. 'The someces in duchata. chevatud 1800 lect above the month, mast intluence the temperature equal to at least $\&$ despece of latitnde. Rising therefore from llarper's l"ury, thongh the ar!. vance is southward and lensth of the valley onty sa minutes of latiutu, the scasoms of spring, hartere
 milder to a coller temperaturn amonming is at

SHENANOOAII, comnty bl the Uniter Siates in Firgind, and most comectly mamed, as it is in all ios extent drained by we conluents and main stream ol the river of the same name. This county strecobers actoss the valle? betwen the blue Indue anl Kita time mountan, about 30 miles wikte, with a leagh of 36 miles down the valley in at simata diection with the monntains and streams. Area lost antare mil. . The surface is gencrally monntamous or hilly, (hosag' considerable tracts of rery prohluctive suil skirt the streams. The popatation, in 182, beine 18.92 . 0 . nearly 19 to the square mile, evinces the existence nf arable land of good phatity. Central Lat.
Long. W. from Vashington City, $1^{2} 3^{\circ}$
D) Mrn.

SHELLS, Sce Covanoroc\%
SHENSTONE, Whams, an English poet of some celebrity, and the eddest son of a country penteman. who farmed his own estate, called the Léasower, wis born at Hales Onen in Sheopshere, in Norember
1719. He received the first elements of instruction from the village "schoolmistress," whom he has made the subject of a poem under that title; and such was his ardour for reading when he was a child, that a new book was always brought to hinı by any member of the family that went to market. iVhen that happened to be neglected, his mother was obliged to pacily him for the night, by wrapping up a piece of wood of the same form. At the grammar school of Hates Owen, he acquired the elements of a classical education; but he was afterwards placed under the charge of Mr. Crumpton at Solilucs, who greatly improved his taste, and extended his classical acquirements. In 1732, he entered Pembroke College, Oxford, where his poetical genius first showed itself in some composition of considerable merit. With the view of taking a degrec, he continued his name there for ten years; but having, in consequence of the death of this father in 1724, come into carly possession of his estate, he did not professionally wear the civilian's gown which he had merely put on.

Content with his small patrimony, his talents were never called into vigorous action, and he was therefore led to devote himself to the enjoyment of domestic life, and to the pleasures of cultivating his mind, and of embellishing his grounds.

In 1737 , he published anonymously a small rolume of miscellaneous jurenile poems, but it did not excite much notice. Ilis next work was the Judgment of Hercules, dedicated to Lord Lyttelton, which was published by Dodsley in 1740. This was followed, in 1742, by "The Schoolmistress," already alluded to, which is thonght the best of all his productions.

From his friend, Mr. Graves of Mickleton, in Glocestershire, Shenstone is said to have derived his passion for rural embellishments, which he carried on without any regard to his pecuniary means. The Leasowes, which he thus extravagantly adorned, obtained great celebrity; and as it became a place of interest and public resort, he was involved in expenses, which held him under the constant pressure of poverty. His hospitality, or more properly speaking, his bounty, created wants which he could not supply; and tormented with the desire of doing more, and appearing better than he really could, he became the wretched tenant of the paradise which his own taste had created. The following acconnt of Shenstone is lrom the pen of Gray,-" Poor man! be was alwars writing for money, lor fame, and for other distinctions; and his whole philosophy consisted in living, against his will, in retirement, and in a place which his taste had adorned, but which he enjoyed only when people of note came to see and commend it. His anxiely of mind, which sprung out of his pecuniary necessities, seems to have thrown him into ill health; and though application was most properly made to Lord bute to procure him a pension from the privy purse, yet, before this was granted, he was carmed off by a pletrid fever, in lebruary 11, 1763, and was buried by the side of his brother in the church-yarel of lates $0_{\text {wen }}$.

The "Works" of Shenstonc "in Verse and Prose"" were published in 1761, in 2 vols. 8 vo.. and a third volume, consistiag of leturs, appeared in 1769. Shenstone was a poet possessed of taste and a cultivated mind, but his works exhibit none of the mens divinu which characterize the productions of true poctical genius. Jlis prose writings contain acute re-
marks and just observations, and have the same general character as his poetical labours.

SHEPPEI, Isle of, an island of England in the county of Kent, is situated near the mouth of the Thames, and is separated from the mainland by a narrow arm of the sea, called the Swale, which bounds it on the south, and which is navigable for vessels of 200 tons burthen. It is about eleven miles long and eight broad. About one-fifth of the island only is arable, consisting chiefly of a deep stiff clay. The other four-fifths consists of marsh and pasture lands. The chief towns in the island are Sheerness and Queenborough, already described under these articles. See also Kent.

SHEpTON, Mallet, a market town of England in Somersetshire. It is situated about five miles east of Wells, in a low recluse valley, well watered by several branches of the river Brue. It contains above twenty streets and lanes, the most important of which are spacious and tolerably built, and meet in the form of a cross on the roads from Bristol and Bath to Ilchester, and from Frome to Wells. The sinaller streets are narrow and dirty. The church, which stands on the east side of the market place, is a large and handsome edifice, in the pointed style of architecture, having a tower at the west end surmounted by a spire. The pulpit and font are each cut out of one solid stone, and seem to be of great antiguity from the rudeness of the workmanship. The monuments in the church are numerous but not remarkable. The market place contains a curious stone cross erected in 1500. It is composed of five arches, sustained by five-sided pillars, with a six-sided column in the centre. From the roof, which is perfectly flat, there arises a lofty pyramidal spire ornamented with Gothic arches, and terminating with an oblong entablature, containing a figure of our Saviour on the cross, \&ec. There are here also places of worship for the Methodists, Presbyterians, and Quakers. This place has been long celebrated for its manufacture of broad cloth and knit stockings, carried on both in the town and its vicinity. Nearly 200,000 yards of broad cloth were manufactured annually, and employed nearly 5000 hands. The county bridewell is within the town; and besides a well endowed liee school, it has an alms-house for eight poor people. Population 5104. See the Beauties of England and Hales.

SHERARD, James. Sce Botany.

SHERARD, Wimilam. Sce Botany.
SHERBOURNE, a market town of England, in Dorsetshire, is agreeably situated, partly on the declivity of a hill, and partly on the fertile vale of Blackmore. 'The town is of a square form, the principal streets, which extend east and west, being crossed by smaller ones extending north and south. The church, which is the principal public buidding, is a large and magnificent one, built entirely of lieestone, in the form of a cross. Thongh it displays various styles of architecture, yet the greater part of it is in the pointed style. 'The principal part of the building is nobly ornamented with tracery work, and the interior is light, spacions, and lofty. Within it are interred Ethelbald and lithelbert, two of our Saxon lings. Among its numerous monuments, is one to a daughter of William Lord Digby, on which is inscribed the beautiful and well-known epitaph of lope,

Go, fair exanple of entainted youth, \&e.

The other public buildings are the market house, the frec grammar school, a mecting house for dissenters, the work-house, and an alms-house. The two masters of the firee school must be elergymen, and graduates of either university. 'The school occupies part of the site of the ancient abbey. There are also here two charity schools, three bencfit societies, and a very peculiar association, called the Girern lierls Sociely, founded 1771by Nr. 'loogood. The members of this institution wear a green dress, and straw hats, and dery a small sam weckly, till they reach a certain age.

At 18 they may leave the society; and those married before 25 receive 1.12 at their weddings. 'Those who continue bumarried till 25 , receive the same sum.

Previous io the reformation, the woollen manofacture flourished here. A silk mill was established in 1740; and the silk mandactory, which is still carried on, occhpies part ol the buitdings of the anciem mos nastery. The limen mantacture is likewise carried on here. Population ol the town abospe zopors.

SHERIFF, See Law. See also our atticle Somlind.

SHETLAND.

Tins province is so little known, though, from causes which we shall explain, daily acquiping greater political importance, that we shall adturd to the description of it a greater space than, under other circomstances, we are justified in doing. The account we now give is chielly derived from In . llibbert's volume on Shetland, to the examination ol which country he devoted nearly two summers.

The cluster of islands and rocks which, under the name of shetland, form the northern barried of the British kingdom, are, with the exception of two of them only, contiguous to each other. Il these beexchuded from the number, the rest may perhaps be placed, (lor we have no good charts of the country,) between $59^{\circ} 48^{\prime} 30^{\prime \prime}$, and $60^{\circ} 52^{\prime}$ north latitude, and between 52^{\prime} and $1^{\circ} 57^{\prime}$ of west longitude from London. The two remote islands are named Fair Isle and FouIa. Fair-Isle is situated about twenty four miles to the sonth of the mainland in Shetland, and Foula about twenty miles to the west.

The largest island of Shetland is named the Mainland, which stretches from north to south to the distance of sixty English miles, while its breadth from east to west varies from three to twenty-four. Yell is the next in extent, and afterwards Unst. Lesser. islands are leetar, Whalsey, Mickle Roe, Foula, and Fair-Isle. but there are comntless other islets, holms, and skerries, which it would be in vain to entmerate. Lerwick is the chief town, but the acknowledged seat of Iegislative authority is Scalloway.

The deficiency of good charts of Shetland is severeIy felt in the navigation of the northem seas. A want of light-houses was also long complained of, but this grievance has been in part remedied. On the southerly extremity of the Mainland, at Sunburgh head, a lighthouse has been recently erected, under the direction of Mr. Stevenson, civil engineer, whose projection of the Bell light-house is a monmment of skill so honourable to the architecture of Scotland; and it is to be hoped that other beacons, equally required on the north and west of the coast, may render these islands no longer the terror of the northern mariner, who, learing to be benighted near their destructive cliffs, chooses to brave the elements on the open sea, rather than make the still more perilous attempt to steer for the security which the numerous harbotars of Shetland are well calculated to afford.

I. Natural phenomena and productions.

Gicology and Mineralogy. -The geology and minezalogy of the Shetland islands have been very minute-

Vol. XVII. Part I.

Iy detailed by Dr. Wibbert in his description of the country. 'The rocks are for the most part of the primary class. Granite, gnciss, and primary trap, are very abundant in the Mainland. Gineiss is a prevailing rock in Yell and Whalsey, it also accuas in Cast and other places. Nica slate and clay slate are in several places lound. Drimary limestone is met with in most of the islands. Serpentine rock and diallage rock prevail in Unst and Fetlar. and occur at Feideland and llillswick. Quartz rock and primary sandstone are very abundant in the district oi Wialls in the Mainland, and in Foula. More rare rocks are talcose schist, and chlorite schist, which occur in the districts where serpentine prevails. The old red sandstone and secondary porphyry are the rocks of Papa Stour, and the west of Northmarine.

The highest hill in Shetland is Roeness hill, whirh attains an elevation of 1447 fect. The hill of foula is next in height, being about 1300 fect.

In this singular group of istands, mature has assmoned her wildest dress. We everywhere see barren ant leafless mountains, rocks piled upon rocks, affording in their hollows deep lodgements lor water: woodless tracts, the haunt of wild mountain sheep, the prospect being closed by the northern occan, varied only by wild skerries. By the action of the sea upon the coast scenery is formed of the sublimest description. In the island of Papa Stour there are numerous romantic carerns produced from this cause. On the cast of this island a high insulated rock is perforated through and through, and as we endearour with a boat to trace through a frightful gloom its various sinuositics, a break of day light suddenlyrushes through an irregular opening madefiom the summit of the crag, which serves to light up the entrance to a dark and vaulted den, through which the ripples of the swelling tide in theis: passage through it, are converted, by an echo, into low and distant murmurs. On the north-west of the island, Lyra Skerry, Fulgo Skerry, and other insulated rocks and stacks, rise boldly out of the sea, richly clothed on their summits with stripes of green turf, but presenting perpendicular sides, and entrances into dark caverns that resemble the vaulted arches of some Gothic crypt. In Lyra Skerry. so named from the multitude of lyres or puffins by which it is frequented, there is a perforation throughout its whole breadth: yet so violent are the currents that lorce their way through it, that a passage is forbidden to the explorer, except when the ocean shows no sterner wrinkles than are to be found on the surface of some sheltered lake. On the west of Northmavine a large cavernous aperture,

90 feet wide, is the avenue to two immense perfora. tions, named the Holes of Scraada, where, in one of them that runs 250 feet into the land, the sea flows to its utmost extremity. Each has an opening at a distance from the ocean, by which the light of the stun is partially admitted. Not far distant, Doreholm rises from the surface of the sea, hollowed out on the west by the incessant action of the wares into an immense arch 70 feet high. Again, at Burrafirth, in the island of Unst, a large cayern communicating with the water, exhbits a grand natural arch, which is the cutrance to a passage that admits of the sailing of a hoat to a distance of 300 fect. In the ricinity of Magnussetter Yoe appears the small holm of Eagleshaw, where a perpendicular rein ol greenstone, softer than the included mass of the same kind within which it is contained, has yielded to a progress of disintegration, so as to convey the idea of a deep rent, dividing the island into two unequal parts. Nearly the whole of the vest coast of the island of Nickle laoe is shaped into deep winding caves, some of which are of singulur beauty and grandeur. The isle ol Eshaness or Northmavine, which is exposed to the uncontrolled fury of the western ocean. presents a scenc of unequalled desolation. In stormy winters, buge blocks of stones are overturned, or are removed far from their native beds, and hurried up a slight acclivity to a distance almost incredible. In the winter of 1802 , a mass, eight feet two inches by seren feet, and five feet one inch thick, was dislodged from its bed, and removed to a distance of from eighty to ninety feet. The bed from which a block had been carried away in the year 1818, was seventeen and a half leet by seven feet, and the depth two feet eight inches: the removed mass had been borne to a distance of thirty feet, when it was shivered into thinteen or more lesser fragments, some of which were carried still farther, from 20 to 120 feet. A block, nise feet two inches ty six and a hall fect. and four feet thick, was hurried 1. p an acclivity to a distance of 150 fect. A mass of rock, the average climensions of which may perhaps be rates! at twelve or thirteen feet syuare, and fonr and a half or fice fect in thickness, was first moved from its bed, about hifty years ago, to a distance ol thinty feet, and has since been twice turned over. But the most sublime scene is where a mural pile of porplayr, escaping the process of disintegration that i. devistating the coact, appears to have been left as a sort of rampart against the inroads of the ocean:the Atlantir, when provoked by wintry gales, batters arainst it with all the fisce of real arillore, the waves havierg in their repratod assuntes forced lur themselves an enrance. This breath, named the (riond of the Navir. is widened ebery winter by the overwhelming surge, that finding a passage through it, separates large stothes from its side. and forces them to a distance of nom less than 18 dect. In two or three spots, the frogments which bate been detached aw accamulated in immense heaps like the produce of some guarry In hanma several large detached rocks, named the Stones of Stephouse, appear at some litule distance from the sea: they are the firmapoited or removed stmes of geologists. The largest of them is about twesty-three fert in height, and ninety-six leet in cirsumference. Near Quemlal bay, the phemomena of blowiner sand are in a remarkable manner exhibited: here miy be detected the ruins of seatered buildings
which have long since yielded to the removal of the light sand that laid bare their foundations. In 176,8 there were cvident signs of a submarine rolcanic eruption in the vicinity ol Shetland, though of small extent. Vast quantities of shell fish of different kinds were thrown ashore along with conger eels and other kinds of fish; at the same time the water in the bays was so black and muddy for eight successive days, that when the fishermen were hawling haddock, or any small fish, they could not discern them until taken out of the water. It is highly unfortunate that no naturalist then existed in Shetland capable ol instituting a scientific research into the circumstances comnected with a phenomenon so novel to the British islands.

The minerals lound in Shetland are various. At Sandlodge, copper mines were, in the year 1 s02, wrought by a party of Welsh miners; and in the course ol two years, 470 tons of copper ore were exported to Swansea. It appears that brown hematite was a plentiful production of the rein, but copper pyrites constituted the object of search. Near Fitfel llead, is a large vein of iron mica, about 12 feet broad, which traverses strata of clayslate; this has been described by Dr. Fleming, as well as a vein of copper which oceurs in Fair Isle. A very thick bed of iron pyrites, ninc yards broad, occurs at Garthness, which was empirically worked, at a great expense, in the hopes that it would ultimately change its character, and turn out a copper mine. In the year 1817, Dr. Ilibbert discovered that the hills of Unst and Fetlar abounded with that valuable substance the chromate of iron, which is in great demand, for the purposes of dyeing, and for a pigment used in the arts; for this service rendered to the matural resources of the British islands, he received from the society of arts and cummerce their gold medal. Another rare mineral which he discovered at the same time, was the hyduate of magnesia, occurring at Swinaness in Uust. Its mineralogical characters were described by Dr. Brewster. Actynolite, cyanice, amianthus, garnets, (in very fine crystals, talc, \&e. are plentifully found. 'The native oxide of chrome was first noticed by Dr. MacCulloch.

Sads.-The phenomena connected with the tides are well worthy attention. At Sumburgh-head, on the south of the mainland, there is what is named a roust, the term being of Scandinavian origin, said to signify a strong tumultuous torrent, occasioned by the meeting of rapid tides. This phenomenon may be considered in comection with the ware of tide, which is propagrated from the great diurnal undulation of the Athantic, and which, in the progress ol completing its circuit round Britain, is deseribed by naturatists, as passing to the west of Orkney, from thence to the north ol the Ibritish isles, and then taking a soltherly direction, so as to form a ridge that extends between Buchan and the Naze of Norway. The tides of Shetland are induced by lesser currents, generated during the progress of this wave along the westerly, northerty, and casterly parts of the country; and these set in mearly an hour sooner on the west than on the cast coast of these islands. At the beginning of the llood, the tide in the roust is directed to the castward, until it passes the promontory of Sumburgh; it then meets with a suuth tide, that has been llowing on the east side of the country, when a divergement takes place to the south-cast, and lastly to the south. At
high water, there is a short cessation of the tide, called the still; the ebb now begins, first seting north-west, and then north, witit the commencement of the llood. In short, the various directions ol tide, modified as they are by the number and form of the headtands of the coast, show that the currentis are propargated at successive intervals of time; it is exident, therefore, that at the mortherly and somberly extremities of the she laud arehipelago, they will be opposed io each other. Thins, a sloop has been five days becalmed between Fithed 11 ead and Sumburgh, (two leadlands in the southerly exteremity of Shetland, without being able to pass cither point, one current carying the vessel into the eastem, and the other into the western ocean; and although the vessel was often transported by the tide very near the shore, yet another tide always carried her ofl again. But although there is an opposition of currents, which extends from Sumburgh exen to Fair Isle, the proper roust is that part of the stream which lies at at small distance from the promontory, the force of which is increased by its proximity to the coast, and by the shallowness of the water. Here there is always a lieavy sea; but in a storm, the waves rise mountains high.-A second spot where a roust occurs, is at Scaw, the northerly extremity of Scotland. - A thind is in the tumultuons chanmel of Blomel Sound, which separates the west of Unst from Y'ell. As this channel communicates with both the eastern and westem seas of Slectland, tides propagated during the circuit of the great ware, at successive intervals of time, will here be naturally opposed to each other. Sir Robert Sibbald has long since remarked, that the tide in Uyea Sound, on the east of Unst, flows an hour later than that of Blomel Sound on the wes!, though only two miles distant; and Mr. Gifford has also stated, that when the great current in the middle of the Somd scts north, there is an eddy, deriving its course from opposite shores, that sets as fist south, and so shilts about as the great current alters.

Again, with regard to the great wave of tide itself, it is a curious circumstance, that while specimens of pumice, thrown on the shores of Shetlanl, indicate directions of current from Iceland, the West Indian products. known by the name of molucca beans, which float to the coast, should give tokens of extensive and opposite curcents, branching from the gulf streans that are directed from the sotth-west. Three descriptions of the seeds that are cast on the shores of Shetland have been enumerated by Mr. Patrick Neill; the first of them belongs to the Mimosu scandens of Limmos, the second to the Dolichos urens, and the third to the Guilendine Bonduc.

Other marine phenomena worthy notice, are those which are connected with the occurrence of innumer. able low rocks that lie a little below the surlace of the water. Inequalities of this kind, named in Shetlund Bats, and in Feroe Boflees, which interrupt the currents of tide, and raise immense high waves that break, may be found at various depths, some of them having upon them as much as twenty fathoms of water. When the sea is clisturbed, the breaking is repeated a few times, notexceeding seren, and before it recommences, a long interval of stillness succeeds. It is a popular opinion, that the breaking of a Baa may be induced by hot weather;-that when it takes place in calm weather, an approaching storm is indi-
cated, and that though a Baa appear perfectly still, if a boat approach or go over the place, where it lies, a breaking, often fatal to the crew, immediately ansues. Dishs, in hishistory of 'eroe, notices the latter circumstance, and with much iugenuity supposes, that a magnetic sympathy prossessed by the hidder rock, attracts the iron ol the brat, which the shallow water, in its maguetic antipathy, "not being able to endure, riseth itself." The Shetanders, whase imaginations bave conceived of strange wonders in the scas, entertain similar notions ol the existence of submarine magnetic rocks.

Aeteorology, se. - We are not aware that the mean temperature of Shetland has ever yet beendeterminen. The climate is very variable. In summer the days are of such a great length, that the morning and the evening, to use the words of a poct, "seem to melt into each other." It has been remarked by the late Mr. Aonat of Gardic, that in winter, the sun is five hours and twenty-five minutes above the horizon, but owing to refraction, the daylight is, in clear weather, prolonged to about seren hours and a half. But the most decided indication of winter is the brilliancy with which the evening is lighted up by the aurora borealis, streamers of a reddish-yellow colour darting over the heavens with a tremulous and curved motion. Whether these meten's are horold as well as seen, is a question still salb judice. There is not an inkabitant of Shethand that does not confess to the eridence of sound. Mr. Dalton of Manchester, from his experiments on the great height of the aurora borealis, as it was noticed some years ago in the north of England, maintains the negative, and that there must be some fallacy in the popular notion.

Boteny.-Shetrand, according to Mr. Neill, camot boast any very remarkalale plants. Nor are there any groves; the wild and remarkable scenery that this country exhibits being formed from mere rocks and water. Native willows are dwarfs; they appear only a few inches high; when they attain a greater height, it is owing to some particular shelter that they have accidentally acquired. Still, it is evident that larger wees ance flourished. On the low land near Girth's voe in Detting, the encroachment of the sea. long since exposed the remains of a very ancient forest, consisting of hazle and several larger aquatic plants. the stocks of which were from balf an inch to eight inches in diameter, that struck their roots into a bed of grasel, white above them was an accumulation of peat-moss about ten feet in thickness. It is also proved in digging for peat, that certain kinds of small trees, such as hazles, willows or birch, once braved with success the curting blasts of Shetland. The causes that have led to the disappearance of these trees, is involved in mystery: it may be in part referred to the cattle that roam abroad. In the gardens of Busta and Sculloway, several trees, such as mountain ashes, planes, and elders, thrive, owing to the protection which they receive from a high wall; but no sooner do they get above it, than they are stunted. What the result could be if trees, instead of being brought from Scotland, were derived from the colder regions of Norway, no experiment has yet determined. In the parish of Delting some few small mountain ashes, (supposed to be native ones: may be found in sites where they are well shettered and secure from the attacks of cattle.

Zoology.-The Zoology of Shetland has hitherto met with far less cxamination than it deserves. The shelty, the diminutive horned cattle, and the small hogs, will be noticed in our description of the agriculture of Shetland. The shores of Shetland afford numerous coverts for sea-otters, whose food, which they collect from the sea, principally consists of the conger eel. Their skins were once in great requisition as an article of commerce by the Hamburghers. The Phoca Barbata, abont seven or eight feet in length, is a frequent visitant. The lesser seals are exceedingly abundant, covering in droves the ledges of the rock. The seas again abound with the mightier inhabitants of the deep. The fimner is not unfrequently seen, though this may consist either of the Bulxnopteru Gibbar, the Jubaites or Rorqual of La Cepede. One of the latter kind was killed a few years ago in Unst. The Delphimus Orca or Chaffer, anciently the dread of the boatmen, the Squalus Duximus, the Delphinus Deductor or Ca'ing whale, with huge porpoises, add to the formidable list. The large lake of Strom, that has no communication with the sea but by an inlet, a very few feet in breadth, and which abounds with marine animals, is rendered interesting by the researches of Dr. MacCulloch, who has thereby strengthened his notion, that cod and other fish may be habituated to an element of fresh water.

The ornithology of Shetland is highly interesting. The eagle, the bonxie, or scua gull, and the strix bubo are among the larger of the feathered natives. The low lands, remote from the sea, are frequented by parasitic gulls that build among the heather, while the surface of the hills swarms with plovers, royston crows. sea pics or curliens. The skerries and rocks that rise but a small height above the water, are the resort of the tern or the Sterna hirundo, named by the Shetlanders the tirrock. The taller cliffs, as of Eshaness, Fair-Isle, Papa Stour or Foula, abound with other kinds, as gulls, scarfs, the tomnorry, the kittywake, maws, lyres, sea pariots or guillemots. FairIsle was in the begiming of last century noted for hawks, alfirmed to be the best in Britain. Mr. Lawrence Edmonstone has written some interesting papers on the ornithology of Shetland.

Anmals of the crustaceous, shelly, and coralline species have hitherto met in Shetland with little examination, except from Dr. Fleming, who, during the time he held a living in Bressay, enriched the Zoology of Britain with several new acquisitions.

Il. Histony anil astiquities of Shetland.

Ciril History cund Intiquities.-The history of Shetfand is much involved in that of Orkney. Near the close ol the first century, when Agricola sailed round Britain, Orkney was inhabited by a people, of whose race, whether Celtic or (iothic, not the least light is to be clicited from the pages of history. Agricolasaw Shetand from the shores of Orkney, and gave it the name of Thult, ($/$ hispecterest ot Thulf,) an appellation that was applied to other northern countries, of which the Romans had little information. Orkney and Shettand were next the lurking places of Saxon rovers, who were routed in the year 368 by Theodosius. That the Romans actually visited the coasts of shetlam, is highly probable, from the coins of this people which have been discovered. These are of Galba,

Vespasian, Trajan, and Ælius Cæsar. Tbe remains of a very small Roman camp are to be detected in the island of Fetlar.
The Northmen, whose piracies were for several centurics formidable to Europe, were the next people who succeeded to the possession of Shetland; its numerous bays or voes afforling secret refuge for their vessels. Indeed from this later circumstance, they acquired the name of Vikingr, (i. e. bay-kings.) From this place, as well as Orkney and the north and west of Scotland, the Northmen made descents upon the rich coasts of Europe, and devastated them with fire and sword. By these pirates, Shetland was said to have been first named. "Hialtlandia vel Hiatlandia," says Torfxus, "prisco sermone semper usurpatur an a capulo gladiorum, qui hiullt appellatur, denominata sit incolac viderint." Hence arose Yectlaland, the name that the natives gave to their country a century ago or more. Another name was Hetland, signilying the ligh or lofly land. Norwegian writers say that Shetland is a corruption of this word.

The remains of the forts which the Vikingr crected in Shetland are very numerous, and form some of the most remarkable remains of antiquity to be found in Europe. The burgh of Monsa, situated in the island of that name, has been described by Dr. Hibbert. "The burgh of Monsa occupies a circular site of ground, somewhat more than fifty feet in diameter, being constructed ol middle-sized schistose stones of a tolerable uniform magnitude, well laid together, without the intervention of any cement. This very simple round edifice attains the elevation of forty-two feet; it swells out, or bulges from its foundation, draws smaller as it approaches the top, when it is again cast out from its lesser diameter: which singularity of construction is intended to obriate the possibility of scaling the walls. The door that leads to the open area contained within the structure, is a small narrow passage, so low that an entrance is only to be accomplished by crawling upon the hands and knees; and in creeping through it, the wall appears to be of the great thickness of fifteen fect, naturally leading to the presumption of a vacuity within. The open circular area included within this maral shell, has a dimeter of about twenty-one feet. On that part of the wall within the court, which is nearly opposite to the entrance, the attention is excited by a number of small apertures resembling the holes of a pigeon-house. There are four vertical rows of them, having each an uncqual proportion of apertures, yarying from cight to eighteen in number. On examining the interior of the mural shell it was found to contain chambers, to which these holes imparted a feeble supply of light and air. Beneath the whole, at a little distance from the ground, an aperture led to a winding hight of some steps, of the width of three leed, which communieated with all these apartments; the shell of the burgh being composed of two concentric walls, each of about four and a half to five feet in breadth, while a space of nearly a similar dimension was the width of the enclosed apartments. These steps wound gradually to the top of the wall, communicating at regular intervals with many chambers or gallerics, one above another, that went round the building; they were severally of such a height, that it was possible to walk within them upright. The rool' of the lowest chamber was the floor of the
second, and, after this manner, seven tiers were raised. No rool had ever protected the summit of the building, so that the burgh of Mousa was originally nothing more than a circular mural shell, open to the top. The height of the inside wall was thirty-five feet, being seven feet less than that of the outside; which dillerence was parly owing to the accumulation of stones and earth which had filled the iuner court.
The mode was now evident in which the burgh had been intended to give security to the persons and property of the ancient Vikingr of Shetland against the sudden landing of their incensed enemies. The tiers of galleries contained within the thick walls would afford a shelter to females and children from the missile weapons of the besiegers, besides being repositories for grain and other kinds of property. Here also were kept the stores whereby a long siege might be sustained. The low narrow door within the court, which admits of no entrance but in a creeping posture, was easily secured at a short notice by large blocks of stone. It is indeed recorded of the rude forts of the Scandinavians, that they were seldom taken by an enemy, unless by surprise, or alier a long blockade; that frequently terraces and artificial banks were raised on that side of the wall which was the lowest, and that the besiegers were then annoyed with arrows, stones, boiling water, or melted pitch being thrown from the fort;-which weapons they did not fail to return. The history of the burgh of Mousa confirms this observation. Its high walls bulging out from their centre, defied any attempt to scale them; for, when they were eucompassed by one of the carls of Orkney, he had no bopes of inducing the fortress to surrender, but by cutting off all supplies of food, and then waiting the ceent of a long siege."

The burgh of Burroland is a place of defence that seems to have been originally of greater extent than that of Monsa. The inside diameter of this circular fort is about lorty-eight leet, and it is formed ol concentric walls, each from ten to twelve leet in width, between which are many chambers. The fort is situated on a point of rock near the sea, the land side of which was originally defended by a stone rampart.
"The Cortalice of Cullswick is constructed of unhewn stones of granite, closely built, without any cemont; it exhibits a double concentric wall, inclosing a space twenty-six feet and a half in diameter. The thickness of the outer wall is four fect, and of the inner wall thee and a hall feet, while the interval is two feet wide. Its original height is unknown. The mural construction is supposed to have been the same as that of Mousa. The burgh was surrounded by a ditch now filled up, the breadth of which was thirteen feet. An outer rampart, nineteen and a half fect broad, secured the whole.

Other burghs have a more simple structure; they are destitute of stairs within, and merely contain one tier of chambers, accessible from the imer area. Thus the burgh of Burrafiord is formed of uncemented stones, having a single wall 13 feet thick, with 11 small round apartments, each of the diameter of five fect, which were entered from within the internal area of the burgh: the roof of each were formed of stones, that, projecting over each other, drew to a point; the area included within the fort was 31 feet. The burgh
was situated on a holm, or small islet, being well protected ly the sea on all sides.

Near Iloubie in letlar are the ruins of two burghs. One of them was a circular fort, formed by a double wall, with chambers between them; it was situated on a bank close to the sea, being further protected by segments of three concentric ramparts, and by one cross or flanking wall.- Prequently also the foundations of numerous houses may be traced on sites adjacent to a burgh, which appear to have been under the protection of this fortalice.-()ther varicties might again be noticed, but they would occupy too much space in our pages.
Some remarkable indications of the presence of the Vikingr are the stcinturtes or stone axes, which were in use by all the Gothic tribes of Europe even so late as the eighth century. Fine specimens of these weapons are preserved in the museum of the Society ol Scotish Antiquaries.

Another description of antiquities, of a very remote date, consists of the watch towers which cover the summits of the high hills, as of Rocness Hill, Saxavord in Unst and other places. The watch tower of Roeness hill, wantonly destroyed a few years ago by some soldiers, was of a circular shape, composed of rude momented stones of granite, and capable of containing within it about six people. But probably a much older construction of this kind is on the summit of a hill, in the island of Veinentry. It was about fifteen feet in diameter; within, was an irresular cavity that was entered by a strait passage, about two feet long, and one broad, being narrow near the entrance, but widening out at its opposite extremity. The height of its external cavity was ten feet; its narrowest widtla five, and its greatest ten feet; it appears to have been roofed with large flat pieces of granite. The cavity was probably intended for the purpose of containing within it the peat or fuel necessary for lighting a fire on the alarm of invasion. This was the province of the eracel mather, or watch-man, a sort of sentinel, who stood on the top of a Vord Hill, and challenged all who came in sight. We read in early Orcadian Amaals, of a spy being landed on Fair-Isle, who was commissioned to secretly drench the wood which had been stored up for the purpose of being kindled whenerer an enemy appeared off the coast.

In the tenth century, the Scandinavian pirates of Orkney and Shetland, began to turn their arms against the mother country of Norway; but Itarold Harfagre visited their haunts, and amexed the whole of these islands to Norway.

The Shelanders were then Cidullers, so named from the conditions under which they held their lands, the word ulul being compounded of cele and dule, signifying a waste or uninhabited dale. Origmally, any Norwegian might occupy such land as was unimhabited or waste: an Udaller, therefore, was at first nothing more than the proprictor of land previously accounted waste, which he had enclosed for his own use. But as land became more valuable, the expression gradually lost its primary signification; and when military tenures were introduced, it was merely used as a term in contradistinction to that of leudal; the word udal, in its application to land, meaning absolute property, that of feudal, stipendiary property. The udal rights were likewise protected by delinite laws. The law of inheritance was in Shetland the same as in Norway;
by the later Scotish setlers, it was thas explained, "it was a law in all times bygone, that, when any landed man depanted this mortal life, his whole lands and heritage, immediately after his decease, were equally dirided among his whole children, as well sons and daughters, counting always two sisters' parts for one brother's part: and being so divided, the eldest brother had no further prerogative above the rest of his brothers, except the first choice of the parts and parcels of the land divided."
It appears, however, that Harold Harfagre had placed some limitations in Orkney and Shetand to the free manner in which enclosed land was hetd. From the numbers of sheep which grazed on the uminclosed heaths and moors, the monareh leried a tax or scat; hence the name given to the land of Seathold: but the land which was actually enclosed for cultivation became free from scat, and retained lor itself the true character of udal land. During the time that Shethand was under the intluence of successive earls of Orkncy, few events are recorded except insurections against the yoke of Norway, intestine factions mixed with bloodshed, or descents upon the Scottish shores. Shetland being by a wide and stony channel separated from Orkney, had a distinct prefect or gorernor, appointed over it, who acquired the name of Foude, an office which likewise included in it the shardianship of the revenues of the country. The country, at the same time, acquired the name of a Foultic. In the lake of strom in Shectiad, is shown a small holm, on which are the remains of an ancient burgh, where, accordiigg to tradition, a son of one of the Earls of Orkney fled in order to evade the wrath of his father; but, meeting with pursuers, was slain in a contest with them on the struth ol 'Tingwell. When tidings of the crent were bronght to the Earl, he ordered the perpetrators of the deed to be instantly put to death, and erected a large stone where the slaughter had been committed. The stone is still remain-ing.-The relics of antiquity comected with the Norwegiangorernment of shetland are varions. Courts of judicature, or tings, were hetd in the open air, being for the most part constructed of loose stones, which were piled together in a cirentar form. or these tings, the sites of many ol which are still visibie, there were three kinds. The lowest was a Iferad or parish ting, orer which the Finule of the parish presidet: an officer, whe, in the heotish period of the history of these istands, afterwards ansumed the thame of bailiff. The forde was ansisted in his magiswace by a lawright man, whose particular duty it was to tegulate the weights and masures, and by a number of men named Ranselmen. The tiug to whech these men gave their service, could only doom or give judgment in small matters, namely, in those which felated to the preservation of good neighbomehool, as in questions of minor terspasses on land, poundage of -attle, Ex. \&e. Ahigherome was a circhiting, over Which the bat of 'roney presided, or, in his absence, the eroul foude, so named in contradistinction w the subordinate or parish foudes. In his judicial raparity the great loude was the tawman of sheland, and gate from areording to the Norwegtan buos we the siow. Ehe lum man mate his riecuit tound the whole of the nome comprathsive jurdical distaich of the combay, named linse soltws: wach ting soken inchating several minor district, which were severally unter
the subordinate jurisdiction of parish foudes. He here heard appeals against the decrees of parish tings, and tried weighticr offences, such as were visited with heavy fincs, or confiscations, and capital punishment. A third ting was named the luating, because it was a legislative assembly. This was held once a year, and here also the lawman presided. All the ndallers owed to it suit and service. The law ting was hed within a small holme or islet, situated in a fresh water lake, the commenication with the shore being by stepping-stones. The valley in which the law ting was situated, bore the name of Thingvollr, now corrupted into Tingrull. Here the udallers excrcised the power of reversing the decrees of inferion courts, of trying important causes, and of legislating, or making bye-laws for the good of the whole community. The highest appeal was to the king at Ber. gen.
Interesting remains of these tings are to be traced at the Hill of Crucifed in Unst, at the island of Fetlar, and other places. The bolme of Tingwall still exhibits the circle of stones where the law ting was beld. (Fior a description of the tings of Orlaney and Shetland, see "Aemoir by Dr. Mibberl, published in the second colnme of the Thansuctions of the Society of Scottish Intiquaries.)
In 1359, owing to the failure of the male line of the Earls of Orkney, llenry, Earl of Sinclair, received an investiture of the Earldom from the King of Denmark and Norway, and afterwards the right of Denmark became pledged to the Scottish crown, with a stipulation that the ancient laws of the ndallers should be preserved inviolate. Scottish sethers then gradually introduced themselves into Opkney and Shetland. The latter province was styled Hiallhund, but more conmonly lealtaland; which name, by the new comers, was shortened into Yetland: hence the transition ol Yetland into Zetland was an casy one, the Z in the ancient Scotish dialect, and even still in vulgar pronunciation, sounding like Y .

In 1891 there was contest between Ifenry Sinclair, Earl of Orkney, and his cousin, Malis Sperre, relative to a question affecting the right of the former to the Earldom. The secme of the rencontre was in Shetland: Malis and seven of his companions were killed, while other seven Ifed in a six-oared boat, and took refuge in Norway. Owing to this event, the government of Orkncy was intrusted to other hands, and Henry Sinclair and his successor, rendered their acknowledgments to King Eric of Norway for Shetland only; but in the year 1434, William Sinclair was reinstated in the undivided possessions of the family.
In the year 1530 , King James the Filth was induced to make an hereditary grant of the estate of the crown in Orkney and Shetland to bis natural brother, James Earl of Aloray. When the islanders saw that a fedal superior was intended to be interposed between them and the sowreign, they were alarmed that the ancien laws of the country were about to sufler a corresponding change: haded, therefore, by Sir James Sinctar the governor of Orkncy, they arose in arms to resist the abtrary imovation. Among the Shetland insurgents were Edward Sinclair of Strom, and Sinclair of House Island. The Earl of Caithness and his kinsman Lord Sinclair were sent out against them: the udallers met their opponents on the confines of Steinhouse; and in a sanguinary
confict, the Earl of Caithness and five hundred of his followers were slain, and the rest taken prisoners. It is honourable to the memory of the king, that he became convinced of the just cause of the udallers, in conseguence of which the governor of Orkney was restored to the royal favour, and a complete reconciliation took place. Edward Siaclair of Strom (according to an old deed lately extant) along with thirty companions in arms, received a respite lrom the king for a nominal term of ninetecn years.

In the year 1565, Queen Mary made an hereditary grant of the Crown's patrimony in Orkney and Shetland, to her natural brother Robert Stewart, son of James V. by Euphemia daughter of Lord Elphinston, who was the twenty-screnth and last abbot of Holyrood.

About this time the deposition of the queen took place; and Bothwell, sailing from Dunbar, sought a refuge in Shetand, where he met with a welcome. Bringing with him a number of retainers, an ox and two sheep out of each parish were allowed for their maintenance. But indigence at length oyertakiug the outcast husband of Mary, he ventured into the northern seas, and sought, by piracy, to procure a subsistence. Kirkaldy of Grange, in a vessel named the Unicom, was sent after the noble pirate, whom he met with in Bressay Sound. Bothwell took light, and insidiously directed his course close to a hidden rock, upon which the ship of his pursuer broke. The shoal has since been named the Ciliom Rock.

In 1587, the lands of Brugh were given to Hugh Sinclair and his heirs; and, in a clause of the grant, there was a special provision, that they shoukd not descend to the family according to the laws of udal succession, but according to the rule of primogeniture adopted in Scotland. The Sinclairs maintained in Shetland an establishment of no small degree of splendour. A part of the chapel which they built adjoining their mansion-house still remains. At this time the Scottish setlers, who had gradually introduced themselves into Orkney and Shetland, endenvoured to set aside the old laws of udal succession, and to introduce newer ones more farourable to primogeniture.

In 1588, the dispersion of the famous Spanish Armada in the northern seas took phace. The vessel which conveyed the Duke di Medina the commander, suffered shipwreck on Fair-Isle, where, owing to want of provisions, the crew suffered all the horrors of lamine. Thes were afterwards released from this place, and conveyed to Quendale Bay on the mainland, where the Duke received hospitable treatment in the house of a worthy Scottish genteman, Aatculm Sinclair. Here he remained until his vessel could be equipped. Another galleon was wrecked on the west of Shetland, the crew of which, during their detention, fortihed themselves in a small island named Kirkholm, and built a small chapel, which they dedicated to the holy Virgin.
Lord Robert Stewart only resided occasionally in Shetland. He erected a house, the walls of which were remarkable for their thickness, near Sumburgh Head. For thirty years he was the indelatigable persecutor of the ancient udallers of Orkacy and Shetland, in his endeavours to subvert their laws, and to wrest from them their landed possessions. These oppressions it would be a long and painful task to re-
count. Ife was several times deposed from his honours and cmoluments lor gross tyrany; but on account of his being a larourite at court, as olich re-instated. He was created Varl of Orkney, and Sord of Zetland, and died in the year 1 j95. His son and successor in the carldon was l'aurick Stewart, who endeavoured to complete the task his father had begun, and planed the most unjustifiable schemes lor westing udal possessions ont of the liands of the untortumate proprictors, in which he but too well succecderl. About this time Lawrence Brace, son ol Bruce of Cultmalindic, having slain a gentlemans in a durl, songht reluge in Shethod. Ite was a hallobrother of Robert, earl of Orkney, and having bought upa guantity ol land liom the distressed udallers, completed, in 1598 , the spacious mansion of llouness, which is buit in the castellated style of that period. Over the door-way is to be yet secn an tndefaced inscription:
"List ze to knaw this building 'Julta hegar"
Lawnexe the fibetable was that wortly man.
Quha arnesthe his aymis and atopring pragis,
'Io help and not to limet this worls atways."

But the request was in vain: owing to the imprudence of Lawrence liruce's posterity, the estate of Nouness has passed into other hands; the caste then became unimhabited, and the rank weeds of desolation were allowed to fix their roots among its walls, and to wave with every wind.

About the year 1600 , in consequence of the insecure and sandy foundation of the house which the late carl had built having given way, Earl Patrick Stewart commenced the crection of Scalloway castle: and it is scarcely possible to conceive ol a more fagrant exercise ol oppression than that which oecurred during the exectation of this structure. A tax was laid upon each parish in the country, obliging the Shetlanders to find as many men as were requisito lor the building, as well as provisions for the workmon. The penalty for not lulfilling this reguisition was forfeiture ol property. Nr. Pitcairn, the minister of the parish of Northmavine in Shetland, then came to pay his respects to the lore of the new mansion. The earl desired him to suggest a moteo for this gateway. This was an occasion of which the minister availed himself to lay before the founder of the castle the sinful chormity of that oppression which had coforced its completion. The earl's wrath was kindled, and in his rage he threatened the devout pastor with imprisonment; but alterwards, Mr. Pitcairn said to him ${ }^{\text {W Well, if yon will have a verse. }}$ here is one from Iloly Scripture, -. Thet houst mhich is built upon " rock shull stand,-but brilt upon the semd it will full!" Earl Patrick would not receive the motto in its moral sense, but applied it to the canse which firstled to the buitding of the new castle. "Iy father's house was built upon the sandy shores of Sumburgh; its foundations have given war, and it will lall; but Scalloway caste is constructed upon a rock. and will stand." . Iccordingly, upon the lintel stone of the gate appears the lollowing inscription:

PATRCLUS sTEUAtDOUS, Orcadia et \%othandia COMES, I. Y. R. S.
Cujus fundamen saxum est, Dom. illa manebit. Labilis e contra, si sit arena perit.
A. I). 16 Ja .

Scalloway Castle is a square formal structure composed of freestone brought from Orkney, and of the fashion of many houses of a similar date in Scotland; it is three stories high, the windows being of a very ample size; on the summit of each angle of the building is a small handsome round turret. Entering the mansion by an insignificant door-way, over which are the remains of the Latin inscription, we pass by an excellent kitchen and vauted cellars, white a broad Hight of steps leads above to a spacious hall; the other chambers however are not large. The eastle is now a mere shell. The court-book of Earl Patrick Stewart during his exercise of power exhibits nothing but a horrid picture of confiscations, banishments, and eapital punishments pronounced upon the inhabitants of this distracted country. At length the distresses of the udallers became so insupportable, that notwithstanding the strict guard which was phaced over all ferries, so as to prevent any complaints of tyranny and oppression reaching the royal ear, a few Shetlanders made their escape, attired in the usual skin garbs of the country, and in this dress found their way to the court of James, and submitted to him, with true native eloquence, their oppressed condition. These complaints met with attention; and soon afterwards a representation from the whole of the inhabitants of Orkney and Shetland was forwarded. The Eat of Orkney was arraigned on the charge of usurping in his government the king's prerogative, and had justice administered to him too much after the manner in which he himself had dispensed it in the courts of his own Earldom. After a very unfair trial he was beheaded at Edinburgh.
Orkney and Shetland were next annexed to the crown. only to be granted to greedy farmers or tacksmen, under whom the distressed Islanders experienced no alleviation of their calamities. Alterwards the Earl of Morton, on account of money, adranced to the unfortunate ${ }^{\text {Charles during his tronbles, acquired }}$ possession upon mortgage of the crown estates of these islands, and usurped a direct superiority over the udal lands. But the process of fendalization was completed in the reign of Charles the 11., by Douglas of spyne, lactor of the crown rents, who obliged all the udallers to take out charters from the crown, by the granting of which he raised in Shetland alone, a sum of not less than Eis,000 Scots. About this time, Denmark failed for the last time in obtaining an acknowledgment from the government of Britain, that Orkney and Shetland had been merely surrendered by her on a redecmable pledge. In 1669, Orkney and Shetland were by an unjustifiable act of parliament, eancelling at once the claims of the Morton lamily, re-annexed to the erown, and they were again let out to tack smen; but in the year 1707, the Morton family had sufticient interest to get reinstated. In the year 1512 , the Earl of Morton, on the plea that the emoluments arising from Orkney and Shetand were wot sufficient to pay the intcrest of the sum for which they had been origimally mortgaged by the crown, obtained a discharge of the reversion; an ant was therefore passed, making the whole ol the estates in which he was in possession, heritable or irredemable. Nine year, atherwards, this nobleman was deprived of the jurisdiction of these istands, lor which he received a sum of moncy in compensation, and soon afterwards he was involved in extensive suits at law with
the heritors, relative to the fraudulent increase of weights and measures that had gradually taken place by the ancient oppressors of these islands: he gained his suit, brat these litigations became so oppressive to him that in the year 1776 be sold all his interests in Orkney and Shetfand to Sir Laurence Dundas. The new possessor afterwards conceived that his powers of superiority were too limited, and, in order to extend them involved himself in an extensive suit at law, in which he completely failed.

Such is a very laint political history of these islands. It may be added, that in 1669 , when nearly all the lands were feudalized and annexed to the crown, the province then became in every respect subject to British laws. It was rendered liable to a land-tax, which was in vain disputed, on the plea that the scat already paid was a proper equivalent, and that no other could be in justice demanded. Orkney has always paid twothirds of the cess, the remaining one-third hatring been rendered by Shetland; but the latter comntry having no valued rent, by which the right of individuals to vote can be ascertained, is denied any share in the election of a nember of Parliament. Lord Dundas is the Lord Licutenant of Orkney and Shetland: and with regard to the internal legislation of the latter country, it may be briefly remarked, that the offices of Justice of Peace have been lately revived, that the Sheriff-substitute holds a regular court, and that there are separate admiralty and commissary jurisdictions.

A century and a half ago, the town of Lerwick rose into existence. In the dutch war of 1665 a citadel had been built near Lerwick, to defend Bressay sound from the Dutch, and it was well garrisoned; but in the commencement of the 18th century, a Dutel frigate burnt the fort and several houses in the town. In 1781, it was completely repaired, and named Fort Charlotte. Since the last peace, it has become the manse of the very iespectable minister of the parish.

Eeclesiustical History and datiquities.-It is almost needless to remark, that the ancient religion of the Scandinarian colony of Shetland cmbraced the mythology of the Edda. Some of the antiquities indicative of the existence of this religion are the numerous eairns raised ofer the graves of the distinguished, which mode of sepulture prevated throughout the whole of northern Europe. It was one of the commands of Odin, that over the remains of men of rank huge heaps of earth should be rased; but that over those who had performed extraordinary achicvements, high stones should be erected, inscribed with Runic characters, which ever commanded in Scandinavia a superstitious awe. A stone of this description, bearing upon it mysterious signs, was taken from its site, and infixed in the wall of the parish kirk of Sandmess. It was also a custom of shetland, (eertainly of Pagan Origin, when any one met a funeral, to lift up three elods, and to throw them one by one alter the corpse. In the isfe of Uyea, some beantiful urns, wrought from a soft steatitic stone, were found in a tumulus.

Orkney and Shetand were very tate in embracing the tenets of Christianity. On the south of the mainland of shetand, the foundations appear of an old chapel dedicated to St. Ninian, commonly named Ronan. St. Ninian was a Cambrian, and zealously preaehed Christianity in the lifth century to the Britons of
the province of Valencia or shire of Galloway. Mr. Chalmers conceives, that the chapel mish have been founded by some pious Columbians of the sixth century in their visit to She land; but this is very doubtful. In a very carly period, certain Irish papx, or priests, sought places of refuge, during some commotion of their country, in Shetand, where three islands yet bear the name of lapa, the largest of them being catled Papa Stonr, or the Gireat Papa. Bat whether these priests brought over many shedanders within the pale of Christendom, is very doubtful. In a later period, Sigismund Bretteson, a hero whom the northern Scalds, in marvellons stories of his prowess, have celebrated in their songs, was commissioned by Olaus, king of Norway, to baptise the beathens of Shetland. But the great Christian saint of Orkney and Shetand was Magnus, once partaker, in the 13 th century, with Hacon, his cousin, in the earldom of Orkney. Ite was a meek ruler, worthy a throne in the period of the millenium, since he refused to fight against men from whom he had received no injury. Hacon was his deadly foe; Magnus, attended with unarmed men of peace, went to meet him, by appointment, in an island of Orkney, hoping for conciliation. Hacon repaired thither, with warriors well accoutred, and instandy doomed his cousin to death. The martyr bent forward his head, and an executioner cut it off at a single blow. Alter his death, he was sainted by the pope; a grand cathedral was dedicated to him in Kirkwall, and numbers repaired to his tomb, where, with the assistance of proper oblations and ceremonies, they were cured of their diseases.

When a bishop of Orkney was appointed, Sbetland would of course be included in the diocese. Tingwall, Whiteness, and Weisclale, formed an archdeaconry. Their union is indeed still perpetuated, by their being formed into one parish.

All the ecclesiastical buildings of Shetland appear to have beenderoid ol the least show and ornament, the ingemity of the architect extending no farther than in constructing a vauled rool, and steeples like the round ecclesiastical towers of Ireland. The pointed arch, the pinnacled buttress, or the rich stone canopy, never dignified the chapels of II ialtand. The number of them was remarkably great. The parish of Yell boasted twenty chapels, where only two or three are used at the present day. Many of these buildings may be attributed to wealthy adallers, who had a private oratory contignous to their dwellings; others were erected by foreign scamen, infulfiment of their vows to some tutelar saint, who had been miraculonsly preserved on these dreaded shores from shipwreck or from death. They were variously dedicated, to our Lady. to St. Olla, to St. Magmus, to St. Lawrence, to St. John, to St. Paut, or to St. Sineva. Near Papa Stour an insulated rock, named Frou-ce-Stuck, or the Lady's Stack, inaccessible to all but the best of scalers, is crowned on the summit by the remains of a small building, that was originally built by a Norwegian la$\mathrm{d} y$, to preserve herself from the solicitations of suitors, when she had entered into a yow of pure celibacy. The ascent to the house was considered almost insurmountable, except by the help of ropes. But a dauntless lover, an udaller from Islesburgh, contrived in the dark secrecy of evening, to scale the cliff, and, after the first surprise was overcome, successfully ingratiated himselfin the fair devotee's affection. When Vol. XVII. Part I.
the consequence of the lady's farir pas could no longer be concealed, Frall-a-Stack becane the scoll of the istand, and watsdeserted by its fair and frail temant. The house was afterwards unrofed and reduced to ruin, in contempt of the wow of chastity that had been brokem.
Runic inscriptions over the graves of distinguished Norwegian colonists were common; one only now remains, namely, at Crosskirk in Northmavine.

Orkney and Shetand were late in receiving the reformed religion; and when at length it was introtuced by such an anworthy professor of it as Lord Robert Stewart, the ci-derant abbot of 1 Iolyrood, no wonder that it should be necessary, at a very tate period, to issue out acts in Kirkwall, forbidding, mader severe penalties, all idolatry, such as walks and pilgrimages. In the commencement of the last century, many lopish festivals were still preserved, particularly ihose of Halloween, of St. John's Mass, or of Whitsumtide. The people had their fasts, in which they eat fish, or, in conformity with an ancient chureh decree, indalged themselves with the llesh of seals, which was admitted as a lawful substitute, whenever it could be proved that these animals, in having been pursued, had betaken themselves for safety to sea in preference to dry land. Many old chapels, that had been dedicated to particular favourite saints, were resorted to so late as the beginning of the last century. The devotee would cast among the ruins of the church, as a religious offering, a small image of siver, representin's any particular part of his body that might be afllicted with illness; a recovery was then fully anticipated. Even the shell-snaits that infested the walls were supposed to be possessed of particular healing powers;-they were dricd. pulverised, and adminisiered for the cure of jaundice. It was also customary, long after the abolition of Popery, to walk at Candiemas to the chapel, in the dead of night, with lighted candles. Our Lady's kirk at Weisdale was resorted to in completion of promises made during peritous navigation, or during sickness. "It was much freguented," says Brand. "by women, who, when they desired to marry, went to this church, making their rows and saying their prayers there, so assuring themselves that God would cause men to come in suit of them." The mariner also placed his confidence in the offerings which he might make within the pale of the church, trusting that they would secure for him a happy voyage. Within these walls the supplicant would light candes. and even when the shrine had been destroyed, would drop money among the ruins, or would parade around the kirk on his bare knees. Nor has the chstom of making oblations at Our Lady's kirk of Weistale ever yet ceased. In the pulpit of the charch a greal quatntity of alt the different currencies of Shetland has been found, from the guilder down to the stiver; and athough the building is now almost razed to the ground, the anxious fisherman still drops a pecuniary offering among its loose fragments.
In 1697, the Presbyterian form of charch government was introduced into Orkney and Sbethand. - 111 lands befonging to the church then retarned to the crown; but since they were not annesed to it, they were liable to be disposed of by the sorereiga at pleasure. Three years afterwards, in corsequence of a commission being despatched to these islands be the general assembly in Scotland, nearly the whole of the ministers conformed to Presbyterianism. The bishops'
rents in Orkney were retained by the crown, but the stipends to ministers were paid out of the church funds, though in a less proportion.

The parishes into which Shetland is divided are Unst; Fetlar and North Yell; South and Nlid Yell; Northmavinc; Delting; Lumnasting, Westing, Skerries, and Whelsay: Aithsting, and Sandsting; Walls, Sandness, Papa and Foula; 'Tingwall, Whiteness, and Weisdale; Lerwick, and Gulberwick; Bressay, Burra, and Quarff; Sandwick and Dunrossness.

Purish Sehools.-A century ago there was noteren a school for the wealthier classes, "whereby," says Brand, "many promising amd pregnant ingenys were lust;" but shorty afterwards the poor were taught by a master sent orer by the Society for the Propugation of Christian knowledge. In the year $172 t$, the landholders of the country met and established a school in exch parish, obligimg parents, under a heary penalty, to send their children thither. Aperwards, for a long period, the cducation ulthe poot was agammentected. At the present day many schools are established in difierent parts of the country, aitholigh some of them appear to be ill attendect.
11I. The state of man avd lavded teyctees in SuETLixn.
Sture of Lemel. A more complas inguiry than this camot possibly be imagined, and without a sacrilice of ereater space in the present aricle than we are justifed in making, we must despaip of rendering the subject intelligible to our readers. In making, therefore, a general referenceto Dr. Hibbert's volume for detailed information concerning the shethand tenures, a very slight sketch must at present sutfice.

In a very carly and rude state of sucicty in Scandinaria and her colonies, a murk of lunt was a measure of no dectinite extent, but such a portion as was considered equal to a mark of wedmel. (or coarse cloth; Which mark of wadmel consisted of 48 cells. A newer stamatd of comparison :which succeeded to the wadnal was a certain marle reright of some inferion metal, which was divided into eigh ounces, each ounce being cqual to six cils of wadmel.
Fom each mark of land in Shetland, equat in value 10 As cils of wadmeh, or a man weight of some infedor metal, llarold larlagrelevied aseat or tax. The sat was origimally paid in a certan quantity of wadmel. but afterwarts in some rude description of coin, whish bore the name of peanings or pemates.

Bu:i the scat which llarold Harlugre exacted was limited to patsture or wratas land, whence the bame appleed to such land of seathuld: bat in arder (a enconrage husbandry, he lane which for cultaation had been separated foom the seathold, and enclosed by a feace. became exempt from the seat or 1 ax, and thas was striculy mint. At this cerly periost, therefore, the fatantily of scathold comtained "ithin a matk, for which a scat was due, became expersed by the nomLer of permins abich the king of Nownat actually "ecerved: thas the largest extent of scathokd incidental io a enarla ol land was liable to an impost note exceedine 12 petunjes or three eflh of wadmet: while the least extent of seathold owed a tribute ol not less than four pembes, equivalent to one chl of wadmet. Hence the Humber of pennies at which a mark ol land was rated indicated the proportion of scathold or comnon land to which the proprictor was entilled. A
considerable number of these assessments must have occurred in succession during early times, in proportion as land became enclosed for cultivation, and was by this means rendered seat-free; but as thedistinction has for nearly two centuries ceased to be acknowledged, the last appreciation serves the purpose of the present landed proprictor, who estimates from the amount of the pemnies by which cach mark of land is still designated, his proportion ol scathold or common.

This assessment has again served another purpose. When the king of Norway, who originally possessed much Lund in Shethat, or when the Earl of Orkney, or ant wher proprictor, chose to let out land upon a tenure, the rent was regulated by the number of pennifes at which each mark of land was ralued. One general rental of Shetiand was, therefore, acknowledged. The rento originally paid were in wadmel, but afterwards butter was accepted. The weight of butter was entimated by marks, each mark contaming cight ownces, while id matks formed a lispound ol 121\%. weighat. In a still later period, rent was less Prequently paid ia kind; and for the wadmel, Scots money was often substituied. Nter this commutation had taken place, the ancient rental of Shetland stuod as folluws:

Dexeription of Lamd, per cach Hurk.	Fent due in butter.	Compatation in Mones.
1. Penmy Lant,	12 Marksin mutter,	163. Srots.
10 do.	112.3 do.	14s.8d. do
9 dr.	12 do.	12s. do.
8 do.	102.3 10. -	1Us.8.l. do.
7 do.	11) 11\%.	Y_{5} tu. do.
G do.	3 dio. -	85.
$\therefore \quad 6$.	6 (l).	C6. do.

But allhough the mominme rents have not been raised since the iblands were annexed to the crown of SeotJand, yet collunive mons have effected the purpose guite as well. A lispound, the measure in which butcre or oil was paid, was originally of lalb. weight. The Stuarts, Limts of Orfmey, ratised it to 1816 . the oppressive 'xacters of the crown rents, and netdy furmere, made it athb. and it has since been gradually increased to 321b. "As a consequence of this increase, says the author ol the grievances of Orkney and shethuml, "umbertess littic bertages, and some fair estates atho, are swallowed up. the crown reats laring so inownsed with the weights, that, when the years are not wo plentiful the whole fruits of the ground are wot suffecont to satisfy them.

The history of the teddazation of ulad lands has beangiven. Some vory ancont patrimonies, which have newo been held by a chaver from the crown, are still in a limited degree udal; and those which, in a later period, were fendalized by the Earl of Morwn, are engosed on tenmes that are comparaticly ligh. Wibh regud to the crown lands, in the carlest tenumes that were granted, the asperities of feudality were so soltemed down, as to be searecly freceptible. The lands that devolud to the crown, by the vittue of the treaty of dames 1ll. in the filtecath century, with land Sinclair, were named property-lands; and the king in loting them out in triemial leases, subjected them to an ammal rent, named lemel-metills, estimated according to the general rental of the country, and to a fine or composition, named grassum. But it a tenant
wished to comert his lease into an beritable fen, the triemial compensation ol trassum was dispensed with, and he merely paid the ammal tribute of land mails. When also lands were ley and not laboured, the land-maills were humancly remitted. 'lothe carliest leuars of the chown estates were named 'The Kindly 'lenants of the Kiagr. A change, however, too soun occurred. When the superiority of the cometry was granted to mesme-lords, and whan the revernas of the king were det out w farmers, crown-lands pad rent whether they wre ley or labourd; and, in the course ol time, the terms on which the rentallers of the crown were allowed to possess their lands, became very rigorons.

Whe tents and dutics of Shetland may now be stated. All landholders still pay the scat that was rendered io the king of Norway. Lands are let stibject to the ancient rental ol' Shedand, tiacemerials which are still paid in kind, being estimated by the lisponem of 321 , The grassum for the kinw's land in now converted into an anmal demand of cight ahilliness Soots for each matk of land. All landholders pay a duty mamed ecutte, in commemoration of the prayers of a good sainted lady, which the Shethanders, in Popish tinaes, purchased as an intercession lor their manifold sins; they also pay the ox and sheep money that was granted as a compliment to the Earl of hothwell, when he obtained a reloge in shettand. The average of scot, watle, and ox mones, lor each mark of land, is sad to be about sd. sterting; some marks beinge charged so high as 1 s . 4d. An old claim of trilling amount, named hawk-money, originally pail to the king in support of his hawks, is wased. The landholders pay one half of the eess or land-tax, and rogue moncy, a premium for killing eagles, ravens, and houded crows; bounty to seamen and other casualties, with a proportion of schoolmaster's salary, which may altogether amount to about 63. sterlimg per math of land. The duties to the superiors, which were origimally exisible in the ipset corpork, are regulated by the risc or fall of butter and vil, accordinis to the prices of the market.

Temeres.-We may now describe the maner in which lands are let in Shetland. While a proprietor has been in the labit of setting his land, acooding to the anciemt rental of the country, he has appemed the king's ancient requisition of grassum, tio the amome of his landmaills, and has taken for his precedent all the other exactions incidenal to the crown estates. The payment of a hen lor every matk of land has been also introduced. This is the C'me foul of the south of Scothad. The landed proprictor has likewise been accustomed to exact, in additon to cane-fows, the labour of each tenant for thace or six days in the year, for the purpose of castins peats, or other labouts ol husbander. 'This practice has been very properly condemned by Dr. Edmonstone, as one that "keeps alive the recollection ol feudal oppression, and stifles the feelings of syenerous feedom."

But lands are most frequenty let with fishing obligations attached to them. These we shall now describe.

The remarkable fishing tentures of Shetland had their origin in its former impoverished state. In the middle of the last cemtury, owing to certain castomhouse regulations which affected the loreigners who fished on the shores of Britain, there was a cessation
of the periodical visits which the Hamburghers male in this country for the purpose of trating in cod and ling. Thene was also a decline of the Duteh heremeslishery, which gave ereat support to Shetand, and the reights and merasures were more than double their ancient standarl. 'Ihe landonds, therefore, saw nothing but ruin threatening them. unless they arailed themselves of the caromagrement givess by suceres sive acts of parliament. towats the prometion of the Pritish fisherics. Accordinely. hoy were compelled, in their own det-mor, to be the propere successors ol the foreign merchants, who had, for the wintwrupe cod period of two centwrits, been the chicl supporters of the Shetland fishermen. But at the same dime, the peasantry, from the canses stated, were insurlita impoverished state, that their laduonds were obliored to furnish them on trast with boats and lines meese sary for carrying on the fisheries of the country. This system has been perpetuated io the persent day. "he landlord lets his lamd fon one year only, in consideration of a certain rate that is ressulated by the ancient rental ol shetand; he undertakes, at the same time. to advance a temant the articlesmeessary low the ling fishery, such as boats and lines, requiring from him the same profit that a buyer would expect liom a seller; but in lica ol these advances, the thatit must enter into an ofjigation to deliver to his landord all the fish which he takes at a stipulated price. I system such as this cannot but be objectionable: the "aeuse lor it has been the debased political state of the country. I'hat it opens a wide field for oppression, against the temptation of whirla no country, where human passions prevail, is proof, it would be ahsurd to deny. An unfavourable state of the weather orcurring throughout the short summer season in which the inshermen repair to the lishery, -a loss of lines or boats, -any of these incillents, may oblige the tenant to become a debtor to his landlord, and, actuated by a threat of distraint or ejectmont, he may assent to any stavish comhtions which a task-master may choose io dictate. These are certainly very possible resulis that mast arise from such a system.

Thelate Mr. Cheye, howerer, of Tanwick, whowas bothaconsiderable lad dhohderhimself and a tack sman, mate has dependents lopget the poner that the tenures of the commtry thew that his hames, by atterding to their wants, and by encouraging their excrions in so many different ways, tha., befure he died, he had the satistaction of seemg the tonants ander his influence preeminent in the comme as an industrious, enterprising, and concented race of pophe. Ifis example has been initated with success by other ermatemen in Nortnmavine. Bat this circumsiance arsucs lithe in farvar of the temures of shetand. A people may flourish under a gourl king, though the s: sicm of the government be arbitrar: : bat a sysum is not :o be: delended on this account, lor a saccessor may rab with a rod ol iron. lt is, howerer, creditable to the present race ol Shetland landlords. that they are fally sensible of the adrantages to be derived from letti"g land at a defmite price, independent of the obligation of fishing, and of paying tenants a regrlar price lor their fish, that may correspond with the Ructuations of the market. Yel, alter all, the introduction of any new description ol tenures must be necessarily a slow process: the objection aganst it chiclly arising on the part of the tenants themselves, who, being familial.
ized all their lifetime to a system which they are conscious is a bad one, are, notwithstanding, unwilling to exchange it for one of which they have had no experience. It was long ago remarked by a writer, strenuons for the support of the present state of Shetland tenures, that the fishermen were so poor, that they durst not fish for themselves, fearing, that if they were deprived of the support of their landlords, they should perish for want. This assertion affords the best argument that can be produced for the necessity of a change of system. A sense of dependency in the human mind is too often the forerunner of an inactive and unenterprising state of indigence.

Hr. Hunter of Lumna, was one of the first who attempted to introduce into Shetland a freer description of tenures. But the obstacles he met with originated from an unexpected source,-from the tenants themselves, who, being by no means prepared for so sudden a change of condition, much abused the liberality the experienced. This event shows, that a domestic reform, like a political one, should be a gradual process. Mr. Gifford ol Busta has also very recently followed the example. We shall be most happy to hear that the experiment will equal the hopes of this liberal-minded proprictor.

But many tenures, free from the obligations of fishing, have ol late years been granted on advantageous leases, which have no prececlent in the older rentals of the country. This is one of the happy consequences of the Agricultural Society, lately instituted in Shetland.

Teinds.-The teinds of Shetland are partly of corn; these are paid by some lands in every tenth sheaf, after being cut down; in other lands, the teinds are compounded for in butter and oil, and in a few lands only in money. For every thirty sheafs, three marks ol wool and one lamb are exacted. For each cow, three marks of butter on an average, and for each call, one shilling Scots. Each sis-oared boat pays of teind, fifteen ling, and each four-oared boat, ten ling. In the last place, the minister claims a right to three days work lrom each family in the parish, for the purpose of easting, raising and bringing home his peats.

There are no poor rates; the poor are quartered upon the parishes in rotation, living in each family for periods, varying from one weck to a month.

IV, ecles.- In the case of wrecks on the coast, there is an admiralty court, which is empowered to judge of all circumstances relative to them, consisting of a judere, a clerk, and a procurator-fiscal. When a wreck lappens, and none of the mariners are saved, it is the duty of the procurator-liscal to state the circumstances to the judge, who appoints a person to take charge of what part of the property may remain, to sell it, and to advertise publicly that the proceeds are lodged in cour, until an owner appears; and il, alter the lapse of a year and a day, no claim be made, the property derolves to the Aelmiral. In the old law of the country, it was ordered that a third of the ship and cargo which might go ashore should accrue to : lee proprietors ol the ground, a thitd to the salvers, and a third to the wwner. But, thronghout Britain, the provisions rexarding wrecks are undergoing many wholesome regulations.

The fishing tenares of Shethand having been at lengh explained, aready inference stogests itself, that
they afford no possible stimulus whatever to the cause of agriculture. Indeed the natives, as husbandmen, differ little from that humble state of advancement, which has been described in a Teutonic poem of the eighth century.
"Suis rebus contenti "Agros oblimabant,
Domos edificarunt et liberos
gemucrunt, -
Srpibus segetes cingebant, Et cespites effodicbant."
Translation to the Song of hing Eric.

Weights and Measures.-Under this head may be included a description of the Bysmer, still greatly in use, by which was estimated Lispounds. It is of the greatest antiquity in Norway, being described by Olaus Nagnus. The late Mr. M•Kenzie in his "Grierances of Orkney," has after the following manner described the Shetland Bysmer: it is a lever, which at one end is about three inches in cliameter, and at the opposite end, to which it tapers, is only one inch. From the middle to the smaller extremity, it is marked with small iron pins, at unequal distances from one mark to twenty-four, or a lispund. The commodity to be weighed is hung by a hook attached to the small end of the Bysmer. The lever is then horizontally suspended by a cord going round it; the weigher slifting the cord this and that way, till the commodity equiponderates with the gross end of the Bysmer. Thus the pin nearest the cord, at the time of equiliorium, shows the weight in marks.

Public Roads.-Here is a blank.--There is no road in Shetland deserving the name of one. The only attempt which has been made is to no greater a distance than five or six miles to the west of Lerwick. In some parts of the country, the fine voes that penetrate far into the land, render roads almost umecessary. But there can be no question that Shetland suffers materially by the absence of good communications between Lerwick and the westerly and north-westerly districts. Again, the want of roads is much felt from another cause. In no part of Great Britain is bont-travelling more extraragant than in Shethand. There are no regular ferries; and although the magistrates of the country have attempted to tix a rate ol fures. and to express their determination, in case of any disputes coming before them, to make it their standard of relerence, the regulation is altogether a dead letter. There are lew gentlemen who, in the trips that they make, are not rowed by their own tenants; and they take this opportunity of ingratiating themselves in the favour of their dependents, by paying them above their clue: it is, therefore, unfortunate that the sum thus given is the least that is demanded from the stranser.

Construction of Durdlings.--'The oldest Shetland dwellums ane buitt ol rude stonex, with a cement of clay, or they are still more coarscly formed of stones and clods. After the wooden rafters have been laid. they are ofen roofed with what are provincially called fleres, which are compact vegetable layers, consisting of the short fibres of mossy or heathy roots, elosely interwosen with each other. The removal of a layer of this description from the stiflace of dry moss land, is mever accompisbed by cuting, but b: tearing away. When layers composed of tlaas are doubled, they are considered to be impervious to main. and in this state are placed upon the ralters of the houses. But, in.
stead of flas, the Shetlanders often substitute what they call pones, or swards of earth cut very thin, upon the surface of which grows a short grass. A roof, formed of thin turf, has long been considered the peculiar characteristic of the Scandinavian cottage. Occasionally, however, the Scotch method of thatching is introduced, in which case, the straw is laid over the pones or llays, and alterwards secured with simmonds, or straw-bands.

Towns or Rooms. - It has been remarked that the scat which IIarold Harlagre exacted from the ancient inhabitants of Shetland was under certain limits; it was demanded from all pasture or grazing land, whence the name it took of Scathold; but in order to encourage husbandry, the land which for cultivation had been separated from the scathotd, and inclosed by a fence, became exempt from the scat or tax. This exempt land was named by the ancient udaller a town; and it was not necessary that a single house should indicate its site. But when settlers from Scotand appeared, a town was named by them a room; the expression indicating a limited space inclosed from the commons for culture. Most of the founs or rooms, which had originally belonged to the small udallers of the country, fell, in the course of time, into the hands of some rich setter from Scotland, who attempted to connect the various small inclosures that had been made by a single dike. At this day, therefore, nothing can well surpass the irregularity of such circumscriptions, which often wind in every direction in the most zigzag manner. One dike may include thirty or forty towns; and every farmer is obliged to repair a certain extent of his fence, proportional to the land which he occupies.

Pences.-The materials of which the fences are composed, generally consist of fails, which differ from pones, used for roofing houses, in the following respect: Fails are the thickest portions of turf that are cut, being used for the construction of walls and dikes: Pones have always a covering of grass; they arc thinner than fails, and they are never used for the construction of dikes, but for the sole purpose of roofing; but so imperfect are these inclosures, which consist of turf or stone, that by the incursions of sheep, horses, and swine, they are thrown down every year.

Town Mails.-There is generally a piece of green pasturage, never dug up, that is attached to each house, which, in the ancient language of the country, was named a sefter or seater: the shetlander now names it his town mails. On this spot horses are always tethered, when wanted for immediate use, or upon the close of a summer's day, the small horned cattle of the country are in like manner secured, previous to their being lodged for the night within the byre. These last named animals we shall next consider.

Horned Cattle.-The black cattle of Shetland are of a very diminutive breed; a cow is said to weigh from two to three hundred weight upon an average; an ox from three to four, but not exceeding five hundred weight. These animals have long small horns, and are of a brindled white, brown, or black colour, rarely displaying an uniform hue.

Cows are kept in the house every evening during the year. In the summer they are tethered during the day time in some adjoining pasture. Upon the conclusion of the ling fishery, which is generally in August, the Shetlander repairs to his scathold, and cuts
down a large guantity of grass and short heath, which he spreads abroad upon the hills to dry; it is afterwards stored within the inclosure of his stom or torne. being piled into stacks like hay. When intended fon use, the heath is stewed atong the lloor of the byre. for the purpose of being well mingled with the dung that accumulates from the cows. The wet stramm is then covered over with a layer of duff momhld, or dry decomposed moss, which substance, in like manner, remains until it is well moistened with the dung that falls, when the whole is again covered with a layer of heath; and after this manner, successive strata of heather and mould, mixed with the orture of the animal, are allowed to accumulate to a considerable beight, until the pile attains such an eleration, that its removal is necessary, in order that the cuttle may find sufficient head-room beneath the roof of the byere; but how lar the elluvia of putrid matters may conduce to the health of the animals that inhate the tainted atmosphere of such confined places, is a question of unuccessary discussion. When the compost is removed, it is well blended together with a spade, and is then applied to the land destined for cultivation.
The food of the cows is in general so little, that during very severe winters, numbers have been known to perish for want. When Dr. Kemp travelled through the country a few years ago, so great was the dearth of food, that he witnessed a kind of mash served up for a cow, consisting of a pail filled with boiled fishbones, which had been broken down. Such an umnatural mess, however, though by no means uncommon in Iceland, is much less frequently seen in Shetland.

Operations of the churn.-The guantity of milk given in the day by the Shetland cow is very inconsiderable, not amounting, in the midde of summer, to more than from three to five English quarts in the day. The operation of chuming takes place every second or thind day. A little time before the butter is about to part from the serum, the dairy-maid throws red-hot stones into the churn, by which the separation is hastened, and rendered more complete. The attention she pays to the purity of the butter depends uponits destination, -whether it is intended for consumption within the house, or must be rendered in payment for feudal duties, or lor teinds; thus the proverbial quality of teind-butter, which is fit for little else than for greasing eart-wheels, is proverbiat.

Into the bledoe or buttermilk that remains in the churn, boiling water is poused; the cascons part, ot curds, then fall to the bottom of the churn and are used for food, often instead of hread. The misture of serum and water that is lefr, forms a common drink. named blend, which, when allowed to rest, undergoes a slight degree of fermentation, and acquires, in the course of a few months, a remarkable degree of transparency, and along with it a very acid yet agrecable taste. A similar beverage is familiar at the present day to the Icelanders, among whom it is known by the same appellation that it bears in Shetland. Another product of the dairy is obtained by adding to a quantity of sur cream some sweet milk: the mixture then undergoes a fermentation, after which the whey or serous part is poured off, and more new milk is added. The process is thus repeated several times, until the firmer part resembles a custard of a sub-acid and highly pleasant taste.

Poultry and Suine.-A very great abundance of
poultry is kept on almost every farm, these being very frequently inmates of the house. The most common tenants, however, of the inclosures are the small swine peculiar to the country, which are of a dunnish-white, brown, or black colour, with a nose remarkably strong, sharppointed cars, and back gready arched, from which loug, stiff bristles stand erect. The horg is said to weigh from 60 to loolb. Being often very lean. his, flesh is as food proportionally coarse: but When futtened the meat is sufficiently sweet and delicate, and when cured forms excellent hams.
Horses. - the litle barrelbelited, broal backed Guktous of a brown or hack colour, which Buchanat has described as "usinu beud majur." is well known under the same of shatly. He is left to feed on the hills during the whole year: and in the most inclement weather of winter, is never atmitted within the warm walls of a stable, being frequently compelled to subsist on the drift ware that is left ly the ebl. In the spring these anmals are often in such a halldarved state. owing to their scanty supaly of winter food, that the grow th of the summer herbage becomes necessary belore they can so fur recored their strength as to bear a sider orer the moors of the conntry.

The shelties are setdom more than from nine to cleren hands high. They are gencrally used for carrying peat from the moors or manure to the ficlds. For this parpose a sadde is contrived, named a klibber, which differs in construction trom the klibbar of the Ferce istands. The Shetand klibber consists of two fiat pieces of rood that mect on the ridge of the shelty's back, being roundel of on their summit, and connected together by means of two long attached pieces of wood, which transuersely fit into each other and project upwards: the boartis are then secured below by girths that pass under the animal's breast and tail, while frow the two cross pieces of wood that rise from the top of the saddle. are suspended a couple of cuesces. or baskets, made of straw. These cassies are AIM2. with the materials intended for transportation. Bit whol hay or any light bulky substance is to be caresed, matyys are nsci, which are made of ropes Pepared from joss of rushes, hese being reticulated in meshers of some inches in width. A net of this bind is passed round the horse, so as to secure the h.y or other light substance that rests upon the boards (1f the klibuer. This ancient sadale is also found of nee when the sholy is requited by the femate rider to bear her to the parish kitk: she then throws oser his bachanative coarse manufacture of the country, wown Bot the shape of a sadhertont and when, npon this roverins the lobbar is hixed, its projecting pieces of wond, which the fomate hotels by, form it into a kind of sitc-sathle.

When a jonmey on horseback is meditated, the
 shofy, uncasionally equips him with a motern sadde and hathe, and hages on his neck a hair cond scema! :wrdh in lagth, wall bunded up, from the extemity of which dangles a wouder short-puinted stake. The wavelle then mounts his tiny courser, his leet being often lified up to escape the bombers strewed in his way, and when arrived at his destimation, he carefully mearels the tether attached to the nerk of the animal, secks for a wodant piece of soil, and dixes the stake into the wromed. The steed is then considered as comforathy disposed of, until his master shall return.

Cuthing of Peat. - It was in an early period of the historical annals of this country that the want of wood was experienced. The first Norwegian colonists were acquainted with no other kind of fuel than that which they had collected from the forests of their owan mative mountains, and when Einar, Larl of Orknes, pointed out to them that a fuel was to be obtained from dried peat, he was amost deified for the discovery, having ever afterwards the homory tithe prefixed to his name of Tort.

It is in the time of foir or spring that the Shetrander senerally repairs to his scathold for the purpose of cuting his peat. Thus, there is an ancient law in the country, "that none cut floss belore Lemmas-day in their own scalhok, withom due advertising of their neighours belonging to the same scathokd, under the pain of ans. Scois tolus quenlits." When the watives are assembled to cist their peat, their first object is to pair off the regctating moss, named the fectl: this is always called foyging the moor. Fur his purpose an ancient description of spade is used, the shaft of which is lung and light, white 4 e iron-plate at the bottum of it is of a dififent shape, and much marrower than that which distinguishes the common spade of England and Scotand. There is one man, who, with this implement, makes a ditch seldom wider thin two feet, whle another is emploved in disengaging the feal that has been cut, which be thows on the duver's right hand-side. in the most slovenly maner. When the moor is thas fievertat ancient seandinavian implement of husbandry is used for casting the peats, named a trokit: its shaft is rather longer than that of a common spade, while to the bothom oif it is uffixed a sharpirot-plate, styled a foulter, which projects from one point serea inches, and from another litle more than an inch. Thes, when the Shethander, in wiedeing his tuskar, pubses dom the feather into the moor in a perpendicular direction, a corresponding shape and size is given to the peat that is cut be then, with the greatest activity, hifis up eacioportion as it is severd, and white it rests upon bis tuskar, throws it abroad on his left hand-site, or piles it in such a manner hat proper intereals may subsist for the sulmission of air. The ditch is dus very narpon, and its depth rarely extends beyond the deptin of two peat. When this labour is finithed, the peats appear in loose shoncaly heaps. (being but seddom deposited at the hottom of the ditelt.) with the verdant surlace up wards, so that regetation is contimed. With we gratd the length and divection of the excaratons, they are goverucd by no rule, the tenant having the unrestricted libery of making what devastation be chooses upon his pasture. Ofum as Mr. Shimention his Agrombual surver has remarked, the wats are at rightagles across a declivity, so an to catch all the surface water that runs down the stope. and to prowe trapordrowning sheep: ornot nifergunly the water bastes orer the lower sides of the trenches, and converts the ground, for a considerable distaner, into an unsighty sultey. In the course of a burnight or three weeks dher the peats have been cast. they are set thp on one emb, that the daing may be completed: but the close of the process is in the middle of the summer, when the shetlanders build up their peats in large stacks near the place where they were dus. or, by means of the lithe shettics of the country, carry them home.

There is one practice which occurs in a few parts of Shetland, particularly in Bressay, that deserves particular notice. When a moss is but one peat deep, the inhabitants, after obtaining from it their facl, lay the sods with which the peat was covered in a line clay bottom, press them down with the feet, and derive from them grod crops of grass, or, when broken up, good crops of corn.

Munure.-The manure intended for tillage is a midden, consisting of dung, of heather that had been cut up for litter, of sea-weed, and of earth or dry decomposed moss, named Detf)-monld. ' 'his compost, which has been known from the remotest antiquity, is an object of such importance to the Shetlander, that the all-judged sacrifice which he often makes in order to obtain the ingredicnt of earth, might be considered as exaggeration, if it were not attested by a committec of the Sholland Agricultural Society, appointed in the year 1818 to adjudge the premiums for a certain diswict of the coumry: they state, that they were concerned to observe the extent to which the pernicious practice, too common all over the country, is carried, of cutting up the uncultivated gronnds in the neighbourhood of the principal farms for manner; that it happens unfortunately to be the most improvable ground which is thus sacriliced, and that one man was observed to have destroyed his very town-maills for this purpose, when the earth was not more than two or three inches deep.
When manure is to be carried to the fiells, a klib. bar or wooden saddle, of the form which has been described, is fixed on the back of each shelty, to which cassies or straw-baskets are appended. Sometimes the manure is carried to the land by women.
infiethand Outield.-The arable lend generally prefered lor culture is described as sandy, or composed of a mixture of clay and gravel that approaches to a soft loam; but often it consists of a black monld resting on clay alone, or on clay and sand. It is usual to give to land a distinction that was no doubt introduced itto the country by the Scottish setters; that is, into infied and outfich. In sootand, the land lying near the bomestead was kept for successive years in tillage, and, under the name of infeht, received all the manure, mixed with earth, which the fam aflorded. Thus also in Shotand many indosures near the honses have been dunged every year, and have been sown in the end of A pril with bear and oats for more than half a century, without ever lying fallow, or haring produced a diferent kind of grain: but the shetlanders have not imitated certwin Scotish districts, in allowing no manure to any part of the lamb but that which was properly imfeth. In Perthshine, for instance, any portion of land which lay in a valley at a distance from the huse, and was sulficicuty free from stoncs, was, muter the name of ouffeh, altermately kept in corn, and natural ley or wetedy wastes, without receiving the smallest return of manare, except that which was afiorded by cattle, when it was used for the purpose of folding. But the outheld of the Shethader, which is often mossy, and seldom drained. has long received each year a portion of dung, mixed with dulf-mould, earth, or sea-weed. The ground is slightly harrowed; it is then sown in the end of March or beginning of April with black oats. The dung which has been carried out to the land during the winter is afterwards applied to the surface of the
sown ground, and not being incopporated with the sait, wastes away by the action of the sun and rain. During the next season the onfield lies fallow; and thas in altemete years it is under tillage and in ley. Sometimes the ground is two years laboured, and lices two years ley. It has beco also long constomary in the conntry to adopt in the oudida a mode of matking out beds loy oats that resembles the lazy-bed way of Seotland iucidental to the caltivation if potatoos. Moss-carth, samd, Eec, are thoown up liom an adjacent ditely, and npon this substance otts ate sown, which thrise remarkably. In the year ifso, pmati, es were introduced for the first time into Shethand, when it becane customary to oblath from the infolin in altormate years, a crop of this regetable; and at the present day, oats, potatoes, and bear, are mot malierpently produced in succession. (of late? ears cabbesses have been much less cultivated, then use ats a loosd being superseded by potatoes.

Ploughtag:-The Shetand plough is single-stitted. like one that is represented by Olams Margus abs common to northern nations. A crooked piece ol wood bent io a right angle forms the bean ol the ploush, which has a lenget of six feet, and a heishte of two fect and a half; the single stilt at the top of it consists of an oak stave scren leet long. Through the lowerend of the beam a square hole is cut, fion the introduction within it ol a piece of oak about 22 inches in lengh, named the Mercal, to which is affixed the soctand sky. The conter stands nearly perpendicatar to the sock, white a wedge drisen belew or atbote the me:cal regulates the depth of the forrow. A slender machiac of this sort, which one man may lift with ease is driven by four oxen abreast. Two yokes, joined by a double rope, are laid on their necks; a large one on the two outermost amimals, and a small one on the: two innermost. The draight or clain with which their necks are bound to the plough is from 13^{2} to 2 feet long. Wiah this strange instrument two labourers take the liede. The holder of the plough stands on the left of the pliable stilt. The driver or cullor, as he is named, gres befure the oxen, walking backward: the sound of his whip sets the cattle in motion: the holder ol the stilt lies on with his side: the earth is turped over: the work is cxecuted to admination, until a large stone encounters the coulter, and then crack go the joints of the framework. All hands are now pressed into service lob repairs, and the phough is again set to rights. A lash of the caller's whip agran canses the beasts to resume their tarly pure. Eucry thing is carried on snoothly until a stifiluaroy appears, when another impediment takes place. It is now neccssary that the stubborn ghebe shouth be broken down; this is accomplished: the labour of the plough is again resumed, and, by the belp of heaven, is at length happily accomplished. Such being the operation ol this primitive machine, every antiynary must regret that an implement of this description. e!ucidative of the carlicst state of Seandinavian agriculture, is going last out of usc. chielly owing to the innorating spirit of the Shetland Now . Agricultural Socictr.

But for turning up land, the plough has been ofen laid aside, and the ancient, slender, and long-shalted spade of Shetland, which has a blade a quarter of the breadth of the common garden spade of Scotand, and a convenient projecting picce of wood for the ap-
plication of the foot, is in much greater requisition, being indeed well enough adapted for the rugged and stony ground of the country.
Reaping and Harvest.-In August, after the expiration of the ling fishery, the natives first begin to cot heath, mised with various plants of the hills, for winter fodler. The grass is mown with a small sevthe, of a construction peculiar to the country. So severe is the climate, that the corn harvest often begins very late. Instead of the crop being in the yard in the middle of September, this event rarely occurs before the end of October or even November. The corn is then cut down with a very small sickle, the sheaves are put up in small stooks until dry, carried into the corn yard, built in large stacks, taken into the barn when wanted, threshed with a flail, winnowed and dried on kilns.

The causes which prevent the Shetlanders from reaping the proluce of their labours are various. The swine of the country, wild boars in miniature, a race of little, ugly, brindled rangers, not much larger than terrices, are too often suffered to roam abroad, and destroy the fruits of the earth. The imperfect dikes, constructed of turf or stones, easily yield to these animals, their assaults being supported by wild shelties and sheep. In the south of the islancl, rabbits have continued to increase the desolation of the sandflood. which there prevails. Instead of the growth of plants, which have a tendency to resist the escape of the levigated particles of the subsoil, being encouraged, the reeds, which grow among the sand, are for the laudable purpose of making besoms, still dug up by the roots; numerous herds ol swine are allowed to roam at large, and dig in the sand, while rabbits even mect with a hospitable protection.

But, unfortumately, the elcments militate most against the Shetland husbandmen. Heavy gales, combining with the spray of the sca, of ten destroy the erops in a single night. "When the winds blow with great force," says a writer on Sbetland, "the surges rise in proportion, dashing violently against the rocks. The white salt froth which is forced up against the highest promontorics, mixes with the air in circulation, is carried over lands under cultivation, falls, as it passes, on the corns, dries and hardens upon them, by which its farther growth is impeded, and the most sanguine hopes of the poor lamer destroved. The straw even, as well as the hay, becomes unlit lor any purpose in husbandry." From this cause, a very distressing winter famine has not unferquently occurrect.

Mills.-The ancient quern is still used in Shetland. A hand-mill of this kind consists of two stones about 21 inches in diameter, that rest on a kind of table. Near the edge of the upper stone, is a bandle which the grinder, (generally a femate of the house, seizes and tums round with a sort of centrifugral movement, whilst the left hand is employed in sapplying with eorn a bole in the centre. The meal then thies outwareds, and drops frombetween the stones on the table, when it is every now and then scraped together and taken away.

Water-mills, probably as old as the time of llarold llarlagre, likewise exist. The innumerable slender rills that pay their tribute to each voe, occasionally scree to supply some small mill, the presence of which is signilicel by a low shed of unhewn stones,
that stretch across a diminutive streamlet, over which it is possible in many places to stride; compared indeed with a water-mill of Scotland or England, the grinding apparatus of Shetland seems designed lor a race of pigmies. The millstones are commonly formed of a micaceous gneiss, being from 30 to 36 inches in diameter. Under the frame-work by which they are supporterl, is a sort of horizontal wheel, of the same diameter as the millstones, named a Tirl, which consists ol a stout cylindrical post of wood, about four feet in length, into which are mortised twelve smail float-boards, placed in a slanting direction, or an oblique anglc. It bas a pirot at its under end, which runs on a hollowed iron plate, fixed on a beam. A strong iron spindle, attached to the upper end of the tirl, passes throngh a hole in the under millstone, and is firmly wedged in the upper one. A trough conducts the water that falls from the hill upon the leathers of the tirl, at an inclination of 40° or 45°, which, giving motion to the upper millstone, turns it slowly round. To the hopper that surmounts the upper millstone, there is a log of wood fastened, which, striking upon the uneren upper surface of the stone, shakes this repository for the corn, and makes it come out, while too quick an escape is checked by a device for lessening the size of the aperture. But sometimes there is no hopper at all, and a man patiently feeds the mill with his hand.

Breal.-From the oats and bear raised by the natives, a very coarse and ponderous bread is made; but sometimes the grain, after it has been ground by the quern, is passed through a sieve with much care, and is then formed into small cakes, very round and thick, named Broonies.

Sheep.-The wild sheep of the country, of true native breed, resemble in their form, their nimbleness and fleetness, the argali, or wild sheep of Siberia. They are celebrated for their small size, and known by naturalists under the name of the ours eatula brevi, that at the present day range among the monntains of modern Scandinavia and Russia: in very lew places are the Shetland sheep mixed with a Northomberland breed. Their colour is excecdingly various, being grey, black, dumish brown, white, or they are streaked and speckled in the most curious manner with a combination of various tints and shades. Besides the distinctive character which they possess, from the shortness of their tails, their horms also are very small. In summer, they collect from the pastures that kind of food which the natives still designate by the ancient Scandinatian term of Labbe, expressive, in the original sense, of coarseness or roughness. Lubba consists ol those common productions of the hills which are found where beath is absent; thus it comprises several kinds of Carices, of Vardus stricta, Eriophoron or cotton-grass, which is the lood of sheep in spring, and of other plants. Burre, which is the provincial name given to the Juncus squmrosus, serves the animals cluring the winter. But besides these plants, the Ericu velgaris and tetralia are the last resources. The sea also afforels provision for the wild inhabitants of the Shetland scatholds, atol there almost appears to be a peculiar instinct, which, in the severer months of the year, prompts them, upon the cbbing of the water, to fly to the shore, where they remain feeding on marinc plants until the flow of the tide; they then return to the hills. The diseases to
which they are subject are as various as in the several districts of Scotland; thus they are aflicted at times with what the Scotch call braxy, or an inflammation in the bowels, with the sturdy, or water in the head, with blindness, from which they frequently soon recover, and with the rot. Abont forty or lifty years ago, the scab was mafortanately introduced intos the Mainland, and proved very liatal, reducing the number of these animals in some places to a third. The natural enemics of the young lambs are eagtes (named Ernes), ravens, hooded crows, and the black-hacked grulh. Of these, the sea-eagle (Followsifiogres), and the ring-tailed eagle (Fulco fintrus), are the most formidable; nor is the filter allitilla, or white-tated eagle, unknown as an assalant of the Shetand pastures. Other formidable invaders of the hocks are the swine, which are sullered to roam encontrolled over the scathotds, and to dye their tusks in the blood of young lambs when just dropped.

The sheep are allowed to run wild among the hills during the whole of the gear, berdiner and housing being almost wholly unknown in Shethand. No food is provided for the poor anmads during deep lalls of snow, nor is there any lriendly shepherd to drive them to some huill, or dry place of shater, where the lives of numbers of them might be preserved. Upon the approach of a storm, a sense of common dather causes them to congregate for sell defence bencath the shelter of some rock on the sea shore, where they protect themselres from the cold, by the warmth which arises from their bodies during a crowded state; or, it they are covered with snow, hunger impels them to tear portions of wool lrom cach other's backs.

Whenever it is requisite to catch any sheep, they are hunted down with dogs, trained for the purpose, which W゙allace, the historian ol Opkney, describes as a sport both "strange and delectable." When a Hock is in sight, the Shetander seizes hold of his hed-dos, (the ancient Scandinavian mame for a sheep-dog.) and points out to him a particular sheep. The dog then bounds after his prey: the flock are immediately alarmed, but soon perceiving the particular individual that is the intended vietim, they restrain their fight, and allow the pursuit to be uninterruptedy confined to one object of selection. The poor animal is then chased from hill to hill, antil he falls into the power of his pursuer, who is taught to seize him by the foot, the nose or the ear: or perhaps he perishes by tumbling over some precipice, where he is either dashed to pieces upon the stones, or falls into the sca.

As the sheep of one scathold, island, or parish, constitute a promiscuous flock, which may belong to more than a hundred individuals, it is remarkable that more frequent disputes should not have arisen, respecting the rights of possession. No property of this kind was ever secured without the means of haddogs, it was therelore a proper regulation that none of these amimals should be kept in secret. The next object of the ancient legislators ol the country, was to see that each dog which might be kept to take sheep, was under proper control, and that he was not what was named a ruming dog, whom the old acts of Orkney characterized as "a dog that runs frae house to house, or through the country chasing the neighbours' sheep;"' such a dog would be not only prompt to seize a sheep for his master, but would have little hesitation in providing mution for himself. But since

Vol. XVII. Pakt I.
this act was framed, a sort of demoralization has taken place in the character of the canine race of Shetland,-and it would be diflicnle to sas, at the present day, what dog was not a rmmine doer. Nr. Shimelf, in his africnlenal survey of the country, has complaned with great justice, ol" a rapacious ranger of this kind that came buder his observation, who. withont any order from his master, would break off at the first unfortuate shecp that he saw, throw him down, give him a grod bitime, and ban retun, nonchided for his ernelty to his owner, whes seemen to consider the treatment as amatier of conmse. . Whe fact is," atd; the narrator, " that there is solittle proft arising from shop stock, in the present state of landed property, compared with fishing. that the land-owners and tacksmen do wot put as much ralme on a sheep, as in (ideat Dritain on a hate."

When sheep were considerod ol more value than they are at present, it was ol great conserpence that no witd or sede sheep shoutd be at large in any particular district, which might have the tendency of dispersing a flock. But, at the present day, most of the sheep of the country are se wild, that the old distinction ol scar sheep seems th be nearly lost; and as summer herding is almost unknown, these aninats are by no means in a progressive state of taneness.

Again, as the seizure of sheep took place by means of dogs, it was neecssary for the preservation of individual property, that no capture should be private. Every proprictor in claming bis share of a promiscuous Hock, had a particular mark of his own. tha: was formed by various kinds of incisions, which were inflicted on one or both of the animal's cars; the ex received such names as a shear, a blit, a hole, a bit out of the right of lelt ear, betore, behint, or from the top. In this way an infinite varicty ol private matls was derised, but none ol these could be law frlly used without the sanction of the bailiff of a dis. trict, or ciril officer, whose daty it was to insert in a public register a descriptive account of all the wkens which any individual wished to adopt, for the recos. nition of the particular share which he had in a juine stack of sheep. It was, therefore, a proper regulation, that the marking of sheep should be a public act, and that no property could les thas clamed, isut in the sight of a wholedistrict. Theperiod appointed for marking lambs, was when all the propritetors for floct were assembled for the purpose of incius. or tearing off with the hand the wool from sheep, alier it had naturally begun to loosen: his was about the middle of May, or near midsmmmer. The tine of marking and rucing is still publicly proctaimed, and on the day fixed, afl the men of a district turn out. an 1 drive their common flock, withoul any preparation of washing, into rude inclosures, mamed phatio or cines. If the punding be delayed too long, We shecp become so widd that they are hunted down and taken by dogs: but when at last hey are secured whith the cropes the civil officers (who were in lormer dave the bailitf and ranselmen of a district) appear as arbiters of all disputes. Each owner now searches the crue lor his property, which the civil officers confrm by their register, and also clams the lambs that are profuce! from the particular stock that he possenses, it order that his right to them may be secured by a prope: ear-mark. At the same time the groneal revine begims; the proprictor seizes hold of each sheep in Q
turns, and, disdaining the use of shears, pults up the wool by the roots from the struggling animal's back; and if the flece has not begun to maturally loosen, which is too freguently the case, the operation is at tended with excruciating pain. Such a cruel mode of heecing, which is ol truc Scandinavian origin, is at the present day retained in Iceland, as well as in Shetamel.

Thus it is shown, that no clams of individual property among sheep could, by the ancient taws of Shetland, be sanctionet, il made in secect. According to the old act, if any person use a sheep-dog, :nd run therewith after his own sheep unaccompanied: if he mark, rue, of take any home without showing the mark, or if he kill a shecp without first showing the mark to a ranselman, "or other honest man," he was liable to be fined, and, for a repetition of the offence, 2o be punished as a common thiel, and prevented in all time coming from keepins a sheep-dog. It is a pity that, in relerence to the undirided state of the scatholds, the sulutary tendeney of these good laws has not been perpetuated. It has betn remarked by Mir. Shirreff, that the Shetlander, who may possess the best sheep-dog, is by reptite the greatest sheepowner in Shetland; and that theres are greater encmies to the shocpstock than cither defect of food or the inclemency of the weather:-he produces as an example, some natives of Yell, who, for several yeurs, had contrived to secure for themseltes, on an aterage, two sheep cach week.

The carcass of the Shetland sheep is very small, being said not to weigh more than thirty pounds. The inesh is peculiarly swect, and may rival in flavour the best Welsh mation, that is so esteemed in England. But, owing to the crooked policy of proprictors learing none but the worst lambs, which are unacceptable to the table, for breeding rams, the race of shetland sheep has been long suspected to be in a state of degeneracy. The wool is short, yet very fine From the amount of the tithes paid in this commodity to the Pope, so early as the 14 th century, it has been supposed that the breed of shoep in this country was murh greater in ancient times than at the present day. Their wool, which was mandactured into the coarsa cloth, named wadmel, afforded the means this ancient colony of Norway pussessed of paying the tribute which was due to the King of Demmark, under the tith of seat. No walk-mills existed, and the web was sometimes thickened by the hands and liet, and at other times it was scourcly spread along the bothom of a narrow passage anang the pocts though whith the tide ebbed :and Duact, so that the action of the spa. which, in sach peat ap chamels wasmuch incrasel, might welli or foll the clotio. When thus propard, the fabric acguired the name of Taracethat. Fanly in the last century, the barl of Abrton orefered a wath mill to be buili, bot the mannfacture of wathey wat then much of the derdine. There is at the prater day, a considerable quatity of white worthe: eloth made for hame ust, which slipplies the plate of limen.

The chief use to whit the She thand wood is applieed is hor the stochimes and ghoves that are butt. The Areere of the sheep, which is remarkably soft, has been wrought into stockings seline, that they have bere known on st la hagh as fos. per pair. The price of the most common quality, however, is about
three or four shiilings, whilst they are manufactured so coarse as to be worth no more than fisepence or sixpence. The knited covering for the head, rescmbling a common donble nightcap, which the master of a fimily wears, is an object of the Shetland mannfactures. The variegated and fantastical colours which it displays are produced by native dyes. The lichen Tortarells yiclds a lit or tye, that was formerly an object of commercial notice. named Korkelit; it is scraped from the rocks alter a foll of rain, redaced to a powder, steeprd for may day in stale houscholdley, and kneaded into balls of the weisht of a pound and a half, which are dried. When boiled with cloth, it communicates to cloth a reddish parple colour. The lichen Saratilis (proviacianly nanaci Oh man.) when treated partly in the same way, yields a yellowish or reddish brown colour. The liehen Parietines (named by the Shetlanders Sorioti) dyes cloth of an orange colour. The lichen Omphatoilis is also occasionally used for the purpoie of :iffoeding a brownish or blackish purple colonr. From a collection of plants, amons which is the marggld, a yellow colour is procared. A good black is extrated from the mossy earth of the country, when found much mpregrated with bog iron orc. Another sort of woollen cloth manufactured is expressed by the term haverins, or conerings for the beds of the peasantry. These are composed of very coarse materials. Sometimes they form a ground, into which diferent coloured worsteds are sewed, so as to display various figures of more or less beanty, according to the taste or ingenuity of the operator. Manfactures of this lind are then used for rugs and hearth-covers; when intended for better corerlids, the figures of them are, with a view to warmeth, prodnced by thicker theads. the thrams of which are selt abont wo incies long. The last use for which kiverins are desigach, is for sadiliccloths: these are placed under a ktibutr, whea the shelty is mounted by a fomale rider. The skins of the Shetland sheep are in reguisition. for the parpose of affording the fisherman a sort of surtont, that covers his common dress. The tomentille ciecte has been long used in the process of tamiag.
P'usturage.-Regarding pasuruge littic need be remarked. The best pasturages ate to be lound where limes!one prevails. Natural red and white clover, with ryegrass and the Ticiu Nofinm may be observed growing spontancously in many parts of Scotland. Many of the istetg of the sea, named homs, alford a very finc sucentot pasture for bhack catle, and for sheep destined for the table such spots being inteed the chicf places where they are fathonel. So great inded is the value attached to these hatme, the: by the ancient lavs of the country, teespasses on them are punished with severity.

The famous holm ol' Noss deserves particuhamatice. This holm, which is about 500 feet in lengeth, and 1 :o in breadh, rises ahmpty lam the sea in the form of a perpendicular clint 160 lece in hecight. The chasm which intervenes between it and the no hess precipitous banks of Noss is gi feet across. The original temptation to reach the holm was to acquire possesssion of the eggs ol the numerons sta birds by which it was ammally freepuented. A fowler suceceded in scaling the clifl, bearing with him two stakes which he lixed into that pat of the bank which was nearest to the opposite rock. When his was achieved, a lirm
cordage was applicd to it un as to form the medium of transport fom batak to bakk. In the next place an oblong box nated a cradle was contrived, through the extremites of which two holes were made in order to allow ropes to pats atong each of its sides. By this means, the machime wat properly slang. The cradte is hage combeh torontain one man and a shew; and as there is a slight tesome from the eliff w the holm, the man eathy move lionarat, and, by means of the laterat cords, resulates the celerity of his conveyamed. In retuminte he in assisted bypersons stationed on the opmosite bank, who draw him up by means of a rope that is low this purpose attached to the eradle.

Komp-Very litule kelp is produced in Shetand. For the preparation of it, a hoble abont six lect long, and about hall the dimmoton iat brewdh, is dus in the carth for the reception of the seravare, and when the ignited matter acyuites at onthons eonsistency, it is stired up with a rake, and then allowed to cool.
 this very uselul socicty tonk place afew yeurs agno and a better system of farming may be in time expected. 'The attention ol the gentemen of the cotuntry is landably directed to a division ol commons, as the groundwork of all agricultural improvements; but in the meantime, the preminms that are given for the growth ol turnips, which are lound to succeed remarkably well, -lor the breaking ont of waste ertound, --lor the improvement of lise stock, -and for the cultiration ol artificia! grasses,-alrenty promise the most bencheral results. Not bong ago leases were unlanown; and although ammal tanats still continue to be the greatest portion of land-cultivators, fet much ronger terms may in many jarts of the country be easily procured.

V. Fisulerms of Smemand.

Aher havins describel the hushandry of Shedand, we shall mext introduce the Sheduaders to our readers as lishemen, which is the trae character of this remarkable people. But first we shall notice the con struction of their boats.

Bouts. - The Scandianian orisin of the ratives is illustrated in the form and lighaness of their boats or yawls, the planks of which are still imported from Norway, so modelled by the hands of the carpenter. that, when they arrive in Shetame litile more !abon: is required than to put them torether. These boaks are generally about cighteen feet in keel, and abont six in beam: they cary six oars, and are furnisbed with a square-sail. Theirextreme buoymey, and the case with which they cut the waves, are the circumstances insisted on by the fishemen as rendering their construction partictatily alapted to the stormy seas upon which they are lannched. Many of the boats are, however, less in size, being aciapied only for four oars.

Fishery for Sillocks.-The amunciation of a fine Shetland evening is always expressed by numerous boats covering the surface of each bay, the crews of which are engaged in angling lur the small fry of the coal-lish, or getues carbonaries, known in Shetland by the name of Sethe. These swarm in myriads within the numerous creeks and sounds of the Northern Archipelago. They first appear in May, scarcely more
than an inch loug, and in comparatively small quantities, but gradually increase as the shmmer season adrances, when abont August they become very abonrlant, measuring at that time ferm six (o) cisht itnches in length. innenth this the the ley are distinguished
 consuing, they are fonnd (6) have grown to the benert of about fifteen incore, when bocy arcuife the name of Diloclis. Alter this perdod libe thrise very last,
 able fishory then bakes place of them in depp tillewats, under the name of Sithe. Sthongh the fory of the sethe freguent all parts of the bat , yet the fisbermen assert that then favomite resont is amons the constant hoods and milies which orcom bear smak con rocks and bars, that arm alternatyly cosered and land bare by the waves. The fishory !or silloche ar piltocles is, therefure, occasionally fillal whe thome attrenmrons boats, which, in quest of them angle in such peridous situatome. But besides frequentins Litu-ways and courents of all hinds, these small fry appear to coret the security ol thick phantations of scia-ware, within the shoter ol which they are proteeted from the keen lookoout of their nutural eneme; of the feathered race.

There is, probably, mo sight more impressive to the stranger who first tisits the shomes of Shetiand, than to observe, on a sereme day, when the waters are per. lecty wansparent and undisturbed, the multitudes of busy shoals, wholly consisting of the fry of the sethe. lhat Nature's full and unsparing ham has directed to cury habour and inlet. Is the erening advances, immmerable boats are lanched. crowding the surface of the bays, and flled with hard! natives. The fisherman is seated in his lighe skiff, with a rod in his hand and a supply of boided limpets mear him intended for bait, or he occasionally angles trom the ledge of a rock. A few of thesc limpets are carefully stored in lis mouth fop immediate ust. The baited lime is thrown into the watw and a fish is ahmost instantaneously broughtup. The finny captive is then sechere? and while one hamd is devoted to wicleling the rod, another is used for carrying the hook to the mouth, where a fresh bait is ready for it, in the application of which the finters we assisted by the lips. 'îhe same mannal and iabial rominc goes on with remarkable adeotness and ccherity, until a sumpicnt number of sillocks are secured for the fisbeman's repas: But, in any season of the yent, the limpet bait may be superseded by the mo:e abiutins temptation of arn a:tificial fe. The rod and line ate then handed wida a dexterity not unworthy the liesh-atater tatents of a Walton or Coton. It may abo be uf some Ebternc: to "brothers of the ance, "" as lsare Waton colle his companions, io learn that the shethand Ay, to whits
 ticular species observed in nature Dta Shetianto assures us confidently. that two wines arm woessary for the insect, the fish distinsuishing mohner mo:e. The inference is, that there is an intertectal rambe tion among the fing tribe, and that the fer of the sethe are not so clear-siophet is the mone wary anl knowing inhabitants of pellaci! tronestreams. For the construction of the buit, the white feather of tho common gull, or of the goose, is sumetimes nse? But the fibees of the tail or buk fin of the dog-tish. which, when cleancu: shmes like silser is prefere:
to any other kind of materials, being considered by the fishermen as particularly enticing. The ny is attached to a white hair line, and when this camot be procured. to a brass wire.

So casily are captures made of these small fry, that while active manhood is lelt at liberty to follow the more laborions occupations of the deep water fishery, or to navigate the Greenland Scas, it is to the sinewless arm of youth, or to the relaxed fibres of old age, that the light task is consigned of wielding the sillock-rod.

The lavish abundance in which the fry of the sethe visit the inlets of Shetland, affords sufficient matter for contemplation to the reflecting mind. Among islands, the severe climate of which is too often fatal to the labours of husbanduy, where the reduced rate of labour, resulting from the debased political state of the country, precludes the purchase of meal at a cost much above the usual price in commercial districts, -under such circumstances, what is there that can possibly render a few insulated rocks capable of supportirs a population of more than 20,000 souls? The reply is not difficult. That kind Providence,

> "Who pours his bounties forth
> "With such a full and whwithdrawing hand,
> "Thonging the scats with spawn inmumerable,"
has not neglected the obscure shores of Hialtand. Amidst the occasional visitations of famine, the severity which overwhelms in despait the commercial population of the south, prompting to every act of civil insubordination, the Shetland peasant has only to launch his skiff on the waters which glide past his own dwelling, and he finds that a bountcous supply awaits him at his very door. The fry of the sethe, in a scarce winter, has constituted the breakfast, the dinner, and the supper of the Shetland peasant. The livers are also converted to an important use: being collected in a tub, they are boiled for oil, and the overplus is sold. "Thus," says a female writer of Thule (Mis Campbell) with much eloquence, "the two articles most required in a climate like that of Shetland, have been abundantly provided,-these are fire and light. The natives have for their labome, as much fuel as they can consume. Whatever wants may be in a Zetland hat, their is sedom or never a good fire wanting. 'The fish which they catch, almost at their doors, supply them with the means of light. The cold and darliness of their long winters are thus mercifully robbed of their terror; atud in the mud-walled cottage ol the: Zethander, the providence of God is as conspicuous, and as surely felt, as in those faroured lands which flow with milk and honey, and where the sun shines in all its erfory."

Cole fishery.-The sublus cerbonarins, cole-fish, or Shectand setbe, is the silluck full srown. The fish is of a larse size, sometimes altaming the length of theo fere havinss a smath bead, sharpened snout, and "bower jan racedins the upper in lengeth. Being a sheat frquenter of tide-nays, the roustsol Sumburgh and scan, whe conflicting tieles mect, offer low him attrat tions ol mo common kiad. Cole-fish are here fond in ereat numbers; while in guest of them, the damotess Shetbonder lannches his light skifl among the white waves of contombling tides. The manner in which the fishery is condueted, is well described in a
pamphlet, published A. D. 1787, entitled "Considerations on the Fisheries in the Scottish lslands."
"The yawl contains three and sometimes four men, for the cole-fishery. Each of the boats is rowed by two men; the others are placed one at the stem and another at the head, with iloating lines thrown out on the tide-side; the hook being baited with the whitest part of the belly of the cole. cut nearest to the size of a herring. The rowers disect the boat as close to the edge of the broken water as they can with safety; for were they to fall into the tide they must perish, as no assistance could be given them. They exert their utmost strength on this oceasion to keep the hook always on the strlace, whilst the lishers hix their eyes on the bait, as the more the water is raised by the force of the tide, the more successful the hishing proves, as the deceit is better concealed. Whenever the coles come to the surface of the water, they are then in quest of herrings: and if the fishers find any in their stomachs, they decm it a treasure, and apply small pieces of it over the other bait. When the tide is run, and the fish follows, he drags for it by putting to the line a lead or sinker, which is commonly a pound and a half weight; this being let down into the water to the depth of (wenty fathoms or more, he hauls it up with all quickness possible. Thus, the deception takes place most powerfully: and the hish, aiming at the berring in motion and scemingly running away, is the more easily taken. This species abways plunges deeper into the waters, in proportion as the tide wears weak."

The taste of the cole-fish, when in a fresh state, is not relished: but, when cured low salc, is better. It is sent to the Scotch market, where it sells cheaper than cod or ling.

Ling-fishery. -This is the great fishery of Shetland. It has been explained, while describing the causes and natme of fishing tenures, that the landlord allows his yearly tenant to be in debt to him for the boats and fishing lines necessary for the taking of ling, but requires from him the obligation, that all the fish which he may take during the customary season, shall be sold to him at a stipulated rate; which comsplicated relation of landord and tenant has ever since prevailed in the country.

It is well known that the ling frequent the cleep vallies of the sea: the cod resort to the high banks. Another fish caught along with the ling, and resembling it, is the gulus biosme, or Torsh, commonly named Tush: but it does not obtain the same length. In this fishery, cod is also taken, though sparingh.

The ling fishery commences in the midule of May, and ends on the lath of August. The fisherman then equip. himself in his bont deess, which is not a little striking. A worsted covering for the head, similar in form to the common linglish or Scoteh nightap, is dyed with so many colours, that its bold tints are recognised at a comsiderable c!istance, like the stripes of a signal ilas. The boatmen are also invested as with a coat of mail, by a surbout of tanned sheep skin, which coters their arms, and descends from below their chin to their knces, while, like an aponor kite, it overlaps their woollen fomondier:-lor with the latter article, it is needless to observe, the Shothader is better provided than the llighlander. 'This sheep-skin garb has generally an exquisite finish given to it by boots of neat-skin materials, not sparing in width,
reaching up to the knecs, and altogether vying in their ample dimensions with the noted ones of Charles the Twellith. A nobleman, who visited Shetland a few years ago, was indeed so struck with the fishinggarb of the natives of the place, that he afforded it a place in his museum, at no remote distance from kindred illustrations of the habits of the Espuimaux or of the New Zealanders. This leathern dress is certainly of Scandinatian origin: a similar one is still worn in the Isles of Feroc, and Bishop Pontoppidan describes the same as being common in his time among the peasantry of Norway.

For the prosecution of the ling fishery convenient sites on the coast are selected. The fishermen are allowed by law to build for themselves huts on any site which may be uninclosed, uncultivated, and at a distance of not more than 100 yards from the high watermark. These are severally constructed of rude stones, without any cement, being no larger than is sufficient to contain a boat's crew of six men. They form the roof of thin pieces of wood, on which they laty turi; they then strew a little straw upon the ground, in order to snatch from their severe labours a short repose. One of the most noted of these lishing stations is a narrow isthmus of low marshy land, that connects the peniusula of Feideland to the Mainland. Here are interspersed, with all the disorder of a gypsy encampment, a number of these savage huts, named summer lodges, and in the centre of them is a substantial booth, used by a factor for curing fish. Feideland is a place possessing no little interest; a remarkably busy scene being presented by the numerous crews sailing to the Haal, or returning from it laden with fish. Some men are busily engaged in weighing the stock of ling, cod, and tusk, as it is brought in to the factors; others in spreading their lines on the rocks to dry, or in cooking victuals for their comrades, who are employed on the haddock grounds, or in brushing, splitting, and salting the fish that are brought to the door of the booth.

The ling fishery will be now described as it is prosecuted at the Hanf.

The Hauf is a name applied to any fishing-ground for ling, cod, or tusk, on the outside of the coast. The men employed are from 18 years of age and upwards. On the 25 th of May, or on the 1 st oi June, the fishermen repair to their several stations. They either endeavour, with rod and line, to procure for bait the fry of the cole-fish, of the age of 12 months, named piltocks, or they obtain at the ebb) muscles and limpets; and then going out to sea six miles or more, lay their lines for haddocks, and after obtaining a sufficient supply of these fish, reserve them for bait. When piltocks or haddocks camot be procured for bait, which is a rare circumstance, halibut, cod, tusk, and even ling are substituted.

The Feideland Haaf being 30 or 40 miles from land, the fishermen endeavour to teave their station in the moruing of one day, so as to be enabied to return in the course of the day following. And if, owing to boisterous weather, they have suffered long detention in their lodges, the first boat that is launched induces every weather-bound crew to imitate the example; it is therefore no unusual circumstance to see, in a fleet of yawls, all sails set and all oars plied nearly at the same instant of time. When, after a tug of 30 or 40 miles, the crew has arrived at the Haal, they prepare
to set their fores, which is the name by which they designate the lines that are fitted with ling hooks. Fortylive or filty lathoms of tows constitule a lmoht, and cach bught is titted with from nime to fourten hooks. It is usual to call 20 bughts a peckie, and the whole of the packies that a boat carrics is a flest of tomers. Thus, white a beat in the sombla or rast of shemand carries onty two or three packies, a lleed of tows used on the lecideland Haal amounts to no leos than sis, these being baited with seldom tess than 12, , hoses, provided with three buoys, and extending to a distane of from 5000 to 6000 lathoms.
The depth at which ling are fished for varies from 50 to 100 fathoms. In setting the tows, one man cuts the fish used for bait into pieces, two men bait and set the lines, and the remaining two or three row the boat. They sink at certain distances what they call cappic-shenes, the first that is let down being called the steeth. These keep the tows properly fixed to the ground. When alt this labour is fimished, which in moderate weather requires three or four hours, and when the last buoy has floated, the fishermen rest for nearly two hours. It is here lamentabte to think, that their poverty allows them nothing more for sustenance than oat-meal bread baked, and a feew galtons of water.

At length, one man, by means of the buoy-rope, undertakes to hanl up the tows, -another extricates the fish from the hooks, and throws them in a place near the stern, named the shot,-a third guts them, and deposits their livers and heads in the middle of the boat. Six to ten wet lings are about a hundred weight, aud hence six or seven score of fist are reckoned a decent haul.-fifteen or sistecn a very grood one, -twenty scores of ling are rarely caught; but, in such a case, garbage, heads, and small fish, are all thrown overboard, nor can these lighten the boat so much as that she will not appear, according to the phrase of the fishermen, just lippering with the water. When all the tows are heaved up, they are deposited in the bow of the beat.
If the weather be moderate, a crew does not need to be detained at the Feideland Itaaf more than a day and a hall. But too often a sale comes on, the men are reluctant to cut their lines, and too many fem:des have to lament the loss of a husband or of a son at the distant Haaf. The dangers there encountered are the frequent theme of the Shetlander's conversation, and his recital of them beguiles the tedious hours of a long winter's erening.
About sixty years ago decked vessels, named succouring vessels, were employed to obviate these ciangers. They accompanied the boats to the Ifal, and gave opportunities to the men to procure refreshment and sleep. But from mismanagement the plan was abandoned.
During the fishing-season there is full employment from the Nlonday morning until the Friday or Saturday following, but few hours lur rest. On the ecturn of a boat from the Ifaat, the fishermen are first engaged in spreading out their tows to dry; a part of the mencatch piltocks with a rod and linc, or procure other Rinds of bait at a chistance from shore: others again mend the tows and cook victuals for the next day's journey to the Haat. Owing to all these successive and rapid demands on the time of a crew, their
sleep seldom exceeds two or three hours in the twen-ty-four.

The fish are mext conveyed to their destination for the purpose of being dried. A beach, formed by large water-worn pebbles cast from the sea is selected, or, in the absence of this convenience, an artificial beach of the same character is constructed, olten at a considerable expense.

The curing and drying of fish is con lucted with great regularity. When a boat amives, the ling, cod, and tusk that have been taken at the Haf, are in a sutted state, and with their heads taken of dielivered by weight to the lactor. A splitter, as he is called, vith a large knife, cuts a fish open liom the head 10 the lail, and takes out half the back bone nest the head: he then han!s it over to the urcther, who. when a beath brush, and the assistance of the sea water, cluss away csery paricie ot blood. When all the fish ire in this wity split and washed, they are allowed to drain: dfter whicis comes the stofler, who maces at the buttom of a large wooden vat a stratum of salt, and orer it one of fish with the skin-side undermost, until the chest is filled with alternating layers, and abowe all are laid heary stones to beep the finh monder the pickle. After remaming in the vat some days, they are taken out, well washed and brushed in a crirection from the shoulder to the tail, and put up in small heaps called chomps, in order to allow the water to drain off. The fish are nest spread out with the shin-side undermost. and exposed to the action of the sun, on a beach comprosed of round stones, whene they wre again clamped, and thes alternately spacad out, turned, and disposed imo piles of a gradually increasings size, until dry. They are afterwards built into a large stack named a stetple: and, for the sake of cquat pressure, the stecple is again taken down and rebuitt, by which means the fish that were the uppermost in one steeple, are the undermost in another. When the dryins, or fining as it is called, has been completed. which is indicated by a white ehlorescence on the surface, maned the bloom, the fish are tramsported to a dry collor lined with wood, and there piled up closely, orshipped off immediately to a market. A well cured fish in said to be of a greenish-white colour, and when belet in the lighe is tratislucent.

Shemend Conl Bouk.-The Shetand Cod Bants is describel as having a beadth averaging from fifteen of theniy miles, is commencing liom the west of Westray, in ormer, and as havins been traced in a aifecton nearly moth by west, matil foula lies somewhere aboat casi by somb; bat it is very doubsful if its extent be ktown. 'The depth of the water on the bank is csomatod form forty six to seventy fathoms, its surface beine in some places rocky and in others sandy: it is also coverod with buckies, mussels, and :uzurinsh.

There can be lithe doubt but that this bank was Aman to the 13, hand to wher catly enterpersers who resorted 10 (ise Shmband coast: hat owing to the
 of the serenterath ant comanemenemt of the eighFemhle ecntury, it was at bist formoten that cuer such a valadite resource wistal.

It wats bong after the departate of the Duteh from the Shetand co st, that the coll bishery by weans ol

five tons burthen, and carrying from six to cisht hande, prosecuted a fishery for cod off the coasts of Shetland, using hand lines, baited with two or three hooks. They sedom went farther to look for fish than the immediate neighbourhood of Foula or Fair lsle; their search was highy desuhory, and their success proportionably uncertain: it rarely happened that vessels of only ten or thirty tons, atier being emplosed a weck in fibhing, returned to their several harboum, like the Outch doggers described by an old Engrlish writer, "so full laden as they could swim."

About nine years aro, one or two fishing sloops ac. cidental!! met with the bank: and Dr. IIbbert, who Was then conducting his geological survers of Shetland, instituted particular inquiries relatise to its situation. extent, and productiventss, and first communicated the discovery to the public. He remarked that - the discovery of the cod bank had atready proved of great importance to the country: employment havias been given to many seamen, and an opportunity afforded them, by purchasing small shares of vessels manmed by themstles, of imesting, to the greatest adrantage, the profits ol their severe labours in remoter climates: that the improved state of our coasting navigation justified the expectation, that from this source, an ccomonical and nutitions food would eventuaily come within the reach of the populous districts al our mannfacuring counties, the allerintion of whose wants has always actively engaged the attention of the most enlightened of our countrymen."

This predicion has been fumitled. Before the Bank was discovered, only four or five ressels belonging to Shethand were employed in the cod fisherg. Three or four years afterwards no fewer than forty were upon the Bank, who met with the greatest success whenever the weather was lavorable; and during the summer of 1826. the following very grateful intelligence has appeared througlz the mediam of the public jour-mals.-"The cod fishery in Shetland this season has been uncommonly successfal. In one week lately there were 50,000 cod callght by the ressels employed in the deep sea fishing, and we understand that they have been even more successtul siace that time. Independently of the fishings carried on by proprietors and their tenants, and in boats. there are at preacnt fifty-seven deeked ressels engaged in this department of the Shetland fisheries, giving employment to nearly 600 seamen; and, including these, the persons altogether engaged ia it are about 1 suo or 1600 . The value of the ressel is hrom L. 200 to 1.500 cach. They belong generally to the fishermen themselves, and were purchased with the froits of their industry. This branch of the fishery has spmuse up within the last welve years: so that, besides the support which their adrentures hase atlorded to them and their families. and the profits derived from this comployment, property in shipping to the amome of nearly $\mathrm{L} .20,000$ has been created by this mational and important branch of industry, and is now enjoyed by the Shethand bishermen. I new ecerntation has been adopted by the fishery hoard, which is strictly coforced, - that all the fish shall be put in satt within lorty-eight hours after being caught; so that only a perfectly sood and wholesome commodity can now be brouglit into the market from that country."

It has been always supposed that the cod prepared in Shethan will maintain its preeminence orer that
of other places. The Newfoundland fishermen are described as exposing their fish, after it has been salted, on standing flakes, made by a sliglot wattle, and supported by poles often twenty leet from the ground. But the hamidity is not near so well extracted from the lish as when, according to the Shethad methot, they are carelully lad out upon dry beaches, the stones of which have been, during winter, exposed to the abrading action of the ocean, and are thus cleared from vegetable and animal matter.

The Shetanders have been very suceessfal in obtaining the prizes offered by the commissioners bor the lisheries in Seothad, who offer anmally rewards for the greatest quantity of cod taken in vessels of sixteen tons or upwards.

Herring Fishery. - 'lhe herring fishery carried on by the Dutch ofl the Shetand coast was in ancient times an untertaking of the greatest importance. In the year 1633 , there were 1500 herring busses, each of eighty tons burden, and a lleet ol dogger boats, to the number of about 400, each of sixty tons burden; but owing to wars and other causes these gradually. dwindled away, until in the year 1774 the number ol Duteh sessels only amounted to aoo. The diminution even went on until the lishery scarecly deserved a name; since the last peace some attempts have been made towards its revival.

The commercial intercourse resulting from the anbual visits paid by the Dutch greatly assisted the Shethanders in struggling for a bare subsistence, when the weigh's and measures of their country had been raised by the hand of power to more than twice their ancient standard.

In 1750, the British government first directed their attention to the herring fishery; and a company incorporated in the same year, entitled, the Free Brifish White Herring C'ompany, hitted out vessels that visited the Shetland coasts. They were, by means of bounties, so feebly encouraged by the British govermment, that the twenty busses which they at first owned gradually dwindled to eight, at which number they stood for several years. 'the underaking was eventualy given up, alter the loss of hall a mition of money sterling. Lately, the herring hasery of Britain has revised under wuch greater encouragement, but it is generally conducted of more sontherly coasts of Britain than those of shethanel. Ifew vessels have been fited out for the purpose from Lerwick: but the herbing lishery is by no means a lavourite pursuit in this country.

C'apiure of the Dedphinus Deductor, or Cu'iner IV.ute. - In intereating freghenter of the Shelan! aras is the large animal lately named in systems of natural history Delplinues deductor, styled by the Shedadales the Cieing whele, and by the natives of Feroc the Grindatuadar. Adult whates of this kind, which have been ulten slain on the sands of the Veos in shetland, sellom execed twenty to twenty two feet in length. 'They are ol' a shining black eolour, hown b fiequently white or grey about the belly. The skin may rival in softucs the texture of silk. The head is round, short, and thick, having the under jaw shoter than the upper by three or four inches. The eyes are remarkably small; the teeth, which are of the average length of an inch, and of a sharp subconoid form, vary with the age of the animal, being, in the largest, about twenty-iour in number. There is a
blow-bole near its neck, from which it is able to spent water (1) the height of at lew feed. It hats a tatil that is clelt and vertical, a short stiff dorsal lin, and too long naraw pectoral fins. The femates have torn nipples, atthemsth they are mueh conceabed by an atipose substance. These whates oftern appear in atregarious concoumac. We slabll quote Dr. Hiblar"; ateconnt of the capture of these amimals: "1 hat lanted at durat Voce in lell, when a tishene boat arriver with the inteltigence that a doose of © a a ing Whates had entered Kidl Somad. l'emades and lom ..." on hade ing the news, issmed from the coltages in every eif rection, making the hills reverberate with jorbil oxchamations of the event. The fishernenema is themselves with a rimbert of harpoom, formed liona boge iron-pointed spits;-they humbed to the stant. tamethed their boats, athel, at the sane time stornd the bore tom of them with loose stonos. Thus was it bate fleet of yawls soun collected from varians pionim's of the coast, which proceeded towards the entrame of the Somel. Some slight inregular ripples among the waves shoned the place where a show of whater was advancing. They might be seen sporting on the su:liace of the vecan lon at least a quarter of an bunt, disappearing, and rising again to blow. The maia object was to drive them mpon the sandy shore of llamma Voc, and it was evident that the animals, with the enemy in their rear, were taking this diecetion: most of the boats were then ranged in a semicirculc: form, being at the distance of about 50 yards firon them, with the exception of a few skiffis which atotet as a force of reserve, keeping at some little distance from the main body, so as to be in instant readingon to intercept the whates, blowld they change the ia
 leaders, who wore now inclaned to take ans other route but that which led to the shallows on which was intended they should groment. Immediateiz the detached erews rowed with all their misht, in indes to drive back the fugitives. and, by moans of low 1 cries and large stones thrown into the water, at last succeeded in causing then to resume their peesio:course. In this temporary diversion from the shose the van of the boats was forown into confusion; a!? it was a highly interesting scome to witness the ders. terity with which the Shethanders handed the war , and took up a mew semiciralar posision in rear ol th whales. Asain the bish besitated to proceed into the intet, and arain a reserve of boats imtomepted them. in their attempt to escape while a fresh line of :.ttan's was assumed igy the main boly of the pursump. Was thus that the orlates bere at lentit rompellat',
 resuand with the shouts that were set up by the bow
 in order tu foree them upon the saudy shom of a smatl ereek; but belure this object cond be caterem. it." whales tumed seberal tances and were as ditm dempon back; mone of them, however, were yet hatuch with the harpoun: for if they had folt themsthes woundel in deep water, hey wonld at all hazat, betake themselves to the open sea. 'ihe leaders of the drose sonn began to grounch, emitting at the same time a faint murnuring ery, as il for relief: the sand at the botwom of the bay was disturbed, and the witer was losing its transparemey. The shoal which followed struck the shore and increased the maddiness of the bay:-
they madly rolled about iresolute from the want of Ieaders, uncertain of their course, and so greatly intimidated by the shouts of the boatmen, and the stones that were thrown into the water, as to be easily prevented from regaining the ocean. Crowds of Shetlanders of each sex, and of all ages, were anxiously collected on the banks of the voe, hailing with loud acclamations the approach of these visitants from the northern seas;-and then began the work of death. Two men, armed with sharp iron spits, rushed breasthigh into the water, and seizing each a fin of the nearest whale, bore him unresistingly along to the shaltowest part ol the shore; one ol the deadly foes (11 this meckest of the inhabitants of the sea then deliberately lifted up a fin, and beneath it plunged the harpoon that he grasped, so as to reach the large vessels of the heart. A long state of insemsibility followed, succeeded by the most dreadlul convulsions; the animal lashed the water with his tail, and deluged the land for a considerable distance: another deathlike pause ensued; throes still lainter and fainter were repeated with shorter inturmissions, until at length the victim lay motionless on the strand. The butchers afterwards set olf in a different direction, being joined by other persons bent on the same errand. Female whales now appeared, by their hasty and nacertain course, to have been wrested from their progeny, while sucklings were no less anxionsly in pursuit of thase from whose breasts they had received their nutriment; but, by the relentless steel of the harpooner, they wore sererally armested in their pursuit. Others which hat received their death-wonnd soun lined the bay while a few at a greate distance were rolling duotit among the muddy and crimsoned wares, doubtful whether to Hee, and appearing hike oxen to wait the tam of their slaughterer. Wanton boys and even lemates, in their amxiety to take a share of the massacre, might be observed to rankle with new tortures the gaping wounds that had been made. At length the suus set upon a bay that seemed one sheet of bloud: not a whate was allowed to escape: and the strand was strewed over with carcases of all sizes, measuring from six to twenty leet, and amounting to not fewer than the number of cighty. Several of the boatmen then went to their homes in order to obtain is short repose: but as the twilight in this northern latitule was so bright as to give lithe or no token of the sma's departure, many wee unremittingly intent uph securing the profit of their labour and were engaged in separating the bhbber, which was of the thickuess of three or four inches. It was supposed that the best ol these whates would yteld about a barrel of oil; and it was loosely computed that they were, on ath arease, worth from two to three pernds Sterl-ing-apiese, the whe ol the largest beng as much as ,is permuls."

Aecorbing to the , ded laws of Shetland, no whale was a dond of admimaty mbless it wats too large to be (1rawn by four oxen. One shate beloners to the salvers, and another to the proprictor of the ground the minister chams thenes of the whole Fommerly the baide claned the heads. But it is difficull io sity how the division is now made.

A tew years aso, the carases of captured whates were ablowed to taint the air umtil they were compirtely dewomed by grolls abd crows, but it is an infieation of the inproved state of shethame husban-
dry, that they are now prized by the agriculturist. The bones have been lately exported to England. At Feroe, the flesh of these anmals is cured like beef, which it is said to resemble in taste, and is considered as a great dainty; and in the year 1740 , a time of great scarcity, it was eaten from necessity by the natives of Northmavine.

Coptere of Seals.- The coasts of Shetland swarm with the smaller seals, or Tatgish, so mamed lirom being supposed to live among the Tong, or larger fuci that grow near the shore. These animals, when taken young, are said to be casily domesticated, when they readily assume the habits of the dog, showing attachment to particular individuals of the human species, repairing to the water in quest of hish, and returning to the roof where they have experienced kindness. These seals are often shot, or are enclosed by nets fastened to the mouth of the caves to which they resort, where they are deliberately put to death. In Papa Stour, there is an annual capture of the larger seals, or Heeff-fish. To the north of an inlet named Ilamna Voe, high cliffs appear, which are shaped by the water of the sea into a continual recurrence of excavations. The most remarkable of these is Christie's Hole, which, when surveyed from the summit of a cliff, appears a cavity ol some hundred feet deep, and about 120 feet in length, being situated at a distance of 180 feet from the sea. It can be explored by means of a boat,-a labour that is onty to be accomplished in the cahmest weather A large arch first presents itself: and, altor rowing through dark vaults, tise light of the sum bursts in from the lofty openins above-bere the weter is mo less than nine lathoms in depth. The bat then pursues its ghoomy course through anothorextensive perforation, which at length expands into an immense cavern, where the light of the sun is wholly excludect. In the innermost recesses, there is a stcep beach, which terminates in small dens, where the larger seals, or Haaffish, couple, and where the females produce their young, and suckle them, until ther are able to accompany their dams to sea. It is castomary for two boats' crews ol the island of Papa 10 go to this place, at certain seasons, armed with clubs: one boat only enters, which is provided with candles. The crew attack the seals with clubs, stun them by a blow on the head, and, in this slate ol insensibility, put them to death. The lemalus boldy step forward in delence of their young: they lace their destroyers, and, with theis teeth, often wrench the chubs out of their anemies hands. But the attempt is vaint the walls ol these gloomy recesses are staned with their berod, while those who attempt to escape, are met by another boat's erew stationed at the mouth of the cave, when a similar slamerter ensues.

17. Fowntiva.

Fowling is still practised in Shetand, thongh by no means so moch as formerly. One island in Shetland is named l'ughloc, (foult) or Fowl Itland, from the mumbers of the leathered wibe that make it a place of resort. On reaching the highest ridges of the rocks, the prospect peresented on every side is of the sublimest doseription. The spectator looks down from a perpendicular height ol 1100 or 1200 lect, and sees below the wide Atlantic roll its tide. Dense co-
lumns of birds hover through the air, consisting of maws, kittiwayes, lyres, sea-parrots, or guillemots: the cormorants occupy the lowest portions of the cliffs, the kittiwakes whiten the ledges of one distinct clifi, gults are found on another, and lyres on a third. The welkin is darkened with their Hight: nor is the sea less covered with them, as they search the waters in quest of food. But when the winter appears, the colony is fled, and the sude harmony produced by their various screams, is suceceded by a desert stillmess. From the brink of this awful precipice, the adventurous lowler is by means of a rope tied romed his body, let down many fathoms; he then lands on the ledges where the various sea-birds nestle, being still as regardess as his ancestors of the destruction that awaits the falling of some loose stones from a crag, or the untwisting of a cord. It was formerly said of the Foula man, ""his gutcher (grandfather") guid before, his lather guid before, and he must go over the Sucug too."-The high banks of Burra Firth in Urst, and the stacks contiguons to it , are frequented by numberless birds, such as gulls and scarfs; and along with these the lyre or Pructluriun puffines, the Tomnory, or Alca arctica, and the kittiwake, or Larus tridactylus. Their nests are amoally visited by the nimble and adventurous rockmen, who, for the sake of plunder, land with boats at the foot of the most hideous precipices, which they easily scale, or are let down from the summit of them by means of ropes. The eggs thus obtained, are considered as a great dainty: the carcases of the young birds serve for grosser food, and the feathers form an article of commerce.

Vil. Greeninnd Sex Fishery.

Each year the ressels who go to the Greeuland sea fishery touch at Shettand, and procure great numbers of active seancu, who, as boatmen, are held in the highest estimation.

Vili. Commerce.

Commerce-Before cntering on this subject, we may observe, that, with the exception of Lerwick, where there is a manufactory for straw-plaiting, few or no distinct trades are to be found in the thinly inhabited districts of the country; amost every peasant, being the fabricator of his own rivins and shoes, as well as his own tailor, and his own carpenter. Shetand receives from Scotland and England the materials which she requires for the use of her fisheries, for clothing, \&c.
The exports of Shetand consist chiclly of dried fish which are sent to Scotland and 1 reland, and from thence find their way to the foreign markets, also a little kelp. The recent discovery of the cod-bank has been the most considerabie source of wealth.

The researches of Dr. Hibbert relative to the chromate of iron, have also been a valuable acquisition to the resources of Shetland. This ore is of commercial importance, on account of the use to which it has been converted by the manufacturing chemists for procuring a yellow pigment; and since the experiments of M. Lessaigne, it has been applied to the purpose of dyeing silk, cotton, linen, and woollen fabrics. It had been previonsly imported from America, but the expeuse

Voi XVII. Parti.
of bringing it over was considerable. Shetland now rivals Baltimore in supplying Great Britain with this important acquisition to the arts.
'To the earlier commerce of Shetland, the town of Lerwick seems to have owed its rise. It was first built about the begiming of the 17 th century, when Bressay Sound was annuatly visited by not less then 2000 busses. For the sake, therefore, ol an easy walfic with these ships in stockings and fresh provisions, houses close to the shore were crected; and hence the great irregulatity which results from ranging the buiddings agrecably to the indentations of the coast. The town has since gradnally increased, and it how presents a lively appearance owing to the number of shops with which it is filled, and the sailors of all mations, who are engrged in making small purchases, while their vessels are moored in the harbour. Lerwick is, judeed, the seat of the commerce of She tand, being also much indebted for its support to the vessels which touch at Bressay Sound in their vogage to the northern seas, and on their return home: among these are chieny Greentanders. In consequence also of the small barters that are made with loreign ressels, Danish and other coins pass more lieely in the country than British money.

18. Popllation.

The number of inhabitants was estimated in the year 1755 at 15,210; in the year 1793 at 20.180: in 1810 at 23,000 and in 1821 at $26,145$.

X. Poplar Manaers and Cestoms.

Before we conclude this article, we shall attempt to give a sketch of the popular manners and customs of Shetland.

Physiognomy. - The men are rarely very tall, bat remarkably well proportioned, light and nimble. In relinquishing, however, most species of domestic drudgery for the adventurous occupation of fishery, they hare caused a more than ordmary portion of labour, fital to the preservation ol a delicate a d symmetrical form, to devolve upon the poor femates. The features ol the Shetlanders are rather small, and have nothing of the harshess that so peculiarly distinguishes many of the Anglo-Saxon provincials in the north of England, or in some of the lowland districts of Scotland. The constitutional temperament of the Scandinavians is generally conceived to be sanguine, and since its characteristics are supposed to consist in aflorid complexion, a smooth skin, and hair brown, white, or slighty auburn, the natives of shetland give satisfactory tokens of their national descent. The elder Limmeus's description of the northem Europeans well applies to them: "Gothi corpore proceriore, capillis abidis rectis oculorum iridibus cinereo-curulescentibus."

Language. - When Orkncy and Shetland were transferred from the government of Norway to that of Scotland, the Scandinavian natives of these islands gradually abandoned the Norse language: but they still retain many Norwegian terms, and, along with these, their own national accent, which is distinguished by an acuteness of tone and an elevation of roice, that has much of the spirit of the English mode of utterance, white their pronunciation partakes of the still
more modulated and impasssioned tones of the Irish. But among none of the natives is to be found the Scotch peculiarity of expression, which is less diversified by alternations of grave and acute accents, owing to the efiect of emphasis being conveyed in a prolonged utterance.
Dress.-The peculiar leathern dress used by the Shetlanders in their fishery at the Maaf has been described. Their common attire differs lithe from that of the inhabitams of the sea-coast of Scotiand. To men whose chief occupation is fishing, the common suilor"s jacket is a fanourite garb. The red cap, which is a distinctive batge of the master of a family, merits particular athention. It is made of worsted, somewhat resembling in form a common donble nighteap, but much larger, and gradually tapering to a point, while it hangs fown the back after the fastion of the headdress of a Coman hussar. It is also dyed withanmerons culoun. Frequenty the men near on their feet riclins, which are a sort of samtan made of untamed seat-skin, being worn with the hair-side outwards, and laced on the foot with strings, or thongs of Beather. Their lightaess is particulaty adaphed for treading with elor ity one the sok heatho or scatholds of the comme. The deess of the women merits little athmion. since it does nut difer materially from the fustion of the scotch peasumtry. The woollens when are wom are generally importel from lancashise or Forksine, whate some are manfactured in the conn119

Torel Train.- The matives of Shetiand. considerad as paishioners, are in grnem discret and ondery. The infuence of the minister has certamy been mach stengthened by kirk-sessions, and the heary pellatties of the ancient commacts denomed against such ofinces as vidations of the Sablatho or the reflusals of a houschotder to allord his family instruction in refigita and morality: but it has been also increased by the nervices that he rendersto his fock on all occasions uf sickness. The reverence with which he is consedacmety hem amoge the people, of whom he is a real suaraian, has rendered the occasional pablic censures whin he be betows, a punishment of the most dreaded l.ind.

A Bew of the unfurourable trats in the character of the shetanders have alrealy come nader nutice. Shen a vessel is wreked, wey difer fithe from Connistmen or Webshmen in the ir effors to plander. Of a stmitar character ane their eross impasitions practised upon strangers in the ir , hareres for bout furce. In dend it is Empersible to bind the Shedamber dowa to any perilicagremont: whener sum be may compar biar ats a fare he mateanoms during the white of the
 is whernise expericmed: hre is also in the hathen of considmins the extortion wh wh h makes the strongor submit, as of the satme nature as the rish that he ashame sophater awerk, and emmerates under the baphemons title of "(fod-stals," a werk, a drove of whates, and a buatidere. Yot, wher ath, these mont ing features of character are nex pechlian th she tand;
 and Eugland, which arrogate to bemseless the character of being beter infiomed.
bat if the pillage of weeked vessefs be reconciled to a She lander's conscience as agol-semt, or the pilfeting of sheep out of a scathotd be excepted from
the prohibition contained in the eighth article of the Decalogue, it would be an injustice 10 his character not to state, that against other temptations to dishonesty, he is proof to a remarkable degree. "About two miles from Onzie Frith," remarks Dr. Hibbert, "he contents of my trunks, owing to the loss of my keys, were indiscriminately exposed, in a small house to more than a score of cyes, for several days together, but I was perfectly casy with regard to the satety of my property; nor was I in this or any other instance of the like kind, deceived in the confidence I had placed in the cottagers of Shetland."

Another amiable moral trat of this country is its great hospitality: this has been celcbrated in the Northern Sagas, and there still remans all the practice of it that is recommended in the Havamaal of Odin. "To the guest who enters yourdwelling with frozen knecs, give the warmth of your fire; and he Who hath tratelled over the mountans hath need of ford and well-hited garments." It is the best prool of the estimation in which this , irtue is generally hoth, that the alleged absence of it in a very small Wistrict, maned Comingoungh, shond render the inhaditants of it liable to momeasumathe reproach. In this proviace, the traveller, who. in the close of the evening, might have been complied to supplicate for a mish's ludging, met with a chilling reception, and was awakened at the first dawio of the day by a harshsounding warnios to depart, exprensed in the ancient
 limin i grestin isernar" "- It is dark in the chimney, but it is light atorg the hath; it is now time for the stranger to be gane. "lt thas becance a custom." suid Nir. Low of Orkieg, who has rerorded this expeession. .o when any onic wamed to dismiss a stran-
 Curse the comingsburner" phatac." Again, in trawhing thound the than, then is the greatest seareiIt of ims, and we who peraceers with a true spirit of independence, with find ho sreat ditwoly in inducing the contagers to accopt of wh mhequate iemmeration for receing him bencth their rofl: bue be mase submit to great inconvenicnce, chitly owimg to the want of reanhiness in the Shethand hates. This want of compor, howert. he will at any time pefer rather than be reduced to the necestity of socking for gratutoms comfort in mone commonoms hablations: yet too frequenty is the whatame sulthed. by the generous invitution which has met on his lonesome "ay the weary strater.

Murbigen. - Marriases take phate in Shetand with little conern for the funar. Min "1s attempted to be confected so canty as the yeat 108n, hy a law that migh have been dictated by Mablen himed? Berey permin who had not forty pounds of free gear, or sone lawfol trado, was forbidich to mary: and nome were allowed, under the penaty of ten pernats sootse is set them homese of hat. It was formenty the custom for a youmg married comple to bexy Fom earh of their acighoors a sapply of domesto artiches, as a set-up for honsekeepime: but his plan "as olatated, by rendering it iable to the dgome of a law that panished with the stochs and juges all tiggers (or beggars) of wool, corn, fish. Ece. Whoewer they might be, and that inflited the perally of ten perneds sorns to any one who migh grant thom serice or hogpitatitg.

Palronymics.-Not many years since, it was very
casy to know all the native inbubitants of Shetand, who distinguished themselves liom Scottish selthes, by retaning in their names the use of patronymics. 'Thus, il the lather's mame was Maspus, the son's name (Laurence) would be lannence Magmosons and in the that records of the combly it appeats that the names of danghers were subjected to the same rale; there were, for instance, in andebt doods. such ap-
 muschengher.

Finod.-It has been remaked that the fisod of the natives is chiclly sillocks, of the small fry of the colefish, with which every vocesarms, and which seflom fail at any time to fill the burdy or fishing-bation with a meal. The result, howerer, of the lime fishery at fords the means of purchasings llour from Scothad, to compensate lop the deficicuey of erops, whichathom. nal storms may destroy in a stumbenght. The sourees whence the shetander derives his support is, indeet, no where so happily illustrated as in the toasts that he grives in the hours ol consiviality. the most popular of which is, " Death is da haod that wears nat hate", or, in less enigmatical words, fomh to the finh. It was usual about sixty years ago, when a pary was assembeal at Johnsmas to drink success we the limg fishery, for the principal person of the feast to addeess his comrades alter the fullowing mamer: " 11 en and bretheen, lat wis raise a belt. Here's first to da (ilory o' (iud an da guil o' wir ampuir sauts, wir wordy land-maistir, an wir lovin meat-mither, belt ta man, death to fish, and guid growth i' da grumel." . .bout Lammas, when from the length of the nights, and the rapidity ol the tides, lines were olten lost, the consivial sentiment was, "Helt taman, death ta lish, and detriment ta mae man." but when the natives were about to quit the ling fishery, and to retmon home to the harrest, the bopecepressed in the cottager"s cups was, " Cod open da mouth of has gray fish, ant hand his bannd about da corn."-The last toast may requite explanation. The seray fosit are the fry of the wat lish (l'iltocks and Silloeks.) so named in contraciistin tion to ling, cod, tusk, halbibut, hadkock. Sec. which ate called white fish. The ejachlation that (a on may hand his hand about de corn, implices the wish that the hand of the dejty may preserve the grain drum destructive tempesis.

Among the damties of a Shetland table, the tank fish must be always considered pre-eminent: it is the most delicions of the Gudus specter, and Thme no less deserves a pilsrimuge wit from the eficare on aecount of this dish, than Plymouth, for the satie of eating John Dories. Anotber lasonrite Sbethal dainty is known by the umme of (rompints mastrics, consistang ol the liver ol the con mixed with thon and spice, and boiled in the lish's stomach: this preparation, when met with at the houses ol the more apulent inhabitants, is excellent-in the planer form of 'irered moggies, the flour and spice beings absent, it regales the lishermen at their summer lotges. The ancient Scandinavian beverage of bland, prepared from the serum of milk, is met with at ahmost every house. There is a great variety of shell-tish to be found in shetiand, that might add to the varicties of the table, particularly lobsters, which occur in abundance near papa Stour, but none of these are very fiwourite kinds of food. In former times every dweiling had adjoining to it a skeo, which is a small square louse formed
of stones without any mortar, with holes thomuch which the air may have a free passage; for which purpose the buibling was arremp on a small eminnore, beins at the same time portered leom the rain by a rool'. Cond and ling wern then cablat thear the shome and the best of them beins: intemed lise sate, unctery
 "ithin a drying lowse wf his kint, wat the wind. in issuins through its arevices, misht atre them: but as
 fartion, dhey were at lirst, peobape from neocesults. consmand by families, matil a relish for tainon forl wond maturally result from theib constant introcher. tion at meals. It is probably thon liesin this carme, What though sheos are now in rums, fish in an smi-entresecot stats, named somi:fesh, of somplel fich, ate it the present diy as agrecable wh the Shetanders as tto tainted flavonr of renison is to an longlish stomarl: It was also customary beline asing bed or mutor, not io salt it, but o hiang it up in one of these skeos, or in some cave whan whilh the tide bowed, named a hetyer or hiallor. But all the skeos are now roolless and in decay.

Itubitulions.- In accomm has atready been siven of the construction of the shethand dwellings: they are buitt of rude stonce, with a cement of clat, op thery are still more coursely formed of stones and clocts. In mest ol the Shetamal coltages the fire place is in the midlle of the room. Winduws are become much more gencral than they were sume years ago; for, amonst some of the whest babitations, no other light is rectived that through the aperinte which allows ari egress to the smoke. To this opening is given the Seratish ame of lemb, but in the obsolete language of Shedand, it was called the lierer,-a word resem. bling the ancinst lumen or li hohole of the Norwerians. ICt matry old Shetand homses are not destitute of th : notathe improx mont of domestic arehitecture
 in nothan aname w king Otal Kyme who lived in the elevents cratury.

The byer or cow-h, uce gencrally adjoins the dwelling, and is frequently entencd be a common duot, that introdnces the stranger first of the cattle and afterWerces to the emartmeat devoted to the use of the femily. In most of the Sibetand habitati ms a patition of turf rans actoss the romon, which is occusionally
 ats wed for the pupose of :toritrg up rictuals as liop a separate dormitory. Bat getatally the beds, vidich consist of a few coarse blankets or stam, are placed in any consentent anglo of the cottare ()ne of two cumbrous wouden chairs, designet lor the heats of the family, with the addition of a lew bemoles. comatitute the heary part of the fumiture. Sheth is a sern men of the ancient cotlage of sthethand: bat in thes south of the Mambant bettor dwellings of this kim! are oceasionally found. i medancholy wat of clanliness is 100 general a charateristi of the hosela cit Thale.-The habitation of a furmor bolding some li we rank, has been deacribed by゚ Do Hobert afier the following manner. .- Ilis house was situated on the south side ol the hill of dibsmenc, upon the brow of the acclivity. A steep brown hill rose to the norta, washed at its base by a transparem pool. The farmhouse was buil! of the rough mhenn stomes of th, country; much green outfich, well eultivated, appear. R 2
ing in various patches along the valley. Stone-dikes ran round the dwelling in a zig-zag direction, enclosing it like so many outworks of a fortification. On a small adjoining eminence were the remains of a skeo, where was once prepared the blown fish and vivda that furnished a delicious repast for the ancient udaller. Belore the door were placed a few stepping stones, somewhat difficult to trace, and intended to prevent a plunge, knee-deep, into the immense bed of compost that lay reeking all around. The visiter, alter entering a dark and gloomy byre, which forms a part of the tenement,-after grazing the heels of the cous on the left of him, and feeling carefully along the surface of a partition to his right, may detect the latch of a door that leads to a spacious apartment containing a hre-place in the middle of it,-where the foor is of clay,-where the walls are thickly coated over with soot,-where are two long forms, on which the servants of each sex are seated, the mistress of the house being distinguished by a high and separate chair, - where, in one corner, is a favourite calf quietly regaling itself with a bowl of milk, -and where are two or three surly had-dogs stretched on the bearth. perfectly happy in the society of a miraculous quantity of cocks, hens and chickens, a sow and a playful litter of young ones. A rucle partition divides from the main room a small private apartment, including within the recesses of its walls two or three press beds. The state dormitory, however, reserved for the opgester, is reached by scaling a wooden ladder, on each side of which are stored barrels of meal or oats, dusty tows, fishing-nets, sillock-rods, and varions kinds of hand-lines; the middle of the room being reserved for a curtainless bed. There may the inmate, alter commending himself to the guardianship of all good spirits, consign himsell to repose, and rise in the morning cheered by the unobstucted rays of the sun, that light the room from an open fissure in the roof."

But, according to the same writer, the ancient Udaller, or small landed proprietor, lives in rather greater state. "When visiting the voe of Burrafiord," he adds. "I was, by the extreme lateness of the evening, under the necessity of availing myself of the custom of the count!y, where a stranger is perplexed lo: a lodging, which was to seek for hospitality in the nearest convenient house on my way. Ay boatmen led me to a small creck at the head of Burraford, where ther setting sun brightened into a fine purple, a wild intemisture of crag and lake. The smoke arose from a bow house, built of uhewn stones, alter the most ancient fashion of the country; it was the Ifenl Buil or manor-house of a small landed possessor of λi ithsting. named the Laird of Fogrigate. On opening the door, I passed through a double dange of servants of boih sexes, who oceupied lorms disposed along each side of the foom, and made suitable obeisance to the hoy secult, or high seat of the house, filled by the laird hims off, with all the patriarchal dignity, worthy that primitise state of manners described in an ancient prom of the sth eentury.

Jpee inserlit
Stcilio seamno:

Allurumquc latus, fimiliat domms.
"Native Shetand ale was introduced, which was the lirst I hod tusted in the country. It was not many
days old, and had such a pleasant briskness in it, that it might have been seasoned with the tops of heather, after the recipe, as learned antiquaries would tell us of Pictish ale. But there was no other ingredient in it except malt; it was, as an Englishman in Harry the Eighth's time would have said, "As grood as the King's ale, for it contained neither hops nor brimstone." The room to which I was shown for repose, served the double purpose of being a dormitory for the opgester (or guest, and a granary lor the family. A quantity of straw was strewed on the floor, and upon this was laid a sufficient number of Kiverins and blankets, with clean white sheets. The morning was announced by the grinding of the quern. Breakfast was got ready: my trunks furnished me with tea and sugar, and to a thrifty female I was indebted tor cakes.

> "Protulit tum Edda
> Conspectum cinere panem,
> Ponderosum ct crassum
> Plenum furfuribus."

It is almost needless to add, that the Shetland gentlemen of rank possess residences that may vie with many in Scolland. The house of Mr. Monat of Bressay is a structure of much elegance.

Festivities.-The delight of the ancient Udaller's convivial hours, was in the recitation of Norwegian ballads. Shetand was from time immemorial celebrated for its native pocts. Ronald, Larl of Orkney, being in the year 1151 , shipwrecked near Guberswich, was visited by two poets, Oddi Glumson the Little, and Armodr: The earl, who composed verses himself with great tuency and elegance, found them so well skilled in the same art, that he received them among the number of his retainers, and took them with him on his travels to the Holy Land. On the occasion of a public least, he gave to Armode, as an acknowledgment for his poctic talents, a golden spear. Not longer ago than seventy years, a number of popular historic ballads existed in Shetland; the last person who conld recite them being William Henry, a farmer of Guttorm, in the island of Fonla. Some kinds of poetry, as the historical ballads and romances which this old man could recite, were never sung but on a winter's ereaing at the fireside. Ohers, under the name of Visecks, formed the accompaniment to dances, that would amuse a festal party during a long winters ewening. When the corn-waters of Ifamburgh had gone merrily round, the tables labouring at the same time under the weight ol skeo-dyed virda, sillocks, gammon, and recked trout, -when the gue, an ancient two-stringed violin of the country, was aiding the conviriatity of lule, then would a number of the happy sons and daughters of llialtand, take cach wther by the hand, and white one of them sung a Norn Viseck, they would perform a circular dance, their steps continually changing with the tune. In the midde of the last century, the Norwegtan language remaned in the comtry; and these visecks being soon lost, they were followed by playing at cards all night, by drinking 11 amburgh waters, and by Scotch dances. The exed, upon being introdnced, became highiy popular; and a lew original melodies adapted 10 it, were composed by native musicians of Shetland, the most pophar of which was the Foula reel. To this tune, a song was alterwards adapted, named the Shatds of

Foula, allusive to a profitable fishery that was longr conducted upon these shumlds, or shoals, lor cod; the words of which sulliciently express the lieedom with which the Shetlander spent, in the eonviviality of a winter, the harderarned savings of a summer in the peritous fishery of the llad. When the ancient Udaller gave an entertamment, it was open to the whole country; but the strangers from the south, with more rizid notions of economy, corrected the grenerous custom, by renderins such fasts liable to the ollicious interference ol the Ranselman, who was empowered to levy a line upon any one who came to leasts uninvited. Marriages also, which were chieny contracted during the winter, served to draw together a large party. It was, on these occasions, usual for the bridegroom to have his feet lormally washed in water by his men; and in wealthy houses wine was used for the purpose. A ring was thrown into the tub, -a scramble for it ensued, the finder being the person who was to be first married. On the night before the marriage, the bride and bridegroom were not allowed to sleep under the same roof; and on the wedding-night, the britherroom's men endeavour to steal the bride from her maidens, and a simular design on the bridegroom was made by the bride's mads. Last of all took place the throwing of the stocking, and "many other pretty sorecries." These customs are now gradually subsiding.

One sport, however, still retained on occasions of festivity, deserves particular notice. Olaus Margnus, in his account of the manners of the northmen, describes an ancient military dance as being common to them, which seems to have been achieved by six persons. It was accompanied by a pipe and song, the music being at first slow, and gradually increasimg in celerity. The dancers held theirswords, which were sheathed, in an ercet position, -they then danced a triple round, -released their blades from the scab-bards,-beld them erect,-repeated the triple round, -grasped the hilts and points ol each others swords, and extending them, moved gently round, -changed their order, and threw themselves into the figure of a hexagon, mamed a rose. They again, by drawing back and raising their swords, destroyed the figure which they hat mate, in order that over the head of each other a lour-square rose might be formed. Lastly, they lorcibly rattled together the sides of their swords, and by a retrograde movement ended their sport. The sword-dance performed by the Curetes of Papa Stour is not unlike the one now described; but since the residence of Scottish settlers in this country, it has sustained some modification, by being made the sequel to a sort of drama performed by seven men, in the characters of the seven champions of Christendom. This interesting masque is still performed by the inhabitants of Papa Stour in Shetland, but in a very lew years it will cease to exist: on which account, we cannot help feeling some regret that the Hightand Society, who. in their annual exhibitions, are latably anxious to keep alive the ancient amusements of the north, shonld have never once thought of showing, that one of the olftest dances of Europe, truly worthy a warlike people, does not merely exist in the pages of the Waverley Novels, but can find a real illustration. The sworddance has been minutely deseribed by Dr. Ilibber.

After the sword-dance has been performed, it is not unusual to hear of the announcement of the guisards.

A number of men enter the room dressed in a fantastic manner, their inner elathes briner eoncealed by a white shirt as a surtout, which is confmed at the waisthand by a short peticoat, formed of loose straw, that reaches to the Enere The whole are under the control ol a direcoor, named a Scudler, which is an ancient bame given to the pilot of a scuda, or twetre oared boat. The sumber is diotinguished trom his commades by a very high straw eap, the eop of which is urnamented with ribhens. the is the moper mbiter checumliurmm ol his party, regulating their movements, and the order in which they shond alternately dance with the lemales assembled. The amusemen thas afforded is the same that maty be found in any patiter masquerade, since it depends upon the guisards being able to conceal from the company who bency are. The eustom of paying risits to parties under the dissruise of' a mask, is describer in Olaus Magnus's llistory of the Nortsern Nations.

Sufortifons.-No country in the British dominions contains so many superstitions as Shetland, to which pecaliar interest has been imparted since the publication ol' "the Pirate." Orkney and Shethad were for many centuries only semi-christianized; we therefore read, even in their present superstitions, the Pagan tenets which they originally entertamed. ln Orkney it was customary, even in the last century, lor lovers to meet within the large circle ol' stones that had been in the carliest times dedicated to the king ul the geds: through a large bole in one of the pillars the hands of contracting parties were joined, and the laith they plighted was named the promise of (Odin, to violate Which was infamons. Other mythologica! persolnages have in shetand a considerable influence uver the minds of the people even at the present day. The diminutive race of supermatural beings who inhabit the interior are described by the natives of Feroe as Fodtenskemmat, or maderground men; in the lectandic Edtar they appear under the name of Duergar or Dwarfs. The Sbetlander still suins or blesses himsell' as he passes near their hannts. "They are describect at the present day as a people of small stature, gandily dressed in habiliments of green. They partake of the nature of men aud spirits, yet have materiul bodies, with the means, however, of making themselves in. visible, and they multiply their species.

Ol mermen and merwomen many strange storics are told. Beneath the depths of the ocean, an atmosphere exists adapted to the respiring organs of certain intelligences, resembling in lom the buman race, possessed of surpassing beauty, ol limited sapernatural powers, and lable to the incident of death. They dwell in a submarine portion of the glube's surface, over which the sea, like the cloudy cunopy of our atmosphere lofily rolls, and they possess hatsitations constructed ol the pearls and coralline pro. ductions of the ocean. Having lungs not adapied to a watery medium, but to the nature ol atmospheric air, it would be impossible for them to pass through the rolume of watcrs that intervenes between thesubmarine and supra-marine world, if it were not for the extraordinary power that they inherit, of entering the skin of some animal capable of existing in the sea. which they are enabled to occupy by a sort of demoniacal possession. One shape that they put on is that of an animal, human above the waist, yet terminating below in the tail and fins of a fish. But the most fa-
vourite form is the large seal or IIaaf fish; for, in possessing an amphibious nature, they are enabled not on! 10 exist in the ocean, but to land on some rock, where they frequenty lighten thomselves of their sea dress, resume their proper shape, and with much curiosity examine the nature of the upper world belonging to the haman race. Unfortunately, however, cach nerman or merwoman possesses but one skim, enabling the indisidual to ascend the scas, and il, on visiting the abode of man, the garb should be lost, the helpless being must unaroidab! y become sth inhabstant of our earth. Thus the TeSkerries on the west of Shetland are, according to poputar bebiel, the particular reteat of the green sons and darghters ol the sea, where they are detended by a rasing surf. that continally beats around them, from the obrusive gaze and interference of mortals; here they release themsulves lrom the skins within which they are enthratled, and, assuming the most exquisite haman furms that were ever opposed to ewrhly eyes, inhate the upper atmosphere destine fo: the homan race. and. by the moon's brisht beams, enjoy their midnight revels. The Shoopiltee is another mytholugical personage. He is the demoniacal Xeptune of the nomin. who in Shethust assumes the form of a beatilin! shely, inViting some one to mount him, when he immediately rushes into the soat at othor times he assumes something of a humm shape, thoush inclininer to the nature of a borse, and is lecked with fuci and various rroducts oi the seas; agaim, in the decided form of at shelty, he mathes his haunts bear water-milis, but When observed hastily withdraws himsell into the 7,um, or vanishes in a nash of fire. This deity is the same to whom the Eida ferommends the offering of a proyer for success in narigation, humting or fishing, mince the gres in his wartes treasures, and even kiagdoms. In L"nsta it was custumary to risit the head of a stream. named Yelabum or the Bu:n old ilwath, and to throw, is an acknowled, ment to the water gol, thece stomes on an adoming site of ground. The poot of lictsa Wafer appeits to have been origiHony iofted with the same intent. The natives were bont to walk round it in the currse of the sun, whe berving strict stlence in the permmbulations, taking wp water in their hands. and casting it on their heuds. - Inember arisit was nomed Brownie In most nome con comatries, there was scarcely a family that in tomere times in en bot a domestic spint. The Samosfo. a poote lomaty bablbtims the shores of the Ratime who remamed illatrons so late as the 15 h - entury, had d trity named Partort, whom they invok-- In live with them, laphaner in the bam ever: nisht a talbe comenel vith hbeal, butter, cheese, and al., If these were takell away froot lontume was to 3. Wape ted: but if they were belt. nothing but bad

 buterdmans chaming, and protection for corn stacks areimet the greatest stom that cobld biow. In return,

 rimblud, it wasmeresary that apart shmble sprinkled with the bame bitent, in every wher of the house.

Margic was originally sanctioned in Scandinavja by Odin, and, during the f'agan state of Orkney and shetland, was practised by individuals of the highers rank. The mother of Thosfin, Earl of Orkney, who lived in the 11 th century, gave to her son a standard, embroidered with the signal of a raten, tellins him, that if the lates had intended be should have lived for ever, she would have unsed him much tonger in bis cradte; but that life was fonbhed more honomably with ghory, than denrehered ont with dishononr:that athough the standarl on which she had expem:ed all her magic art portended vietory to him belore it was carried, get it misht himer death to the bearer. The females, who, in Scandinaria. or its colonies, had most distinguished themselves in the art of divination. were deibed after their decrase unter the name of Nomies or destintes: and it was supposed, that upon the completion of their apotheosis, they had the power of controllinghuman events. In Shethand, hae magic whichexisted solate as the fast century derived its origin from the mythology of the Edda. It was the boast of the ancicint Scandimavian sorcerer that he combl maderstand the language of birds. Odinhad always in attendance two ravens, who would tly the world over, and at dimer time return for the purpose of whispering in his ears all the occurrences hey had either heard or secn. In like manner a witch of Shetland. who lived about the midde of the seventecnth century. was seen going to and from Brecon to lfillswick, accompanied by two lamiliars "in the likeness of two corbies that hopped on each side of her all the way." This appearance was deemed contrary to the nature of "wild lowIs," and formed one of the charges agatmst the unhappy woman, for which she was condemned to be wartied at a stake. Another spell by which the magician of Shetram obtained a power over nature's operations was by means of kuos, the superstitious regard for them secming to have arisen from the use to which they were, from the remotest period, applied as memorials of events, or as inviobable pledges of agreement. Drand relates, that a Shetland witch on secingr fowl which a seareagle was carrying through the air, took a string, and casting some knots "pon it, the bird ol prey let its intended victim lall into the sea. The application of a woollen thread, by way of charm, round a spraited limb, and the use of a certain number of mysterious knots, is a superstition still familiar to most of the northern cutintries of Europ:. It was alse usual with the Shetland masicians. like those of Scandinavia, to use incantutions. "I know a song," said Odin, "of such virue, Hat were I caught in a storm, I can bush the winds, and render the air perfectly calm." But the warlocks and witches of 'Thale used, by the same means, to raise tempests. About filty years ago, a woman of the parish of Dmorossmess, known to have a deadly enmity against a boat's crew that had set off for the llaal, touk a wooden basin, mamed a cap, and let it doat on the surface ol a tub of water; then, to avoid exciling surpicion, she went on with her usuat domestic labours, and, as il to lishten the burthen of them, sang an old Norse ditty. After a verse or two had been recited, she sent a child to the tub, and bade him tell her if the cap was whmmilled, or turned upside duwn. Inteligence was brought to her, that the water was mored, but that the bowl was alloat. She hen continued her incantation, and once more
broke it off. by requesting the child to again go to the tab, and tell her what he saw. The litte messenger returned with the news that there was a stratuge swell in the water, and that the bowl was sadly tossed abont. The witch then sang still more loully, and, lion the third time, sent the whde on the same errand, who soon hastencel back with the information that the water was frightfully tonbled, and hat the cap was whammilfed. The cnchantresc, what an atr of matirnant satislaction, then ceased her song, and sath, "The lurl is done." () on the same day, bews cande that it fohbg yaul had been lost in the roust, and that the whole of the erew had been drowned.- Again, the witch of Shetland had, like Odin, the great father of Scandinarian anagic, the power ol umbergomes transmutation of shape resembling tiat of vations andmals. Narion latdon of liflswick. concoived a matice against the crew of a dishing boat, and transomming berself into the likeness of a piltock-whate, mater this form upset their ressel. She was convicted of the crime by the confession of another witeh, and be twe
 Being commanded, along with Swene, her haband, to bay their hands on two ol the dead bodies that were found, one of them bled at the rexig-bume and another in the head and fingers, "gushing out bhat thereat, to the great admiration of the beholders, and revedation of the judgment of the Amightic." On this ircelragable prool of muelco atmitted, as the indictment expressed, not only in this country but likewise in most lureigaking anms, the untornmate woman was exconted.

In short, the lighe of Christianity was feebiy opposed to the phantoms of the seandinatian mytrolusy. When popery commenced its influence oser the mincis of the people, a belief in the existence of gots, gidnts, or duafts, still remained. with this gualifatation onty, bhat they were fallen andeds of vatous bank belone. ing to the kinglom of darintes. who, in their degrad(d) state, bad been compelfed to take bop their aloode in monntains. springs. or s.as. These were tenets compenterly subsemicnt to the office of cancism, Which constimed a hacrative pat of the emolnments wh the inferior ('atholic chersy, with whom Orkmey athl Shetind were in an ient times ovepran.

Demons were has ked in order by a kin! of spirituat police, whinh percond them. owing to the inter. ference of exorism. spults, ge chames, from breaking, into betman habitutions, of treaprassing (ab the lands of the udallers, to the injury of hre stuek and the fruits of the eath. J3:t Browne was thlatelember the most zeatons ('atholic. He was an immate in every house, assisting in the operations of thenshine, chame ing, grinding matt of mastaml, and suceping the house at midnight: a standing ree being repnired fop him each night of while-tread, and malk or cream, spread upon at tahle. "lisere was also ancother reason for not wherins him any distumance. According to Olans Magmb, the northern mations regarded domestic spitiss of this kind as the souls of men who had siven themsches up during dife to illicit pleasures and transorewhons, and were doomed, as a punishonent, to wander in the shape of spirits for a certain time abont the earth, and to be bound to mortals in a kind of servitude. It wonld have beeth, therefore, an opposition to the decree of heaven, to refuse the penal labours of such slaves, and a sorry description of policy to turn
away an nseful servant, afthosgh an uncarthl: once, who conld be kept is the cheapest of rates.
'Jhe farly' ('hristian proan hers seciner the influme e whirto the mytholary of she Edda had over the mithls of the people srabe to atl the pagan goth, griamtso or dwarts, the nambe oftome at trom indicative of the se-
 over the scouta nf mankime. I he worel still puesmeres its seameal impurt, as the arol or trom of Shetand designates rithor afois y of the hill, atmerman of mer-
 alsts suppored. that witures and wathok ese at can-
 the assistime of the demostro of the paranes who having been drimatrom beaven, hat taken shan in caverns, seas, :mat lakes, whed become the wrat in: domestic spirits of partionlar families and whon tho
 Christianity, it wan imagined that many fiserons ber.
 phace in dimernt parts of the bobly, ant What al ere

 was wrarios anduy, which was ataitutedu
of a clemon. who wok for that pheperec, tha lis:an wit worm: and that if a neve haiditation wath bee pore deat

 drop theush an upen sicue into com anter. and if an image, bewtus sume famt resemblanes in the the: to was, after repeated triak. prosuced. it was wonaloy the patimen as an amalet, to contice the demon whet the tital orsas which he was tomentins. Il, in ar ingenuity. the figure of a hart corth be comatore tom chance of recovery was poportionally dmmina This superstition, under afew modificuban. - ill vals.-But mentrally, the true watholes waet e pricsts, when by means of amosta, bethedictionc, am lets, praters, and wher erolly sombe cond at ant time produce superastaral ctitects, that in days of patane ism depended on incantuthons, knoto or emic chat eters: and when refommator was intrudured in tom land, and the ites and ceremonie's ol' pupery con'manad as idolatrona, it was still fomal not bary eame it

 chamer ol shatand woth matere some matis
 Catholic pricot. and the chomant w.
 the binis. by being washat inth i, wote bll it

 mon erec. in which the arros enterent, who of

 esileye, or ol am esilioncrue.

The last modification shich took place of witu is-
 that the hight of the goxpel could p netmic jy its effidgence into the very domiciles of anchean spirita, and expl them to unknown recions. When a sew like this gatmed gromme, it will scarcely create sarprise that the Bible should become no less uselial an
instrument in the hands of charmers than crosses, forespoken water, and benedictions. It was recommended, that the lonely wanderer by night among the bleak scatholds of Thule, should bear in his hands the holy scriptures, as a means of screening himself from the attacks of the trows or demons of the hills. But the magic of Thule was in no way so successfully combated as by the terror of the law. The rapacity of Earls Pattick and Robert Stewart cansed them to make a diligent search after all witches, in order to obtain possession of their estates, which became due to them by forfeiture: nor was their example unfollowed, for thirty or forty years afterwards, by those who succeeded them in the government of the country. Eren so late as the commencement of the last century, the Shetland witches were, as Brand says, talked of so much anent their devilry, that he was told it was dangerous going to or living in that country.

But the ancient superstitions of Shetland are gradually passing away, a belief in the trows of the hills, or in mermen and merwomen being limited to remote districts, where there is less intercourse with the world. A lew warlocks or witches still exist, who have the power of taking away the profits from corn or cattle. A fear is entertained of an evil eye, and a person has been known to fall ill upon being cursed by an cnemy. Parents have a dread of their chidren being praised or complimented on being fat, thinking that childeren so lauded are doomed to die; this notion is a very old one, having been ascribed by Gellins to a people of Arica. Chamers also exist, who find stolen goods, and by means of knots, curc diseases. But all these illusions must exentually yield to the force of education.
Discerses. - In so variable a climate as that of Shetland, phthisis pulmonalis, pucumonia, croup, and scrofula are, as we might expect, very frequent. There is a great rariety of cutaneous complaints, tinea capitis being the most common. The very interesting discase of sibbens, important in the bistory of syphilis with which it has been confunded, often prevails in Shetand. Owing to some peculiarity of food, confoined with the nature of the climate, dyspepsia and liver complaints are very common. Occasionally fever rages in the cottages; and trom their close construction, by which air is excluded, the contagion proves highiy latal. Every member of a family has been known to be attacked with typhos; and as the dread created anong neighbours is very great, the sitwation of a lamily left wihout succour to linger, or perish, is too painful to contemplate. Cases of this sort have too often occurect. Nor is the assistance of a medical man alwas to be obtained; for when paaients do nut live on the mainland, but in detarbed istands. ferries must be crossed, upon which no boat in winter, with the least chance of safety, can venture. In some parts of shethme, divine worship is, interrupted by fits resembling hysteria, which speract from one frmale to another; but as these paroxysms are easily counteracted by induciner such opposite states of mincl, as arise from a sense of shame, they are under the control of any sensble preacher, who will expose the lolly of yiclding to a sympathy so casily resisted, or of inviting such altacks by alfer tation. The suatl pox has at intervals been sery fatal in Shetland; and it is to be lamented that vaccine inoculation is far from being universal.

Longevity.-Cases of great longevity in Shetland hare, at various times, been recorded, particularly in the statistical accounts published, and in Buchanan's history. How far they are to be depended upon, it is difficult to say. Ages appear from 90 to 105, and even 120. A native of Walls, of the name of Laturence, is said, at the age of 100 to have married a wife, and when 140 years old to have gone out to sea in his Jittle boat. But Brand, the honest missionary, heard of a case far more wonderful;-a man of the name of Tairville, who lived 180 years, and during all this time never drank beer or ale. He was descended from a family remarkable for their longerity, his father having attained even a greater age than him seli.
Nutive Medicines.-In Shetland there are several popular medicines. Scurvy grass is used in cutancous complaints, butter-milk in dropsy, shells of whelks calcined and powdered in dyspepsia, and a varicty of steatite, named in the country kleber, in excoriations. A man now dead in Northmarine, was a successtul inoculator with variolous matter, which he was accustomed, with the view of depriving of its virulence, to dry in peat-smoke; he then covered it with camphor, buried it in the earth, and before applying it, retained it in this situation for so long a period as seven or eight years. But the mode of letting blood, known from time immomorial, deserves the most particular notice. It has been described by Dr. Copland in a Medical Thesis. When the native chirurgeon is called in, he first bathes the part from which the detraction is to be made with warm water, and then draws forth his cupping machinc, which consists of nothing more than the apper part of a ram's horn perforated at the top, and bonnd round with a solt piece of cotton or woollen rag. In applying it to the skin he sucks out a little of the included air, takes off the horn, makes upon the surface of the part that has been gently raised, six or seven slight incisions, again fixes the cupping instrment, frecty draws out the air by the reapplication of his lips to it, and either by insinuating his tongue within the perforation, or by twisting rond it a piece of leather or bladder. prerents the ingress of fresh air. He next uses coarse cloths, wrung out with warm water, to stimulate the flowing of the blood, and when the horn is balif filled it leaves the skin and falls off: The same process is repeated sereral times, until a sufficient depletion has been made. It is worthy of remark, that the African negroes described by lark have a similar mode of cupping: but it would be passing an undeserved affront to the natises of Thule to add, hat, on the theory of a philosopher. who mantains that the manners of an uncultivated people are in all periods and countries the same, such a coincidence ought to have been expected.
We have at length concluderd our view of the history and present state of the Shetland islands, which form a neglected and (strange to add! an unrepresentcal province of the British dominions; but we may hope that a better acquantance with the natural adrantages which they possess in their fisherics, mines, and other soures of natural emoluments, may recommend this country to the attention of a liberal and conlightened legsislature, and that it may be adrancel to a state of political importance which it has not yet had the good fortune to experience.

Sllethand, New Sourn, an extensive tract of uninhabited land, situated to the south of Cape Ilorn. It is said to have been first discovered by Gherritz, a Dutch navigator, in 1599, but some doubt exists with regard to this fact. It was rediscovered in 1819, by Alr. Smith, the commander of an English merchant vessel, in a voyage from Monte Video to Valparaiso. The circumstance which guve rise to the name of New South Shetland beins applied to these istams, was their lying in nearly the same degree of south as the Shetland istands are in nord datitude. Its appearance is that ol a succession ol islands, stretchitig in a northwest direction.

The ingredients of the rock of which the Shetland islands are formed, appear to be guarte, with disseminated iron pyrites, and quartz in prismatic concretions, copper green, and copper pyrites. Among the minerals, is a rose coloured apophyllite, which has not the resselated structure socommon to this substance. The islands, which are almost all intersected with icebergs, and some ol them covered with snow, present a rocky and barren appearance, and, with the exception ol' a few patches ol short grass and some moss, are almost totally deroid ol vegetation. 'These isIands also exhibit voleanic appearances, as smoke had been observed issuing from the clelts in the rock of one ol them. In consequence of the scarcity of herbage, it is impossible that any terestrial animal could exist. But there are screral species of amphibious animals, the principal of which are the sea clephant and the fur scal. The lirst of these acquired its name from the mate having a cartilaginums substance, about five or six inches long, exterding from the nose, similar to the trunk of the elephont. 'The birds are not numerons. They consist of a small species of penguin, fresh water ducks, Purt Egmont hous, white pigeons, aglets, snow birds, and grey and blue peterels. Sue IV eddell's Vizuge toutaids the Nomth I'ote, 2d edition, p. 129.

SHIELD, see Ammour.
SHIELDS, Nowm, a market and seaport town of England. in the collty of Northumbertand, is situated on the not them bank ol' the Tyne, about one and a quarter mile from its entrance into the Cerman Ocean. The oldest part of the town is a long narrow street on the side of the river, but the townow contains several excellent streets, two handsome squares, and a market place unusually spacious. The most fitsh. ionable part of the town is Duckuray Syaure, which is neatly built, and is inhabited by wealthy shipowners. On one side there is a commodions quay, at which shipes of 300 toms may mond, and another side is decorated with a line stone edifice, now used as an inn. The parish church was built in 1659. It is sit. uated on the north side of the river, and is a plain but commodions edifice; a stecple was erected upon it some years ago, and musical bells placed in it. There is in the town a commodious Scoteh church, an elegant Catholic chapel near the north entrance to the town, and a meeting house lor Independents. There is here also a theatre, a new market place, a good subscription library, a dispensary, a large Lancasterian schoolhouse, a bing-in hospital, an asylum for sick and friendless women, several charity schools, and many thriving benefit societies.

The principal mandacturing establishments in this town are yards lor ship and boatbulding, a rope and sailcloth manulactory, a cast iron foundry, a zobacco manufactory, a tamery, a skimery, a manufactory of
glass and fur. The harbour can accommodate 2000 ve:sels, and during spring tides, ships of 200 tons can pass the bar. The principal trarle of this port consists in exporting coals, though a few vessels were employed in the Anerican and Baltic trade. The want of a custom-house is severely felt here, as all vessels are obliged to clear ont lion Newcastle, a distance of nine miles up the river.

The following was the population in 1821:

There are at the foot of the town two lighthouses, which are kept up by the Trinity Jlonse ol N゙・毕cas. tle. Near the lighthouses stands Clilford's Fort, built in 1672 , which completely commands all vessels that enter the ifver. Sec the Beurties of Einslumb and Walcs, vol. xii. part i. p. 89.

SIIHELDS, Sown, a market town of England, in the county of Durham, is situated near the mouth of the Tyne, almost opposite to North Shiclds. Nost ol the streets ol this town, with the exception of those on the bank top, and in the market place, are narrow and the houses indifferently built; and its appearance is greatly disfigured by number of artificial hills, stretching to the cast and south sides, and formed by the accumulated cinders of the salt-works, the reluse of the glass bouses, and the ballast and gravel thrown out by the light colliers. Some of these hills have been buit up, and have a very singular appearance when seen from the south. The church ol'St. Jilda, which is a chapel of ease to Jarrow, was, with the exception of its plain and square tower, rebuilt in 1811 at an expense of $\mathfrak{E} 5000$. Though rather heary ex. temally, it is neat and commodious within. On the chain abore the chandelier is a very elegant model of the life boat. It stands on the sumth side of the market place, which is a spacious square, haring in its centre the town house, with a colonaade bencath it, erected at the expense of the dean and chapter ol Durham. There are here several dissemting meeting houses, due chici of which is that belonging to the Methodists, finished in 1809 at an expense of 83800. and eapable of holding 1.00 persons. There is likewise in this town anew theatre, sereral public schools and thirty benclit sucieties. Subscription assembly rooms are opened every winter. The whate town, with the exception of three houses and a meetinghouse, is held by lease under the dean and chapter of Durham.

The principal establishments for manufacures of South Shields are fards for shipbuilding, glass works for flint and crown glass, soap works, salt works, salammoniac works extensive roperies and breweries. Salt was formerly manulactured here to a verg great extent. About sixty years ago, no fewer than 200 large pans were fully occupied. There are however only four or five pans at present employed. The ground formerly occupied by the salt works has been converted into docks and yards for building and repairing ships. There are no fewer than chen of them which are capable of holding sixteen vessels. The number of ships belonging to this town is about 500. Among the machines for taking ballast from ships, is one erected by Messrs. Newmarch and Com-
pany, which carries it through a tunnel several hundred yards long. The life boat was invented here, as already described in our article Boat. The town of South Shields is built almost exactly on the site of the Roman station ad Tinam, which occupied the eminence on the south point of the harbour.

The following was the population in 1821:
Inhabited houses -
724

See the Beauties of England and Wales, vol. v. p. 153.

SHIPBUILDING.

INTRODUCTORY OBSERVATIONS.

ln no period of the world has the subject of naval architecture had higher claims on public attention than the present, and to our own country in particular, it is an art of such transcendent importance, that no means ought to be left untried to give to it every perfection of which it is susceptible. Nor is it only in a commercial point of vicw that shipbuilding is valuable to man, since by the euterprise that fortunately characterises the modern navigator, the ocean is become one of the high roads of civilization,-perhaps the highest; and thereforc in the successfil cultivation of the various arts connceted with navigation and commerce, every lover of human improrement must feel an intercst proportionate to the influence which they are now universally allowed to cxercise on the improving destiny of man.

There are three capital points of view in which naval architecture may be contemplated. Fïrst, as regards the means it affords for the purposes of war; secondly, as it relates to commercial enterprise and speculation; and thirdly, as it is comnected with human improrement, the enlargement of geographical knowlcdge, and the extension of the blessings of civilization. The cultivation of the first is unfortunatcly rendered necessary by the peculiar condition of the world; and perhaps the second and third are in some degree protected and assisted by it; but it is the successful advancement of the latter, that renders the study of naval architecture most pleasing, and elevates it to a rank with those arts which essentially minister to the happiness and well being of man. Commerce indeed is productive of monumbered blessings. Its theatre is the world; and the wide spreading waters of the ocean form the links of social harmony and love. The most distant nations are by its means connected; - national jealousies and prcjudices become softened;-the wandering savage learns to value the blessings of social life; and the various productions which the wisdom and bencticence of the Supreme has rendered peculiar to particular climates and countries, are, by the arts comected with shipbuilding, distributed through every part of the globe, to which the wide spreading cuterprise of man has penetrated.

Little more than a century and a quarter have elapsed since the theory of mechanics was first applied to the construction and management of vessels, in a work published at Lyous in 1 batiby land loste, and entitled, "Theorie de le ('onstruction des Paisscana." Prior to the publication of this interesting treatise,
experience and imperfect observation were the guides of the shipbuilder. The torch of geometry had not then illuminated his path: nor were the maxims of mechanical science applied to his daily labours. Ships were constructed by rules, which a long succession of centurics had esteemed as infallible, and no man ventured to question their accuracy and origin. After a long night of darkness, however, arose Bernouilli, Bouguer, and Euler, who joined to the highest theoretical attainments, clear and definite conceptions of the practical applications of analysis to some of its most important clements. In the hands of Euler in particular, the subject first assumed a regular and systematic form; yet from the peculiar difficulties connected with the inquiry, much, very much remains to be done, to give to its theoretical investigations those capabilitics of application which the inquiry so particalarly demands. Since the time of Euler, it has been enriched by the labours of Clairbois, of Chapman, of Atwood, and of some others; and the labours of the two latter have done much for its advancement. Its precepts and rules, however, are still too much intluenced by caprice, by prejudice, and chance. The rigid and scrutinizing spirit of geometry calls for a more precise application of its rules; and where, we would ask, can its severe and unalterable precepts moct with a morc extended ficld of application?

At the present moment indeed, a spirit of inquiry seems to be awakened respecting shipbuidding, which no antecedent period ever exhibited. The public attention has in a peculiar degree becn drawn towards it, partly, perhaps, from apprchensions respecting the possible rivalry of other states; partly from the successlul applications of mechanical science to its various branches, by the genius and intelligence of Sir Rober Seppings; and partly from the establishment of the school of naval architecture in Portsmouth dock yard, and from the admirable mion of theory and practicc which characterises the coursc of instruction employed in that most useful institution.

It is the judicious and proper union of theory and practice that is wanted to carry this very important art onwards to perfection. "Practical knowledge alone would be insulticient, nor would the highest theoretical skill be all that would be required. The two must be united, - cordially and harmoniously united. Practice must not decline the assistance of theory, nor must theory disdain to be taught by the lessons of practice." \dagger "There are many principles," says Mr. Atwood, "deducible from the laws of mechanics, Which it is probable no species of erperiment, or series

[^10]of observations, however long continued, would discover; and there are others no less important, which have been practically determined with sufficient exactuess, the investigation of which it is scarecly possible to infer from the lanes of motion; the complicated and ill-defined nature of the conditions, in particular instances, rendering analyticat operations founded on them liable to uncertainty." It is true indeed, ats the same writer remarks in another place, that "ahthough all results deduced by strict geometrical inlerence from the laws of motion, are found, by actual experience, to be perfectly consistent with matter of fact when subjected to the most decisive trials, yet in the application of these laws to the subject in question, difficulties often oceur, either from the obscure mature of the conditions, or the intricate analytical operations arising from them, which either renders it impracticable to obtain a solution, or, if a result is obtained, it is expressed in terms so involved and complicated, as to become in a manner useless as to any practical purpose. These imperfections in the theory of vessels are amongst the causes which have contributed to retard the progress of naval arehitceture, by increasing the hazard of failure in attempting to supply its defects by experiment; for when no satisfactory estimate can be formed from theory, of the cffects likely to ensuc from adopting any alteration of construction that may be proposed, doubts must unnecessarily arise respecting its success or failure, which can be resolved only by having recourse to actual trial; a specics of experiment rarely undertaken under the impressions of uncertain success, when the ohjects are so costly, and otherwise of so much importance. To the imperfections of theory may also be attributed that steady adherence to practical methods, rendered familiar by usage, which creates a disposition to reject, rather than to encourage proposals of innovation in the construction of ressels: the defects or inconveniencies which are known, and have become easily tolerable by use, or may perhaps be the less distinctly perceived for want of comparison with more juerfect works of art, being deemed preferable to the adoption of projected improvements, attended by the danger of introducing evils, the nature and extent of which cannot be fully known. These are amongst the difficulties and disadvantages which have concurred in rendering the progress of improvement in the art of constructing vessels extremely slow, and left many imperfections in this practical branch of science which still remain to be remedied."*

Another important consideration which has tended to retard the progress of naval architecture, is the immense variety of vessels, which the peculiar circumstances of climate, varietics in the extent and depth of waters and of seas, have rendered necessary to man; each variety differing in proportion and form, in their methods of rigging, and in their modes of navigation; some being adapted for limited voyages in narrow and contracted chamels, others lor voyages the most extended in the widest oceans; some for winds of almost a permanent character, and others for all those uncertain varieties of weather, which mark so many of the regions of the earth.

Amidst this almost infinite diversity, we may however trace, in numerous instances, indications of something like general laws. In those vessels, for ex-
ample, which are destined for extended voyages, we lind their extreme breadus to be between a thind and fourth of their lagghs. In vessels of a smaller size, the breadth bears a greater proportion to the bength, than in ships of a hisher class. The alevation of the deck above the surface of the water has likevise limits, which are regulated by the peculiar destination of the ressel. All ships, moreover, have their maximum of breadth, a little before the middle; the forms of their forward and after parts are variable, but still distinguished in all cases by this peculiar feature, that the figure of the latter part is more slencier, or as it is technically expressed, is leaner that the former. In ships destined to bear heary burdens, the botem is fuller to admit of greater capacity for stowase, in opposition to those which are bnift for sperd and velocity, which have nniformly their lower parts of a sharper figure. The lime of the keel also does not rum in a plane parallel to the lluid surface, but has a greater draught of water in the after-part of the ressel, than in the forward: that both the stem and the stern have a rake or inclination between ecrtain limits: that in the rigging of ships, some have one mast, others two, and most threc masts, adapted in their diameters and altitudes, to their peculiar circumstances; that the centres of gravity of all vessels are found a little before the middle of their lengths, and that the centre of gravity of the sails is uniformly met with before the centre of gravity of the ship.

Thus it appears, that amidst the serming diversity characterising the numerous branches of this very important subject, there are indications of general laws to be found, which experience, in a long succession of ages, has taught the navigator to follow, in order to succeed in his adventurous enterprises. And it is remarkable in how many instances the results of uneducated men have anticipated the soundest deductions of the most enlarged theories; and how unconsciously they have employed, even in their pastimes and sports, those very principles on which the philo. sopher raises the noblest monuments of his fame. "The savage who never heard of the accelerating force of gravity, yet knows," says Mr. Stewart, "how to add to the momentum of his missile weapons, by gaining an eminence; though a stranger to Newton's third law of motion, he applies it to its practical use, when he sets his canoe afloat, by pushing with a pole against the shore; in the use of his sling, he illustrates with equal success, the doctrine of centrifugal forces, as he exemplifies (without any knowledge of the experiments of Robins) the principle of the rifle barrel, in leathering his arrow." And just so is it in the steps which have marked the progressive adrancement of naval architecture. The practical knowledge which the framer of the canoe exercises. "is obtruded on the organs of external sense by the hand of nature herself." He found, for example, that a particular disposition of the sail of his little bark would give to it a greater velocity than any other. A change of position of his own body, or of a stone in the bottom of the canoe, would alike influence its sailing qualities. These to him would be maxims of great practical value; would be treasured up and recollected, applied on every necessary occasion: in time communicated to his fellow-narigators, and at last identified with the general habits of his tribe. From such be-
gimings it is, that naral architecture has arisen; and the philosophical observer endeavours to draw from the maxims which have guided even uneducated men in a long course of ages, those general laws, which, when moulded into a systematic form, enable him to perceive relations still more extended and general.

It is remarkable howerer, that although experience seems to have taught mankind, that certain general relations in the formation of ships, are necessary to be observed, in order to insure success in their construction; yet within the limits which this experience has revealed, so many varieties of form have been produced, as to create in the qualities of the vessels constructed the greatest diversity. Some ships, when constructed with only a tolerable approximation towards the limits which experience seems to have approved, appear to possess every good property we can desire; whereas others, framed apparently with equal care, and with no visible deviation from the limits before observed, will nevertheless, from differences in the mode of stowage, and from different methods of management when at sea, display qualities altogether at variance with the former. It often happens also, that constructers, in order to avoid one defect, create another, and sometimes, too, when endeavouring to get rid of a bad quality, the evils arising from it are augmented; and so intricate are the conditions comected with any theoretical investigation of the cause, that any attempt to account for it in such a way, has but slender chances of success. The great object indeed in the construction ol' a vessel, is to secure to it as many good qualities as possible; that if it be necessary in one case to sacrifice any portion of an acknowledged good property, in order to secure a more adivantageous application or extension of another, care must be taken, that no greater proportion of the first should be abandoned, than the actual necessities of the second require; in other words, that the aggregate of both should approximate as nearly to a maximum as possible.

We have seen, however, that experience has taught as certain principles in shipbuilding, which may be safely adopted as data, on which to ground systems of reasoning connected with the properties to which those principles reler: and is it not therefore possible, by carelul attention, to discover olher properties, at present classed with the accidents and chances at. tendant on fortumate constructions; but which would, ne:ertheless, in the hands of one competent to the mde:taking, be found to possess some definite relations to other general laws: All ships, it has been before remarked, have their contres of gravity a little before the middle of their lengths. This is known in a general way: but the pecise quantity of the deviation of this very important point, from the centre of the length. canon, in the present imperfect state of our knowledse, be made known. Would no useful results therefore llow from an experimental inquiry into the exact position of this centre: Or rather, might we not say, would mot many conclusions of the first importance to naval architecture, be ubained hrom a diserst of the properties of a liew of the best ships of fach class of the liritish nayy: Mr. Najor, at present loreman of Chatham dockyard, and formerly of the sehool of naval architecture, pmblished, in the Annats of Philosophy for November 182.t, a paper on this very important subject; setting lorth the advantayes that would accrue to shiphuilding, by obtaining, experimentally, many of its leading clements, such as
the foreign and light displacements of our ships of war; their principal dimensions, such as the greater axis of the load water plane, the breadth and draught of water; the forms and areas of the load water, and midship sections; the place of the centre of gravity of the entire ship-not from hypothesis, but erperiment; the position of the centre of gravity of the displacement; the elevation of the metacentre, at the mean height of the ports out of the water; the dimensions of the masts and sails, with the position of the centre of effort of each sail, the force of stability at some determined angle, \&c. \&ic. These elements, it must be admitted, are of the highest importance to naval architecture; and from their correct and accurate determination, would result much useful knowledge. Mr. Harrey, in the number of the same Jonrnal, for January 1826, has a paper on the same subject, and in which he particularly insists on the advantages likely to result from a practical exemplification of Mr. Major's plan. Mr. Harvey proposes to have all the elements that may be decmeil necessary to be determined as well as the essentiel steps on which they depend, methodically arranged in tables, according to the relation which the different forms bear to each other. "I know of nothing," observes Mr. Harvey, "that at the presemt monent would so much tend to increase our stock of information on shipbuilding as Mr. Major's proposal: since it would be carrying at once into the very heart of shipbuilding, that spirit of genuine induction, which in so many other branches of knowledge, has produced such mighty consequences.""Let us inquire," says Mir I., "how we obtain information in other cases; how the philosopher works in his difficult investigations, and what are the instrnments and methods employed by him when traciug the hidden mysteries of nature? Are they not E.cpe-riment,-Obsercution,--a carclul watching after resemblances and relations of every kind: Does he not analyze every principle, separate every part, and in the end collect into general and comected laws, the individual results which his saydity has discoveredE" "Just so," continues Mr. M1., "ought it to be in the pursuit of naval architecture; for there are about that subject, elements of a very peculiar kind, whose individual properties and collective laws, it is of the highest importance to determinc. Nuch may indeed be said about theory; but pure theory has yet done little for shipbuilding: what we urant is a theory founded on the busis of eapreciment and obscruation. The first mathematician in Europe may speculate for ever on the forms of tloating bodies; he may dazzle his imagination with his ideal creations; he nay multiply his analytical combinations, and pile his highest orders of integrals on each other; and yet, when called upon to make his practical applications, his formulx almost lose their identity, and all his golden speculations ranish. But place in the hands of such a man a well-digested body of experimental results; show him how, in numerous instances, one property of a vessel has been invariably fomed comected with another: give to him those constents which are to link together the disjointed elements of his problem; liurnish him with erperimental duta on which he cata depend, and from which he can with contidence draw such results as his growing investigations require; and we shall lind in the end a striking contrast to his former results. The data supplied to him will have disclosed relations never before anticipated, and conclusions never betore imagined. Naval architecture
would thus be in a high degree bencfited; and an art which, it is not too much to say, is of the very first importance for the British nation to cultivate und encourage, would be frecd from the trammels of macertain and antiquated rules, and placed on a basis better suited to its dignity and valuc."

But, it may be asked, to what canses are we to attribute so singular a neglect of an art, so essential to the welfare of Great Jritain, as the art ol shipbuidding confessedly is; and how is it that states, conlessedly ourinferiors in maritime importance and strength, should excel us in the construction of their ships? To this it may be replied, that our triumphant superiority on the ocean alfords a ready solution. Our superiority has incluced nergect, while other nations, jealous of our nautical power, have strained every nerve to rival and surpass us, and hate endetedoured to make up the want of numbers by superior constructions. The French, for example, have endeavoured, and in many cases have succeeded, in producing better sailers; and the Americans, by endarging the scale of their different ships of war, are endeavouring to turn the balance against us. France, to obtain all superiority, wisely enlisted on her side the genius and science of her gcometers. l3y prizes, by public rewards, by honourable distinctions, by every thing that could excite cmulation and scientific enterprise, she invited her geometricians to consider all the great problems connected with shipbuilding; and to transfuse into the practical operations of her dock-yarrls, all that the most enlightened theorios could teach. Some adrantage surely must result to an art to which such a mind as D'Alembert's could direct its attention. It is impossible for a mind, accustomed to the higher orders of human thought, to descend to the lower walks of human contemplation, without the latter being in some degree improved. A mere theorist, applying his speculations to the practical details of an art, can do nothing; but a man, whose habits and modes of thought are built upon the genuine principles of inductive scicace, who looks at shipbuilding, for example, neither with the eye of a merely speculative curiosity, nor with the blank intelligence that too often unfortunately characterises the daily operators in the mochanical arts, can scarcely direct his attention to any one of its departments, without in some degree imparting to it a benefit.

Shipbuilding, to Britain, may with perlect justice be styled a National Ant. Jt is one even more necessary to our national existence than those miracles of mechanical skill which have placed our arts and manufactures on so proud and elevated a level. Destroy our naval superiority, and our lolty pre-eminence in commerce will soon be humbled in the dust. The navy is the sinews of our strength-the arm that gives us all our political importance, and makes the name of Britain known, respected, and feared in the remotest regions ol the globe. And what, we would ask, is the proud term Navy, which as Britons we so often quote with exultation and hope, but a name identified in the closest and strongest way with the art which it is the object of this paper to illustrate? Give to our navy, therefore, we would say, not only mumbers, but cvery advantuge which science and indelligence can bestou: Let maval architecture be regarded peculiarly as a national art. Let its first elements, its feeblest begimings, as well as its highest attamments, be fostered and concouraged. Let public honours and national rewards be bestowed on those who add to its
perlection. Let our men of science be induced, like Euber, Bouguer, and D'Alembert, to look to it as an object to which their high attanments may be applied, with the lull and certam prospect of honour athd renown.

Some steps towards this most desirable end may, however, be traced in the establishment of the College of Naval Architceture in Portsmouth Dock-yard, arl institution which has alrcady done much grod, and which, if continued with encrgy and spirit, will do much more. Betore the establishment of this college, the officers and leading men of our dock-yards were drawn from the working men of those establishments; and they were recruited by means of apprentices, destitute, in many cases, of the commonest rudiments of education. From such men, excepting perhaps a lew highly gifted minds, what else could be expected but the same blind routine of practice that distinguished their forefathers? Accordingly, we find that the commissioners appointed in 1795 to revise the civil alfairs of the navy, remarked, that the class of persons from whom the foremen, the master shipwrights, and the surveyors of the naty were chosen, "had no opportunity of açuiring even the common education given to men in their rank of life: and that they rise to the complete direction of the construction of ships, on which the safety of the empire depends, without any care or provision having been taken, on the part of the public, that they should have any instruction in mathematics, mechanics, or in the science or theory ol' naval architecture." 'lhe death-blow to this most lamentably imperlect system, was however given by the establishment of the college before alluded to; and we have only to hope that the success of the institution will be commensurate to the wishes ol its most sanguine admirers. The candidates for admission are examined before the commissioners of the dockyard, the professor of the lioyal Naval College, and the licutenant-governor. They are required to be intimately acquainted with the English language, so as to write it errammatically, and from dictation; they are to be able to read and translate the lirench language; they must be well grounded in the first six books of Ediclid, together with the eleventh, and angebra as far as quadratic equations. At the period of eximination also, a printed paper is placed belore each candidate, containing a number of geometrical and algebraic problems, which he is equired to work out on paper: and those are selected as the successlial candidates who have displayed the greatest talent in the examination. During the seven years that they remain in the establishment, they resume the study of geometry with its applications; enter on a more enlarged course of algebra, pursue trigonometry, examine the theoretical and practical details ol mechanics and hydrostatics, and close their inquiries on this interesting head, by an calarged course on the differential and integral calculus. In the theory of naval architecture, they study the admirable papers of Atwood, contained in the Philosophical Tiansuctions," and also some of the best continental works on the subject. After obtaining sufficient elcmentary knorledge, they are employed in constructing original designs of ships ol war, ascertaining their displacements, the centres of gravity of their displacements, and of the whole masses of the ships and their cquipments, considered as heterogencous bodies. To this is added, the most exact and accurate inquiries connected with the stability, both according to the meta.
centric method of Bouguer, and to the more perfect and precise investigation of Atwood. Comparisons also are instituted-the qualities of English ships are compared with those of a foreigu built-their several properties are analyzed-the good qualities are combined so as to remedy the bad, and to produce in their ultimate application the most perfect design.
But it is not to theory only that their attention is directed. The practical details of the art receive a large proportion of their attention. They are effectually taught how to lay off ships in their practical construction, and in making the drawings which are necessary for the cxecution of the work in the progress of the building. The adz and the line are put into their hand like the humble operative at the dock side, and a vigilant practical shipwright examines into the minutest details of their duty. Engaged therefore in the morning, we will suppose, in studying the theory of their profession-in calculating the dis-placement-in investigating the properties of the midship section-estimating the power and influence of the sails-or endeavouring to catch a glimpse of the deep and recondite laws that regulate the resistance of fluids-they turn in the afternoon to the practical details of their art-in shaping and adjusting timbers -filling up the component parts of Seppings' diagonal framing-bolting together the timbers of his circular sterns, and observing in those numerous cases which the eye of theoretic intelligence is in general so ready to catch, the actual application of rules which occupied their morning thoughts. What else, we would ask, is necessary to make a complete and perfect shipwright: He has the amplest and best theories known continually before him, and the most enlarged practice, to excmplify their application. During this course of rigorous and unrelaxing labour, both of body and mind, annual examinations are held before the commissioner of the dock-yard, the admiral of the port, the licutenant-governor of the collcge, and the first lurd of the Admiralty. These examinations, both in mathematics and the theory and practice of shipbuilding, are very severe, and considerable study and preparation are required to pass them with credit. Alter finishing their course of studies at the college, they are removed to the different dock-yards, to fill the situation of subordinate officers; from which situations it is the prolessed iniention of (iovernment to pronote them to those of the higher offices, and erentually to that of survegor of the nav.

But the studies of the members of this college are, however, but begun, when the term which marks their apprenticeship has expired. Naval architecture is a jealous mistress, and requires the undivided man. Not the devotion of a few years, but of a life, consecrated to its pursuit. Vearafter ycar, with unwearied zeal, must be deveted to its interests; and the cordial and uninterrupted pursuit of its varied details, must meet with that reward which attends industrious labourers in wher departments of the arts.

It has been objected, however, to this institution, that its establishment has a tendency to check those honest and praiseworthy exertions which many among the great mass of the operative shipwrights in the dock-yards were lormerly stimulated to make, by the hope of lilling those situations which are to be now
occupied l)y the members of the college. But to this it may be replied, that the Admiralty and Navy Board, with a wise and proper forethought, have by no means closed the avenues of promotion to this useful and dcserving class of men. Very recently, indeed, we have seen an example of an operative promoted to the rank of a foreman, and a draughtsman of the old institution of things promoted to a similar situation. And this is just as it should be. Among the many operatives which a dock-yard presents, there must be some few at least deserving of a better late, than to spend the long term of their lives in a perpetual state of unceasing labour-some, too, though working at first as humble shipwrights, yet deserving from their talents to rise to command. The great object in a well-regulated community, is to encourage ability wherever it appears; and we are persuaded that the wellare of the country will be essentially promoted by fostering native talent wherever it appears.

The objections, however, that are sometimes raised against the College of Naval Architecture, that science is unnecessary to a shipbuilder, and that time is misspent in cultivating mechanics, hydrostatics, and fluxions, are too ridiculous to merit a serious refutation in this place; and they are only alluded to, that the future historian of naval architecture, when tracing the effects and influence of the establishment of the college, may class it among the anomalies which distinguished its history. To suppose for a moment, that in a fabric so massy and stupendous as a ship, destined for all the terrible purposes of war, or to bring to us, from the most distant regions of the globe, cargoes of the most bulky and ummanageable kind; which in its progress has to cross wide and immeasurable seas, agitated at times by the unbridled fury of the wind,-that no science is necessary in her construction, is to imagine an anomaty of the most monstrous kind. Science is the basis of cyery well-ordered machine. Science was the groumdwork of all that Watt, Smeaton, or Wren ever achieved; and can science be umecessary in the formation of a ship? Science indeed has hitherto been too much neglected in our dock-yards. We have trod long cnough in the blind and uncertain steps of our forefathers; and the establishment of the College of Naval A:chitecture must be numbered among one of the most fortunate events of the age; and, though not found in the ranks of its members, we look to it with pride and satisfaction.

In concluding these introductory observations, we would remark, that naval architecture is in so peculiar a degree a nutional art, that we could wish to see a socicty formed for its particular cultivation. There are so many advantages to be derived from the cooperation ol numbers in the prosecution of scientific pursuits-advantages first pointed out by the prophetic mind of Lord Bacon, and which the experience of the last two centuries has so abundantly confirmed, that it seems wonderful no attempt has been made to organize a society on a great and permanent scale for the improvencent of shipbuilding. And Mr. llarvey has remarked, in the Journel of the Royal Institution, "that there is perhaps no subject which requires more essentially the aid and co-operation of numbers than naval architecture; involving as it does so extensive a ficld for inguiry, and so beset, as all its elements are, with difficulties of so peculiar and intricate a

[^11]kind. At the present moment also, there is a spirit of inguiry abroad respecting shipbuitding, which no antecedent period ever exhibited, and which, il' taken at the flood, and before the causes that have awakened it subside, must produce consequences of a very important kind. What thercfore secms to be wanting,' continues Mr. Harvey, "is a sort of focus, or common point of union, to rally the disjointed and insulated speculations now alloat respecting it, and to concentrate the efforts of those whofecl interested in its advancement. This might be most readily and effectually done, by instituting a society, the object of which should be, to encourage theorctical and experimental inquiries connected with naval architecture; and to publish from time to time in its transactions, such papers of approved merit as might be laid before it at its mectings."

The hint contained in this quotation is too important to be forgotten; and we earnestly hope to see it perfectly realized at no very distant time. We have seen, in the cases of the Astronomical and Geological Societies of London, how much their formation has contributed to quicken the cultivation of the interesting objects for which they were instituted; how by the one the astronomer bas been stimulated to watch the celestial concave with greater carnestness and zeal; and how the other has tended to unfotd, by gradual and successive steps, the nature and constitution of the crust of this lower world. Now why, we would ask, could not the same objects be attained for naval architecture? If the union of numbers has quickened geological, and added to the splendour of astronomical science, why should not an association of men, devoted to the theoretical and practical cultivation of shipbuilding, produce simitar effects? The single subject of the resistance of fluids reçuires it alone; and when we see the magnitude of the obstacles that impede the march of the great national art we allude to, we carnestly hope that no codearours will be wanting to surmonnt them.

It shall now be our object to enter into some of the theoretic and practical details of this important subject; and as we would on the one hand endeavour to avoid every thing which bears the aspect of merely speculative inquiry, with no practical ohject in viru, so we would on the other avoid any description of chose merely practical details of the art, which can only be acquired at the dock side, or which have been already minutely and clearly detailed by the practical writers on the sulject. We shall therefore begin with the consideration of the displacement, an clement which mects us on the very threshold of the inquiry.

OF THE DISPLACCEMENT.

We refer to the article Hydrostatics for the consideration of the principle, that a body specifically lighter than water will sink in the fluid, until it has displaced a portion of it, equal in ucight to the entire body itself. On this simple clementary law of Hydrostatics is primarily founded the process commonly employed by naval architects for determining the displacement of a vessel.

By the displacement of a ship we are to understand the cubical contents of that part of it which is below the water's surface, and which, it is obrious, must be more or less, according to the degree in which the ship is immersed, by the variable conditions of its lading.

In making a design for a ship, the first object of the constructer must be, to form as accurate an estimate
as possible of its weight; and if this is to be done without any assistance derived from lormer constructions, exact calculations must be made of the dimensions and specific sravity of all the matretials to be employed in her formation; the number of guns she is destined to carry; her complement of men; and the quantity of provisioms and stores necessary for her complete equipment. When her totat weight is thus determined, the constructer most endeavour to obtain for her a corresponding displacement, and at the same lime secure to her such dimensions, as shall impart to her every property he may desire, and. il a ship of war, to ensure her lower deck guns a sufliciont clevation above the water's surface. The displacement therefore is a fundamental clement in shiphailding, and on its right determination depends many important considerations.
If the form of the body immersed in the fluid were generated according to any known and determined law,-il, for example, it partook of the figure of any solid of revolution, the application of the particular rute of mensuration belonging to that figure, woukd readily farmish the solidity of the part immersed. But there is no certain form yet determined for a ship's bottom: and, accordingly, no approximate formula has yet been devised, which can furnish, by a short and convenient operation, the displacement. Bouguer it is true, attempted an approximation of the kind, by assimilating a ship's body to a spheroid: and then estimating the contents of its displacement at $\frac{1}{2}$ i of the rectangular solid formed by the three principal dimensions of the ship-its length at the water's surface, and its breadth and depth estimated at and from the same plane. This method, however, although it might afford tolcrably correct results for ships whese fulness of figure approacheal nearly to a spheroida] form, yet in vessels of a sharper class, the crors arising from its application would be too considerable to admit ol its employment in any other way than as ant approximation of the roughest kiad.
Accordingly, constructers have had recourse to the well-known method of equidistant ordinates; a process contrived by mathematicians to oblain the areas and cubical contents of bodies, whose forms are destitue of symmetry and proportion. It consists essentiall. in the case of a solict, in dividing it into an unequind number of laminx or sections of miform thickness, and determining their asgregate solidity by means of the formula

$$
(2+4 s+0 x) \frac{i}{3} .
$$

in which a denotes the sum oi the first and lust ordinates, S the sum of the tern ordinates, s that of the odd ordinates, and i the comomon intereal or distance between the ordinates: and we shall now proceed to exhibit its application, by calculatines the displacement of a seventy-lour gun ship. This may becnunciated as a problem
To determine the displacement of a vessel, having her Sheer plen or Elecution, and body plun or Plem of Projection given.

Solution.

The displacement of a vessel may be calculated by horizontel laminx or sections, or by laminx or sections estimated perpendiculterly: or as is most desirable, by sections both horizontally and perpendicularly, and taking the mean of both, shoutd the two results not exactly agree. This latter mode will be aclopted in the succeeding investigation.

To accomplish it. Jet the sheer draught represented in Fig. 1. Plate CCCCLXXXVIII, be referred to, and in which IV w denotes the intersections of the plane of the water's surface, with the plane of projection, or in other words, the water line of the ship, and at the common interval of one foot, let other planes be supposed to pass parallel to the plane of flotation, through the points $2^{\circ}, 5^{\circ}, 4^{\circ}$
$20^{\circ}, 21^{\circ}, 22^{2}$, and 23°. This mode of operation will therefore divide the portion ol the ship immersed into twentr-three uniform lamina, the lowest of which is denoted by the dotted line $\mathbb{X} x$. The same series of sections or water lines are also represented as passing
transversely through the points $1^{\circ}, 2^{\circ}, 3^{\circ}$
$21^{\circ}, 22^{\circ}, 23^{\circ}$, in the body plan denoted by Fig. 2; and the contour or bounding figure of each section is denoted by the curve lines which pass respectively throngh the points
$10^{\circ}, 13^{\circ}, 16^{\circ}, 19^{\circ}$, \&c. in l'ig. S of the same plate. The water line, or that which corresponds to TV w in Fig. 1, is denoted by the external curve in Figure 3.

The different curves produced by these water sections, are, it will be perceived, of very variable forms, and their ordinates therefore must be of variable magnitudes. To ascertain these at unform intervals, the ship is supposed in the next place, to be intersected

TABLE OF ORDINATES AND RESULTS OF CALCULATIONS

by transverse planes perpendicular to the water's surface, passing through the points $5^{\prime}, 4^{\prime}$, . . $1,2,3$, $25,26,27$. $4^{\prime \prime}, 5^{\prime \prime}$; those between the points 1 and 27 being at the common interval of 6 fee from each other; those abaft the phame 1, at the egual interval of 3.4249 feet; and those before the plane 27 , at the equal interval of 1.5 feet.

These sections, therefore, intersecting the body transverscly, must disclose, from the variable form of the ship's hull, new curves for their respective bomdaries. These are represented in the body plan, Fig. 2; the main section passing through ϕ l., in Figures

1 and s, being denoted by the external curve in Figure 2. In like manner, the sections passing throurg the several points
$5^{\prime}, 4^{\prime}$.
1, 2, 3. . . $25,27,27$. . -4" $5^{\prime \prime}$, in lizpures 1 and 3 , are represented by corresponding carres in Figure 2. Thus by the horizontal and vertical planes, which by the conditions of the investigation are made to intersect the body, (wo series of curves are produced, mutually intersecting each other. From these points of intersection are derived the varions ordinates contained in the followins table, and which we shall now proceed to describe.

1 and 27.
Common interval 6 feet.

-

This table, it will be perceived, is divided both horizontally and vertically. The horizonlal sections, which in Figures 1 and 2, were supposed $t o$ pass through the points $1^{3}, 2^{\circ}, 3^{\circ}, \ldots \ldots 21^{\circ}, 22^{\circ}, 23^{\circ}$, are designated by corresponding characters in the first rertical column. And in like manner, the first horizontal series of numbers,
$5^{\prime}, 4^{\prime} \ldots \ldots 1,2,3 \ldots 25,26,27 \ldots 4^{\prime \prime}, 5^{\prime \prime}$ represents the vertical sections alhuded to above.

To explain the method by which the ordinates are measured and recorded, let the horizontal section denoted by 16° in Fig. 3. be selected. This section, like every other section of the same kind. being from the nature ol the transverse section, intersected by them, let the sections which pass through the points $\dot{6}, 12$, 18 and 24 be selected for the purpose of illastration. and let C, D, E and F , denote also the points in which they meet the contonr of the horizontal section assumed. If then the ordinates $C 6, D \quad 12$. E 18 . and $\mathrm{F}=\therefore$ be severally measured by means of the scale antuched to the drawing, they will furnish respectibely the measurements recorded in the horizontal column denoted by 16°, and the yertical columms denoted b? 6 , 12, 18 , and 24 , and wheh measurements are sespeciively $10.25,16.2,16.1$, and 7.25 . In like manme let the horizontal section denoted by 10° be assumed; and let the vertical sections selected be thuse which pasis through the point $2^{\prime}, 5,20$, and $2^{\prime \prime}$, and theip intersections with the horizontal section in the prints G $^{\text {, }}$ H, I, and K . If, therelie, the ordinates it $_{2}=$. II 5 , 120 , and $\mathrm{K} 2^{\prime \prime}$, be respectively represented on the scale ol equal parts, the numbers 3.6. 16.6, 21.3, and 1.2, will be obtaned, as recurded in the hotizontal cofuman 10° of the table, and rertical columns $2^{\prime}, ~ s, ~ 20$, and $9^{\prime \prime}$.

But the same measurements might have been whtained from the body plan, fig. a. For let the herizontal plane denuted by 10°. be again redered to, and let the carves produced by the transperse sections 2 , 5,20 , and $2^{\prime \prime}$, be those denoted by the same numbers on the body plan: and let the points ol intersection be
i, H, I, and K , as belure. If the ordinates $\mathrm{CO}, \mathrm{IIO}$, $I()$, and KO , be measured liom the proper scale ol equal parts, the values $3.6,16.6,21.3$, and 1.2 , will be obtaned as belore. And according to cither ol these methods, theacfore, may the different ordinates be obtanded, which are recorded in the several olumas of the table.

In the next place, we shatl proced to show how the arcas of the different sections may be obtained buth horizoutally and vertically, by means of the lurenula for equidistant ondinates betore sisma and hen, in the nest place, from the aras thus fomb, may be derived the solidities of the laminx themseives.

Let it be regutired therebore, in the lirst pace, to determine the area of the first horizontal section, or that denoted in the table by 1°. Ther, since the formata $(\Sigma+4 S+2 s) \frac{i}{3}$, mpuires the sum of the erteme ordinala, four times the sum of the reen wrilinatio, and twice the sum of the odd ordinmers. let the whinates lor the sections betwech \mathbf{I}^{\prime} and 5^{\prime} be in the first place selected, as fullows:

Exxreme ondinates. 0.8	1.ven Ordinates. 5.1	$\begin{gathered} \text { Odd orminate. } \\ 1+2.9 \end{gathered}$
17.4	14.9	\sim
$18.2=2$	19.9	$21.8=2 \mathrm{~s}$

$79.6=4 \mathrm{~S}$
and since $\frac{i}{3}=\frac{5.4249}{3}=1.1416$, we shall have
$(צ+S+2 s) \frac{i}{3}=(18.2+79.6+21.8) \times 1.1416$
$=136.54$, which, it will be observed, is the area entered in the first line of the vertical column, cntitled semi-horizontal arcas betueen cerlical sections 5' and 1'.

> In the next place, let the ordinates for the sections between 1 and 27 be selected.

Satreme Ondinates.	Eren Ormates.	Odd Orelinates.
17.\%	20.1	21.7
11.1	22.5	22.95
$23.4=5$	23.25	23.55
	23.75	23.95
	21.1	24.25
	24.4	$2 \frac{1}{2} .5$
	24.5 \%	24.55
	24.5	24.55
	21.3	21.4
	21.3	24.25
	2.3.95	25.1
	22.15	20.15
	18.9	$\underline{\square}$
	-	282.2
	299.0	2
	4	——
	$1195.0=+5$	$564.4=23$

and since in the present series of sections, $\frac{i}{3}=\frac{6}{3}=2$ fect, we shat! have
$(z+4 s+2 s) \frac{i}{3}=(284+1196.0+564.1) \times 2$
$=3.5-5.6$ which is the first area enteret in the rem-
 diall stations 1 and 27 .

In the third place , let the ordinates for the sections $1^{\prime \prime}$ and $)^{\prime \prime}$ be sclucied.

Extreme Ordinates.
Esen Ordinates.
Old Orlinate.
$\frac{11.0}{0.75} 51.75=\Sigma$

$$
9.0
$$

$$
6.6
$$

3.9
$12.9 \quad 13.2=2 \mathrm{~s}$

$$
51.6=1 \mathrm{~S}
$$

and since in this case $\frac{i}{5}=\frac{1.5}{3}$ we shall have
$(x+4 S+2 s) \frac{i}{3}=(11.75+51.6+13.2) \times 0.5=$ So. 27 , which is the first area cntered in the vertical column named semi-horizontal areas before scetion 27 . Tou this being added the smatl area 3.15 for the fore patt of the stem. produces 41.2 for the total semihorizontal area belore section 27 .

By reforming to fig. 1. Pate CCCCLXXXVIII, we shatl pereceive that the three sets of ordinates investisuted abore, comprised only the portion of the vessel inchuded between the points 5^{\prime} and $5^{\prime \prime}$; and that beyond those points two supplementary areas are to be lound, one cmbracing a ionrizontal section of the rudder, and the other a horizontal section of the stem. These areas are, by proper measurement, found to be cach :3.15, and are entered in the first lines of the columns entitled semi-horizontal arcas abajt vertical section 5, and supplementary semi-arous.

Thus it appears that the area of the first horizontal section is made up ol live portions, and which may be arranged as lullows:

Scmi-horizontal area abaft vertiral section st $=8.5$

 Scmi-horiaontal areas before xerion $2 \pi=11.42$

$$
\text { Total area of semi-horizontal section } 1^{\circ}=37.53 .21
$$

By a similar mode of procecding must the areas of all the horizontal sections, from 1° to 21° inchasive, be obtained, the results of which ate recorded in the last vertical column of the table.

Let the next example selected for illustrating the application of the formula of eduidistant ordinates, be the determination of the main or midship section denoted by 15. In this case we shall obtain the followins investigation:

```
Extrcme Ordinates.
    24.55
    0.75
    25.30=\Sigma
```

Even Ordinites.
21.65
21.7
24.5
23.8
22.55
21.0
19.0
16.7
13.2
3.6
0.75
194.45

(0!n! OMinates
2.1.7;
21.7
2.4.2
23.2
21.8
20.0
17.9
15.1
10.3
1.35
183.3
i
$266.6=2 \mathrm{~s}$
and since $\frac{i}{3}=\frac{1}{3}$ we shall have
$\pm+4 S+2 s) \frac{i}{3}=(25.3+77.8+366.6) \times \frac{1}{3}$
$=889.9$, which, it will be remarked, is the areachtered in the column devoted to the vertical section 915 , at the third horizontal line from the bottom.
In addition to this, there is the small area . 0 : to be added, and which produces for the total area ol the vertical scetion 915 , the quantity 389.93 , and which also is cntered in the lowest line ol the table.

Precisely after this manner are the areas of all the other vertical sections estimated, and their results recorded in the last montioned line of the table.

But it may be necessary to allude more particularly to the minute arcas constituting the last horizontal line but one of the table. By relerence to Fig. 1. Plate CCCCLXXXVIII, we shall perceive that from the circumstance of the ked not being parallel to the fuid surface, the horizontal plane corresponding to the lowest section 23° will leave aboft the vertical section 16, (at which point the kcel and the horizontal planc passing through 23° are coincident,) a portion of the keel below it; but before that section, a portion of the kcel above it. Hence the areas recorded in the horizontal column in question, are positice abaft the i6th section, and negative on the other side of it.

Let us, in the next place, proceed to apply the formula in question to the determination of the soldities wh the horizontal and eretical lamina into which the ship has been divided. For this purpose, we have for the leorizartal sertions the areas recorded in the last vertical colnmon of the table; and for the ecrlical sertion: the several areas recorded in the three principal departments of the lowest horizontal line of the table.


```
Eitreme Ordinates
        3758.71
        183.41
        3942.12=\Sigma
\begin{tabular}{cc} 
Piven Ordinates. & Odd Ordinates. \\
3719.32 & 3607.62 \\
3602.27 & 3523.49 \\
3155.70 & 3308.58 \\
3176.4 .3 & 30.30 .13 \\
2879.89 & 2723.79 \\
2554.86 & 2380.11 \\
2197.81 & 2012.72 \\
1811.33 & 1573.24 \\
1295.79 & 937.11 \\
417.89 & 23156.70 \\
\hline 25109.28 & 2 \\
4 & \(46313.40=2 \mathrm{~s}\) \\
\hline \(100437.17=4 \mathrm{~S}\) &
\end{tabular}
``` and since \(\frac{i}{3}=\frac{1}{3}\), we shall have
 \(46313.4) \times \frac{1}{3}=50230.83\), which is the value of the solidity by horizontal sectionc. If to this last quan. tity be added the solidity of the part helow section \(21^{3}\), and which has been estimated separately on the ground of greater accuracy and convenience, we shall have \(50230.83+260.15=50491.03\) for the absolute semidisplacement by horizontal sections.

To determine the same by vertical srctions, we must perlorm the followins calculations; and, first, Por the semi-solidity between the sections \(1^{\prime}\) and \(5^{\prime \prime}\).
\[
\begin{aligned}
& \text { IDtreme Orlintes. } \\
& \text { 15.7 } \\
& 126.98 \\
& : 42.70=\Sigma \\
& \text { Even Ordinates. } \\
& \text { Odd Ordinate. } \\
& 33.76 \\
& 95.10 \\
& 128.56 \\
& 4 \\
& 515.44=4 \mathrm{~S} \\
& \text { and } \operatorname{sincc} \frac{i}{3}=\frac{5.4249}{3}=1.1416 \text {, we shall hare } \\
& (\Sigma+4 \mathrm{~S}+2 \mathrm{~s}) \frac{i}{3}=(142.7+515.44+123.48) \\
& \times 1.1416=892.3 \text { for the semi-solidity required. }
\end{aligned}
\]

In the next place, to obtain the semi-solidity of the sections between 1 and 27 , we have

Extreme Ordimates. 126.98
69.15
\(190.13=\Sigma\)

Even Ordinates.
178.41
256.17
311.15
349.16
\[
370.87
\]
\[
383.73
\]
\[
389.97
\]
\[
389.90
\]
\[
383.41
\]
\[
366.93
\]
\[
330.35
\]
\[
262.95
\]
\[
145.75
\]
\begin{tabular}{r}
4118.75 \\
4 \\
\hline
\end{tabular}

Odd Ordinates.
\[
221.52
\]
\[
285.38
\]
\[
332.5 \mathrm{l}
\]
\[
361.96
\]
\[
378.45
\]
\[
387.22
\]
\[
389.93
\]
\[
387.34
\]
\[
377.08
\]
\[
351.95
\]
\[
301.79
\]
\[
212.49
\]
\[
16475.00=45
\]
\[
\text { and since } \frac{i}{3}=2, \text { we shall have }
\]
\((x+4 \mathrm{~S}+2 \mathrm{~s}) \frac{i}{3}=(196.13+16475.00+7975.24)\)
\(\times z=49292.74\), for the semi-solidity required.
In the third place, to obtain the semi-solidity for the sections between \(1^{\prime \prime}\) and \(5^{\prime \prime}\), we have

Intreme Ordinates.
\[
69.15
\]
5.60

Even Ordinates.
\(49.7^{2}\)
Oud Ordinates.
\[
-4.75=\Sigma
\]
\begin{tabular}{r}
\(49.7 \approx\) \\
15.05 \\
\hline 64.77
\end{tabular}
\begin{tabular}{r}
31.21 \\
2 \\
\hline
\end{tabular}
\(62.42=2 s\)
\[
259.08=4 \mathrm{~S}
\]
and since \(\frac{i}{3}=\frac{1.5}{3}=0.5\), we have
\(2+4 \mathrm{~S}+2\) si \(\frac{i}{3}=(14.53+259.08+62.42) \times 0.5\) \(=198.12\) for the solidity of the sections desired.

Hence. by taking the semi-solidity of the part abaft the vertical section \(5^{\prime}\), and also the semi-solidity of the part before section \(5^{\prime \prime}\), and which results are recorded in the lowest horizontal line ol the table, we shall have by arranging the results:

The sum of the semisolidities determined by the horizontal and eertical sections will give the total mean displacement. Thus,
\[
\begin{aligned}
\begin{array}{l}
\text { Semisolidiy by hodiantal sections } \\
\text { Senusolidity by vertical sections }
\end{array} & =.50491 .03 \\
\text { Mean displacencon in cubic flet } & =50486.90 \\
& =100977.93
\end{aligned}
\]

To bring this quantity into tons, it must be divided by it, the number ol cubic leet of sea water in a ton, and which produces for the displacement required 2985.086 10nts.

We shall now pass to the consideration of the centre of gravity of displacement.

\section*{of the cextre of gravity of displacempni.}

To determine the centre of gravity of displacement, it may, in the first place, be remarked, that from the symmetrical form of the body, when it is divided by a vertical longitudinal plane passing through the middle of the keel, it must be necessarily situated in this plane, and that our object, in the first place, therefore, must be to determine the distance of the same point below the plane of the water section; and, secondly, to find its position with regard to the length.

To determine its distance below the plane of the water section, we must again have recourse to the last vertical column of the gencral table, and multiply the numbers contained in it successively by \(0,1,2\), \(3,4,5 \cdots\). . 18, 19, 20, as in the tollowing table, in order to apply them to the formula of equidistant ordinates.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Areas of semihorizontal sec. tions. & Maltiplicrs. & licsulting products. & \[
\left\{\begin{array}{c}
\text { Areas of } \\
\text { semihori- } \\
\text { zontal sec- } \\
\text { tions. }
\end{array}\right.
\] & Multipliers. & Resulting products. \\
\hline 3755.71 & 0 & 000000 & 2554.80 & 11 & 28103.46 \\
\hline 3712.32 & 1 & 5.19 .32 & 2380.i1 & 12 & 2856132 \\
\hline 3667.62 & 2 & 7335 L 21 & 210-81 & 1.3 & \(285: 1.53\) \\
\hline 3602.27 & 3 & 10850681 & \(2012-2\) & 14 & 28178.08 \\
\hline 35.3340 & 4 & 14003.69 & 1811.33 & 15 & 27169.95 \\
\hline 345370 & 5 & 172035.59 & 157324 & 16 & 25171.84 \\
\hline 3308.58 & C & 1955143 & 129.579 & 17 & 22028.43 \\
\hline 317643 & \(\bar{T}\) & \(\therefore 233501\) & 937.11 & 18 & 16867.98 \\
\hline 3030.13 & 8 & 24241.04 & 117.88 & 19 & 793972 \\
\hline 2579.89 & 9 & 2591901 & 18.3 .41 & 20 & 3668.20 \\
\hline 272379 & 10 & 27.23 .90 & & & \\
\hline
\end{tabular}

To apply the colum entitled resulting products, to the formula for equidistant ordinates, we shall therefore, have

Fxtreme brobucts. 0000.00 3668.20
\(3663.20=工\)
\begin{tabular}{|c|c|}
\hline Liven Products. \(3-19.32\) & \begin{tabular}{l}
odel products. \\
-3.35.24
\end{tabular} \\
\hline 10806.81 & 14093.60 \\
\hline 17268.50 & 19851.48 \\
\hline 20235.191 & 2.1241 .04 \\
\hline 25919.01 & 27237.90 \\
\hline 2810.3 .46 & 28561.52 \\
\hline 28571.53 & 28178.08 \\
\hline 27169.95 & 25171.84 \\
\hline 22028.43 & 16867.98 \\
\hline 7939.72 & -- \\
\hline & 1!1535.48 \\
\hline 193761.74 & 2 \\
\hline 1. & ---_ \\
\hline ------ & \(388076.96=2 s\) \\
\hline
\end{tabular}
and since the common interval of the horizontal sections is one loot, we have \(\frac{i}{3}=\frac{1}{3}\); and therefore \((x+4 S+2 s) \frac{1}{3}=(3608.20+755016.96+\) \(333046.96) \times \frac{1}{3}=387264.04\) is the moment of the displacement between the horizontal sections \(1^{\circ}\) and \(21^{\circ}\). To this, however, must be added the moment
of the part below scetion \(21^{\circ}\), amounting to 5489.0.5. giving for the moment of the entire semi-displacement, the number 392753.09.

But by a well-known principle of mechanics, if the moment of the semi-displacement be divided by that semi-displacement, the result will be the required depth of the centre of gravity of displacement below the water section. This depth therefore is \(\frac{392753.09}{50188.96}\) \(=7.78\) feet. The semi-displacement here employed is the mean of the displacement determined by the horizontal and vertical sections.

To determine, in the next place, the position of the centre of gravity of displacement with respect to the length of the vessel, we must have recourse to the lowest horizontal columin of the general table before referced to, and refer all the calculations to the primitive vertical plane marked 1.

In the first place, the moment of the rudder will be found by maltiplying the semi-solidity abaft the vertical section \(5^{\prime}\), ly the distance of its contre of gravity from the primitive plane 1 , and which is
\[
90.04 \times 16.4=1.176 .66 \cdots(\mathrm{M})
\]

Secondly, to find the moment of the part between the vertical sections \(5^{\prime}\) and \(1^{\prime}\), we have
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Semivertical \\
areas between \\
sections 5'\&
\end{tabular} & Multipliers. & \begin{tabular}{c}
Resulting \\
products.
\end{tabular} \\
\hline 126.98 & 0.00 & 000.00 \\
95.10 & 3.425 & 325.72 \\
61.74 & 6.839 & 422.92 \\
33.76 & 10.275 & 346.88 \\
15.72 & 13.709 & 215.36 \\
\hline
\end{tabular}
and applying the column of resulting products to the formula for equidistant ordinates, we shall have
\begin{tabular}{|c|c|c|}
\hline Exueme Products. & Licin Products & Mdi Produc: \\
\hline 000.00 & 225.72 & 422.92 \\
\hline 215.36 & 346.88 & 2 \\
\hline \(215.36=2\) & 672.60 & \(845.84=2 s\) \\
\hline & 4 & \\
\hline
\end{tabular}
\[
2690.40=4 \mathrm{~S}
\]
and since \(\frac{i}{3}=1.1416\), the formula will produce \((\Sigma+4 S+25) \frac{i}{3}=(215 \cdot 36+2090 \cdot 40+845 \cdot 34)\) \(\times 1.1416=4282 \cdot 83 \ldots\left(\mathrm{MI}^{\prime}\right)\)

Thirdly, to find the moment of the portion of the vessel comprised between the vertical sections 1 and 27, we have the following table:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stomisertical areas betweon sects 1 \& 27. & Milti. pliers & Jicordting proticts. & & \[
\left\{\begin{array}{l}
\text { Walti- } \\
\text { phoses }
\end{array}\right.
\] & Lichaltran prolur? \\
\hline 12698 & \(1)\) & 1,y)000 & 389.93 & 81 & .j-2.51.2 \\
\hline 178.11 & 6 & 1000 0 & 39990 & 90 & 350)」 \\
\hline 221.52 & 12 & 20.808 & . 83 & (i) & .27139191 \\
\hline 256.17 & 18 & 4611.11\% & 383.11 & 102 & 511107.8. \\
\hline 28.5.38 & 24 & 68.9912 & 275.98 & 11,\% & \(4{ }^{1} 7464\) \\
\hline 311.15 & 30 & 933.2.30 & Sticis) & 11.1 & 116.5.02 \\
\hline 3.351 & 56 & 11970.36 & 3610; & 1.6 & 122.3.01) \\
\hline 349.16 & 42 & 17664.72 & 230..35 & 16 & 4162110 \\
\hline 361.96 & 48 & 17.37468 & 301.79 & 1 12 & 39836, 28 \\
\hline 370.87 & 54 & 20026.98 & 2rivs & 1.24 & 35287.10 \\
\hline 37845 & 60 & 29707.00 & 21249 & 1.41 & , 193.88 .56 \\
\hline 38.373 & 66 & 25326.18 & 1157.5 & 1.15 & 210630 \\
\hline 387.22 & 72 & 27879.84 & 69.15 & 136 & 107874 \\
\hline 380.97 & 78 & 30417.66 & & & 1)T07 \\
\hline
\end{tabular}
and applying the column of resulting products to the formula, we shall have
\begin{tabular}{|c|c|c|}
\hline Sxtreme l'roducts. & Even Products. & Od. 1roducts \\
\hline 00000.00 & 10.0.46 & 2658.24 \\
\hline 10787.40 & 4611.06 & 68.19 .12 \\
\hline & 9.3.3.1.50 & 11970.36 \\
\hline 10787.40 \(=2\) & 14664.72 & 17.374.08 \\
\hline & 20026.98 & 22707.00 \\
\hline & 25326.18 & 27879.81 \\
\hline & 30417.66 & 32-54.12 \\
\hline & 35091.00 & 37184.64 \\
\hline & S9107.82 & -1524.34 \\
\hline & 118.30 .02 & 422.31.019 \\
\hline & 11624.10 & 328.36 .28 \\
\hline & 30287.10 & 30598.56 \\
\hline & 21862.50 & -_- \\
\hline & --- & 3127-0.88 \\
\hline & 321254.10 & 2 \\
\hline & \(t\) & -- \\
\hline & \(\overline{1285016.40}=\) & \[
\begin{aligned}
& 6255+1.76=2 \\
& 5
\end{aligned}
\] \\
\hline
\end{tabular}
and \(\operatorname{since} \frac{i}{3}=2\), we further have
\((z+4 \mathrm{~S}+2 \mathrm{~s}) \frac{i}{i}=(10787.4+1285016.4+\) \(\left.625541.76 ; \times 2=3842691.12 \ldots(1]^{\prime \prime}\right)\)

Fourthly, to cetermine the moment of the part comprised between the sections l" and 5
\begin{tabular}{|c|c|r|}
\hline \begin{tabular}{c}
scmivertical \\
areas betwecn \\
sections 1 "\&
\end{tabular} & Multipliers & \begin{tabular}{c}
Resulting \\
products.
\end{tabular} \\
\hline-29.15 & 156.0 & 10787.10 \\
49.72 & 157.5 & 7830.90 \\
31.21 & 159.0 & \(\$ 962.39\) \\
15.05 & 160.5 & 2415.52 \\
5.60 & 162.0 & 907.20 \\
\hline
\end{tabular}
and applying the column of resulting products to the before quoted formula, we have

nra, anre on-inimb ol the common interal \(=0.5\). westhall hitle

(24.78) \(\times 0.5=31302.53 . . .\left(31^{\prime \prime}\right)\).
Lastly, to determine the momem before section s. we have,
\[
13.7 \times 163.5=2239.95 \ldots .
\]

If now we rite to the position of the primitire wrical phane to which all the preceding moments ! ate been reforel, we shall perceive that \(M\) and \(\mathrm{M}^{\prime}\) abe on one sicle of \(i t\), and \(\mathrm{M}^{\prime \prime}, ~ \mathrm{I}^{\prime \prime \prime}\), and \(\mathrm{M}^{\prime \prime \prime}\), on the wher: and that if we denote the mean semidisplacement by 1), we shall have for the distance of the centhe of gravity of displacement liom the primitive Hane t, the expression
\[
\begin{gathered}
\frac{11^{\prime \prime}+M N^{\prime \prime}+M \cdots \cdots-M-M}{D}= \\
\frac{5842691.12+31502.53+2059.93-4252.05-14.6 .6 i n}{50488.96}
\end{gathered}
\]
\(=76.66\) fect, which is the distance of the centre of gravity from the primitire vertical plane 1.

The preceding investigations respecting the disfhacement have been conducted on either of the suppositions that the ship and the water are at rest, or of a ship and the water moving in the sane dirction with the same relocily, in which case the ship is still relatively at rest. But when the ship and water are relatively in motion, cilher ly the ship being at rest and the actir in mation, or hy bac shifs moting and the water's tine at rest, or by the ship) and werter moving with uncound relociftes. or in difercol dirctions, the depth to - hifl the ship simks mat be determined in comex. an with other comsiderations. As a prool of a diffincuce in the two conditions of a ressel alluded to, Die may adduce the observations of M. Romme, that a frigute which was lashed to a sheer hulk in the river Pharnte. sabk two inches more when the velocity of fon stream was great than whon the motion of the - Feam wat only just semsible.

In an ingremions distuisition on this subject. Mr. \(\therefore\) Arsin, once of the foremon of Portsmouth Dockyad. addaces another rematk ol lomme on the same * ubjert, in which llatt loaracd foreigner describes : ome expermems he made to determine the vertica! fressure of water when in motion compared with its pressure when at rest. Ile had two tin tabes conatructor, the onc. l’is. h. Plate (CCCDXXXVII, straight as a \(b\), wht the other curved as ad edeach open at its combe, and capalde of receivios a Boat eff, the lower part wh wish, \(f\), wat of cort: and the upper part atol mashed with inches and lines. These Hexs, comtaining their doats, were first plunged intes stili water, and the division ol the rods obecred, correspondiner with the upper opifues of the tubes. The dubes wre then placel in rumbing water, the curbent
being in the direction \(h i\) and the bent tube \(c d r\), with its lower end turned it the same direction: the floats in both tubes were then observed to have sank an inch below the position they had when the lubes were in still water. The beut tube was then turned so as to present its grince to the current, when the forat rowe an inch above the position which it bud in still water. The bent tube was then placed with the lower end perpendicufarly to the direction of the current, when the Anat sumk in inch befow its postion in still water. He measured the velocity of the chrrent, and found that the water ran 70 leet in \(30^{\prime \prime}\), or that its relucity was that due to a height of an inch and a line nearly; which corresponded with the distance the floats in the tuhes rose or lell in the experiments. Other experiments in currents of differemt velocities produced similar results. In some instances the depression atd eleration of the floats were as much as fre or six ithe hes, being always the height due to the velocity of the current. Ite ascertamed also that the results were the same, to whaterer depth the tubes were plunged into the water.

Suppose the depth to which the tubes are planged into the water to be represented by \(k\); then the vertical pressure of the water at the orifice \(b\) of the straight tube, when the water is at rest, is in proportion to this depth, and canses the water in the tube to tise to the tevel of the surounding water; but when the water moves with a velucity dile to the beight \(z\), the particles no lunger press erpally in all directions, but have a greater tendency to motion in the direction of the current than in any other: so that the vertical pressure of the particles at the orifice \(b\) is less than betore, and by the experiment is found to be proportional to \(k\) - \(z\).

In the application of the result of this experiment to a floating parallelopiped, uluse sides are perpendicular, and whose upper and lower surfaces are parallel to the water's surface, the pressure of the water on the sides being horizontal, has no effect in supporting its weight; and the vertical pressure of the particles of the water on the lower surface, being less when in motion than when at rest, in the proportion of \(k 10 k\) - \(=\), \(i\) being in this case the perpendicular distance of the lower site of the bofy from the water's surfice, and \(=\) as before, the heisht due to the velocity of the current, the parallelopiped will sink deeper in the running water, than in the still water, in the same proportion: that is, the perpendicular depth of the immersed part of the body will be \(k+z\), having sunk depper the distance \(z\).

When the bent tube \(c\) de is placed with its lower end in the direction ol the stream \(h\) i, the cflert is the same as with the straightube: the partiches of water at the orifece , pressing less on the particles in the tube when the water is in motion than when at rest, the water in the tube is not equally supported; so that it sinks be!ow the level of the surrounding water, a distance found by the experiment to be equal to \(=\), the height of the water in the tube beins \(i=z\). The effect is the same atso when the lower end of the bent thbe is placed perpendiculally to the curent; but when placed with its orifire poresented to the direction ol the current, the particles ol the water in motion exert apressare at the orilice e, greater than hey would when at rest, in consequence of the velocity in the direction of their motion, which causes the confined water in the tube to
rise above the level of the surrounding water, a height found by the experiment to be equal to \(z\), the altitude of the water in the tube being \(l+z\).

Now as the water rose a distance above the level of the surrounding water, when the lower end of the bent tube was placed exactly in the direction opposed to the current, and fell the same distance z below the level of the surrounding water, when the lower end of the tube was placed perpendicularly to the direction of the current, there must be an angle at which the tube might be placed with respeet to the direction of the eurrent, at which the water in the tube wonld be at the same height as the surrounding water. 'laking any line \(v\) in the direction of the current to represent its velocity, which is wholly elleetive in raisins the water in the tube, when placed in the oprosite direction to the current the distance \(z\), and which has the effect of depressing the water in the tube the same distance \(z\); when placed perpendicularly to the dipection of the current, the angle at which the tube must be placed, in order that such a part of this velocity may be effective in casing the water in the tube to rise exgetly to the level of the surrounding water, may be found by supposing that at this angle the effective part may be equal to \(\frac{1}{2} v\), which, by the resolution of the directions ol the pressures, makes the angle at which the tube must be placed \(60^{\circ}\) with the direction of the eurrent.

In the application of this reasoning to the determination of the restical pressure of the water in motion on a ship's body, the pressure on the fore and after parts of the body must be considered scparately; the preatest transversc section called the midship section, being the division between these paris.

The expression representing the pressure of the water on the fore part will be composed of two terms, the one expressing the pressure on the part of the body where it is grater than it would be il the body were at rest, and the other the pressure on the pat of the fore budy, where it is less than it would be il the body were at rest. The line of division, which we will call the neutral line, being the line on the fore part of the ship's body, al which the pressure of the water is ueither increased nor diminished by the velucity of the water, will be a curved line, depending on the form of the ship's body, but abays before the greatest transverse section. In regular figures, its position and form may be deter, nined either geometrically or analytirally; but in ships, can be found only by trial and calculation. In the expression for the pressure of the water on the part of the bady conamed between the neutral line and the miaship, the pressure represrated by the proportional depth \(k\) wall be increabed by a function of \(z\); in the expression for the part of the fore body contained between the netrat line and the midship section, the pressure represented by the proportional depth \(k\) will be diminisbed by a function of \(z:\) and in the after body, \(k-z\) will be the element representing the pressure.

Let ab, Eig. 5. Plate CCCCLXXXVIII, represent an element of the ship's body, and \(c b\) the direction of the motion and the height due to the relocity of a particle of water, which meets this element. By resolring \(c b\) into \(c d\) and \(d\)), \(c d\), which is perpendicular to \(a b\), is supposed to be destroyed, and the particle of water glides along the surface of the ship's body with a velocity \(a b\). Let \(c b\) be equal to \(z\), and the depth of
the particle below the surface of the water be equal on \(f\), and the athgl" ab e equal to i: then \(11==\). cos. \(i\). The pressure of the particte ol" water on the part of the fore body before the nentral line will then be proportional to \(k+z\) cose \(i\); the pressure of the prarticle of water on the pare of the lige boly between the neutral line and the mictship section, will be proportional tok-ze cos. \(i\) a and the pressure of the partiele of water on the aftur body will ba proportional, according to the coperiment on the bont thb, tw 1 - \(=\).
Sappose the ship to beplared with it, finc part opposed io at cument, the direction of which is that of the ship's ked, and we velocity that which is dare to the height \(z\). Suppose the surface of the shipis be, ly below the surface of the water to be diviled inte an intinte number of smadl surlaces: lat ir be the horizontal distance of ome of the se small surioces liom the midship section, and \(y\) its transterse distan e liom the longitudimal vertical plane, dividior the shap imen two equal and similar parts, and lits distance from the plane of hoatation. 'The peojection of this small surface on the plame of lloatation is at a d y: and re presenting the spectice gravity of the vater by 1 , the pressure of the water on this small sablace, in a ver-
 and the vertical pressure of the water on a smath she face, in the part comaned hetween the midhop see tion and the neutral section in the fore body, is \(\rho^{\prime}\) d
 water on a small sudice in the part of the fore boly be. fore the neutral section, by taking \(x\) for the distance of this small surface from the neatral section, is 1 id ir. \(14 .(k+z . \cos . i\). 'lhe vertical prebsure of the weter on the whole of the fore part of the ship's boly (taking both sides of the ship) . is therefore
\[
\begin{array}{r}
2 \mathrm{P} \int d r f d y \cdot(k+2 \cos . i \\
+2 \mathrm{P} \int d \cdot \mathrm{f} \| d \cdot(k-2 \cos . i)
\end{array}
\]
and the vertical pressme of the water on the whote of the after part of the ship's body, is
\[
z P j d r j d y \cdot i-z
\]

The sum of these term:

is the tutal vertical pressure of the wateron the ship's body, bying opposed in a current, whose veluciay is that due to the height \(=\)
 of the flaid un the ship)'s busts. supposed to dee sunt io the same depth below the surface of the water, tat ing = for the whole length of the ship, would be a I \(\int d x f d y d i\) In this expression \(c\) is equal to the: sum of the thece lemeths expersed ly, in the furmar expression. This guantity representins the verticul pressure of the water on the ship's bods when at rest, is evidenty greater than the guantity represcmting the vertical pressure of the water on the ship's bofy when in motion, in consequence of the firse term af lixe ex pression \(2 \mathrm{P} \int d x \int d y \cdot\left(k+z \cdot \cos i+2 \mathrm{P} \int d x i\right.\) \(d y \cdot(l-z \cdot \cos \cdot i)+2 \mathrm{P} f d x \int d y \cdot(k-z)\),
which is less than the sum of the two other terms, be ing increased in a less proportion by the addition of
\(z . \cos . i\) to \(k\), than the sum of the last two terms is diminished by \(z\). cos. \(i\) being subtracted from \(k\) in the first, which is the smaller of the last two terms, and \(b y^{\circ}=\) being subtracted from \(k\) in the last term. The rertical pressure of the water, therefore, being less on the ship's body when placed in a current than in still water, cstimated to the same draught of water in both cases, the ship must sink deeper in the current than in still water. The distance it sinks depends on the value of \(z\), the height due to the veloci\(t y\) of the current, and \(i\), representing the different angles at which the particles of water strike the ship's body, which depend on the form of the body. Supposing the values of all the terms known, and subtracting the expression for the vertical pressure of the water in motion on the ship's body, from the expression for the vertical pressure of the water at rest, estimated at the same draught of water in both cases, the remainder will be the guantity to be taken from the expression for the vertical pressure of the water at rest, measuring from the line of floatation downwards, which determines the distance which the ship will sink deeper in the water in motion than at rest.

This expression represents the vertical pressure of the water, under the consideration that each particle of the fluid in motion impinges on the surface of the ship's body; neglecting the circumstance of those particles which meet the body at the middle of the fore part, escaping along the surface of the body, and preventing many of the particles farther removed from the middle from impinging on the surface, and communicating their action to the body only, through the medinm of those particles in contact with it; the particles still fartlser removed from the middle, communicating in the same manner their action to the body :hrough the medium of a greater number of intervening particles. The investigation is conducted with immediate reference to the resialts of the experiments with the tubes, instead of forming an independent theory on the hypothetical action ol fluids on lloating bodies. The division of the fore part of the ship's body into two parts, by the section at the lines on the surface of the body, at which the effect of the pressure of the water in motion is the same as that of the pressure of the water at rest, is introduced by the writer of these remarks, as being directed by the results of the experiments with the bent tube; considering that the whole pressure of the water on the fore part is not increased by the motion of the fluid, but only the part bofore the neutral section, the pressure on the remainder being diminished.

The vertical pressure of the water on the ship's body may be determined on the same prineiples, but with more diffuculty, when the direction of the ship's length makes any angle with the direction of the current of the water.

It may be observed, that the alteration occasioned in the rertical pressure of the water in consequence of the relative motion of the ship and water, allects the
determination of the stability of the ship, which is measured by the vertical pressure of the water multiplied into the distance it acts from the longitudinal axis passing through the centre of gravity. The commexion of the common theory of the stability of ships, however, with this principle, although requisite for the direct determination of the absolute stability of a ship under sail, is by no means necessary for the determination of the comparative stability of ships, which is generally required to be known.

\section*{ON STABILITY.}

The general question of stability involves considerations of the highest importance, both to the theory and practice of naval architecture. We owe our first general conceptions of its mature and properties to Archimedes,* who, in his celebrated inquiries respecting Hydrostatics, first pointed out the nature of the force which a fluid exerts to restore a floating body, when dellected from its quiescent position to its original condition. The same inquiry in the hands of Bouguer, \(\uparrow\) of Euler, \(\ddagger\) of Chapman, \(\oint\) and of Atwood, \(l\) has been rery much extended; and by the labours of the last mentioned philosopher in particular, it has been placed in the clearest and most satisfactory point of riew.

Without entering into the general circumstances of floating bodies, (for a masterly investigation of which we reler our readers to the papers ol Mr. Atwood just quoted,) we may remark, that when a vessel is lloating on the surface of the water, it is impelled downeards in a rertical line passing through its centre of gravity, the fluid at the same time exerting an equal and contrary force upuderds, in the direction of a vertical line passing through the centre of gravity of the portion of the vessel immersed. Unless, therefore, the vertical lines representing these forces coincide; or, in other words, unless the centres of gravity of the entire ressel, and of the part immersed, are situated in the some vertical line, a tendency will be created in the vessel to revolve about an axis, until it finds a position in which it can lloat in a state of permanent equilibrium.

Supposing, therefore, a ressel to float in a state of permanent equilibrium, and an external force to be applied, to cause it to incline from this position, a certain degree ol resistance. dependent on the general circumstances of the ressel, will be created, and which resistance is commonly denominated the stability of floating.

We know also from our ordinary experience, that some bodies are mote casily inclined from their positions of equilibrium than others; and that varieties equally remarkable exist in their returns to their original situations. This, indeed, is a circumstance most remarkably exemplitied in the practice of naval architecture. In some ships, a given impulse of the wind will produce an inclination much more considerable than in others; and bence correct notions respect-

\footnotetext{
- Archimedes de incidentibus Jtumido.
\(\dagger\) Bumpuce Tritt du Nowire, tiv. i. sect. S. chap. iv.
 stme hy W:atson.

5 Traite de la Construction des Vaisseanx par Chapman, clap. ii. or the Finglish transtation of the same by Dr. Inman, together whit lise notes of the tmanlator.

Atwored on the stabilty of ships, contaned in the Philosophical lransactions fur 1706 and 1798.
}
ing the general propertics of stability, must be regarded as one of the most important elements of shipbuildiner.

The lirst and most essential point to be obtained, is an expression or meanare lir the fore of stability at any angle of inctination. This was lirst attempted by Boburuer, on the supposition that the vessel wastinctined at an infintely shatl angle: but his investigation, althongh appliabte to hodies of all magnitudes and forms, when their deviations from a state of permanentegnidinimmate limited to crancescent inclinations, is for that reason inapplicable to the rigid purperses of naval archtecture, on account of the anstes to which ships are inclaned by the force of the wind and the sea, amomang to thamtities very considerably removed lrom an ceatescent state Suppose, fiarexample, the angle of inclination to amonat to ken or iwenty degrees, or as it somerimes does to thirty degrees; then will comditons la insolved in the insestifation, which with invalitate entirely any theorem founded on inlinitesimal relatuns. This will be evident, by relerring to the conditions of the imanerged and emerged robmes. produced by the inclimation of the vessel. Those volumes in the formala in daestion, are to be regarded as simitar and egral; whereas the form of a ship, both above and below the water line which corresponds to the position of permanent egnilibrium, pesctats no such equality. Nor is this a mere bypothetical objectiom, bat one wit the highest practical importance: since it is known that the quantity ol sail which a ship is emabled with sutiety to car\(1 y\), as well as the use of her bowerdeck gums in rourg weather have a most matorial connexion with the form of the sides, above and below the plane of the water section corresponding to the position of permanemt equilibrium.

Co put the subject, howeyer, in a clear and satisfactory point of view, let there be two resscls of the same weight, and let the planes of their water sections be also similar and equat: but let he sides of one of them hare an inclination ontureds, both above and below the water section, as in lig. A, Plate COCCLXXXX; and the sides ol the other a simidar inclmation inearls, ats in lig. 5. Now, it is manifest, whout the aid of any alculation, that, notithstanding the assumed coincidences of the weights :hed of the forms and areas of the water sections, the stability of the first body must be mach more consileatbe than that of the second: and that a quantity of sail which might be productise of to material inconvemence to the former, would to the later be hazardous and destructive Nenct, as Mr. Atwood very properly observes in the first of his papers belowe gutul, - admitting that the theory ol statics can be applied with any ellect to the practice of naval architccture, it seems necessany that the mies on be investigated for determining the stability of sessets, should be extended to those cases in which the angles of inclination are of any magnitude likely to oceur in the practice of narigation."

To determine the necessary formula, therefore, when the angle of incliation is of some definte magnitude, let \(\triangle B C\). Fig. 13. represent a transwerse vertical section of a ressel, passimg through its centre of !ravity (i, and therelore at right angles io the asis of motion. let I A B L denote also the plane of the water section, dividing the solid into two portions,
one abore the wates's surface, but not represented in the figure, and the olber ACB belone it. Lat () alss be the centere of gravity of the immersed voluma. and join ()(i, atos protuce it to K . and whith, from the conditions of hydrostatic "rpuitibrimm, aust be at rishe atrsles to the pate st the water section.
suppose, in the next mate, a liste to be exterma!ly applied to the solid, se as to catase it te insere thanobis
 refered to and let the line KC . whi h in the state of c'quilibrium was rerical, how assume the pestion of S(il. Let also 1 X N denote the new sitnation assmoned by 18B, and WRMNDR, the new prosisa of the immersed volume, in consegucnce of the inctination.
 that (), the centre al stavity of the imanesed volume A1H113, will be tramsered 16 E, the come old gravidy of the equal space IR.DN ; and the action of the flusi on the immersed volunce, wond be in the divection of a vertical line passing throserg l , if 1 RNN represented the volume immersed in the buid. But liom the inclined position of the solith, the volume XXP, which in the original position of the solid was abowe the fluid surface, is now immersed in it; and, on the contrary, the volume \(1 \mathbb{1}\). which in the position of equilibrium was surromaded by the water, in the mew position, is elevated above it. Heace it follows, that the new condition of the salid will canse the centre nf gravity of the immersed whame to apmoed towns that part of it which is mose immersed in the flath.

Suppose, therefore, the conte of sparity ot the imme: scd volume WRMP to be situatel at the point (e, and through (Q draw lis paratlel to (iO) or which is the stme thing, perpenticulat to the plane of notetion. Through ix and (i, drav liY and G./ parallel to the last mentoned plane. Then since (2 is the center of gravity of the robame immersed. the pressure of the flaid will act in the direction of the reaticalline (es, passins throng that centre, with a foree eqnivalent to the body's wight: and by the principhes ol' mechaniss, will have procisely be same efoe: : tum the sulid romen it. adis, as if the same locee in a applied immediately at the point \(Z\). and acting i: the same direction Qs. Since, therefore the effect of the fuides presare artins in the direction of a veriazal
 depends on the absulate protion ol that point, wat or We horizontal distance between the rertical line (\(C\) (and Ste, which pass throug the primitise contre \(=\) diplacement and the bew position of that contec caacd by the circurnstances of inclinativa, it luloが, thation y atempt to dowmane the stability of aidu. ing boty, our o'ject must be w determine the andgatuae of the line Ciz.
llde rolume immersed under the conditions of

 bydrostatic equilibrima, dimanohed by the tahateral space 118 , and augmented by the thitateral fortre NXP. Bat since the rolume iamersed mast atwor, preserve the same constant matyatude as long in tiog whote weight of the body subjected to examimation remains undtered, and which, in every inquiry on :id:
 that whatever may be the position of the point of it,
 musi be equa!. Ifasing made these fow. genermio.
servations, we procecd to the following construction lor the purpose of determining the magnitude of CiZ.

\section*{CONSCRUCTION.}

Fiad a and ! the centres of gravity of the spaces IVIX and NXP; and lrom those centres, let perpendiculars ub, ed be drawn to the fluid surface; and in the line El, take ET a fourth proportional to the Whote volume immersed WIINDP, the trilateral area IIVX or NXP, and the distance \(b\) c between the perperdiculars demitted from the centres of gravity a and \(d\). Through the point 'I thus found, draw FTS parallel to \(G O\), intersecting \(G Z\) in \(Z\). Then will \(G Z\) represent the measure of stability.

\section*{METHOD OF CALCELATION.}

Let the total volume inmersed be represented by 5 , and the volume NXP immersed in consequence of the inclination by \(x\). Let also the distance \((G O=G E\), between the centres of grarity of the eatire bady, and of the rolume imnersed, be denoted by o and the sine of the angle of inclimation KGS to radius unity, by a Let also the distance \(b\) : between the perpentictiar "b ard de be represented by: Then by the construction
\[
\nabla: r:: E: \frac{\beta u}{V}=\mathrm{ET}:
\]
and since EG: ER : : \(1: q\),
or \(\varepsilon:\) ER : : \(1: ~\),
we have ER \(=\mu\);
whenceRT \(=\mathrm{ET}-\mathrm{ER}=\frac{\beta \tau}{\mathrm{V}}-\pi=\)
\[
W_{i}\left(Z=\frac{\beta \pi}{V}-20 \cdot(A)\right.
\]
which is a senerw formula lur the stability of a flouting breiy al any magnituce and form, at any finite angle of inclination.
```

DEVONSTRATION.

```

It is demonstrated by the witers on mechanics. (Wood's Nectemics, art. Be, third editron,) that in any system of bodies riven in position, il the situation ol one of them be changed, the corresponding motion of the common centre of gravityestimated in any given direction, will be to the motion of the centre of gravity ol the part of the system moved, estimated in the same direction. as the weight of the body movel is to the weight of the whole system. In the present instaner, the volnme IR 31 at may beregarded ats a system of borlies, whose common cente of gravity is I . The centre of gravity of one of the bodies IWX composing this system, is trmblerrerl, in consequence of the inclination of the eatire body, to the point \(d\), the centre ol gravity of the equal whame NXI'. Then since the translation ol the rolume IVX has occasioned a motion in its centre of gravity from a to d, and which estimated hosieontal! \({ }^{\text {on }}\) on the phene of flotation, is \(b r\); by the mechanic al theorem quoted, the entire volume WRMP, is to the volume IWX or NXI, as \(b\) e to ET; which is the measure of the space the centre of gravity of the entire volume has passed
through, when estmated in the same horizontal direction. If therefore a verticat line FTS be drawn through the proint T ', it must also pass throurg the centre of gravity of the immersod volume; and since the line ER is known interms of theradins GE or (i), and the sine of the whgle of inclimation EGO, it follows that by subuactug its value lrom \(1:{ }^{\prime} 1\), there will remain RT, of its equat GZ , the measure of the stability required.

We shall now proceed to apply the formula just determined to the case ol a suscl whose sides are parallel to the plane of the masts, both abore and below the plane ol flotation.

Let QBOAII, (Fig. 14.) 1epresent a vertical section of the vessel, when it limats in an upright or quiescent pasition, B.d denuting the plane of flation. Let also \(G\) be the cente of gravity of the entire body, and E that of the portion immersed in the lluid. Let I as before represent the magnitude ol the volume immersed.

Bisect the line B. A passing through the plane of flotation in \(S\); and thongh \(S\) draw CSII, forming with BA an amgte cqual to the ressel's inclimation. Then since DSC is the triangulu area raised above the fatid surface, in conserpence of the inclination, and ASH the similay and erpal surface depressed beloun it from the same canse: bisect 13 C and. IFl in the points li and N. Join NS and NS. and take Sl to SF, and likewise SM to Siv in the ratio of 2 to 3; then will 1 and II be the contres of sravity ol the triangutar spares. From these centrec. let 「all IK and ML perpendicub: tu Cll. Thongh E, draw E T parallel to CII, and tabo E'l' to LiL, in the ratio of the valume ASh to the whole rolume dimplaced. Through \(G\) dran GU ferallel io CH, and hrough T the line \(\mathrm{T} Z\) perpendicular to GL゙, and GR parallel to '1Z. Then will I'I or GOL be the measure of the vessel's stability.

To determine the value of \(\mathrm{C} / \mathrm{L}\) andytically, and thence numericully, let BA, the breadth ol the water section be denoted by 4 , and (:E the interval between the centres of erravity of the entire body, and ol the volume inmersed by a: .low the angle of inclination ASH by ¢. Then \(1: 20:\) tan. \(: 2\) btan \(\varphi=\) AII, whence \(1 N=b\) tan. \(q\), and \(S N=u\left(1+\tan .^{2} \phi\right)^{\frac{1}{2}}\). Alsu. as SN: HN: : sin. NilS: sim. NiSll: or as \(b\left(t+\tan .^{2}=\frac{1}{4}: b\right.\) tan. \(s:: \cos \theta a: \frac{\sin \cdot \sigma}{\left(t+\tan .^{2} 9\right)^{\frac{1}{2}}}\). Hence cos. NSII \(=\frac{\cos \cdot+\operatorname{sic} \cdot \varphi}{\left(1+(t a n \cdot-\phi)^{\frac{1}{2}}\right.} \quad\) Now \(\mathrm{SNI}=\) \(\frac{2}{3} S N=\frac{2 b}{3}(4+t a n .2)^{\frac{1}{2}}\); and therefore \(S L=\) \(\frac{2 b}{3}(\cos .0+\sec . F)\). Inel since the triangles SLM, [ikl are equal and similar, \(\mathrm{KL}=2 \mathrm{SL}=\frac{4 b}{3}(\cos . \phi\) - sec. \(\varphi\)). Nso the area of the triangle ASII \(=2 b^{2}\) tan. 4. Therelore by the mechanical theorem relerved to in the demonstration,
\[
\mathrm{V}: v:: \mathrm{KL}: \mathrm{ET}
\]
o: V: \(2 b^{2} \tan . \phi:=\frac{4}{3}(\cos \phi+\sec . \phi): \mathrm{ET}\),
\[
\text { and hence } \mathrm{ET}=\frac{8 b^{3} \tan \cdot(\cos . \phi+\sec . \phi)}{3 \mathrm{~V}}
\]

> Also because CE: \(: \mathrm{ER}:: 1: \sin . \phi\)
> therefore \(\mathrm{E} R=\propto \sin . \phi ;\)
whence \(R T=G \%=\frac{8 b^{2}}{3} V^{1}\) an. \(\quad(\cos . \phi+\sec . c)-\) \(a \sin . \phi\), is the analytical value of the proposed vessel's stability.

To determine the value of 6 : \(/\) mumerically, be the breadth of the vessel at the water's surface, or Ab be 100, and the interval Gif: between the centers of grat vity of the entire body, and of the volame immersed be 16 ; that is, let \(b=25\), and \(a=13\). Suppose also the angle of inclination \(;=15\); and let 1 the area of the section of the volume displaced be represented by 3600. Then we shall have
\[
\begin{array}{r}
\cos . \phi+\sec \cdot \phi=\cos \cdot 13^{2}+\sec \cdot 15^{\circ}=2 \cdot 0012020 \\
\frac{8 b^{3} \tan \cdot}{3 V}=\frac{125000 \tan \cdot 15^{2}}{3 \times 3600}=3.10120 .39 \\
\text { Hence ET }=2 \cdot 0013 \times 3 \cdot 1012=6.2062355 \\
\text { and a sin. } 1=13 \mathrm{sin} \cdot 15^{2}=3.36 .46 .150
\end{array}
\]
which gives the measure of stability \(\mathbf{C} \boldsymbol{C} Z=2.8+16085\)
From this result therefore it appears, that when the proposed vessel has been inclined liom its position ol permanent equilibrium through an angle of \(15^{\circ}\), the action of the duid to restore it to its quiescent position, will pass at the distance of \(2 \times 84\), estimated horizontally, when the beadth of the water section is demoted by 100. And this result will be the same whatever be the lenget of the axis.

The absolute pressure of the fluid, is in reality the total volume displaced by the body. Suppose this quantity to be tomo tons. Then since by this hypothesis, the stability of the ressel, when inclined at an angle of \(15^{\circ}\), is equivalent to the force of 1000 tons, acting at the distance of \(\frac{2 \cdot 85}{10 \cdot 00}\) parts of the breadth of the water section from the axis, to restore the ressel to its primitive state of conilibrima; the effect will be the same as il a force \(\frac{1000 \times 2 \cdot 84}{50}=56 \cdot 8\) tons were applied to turn the vessel it the distance of 50 from the axis.* If therelore the wind should act on the sails of the ressel with a force of 56.3 tons, at the mean distance of so l'rom the ixis, the force of stability would just balance it, so as to preserve an equilibrium, the ressel still preserving its inclination of \(15^{\circ}\).

Such is nearty the method pursued by Mr. Atwood, to iltustrate the general question of stability: and we have introduced the example to the attention of our readers, to cmable them to form some idea of the mode pursued by that celehrated man in this very interesting inguiry. It woull rery liar coiceed the limits of the Encyclopadia, to follow him throngh all the cases and forms of bodies he has chosen to illustrate bis subject; but we will condeavour, by tabulating some of his leading results, to afford our readers every assistance we are able on so important a question. We recommend, however, most earnestly to every one interested in the inquiry the two papers of Mr. Atwood contaned in the Philosophical Transactions for 1796 and 1798.

Tablif: of Mi. Ilucool's Results.

*This distance is supposed to be estimated horizontally.

Table of Mr. Alwood's Results.

The object of Mr. Atwood in the investigation, of which the results are recorded iu the preceding table, was to estimate the effects produced on different bodies, by assuming different forms for dueir sides; and for this purpose he prescred all their other elements constant. Thus, as the table illustrates, the breadtin of the water section was in all cases demoted by 100: the distance of the centre of gravity of the entire body, and of the volumes displaced ly 13: the area of the section of the rolume displaced by shen, and the angle of inclimation of the constant magnttude of 15 . In the two last columas will be foubd the measure of stability for the different forms.

The table lurnishes several remarkable conctusions. For example, by comparing the result of No. 6. With No. B. the singutar lact is dinclonel, that if two isusceles wedres haring thedr surfaces inctimed at the same angle, have atso the same breadth at the water's surfice: :unt the distances between their centres of gruvity, and oll the volumes displaced equat, as also the weights of the bodies themselves, then will the stabilities of the two bodies, when inclined to the same angle from the upright, be always the same. The same principle may also be remarked by comparing the form No. 2. With No. 9. and hacerise No. S. with No. 10.

Bat the circumstance here adverted to possosses a much more general character, it being equally true, whaterer be the nature of the figure assumed for the sides, provided the surfuces brlore the water line in one vesbel, are similar cotul, and similarly disposed with respect to the water section. to the sides of another iensel abore the sume scotion. lhis romatkahk proferty may be demonstrated as fullows:

Le: Q(lion, Fir, 15. reptesent a vessul, the sides of which whare the plate of the water section project nuturdeds, and the sides bolun tine same plane inzedrdy. the vessal in this pontion being in a state of permanent equilibrium. Suppuse the versel to be rewanced from that position by the action of ans firece, and let CII be the position of the water's surface. in cansequence of the inclination. Letabo ASII

 d, wint \(\because\) :
and SBC be the equal areas produced, the former being immersed in the fuid, and the latter clevated above it; and let \(M\) and \(I\) be their respective centres of gravity.

Suppose now the entire body to revolve rount the line \(A 13\) as an axis, and to pertom half a revolution or las ; then will the positions ol its sides be cntile ly reversed; those parts ol them which in the orefermal

 the mean of the differen trials

 sures of the stability in the two sets of caperiments.

 \(=.18\), for the lagth of lever at which the displaced volune of water act, to rentore the boive to its remical f...tion.

position of the body projected outurards, above the water's surface, in the new position, inclining insededs, betone the same surface; and the other parts of them which in the position of permanent equilibrium inclined inurdeds being now found inclining outurats. Let Fig. 16. denote this new condition of the body, and ch the position of the flud surface, when the solid is inclined to the same angle as denoted by Fig. 15. Now since \(A \mathrm{~B}=a b\), it follows that \(A B C O\) being applied to abon, so that the point 1 may coinritle with a, \(A B\) with a \(l\), and consequently the point
\(B\) with the point \(b\), the two sections will be identical and equal in all respects. Also since the lines CH, \(c h\), are equally inclined to the lines \(A B, a b\), and cut off the areas ASII, "sh, respectircly cqual to the areas \(B S C, b s f\), it follows when the line \(\Lambda B\) coincides with ab, the points \(S\) and \(s\) must coincide also, and likewise the areas just mentioned. As a necessary consequence, the centres of gravity \(M\) and I will coincide with the corresponding points \(m\) and \(i\) : the ine ML with \(m l\), IK with ik, and consequently KL with ki. And since the area ASH is equal to the area
\[
\text { Moditi II. -Figure } 11 .
\]

Whight of Weter hispleced, 324.52 ounces, or the value of W :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Fotal lensth of the Lever estimated from the Centre of \\

\end{tabular}} & \multicolumn{5}{|l|}{Total length of lice Lever estmated from the Centre of Giravity, 25.36 inches or the watue of 1.} \\
\hline \multicolumn{5}{|l|}{Height of the centre of cirasity abose the bottom of the Noslel, ? inclocs.} & \multicolumn{5}{|l|}{Neight of the Centre of darint abone the bottom of the Model, 3. is inches. \(^{2}\)} \\
\hline j & 2.215 & 0.10 & 0.18 & 2.09 & 5 & 08407 & 0.06 & 0.07 & 2.06 \\
\hline 10 & 4.5000 & 0.37 & 0.41 & 212 & 10 & 1.84 .37 & 0.18 & 0.18 & 2.13 \\
\hline 15 & 7.0203 & 0.35 & 0.59 & 2.23 & 15 & 3.0156 & 0.23 & 0.25 & 2.21 \\
\hline 20 & 9-187 & 0.80 & 0.62 & 2.33 & 20 & 4.5155 & 0.35 & 0.37 & 2.33 \\
\hline 2.3 & 12.9320 & 1.66 & 1.08 & 2.51 & 25 & 6.4219 & \(0 \cdot 50\) & 0.53 & 2.49 \\
\hline 30 & 166610 & 1.37 & 1.38 & 2.44 & 30 & 9.6625 & 0.71 & 0.73 & 2.72 \\
\hline
\end{tabular}

Monel 11I.-Figera III.
Weight of Wioter displuced, 324.52 ounces, or the retue of II:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Total lenget of the lewer estmaterl from the Centre of Giawity, 8.1 incher, or the ralte of \(L\).} & \multicolumn{5}{|l|}{Total lenget of the lever estimated fiom the Centre of Grawity, 3.8 inches, of the value of I ,} \\
\hline \multicolumn{5}{|l|}{Height of the funtre of limatity ahere the bottom of the Morlel. ? inches.} & \multicolumn{5}{|l|}{Ifeight of the centre of (arathty athote the bottom of the Nodel, 3.3 inclas.} \\
\hline 5 & 2.1929 & 4.18 & U.18 & 203 & 5 & U8178 & 0.106 & U.06 & 2.02 \\
\hline 10 & 4.3073 & 0.3.5 & 0.35 & 1.99 & 10 & 1.5675 & 0.12 & 0.13 & 1.99 \\
\hline 15 & 6.4062 & 0.53 & 053 & 199 & 15 & 2.3335 & 0.18 & 6.20 & 1.89 \\
\hline 20 & 85312 & 0.57 & 0.71 & 201 & 20 & 3.16 ¢ 4 & 0.24 & 0.26 & 2.01 \\
\hline 2.5 & 10.750 & 0.87 & 0.89 & 2.05 & 25 & 4.1198 & 0.31 & 0.34 & \(2 \cdot 04\) \\
\hline .30 & 1.3.2030 & 1.05 & 1.0 .5 & 212 & 30 & \(5.2 t i v 4\) & (0.4) & 0.43 & \(2 \cdot 10\) \\
\hline
\end{tabular}

Momet. IV.-Figere IV.
Whight of llater diphued, 359.14 munes, or the value of 15 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} & \multicolumn{5}{|l|}{Total length of the Lever estimated from the Centre of dimuity, 25.41 infless of the value of \(L\).} \\
\hline \multicolumn{5}{|l|}{Height of the eantre of bimety abote the button of the Monl, bs, in inces.} & \multicolumn{5}{|l|}{Iferght of the centre of Grasty abore the batton of the Monlet, 3, as inelies.} \\
\hline \% & 21157 & U.16 & 1.15 & 3.80 & 5 & U cody & (1).04. & U.u6 & 3.73 \\
\hline 10 & 45625 & 0.3: & 0.15 & 3.85 & 10 & 1.5290 & 0.11 & 4.12 & 3.85 \\
\hline 15 & 7.ja3) & 0.51 & 0.50 & 4.03 & 1.5 & \(2.81 \% 7\) & 020 & 0.23 & 4.00 \\
\hline (1) & 1 (1.1.53) & 0.78 & 0.75 & \(\therefore 2\) & 20 & 4.5.159 & 0.32 & 0.33 & 117 \\
\hline 25 & 11.150 & 1.16 & 1.15 & 4.47 & 25 & 7.0104 & \$1.50 & 0.54 & 440 \\
\hline , \(\omega\) & 1023131 & 1.13 & 1.13 & 4.73 & 30 & 10.4170 & 0) 74 & 0.75 & 4.70 \\
\hline
\end{tabular}

Numed V-l'aitac V.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{ Camity, ation inches, or lla balace of 1 .} & \multicolumn{5}{|l|}{Total length of the lever estimated from the contre of Cobvity, 24.7 inclues, or the vathe of 1.} \\
\hline & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
of the Cuntre of comsta abose the bertomat of the \\

\end{tabular}}} & \multicolumn{5}{|l|}{Heyght of the Centre of Gerast athore the bothom of the Monlel, indindter.} \\
\hline , & & & & & S & 0.9675 & 0.08 & 0.08 & 222 \\
\hline 10 & 4.1号3 & 0.30 & 1)..is & 2.16 & 10 & 1.7448 & 0.15 & 0.14 & 9.16 \\
\hline 1.5 & 6. 11.237 & 0.5.5 & 0.iT & 2.11 & 15 & 2.1856 & 0.21 & 0.23 & 2.12 \\
\hline (1) & 80101 & 0.7 .2 & 115.4 & ? 10 & \(\because 0\) & 3.2083 & 0.27 & \(0 \cdot 9\) & 2.10 \\
\hline 25 & 91935 & 0.89 & (1)! 1 & \(\because 11\) & 25 & 3,9896 & 0.34 & \(0 . .16\) & 2.10 \\
\hline \(3)\) & 11885 & 107 & 109 & \(\because 1.3\) & 30 & 4.4812 & 0.41 & 0.14 & 2.12 \\
\hline
\end{tabular}

BSC, and as \(h\) to \(b s c\), it follows that the four areas are equal to each other. Hence since the volume immersed, is by the supposition in cach case the same, it follows that \(\mathrm{ET}=\frac{a r}{V}\), and e \(t=\frac{\beta v}{\mathrm{~V}}\), and hacre fore \(\mathrm{ET}=\mathrm{C}\).

Now this equality between the lines ET and et being independent of the positions of the centres of gravity of the entire bodies, and also ol the positions of the centres of eravity of the immersed volumes, it follows that if the distances of those centres be the same, that lik will be equal to \(c i\), because by the hypothesis, the ancyles at which the bodies are inclined are the same. If therefore trom El' we subtract ER, and from \(t\) take \(e r\), there will reman R'f or (i/ equal to \(t\) or \(\underset{\sim}{\infty}:\); and from which we infer that the stat bilities of the two bodies are the same.

Another property demonstrated by Mr. Atwood is, that when the rertical sections of one ressel are terminated by the arcs of a conic parabola, and the sides of another ressel are parallel to the phane ol the masts above and below the plane of the water section, the stabilities of the vessels will be equal at all equal inclinations from the upright, when the breadths of the water sections, and all the other conditions are the same in both cases-a coincidence which could scarcely be supposed to exist in bodies so dissimitar in form.

In another case he has also proved, that if the sides of one vessel coincide with the curve ol a conic parabola, and the sides of another vessel with a conic parabola of any other form, but having a different parameter, the breadths of the water sections, the weights of the vessels, and the other conditions being the same, the stabilities of the two ressels at all equal angles of inclination will be equal. This he infers from the principle, that in proportion as the dimen-
sions of the prababolic curve are angmonth, the fig mora chastly appoximates to a scoctampulat patall! ! spam; and that when they are incrased oine limi.a. the firm whimatoly critucides with a boll: of that kind. And that at, \(\because\) a hese belone secm that the sta-

 ol a bocly whose form is that of a parabolic catre of

 parabolic figure, we insert lig. 17, in whimh we curve
claco is a ronical or appollonian patatota. (dBlo a cubic parabona.
elbl:o a biquadratic parabola.
fBloo a parabola of 8 dimensions.
and grbe a parabola of st dimemsions.
llaving made these general observations on the subject of stability, we shall in the neat phate pocect w the aplication ul the priar ijde that have bout derehopece to the compration of time stabilizy of the ship whase displacemont we befure comphtid.
 portion of the principal vertical section of thar ressel proposed, which is situated below tha water lime B. 1. when the plane of the masts is at rightatarles to the Hhad surface: and de DC represent the lane which coincieles with the surface ol the water, when the wersel is inclined at ato angle of 10 , at which ancho wo propose to compute the stability. This phan DC, from the conditions of stability, must be so situated? as to cause the volumas immersel ant merierel in consequence of the inclimation, to be cymat in solidity: and it will follow, lrom the varicties ol ioth which the
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{'lotal lensth of the Lever estimated from the Centre of (imaty, 25.2 .3 inclase or the value of \(L\).} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Total lontrith of the l.a ce: colmated harm the "cunse of \\

\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Height of the Centre of faraty abose the bottom of the Monel, 2.35 mehes.} & \multicolumn{5}{|l|}{lleight of the Centre of (amins abme the boatomin of the Mondel, 6 i inches.} \\
\hline \(5^{\circ}\) & 2.1719 & 0.23 & 0.24 & 2.60 & 3 & 1.165 & 1) 12 & 0.13 & 2.65 \\
\hline 10 & 4.3167 & 0.46 & 0.45 & 2.66 & 10 & 2.3こ- & 0.23 & 020 & 2.65 \\
\hline 15 & 6.4271 & 0.69 & 0.72 & 2.65 & 13 & 3) 111 & USt & 0.35 & 20 in \\
\hline 20 & 8.4687 & 0.90 & 0.96 & 2.65 & 20 & - 4.480 & 1:45 & 051 & 203 \\
\hline 25 & 10.5470 & 1.12 & 1.18 & 2.66 & 23 & 5 500 & 135 & 063 & 202 \\
\hline 30 & 12.5830 & 134 & 1.10 & 2.69 & S & i 5117 & (16) & 0.75 & 2.62 \\
\hline
\end{tabular}

Monel Vll--Figlae Xill.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Total length of the Lever estimated from the Centre of (iravity, \(2: .08\) inches, of the value of \(\mathbf{L}\).} & \multicolumn{5}{|l|}{Total length of the leser estimated irom the certe of Gimsity, 2.0 .5 inches, or the salue of L .} \\
\hline \multicolumn{5}{|l|}{lleight of the Centre of Gravity above the bottom of the Model, 2.4 inches.} & \multicolumn{5}{|l|}{1Leisht of the Centre of Gravity above the butum of the Stodel, 3 - itrelies.} \\
\hline \(5^{\circ}\) & 2.1021 & 0.26 & 0.27 & 3.02 & 50 & 1.208 & 0.21 & 0.16 & 304 \\
\hline 10 & 4.2375 & 053 & 0.55 & 3.06 & 10 & 25035 & 031 & 032 & 3.05 \\
\hline 15 & 6.4666 & 0.81 & 0.84 & 3.13 & 15 & 39687 & 10.45 & 0.50 & 3.13 \\
\hline 20 & 8.8646 & 1.11 & 1.14 & 3.25 & 20 & 55169 & \(060^{\circ}\) & 0.69 & 32.1 \\
\hline 25 & 11.5880 & 1.45 & 1.46 & 3.4 .4 & 25 & 7.4427 & 489 & 0.91 & 3.49 \\
\hline 30 & 14.5680 & 1.82 & 1.83 & 3.65 & 50 & 9.786 .4 & 1.17 & 1.1.7 & 5.63 \\
\hline
\end{tabular}

By a reference to the third and fourth columns of each experiment, it will appear how closely the experimental values of ET and GZ, at the different angles of inclination, approximate to the thcoretical values of the same lines, deduced from Atw'ood's formula.
different transverse sections of a ressel present, that the areas of the figures \(S A C C, S B e D\) call in no case be equal; although, in the previous investigations, from the perfect equality and similarity supposed to exist among the transverse sections, the areas ol immersion and emersion were properly regarded as equal. And it is farther evident, that at whaterer distance the point \(S\) is situated from the middle point X of the water's surface, in any one scetion, the same distance \(X . S\) will be preserved in every other section: for by the supposition the vessel is inclined round the longer axis, and therelore the intersection of the planes which pass through the lines 13.1 and DC will be paralled to the longer asis, and consequent! parallel to a line drawn through all the points \(X\), from one extremity of the ressel to the other.

To show, in the next place, by what means the maspitade of XS is to be determined, through X draw the lime NXV inclined to the water's surface at the given angle; and let a plane be supposed to pass through it, so as to cut all the sections m like manner. Then by means of the ordinary rules of mensuJation, let the area of the liture AXiVb be computed for each section; and from these equidistant areas, let the solidity of the volume comprised betwecn the two planes \(\mathcal{X}\) W and X.i be calculated by means of the formula \((x+4 S+2 s) \frac{1}{3}\), and let the same operation be performed for the solid contained between the planes \(B X\) and \(X \mathrm{~N}\). Let the lorner of these solidities be denoted by \(A\) '. 'Then will the diference of these solidities be equal to the solid comprised between the two planes NiV and JC. And il we represent the area of the section NW by W, this difference will be cquivalent io \(\mathrm{W}^{+} \times 50\); that is \(\mathrm{A}-\mathrm{A}\) \(=\mathrm{W} \times \mathrm{SO}\).

But by trigonometry \(\mathrm{X} S: \mathrm{SO}:=1: \sin\). SXO.
\[
\text { and therefore } S O=N S \times \sin S N O \text {. }
\]

This value of SO (b eing substituted in the preceding equation, gires \(A-\lambda^{\prime}=W \times N S x \sin\) S
and from which we obtain
\[
\mathrm{X}^{9}=\frac{A-1^{\prime}}{10 \sin 5 \mathrm{~S} 0} .
\]

On: limits will not armit of our exhibiting the actual computations for this formala, bat the result for the value of \(\mathrm{X} . \mathrm{S}=.25\) of a foot.

Ifaving determined the value of this necessary and essential element, we shall procoed i.t once to compute the stability. In the first place, to calculate the succession of mixtilineal areas produced by the transverse sections by whel, the ressel has been divided. and of which serics ASCh reparsents one of immersion, and BSDe another of emersim, we must divite rach of them into a triancutar areans S. 1 e in that of immersion, anci into a parabolic area ats \((\therefore / 20\), to wheh curve the small serment (\(\Delta\) do cosely approximates.

Co compute the succossin of rectimeal areas, we
 those of the succession ol prependiculars, one set of which is denoted by ('r and D) 'lo whath those ol S.A and Sls, we must, in the first pheer, whereve, that the point \(S\) not being situated, as we have belore demonstrated, in the midelte of the water line, but is distant liom it by the quantits \(X . S=.25\) above determinctio lollows that this quatity mast besubtracted from Xil in one case, and added to its equal Xis in

found in the first horizontal column of the general table in the article on the displacement, and from the numbers representing them are derived the results recorded in the second and filth columms of the lodlowing table.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\rightrightarrows
\] & \multicolumn{3}{|l|}{Values connecta! with the lumersion.} & \multicolumn{3}{|l|}{Sathes comberted Wain the 1:nemion.} \\
\hline \[
\begin{aligned}
& \text { E. } \\
& \text { E } \\
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& \text { Vabues } \\
& \text { oisch. }
\end{aligned}
\] & \[
\left\{\begin{array}{l}
\text { Values of } \\
\text { tluper- } \\
\text { pendicu- } \\
\text { lar } 6 e
\end{array}\right.
\] & Y:dues of athe trianglesed. & Values
of sti, & \begin{tabular}{l}
 \\
the per. \\
pendiens. \\
lat I) \(d\).
\end{tabular} & V゙ahes of the triangle sill. \\
\hline 5 & 0.55 & 0.10 & \(0.62-5\) & 105 & 020 & 0.1030 \\
\hline 4 & 4.85 & 1.12 & 2.-76 & 5.35 & 076 & 2.43 .30 \\
\hline 3' & 1065 & 2.7? & 14.74 & 11.15 & 1.45 & (1.1.395 \\
\hline \(\sim\) & \(1 \pm .5\) & 3.16 & & 1505 & 20.4 & 15.3510 \\
\hline 1 & 17.15 & 3.10 & 291550 & 15.15 & 2.44 & 21.0.30 \\
\hline \(1^{\prime}\) & 1,15 & 3.40 & 291554 & 17,6.5 & 2.12 & 2153.30 \\
\hline 2 & 19,45 & 37 & 36.225 & 20.3.5 & (2.1) & 305230 \\
\hline 3 & 2145 & C\&2 & 44.9 .95 & 21.25 & \(3 \cdot .10\) & 873150 \\
\hline 4 & 222.5 & O \(3: 2\) & +3.1+51 & 20.5 & 3.62 & \(411: 75\) \\
\hline 5 & 23.50 & 8.24 & 445100 & 2.3 .29 & 3.52 & 415126 \\
\hline 6 & 2.3.10) & 4.10 & 460000 & 23.50 & 4.60 & 470000 \\
\hline T & 23.30 & 404 & 47.0650 & 2.80 & 4.08 & 48.5520 \\
\hline 3 & 2.3 .50 & 1.48 & 479409 & 24.00 & 4.16 & 499200 \\
\hline 9 & 23.5\% & 412 & 45.8220 & 24.20 & 4.20 & 508200 \\
\hline 1) & 23.85 & 4.16 & 496018 & \(2 \pm .35\) & 422 & 51:3:85 \\
\hline 11 & 2.110 & 1.20 & 51.100 & 21.50 & 46 & 52.1850 \\
\hline 12 & 2.15 & 4.0 & 50.150 & 246 & 4.32 & 53.244\% \\
\hline 13 & 2425 & 4 l & 5). 2250 & 24.75 & 120 & 53.9550 \\
\hline 1.4 & \(2 \cdot 8.30\) & 120 & 510300 & 21.30 & 1.36 & 34.00 .46 \\
\hline 15 & '21. 3 亿 & - \% & 510300 & 24** & 430 & 54.0640 \\
\hline 1 i & \(\because 1\) & 40 & 51.0310 & 2.180 & 4.36 & 54.0640 \\
\hline 17 & 20.30 & \(\therefore 4\) & 51.0500 & 24.5 & 4.32 & 53.5680 \\
\hline 18 & 24.25 & - \({ }^{14}\) & 5) 5250 & 21.15 & 4.28 & 52.9650 \\
\hline 19 & 21.15 & 4.1 & 50-150 & 22.65 & 4.20 & 51.5650 \\
\hline \(2)\) & 2415 & 129 & 50.5050 & 21.35 & 4.25 & 51.0640 \\
\hline 21 & \(2 \pm 15\) & 4.16 & 49.0200 & 24.50 & \(\therefore 12\) & 50.4500 \\
\hline 22 & \(\therefore 3.0\) & 412 & 44.8290 & 2.20 & \(\therefore 04\) & 53.8810 \\
\hline 23 & 23.15 & 4 US & -17.2200 & 23.15 & 384 & 45.1950 \\
\hline 21 & 21.13 & Sw & 43.8000 & 210 & 3,81) & 40.3200 \\
\hline 25 & 10.90 & S.6\% & 46.2150 & 00.40 & 3.20 & 32.6410 \\
\hline \(\because 1\) & 10.10 & 3.1 & 26.6400 & 17.15 & 2.40 & 20.5809 \\
\hline 27 & 197.3 & 2.4 & 13.0400 & 11.25 & 164 & 9.2250 \\
\hline 1 & 1075 & 204 & 12.04,0 & 11.25 & 1.6 .1 & 9.2256 \\
\hline 2 & 855 & 1.80 & 7.8.30 & 0.25 & 1.36 & 6.2900 \\
\hline \(\cdots\) & 635 & 128 & 4160 & 6.85 & 1.01 & 3.5620 \\
\hline \(4^{\prime \prime}\) & 36 & 0.20 & \(131 \cdot 10\) & 4.15 & (1).tio) & 1.8430 \\
\hline 5 & 1.50 & (1.1) & 00230 & 10 & 020 & 0.110 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\frac{0}{\omega}
\] & \multicolumn{3}{|l|}{Vabucs connected will \(h_{1}\) ． Immarion．} & \multicolumn{3}{|l|}{Viblues comnected with the limernion．} \\
\hline & Vidaces of the don－ hat orsi－ natc CA． & \[
\left\{\begin{array}{c}
1: \text { :luces } \\
\text { 1f the } \\
\text { alone issat } \\
11 / \% .
\end{array}\right.
\] & \begin{tabular}{l}
Are：s ef the［1：ar．t． \\
 \\

\end{tabular} & \begin{tabular}{l}
Vilules of ：110：cole－ \\
bla smia－ \\
（1）tc（：1）．
\end{tabular} & \begin{tabular}{l}
Values \\
of 1 lic \\
alescins：it l＇e＇
\end{tabular} & Areats of 1hep：a：口 brolice segs andillat． \\
\hline 13 & 4.2 & 0.0 & （）0いい & 1.1 & 0．1； & 0.140 \\
\hline 14. & 42 & 0.0 & （1）．11 10 & 4.4 & 0.1 .5 & 19.1411 \\
\hline 15 & 42 & 0.0 & （1．6）10） & 4.4 & 0．1．） & （1．2．11） \\
\hline 16 & 4.2 & 1.11 & （1）．060） & 1.4 & 0.15 & 0．441） \\
\hline 17 & 42 & （1）．1） & （1．）（1）1） & 1．1 & 0.15 & （0．41） \\
\hline 15 & 4.2 & 0.19 & O． 91919 & 1． 1 & \(0 \cdot 15\) & （1）．1－1） \\
\hline 19 & 42 & 11.1 & （1．130） & 4.33 & 11.17 & （1．10） \\
\hline 20 & 4.2 & （1．） & 0．12109 & 1.3 & （1．3） & （1．3， 3 \\
\hline 21 & 4．2 & （1．） & （1，U，00 & 1－3！ & 0.25 & U．703 \\
\hline 22 & 41 & 0.16 .3 & 0.1 .75 & 1．23 & 0.2 .5 & U．708 \\
\hline 2.3 & 40 & 0.1 .5 & 11.101 & 4.3 & 0.211 & U．36it \\
\hline 24 & 4.0 & 0．20 & 0．5．3．3 & 1.1 & 1）．17 & 0．10．3 \\
\hline 25 & 3 s & 1．25 & 0.712 & 2.9 & 0.12 & 0.312 \\
\hline 26 & S． 5 & 0.20 & （1．0．67 & 0.5 & 0.05 & 0.117 \\
\hline 27 & 3.0 & 0.05 & （1．10） & & & 0.000 \\
\hline 1 & 8.0 & 0．0．） & （1，1ut） & & 10．9 & （0．10） \\
\hline 2 & 2.5 & （1．） & 19．0）\({ }^{\text {a }}\) & 1.95 & 13.11 & 0.1010 \\
\hline 3 & 18 & 0.11 & 9.1519 & 1.15 & 11.11 & 0.600 \\
\hline 4 & 0.9 & 0.0 & 0，0）（1） & 0.8 & 0.0 & 0．110） \\
\hline 5 & 0.1 & 0．0 & （1．111） & 11.2 & （1）1 & （1．180） \\
\hline
\end{tabular}

To compute the areas of the parabolic segments AC ， B De e，we must bisect the domble ordinates \(\mathrm{C} \lambda\) ， B1）in 11 and F ，and draw \(\mathrm{H} / \mathrm{h}\) ，Fe，perpendicular to them．The difterent values of these double ordimates， and of their comesponding abscissix，will be lomed in the preceding Table．

Ifence，by adding torether the corresponding tri－ angular and parabolic areas recorded in the two pre－ ceding Tables，we shall obtain the vabues of the entire mixtilineal areas ASCb，BSDe，as entered in the next ＇rable：
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\left\lvert\, \begin{aligned}
& 3 \\
& = \\
& \vdots \\
& \vdots
\end{aligned}\right.
\] & \[
\left\{\begin{array}{c}
\text { ahates con- } \\
\text { neeled with } \\
\text { the lmmer- } \\
\text { sion. }
\end{array}\right.
\] & Vadues con－ nerteit with the Emer－ ston． & \[
\frac{3}{3}
\] & IVhles con－ noceted with the Immer－ sion． & Valnes con－ bected with the Emar－ sion． \\
\hline 范 & Values of the mixtili－ ne：al ：urea Ascb． & Valnes ot the mistila． nead atrea 13S1\％ & \[
\frac{3}{z}
\] & lalue of the mixtili－ neal ：area 1． \(0 \%\) & \[
\begin{gathered}
\text { V:lues of } \\
\text { the mistili- } \\
\text { ne:i] are: } \\
\text { lisbe. }
\end{gathered}
\] \\
\hline \(5^{\prime}\) & 0.027 .5 & U． 1050 & 15 & 51.0 .300 & 54．50．40 \\
\hline \(4^{\prime}\) & 2.7160 & 2.0330 & 16 & 51．1．00 & 54．50－10 \\
\hline 3 & 14.7510 & 8.1305 & 15 & 51.0 .200 & 54.0080 \\
\hline \(2 \prime\) & 23.9090 & 1．j．3519 & 18 & 51.01230 & 53．4050 \\
\hline 1 & 29.9730 & 21.8131 & 19 & ． 516.7150 & 52． 580 \\
\hline & & & 20 & 50.3050 & 51.63 .0 \\
\hline 1 & 29.9750 & 21.51 .30 & 21 & 14．9300 & 51.1780 \\
\hline 2 & 36.4895 & （） 1.9450 & 3 & 48.9890 & 54.5920 \\
\hline 3 & 41.4765 & 38.0320 & 23 & 47.60 & 45.9651 \\
\hline 4 & 43.5550 & 41.87 .5 & 24 & \(44.3,30\) & 40．7851） \\
\hline 5 & 44.9860 & 4499.5 & 5 & 3ti．9300 & 32.9500 \\
\hline 6 & 4.6 .0000 & 85.6010 & 26 & 25．1000 & 20.6 .70 \\
\hline 7 & 4.21669 & 40.1019 & 27 & 12．1．110 & 9.9250 \\
\hline 8 & 47．9400 & 51.2800 & & & \\
\hline 9 & \(4 \times 3220\) & 51.3850 & \(1^{\prime \prime}\) & \(1 \therefore 100\) & 9.2250 \\
\hline 10 & 49.6080 & 51.9515 & 2 & 7．8730 & 6.29 Ul \\
\hline 11 & 50.4000 & \(5 \therefore 63111\) & 3 & 4.6640 & 3.5620 \\
\hline 12 & 50.71 .50 & 5： 68.1 & 4 & 1．3．110 & 1.245 \\
\hline 1. & 50.9250 & 51．35．31） & 5 & 0.0250 & 0.1000 \\
\hline 14 & 51.0300 & 51．3U11 & & & \\
\hline
\end{tabular}

Having therefore obtaned the values of all the mix－ tilineal areas recorded in the columm of the last table， we must proceed in the next place to compute from them，the solidities of the volumes immersed and Vol．XVII．Part I．
cmerere．These solidities are each made up ，fla， five lollowint porians：

First，whe solidities of inmerson and emersion absaft the weti－ cal section 3
Serondy，the sobidities of immersion and emersion betsecen the wertial sections is and 1 ．

Thirslly，the soliditics of imnererish and emersion betwern the vertical sections 1 and 27.

Fontlaly，the seldidues of immerion and comersion betheen the vertical sections \(1^{\prime \prime}\) and o \(;\)

Piflly，the solitities of inamersion and chamen betore the verticat section \(5^{\prime \prime}\) ．

To compute the solidity abati the serterat section 5＇，he Fis．19．be retemed to，in which 1 be In rape－ sents a transverse section of the stern post and rudeler， El＇being a vertical line passing through the mithelle of the same．

Then since by the lirst number of the horizontal column！ \(5^{\prime \prime}\) of the gencral table，the semi－thickness If \(p\) of the stem post is equal wo 0 ors，and that（ ）the distance of the peiat of intersection produced by the inclimation of the vessel，is distant from \(X\) the fuan－ tity 0.25, it follows that \(0 \rho=0.75-0.25=0.5\) ， and \(0 \%=0.75+0.25=1.00\) ，and liom which mant bers the given angle of inclination \(10^{\circ}\) ；and the breadth of the stern post and rudder s leet，the fullowing cal－ culations for the solidity are derived：
\[
\begin{aligned}
& \text { Solidity of immerson } \\
& \text { abaft vertical section } 5^{\prime} \text {. } \\
& \left.{ }^{0} 1\right)=0.5 \\
& p^{2 s}=0.0881 \\
& \text { Aveas } O_{p}=\text { U. . } 22 \\
& \left.\begin{array}{l}
\text { Solility of which } \\
\text { s1) } p \text { is a section }
\end{array}\right\}=0.11
\end{aligned}
\]

Solidity of emersion abaft werlical section 5
\[
\begin{aligned}
& 0 y=1.0 \\
& y t=0.1-6 .
\end{aligned}
\]

In a similar way，and by a reference to the same figure，may the solidities of immersion and emersion before the vertical section \(5^{\prime \prime}\) be computed，II \(p\) the semi－thickness ol the stern post，being，according to the first number in the column 5 of the general table， equivalent to \(0 . s\) ，the breadth of the portion of the stern being 4.5 feet．
\[
\begin{array}{r}
\text { Solidity of immersion } \\
\text { before the vertical section } 5^{\prime \prime} . \\
\qquad \begin{array}{r}
0 \\
p^{\prime} s=0.55 \\
\text { Areas } 0 p=0.096 \\
\text { solidiry of which }=0.0264 \\
s 0 p \text { is a suction }\}=0.118 s
\end{array}
\end{array}
\]
before the vertical section \(5^{\prime}\)
\[
\begin{aligned}
& 0 t=1.05 \\
& q t=0.185 \\
& \text { Area } q t=0.057 \\
& \text { Solidity of which } t=0.4360 \\
&q 0 t \text { is a section }\}
\end{aligned}
\]

To obtain the solidities of the remaining portions， recourse must be had to the general formula \((\Sigma+4 S\) \(+2 s) \frac{i}{3}\) ：and first，for the portions comprised be－ tween the rertical sections \(5^{\prime}\) and \(1^{\prime}\) ，the necessary ele． ments being obtained lrom the last table．

SOLADICY OF IMAERSIO：．
\begin{tabular}{|c|c|c|}
\hline Fixtreme Areas．
\[
\begin{array}{r}
0.0275 \\
29.9750
\end{array}
\] & \[
\begin{gathered}
\text { Even Areas. } \\
2.7160 \\
23.9090
\end{gathered}
\] & Gdd Area．
\[
1.1 .7510
\] \\
\hline \(30.0025=5\) & \[
96.6250
\] & \(20.5020=25\) \\
\hline
\end{tabular}
\(106.5000=43\)
and since \(\frac{i}{3}=1.1416\), we slall have
\((\Sigma+4 \mathrm{~S}+25) \frac{i}{3}=(30.0025+106.5+29.502)\) \(\times 1.1416=189.510 \%\), which is the solidity ol immersion comprised between the vertical sections \(5^{\prime}\) and \(1^{\prime}\).

\section*{SOLIDITY OF EMERSION.}
\begin{tabular}{|c|c|c|}
\hline Extreme Areas. & Even Areas. & Odd Arca. \\
\hline 0.105 & 2.033 & 8.1595 \\
\hline 21.813 & 15.351 & 2 \\
\hline \multirow[t]{2}{*}{\(21.918=\Sigma\)} & 17.384 & \(16.2790=28\) \\
\hline & 4 & \\
\hline
\end{tabular}
and the common interral being as before, makes for the formula \((\Sigma+4 S+2 s) \frac{i}{3}=(21.918+69.536\) \(+16.279) \times 1.1416+122.988\), which is the solidity ol immersion, comprised between the rertical sections \({ }^{\prime}\) ' and 1 '.

The next set of calculations must be for the soliditics of immersion and emersion comprised between the sections 1 and 27 .

SOLIDIIY OF IMMERSION.
\begin{tabular}{|c|c|c|}
\hline Extreme Areas. & Even Areas. & Odd Areas. \\
\hline 29.975 & 37.4825 & 41.4765 \\
\hline 12.140 & 45.5550 & 44.9860 \\
\hline & 46.0000 & 47.0560 \\
\hline \(12.115=3\) & 47.9409 & 48.8220 \\
\hline & 49.6080 & 50.1000 \\
\hline & 50.7150 & 50.9250 \\
\hline & 51.1 .300 & 51.0360 \\
\hline & 51.0300 & S1.0300 \\
\hline & ,0.9230 & 50.7130 \\
\hline & 50.903) & 49.920 .9 \\
\hline & 18.4590 & 4.6 .6260 \\
\hline & 41. 3.30 & 36.0300 \\
\hline & 22.107 & ———— \\
\hline & --m & 570.926 .5 \\
\hline & 519.1895 & 2 \\
\hline & 4 & --m \\
\hline & ———— & \(1141.85 .30=\) \\
\hline & 830.6.5(0) \(=\) & \\
\hline
\end{tabular}

And since in the present series of sections onc-third the common interval is a fert, we have
\((2+1 \mathrm{~S}+28) \frac{i}{3}=12.115+202.753-+\) \(1141.853) \times 2=7161.152\), which is the solidity of immersion complised betweon the vertical sections ! end 27 .

\section*{SOLIDITY OF EMERSION.}
\begin{tabular}{|c|c|c|}
\hline Fixteme Areas. & Esen Areas. & Odd Areas. \\
\hline 21.813 & 30.9450 & 38.0320 \\
\hline 9.225 & 41.875 & 41.9950 \\
\hline & +7.6010 & 49.1071 \\
\hline \(31.038=\Sigma\) & 50.4500 & 51.3870 \\
\hline & 51.4515 & 52.6200 \\
\hline & 53.6840 & 54.39 .00 \\
\hline & 54.5040 & 54.5040 \\
\hline & 5.1.5()40 & 54.01080 \\
\hline & 5.3 .40519 & 52.2580 \\
\hline & 51.6.20 & 51.1780 \\
\hline & 54.5920 & 45.9680 \\
\hline & 40.7850 & 32.9520 \\
\hline & 20.6970 & - \\
\hline & - - & 581.4040 \\
\hline & 606.6630 & 2 \\
\hline & 4 & --mer \\
\hline & -- & 1162.8080 \\
\hline & \(2426.6520=\) & \\
\hline
\end{tabular}

And since one-third the common interval is 2 feet as before, we have
\((\Sigma+4 \mathrm{~S}+25) \frac{i}{3}=(31.038+2426.652+\) \(1162.808) \times 2=7240.996\), which is the solidity of emersion contained between the vertical sections 1 and 27.

Lastly, to compute the solidities between the vertical sections \(]^{\prime \prime}\) and \(5^{\prime \prime}\), we derive the following numbers from the same table:

SOLIDITY OF LMMERSION.

Aud since the common interval in these latter sections is 1.5 lect, we have
\((X+1 S+2 s) \frac{i}{i}=(12.160+2.250+8.128)\)
 between the remical sections \(I^{\prime \prime}\) and \(3^{\prime \prime}\).
solimety of ratraspos.

and since the common interval is the same quantity as belore，we have
\((\Sigma+4 \mathrm{~S}+2 s) \frac{i}{2}=2.3 .29 .4\), which is the solitity
of emersion comprised betwern the vertical sections \(1^{\prime \prime}\) and \(5^{\prime \prime}\)
Collecting the resints therefore of the parts just determined of the solidities of immersion and cnoer－ sion into separate sums，we shall obtain
\begin{tabular}{|c|c|c|}
\hline Solidities abaft wertiens bection \(S^{\prime}\) In & \begin{tabular}{l}
mantrsima． \\
0.1100
\end{tabular} & Emersion． 0．1．107 \\
\hline Soliditios between wertiosd seets \(5^{\prime}\) and \(1^{\prime}\) & ，189．5107 & 123．01380 \\
\hline Soldilies between vertical sects． 1 and \(2 \overrightarrow{7}\) & 7161.450 & 72.10 .9290 \\
\hline Soliditics between vertieal xects． \(1^{\prime \prime}\) and \(5^{\prime \prime}\) & ＂ 24.5240 & 23.29 .10 \\
\hline soldities before vertical section \(5^{\prime \prime}\) & 01188 & （1）．4．36） \\
\hline & 7379.7155 & 7．388．15．56 \\
\hline
\end{tabular}

These solidities difiering only from the mean of the solidities of immersion and emersion，by the guan－ tity 4．22，may be regarded as a proof that the clis－ tance 0.25 determined lor X S，is not very widely dis－ tant from the trath．

Our next object mast be to estimate the moments of the solids of immersion and amersion．To ac－ complish has，we must obtain the centres of gravity

Ietues comnected with the Immersion．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & & \[
\begin{aligned}
& \dot{z} \\
& \frac{\alpha}{c} \\
& 0 \\
& 0 \\
& y
\end{aligned}
\] & & \\
\hline \(5^{\prime}\) & 0.0275 & 0.33 & 0.10910 & 0.000 & 0.00 & 0.0000 & 11.0 \\
\hline \(4^{\prime}\) & 2.7160 & 360 & 9.910 ¢） & 0.1100 & 0．01） & 19．01000） & 9.94106 \\
\hline \(3 '\) & 1．1．48： & \(8 \cdot 6\) & 125.1314 & 0． 262 & 1.3 .60 & 3.1710 & 120021 \\
\hline 2＇ & 22.9390 & 1 S．8i & ？19． 68915 & （1）．920 & 16.40 & 150880 & 3 1.1 .7185 \\
\hline 1 & \(\therefore 1304\) & 12.16 & 354．52－18 & リ・を） 0 & 18.31 & 1．5．0000 & ，369．5．3 \\
\hline 1 & 29．1350 & 12.16 & － & & & 1.70060 & 204．5．3118 \\
\hline 2 & 26．7 2． & 1．it & 109．1206 & （12\％们 & 20． 31 & 1．3．5800 & \＄1．hunij \\
\hline 3 & 410.96095 & 14．1） & & U．．5） & ＇1．－5 & 11 101\％ & 64，96－ \\
\hline 4 & 4．3．1650 & 11．0 & 的迢．L20 & （1．）呺 & 31 & 3.8 & 31． 5 ； 11 \\
\hline 5 & 4471.6 & 15 （11） & 150，－－\％ & \(11 . \times 17\) & \(\therefore\) & （intos & －6－0．2 \\
\hline 6 & 16．000 & 15．26 & －91．0以 & 0.110 & \(\cdots 2\) & （1．0）000） & －1－8\％川 \\
\hline 7 & ．17．1660 & 15 4，3 & －6．？！ & 1）．901 & ？？ 15 & （1） 11,001 & －26．2ers \\
\hline 8 & & 1.3 31， & 1（17リ） & ） 1110 & －ふ吅 & （1，M，吅） & -13 ט－00 \\
\hline 9 & 48.2020 & 151 & い， & 1） & & 0 000\％ & －（6．）䋑！ \\
\hline 10 & 19．6せ8） & 15.70 & －75．1．13 & 10．000 & ．11） & 010 10 & －6． 1.56 \\
\hline 11 & （）） & 1．．ai & －98．－，19， & 0，00） & －－ & （1．）4\％1 & 等示？们 \\
\hline 12 & 51， 5130 & 1 2.81 & A． 06 & 6． \(0^{4} 0\) & ． 3 & （1．090） & 968 \\
\hline 1.3 & \(51 \therefore 251\) & 13.46 & \＄11．－： 15 & リ．tu） & －3．：2 & ＂1．04．0．7 & 111．－4．15 \\
\hline 1．1． & 51.0 .3111 & 1600 & & U． \(3: 1\) & 3.1001 & 00000 & 816．4－710 \\
\hline 1.5 & 31.63 .3 & 16.014 & \(\because 10.1\)－M！ & \(\therefore 1,0\) & 2.100 & \＄．1000 & ？ 6.480 \\
\hline 16 & E1．0．7， & 1倍： 0 & 136．0．\({ }^{\text {a }}\) & & 1．1， 11 & O．V0） 0 & 16．18： \\
\hline 17 & 51 （1．3） & \(1(1), 41)\) & \(\therefore 16.180\) & 1.06 & \(\therefore \therefore .00\) & （1．UU0） & 816 4＂40 \\
\hline 18 & & 1610） & 311碞比 & ＇11．11 & \(\therefore 001\) & 0.09010 & 814.0000 \\
\hline 19 & 50.7150 & 16 m & 811．4－14 & H． 11.41 & 340 & 0.1400 & S11－4100 \\
\hline 20 & 5：1．505） & 10．00： & & 10．0．0 & 22.10 & O Codo & 8，3．0306 \\
\hline 21 & 45.9 隹 & \(15.9,1\) & －0．3．2－8010 & （10） & \(\therefore 2.90\) & 0.00101 & 7537280 \\
\hline 22 & 4 くこえ， & 13．05 & \(\mid-T+.6 .131\) & 19．157 & －\(\therefore\) ．i．） & ． 3 Quti & －5665\％ \\
\hline \(\therefore\) & 47：238014 & 15．74 & －11．148？ & （1）．819 & \(\therefore\)－ 81 & 0.4410 & －5i）－5882 \\
\hline 21. & 4.30100 & 14\％0 & 66．s．sou） & 0，5？ \(0^{3}\) & － 215 & ＇11．8155！ & 655．6659 \\
\hline 25 & 36.2180 & 13 ¢！ & 4 3.5648 & W， 11.2 & 21.20 & 125060 & 507．1608 \\
\hline 20 & 26.6400 & 11.60 & 309.0240 & U． \(160^{-}\) & 1－． 15 & \＆ 1.21 & 317．17：1 \\
\hline 07 & 12.0400 & 8.48 & 102.499. & 11）． 100 & 11．72 & \(11: 0\) & 102．2712 \\
\hline \(1^{\prime \prime}\) & 12.0400 & 848 & 102．0902 & ）． 1 & 1，－2 & 1.1. & 103.2718 \\
\hline \(2^{\prime \prime}\) & －8550 & 6.40 & 50.4041 & 0．0011 & 0.00 & 00000 & 50.1000 \\
\hline \(3^{\prime \prime}\) & 4.1640 & 4.66 & 18.9382 & O．040） & 6.100 & 0.0000 & 18.9382 \\
\hline \(4^{\prime \prime}\) & \(1.314 \%\) & 223 & 2.9302 & 0．0． m & 0.00 & 0.01000 & 2.9302 \\
\hline \(5^{\prime \prime}\) & 0.0250 & 0.30 & 0.0075 & 0.0001 & 10.00 & 0.0100 & \(0 \cdot 0075\) \\
\hline
\end{tabular}
of cach of the diangutar and parabolic arma before
 and 13l）in II amd 1 ：join Sll and SF，aml tokt：S．

 mated with refremee to the stafor of which D． \(\mathrm{c}^{\circ}\) is at section．frosal tha antres of estavity fat deter－
 on it，vither ly cacnlation or bue mon apurations
 ings，obtan the vabes of St，Sh．ami Su．Siv＇linese
 teenth collmms of the next table，and when mabla plied respertively into the valars recomers in the se－ cond，fourth，nimh and \(2 w \sqrt{\text { and }}\) crlmmas，will perlace the moments giver in the formh，subtith，ebermh， and foutemeth eduman of the sanm tath Chis， however，we will more particalarly ilhatrate after lio table is cuterect．

Fiolues a mocted with the Rimersion．

If now the moments corresponding to the mixtilineal areas \(A S C b, B S D 6\) in the preceding tathe be applied to the formula \((z+4 S+2 s) \frac{i}{a}\), we shatl obtain the total moments of immersion and cmersion.

ت1OMHNT OF IMDERSION.
\begin{tabular}{|c|c|c|}
\hline & Even hreis. & Olel Aren. \\
\hline 1. 0 (7) ! ! & \[
9.9 .1196
\] & \[
1 \therefore 5.91) \approx 4
\] \\
\hline & 2tatixis & 2 \\
\hline \multirow[t]{2}{*}{\(360.5309=5\)} & \(27 \div 6591\) & 257.8048 \\
\hline & 1 & \\
\hline
\end{tabular}
and since one-third the common interval of the sections \(=1.1116\), we shall have
\(\left(=+4 S+2 y, \frac{i}{3}=(360.5309+1048.7504+257.8048)\right.\) \(\times 1.1410=19010.517\), which is the moment of the solid of immersion comprised between the vertical sections \(5^{\prime}\) and 1 '.

MOMHNT OF EMERSIUN,
\begin{tabular}{|c|c|c|}
\hline Extreme drens. & Lichl Mreas. & Odil Arca. \\
\hline 0.0643 & (1.-089 & 52.5312 \\
\hline 231.1605 & 1 JF.0099 & 2 \\
\hline \(231.2358= \pm\) & 142.713S & \(105.1024=2 s\) \\
\hline & 4 & \\
\hline & \(570.8752=\) & \\
\hline
\end{tabular}
and the eommon interval being as before. we have
\((シ ゙+4+2 s) \frac{i}{3}=(231.2358+370.8752+105.1621)\) \(\times 1.1416=1035.7433\), which is the moment of the solid of emersion comprised between the vertical sections \(5^{\prime}\) and \(1^{\prime}\).
To these results must be added the moments of the soliditics of immersion and emersion cubaft the verti(al section \(5^{\circ}\), and also of the solids before the rertical section \(5^{\prime \prime}\). The solidities of the portions referred to have been already determined, and from which their moments are wery readily derived. The results are recorded in what follows, together with the moments of the other parts.

Honments of solidities aboft vertical section \(\dot{3}^{\prime}\) -
\begin{tabular}{|c|c|}
\hline Immersion. & Fincrsion. \\
\hline \(0.030 i^{\circ}\) & 0.2935 \\
\hline 10503170 & 1035.7433 \\
\hline 1100.39252 & 11.302 .2814 \\
\hline 175.2 .009 & 126.020 \\
\hline 0.0412 & 0.3105 \\
\hline
\end{tabular}

The general formula for stability before deduced being (i\% \(=\frac{e x}{y}-\mu\) gives alsoby clearing from frac.
tions, \(\mathrm{V} \times \mathrm{G} Z=\beta \mathrm{V}-\mathrm{V}_{\varphi}\), and under which form we shall apply it to the example now under considecration.

For this purpose, we may remark, that the first member \(V \times \mathrm{G} / \mathrm{C}_{\text {represents }}\) the true measure of the stability, and that by the calculations immediately preceding, and those connected with the displucement, the centre of gratity of displacement, and the centre of gravity of the entire vessel, the values of all the elements of the secoud member become hown.

In the first place, the quamity \(\beta, c\) is cquivalent to the sum of the moments of immersion and emersion, or equal to \(112187.0829+114787.6507=226974.7336\) \(=6484.9924\) tons.

Secomlly, The element a denoting the distance between the centres of gravity of the entive body, and of the volume immersed, is efual to the sum of the distances of those centres from the pane of the water section. The distances of the former pint clbove the plane here alluded to, has already been determined to be 0.9.09; and the distance of the latter point betow the same point, has also been found to be 7.78. Hence we shall have
\[
a=0.9409+7.78=8.7200 .
\]

Thirilly, The element \(V\), or the displacement, has been likewise fond in the article devoted to that subject to be 2885.0184.

Fouthly, The value of as. the natural sine of the assumed angle of inclination \(=0.173648 \%\). Consequently the expression for the stability, or V. GZ \(=\) \(8 \mathrm{~B}-\mathrm{v} \mathrm{V}=6184.9924-8.7209 \times 2885.084 \times\) \(0.1736482=2115.9118\) tons, which is the stability of the proposed ressel, at an angle of ten degrees.
The preceding calculations for the stability will, no doubt, be regarded by our readers as long and laborious, but we were anxious to lay before them the most approved and perfect methods. It will also be perceived, that it is the rigid determination of the value of \(z c\) by the formula for equidistant areas, which is the cause of the extension of the investigation. But the computation ol the stability may be much modified and shortened byadopting the metacentric method of Bouguer, and will be sufficiently accurate when only an approximate value is reguired.
For this purpose, let the equation of stability V.GZ \(=\beta v-\alpha V_{\phi}\) be resumed, and let our object be to determine a more convenient form of computation for the function \(\beta v\).

Let \(\operatorname{ADB}\), Fig. 23, represent a transverse vertical section of a vessel passing through the centre of gravity of displacement, the points \(A\) and \(B\) being in the plane of the water section. Suppose now a force to be so applied to the vessel as to cause it to incline through the angle aCA, and, at the same time, to preserve a constant volume of displacement, and also a coustant beadth of the water section, and let ab be the water section produed by the ine lination.

Suppose, in the next plact, the semi-breadth of the vessel AC or CB to be denoted by \(r\), and the length of the water line by \(y\). Let also the volume of displacement be denoted, as befiere, by V:
Then, since by the hypothesis there is no alteration of volume in the displacement, the prism immersed, ant of which a section is sepresented by the triangle \(A C, \ldots\), must be equal to the prism emerged, and of which the equal and simitar triangle BC \(b\) is a section. From a, let ao be drawn at right angles to AC ; then
will the area of either of the triangles \(\mathrm{CA} a, \mathrm{Cl3} h\), be represented by \(\frac{C A \times 00}{2}=\frac{C A \times C \in \sin . \angle A C \|}{2}\) (since CA and C a are supposet equal)
\(=\frac{C A^{2} \times \sin \cdot \lambda C a}{2}=\frac{r^{2} \sin \cdot Q}{2}\), the function o representing the sine of the angle of inclination ats before. lience the difleromial of the volume immersed or emerged in consernance of the inclination, will be \(\frac{x^{2} \sin \cdot \operatorname{sel}!}{2}\).

Morcover, the distances of the centers of gravity of the same volumes, estimated from the common point C , will be \(\frac{2 x}{3}\). And by a law of mechanics, the emerged prisin may be supposed to be transferted and concentrated with the prism immersed; and the moment produced by the tansfer with be the volume of the prism, multiplied by the distance of transtation of its centre of grarity, or \(\frac{x^{2} \sin \cdot x^{2} y}{2} \times \frac{4 n}{8}=\frac{2 r^{3} \sin . \phi d y}{3}=\)

Hence, the general equation of stability \(V\). G/ \(=\beta v-\alpha V \otimes\) will present the approximate form \(\mathrm{V} \cdot \mathrm{GZ}=\frac{2 \sin \cdot \phi}{5} \int x^{3} d y-a \mathrm{~V}\) a, and by which the following computation is performed.

To determine the vatue of \(\int x^{3} d y\), we must again have recourse to the first horizomal line of the general Table of Ordinates, and atter taking the cubes of the elements contained in it, apply the results to the formula \((x+4 S+2 s) \frac{i}{3}\).

Calculation for the Semi-Ordinates comprised Letueens the vertical sections \(\mathrm{s}^{\prime}\) and \(\mathrm{I}^{\prime}\).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{E.ctreme Semi-Oruinates.} & \multicolumn{2}{|r|}{Even Serai-Ordinates.} \\
\hline & Cubes of Scmi- & & Cubes of sicmi. \\
\hline Semi-Ordinates.
\[
0.8
\] & \[
\begin{gathered}
\text { Ordinates. } \mathrm{Se} \\
0.512
\end{gathered}
\] & Semi-Ordinates
5.1 & Ordinates.
\[
132.651
\] \\
\hline \multirow[t]{3}{*}{17.4} & 5268.024 & 11.8 & S241.792 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(5268.536=\Sigma\)}} & 3374.443 \\
\hline & & & 4 \\
\hline & & & \(3497.712=15\) \\
\hline
\end{tabular}

> Semi-Ordinates. 10.9

> Cubes of Semi-Omlinates.
> 1295.029

2
\(2590.05 \mathrm{~S}=2 \mathrm{~s}\)
and since one-third, the common interval of these sections, is 1.1416 , we shall have
\((\bar{z}+4 \mathrm{~S}+2 s) \frac{i}{3}=(5268.536+13497.772+\) \(2590.058) \times 1.1416=24350.4274\), which is the result for the sections composed between the vertical sections \(5^{\prime}\) and \(1^{\prime}\).
Vol. XVII. Part I.

Calculation for the Semi-Ordinates comprised between the cerrical sections 1 and 27 .

\begin{tabular}{|c|c|}
\hline Semi-Ordinates. & Cubes of Semivordinates. \\
\hline 21.70 & 10218.313 \\
\hline 22.95 & 12157.823 \\
\hline 23.55 & 15050.889 \\
\hline 23.25 & 13735.780 \\
\hline 21.25 & \(1 \times 260.516\) \\
\hline 24.50 & 14706.125 \\
\hline 24.55 & 14596.345 \\
\hline 21.55 & 14790.346 \\
\hline 24.10 & 14.526.784 \\
\hline 24.25 & 14260.516 \\
\hline 23.40 & 12812.904 \\
\hline 20.15 & 8181.559 \\
\hline & 157145.691 \\
\hline & \(\sim\) \\
\hline & \(314801.382=25\) \\
\hline
\end{tabular} and since one-hird, the common interval, is 2 foet, we have
\((\Sigma+4 \mathrm{~S}+88) \frac{i}{3}=(0599.024+6.43518 .776+\) 314891.382) \(\times 2=1939618.354\), which is the result for the sections comprised between the vertical sections 1 and 27.

Culculation for the Semi-Ordinates comprised between the verical secions \(1^{\prime \prime}\) and \(5^{\prime \prime}\).

\begin{tabular}{cc}
\multicolumn{2}{l}{ Odd Semi-Ordinates. } \\
Semi-Ordinates. & Cubes of Semi-Ordinates. \\
6.6 & 287.496 \\
& 2 \\
\hline 574.992 & \(=4 \mathrm{~S}\)
\end{tabular}
and since one-third, the common interval, is 0.5 , we shall have
\((\Sigma+4 \mathrm{~S}+2 s) \frac{i}{3}=(1331.422+3153.276+\) 574.992) \(\times 0.5=2529.845\), which is the result for the sections comprised between the vertical sections \(1^{\prime \prime}\) and \(5^{\prime \prime}\).

Collecting these values, and adding to them the results belonging to the stem and stern post, we shall have

Result between yertical sections \(5^{\prime}\) and \(\mathbf{1}^{\prime}\)
24.380 .427

Result between vertical sections 1 and 97
Result between vertical sections \(1^{\prime \prime}\) and \(S^{\prime \prime}\)
Result of stem and stem post
1939618.364
2529.545
4.500
1960533.436

This valuc, reduced into tons, becomes 56180.6 \%, and which is thacrefore the value of \(f x^{3} d y\) in this measure. But the cxpression in our approximative formula is \(\frac{2 \sin . \circ}{3} f c^{2} a y\) : and which becomes, by taking the function o as \(10^{\circ}\), equivalent to 6504,4661 tons. And the ralue of 2 Y being, as before determined, 4369.0806 tons, we shall obtain for the expres-
sion \(V \cdot \mathrm{C} Z=\frac{2 \sin \cdot \phi}{3} f^{r^{3}} d y-a V o\) \(=5504.4661-4369.0806\) \(=2135.3955\) tons, the stalility of the yessel according to the approximative method proposed.

Hence it appears. that the metacentric stability differs from the frue stability only by 19.48 tons, or by \(\frac{1}{\text { Ins }}\) of the whole quantity; and as the calculation by the approximative method is so much shorter and more consenient than the method of Atwood there can be no reason why it should not be adopted, when absolute preciston is not reguired.

It is proper, howner, to remark, that there are considerable chances of error in the employment of the metarentric method, when the consirncter is not well acruainted with the method of Atwood. For a knowledge of the true method of computing the stability makesus arquanted with the necessity of examining particularly the legnees of the solids of immersion and emersion, which the metacentric method does not; and if the sides of a ship should be found to incline consitheraly inwards in those parts, the bater method would without guestion be inapplicable.

It is remarkable that the stability of all ships, by tise metacentric metiond. would be the same, ceteris paitors, as if the sides between the immersion and emersion were circular ares, and the stability correctly measured by Auood's method.

The practical errors, in the cabes of the Endymion and Icarus, are as follows:
\begin{tabular}{l|c|c|c}
Endymion of 50 gums & \begin{tabular}{c}
Stability by \\
Atwood's \\
method.
\end{tabular} & \begin{tabular}{c}
Stability by \\
the metacen- \\
tric method.
\end{tabular} & \begin{tabular}{c}
Difference. \\
Error.
\end{tabular} \\
Icalus of 10 guns & 208 & 1736 & \(7=\frac{1}{247}\) \\
\hline
\end{tabular}

Atwood adduces, as a proof of the imperfection of the French method of measuring the stability, the case of Le Scipion, built at Rochefort in 1776, and L'Hercule and Le Pluton, which were built from the same design, and were found, when launched, very deficient in this important quality. The first ingénicui constructeur was sent from Paris to remedy the defect, and after trying an alteration in the ballast, which was found totally inadequate to correct it, he directed a doubling of timber to be brought round the sides of the ship, from four inches to one foot in thickness, extending the whole of the ship's length, and reconciling with the curve ol the body ten leet below the water's surface. 'This completely remedied the defect. That the stability would be increased by it, would have been equally evident, by whichever method it might have been calculated. It could not have been suggested by Atwood's method, since it was not used in France,-indeed was not lnown. The fuult of these ships was, in a great degree, if not altogether, too sudden an inchination inward abaft the main breadth. Atwood appears to have supposed it to arise altogether from falling away too suddenly below the plane of flotation. On this rests the whole of his argument in adducing these ships as an example ol the incorrectness of the French, and the correctness of his method of determining the stability ol ships. Their defect might have been clearly ascemaned by subjecting the desisn to the determination of the height of the metacentre, which would have been found much too low.

Lougucr, howerer, carrics the theory of the metacentre much further: he says that his theory being duly investigated under the consideration of the angle of inclimation being infinitely small, it is necessary to extend the consideration of it, to render it applicable to finite angles. He traces the metacentric curve as the ship gradually inclines from its upright position, and determmes its nature; he says that if this curve rises as the ship incliacs, the ship will be secure; but il the curve descends, that the ship will be insecure.

Atwood shows, most clearly, the error of this docwine: be says, that "the construction and properties of the metacentric curve, being a subject of geomethical reasoming, considered purely as such, are liable neither to ambiguty nor error; but on what grounds these properties are applied to measure the stability of vessels, or to estimate their security from upsetting, when much inclined from the upright, is not exphaned by M. Bouguer, M. Claibbois, or any other atuthol 1 have had an opportunty of consulting."

Atwood proves that the stabilities of two ressels, one of which Bouguer considers to be secure in inclining, and the other insecure, are exactly equal. Itis reasoning on this part of the subject appears most conclusive, and we again carnestly recommend his two papers to the particular attention of the reader.

\section*{On the Centre of Gravity of a Ship.}

Like all other material systems, a ship must possess a centre of gravity, whose essential properties are the same as commonly attributed to it by the elementary writers on mechanics. The determination, however, of its exact position in a ship, is a matter of considerable difficulty, and at the present moment is to be numbered among the many desiderata of naval architecture.

Frequently important calculations are made to depend on very rude and mechanical approximations towards its true situation; and connected as this very essential clement is, with so many properties of a ship, we trust that our naval engineers will not rest until they have placed it on a basis more definite and exact than it reposes at present.

The first diffeculty in the way of determining the centre of gravity of a vessel in a complete state of equipment for sea, (for the determination of this point under any other circumstances, as for example when the vessel is in a state of ordinary, would not produce all that is to be desired) arises liom the pecultar circumstances of form, and the varied and uncertain influences of the masts, yards, rigging, and other necessary parts of a ship's equipment; and secondly, from the ever-changing circumstances of lading, and the different modes of stowage, which different conditions of a ressel require.

If we direct our attention to the hull, we shall find its external figure presenting a surface of a very uncertain kind; and although mathematicians might reach, by an approximate process, the position of the centre of gravity, under the most gencral circumstances of form, yet from the uncertainty which hangs over the general principles of construction, but little advantage would be likely to result from it. In the British mary at the present moment, we have almost erory possible verricty of form; and as every alteration of figrure necessarily involves new considerations respecting the masts and their accompaniments, and also new considerations respecting the stowage, it lollows, that we camot, without making allowances, and lod which we have no precise and dehinte rules, apply with certainty any results that may be obtained, cuen to ships of that class for which the primitive calculation was made.

If we consider for a moment the peculiar figure of a ship, we may remark, that wherever the point now under consideration is situated, thee rectangular coordinate planes may be supposed to pass through it; and that to one only of the three can we assigu any definite position. This certainty of position with respect to one of the co-ordinate planes, arises from the symmetry existing (or which at least ought to exist) between the two parts ol a ship, when it is divided by a vertical longitudinal plane, passing through the centre of the keel; and in which plane, therefore, this
point must be somewhere sitnated. This symmetry of form, therefore, with respect to the longitudinal plane, fixes the position of the centre of gravity of a ressel with regard to its bracelth.

But in no otser direction ean we suppose a plane 10 pass, so that the molccula on opposite sides of it shall be precisely similui and "qnel; a condition indispensably necessary, for determining "priori from the form of the vessel, the position ol either of the other co-ordinate planes. diut we may, howeror, tix with some tolerable approach to ectrainty, the position of the centre of gravity with respect tol low orh, by attend. ing to a condition which the laws of ilymoostatics furnish, that the centres of sravity of the entire ship, and of the volume of fluid displaced by its immersion, are in the same verlical line: and that as every vessel when equipped, possesses a giorn displacement, it follows that the determination of the centre ol gravity of displacement, fixes the position of the centre of grasity of the entire ship with regard to the deneth.

But the determination of the situation ol the centre ol gravity with respect to the third and last dimension drpelh, is that whicla insolves the greatest share of difficulty; and for the attaimment of wheh, many methods hate been proposed; some grounded on theoretical considerations, and others founded on experiment. One very correct but laborious method is, by calculating the momentum of every molecule constituting the ship, from some assumed horizontal plane, and dividing the integral of these moments, by the total weight of the ship. This method is founded on the well-known mechanical theorem, that if \(\mu, p^{\prime} \cdot \mu^{\prime \prime}\), Exc. be particles lying on one side of a plane given in position, and \(\pi, \pi^{\prime}\), \(\pi^{\prime \prime}\), \&c. particles lying on the olter side, at the perpendicular distances \(x, w^{\prime}, x^{\prime \prime}, S x c . \mathrm{X}\), \(\mathrm{X}^{\prime}, \mathrm{X}^{\prime \prime}\), Exc. respectively, then the distance of the common centre of gravity ol the particles \(p, \beta^{\prime}, l^{\prime \prime}\), Sce. \(r, \pi^{\prime}, \pi^{\prime \prime}\), Exc. from the plane, will be
where the centre of gravity will lie on the same or contrary side of the plane with \(f, p^{\prime} p^{\prime \prime}\), \&ec. according as \(p x+p^{\prime} x^{\prime}+y^{\prime \prime} x^{\prime \prime}+, \varepsilon z \mathrm{c}\). is greater or less than \(\pi x+r^{\prime} x^{\prime}+\boldsymbol{r}^{\prime \prime} x^{\prime \prime}+, \underline{c} c\).

In the present case, the plane to be assumed is that of the water surlace, and to it must be relerred all the molecula constituting the ship; and not only must the weight ol every individual limbor, yard, gun, anchor, \&-C. \&e. s.e. be obtaind. but also the corresponding distances of their ecntres of gracity from the plane assumed. This operation is of course tedious and laborious*, but must of necessity be accomplished, if we are desirous of ascertaining with the greatest possible precision the situation of this very important point.

\footnotetext{
What Mr. Reynold said of painters, may with equal truth be said of shipbuilders. "Those who are determined to excel must go to their work whether willing or unwilling, morning, noon, and night, and will find it to be no play, but very hard labour." Perhaps the mechanical arts do not in gener:ilinspire that ardour and enthusiasm which the cultivation of the fine arts so beautifully encourage; but there is unquestionably a wider field open for honour and renown in naval architecture, than in any other branch of mechanics. We want a man of original mind, who will pursue the subject fur its oun suke, and enter on its cultivation with that energy and enthusiasm, which distinguished brindley for canals, or Watt for the steam engine; a mind ready to seize all the good that its predecessors have achieved, and courage to attempt those plans of its own, which an enlarged and philosoplical mind has so much at command. It is not too much to expect, that such a man may yet arise, to throw a new light on naval archi Lecture, and to impart to it that improvement which so many other arts have derived from highly gifted minds.
}

The limits of the Encyclopxdia unfortunately, will not permit us to exhibit in perfect detail the individual weights necessary for this important calculation, but we shall endeavour, by a brief, and we hope luminous sketch, to give the results, and the methods by which they are obtained.

In the first place, the different weights constituting the ship, must be divided into two classes, throwing such as have their centres of gravity above the plane of flotation into one class, and those belout the same plane, into another. The former are exhbited is the first of the following tables, and the latter in table the second.
\begin{tabular}{|c|c|c|c|}
\hline Nimes of the different veights above the water's surface. & \[
\left\{\begin{array}{l}
\text { Tancerf } \\
p_{1}, \nu^{\prime}, y^{\prime \prime} \\
\text { de: ins } \\
\text { Tons. }
\end{array}\right.
\] & \[
\left\{\begin{array}{l}
\text { ahmen of } \\
e_{1}, x^{\prime}, e^{\prime \prime} \\
\text { acc. in } \\
\text { lect. }
\end{array}\right.
\] & \[
\left\{\begin{array}{c}
\text { Valmos of the } \\
\text { moments } \\
p x, y^{\prime}, p^{\prime \prime} x \\
\text { ac. }
\end{array}\right.
\] \\
\hline Mrots, yards, and bowspr & 7.7 .61 & 54.6 .4 & 1. \\
\hline kigeing and blocks. & 38.53 & 56.33 & 1. 3068 \\
\hline Cables, hawscrs, ansl spare
rimyng & 40.60 & 0.21 & S.1.3. \\
\hline Sails & 9.04 & 45.35 & 414.0320 \\
\hline Long gans and carromades & 211.22 & 11.69 & 2819.0618 \\
\hline Anchors - & 15.50 & 19.19 & 296.0300 \\
\hline liouts - & 20.90 & 2220 & \(448.0000^{\prime}\) \\
\hline Fire bearth & 7.00 & 11.60) & 93.0000 \\
\hline Officerstiumiture and stores & 6.06 & 1.0.3 & 6. 1800 \\
\hline Ren's bedding & 5.62 & 23.68 & 127.4016 \\
\hline Men - - & 37.50 & 6.0\% & 227. 2500 \\
\hline Cum of the moments abore & the Wat & Ufio & 11991.9746 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Names of the different weighis belone the water's sulfice. & & & \[
\left\lvert\, \begin{gathered}
\text { ralues of the } \\
\text { mom nts } \\
\tau x, \sigma^{\prime}, x^{\prime}, \gamma^{\prime} x^{\prime \prime}, \\
\& c .
\end{gathered}\right.
\] \\
\hline 12all & 1648.13 & U.8.42 & \(135 \% 0.65\) \\
\hline Winter & 170.4 .5 & 9103 & 1539.1033 \\
\hline lare of canks and turs. & 43.1. & 4.00 & 388.6200 \\
\hline Iriod & 60.000 & 9.113 & 541.8100 \\
\hline Conals - - & 32.5 & 13.20 & 120.0600 \\
\hline Wh provisions & 46.5 & 9.108 & 419.9712 \\
\hline Bral - - & \(36 . \%\) & 3.36 & 123.9840 \\
\hline Witue, primits, and beer - & 25.6 & 8.40 & 210.1680 \\
\hline Pumacrestups & 1.75 & 9.01) & \(0 \cdot 3500\) \\
\hline Man' chests - & 12.75 & 6.30 & 83.0450 \\
\hline aliot - - . & 5.3.2) & 3.85 & 206.232.) \\
\hline Howlar and cartridges - & 20 & 6.85 & 124.4755 \\
\hline Dontwain's, gmoner's, and & 24.061 & 0.08 & 1.9200 \\
\hline 13:011.at - & 23.3.5! & 1650 & 3854.2350 \\
\hline \multicolumn{3}{|l|}{Gumot the mencuts butur the waters surface} & 9277.370 \\
\hline
\end{tabular}

To explain the methods by which the numbers in the liret and second namerical collomis of the preceding tables were obtained, we most, in the dirst place, remark, that the plane io which the centre of gravity is to be bere refred, is that of the waters surface; and that all the nombers recorded in the second nuberical commo, are to be beearded as the distances of the eentres of eratity of the serabl weithas emerad in the first columan. foom the plane of fortation. Thus to whan the first number. in the first table , the weights of the lower masts, the top mats. the wo gullunt inasts, and larir neressary appendages, torether wibh the weights of all the garthe as likewine Une weight ol the bewnatit, were all catrefully aseertainerl and alss the distances of the centres of erravity of the same parts, fiom the plane of fotation. 'The lormer
result gave 77.61 tons, which is the value of \(p\) in the ge. neral formula, and the latter 54.64 . fect, which is the value of \(x\). The moment of the masts, yards, \&c. must therefore be \(77.61 \times 54 \cdot 64=4240 \cdot 6104\), whic! is the value of \(\mu x\) in the third column of the same table. In like manner, must the weight of all the standing rigging be obtaned, and also the weight of all the ruming rigging, divided into such portions as the judgment of the calculator may direct. This will sive for the value of \(p^{\prime}, 58.50\) tons; and when the distance of the common centre ol gravity of the same portions is obtained, it will larnish the value of \(x^{\prime}\) or 56.53 fect. The prodnct of these, amounting to 3310.3968 or \(p^{\prime}\), \(e^{\prime}\), is the value of the moment of the same. 'To obtain the moments of the cables, hawsers, Ese particular attention must be given to the place of stowage, in order to obtain the distance of their common centre of grarity fom the plane of Butation. The Weight ol these articles, amonnting to \(40 \cdot 60\) tons, is the value of \(p^{\prime \prime}\), and the distance of their common centre of gravity, lirom the assumed plane, amommeng tu (1.21 hew, is the value of e". "Their protuct, or :3.132 is the moment, or the value of \(p^{\prime \prime} x^{\prime \prime}\), as record. ed in the diard column. The sails are estimated, when furted on their respective yards, and the spare sails as they are compractly stuwed in the satibins. The guns, a very important clement in the computation, from the magnitude of their moment, mast lase their emtre weights estimated with all their appen. dages, and also with equal care the distances ol their centres of smaty from the assumed watac, making the allowance for the currature of the decks. The moments also of the anchors must be estimated in their respective places on stowage, and so also mast the boate, the fre hearth, the fficer's fumiture, the men's bedding, as stowed in the nottinos, amp lastly. the entire moment of the men, estimated al theit quatur.

If we now pass to the consitaration of the moments bilat" the water's stifface, as entered in the second table, our attention is lirst directed to the buth, the computations comected with which are very latborious and intricate. To perlorm the calculations with precision, the weight of cach indisitual timber must be estimated, and also the position of its centre of gravity, whether abore or below the huid surface. Thus if we refer to the disposition of the eighty-lour gun shipe plate 1 V . For the purpose of illustrating the operation, amel take the bend of timbers at s; marked I. \(e, f, \ldots, h, i, l, l\) and \(m\), we must, in the first place, find the weight of the cross piece \(h\), and then the distance of its centre of grasity below the luad water plane. Afterwards the weight of the hall lloode, on each side of the ship, and the distance of its centre of gravity: and so on for the first luthock if en each side the ship: the second luttock \(g\), the third, foumth, and filth fittocks \(h, i\), \(h\), the wop timberl, and kenrthening piece on, estmatins, the moments as positive, abore the waters surdace, and negative belone; and at the same time making an allowance for the bolts and other fastuinge belongins to the bend of timbers selected for ithestration. Performing this operation for all the timbers, the ked, the phanking. viders, beans, decks, knees, both ol iron and wood, sholfopieces, water-ways, breabthooks-in a word, for every compobent part of the strurture, we shall obtain the total moment of the entire hall. In the first number of the second table, the weight of the huil appears to be
1608. 13 tons, which is the value of \(\%\) in the generat formula; and the distance of the common centre of gravity of all the individual parts amounts to 0.842 fect brlous the water line, and which is the value of a giving for the moment of the hali 1354.0455 , or the value of \(\pi x\) in the general himma. The water, the second particular contaned in the table, mast be estimated with the same minute attention to accuracy, whether contaned in tanks or casks, and ation the tare of the tanks or casks themselves. So also must the wood and coats, as stowed in buik. The specific gravity ol cach species ol provision mast likewise be founcl, and which, by knowing the bulk of the same, and the position of the centre of gravity, will furnish the moment desired. In the same maner mast the mechanical effects of the bread, ats stowed in bulk in the bread room be estinated; the wine and spirits as stowed in the spirit room, the bert, the purser's slops, and the men's chests. The shot also, whether stowed in the shot lockers. or placed in the racks on the diflerent decks; the powder and cartridges as stowed in the madrazines, and the botswain's, gunner's, and carpenter stores, as deposited in their respective store rooms.

There remains but one particular more, and that is the batlast; and to obtain the mechanical etfect of which, the absolute tecishts of all the preceding articles must be selected from the tables, ame their sum subtracted from the total displacement. The difference of the two will be the quantidy of bathast necessary for the ship, and which amomsts, in the present case, to 233.59 tuns. To compute the prosition of the centre of gratity of the same, a plan illustrative of the mote of stowage mast he carefally mepared, and the position of the point in questien computed liom thence. Its distance below the plane of dhotation in the present case is 16.5 feet, producmes, in conjunction with the weight of the ballast itself, the moment 3854.235, and which, it will be observed, with the exception of the moment of the masts, gards, and bowsprit, is the latgest moment in the whale catculation.

Ilence, it appears, that the shof all the moments "tove the water"s sudace, or the vatue of \(p x+1, d^{\prime}+\) \(f^{\prime \prime} x^{\prime \prime}+\) Ese. in the gancial formula, is \(11091.97^{-4}\); and the sum of all the moments beloue the water's surfacr, or \(\tau x+r^{\prime} x^{\prime}-\sqrt{\prime \prime} \pi^{\prime \prime}+\) amounts to 9275.37. Abo the value ol \(\beta+\beta^{\prime}+p^{\prime \prime}+\) isc...... + + + \(\pi{ }^{\prime}+\tau^{\prime \prime}\) ise. is the cotal displacement, or \(2885 \cdot 084\) tons. Ifence the semeral Prmal:

becomes \(\frac{11991.9740-925 . .5}{2885.084}=.9400\) Ret;
which is the aliturle of the centre of travity of the entire vessel, when completely equiped, above the plane of Hotation. The centre is known to be ubore the piane of the water's surface, becanse the value of \(p x^{\prime}+p^{\prime} x^{\prime}+p^{\prime \prime} x^{\prime \prime}+\), \&ec. exreeds \(x+\tau^{\prime} x^{\prime}+\) \(\pi^{\prime \prime} x^{\prime \prime}+\) Sce. in the general caiculation.

Such then is a general view of the process of obtaining the centre of gravity of a vessel, by estimating the moments of all its parts; an operation that was performed with the greatest industry and zeal by several students of the School of Naval Architecture, and from whose interesting results the preced-
ing computations, with some alterations, have been deriverd.

It is olsvions, howerer, that the method which has been just "xplained for determining the centre ol gratvity of a ressel, camos on ewory occasion be adoped with conmoinnco, ahthough its accuracy and rahat renders it desirable, that it shondel be empesyed whenever circumstances wili permit. Aceordingly, different exprommontal phans hate becon propesed for determining this important point, one wi wheh we sha! now explain to mar readers.

1". "1, "h the ship's company be separated and plared on the deelis, fusternedeck, and lowecastle, whet on the middle, of disided on bedt siluci of the ship, so that it does not incline. lat all the ghas be eren ont aloove and bevow; phace the gathrath, by whic the inclination of the ship is to be measured, and ob serve the ship"'s draterth Rore and aft."

2 . "Namk the situation of the sum cartares os the deck."
"13 win the sums either on ane or both dick as far as the hathes and other hindrances will allow, some mope abd others less, till the ship bas acomid. ed an inclination of afont six or cight degrees. Nail cleats against the tructes of the cartiaces, bat they may stand fust. Iert the men take theib former s:ations and obscrve exactly how many despees and minutes the ship inclines."
4. "Number the guns and mosure the distance that each of them has bem moved."
\(5^{\circ}\). "lake the weight of each sha, carriare, breech. ing, and coins, \&c. that lollow the rुun when moved! and reduce this weight to chbic fert ol sea-water."
6. "Iutiply the weight of" each fram. E゙e. by the distance moved, which is the momentum whet gun."

If then werefer to the geacral fomma old stability,

We shall find that the chement we are desirou, of \(j^{\prime}\) termining is \(x\), and whose value is represented by the çutation.
\[
a=\frac{6 r-1 \times C Z}{0}
\]
all the members of which being neecsharily known by the conditions of the investigation, gives the distanci of the centre of grawity of the ship, from the centie of gravity of displacement: and the poation of the fater point being known from other investigations. will determine the situation of the centre of gravily ol' the ship.

The experinental methol here describel was or: ginally proposed by Dun Juan in 1-T:, ahthough it bas been commonly attributed to Chapman. Anuther method, however, has been proposed by Ma: Nt j, is the Anmals of Philosopher lor Jume. 1822. which is so rery neat and ingeninus, that we inert it for the information ol one readers.

Let the ship be heeled to the same angle by two separate horizontal forces, appled at ditionembeights in the plane of the masts. Then it is evident that the momenta of the lorees which result from the separate applications of the inclining forces must be eyual, since the same constant force of stability tepresents them both. Let \(\mathrm{l}^{\prime}\) represcnt one of these forces, and \(\neq\) the other; and let \(a\) and \(b\) be their respective distances of action from the centre of gravity of displacement; let also 1 be the angle of inclimation of the ship from the perpendicular, and \(x\) the distance
of the centre of gravity soaght, from the centre of gravity of displacement. We shall then have the following equation of condition lor the forces employed: \(\mathrm{P}(a-x) \cos . \Delta=p(l-x) \cos . \Delta\), or \(\mathrm{P} \mu-\mathrm{P} r=p b-p x\),
whence \(x=\frac{P(1-p)}{1-p)}\),
and lrom which we derive the following simple pracrical rule:
"Divide the difference of the momenta of the incliniug forces from the contre of gravity of displacement, by the difterence of the same paces, and the result will be the distanco of the contre of gravity of the displacement.

Having now illustrated the method of determining the position of the centre of gravity, we shall consider what effice the total lorce acting at this point produces on the pitching and rolling of a ship, two considerations of great moment in the structure of a vessel.

To estimate in some degree, these effects, suppose \(\triangle D B\), Fig. at, to represent the transwerse section of a ship, Al being the section of the same plane with the water's surlace, E the centre ol gravity of the entire ship, and G the metacentre. Suppose. moreorer, a force to be so applied at \(B\), in the direction BH , as to produce an inclination denoted by the Ine ab. Then, by the principles of mechanics, the moment of the eflort producing the inclination will be in proporion to EH, whe distance between the contre of gravity and the point where the direction of the incliming force mects the axis D1I: and the moment of the effort which tends to restore the ship to its upright position, is in proportion to EG, the interval between the contre of gravity and the metaccutre. Now, since these efforts act in opposite directions, there results a motion, termed rolling: and the total elfect of the forces producing it, is as the sum of EH and EG. And since the ship, dusing the act of rolling, ought to revolve round a common longitudinal axis, and not at different inclinations whout difforent axes, a property, however. by no means casily to be obtamec, but which we shall arbert to again bereafter: and that its weight or displacement is supposed to be the same at all inclinations as whom the ressel is situated in its upright position, a condition, however, which camot happen, unless the ship, and conscquently its centre of gravity E , be elerated a quantity, the value of which we shall now endeavour to exhibit.

Chapman in his naval architecture, supposes the quantity bere alluded to, to be the rersed sine of the angle COE 各 to the rarlius EX; but Dr. Inman, in a juclicious note on the sulaject, properly remarks that this camot be the case, and illustrates his position as follows: ly inspecting, says he, lig. 25, it will be secn that, shpposing (ito be fixed, the immersion must revere! the encresion. Throush b, therefore, the middle point betwern \(A\) :med 1 , draw RYV paratlel to ab; then, il RV were the water's surface, the immersions RSA wonk be cqual to the emersion V'B. Il, therrfore, the sumface of the water descends thengh X\(\neq\), the wersed sine of the angle at \(G\) io the radius (\(\mathbb{X}\); on, which is the same thing, if the , ooint G rise through the same line \(\mathrm{X} \%\), the displacement will remain unaltered. 'This, Dr. Inman observes, must be true at any inclination whatever, if the sides between wind and water be shaped as represented in
this figure; but if the sides be not parallel to the plane of the masts, the above reasoning will be true only when the inclination is evanescent, or, in a practical sense very small.

Hence it appears that the versed sine of the angle alluded 10 , must be in proportion to the raclius EX, Fig. 24. supposing \(X\) to be the point whace EG cuts the surface of the water, and then it is limited to the condition of evanescent inclinations.

When the eflort whose influence has produced the inclination has ceased, the ship will fall by the action of gravity through the height E \(e\) alluded to; and which fall is moreover accelerated by the action of the lluid on the metacentre \(G\). As the rolling may sometimes extend as lar as thirty degrees on each side, the magnitude ol E e must be considerable, and it becomes a very important point, therefore, in the construction of a ship to guard against it. Ancl to do this, De. Inman recommends the position of the centre of gravity to be found by computation, and then to alter the body, till the immersion and entrrsion raused by hetingr round a quiescent longitudinal axis passing through thut point are the same.

For this purpose, let G, Fig. 26. be the centre of sravity of a body whose transuerse scction is AOB. Draw GI at right angles to the load water line, and also GI, making with XG an angle, XGY, equal to any proposed inclination. Take GIV equal to GX, and though Y draw a Y bat right angles to GY; then will ab be the load water line when the ship is inclined, and \(13 S\). AS a, the prismatic solids, which are denominated those of immersion and emersion. If the contemts of these are found to be unequal, the body must be altered and the solids recomputed, till they are found to.be as nearly equal as possible.

The easy rolling of a ship round the longitudinal axis alluded 10 , depends, in the first place, on the position of the centre of gravity of the ship; and secondly, on the form of the sides of the vessel between wind and water. This will be apparent by refering to Figs. 25, 27, and 28 , each of which represents the body of a ship whose sides are parallel to the plane of the masts, \(A b\) the surface of the water, \(A B\) the load water line in its muright position, and \(G\) the centre of gravity of the sbip supposed equally distant from \& \(B\) and \(a b\). In the first of these figures. F , the centre of gravity, is supposed to be below the plane of the water's surface; in Fig. 27, the same point is supposed to be coincident with the same plane; and in lig. 28 it is above it. At an angle of inclination of ten clegrees, \(A S \pi\) is to be regarded as the \(i m\) mersion, and lis \(b\) the pmersion, the axis of rotation passing quiescently through the point \(G\).

Now, by an inspection of these Figures we may remark, that in Fig .27 , the ship, in the act of rolling, will meither rise nor fall, because the solids of immersion and emersion are the same; but in lig. 25, the immersion being greater than the emersion, the ship will rise in hecling; whereas, in lig. 28, the ship will fall when rolling, because the immersion is less than the emersion.

If, in lig. 27, the sides were made to lall ont above the load water line, it is manifest, supposing the axis of rotation quiescent, that the immersion would exceed the emersion. In such a case, therelore, the ship would rise. In lig. 25, also, if the sides above the load water line fell out, the immersion would ex-
ceed the emersion in a greater degree than before, and produce a proportionate elevation of the ship. And if the same thing were to take place in Fig. 28, the immersion being greater than before, the falling of the vessel would be diminished. In all these cases, the longitudinal axis is supposed quiescent.

If, again, the sides of a ship fell out below the water, preserving their parallelism to the plane of the masts abore it, the ship represented by Fig. 27 would fall in heeling, the rising of that represented by Fig. 25 would be corrected, and the falling of that denoted by Fig. 28 increased.

We may hence perceive how much the form of a ressel between wind and water influcnces her rolling; and, as a general principle, it may be observed, that the motion of rolling is more uniform, and more free from sudden shocks, when the eentre of gravity of a ship is in or near the plane of the load water section. And as this position of the centre of gravity exercises the same influcnce in regard to pitching, which is rolling lengthways, it follows that the position of the centre of gravity alluded 10 , is that which is proper in both cases. lf, howerer, other circumstances do not admit of the centre of eravity being situated in the plane relerred to, every endearour should be made to bring it as near to it as possible. It may aso be further added, that as the kecl, and the lower parts forward and aft, which are the cleanest, contribute greatly to the dimintation of the rolling by the direct opposition of their surface to the water, the farther these parts are situated from the axis of rotation, the greater will be the ellect they produce in diminishing the rolling. For the same reason, likevise, when the centre of gravity is in the plane of the load water section, the ship should roll less.

There is a curious and interesting vicw of the sub. ject of rolling sometimes taken, of regarding the successive changes of position of a ship, as analogous to the oscillations of a heavy body influenced by the constant action of a gravitating force operating at its centre ol espavity.

The writers on mechanics have shown, that the distance of the centres of oscillation aud suspension, of a body vibrating by its own weight, may be lound, by dividing the angular inertia of all its particles, that is, the sum ol the products ol each particle into the square of its distance from the axis of rotation, by the whole body muhtiplied into the distance between the said axis and the contre of gravity. Thus, if \(p\), \(p^{\prime}, p^{\prime \prime}\), \&c. denote the particles of a ship, and \(d\), \(d^{\prime}\), \(d^{\prime \prime}\), Exc. Their respective distances from the axis ol rotation which passes through the centre of gravity, and \(I I\) the cotire mass of the ship, the length ol such an isochronal pendulum will be
\[
\frac{p d^{2} \times p^{\prime} d^{\prime 2} \times p^{\prime \prime} d^{\prime 2} \times s \in c .}{\mathrm{M.EG}}
\]
where EG measures the interval between the centre of suspension and the metacentre, the whole buoyancy of the fluid, or its cquivalent, the entire weight of the ship, acting upwards on the latter point \(G\).

If' we suppose all the terms \(p d^{2}, p^{\prime} d^{\prime 2}\), \&c. of the numerator given, as well as the mass th of the denominator, it is evident that the length of the isochronal pendulum will vary inversely as \(\mathbf{E G}\); and from which it follows, that the greater the distance of the metacentre from the centre of gravity of the ship, the shorter must be the representative pendulum, and the
quicker will be the vibrations of the ship. The less, moreover, that distance is, the slower will the rolling become.

If we suppose again, the fenth of EG to be given, as also the mass ol the ship, the times of vibration will vary as the quantitios \(l, d^{\prime}, d^{\prime \prime}\), \& \(e\), which represent the distances of the particles of the ship from the axis ol rotation. 'lohe less also these distances are, the shorter will be the pendulam, and the guidere \({ }^{\circ}\) the rolling. The greater these distances are, the slower will be the periods of rolling.

The above reasoning, howerer, as 10 Inman properly remarks, is only strictly true when the vibrations are evanescent; but may be regorded as mearly true when they are in a practical sense very smatl. When a ship rolls throngh finite angles, the bibations differ considerably trom those of a pendulum of an invariable length. For the point (i, where the ventical aris passing through the centre of gratity, may be supposed to be acted on by the mean buryancy of the dhaid on righting the vessel. is not then a fixet point. Nor can any precise or general conclusions be dram firom the expression lor the length of the isochronal pendulum, respecting the detree of quictiness on slowness of the vibmations, as chependins on the lathsth of EG. What, however, is thance concluded wapecting the position of the weishts, is truc lon any marses of rolling. fhe lartace they are situated from the longitudinal axis passing throngh the ship, the greater will be the in incrtio, and anc speater aldo the te sibsance the ship opposes to an inclining power. It may be proper, therctore, in cases where the stability is iou litule, to hare recourse to such an arrothomant of the weights, care being taken, howeret. Wherep them at the same distance below the surtace of the water.

Nothing is more difficult, as Chapman observes, than to construct a ship, so as to unite the qualities of sullicient stability and casiness of rolling; since any inctuase ol the distance between the centre of erravity of the vessel and its metacentre. increases the stability, and adds at the same time w the rolling of the ressel.
 will be produced be a given force. 'The inclination and rightime ol the ship, howeres. with be slower and more easy, because the lore pruducin: the motion wilt be overcome more gradnally. and the paris of the ship will, as a consequence, be in a less clegree strained. At the same time it is manifest, as Dr. Inman remarks, that the staifity cannot be too muth diminished, whont compromisibs; the service of the ship, ank evers endangering its sufety.

Agam, Dr. Inman remarks. that an increase of stability has the eftect of endering the angle of inclination less and solar it is asclut: but ramion to execess, the inclining force wouki be destrogel so studenly, that the shock might be dangerous. The effect also of the stroke of a Ware on the side. the breadth being supposed to be increased, for the purpose of giving additional stability, would become greater; so that a ship thus constructed, woudd in the lease sea be sulject to incessantly quick vibrations. And in this important particular, Chapman secms to have creed, when he considers the height of the metacentre atouc, as a suffecient critcrion of the properties of a sessel with respect to its easincss or viracity ol rollins. 'This, indeed, cannot be the case, unless the angles of rolling are regarded as absolutely evanescent. It is possible,
as Dr. Inman further remarts, that the height of the metacentre may be sometimes diminisbed, and yet by an attention to the form of the sibes, the stability may be made sufficiently ereat. It is possible, on the ober hand, that the height of the metacentre may be increased beyond the quatity usually assigued to it. atel yet by injudicions atterations in the sides, the stability be bound ton litth

To form a proper estimate of a ship's properties in lhas respere. it is necessaty, during the Pamation of ber phan to mate accurate calcutations ol her stability at dithirent angles of incanation, ant to compare dre result ia coch case with the stablity of approved ships wis the same ciass. Su that in chable the constracte: 10 plan ships, which mish be cibueted in antwer fally in point of statility, be mast be fumisbed not onty with rarioas calculations on all lituls of ships which Wure becn jo! erionsiy buitt, but aho with a manate ciemat of tecir periommence at sea.

The difliculty also of estahishing a proper relation Lotween the stablaty she the property of rollinse is still larther incross d in ships like otir meerbatmen, in which it is destante to white ceommy of construction with the courbility of stowimg he greatest possile cargo. Ships of this kind. as Chapman remarks, :homh be wery fall below, aml have but litule beight atbove the water in propostion to their beradth. A ship of this hand atso, shatd hare its centre of :rasity of displacenont rery low, and which would also have the propety of bringing the motacentre low bkewise. On has accumat it is necessary forbing the contre of spabity ol the cargu as low as possible, in weler that the ship moy hate sufficht stability. The consechence, lowerer, of such a combtruction will be, that the ship will be subject to quick rolling, and violent shochs, which. howe:er, may be partly diminished by "̈nging the waythes as much as possible. The rolling of ships of burthen is howerer favoured by anwher circunstance namery that for economy it is mecessary to mavigute them with as few mon as possihite, a circumstance that readers a less quantity of sail necessary, and diminishes the interval between the cemte of rrasity and the metarertre.

In ships of war the contre of gravity may be higher, and l'ae postion of the batacentre :hon tol be such as on Wins the common centre of gravity of the ship. and weights, as neaty as possible into the plane of Sutation. In the british mavy, the height of the meta-- entre abore the smface of the water is generally less than of lith In eishtecon gut brise it is 5.5 feet. In birtysix shan frisutes, it is neayly 6 lect. In the
 it vartes from 4 to 5 . S fect: and in the flowe, athest

Iforing mow sean that the echtre of eravicy of a
 sible come bibm with the plane of gotation, it will be
 the length. On his head we shatl lollow the steps of ('hamant.

As the length of a ship is rery rreat in proportion to its breadth, the metacentre, with regard to the lormer dimension, will be comsiderably clevated, particularly in ships which have a full load water line, and are very lean molur the water fore and att. "The length of las isochonous pendulum will in consequence be excectingly sweat, copecially, if by pacins the weigh's new the watmaties, the point dil suspensime is simated rery low.

The rolling of the ship enconding to its length is such, that its extremilics rise amd fill; a motion prodencel by the rasime of the fore part of the ship by a warc, and whin is immediately succecded by a deperession of the sam: patt the moment the wate has fatsed. This hation wouhd ccate immediatey, il Siane did mot suceced whe widh rapidity, and thus combinue the dete Them a ship is close to the wind and nuets the waye, and after a ser has passed the fompart talls suddedy, ind raises iesedf with differnty upor the fullowing in ane the ship is sate to pitch. When the affer part falls heavily, the ship is sad 0 sand. Inoth these chects very mach impecie the sailing, and protirgiousty aflect the masts. The whole frame, moreonr, labours and works excecdingly.

The cause of the pitching and sceneling arioes from the waves pasoing with rapility the furepart of the ship, wh when arrived at the middle part, leave the Corepurt unsupported. The shipnecessarily precipitates itseffitu the lait, with a momentum proportional to the rectungle of the weights in the forepart, and their distance from the ponint where the ship is sufficiently supported.

This kind of motion is speater in ships which are very fult mear the loat watar line fore and aft, and very lean below. If the weights in the fore part are carried neater the middle, the momentum with which the ship pluages itself in this part will be less: and not oaly wi! this motion become less quick, but the succeedias waves whieh meet the fore part of the ship, whil have less difficulty in raising it again. And a similar ubservation applies to the after part.

Ilence it follows that all the weights should be brought as near as possible to the middle of the ship; and, therefore, that the cemtre of eravity with respect to the lougth, ought to be also at the midelle point. 'Ihis, huwcrer, thongh theoretically correct, canmot be practically exemplifich on account of the weight of the formast and its rigging, the bowsprit, the anchors, and the stores necessarily placed forward. And hence Chapman concludes that the contre of suretidy should he witert bifore the midtle of the leusth, lut not more

In erery investigation of this hind, however, we Whath resmember that the centre of gravity of the tad water line and the centre of growity of the ship shond be in the seme erried line: low when the ship suits ciose to the wind, and is inclined on one side, if the loal water tine is fuller alt than low wad, since the dispharement must remain constant, it will have an inclimation also lorvard. On this important point, 1) 1 . Inman remarks, that when a ship Hoats untigh,

the eentres of gravity of the ship and the displacement are at the same distance from the stern. When the ship is inclined, the latter point is carried to leeward, and in consequence the buoyancy of the water, supposed to act upwards through it, tends to turn the ship back. The axis round which the ship will then revolve, depends on the position of the centre of gravity of the displacemem after the inclination. If it be in the transverse section passing through the centre of gravity of the ship, (which is supposed in all disguistions on this subject) the vessel will be made to roll round an axis parallel to its length; since, in that case, there camot be any tendency to roll round a transerse axis passing through the centre of gravity.

But if the centre of gravity of the inclined displacement be behind or before the said transverse section, in that case the buoyancy will cause the ship to revolve round a transerse axis as well as round a longitudinal one; in other words, it will canse the ship to revolve round a diagonal axis.-a motion that must tend to dismite the parts of the ship, to derange its adjustments, and operate considerably in retarding its progress.
It secons desirable, therefore, Dr. Inman contimes, to keep the centre of gravity of the displacement, as the ship inclines, in the transverse section in which it is placed, when the ship hoats uprigh. This may be effected by taking care in the construction, that the line joining the eentres of gravity of the immersion and emersion, at least at common angles of heeting, be parallel to that section. For the motion of the centre of gravity of the displacement takes place in consequence of the removal of the emersion, and the addition of the immersion, which is equal in bulk to the emersion; it may be considered, therefore, as produced by transferring the emersion collected in its centre of gravily to the centre of sravity of the immersion. And by a well-known principle of mechanics, il this transer be mate along a line perellel to the transverse section, the centre of gravity of the whole system, or of the whol displacement being once in the plane of that section, must always remain so.
When a ship sails by the wind, that is, when the wind is on the side of the ship. or more alhead, then almost all ressels have such a form, that they wift of themselves, without the aid of a rudder, turn the stem more towards the wind, because the mean direction of the water's resistance passes usually a little before the cemtre of gravity of the ship.
If this resultant passed too far abead, it would be an inconveniency which might be remedied, by giving a greater draught of water aft. The greater the velocity of the ship, the more rensibly this effect is felt, and the vessel can then be kept to her course only by the constant action of the rudder.

\section*{ON THE RESISTANCE WHICH A SIIP IN MOTION MEENS WHIL FROM THE WATER.}

We come now to the consilicration of a subject. embarrassed with differnich of no ordin:ar kind and which will continue to retad the adranerment of naval architecture, so long as its primary has remain
imperfectly developed. The resistance of fuids has engager the attention of some of the profoundest philosophers; and when we inention that the labours of Newtons, of Haygens, of Euler, of Danicl Bernonlli, of D'Alembert, of Don Juan, of Bongucr, of Condorcet, of Borda, of Bossut, of Chapman, of Clairbois, and of many others, have furnished us with little more than theories distinsuished for ingenious speculation, and examples of the beaty and power of analysis, with fow, if any practical maxims to guide the comstructer in the choie of the brimary elements of his slip, our readers will only juin ns in regretting, that a subject so intimately combered with the progress of naval arehitecture, should yot be so entionly in its infancy, and so far removed from any thing like practical perliection.

In the Amals of Philosophy for December 1824, Mr. Harey has remarked, in a paper on this interestine subject, that hat the subject been one which "indiridual industry and sagacity could have successfilly prosecuted, there can be no doubt but its complete solution would have been long ago achiesed, or at least some large and important steps made to wards its completion. But, unfortunately for the sake of seience, and for the naval service of the country also, this is not the case. "The problem," says he, "is one which involves too many difficulties for any individual to contend with, unless that indivilual possessed tatents of the wery highest order, uninterrupted leisure, and the necessary command of money""rhare clements," says Xir. Il, "not oftem united in the same person; and as the past has not afforded a fortunate example of the kind, we may almost fear the future will nat be more propitious."

It is perhaps ruc, as the author of the foregoing grotation has remarked, that the completion of the problem of resistances will scarcely be accomplished by individual talent and industry; but it is more than probable that the germ of a correct theory, whenever it appears, will be the result of individual sagacity and thought. It certainly opens a curious and interesting fied of incuiry, why so much apparently welldirected labour should have produced so little that is of practical importance and value: and why at a perind. when so many other departments of physical science bave attained to such high comparative perfection. the science of Ilydrodynamics should yet be involved in so much uncertainty and error.

A carelin analysis of all the theories that have been offered on this important suldect. and of the experiments on which they are founded, the circumstances abo under which these experiments were performed, together with the peculiar views of their authors. bringing all to the test of the known and established principles of Mechanics and Itydrostatics. might perhaps mefold to us some of the callers that have retarded its adrancement. Such a review would, at all erents, as M. Morgan has remarked in one of his papers on Naval Architecture" be " most likely to foal to some practical results. by asecertaining what
 merits and helects of the different theorices. be the means of determining the propriciy of adoprine pats of some thempes, which, at wholw may inatmissible." Such a revicw, if attended with tho higher
benefits, "would at least have the advantage, by an acquaintance with what has been written on the subject, of preventing the unnecessary labour of retracing the steps of others; either leading to the lurther investigation of a theory, from a point to which it is arrived, or suggesting researches in other directions."*

But a remarkf has been lately thrown out respecting this subject, by the Academy ol Sciences of Paris, -a body which has done more to encourage theoretical and experimental inquiries on this question, than any other learned socicty in Europe, 一that . almost all the attempts which have hitureto been made for discovering the laws of the resistance of fluids, are contrary to the first rule ol experiments, hy which we ought to endearour to decompose the phenemema into their most simple elements. It has been most common indeed, to observe the time cmployed by dity rent bodiex, in descriling a gricen spuce in "f fuid! "t rest, or the ueight uhich lefps in aquilibrium a horly exposed to the impulse of e flum in mnitun. But this can only make us açuainted with the total result of the difficent artions which this huid exerts aponench of the moints of the boties, wetions which are tery cemidt, winl ijtin opposite to early other ln this state of things, crimpensat tions take place, unturh mesh the frimiliep lues of the phenomenon, and which rencler the results of experiment intulicetple to wist wher cusc but that whimh lews formishet thom. MI. Dubuat. authos of the Principer d'Hagaratique. appears to have been the limst who perceived this delect: and. in order to atodid it, he ens. deavoured 10 measure the butal jriessures on the different parts of the surfaces of butlies exposed to the impulse of a fluidin motion. Wis experiments, though small in number, and not much raried in so fur ess the form of the body is concernal, present, nevertheiess, many curious results. Under these circumstances, the academy thought it would be useful to resmme these experiments, with more perlect instruments, to multiply them, and to vary the cincumstances still more. And in following up these important sews, the academy has proposed for the subject of a prize,f the followirg programme:
"To examme in its details the phenomena of the resistance of water, by determining with carc, by exact experiments, the pressures stpurately sustained by atreat number of points, properly chosen in the atherior, fatcral, and posterior sultaces of a body, whea it is exposed to the impulse of a hated in motion, and when it moves in the same lluid at rest; formsure the velocity of the water in different points of the current neab the body: to construct from the results and observatons, the chases which these currents lurm: \(\$\) to determine the point where their diee-
tion commences before the body: and finally, to establish, il possible, from the experimental results, empirical furmule, which might be afterwards compared with the experiments formerly made on the same subject." Let us hope that these new experiments may be attended with all the advantages desired to maval architecture.

Having made these general observations, in order to put our readers in possession of the real state of our information respectiner the resistance of fluids, and its applications to the science of notal architecture, we shall offer a liw remarks from Chapman, in order that our readers may become acquanted with the views of a man, who, if he did not possess the highest phifusophical qualifications, noverheless, from the great attention he deroted to naval architecture, and the dforts be made to bleml science as much as possible with its practical details, is entitled to considerable attention.

When a ship is at rest, observes Chapman, the pressure of the water upon cach of its extremities is the same; but as soon as it is impelled by any force, the pressure is increased at the cond opposite to the impulse, and is diminished at that end where it acts.

Agahn, is a plane be movel in the water, the resistance is the most forcible when the clirection of the motion is perfendicular to the plame and becomes less as the plane assumes a position more obligne to the line of motion. Ilence bodies of difterent forms and comexities, what cymal bases, experience dienerent resistances.

It is by no means dificult to estimate the resistance which one boty ments with from another. when impinging on it: but the diffonley becomes prodigionsly increased when the object is to determise the effect which any medium prodnces on bodies moved therein. The cffect of the impact of bodies on each other is subject to known mechanical laws: but that of media 1pon sulid bodies, is, at we have belure remarked, ahnost maknown.
iVhen a body is at rest in water, crery part of it immersed in the water, is subject to a pressure perpendicular to its surlice, and the desme of pressure produced is some function of the depth of the part subject to the action of the lluid. This is a fact rerified by daily experience.

When a ship, lis. 20 , Plate CCCCLXXXIX, is pat in motion in still water, with any velocity. it a!ways happens that the water upon the extremity A before the greatest breadh C, rises agalust this part, above the surface at \(l^{\prime}\). Thisclevation is perceptible at some distance before the ship in the direction of its course. It also extends lat:rally twardal' l : bat beyond the greatest breadth C, the water falle again,
- Some stepstowats a revicur of this kind hase becn made by Morganand Creuze, in the useful work before qunted. In the

 revien of the whele surpiow

so that between \(C\) and \(B\) it is below its proper level, until it meets in D the part of the fuid which constantly follows the ship with the same velucity as itself, in order to fill up the void space which it would otherwise leave behind. But as the water which glides along the side of the ship hats alleady filled this space, there is a collision in the lluid in tif, which produces what is calleel cully heter. This is a hing most observable in small ressels, wheld draw litte water; but in large ships the clevation of the water before is not perceptibe till they have attained a velocity of 4 or 5 leet in a second. This water, which is before the greatest breadh, is driven forward with the ship, and so moves in the same direction; and at it is higher before the greatest breath than abalt, it flows down a declivity, so as to acquire a velocity in a direction contrary to that of the ship: and moreover, the greater the velocity of the ship, the greater is this declivity.

All this may be readily obscrved when a ship is mavigated in a sea but litule agitited; but when a vessel sails in a chanel where there is not more than three or four times the breadth of the ship between it and the siles of the chamel, the eliect is mueh more perceptible, hovever small may be the velucity.

Hence it follows that the resistance at ship sailing with a given velocity meets with, is increased on account of the waters sising before the greatest lareadth, and because the ship hats to propel a more elevated body of water before \(i t\), than at the commencement of its motion; allhough this column thas elevated and driven a-heat, by acting on the water in the direction of its motion, before the boty ol the ship gets to the same point, in some degree diminishes the resistance.* Secondly, that the resistance is fartieer increased, because the water is lower behind the greatest breadth, and becanse this water has, moreover, lost in regard to its pressure against the after part of the ship, a force which depents on the velocity of the ship, and also on that with which the fluid hows alung the after part of the ship, in ruming from the greatest breadth of the ship to the stem post.

We shall now proceed to illustrate the method employed for estimating the resistance of ships, by supposing \(A C B Q\), Fig. Su. to be a body formed of two wedges, joined together at their base CQ, we pressure of the water on which, perpendicular to the surface, is denoted by Fid, FG.

Suppose, in the ancxt place, the body to move with the velocity FII, in a dirction parallei to the midde line \(A B\), from \(B\) to \(A\). Complete the parallelogram of forccs FGHI, and deaw its diagonal 1F. Produce the line IH if uecessary, to meet. iC or CB in K , and draw KL perpendicular to (il. Then will 11, whel forms a part of the first parallelogram of force, represent the resistance which the bady receives in the direction B.1; and LI, forming a part of the other parallelogram of force, denote the efiort of the huid on the hinder part of the body, and which contributes to help it forward in the dircetion in which it moves.

Let the form of the entire body be limited to the condition that CAI is perpendichlar to \(A B\), and that the latter diagonal is bisected by the lomer. As-
sume \(\mathrm{F}^{\mathrm{C}}:=m\), and \(\mathrm{FII}=n\); and let the areas of the planes CI, Cl', and CN be respectively denoted by \(A, B\), and \(\%\).

By simitar triangles we have,
\[
\mathrm{K} H=n \cdot \frac{1 \mathrm{C}}{\mathrm{AC}},
\]
\[
\text { whence } \mathrm{IK}=n \cdot \frac{\mathrm{DC}}{\mathrm{AC}}+m,
\]
and \(I \mathrm{~L}=\frac{\mathrm{DC}}{\Lambda \mathrm{C}}\left(\mu \cdot \frac{\mathrm{DC}}{\Delta \mathrm{C}}+m\right)\) which is the measure of the resistance at the point \(\mathrm{F}^{*}\), produced by the forecs liciand I:II.

But the number of pressures represented by 1 fi, is to the mumber fepresented by lif as the areas \(A\) and C. Conseguently the effect of the water on the fore part of the body will be
\[
\mathrm{A} \cdot m \frac{\mathrm{DC}}{\mathrm{AC}}+\mathrm{C} \cdot n \cdot \frac{\mathrm{DC}}{} \mathrm{AC}^{2} .
\]

And, by a similar mote of reasoning, we oltain for the effect ol the water on the alter part of the body, the finuction
\[
\mathrm{B} \cdot m \cdot \frac{\mathrm{DC}}{\mathrm{BC}}-\mathrm{C} \cdot n \cdot \frac{\mathrm{DC}^{2}}{\mathrm{BC}^{2}} .
\]

If now we subtract the latter of these expressions from the former, we shall obtain for the resistance of the body, in the direction \(A B\), the function
\(\mathrm{A} \cdot m \cdot \frac{\mathrm{DC}}{\mathrm{AC}}+\mathrm{C} \cdot n \cdot \frac{\mathrm{DC}}{} \mathrm{AC}^{2}-\mathrm{B} \cdot m \cdot \frac{\mathrm{DC}}{\mathrm{AC}}+\mathrm{C} \cdot n \cdot \frac{\mathrm{DC}}{} \mathrm{AC}^{2}\).
But since \(A: A C:: B: B C\), therefore \(\frac{A}{A C}=\frac{B}{B C}\);
or by maltiplying each side of the equation by \(m\). DC, we shall farther have \(\mathrm{A} \cdot \mathrm{m} \cdot \frac{\mathrm{DC}}{\mathrm{AC}}=\mathrm{B} \cdot \mathrm{m} \cdot \frac{\mathrm{DC}}{\mathrm{BC}}\); and hence the preceding expression for the resistance is retuced to
\[
\mathrm{C} \cdot n \cdot \frac{\mathrm{DC}^{2}}{\mathrm{AC}^{2}}+\mathrm{C} \cdot n \cdot \frac{\mathrm{DC}^{2}}{\mathrm{BC}^{2}}
\]

And from which we deduce, that so long as the velocity is not sufficient to produce an clevation of the water belore, and a depression abaft the greatest breadth, so as to increase the fore resistance and diminish the alt, the body will experience the same resistance, whether the sharp or obtuse extremity moves forward; and get that the resistance will be the least when the two extremitics are equal, or when the greatest breadth is in the middle.

But. if we suppose that the water runs ahead of the ship belore its greatest breadth, with a velocity represemted by \(e\), and that it has acquired a velocity io in a direction opposite to that of the body abat this yiratest breadth, then the velocity forward will be denoted by \(n-r\), and the velocity aft, by \(n+2\).
Smce, morover, the resistance is in proportion to the squares of the velocities, \(\dagger\) the gencral expression for the resistance wial be changed to
\[
\mathrm{C}^{\prime \prime}(n-r)^{2} \frac{\mathrm{DC}^{2}}{\mathrm{AC}^{2}}+\mathrm{C}^{2} n+u^{2}{ }^{2} \frac{\mathrm{DC}^{2}}{\mathrm{DC}^{2}}
\]

\footnotetext{

 the velocity is small."
\(\dagger\) This hypothesis was afterxards modifed by Chaman,
}
where we suppose \(\mathrm{C}^{\prime}\) to be greater than C , inasmuch as the water before the greatest breadth is more elevated than behind it.
Hence it is evident, that whatever relation exists latween the clements \(n, v\), and \(x\), the body meets with less resistance when the obtuse end is forward, than when the acute end is so placed; and that the position of the main breadth with respect to the middle point of the body, depends on the guantities \(n-v\) and \(n+u\), in order that the resistance may be less than il its situation were anywhere else.
It is manifest also, that the greater \(x\) and \(u\) are with respect to \(n\), the more the greatest breadth should be carried before the middle, in order to render the resistance the least.

No supposition can be imagined ion which the elements \(\pi\) and \(v\) become identical; because in such a case, the water would flow forward with an equal velocity to the ship, a coadtion by no means admissible. It is also to be remarked, that \(v\) becomes very small with respect to \(n\), when the velocity is small, and may even be supposed to vanish when \(n\) becomes very minute. The same thing also takes place with respect to the water abaft the greatest brealth, when the velocity is small. and the botly has its maximum breadth very far aft, the water following the body to fill up the roid space which it leaves. From this cause a part of the water follows the same direction as the body, the velocity of the body in relation to the water being \(n-u\), and which therefore gives to the preceding expression for the resistance, the still more general form of
\[
\mathrm{C}^{\prime}(n-v)^{2} \frac{\mathrm{DC}^{2}}{A \mathrm{C}^{2}}+\mathrm{C}\left(n+w^{2}\right)^{2} \frac{\mathrm{DC}^{2}}{\mathrm{BC}^{2}}
\]

Such is the general expression for the resistance as given by Chapman, -an expression which it is proper to apprise our readers cannot be entirely dependcil on, inasmuch as he admits in it two suppositions, which have been repeatedly proved by experinent to be fulse. The first ol these suppositions is, that the resistance to a plane surlace varies as the square of the sine of the angle, which the surlice makes with the line of motion; and sccondly, when the angle is given that the resistance varies as the square of the velocity.
This general expression for the resistance is subject to different varieties of value, according to the relative dimensions of \(A C\) and BC ; and there is moreover involved in its consideration, the position of the greatest breath, when the resistance itsell is a minimum, -a principle of great importance in the practice of shipbuilding. Dr. Imman, by redacing the expression for the resistance to a dincremtial equation, has found, when the lengh is four times the breadth, that the greatest transurse section of a ship ought to be abont \(\frac{1}{y_{0}}\) d of the lengh before the middle; or when the lengin is 0 the beadth is 3 to 1 , about \(\frac{1}{6}\) th of the lagth before the same peint.

Chapman deduces the conclusion, that to render the resistance always a misimum, the place of the greatest breadth ought to sars, -a condition obviously impossible.

La order, however, to put our readers in possession
of the method employed by Chapman for estimating the resistance on a ship, we shall adopt his co-cflicients of resistance, that for the forepart of the vessel being 6 , and lor the alterpart 7.' 'The expression for the resistance on the forepart of the vessel will therefore be
\(6 \mathrm{C} \times \frac{D C^{2}}{A C^{2}}\), and on the after-part \(7 \mathrm{C} \times \frac{\mathrm{DC}^{2}}{\mathrm{BC}^{2}}\). These expressions we shall now endeavonr to apply.

Let ACDB, Fir. 1, Plate CCCCXCI. be a plane inclined at any angle to the horizon, and tet the fluid impinge on it with a force represented by EF, in a horizontal dipection from E to F.

From F, let Fl be drawn parallel to the horizon, and from E, the line EG perpendicular to the assumed planc. Then will EG represent the measure of the force which acts at right angles to the plane. From Gdraw GH perpendicular to EF. Then will Eil denote the relative action ol the direct force. From \(\mathbf{E}\) also, draw El perpendicular to F1, and join the points G and 1; then will the plane EGI be perpendicular to the horizon. Moreover, from G let a perpendicular be drawn to EI, or, which is the same thing, to the horizon, and then will GK represent the relative vertical force. Join the points K and H , and which being perpendicular to EF, will represent the relative luteral force. Hence the relative direct, vertical, and lateral forces, acting at the point \(F\), are represented in value by the lines Ell, Cil, and KII.
To apply these principles to the fore-part a C d of a ship, Fig. 2 , let \(a a, b b, e c\), , \(s c\). represent some of its water lines, at equal distances from each other; and AK, BL, MN, \&cc. vertical sections, also at equal distances from each other. The intersections of these water lities and vertical sections, will form a series of trapeziums, each of which must be divided into triangles, by having its diagonal drawn. Draw, for exanple, the diagonal AD of the trapezium ABCD ; and from D and A the extremitics of the same diagonal, draw the fines DF and AE perpendicular to AC and DP; and from E and \(F\), in like manner, let fall the perpendiculars EII and FG to the water lines a a and b b.

In the next place, in Fig. S, draw the parallel lines RS and \(P Q\) at the same distance Prom eath other, as the vertical sections, and to these lines draw the perpendicular RP. Transfer the distance DF in lig. 2 , from P to T in Fig. 3. Draw TR, and from T draw \(T U\) perpendicular to \(T R\), to meet RP produced in \(U\).
lf, now, UR be supposed to express the absolute force of the fluid, UP will represent its relative direet action; FG , Fig. 2 , its vertical action, and (iD, in the same figure, its lateral action, those lines representing the fluid's action on the triangle ACD. Now, as the absolute lorce is constant, we may alopt lor its representative the interval between the sections: and, for this parpose, draw l'W at right angles to RT, and WX perpendicular to RP'. Then will PX denote the relative dirret force.
From Fig. 2, transfer the distance FG, which is the vertical force, when the absolute force is denoted by RU, Irom \(/\) to \(\overline{\mathrm{V}}\) in Fis. 3. And as the force RU has been reduced to RP, so the force, whose measure is \(Z Y\), should be reduced in the same ratio. Draw,

therefore, the line TX; and since YZ: Q \(\beta:: \mathrm{RP}\) : RX: RU: RP, it follows that \(Y \beta\) will represent the relative vertical force on the triangle \(A(D)\).
 rR. Then, in the same manner, will ox be the measure of the lateral force on lic same triangle; and it will morcover appear, that RP being the measure of the absolute force, \(\mathrm{P} x, \beta \mathrm{Y}\), and \(\delta \mathrm{X}\) whll be the meastics of the relative dirct, the relative recrecal, and the relative lateral lorese ; and we shall obtan the catire effet of these fores by muthinging each of them respensely by the triangular arra . A C1). La a similar manner may the effect of the buid be ascertaned on the trangle ADb, and on every other trangular area which may be Found on the sarfice of the vessel.

1f, therefore, the ellect of the resistance on the forepart of the eessel be represented by 31 , and that on the alierpart by N , it follows that by applying the co-cilicients of resistance, the whole resistance will be proportional to \(6.3+7 \mathrm{~N}\). But as we have laken tor the representative of the absolute bore, the distance betwect the sections, and whel may be getater in une place than in another, the relative furce on one ship cannot be compared with that of onother. It hence becomes necessary to find a phane lipure, whinch, being moved in the "ater with the same velucity ab the shap, shall meet with the same resistance. Such surface is called the thane of resistance. to determinc the value of this plane of resistance, let \(x\) represent it, and let \(m\) be the absolute force of a particle. Than will mx be the resistance on the forepart of the vessel, and the same quantity \(m x\) be also the measure of the negative resistance, or the diminution of the pressure loward, in conseguence of the motion. Hence, muliplying ly the cocfficients of resistance, we shall have \(6 m x+7 m x=\) \(13 m x\), for the measure of the whole resistance on the plane represented by \(x\); that is \(13 m x=6 \mathrm{M}+7 \mathrm{~N}\), and \(x=\frac{6 \mathrm{M}+7 \mathrm{~N}}{13 n}\). If we suppose \(\mathrm{M}=18, \mathrm{~N}=16\), ant \(m=5\), we shall have \(x=3.38\), that is, the ship will meet with the same resistance as a plane whose area is 3.38 feet, when moved with the same velocity as the ship.

To apply this investigation to the actual circumstances of a bhip, let lig. 4 be referech to, and which is supposed to represent the vertical plate of the bedy.

The equally distant sections are represented by \(\pi, \beta\), \(Z, \mathrm{X}, u\), sc. afure the section \(\phi\), and by \(32,30,23\), sic. abaft the same plane. The line 1, 1, also, denotes the load water section, and below which are drawn the parallel and equally distant planes, 2,\(2 ; 3,3 ; 4,4,5 c\). By this construction, the whole surface of the body becomes divided inti) trapezioms, like \(13-\mathrm{BE}\), each of which, by means of one of its diagoals as FE, may again be divided into triangles.

From A, in the same figure, daw AC perpendicular to \(\mathrm{B} \pi\); and from \(\pi\) and E , the lines \(a\) and \(\mathrm{El} \mathrm{L}^{\circ}\), perpendicular to \(1: \beta\) and \(B \pi\). Again fom \(C\), draw CD perpendicular to the water hate; and from \(F\) and 1 , the lines Fll and IG also perpendicular to the same line; and in this manner proceed for all the triangular spaces.

This being accomplished, draw, as in lig. 1, Plate CCCCXCJI, two parallel lines \(1 \mathrm{~K}, \mathrm{LA}\), at the same distance from each other, as the scctions, and draw NO at right angles to them. Set off AC, Fig. 4, Plate CCCCXCl , liom N to P in Fig. 1, I late CCCCXCII,
and make \(N Q\) equal to the ditance of the section \(\pi\) from the alem, and draw PR. But as the imerval lecWeen the lirst section \(x\) and the seem is less than that betwect the semions, and as this iater distance is taken for the perpendientar ethe on the fierees one every space,

 CCCCXCH, perpendentar to NR; and hotm N, draw theough the perim W, We lite XX. Also form N, let

 preceding insestigation, hat AT will be the wheme direre fore actmon on the sulare of the mange ABr.

Agan, daw RT, and fom X, the aghathe XY perpendicular to Las. Then will XY be the arencal farce which acts against the same whale; :nd in the manner are fombl the direct and ererticat forces acting on the triangle 25, Fig. 1.

To hind the direct and vertical forces which art on the tri:mgle 24, we make ab, Fig. 1, Pate CCCCXC1,
 Fis. A, Plate CCCCXCI, from a to c, Iig. I, Mate CCCCXClI. Puma daw abo ad perpendicular to \(b e\), and fiom \(d\), the line de perpendicular wab. Then will ae be the dirct forec. Didw again ere and set off the distance PII, Figs 4, Pbe CCCCXCI, from the line be, Fig. 1, Plate CCCCXCH, w the line \(1 . \mathrm{M}\) perpendicular to the hater. Then will for represent the vatical force acting on the triangle 24, Ifig. 4, Plate ccecxct.

These various furces, muliplyed by the areas of the respective triaggles, will produce the effect of the lluid on each of them.

In the same manner may the forces on the afterpart of the vessel be foumb, the constriction for which is represtmed in Fig. 2, Plate CCCCXClI.

The distance between the sections is 4.95 fect; and between the water lines 2.25 feed. The computations for the direct forces, are entered in the following Tables:

\section*{Dircet Resistance to the Vessel befure the Midale Section.}

Direct Revistance to the \({ }^{\text {rissel }}\) bifore the Middle Section.

Werct Resistance to the Vessel ubuft the Milllle Section.
Between the 30 and dith Water-lines. U1 Between the 4 th and 5 th Water-lines.

Hetween the 5 th and Geth Whar-lnes.

Hecapitulatim of the dire ct iasistancen between the Lines of lotation
\begin{tabular}{|c|c|}
\hline Prow llac part afuse (i). & 10\% the part abatio. \\
\hline
\end{tabular}

The finmata apresenting the wabe of the plase of rexistance, was before foum to be cint \(+\boldsymbol{-}\). And in the cesmate bufure ne, the value of \(31 \times 105.0\) :
 tical value of the hatrarea of the phane of resistance.
\[
=\frac{6 \times 10522+7 \times 7639}{13 \times 4.95}=18.12 .
\]

Consequently, the vessel whose resistance we have endeavoured to estimate, will experience a resistance equivalent lo Hat of a plate whose surface is 36.24 sytare feet; or, in other words, of a square whose lincar edge is 6 feet, the velocity of the phane being the same as that of the vessel.

Such, bowcere, are the dimiculties attendant on this sulject, that De. Inman, in a mote to his Tranalution of Chapman's Treatise on Shifthniding, observes that it is dillicult to draw from the theory of resibtances, "any particular conclusions applicathe io shiphatumen," but that, "gencrally, the resistance to ships meving with the seme arlocity, secms to depend on the following circumstatices:
first, on the area of the midship scction, as causing a greater or less displacement of lluid by the motion of the ship.

Secondly, on the form of the fore body, as causing more or less additional resistance from the motion of the ship, considering only the inertia of the partictes displaced; - that is, supposing the void spacelett astern in consequence of the dispucemsint to be instanty filled by the lluid.

Thirdly, on the form of the after body, as causing a greater or less diminution of pressurc lorward, on account of the motion of the ship alone.

Fourthly, on the shape of the whole body, as afturdine a more or less casy and rapid tramsit of the displaced fuid to the stern; that is, to the void space, which wherwise would be left behind for an instam.

Fifthly, on the form of the whole body, with respect to difection and the quantity of supelfictes, as causing more of less friction, and more or less adbestion ol the fluid."

In the constraction of a ship, the displacement, Dr. Inman comthues, is supposed to be a given quantity. The area of the midhhipsection may be varicel to a certain extem, and stift the same displacenent retaincel. " The less this is, the lebs will be the resistance, since the gramty of lluid tifplaced in a given time will thereby Le dimmibhed; and this section will be the least possible (supposing the length given) when the fore and afier bodics are full, and erens tansererse section equal. Sut such a furm, on many accoums, and even from lie consideration of the resistance alune, could not be adopted. The impact of the lore body against the fluid would be too direct, the motion of the after bod; from the fluid would also be won direct, and the fluid displaced could not [3, ew casily to the after parts of the ship.

Supposing the kngth of the ship to be undetermincel, in that case by hucrasing the lengh, the mithotip section might be diminhaed without limit. The body might at the same lime be propoly formed for cleavires
 (wibnot coltering man any wher consiteration except the resistance, the fiction would be so far increased by the extersion of the bucty, as 10 retard the ship more than if it wore shurter, and the madnip section greater. It appears, therefore, that the midhaip section camsot be too far dimmoned chater by lilling the fore and after bodies, or by extending the whole or either of these bodies whithout an morease of the resistance.

If the proper area of the midship section be supposed to be determined, it becomes a question in a general
view, how the fore and after bodics must be formed so that the ship may meet with the least resistance.
'The fore body, Dr. Imman contimues, must be formed not only so as to cleare the Buid with the greatest laciliy, but atse so as to disperse it to the right and ble and thereby lacilitate its lansit to the stern; at the same time it mast diminish the resistance in one proint of view, to form the alice berly, so that the two sucams, which may be conccired to thow on the sides of the ship, may at the stom take as much as pussibice the same rliaction, bancly, the unc opposite tw the diacotion in which the ship is moving. With these heo views, therelute, we haff of the ship before the milute mat be fillod alive more than the after part. Now has way be done two ways; cather by carrying the sreater trans. verse section before the middle, or by lilling the whole forc body of the ship, and kecping the greatest section in the midale. But the superiority of the farmer method appears from the consideration, that by this means the proper effect is produced on the fore budy, whilst at Whe sane time a liner run may be given to the after body. Whatece is seen the propuic!y of placing the greatest tramberse section of a ship before the midele.

Upon the whole, thetefore, in constructing a ship from a giren displacemont for last sations, we must give a proper arca b the midhipsection, and also carry that section something before the midale. Cate mist be taken to shape the fure and after hodies, - the fornocr, so that the flut may be separated with facility, and at the same time the displaced Buid dispersed, and transmitted towards the centre; and the latter, so that the lluid dispinced may flow with as great facility as possible to the stern. At the same time, the after Lody must not be clongated so as to jnerease the friction.

These general remarks have been made without any reference to the amount of the acting power, that is, the quantity of sail, which, however, it is very important io attend io in a construction. Supposing a ship to be frmed with a given displacemont, so as with a cotrom motive prow (rot producing inclinarion.) to sull the fastest, still it does inot follow that its form is the best for moving through lac waicr by means of sails, the power of shith is excricd in inclining the ship, as well ats in lorcing it adeat. Il his form wate mourifed a litite, so that a gieater quatioy of sal could be carricel, whanut inchang the ship \(t\) on lar upea a wind, the increase of which sal would more than countobalance Ge alsition thercby caused in the resistanes, the stip would be improved by wis afteration ioi its quality of sadarg. Ihis considuration, theretore, must be addat to those alrendy advetted to, in cunstructing a shipe for lust satherg.

Whe hare ampipated in some measure a c w oberations, that wotd suore properly have fallen under the beat of Construction; but we were ansious to tumioh war reacep; with the remarks of the dibineruishod Pro. lissor of the Cullese ol Nual Archito brene on Chapman's bens relatse to the resistance of futis, in order (0) phace every step of so difincult and mytertous a subject. in a candid and esplicit point of view.

It may not be amiss, however, to alhde mote particubarly to the cxperiments with which Nh. Chapman says his formula of resistance \(\mathrm{C}^{\prime} \times \frac{\mathrm{D} \mathrm{C}^{2}}{A \mathrm{C}^{2}}(n-)^{2}+\) \(\mathrm{C} \times \frac{\mathrm{D} \mathrm{C}^{2}}{\mathrm{BC}^{2}}(n+w)^{2}\) is found to agrec.

In a large and deep pond，says he，were placed a hun－ dred feet Irom eachother，wo poles A，B，and two piles C，D，Fig．5，Plate CCCCXCI．to which were fited two copper pullies，and through these were reeved ropes to support tha weights，as represented in the figure． The lunes \(E\) and \(G\) were attached to the body employed in the caperiment．On the line E，a weight was placed， \(t o\) give motion to the body in the vater；and on the other line \(G\) ，there was also a weight，but less than the first，to keep the body in the straight line from which it would have deviated without it．To the line E were tied two small pieces of red cluth I，\(K\) ，at the distance of 74 feet from each uther．To measure the time，a stop watch showing seconds was used．When the makk ar－ rived at \(L\) ，the stop wateh was Jet go，and when the mak I was come to the same point，the watch was stopped．It then showed the number of seconds which the body F wok up to pass wser the space of 7 feet． The budies with which the experiments were perform－ ed，were of wood，and 23 inclies in length．The trans－ verse sechons under the wator were circular．Them dianeters at the sreatest breadth were \(\frac{2}{7}\) of the Jogeth， or 8 inches，and the water lines either straight or conic parabolas，and the vertex of the parabolic cume was at the gratest breadts．As the bodies were lighter than water，lead was run in，until their specificgraviby was neaily equal to that of sea water，so that they only just doated，baving their ases parallel to the surface ol the
water．＇Ibe weight attached to the Jine E，to put the body in motion，was varied according as it was required 10 increase or diminish the velocity；but the retarding weight was always the same．The bodics employed were the lullowing：
Fig．6，Plate CCCCXCI，having its greatest breadh at the middle，and its extremities formed by parabolic lines．
Fig．7，having its greatest breadel at \(\frac{2}{7}\) of its Jength from the point il．The extre－ mities also were parabolas．
Fig．3，—— having its greatest breadih at \(\frac{1}{7}\) of the langh from the proint \(D\) ，the cxtremi－ ties still patabolic．
Fig．9，－havines its greatest breadh at the mici－ dle．The（xtremity \(F\)＇parabolic，and the other Cranic．
Fig．10，—havinge its grealest breadih at \(\frac{2}{7}\) of the length mom the pointlI．The extre－ nity Il parabolic，the other conic．
Fig．11，Wavion it：greatest breadth at \(\frac{2}{7}\) of the length from the point \(O\) ．The extre－ mities conical．
Fig．12，wholig conic，having its greatest breadth equal to that of the wther boties，and its Itugth twice and a half the breadih．
The results of the experimonts performed with these bodies，are recorded in the fulluwing table：
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Nusht of the beothen．}} & lig． 6. & Fig． 7. & Fig． 8. & Fir． & 10. & F゙ra． 11. & ド心． & 2. \\
\hline & & 27 lo ． & 27 hb & 2711. & 2211 & \(19 \frac{11}{4}\) & \(16 \frac{16}{4}\) ． & 121 & 1b． \\
\hline \multirow[t]{3}{*}{Moring weights．} & \multirow{3}{*}{Retarding weights．} & \multicolumn{8}{|c|}{lime of the bodiester bing the space of 7 the in seronds．} \\
\hline & & \multirow[t]{2}{*}{\[
\underbrace{\text { seconcts. }}_{A}
\]} & \multirow[t]{2}{*}{\[
\underbrace{\text { seconds }}_{B \mid C}
\]} & \multirow[t]{2}{*}{\[
\underbrace{\text { seconds }}_{\mathrm{D}}
\]} & \multirow[t]{2}{*}{\[
\mid \underbrace{\text { Sconds. }}_{\mathrm{F} / \mathrm{G}}
\]} & \multirow[t]{2}{*}{\[
\underbrace{\text { Seconcis. }}_{\text {II } \mid 1}
\]} & \multirow[t]{2}{*}{\[
\underbrace{\text { Seconds. }}_{0 \mid P}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\underbrace{\text { Sconds }}_{R \mid \Gamma}
\]}} \\
\hline & & & & & & & & & \\
\hline ？he weigh oif the body． & \(\frac{1}{2}\) the weig of the body & 25？ & 26.2 .13 & 27326 & 25925. & 27\％ 248 & 30293 & 45 & 292 \\
\hline l＇he weight of the budy． & \(\frac{1}{3}\) the weigh of the bady． & 14 & 1414 & 14.1618 & 3 & \(15 \quad 16\) & \(24324 \frac{1}{4}\) & 38 & 24 \\
\hline \(\frac{2}{2}\) the weight of the body． & \(\frac{1}{2}\) the weigh of the body． & 11 & 02 & \(10_{2}^{1} 13 \frac{1}{2}\) & 1111 & 101 \(11 \frac{1}{2}\) & \(12{ }_{2} 17 \frac{1}{2}\) & 304 & 191 \\
\hline 13713. in all & \(12 \frac{1}{3} 16\). in alt & 121 & insi． & 11114 & 10311 & \(10 \times 11 \frac{1}{4}\) & 1216 & & \\
\hline
\end{tabular}

To understand the mature of these experiments，let the example of Fix． 7 be selected，in which the morions weigin was comal to that of the entire body：and the retardins weigh，hall the same quamity．It may thea be remaked，that with the extromity li formard，the body will pass over 7 f lect in 14 seconds；but with the shapper cand Cin a simbu situation，the hody will pass over the same in 14：beconds．Da like manner，with the body eppresened in lits．Io，and the same comblitus of the wosing and retarems，weights，when the parabolis extremity of the body was moverf forwate the fime of deserbinine 11 loce was los scomme；but with the comical cxtremity maler fhe same chemastances，the same space was deceriberi in \(1 / 5\) sermme．

Lach of the experiments reopeded in the tation，Chap－ man informs us，wis repreted six times，wita consitcer－

from a consideration of the weights，－a cirrumstance， hoverer，whic！be athibutes to a division of the flaid too near the surface．The number of pullies over which the line passed，rendered the experiments les exact，on accounb ol friction．The hiction，howerer，being the same for all the experiments，the variation ill the velo－ city ought to be the same．

The inferences Mr．Chapman draws from his experi－ ments are the lollowint ：lims，Thut sulten the motion is shat，the bodly hos a sreater telucit！gwhen the sharther ched is foraicirl，than the full．Scemally，Thut rellen the rectucity is increased to a cermin deserce，the bodey passes orer the samespace in equat times with rither wetremity forzered．Thirdly，That mach the telocity becomes still greater，the body takess a liss time to fass ared the same

the least-a conclusion, however, we would add, that implies the inadmissible supposition of a variable position of the greatest breadth.

In the present state of our information respecting the important question of the resistance of fluids, we must receive almost every principle deduced from it, with the greatest circumspection and caution. We reyret, as we have before remarked, our inability to furnish any satisfactory information on the subject; but we should only have misled our readers had we not honesily confessed the state of our knowledge on this great question. We might have enlarged very much, it is true, this part of our article, by some elaborate theoretical investigations, and perhaps have shown their coincidence with certain tarticular experiwents. But no real and solid information would have been gained from trains of analytical investigation, which, at the moment of their practical application to naval architecture, seem almost, as Mr. Harvey expresses it, "to lose their identity," leaving nothing behind but the regret, that so much labour and earnest zeal should have produced so little that is useful to man, for the purposes of shipbuilding.

We regret, however, that our limits will only merely allow us to allude to the experiments performed at the Greenland dock, in the years \(1795,1794,1795,1796\), 1797, and 1798, by a Society instituted expressly for the noble and patriotic purpose of improving naval architecture. These experiments amounted to nearly 10,000 in number, and were published under the auspices of the Society in a thin quarto volume, now become very rare. The labour must have bcen inmense; and we gladly record our warm ahmination of the industry and zeal that animated the members of this most ust fill Society. In the introduction to this article, we alluded to the advantages that would result from the establishment of a Society eapressiy deroted to the cultivation of naval architecture, both in theory and practice. We yet hope to see this accomplished; and we are sure that whenever that great object may be accomplished, its founders will not overlook the labours of the ingenious members of the Society above alluded to.

\section*{ON THE SMILS OF SHIPS.}

The principal object in the formation of a ship, is its motion through the water, and the action of the wind on the sails is the great source from which that motion is derived. The degree in which this action is exerted, is dependent in a great measure on the size of the sails, and therefore the right determination of their forms and dimensions, is a subject of much importance to naval architecture.

To obtain as great a degree of velocity as possible, the dimensions of sails are sometimes carlied beyond those limits which the safety and stability of a vessel sanction; but there must be some proportions and sizes for sails, which shall ensure to every class of ships, the maximum conditions of the very important elements of stability and velocily. This, howerer, is one of the many important elements yet to be determined by the future cultivators of naval architecture.

Let us in the first place attond to a fow simple considerations connected with this very important subject. Suppose, in the first place, the line AB, Fig. 3, Plate CCCCXCII. to represent the water section of a vessel; and, in it, let DG be assumed as the measure of the fluid's horizontal action against the hearl of the ship; and since from the assumed theory of resistances it is

Vol. XVII. Part I.
known, that when a ship is in motion, the action of the water on the after part of the vesse! is distinguiblicel by a sign opposite to that which characterizes the Ruid's action on the bow; let IW in the same horizontal line be assumed as the measure of its actinn, and in its proper numerical relation to l) (i. Lect Gill, also at right angles to the water section, denote the vertical force of the water upon the head, the direction of which is from \(G\) to II ; and Kl the direction of a simitar force acting on the alter part, the direction of which is from K to l . Join DH, which will be the resultant of the lirst pair of forces acting in the direction Dll. Join also Kli, which will be the resultant of the second pair of forces, and the action of which will be exerted liom \(k\) io \(1 \therefore\).

Produce these resultant forces to meet in I , and make FN and IOO respectively equal to them; and let these forces, in their new condition, be supposed to change their character from resultant to component forces, and complete the parallelogram FNPO, and draw its diagonal l'F, and let it also be protuced to (Q. From the centre of gravity \(C\) of the ship, let fall CL, CNI, and CQ perpendicular respectively to DH, EK, and Pl'. Then by a well-known theorem in mechanics, we bave the following equation :
\(\mathrm{FN} \cdot \mathrm{CL}+\mathrm{FO} \cdot \mathrm{CM}=\mathrm{FP} \cdot \mathrm{CQ} ;\)
and if, therefore, PF denote the forec and diection of wind, and the centre of gravity of the sails be in the line Pl', the surface of the sails being perpendicular to the same line, the ship, as a necessary consequence, will be impelled through the water by the action of the wind, whout having either of her extremities elerated or depressed.

Now this line PF which represents the dircetion of the wind's action, is inclined to the water's surface; whereas its direct action may be supposed more generally to operate in a horizontaldirection; and therefore from the points C and N let CW and NS be drawn perpendicular to the horizon, and from the point F , the line FR parallel to the same plane. 'Through P also, draw IRR parallel to NS.

This construction furnishes the similar and equal triangles DGH, ISN, and EIK, NTP; and from which we have DG \(=\mathrm{FS}\), and El \(二 \mathrm{~N}\) I or SR . Hence \(\mathrm{FS}+\mathrm{NT}=\overline{\mathrm{DG}}+1 \mathrm{E}=\mathrm{FR}\), the measure of the entire direct resistances.

The triangles CQW and FRP being similar, we have also the proportion
\[
C Q: C W:: F R: F P
\]
and from which we obtain
\[
\mathrm{CQ} \cdot \mathrm{FP}=\mathrm{CW} \cdot \mathrm{FR}
\]

Hence the equation derived from the well-known theorem in mechanics before giren, becomes
\(\mathrm{FN} . \mathrm{CL}+\mathrm{FO} . \mathrm{CM}=\mathrm{CW} . \mathrm{FR}\);
so that the horizontal cffort of the wind on the satils, being necessarily equal to the horizontal effort of the water on the hull of the vessel, the point W will be the proper height of the centre of gravity of the sails, now that the direction XY of the wind has been assumed pardlidel to the horizon.

These conditions, if it were possible rigidly to maintain then, would preserve both extremities ol the vessel from being ether elevated or depressed. But here are circumstances continually operating, to destroy this uniformity of condition; sometimes tending in their consequences to elevate the centre of gravity of the sails above the point \(W\), and at other times to depress it. If the former condition take place, and the contre of giavity of 2 A
the sails be supposed at \(a\), the effect will be to depress the bow of the vessel; but if, on the contrary, the centre of gravity be situated at \(\beta\), below the centre of gravity W, before determined, the eflect of the wind will be to depress the stern. In order, therefore, that the sails may have no tendency to produce either an elevation or depression of the stem or the stern, the centre of effort of the wind on them, should be situated somewhere in the line XY.

Hence we may perceive of what importance it is to have a right determination of this centre. For if we suppose it situated at cither \(\alpha\) or \(\beta\), an increase of sail would not increase the velocity of sailing in proportion to the surface, since one or other of the extremities must, under such circumstances, be depressed, and consequently, the resistance increased.
Mr. Chapman truly observes, that in a ship full at the load water line forward, and lean below, the resultant of the effort of the water rises very much; and therefore, in order for it to sail well, it ought to have high sails. But in a vessel whose forepart is full under the water, the resultant will not rise so considerably; and, consequently, to possess proper qualities of sailing, it ought to have its sails of a less elevation. The after part of a vessel is equally to be considered with its fore part in determining the centre of effort of the sails. The latter condition, however, is too often lost sight of in inquiries of this kind.

Hence also it may be observed, that two ships of the same length, breadth, and ionnage, may possess equal stability, and yet require different heights of tho sails to move equally well with the wind aft.
To determine, says Mr. Chapman, the necessary surface for sails, it would be necessary to enter into many long and laborious calculations, and which, in the end, would produce no result of great practical importance. A better plan is to compare plans of difierent ships whose properties are known, and to draw from the comparison, such results as will enable us to ascertain the proper and necessary relations of the centre of effort of the wind on the sails, and the stability.

Let, for example, ABC, Fig. 4, be a vessel inclined by the effort of the wind \(\mathrm{H} G\), and let \(A B\) be the load water line, \(D\) the centre of gravity of the ship, E the centre of gravity of the displacement, and \(G\) the centre of effort of the wind on the sails. If now, from E, we draw a vertical line EF, the point F will be the metacentre. Murcover, from D , draw DK perpendicular to EF , and let the force of the wind, which acts perpendicularly to the line GD, be represented by U, and that which acts in the vertical line LIF, and which is equivalent to the displacement, by D.

Now, as the motion of rotation is performal round the centre of gravity, the moment of the sails to incline the ship will be equivalent to GD . U; and the moment of the ship at the sanc time, to resist the inclination DK. 1). But since, whatever be the magnitude of the interval between the metacentre and the centre of gravity of the vessel, it preserves a constant relation to K D at equal inclimations, the moment of the ship to resist inclination may always be expressed hy FD. D, and which moment ought to bear a certain relation to the moment of the sails DG. U, in order that the degree of inclination may be the same.

The wind acting, moreover, in the direction IIG, the ship will be impelled from B towards \(A\), the resistance of the water acting in the line IL, which thercfore passes either above or below the centre D. If this line passes above the centre of gravity D , the stability will be increased, and if below it, the stability will be diminished.

Very great labour is necessary, in order to calculate for any ship, the line in which the resistance of the water operates on the side; and Mr. Chapman remarks, that it is sufficient to know that the mean direction of this resistance rises less is ships, the hulls of which are very lean towards their extremities and keels, than in those ships which possess a fulness throughout. The effect on the stability, Mr. Chapman observes, cannot be considerable, if we suppose this mean direction to pass through the centre of grarity of the ship; and hence the moment of the sails relatively to this last mentioned point, should always bear a certain relation to the whole weight of the ship, multiplied by the distance of its centre of gravity D from its metacentre F; that is to say, the moment of the sails in all the ships is equivalent to \(m\). D. DF', in which the co-efficient \(m\) must be determined by experiment.

Mr. Chapman remarks, that by calculating the moment of the sails for several ships, he has found the value of \(m=\frac{35.5}{x \frac{1}{3}}\), where \(x\) denotes the length of the ship from the stem to the stern post; and hence the preceding formula for the moment of the sails is \(\frac{35.5}{x \frac{2}{3}}\). DF .D.*

But the most remarkable anomalies are presented by merchant ships in this particular department of naval architecture; anomalies which owe their origin to the different specific gravities of their cargoes; and producing different elevations or depressions of the centre of gravity, with the same constant draught of water. And hence also it follows, that ships in different royages, having cargoes of dilierent specific gravities, must present different varieties of values fur their moments of stability, and consequently equally varied results in the efforts of their sails.

To determine the position of the centre of gravity of the sails, both as regards its eleration abore the plane of the load water section, and its position with respect to the length of the vessel, recourse must be had to the method of moments, before applied in determining the centre of gravity of the ship. This method we illustrated by the gencral lommala
\(\frac{h^{2} x+h^{\prime} x^{\prime}+h^{\prime \prime} x^{\prime \prime}+8 \mathrm{cc}-\left(x \pi+\pi^{\prime} x^{\prime}+\pi^{\prime \prime} x^{\prime \prime}+\& \mathrm{sc} .\right)}{h^{\prime}+h^{\prime}+h^{\prime \prime}+8 \mathrm{c}+\frac{\pi}{\pi}+\pi^{\prime}+\pi^{\prime \prime}+\varepsilon c .} ;\)
and in applying it to the determination of the altitude of the centre of gravity above the load water section, it is manifest that the elements denoted by the conseculive valucs of \(\pi\) and \(x\) will vanish, because all the moments are situated on the same side of the plane to which their effects are to be referred; but in applying it to the determination of the position of the same point with respect to the length of the vessch, one term \(\pi x\) will preserve its negative character, in consequence of the centre of gravity of the spanker sail being situated abalt the assumed vertical line \(x y\), Plate CCCCXClll, which passes through the section (1),

\footnotetext{
* Dr. Inman has remarked that f is not truly the position of the metacentre when the inclination of the ressel is finite, and that the expresom of the manent of he sails, given in the text, shamb be used with caution, especialty in determining the proper ghantity of suls for ships whose forms differ much fiom those ahpeted by Chapman as the basis of his investigation.
}

Plate CCCCLXXXVIII. Fig. 1. The formula, in the first casc, will therclore be reduced to the form ol
\[
\frac{h x+n^{\prime} x^{\prime}+n^{\prime \prime} x^{\prime \prime}+\& \mathrm{c} .}{n^{\prime}+n^{\prime}+h^{\prime \prime}+\& \mathrm{c}}
\]
and, in the latter, to
\[
\frac{n^{x}+n^{\prime} x^{\prime}+n^{\prime \prime} x^{\prime \prime}+8 \mathrm{sc}-\pi x}{f+t^{\prime}+t^{\prime \prime}+s c \cdot+\pi}
\]

To apply these formula to the purpose intended, recourse must be agrain had to late CCCCXClll. which represents a draught of the masts, sails, \&ec. in their proper proportions. 'The first process of calculation is to determine the area of cach sail by the ordinary rules of mensuration, and the position of the centre of gravity of each sail, by such graphical rules as the lamiliar writers on mechanics teach; and then estimating the distance of each centre from the planes to which theireffects are intended to be referred. Thus, the area of the main-topsail \(A B C D\), and the position of its centre of gravity \(E\), are found by applying the methods refered to, to the dotted lines contained in it; and then detemining, lirst the distance EG of this contre liom the load water line, and afterwards the distance of the same point lif from the assumed vertical plane \(x y\). The results of the calculations of the areas of the several sails are recorded in
the second column of the following table; the distances of their centres of gravity from the planc of the laad water section in the third column, and the distances of the same points liom the assumed vertical plane \(x y\), are moreover cutcred in the fourth column. 'The multiplication ol thess areas by the proper dibtances of their ecntres from the assumed planes, will gite the moments recorded in the fifth and lase columas.

Hence the value of the lant fimmula but ane, will become, under the present conditions,
 which is the elevation -+1 of the common centre of gravity of all the sails, above the plane of the load water scction.

And for a similar reason, the other formula produces
\[
\begin{aligned}
& \frac{n x^{\prime}+h^{\prime} x^{\prime}+n^{\prime \prime} x^{\prime \prime}+\varepsilon \mathrm{c}-\pi x}{h^{\prime}+h^{\prime}+n^{\prime \prime}+8 \mathrm{c} \cdot \pi}= \\
& \frac{2215546.163-206,69.79}{21511.83}=89.54 \text { fuct, }
\end{aligned}
\]
which is the distance \((+\)) of the centre of sravity of the sails, betore the assumed section \(x y\).

Tuble of Resules of the Contre firavity of the Sails.

Such is the method by which the position of the centre of gravity of the sails is determined.

In order, however, to determine whether the quantum of sail thus assumed, be that which the circumstances of the vessel require, a condition ol equality must ceist, between the aggregate of the moments thus determined, and the numerical product arising from the multiplication of the whole weight of the ship, by the distance of its centre of gravity from the metacentre.

If such an equality should not exist, the draught must be altered, until the desired relation be obtained; but here a wide latitude is open to the constructer, to correct the error that may exist. If, lor example, the sails, according to their lirst disposition, should all bear a proper relation to cach other, as far as magnitude is concerned, the alteration that the anomaly to be corrected may require, should affect then all firofortionally. If, on the contrary, a partial alteration in the canvass will produce the correction desircd, such an alteration should be applied, as will correct the defect. It is manifest, also, that any alteration in the surfaces of the
sails will not only affect their areas, but also sensibly influcnce the positions of their centres of gravity, and thereby the general moment of the sails. Somelimes we fear alterations are made in sails, without a due attention to this important particular. But it should ever be remembered, that any new arrangement in the parts of a system, will in all cases affect the position of the centre of gravity of that system, and sometimes produce important effects on the general sysiem with which those parts may lee commected.

Suppose again it should be found that the elevation of the contre of gravity of the sails, above the platic of the load water line, is either too great or too small, but that its position with respect to the vertical section is correct, considerable judgment will be necessary, in any alteration of the sails, to prescrec the centre in the sanse vertical line, and to give to it the elevation desited. On the other hand, the altitude of the same centre above the plane of the load water section, may be just that which a sound experience sanctions, but, that from some circumstances connected with the sailing quality of the

\footnotetext{
- This moment is distinguiseed by a negative sign, as already remarked, because the sail whose effect it is designed to indicate, is not on the same side of the assumed section (1), as the other sails.
}
vessel, it is desirable to remove it nearer towards the stern, or to cause it to advance towards the bow; in such a case equal judgment will be necessary in effecting any change. Sometimes, no doubt, in correcting errors of this kind, the attempt to remove one bad quality, is followed by the introduction of another; but in this, as in all human pursuits, the point to be obtained, is that which shall give the aggregate of the errors, of the least possible degree. Frequently, we believe, that canvass is added to sails, and their surfaces diminished with few considerations respecting their centres of gravity, or the laws of their momentum. Blind experience, unaided by the lignt of science, has too often been the guide of the mariner.

Chapman has given an admirable example to illus. trate whether the common contre of gravity of the sails is well placed in regard to the mean direction of the resistance of the water, in a case whercin that centre is placed 67.22 feet abore the load water line, and nearly \({ }_{-1}^{10}\) th of the length of the stem to the stempost before the centre of gravity of the ship, but to which we can do no more than refer the reader, to Dr. Inman's translation ol that important work.

The subject of the sails of ships is yet in its infancy, and well nierits the attention of the man of science. Is it not remarkable, it may be asked, how few of our British mathematicians have directed their attention to matters connected wih naval pursuits? The great problem of the longitude, and many other branches of naulical astronomy, have undoubtedly been wonderfully imsproved by their exertions; but the subject of shipbuild. ing has never in any considerable degree engaged their attention. The great end and object of science, is to lurn its chicf course towards objects of public utility; and now that we see the paths of discovery opening before us, in this most noble and interesting pursuit; "we must follow boldy wherever they lead us; confident that, sooner or later, theoretical knowledge must eventually contribute to the benefit of society, with regard to the more practical purposes of life."

\section*{on the dinensions and different forms of ships.}

One of the first and most important considerations which a naval constructer has to attend to, is the relation which the co-ordinate dimensions of a ship bear to each other; - loow the length should be related to the beeadth, and how both thesc elements are connected with the depth. Duhamel, in his Architecture Navale, has made it the subject of a particular examination, but we shall preler following Chafman in his important remarks on this subject.

This able writer enters on the investigation, by supposing two bodies of different forms, one being that of a thomboid, of which the uppermost sulface is taken for the load water line, as Fig. 5, llate CCCCXC11. and the uther that of a body lormed by the junction of two wedges \(A\) liciL, CGED, as lig. 6, and whose upper surface, the rectangle \(\triangle \mathrm{BCl}\)), is, in like manner, taken fur the load water section.

Suppose these bodics to be impelled through the water by a quantity of sail proportional to their stability; and let their half lengths moreover be represented by

L, their half baeadths by B, and their draught of water by D. The moment of stability for the first of these badies will be \(\frac{B^{3} \times L}{4}\), and the plane of resistance \(\frac{B^{3} \times D}{L^{2}+B^{2}}\). A body of such a figure, however, could not acquirc a great velocity by means of sails, and would sail badly close to the wind.

The moment of stability of the second body will be \(B^{3} L\), and the plane of resistance \(\frac{D^{3} B}{L^{2}+D^{2}}\). And since the moment of stability increases in a triplicate ratio of the breadth, whilst the plane of resistance increases only in the simple proportion of the same dimension, this form is the best adapted for sailing close to the wind. This body also being impelled through the water, the square of its velocity will be in the direct ratio of the area of the sails, and in the inverse ratio ol the plane of resistance. But the moment of stability is as that of the sails; and the moment of the sails, as the area of the sails multiplied by the height of a certain point, and which altitude is also proportional to the height of the sails; consequently, the area of the sails is, as the moment of stability, raised to the power of \(\frac{2}{3}\), that is to say, as \(\left(B^{3} L\right)^{\frac{3}{3}}\). The area of the sails, thercfore, divided by the plane of resistance \(=\frac{\left(B^{3} L\right)^{\frac{2}{3}}}{B \times D^{3}}\left(L^{2}+D^{2}\right)=B\) \(\left(\frac{L^{\frac{8}{3}}}{\mathrm{D}^{3}}+\frac{\mathrm{L}^{\frac{2}{3}}}{\mathrm{D}}\right)\); and hence the velocity will be as \(\mathrm{B}^{\frac{1}{2}}\) \(\left(\frac{L^{\frac{4}{3}}}{D^{\frac{3}{2}}}+\frac{L^{\frac{1}{3}}}{D^{\frac{1}{2}}}\right)\). But since \(L^{\frac{1}{3}}\) is very smail when compared with \(L^{\frac{4}{5}}\), we may neglect the last term of the expression, and regard the velocity as proportional to \(\frac{B^{\frac{1}{2}} \times \mathrm{I}^{\frac{4}{3} *}}{\mathrm{D}^{\frac{3}{2}}}\)

From this expression for the velocity, Chapman draws some useful practical inferences. In the first place, that when the area of the load water surface is given, a ship to sail well by the wind should have great length according to its breadth, and the draught of water the smallest possible. If, however, the area of the load water section be not given, but only the length of the veasel, it will be necessary to give very grat breadth, because the velocity increases as the square root of that dimension. But if the breadth be given, the length should be considerable, because this dimension is raised to the \(\frac{4}{3}\) 'd power, when the draught of water is given. If, on the other hand, from a certain detcrmined length or breadth, we have the choice of augmenting one of these dimensions, it is most advantageous, if the object he to increase the velocity, to auginent the length sather than the breadth. And from all these considerations, Chapman infers that there cannot be any constant proportion assigued between the lengtli, the breadth, and the draught of water.
- Icet \(\mathrm{F}=\) force of the wind on the sails, Sa surface of the sails, \(\mathrm{A}=\) area of the plane of resistance, \(\mathrm{R}=\) resistance, and \(\mathrm{V}=\) velocily. Then \(R \times A V^{-3} ; b\) it \(l=F\), and \(F \propto S\). Conscquently \(S \propto A V^{2}\), and \(V^{2} \propto \frac{S}{A}\).
Let \(I t\) also be the licight of the point of the sail, then the arca of the sils, \(\times I I \propto\) stability ; or since \(11 \propto S^{\frac{1}{2}}\); therelure \(S \times S \propto^{\frac{1}{2}}\) stability, Conscquently \(\mathrm{S} \alpha\) (stability) \({ }^{\frac{2}{3}}\).

From these circumstances also we may derive some information why a small ship, built on what is technically called the model of a large ship, known to possess very desirable qualities, should be found to have no properties analogous to the vesel from which she was deduced. This will be apparent, by attending for a moment to the elements of the expression for the velocity, all of which by the supposition are variable, but as they are constituted in the formula, vary by different laws. Suppose velocity to be the standard of comparison, and that its value in some determinate case be denoted by 10; that is,
\[
\operatorname{supposc} \frac{\mathrm{B}^{\frac{1}{2}} \times \mathrm{L}^{\frac{4}{3}}}{\mathrm{D}^{\frac{3}{2}}}=10 ;
\]
the question is, what ought to be the other dimensions of a vessel, whose length is previously fixed at \(l\), to possess an equal degree of velocity with that which is given? To this interesting and important question, no satisfactory answer, we lear, can be afforded in the present state of our knowledge. There is no doubt some relation existing between these primary dimensions in ships of different classes; so that having the length, the breadth, and draught of water of a ship of one class given, with a certain mumerical velocity, the same velocity might be obtained, with dimensions suited to a ship of another class. Such a relation, and cyen we fear the lecblest beginnings towards it, can bardly be made the subject of calculation; but it is, however, a condition, to the attainmont of which all our efforts will, we hope, continually tend. Had Euler, for cxample, been as well acquainted with the Philosophy of Naval Architecture, as with those beautiful systoms of analysis, which it was ever the object of his subhime and original genius to create and improve, some approximations towards these relations would, no doubt, have been attained. Let us hope that the fiture cultivators of Naval Architecture will unceasingly endearour to attain these things.*

The qualities of similar ships varies, Mr. Chapman imagines, in a different proportion from what a consideration of their size would give.

To illustrate this, he remarks that if the breadth of a vessel be regarded as variable, the burthen of the ship will vary as the culse of that dimension, and the velocity of sailing as the cube root of the same. The number of the crew also, which is proportional to the area of the sails \(B^{2} L^{\frac{2}{5}}\), will vary as \(B^{\frac{8}{3}}\). Hence, by supposing two ships, whose capacitics for burthen are in the ratio of eight to one, and their relative velocitics as ten to eight; if the larger vessel sail with a crew of twenty-four men, the smaller will require lour. According to the capacities of the two ships, the latter ought to be navigable by
three men. Hence also we perceive, that in making small ships similar to large ones, the former will possess the worst sailing qualities, and will require a more numerous crew in proportion to their capacities than large ones.

Mr. Chapman also remarks it is possible to render a small ship navigable by a crew proportionate to its capacity; but that it cannot be done without diminishing the quantity of canvass, and then the sailing qualities of the vessel will be impaired. This faut may be remedied to a certain degrec, by giving it less breadth; but this would be attended with inconvenionce. Hence we prefer in small ships the property of sailing well, to having it in our power to diminish the crew.

The velocity also being in proportion to the quantity \(\frac{\mathrm{B}^{\frac{1}{2}} \mathrm{~L}^{\frac{i}{3}}}{\mathrm{D}^{\frac{3}{2}}}\), increases as the depth decreases, supposing at
the same time the length and breadth to increase. This object may be attaincd more easily by adding to the length, but for the greater safety of the navigation it is more convenient to increase the breadh. This will elevate the metacentre. The sails also may, in such a case, have an increased surface; but the ship would require a more numcrous crew.

Great and small ships moreover cannot, with the same form, sail with the same security; nor can we avoid the inconvenience of being obliged to have a more numerous crew in small ships than in large. Small ships, therefore, cannot have the same advantages as large ones, when they are employed in the same trade.

As small ships lose ia the guality of sailing, by being assimilated in form to large ones, so large vessels will improve this valuable property by being moulded similar to small ones. Mr. Chapman hence concludes, that it is proper to give to large ships forms similar to small ones, because they would thereby gain in the quality of sailing. But for merchant ships, where it is so much the more necessary to give great capacities in the water, as they are larger, they seldom want a superior quality ol sailing, provided they are sufficiently stiff upon a wind not to be embayed on a lee shore. Added to this, in such a case, these ships would lose the advantage of sailing with a small crew, and as they cost more in construction in proportion than small ones, it is necessary in their formation to endeavour to combine qualities most advantagcous to the interests of their owners.

In the following table is recorded the values of certain essential clements in shipbuilding, ferived from one primitive elcment, the burthen, and which, owing its origin to Chapman, and deduced by him from a long course of expericnce, will be considered as very valuable.
- It was the object of Eoler, in the valuable treatise he has bequeathed to us, to consider, from particular principles, certain conditions conncced with the construction and properties of vessels. Had that great man been supplied with data to hase entered on the comparative properties of vessels in general, what night we not have expected from his fertile and original mind? At the preseat moment this appears to us the great object to be attended to. Materials drawn from comperative olsmotion slould be colleeted, and every effort made by dawing together comparative exprimental results, to prepare the way for some "manter apirit," who, without doubt, wili at some luture time appear, to do that fur maval archntecture, which has been done for so many other branches of physical science.

It is worthy of observation in refcrence to this table, how particularly the element \(x\) which represents the length from the perpendicular at the stem to that at the stern post, is connected with most of the other clements, and how readily the whole may be derived, by a logarithmic process, from the element \(P\) represonting the burthen. For the purpose of assisting the young naval engincer in computing the various clements, we shall take the case of a frigate in which the value of P is equivalent to 45,500 cubic feet. From this, or any other assumed value, we may deduce step by step, by a very easy logarithmic operation, all the other elements of the table.

Value of the burthen P assumed \(=45,500\) cubic feet. Hence, to obtain the displacement D, we have, by applying logarithms to the function \(\mathrm{P}^{\frac{18}{17}}\) which represents it, \(l \mathrm{P}^{\frac{18}{8}}=\frac{18}{1 / 2} l 4.6580114=14.9320121\). Therefore, by passing from logarithms to numbers, we obtain the displacement \(\mathrm{D}=\mathrm{P}^{\frac{18}{7}}=85509\).
To obtain the value of \(x\), we have the expression (56 D\()^{\frac{7}{3}}\), which, by logarithms, presents
\[
l(56 \mathrm{D})^{\frac{1}{3}}=\frac{1}{3} l(56 \mathrm{D})=\frac{1}{3}(l 56+l \mathrm{D})
\]
\(=12.226753 .1\); and by passing from logarithms to num. bers, we have \(x=(56 \mathrm{D})^{\frac{1}{3}}=168.55\).
To find the value of \(z\), we have the function \(\frac{x^{\frac{4}{5}}}{1.583}\), which, by logarithms, gives
\[
l \frac{x^{\frac{5}{5}}}{1.383}=6 x^{\frac{4}{5}}-l 1.383=\frac{4}{3} l x-11.383
\]
\(=11.6405645\); and by passing from logarithms to numbers, we have \(==\frac{x^{\frac{4}{5}}}{1.383}=43.708\).

To obtain the value of \(h\), we have the function \(\frac{x}{8.1}\), which gives, by the application of logarithms,
\[
\begin{aligned}
l x-l 8.1 & =l 1.3182484 ; \text { and hence } \\
h & =\frac{x}{8.1}=20.809 .
\end{aligned}
\]

For the value of \(\phi\), we have the expression \(\frac{1.705 \mathrm{D}}{x^{\frac{1}{j}}}\), and which presents the logarithnic form
\[
\begin{aligned}
& \quad l \frac{1.705 \mathrm{D}}{x^{\frac{4}{4}}}=l 1.705 \mathrm{D}-l x^{\frac{4 \frac{7}{7}}{6}} \\
& =l 1.705+l \mathrm{D}-\frac{11}{0} l x=l 2.8913348 . \\
& \text { Hence we have } \phi=\frac{1.705 \mathrm{D}}{x^{\frac{4}{4} \frac{1}{6}}}=7.6091 .
\end{aligned}
\]

For the value of \(k\), we have the expression \(\frac{x^{\frac{2}{5}}}{4.64}\).
Hence, by logarithms, we have \(l \frac{x^{\frac{2}{3}}}{4.64}\)
\[
\begin{gathered}
=l x_{5}^{2}-l 4.64=\frac{2}{5} l x-l 4.64=10.2241754 . \\
\text { Hence } k=\frac{x^{\frac{2}{5}}}{4.64}=1.6756 .
\end{gathered}
\]

To find \(d\), the table furnishes the function \(\frac{x^{3}}{23.3}\) which, by logarithms, gives
\(l \frac{x^{4}}{23.3}=l x^{3}-l 23.3=11 x-123.3=10.3026943\).
\[
\text { IIcuce } d=\frac{x^{4}}{23.3}=2.0077
\]

To ob:ain W, we have the logarithmic expression
\[
\begin{gathered}
l \frac{z x^{\frac{3}{3} \frac{1}{6}}}{1.49}=l z x^{\frac{3}{3} \frac{1}{8}}-l 1.49= \\
l z+l x^{\frac{2}{3} \delta}-l 1.49=l z+\frac{31}{30} l x-l 1.49 \\
=l 3.7683360 .
\end{gathered}
\]
\[
\text { Hence } W=\frac{z x^{\frac{3}{3} \frac{1}{3}}}{1.49}=5865.9
\]

For the value of V, we take the function \(\frac{x^{\frac{7}{6}}}{48}\), and which, by logarithms, becomes
\[
\begin{gathered}
l \frac{x^{\frac{7}{6}}}{48}=l x^{\frac{7}{6}}-l 48={ }_{6}^{7} l x-l 48=10.9166141 \\
\text { Hence } V=\frac{x^{\frac{7}{6}}}{48}=8.253
\end{gathered}
\]

For S , we have the \(\operatorname{expression} \frac{x^{\frac{1}{2}}}{1.289^{\circ}}\). Hence \(l \frac{x^{\frac{1}{2}}}{1.289}\)
\[
=1 x^{\frac{1}{2}}-11.289=\frac{1}{2} l x-11.289=11.0031138
\]
\[
\text { Consequently } \mathrm{S}=\frac{x^{\frac{1}{2}}}{1.289}=10.072
\]

We have now to:find the value of \(L\) by means of the
formula \(\frac{49.65 x^{\frac{3}{2}}-\frac{7}{8}}{64}\), which may be changed into \(\frac{49.65 x^{\frac{1}{2}}}{64}-\frac{x^{\frac{7}{6}}}{64}\).

Applying logarithms to the first of these quantitics, we have
\[
\begin{gathered}
l \frac{49.65 x^{\frac{1}{2}}}{64}=l 49.65+l x^{\frac{1}{2}}-l 64=l 49.65+\frac{1}{2} l x- \\
l 64=l 1.0031060 .
\end{gathered}
\]
\[
\text { Hencc } \frac{49.65 x^{\frac{1}{2}}}{64}=10.072
\]

Applying logarithms to the second quantity, we have
\[
\begin{gathered}
l \frac{x^{\frac{7}{6}}}{64}=l x^{\frac{7}{6}}-l 64=\frac{7}{8} l x-l 64=l 0.7916756 . \\
\text { Hence } \frac{x^{\frac{7}{6}}}{64}=6.1898 . \text { Consequently } \\
\mathrm{L}=\frac{49.65 x^{\frac{1}{2}}-x^{\frac{7}{5}}}{64}=10.072-6.1898=3.8822 .
\end{gathered}
\]

Finally, for the value of M we have the function
\[
\begin{gathered}
\frac{x^{3}}{56}\left(\frac{49.65 x^{\frac{1}{2}}-x^{\frac{7}{8}}}{64}\right)=\frac{49.65 x^{\frac{7}{2}}-x^{25}}{3584}- \\
=\frac{49.65 x^{\frac{7}{2}}}{3584}-\frac{x^{\frac{25}{6}}}{3584} .
\end{gathered}
\]

Applying logarithms to the former of these quantilies, we bave
\[
\begin{gathered}
l \frac{1965 x^{\frac{7}{2}}}{3584}=l 49.65 x^{\frac{7}{3}}-l 3584=l 49.65+l x^{\frac{7}{2}}- \\
l 3584=l 49.65+\frac{7}{2} l x-l 3584=l 5.9351182 . \\
1 \text { Hence } \frac{49.65 x^{\frac{7}{2}}}{3584}=861230
\end{gathered}
\]

By a similar application to the latter quantity, we have
\[
\frac{l \frac{x^{25}}{3584}=l x^{2 \frac{25}{6}}-l 3584={ }_{2}^{25} l x-l 3584=}{l 5.7236878} .
\]
\[
\text { Hence } \frac{x^{25}}{3584}=529280 . \quad \text { Conserןuently }
\]
\(\mathbf{M}=\frac{x^{-3}}{56}\left(\frac{49.65 x^{\frac{1}{2}}-x^{7}}{64}\right)=861230-529280=331950\).
Thus it appears that the vessel presented for examination, ought to have a displacement of 85509 cubic feet to the outside of the timbers; a length of 168.55 fect from the stem to the sternpost; a breadth of 43.708 feet to the outside of the timbers; a distance of 20.809 feet from the load water line to the upper edge of the rabbet of the keel; a superficial arca of 769.91 feet for the midship section; a depth of kecl from the upper cdge of the rabbet 1.6756 feet; a difference of draught ol water forward and aft of 2.0077 fect ; a superficial area of 5865.9 feet for the load water section; a distance of 8.25 s feet for the interval of the centre of gravity below the load water line; a distance of 10.072 fect for the interval between the centre of gravity and the metacentre; a distance also of 3.8822 fect between the metacentre and the common contre of gravity of the ship and lading; and limally, a moment of stability represented by 331950 leet.

In the first and second of the following tables, similar results of many ships of the same class, logether with many others, are recorded.

Chapman has furnished us also with some vaiuable formula relating to the construction of privateers, and in which he has deduced all their necessary elements, from the weight of the guns, and the distance of the contre of gravity of the guns from the load water linc.

In these formulx he assumes \(A, C\), and \(c\) as the clemonts altuded to; B the weight of the part above the water, comprising the masts, yards, sails, rigeing, \&c.; a the distance of the common centre of gravity of these weights from the load water line; D the displacement of the vessel to the outside of the timbers; \(z\) the breadth of the ship measured from the same parts; \(y\) the half breadth; \(x\) the length from the fore part of the stem to the after part of the stem post; \(d\) the depth of the ship, taken at the main section \(\phi\), from the load water line to the rabbet of the kee ; and \(k\) the number of monthes for provisions.

Then Chapman asserts that the number of the crew

\(18 k A^{\frac{5}{9}}\)

The formula for the time he finds to be \(k=\frac{A^{\frac{2}{7}}}{2.756}\) and from which he derives the
\[
\text { equation } . \quad . \quad 18 k A^{\frac{5}{9}}=6.534 A^{\frac{53}{63}} \text {. }
\]

He has also found that the displacement is well propor－ tioned，when \(15 A^{\frac{5}{9}}+6.534 A^{\frac{53}{63}}+A=K\) ，the dis－ placement \(D\) being equivalent to \(6.14 c^{\frac{1}{4}} \mathrm{~K}^{\frac{13}{15}}\) ．
\(B=\frac{D^{\frac{21}{6}}}{6.281}\) and the distance \(a=\frac{D^{\frac{1}{3}}}{3.48}\).
In the next place，he assumes \(\mathrm{C}+10.16 \mathrm{~A}^{\frac{5}{9}}=\mathrm{Q}\) ， and supposes the centre of gravity of displacement to be below the load water line by the quantity \(m\) ，whose value he afterwards determines．Then the moment of stability，supposing the inclination very small，will be \(\frac{2}{3} \int^{3} y^{3} d x-(m+a) \mathrm{B}-(m+c) \mathrm{Q} \cdot{ }^{*}\) But since \(\frac{2}{3} \int y^{3} d x=(m+6) \mathrm{D}\) ，he finds that \((m+6) \mathrm{D}-\) \((m+a) \mathrm{B}-(m+c) \mathrm{Q}=6 \mathrm{D}\) ；and from which he derives \(m=\frac{a \mathrm{~B}+c \mathrm{Q}}{\mathrm{D}-(\mathrm{B}+\mathrm{Q})}\) ．

The same distinguished engincer also found the value of the stability to be \((m+6) \mathrm{D}\) or \(\frac{9}{3} \int y^{3} d x=\frac{z^{3} x^{\frac{21}{20}}}{26}\) and \(z=\frac{x^{\frac{9}{10}}}{2.36}\) ．Hence also he derives \((m+6) \mathrm{D}=\) \(\frac{x^{\frac{15}{4}}}{341.8} ;\) and thence \(x=(341.3(m+6) \mathrm{D})^{\frac{4}{15}}\) ．

The area of the load water scetion he also finds should be \(\frac{x^{\frac{24}{2 \frac{4}{3}}}}{1.621}\) ；and the area of the main section \(\phi\) \(=\frac{2.366 \mathrm{D}}{x^{\frac{13}{3} \frac{3}{2}}}\) ．The value of \(d\) ，moreover，he finds to be \(\frac{x}{10.5}\) ．The centre of gravity of the ballast he supposes to be below the plane of the load water section，by a quantity equivalent to \(\frac{x^{\frac{7}{5}}}{95}\) ；and the weight of the bal－ last be represents by
\(95\left(\frac{1.11 \times((m+a) \mathrm{B}+(m+c) \mathrm{Q})=m \mathrm{D}}{x^{\frac{7}{3}}-95 m}\right)\). The moment of the sails with relation to the centre of gravity of the ship，or the plane of the load water line， be designates by the function \(\frac{35.56 \times 6 \mathrm{D}}{x^{\frac{1}{3}}}\) ．

Such are the formule which this very celebrated man has，with intinite labour and research，deduced for the class of ships in question；but as a numerical example， at all times throws light on a subject presented in an al－ gebraical cress，we shall select the instance he has given to illustrate their application．

For this purpose he assumes the following values， viz．
\[
\begin{aligned}
\mathrm{A} & =2588, \\
\mathrm{C} & =1815 \\
\mathrm{~d} c & =7.47
\end{aligned}
\]
which are adapted to a privateer of twenty－four twelve pounders on the main deck，eight four－pounders on the quarter deck and forecastle，with the lowest sill of the midde gun port，six feet above the water．

The logarithmic computations necessary for the ap－ plication of the different formulx，are exhibited in the following process．

To find the value of \(K\) ，or that of \(15 \mathrm{~A}^{\frac{5}{9}}+6.534 \mathrm{~A}^{\frac{5}{6} \frac{3}{3}}\) \(+A\) ，we have the separate expressions \(l 15+\frac{5}{9} l A\) ， \(l 6.534+\frac{53}{63} l A\), and \(A\).
\begin{tabular}{lll}
Hence \(l 15\) & 二 & 1.1760913 \\
\(\frac{5}{9} l \mathrm{~A}\) & 1.8960913
\end{tabular}
and \(15 \mathrm{~A}^{\frac{5}{9}}=1180.8 \overline{3.0721826}\)
\(\begin{array}{lll}\text { Also } l 6.534 & \text { 三 } & 0.8151791 \\ \frac{5}{6} 3 l \mathrm{~A} & 2.8712239\end{array}\)
\[
\text { and } 6.534 \mathrm{~A}^{\frac{53}{63}}=4857.4 \overline{3.6864030}
\]

Consequenty \(15 A^{\frac{5}{9}}+6.534 A^{\frac{53}{63}}+A=1180.8+\) \(4857.4+2588=8626.2\).

To find the value of \(D\) ，we obtain by the application of logarithms to the proper expression \(l 6.84+1 c^{\frac{1}{4}}\) \(+l \mathrm{~K}^{\frac{1}{1} \frac{3}{5}}=l 6.81+\frac{1}{4} l c+\frac{13}{15} l \mathrm{~K}\).
\[
\begin{aligned}
& \text { Orl } 6.84 \\
& \text { 三 } \\
& 0.8350561 \\
& \frac{1}{4} l c \\
& 0.2183301 \\
& \frac{1}{1} \frac{2}{5} / \mathrm{K} \\
& \text { Hence D }=29136 \\
& 4.4644298
\end{aligned}
\]

To find \(B\) ，we have the expression \(\frac{D^{\frac{2}{2} \frac{1}{6}}}{6.281}\) ，which by logarithms presents the form of
\[
l \frac{\mathrm{D}^{\frac{2}{2} \frac{1}{6}}}{6.281}=l \mathrm{D}^{\frac{2}{2} \frac{1}{6}}-l 6.281=\frac{2 \mathrm{r}}{\frac{1}{0}} l \mathrm{D}-l 6.281
\]

Hence we have
\(\frac{2}{2} \frac{1}{6} l \mathrm{D}\)
三
4.6876512
07980288
3.3896224

To discover \(a\) ，we have the expression \(\frac{D^{\frac{1}{3}}}{3.48}\) and which by logarithms presents the form of
\[
\begin{array}{rr}
l \frac{D^{\frac{\mathrm{T}}{3}}}{3.48}=l \mathrm{D}^{\frac{\mathrm{x}}{3}}-l 3.48 & =\frac{1}{3} l \mathrm{D}-l 3.48 \\
\text { Hence } \frac{1}{3} l \mathrm{D} \\
l 3.48 & = \\
\text { and } a=8.8423 & \frac{1.4881483}{0.5415792} \\
= & 0.9465641
\end{array}
\]

\footnotetext{
－This expression is in some degrce open to ohjection when the inclination becomes finite，it being then necessary to take intu account the alteration mate in the sides of the ship between wind and water．
}

To find（Q，we have the cxpression \(10.16 \Lambda \frac{5}{5}+\mathbf{C}\) ， the application of logarithms to the first part of which presents，
\begin{tabular}{lll}
\(l 10.16\) & \(=\) & 1.0068957 \\
\(5 l \mathrm{~A}\) & \(=\) & 1.8960913 \\
Iicnce 10.16 A & \(=899.81\) & 2.9029850
\end{tabular}

Consequently \(Q=10.16\) A \(\frac{5}{9}+\mathbf{C}=799.81+1815\) \(=2614.81\) ．

To derclope the valuc of \(m\) ，the function \(\frac{a B+c Q}{D} \frac{-(B+Q)}{}\) presents for the application of logarithms the following：

And thercfore \(a \mathrm{~B}+c \mathrm{Q}=68578+19533=88111\) 。
\[
\text { Hence } 7 n=\frac{a \mathrm{~B}+c Q}{\mathrm{D}-(B+Q)}=\frac{88111}{18765.49}=4.695
\]

To obtain the value of \(x\) ，we have the function \((341.8(m+6) \mathrm{D})^{\frac{1}{5}}\) ，which adapted to logarithms，be－ comes \(\frac{4}{\frac{4}{5}}(l 341.8+l(m+6)+l \mathrm{D})\) ．

Hence we have
\[
\begin{array}{lll}
l 341.8 \\
l(m+6) \\
l \mathrm{D}
\end{array} \mathrm{E} \begin{array}{r}
2.5337121 \\
\\
\\
\\
\\
\\
\end{array}
\]

The expression for the ballast may be computed as follows：
\[
\begin{array}{lll}
i(m+a) & \text { 三 } & 1.1315224 \\
i \mathrm{~B} & \text { 三 } & 3.8396224
\end{array}
\] 3.8896224

Hence wo have \((m+a) B=10.4989\)
5.0211443
\[
\begin{array}{lll}
l(m+c) & \text { 三 } & 1.0141121 \\
6 \mathrm{Q} & & \begin{array}{l}
3.4174385 \\
\text { And also }(m+c) \mathrm{Q}
\end{array}{ }^{2}=31736
\end{array}
\]

Conscquently \((m+a) \mathrm{B}+(m+c) \mathrm{Q}=136223\)
Moreover \(l 1.11 \quad 0.0453230\)
And \(l\{(m+a) \mathrm{B}+l(m+c) \mathrm{Q}=\} \quad 5.1358479\)
Hence we have 1．11 \(((m+a) \mathrm{B}+(m+c) \mathrm{Q})\)
\(=15176\)
5.1811709

Vol．XVII．Part I．
Again，lm
三
r．0．716．355
4.46 .41293
Thacrefore ml）＝130793
5.1000651

And 1．11 \(((m+a) B+(m+c) Q)-m 1)=1.957\).
Alsol95 \(=\quad 1.9775250\)
And \(\{1.11(m+a) B+(m+c) Q)\)
\(-m \mathrm{D}\}_{S}^{?}=14971=\)
4.1752508

Whence \(95\{1.11((m+a) \mathrm{B}+(m+c)\)
Q）\(-m \mathrm{D}=1422245\)
6.1529741

Moreover，for the denominator，we lave

Therefore \(x^{\frac{7}{5}}-95 \mathrm{~m}=546.84\)
Consequantly \(95\left\{\frac{1.11((m+a) B+(m+c) Q)-m])}{x^{\frac{7}{5}}-95 m}\right\}\)
\[
=\frac{1422245}{546.84}=2000.3 \text { the ballast. }
\]

To obtain the value of the stability，we liave
\[
\frac{2}{3} \int y^{3} d x=(m+6) \mathrm{D}
\]
\[
\begin{array}{lll}
\text { Heace } l(m+6) & \text { 三 } & 1.0291803 \\
\text { Abd } l \mathrm{D} & \text { 三 } & 4.491429 ?
\end{array}
\]

Whareforc \(\frac{2}{3} \int y^{3} d x=(m+6) \mathrm{D}=3116115.4206116\)
Yor the value of \(z\) ，we have the function，
\[
\frac{x^{\frac{3}{10}}}{2.36}, \text { whence } l \frac{x^{\frac{9}{10}}}{2.30}=\frac{0}{15} l x-12.36 .
\]

Whereforc \(\frac{9}{20} l . c\)
1．420．5：10
12．36
1．5．0．119）
Whence \(z=35 .{ }^{-8}\)
1.5 .536543

To obtain the area of the load water－line，we lidie
\[
\begin{aligned}
& l \frac{\approx, r^{\frac{2}{3}}}{1.626}=l z+l .^{\frac{2}{2} \frac{6}{3}}-11.626 \\
& =i z+\frac{2}{2} \frac{1}{3} l . c-11.626 .
\end{aligned}
\]

Wherefure l
\(=\)
1.5530599
\(\frac{2}{2} \frac{4}{2}\) I
\(=\)
2.2537116
3.58 .3504
\(21.620 \quad 0.211120 \mathrm{~L}\)
Whence \(\frac{2 x^{2,}}{3.500}=3: 002\)
3.565150

To find the area of the main section \(\emptyset\), we have the logarithmic expression \(19.366+l \mathrm{D}-\frac{13}{13} l x\).

For the number of the crew, we have the expression \(3.763 \mathrm{~A}^{\frac{5}{5}}\), which, by logarithms, becomes
\[
l 3.763+\frac{5}{9} l \mathrm{~A} ;
\]
\(\begin{array}{lll}\text { Wherefore } l 3.763 & = & 0.5755342 \\ \frac{5}{5} l . & 1.8960913\end{array}\)
Whence the aumber of the \(\mathrm{crew}=2962.4716255\)
For the provisions we have \(\frac{\mathrm{A}^{\frac{2}{7}}}{2.75}\), whence, by logarithms we have \(l \frac{\mathrm{~A}^{\frac{7}{7}}}{2.756}=\frac{2}{7} l \mathrm{~A}-10.756\).
\begin{tabular}{lll}
Wherefore \(\frac{2}{7} l \mathrm{~A}\) & \(=\) & 0.9751527 \\
\(l 2.750\) & \(=\) & 0.4402792 \\
And the provisions & \(=3.42650 .5348535\)
\end{tabular}

The distance of the centre of gravity of the ballast
below the load water line is represented by \(\frac{x^{\frac{7}{5}}}{95}\), whence we have the logarithmic expression,

The difference of the draught of water fore and aft \(=\frac{x^{\frac{5}{8}}}{14.46}\), which, by logarithuns, becomes \(\frac{5}{8} l c-l 14.46\).
\(\begin{aligned} & \text { Wherefore } \frac{5}{8} l x \\ & l 14.46\end{aligned} \stackrel{\frac{5}{8} l, i-l 14.46 .}{=}\)
And \(\frac{x^{\frac{5}{8}}}{14.46}=1.5057\)\(\quad \begin{aligned} & 1.5378971 \\ & 1.1601683\end{aligned}\)
Finally, for the moment of the sails, we have
\[
l 35.56+l 6+l \mathrm{D}-\frac{1}{3} l x .
\]
\begin{tabular}{|c|c|c|}
\hline 135.56 & = & 1.5509618 \\
\hline 16 & = & 0.7781513 \\
\hline lD & \(=\) & 4.4644298 \\
\hline & & 6.7935429 \\
\hline \(\frac{3}{3} x\) & = & 0.7135451 \\
\hline Whence \(\frac{65.56 \times 6 \mathrm{D}}{x^{\frac{1}{3}}}\) & 1202258 & 6.0799978 \\
\hline
\end{tabular}

Hence we have obtained the following elements for the vessel in question, rejecting the superfluous decimals:

The stability 511611
The length from the stern to the sternpost
The breadih to the outside of the timbers
35.78

Ballast in cubic fect of sea water - \(\quad 2600.8\)
Displacement - - - - - 29156
Area of the loadwater line - - - 3:69.2
Depth of the frame 0 from loadwater line to rabbet of thie keel - - -
13.17

Area of the frame \(\oint\) - - - . \(\$ 30.69\)
Number of crew - - - - - - 296
Months for which provisioned - - 3.43
Quantity by which the centre of gravity of the ballast should be below the loadwater line
Difference of draught of water - - 1.51
Moment of sails from the centre of gravity of the ship, or the loadwater line - - - - - . - 1202058
And by the same methods are obtained the proportions of the sixtecu ships recorded in the sisth of the following tables:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{'ripuedioms as} \\
\hline & & & & & & & 1) 0 :4 water & & cr \\
\hline & & (5990 & 15.3.7 & & [11.11 & - & & & \\
\hline & 4.30 & Gf000 1 & 153.2 & 1.2. 21 & 3. & 1: 1.67 & 21.11 & .6) & 1.55 \\
\hline 6 & 100 & 63261 1 & 150.6 & 39.6) & (it)3.21 & 18.36 & 以湤1 & 15.14 & 1.51 \\
\hline 7 & 380 & 589101 & 1.17. 11 & 38.10 & 580.91 & 13.13, & (20.14 & 3.964 & 1.n) \\
\hline 8 & . 360 & 5 5620 1 & 1.15 .1 & 3\%.514 & 561.01 & 17.70 & \(2 \% .101\) & 19.52 & 1.2' \\
\hline 4 & 310 & 5.31011 & & 36.94. & 17 & 17.35 & 19.7. 1 & 18.17 & 1.48 \\
\hline 14 & 320 & \(5(1)\) & 1.39. & 36.32 & 517.21 & 17.00 & 14.3) 1 & \(1-.81\) & 1-1. 4 \\
\hline 11 & 300 & \(1{ }^{1 / 2} 101\) & 1.36 .1 & 3.5.06 & 11.1 .71 & 110.621 & 18.511 & 17.43 & 113 \\
\hline 12 & 280 & 1:160 1 & 1.2.? & 34.97 & 17. 1. & \(16,3,5\) & 16.52 & 17.011 & \(1 \cdot 11\) \\
\hline & 364 & 103001 & 129.3 & 34.26 & 148.31 & 15.8.4 & 18.181 & 16.63 & \(1 \%\) \\
\hline \[
14
\] & 210 & 359501 & 12..6 & 33.49 & 1 3 d . \({ }^{\text {a }}\) & 15.3\% & 17.6 & [1.19 & \(1 \sim 11\) \\
\hline 15 & 220 & 337201 & \(12 \therefore 1\) & 32.69 & :29.6|1 & 11.23 & 17.1 & 15.72 & \(1 . .78\) \\
\hline 16 & 200 & 305001 & 118.1 & 31.83 & 374 & 11.15 & 11.61 & 18.34 & 1.3 \\
\hline 17 & 180 & 27.3001 & 11.3 .8 & 30.909 & 313.0 & 1.3 .91 & 1100.5 & 14.71 & 1.3 .1 \\
\hline 18 & 150 & 2.11201 & 10\%. & 29.89 & 120.9 & 1.3 .35 & [15.45 & 1.15 & 1. \\
\hline & 111 & 2050 1 & 101.2 & 28.7.7 & 292.7 & ㄷ: & 11.50 & 13.3.34 & 1. \\
\hline 20 & 120 & 17810 & 98.7 & 27.57 & 3jun & 12.13 & 14.081 & 12.96 & 1. \\
\hline 21 & 100 & 11703 & 92.6 & \(26 \cdot 20\) & 233.1 & 11.3: & 1.3.2 & 1211 & 1.23 \\
\hline 22 & & 13159 & 5\%. 2 & 25.44 & 215.1 & 10.5- & 12.8-i & 11\% & 1.21 \\
\hline 23 & 3 80 & 11625 & 85.6 & 24.60 & 194.1 & \(10.3)\) & 12361 & 11. \({ }^{3}\) & 1.15 \\
\hline 21 & T0 & 10101 & 81.7 & 23.70 & 191.5 & 10.031 & 11.51 & 111.-. & 1.17 \\
\hline 2 & 60 & 8588 & 77.4 & 22.69 & 10.3 .3 & 9.54 & 11.24 & 111.2. & 111 \\
\hline 26 & 3 30 & 7088 & 72.6 & 21.57 & 1440 & \(8 \cdot 56\) & \(14.6-1\) & 1,6 & 1.11 \\
\hline 27 & 40 & 560.5 & \(\mathrm{G}_{3} .1\) & 20.25 & 123.5 & 8.29 & ?.11 & 8.96 & 1.07 \\
\hline & 30 & 4141 & 60.6 & 18.4 & 101.3 & 7.51 & 4.155 & 8.16 & 1.1) \\
\hline 29 & 20 & 2702 & 32.6 & 16.5 & 76.6 & 6.5.3 & - 0.06 & 7.15 & 0. \\
\hline & 10 & 1302 & 41.3 & 13.7.2 & 47.51 & 5.14 & (i. in & \(\therefore 72\) & 0.85 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\underset{i}{i}
\] & & & & & \[
\begin{gathered}
3 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
\] & & & & \[
\begin{aligned}
& \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & & & tect. & fiet. \(=\) q. & & tier. fiet. & tiel & & fuet \\
\hline & \(380^{\prime}\) & \()^{\prime} 56880^{\prime}\) & 143.5 & \(30.02,544.1\) & & 19.5\%15.12 & & & 2.15 \\
\hline & 360 & 153550 & 140.9 & 35.48 32-4.4 & 16.99 & 19.3 17.80 & 1.414 & 1280 & 2.10 \\
\hline & |3.4 &) 5060 & 138.1 & 34.91504 .4 & 16.66 & 18.89,17.47 & 1.10 & 126 & 2.07 \\
\hline 101 & (20) & 14-510 & 135.2 & \(34.33+84.0\) & 16.32 & \(18.5-17.12\) & 1.38 .3 & 3968. & 2.03 \\
\hline & 300 & H14(0) & 132.2 & 33.70463 .2 & 15.97 & 18.1510 .78 & 1.373 & 3802 & 1.98 \\
\hline & 230 & 11300 & 129.4 & \(33.3)^{-141.91}\) & 15.60 & 17.7516 .30 & 1.33 3 & 3636 & 1.92 \\
\hline & 260 & J3n3u & \(125 . \overline{3}\) & \(32.09+20.2\) & \(15.2 ?\) & 17.3316 .00 & 1.333 & 3468 & 1.88 \\
\hline & 240 & 351-11 & 122.3 & 31.68, 59-. 8 & 14.71 & 16.89715 .58 & 1.32 & 3293 & 1.83 \\
\hline & 220 & 32080 & 118.6 & 30.92375 .0 & 14.38 & 16.42'15.14 & 1.303 & 3113 & 1.78 \\
\hline & 200 & 129.350 & 11.51 & 30.19 .353 .9 & 13.98 & 16.0014 .73 & 1.28 2 & 2938 & 1.73 \\
\hline & 180 & 26000 & 110.6 & 29.23327 .1 & 13.14 & 15.4114 .18 & 1.25: & 2737 & 1.66 \\
\hline & 160 & 122984 & 1 uri. 1 & 25.28301 .9 & 12.92 & \(14.8+13.65\) & 1.233 & 3540 & 1.59 \\
\hline & \(\left.1{ }^{1}\right)^{\prime}\) & 19983 & 101.3 & \(27.25-25.6\) & 12.35 & 14.221 .3 .07 & 1.2()2 & 2321 & 1.51 \\
\hline & \(120^{\prime}\) & 17002 & 96.0 & 26.10248 .1 & 11.2 & \(13,5412.42\) & 1.172 & 2105 & 1.41 \\
\hline 21 & 100 & 14046 & 90.1 & 24.812192 & 11.62? & \(12 .-811.71\) & 1.151 & 1870 & 1.35 \\
\hline 122 & & 12579 & S6. 8 & 24.09204 .0 & 10.64 & 12.35111 .31 & 1.111 & 1717 & 1.30 \\
\hline 123 & & 11155 & S3.4' & 23.33185 .7 & 10.23 & 11.9110 .90 & 1.091 & 1623 & 1.25 \\
\hline -2 & 70 & 9667 & 79.5 & 23.45171 .9 & 9.7 & 11.1910 .42 & 1.061 & 1486 & 1.20 \\
\hline -25 & 60 & 8225 & 75.3 & 21.51154 .8 & 9.28 & \(10.86 \quad 9.91\) & 1.031 & 13.15 & 1.13 \\
\hline & \(51)\) & 6795 & T0. 7 & 20.44136 .5 & 8.72 & 10.2519 .35 & 1.001 & 1195 & 1.06 \\
\hline & 419 & 5378 & 65.4 & 19.20117 .4 & 8.09 & 9.5088 .68 & 0.961 & 1034 & 1.00 \\
\hline 28 & & 397 & 59.1 & 17.8296 .5 & 7.34 & 8.7378 & 0.92 & 859 & 0.90 \\
\hline & 20 & 21302 & 51.3 & 15.5273 & 6.40 & -.68 6.95 & 0.85 & 661 & 0.80 \\
\hline (3) & 101 & 1255 & 418.3 & \(13.04,45.7\) & 5.07 & 6.10 5.5G & 10.76 & 424 & 0.70 \\
\hline
\end{tabular}

No. 1. Proportions of Merchant Ships-Cats and Barkssciuch of precoding Table.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
5
\] & & & & 菏 & & & & 菏 & \\
\hline & & cub. ft. & & fert. & sq. & feet. & fint. lett. & & sq. f . \\
\hline 10 & 320 & & 140.9 & 32.7.4 & 403.4 & 13,35 & 15.211 & 21 & 3908 \\
\hline 11 & 300 & 41500 & 137.8 & 32.15 & 386.6 & 13.08 & 14.92, 13.81 & 20 & 3749 \\
\hline 12 & 280 & . 38080 & 134.5 & . 31.54 & 369.3 & 12.80 & 14.6113 .52 & 1.18 & 3588 \\
\hline 13 & 260 & 35520 & 131.0 & 30.89| & . 351.5 & 12.50 & 14.2913 .2 & . 17 & 3421 \\
\hline 14 & 240 & 32840 & 127.4 & . 30.21 & . 333.4 & 12.19 & 15.9612 .99 & 1.15 & 3250 \\
\hline 15 & 220 & 29990 & 123.6 & 129.48 & 314.7 & 11.86 & 13.6012 .57 & 1.13 & 3074 \\
\hline 16 & 200 & 27140 & 119.6 & 28.70 & 295.4 & 11.51 & 13.22 12.21 & 1.12 & 2891 \\
\hline 17 & 180 & 24300 & 115.2 & 27.88 & 275.4 & 11.14 & 12.8111 .82 & 1.09 & 2703 \\
\hline 18 & 160 & 21.480 & 110.6 & 26.97 & 254.7 & 10.73 & 12.3611 .40 & 1.07 & 2506 \\
\hline 19 & 140 & 18670 & 105.6 & 25.99 & 233.1 & 10.29 & 11.88, 10.95 & 1.05 & 2302 \\
\hline 20 & 120 & 15900 & 100.1 & 24.90 & 210.6 & 9.81 & 11.3510 .45 & 1.02 & 2086 \\
\hline 21 & 100 & 13130 & 93.9 & 23.65 & 186.5 & 9.26 & 10.759 .89 & 0.99 & 1855 \\
\hline 29 & 90 & 11756 & 90.5 & 22.97 & 173.9 & 8.96 & 10.41 9.57 & 0.97 & 1734 \\
\hline 23 & 80 & 10391 & 86.8 & 22.23 & 160.8 & 8.63 & 10.059 .23 & 0.95 & 1609 \\
\hline 24 & 70 & 9034 & 82.9 & 21.41 & 147.1 & 8,28 & 9.668 .88 & 0.93 & 1476 \\
\hline 25 & 60 & 7687 & 78.5 & 20.51 & 132.8 & 7.89 & 9.23 S.46 & 0.90 & 1338 \\
\hline 26 & 50 & 6350 & 73.7 & 19.46 & 117.7 & T. 45 & 8.75 8.01 & & 1190 \\
\hline 27 & 40 & 5027 & 68.2 & 18.31 & 101.5 & 6.9 .1 & 8.18 - 7.49 & 0.84 & 1038 \\
\hline 28 & 301 & 3719 & 61.6 & 16.90 & 83.9 & 6.34 & 7.526 .88 & 0.80 & 850 \\
\hline 29 & 20 & 2432 & 53.5 & 15.02 & 64.1 & 5.58 & 6.676 .08 & 0.75 & 65 \\
\hline . 30 & 10 & 1176 & 42.0 & \(12.43 \mid\) & 40.4 & 4.49 & & 10.66 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|r|}{Proportions for Merchant Ships, fre. Seyuel of the precading Table, (No. 5.)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{10}{*}{}} & \multirow[t]{10}{*}{\[
\begin{array}{|c}
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\]} & \multicolumn{3}{|l|}{\multirow[t]{10}{*}{}} & \multirow[b]{10}{*}{} & \multicolumn{3}{|l|}{\multirow[b]{4}{*}{neisht of tho man mast in propartion to}} & \multirow[t]{10}{*}{} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{stability.}} & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & \multicolumn{3}{|l|}{} & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & feet. & & & & & & & & & \\
\hline 10 & 2.1 & 10.51 & 5.4i & 8.852 & 4.514 & & & 9.55 & 93.13 & 1.280 \\
\hline 11 & 2.05 & 10.59 & 5.2 & 8.752 & 4.51 & 187300 & 81.76 & 9.36 & 91.12 & \\
\hline & 2.051 & 10.34 & 3.172 & 8.648 & 4.505 & 173900 & \%9.79 & 9.17 & 88.96 & \\
\hline & 1.96 & 10.08 & 5.040 & 3.5.)7 & 4.501 & 160590 & -7.73 & 8.96 & 86.69 & \\
\hline 1.1 & 1.91 & 4.80 & 4.901 & 8.418 & 4. 495 & 147600 & 7, 75.56 & 8.75 & 81.31 & \\
\hline & 1.8. \({ }^{\text {a }}\) & 9.51 & 4.75.) & 8.291 & 4.486 & 134520 & 7.3.21 & 8.52 & 81.76 & 1.300 \\
\hline & 1.80 & 9.19 & 4.599 & 8.151 & +.174 & 121400 & 70.76 & 8.36 & 79.12 & \\
\hline & 1.8-1 & 3.86 & 4.4.i & 8.005 & 4.4.58 & 108.3-40 & 68.13 & 8.01 & 76.14 & \\
\hline 18. & \(1.6 \overline{7}\) & 8.51 & 4.255 & 7.843 & 4.137 & 12.5300 & 6,5.2? & & & \\
\hline 19 & 1.59 & 8.12 & 1,060 & T. 160 & 1.412 & 85400 & \(1(62.20)\) & 7.12 & 69.62 & \\
\hline 2 & 1.50 & 7.69 & 13.8P\% & 110 & 4.360 & 69360 & 155.81 & 7.09 & 155.90 & 1.325 \\
\hline \(\sim 1\) & 1.41 & T.22 & 3.610 & 17.20 & 4.3.39 & 56.10 & 154.98 & 6.81 & 61.69 & \\
\hline & \(1 . .36\) & 6.47 & (3.180 & 7.093 & 1.308 & 506.10 & \(1,52.80\) & 6.50 & 5! 1 -39 & \\
\hline & \(1 . .31\) & 6.68 & 8.3.30 & (5.949 & 1.277 & 41.410 & 4.50 .62 & 6.27 & 56.89 & \\
\hline & 1.24 & 6.47 & 1. 18 - & 16.888 & 1.237 & (3¢280 & 143.17 & 6.02 & 54.19 & \\
\hline 25 & 1.18 & 6.01 & 3.020 & 6.908 & 1.190 & S0201 & 15.18 & 5.75 & 51.27 & 1.956 \\
\hline 2 & 1.11 & S. Sit \(^{\text {d }}\) & 2.3.3 & (6.101 & 1.1.32 & \(20^{2} 10\) & 12.14 & 5.41 & 47.93 & \\
\hline 27 & 1.02 & 3.21 & \(\geq 63\) & (i,1.5] & 1.06 & 20.420 & 1.30 .05 & 5.17 & 11.1? & \\
\hline 3 & 0.93 & 4.71 & 2.331 & 1.835 & 3.961 & 117 & 35.12 & 4,63 & 30.67 & \\
\hline & 0.50 & & 205: & 5.135 & . 8 808 & 92.8i & (, 30,01 & 4.11 & 34.12 & \\
\hline & 0.6 & & 1.1810 & 1.433 & |.3.511 & 4170 & 123.901 & & 26.33 & 1.442 \\
\hline
\end{tabular}
(No. 6.) Propertions for Priratcers, according to the

ortions for Privatecrs, for. Scquel of the preceding Table, (No. ©.

Proportions of Masts and Furds for Merchant Ships, \&c. Cun. (inuation of the preceding tuble. (No. i

Proportions of Masts and Yards for Mcrehant ships, \&c. Con timution of the preceding Tablc. (No. 3.)

The following Table contains the algehraical elements and munerical texnles of five chasses of ships of the lime. It is likenise derived from Chapman.

Elements for the Construction of Ships of the Jinte. by IV. II. Chumath.

\footnotetext{
* A Swedish lineal foot \(=.974\) English lineal feet.

A Swedish square foot \(=.951\) English square fect.
A stredish cubic foot \(=.927\) English cubic fect.
}

The foregoing tables suggest some important reflections. It is evident that Chapman entertained the idea of comecting together all the essential elements of naval architecture, by means of empirical formulx, and of deriving all from some one primitive root or element. The bare conception of such an idea, marks the character of his mind in strong and original colours; and the steps he made towards its practical execution, stamp his name with double honour and renown.

The point to which naval architecture should continually approximate as a limil, ought to be the perfecting of the elements alluded to: obtaining for them more correct or appropriate co-efficients; establishing more completely their necessary relations, and throwing over the whole investigation a more accurate and philosophical character. No method of procedure, we would remark, can be more consistent with the legitimate and proper objects of philosophical inquiry. In the language of the modern analysis, it would be regarding every element of a ship, as a function of some one primitive element, and, by means of properly prepared co-efficients, deducing cach one from it. There must, for example, be in every ship some relation between its length and displacement; so that by adopting one of them as its primitive term, the other by means of some multiplier or co-efficient, ought to be deduced from it. The breadth, too, must be a function of the lengtl, and therefore some function of the displacement, if that element (and perhaps it is the best) be adopted as the primitive one. The area of the main section may also be so connected with the breadth, as to be resolvable at first into terms of the length, and ultimately into that ol the displacement itself. In like manner, may the area of the plane of flotation, the moment of stability, the place of the metacentre, the position of the centre of gravity, and indeed the value of every other element of a ship, be ultimately traced to the displacement. If the whole length on the water line be denoted by \(l\) the entire length of the same line between the rabbets, must be some multiple of the same dimension; and as the former may be shown to be a function of the displacement, so may the latter. So that the displacement, or some other appropriate quantity, being assumed as a primitive element, every other element becomes comnected with it; and no sooner is the relution of one part to another shown, than that relation becomes immediately connected with the element assumed. Hence adopting the language of functions we may say with Lagrange, that if the displacement be denoted by the primitive function \(f \mathrm{D}\), in the series,
\[
f \mathrm{D}, f^{\prime} \mathrm{D}, f^{\prime \prime} \mathrm{D} f^{\prime \prime \prime} \mathrm{D}, \& \mathrm{c}
\]
the derived functions of the same series,
\[
f^{\prime} \mathrm{I}, f^{\prime \prime} \mathrm{D}, f^{\prime \prime} \mathrm{I}, \text { \&c. }
\]
may represent, successively, the other elements of a slip.

Bat it may be asked, in attempting to extend the investigation of these clements heyond the limits attained by Chapman, how are these derited funtions to be obtained? We answer, by experiment and obacrvation: by inquiring into the properties of the most approved models that lave hitherto been produced; Dy fromping together lates, and drawintr from their united testimony, iegitimate results: pouring moto the rery heart of shipbuilding the genume spirit
of induction, and throwing over the whole of the inquiry the mantle of a pure philosophy; viewing facts, not as detached and insulated fragments, but as parts of a system which the progress of inquiry must eventually blend into one perfect and harmonious whole.

To those who may be disposed to deny the possibility of tracing, in the extended mamer alluded to, the comexion of these different clements, we would observe, that some ships of war, and some ressels of our mercantile marine, possess confessedly better qualities than others. Some, indeed, possess a more than ordinary proportion of good qualities, and as such, become proper objects of philosophical examination. Suppose for example, that two or more ships of a particular class were selected, whose properties were generally recognised as good, might not many important conclusions be deduced from an analysis of their different elements? Each ship, for example, would have a given displacement, a length, a breadth a main sectional area, a certain stability, a particular position of the metacentre, a corresponding position of the centre of gravity, and indeed many other elements, each of which it would be highly proper to ascertain, and the relation of all of which to some primary element, it would be of the hrstimportance to determine. These elements would, of course, at first possess a numerical character; but the generalizing eye of a philosopher would soon trace the existence of laws among the apparently uncomected arithmetical results; and order, and a system of definite relations, assume the place of irregularity, apparent accident, and chance.

To draw an example from the first of the tables before given, Chapman shows, in the case of a frigate, that the displacement is so related to the burthen es timated in cubic fect, as to present tae conditional equation
\[
\mathrm{D}=\mathrm{P}^{\frac{1}{17} \frac{8}{7}}
\]
or, in the second table, that the length is related to the displacement by an equation of the form
\[
l=x \mathrm{D}^{y}
\]
wherein \(l\) and \(D\) represent the elements referred tos and \(x, y\), are unknown or indeterminate quantities, which it is the proper business of well-directed experiments to disclose.

In like manner we may draw from the investigations of the same able engineer, that the breadth is related to the length by the expression
\[
\mathrm{B}=\frac{l x^{\prime}}{y^{\prime}}
\]
where \(l\) the length may be obtained from the conditional equation before given, in terms of the displacement, and \(x^{\prime} \cdot y^{\prime}\) are empirical guantities, owing their origin entirely to experiment and observation.

Hence we may perceive how important it must be to the interests of naval architecture, to obtain from ships of approved character and value, every element that may be desired; not however by theoretical inquiry, but by well-digested courses of experiment, and lons trains of obsereation; tabulating all the resulte that successful industry may obtain, in approved, and intelligible lorms; cotering every conclusion not as a detached and insulated quantity, but as an ele-
ment which bears some relation to every other step of the inguiry.

Witherto it has been the practice of those connerted with naval inguifies, to view the various elements of shiphuiding, wo much in the lisht of detached and insulated quantities, and not as parts of a system which possess the mone perfert and intimate relations, and incapable of separation lion cach other. How often, from the imperfect condition ol our knowledge, are we obliged to sive to om most laborions dispuisitions on stability, on dibpherment, on the metacentre, and indeed to most of the elements of andal atrehiwecture, a detached and insulated chatarter; mable to trace the sradnally imblactive step; by which one branch of the manity is led on to athother: bow we individual chement of a system is redated to the elements that sumonad \(i\), and how it shads comected with the great whole, of which it lumms a part. And in no view of the subject before us, is hais remarkable circumstance more apparent, that whan we socak of the dimensions of ships, and endeabur to commect together the elements which compose them.

No one we will venture to say, whondestirsates the present condition of maval archatertne, can fins amoment allow, that it has been benefited in ant material degrec, by the example whith the great refomer of philosophy axhibited to the expertmental worth. There has been lituc of what may he truly tomed inductice inguiry, displayed in its histors: atol it stands now almost as a sultary monument of he folly which gruided the predecessors of lacon, in the pathe ol experimental insestiration. Iet. in no subject is there greater room fur the application of the most rigid principles of the inductive logic, than this. Millions of ships have beencombructed, but only here and the re a successlin example has bern ottered for our comemplation, as if to mock the implicit obedionce we pay in the practice of maral architecture, to uncertain and ill-deflued rules.

There is one subjet more, howerer, while refering to the tables of Chapman, to which we would brielly adsert, and that is motation. I simple inspection ol these tahes will show, that that celebrated man did not avall himself of all the alymarges triat this porerfal and importane instrament is capable of atfording. There is more in matation, to adopt acommon phrase, than first meets the cye Simplicite, unilormity, gencrality-a capability itself ol suspestingnew relations and inquiries-these. and many other particulars, are connected with the question of notation. And when we have seen the mareh of whole departments of scionce retarded fin fars, by the use of barbarons and impeoper syabole, it is not too much to itasista that in the formule ated equations of condition that may hereafer be created for the use and extension of natal arretecture, some little attention sould be paid to the lights that the modern ana lysis has throsin on the errat yrestion of notation. The remotest element of a ship most be connected with some primitive clemont, by a serits of mupuestionable laws,-haws dark an? mysterious it is true at present, but which the spirit of a gemuine and pure induction will crentually illominate and make clear. This remote element may, however, be traced to its primitive dement by a stiorter ronte, by one process of ratiocination than another; bllt by no betier method than by the pure light of a legitimate notation, can the Vol. X'JI. Panti.
"line of shortest descent" to this great point be obtathel.

Shpbuidding bergan to be particularly athended to in England in the reign of ! temy the Seventh, whe commenced the Rogal Nay ol lingland by Duidding the Gereat llary, which is said to have been the first ship bnilt with two derlis in thiscountry. In the succeding reisen the fomblation was laid fon ant extensise royal navy; and the Admiralty and Nary beards were cobstituted for the direction of matal allains. In the early part ol this reign, the kegmon of then thas bur den, with the Mary Rose of ahl thas, and sermal wher ressels, were constructerl. The lin. in? beter burnt inanengagement with the Fremen heot in 1512 . Henry the bighth omered a ship to be built ol' égral tomarge, eatying 7 (o) ment and haned llonsy grace de Dicu. 'The principal defect of ships at this perion appears to have been too great hoisht above the water in proportion to the extreme breadth, while at the same time the lower tier of guns, was mul h too near the water's surface. 'The loss of the Mary liose is attubated to the defect of her ports heing very near the water: Sie hater Raleizh sits they were bithin sixteen inches of the water. The loss of thes wessel led to the raising the lower deck ports highey liom the water.
- the the of the sistcenth and the bertimins of the seventecnth centuries, ships ol war bere divided into seven classes, at the surgestion of Sir Robert Duder. He shave the dimembons of the ressels according to the sersices for which they were intended. all of them being constructed to draw very litule water. The bengh of the first class called the galleon, was four times the hrealth; and the lemoths of the other vessclesturlually increasel in proportion to har breadth. The sewenth class, culled the perst-motemfo, intented entirely for velocits, had its lemerth in what has been truly characterised the extravagant proportion of ten times its brealth. At the period refered to, the ships of all mations disphayed a remartable similarity.-a circumstance arising from the Venctian resals baver lefll atopted by mos: of the crastructers of that time. as mutiels of imitation. Ia the reisn of James the

 ship was 11.1 lect. and hercross beam-4 lient In the yener on Chates libe Firot, a much laperp ship was romstracted, called the sosereign of the Seas. Fic

 hea! whe after ead of the stem, "perne at mopnime. 2.is fect: and in height, form the buithas of her ketel

 crease of the ships of the Royal N.ay louk place in this reign: an 1 in 105 the dimensions of the diferent clanses of ships repe establinded by goormenent. Ia the rear I Bs: Sir Sachad lladnock. the comptrobler of the mavy. directed a scientitio imples to be made into the solid contemi immersed in the water. ci a ship of each chass, when laden, from a lourth to a sixh rate, and by subtracting the weight of the ship's hull, when lanched, from the total displacement, to determine the true buden in tons it will carry, and to compare this correct tonnage with the 2 C
nominal tonnage calculated by the rules then in use This appears to have been the first attempt at the scientific investigation of the elements of ships in this country.

The following tables are taken from Derrick's Memoirs of the Royet Ntety.

DHEXSIOAS OF SHIDS
An Account, shmeing the Dimensions estumishad, or proposed to be rstahtished ut different limes, for Duatdiug Ships.

Mr. Derrick informs us that the dimensions of the establishment of 1755 , recorded in the above table, were determined from the proposals which the Lords Commissioners of the Admiralty directed the Flag Officers, the Surveyor of the Nary, and the Master Shipwrights of the dockyards, after consultation, to lay before them of a scheme of dimensions and scantlings, and a draught of a ship ol each class, to remedy the defects which English ships were said to possess, of being weak from a eleficiency in the scantlings, of not being able to carry so great a weight ol motial as foreign ships, of their lower guns being too near the water, and of their being crank. The ships built according to these proposals. it is sad, carried their guns well, and possessed sulficient stability, but were formed too finll in their alter bodies, a defect which was remosed in the ships buit at the commencement of the war in 1556, when a larther increase of dimensions was made. The improwment in the ships built according to the established dimentions of \(17+5\), does not appear to have proceeded from any alteration in the relatice propartion of the dimensions of the preceding establishments in 1719, 1733, and 174. The length of the ships ol the firgt class on the gun deck, in the order of these four dates, appears to have been \(3.48,3.48,3.5\), and 3.49 times the extreme breadth, where very little differnce exists in the relative dimensions. The improvement in these ships arose from the general increase of the dimemsions by which the guns were raised further abose the water, (even supposing their height lrom the keel to remain the same, in consequence of the load water line being lowered, the displacemsent being increased only by the additional weight of the hull, other weights remaining the same; the stability beins abo inctrased, the ships would incline less under the same press ol cansass.

Spain was the hirst mation which increased the dimensions of the didarent classes of ships to considerable extent: and Frabe followed ber example with better success. The capture of the Princessat, soon alter the commencement oi hostilities with the former country in 1759 , canying 00 guns. and beins upwards of \(1: 00\) tons burthem, pointed ont the propricty of increasing the dimensions of our largest chass ol two decked ships, which may be seen by the tollowing table to be so much inderior to her. The large two decked ships of the Prench were also proved to be very finc and powerful vessels, and in many points superior to the English eighty gun ships with three decks. In several instances, shipo capured by the French were found, when retaken by the lenglish, to have had their forec rednced liom what they carried in our semice. The admirally consequently directed the eighty grun ships then in use, with three decks, to be substituted by two deckred ships of 7t guns, whose dimensions were particularly considered, and care taken that their lower tier of guns should be six leet above the water.
Comparative Dimensions of three ships of different nations athout the middle of the cishlemth contury.

The increase of dimensions in the English ships of 74 guns, proceoded very slowly. Their general dimensions appear to have beat conlmed to 168 leet \(a\) inches in length, at fer d inches in bradth, and 164. tons burden. Enytand didmot possess any twodecked ships carrying \(8:\) gruns till after the middle of the eightecnth century. Tha fremeh and Spanish mavies were long inderior to the Panerlish in thedr want of three deckers, of which expertence daght them the largest chasses ware muchoop pewerlal lor their laresest. two deckers. It was not till after the peace of 1 thin that either France or Spain possessed a single ship ol three dects. Whe binslish threw decker, the Royal George, carrying loo ghas, lamelact in 1756, of 20.46 tons buaden, was built of superior dimensions wour preceding hirst rates, and commenced that increase of size which has been so successlully camied forward in modern ships, and which has not yet attaned by any means its limit.

The following table shows the mannitude and relative dimensions of the pincijat elasses of modern ships of several Luropean mations. The lengeth and breadd would have been taken at the luad water section, ill bey could have been obtained lor all the ships. There will be, bowever, no considerable error in comparing them according to the dimensions given in the table.
('ompurative dimensions of modon ships of different wations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Names of ships. & & & \[
\begin{aligned}
& \dot{3} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & & \\
\hline Enchish. & & ft. in. & ft. in. & & \\
\hline Caledonia, & 120 & 2050 & 536 & 2602 & \\
\hline Canges, & 84 & 193.10 & 5185 & 2255 & \(\frac{100}{36}\) \\
\hline Bulwark, & 76 & 1768 & 189 & 1836 & 10\% \\
\hline Portland, rigate, & 60 & 1720 & 11.38 & 1.168 & 100 \\
\hline Latoma, lirsate, & 46 & \(150 \quad 1!\) & 3.111 & 1063 & 189 \\
\hline Spamish. San Josef, & 110 & 1013 & 543 & 2457 & \\
\hline San Nicolas, & 82 & 179 91 & \(49 \quad 78\) & 1042 & \\
\hline San Antonio, & -4 & 17410 & 1510 & 1:00 & 40 \\
\hline Medea, rrigate, & 4.4 & \(147 \sim\) & 101 & 10.16 & \\
\hline Frouch. & & & & & \\
\hline Commerce de Marscilles, & 120 & 0034 & & & \\
\hline Tommant, & 8.1 & 1962 & \begin{tabular}{|ll|}
51 & 9 \\
\hline 1
\end{tabular} & 2281 & \\
\hline Bahama, & 7. & 1757 & \(18 \%\) & 1772 & \(1700 \frac{1}{36}\) \\
\hline Niohe, lrigate, & 4.4 & 1560 & 4) 81 & 1142 & \\
\hline Unité, frigate, & 42 & 1486 & 397 & 1040 & \(\underline{10} 100\) \\
\hline Suedish. & & & & & \\
\hline & 110 & 2078 & \(\begin{array}{cc}55 & -8 \\ 50\end{array}\) & & \({ }^{10} 70\) \\
\hline large work on & 10
74 & 136 & \(\begin{array}{lll}50 & 4\end{array}\) & & \({ }^{10} 50\) \\
\hline ships of war. & 74
40 & \[
\begin{array}{ll}
179 & 5 \frac{1}{3} \\
151 & 1 \frac{1}{4}
\end{array}
\] & \[
\left|\begin{array}{rr}
49 & 08 \\
39 & 10 \frac{3}{8}
\end{array}\right|
\] & & 100
365
105
3
3 \\
\hline Danish. & & & & & \\
\hline Christian V!l. & 84 & 1870 & 5010 & 2131 & \(\frac{1}{36} 9\) \\
\hline Priacess Caro- & & & & & \\
\hline Fina, & 74 & 1738 & 46 & 1637 & \(\frac{1}{190}\) \\
\hline Freya, frigate. & 42 & \(148 \quad 7\) & 394 & 1022 & \(\frac{100}{3} \frac{0}{1}\) \\
\hline
\end{tabular}
"The atwantage of erising larere dimensions to ships carrying a certan force, trises," suys Mr. Noperath in an ingonionsclisequistion on this subjer , ontained in the third mmber of his ' Papers on Naval behtue-
 grat stability, atol domedy to carry at arat pross of satl, with a comparationy small bridy immersell in the water; thom eriving them at at anding force in proporion to the mastance they lamugh die water, whith mast incorase the ir pate of

 ward, and ar can rum alt to floce ralder: and to have
 sistance to the water, which presents the shap from making much leoway. 'lhis fom bubw the water, in comexion with great stability, is weybendeial in enabling the ship to 'reat , fio a lee share.

The greater expense arising from the increase of dimensions is, howerer. a disalvantare whirb penders it desirable wet to arry this praciple fur boyond necessary limits. 'I'he number and weight of enns a ship is intended to carry, must be loce foundation of the desisn. 'The total weight of a ship being fonnd. a correspondins displacement must be priven, amt the height of the lower tier of eुus, when the ship is lally stored and provisioned, fixed at mot much less than six fect from the water's strlace. The number of guns to be placel on a deck bedeg detemmed, with such a distance between them as matal officers have fonnd to be sufficiont to work the grans combententy in action, and the necessury lengh given before the foremost and abaft the attermost port, the least length which can be given to the ship is lound. The breadth in proportion to the lengh must then be determined. so that the stability may be sufficiont to work the leeward eruns in atron:r ind. The dranght of water being then determined. such as experience has fond to be necessary to keep a ship of such a class up 10 the wind, the form of the body may be given according to the judgment of the constracter, the best calculated for producing the necessary quatities of velocity, latern resistance, answermg the rudeler readily. Ee. Shonll the wed displacement be then found equal to the weight of the ship, the dimensions are determined according to the necesory limits. Whatever increase of dimensions beyond these limits may be given, to atter any paricular property, must be at the disadrantage of additiond expense.

From these tables atso may be seen, the relative proportion between the leagth and breadth of the ships of different mations. The determination of the breadth to be given to any ship of which the Iensth is fixed, is one of the most important considerations in the design. It is this dimension which principally affects the stability ol ships, -a quality on which the efficiency of a man-of- \(\%\) al, as well as its safety, depead. Although in order to determine the true value of the moment of stability, it is necessary to find the correct volumes of the parts immersed and emerged by the inclimation, yet the breadth being the principal elcment in the detemination of the value of this property, a tolerably correct judgment of the relatise stability of ships, if not very dissimilar in form, may be generally obtained by comparins their relative breadins. This propertr, coteris pertures, continues Mr. Morgan, is proportional to the length and third power of the breadth; so that a very small addition to the breadth increases the stability as much as a
very considerable addition to the length. The atvorates for great lensth in proportion to the breath of ships, asser that lons and narrow ships are the lidstest sailers. With the stme moving power, that is, with the same guantity of sail, the long and narrow ship, under some circumstances, particularly whith the whet aft or bat lithe on the quarter, in light breezes and a smonth sea, may sail faster than a broader and shorter ship. But when a ship sails with the wind at aas print beteren the limits of being chosedanted and on the graster, the ship is necessarily inclined by the power of the wind on the sats, and regnies enfficiont stabilit: to prevent the inclimation becuming wo great. A deficiency in stabitity is fregumbly of the most serious comsequence: it may conse the loss of a ship on a leeshote: it may pewnes ship in a still becoeco when cugaged with an chenay, liom using the beward guns: in a chase it muy remer a ship incapable of carrying the necessary press of sail to come up with the enem!: Iy a whip beciong moch, it buing the rotand part of the body into the water, and the leed and lower parts of the budy. "hach oppose the greatest hateral resist ance to the water. become more oblighe to its direc tion, and the ship is conscrucutly allonwed to lall to leew ar 1 more than it would it less inclinet! the effert of the fore of the wind on the wilis is alon thminiohed by its direction, being more ohtore when the ship is inclime. The impurtance of a shap pusserssing great hetalth in proporion to the length . W ensure sufficient stabihte, appenm 'nder hese circumstances much mone than to conntorbatance the advantage, which. by having greater length in proportion to the beadth, mistit be obteincd in velocity in light wincis and a smooth sea. It may be observed that too sereat statility is, on the other hand, dangerous by the great strain il brings on the ship, and the liability it gives of carying away the mata. But this is an cxcess which is :ery rarely compluined of: the more freguent defor appeaps to be a deftency in this guality

In the lats coltum of this table is shown the breadthe of the difierent ships in moportion to their bersens. In the ships of thee decks, the relative breadths of the s!aps of the difarent mitions is in the following proportion and order: of the Spanish ship.
 the linglish 300 , where the relatise breadth of the Spanish ship is seen to be the speatest, and of the English ship the beast. In the large class of ships of two decks. of su gums and upwards, the relative bradna is in the loblowing propartiun and order: of the Sp-nith ship 100 , of the Dithish \(\frac{10}{6}\), of the Swe
 whem the retative breadh al the spanish ship is secm whe the meatest, and of the linglish ship the least. The dithereme bowerer, in the relative breadth of the last two, the Pameh and English ship, is wery litelo, and if some othen lrenehnegts-fours had been taker inseced of the Tomant, the retalise breadth of the Femely and Pustish ships ol this rlass would have tuen the same, we fanges haing hetn butt atter a Fereh shipe the (amopus. In the smather ships of two decks. the relative breadth is in the following
 ish, Swedish and lreach \(\frac{10 n}{5}\). and of the Danish \(\frac{10 n}{3}\) : ;

order: of the Spanish ship \({ }_{3}^{10} 0 \frac{1}{2}\), of the French Unite (while in the French service, the lnaperieuse) \(!\frac{10}{5}\), of the Eigglish Latona (one of a numerous cluss in our service, built alter the old Leda) \({ }_{3}^{000}\), of the Danish
 and of the Laglish lowtand \(\frac{1000}{8}\) ? where the retative breatith of the Spanisbliferate, is seew to be the sreat est, and of the English gor gun lisgates the least. The retatise beatah of the French frigates taken daring the last wat, is semerally noarer that of the Ninbe than of he Liaté.

From this comparison, continues Mr. Morgan, it appears that the relitive breath of our \(120-g\) m ships is less than that ol the thre-decked ships of the other nations; that the relative breadth of on larese class of two-decked ships aspees nearly with that of the French, and is less than that of the ships ol the other Hations: and that the relative hroadth of the 60-gun frifutes is consilerably lass that that of the frigates a other mations, and of mox of one own frisates. The actative breadh ol' the Latona stands hig! in the order ol the ships of their respective chassex.

It does not apperar, frum this table, that any regulatity exists in the proportion between the length and breath of ships according to their magnitude. Whether shipg, as they increase in magnitude, should hase greater or less relative breadth in proportion to their kasth, does not appear to have bech atended to as a general principle in the designs o! the ships of difierent nations. lnthe spanish ships, the relative breatth of thuse of threc docks is greater than that of the ships of two decks.and the retative breadth of the larger Spanish and Danish ships of two decks is great: er that that of the smaller ships of two decks, and the retative breath of the two-deckers is greater than that of the ligyates. In the ships of the other nations: the comtrury is more freghently adopted, although very irvegulary.

The first consideration respecting the relation between the bengh and breadh of ships of different magnitude, is, whether large or small ships require the greater relative stability. Now suppose a larger and smatler ship to have their moments of sails in proporticn to their stability, and the height of their lower tier of guns to be the same from the water's surface, when they are upright: while these two ships would then be inclined, by the force ol the wind on the sails, to the same angle, this inclintion might be dangrous to the larger ship, but quite sale to the smaller stip. the sitles of the two ships abose the waker being immersed mearly in proportion to their breath. Supposing the breadth of the larger ship to he 50 lect, and of the sinaller do leet, and the height of the lower ports in both ships to be sis feet from the water's surface, when the lower ports ol the smaller ship are in consequence of the inclination, two fect lrom the water, the lower port of the lager ship are only one foot lrom the water.
supposing that the moment of sats is given in a proper proportion in the smaller ship, a smatler moment of sait, in proporton to their relative stability mast cither be given to the larger ship, or a greater moment of stability, retalimy the same moment of sails. For the sake of velocity, it is desimble that the stablity of the larger ship shoubld be in rased.

Suppose the two ships to be sinilat, the one carrying two tiers of gums, the other threc. 'The stability
being in the proportion of the fourth power of the simple dimensions, if the centers ol gravity of the two ships were raised above the centues of gravity of the displacements only in proportion to the dimensions of the ships, the stability of the harger ship woth be increased in a much greater proporion than in the smaller ship: hat as the comter of erabity in the larse ship is rabed by the additional deck and tier of : sums higher than in the propertien of the dimensions, the stability is increased in one way and diminisbed m another. The elfect ol these elements of the stability on the valne ol its moment shont be corvectly ascerfained. Probably, on the whole, the stability of the larger shap may gencrally be rather increased than diminished by be ahterations, but not suffectenty withont a lithe increase of relative beadth. This, Gowerer, coubl be obtand by catulation and (x) ex riments on other differont dassescis ships, and would be raluable intomation low the detemmation of the redative dimensions of shipe ol diferent siaes.

By comparing the dimensions in this table with those of the theer slips given in a fomer table, it appears that the breadth of ships in proportion to the is length is less in this table than in those when were buift about the middle of the hast comurg. 'The relative breadth of the Spanish ship apheats to have been then, an wedt as at hater periods, the greatest in proportion io the length: the relative breadth of the xinglish ship in proportion to the length appars to have been comederably less than that of the spanibh, and a litte sreater than that of the rench shipe By the table atso, it appears that the relative breath ol fonglish ships in proportion to heer lengh was increased in tae establishment of irog from the dimensions of preceding cstublishments, amt that this relative increse continued with bery little alteration till it45. 'lowatis the end of the last centary a dectease of their felutine breath wats introducet, which has inflomed mont of the subseruent desigus. The breadth of the lamest ships, by the establishment of
 sent time, the breadth of most ol our line of batte ships is within the limits of 100 and \({ }^{120}\) : by which it appears that the relative breadth ot our line ol batte ships is considerably less at present than it was at that period.

The proportional breadth which should be given :o ships is vely materially affected by the consideration of the number and wight of the cruns which they are intended to carry as the greater the mumber of gams, and the greater the weigh, the more is the stability diminished by the breater eleration of the centre ol gravity ol the shop, which must be comoteracted by a corresponding increase of beadth. The best disposition of force as to the calbte of the gans to be used on board different ships, is a rery diffocult subject, and patictilaty rerpuires, 入ir, Morgan observer, the opinion of experienced and sifemific naval oflicers for its determination. It appears to be generally atmitted, that the effect of harge shot is much more destructive than that of a greater number ol smaler shot, making logether the same weinht. The limit to which the size of the frins on board ship may be carried
with adrantare, is boumed by the comsideration of the mumber of hands requited to work them, the conbeniene of hamdiner the shot in action, the strain bronght on the beams and shaps sides by their weitrat, and the chect they protace on the stability of a ship. The beisht of the smas atoor the water minnences veIy materially the stability: ami while particular attention should be path. that the lower tiop should be at a sufficiont height to tose the leewatel some under all circamstances in which they may be topured, the "pper lices bhoald be kept as low as possible.

The chablishment of ghms in 1757 and 1762 , directed in the lirst rates, 12 pound ras on the lower drek, 2 -pamblers on the midde deck, and \(12-\) pormers on the noper deck. The cotablishment of \(1-92\), directed iz-pomatem on the lower deck, a-peranders on Whe middle deck, and bispormeters on the upper dect. It apperats that a-pomalris bave been consitlered too heary for use on boad ship. The lampe line of butlo ships of the Americans carry long si-pounders on the lower derk, short 22 -pomiders on the upper deck, and \(\therefore\). pomader carronades on the quarter deck, waist, and forcosithe The arlvantage proposed by this diepustion of lores, is the great weight of metat of a hoadside, and the promention of mistakes in the size of the shot in action. The priacipal force of larec ships being chienty requited in general action, and at short Histances. the short gi-pounters and the caronates are adopied as giviag a very effecient force. The total werght of metal of a broadute of an Linglish 120 smm ship is 1.5201 . : the weight of metal of one of these Americun two decked ships, carrying cuns in the waist, is ! onolla. The English first rate has thus the apposronce of a greater loree than it possesses, firom the smathess of the weight of metal of many of the subis. 'Po concontrate the weisht of metal apmears desirable not only as preventing incor. rect comparia, but as gishtre the most efficient force, and as adlunting the means ol kecping the weight of the guns low.

The most important consideration respecting any proposed dibposition of emens, is to place the lowe. liei at such a height as to be at a sufficicut dis*ance from the hat-water-lin', and to give the stip such bacadeh as to ensure a proper monent of stability.

The adrantage of dividing the ships of the royal navy into as tew classes as the different services would admit, has been frequenty recommended as very desimble, particularly as relates to the appropriation of stores and gear. Dxperience may esentually determine the clatses, into which the royal navy might be adranogenably divided. Such a division must. howceer, always be stabject to alteration liom presiously maforesen circumstances: surh, fur instance, as the adaptationol steam vessels to the purposes ol war, \&er. Ships ol thre deeks might probulbly be confined to one class, hasing a lit le greater breadth, and a litile more height from the lower deck to the load-water line than our presemt first rates. Ships of two deches may also probably be confined to one clase carrying 8t guns, wh our presem ships Ganges and isia, with a litile increate of hreadob. frigates mishot, perhaps, be confined to two classes. the larger carrying 60 grans,

of about the same lengtin as our present frigates of this class, and of a greater breadth; and the smaller class of 46 guns, of nearly the same length and breaduh as our present ligates of this force built after the Leda. The present as gun lrigates are gencrally considered a bad class, having too great a beight above the water in proportion to the part of the body below; the same delect which the old 80 gun ships with three decks, and the 64 gun ships with two decks possessed. This camot be fully corrected without their dimensions being so considerably increased, as to render it questionable whether their expense might not be too great for their rclative utility. A large class of corvettes, similar to some buill in America, carrying 24 or 26 guns, might in many services substitute these small frigates, and be a powerful and usefu! ship in the service. Our corvettes of 18 guns linlly substitute the is gun brigs, found too large for their rig, and are useful ressels for general service. The present 10 gun brigs, which are lound good sea boats, might be the last class. 'Ihese seren classes, with culters and other small cralt, might probably constitute adrantageonsly the royal nay.

There appear to be limits, beyond which the magnitude of the three great divisions of the navy into ships haring one, two, or three decks, cannot be carried, without injuring their properties, and increasing the expense of construction, equipment, and wear and tear, to an extent incompatible with their respective force and general service. If a nation does not possess ships of each ol these three divisions, of the greatest magnitude of the respective limits, which although not yet correctly defined, experience has advanced far towards approzimating to, it may be surprised in wars with other mations, by having to oppose, with great inconvenience and additional expense, and perhaps ineffectually, the smaller ships with two decks to the largest ships of one deck, and ships with three decks 10 the largest ships with two decks. The large ships with two decks, of \(8 . t\) guns, and the large frigates of 60 guns, may probably have arrived near the greatest limits of magnitude ol these divisions, and therelore would prevent surprise by new classes ol ships ol o ther nations.

To illustrate the loci of certain remarkable points comnected with the formation of a vessel, Chapman constructed an ingenious figure, and which we have given in Fig . 1, Plate CCCCXCIV, for the information of our readers. Its description is as follows:-

On the load water line AB, a series ol intervals 20 , 4n, 60, 80, 1m, inc. are assmmed as reperescntatives of different lengens from the stem to the stern post of a ressel. Chapman then lotad, that in the case of a bark, the locns ol the centre of grovity of displacement womald be denoted by the line Cdib, the locus of the metacentre by 1)1)13, and that of the centre of gravity of the ship and lading by Elils. In the case of a frigate, he lound life to be the locus of the eentre of gravity of displacement, GGl; that of the metaccotre, and Hllls that of the ship with its lading. So that lor a vessel of the form of a bark so feet long, the distance from the load water line to the centre of gravity of displacement, would be denoted by le;
the height of the metacentre above the load water line by LD, and the depression of the centre of gravity of the vessel with its latime, below the load water line, by the quantity LE. But for a frigate, the distance of the centre of gravity of displacement below the load water lince would be LF, the height of the metacentre above the same line LC, and the distance of the centre of gravity of the ship and bading below the water, LH. The length of the mainmast. moreover, is determined by the distance of the line 11 B from the same plane BA, so as to be of a magnitude corresponding to the stability.

If there be given to large and small ships, a form similar to that which is 1 lo feet in length, the straight line \(A B\) in the figure will represont the locus ol the metacentre, and the line \(K \mathrm{~K} B\) the curve which will determine the longth of the maimmast, so as to be in its proper relation to the stability.

In the formation of these carves, Chapman has introduced one stipposition mot strictly proper, and that is a miformity in the density of the lading, a condition which, it is manifest, cannot in a!l cases be fulfilled. The graphic representations, however, he has giren will be fonnd of very essential service in the practice of shipbuilding. It would be possible to construct a series of curves for ships of the same class, which shonld embrace the important condition ol a rariable density in the lading.

Experience has tanght ns that the place of the midship bend excreises a rery sensible influence on the properties of a ship; its situation depending more or less on the form of the extremtics.

This will be apparent, il we compare a body composed of two wedges joince at their bases, and the place of whose centre of gravity is given, with another body of the same length, but composed of two hemispheroids: then it will be lound. that the lengths of these spheroids will not bear the same proportion to the whole length as those ol the wedges; or, in other words, the greatest breadths of the two bodies will be at difierent distances from their extremities.

To approximate in some degree to the situation of the midship bend, let 1D1Bl, lig. a, late (CCCXCIV, represcnt the body of a ship, in which Dl is supposed to denote the position of the section desined, and ADE, AlF similar parabolas, ath BDF, BlF wher like curves of that kiud. Let \(C\) morcover be the middle point of the length from the stem to the stern post; E the entre ol gravity of the entire vessel;" G the centre of gravity of lid hefor the greatest section. and II the centre of granity ol the other portion of the vessel, abalt the same plane.

Assume A!3, the entite length of the vessel \(=a\), FA the distance of the midship section from the extreanity \(A=A\), and CE the interval between the middle point of the length, and the centre ol gravity of the tessel \(=m\). Now, by the property of the parabola, the distance of its centre of gravity G from the point \(\mathrm{D}=\frac{5}{\square} \mathrm{AF}\), and \(\mathrm{FH}=\frac{?}{8} \mathrm{~PB}\). Moreover, the areas ol the parabolic spaces \(M 11\), BDI vary as \(x\) and \(a-a\); and releming every thing to the point \(A\), we obtain the equation \(\frac{5}{5} x^{2}+\left(x+\frac{3}{5}(a-r)\right)(a-x)=\) \(a\left(\begin{array}{l}1 \\ a\end{array} a-m\right)\), which furnishes, by the ordinary processes

\footnotetext{
* Assumine the position E of the centre of gravity of the ressel is not rigidly correct; but the error is of no grat moment,
} and it simplifies the investigation.
of algebraic reduction, the value of \(x=\frac{1}{2}\) a-4 \(m\); and from which it follows, that the distance between the middle of the length of the ship, and its greatest scction, ought to be form times the distance between this midde point and the ewne ol gravity of the ship. In a ship fuller at its extremities, so that \(A(1=7\) AF, the distance ol the ereatest section from the mitldle \(=6 \mathrm{~m}\). Should it be still luller, so that \(\mathrm{AC}:={ }_{16}^{9}\) \(A \mathrm{~F}\), the distance of the greatest section belore the middle point will be 8 m .

Hence it is seen, says (hapman, that the greatest section should be betore the midde ol the lenget for sharp ships, as lirgates, four times the distance ol the middle point of the length fiom the ecutre of gratity of the ship; and lor morehath ships, which are very full, eight times the same distance.

This is the place ol the midship bened, when the distances are estimated on the load water line; but if they are taken on the upper pat ol the keel, which the frames are commonly placed perpendicular, \(\dagger\) the midship bend omght to be a litule betore the greatest section, by a quantity depending on the dificrence of the dranght of water forward and alt, and on the curvature of the ship at the middle.

This distance may be considered, in general, as equal to the diflerence ol the dratught ol water.
```

OF THE SC.ALF OF SOLIDITY.

```

By a scale of solidity, we are to understand a method employed by naval itrchitects, for ascertaining the displacement of a ship, at different depths below the loat water line, by means of a curve, whose abseissie correspond to the respective dranghts ol water, and ordinates to the displacements at the same points.

To construct a scale of solidity lor the ressel whose entire displacement was belore calculated, we must have recourse to the last columa of the general table ol results, nemed "Total Areas of Semi-Ilurizontal Sections."

If we reler to the table of results here quoted, and to the second fisure of Plate CCCCLXXXVIII, we shall, in the first place, perceive that the fotel displacement ol the vessel, or, in other words, the displacement before the load water line \(1^{\circ}\), amounts to 100977.93 cubic leet, or 2855.08 tons; and that to ascertain the displatement blow the horizontal section \(2^{\circ}\), we must deduct lrom the total displarement, the solidity of the part comprised between the sections \(1^{\circ}\) and \(2^{2}\). In performing the subsequent catculations, the areas of the semi-horizontal sections contained in the columa above refered to, must be doubled to obtain the totel areas of the horizontal sections, and also the total displacements.

To obtain the contents of the solid between the horizontal sections \(1^{\circ}\) and \(2^{2}\), it is manifest, since the interval between the sections is one foot, that the mean of the two, or \(\frac{7517.42+7438.64}{z}=7478.03\) cubic feet is the quantity desired; and that by subtracting this result from the total displacement, and
dividing the result by 35, there will remain 26,71.4; tons for the displacement of the vessel below the horizontal section 2 . Hence it appears, that by decreasings the drausht of water one foot, the displacement will be dimimished 213.6 a tons.

To determine, in the next place, the displacement below the horizontal section \(3^{3}\), the soliclity betweron the sections \(1^{\circ}\) and \(s^{3}\) must be determined, and the result subtracted from the total displarement. This must be accomplished by means of the formula \((2+4 S+2 s) \frac{i}{3}\), and for which in the present case, we have the following elements:
\begin{tabular}{|c|c|c|}
\hline Fixtreme Areas. 7517.12 & Even dras. 7438.64 & Ohthemat \\
\hline 7335.24 & 4 & \\
\hline \(11852.60=\Sigma\) & \(29754.56=+5\) & Yero \\
\hline
\end{tabular}

And since \(\frac{i}{3}=\frac{1}{3}\), we shall have \((x+4 S+2 s) \frac{i}{3}\)
\(=(14852.66+29754.56+0.0) \times \frac{1}{3}=14869.07\), for the solidity of the partrequired. Itence, by taking this from the total displacement, and reducing the result into tons, we shall have 2460.25 tons lur the displacement of the vessel below the section 3 . So that by decreasing the dranght of water 2 lect, the displacement is diminished 424.83 tons.

Again, to determine the displacement belou the horizontal section \(4^{\circ}\), the solidity of the part contained between the planes \(3^{\circ}\) and \(4^{\circ}\) must he first determined, and to it added the solidity of the part between the sections \(1^{j}\) and \(3^{3}\) before determined, and the sum taken lrom the total displacement.

The solidity between the sections \(3^{\circ}\) and \(4^{\circ}\) is evidenty
\[
\frac{7335.24+7304.54}{2}
\]
\(=\quad 7259.82\)
Solidity between the sections \(1^{\circ}\)
and \(3{ }^{3}\) before determined
\(=\quad 14869.07\)
Solidity between the sections \(1^{\circ}\)
and \(4^{\circ}\)
\begin{tabular}{rl}
\(109977.93-22138.96\) & \(=221.58 .96\) \\
35 & \(=2252.5:\) tons,
\end{tabular} which is the displacement below the horizontal section \(4^{\circ}\). Thus, by decreasing the draught of water 3 feet, the displacement is diminished 632.54 cons.

To determine, in the next place, the displacement below the section \(5^{\circ}\), recourse must be again had to the formula for equidistant ordinates, by which means we have
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Extreme Areas. \\
7517.42 \\
7046.80
\end{tabular} & \begin{tabular}{l}
Even Areas. \\
7438.64 \\
\(720 \% 54\)
\end{tabular} & Odu Area. 7335.24
\(\qquad\) \\
\hline 14564.22=5 & \[
\begin{array}{r}
14043.18 \\
4
\end{array}
\] & \(14670.48=23\) \\
\hline
\end{tabular}
\(t\) It has been ustal for constructers to place the different bends of timbers, at right angles to the line of the keel; a position, particularly in smath ships, of the most objectionable kind, from the unnecessary strains to which the fastenings are exposed. Dr. Imman, the Professor of the College of Nival Architecture at Portsmonth, has with his usual judgment, placed the timbers of the Sapphive, one of the new experimental ships, at right angles to the intended load water sction, a position sanctioned by the soundeat principles ol science.
and since \(\frac{i}{3}=\frac{1}{3}\) we shall farther have
\((\mathrm{s}+4 \mathrm{~S}+2 \mathrm{~s}) \frac{i}{3}=(11564.22+58572.72+\) 14670.48) \(\times \frac{1}{3}=20269.14\). Hence, by subtracting this from the total displacement, and reducing the result into tons, we have 2048.82 tons for the dis. placement below section \(5^{\circ}\). Therebore, by decreasing the draught of water 4 leet, the displacement is diminshed 836.26 tons.

Again, to obtain the displacement belore the horizontal section \(6^{\circ}\), we have
the solidity between the sections \(5^{\circ}\) and \(6^{\circ}\)
\(=\frac{7046.80+6907.40}{2}\)
\(=697.10\)
Solidity between the sections \(1^{\circ}\) and \(5^{\circ}\) before determined \(\quad=\quad 29269.11\)

Solidity between the sections \(1^{\circ}\)
and \(6^{\circ} \quad=\quad 36246.24\)
Hence \(\frac{1009: 7.93-3621524}{3}=1849.18\) tons must
be the displacement below the horizontal section \(6^{\circ}\). Therebore, by diminishing the dratght of water 5 feet, the displacement is decreased 1035.6 tons.

To determine the displacement betow the horizontal section \({ }^{-}\), we hate
\begin{tabular}{|c|c|c|}
\hline Eistreme freas. & \[
\begin{gathered}
\text { Even ireas. } \\
-43 \because 64
\end{gathered}
\] & Oli Areas. \\
\hline 7517.42 & T21) 1.51 & 7.335 .21 \\
\hline 6617.16 & 6907.40 & 7045.80 \\
\hline \multirow[t]{3}{*}{\(14134.58=\Sigma\)} & 21550.58 & 14382.0\% \\
\hline & 4 & 2 \\
\hline & 86202.32= & \(28.64 .08=\) \\
\hline
\end{tabular}

And since \(\frac{i}{3}=\frac{1}{3}\), we shall further have
\((\Sigma+4 S+2 s) \frac{i}{3}=(14104.59+86202.32+\) \(23764.08) \times \frac{1}{3}=43033.66\). And by subtracting this result from the total displacement, and dirjding the difference by 35 , we shall have 1655.55 tons for the displacement below the borizontal section \(\mathrm{r}^{\circ}\). Thas, !) decreasing the draurght of water 6 leet, the displacement will he diminished 1209.53 toms.

By obtaniner in this manner the displacements beLow the successive horizontal sections (applying the formula for equidistant ondinates, when the mamber of areas is odt, and when they are fith, adomines the method abore employed lor ascortathers the displacements below the sections \(4^{3}\) and \(6^{6}\)) we shall ohtein the numbers recorded in the liest momerical columm of the following rable: and il we lurther subtract each of these resubte fiom the total dinplacement, (28:5.0.3 tons) we shath find the numbers entered in the second numerical rolum, and which flobote respectively the successive alterations of dibplatement, produced by an uniform diminution of the dranght of water.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Displacement of the llorizontal sections.} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Decrease in the dimplacement } \\
& \text { produced by diminishang } \\
& \text { the draught of water. }
\end{aligned}
\]} \\
\hline & Tons. & & \\
\hline Section \(1^{\circ}\). & 2835.18 & Zero. & 0. 0 \\
\hline Section 2. & 26.143 & 1 firot. & 21365 \\
\hline Section 3 . & 20460.25 & 2 feet. & 421.83 \\
\hline Scetion 4. & 2253.54 & 3 feet & 63.294 \\
\hline Section 5. & 20+8.82 & 4 feet. & 536.26 \\
\hline Soction 6 . & 1819.48 & 5 feet. & 103.305 \\
\hline Sectimn 7. & 1635.55 & 6 feet. & 12.953 \\
\hline Section 8. & 147().25 & 7 feet. & 1414.32 \\
\hline Scetion \% & 1202.80 & 8 fect. & 1592.28 \\
\hline Suction 90. & 112:.04 & 9) feet. & 1751.1\% \\
\hline section 11. & 9193.75 & 10 tect. & 1921.3) \\
\hline Section 1?. & 312.190 & 11 fect. & 212.12 \\
\hline nection 13. & (i)191 & 12 fect. & 221;17 \\
\hline Section 1t. & 31111 & 1.\()\) feet. & 23 23,67 \\
\hline Suction 15. & 420.5 & 11 feet. & 2164.30 \\
\hline Section 16. & 311.53 & 15 feel. & 25.3 .56 \\
\hline Sation 1\%. & 21.47 & 16 teet. & 26.0061 \\
\hline Section 13. & 13950 & 17 fect . & 975258 \\
\hline Section 19. & 6-93 & 18 fect. & 2817.15 \\
\hline Section 20. & 29.93 & 19 fect. & 283516 \\
\hline rection 1. & 12.5 & 21 feet. & 28.0 .33 \\
\hline
\end{tabular}

Tos construct the desined scale of solidity, let the vertical line \(1^{\circ} \mathrm{B}\). Fig. s, blate CCOCXCIV. be drawn equal to 22.35 lect, the mean draght of water, measard liom the under side ol the labe keet; and let this line be divided at equal intermals ol a foot, at the points \(8^{\circ}, 6^{2}, 1^{2}, 6^{2}\), Ee. correxponding to the intervals at which the loreorang dinplacements were compated. It the point 1 , ereet the perpendicular line 1 "A equal tu 2855.08 tons, the displacement beIow the horizontal section 1 : anl at the point \(2^{2}\), the perpendicular \(\sim\) Cequal to \(20-1.43\) tons, the displacement below the horizontal section \(2^{\circ}\); at the point \(3^{\circ}\), the perpendicular 301) equal to 2460.25 toms: at the point 4 . The perpendicular 40 E equal to 2252.54 tons; atbel though the remaining points \(5^{\circ}, 6^{\circ}, 5^{\circ}, 8^{\circ}, 9^{\circ}\), Ec. pupendictlars comesponling mespectively to the displacements at those points. Tann, il through the
 be drawn, bre scale of solidity will be completed, and the uses of which we shan now procerd to exemplify.

Suppose in the first place, the ressel were lloating at her load water line \(1^{\circ} \mathrm{A}\), and that it were necessary for some purpose to diminish ber dratught of water four leet. I'hen since the line \(1^{\circ} A\) represents the displacement at the lond water line, and 5 F the dis. pracement corresponding to the point 5 or when the draught of water is diminished four bet; throngh \(F\) draw lote parallel to \(1^{1}\) l3, and de will represent on the scale of equal parts from which I A vas laid off, the quamtity of lading or stores to be remored, in order to redace the draught ol water to the desired guantity. The value ol' Ae in the cxample selected will be 836.26 tons.

Suppose, in the next place the converse rase were to occur, to ascertain what alteration would take plare in the dranght of water, by diminishing the ladins by any given guantity, say 49 tons, when the load watop line was denoted by \(2^{\circ} \mathrm{C}\). If on this water line, Cb be laid of equivalent to the 49 mons, and throngh b, We line bl: be drawn to intersect the curve of solidity in L , and \(\mathrm{L} \dot{t}^{\circ}\) be drawn parallel to \(A 1^{\circ}\), inter-
secting \(1^{\circ} 13\) in \(4^{\circ}\), then will \(2^{\circ} 4^{n}\), measured on the scate of equal parts, be the diminution ol the dranghe of water desined, and which in the present instance is two feet.

Again, suppose a vessel had received some unknown portion of her lacling, and it were repuired to ascertain by means of the seale ol solidity, the exact guantily thereol: Let the mean drawght of water be in the first place aseertamed, and lais wifl from l3 to II: add through ll lec 161 be drawn paralled to \(1^{\circ} A\), mecting the curve ol solidity ind. Jrona I let Jis be drawn perpendicular to 1 . A . 'Then will Ill, measured on the seale of \(l^{\circ} \lambda\), represent the actual displacement produced by the vessel and her present lating: and \(A K\) the quantity necescary to bring her down to the boad water line \(1^{\circ}\) A. Abo 1 If will denote the depth to which the vessel will simk, in orfer 10 receive the portion of the cargo dewoted by AK.

Suppose, lastly, that a wessel hal received a known portion of her cargo, and it were reguired wasecrtain the dranght of water produced thereby. On the load water line \(1^{\circ} \mathrm{A}\), lay ofl' 1 L , egual to the given displacement, and through L draw \(\mathrm{L} . \mathrm{M}\) perpendicalar to \(1^{\circ} \mathrm{S}\), intersecting the cume of suldity in M . Throush M draw MN paraflel to 1 A, intersecting 1 B in N . Then will \({ }^{\text {N }} \mathrm{l}\) denote the mean drath of water required.

The uses therefore of scales of solidity are very great, and in the mercantile nayy in particular, are of the highest importance. Liery ship onght to have a scale of solidity constructed for it; and the more numerous the horizontal sections for wheh it is calculated, the better. It is probable, also, that if the properties of the curves of solidity of sereral vessels ol each class of our men-of war were investigated, some amalytical relations might be discovered, of freat importance to naval arehitecture.

It may be proper to peratrk, that in conseguence of the great momericel dispropertion between the desplacements and their comesponding diemghts of water, it is convenient in practice, to adopt difierent scales for those elements. For example, if 1 A, which in the present case is represented mamerically by ass.5, be measured by the same scate as that employed for the dranght of water, the figure will be of an inconvenient size, undess the scale for the latter be assumed very minute, which will be attended also with disadvantage. 'The best way, therelore, is to adopt one convenient scale for the draught of water, and mother. for the displacement, but taking care in the application of the figure, to measure each by its own proper scale.

\section*{ON CALCLLATING THE TONNAGE OFSHIPS.}

The method of constructing a scale of solidity, naturally leads to the consideration of the mode by which the tomatse of a ship should be calculated; an interesting disquisition on which, we add from the pen of Mr. Nurgan.

The propriety of having some scale by which the magnitude or capacity of ships may be compared with one another under one point of view, is miversally acknuwledged. Differcht causes, according to the services to which ships are applied. conduce to the propricty of a true method of comparison. Il the number of guns a ship of war carries be correctly stated, Vol. XVII. PariI.
and subject to mo variation, and the number of rouns shand beal a comstant pelation whe matnitude of the borly, the desismation of a ship ateording we the namber of rrans miglit be sufficient for gencral purposes as shipe of war reghire chiefly to be compared with respect to their forece.

The tomage is frenerally used as a measute, by which ships built by contrate are patis los. In order What his method of estimating the salue of' a shipmay be correct, the relative alteration ol any dimension should alter the whmage in the same proportion, as it would effect the expense of buitding the ship. By the present methot of measuring the tomage, the inerease ol the breadth of a ship increases the whase in a murh ereater propurtion than the expease of buibling. Though other rales may be given ior calculatise the tomage of ships. Which may be less incoriect as a scald of payment of buidding than the one at present in lose, get, as no correct anatogy can be established between the tomatage and the experse of Duidting, it appears desimble that some oftre scate ol payment hould be adopted, foumled on more correct pribeiples. Il any part of the displacement of a ship be takea as a measure of the expense ol buidding, it appeats more reasonable that the weight of the hull, which is delermined by the light displacenent, should be taken, han the prate of the displacement which is bromght into the water by the latioge A better scale of the expense of buiding ships even than this may probably be determined by attention to this particular object, there beins certainly no necessity that the same scate of measurement should be used tor the lading and expense of buidding.

The disadrantage of payine for ships in proportion to their tomage, is, nowerer, no clonbt, in a great de. free corrected by a itull cxamination of the desizn. previoncly to the settement of the contract. In mer. chant ships, howerer this mode of payment is in mumerous instances lound to be injurious, by being the means ol' too little breadth beings given to them in ondei wreduce the tomage, and thereby lessen the expense ol buitling.

A correct method of calculating the innare, although desirable for all ships for the sake of unformity. is particularly necessary for merchant ships, which should always be compared by the true guantity of lading they cancary, in correct proportion to which their dues should be pait. The tomage shoudd be the correct measare of the number of tolis of the lading of a ship. 'Ihis is the weight that will brins a shap down in the water from the light water line, at which it swims when properly equipped with every thing on board, except the ladins, to the load water lim, at which it swims wher laden.

This may be correctly found by determituing the so. lid content of the body between the light and loal waterlines, the weight ol' which, considered as seameer. is the trie lading; this solid divided by 35 , the mamber of cubic feet of sea water in a ton, gives the arbe tonnage of weight of the lading.

The rule commonly used in England does mot evera approsimate, on correct principles, to the true \(:\) thnage: the elements of the calculation beingerromeonsIy taken, the hatf breadth of the ship beins substituted for the mean depth from the load a the light draught of water, and the divisor 94 substituted lor: 5 ,
as a correction, though a rery inadequate one, to this creor.

Among the methots that have been proposed for thedetemination of the bonage ol'ships, that of Chapman, in the eleventh chapter of his Traite de le Conatimtion des Joisverur, is lounded on the truc elements of the calculation; it has, however, this serious disad-valtage-that different divisors are taken at the will of the person who makes the calculation, according to his judgment of the relative fulness of the bouly betwach the load and light draughts of water.

That there would be considerable trouble in obtainfag the correct tomage of all the ships of the merhant naty, must be admitted: of the ships of the Royal Nars the tronble would be mach less, as it conld be calculated from the drowings by which they were milt. which are always preserved in the Nay (office. Ete: the correct tomage, even of all merehant ships, misht obtained in a fery years and when the ton1 Bg of the shaps now athot should be known. the Wicit difioulty would hate been surmounted, as the Tonnege of every new ship could be calculated with comparatively little trotible. is scale of tonage shonid be calcufated for every ship. previously to its !eeng launched, cither from the drawing (if built from Gne., or from the ship itsulf. The light water line might be determined when the ship is fully equipped, vitherery thingon board except the ladiug, and transferred to the scale of tomage previonsly made; the tomage betwen this and the load water line would be the truc tomage, or weight of lading of the ship. Tinc lading on board, when the ship swam at any intomediate line betwicen the light and load water lines, wu:ld be immediately known by reference to the comphata scale.

If it be objected, that many persons who are now capable of measuring the tomate of ships would be unsble to make these additional calculations, it may le answered, that as the number required to perform thi: service would be but small, sufficient persons ari, be bound from those at present employed in this wok, fully competent to medrake it: and indeed, thei the calculatons are so straple that all might - "en be perlectly acquainted with them.

A Sa ore prives in hic paper on the stability or ships, the Phitos phiert Then uetims of the lroyed Soctity Ofomen, fur 1rge, p. Sol, the tormase of the C'uff'th: an East Indiaman, between the load water sectan ant six successive horizonal sections beloy it, an :wr live apart. 'lhe total dplacement of this ship

The watersection, No. 12 , is the load-water-scction.
\begin{tabular}{|c|c|c|c|}
\hline 111 1, & Wiferene & 120, & 1) ¢fierence \(^{\text {a }}\) \\
\hline iminersction & (ii) Tomase. & Watu-swtim. & of Tomange \\
\hline 1- \% : 1 & \(\therefore\) - toms. & 120:101 & 3 O Tons. \\
\hline 111011 & B.-4 & 12 101 1/ & 751 \\
\hline (11) & 为 & 12109 & 1118 \\
\hline 9) to 8 & 8.3 & 12108 & 1.15.5 \\
\hline 8 to 7 & 31. & 1210 & 182, \\
\hline 7106 & 33.3 & 12190 & 2136 \\
\hline
\end{tabular}

Frombese calculations a scate of tomage may be formed, by which the weight of lading which would bring down this ship any distance between the land
and light draughts of water may be immediately found.

The following method of calculating the tomage of ships, although by no means superseding the propriety of scales of tonnage, may be considered superior to the rule at present in use, being founded on the true clements of the tomage, the length and breadth of the ship, and the depth between the load and light draughts of water, and approximating very nearly to the true tonmage.

Let \(u b\), Fig. 7, Plate CCCCXCII. represent the load-water-line, and \(c\) a the light water-line; take the arithmetical mean of \(\epsilon c\) and \(b d\), which call \(e\); let the length of the load water line, \(a b\), be taken from the fore part of the rabbet of the stem to the after part of the rabuet of the stern-post, which call \(f\); and let the greatest breadth at the load water line be represented by g. Multiply these three quantities together; then \(\frac{u^{2}}{y} \cdot\) of \(g\) will be the tonnage, in cubic fect, of Sua-water, \(\frac{x}{y}\) representing the fraction expressing the proportional part of the whole solid.

By obtaining the correct tonnage of different ships, by rules for calculating the contents of solids, it is found that \(\frac{3}{4}\) may be substituted for \(\frac{x}{y}\) subject to certain cortections, determined by reference to the ships whose tomage is requirce. This correction may be most easily applied when reduced to a per centage, according to the different degrees of fulness of the part of the body contained between the load and light-water-lines, which may be determined by the following method:-

Draw e \(f\) parallel to \(u b\), and at a distance below it ecpual to hall the mean of \(a c\) and \(b l\), and let \(g t h\), Fig. s, represent the horizontal view of this section; divide the whole length git into eight equal parts, and at the points of division draw it \(, l r, l s, m t, n u\), \(o r\), and \(P u\), perpendicular to the middle line \(g h\). Take the sum ol the leagths of these seven ordinates, and add to the part of the tonnage already found \(1 \frac{3}{2}\) per cent. for every one per cent. that this sum exceeds six times the length of the longest ol these ordinates. This will give an approximate value ol the tonnage 10 a great degree of accuracy.

\section*{Iicle.}

Take the length of the ship from the fore part of the ribbet of the stem to the afier prart of the rabbet of the stern-post at the height of the load water line, the greatest breadth of the ship at this height, and the nean depth between the light antload water lines; multiply these three dimensions together, and take \(\frac{\pi}{4}\) the product, and divide by 35.

Then divide the length ol the ship at half the mean depth between the light and load water-lines into cight equal parts, take the sum ol the tengths of the seren half-breadths to the outside of the ship, and add to the above quantity l's per cent. for every one per \(^{\prime}\) cent. this sum exceeds sixtimes the length of the greatest of these half-breadths.

The result is the tomage, or the weight in tons, that will be required to bring the ship down in the water lrom the light to the load-water liue.

Lixumple.

Length of a ship of 80 guns, from the fore part of the rabbet of the stem to the alter part of the rabbet ol the stem-post, at the height ol' the load-water-line
181.75

Greatest breadh at this height to the outside of the plank of the botom
50.25

Mean depth between the light and load-waterlines
7.83

Then \(\frac{3}{4} \cdot \frac{181.75 \times 50.25 \times 7.83}{35}=1532.1\) tons.
The sum of the seven hall-breadths to the outside of the ship
161.5

The length of the greatest of these hall'breadths 2.4 .3 \(24.8 \times 6=148.8 ;\) then \(161.5-118.8=12.7\).
12.7 is 8.5 per cent. of 148.8 ; and \(1.5 \times 8.5=12.75\); then 12.75 percent. of \(1532.4=195.4\) tons.
Adding 195.4 tons to the first quantity, 1532.4 tons, the result, \(1532.4+195.1=1727.8\), the required tonnage.
'The light water line in Itis Majesty's ships can always be obtained by observation, and in mereham. ships it can be accurately taken when every necessary store is on board, including every thing but the lading, and entered on the register. Phere would be also frequent opportunities of proving the truth of it. Should this measurement be taken in any case when some of the stores (as anchors, cables, fec.) are not on board, proper deduction must be made for it in the calculation of the tonnage.

The principal trouble in this operation is the measurement of the half-breadths; but it requires only such a degree of attention as every one may be expected to pay who may be directed to perlorm the operation. The arithmetical operation is very simple, and may be as casily remembered as the present rule.
'fhis rule admits of several modifications: a method less correct, but on the same principle, might be adopted by the measurement of the hall-breadths on the lower deck, instead of the hall-breadths at the horizontal section at the mean depth between the light and load water lines, or the measurement of fewer half-breadths might be taken; but the rule as above stated appears sufficiently easy for practice, particularly as greater correctness is "always a sufficient reward for a little more trouble.

\section*{on the Archling of shlps.}

By the arching of a ship, we mean that alteration of form which every vessel undergoes from the moment it is launched. In cvery point of view in which the general problem ol arching can be contemplated, it will be found to involve considerations of the highest importance to naval architecture. Owing its origin to those peculiarities of form, which the complicated conditions ol' stowage, stability, velocity, and general sailing qualities render necessary, it has been a great and principal object with the naval engincer, to preserve to the floating vessel unimpaired, those essential properties of form, which he endeavoured to im-
part wher in the proress of bmitiane. Comstmerert, as ships in sencral arce of timbers of the most baticd dimensions ant forms, - lisposed in dipertions of so many diftement kint, and subjected to straims so changeable in dixertion amb guantity, it may be laily Satid, that next whe onithal determination of the
 may be measured. by the duspec in whit the tendenty to arching may be diminished. Wre shall hereaterer have reasom to atmine the mastroly combinationsof Sir Robert Seppings, to present this derampemant , f' the frames of our ships of war."

We shall procecd to trace, by an inluctive pios ecss, the operation ol those lidees that contrioute !, arching.

H, in the first place, an clastic body ol any mathitude, specihcally heavier than wator, be wholly im mersed in that buid, no whedeney to derange the figure or position ol' any ol' its axes will be profuced, from the equal and uniform action of the water on its dil. Perent surliaces. But il'the solid be specifically lighter than water, and have conseguently only a pottion of its colume immersed, either ol'its axes, -whether it be longitudinal, lateral, or vertical, will be subjected in peculiar aherations of position and figure, - party from the pressute of the llaid operating only min portions ol its sides, and parth, il the form olt the body be irreguiar, from the upward pressure of the water on its different rertical sections, not lacing cepuivalent to the weights ol the sections themsclves.

Let us, however, lirst take the case of a body, whose superior and inferior surlaces are equal, similar and parallel, and any vertical section ol which is represented by \(A B C D\), lig. 1, Plate \(C C C C X C V\). and let the line RF represent the shrlace ol the water section, and therefore indicating the depth of the portion immersed.

Then since the uper and lower surfaces of the brd: are, by the hypothesis, equal, similar, and parallel. it follows that its sides are, in every part, perpendicalar to the fuid surface. Suppose also the body to be composed of rertical lamine of equal thickness. at right angles to the section ABCD, and let (fll denote one of them. Then since the gravitating lorce ol this lamina is excrted in the direction CII passing through its centre of gravity, and that his sme line Jikewise passes through the centre of starity of the column of nuid IH, displaced by the lamina: it follows from the laws of hydrostatics, that there will be an equlibrium between the grasitating force of the lamina, and the upward pressure of the flud displaced by it: and that hence no derangement will take place in the particles constituting the lamina, from the influence ol the pressure here alluded to. And since all the lamina constituting the body are, by the hypothesis, similarly acted on by the lluid, it follows that no ellort will be produced by the upward pressure of the diaid, to derange the form of the solid.

But suppose, in the next place, that some of the vertical lamina, which make up the solid, should rease to preserve a perfect equality between the gravitating force and the upward pressure of the fluid; a case that would arise if a vertical section of the body were

\footnotetext{
* We cannot but regret that the important improvements connected with the trussed frame lare not found their way more generally into our merchants' yards. It must be as beneficial to preserve a merchant ship from arching as a ship of war. We shall hereafter allude to some important considerations relating to the building of merehant ships.
}

Cf the form . DDCD) Fig. 2, Plate (CCCXCV; some of the laminx. as KI, receising no upward support liom the fluid, while their onn gravitating powers remain undiminished: and others, as MN, deriving trom the water only a partial support: it follows, that esen if the sections between B and C could preserve their forms unchanged, those beyond the same points would by no means do so; and that, therefore, from the necessary adhesion existing among all the lamine constituting the body, there would be a general tendency in the whole body to alter its form.

To investigate this new condition, let G cenote the centre of gravity of the emtire solid, and \(O\) that of its immersed volume: and let the line connecting those points be prodinced, so as to divide the entire solid into the two porto:s APQB, and 1PQQ. Now although, from the laws of hadrostatic cquitibrium. the points (\(B, 0\)) are situated in the same rertical planc, it by no means lollows that the portion of the eretire solid, Al'Qlb, and it, immersed volume RSQI, in the present condition of the whole body, can have their centres of gravity in the same vertical pane. Hence we may imagine the centre of graity of the former to be situated as at \(s\), and of the lather as at \(k^{2}\); we centre a, being, fiom the form of the body. necessarily farther from the wrow line l'Q, than the centre \(s\). In like manuer, may we suppose the point 2 to be more distant from the same vertical ine \(P Q\), than the point \(\delta\).

Now, the gravitating fore of the solid APQP operating \(a: z\), and the upwird pressure of the liad at \(\hat{*}\), and that these lorces act in opposite and nut cuincident directions; from those centres, let lines be firawn perpendicular to the fluid surlace; and let Wrepresent the gravitatimg elfort of the body APQB, and \(u\) that of the fluid acting throughe. Let also a similat construction be made with respect to the centres \(7 . d\), the weights iv', w' representing the mechanical efforts operating at those points.

If we how contemplate the effect of the forces acting at the points \(a, z\), it is apparent that their tendency is to depress the extremitise of the body; whereas the action of the forces operating at the points \(\beta\), \(\delta\), have a tendency to clecate its midde parts; and we know, from the theory of the neutral axis, that the ulimute effect of these furces must be, to make the catire body turn abont a line of that nature, situated somenhere within the area of liracture, if the lores apdiced are capable of breaking the body; and which line, for the sake of ilhastration, we may suppose to be situated in the plane of the llad surface at 5 ; thereby causing all the fimes robore that surface to be in a state of cetension, and all below in a state of compression: while those fibres which pabs through the neutral point \(S\), madergo neither extension nor compres sion. but are in a state perfecty neutral with regard to both.

Bat if. in addlition the want of support afforded by the fhat to the inctined surtaces AB, CD, we imagine the vertical sections between 13 and \(\mathbb{C}\) so constituted, as not in every ase whe exactly in equilibrimm whth the columns of flut displaced respectively by them; it is obvions that an atditional tendency to arching will be ereated, and which we shall bow more particularly investigate, by contemplating she actual conditions of a ship.
'to discover the law which inlluences a ship,

Whether laden or unlatlen, when foating quiescemly in water, we shall, in the first phete, consther is with respect io its length, and afterwards in relation to its breadth.

To accomplish thix, let us suppose a ressel to be disited into verteal sections of an indefinitely small constant thickness, perpendicular to the vertical longitudinal plane. If we commence our consideration at the stem. and atrance gradnally forwan, it is erident that the sections comprising the conter ind its connectine parts, being free from the water, will be subject to no reaction from it: and when at last any reaction of the laid does take place, it most at first, from the peculiar form of the body, be infinitely less than the weight of the section whose disphacement occasinnsit. is we approach, however, nearer the midnhip section of the ressel, the upward section of tire flud will approach more and more to an equality whith the weisht of itn corresponding section, and the timatcly become edral to it: and il we pass beyond this section, and which may be demominated the Sectinn of Iydrostatic Equilibrium, we shall find the werght of the water displaced, become greater than the w-ight of the section above it. In like manner, il we commence at the bow of the ressel, we shall find a simitar section ol hydrostatic equilibrium. and alterwards a like increane of the weight of the water diaplaced above the weight of the section reposing cnit.

Let us, therefore, in this rery interesting inguiry adopt the investigation of Dupin, contaned in his puper .. Sinn le stmoture dus Fatescume Ingluis," in the Philosophical "pansactions lom 185.

For this purpose. let \(x\) represent the distance of any part of a vessel, from a reptical plane assumed as a standard ol relerence lor the different moments, and bet \(d\) or be the thickness ol the infmitely small sections parallel thereto. Let also of (d) d \(\mathrm{x}^{\prime}\) denote the weights of those sections, and \(\psi(x)\) d \(x\) that ol the wate \({ }^{2}\) which they displace. Then will the total moment of these lorces be
```

x.\&(x)\cdotd, 的一 x.\psi(x)\cdotdx,

```
and, conscquenty, the integral of the same system of moments
\[
f\{x \cdot \varphi(x) \cdot d x-x \cdot \neq(x) \cdot d x\}
\]

Now, in order that this function may be cither a maximum or a minimum, it is necessary that its rariation should be zero, aud which, therelore, produces. the equation
\[
\delta f\{x \cdot \phi(x) \cdot d x-x \cdot \psi(x) \cdot d x\}=0
\]

But in this latter expression, neither ol the original sections allers its weight; and the functions \((x)\) and \(\psi\) (.r) remain constant, as well as the thickness \(d x\) of the sections, only by removing the plane, with respect to which the moments are taken, to the distance o \(x\) the section of which \(\Phi(d, r)\) represents the weight, and \(\neq(d x)\) its displacement is added.

Hence we have
\[
\begin{array}{r}
o=\delta f\{\phi(x)-\nmid(x)\} x d x=\int\left\{\frac{1}{2}[\phi(\delta x)-\right. \\
\psi(d x)]+[\phi(x)-\neq(x)]\} d x \cdot \delta x
\end{array}
\]

Bat since the functions \(\Phi(x)\) and \(\psi(x)\) become zero
when we canse it to vanish, - these expressimus represcut the wright and displacement of a vanibhing secdion; and hence we may perceive hat \(p(d, x)-i(d . r)\) becomes infantely small when compared wihn \(\phi(x)\) \(\psi(. r)\).

If, therrfore, the expression \(\rightarrow(f . r)-\psi(s, r)\) may be weglected, much more may the function: \(\left[\rho(\delta,)^{\prime}\right)\) \(—+(\delta \cdot r)] d x \cdot \delta, r\) and heme the gincralexpression representing the combition of cibler the matmum or minimun of the moments, which tend to produce arching, will be
\[
\begin{aligned}
& o=f\{\phi(x)-\psi(x)\} d x \cdot \delta x \\
& \text { or } \\
& o=\delta x f\{\phi(x)-\psi(x)\} \cdot d x,
\end{aligned}
\]
in which \(f_{p}(x) d x\) is the total weigh of the sections under consideration, and \(f t\left(\begin{array}{l} \\ \text {) }\end{array} A^{\prime}\right.\) the total weight of the displacement of the same sections.
From this last equation of condition, we learn that the sum of the moments which cond to produre arching is either a maximum or a minimum, when the weipht of the part of the vessel, either before or behind the plane of the moments, is equal to the weight of the water displaced by the same part of the ship.
It may be necessary, however, to distinguisl the condition of the maximum from that of the minimum, and which may be discovered by the circumstance, that according as the term of the formula neglected has the same or a contrary sign from the expression for the total moment
\[
\int\{p(x)-\nmid(x)\} x \cdot d x
\]
the sum of the moments, with relation to the plane determined, will be a minimum or a muximum.

But since \(\phi(\delta x)^{\delta} x\) is the weight of the section having \(\delta x\) for its thickness, and \(\psi(f x) d x\) the weight of the water displaced by the same section, it follows that the quantity
\[
\therefore[+(3, x)-+(s)] \cdot s x \cdot d \cdot x
\]
will be pesitive or begrative, accordias as the weight of the infmityly smath secion, which commoners at the plane of the moment, is sereater or bess than the weight of the water dieplaral by the section itself. from these primiphes we deduce the following theorems:

11. Then this effer urill be "emuximuru. whan the i,
 meats, lius its onem moment in ec controty disertion to llut of the totultmentrel.
111. That the eflect will be a minimmat when this sertimutess its oncomompeat terting in tha stane disection ws the totel momerut.

We shall procest to the farther illastration of these theorems by their application to at seventy-follo sun ship, the elements of which are derivel from int. Young's paper on the employment of Oblique Riters, contained in the Philosophical Transactions for 181 :

*As many of our readers may be desioms of having the whole of the amat tical investigation relating to this importut subject, from the pen of Dr. Yomg, we add it in the following note.

The laws of equilibrimm will not allow us to smpose the above forces concentated in the niklle of the reapective portions, or equally distributed through then: and it becones necessary, that one of the weights should be sithated further forwards, which must be that of the foremost portion, containing the bowsprit and its rigging. It is also hatural to suppose the execoses of weight and pressure distributed with as lew abrupt changes as possible, so as to neutralise eachother at the eommen temmation of the adjoining portions, and to becone mone unequal in parts more remote from these neatral points. Thus the excess of weight in the first 49 feet being 72 tons, it maly be supposed to begin at the rate of \(\frac{14.4}{49}\) tons per frot, and to dim..nsh gralually and equably, so that its centre of action will be at the distance \(\frac{49}{3}\) from the end; the excess of pressure must increase in the next place, until, at the distance of 59 fuct from the stem, it becomes \(\frac{108}{10}\) per font, and must then diminish until it vanishes at 69 , where the excess of weight must begin to preval, becoming at \(94, \frac{118}{25}\) per foot, and wanishing at 119 . The excess of pressure might then be supposed to increase gradtalls throngh the next portion, in order to avend an abrupt clange at its evtrenity; but this supposition would still be insufficiont, and it hecomes necessury to imagine that for 6.6 feet the forces remain neutralised, and the pressure then prevails, so that its execss becomes at last \(\frac{119}{6.7}=17.7\) per foot; it must then decrease for 17.5 feet, and the escess of weight at the extremity must become 19.7 per foot, the neutral point being at 1565 . The equilibrium of the foreses will then be expressed by the equation \({ }^{72} \times 163-108 \times 59+118 \times 94-119 \times 134.5-155 \times 144.8+192 \times 1695=0\)

From this distrbution of the forces, we obtain a determimation of the strain from eath point of the re-pective portions, which is in the joint ratio of the magnitudes and distances of all the forces conecrned, on cither side of the point, reduecd into a com-

In order to distribute with some uniformity, the positive and negative differences recorded in the last column of the precedins table, M. Dupin has had recourse to a geometrical figure, and by an hypothesis, originally adopted by Dr. Boung, in the paper before quoted, has assumed in the line AO, Fig. \(\therefore\), Plate CCCCXCV . supposel coincident with the plane of the water's surlace, eertain segments \(A C, C E, E G\), GH, HK, KM, and MO, having values equivalent to the quantities recorded in the first column of the succeeding table: and on those segments has supposed
certain triangular areas to be formed, equivalent to the positive and negative quantities recorded in the last column of the former table. For example, on the segment \(A C\) is formed the right angled triangle ABC \(=+72\) : on CE , the isosceles triangle \(\mathrm{CDE}=-108\); on EG , the isosceles triangle \(\mathrm{EFG}=+118\); on 11 K the right angled \(1 H K=-119\); and on \(K M\), MO the right angled triangles IKM, NON, the area of the former being-155, and of the latter+192: the difference of these areas being equivalent to +37 , the last member of the column last refered to. The po-
mon result. For the first prortion it in \(\frac{144}{4 y} \times \frac{1}{2} x-\frac{1}{2} \cdot \frac{144}{49} \cdot \frac{x}{49} \cdot \frac{1}{3} x=\frac{72}{49} \cdot x^{2}-\frac{1}{6} \cdot \frac{144}{49} \cdot \frac{x^{3}}{49}, x\) being the distance from the stem; for the 2 l , \(22\left(x-16 \frac{1}{3}\right)-\frac{1}{6} \cdot \frac{108}{10} \cdot \frac{(x-49)^{3}}{10} ; 3 \mathrm{~d}, 22\left(x-16 \frac{1}{3}\right)-54\left(x-55 \frac{2}{3}\right)-\frac{108}{20}(x-59)^{2}+\frac{1}{6}\). \(\frac{168}{10} \cdot(x-59)^{3}: 411,72\left(x-16 \frac{1}{3}\right)-148(x-59)+\frac{1}{6} \cdot \frac{119}{25} \cdot \frac{(x-69)^{3}}{25} ; 5\left(\mathrm{~h}, 72\left(x-16 \frac{2}{3}\right)-108(x-59)+59(x-94)\right.\) \(+\frac{118}{59}(x-91)^{2}-\frac{1}{6} \cdot \frac{114}{25} \frac{(x-91)^{3}}{25} ; 6\) th, from 119 to 125.5, \(72\left(x-16 \frac{1}{3}\right)-108(x-59)+118\) (\(x-91\); for the 7 th, we must add to this expression \(-\frac{1}{6} \cdot \frac{119}{13.2} \cdot \frac{(x-125.6)^{3}}{13.4}\); and, in the last 37 feet, the strain will be expressed by \((176-x)\) \(19.7 \times \frac{1}{3}(15-x)-\frac{1}{6} \cdot 19.7 \frac{(1-6-x)^{3}}{19}\). Ience we find the strain, at seven points, 22 fect distant from each other, and from the ends \(605,1903,2815,224,2655,4610\), and 1955 ; and by taking the fluxion of \(x\) in the seventh portion, we determine the marimum at \(141 \frac{1}{3}\) feet, amomating to 2251 tons, supposed to act at the clistance of one foot. In order to form an idea of the curve which would be produced by such a strain acting on a uniformly flexible substance, we may consider the curvature as representel by the second thation of the orlimate \(y\), am 1 by finding :and correcting the fluent separaty for each portion, we may obtain the ortinate or lan at any given point corvesponding to a given exten of arching of the whole fabric. It will, however, be sufficiently accumate fur this purpose, to conviter the furces is concentratel in a limited number of points, dividing those which act in the extreme pustionsintu two paris, in omber that the curvature may be contimed to the enls; so that the whole of the forces may te thus distributch: at 0.36 ; at 32 2-3, 36 ; at \(59,-108\); at 91,113 ; at \(13155,-119\); at \(141.3,-155\); at 163,96 ; and 4 t 176,96 . The struin for each ponion may then be represented by \(a-b x\) whence \(\ddot{y}=a \dot{x} \cdot \vec{x}-b x \dot{x} \cdot \dot{y}=a x \cdot \frac{1}{2}\) \(万 x^{2} x+c x\), and \(y=\frac{1}{2} a z x-\frac{1}{6} b x^{3}+c x+d\). It will be most convenient, in calculation, to make \(x\) begin anew with each portion, setting out from the midhe, and to divile the numbers by 100 , in order to shorten the operations: thus, for the midule portion from 89 to 59 , the strain will be \(.2428+.36 x\), 6 being \(.20 \cdot 8\), and \(z=-.36\); and when \(x\) becomes. \(22, y\) is
00552, and when \(x=29, \frac{y}{x}=.0740\), and \(y=.0511\); which values being substituted in the equations for the next portion, We have \(c=1,-t\), and \(l=011\); and by going throngh the whole length in this maner, we find the fall at the extremes and at seven equidist:ant intermedhate points, \(4865,0.05325,02514, .00552,0,04507,02531, .06705\), and .12325 . If we wish to find the point at which the curve is paratlel to the chord of the whole, we must enguire where \(c=(12025-.08697): 1.76\). which will be at 93 feet or 10 feet before the midships.
We must next letermine the magnitule of the strain arising from the lomgitudinal pressure acting on the lower part of the ship mly. The resistance being stappasel to le proportional. in the first instance, to the degree of compression or extension, accoming to the common and almost necceary law of the constitution of elastic bodies, and varying also in the direct ratio of the atrength of the fabric, which may be assumed to he either cquable, of in the case of a ship, proportional to the distance from a print more or less remote, we must torm an equation of equilibrium for the absolute equality of the forces in opposite directions, and another for their powers of acting with respect to any given point as the fulcrum of a lever. Thus the floxion of the absolute resistance it the distance \(x\) from the upper surface, supposing the strength to be as \(a+x\), and the neutral point, at which the compression an! extension cease to be at the distance \(b\), will be \((b-r)\) c \((u+x) x=c(a b-a x+b x-x x) x\), which, when \(r\) is equal to the depth \(d\), must become equal to the force \(f\) producing the strain, or \(f=c\left(a b x-\frac{1}{2} a x^{2}+\frac{1}{2} b x^{2}-\right.\) \(\left.\frac{1}{3},{ }^{3}\right)\); and tor the secmul equation, reformis the forces to the upper surface as a fulcrum, the fluent of \(c(b-x)(a+x)\) \(\therefore \dot{A}\), mant be equal to \(f\), e being the dist:mee at which the forece is applicd; whence \(c f=c\left(\frac{1}{2} a b d \sim-\frac{1}{3} a d^{3}+\frac{1}{3} b d^{3}\right.\) \(\left.-\frac{1}{6} d^{\prime}\right)\). Now if we makc \(a=d=x\), the equations become \(c\left(\frac{3}{2} b d^{2}-\frac{5}{6} d^{3}\right)=f\), and \(c\left(\frac{5}{6} b^{2} d^{3}-\frac{7}{12} a^{4}\right)=e f\), and irom the former we have \(\left(\frac{5}{6} b^{3}-\frac{25}{54} d^{t}\right)=\frac{5}{9} d f\) : ind, by subtraction, \(\frac{13}{108} c d^{4}=\left(\frac{5}{9} d-e\right) f\); consequently the force \(f\) may be considered as ating on a forer of the length \(\varepsilon-\frac{5}{9} d\), and if we take any other value for \(a\), the fractional mulsipher of \(l\), instead of \(\frac{5}{3}\) will be \(\frac{3 a+2 d}{6 a+3 d}\), thus if \(a=\frac{1}{2}\), we have \(e-\frac{7}{12} d\) for the length of the lever. In order to find the men histance \(e\) at which the pressure of the water acts, we may suppose the form of the mean transerse section of the ship
 beinc \(177^{\prime \prime}\) fet, and the breathi 47 , whence the deph must be 18.8 fect; then the centre of gravity of a parabola being at the
sitive areas, it will be perecived, are formed below the plane of flotations, and the negative areas abore it. These particulars are recorded in the next table.
\begin{tabular}{|c|c|}
\hline Values of the segments manes up the total length AO of the ship. & IAreas equisalent to the dilier cances between the weight., of the sections :and their displacements. \\
\hline \(\mathbf{A C}=49\) & \\
\hline \(\mathrm{CH}=20\) & Surface \(\mathrm{AlBC}=+72\) \\
\hline \(\mathbf{E G H}=50\) & surtice cobt \(=-108\) \\
\hline \(\mathbf{6 1 1}=6.6\) & sumfec Rum \(=+118\) \\
\hline \(1 \mathrm{~K}=13.4\) & Surface Hat \(=-113\) \\
\hline \(1.15=17.5\) & Surfuce \(\mathrm{HMM}=-1.5 \%\) \\
\hline \(\mathrm{MO}=10.5\) & Surface \(\mathrm{ANO}=1192\) \\
\hline 'rotal \(\mathrm{AO}=176\) & 'lotal \(=001\) \\
\hline
\end{tabular}

In the next place, let the centres of gravity of the several triangular arcas relerred to, be determined, and from them let perpendiculars be demitted on the primitive line \(\Lambda O\), mecting it in the points \(k, d, f, r\), \(s\), and \(n\). The determination of these centres will furnish the elements of the following, table: the comparison of the first and last columus ol' which, gives the respective distances of the common origin ol the horizontal ordinates from the centres of gravity of the triangles.
A \(b=\frac{1}{3} \mathrm{AC}=\frac{1}{3} 49\)
\(\mathrm{~A} d=\mathrm{AC}+\frac{1}{3} \mathrm{CE}=49+10=16 \cdot 3\)
\(\mathrm{~A} f=\mathrm{AE}+\frac{1}{2} \mathrm{EG}=69+25=94\)
\(\mathrm{~A}=\mathrm{AH}+\frac{2}{2} \mathrm{HK}=125.6+8.9=134.5\)
\(\mathrm{~A} s=\mathrm{AK}+\frac{1}{3} \mathrm{HM}=139+5.8=144.8\)
\(\mathrm{~A} n=\mathrm{AM}+\frac{2}{3} \mathrm{HO}=156.5+13=169.5\)

This construction, therefore, furnishes for the equilibrium of the forces operating on the vessel, the equation
\(0=12 \times 16.3-109 \times 59+118 \times 94-119 \times\) \(134.5-135 \times 144.8+19 \approx \times 169.5\),
being identical with that siven by Dr. Young, at page 306 of the paper before refermed to.

On this equation of equilibrium, N. Dupin makes many judicious observations. In the first place, he remarks, that the triangle EFG ought not to be regarded as isosceles, since its vertex is the point in which the difference between the weight of the sec-
tion and its displacement is the greatest in this part of the vesscl, and which point ought to comespond with the position of the main mast. But the main mast is situaterl abaft the midde point of the vessel, whel is therefore neater to the common point of origin, \(A\) by 19 feet \(\left(=\frac{17 f}{2}-69\right)\) than the central part of the shipe Accorling to lupin, the vertex of the wiangle CDE: is tou liw lorwarl by at loast 1 ? lect. In order also to make the sum ol the moments vanish, Dr. Youns was obliged to transher a weight of is tons from the fore part of the ship (1) its displacement. These discrepancies arose hom the: imperifet nature of the data lumished to l)r. Fonns.

Let us, however, fullow the steps of bupit, and, retaming still the hypothesis of lar. Younc, apply the theorems belore investigated, to the determination of the sections, which indicate either a maximum or a minimum. For this parpose, smee the area of the triangle \(\triangle B_{C}\) was tesignated by +72 , and that of the trimgle CDl: by - lon, we must enteavoup to draw within the later triangle a line such as p \(/\), which shall cut of from it the wegative area CDP \(p\), cepal numerically to the area of the triungle \(1 B C\). Since, therefore, the urea ol the wapeam CDJ 1 is, by this supposition, equal to- -2 , it follows that the areat of \(1 \rho \mathrm{E}=-36\); and since similar triangles are to each other in the duplicate ratio of their homologrous sides. we have
\[
د \mathrm{D} \ell \mathrm{E}:\lrcorner \mathrm{P} p \mathrm{E}:: d \mathrm{E}^{2}: \rho \mathrm{E}^{2}
\]
or numerically \(-\frac{193}{2}:-36:: 102: \frac{-6 \times 10^{2}}{-54}=1 \mathrm{E}\)
Hence \(p I=20 \quad \sqrt{\frac{1}{6}}=8.13\); and conseruently
\[
A_{\mu}=A \mathrm{E}-\mu \mathrm{E}=69-8.15=00.85
\]

Let us now take the moments of the triangle \(A B C\), and the trapezium CDP \(/= \pm(D E-\dot{P} / \mathrm{P}\), with respect to the line \(\mathrm{P} /\), in which case we shall, in the first place, have for the portions of the centres of gratity
\[
\begin{aligned}
& \mu b=A \rho-A b=1.05-16 \cdot 3=+1 \cdot 55 \\
& p^{\prime} d=d \mathrm{E}-1 \mathrm{~L}=10-8.15=1.95 \\
& \frac{1}{3} \rho \mathrm{E}=\quad=\frac{0.15}{3} \quad=2.72 ;
\end{aligned}
\]
and scondly, for the momeits required, the following results:
distance of \(\frac{3}{5}\) of the depth from the vertex, (Vince's Fluxions, p. 101,) and the centre of willution at \(\frac{5}{7}\), when the point of sus. pension is at the vertes (p. 111,) the distance of these points \(\frac{4}{35}\) will be increased to \(\frac{6}{35}\), when the point of suspension is iemus. ed to the terminaton of the absciss, and the distance of the centre of pressure from the vertex witl be \(\frac{3}{5}-\frac{6}{35}=\frac{3}{7}\), and \(\frac{3}{7} \times\) \(18.54=8.074\) which, subtracted from \(\frac{4}{9} \times 40=17.777\), leaves 9.703 for the length of the lever. Now the magnitude of the pressure on this sectiou must be to 3000 tons, as the depth of the centre of gravity, 7.536 to 176 , that is 128.45 tons, which, acting at the distance 9.703 , will produce a strain of 1247 tons, or, in the terms of the preceding calculation 1247 , which is the mutaple of \(\frac{1}{2} x^{2}\) indicating the fall. These different causes of arching being independent of cach other in their operation, their effec", will be simply united into a common result; and the whole curvature of the ship, supposing its strength equable throughout i:s leugth, may be thus represented:-
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Distance from the stern & 0 & 22 & 4.4 & 66 & SS & 119 & 13 & 154 & 17 \\
\hline Strain & \(1247+0\) & 605 & 1993 & 2815 & 2224 & 2655 & 4614 & 1875 & , \\
\hline Fall & . 04828 & . 02716 & . 01207 & . 00302 & . 00000 & . 00302 & . 01207 & . 02716 & .018:8 \\
\hline & . 08697 & . 05325 & .0251.4 & .00552 & . 00000 & . 11507 & . 02331 & . 06.05 & .12323 \\
\hline & . 13525 & . 08041 & . 03721 & . 00854 & . 00000 & . 00809 & .03:33 & . 09.21 & .1715; \\
\hline For twelve inches of arehing & 10.58 & 6.29 & 2.91 & . 67 & . 00 & .63 & 2.93 & 1737 & 13.42 \\
\hline
\end{tabular}
\[
\begin{array}{rlr}
44.55 \times+72 & =\div 5207.6 \\
1.83 \times-108 & = & -199.8 \\
2.72 \times-36 & = & -97.8
\end{array}
\]
and since the value of the positive moment is +3207.6 , and the aggregate of the megatise moments - 297.6, the detnitive moment will be \(+3207.6-297.6=\) 29! 0 : a positive grantity, whose tondency is to make the stern ol the ressel liall.

If. howcver, in conlomity to the second theorem, we find that the moment ol the infinitely small section contiguous to the plane of the moments here referred to, be of a contrary character to that of the defnitire moment just deduced, we shall be justified in conclucling, that the moment of 2910 is absolutely the greatest ibat can be discovered; and that the moment of the indintery small section alluded 10 , is m satice, is apparent on account of its partaking ol the general cotichition of the tritngle (D)E, which has all its secions of a less weight than the volumes of water they respecti;ely displace. Whereas the total moment by the preceding calculation is clearly positize.

If, in the next plice, we proceed to the consideration of the sections comprised between the points E and G, and remark, that by the primitive hypothesis, the area of the triangle liFC \(=+118\), which is a yuantify greater than the area of the triangle \(\mathrm{E} P \mathrm{P}\); let us suppose a line \(Q, \neq\) be so draw: perpendiculav to the water's surface, as to cut oft the triangle Q \(\underset{\sim}{ } \mathrm{E}\) equal to the triange \(E P P\). Todetermine the position ol this line, we have, by the similar trianges FfE, QsE, the proportion,
\[
\text { as } \Delta \mathrm{F} \mathrm{E}: \therefore \mathrm{Q} \mathrm{E}:: \mathrm{E} f^{2}: E \mathrm{~m}^{n},
\]
or numerically \(\frac{118}{2}: 36:: 253: \frac{36 \times 25^{2}}{59}=\mathrm{E} 3^{2}\)
IIcnce \(\mathrm{E}=150 \sqrt{5}=19 \cdot 5\), and consequen:ly
\[
A G=A E+E G=69+19 \cdot 5=88 \cdot 5
\]

Faking therefore, the moments of the triangles \(A B C\). CDE, and \(Q\) W, with respect to the line \(Q\), in which case we shall, in the forst pluce, have for the pasitions of the centres of graxity
\[
\begin{aligned}
& E^{2} h=10-1 h=88 \cdot 5-16 \cdot 3=72.2 \\
& { }^{\prime}{ }_{g}=A S_{5}-A d=83 \cdot 5-39=29.5 \\
& \frac{1}{3} \mathrm{E}_{5}=\frac{19 \cdot 5}{3}=6.5
\end{aligned}
\]
aud secondly, for the moments required,
\[
\begin{aligned}
& 72.2 \times+72=+5196 \\
& 20.5 \times-108=3136+3.31 \\
& 6.5 \times+36=+50
\end{aligned}
\]
and, since the values of the positive monents amount to \(f\) S. 5 , and the negative moment is - 3186 , the definitive moment will be \(5130-3186=2244\), a positive quantity.

If now we consiker the nature of the sections which ere imtinitely mear to (\(\underset{\sim}{\circ}\), wo shall perceive that their weights exceed their displacements, and that their. temelrury is to produce a rourse in the ship analogrous to the momment just determined: and that therelore the moments whict tend to areh the ship longitudinally in (2 ar. at the distance of 83.5 leet alie, must, by Theorem 11I. be a minimmm.
let us now proeced to the comsideration of the sections which are sitaded between the points 11 and M. The displacements of these sections, as we hate before: "omalied, excece their absolute weights, by a
quantity equivalent to \(-119+155\); and which quanti. \(t y\) is greater than the total result \(+72-108+118\), on account of the other differences before refered to. It is exident, therefore, that we may cut off from the triangle IllN, by means of the vertical hat \(\mathrm{B} r\), sur h a triangle Illl \(r\) as to make

and which condition furnishes for the watuc of the area of the triangle sought,
\[
\begin{aligned}
11 R: & =1 B C+E F S-C D E \\
& =72+118-108 \\
& =82 .
\end{aligned}
\]

Hence we shall have by proportion, as
\[
A \Pi I K: \perp H R r:: H K^{2}: \| r^{2}
\]
or numerical!y \(119: 82:: 13.4^{2}: \frac{82 \times 134^{2}}{119}=11 r^{2} ;\)
\[
\text { whence if } i=13.4 \cdot \frac{83}{110}=11.21
\]
and consequently \(A \cdot=A 1 I+11 r=125.6+11.21\) \(=13 \mathrm{n} . \mathrm{a}_{\mathrm{j}} \mathrm{I}\).

Taking now the moments of the triangles 1 BC , CDEA, BP(i, and II \(P\) R in relation to the line \(R r\) we shall, in the first place, have fur the positions of the centres of gravity,
and, secondly, for the moments required
\[
151.51 \times+72=+86.6 .72
\]
\[
7.81 \times-108=\quad-8403.43
\]
\[
42.81 x+118=+5051.58
\]
\[
3.74 \times-32=\quad-306.68
\]
and since the values of the positive moments amount to 13728.30, and of the negrative moments 8710.16, it follows that the defnitive moment will be the positive quantity 5018.14.

Here, therefore, as in the rertical plane passing through Pp, the secions which are infintely near to \(k i\), will have their weights less than the resistance of the water they displace: and the moments of the same sections act in a contrary direction to that of the total moment. Ilence, by the sccond theorem, the positive moment 5018.14, abovededuced, is a mar imum.

At the extremitics \(A\) and \(O\) of the ressel, the sum of the moments being zero, must furnishlikewise two minimem raltes: and il we therefore collect together the series ol marimm and minimum values of the moments having a tentency to arch the vessel. they may be represented as in the following table:
\begin{tabular}{|c|c|c|c|c|}
\hline At acro or the puint \(A\). & \[
\begin{aligned}
& \text { At A P }= \\
& 60.85 \text { ficet } \\
& \text { from A. }
\end{aligned}
\] & At \(\Delta \%=\) 88.53 fect from A. & At \(\Lambda \%=\) \(156-81\) feet from \(A\). & \[
\begin{aligned}
& \text { At An }= \\
& 176 \text { fiet } \\
& \text { from A. }
\end{aligned}
\] \\
\hline Minamam. & Maximun. & Min & & Viximum. \\
\hline \[
\begin{gathered}
1 \text { :allic of the } \\
\text { monemt } \\
=10 .
\end{gathered}
\] & Value of tho mumbent
\(=-210\). & \[
\left\{\begin{array}{l}
\text { Value of the } \\
\text { moment } \\
=22+14 .
\end{array}\right.
\] & \[
\begin{aligned}
& \text { Value of the } \\
& \text { monsent } \\
& =5018.14
\end{aligned}
\] & \[
\begin{gathered}
\text { Value of the } \\
\text { moment } \\
=0 .
\end{gathered}
\] \\
\hline
\end{tabular}

According to Dr. Young, (see the preceling note, the moments estimated at every 22 leet from the stern to the stem, may be represented as in the following table:
\[
\begin{aligned}
& r^{h}=\mathrm{A}-\mathrm{A} b=186.81-16.3=180.51 \\
& r l=t \cdot-1 d=136.81-59=75.81 \\
& r f=r \lambda-\lambda f=135.81-94=42.81 \\
& \frac{1}{3} \text { II } \quad=\frac{11.21}{3} \quad=3.74
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 2000, & . 12.17 & . \(16.14 . j t\) & ./l co, 0 & .ll & . 1114 " & . \(11 . . .17\) & .111 1 ! & 4156] \\
\hline Value of & Value of & tatec is & 1.abeut & & 1.4... 1 & 1 Huc. 1 & \[
i: \cdot 1, \ldots, f
\] & 1.104 6 \\
\hline \[
\begin{gathered}
1+2 \\
==0
\end{gathered}
\] & & & acman
\(=0.15\) & \(=1\) & 以10.0. 012 ! & . 1 & & \\
\hline
\end{tabular}

If we now fefer th the matanm and minmons sec-
 fisation of Eapin, be shallparaior, that fom the former to the later, there mast be a cantmat deconsion in the vala , if eah moment: and that com-

 1)r. Vhumig.

 since the former mates that somathe beve at the

 tons, actior at the distanse of ome hoot: whems the lasi memtuned paidoswhede estimerer the staninat a similar puint to be fozi)..3 toms. 'lhis subject thate. fore, like most others rumected bill navat imehtue fure, reguires a more riropos and eatomed imseatigation; and we reget that ow limits prevent a foom entering farther into so interesting at inguiry ot the present time.

The preceding inventi, ation bab ben conducted on the suppostion, that the rame of archins are dat
 pressure; but there is, in feet andher chuse for this
 the formiturame and hotizemal prowne of the water. Accordmes io 1)r. rouns, the parian presure ol the water in a doneritadmal divection, afterts the loure part of the ship only. compressins am! shoptentarthe keel, while it has no immellate achon on the upper decks. \(\dagger\)

 stibesis! lacs than this asativ in the nathere, and thenshout the aficmost balio of the lomen. it is no\(\because\) hore comserted intis at theray ? "ate" wo to become romase it mant. Amerve, be remembered, say De. Younc, that when archisy ationty takes
 uan the comparatien sitheth ob the dificrent parts

 foon the apposition of andiform retotance thoughont the lemsth. An apprem delation ntay ationarise from the wequal distrbmtion of the weisat throush
 step of the manmast, (ern whem the seram, as here (alenketed, indiestas a combaty tomency wita respect the carware oí the whale ship.

ED, the marenimate of the stran on the diffrent
 When she is exposed to the furce of the wimd and wates. The cffect of the wind is generalle compensuted by a chatroe of the situation of the acous water

 Jockyarcl.
\begin{tabular}{|c|c|c|c|c|}
\hline situations of sectious. & & & & \\
\hline & 311\% & .15-2 & 11:31,9 & -16\%. \\
\hline 20.45to.7.6)fer & 4i\%; & & 1451 & 15,52.4 \\
\hline & 12303 & S : & 11.60 .9 & 1.11+5.1 \\
\hline 54.35twit.10 fu: & \(\sim 2.2\) & - 5.16 & 1:5....: & 1.229.9 \\
\hline 71.lutieetr mis & \(14 \% 7\) & 9.1 & 5-15. 1 & 4812.6 \\
\hline Total on the forchooly & 15 sti .3 & 1501.2 & 35815.1 & 234.6.3 \\
\hline
\end{tabular}

line, so that its amount may be estimated from the temporary or permanent inclination of the ships: and the lorce of the waves may be more directly calculated from their height and breadth. These two forces can seldom be so applied, as to combine their effects, in producing a strain of the same kind in their full extent; it will therefore be sufficient for this purpose, to determine the probable amount of the force of the waves, which is more materially concerned in affecting the longitudimal curvature than that of the wind. As a lair specimen of the greatest strain that is likely to arise from this cause in any common circumstances, we may consider the case of a series of waves twenty leet in height, and seventy in breadth; the form being such, that the curvature of the surface may be nearly proportional to the elevation or depression. A single wave might indeed act more powerfully than a continued scries, but such a wave can scarcely ever ,ccur singly. Dr. Young then finds, that the greatest strain takes place, in a seventy-lour gun ship, at the distance of about dighteen leet from the midships, amounting to about 10,000 tons, at the instint when the ship is in a horizontal position, while, in common cases, when the waves are narower, the strain will be proportionally smalle and nearer to the extremity. Hence it appears that the strain produced by the action ol the waves, may very considerably exceed in magnitude, the more permanent lurces derived from the ordinary distribution of the weight and pressure; being according to this statement, neally thee times as great: so that when both strains co-operate, their sum may be equivalent to abont 15,000 tons, acting on a lever of one foot, and their difference, in opposite circumstances, to about 5000 . There may possibly be cases in which the pressure of the waves produces a still greater enect than this; it may also be observed, that the agitation accompanying it, tends to make the fastenings give way much more readily than thes would do, if an equal furee were applied less abrupty. At the same time, it is not probable that this strain ever becomes so great, as to make the former perfectly inconsiderable in comparison with it, especially il we take into account the minteropted comtinuance of its action; it appears, therefore, to be highly proper, that the provision made for comteracting the cathes of arching, should be greater than for olsvating the strain in the contrary direction; for example, that il the pieces of timber intended tor opposing them were, on accomat of the mature of their fistenings, or tor any other reason, more capable of resisting compression than exteusion, they should be so phaced as to act as shores rather than as ties; althoush it by no means lollows, from the form which the ship assumes after once becaking, that the injury has betn occasioned in the first instance, by the immediate canses of archins: since, when the lastenings hate beon loosebed by a force of any kind, the ship will maturally give way to the mone permanemt pressure, which continums to act on her in the state of weakness thus superinduced.

The pressure ol the water astainst the sides of a ship, has also a tendency, remarks l)r. Young, to prodmea convature in a fransmerse diertion, which is greatly increased by the dintribution ol the weights, the parts near the sides being the heaviest, while the
greatest vertical pressure of the water is near the keel. This pressure is often tramsmitted by the stanchions to the beams, so that they are forced upwards in the middle: when they are unsupported, the beams are more generally depressed in the middle by the weight of the load which they sustatin, while the inequality of the pressure of the water co-operates with other canses in promoting the separation of the sides of the ship from the beams of the upper decks. On the other hand the weight of the maimmast olten prevails partially orer that of the sitles, so that the keel is lorced rather downwarts than upwards in the immediate neighbourhood of the mid-ships. The tendency to a transuerse curvature is observable, when a ship rests on her side, in the opening of the joints of the planks alolt, and in their becoming tighter below: althongh this effect depends less immediately on the absolute extension and compression ol the neighbourine prats, than on the alteration of the curvature of the timbers in consequence ol the pressure.

In such a case also there is an obvious strain tending to produce alulerol curcature, and shores are sometimes employed to prevent its effects, when a ship is "hoce donen" on her side. This indeed is comparalively a rare occurrence: but when a series of large wares strikes a ship obliquely, they mast often act in a similar manner with immense lorce: the elevation on one side may be preciscly opposite to the depression on the other: and the stiain liom this catse can scarcely be less than the vertical strain aready calculated: bat its effects are less commonly observed, because we have not the same means ol' ascernaning the wealaess which results from it, by the operation of a permanent cause. When a ship possesses a certain degree of tlexibilty, she may in some measure elude the violence of this force, by giving way a little for the short interval occupicd by the passage ol the wave; but it may be suspected that her satiliog in a rough sea, must be impaired by such a temporary change of form.

Such are a lew of the general principles connected with that alteration of fom, which has been denominated arching or hogring, and for which the genius of Seppings contrived so adminable a remedy. The symptoms of weakness which all ships constructed on the old plan exhibited, were generally apparent, by the parting of some ol the butts of the plank aloft, at the same time that the angular position of some parts of the structure had as uniformly been more or less altered; and very generally a certain degree of sliding was observable in the planks at the side of some of the ports. It the same time, a degree of permanent compression or crippling below was remarked, the butts of the phanks opening when the cause that produeed the arebing had been removed, and the sheathing more wriukled than would have happened from the simple bending of the plants. But as the practical details comerted with the introduction of the diagonal riders, belong more particularly to the part of the paper devoted to practical construction, we refer the reader to it lor further information.
on the struns of sithes.
The interesting and important investigations, that have taken place respecting the stems of our ships of
war, not having yet found their way into any of our Encyclopacdias, we shall derote a shore space to its consideration, and review the arguments that have been advanced by dilliment writers respecting this great and important change.
It would exceed our limits to follow the history of the stems of veshels into its eartiest stafes, and we must therefore content aurseles with brichy remarkinge, that during the sisterath eentury, the stems of ships of the latrgest chans were formed splate, not onIy above, but some fert belore the prane of Rotation; and every part was loaded, ar as the writers of that period say "adormed," with catved work, bammos, and every other thims that condel add to what was at that time constued as rich and spendid decoration. "the forms of the sterns at that imme, cumitted of hour guns, of harse cathbre, befors laved risht aftand we learn from a pictare preserved in the society of antiquaries, of the embatkation of king thary the Vilf. at Dorer, in the year loan, that shaps at that period, had neither stern walks, batomies. hor flater
 a water closed abafl, com in the shipocerpied by his Majesty; and but one onty in the squadroth, which is in athip bearing the poyal standards and which, it is evident from the colmaing, wat an apporatase for the occasion, and probalsty put up for the gacen of lingland and her court. 'I'lie sterns of the ese ships, Mre. Khowles thinks, were formed hy sererai beams of considerable dinemsons, calised tansoms, lyins horizontatly, and atiached to their liames of ribs, by barse crooked picece of timber, termed haces, and which, it would secm, prevented the guns from being worked in the quanters with any ctiect.
In the begiming of the serententin century, our ships of war wepe anm himproved, not only by an increase ol their dimensions, bat abo by the application ol science to the construction oí their bodies; and Sir Robert Soppings is in possession of a complete draught of the soweregn, desigmed by Mr. Phineas Pett, and launched in the yeur 163 F . in which the stem is improsed by beimg rommed bulore and a little above the phate of hotation; and havins five transoms and stern and quatter salterics of batconies. Iler dranght of water ahaft was twenty-two feet thee inches, and the heisht of the stem ahowe the water fifly fort mine inches, wat sla had origimally sia tertis wi flafforms aloft, on which guns might be carricd. But not only the stem of ships, but heir heads also wereoverloaded with the most bapharous and cumbrous ormaments at this time: and the frow ol the ship here
alluded to, achually extended lionty-three leet six inches abose the phane of totation, and was covered in evrey patt with massive and ill-contrived carved work.

This cumbrous and expensixe mode of buiding ath ornamentins the hemets and stems of ships of the lirst
 1609, when dimetions were siven be the eformament, "to be move sparimen has raper work and wher decoratians"-a profi of a betcer and imporvins

'to lower the lupirtat and lessen the wereph of the stares in laree shipes, the potas royal wepe onitued
 century: bat lifte hawever aposars what bean done

 raldy, thenced that the proberons in als shmath no longer be continmed, wor whold there be gatheries or catred work on the stoms. This was certainly a step iowarts a more proper owlew of things: belt it was not until isht, that Sib liobert Seppine intraduccol his method fore strensthening the bow. by carrying
 till 1816, that he proposed that the same syotem should be adoped for the stern, so ats in sivewit the same adyantaseous properties that he had previonsly commmatated to the bow.

The adyantases to be derived from the circular stern in sy be principally reduced to the three following heads:
frist, A considerable adtition to the strengeth of the ship.

Sremally. Safity to the people employed, hoth from the effects o: a sea strikiug the stern, and lrom shot ined by the ememy.

Thithy, The additional means afforled Por attack and defunce.

The insuffictency in point of strength of the old method of constructiong the sterne, is proved in Sir Robert Seppinss's letter to the first Lord of the Admimaty, by his havisg stiven from varinas official repurts, eighty-mine instances in ship of the linc. and eighty in higates, of the great we kness of that part of the ship. "These instances of defect being derived from the reports ol oficers of intelligence and distinction, cmployed in services of the most diversified and trying kind for the long period ol a puarter of a century \(\dagger\) necessarily stamps the body ol information
* It is remarkable how this rase for ormament, falsely so called, prevaled at one time, and how low it degraded the national
 majestic strmeture aftematoln hath on the some rock by the immortal smeatom.
fit mat not be whaterestige to our raders to lawe a few examples of the weakness of the oll form of the stern presented to their notice

 to prove the wedkness of the spure stern, since, in the example of the Defence, the herds of her coumter timbers were repurted by

 rolled, the whole borly of the porip went over from side to side. The stern of the Cumberland abo, above the wing transom worked so
which Sir Robert has collected in the letter alluded to， with the utmost importance and value．The defect in the old square form being thus rendered so notorious， led to the consideration of the best mode of remedy． ing it；and the acknowledged strength of the round bow，a part subjected to the action of far greater strains than the stern，naturally led to the consiticra－ tion of fortifying the later by the same mode of tim－ bering，and lrom this arose the circular stern．More－ over，before the application of this system，the new mode of shipbuilding so successfully intorduced by Sir Robert Seppings．might lee truly said to be incom－ plete，for the she！f pieces and water ways，as＂ell as all the planking above the wing transom．which may be denominated internal and exteand loopp，were cht oft．and hence lelt the stem the only weak pat in the
 remarked．＂the applien ion of the diagomal sation of trusses does mot pioluce in maximandect，nor is the continuity of the shelf pi ces preserved，shace the nost abrupt temmination of two takes place at the grate－
 by the haper intrutace of the theine and athonding

 value

These remarlas will he comemmel by an inspaction
 1 and 3 ，the former of which represents an intermat rigint aft sew of a squate somp，and the later a plan represention the mode of contecting a stem of the same kind．with its sides．it will in procrived that the sterergh of this lom of the stern depends in a wery get nucasute on the bon wees at the guarters of anrces，vibich are bolted th the derk tameom \(A\) ，and thousthtie site timbers of the wese Now why frace thre or delect in the tronknee，will ui comese weaken the stera，and coneriblete to ath the sefeets before at－ luded to，and which have led to the intmeduction of

 c．antule＂．．n＊aty be fond than this of delective
and bad combination；of timbers disposed at right angles to each other，－the worst possithe position， where obligue strains are to be endured；without a diagonal timber to prevent even the well－known de－ rangement of form arising from reking：wasting to knees and boles，ill adapted．from their positions，to resist those derangements of form which must arise from the shocks that so ponderous a labric must re－ cube from the torible element with which it has to contend，and with the decars atso and weaknesses that timp．the ereat indorator ol mochanical is well as moral systems，is so incessatity produciner．Can it be a matter ob womber，thereme，that sachan ill－con－ trivel arame us the tem of a ship constracted on the
 SHate of the opmabe shipwaght．＂Hort：＂that the
 7． \(1.3^{2}\) ，renting，as the entive fabric ol the stevn does，on atimg timber，mane whomerse，but with it，stength it spoliel，and ill connected with the sides of the ship，its proper asid portect anom of which should be incemarate？

Dat it we turn for the diderams ilitstrative of the bond sterne we shall diseover no sheh mechanical atona lies as hagence lia anciontom．Every part
 tha！！that ought in all tinace thateme mechan－ i al－rmatares．Ois prose thar in its tullest stase，we
 いいいよに
＂an ati，ha conmomes，in！ert，whil prove that Wentan oh has given why on strengha fun！forms ill adapted to re ist strain ：hate buch peptored by me－
 tw：\(\because \cdot \because\) and simell pimes，which in the sfate form wace anuply cut rif，the cimbiar stern are boand

 ence to l＇is．d．ponsesses the same kind of timbering phatina．\(\delta\) e．as the sites：the ekcings are enited by the struncest beits，an！t＇e archilise faric of the whole is just that wh： 1 is best whatecel on resint

 bra＇e of twanc but the wate sybtem of framinge whptent to abpored rules of merhumict streneth． bomat wo the ley internal and extemat phating ibke the－ifor and capmele like the bow，ol bestatime all thone wertible sifueks，to which a vessel expased to

In the serond phace，the salety which the present
method of constructine the stems affirds to the sea men over that ol the old plan, is best shown by some instances of the danger arising liom the ingerfections of the latter method, which, above the wing transom presented bitale else than a sufface of erazed windows. The Dictator of 64 guns, in her parsage from the West Indies in 1797, was struct by the sea on the stern, which stove in the datelights and withow liouncs, washed away every then oft the mon deet, and the crew were ander the necessity wh then in? ?ix of the

 West Imdies in the year told met will a smatur arcident, which stove in the dewdights, and carried away the bulk-head ol the weat rathe and hat mot the hatchwaysbecobarred down, whi hamebmated tio water from getting into the hod, the ship must hate foundered.

In the stems formed aconding to the on plan, the men on all the dech exenet the e un the lovereme

 to a musket batl.

The strength also simath the rircalar stems by carrying up the thatore pertows all the chatsore wo
 from the ingress of small shot, in ortll as trom darge oncs which have mot lorece pass tarensh the than bers and phanking. And tromacisens, ded fom, the shocks of the sea araht wat le mach hatene l: wed
 srees, will glance ofl bithout coily mach miny to the ship.

Nuch has been sad with respect to the ingury whin our men-ol-war with untergen heir sailing matities by the introduction of the ci-cuhar stern: but we approbend, that an inpartiad cxaminaticn of the guestion will produce some alanatase in ita latom. The sidps constructed with the new stem have the same form !esur. and for sume feet afone the phane of the waters sarlisur. and mat therdore endy the same bavyancy abof, as :hase (en otracion acomatiog to the
 perties afe no doabt inpre bethe the cmission of tan
 when the ships were grits wa in whod

 we camot do buter than fullow int. Himey in has

 science.

For the papose of aboctuntin, be riturons and decisive experimerts, is what emeree the new form of

 experiments, mortober, Nr. Natwy was assisted by many distmanished naval onture amons whom be partichartymontons Captains Vise. Pichards, and Arthur. Gims were placed on bowd the Boaticea and Hamadrad higmen, haf fomer hatiog a square stern, and the latter a ruad stem; ath he remarks,
that every position and bearing determined, was made the subject ol a candid and liberal discussion. In determinins also, the dillerent bearings of the guns, partomber care was laken in evary instance to prevent theis beins mounts an important comsindration in a course ol comparative expertments ol this nature; and also ample room was promiterd for recoil. The moment also the fosition of a sun was limally deter-

 so "s th preatut arly the uthent limhers: wherom in the

 pari sh: but mon with this adranasore Nif. Ilamery limat thet the means ald delene it atfordel. were de-
 fis:m.

IW the purpose of romperine the dibernat beations of the shme two points K, K. Fins. 1 and a Pate
 El of the wroscls, at the distance of 1: form the the
 fron the afiergart of the luwer stoal of the cumbilinat septh. Jrom hamse prints as centres. and with malii

 surrounding the stuate ctorn, and the lather that of the curvilimeal form. 'To these cincumbences. the vations ares or ranges suept were by the funs, in 2heir tran=lation from one learinis to another, wereda all ases refermed.

The farst experiments vere performed on boned the Ephate stem wessal. An eighem womder was plared
 possible angta far the beam. ac denom! by the lines

 with the pimapol longitudinal axis XI ol the vessal the onter "xrremit? ol the muzale ol the gun beine

 Pabsext booght into the position demata by the line

 twoberaniss, mommad to 4 ; an I it hence followed. that an obsect placed in any part of it couk in bit ber a shot from the atem homatse pots roufinel if cowne whe thmis prescraselby the ordinary charge
 athe at also in ath the ares bhich mory te hereation at
 tha: chery butt of the space commind betamen he

She exact jomition of the point l lavine been d teramed by the last experment, lie ela was frest enumed to the adjacent purt of the sicra. aind traisi to its erreatest posuble ande as detroten bre the lime

also be observed, by referring to the former figure, that the truck of the grn was brought into immediate contact with the rudder head, so that the utmost bearing was determined.

This being the greatest bearing that could be obtained with a stern gun directed towards the adjacent querter ol the ship. necessarily left the are b e, Fig. 1, amounting to 321. entiofly comeffonded: and it was also remarket, that the braringes \(13 b\) and \(C\) ewere not in directions mutulld to touch other, but in a state of liowerary, amounting of three degrees: and that therefore the extreme lines of fire proceeding from the alter broadside port. ant the adfacent port in the stern, could not, under the present circumstances, be made to "criss," and consequertiy. that is "peint of impmity" existed.

Destruas, however, of discovering if it would be posstble, nuder any circumstances. consistently with the fresemation of the frame of the ship. io make the lines of free issaing from the last-mentioned ports internet each other. an estimate was made by Mr. Iharbey ant the haval offeces prosent, to detromine what alteration would be produced in the bearine of the gur at the stern port, by supposing the rudder hearl remored. The utmost elpect. however, that could be proluced by this armanement in the bearing of the gun, amounted only io a diminution of a degree and a half of the divergence beture determined, the new line of fire bering the direction \(E\), and which, therelore, still leept the beatingo of the two guns from a state of purtlelian, and consequentls preserved a "pant of inymaty" between them.

The tundelendes arc \(b c\) was oi course diminished by the satme ritanty the divergence of the stern gun was altered, the arche in this new condition amounting to thime-one degrees. And bence it apbears that the lines of fire proceeding from the after broadsicke port, am the adjacent port in the stern, camot be nate to cross even when the rodder-head is removed, mbles by destroying one of the sides of the former port, or a bort of the stern frame: and that apoint of impmath therfote eriats on the qumerer of a semore stein comel. whin it is imprassible ultogether to
 of the shij.

The mest position assumed for the gran was that of D) d, Fis. l. Jlate CCCOXCVIl, forming with the primetpal axis IV, the angle \(l\) WY of \(22^{\circ}\), this direction affordius the greatest possible bearing at the stern, towarels the opposite quarter of the ship, when the recoil was linited to fonr lect. * The magnitude of the are ed, brween the extreme bearings at the stern port, was therelone fonnd to be 30 when the rudder-hcad was phescried, but nearly a degree more when it was remored.

From the foregoing experiments, it therefore appears that the entre arc ol \(1 / b\) of surownting the separe sterm. and wheh amonnts in thantity to 201 . may be separated into the
\[
\text { three defended ates }\left\{\begin{array}{l}
a b=46^{\circ} \\
c \quad=15^{2} \\
a b=46^{\circ}
\end{array}\right.
\]
amombing together to \(130^{\circ}\) : and into the
\[
\text { two undefonded ares } \quad\left\{\begin{array}{l}
1,6=3210 \\
b=32
\end{array}\right.
\]
amombing jointly to \(65^{\circ}\).

Of the defended arcs, it may be observed, that the first and last \(a b, \quad, b\), admit of a reaty delence in any part from cither of the after broadside ports: but the second, or right aft portion \(c r\), camot be delended in every part from the stom poits with the same convenience and security from fire.

For the perpose of affording a more explicit reference to the different bearings of the guns atove referred to, the lollowing table is added. ol what the first column denotes the sereral angles formed by the lines of fire with the primipal axis of the ship: and the second, the distances of the perints of interesetion formed by the respective limes of fire and the same axis, reckonerl from the point \(K\), the centre of the are surrounding the stern,

Having considered the effects capable of being produced by suns applied singely, let us next follow Mr. Harvey into an insestigation of their joint action.
suppose, theretore, in the first place, a square stem resse! to be attacked at the same instant. both on the stem and stambard quartors. It is evident that it would not be possible to fight the after broadside gun directly a-bean, and the adiacent stem ghar right alt, at the stame time since the distance betwem the trains of the carriares, when completely rua out, would only amount to hity inches: and whith. when the recuil takes place, would necessarily bring them into contact with each other. One of three thing most therefore be done in a case of such at nature: either the former sun must be tratued abaft the beam, the fire of the latter be brought nearer to the guatter of the ship attacked, or the latter gen be removed and fought at the other stern port. It might lar possible itiso to fight buth the after brotthite groms by training them abalt the beam, with both the sternguns tained right aft: but. as before shown. Tomer mor remménaces cen the lines of fire be memel 10 conss weth wher an the quetrters of the ship, "point :" meleh fobe theritel on so memy difficall that toymer arcasima.

The "tmost :dantage inded that can be obtained from crossing the lines of lire, must in strictuess be limited to a single combination produced by the stern guns immediately abalt, and conlined to the space betweon the lines al extrome fire dol, dol, Fig. 1 , llate CCCCXCVII. It is true. by formine new lines of beatimes for the guns, within the limits here referred to, an indefinte number of intersecting points may be created; still it is obrions that une anly can be obtaind at the same time. For example, a point of cross fire may be found at D, prodnced by the extreme lines of lire; or by sratmally approximating those bearings to each other. other points in the axis XI' may be determined, more distant from the stern, thereby commanding the sectorial space Dsor. So also, other points may be found, ont of the principal axis, by corresponding bearings of the guns. 'Thus

\footnotetext{
- In such an aphlication of a gun, the breching must he so ordered as po preacnt a stater recoil.
}
the points grg may be determined, by combining either of the right alt lines of lire \(\mathrm{d} i, \mathrm{l}\), , with one of the extreme lines of lire (1), (1), and sweepins over, by different modilications of these lines of lire, the secto-
 the bearimgs of the :wns, maty any number of points of intersection be determined within the bounds of extreme lire; but only onf, as before remarked, can be determined at the sume time. Thas, the wedenture of a rross fire, wharh in militury purposes is aluroys of so much moment wnt importatere, in the cuse of the syuure

From the preceding considerations, it therefore appears, that the delence of the square stern is subject to the lollowing disalvantares:

First,-Two considerolle: ares rasist on the quarleres,
 punty is creuted, from the impossibility of crossing the lines of firc, which procred from the ufter brocelside grum, and cilher of the stern sums.

Sccondly, 一Thell to defond rem where of tra, risht aft, prodnces murh inconernimex, ambl at comsidrcullo waste of time from the diffectly of obtrining the requisile posilions for ther gums, in consequence of the red ter hered, und the propering limhers of the stron.

Thirdly, -Thut in drforling the are bofore momioned, the dengers of fire we very consideruble, from the muzzles of the grues being so very methe withinthe whale of the stern frume.

Fonrthly,-That only one prime of cross fire can he found, wt the same tinte, in any pust strrounting the squate stem.

The preceding conclusions having been obtained for the square stern, we shall in the next place proceed to the consideration of the experimental results obtained for the curvilineal stern.*

The first bearing determined in the Hamadryad, was at the alter broadside port, an eighteen pounder being trained at the greatest possible angle before the beam. The line of fire At, Figs. 2 and 3 , Plate CCCCXCVIl, so produced, was found to form with the principal axis \(X Y\), an angle \(C . \backslash Y\) of \(53^{\circ}\); the outer extremity of the gun beins at the same time coincident with the side ol the ressel. From this direction, the gun was trained into that of \(h B\), whft the beam, Fig. 2, being likewise the greatest deviation leom the line of direct fire the case would admit, without wooding. This line of fire lormed with the principal axis XY , an angle \(b \mathrm{BX}\) of \(30^{\prime \prime}\) : the outer extremity of the muzzle being at the same time two inches within the
axternal edese of the port. The ape wh thas swept over by the gun, faring its translation from the lir ot mentioner! posibion to the second, amonuted io 1 , , "wery pat ol which ahmitted ol a rearly and citer thal defence.

A gran, in the next experiment. was patect at the port in the atjacent quater of the shap: the part of

 which, in the comvinueal stem, was homat apable of
 hearing determined, wat in the line (er hefore the beam, foming with the axis XY, the angte er Y of 7s', being the gratest the position would arlmit, without worting the gun, or limiting the range of its recoll. From this position, the erun was removed into that of Did abofl the beam, its direction, liz. 2. Platc CCCCXCVII, loming with the principal axis, the angle (A)X of \(16_{2}^{\prime \prime}\), the gun hasing been fontad capathe of sweeping the are \(C\) ol ol 16 , with perlect freedom.

The next situation assumme was in the adjoining stern port, where the case with which it was workel allorded a striking contrast to the dificultie, experienced in the stuare form, and callod lorth the reepeated and warm culogrimes of the olicers present: Instead of having the projecting timbers of the stern frame, and the rudder head to contend with, in determining the different positions ol the suns. as in the experiments performed on the deck of the Boadicea; or the danger of blowing ont the entire stern frame, \(t\) or of accasioning fire in the vasel, beth of which are possible in the case of a vigorons contest, from the mazzle of the gun, when tranod right alt, bemer three fee mithon the stern liame; the gron in the curvilineal stern cond be worked, as tuiy remarked by Capain Wise with all the ease and convenionce oi one at a broadsile put; and that, moreover, when it was trained right ait, its mazzle was found to project considerably heyond the stom frame: thas redacing the chances of lire to these of a boadside port whereas in the sfuare stern. they woutd be increased under similar circmontances, ser much beyond them.

The first beating at the bastmontioned port, was in the direction Be, Fig. z, Pute CCOCSCVM, towards the adjacent duarter of the ship, and forming with the axis XX , an angle EX of des, being the ervatest angle lrom the line ol the ked, at which the gun could be trained. The extremity of the gron was mi inch within the onter edge ol the port: and the di-
* All the bearinss hereafter mentioned, were determined with the pots in their ordinary state: no finings having been stripped

 the shperiority of the new form
f that the blowing out of adrare sicm is not an hypothetical casc, but has in some instances been rembered absolutely nccessary', from its imperfect and injuticions fum, may be proverl by a reference to the gathom action of the blanche with La pape, in which the main and mizen masts of the former being shot away, and head sats itling, she paycel off before the wind, thas bringing La Piguc astem, towing by the bow sprit. The blanche was immediately much annoyd from her quater acek gran,
 main deck. ller gallant commander hat woltemative lelt hut to blou out the stern frume. To accomplish this, all the firemen, with their buckets, were asicmbled in the cabin, and both the after guns pointed agranst the stern, which made a clear biench on both sides, the fire occasioned by the excention of this prompt aml judicions plan being immediately extaguislach. The lad
 marks, who distinguished himself in this gallant action, that if the expedient of blowins oat dic stem had not been alopted, the mose serious consequences might have been apprehended; at all events, the loss of many men.
rection of the shot passed iptite clear of the adjacent water-cloart. From this thution the erun was tarned 10waths the apposite quater ol the ship, the li, ef of Pre If formites with he axis XI, Fig. a, Phat

 be ath thicint and liporuns fire fom enther whe berts here dituled w, or fom the pert in the yowter of the stan: and that, monenwe, the sewhomes of the

 Shamed stern is chatedy remoned. It may abo be atlded, that when the gom was traned in the last-antor fanced pusition, its maze was unly an ineh whout the ember wage ol tac port. It will likenise be ar-
 thodescing ruma.

Shi the furne of a more compenint referace.
 contaion the diforent ats, forme l by the lises of fre with the pincipataxis of the ship: and the sfoomb
 ine smeme limes of fire whith the oxis, reckoned foon
 which survounds lise stem.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Dotance of the pande afmer Excion of the laces of the wilh the tais \(X \mathrm{X}\), reckone. \\

\end{tabular} \\
\hline & \(\mathrm{NA}=10.4\) feet \\
\hline \(13 \mathrm{~N}=30\) & \(\mathrm{E} \mathrm{B}=18.3\) \\
\hline \(\cdots \mathrm{Y}=78\) & \(\mathrm{FC}=10.2\) \\
\hline (i) \(5=10\) & \(\mathrm{KD}=23.2\) \\
\hline \(\therefore \cdots=\therefore 0\) & \(\mathrm{EP}=8.4\) \\
\hline f1r \(=\therefore\), & \(K \mathrm{~K}=19.3\) \\
\hline c6: \(=0\) & Kís=6.2 \\
\hline hH\% \(=423\) & \(\mathrm{FHI}=3.7\) \\
\hline il \(\mathrm{X}=21^{\frac{1}{4}}\) & \(\mathrm{KI}=16.1\) \\
\hline \(1 \times \mathrm{x}=y^{\prime}\) & \(\mathrm{K}=0.0\) \\
\hline \(1 \mathrm{X}=010\) & \(\mathrm{KI}=7.8\) \\
\hline
\end{tabular}

Having ascertained the ufects capathe ollocing produed he the seperate achions of the enons, Mr. Harvey n. st undmonk, as in the statare stom, the comaderathan of the adsumates likely to result irom their com binclopplation.

In the first phare, dre. Itormer remarlas, that the

 of the ato. and whin the wry cramemem form of the htm will prombit the done with so much case and romesemme.

In the west bace, Xr. IImesy temank, that the
 of the wescel from whon the lines of ifre issure is worthy of particular abservation. 'The after broad sille peat. for example, may ix made (ow moss its he wils the em into liar gtater pont at the point \(n\), lis.

thisds of afthom from the sithe of the versel; there ley shaterts cory part ol be sectorial space n ap,
 lomond it, the grtherg action of a cooss fice a

 *in meen beturen the homont range of the sum, and

 fortur whan thathom of the stom frame, and the

 produce this inaporant efioct: ansl where it will be perceiven that most ampl: spare in afurded for working limm. Fhat it fothons, that lis sumetor, which, in
 of the what in the matilued stein pessesses the meast emple mands despore.

A libe ingumtith defore may also be created, sup-po-ins it staull be recessary at any time to concen1rate the lanes of tre is some pratatherer the princt phisus of the west: an the print Z lor example,
 thats at both the secm and quater ports may le cmployed it the same time, with sulliciont space for workine them: he linesof hre being \(D z, \therefore=\) and \(/ z\), the point whate they unite betmen ory the dee fathoms boni the stern.

Such are the efoets capable of bing produced by the wame bearines of the limes of he hatherto desciled: but it is exhlent that mathy varictien may be
 vatich ships of way are liathe th he phacel. In the

 owrinsuchacabe. By baryme the beringe of these frume, sectorial spaces may bu swept over of any magsitmis, within the limits of the extrene bearings \(f \mathrm{~F}, \mathrm{fl}\).
li would be possible, moroowr, to fight the guns at the adjacent stern and quarter ports, as indicated
by the bearings \(E i\) and \(1 i\) ，the lines of fire intersect－ ing in \(i\) ，and conmanding the sector \(i u r\) ，whose angle amounts to \(24^{\circ}\) ．It is crident also，that by causing the line of fire \(I i\) ，to approximate towatds II \(/ h\) ，suc－ cessive sectors will be ereated at every new point of intersection．So hkenise the hearings of Cermel \(\mathrm{C} h\) may be changed，and an indanite number of new points detomined，butwern the limits I．／and \(\mathrm{K} /\)／i． Thus the line of fir＂（：＇may be altered into that of L／，commandins，in conjunction with the bearine \(13 /\) ， the sector \(7 / 18\) ，whose ataste amounts 1053 ．Or the direction lale may be trambimmed imo any other as \(\mathrm{K} / \mathrm{i}\) ，intersectims the hearius C of whon both are pro－ duced．

Suy force therefore that may be cmployed in at－ tacking a ship whin a combinest stern，will meet with a resistance of atmeh more fombidable kind，than it its energies were expernded on a spluare stern．Il we compare，lor example，the ater broadsite ports of a ship of each lind，wie shall observe that，in the ofd form，the insulated fire of at sime emm is the the efect that can be produced；whencas in the curvilineal stern， the sun at thse quater port contench the most eftectual aid；and by catising dithrent di charses to converge to the same posint，dispens a temple and destructive cross fare over a very comblamble range．And this contrast is increased in a till more remarkable degree， when we compare the conditions of the quarters since in the new stern，the mears of defence，lop the same space，are quite equal to those of any other part of the ship，but in the square form vanishallogether．In like manter，if the attacking force were situated di－ reety astern，a much mon，effectual defence could be createci．be means of the former，than could possibly bu aforded by the lattor，from the ereat lacility it al－ fords in workins the sums．and the assistance that may in some cases the obtined from the quarters．

 to one fibbice und in

As amore particular refrencemay be necessary to the posi ions of the puints of cros，fire the following table has been prepuacd．The fore column indicates the lines of fre whirh intareet each other：the second columm contains the marnitudes of be ordinates re－ presenting the distancres of the points of rross fire from the principal axis X ：and the thim the distance of the ordinates estimated on the principal axis from the common point of orisin K ．＂forefer for exam－ ple the point ol intursection produced by the lines of cross fire \(\mathrm{B} b\) and C e to the asis Xl ，it will be found that the ordinate \(n=1 \mathrm{~s} .2\) fect，and the ordinate \(\mathrm{GK}=5.2\) feet．So also lor the point ol intersection of \(\mathrm{B} b\) and L ，we have the ordmate \(/ \mathrm{L}=19.5\) feet， and \(\mathrm{LK}=8.0\) leet．

\section*{Vol．XVII．PaktI．}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Murnituders ut \\
 \\
 promipal avis VIV，fronll we \\
 lig ion thre jusint． \\
 －Callatig wralaite． \\
 － 116 ．
\end{tabular} \\
\hline & いふ＝Cufut． \\
\hline & いに \(=\) ， \\
\hline Intersen lion of \＆：\＆will If and with 1： & \(\because \mathrm{C}=r \mathrm{C}\) \\
\hline & \(\therefore=11.9\) \\
\hline & \(入 15=. .20\) \\
\hline & RK＝7ヶ！ \\
\hline & いに＝25．9 \\
\hline Interscection off fl with fl \(5=(1\). & \(W \mathrm{~F}=2{ }^{\prime}\) \\
\hline & \(\mathrm{PK}=-4.8\) \\
\hline
\end{tabular}

The danger of five from the explosions of the gans takiner place．mithenhourd，has been berideyalluderl to； but as tive superiority of the curviline stem，in this point ol wime is strikingly conspicumes，i＂may not be improper to allude to this part of the subject more particularly．

By comparing Iirs．6．and 7．Pate CCCCXCDIL． it will be percefted that，in the old form lligs．fo the muzzie is iwnoty－one inches arthin the rall，whereas． in the new fum，ilig．T．）the muzzle is（ighteen inches buym the frame of stern：the retms of＂ach＇re－ ing supposed in a fore and afit direction．It is scarec－ ly necessary 10 insist on the superiority of the later form above the formm，in relation to this wery inpor－ tant eonsideration：since an explosion can mever take place mithinbom．without obrious disal；artases ancl danger．When the guns are trained，the evil will be increased in the square stern；whereas，with the great－ est possible anste the case will almit in the chrvi－ lineal stern，the numzale is never mithin the stern frame．These dicatrantares in the stuare aternarise from the overenaging fomm of that purt of the ship， and from the inconvenient distribution of the timbers of the frame．

With respect to the enms of the afterbroadside ports of the two frigates，it may be wherred．that they are under precisely the same circhmstances，their muz－ zles in hoth cases being bryond the sicle of the ship． and also in the same degree．I fore and afi vicw is given in Fig．8．Plate CCCCXCVH．

With the quarter gun of the new form no compar－ ison can be made with the square stern：bul bere． ference to Fig．T．which represents a ricw of the fuar－ ter part of the Hamadryad，the projection beins
square from the side of the ship, and the gun run out as far as possible, it will be perceived that it possesses all the advantages of a broadside port, the only difference being a rather less projection of the muzzle, in consegucnce of the guarter being nearly perpendicular, and not falling in, as is the case at the broadside. Any explosion must therefore pass clear of the side of the ressel, with neariy the same security as if the gun were placed at a berodside port.

Among the many objections that have been urged against the adoption of the curvilincal stern, is the apparently formidable one, that a broadside port has been lost on each side of every ship to which it has been applied. Ater a careful examination however of this objection with respect to the IIamadryad, Mr. H. feels no besitation in stating, that so far from this being the case, it modit not be celturasent to assert that a port has actuatly betn étinet on each side, by metns of the port at the newiti.

To demonstrate this, (and the sreat value of this investigation arises from nothing basing been adopted hypothetically,) let a reference be made to the line of fire L/, rig. \(\therefore\). Plate (CCCXCVII. and by which it will appear that the guarter post may be teadiay and satisfictorily employed as a hroatside port: for since it was lound possible, by the haval gendemen who assisted at the experiments, to train the gen at the quarter port into the direction Ceforming an angle of \(12^{\circ}\) before the beam, with much greater ease would it be possible to work it if the line of bearing L , on the beam. This circemsture ulds therefore to the ordinary and essential uses of the quatifr part, the additional advantage of beingeffechally employed, when occasion requires, in aidiag the defence of the broudbide.

Nor should it be forgotten, that the facility with which all the guns can be worked in the curvilineal stern for the different points of beating before described, and the total absence of all the timbers and other obstacles which, in the square stern, occasion so many serious and decided imperliments, increase in a very high degree the advantages likely to result from the general application of the new form. To take the cxample of a man of war becalmed in the bay of Gibraltar, or at the entrance of the Baltic, situations in which our gallant seamen have sometimes been exposed to the irritating and destructive effects of raking bies from gum-boats; is it not apparent from the preceding experiments, that a ship witls a curvilineal stern, so circumstanceed, would be enabled effectualIf to resist any attack of this kind? And that even if the vessel su acting on the ullensive should vary her pasition with all the readiness a stean boat is capable of moving, the guns at the quarters and stern ports of a round stern ship could be as realily made to fodow here Nor wonld it be possible for the attacking rescel to take up any position in the neighhourhoud ol the stern, withont having a gun or guns ready to resist her. This is an adrantage which ships constructed on the old principle newre possessed, and forms one among the many good qualities of the new.

The introduction of the rombl stem excited the mont violent opposition:and the kenest controversies were exceted amongst naval men respecting it. The
pablication however of some able papers has dimin. ished in a very great degree the hostility so vistrous. ly raised against it. The disapprobation of changr, which at one time assumed the loud voice of thunder, has insensibly melted into tones of a genter kind. Inguiry has been awakened, and many who imagined they saw in the alterations intications of dectiy in the maifial energies of our monine, now contemplate it with respect to the superior strengeh it affords, and the more ample means ol defonce it unfoks. Some, however, lathful to the ancient lom, still regard the circular stern with umabated hostility. But to such it may be said, are we to arrest the march of architectural improvement: Is the new principie of shipbuidding, which has already contered such transcendent benefis on our country, to be deprived of one of its essential elements? While every obber part of our men of war has received accession of strength, is the stern to remain is all its primitive weaknes=, without receiving a single bencfit fom the science and eularged experience of modern times: Can such an anomaly longr reman to mock the efforts of human improrement: Is the nasal ergincer to be doomed perpetually to reflect, that in the magnificent fabric which his genius has raised, science has lent her best efforts to strengthen the mighty system, in all its parts, save one? Or is the old system to be persevered in, to afford another excmplification of the maxim that partid strength is general waknens: Is it consistent, moreover, with that noble spinit of advancement, which so precminently characterises the ase, and which in its general operations, confers so great a lustre on our own beloved country. to allow mere leelings of convenience, * and ragne and modefined notions of beauty to stand in the way of senume improvement: Rather let us, by the universal adoption of the circular stem, prove that we only adopt is system which seience and sound experience sanction; and that we only advance another step in the career of that improvement which has been so lately introduced into shiphuilding; and that we are no longer enemies to the doubtful forms of beanty, than when they stand oppused to the progress of real improvement.

The period, howerer, we firmly beliere, is not fite distant, when the circular stern will be contemplated by all unprejudiced minds, with more real pleasure than that form which has nothing but time and the false perspective of centiries to recommend it; shedding new lustre on the name of its celebrated anthor, and adding to the other intellectual trophies he has achieved, one not the least valuable; since it will carry with it the merring symbol of truth: having made its way amidst prejudices ol no ordinary cast, and in spite of an opposition of no ordinary kind; time having proved its mefrestionable merits. and numbered it amongst its choicest and mast valuable heasures.

\section*{OP TIE STOWIGE OF SHIPS.}

On this important subject, we camot do better than introduce on our reaters Mr. Morgan's valuable paper, contained in the first number of his useful periodical work, named, "l'apers on Naval Arehitecture.'

By the stowage of a ship is meant the disposition of the baltast and stores. 'The great ellect produced by diferent motes of stowase, renders this subject ane of the most important comberted with masal architecture. Nost of the properties ol a ship depend in some measure on the situation of the centre of sravity, which is determined by the diposition ol the morcuble wasths on hard. The great difference found (0) exist in the quatities of the same ship at dif. ferent times atioe fancipaty from atherations in the stowage :and tian. The asmishing improamonts sometimes satil to be mate in ships by th." romoval
 the present stitio of tha berme of we sebone of naval anchitecture is reot sulticonty lomon to fix with certainty the best satin! trim, the momerosfacts re lated on the athority of win of experance are to be receised with the serater eredibility, if not acmitiong the degree, yet establishiny the prine ipte

This suldect has received the athention of many cminent scicntifo men, ab whell as reperpenced haval officers, though whose labous bery valuable inturmation has bees obtaimed. In Yrance the best memoir on the stowate of ships was several dimes matic the subject ol a prize by the Acarany of Sebones. Daniel Bernonilli rectived the proce in loza. Rnter divided the prize of 17.89 and Bossut ant the younger Euler divided the prize ol 1 tha.

As the situation of mauy of the weights in a ship are unasodebly fised by circumstances, the adrantages to be derived liom an invertigution of the stomage of ships can relate only to the motable weighes: the ballast, and perit of the stomes.

The quandity of stores and bathast in a ship is the first consideration in the showas? The number of months for which reseck shoud stow provisions depends on their class and genemd service No ship shonk, howere. be incapable of stowing four mondrs phosisions with the ordinary comphement of stores.

The quantity at ballave is clepontent on some of the quatitics of a ship: chicity the stability and the tateral resistance opposed to "alling on lecward. An increase of bablast must alwas prociace one disadrantage, ath inrreas: ol the abea of diect resintance. which, catiots parbue, womb reduce a ship's velocity in the water. By be increase of bathast, howere, judtelally stowed, the stabily of a rhip is frequenty uncreased, so that she witl carry so mich more sail, that the musias power is moneasel mom than the

 increase of breath paremort atore anl betow lac

 vent the ship's fallang to lewwand mat lit be incractsed by the form herow, an! forwarl an! ab , de liy thase menn- it would not benme.n.ry to increase the quan-
 stitution offoran lop an iaroctap y dilkt, cammet, however probahty be campiel surab, bat that a considerable gumbity of ballast will be necessary. To what
extent the quantity of ballast in ships may be reduced might probably be ascertainod by experiment.
'The properties of a shap which are chiclly alfected by the stowage are, we stability, wollins, pitching, holding a stomly comres, ardency or tondency to lly ap in the wind, romer ahome actoon of the rudder, and the strim of the materials. 'f he mamer in which the stowase intheners these propaties will be beest seen by romsiderins hen, an far as \(i\), possible, independenty of other eirenmstaners.

 bhay according to its being lowe or higher in the ship. This is as well known in plartireas clarly demonstrable by ericare 'The distribution of the ballast as low as posibte, is therfore alwaty nefessary what the stabilaty is reprited to be incteaset. The nearer the midde of the ship, in the litl parts o!' the buty, the bullast is mowed, he bwer it will be, and consequenty, the sreater the stability. Ibis, in abmost all cases, is good stowage, in relation to the stability ol a ship, as the case is rave when the lading of the ship is of surh oreat specinc gravity as torenderit necessary to raise the weighte, by putting tricles of lese specific siawity muter.
\(\therefore\) Polling.- In estimatiog the infucne of the stowerge on the rolling of a slip, it mast be considered independently of the stability. The permanent inclination cansed by the force ol the wind, depearls entireIy on the stability; but the vibutory action of rolling depends on other canses, some of which are meonrected with the stability. Two ships of equal stability are liequently known to possess wry difierent qualities in this respect; the one may roli slowly and easi\(1:\), the other guickly and uncasil:.

The rolling of a ship is caused by wares stakiner a ship's side; it is senerally decpest ejther when a sun?den change of wind takes place, and the ship sailing fred, is struck ca the site by the waves, which coritinue to run in the direction of the wind before the chanse; or in a calm, when the swell of the sca gives the body of the ship a constant disposition to incliae, without any inclining furce to kecp the ship steadr.

The rolling ol' a ship is sometimes (as has been before remarked.) considered amatogotis to the vibrations of a pendulum. Sapposing some point below the ship to be the point of suspersion, the length of the pendulan is measured by rach particle into the sgave ol its distance from the centre of saspenam. divided by the what hody inion the distance of the contre of sumpersion limin the ceatre of smarity. The honet! of the penduhm woult, therciow, le increazaby romoning the weight ats as jussible from the contre of'suspension. 'the tisposition of the moveahate weights in a hin, accouding to this consweration, therefuren to increase the leagth of ha isuchponsal fomblam, would be to phace them as late as possible

 l"agt: of the penculam, the time ol' the nuthatina is incleased, so that the ship's rolity, would be propertiomaliy slower.

The analogy, however, hetween the nacillations of a pentuham and hatollas of a shin cannot be considered strictly cotrect.

An easiti mothod of considering the effect of the
weights on the rolling of a ship, is, simply, by estimating their resistance to rotatory motion by their inertia. As the incrtia of any weight is measured by each particle into the square of its distance from the centre of suspension, the placing these weights furthest from the centre of suspension, would most increase their resistance to motion, In a ship, the centre of suspension must be considered to coincide with the centre of sravity, so that the further the weights are removed liom the centre of gravity, the greater would be the resistance to gitick and uneasy rolling.

The practice of "winging the weight," as it is technically called, suggested by these principles, is tound to be fully justified by experience. Care should, howerer, be talien that the centre of gravity of the weights may not be raised by this disposition, that the stability may not be diminished by it.

Quick and volent rolling is frequently found to be very injurions to the hull and masts of a ship. Many mocies of sccurity of the beam ends and ship's sides have been adopted, which have been of great adyantage in sustaining the strain caused by this action. Due consideration to form and good stowage are, however always found greaty to reduce the violence ol' a ship"s rolling.
3. J'itchintr.-When a ship is so far passed over a wave, that the fore part is unsupported by the water, the mean vertical direction of the water acting abalt the centre of gravity, causes the bows to pitch forward into the hollow of the waye. This motion, as far as it is inflenced by the distribution of the weights, is subject to the same laws as the rolling. The larthe the weights are from a vertical transverse plane passing through the centre of gravity, the greater will be their inertia, and consequently, the slower and deeper the pitching. These two motions are, however, to be considered rery differentiy, as to their effect on the ship. The adrantage of increasing the time aud depth of the rolling has been considered in diminishing the strain of the hall and masts; but the efiect of deep pitching must, on the contrary, be considered as disadrantageous, by retarding the velocity of the st ip's motion, and rentering it uncomfortable to the moth, he the waves breaking over it.

When a shif, incs pasced a wave, the afterpart falls into the hollow of the waves, by the mean revical direction of the water acting on the foreside ol the centre of gravity. This action, which is cailled scending is aftected by the disposition of the weights simiarly to the pitching.

The lorm of the fore amd after parts of a ship determines, in a sreat desrec, these actions ol pitching and sconding; but as other cireamstances frequently requite a form not the best calculated to regulate them, it becomes the more necessary that the best disposition of the moveable weights should be made for this purpose. It is therelone necessary to bring as many of the moverble weights as pussible near the midde of the ship, to reduce the depth of the pitching and sceuding.
\(\therefore\) fimbias a statly courss. - TVhen a body moves thenesh any huid, it is neces ary that the bateral resistunce abalt the centre ol eratity should be greater than before it, to prevent the body having a continual iensmey to turn ound. This disposition in a ship to \(110 n\) from the rimect comese, is teehnically called yaninц゙: it increases the dilliculty of steering, and retards
the sailing. To prevent this bad quality in a ship, the weights should be so placed that the centre ol gravity may be before the middle of the ship's leng(th, by which the moment of the lateral resistance abalt the centre of sravity will be increased, and the moment forward diminished.
5. Artency.-The arelency of a ship, or its tendency to tly up into the wind, depends on the mean direction of the water, the ship sailing by a wind, and the position of the centre of effort of the satls. When a ship is fully stored and properly trimmed, the mean direction ol the water passes a little betore the centre ol gravity. By the loss ol the consumable stores the trim may, by improper stowage, be so much altered, that a ship, which at first possessed a weatherly quality in a proper degree, may cither lose it altogether, or have it altered so much as to destroy the excellency of this important quality. The stowage should, therefore, be so disposed, that the consumable stores should be taken in such proportions from the lore and alter parts ol a ship, that the good qualities at first possessed may be retained when lightened. This requires great acquaintance with the qualities of the ship to be stowed, as weli as great judgment in the disposition of the ballast and stores.
6. Tacking. - The resistance a ship experiences, in coming about, depends on the lateratresistance of the parts before and abalt the contre of srasity. This resistance will be proportionat to the squares of the lenghs of the parts befure and abaft the centre of gravity, which will be aminimum when the centre of gravity is in the middle of the length.
7. Achion of the Radder.-As the rotation of a ship must always berefored to the axis that passes through the contre of gravity, the momentum of the power of the rudder to turn a ship is proportional to the distance of the centre of the mean resistance of the rudder from the centre ol' gravity. This consideration would lead to the moveable weights being placed so that the centre of gravity of the ship shotild be before the middle of the lensth.
8. Strain of the multrinls.-The inequality between the weights in different parts ol a ship, and the vertical pressure of the water at the corresponding parts, causes a contimual strain on the shij) longitudinally, which produces an arching, sonctimes technically called hogging. ©o equalise these two actions, is the mode immediately suggested by the consideration of the cause of arching, as the best method of preventing it. Circumstances, however, prevent the establishment ol the equilibrimm; great weights will always necessarily be at the extremities of the ship, and the buoyancy of the corresponding parts of the body must always be very inadecuate to their support, from the leanness of the fore and after parts of the body. As far, however, as circumstances will admit, the principle should be attended to, of placing the weights where the buoyancy ol the body is best able to sustain them. This requires the ballast and heaviest stores to be placed in the lill parts ol the body, towards the midship section; reserving, however, the immediate vicinity of the mainmast free from the heariest weights.

These are the principal considerations on the stowage of ships; and it happens formately, that the modes ol stowage required by a due attention to the qualities influeneed by it are generally compatible
with one another. The stability requires the greutest weirhts as tow us passithr, whirli is asrerethle to concontrating them tomeraids lar midille of the ship's lonsth, which is rayuired to promber the best effect on the pitiching, tutking, and struin of the muttriuts. Holding "t
 werigits to be pheret! so thuy the rontre of serreity of the

 new to the midtlls, which rullers the arsistene to cmoning about. Whar rollinar sequises the wights tu be wing-
 out rusing their coutre of simity, which would diminish the stmbitity.

The result of these observations is, that the marete-
 of srevity may be lane und "litll before the midtlle of its lensth; and thut they stombld be wimued us much as possible without ruising the ir comter of srarity.

Chapman, says, in his Treatise on Shipbuilding, that the centre of gravity of a ship should be between the limits of \(s^{\prime}\) and \(\frac{1}{1}\) of of the leng th belore the middle. This proportion he most probably determined by calculations made on different ships in the Swedish service. The centre of gravity of ships of sevent-four guns, stowed according to the Enerlish method, as to the height of its situation, is arenerally from about six to nine inches above the lsiod water line.

These principles govern the stuwage of ships, but the manner and degree to which they shoukd be carried into practice, mastbe ascertained by experiment. A course of experiments on the quantity of ballast, and the best disposition of weights on cvery class of ships, would be very valuabe to the science of Naval Architecture. By determining the proper trim of the different classes of ships, math vatuable inlormation would be obtained for the nawal architect in making designs. Many calculations, which are made by assuming the sot of the ship in water, but which it is afterwards found necessary to alter, would be made with marh greater cortanty than at present. It is by
 in this suljert at: in west whers manetal with netelal architectere, thut this acionce will arrive ut perfoction.

ON THE MARABOLIC SYGTEM OI COVETHLCTING SHIPS JRVENTED BY ADMRILK. H. CHAMMAN.

The system which is at present used by the Swedish enginecre, in the cometriction of ships, was the result of the labours of the bater years of Chapman's life; it is called the parablic method, and is explained in a work cmited, iorstatlenthemetisk. If hunt-
ling att sifect at Thin" Sham horas rithe Sorld och

The following paper, drawn up by Lient. A. G. Carlsand of the Swedish nay, is an outhe of this description, with some few allerations, which the writer considers may perhaps render the calculations more simple.

By making calculations on a number of ships which have been found to possess good propertics, and subjecting the result to scientific investigation, we are
enabled to state what displacement and what dimensions a well-constricted ship should have; we can also determine where the centre of stavity, in respert to length. shoud be placed; but we camon by the nsmal methods of comstration, withont very srat latone, determine the aneaof the midship seretion, its distann bechere the middte of the lemelo, and the arcas or forms of the ether sections. on as to ensame having this requisite disphacument, ner that it shall be sh disabuted that the rente of gravity shall be in tha: ard aren situation. It was to supply these deficinaring that Chapman invented the method which is the shingect of this paper.
As the above-mentioned elements depend upon the areas and situations of the several transwerse sections, Chapman chedeavoured to discow whetherornot these areas, in well-constructed ships, followed any law; and ir so, to find the law. For this purpose, he calculated the areas of the sections of several ships; and, in order to make the numbers more convenien, he divided the arcas by ilhe breadth of the midship section; then setting off from the water line, at the respective stations on the dratwing, distances equal to the guotients, he traced a curve repreombing the areas, which he called the curve ol' sections. Ite then endeavoured to find the equation to the curve, or rather that of another curve which would coincide with this for the greatest length; and he lound that if the power and parameter of a parabola were so determincl as in allow that curve to pass through three griven points of the curve of sections, the two curves whata nearly coincide. In the fore hody the three points were taken, one forward, one at the midship section, and one midway between. In the after body the points were similarly situated. In some ships the exponent to the curve was higher in the after body than in the fore body, in some it was the same for beth: it was also found that there were ships in which the curve ol sections almost exactly argreed with the parabola, and these ships invariably bore excellent characters. Chapman consequently conclucied, that if the areas of the several sections of a ship were made to follow the law of the abscissas of a parabola, a vessel possessing good sailing qualities might be formed, and the process of construction much simplified.

This account shors that this method is deduced from experience by theoretical inyestigation; it is applicable to all sorts of coustructions, as it only requires that the relative areas of the sections shail decrease from the midship section towards the extremities, in a certain relation which can be varied to infinity; it is therefore equall; useful in constructing the sharpest man-of-war, as the fullest merchantman.

It may perhaps be objected, that the alterations which have taken place in the forms of the bottoms of ships, since the matroduction of this method by Chapman in 1806, would probably give different results; it is therefore desirable that this should be ascertained by a series of calculations on the bodies of some of the most modern ships which have been found to answer.

Suppose a ship is found to answer well at some given water line \(\mathrm{AC}, \mathrm{Fig}\). 4, Plate CCCCXCY. Let the areas of the transterse vertical sections be divided by some constant quantity, as, for instance, the
breadth, and suppose the distances \(a b, e d\), \(\& e c\) ecpual to the quotients, to be set off on the respective sections, from the water line; then a curve drawn through the points \(h, l\), sec. will be the curve of sections. It wall be fond to be convex to the water lime at the fxtremitios

The onder of the parabola which coincites fur the smatest listance with this line may cast! be found.
but the gencral "phation to the farabola be ca
 ierminn andum so that the parabola shall pass thennon : wo puines bestios the vertes: an two primes bumeen b and C may be taken, hut itisevident that hae farther afart the three pojuts are tohen, the haber will the pursbuta comethe wh the line of sections: of course neither point may be in the comere part of the line of sections. It will be fopmed that the point \(\because\) at the furemost frame, and \(k\) in the nothlubetreen of and \(b\), are the piats whith slion? I we taken.
1)rus a turgunt th the curve at the point b, which wial be of rourse parat to the water tise: then \(m\) h and \(n\) are abso issos: 4 mand \(b\) nordinates to a para-

 values in the equation to the parabola, we have
\[
u=\frac{z^{\prime} n}{x^{\prime}}
\]
\[
\text { and loge } a=\frac{\operatorname{low} \cdot a^{\prime} \cdot \operatorname{lng} \cdot y^{\prime \prime}-\operatorname{lng} \cdot x^{\prime \prime} \cdot \log \cdot y^{\prime}}{\operatorname{lng} \cdot y^{\prime}-\ln 2 \cdot y^{\prime}}
\]

We have now the value of \(n\) and \(t\), and by calculatimg cercral wher abscissas we can wace the parabolic curve. Ase sma operations applied to the alterbody will give the taponem and partmeter of the parabola, which is the mont similur to the curve of sections in that bo:!
it senerally happens that the exiponents are mearly the same in bota bodies, if the place of the millship section be detemmined in the manmes shown in the sedtul.

It will the fomen that the parabola and the line of coctions very noaly coincide; the former beins sumefimes af fithe within the latter between ond he and vibhuat: the foreside of h: and sometimes, but much
 the wasplate at a shont distance forn the rabots,

 아 is U... the is a

 l10 "•"
\[
\begin{aligned}
& =a, v^{\prime} \text {, and } y^{\prime \prime}{ }^{\prime \prime}=u x^{\prime \prime}
\end{aligned}
\]
\[
\begin{aligned}
& n l+y^{\prime \prime}=1 \text { 多 } \cdot n+10 \text { • } x \\
& \text { hence }=\frac{l n g \cdot x-1 \cdot x \cdot x^{\prime \prime}}{y-l}
\end{aligned}
\]

From this reasoning it apprars that ships may ine constracted to coincide exaclly with the parabolic lime, without deriating from the forms which experience has proved to be the most coridu-ive to sisits ships erood quatities. Chapman stated hat this sy tem xould most probably be superion to the ofd sime ant the result has combmed his statemett: for shipes of the line, ligutes, amb merhantmen, have been constructed after it, all of which have ben vere lime vessols.

From the mather in whicla thereme of cections is formed, it follows that its ora, maltiphed by the Ereadth, is equal to the didphornent. and the: the contre of grasity of the arta is in whene natasere
 area of this curve, aupposing it to tex a pasabota of a certain power, is a known pat of the acelatite formed
 nrakin: the areas of the sections chectouse ta the ratho of the abscissas in the pardonda, we aitain certion equatims between the quanties. To find these ecotio tions, suppose the parabolic line, now also reppesentins the line of sections, to be ACD, 1Fig. 5. lata CCCCXOV., catine the water line at some distance from both rabbets: let \(C\) be the place of the midship section. and DC the greatest abscissa. I'ut \(A \mathrm{D}=6\) and \(\mathrm{DC}=d\), let the caponent of the parabola bufore and abait \(=n\), and the disphacement \(=\mathrm{D}\), wen the area of the parabolic ine \(\mathrm{BD} . \mathrm{ACB}=\frac{n}{n+1} \cdot l \cdot l\), and the displucement \(=\frac{n}{n+1} l \cdot d \cdot B\) (Brepresenting the breadth; but \(d \mathrm{I}=\) area of the midship section; hence \(\frac{n}{n+1} \cdot l .(\) usea of midship) section \(\left.)=\mathrm{D}\right) . .(1)\).

Let E be the middle point of the water line \(\mathrm{A} B\), which we may oll the construction water line, F the place of the centre of eravity in poin of lencrh: let FiD, the distance the midohin section is belore the midelle of the water line, \(=h\), and 1 F , the distance the centre of gravity is lefore the midnle, \(=\) a: we will now dextrmine the place of the midship section in reference to the situation of the centre of gravity \(F\).

As BCD represents the displacement of the fore bory, and CDA that of the after tody, the moments ol these two parts will sive the common moment.
'The contre of sravity of the parabolic area is at a distance frota the abscissa DC
\[
=\frac{n+1}{2 n+1} \times \text { the ondinate DE: }
\]
and for the parburhe wreallol it is
\[
=-\frac{n+1}{n}+\frac{1}{n} 1
\]

Whe moment of DCOB fiom the print I:
\[
=\left(h+\frac{n+1}{n+n} \cdot 1 n\right) \cdot D C B
\]
and the moment of D) CA from the sume fuint
\[
=\left(\frac{n+1}{2 n+1} n 1-l_{i}\right) D(\operatorname{an}
\]

But the areas of DCB chd DC 1 are propotional

 \(a l=\left(l+\frac{n+1}{2 n+4} D B\right) D B-\left(\frac{n+1}{2 n+4} \cdot D-k\right) \mathrm{D} .1\).
\[
\begin{aligned}
& =-\frac{n+1}{2 n+1}\left(10 A^{3}-1 D B^{2}\right)+k(D 13+13 A) \\
& =(101+103) \cdot\left(-\frac{11+1}{2 n+1} \cdot(111-1) 13+1\right)
\end{aligned}
\]
\[
\begin{aligned}
& a l=1 \text { li. }\left(1-\frac{n+1}{n+2}\right) \\
& u=k \cdot \frac{1}{n+i}
\end{aligned}
\]
or \(k=a \cdot(n+2) \cdot \cdots(2)\).
That is, il the midship section 1) \(\begin{aligned} & \text { is plated at }\end{aligned}\) sucha distance \(k\) liom the midde point of the comstruction water lime, the centre ol granity will be in the point \(l\) assigned to it.

These two equations, (1) and (2), form the principal foundation of the parabolic method of consturtion. In the first equation, any quantity may be koww by assigning ralnes to the others: and in the secont, by fiximg a value for the diatance of the centre of eravity betore the middle, the place of the midship section will be known; then, hasing by the first equation found the exponent of the parabola, any alsseissa, Cill or KL, may be calculated. Suppose, for instance, dill to be required; then, in the first assigned equation \(y^{n}=a x, r\) is known; also \(y\) and \(x\) are known lor a certain point \(B\), througl which the parabola passes; the value of \(y\) for this point is DB. and of \(x\) is DC. 'Ihis gives
\(a=\frac{\mathrm{DB}}{} \mathrm{DC}^{n}=(\) by putting \(\mathrm{DB}=f) \frac{f^{n}}{d} \ldots\)
Now GH is casily determined in the above equation, by assigning a value to CG, if CG or any other ordinate is expressed by \(y^{\prime}\), the corresponding abscissa (ill \(=x^{\prime}\) is determined by the equation
\[
\begin{equation*}
x^{\prime}=\frac{y^{\prime n}}{t} \tag{1}
\end{equation*}
\]

This equation is sufficient for calculating the areas of all the sections for the fore body; and lor those of the alier body we have the equation (3), in which, by substitutingif for DA, we get the valne ol the parameter, a', of the parabola of the alter body, and substituting this value for \(a\) in equation (4), ant giving to \(y^{\prime}\) any vatue CK, a corresponding abscissa LK is obtaned; and in the same manner as many may be fonnd as may be thonght proper. It is evident that Gill and LK must be subtracted from the largest ordinate DC, to give G'll and K't, which represent the areas of the corresponding sections.

This method of first calculating the abscissas and then subtiacting them, may appear indirect, as the true lines (a'H and \(\mathbf{K}^{\prime} L\) could have been obtained at once by transforming the equation of the parabolic line to another, begiming at the point l); but it would then have lost its simplicity, and the calculations would not have been easier than by this method. One thing may however be done, which is, to substitute the area of the midship section. instead of its guotiont, by the breadtl; by which the whole areas of the other sections will be obtained, instead of the lines which represent them.

The principles of the parabolic method being now explained, it will be easily seen how very useful its
application is (6) the comparison of all shime, whether

 bela that wime illes mose beally with the lime of stations is casily lomat, and we shall hate'putting \$1 for the midelipe section f the walne ol
\[
n=\frac{1)}{l n-1} \cdots \cdots{ }^{\prime} /
\]

 11s at the same time a foronetrical and arimbatical expression for the relative loblucss and is in comecfuence prederable to the wethot which is sometiones used, - What of giving the proportion boterem the displacemont and the circmostribins solid, which only gives an arihnetical expression.
l'his patibuhe method may also loc applien to show the rehative fuhars of the midships seetion of any of the water lines, of the displacement vith respect to the water line. ath ol several wher elements.
let ABC lis. G, llate CCCCXCOV. repres m: a midship section, and let lif be a tangent un the chme at the point of contrary llesure \(C\) : the smathareal(1), not being of any importance, may be nesterted. If the midship section is at all similar to those usually given to ships, a parabola may be assigned which shall pass through the points B and C, and have ncally the same area with the midship section, and also neatly conacide with the curve; so that the exponent will afford means of ascertaning its relative fuhess.

Call the breadth at the water line \(A B=\frac{1}{2} B\), the depth \(A E=h\), and the area \(A B E=\frac{1}{2} M\), and let \(m\) be the exponent ol a parabola having the same area; then
\[
\begin{gathered}
\frac{m}{m+1} \cdot \frac{1}{2} B \cdot h=\frac{1}{2} M \\
\text { and } m=\frac{1}{13 h} \frac{1}{1} \frac{1}{2} M \\
B h-M
\end{gathered}
\]

In the same manner the exponent may be found for the water line, by supposing a parabola with its vertex at the greatest breadth, and passing through the points in which the water line cuts the middle line. Suppore the exponent of this parabola \(=r\), the leng: \(h\) on the water line \(=1\), and, as before, the breadth \(=\) Ij: :iso let the area of the water line \(=\mathrm{W}\) : then
\[
\begin{aligned}
& \frac{r}{r+1} L, \frac{1}{2} \mathrm{~B}=\frac{1}{3} \mathrm{~W} \\
& \operatorname{and} r==\frac{\mathrm{W}}{\mathrm{BL}-\mathrm{W}}
\end{aligned}
\]

Lastly, suppose the areas of the several water lines from the load water line downwards to decrease in the proportion of the abseissas to a parabola, and let the exponent \(=s\), the depth from the water lise to the taneent of the milship section \(=h\), the displacemerst \(=\mathrm{D}\), and the area of the water line \(=\mathbb{V}\); then
\[
\begin{align*}
& \frac{s}{\delta+1} W h=\mathrm{D} \\
& \text { and } s=\frac{\mathrm{D}}{h \mathrm{~W}-\mathrm{D}} \tag{1.}
\end{align*}
\]

By calculating these different exponents for ships already built, and which have been form to possess good qualitics, a very correct idea of their shape will
be obtained, which, in making new constructions, may be referred to: and after a very short practice, the constructer will be enabled to determine, not only the principal dimensions, but the outlines ol the body belore a drawing is begun.

A collection of such calculations was begum by Chapman, and has, since his time, been considerably ausmented; vie now, therefore, know what the ralue of the exponents ought to be, in the different classes ol ships, lor the serviees to which they are destined. It is always Comd that large ships are luller than small ches, and, in conseduence, have larger exponents; and that merchant-men, have larger exponents than men-of-war of ecual size.

The exponent of he line of seetions in the Swedish nary, in ships of tae line, varies lrom 2.5 to 2.7 : of the nidship section, from 5 to 3 . s; of the water line, Trom 6. 6 to 5.2: and of the displacement, from 2.2 to 1. \(:\) : of conse the larger exponent belongs to the larger class of ships.

In Crigates, slonps, and brigs, they are smaller: the exponent of the line of sections taries lirom 2.3 to \(\approx .1\); ol the mid-ship section, fiom 3 to 1.0 ; of the water line, from 5.2 to 3.25: and ol the displacement, from 1.6 to 1.25 . These exponents show that small ships have much larger dimenstons in proportion to thetr displacements than large ones.

The abore results were obtained from the displacements and breadths, not including the plank: and the length is that ol the construction water linc, which, in Swedish ships, is itess than the whole water line between the rabbets, of which deduction is made from forwad, and ? from att. In finding the exponeat for the water line, its whale lengh between the reblets is taken.
of course these calculations are equal!y applicable with the planl: on as with it off: in the first-mentioned case the sections near the extrmitios will have. relatively to the 1uidship section, a Dareer area, and there will therebore be scarcely wny hoblow at the ends of the eurves. and it will not be impropin to take the lengeth of the water line, the winde longth between the rabluets.

The Pollowitra tables ane siven as an illustration of this method:-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\square\) & & \[
\left\{\begin{array}{c}
\text { Dreatho } \\
\text { rex- } \\
\text { treme. }
\end{array}\right.
\] & In phatron the water Jone io the lower chlge of thacrat bet. & 1) pluce 1:c.17t, in luchin!: \({ }^{\circ}\) the planl. & \begin{tabular}{l}
Are: of \\
the Jutul \\
water \\
action.
\end{tabular} & Arear of the mid shpsec tion. \\
\hline & \(f t\) & I\%. & ft. & (1) ft. & \%f. ft. & -1 ft. \\
\hline 入1] & & ,....) & \(\therefore \dot{\sim}\) & 110 & 1010 & 10\% \\
\hline Bnlsat. & 1.j & 42911 & 19.3 & 115.54 & 770 & \(5: 1\) \\
\hline & 1511 & ! 1) & 140 & 5.5s.71 & 30.36 & S11 \\
\hline
\end{tabular}

Then from the equations of, (5), (6), and (7) , the following may be oltained:-
\begin{tabular}{|c|c|c|c|c|}
\hline & bable of "1,
the or:po-
nent of thar
line of ste
lions. & \(V\) :aluc of "h1" ‘ג\}" H"+nt of 1 midhbijes se 1ion. & Valuc of \(x\). the: \(\begin{gathered}\text { agas. }\end{gathered}\) nent of the fuatur line. & lialue of \(\therefore\) The <rpo nent of the dioplacenesent. \\
\hline Suluen & 2836 & 60.977 & 11.8034 & 2.3115 \\
\hline 13,19.ark. & - 8.51 & 4.4111 & 6.825 & 2203 \\
\hline Rindumion & \(\because 300\) & 3.1795 & 6123\% & 1.61188 \\
\hline
\end{tabular}

From this table of exponents, we may judge with certainty of the shape of the vessels. The Velson, for instance, has a very fall midship section, and an excedingly lull water line, but she is not relatively so full towards the extremities as the Pulforle, and her displacement is not relatively mueh luller than that of the Phenertl. The lonherer has a shatl midship section, is fuld towards the extremities, and has a very large water section in proportion to her displacement. The Endymion is a very sharp ship ol her class, has a small midhip) seetion, is rather elean towards the extremities, but her water line is not very shapp: its proportion to her displacement is extremely large.

The lour exponents whin have been dencribed, will separately only show the degrees of lumess in one direetion; but they may be combined in such a maner as to cxpress. at the same time, the lengitudinal and transuersial lulness: to effect which, the value of the area of the midship section \(=\frac{m}{m+1}\). \(13 h\) must be substituted in equation (1), which gives
\[
\begin{equation*}
\frac{n}{n+1} \cdot \frac{m}{m+1} \cdot l \cdot \mathrm{~B} \cdot h=\mathrm{D} \tag{b}
\end{equation*}
\]
also by substituting the value of \(W=\frac{r}{r+1} B . L\) in the equation (1), we hare
\[
\begin{equation*}
\frac{r}{r+1} \cdot \frac{s}{s+1} \cdot \mathrm{~L} \cdot \mathrm{~B} \cdot \mathrm{k}=\mathrm{D} \tag{c}
\end{equation*}
\]

In these equations the prodincts \(\frac{n}{n+1} \cdot \frac{m}{m+1} \cdot \frac{r}{r+1} \cdot \frac{s}{s+1}\) show the relutive falness of chalderat mbips. in comparison to the circums ribing purathopiped. When the eonstruction water line is cqual to the whole water line, as was supposud in calculting the foregoing table
\[
\frac{n}{n+1} \cdot \frac{n}{n+1}=\frac{i}{i+1} \cdot \frac{s}{s+1} .
\]

By this cquation any error jn determinimg the exponents may be detacted: and also bẹ Usins the whole equations (1) and (e, crrors in the dimensions or exponents will be ductected.

By a method of interpolation. formale of rety easy application haw been dedueds by which the depth of the eentre of grarity ol the displar mont below the water-stction, the heisit of the metachatre, and several other essential elemonts, may be apporimated to, without the usially long caluhations and thas most of the qualities of ashop. Whith are determinabie by calcmation, may be astertained, comparet, and altered, with rery litth troable, belore the construetion is beson.
la order to app! this method of construction to practice, nothins more is requisite than to know the fimits betwecn which the exponemts generaliy are for the chass of ships in question, the proportion between the principal dimensions, and the distance the centre of erravity should be beiore the middte of the load water line. In Sweedish ships of the line, and frigates, the distance of the contre of gravity of the displacement belore the middle of the load water line, is between \(\frac{1}{7 n}\) and \(\frac{1}{n}\) of the tength, and in smaller vessels it is a littic more, depending on the manner in which their stores and rigging are distributed. This quantity being determined, the weight
the ship is to carry, the weight of the hull, and the retative proportions ol the dillerent dimensions, of the value of the exponents; the calculations will give the areas of every section, leaving the constructer the power of giving them whatever form he may wish.

By inserting the calculations of a stemmoat* which 1 have frey recently constructed according to this method, its application may perlaps be more clearly illustrated.

Suppose the ratio ol the breadth to the kength to be a, and that of the breadth to the depth to be \(\beta\), by substituting them in the equation (b), it will become
\[
\frac{n}{n+1} \cdot \frac{m}{m+1} \cdot \alpha \cdot \beta \cdot B^{3}=\mathrm{D}
\]

The values of \(m\) and \(n\) are known, being assumed from former experience; the displacement is determined by the weight of the eugines, added to the weight of the stores, fec. and an approximation to the weight of the hull. By assigning values to a and \(A\), the value of 13 is obtamed, and liom that the values of the length and depth. 'The dimensions being now known, the scantling may be determined, and the troe weight of the hall estimated; which, il very different from the approximation which was used, will cause a corresponding alteration in the dimensions, sec. With a steam boat, the stability is ol minor importance; therefore it is not necessary to refer to equation (\(c\)).

The vessel in question is intended for two 25 horse power engines, the weight of which, with the necessary stores and the other articles, was estimated to be about 2050 cubic lect of water, and the approximation which was at first mude to the hull was 1850 cubic feet, which supposed the whole chisplacement to be 3900 cubic feet.

The vessel was intended to be sharp both at the midship section and at the cxtremities; hence \(n\) was taken \(=2.12\), and \(m=3.0\); the proportion between the lengith and the breadth, or \(\alpha\), was taken \(=5.25\), and that between the breadth and the depth, or \(\beta\), \(=0.32\) : by substitutiag this value in the equation, we have
\[
\begin{aligned}
B= & \sqrt[3]{\frac{3!00 \cdot 3 \cdot 12 \cdot 4}{2.12 \cdot 3 \cdot 3.25 \cdot 4.32}}=16.58 \\
& \text { Length }=5.25 \mathrm{~B}=87.0 \mathrm{t} \\
& \text { Depth }=0.32 \mathrm{~B}=5.31 .
\end{aligned}
\]

By calculating the weight of the hull according to these dimensions, it was found that the approximation was too small by 175 cubic feet; by adding this quatity to the displacement, and retaming the other values, it will be found from the above equation that the
\[
\begin{aligned}
& \text { Breadth }=16.322 \\
& \text { Lengh }=5.25 \cdot 16.822=38.315 \\
& \text { Depth }=0.32 \cdot 16.822=5.383
\end{aligned}
\]

The weight of the engine, its situation, and its centre of gravity, must determine the place ol the centre of gravity of the ressel, which was found to be about 2.25 leet belore the midele of the length, on the construction water line: and conseguently from equation (2), the situation of the midship section was determined to be 9.27 feet before the middle ol the construction water line.

The stations of the other sections were determined
by the room and space. The parameters for the fore and alter budies were liest determined by substitution in that equation (3.) In the fore body
\[
f=\frac{1}{2}-1 i=\frac{88.315}{2}-9.27=34.987
\]
and in the after body
\[
f=\frac{1}{2}+1=5.5 .127
\]

The area of the midship section from equation (s),
\[
\begin{aligned}
& =\frac{m}{m+1} 1 ; h=a \cdot 16.822 . \therefore \ldots \pi \\
& =67.912 \text { sfluare foert, }
\end{aligned}
\]
and the hall area \(=.33 .95 \%\).
Hence by equation (3), the parameter of the fore body
\[
=\frac{34.887}{33.956}=54.895
\]
and for the after body
\[
a^{\prime}=\frac{53.127}{33.936}=135.499
\]

The calculations for the scetions are contained in the following tables:-

The areas of the sections being thus determined. the construction of the draught was begun. The midship section and one or tro sections in each budy being dramin and their areas ascertained to agree with the tables, one or two diagonals were got im, and the rest of the sections drawn, always keeping their areas precisely eqal to those giren by the table. The direction of the diagonals at the extremities. determined the places of the stem and stern post rabbets. and from that the length of the whole load water line was found to be 0.44 feet longer than that of the construction water line; viz. 0.33 at the fore end. and 0.11 at the alter end; consequently the lengit of the load water lime between the rabbets \(=85 .-55\) fete .

As in a ship constructed according to this methori, the situation of the centre of grasity, with respect to
the length, and also the displacement, are known correctly: during the progress of the work much tedious arithmetical calculation is avoided; and after very little practice it will be found that the forms of the different sections may, with great ease, be drawn to contain the requisite areas; and I am confident that by the seneral adoption of the method, an amazing sasing of time and trouble would be effected.
on practical constrection.
When a dranght of a ship is formed upon the principles which have been daid down, adapting them as nuth as possible to the nature of the service on which she is designed to be employed. and to the scas or rivers which it is intended that she: shall navigate, it becomes the duty of the practicel buider tu carry imo effect the views of the constructer; and the first operation which he has to porlorm, is to delincate correctly, or as it is usually called. lay off the plame upon the mould lof floor, This practice has usually been considered as coming within the prosince of the practical builder, and may certamly be corroctly performed, without the add ol matamatical traming: but in this, as well as in many rether ol the uselintarts, at kowledge of grometry will corren widmethods, or strike out new to lorwad the arehitect in his tiens and operations.

The naval engineer, after haters formed his plan of the ship accordins to cortain prestrimu dimensiona, furniblies the practical architent with the shocr draught, lig. 1. Jate CCC:X X1H. a plan of the form of the body at rarious sections, (Fig. 2.) at hath breadth plan, (Fig. 3.) and a scheme of the principal dimensions of the ship, and the sconthins of the timbers. phanking. \&ec. The sherr drmetht or plane of eleration, is chefly useful for the pupose of giving the length of the ship, the depthin the hold, the banging of the decks and their height lrom each oiner, the longitudinal sheer and height of the topsides at the rarions sections, the rake of the stem and stern porst, with the overhanging of the stern. Lepon this fan also is delineated the entting dowa lime ol the floors. the draught of water at which it is intended the ship shall salt the situation of the wales, the spacing of the timbers, the number, position and dimensigus of the parts the sitation ul the masts athe chamels, and the form of the erripe and leadrails. 'The Letly plen op rectical platie of the timbers, gires the lom of the ship transtersely at different sections, correspendia; with those similarly maten on the shemdeangh, and with ohich they agree in height: and the half beredth phat op horizontal plane, shows the form and tomethof the frame of the shap at parts cat by homizomal lines, usually denominated waterlimes, on by diagonal ones, which rither show the lenget of the seberal timbers which form the lames or the stathon of the ribands or hurperas, which seme (t) krep the liames in theit plates before the planking is boonght on; these lines, fat mone pationdarty the Diesphal limes, are "rat to prove that the sections on tha body plan ate fail. 'The eftipnity of the cant timbers in the fore and aftre bodies in atso shown on this phan.
'10 prevent be imarenace litely to take place in
translerring the several dimensions of a ship from a drawing on a small scale to the actual size intended, the buider is lumished with a scheme of scantlings, which gives in words at lenoth, or by figures, the principal dimensions, the breadth and hiekness of the several timbers, (technically called their siding and moulding,) the nature and sizes of the fasteniners, the rombding and dimensions of the beams, the thickness of the caternal and internal planking, decks, clamps, and shell-pieces.

Being lamished with these plans and information, it lecomes the duty ol the practical buikler to tay down the ship. The drawing fumished by the enginew bensusually made on ascate of one-fouth of an moch to a foot, it is necessay to place the projection on the floor fortreight times their size, in order to make mondlings for providing the timbers of the liame. "This laying ofl the ship is performed chiefly by horizontal and diagonal lines cutting the body in rations divections: the greater mmber of these employed, the more likely to be the faimess of the lines of the body. and the accuracy of the work.

Vertical lines are also used to lay down the after body: the varicty ol positions of the timbers, particulurly in ships with square sterns, is such as to require in this part ol the body the greatest nicety. When the lablder is satisfed with the accuracy ol the lines. they are slighty mised on the hour to prevent abliteratuon. Whats somerimes beenconsidered that graat nikety is wo required with the square frames; but care shomblde taken to conform as neaty as possible to the form atad dimensions given, or difficulty will be experienced in adapting the cant frames to the body. In fine, except a ship be accurately laid down, the labon: ol the engineer has beem employed in vain, as the best-constructed plan may be rendered umgatory for a want of due attention in the performance of this duty, amb will alog give eventually considerable arouWhe to the practical con tructer in adapting the frames (1) their positions. To give the methods in use for luying down the severa! parts of a ship would far exceed om limits: and thoze of our readers who may wish to be inturmed on all these points are refered to Stalkart's Notel drchitechurs: to The Elfments and fructice of vead . Frehifacture, third edition, or to l"incham"s lienctions for Laying off" sihips on the

Before we enter apon the mote of combining. and the means used to wink the several pieces of timber and motals which constiute a ship. so as to form a whole, we mast necessarily digress to pite some account of the new mole of comatruction introluced into has Majeoty's nary in the year 1810, by Sir Robert beppiafs, who is how survegor of the royal nary, with the modification whe time and experionce have enablal him to intradure to bring the plan to its peresemt state of pertection.

The chicf circumstances to be gnarded against in shiphuiddine are a transwerse altoraton of form by a scparation of one side of the ship from the other, but principally a lons;itudinal one by the two end being dopressed and the midde rising, which is termed arching or hogetige or in some cases the middle sinking, which is called sassing. The transuerse alteration results generatly from an imperlect attachment

\footnotetext{

}
of the ends of the beams to the side of the ship, and the want of comexion betwern beam and bean and the lonsitudinal one, by the weishts plated in tare body in no degree corresponding with the displacement of water at the sererab seetions. It is the object of Sir Robere Seppings to peremt these changes in bugur by constuctime ships according to a new alpplication of matter, by which the strame to which they are subject shall be more cequaly divided theourhout the fabrio, and the material placed in such direstions as are best alpped to resist ihoue horese aml also by a new combination of the parts of therix frames, so as io be cuabled to briag into use timber which, from form, its smater size and less length, shatl be more casy to be obtaned, and therefore less expersive. Thase improvements have been completely successlul, and on this subjert. we camot do better than quote the opinion of at select commitere of the House of Commons, which is given in their hird report on Finance.

Vour committe dem it thon daty partictary to notice Mr. Seppines, one of the surverops of the navy, to whose abilitios and exertions the comery is
mainly intebted for many of its most valuable improvements in maval arrhitectare; the ingenions mo. d.ls ol which have bren shbmituld to the inspertion of your commiter, with all the neeressary rxplamations ol tharseremal ases and application. Vome committhe do mot premed to drecribe or apperitte with ace curacy the alme ol these improvarents, to estimate which to thedr lall extant, rapures considerabie professional experimee: they are howner, latly convinced, that the restit of them will be to eftectuate, in the construction of shipsoll war, a erreat satving of
 ate economy of mumatife arising from their superios durability, and the great power of resistace to the elements, and to the casuaties incidental whatical life, whirh the motera system of beeping our ships at sea, at all smasons, and in atl wathers, has mationd of the utmost mportance. These servies, ahthoners they have motheng of that bellimey when forcibly attracts pablic ahmiration, will combane to confer a fostiner bereft to the british mation long after that period when the ben fioial eferts of victories, however spmendid, shall have pasmed awne". *

 decay.

 weakness does antay the whole bemfe of gemeral strength.

 and her stability.

 means of the picees called waterwas, which run along the anghbu jumetion, and which are coaked buth to the phans, ard to the sides.
"It camot be a just canse fur lessening the satisfaction which yon are entided to derive from the sucess of yon imptone.

 for the mere chance of hiting upon accidental combination, whin, when the hands of more matriotis and skatial men hat

As the arching of ships has been considered in all times as their most serious defect, it has been the object of maritime nations to take measures to prevent it; and we find that some of the ablest mathematicians and engincers have tumed their attention to this object, and that their views have been for the most part the same, that of placing some of the materials in a diagonal direction, that the forces may act in the direction of their fbres, cither by pulting or pressing upon them, the strongest direction in which materials of metal or wood can be placed. The mode of application in each case has differed according to the notions of the projector. These plans, however, have been severally abandoned after sufficient trial, and the causes assigned were the want of abutments; they are detailed with much ingenionsness by the Baron Dupin in his paper before quoted.

It remained for the genius of Seppings to adapt successfully the laying of the materials diagonally in shipbuilding to a considerable extent, and by a new
and happy combination, by substituting the triangle for the rectangle, to effect the purpose so long desired. On which plans (Plate CCCCXCYIII. Fig. 1.) all ships and ressels belonging to our nary are now constructed; nor has it becol confued to this country, for the adrantages being so apparent, those ships of war which have been recently built !? most loreign pawers have also been constructed thereby. The arching of ships at the present time is comparatively nothing. and there are many instances of vessels built according to this method, having been saved, which would inevitably have been lost had they been constructed according to the method formerly practised.

As the strength of ships to resist the impulse of waves and accidents from shot, or from taking the ground, not only depends upon the manner in which they are put together, but also upon the size of the matcrial employed, we shall give a scheme of scantlings for all classes according to the latest improvements.

Principal Dinensions and Scantlings of a Ship of ench class, build according to the prescnt improved method of construction.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Descripution.} & \multicolumn{3}{|l|}{Shijes of the Line.} & \multicolumn{4}{|c|}{Frigrates.} & \multicolumn{2}{|l|}{Sloop.} \\
\hline & \[
\left\lvert\, \begin{array}{|c|}
1 \text { net Rutc: } \\
1 \sim 0 g \text { gum }
\end{array}\right.
\] & Rd Rute. & \[
\begin{aligned}
& 3 d \text { Rate } \\
& -1+\text { gran }
\end{aligned}
\] & 1th hintel
52 gitus & \[
\begin{aligned}
& 5 \text { th Rate } \\
& i 6 \text { gun }
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 5 \text { th liatt } \\
& 4 \sim \text { guns }
\end{aligned}\right.
\] & \[
\begin{gathered}
\text { 6th Rute } \\
\text { Sguns }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Ships of } \\
& 18 \text { rums }
\end{aligned}
\] & Brig of 10 gums. \\
\hline & fect. in. & feet. in. & fut. in & fect. in & firt. in & feet. in. & fuct. in. & ect. in & fect. in. \\
\hline \begin{tabular}{l}
Principal dintensions. \\
Length on the lowar deck
\end{tabular} & 20503 & \(195 \quad 5\) & 17713 & 1731 & 1596 & 1453 & 1138 & S 1101 & \\
\hline Lengh on the lower duck & & & & & & & & \{upper & deck. \\
\hline of keel for tommage & 1710 & \(162 \quad 2 \begin{array}{ll}1 \frac{1}{4}\end{array}\) & \(1.15 \quad S_{3}^{1}\) & 1457 & \(13 \pm 0\) & 121118 & 94. \(\quad\) T \({ }^{3}\) & 90 3 & 723 \\
\hline Breadth, extreme, to the thickness of plank of bottom & 53 \(i^{\frac{1}{1}}\) & 51 51 & 482 & 4310 & \(\therefore 0 \quad 5 \frac{1}{2}\) & 383 & \(31 \quad 7\) & 300 & 246 \\
\hline Wepth in hold & 23 2! & 226 & \(20 \quad 10\) & 146 & 129 & 1.33 & 89 & 82 & 110 \\
\hline \begin{tabular}{l}
furthen in tons \\
- cwt.
\end{tabular} & 2613 & 2284 & 1798 & 1187 & \(116^{-}\) & 951 & 503 & 432 & 231 \\
\hline & & & & & & & & & csided \\
\hline & & & & & & & & & \(\begin{cases}0 & 11 \\ 16 y\end{cases}\) \\
\hline Kect which is spare in midship & 18 & 17 & 16 & 14 & 1 3! & 13 & 11 & 10 & \{ lby, \\
\hline & & & & & & & & & moul- \\
\hline sules in fore purt of the ship & 16 & \(15 \frac{1}{2}\) & 14 & 113 & 11 & 10 & 011 & 0101 & \(0 \quad 9\) \\
\hline : fter pati of ditto - - & 13 & 1 22 & 1 1 1 ! & \(1 \quad 1 \frac{1}{2}\) & 10 & 0113 & 0103 & 0 O 0 & 09 \\
\hline The keetsons are of the sume dimension as the keel & & & & & & & & & \\
\hline is in millhip. & & 1 -1 & & & & & & & \\
\hline \begin{tabular}{l}
stem, main square at its head \\
s.ded at it s ione font
\end{tabular} & \(\left\lvert\, \begin{array}{ll}1 & 8 \\ 1 & 6\end{array}\right.\) & \begin{tabular}{ll}
1 & 7 \\
1 & \(5 \frac{1}{3}\) \\
\hline
\end{tabular} & \(\begin{array}{ll}1 & 6 \\ 1 & 4\end{array}\) & \(\begin{array}{ll}1 & 4 \\ 1 & 4\end{array}\) & \(\begin{array}{ll}1 & 4 \\ 1 & 3\end{array}\) & \(\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\) & \(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\) & - 14 & \(\begin{array}{lr}1 & 2 \\ 0 & 10\end{array}\) \\
\hline
\end{tabular}
brought it to prefection, they would he ton happy to cham as their own legithate offaping ouher countrics may be eatremely
 amb we may willigly censent to share with others some portion of the ghy of original invention, provided that we retan as one pec:ibu patrimunt the highest perfection of actual exceution.

 may wh sreat propact make use of some theoretieal principlesfor determining the sitation of the weakest parts which lamit the corength of the whote fabtic.

 of gome datmonal durks.

Principal Dimensions and Scantings of a Ship of carh rlass, buill acroriting to the prostat improrrel muthoul of comstruction-comtimact.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Dissreiphimu. & \multicolumn{3}{|l|}{} & \begin{tabular}{l}
4th lint \\
:2 sи".
\end{tabular} & & & \[
\begin{array}{|c|c|c|}
\hline 1 / 1 \text { Int } \\
\text { ix zems }
\end{array}
\] & & \\
\hline Principut dimansims. & Jicl. in. & fort. in. & fort in. & fint.in. & furt in. & Jint.in. & fint. is. & fuet in. & fott in \\
\hline Post stern sipure at head & 21. & 20 & 111 & & 1 is & 16 & 1 . & 12 & 111 \\
\hline Fore and aft wn kerl, the fabse port includert & 30 & 211 & 29 & 21 & 219 & \(\therefore 1\) & 110 & 111 & 181 \\
\hline inner fore tard at at upper end & 12 & 12 & 11 & \({ }^{0} 11\) & 1119 & 210 & \({ }^{1}\) \% \({ }^{3}\) & \({ }^{19} 8\) & \(1)^{7}\) \\
\hline on the keel - & 18 & 17 & 16 & 12 & 12 & 12 & 1) 11 & 1916 & (1) 10 \\
\hline Room and spate of the timbers & 210 & 2
1 & 29 & & 30 & 26 & 20 & 25 & \\
\hline Floor timbers, or (if ched,) had fiow sided in midship & 1.31 & 13 & 12 & \(1 \begin{array}{ll}1 & 1 \\ 1\end{array}\) & 10 & () 113 & 10 & 119 & \\
\hline sided atore and abatt & & 12 & 11 & 1012 & 0111 & (1) \(10{ }^{\text {a }}\) & 10 & 19 & \(1) 7\) \\
\hline moulded at their he:d & & 12 & 11 & \(10^{1}\) & 011 & () \(10 \frac{1}{2}\) & 98 & 08 & \(1) 7\) \\
\hline Futock, lirst sided in midship - & 13 & 13 & 12 & \(1 \begin{array}{ll}1 & 1\end{array}\) & 10 & 0112 & 910 & () \(\mathrm{S}^{1}\) & \\
\hline moulded at their heads & 12 & \(1{ }_{1} 1\) & 103 & 0113 & () \(10 \frac{1}{2}\) & 010 & 0) 8 & \({ }^{1} 71\) & \\
\hline second, sided in midship & 123 & \(1 \begin{array}{ll}1 & 2^{2} \\ 1\end{array}\) & \(1 \begin{array}{ll}1 & 1\end{array}\) & \(1{ }^{1}\) & 0111 & 0103 & 091 & \(0_{0} 82\) & \\
\hline moulded at their licads & 113 & 11 & 10 & 011 & () \(10{ }^{\frac{1}{4}}\) & 096 & \(\begin{array}{ll}0 & 8\end{array}\) & 07 & \\
\hline third, sided in midship - & 12 & \(\begin{array}{ll}1 & 13\end{array}\) & \(1 \begin{array}{ll}1 & 02\end{array}\) & \(0_{0}^{0} 111\) & \(010{ }^{0} 1\) & 010 & 09 & () 8 & \\
\hline moulded at their heads - & & 10 & (0)113 & \(010 \frac{1}{2}\) & 0 921 & 09 & \(07^{7}\) & 061 & \\
\hline N. 13. The first, seeond, and third fiuttocks are sided from half an inch to an inch less atore and abatt to what they are in midshin. & & & & & & & & & \\
\hline Futtock, fourth, sided - - - & & & 0 & 0119 & 0101 & \(09^{3}\) & & 08 & \\
\hline moulded at gun deek waterway & \(0{ }_{4}^{4}\) & 1 l & 0111 & & & & & & \\
\hline at middle deck ditto & & & & & & & & & \\
\hline at upper deck ditto & 010 & 010 & 010 & 093 & () 9 & 088 & & & \\
\hline Toptimbers, sided at their keelsand upper futtock heads & 11 & \(10{ }^{1}\) & 10 & 011 & 010 & & 088 & 18 & \\
\hline at the top of the side - & \(011 \frac{1}{2}\) & 0112 & \(\bigcirc 11 \frac{1}{2}\) & 0102 & 0 91. & \(\begin{array}{ll}0 & 9\end{array}\) & \(\begin{array}{ll}0 & 8 \\ 8\end{array}\) & 071 & 06 \\
\hline mounded at the upper edge of the sheer stroke in the waist & & & & & & & & & \\
\hline at ditto, afore - & \begin{tabular}{ll}
0 & 7 \\
\hline
\end{tabular} & 07 & 063 & \(\begin{array}{ll}0 & 6 \frac{1}{4}\end{array}\) & & \begin{tabular}{ll}
0 & \(5{ }^{3}\) \\
\hline
\end{tabular} & \(\begin{array}{ll}0 & 5\end{array}\) & 15 & 0
0 \\
\hline at ditto, ab:aft & 07 & \begin{tabular}{lll}
0 & 6 \\
\hline
\end{tabular} & & \begin{tabular}{ll}
0 & \(5 \frac{1}{2}\) \\
\hline
\end{tabular} & 0 S \(\frac{5}{4}\) & \(05^{5}\) & & & \\
\hline at the upper side of quarter deck and forcenstle ports & \(0 \quad 5\) & 05 & 05 & 04 & 04 & & 0 31 & & \\
\hline In hold. & & & & & & & & & \\
\hline Limber stroke - - - thick & 0
1 & & & 06 & 06 & 06 & 04 & 04 & 03 \\
\hline Ssquare & 12 & \(1 \begin{array}{ll}1 & 1\end{array}\) & 11 & & & & & & \\
\hline Diagonal riders, npper and lower \(\quad\) sided & & & - & 011 & 011 & 011 & & & \\
\hline (moukled & & & & 06 & & & & & \\
\hline Diagonal didcrs, middle - - square & \(\begin{array}{ll}1 & 3\end{array}\) & \(1 \begin{array}{ll}1 & 2\end{array}\) & 12 & & & & & & \\
\hline - Ssyuare & 10 & 10 & 011 & & & & & & \\
\hline Diagonal trusscs - - - \{ \(\begin{aligned} & \text { sided } \\ & \text { monlded }\end{aligned}\) & & & & 010 & 010 & \(\begin{array}{ll}0 & 11 \\ 0 & 6\end{array}\) & & & \\
\hline Sinoulded & & & & 06 & & 0 \% & & & \\
\hline Longitudinal piece at foor head - \(\quad\) sidure sided & 12 & 12 & 11 & & & & & & \\
\hline Longitudinat piece at moor head - \(\begin{aligned} & \text { mided } \\ & \text { moulded }\end{aligned}\) & & & & 0
0 & 06 & 06 & & & \\
\hline Sequare & 10 & 10 & 011 & & & & & & \\
\hline Longitudinal picee at first futtock hemb \{ wided & & & - & & & 011 & & & \\
\hline (monlied & - & - & - & 06 & 06 & & & & \\
\hline A. 13. The riders, trusses, abd longitudinal pieces are sided one inch less in the fore and atter bodics of ships, than the above dimensions. & & & & & & & & & \\
\hline Iron trusses - - - ¢rand & - & & & & & 6 & & & \\
\hline & & . & - & & & \(\begin{array}{ll}0 & 1 \\ 1 & 8\end{array}\) & & & \\
\hline Thick stuft at foor heads - \} thick & . & - & - & 06 & & 16 & 041 & 03 & \\
\hline at first fintuek head \{broad & - & - & - & 18 & 18 & \(\begin{array}{ll}1 & 8 \\ 1 & 6\end{array}\) & \(16^{-}\) & 16 & \\
\hline \begin{tabular}{l}
< haick \\
In the forebody of a ship are phaced hooks, in the
\end{tabular} & - & \(\bullet\) & - & & & & & & \\
\hline In the forebody of a ship are praced hooks, in the aterbody crutches of iron. & & & & & & & & & \\
\hline Oitop deek. & & & & & & & & & \\
\hline 13cams, square & 1 \begin{tabular}{ll}
1 & 31 \\
\hline 1
\end{tabular} & & & & & & & & \\
\hline Itidibeams, spuare - - & 011 & 0102 & \(010 \frac{1}{4}\) & 010 & 08 & 08 & & & \\
\hline Shelfpicees - - - Sbroal & 10 & \(1{ }^{1} 0\) & 10 & 011 & 011 & 011 & & & \\
\hline Sters לthick & 010 & 010 & 010 & 011 & 011 & 011 & & & \\
\hline Clamps - - - thick & 08 & 07 & 07 & 06 & \(0 \quad 5\) & 05 & & & \\
\hline Chocks under shelfipieces - sided & 10 & 10 & 011 & 011 & 010 & 910 & & & \\
\hline Strokes on the cnds of beams - thick & & 07 & 07 & 05 & 0 \% & 04 & & & \\
\hline Gun deck in ships of the line, and lueer deek in these of & & & & & & & & & \\
\hline Beams - . - - square & & & 133 & 0111 & & & & & \\
\hline half - - - - & 011 & 4102 & \(010 \frac{1}{2}\) & 010 & \({ }^{9} 18\) & 98 & 0 O. & & \\
\hline Shelfjices - . . Sbroad & \(\begin{array}{lll}1 & 2 \\ 0 & 1\end{array}\) & 12 & 12 & 12 & 1 - & 10 & \(10^{-}\) & 11 & 011 \\
\hline - - 2thick & \(\begin{array}{ll}0 & 10 \\ 0 & \\ 0\end{array}\) & 010 & 010 & 13 & 07 & 07 & 10 & & \(\bigcirc 0\) \\
\hline Clamp - - thick & \(\begin{array}{lll}0 & 9\end{array}\) & 08 & 08 & \(\begin{array}{ll}0 & 51\end{array}\) & 03 & \(\bigcirc 5\) & \(0 \pm\) & 04 & 03 \\
\hline Chocks under shelfpieces . . . sided & 010 & 010 & 010 & \(0 \quad 9\) & 07 & 0 11 & & & \\
\hline
\end{tabular}

Principal Dimensions and Scantlings of a Ship of cach class, buit accoriing to the present improved melhod of construction-continued.

The first operation necessary in building a ship is, to place pieces ol wood on the slip destimed to receive Her, about lour leet apart, lor the reception of the keel: these are calfed blocks, and are latid a deelivity
 they extent, or at an anyle ol' 3 '20'. 'The keel is usuatly composed of c!m loss, searphed and bobted together. When it is secured on the blocks by treenails, the dead-wood l'orward and abalt is placed thereon, the form thered is given by the line shown in the sheer dratugt called the catling down lat: as a (llate CCCCXCIX. Figr. W) ; the fooms are then crossed in the beed, or the hall hoors pat in place, (Plate CCOCXCDIII. Fis. 6, the stem ant stern post are ratsed, and if the vessel is to be built with a spatare stern, a limme is sotup called the stern irame; this is composed of the stern and inter posts, with horizontal timbers lastened in their midde to the stern post, called transoms, and timbers vilich give the form to the sides of the stern called limhion pieces. In ships with circular stems, the timbers are cartied round with the sume nuiformity ats in the sides, in orver to give strength and security; (Mate CUCCXCVIll. fig. 1:) those in the lore ansl after bodies of all ships, wre canted so as to gribe the requisite forms. The drame simbers are formed intobemb, beiner composed of ist, ad, sd, Ah, and sth lutoclis, and tu:-timbers, (the number of futtocks varying acrording to the sizes of the ships and lemgths of the timbers.) the first futtock a butt on the cross pieces, the second on the heat of the floor or hall loor, as the case may be, the third on the first, and so on throughout the absemblare, care being taken that the timbers be so disposed that the strength of the whole body be lessened as little as possible by the becessity of having them cut olf by port holes.

The hexts and keels of the timbers of the frame are converted square, so as to lorm abotments, and are mited with coaks, which are let in two inches into the head of the one timber, and iwo inches into the licel of the other; when these timbers are properly trimmed, they are bolted togethere se as to form two bents of timbers in erach connected trame. Whenatl the bonds are raised and secured in their proper places (so as to give the lorm of the buty, by shorec, ribbathds, and cross spats, the keeloon is put in place and bolted, and the ship is then satd to be completed in frame, of to apply at term used ol an amimate to an inanimate body, the skeleton is formed. In this state the liranes of ships of the line remain at least wetre months, in order that the vegetable juices may be evaprated before the plaking is commenced: those offrigates and smaller wesels stis months: this is technically called seasontm.

The liame of a ship is usuaty converted in its silling from \(\frac{1}{4}\) to \(\frac{1}{2}\) an inch larger than the requited dimensions, and the head ol thuse timbers which remain naker, are gearally sis or eight inches lonerer than the given scuntlings. These are termed overcast. Butore the planking is commenced, the frame is dubbed over with an adze till wrought to its proper dimensions, and the timbers are reduced to the length required.

The main wales and thick stuff over them are then brought on cowked to the timbers, and fastened also by bolls and treenails, these are worked top and butt, or anchor stock fashion, or with parallel strokes, ac-
cordiner to the matne ol the materials emplowerl atat their eromomical use; the ship is shared by we main wales, which shores remain watil her completions, w prevent any alteration in lom.

The ofop, clamps and shellpieces are then wotlet, and the beams and hati" beams pated thereom, wese are coaked and bobled thome the lomme are abso united to the keels of the chocks mader the sura-deck beams by the phates. A sobd botwom beine a prinet pal feature in the new mote of shipbuiltine, mat only
 seamen in case ol' accirlent to the phank of the bonem by striking upon a rock, this operation is carmandmos effect by filling the smaller interstices benween the lower timbers as high as the thoop heads ith strips of wood, and bence upwarls by driving firmly it the openings between the frame timbers, on the ontside, pieces ol oak three inches thick, umtil they make a lune sullace with the timbers; on this is placed a 10 m position lorma 1 ol two parts of lime of a particular descrinton, called l'arker's coment, arad one fart ol
 of wood until it romes within \(2 \frac{1}{2}\) inches of the surliure insidr; an imer filling of oak simitar in all repects to the onter is then placed on this, amd by beins difben firmly against the cement, forces it into all the interstices, and thus renders the botom to within three inches of the plank under the orlop chap, one solid mass. The fillings are then dubbed fatr, and slighty catulked on one of their sides and well rammed and catalked on the other.
'ilhe plink of the boitom is fastened by one cappor bolt in each butt, and by one trecnail in eath timber, and it reccives additional security by the bolts passing through it which comect the diaronal frame, and of which we are about to spank. This tussed frame is composed of didgonal timbers. (ou braces, late (CCCXCTIll. Fig. 1. B.) of hrizom.al pieces (C) and oltrussus (I).) The diagonal timbers are lirst put in place, and lie at an ansle ol \(45^{\circ}\) eith the timbers of the frame; they are coaked :md bolted to those timbers as well as to the clamps over which they pass. "The longitudiaal pitces are then put in place, and forally the diagomal trasses: thas the whole combination lomos a series of triangles. In the fore body, the beels of the diagonal timbers meet, and being connected with straps ol iron, form breast hooks-hose in the after boly are unted in the same manner amb form crutcher-accaracy of workmanhip is highly desimable th the frame, as the closer the horizontal pieces and tronses are in comtact with the braces. the less will be the atteration in the fisure of the ship from archine or howestat.
 (Wate CCQしXCVIII. Fig. S. H) one on ench siln: these extas aront io feet and are plared at sols at distane from the regelar keeton, that the ends wif the tep of the maimmast may rest afon them, and by being coaked or bolted to the floons of crowspater over which they pass, stren finen the shipinthat par. and prevent alteration in lom be the weishtand sircas of the mast downatals, or by the pressute of the water upwards, on those dloars which lie in nearly a hur izontal position.

The gun deck clamps and sholpicece are got is place, the beams coafell and bulted thereto. the spirketing and waterings worked, and the chuck placed
under the shelfpiece; the beams of the gun deck are fastened by a lorked knee, (Plate CCCCLXXXVIII. Fig. 5.)

The description which has been given will be sufficient to show in general terms the progression made in building ships, as it would be unnecessary to dilate upon a progress nearly similar through the several decks: suffice it to say, that the outside planking proceeds progressively with the inside. We shall proceed to give the methods ol putting together and fastening the several parts.

Beams of the principal decks.-These, from their great length and size, are usually made in three picces, the tops of the trees which make the two ent picces abut, and the deficiency of their scantling in the middle of the beam, is compensated by a middle piece which is coaked and bolted to the two end pieces.

Shelf pieces,-(Plate CCCCICVIII. Fig. 1. \(\boldsymbol{a}_{\text {: }}\)) are coaked and bolted to the clamps and to the beams of the several decks; they may be considered as internal hoops, and by connecting the frame and beams preserve the form of the ship.

Choeks under shilf pieces.-(Plate CCCCXCVIII. Fig. 3. c.) Where the beams do not come directly over the ports. chocks are placed under the shelfpiece and immediately under the beams. Upon the chocks, the face of the iron clasp knee rests, and is bolted. Where the beams do come over the ports, they are attached to the ship by an iron hanging knee, fastened against the side at a sufficient angle ol inclination to clear the ports.

Tinsing between the ports. - Instead of all the planks betweca the ports being laid in a horizontal position, a diagonal truss, (Plate CCCCXCVIII, Fig. 1. C,) is placed against abutment pieces (F) between each port to prevent the arching of the ship. The trusses (in midship) at the neutral axis are donble (G.)

Thatermas, (Plate CCCOXCVIIL. Fig. 3, \(d\),)These are rounded in lront, are scored down on, and coaked and bolted to the beams: a rabbet is taken out on the lore side to receive the planking of the diagonal decks: this is sufficient depth to give a seam of 3 inches tor canlkires.

Dccks.-The beams and half beams for the reception of the plank of the decks are so placed as to give the greatest degree of strength, bitt so disposed as to leave such operings as may be necessary for the hatchways. latderways, rooms for capstans, Exc; the planking of the principal decks is then laid upon them in a diagonal tirection, late CCCCXCVIH. Fig 2;) the onter ends of the diagonal phanking are received in the rabbet cut in the waterways, the inner ends abut against thick strokes rmming in atore and alt direction in midships.

Sterns. - All shijes of the line and frigates are now buit with circubar stoms: the disposition of the timbers is shown, Pate CeCexClill. Figs, the the sratheries in Pate (COCBClx. fiow. 1.

The foregoing observatons have bern chiefly confincel to the buiddine ul ships of the line. The difference in fregates is, that instend al working in the hold a diagnall lraminer sh wond. iton trusses are latd on

Lu foups and smatho werseth heirbottoms are also
made solid as high as the line of water, and a thick stroke placed over the joints of the timbers in the hold. The beams are not in general kneed, but lastened by buing coaked and bolted only to the waterways and shell pieces; two or three iron knees, however, are usually placed under those beams on each side, which are nearly opposite to the mammast, and the same number to those similarly situated with respect to the foremast.

Having given the gencral outline of the present improved practice of building ships, the reader is relerred for more minute instructions to "The Elements and Practice of Naval Architecture, Sd edit."

When the fabric ol the ship is finished, it then becomes necessary to pat up magazines, cabins, and store rooms, as interna! accommodations; the number, and generally the situation of these, depend upon the size of the ship, the service on which she is to be employed, and the quantity of stores and provisions necessary for the men to navigate her, and to fight her guns.

The internal conveniences and decorations are also to be attended to, such as the cathead for the anchors, the boomkins for the foretack, the channels for the reception of the dead-eyes for the security of shrouds and backstays, the stern galleries and beadrails.

During the progress of building a ship, a variety of measures are resurted to lor the purpose of presering the materials from carly decay, such as painting the surfaces of the timbers and planks which come in contact, injecting tar and lime into the bottom; but for these and other metiods the reader is referred to a recent work, "Knowles on Preserving the Nary."

When the ship is ready to be launched into the water, sliding planks are laid upon bocks of wood on each side, at an inclination of \(\frac{7}{6}\) of an inch to every foot of their length, or at an angle of nealy \(4^{\circ} 10^{\prime}\); these planks are asually laid straight, but a slight curvature is prefered by some builders. The distance of these siding planks liom the keel on cath side depends upon the form of the body; but as a general principle, it may be considered as one-sixith the extreme breadth of the ship. Ribbands are fitted on the outer edges of the sliding plataks to keep the cradles in their places. A combination of large picces of timber, called bilseways, is then placed upon the sliding planks. and a cradle fitted thereon to the form of the ship. This cradle is attached to the slip by a shore on each side. catled dog-shores, lying at a small angle of inclination. A short time before the ship is to be launched, the bifgeways are canted ont, and the sliding planks praped over with a composition made ol' soli soap, oil, and tallow. When the cradle is replaced and property lixed, the shores achanst the sides and stern ol the ship are taken away, the blocks under the keel split ont, and the dos-shomes removed; and thus, beinglelt whont any impediment, the ship glides down the inelined plane into the water.

\section*{Srholinem.}

Soon after the introdnetion of the diagonal system, considerable doabts were contertaibed by many practical mear respecting the proper diporition of the hraces and trusses: some assertine that the arrangement given to them by Sir Robert Seppone was just the reverse of that which ow wht has heen. To obriate any objection on his head, we exract from a
paper in the Plilosophical Transactions for 1818, an account of an interesting experiment, performed by Sir Robert Seppings, to prove the truth of his mechanical arrangement of the trusses and braces.
"Early," says he, "in the year 1817, the Justitia, an old Danish seventy-four rem ship, was ordered to be broken up on account of ber defective state; and having observed her to be comsiderably arched, or hogged, I determined, notwithstanding her age and defective state, to apply the trassing principle to a certain extem, with a view to observe what effer it would produce on a fabric reduced to so weak and shaken a condition.
"The oflicers of the yard were directed to phace sights on the hower and upper gun decks prior to her being taken into dock: and to ascertain, when she grounded on the block, how much she had altered from the state in which she was when afoat. They were then to place a certain number of trusses in the hold, some in the forepart of the vessel inclined forwerd at about an angle of losty-five degrees, and others in the after part of the vessel inclining off' at the same angle. (Others were also to be placed at right angles to the former, and so as to act against the beams of the deck. In the ports also, other trusses were introduced, those in the ports forward, inclining forward in an angle of \(40^{\prime \prime}\), and those in the midships alt, at the same angles, but in an opposite direction. (A drawing of the arrangement of the trusses, \&e. may be seen in the part of the Philosophical Transactions referred to.) As it was uncertain where the centre of fracture would talse place, a few of the port holes about the centre of the ship had trusses introduced into them in looth directions. Wedges were applied to the heels of the trusses to set them tight. The ship being thus pertially trussed, the water was let into the dock, and the ship floated out of it into the basin, where she was to lay one hour, when a committer was to cxamine the sights, and ascertain how much the ship, had altered; and again, what change had taken place in twenty-four hours after foating. This being done, the trusses were to be disengaged in as short a time as possible, in order to ubserve whether the ffect of their remoral would be instantancous or gradnal."

The following is an extract from the report of the Committee.
"When the ship was in dock, on blocks perfectly straiglt, she came down in the midships, by the sights placed on the gun derk, twenfere texo inehes and "hulf; and by thase on the upper deck, fori) feet thice inches und a querter: and whan undocked, with the trusses complete and in their places, she hogged, or broke her sheer, by the wights on the grun deck, one foot two inchess and by those on the npper deck one
 of twenty four hours she had horged, or further broke her sheer, tro incters tend five rizhlh, and then appear. ed stationary and completely bome by the trusses.

We then procected to take away the (russes in the hold, and when they were wholly disengaged, she further hogged, or broke her sheer, sixe inches. We next proceeded to take away the trusses in the ports, and when they were wholly cleared, she dropped at the extremitios, or further hogged, three inches and a holf, and was in the sane position when tried twentyfour hours alter.

Vol. Xyll. Pakt I.

We further bes to state, that the whole of the truss es alladed to as phaced at right ingles to the lirst in trothaced, shathomil wa the ship, fiented from the blocks,

 in our opinion, clearly prowes that the diection in which Sir lowhert sempines has applied his diargonal frame is correct, ats atho the speat mility of the trassings system; for ahthough the ship, from ber wery defective state, was much against sosevere an expetiment, it has proved to as its good andoen mos satistactorily; for many of the trusses in the perte fiomen the
 rovering plradis, therety lessening their aftere ferm what it would have been if the ship had beren of : sound texture; yet on a ship in this state, the loussions betwetn ther parts dlone. after those in the hold were wholly dismgaged, hat the cellect of sustaining the immense pressure of both ends of the ship, in her worst position, and prevented har from breaking, which she otherwise would have done, from theec to four inches, and which slae actually and innmetiothy did on their being disengated."

This statement of the Portsmouth officers, says Sir Robert Seppings, will, I trust, be considered conclusive as to the benefits to be derived from the ple of trussing in the construction of ships thoush it uras only applifil from the kectson to t in the hold, wat now to the ribs on fremere of tha is the case when ships are regulaly built on whon ontem, yet it sufficienty establishes the soundness of the principle.

When the Justitia first floated, continues Sir Ro. bert, after being partially trussed, as described, the noise occasioned by the pressure on the trusses, is stated to have been truly lerific, until she was fairly settled on them. The disengaging them also caused a similar crash.

Very recently, Mr. Harvey has shown from theoretical principles, that Sir Robert Seppings's disposition of the diagonal frome is consistent with the soundest principles of mechanical truth. His investigation, originally published in the 420 number of the dommal of the Romyal lasthution, is here given.

Atr. Harve introduces his subject with the wellknown mechanical principle, viz, that if through the point in which the sustaining forces meet, a line be drawn to represent the measure and direction of the straining force, and on it a parallelogram be constructed. as ad diagonal, having its sicles paratlel to the sustaining forces: then if the remaining diagonal of the parallologram be dwaw, and through the point where the sustaining forces meet, another line parallel to the same, all the parts of the framing on the sum sile of this line, as the straining force, will be in a state of compression, and all those on the ulher side of the same line in a state of corfonsion.

Mr. Harvey illustrates the application of this mechanical principle by two diagrams as follows: la Fig. 7 . Plate CCCCXCV. let \(\AA \mathrm{B}\) and \(A C\) represent two of the braces or ties of a system of a diaronal framing, and (iD, DF, IIE, EF, correspondins trusses. Let also GIH, DE, and BC denote the longitudinal timbers of the same system, and \(F\) the fulcrum on which the whole is supported. Then if we apply the mechanical principle in the first place to the brace \(A C\), and the longitudinal timber \(B C\) at the puint \(C\),
where these timbers may be supposed to meet, let the vertical line Cl be drawn to represent the measure and direction ol the straining lurce operating at that point. On CI as a diagonal, let the parallelogram C \(a\) I 3 be constructed, having its sides in the direc tions \(1 C\) and \(B C\) of the longitudinal axes of the timbers selected for consideration. Draw the other diagonal ab of the parallelogram, and through C, where the rertical lorce is supposed to operate, draw de parallel to ab. Then, since the longitudimat timber \(B C\) is on the sume side of \(d e\) as the straning force Ci, it will, by the principle referred to, be in a state of compressions and the brace AC', being on the opparite side of the same line, will be in a state ol ertension.

To apply the same priaciple in the secund place to the brace - \(C^{\prime}\), and the truss \(F E\), let the straning force be supposed to be applied at E, and EK to clenvie its measure and direction. Complete the parallelogram LfKe Join \(f g\) and hoongh E draw hi parallel \(10 f 2\). Inen the truss FE being on the same side of \(h i\) as the straining force, EK, witl be in a state ol comptession: and the brace AC being on the opposite side ol" the same lime, will be in a state ol evtension as determined in the preceding casc.
'Io apply the mechanical principle in the next place to the brace \(I C\) or As and the longitudinal timser DE, let the straining forse be allowed to act at D, and let Dl be its measure and direction. Complete the paralletosram i) \(k L l\), and join \(k i\); and throngh D draw on \(n\) parallel to the last mentioned line. Than the longitudinal tinatre DE being on the same side of in \(n\) as the straining force, it will be in a state of compression, and the blace AB or AC, as before determined, in a state of ceffension.

Fourthly, Let the parts now to be selected, be the longitudinal timber GHI and the truss HE. Then if the straining force be applied at II, let HXI denote its measure and direction; and on it as a diagonat, let the parallelogram \(H\) o \(11 p\) be constructed, having its sides coincident with the disections of the timbers proposed: juin opo and throught draw qe paralled to it. Thon since the truss Ell is on the same sice of \(q r^{\prime}\) as the staming foree. it will be in a state of remperssim: and the longitutinal timber All being on the oftusitp side of the same line, will be in a state of witen, ions.

Henct it appers that the resultant of the various fore es actire ont the diagonal liwmeproposed will operate so sh to cot ad the himes i B and AC and the lonEthalina! timer, (ill: but on the remationg paris of the frome, bize the timses (in), 1)F゙, 11L, LJ, and the Imeriminallion'rs DEE, BC, the elice will be to profure rompers intagreving with the experimental concleven of Sir Robert seppiage, that the liame with this dispesition of the braces "eomes more in contact by the pressume."

Let us now endeafour to estimate the effect of a similar system of lorces, on a system of lraming whose braces and trusses are disposed in opposite directions to those of the preceding investigation. For this purpose, let the first application ol the lemma be to the longitudinal timber BC, and brace \(\Lambda C\), Fig. \(8, ~ A b e-\) ing the fulcrum; and let the point \(C\) be thait to which the straining force is applied. Suppose CI to be its measure and direction, and complete the parallelogram C \(e\) I \(b\). Join a \(h\), and through C draw \(d\) e parallel to that diagonal. Then since the brace 1 C ' is on the sume side of de as the straming force, it will be subject to compression, contrary to the eflect produced in the formercase. But the longitudimal timber BC, like Gill in the former ligure, with undergo extonsion. In the next place, let the straining lorce be supposed to be applied at E , in order to estimate its effects on the brace AC, and the turss FE; and let EK be its measure and direction. Complete the parallologram Ef K sf join \(f\) gand draw hi parallel to it through the point of application E. Then the brace AE being below the line \(h i\), will undergo rompression as belore; and the truss FE being abore the same line will underge extension.

In the thirl place, let the straming force be applied at D to prodace an effect on the brace lid and the longitudinal piece DE, and DL be its measure and direction. Complete the parallelogram of force D \(k\) L. \(l\). Join \(i\) l, and through D draw m \(n\) parallel to Lil. In this case. therelore, the brace D. A being be . lune mon must uadergo comprission, and the longitud:nat timber DE being aloce ihe same line, must undergo extension.

Fourthil, Let the straining force be applied at H, to estimate its effect on the truss EII, and the longitudinal timber Gll, and let its measure and direction be HM. Complete the parallelogram of forces, Ho II \(\rho\), having its sides in the axes of the timbers proposed. Draw the diagonal \(o p\), aud parallel to it , through II, the line q \(r\). Honce it appears that the tuass EIll, being rome the line yf, must materga ertension: and the longitudinal timber Gil, being below the same timber, must undergo compression.

With this tisposition of the timbers, therefore, it appears, that the forces operating on the frame will produce a cempression of the hotes B.I, C.D, and of the Thesitadinal limetr, Gilf but on the remaininsp parts of the hame, viz the topeses 131), D. ., CD, E. . , and the
 duce compression, agrexind aton with the experimental concluston of Sin Robert Soppinge, that on the application of a straining force, the trusses an I midkle longitudinal piece . will be immediately disengaged and fall ont."

The preceding results may be convenientiy arransed in the following table:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{5}{|c|}{} \\
\hline & Liniters. & Trusaes. & Lpper longitudinal picece & Dtablac homgiqualinal piece. & Lancrlongitudimal picce. \\
\hline & Fricmbion & Compression. & Lixtension. & Compuession. & Compression. \\
\hline & '0mpression. & Exatension. & Extenaion. & R<tcnsinn. & Compression. \\
\hline
\end{tabular}

The frimary object of the diagonal framing is to prevent arehing; and if we suppose \(N \mathrm{l}\), in both digures, to represcnt the natural line lrom which the arching proceeds towards both extremities, it is crident that it is the mechanical combination repesented in Fig. 7 . which can alone prevent it . Fors since A, in that ligrue by the lapothesis, is one ol the nomtral points ol the system, it may be regarded as fixed, and the tendency ol arehing being to deptess the point II, \(C\), and \(\mathrm{C}, \mathrm{l}\), , the edeet on the braces \(A C\) and \(A B\) will be prectixely similar to the weights applied in the precedins investigation: that is, toproduce forfonion, and which is effectually provided for by the libtenings. 'lobe effect, morcover, bronght at the same time into action by the trusses, in ronserguence of the distarbing force, is to resist, by the whole longetmelimal strength of their libres all tendency to aleration ol form; so that the eflect exerted to depress the print C, is at once resisted by the lastenings apperamine to the brace \(A C\), and to the longitudinal strength ol the fibres of the truss proredins liom the unchangeable point F. The point la becoming, in this point of view, lixed, the action ol the loree which tomes to depress the point Il. in common with the point \((\), is re. sisted by the lastenings of the longithlimal timber All, and by the longitudinal resistance ol the fibres ol the truss EiI; so that, provided the Castenians of the braces and ol the upper longitutinal timber are sumb. cient, and the abutments of the trusses and ol the midde longitudinal cimber are also proper, all tendency to arching will be resisted in proportion to the perfection of the materiats, and the excellence of the workmanship.

But by referring to the converse disposition of the braces, as represented in Fig. 8. it appears, from the preceding investigation, that the braces iC and \(A B\) are subject to compression. And since the point \(A\) is by the hypothesis, the neutral or fixed point, the effect of the compression of the brace AC must be to depress the point C , and thus to promote the terdency to arching. Nor is this tadency to lower the point C prevented by the action of the truss FE; since the point F being fixed by the supposition, the tendency to ertension which takes place in the tross must temd to lower the point E, and thus to promote the further declension of the point \(C\). The point E being thus depressect, must add its effect to the extending force called into action in the truss EH, and thus produce a declension in the point M. Hence the whole cffect of the disturbing force is to luter crevy part of the frame from C to II, and thus to promote the arching of the vessel. Hence the superiority of the prescmt system of diagonal framing becomes apparent, and the advantages derived lrom it are demonstrated by the small ahteration ol form which ships now undergo in the act of launching.
on tae construction of shims in the mercantale N.is.

It is remarkable that most of the investigations of fered to the public notice respecting shipbulding have an especial reference to the construction of ships of war, their ingenious aththors secminer to orertook the great varicty of vessels which constitute our commercial marine. That the country is deeply interested in whatever relates to commerce, that great source
of ont national weath, the can be no question: and whon we how that the whage of British shipping bedonginer th the perts of the united kingrom, amements on an aveaure to heaty a million athe a half ammally, tausportins from thence the varied products of British imbustry and skill to evory guarter of the slobe, it would be unpardomable in an aticle on shipbaild ing, not to make some bricf allusion te a subject of so important a kind.
Where is a serione and improtant defect in the pte sent construction of mercatile shipe, as remats the putings together of their ribs op trames, and therefowal arratement of the materials.

Lu forming the frames of riths. Putf lhe fimhtres onty
 altomate couple only being conmeted tosetber, the intermediate timbers, termed fillines, being entirely unconnected with each other, resting only on the outer planking, widnout contributing in any degree towads its support. It mast be evident that ships so constructed can by no means possess cqual strength with sucti as have the whole of their timbers fomed into unifarm frames of arches.

This luose, dumerous, and very imperfect mode of
 pecular to the Englishmerchant shiphoidurame we hano coen that it is only in latter years that the same sybtem of buidding has been abandoned in the hinses deck yarlc, while the puferable system of conaecting the ribs was common to other maritime powers.

The principle ol unting the Trames, lately introduced in the construction of ships of war, might without donit, be adrantageously introduced into the mercantile nay; a system which would communicate (1) the ships of our commercial narine macharlditional strength and increasel durability, wethout ellons th the caponse of buthliting.

But the presint mode of joining together the sereral pieces of the same rib, is open also to the heaviest objections. The method adopted is by introducing a thid piece, technically termed a chock or rodere piece, as in lig. i. Plate D. of which pieces the number amounts to upwards of 450 in a 54 gun ship, and to nut liss then that number in an ludiaman of 1200 tons, and to whicli class of slips the subscquent drawings to be referred to have an especial reference. Of these chocks. not one in st hundred is ever replaced on the general repair of a ship; for they are not only found defective, but rery gencrally to base communicated their own decay to the timbers \(t o\) which they are attached. Besides this the grain ol the rib pieces beins much cat to give them the curvature required, contibutes in a very considerable degree to the general weakening of the fabric. That they occasion a great consumption ol materials is very obvious, as the ends of the two rib pieces must be first cat away, and then seplaced by the chock.

The introduction of chocks was done with the vicw of obraining that curvature which is so necessare in the formation of a ship, when crooked or compass timbor became searce, as may be seen by a relorence to Fig. 2. which describes the shape of a pitce of timber in the converted form; and by which also it will be perceired that the introduction of the chocks assisis in obtaining the required curve.

The frames of a metcantile ship, on the present mode of building, before they are placed and unitel
to each other, may be seen in Fig. 3. with their chocks or wedge pieces. To the exils already stated of the present practice, may be added that of imperfect workmanship, so that the surlaces of the chocks are seldomincuntact with the surfaces of the timbers. The ends of both are moreover frequently reduced so thin, as to split by the fastenings that are necessary to secure the planks to the ribs; and thus the ship, in the event of gromding, or even in the ordinary act of rolling, derives little support from timbers united only in fact by two narrow edges.

Another great delect arising out of the present plan of constructing mercantile ships is, that the ends of the lower ribs or timbers, commonly termed the fut tocks, Fig. 3. B, are not continued across the keel C, so that no support is given in a transverse direction when the shif touches the ground; nor any aid to counteract the constant pressure of the mast. This great sacrifice of stienglh and sefety, is made for no other purpose than that of giving a passage for the water to the pumps.

The floor timbers, which by this mode of construction are the unly timbers which cross the keel, are also wealiened for the same purpose, as shown at \(D\) in the figure last quoted. This mode, moreover, makes the converance of the water very uncertain, since the passage is not unfreiguently choaked: and the pumps, from its not being practicable to continue them sufticiently down, always leave from sis to eight inches of water in the ship; so that these compartments constanly contain a certain quantity of putrid bilge water, offensive and injurions to the health of those on board.

The deficiency of strength causes also an alarming insecurity in the plank of the bottom, termed the garboard strake, as shown at E; and which consequently is in no other way connected with the general fabric, than its connexion with the keel at F , and a slight security at (i. Hence it is obsious, that in the erent of the keel being disturbed, the farboard stralee, from its being attached to it, must share the same fate as the kect, sud in that case the loss of the ressel would be incritable.

To wbriate these very serious delects, and to do that for our mercantie marine which he had already so successfully accomplished for ships of war, Sir Robert seppingstaidbefore the Ropal Society in March 1Sン日, a highly inportant paper, and which was printed in the Transactions of the same year. The principle may the comprehended by a relprence to lig. 4. in Which it will be seen, that the compmont puets of each rib ait of shoteri lenerths vml hiss curcature, and consequently less arein cut: that lhey are more firm and sotid hy thei subatitution of cuthes in deneds, for chothes in

 "tijutai hat the lime mothed If.

That the frame of the Thanderer', (now 'lalavera, buile on this principhe, is superior in point of strength. says Sir Robert Seppinge, to a frame constructed on the common systent, is lully established by a report from the whers of his majesty's yard at Wootwich
to the Navy Board, who directed them to compare the strength of the fiames so united with those of the Black Prince, constructed in the usual way with chocks or wedges.

In alluding to this interesting and important comparison, Sir Robert remarks, that "the frume of the Thumderer was romposed of small timber. hithero considercd apmicable onty for the frames of frisates." "I was prompted," says this ingenious constructer, ' to attempt the introdiction of the plan on which she is built, liom there being a surplus store of small timber in the yard; and from a conviction, thet a well-comtincal number of small limbers might be mude equal, if not sunerior, buth in strengith ent economy, to the large, overgroun, and fiequently grein-cut muterials, mude use of in constructins the frames of targe ships: and the resell hers shown the correctuess of the primeiple; the adoption of which camot fail to proverol great national adrantage, in the application of sloop limber to the building of frigates. and of frigate limber to ships of the line, whenever larger timber camot be procured. On this principle, also, may frigates and small ships of war, or merchant vessels, be built of straight fir, without the assistance of oak or elm, which were formerly employed to give the necessary curvature of the sides." The principles here laid down by Sir Robert Seppings, are of rast importance, and we earnestly hope will speedily and generally be atiopted.

As it respects the general saltey of the ship, it will be seen by a reference to Figure 5, Plate D. and Plate Dl. that the timbers unitormly cross the ked; that the frame of the ship is filled so as to form one compact body to the height marked K : and that only certain internal strakes of planks, or thick stuff, as it is termed, are introdtuced, which are those on the joints of the timbers, for the purpose of giving strength where every altemate imber necessarily joins, as shown at L. 'The rest of the immer planking may be omitted, and dumage battens brought in a perpendicular direction upon the timbers between the plank, as shown at \(h\), forming regular spaces between each, as is usual at present, upon the plank; thereby giving an increase of stowage in proportion to the thickness of the plank omitted. Water courses, as shown by dotted lines at \(N\), are to be left in the joints of the timber under the plank, for the purpose ol conveying the water to the pumps: which, by this plan, will reach below the water. instead of being sume inches abure, as is the case with the present mode, before deseribed. Consequently, by the proposed system, no stagnant water will remain; and farther, the limber passage, or water course, will be one smooth uniform chamel, which an be cteared with ease, should it be required, whencer the hold is mostowed; whereas at present it is inaccessible in phaces, and loms compartments for putricl water, without incre being any means of remosing it.

It is obvious that a ship constructed on this principle, may sustain the loss of certain planks of the bottom, and also the keel, (which hats frequently been found to have happened to ships of war on their being taken into dock, and still reach the place of her destination, when the loss of cifher would be the de- whaturitomy by judicions contrintions of the materials to be ised."-sce the valuable work of Mr. Tredgold on the Elementarv Principles of Carpentry.
struction of a ship buill on the present mode. It will be evident also, that a slip constructed as now recommended, posstsses greater stowage and more space for leakage than by the old plan, by the omission of the useless inuor planking, and by laying the kentage on dumage, learime a space lor the water, which was formerly occupicel by the inner lining. This dunazge in the bilge may be lound in the iron kentage, and thereby serve as ballast, for which it is well calculated from its situatoon, and by its occupying a space heretolore forming pat of the fabric of the ship, will give an increase of stowage, as before stated.

The best method of closimg the openings between the timbers, is by filting the intermediate space with pieces of wood, about three inches in depth, of such lengths as the inferior courersions will supply, abundance of which may be procured liom the oftal. These fillings are to be well caulked, alter which the exterior plank is to be brought on. When the works are going on within board, similar pieces are to be litted intermally, and afterwards taken ont lor the purpose of filling the spaces between the pioces so litted with a mixture of l'arker's Roman cement and drilt sand, in the following proportions, viz.
\[
\begin{aligned}
& \text { Parker's Roman cement, } \frac{2}{3} \\
& \text { Drift sand, } \quad . \quad \frac{1}{3}
\end{aligned}
\]
previously paying the opening well with coal tar. Where there is sulficient space, a brick, or part of one, may be intwoduced, porided there is room for cement between it and the timbers. Whenffled in to within about two inches of the surface of the frame, the pieces of three inches already fitted and taken out, are to be well driven in and caulked, and by so doing, no space will be left uoccupied. Il considered desirable, these picces may be drisen below the surface of the timber, thereby leaving water courses to conrey the leakage to the pumps in chamels. And prior to lanching or unducking of ships luilt on this prindiple, it has been the practice 10 inject the part filled in with mineral tar hy means of a simple forcing pump, boring holes in the joints of the timbers for the introduction ol the piper. Dy lollowing this method the air will be excluted, which as experience has shown, tends mach to the chabitity of the labric. If what is here recommended be attended to, says Sir Pober Seppings, and mercantile ships were built nomder roofe, as ships of war now are, durability would be obtained in addition to safety fom the mode of theis construction.

The beams ane to be attached to the sides, as shown at O, Plate D. Figure 5, renderint; wood knees unnecessary, and requiring only a small number of those of iron.

Plate DI. Figure 1, marked P, describes the old principle of framing the stern with trantoms. \(Q\) represents the new principle, with limbers similar to the bow, omitting the transoms below the wing or upper transom; and by introducing the new principle un which the lloors are made, the necessity of using valuable compass, or crooked timber, hitherto re-
quired and with difficulty procured for these purposes, is avoildel. Chiform support will thus be given, and also an increase of room for stowage.

In larese mereantile ships above org toms. Sir Robert Seppings would recommend that phate ipoth be laid diagromally, as shown in Plate D].

The principhe thas reenmencorfel will cause a decrease in the consmmption of materials, amt the diffculty of procuring the neerssily gurvature will lee obviater. It also aifords potection fom woms externally, and remin internally. leaks mas be mose casily discovered aud stopped than by the ald method; and in point of additional strengti lisere can bes no doubt. If fartace prool were required, Sir Robert
 built at bombay, and which atrived at lortsmoth, loaded to her upper deed with timber, and during her passage encountered lour heary gales of wind, without showing a symptom ol weakness, as will appear lyy the following extract from the sursey mate by the officers of the llymouth yared, on that ship, by order of the Lords Commissioncers of the admiralty.
"When we consider the nature of the lading that this ship has brought home, with the temporary security to the beams ol all the decks, excep the oflop, and that on her passage she encountered four very severe gales of wind, it must, we presume, be very gratifying to your honourable board to lind, hat she does not indicate any past symptoms ol weakacess or straining in any part."

This ship had no other attachment for her beans than the internal hoops and thick watce ways; the remainder of her security, the iron linces. being omited (from the difficulty of procuring them in India) matil her arrival in this country; thes suppotiang her cargo without the aid of knees, cither ol wood or ipon.

Having delivered these general observations on the best method lor constructing the hulls of merchant ships, we close this part of the article with a lew observations on the proportions of then masts and yards.

Chapman remarks on this important subject, that the area and moment of the canvass for merechant ships ought to be determised in the same manmer as for ships of war. athough the circumstance ol their taking cargnes of variable density must occasion a corresponding variation in their moment of stability. There may, nevertheless, be supposed at all times a fixed point for the centre of gravity of the ship and its lading. from which the moment of the canvass may be calculated.

It is most usually the case to proportion the height of the masts to the breadth of a ship, and the lengt. of the yards to the length of the same: and from which it may be inferred. that ships of the same length and breadth, but possessing different degrees of stability. must have the same extent of canvass; whereas the extent of canvass should rather seem to be proportioned to the stability. True as this rule may be for armed ships, there may be reasons of a very strons kind why the same principle should not be lollowed in merchant ships.

When it is considered, says the celebrated Swedish
* We regret that some circumstances, connceted with a patent obtained by Sir hobert Scppings for constructing masts on a new and peculiar principle, prevent us from furnishing any acconnt of it to our readers. An account, however, of the method of construction may be shortly expected from the pen of the inventor.
architect, that the weight of the anchors of a ship is proportional to the length and breadth, or to the square of the breadth, and that the act of weighing the anchors requires a certain mumber of men, as also the working of sails of a certain size; that large sails regure a numerous crew, and that mumerous crews are expensive to maintain: it appears that, for a merchont ship it is adrantageous to have as small a crew as possibic; or that it is most consistent with good management, that the namber of the crew shond be - wited as well to the marnitude of the satils as to that oi the anchors.

Hence it appears, that it is the number of the crew which conlines the area of the saits to defmite limits.

Let us impure, for a moment, how far the ordimary proportions of masts andyards are proper. Suppose two ships of the same lemgit and breadth, and having, siccorling to the usual practice, the same extent of canvass. but that one of the vessels carre's suil better than the other; the usual remarts in such a case is, rot thent this has too math or thet too litule camsess, bat that the formor lias greater stability than the latter. Hence we might conclude that it would be better to tfice t some alteration in the form of the sails, or to wake them smaller with pelaion to the stability, (preserving in uther respacts the ordinary proportions.) than to augment the mamber of the crew, in order to be able to use a greater quantity of camanss. At the same time, howerer, it may be remarked, that when the suffece of the sails, according to the usual proportions, is too sreat with respect to the stability, it shouk rather be an object to place the parts of the lading which possess a greater specilic gravity lower, than to dimmish the area of the canvass, particularly if the number of the crew commot be decreased on ac. count of the anchors.
Noreover, it is worthy of remark, that in different circums:ances the same anca ol carrass may be as proper for a sessel of greater stability, as fupone ofless. 1 on one case, the surlace ol the sails may be increased by means of studding sails and stay sails, and diminished in the other, by taking in reets according to the state of the weather. Hence there is great fason. continues Chapman, to use the rule according to which the masting is proportioned for merchant ships, as that gives most nearly those proportions for the mastius, which have already been found by cxperience to be the best. So that the moment of stat bility, aceording to which large ships have masts highorp, and small ones lower, than the result of the usual rule. will not serve to found thereon the profortions of masts and yards for merchant ships.

Is the berath of ships has the greatent influence of the stabitity, the lower masts and lop masts shoud be proportioned to the beredth, whence not only the height of the aids, but atso the atitude of their com. mon remter of gratity, will be in proportion to the aad breadth. With respect to the becadth of the sali, on what is the same thime the longth of the yardi, it should be proportioned to the langth of the ship, and from whil it bollows, that the moment of He sails will be as the sogare of the breath, matte phedby the length. Smatl ships will, thereture, have
 stabilis, thatarge oness and it is arece ived practice \(\therefore\) surall shaps to inerease the beight of the in lower masi- btill mope, bin at the sametime to diminish the
altitudes of the top masts. If we assume the breadh of a trating ship equal to B , the height of its matn mast, according to Chapman will be \(\therefore .2 .38^{\frac{1}{2}}\); and the height of the main top mast, reckoning from the upper sicle of the cross trees, that of the main mast being denoted by L , will be \(\frac{\mathrm{L}^{1 \frac{1}{7}}}{2.7 .3}\) forfrigates. and \(\frac{\mathrm{I}^{10}{ }_{2}^{10}}{2.51}\) for barks. Byareforence to Fig. 1, Plate CCCCHClV. the line BNN will be found to represent the height of the masts in the proportion of the element \(p^{\frac{1}{3}}\). The length of the bowsprit, outside the stem. for figates, is 1.15 B , and for barks 1.1 B , where D denotes, at belore, the breadth of the ship.

That ships may be well rigged, it is necessary, in the first place, that the fore stay and main top mast stay should be in a right line, and, in like mamer, the main and mizen top mast stay. The lore stay may chid on the bowsprit, betwern cne-third and two-fiths of its length from the small ent: sccondly, that the top saits should be of similar figurec. or at least, that their sides should be of the same cut: tiardly, that when the ship is scen, at one or other of the exiremities, the shrouds and the breast back stays shond appear parallel: this depends partly on the breadth of the chamels, which ought to be regulated in a manwer conducire to this end. To accomplish it, the length of the head of the matn mast, from the under side of the trestle trees, which is \(\frac{5}{50}\) of the lengith of the mast T , the cap of the fore mast shoutl be lower than that of the main mast, by a ruantity \(2.220^{\frac{1}{3}}\) for frigates, and \(2 \mathrm{~T}^{+}\)for barks. The cap of the mizen mast shonk be on a level with the main top.

If the lemgth of the main top mast be denoted by S , the length of the mizen topmast will be \(1.35^{\frac{6}{8}}\) for frigates, and \(1.3165^{\frac{6}{i}}\) for barks, supposing the !ength of the pole to be in the same proportion. as for the wher tup masts. If it be longer, that difference is added.

The head of the mizen mast oughit to be \(\frac{3}{4}\), and that of the foremast \(\frac{9}{10}\) of that of the main mast. The length of the fore top mast shouk also he \(\frac{9}{10}\) of that of the main; the heats of these masts \(\frac{1}{9}\) or \(\frac{2}{17}\) of their longth. The length ol the iop gallant masts to the stop should be 0.5 , the length of the top mast. The length ol the man yand \(0.52 \times\) the longth of the ship from the stem to the siem post for ligates; and the main top sail yard \(0.79 \times\) the length of the main yard For barks, suppusing their extreme length 1 , the length of the main yard will be o. \(6 \mathrm{I}^{\frac{21}{2 n} \text { : the length of }}\) the main top sail yard \(0.81 \times\) the lengh of the main sard. The main top gallant yard \(=0.7 \times\) the length of the main top sail yard. All the yame of the fore mast are \(\frac{\text { ? }}{10}\) of those of the main mast.

Atrain, Chapman informe us, that the propmbion of the mizon lop sall yate to its mas:, i. cequal to the
proportion of the main top sail yard to the main top mast. The cross jack yard \(=1.22\) the length of the mizen top sail yard lop lrigates, and \(=1.18 \times\) this length for barks. The sprit sail yard \(=\) fore top sail yard; the sprit satil top sail yard \(=\) fiore top gallant yard. The girth of the yard arms is \(\frac{1}{11}\) of their lengeth for the lower yards, and those of the top grallant yards; but \(\frac{1}{7}\) for the top satil yards.

The distance of the centre of gravity of the lore mast from the perpendicular at the stem is \(\frac{4}{31}\) of the leugth. The centre of the main mast is \(\frac{2}{51}\) behined the midde of the ship. The distance of the centre of the mizen mast from the perpendicutar at the stern \(=\) \(0.182 \times\) by the length of the ship.

The main mast should rake aft one foon in thirey; the mizen mast double the rake of the main mast; the Fore mast showd be perpendicular, and the elevation of the bowsprit above the horizontal plane, should be about four leet for rigates, and there for barks, in a length of seren lect.

With respeet to the diameter, experience has shown that if the respective lengths of the main mast, main yard, and main top mast in fuet be denoted by \(L\), \(P\) and \(s\), the diameter of the main mast in inches will be \(\frac{\mathrm{JR}}{} \frac{R^{3}}{13}\); that of the main top mast \(\frac{\mathrm{S}^{\frac{11}{10}}}{4.6 \mathrm{j}^{3}}\); the diameter of the fore mast \(\frac{1}{20}\) less than that of the main mast; and that of the fore top mast \(\frac{1}{20}\) less than that of the main top mast. The diameter of the top gallant mast \(=0.3 \times\) their length reckoning to the stop. The diameter of the bowsprit should be a mean of the diameters of the main and lore masts; the diameter of the jib boom \(\frac{3}{4}\) that of the main top mast; the diameter of the mizen mast \(\frac{2}{3}\) that of the main mast; and the diameter of the mizen top mast \(\frac{2}{3}\) that of the main top mast.

Again, the diameter of the main yard, and that of the fore yard in inches \(=0.25 \times\) length of the yard; that of the top sail yards \(=0.23\) x also by the length of the yards; that of the top gallant yard \(=\frac{1}{6}\) of their length. The diameters of the sprit sail yard, and cross jack yard \(=0.21\) ihe length. The diameter of the sprit sail top sail yard \(=\) that of the main top gattant yard. The diameter of the mizen peak is an inch for four feet in its length. The studding sail booms have two feet greater lemgth than half the yard, and their diameter in inches is \(\frac{1}{5}\) or \(\frac{1}{6}\) of their length in feet.

The depth of the main trestle trees in inches is the fourth of the height of the top mast in feet, less half an ineh; the thickness of the fore trestle trees is \(\frac{1}{15}\)
less than that of the main trestle trees, and the mizen \(\frac{3}{5}\) of the main; the thickness of the top mast cross tree is \(\frac{3}{7}\) that of the trestle trees of the respective tops. The breadh of the said trestle trees and cross trees is \(\frac{5}{7}\) or \(\frac{3}{4}\) ol their depth. The thickness of the eaps is \(\frac{-1}{5}\) of the diameters of the top mast.

As the masts and yards taper towards their estremities, it is mot only nocessary to khow their greatest diameters, but also the ratio in which thase dianater are diminished, to give them the form which experience sanctions as best adapted to resist strains in which they are exposed. The imerval between the greatest and least diameters beine divided into fon parts, the diameter at each of the divisions should be as fullows: The lower masts are lound to be well proportioned when the diameter at the place of the trestle trees is oneceighth less than at the deck. So that the diameter at the deck being 12, at the first division it win be 127, at the second 123, at tho third 119, and at the fourth 112 . The thickaess within the trestle trees should be \(\frac{4}{5}\), and above at the heat,\(\frac{5}{8}\) of the diameter at the deck. The top masts should have \(\frac{1}{5}\) less diameter under the cross trees than at the cap of the lower masts. So that the diameter at the cap being so, at the first division it will be ra, at the second 76 , at the thind 71 , and at the fourth, below the cross trees 64 . The thickness within the cross trees and above at the head will be \(\frac{5}{9}\) of the diameter at the cap.

If the greater diameter of the lower and top sail yards be 27 , at the first division it will be \(255^{\circ}\), at the second 23, at the third 18, and at the end 11. It atso the sreater diameter of the top gallant yarls be 32. at the first division it will be 31, at the second 28, at the third 2.3, and at the yard arm 16. The bowsprit has usually at its extreme call a diameter ouly half that at the gramoniag. If the diameter at the latter part be for example 60 , at the first division it will be 3.) at the second 55 , at the third 46 , and at the fourth 3n. Brigs and snows bave their lore masts and its appendages, as well as the bowsprit. of the same proportions as frigates. But the height of the main mast of brigs ought to be stich, that its top may be oun a level with the cap of the fore mast, the head of the main mast being equal to the head of the fore mast. The main top mast should be of the same length with the fore top mast, and the main yard and main top mast yard the same as the fore yard and Dore top mast yarl. In snows, the main mast is a mean between the masts of a frigate and brig, and so also the topmasts; but the main yard and mantop sail yard are of the same dimensions as those of frigates.
East India ships stoould have the length of the main mast \(=2.43 \times\) their breadth; the length of the main top mast \(=0.586 \times\) the length of the main mast: the length of the main yard \(=0.54 \times\) the length of the ship; the top sail yard \(0.8 \times\) main yard; the main top gallant yard \(0.7 \times\) top sail yard, and the mizen
top mast \(\frac{3}{4}\) of the fore top mast. The cap of the fore mast is \(\frac{2}{5}\) of the length of the head of the main mast lower than the cap of the main mast, and the cap of the mizen mast is on a level with the main top.

The masts and yards are first proportioned, after which a draught of them is made, including the rigging. and sails. Their moment is then finally compared with the moment of stability, which will determine the masts and yards suitable to the moment of the sails.

Such are the observations of Chapman on the proportions of masts and yards for merchant vesselsproportions deduced of course liom Swedish vessels, but which nerertheless merit much of the attention of the English shipbuidder. And in quoting for the last time the name of this learned and indeliatigable man, we would impress most earnestly on the attention of our readers his important investigations, founded as they are on a large and extended experience. To the young naval architect we would hold him up as a model worthy of the closest imitation.*

\section*{O. STEAM VESSEI.S.}

The application of steam to the propelling of ressels on the occan, is likely to produce as great a revolution in warfare as the first introduction of camon; and its general influenee on navigation will claim in its ultimate consequences, a rank almost equal with the splendid discovery ol the compass. Is an instrument of war, it is destined most likely to change the entire aspect of military operations, and to give to its energies a more force and terrible character. In a calm, a ship of war impelled by steam, will possess a decided superiority over an opponent navigated only by sails: and battles that sometimes remain undecided, on account of the failure of the wind, would by the sure and certain energies of steam, be speedily accomplished. Coasts, rivers and harbours, that, according to the ancient plan, were considered as secure, will by this new application of vapour, be assailed and defonded by them. The system of warfare will be entirely altered, and perliaps the steam gun will lend its aid in assisting in the work of human destruction. A modification of the energies, however, that pender it so terrible in war, will assist the milder and more beneficent purposes of commerce, and direct the steps of cirilization into regrons now debared by groom and superstition. Thus it is that alt, as well as nature tends to preserve a batance in al! its eperations. Il the application of steam to the purposes of war be likely to increase the
sum of human calamity, so will the sum of human happiness be augmented by the impulse it will communicate to the whole social system.

The different modes of propelling vesscls on the seas, forms a striking and peculiar picture in the eventful history of man. At first, content from circumstances with the simple application of the lever in the shape of an ore, we find at length the rowers greaty maltiplied in number, and theirooars augmented to enormous lengits, to give to the ressel as great velocity as possible. With the invention of camnon, and the ability of performing more extended voyares, came also the necessity of increasing the dimensions of ships. The additional altitude thus communicated, prevented the adrantageous use of oars; and the great uncertainty of the wind made it desirable to supply its place when its force was insufficient, or when its directive energy operated contrary to that desired, by some other mechanical agent. Hence, by some it was imagined, that the force ol the crew might be advantageonsly employed by other means than oars; and the communication of motion by means of paddle wheels was one of the earliest of these attempts. By some, also, condensed air was proposed as an agent, and by others the explosive lorce of gunpowder. The fall of water too was proposed; but all have vanished before the triumphant use of steam.

Among namerous attempts, however, the prize of the Academy of Scicuces of Paris in 1753, for the best memoir on the subject, "Sur lu maniere de supplér à l'action du vent sur les gronds vaisseaux," deserves to be particularly noticed, on account of its exhibiting the remarkable fact, that Bernouilli seemed to have looked to the force ol man as the origin of propelling power: so little conception had that very illustrious philosopher, ol the splendid application of steam affording the motive power. Bernouilli, to whom the prize of the Academy was awarded, entered into many claborate investigations respecting the velocity capable of being communicated to a ship by the force of the crew, and endeavonred to ascertain the mean strength of a man, which he assumed as equivalent to the power of lifting twenty pounds through three feet in a secoud lor eight hours in a day. The whole of this force not being usually exerted by a man in the action of rowing, he determines the actual part at \(\frac{446}{1000}\) of the whole force. Adopting then the plane of resistance at 150 square feet as given by Bouguer, and assuming that the power required to produce a given velocity, is as the cube of that element, while the resistance is as the square. (a supposition not however in accordance with the opinion of many enginecrs) he computed the following table:

\footnotetext{

}

Table of the Vlocities which moy be altuined in a first litete ty the Piree of Ition.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Namber of ifen to be cmployed.} & \multicolumn{2}{|l|}{ fime tring hat.} & \multicolumn{2}{|l|}{Jrmpliculde monitios, a Frat if the fine luins 10\%} \\
\hline & & \begin{tabular}{l}
 lanlls is serent lath \\
 (1) 611.
\end{tabular} & & \\
\hline 10 & & Peot. & luc. & \[
\begin{aligned}
& \text { Boct } \\
& 11.55
\end{aligned}
\] \\
\hline \(2)\) & 1, (1) & 2, & U:, & 1.67 \\
\hline S1) & 2.17 & \(2(1)\) & 111 & 1.2 \\
\hline 40 & 2.9 & :116 & 1.13 & 1. 16 \\
\hline 50 & 2.53 & \(\therefore .19\) & \(1 . .11\) & 1.6 \\
\hline 60 & 2.71 & & 1.13 & 1.75 \\
\hline -0 & 2.83 & \(8 \div\) & \(1 . .15\) & \(1: 1\) \\
\hline in & 81 & ? \({ }^{\text {a }}\) & \(1 \cdot\) & \(\cdots\) \\
\hline \(9)\) & S.1; & \(\therefore \square\) & 17.3 & 2.1. \\
\hline 100 & \(\therefore 25\) & 4113 & 1.1 & \\
\hline 129 & \(\therefore 15\) & 4.7 & 1.15 & \(\because\) \\
\hline 119 & \(\therefore 3\) & \(\because 14\) & \(\therefore 1.9\) & 2-6in \\
\hline 161 & \(\therefore\) & \(4 i 1\) & 23 & 2 Ca \\
\hline 19.1 & 3.5 & , & \(\square\) & \(2 \cdots 3\) \\
\hline 200 & \(\therefore 9\) & s 14 & 2.1 ; & 3.7 \\
\hline 280 & 4.2? & & 2.89 & 3.21 \\
\hline 249 & 4.34 & \(\therefore 37\) & 269 & \(\cdots\) \\
\hline 269 & 4.45 & 5.11 & 29 & 3. 3 \\
\hline 280 & 4.57 & 5.65 & 29 & \\
\hline Su\% & 4.6 & 539 & \% & \(3 \cdot 6\) \\
\hline 050 & 4.43 & (1.1) & 3.10 & 3.9.5 \\
\hline 409 & 5.16 & 6.9 & 339 & 4.20 \\
\hline 150 & 3,36 & 663 & \(\square 3\) & 4.13 \\
\hline 500 & 5.55 & 6.45 & 8 Sr & 1.6) \\
\hline 550 & 5.33 & 8 & \% 613 & 4.12 \\
\hline 60 & 5.9 .9 & 5\%! & 4.43 & 514 \\
\hline 650 & 6.6 & \%.ju & 4.17 & S. \(10^{\circ}\) \\
\hline 500 & 6.21 & 509 & 1. 1.4 & \\
\hline 809 & (i) 39 & 54. & 1.55 & 5.65 \\
\hline 990 & 6.96 & 837 & 49 & 6. 41 \\
\hline 1000 & 7.0) & 863 & 3.11 & 6.21 \\
\hline
\end{tabular}

This table will show how limited and confued were the views of that colcbated man, and by what more splendid and magnifiestat means than he antwopated, motion has been rommmacated to a ress:l. It is a remarkable fact, that in the course of his memoin, Bernonili mentions his hayins read the description of a steam engine, but remarks, hat he does not consider its forece bowerer it may be improved as capable of ever beong adranasconsly abtied to the parproses ol navigation.

England, howerer claims the honour of fist apply ing steant to the parpases of navioutin. In \(1: 3\), Mr. Jonathan Italls touk out a patent for aboat to be propelled by the aisl of stesm, and in 1:37. published a pamphet in London ilhustratioc ol his pian. Its ti-

 latte publication is mow become exceodingly rate:bat a copy of it was lately presentel th the library of the Ropal Socict of Edinburgh, he its distimgnohed president, Sir Walter Scott.t This important and ori-
grinal thought was, however, hever cartied into prartical carcmion by Ifulls, probably from the want of fumbsathed sulficic me encomagement.

It is mot om province in this aticle to trace the many other attompts that were made to cary thand perfect his sereat insention, but bx may trmark that
 boat on the Jorth amt Clyde cand, amblhat it was only abandoned in comseducher o!' some narrow-mitaded propricters of the narisuthon, whersimes that the wathation of the watur occaston+al by the randon of the wheel wond wash :hat injare the b. Hkes and in

 rapused for ecurs to public sinw. It isa rematha de fact, henerer, in the history of this arat invention, that Mr. Fuhton, for whom the Americans have with some whfaness chamed the orishat invention of the steam boat, actually vinted Alr. Symingon in 1.12 and havias nemtoned the matrest he felt in this new

 the astonishment Nir. Fultun, and seseral otheresertlenen who happened at the ontort to come on bord.

This simple and incontrovertible furt decides in the most unquestionable mamer, that the infration of the
 1) B 1 A .1 x .

Fo Mr. Fulton, bowerer, belongs the great honour of hathg been the frost who endeanomed to intestisate on principle, he difaties of the swaject: and it is ramarkable, hat he derined his data from the experiments of the society for the implomement of nevel architectare, abol allusitn to vhose most usenulabums has been arready made st the end of the part devatel to resistance. XI. Matestior, in an all!e re port on the sican wavisation of America dramo lip \(1 y\) command of the Erench mininter of matine. an published at Jaris, in lozt. has decritued ot bome lensth his methot of proceedims. It is in princist this : luvino determined the resistonce of the vessel. be infered that the padites mast experinace the sme resistance, and that the chome mont exar? a force at tie centre of cabrt of the pather, (ryat to the :csistame of the paddic. Is amins then the velocities of the pistor and padile; as hnown, and equiralent to \(\because\) and", and the forees on the same as equi:when in I and he formed tar promation V : \(\mathrm{l}:=\mathrm{f}\) : I"; and hy disam the whole fione on the pistum,
 of ins suffoce he obitined the smide of the piston itself, and innce its diancter.

Anowing do n the whole wsistane on the pad iee and samposing only one paldle on eath site to ac! at the same instant the aca comespmating to that resistance lecomes hown, the haff ol which detemines the surface of ons puhde. IRmowint also fion the number of strokes made bey the pintom, the mamer of rewolations matle by the pathle whels, the tianame of the whedmay be determinel su as to consare the the

\footnotetext{
* The Ennotish foct is equinalent to .03s3 Ironeh fect.

 pence, at the pamphet shops in Lomlon and Werminster.

Vol. XVII. Parri.
}
padde the velocity originally assumed. Fulton haring in this maner determined the force necessary to propet his that, and accurately considered the mode by which it might be most successlully applied, avoided the great error of his predecessors, viz. attempt ing too much with an inadeguate power, and gave to steam navigation that splendid and triumphant character which it now possesses; so that within little more than the half of a century after so transeendent a philosopher as Bernouilli had dectared the utter improbability of its success, and within less than twenty years after its first successful attempt, has steam navigation arrived at such a perfection, that even a voyage to India has been accomplished, and a passage across the Atlantic, by no means regarded as an uncommon thing. What other achicvements it is destined to perform, time must develop.

The form ol' a steam boat must in some degree assimilate to that of a sailing vessel, but there are many pecular circumstances to be taken into account in considering of their construction: such as the particular kind of narigation for which they are destinedwhether for the open sea, or for the shallower waters of rivers and lakes. If for the former an increased draught of water becomes necessary; but for the latter this element must be less considerable.* These considerations are to be inferred from the experiments un the resistance of fluids, in which it has been proved, that the quantity of water beneath the body in motion, has a very important inllnence on the resistance it experiences; and also, that if the water be at all confined the resistance is rery considerably increased. This circumstance indeed is one of common obseration among watermen: and it has been morover observed in steam boats of difierent sizes on the same river, that as long as the water continued shallow, the smaller boat has had the adrantage; but as the water has gradually decpened, the velocity of the larger boat has increased. A similar observation applies to the area of the midship section, which it is necessary to have as small as possible in boats destined for canals or narrow pivers, smee the resistance depends on the relation of the area of the section of the boat, to the a.sea of the section of the fluid.

Steam boats have a very considerable rolling motion. owing to the small proportion their bread th bears wheir length, and to the height of the common cenwe of suavity of the pincipal weights. This motion arises from a deficiency in stability, and it wonld be antrantageons therefore to adopt that form for the body most comblurive to that very desirable quality. It is aliso of importance to have the greatest displacement with the leust difect resistance, that is, with the least area of the midshif section. Supposims the area of the midhaip section and the beradth to be given, the condition bere ahaded to, is in lavone of a form, fall near the luad water line, and lean below. In such a body alow, the centre of epravity of the displacement is high, which is furomable the stabitity. It moreover enalkes the body forwart and aft to be made finer than couta be the ease with a Dhat-floored midship section. Tha rising of the foor must, however, be limited by the consideration, that if the engines and other material weights are rased by it, the advantages might le counterbalanced by the effect this
would have in raising the centre of gravity of the vessel. There is one great advantage in the extra draught of water, resulting from the rising floor, viz. that the keel, which, by its direct opposition to the water must tend very much to diminish the rolling motion, is at a greater distance from the axis of rotation, and consequently has a proportionally greater effect. The rising floor is now generally adopted in the English steam boats.

We have alrealy remarked in a former part of this article, that the form of the sides between wind and water has a very material eflect on the rolling of the vessel, and the observation equally applies to steam boats. For this purpose, the moment of stability should increase rapidly but unilormly, and as the vessel performs its alternate oscillations, the centre of gravity of the displacement should remain in the same transverse section. The form of the body also above and below the plane of flotation, should so accord with the position of the centre of gravity, as to cause the different oscillations of the vessel to be performed with the axis of rotation in the same constant plane. The clevation of the chimney, moreover, should be diminished as much as other circumstances will allow, in order that its weight, by raising the centre of gravity of the ressel, does not diminish in too great a degree the stability. The momentum also that the chimney acquires by its almost incessant ribrations, not only increases the rolling of the vessel, but creates also the chance of its being carried away, if the stability be not very well graduated. Not only indeed for the comfort of the passengers, and the perfect ease and security of the engines, but also for the general adivantage of the ressel, ought the motions and straius of a steam boat to be rendered as moderate and uniform as possible.

In the English steam boats, the engines are so adapted as to have the axis of the paddle wheel gencrally below the surface of the deck. In the American steamers on the contrary, it is as generally above, and even some of their boats which are destined for merchandise have, according to M. Maresticr, their engines on the deck. The sides of those vessels being, however, in general nearly vertical for some distance both above and below the water section, it would be advantageous with regard to easiness of motion, to endeavour to adjust the different weights so that the centre of gravity of the boat should be as nearly as possible in the plane of the deck.
In the earlier steam boats it was usual to give great comparative length, in imitation it is said of the :elative proportion of row gallies. Thus in the following table, it will be remarked, that the length of the Clermont is to its breadth as 9.3 to 1 ; whereas the Connecticut, which had precisely the same length, had its breadth so increased as to present the relation of 4.2 to 1. The Clemont was constructed in 1807, and the Connecticut at a much later period. But the Enterprize presents an alteration in this particular of a still more striking kind, her length being 24.38 metres and her breadth 8.8., the wo clements presenting the ratio of 2.8 to 1. The oljects and destinations of these boats are without doubt very different; but it will be apparent, that in a mechanical structure like
- It is remaktable that until the year 1313 , all the American steamboats were constructed with flat buttoms, and the fulton was the first which litd any rising in the floorm
a steam boat, wherein the weights are so very thequally distributed, the lensthonght not to exeecd the breadh in any thing like the ratio lirst mentioned. In steam boats intended for river navigation, the length may without much impropricty be increased, because the strains are marh less considerable than in the open seat In the eonstruction of stemers for pivers, some attention should be paid tulength on account of the space mecessary for turning them-a circumstance which may sometimes be productive of inconventence.

The report of M. Marestier is roplete with mumerous and important tables. one of which we introduce, for the purpose of illustrating the relative dimensions of the length and bradth. The wessels are arranged according to the momerical relations of these dimensions, and not as M. Warestier has gren them, according to the places at which they were built.
\begin{tabular}{|c|c|c|c|c|}
\hline Names of the Vessels. & langth. & Brasdti. & \[
\left|\begin{array}{c}
\text { Ruation } \\
\text { of the } \\
\text { congth to } \\
\text { the } \\
\text { brealdh }
\end{array}\right|
\] & fralghts of is iter \\
\hline & Metres.* & Metres. & & \\
\hline The Clermont in 1807 & 43.65 & 4.57 & 0.107 & \\
\hline The Clermont in 1808 & 45.72 & 487 & 0.107 & \\
\hline The Cur of Neptune & 3334 & 7.16 & 0.13 .4 & \\
\hline Boat of the Union Line & 41.50 & 575 & 0.139 & 1.37 \\
\hline The l'biladelphia & 42.75 & 6.10 & 0.143 & 1.22 \\
\hline The Delaware & 41.34 & 6.10 & 0.148 & \\
\hline Boat being loroken up & 42.00 & 6.32 & 0.150 & 1.30 \\
\hline The New Jerscy & 38.10 & 5.88 & 0.155 & \\
\hline The liaragon & 52.73 & 5.23 & 0.156 & 1.25 \\
\hline The Etur & 34.75 & 5.50 & 0.158 & 1.22 \\
\hline The Washington & 40.60 & 6.46 & 0.160 & 1.73 \\
\hline The surprise & 28.65 & 4.75 & 0.166 & 1.22 \\
\hline The Engle & 34.100 & 5.88 & 0.173 & \\
\hline The Vesurius & 48.75 & 833 & 0.175 & 1.80 \\
\hline The United States & 4264 & 7.62 & 0.1 -9 & 1.52 \\
\hline The Virginia & 41.45 & 7.56 & 0.182 & 1.52 \\
\hline The Richmond & 16.6.3 & 8.53 & 0183 & 1.50 \\
\hline The lire loly & 3048 & 5.64 & 0.185 & \\
\hline The Nomith & 41.010 & 7.0 & U. 183 & 1.52 \\
\hline The Mary land & 41.86 & \% 92 & 0.190 & 1.52 \\
\hline The Robert pulton & 45.15 & 10.06 & 0.209 & 3.05 \\
\hline The Clancellor Living.
ston & 47.55 & 10.06 & 0.212 & 1.83 \\
\hline The Fulton & 40.54 & 8.84 & 0.218 & 1.90 \\
\hline The Massachusetts & 25.00 & 5511 & 0.290 & 1.30 \\
\hline The Bellona & 23.00 & 625 & 0.223 & \\
\hline The Olive Branch & 37.80 & 8.84 & 0.23.4 & 1.37 \\
\hline The Connecticut & 42.65 & 10.06 & 0.23 .36 & 2.05 \\
\hline The Stwannah & 3043 & 7.92 & 0.260 & 4.27 \\
\hline The Entcrprize & 24.38 & 8.84 & 0.363 & \\
\hline
\end{tabular}

The column deroted to the relation of the length to the breadth, was found by dividing the latter dimension by the former. The average leugth of these boats is 39.82 metres, or 130.64 English feet, and their average breadth 7.15 metres, or 23.46 English feet. The draughts of water, it will be observed, are very variable, arising necessarily from the particular purposes for which the vessels are destined. The Sarannah is the steamer that first crossed the Atlantic, and her draught of water, it will be perceived, is the greatest of the whole series. The Robert Fulton, which navigates the magnificent waters ol the Mississippi, has a dranght of 3.05 metres; whereas the Vesurius, built for the purpose of navigating the same mighty stream, has only a draught of 1.3 metre, her
brealth, however, bems b.js motre less than the same
 thirds of a motre mores.

With resperet the draturgt at steam vessels. there

 and straisht of breadth will, in the ment of them usimg sails, supply the in of depth, any wseless fle gree of which serves maly wimenon the raistance: mether ran there be any aldantaf in a ditiomone of

 it may beroquisite wasist the artion of the wate os the rudder.

Mr. Ausustin Crewos has Latuly delacad Pome DI Marestien's drawings of the stwor boat, the Chat
 and from two which have been lately constructerl in Englant for the serbice of the Somecgat formonment, by Lient. A. Ci. Carlsmal, of the Swedish Jat yal Naval Ensineors, the exponents of then dillement clements, as recorded in the lollowing table, accoseding to the parabolical method of Chapman, before almaded to.

It is of importance that the displacement and also the position of the centre of grayity should be acchrately determined, on account of the great and constant weights on board a steam ressel being so considerable. It is usual to distribute the couls is much about the centre as possible, and to adjust the position of the centre of gravity of the engine, (1) the intended purposes of the ressel. It would be proper also to form an cstimate of the stalility of a steamer with regard to its lengh, by calculating what effect the removal ol a weight to a certain distance eitherbefore or aft the centre of gravity, will produce a given difference in the draught of water. This weight being known might be employed as a scale by which to regulate the disposition of other weights; and it is from a neglect of this important particular, that steam boats float at a different draught of witer from what was intended.

Unless the displacement is correctly determined, and the area of the midship section also known, and limited moreover to a constant quantity. the power of the engine cannot be determiacd, so as to ensure a given velocity. Another necessary cause for accuracy with regard to the displacement is, that any alteration from the water line, in relation to which the height of the axis of the paddle-wheels was letermined, might
materially affect the action of the paddles themselves； the height of the axis being adjusted in such a man－ ner，that the wheels having a specific diameter，the paddles may obtain such an imnersion in the water， as shall cause the ir imer edge to have a velocity at least equal to that of the ressel，to ensure the absence of resistance on the fore side of the paddle．Hence it appears，that the depth of the padele depends on the proportion of the velocity of the ressel to that ot the relocity ol the outer edge of the pradde wheel．It is，moreover，found in practice，that the paddes will not work well if immersed in the water more than eighteen inches or two feet．This circumstance ari－ ses from the great loss of power occastoned by the obliguity of the stroke en their entrance into the hate． and also on thrir learing it，and the great quantity of water，mopeover，they will hilt．

The breadtin of the padde mast be regulated by b－ cal circumstances，attending to the condition，that the greater the are ol the paddle，the less is the loss of jonere occasioned by the motion it communicates to the fluid．Bermonilli estimates this loss for the common oar to be \(\frac{20}{10}\) of the whole force applied． Sea－gaing boats shmal in general lave the wa palles harover than boats intended tor smoth water．

The mamber of paddies an a whed is at present wholly detomined by practice．One padde forevery foot the wheel is in dimeter，is the eremal rute forl－ bower．If they are too near each oher，they do not mett the water wath abl we subantage thoy oughat and if wo far apart，the motion which their stecers－ sive and listinct inpact wita the water communicates to the wessel is mapleasant．

Nobthe theory nor practice has yet detomined where the axis of the paddtw whee should be placed with regard to the lengit of the rescel．Ne diaves tier has given us the folmering of its siturtion in se－ veral American boats．Its position is，horever，al－ ways sery much limited by that of the engine．
\begin{tabular}{|c|c|c|c|}
\hline Namer f fle Viessels． & \begin{tabular}{l}
1）stance \\
fore arsis \\
form tios \\
wayl．
\end{tabular} & 1：int：un ＂the：ax from aft & cellans statances， the antecoront lems beirs unity． \\
\hline & Netres． & Metres & \\
\hline Th．e（lantcil a Living & 2.3 .75 & サ3：5 & \(1: 101\) \\
\hline & 1 こ．ご & 2． 2.51 & 1：13： \\
\hline & 17.1 & 21.1 & 1 1： 1.4 \\
\hline fl｜le M hatare & 150.1 & & 1；1．1； \\
\hline & 15.51 & 13．5\％ & \(1: 1.12\) \\
\hline Th Nou＇dk & 15.613 & 25011 & 1：1．5； \\
\hline & 15.61 & 23．00 & 1：173 \\
\hline 1体 Virsimia－ & 1520 & 26.13 & 1：1：－ \\
\hline & 14．5） & 25．5 & 1：1．75 \\
\hline & \(1:\)（1） & \％ 7.01 & 1：1．93 \\
\hline The E －gh & 14.314 & － 1101 & 1：1．4； \\
\hline The licilome & 12.810 & 16．13） & 1：1．73 \\
\hline Tberaloun & 10．1．： & 1912 & 1：10．3 \\
\hline
\end{tabular}

Thi，table proves that the position of the padtle axis is very veriatac in digerent ressels．In the Chan－ ceilur hivingston it is plared in the middle ol＇its prin－ cipal asis，and wey nearty so in the loultom：bat in the Phiardethia filatimore，the deviation from the centre \(i\) ，yery considerable，and the greatest of the
whole series．In the United States，the Virginia and the Washington，the deviation also is rery great． Much remains yet to be done to perlect this important part of the subjuct．

Many of the boats on the Mississippi hate their whecls abalt，that they may be protected from the logs of timber incessantly iloating on that mighty river， thus prachicallyexemplitying the orisimalidenofllulls． Many vessels also，minemed only for short passages， and where a small draught of water is necessary，are built with two bodies，with the wheel placed between them．＇Jhis ghan，howerer，i：s not lound adrantageous for boats with any considerable drausht of water，be－ cause，in addition to their weakness，there is an in－ crease of resibtance resulting from the water passing whesreat velocity hrobgh a confined chamed．Boats hawe heen tried wioh two pair di padde wheels．and the Duth are now balling a steam frisate with four engrines，cach of 100 horse powel，to act on two pair of pardle wheeds．

When there are two padde wheels on each side． their rehtive relocties，with respect to the water， should be equal，in order that they may exem an equal force on the ressel．Il this were not the case，the af－ termost wheel would operate disatvartancoubly：for as the water on which the aftemost wheel acts，has hat an increased velocity communicated to it by the action of the foremost whect，the absolute relocity of the aftermost whel must be proportionally greater thon that of the foremost；a circumstance which would refuire a freater quatily of stem，and comsequenty a greater consumption of fucl．There would also be a waste ol power，untess each pair of whecls hat separate engines：and it is probable that the aftemost whects would lose a portion ol their eflect，in consequence of the disturbed state of the water they acted one

The following important table was communicated to M．Narestier by one of the principal ensineers of New York，as the result of his experience with regard 1）the proportions between the dimensions of a ressel and its engue；and，in order to make this part of his useful and important work as complete as possible， he has added another table，the result of his own in－ quitics，containint the principal proportions of the engines and paddle wheels．Sic．ol＇the steam boats，the dimensions of which havebeen given in the preceding tables．

A Talle of the mincipet Proportions of steum Legines

\begin{tabular}{|l|l|c|c|c|c|c|c|c|}
\hline
\end{tabular}
 IGasts rontainet in the jormor 'ablow.

M. Narest:er has also given the fullowing comparative table of tise resalts he bas wiserved, and calcalated for ten boats. oí which he was able correctly to ascertain the relocitios.

In the first columm, the measure of the elesticioy of the stich, is represented by the lexight aithe column of mercury it with support in a varuman.

The column dewned to lhe propmation of fite pathes, is the quoticnt w the rectangle of the breadth and draught of water of the boat, dirile by the area of one of the pathere.

The mamer which he tems tón forme of the dame
 the bessels were simitar, ath the resistances to the paddles bore in all of them the same invariable volation to the resistance of the hall, the diancite of the pardle whects womad be equal to the velocity ol the boat mubtiplied by a constant factor, and divided by the number of datible nscillations of the piston. Whe mean ol these factors beins between 2 a atd at, it fol Jows, that if the propurtion the relucity of a steam boat bears to the mamber of strokes of the pistum, be multiplied hy in or on, the result with give neaty the dimensions of padle wheds smablary propurtioned to those in the tmerican boats.

The last colurna denominated the matlidier. is a number which Marestice deducel, to show the relation which the trae velocity of a boat bears to the following quantity: 'The square root of the product ol the height of the column of mereury the steam will support, the stroke of the piston, and the square of its diameter, divided by the square root of the product of the rectangle of the breadth and draught of water of the vessel, and the diameter of the paddle wheel.

ST. AT...

 spectin, har.

We shall now endearonr th exphain the frincipics by which … Narestin deduces on ingenionsly the
 recurded in the two lasiconmms, i' the precedinct tible.
'1o accomplish this he supposers the man of the

 lected in the reccetinio tablw, he insestigates the proportions which exist betmen the prontre of the artin-. the dimensions of the rees t, of the pathes amb the

 This surface, which he dewminotes the revishomere fisce of the pudins, is reperemted by

> The velocity \({ }^{\text {l }}\) the resisting surface
> The resisting surface of the wessel by
> And the velucity of the vessel \(1, y\)

Nach ol these quantilies he propuses to cienise from xperiment.
1. The resistance of the lall beins supposed proportional to the sympe uf the velocite, is eguisatent to \(k b^{2} V^{2}\), the function \(l\) beint the mensume of the direct resistance corresponding to the maty of surface and velocity.

Then the relocity with which the paddles strike the fluid being L _ V , the resistance they cxpericnce will be \(\quad k a^{2}(\mathrm{U}-\mathrm{V})^{2}\).
Hence it follows, that
に \(b^{2} V^{2}=k a^{2}\left(\mathrm{U}-\mathrm{V}^{2}\right.\),
and
\[
\mathrm{U}=\left(1+\frac{b}{a}\right) \mathrm{V}
\]

The velocity of the ressel is therefore always proportional to that of the paddies, while the resisting surface of the vessel bears a constant relation to the surlace of the paddles.
2. The moments arising from the action of the paddles on the water, and the steam on the piston, are equivalent to each other, omitting the effects of friction. The absolute velocity of the paddes being also \(U\), and the resistance they meet with \(k a^{2}\left(\mathrm{U}-\mathrm{V}^{+}\right)^{2}\) the moment of their action, will be
\[
\text { lit } u^{2}\left(\mathrm{U}-V^{2} \mathrm{U}\right. \text {. }
\]

Supposing \(y\) to represent the density of the mercury, F the altitude of the column the steam will support, \(P\) the surlace of the piston, and \(r\) the measure of its mean velocity: then will the moment of the piston be equivalent io ghPr.
and consequently \(\quad q h \mathrm{P} v=k u^{2}\left(\mathrm{U}-\mathrm{V}^{2}\right)^{2} \mathrm{U}\).
3. Since the effect of the friction of the machine is to diminish the effect of the moving force communicated from the piston to the paddles, a portion only of the moving force qh P is taken, and which is represented by \(m q h \mathrm{P}\). Hence we obtain the cquation \(m_{q} h \mathrm{P} v=k a^{2}(\mathrm{U}-\mathrm{V})^{2} \mathrm{U}\).
\[
\text { and since } \mathrm{U}=\left(1+\frac{b}{u}\right) \mathrm{V}
\]
we obtain by the necessary reductions,
\[
\begin{aligned}
& \mathrm{V}=\sqrt[3]{ }\left(\frac{m q h \mathrm{P}_{r}}{k^{2} b^{2}\left(+\frac{b}{l}\right)}\right) \text { and } \\
& \mathrm{U}=\sqrt[3]{ }\left(\frac{m q h \mathrm{P} v}{k^{2} b^{2}}\left(1+\frac{b}{l}\right)\right.
\end{aligned}
\]
4. From these formulx we may draw the following conclusion: - that the cube of the velurity of the vesset is less them the pouer of the engine, dividet by the resistence of the vessorl; and that the cube of the meren celocity of the pathles is atso erreater thein the stame quentity-a limit only to be attitined when the paddles are infinite.
5. If we suppose a second boat to exist, the elements U', \(Y^{\prime \prime} a^{\prime}, b^{\prime}\), \&x. ol' which are analogous to those ol \(A, Y\), u, \(b\), \& c. adopted for the former boat, we may obtain by the common processes of reduction
\[
\begin{aligned}
& \text { and } \frac{\mathrm{U}^{\prime}}{\mathrm{U}^{\prime}}=\sqrt{m^{\prime} n^{\prime} \mathrm{P}^{\prime} \mu^{\prime}} \cdot \frac{b^{2}}{h^{\prime} \mathrm{P}^{\prime} b^{\prime}} \cdot\binom{1+\frac{b^{\prime}}{b^{\prime}}}{1+\frac{b}{a}} .
\end{aligned}
\]

So also when the resisting surfaces of the paddles are, in both vessels, proportional to the resisting surfaces of their hulls,
\[
\text { we obtain } \frac{b^{\prime}}{a^{\prime}}=\frac{b}{a} \text {; }
\]
and consequently \(\frac{\mathrm{V}^{\prime}}{\mathrm{V}^{\prime}}=\frac{\mathrm{L}^{\prime}}{\mathrm{U}}=\sqrt{m}\left(\frac{m h^{\prime} \mathrm{p}^{\prime} v^{\prime}}{m h \mathrm{P}^{\prime} v} \cdot \frac{h^{2}}{h^{\prime 2}}\right)\).
Itence it follows, that the inforitios of the bonty are proportional to the velocities of the patdics, cat they are
also in a direet proportion to the cube root of the powe. of the engines, and in an inverse proportion to the cube root of the resistance of the ressels. M. Marestier considers this proposition nearly general; because, unless there is a very great disproportion in the dimension of the vessels, the relation of \(1+\frac{b}{a}\) tol \(+\frac{b^{\prime}}{a^{\prime}}\). cannot differ much from unity.

Mhroughout these investigations, M. Marestice has regarded has the altitude of the column of mercury, which the steam when acting on the piston will support, and determined the effort of the piston, under the supposition that the yacumm on the contrary side of the piston is perfect; but as such a condition cannot exist, the quantity \(h\) should be diminished by the height which the steam remaining on the contrary side of the piston, will depress the mercury from the altitude at which it would stand in a common barometer. This is an important cousideration when comparing one boat with another, because the degree of the racuum must depend wholly on the goodness of the engine.
6. From the equations \(l \mathrm{~V}=a(\mathrm{U}-\mathrm{V})\),
\[
\begin{aligned}
& \text { and } m q h \mathrm{P} v=k t^{2}(\mathrm{U}-\mathrm{V})^{2} \mathrm{U} \\
& \text { we may deduce } \mathrm{UV}=\frac{m h \mathrm{P} v}{k b^{2}}
\end{aligned}
\]

Therefore whaterer may be the dimensions of the paddles. the product of their velocity and the square of the velocity of the ressel is in proportion to the power of the engiue.

Although the power of the engine has been considered as known, it is seldom that the relocity of the piston can be taken arbitrarily. The relation of this velocity to that of the paddes is almost always invariable, and therefore the relucity of the piston atters with any incrase or diminution in the size of the paddles. This howerer will not make any change in the conditions of the preceding question; blit the value of \(r\) will vary according to the alteration. It may happen either that the velocity of the piston is too greal to admit of an adequate supply of steam, or that the supply of vapour is too great, and some necessarily escapes by the safety valve. In the first case, the elastic force of the rapour will diminish until the movement of the piston shall correspond to the quantity of steam supplied; and in the second case to prevent the loss of steam, the intensity of the lire must be diminished; but then the power of the engine will be reduced in the proportion of the actual relocity of the piston to that which it ought to have.

That the velocity of the piston may correspond to the quantity of steam furnished by the boilers, the mechanism must be so arranged as to satisfy the equation
\[
\mathrm{U}=\sqrt[3]{\left(\frac{m_{q} h \mathrm{P} v}{k b^{2}}\left(1+\frac{b}{a}\right)^{2}\right) ; ~ ; ~}
\]
or if \(r\) represents the relation between the velocities of the piston and paddles, we may obtain the equation
\[
r=\frac{\mathrm{U}}{v}=\sqrt[3]{ }\left(\frac{m q h \mathrm{P}}{k^{2} b^{2} v^{2}}\left(1+\frac{b}{d}\right)^{2}\right)
\]

Of the quantities \(a, b, h, \mathrm{P}, i, \mathrm{U}, \mathrm{V}\), and \(v\) contained in the equations.
\[
\mathrm{U}=\left(1+\frac{h}{\imath}\right) \mathrm{V}
\]
\[
m q h \mathrm{l}^{\mathrm{r}} v=k{a^{2}(\mathrm{C}-\mathrm{V})^{2} \mathrm{U}, ~}_{2}
\]
\[
\text { and } \mathrm{U}=r \cdot
\]
any five being known, the remaining three may be readily determined. 'Thus, il' the values of the elements \(a, h, h, l^{\prime}, r\), are known, and it be required to determinc the values ol \(\mathrm{C}, V\), anf \(i\), we shall obtain from the preceding eduations
\[
\begin{gathered}
\mathrm{U}=\left(\frac{1}{l}+\frac{1}{a}\right) \sqrt{\frac{m q h 1}{k r}} \\
V=\frac{1}{b} \sqrt{\frac{m q h \mathrm{p}}{k r}} \\
\text { and } \tau^{+}=\left(\frac{1}{b}+\frac{1}{u}\right) \sqrt{\frac{m q h 1^{2}}{k \iota^{3}}}
\end{gathered}
\]

Since the velocity of the vessel is inclependent of the element \(a\), it follows, that as long as the value ol , renains melanged, the surface of the paddles may be either increased or diminished withont producing any alteration in the velocity of the boat. At the same time also it appears, liom an inspection of the function representing the value of \(r\), that we cannot augment the dimensions ol the paddles, without diminishing the velocity of the piston, and causing a greater consumption ol steam and fucl.

If the diameter of the wheels be diminished, the velocity of the steam boat will be increased; but the velocity of the piston and the power of the machine being increased also, will require a greater consumption of steam and fuel. Hence an increase of velocity may be obtained by diminishing the diameter of the wheels, provided that the boiler will lurnish more steam than the engine consumes.

If, on the contrary, the diameter of the wheels be increased, the vessel will lose velocity: but this cannot be aroided, if after having increased the surface of the paddles as much as is consistent with other circumstances, it is found that the engine has too great a velocity lor the supply of steam furnished by the boiler.

If, arrain, the diameter of the wheels be diminished by takincs away a portion ol each paddle, the velocity of the ressel witl be increased, becanse the value of the clement \(r\) is diminished: but then it must be remarked, that more steam witl be consumed than if the change had been made in the diameter, without diminishing the surface ol the paddles.

When any alteration is made in the mechanism which communicates motion from the piston to the wheels, the elements \(r, L, V\), and \(r\), hecome respectively \(r^{\prime}, \mathrm{U}^{\prime}, V^{\prime}\), and \(r^{\prime}\). Ilence we have
\[
\begin{gathered}
r^{\prime}=\frac{1}{b} \sqrt{m q h \mathrm{P}} \frac{k r^{\prime}}{}, \\
\text { and } v^{\prime}=\left(\frac{1}{b}+\frac{1}{u}\right) \sqrt{\frac{m q h \mathrm{P}}{k r^{\prime 3}}} \\
\text { Consequently, } V^{\prime \prime}=\mathrm{V}^{r} \sqrt{r^{\prime}}=\mathrm{V}^{\prime} \sqrt{r^{\prime}} \\
v^{\prime} \\
v^{\prime} \\
\sqrt{\frac{r^{3}}{r^{\prime 3}}}, \\
\text { and } r^{\prime}=r \sqrt[3]{r^{\prime 2}} .
\end{gathered}
\]

Hence it follows, that when the piston does not partake of the velocity which the steam furnished by the boiler would admit in any change of the mechan-
ism, the velocity of the boat will be reduced in proportion 10 the cube root of the velocity of the piston: and in order that the vessel may açuire the felocity which the emorine is capable of impartiner, the value of \(0^{\circ}\) must be diminished inversely as the cllor: rese of the square of the velocity of the piston.

The value of \(V=\frac{1}{b} \sqrt{\frac{m y}{} / 11^{2}}\) beins more simple than that before deduced for the same element, admits of an easier comprarison with the velocities before obscried. It admits, however, ol further simplilication.

For this purpose let \(p\) represent the diameter ol" the piston, and the relation ol the diancter to its rifcumberence, then will
\[
1=\frac{\nu^{2 \pi}}{4}
\]

In the American ressels, the wheels gencrally make one turn lor every double stroke of the piston: and, therefore, supposing \(c\) to represent the length of a stroke of the piston, and n the number of revolutions of the wheel in a minute, we shath have
\[
r=\frac{2 n t}{60}=\frac{420}{30}
\]

Calling also the absolute dimmeter of the paddle wheels D , its mean dianeter will be \(\delta \mathrm{J}\)), where d denotes a quantity to be determined by experiment. Hence we have
\[
U=\frac{n \times \pi \delta \mathrm{J})}{61}
\]
and consequently, \(\quad=\frac{\mathrm{U}}{v}=\frac{\tau \mathrm{J}}{2!}\).
The resisting surface of the vessel lefore assumed as equivalent to \(b^{2}\), depends essentially on the shape: of the ressel, and perbaps on its velocity; but as it is known that it increases in proportion as the draught of water and breadth are augmented, we may suppose it proportional to the rectangle J ol the dimensions alluded to, and which therefore fumishes the equation
\[
b^{2}=\beta \mathrm{B},
\]
the element \(\beta\) being determined by experiment.
Substituting this value of \(b^{2}\) in the equation
\[
\begin{gathered}
V=\frac{1}{b} \sqrt{\frac{m q}{k r}} \\
\text { and we shall have } V=\sqrt{\frac{m q}{2 k i s}} \sqrt{\frac{h r p^{2}}{\mathrm{BD}}}
\end{gathered}
\]

The density of the mercury \(q=13.6\); and it may also be remarked that the value of \(k\), when the body exposed to the impulse of the water is thin, as in the case of the padalles, is about \(\frac{6}{100}\), unity being the weight of a cubic metre. There are several causes, however, which render it dificult to detemme the values of \(m, ~ \varepsilon\), and \(\delta\), as they vary under different circumstances. The best boats, M. Maresticr observes, will be found to be those where the ralue of \(\frac{m}{d z}\) is the greatest.
8. For the object in riew, it is sufficient to know the value of \(\sqrt{\frac{m q}{2 k \delta}}\), which has been designated the
mulizlier．Supposing it io be represented by N，we bave
\[
\mathrm{V}=\lambda \sqrt{\left.\frac{h(1)}{13}\right)^{\circ}}
\]

In the last tabe it will be perceived that M．Nares－ tier has dectuced the multipliers for several vessels， the valucs of which，omitimg the instance of the Sa－ vamah，vary from about 20 to 25 and the mean he fixes at 22．Since，howerer，the ralue of the mulli－ plier．all oblow thins remaining the same．depends on the pofection of the engine and ressel，it canot be strictly correct to apply to one yescel a mamber deciuced by experiments on oubea har inferion to it． It is to be remarked that the velocities which \(N\) ．Itio－ restier has given of the imerican boats are small in comparison to those of the more modern Enghish boats．The latier boats require therefore higher innl－ tipliers than the lommer．

の The equation \(\mathrm{L}=\left(1+\frac{b}{u}\right)\) 「゙ before given， will undergo some converibent monlifzations．by sub－ stituting in it the values of 6 and U deduced from the equations \(H^{2}=6, \operatorname{and} L=\frac{n-d D}{60}\) ，and abo atopt－ ing for an the resistine surface of the paddes，the rumaty \(1:\) ，he fonctom frepresentiner the area of ane of them．Fonese sabstitutions will transfom the first－mentioner cruation \(\mathrm{L}=\left(1+\frac{h}{u}\right) \mathrm{V}\) ，into
\[
\frac{n-1]}{61}=\left(1+1 \frac{1}{a}, 1 \frac{1}{\square}\right) i
\]
and from which we may deduce
\[
i=\frac{\operatorname{ar}\left(1+\sin \frac{13}{2}\right)}{V} \cdot \frac{5}{16} \text {. }
\]

The Paction \(\frac{b^{3}}{5}\left(1+\sqrt[1]{2}+\frac{1}{1}\right)\) is that which Las been demominated the fiesto of the dimmeter of the ahels，and of which the mars value is thite．If we desimnate this function by F ，we shall obtain the －：＋alisu
\[
0=\mathrm{F} \cdot \frac{\mathrm{~V}}{4}
\]
\[
\begin{aligned}
& \left.V=I I, \frac{j\left(\beta^{2}\right.}{n 1)} \text {, and } I\right)=\because \cdot \frac{V}{n} \text {, }
\end{aligned}
\]
on whath the co－efferents MI and F，tracn at theim mean experimenn ralues are 23 and So，we can re－ solve such quentions as relate to the proportions amb p：incipa！dimensions of engimes and wemels construte

\[
n=\therefore \therefore!\left\{_{1}^{h} 1^{1} j^{2},\right.
\]

Whith enathon we to pemathe that threnth from the
 vantugerons to diminish th：diomber of the wherls．

 streater mumber of rewhotions．
\(\therefore\) anin，by diminatin；1）Irwm the stme equations，
we obtain，\(\quad V=\frac{3}{n}\left(\frac{n^{2}}{\mathrm{r}} \cdot \frac{n h c p^{2}}{\mathrm{~B}}\right)\) ；
or since，\(\quad \hat{3}^{2} \frac{\mathrm{M}^{2}}{\mathrm{~F}^{2}}=2.53\) nearly， we may hase，\(\quad V=2.53{ }^{3} \frac{n h c \beta^{2}}{15}\)
llence it appears that the velocity of a steam hoat is crand to the cube root of the product of the forlow－

 （／）icu：

By cmploying tins exprescion for calculating the velucties of the first mine vessels contained in the comparative talde it will he fomm，says MI．Mares－ tier，that the emar is gencratly less than one－tenth of the actial value．

The croficiont 2.53 ：bove detheced，depends on the form the thesset．Its ralue mishtit be 2.25 for at form oxpericnciag opparenty arseat resistance；or it may be \(2.5 \%\) or even more for a cuntrary form．

11．It the value of 13 bererarled as unknown，we shall obtain，
\[
B=\frac{N^{2}}{\mathrm{~F}} \cdot \frac{n h n^{2}}{\mathrm{r}} ;
\]
or since the ralue of the co－fficient \(\frac{\mathrm{M}}{\mathrm{F}}\) is nearly

Hence，the ensing being given．we candetermine the area of a prarablegogram，whose base shall be the breadth of a ressel which the engine can more with a given velucity，and atitude equal to the draught of water．

12．From the cquation ach \(h^{2}=\frac{\mathrm{BJ}^{3}}{16}\) we may also find the power it is recuisite an engine should possess， to enable it to more a given vessel with a detominate reciocity．Vesce，moreover，that this larce increases as the rube of the velocity．

1ㅅ․ llaving found that
\[
i=\frac{r n}{s u} \cdot \text { or } r n=3 n r
\]
we shail winin，bu substurimis in the value of the fore given，that \(V^{2}=\left(\frac{31^{2}}{i^{2}} \cdot \frac{31 \cdot h^{2}}{13}\right)\) ；
and when the elocity of \(r\) is cquivalent \(\frac{8}{10}\) of a motre，which is the case in most of the American boats．ve shall fardier have \(V=7.5^{3} \frac{h h^{2}}{b}\) ．
flus cenation may be employed in the same man－
 act．of the power of an chegine by sopposing lbor hoㄹ its mbanown．

I．Nametier objects to the method commonly em－ phed of estimating the power of a steam engime，by the number of horses it wond recpure 10 perform the smme fumtity of work，sine the nominal power of the enrine under these circumstances，must very much
depend on the estimated power of a horse. He proposes a method, certainly of a much more philosophic character, and capable of alfording more accurate results. Mhhiply, says he, the heirht of the colvom of merctry the stoti", will support, ly the square of the diameter of the rylauter, well the moran velocity of the piston; sirty-sex and moothists of this protwet will be the number repersentins the horse poued.

Then will the
 the momber of horses, diabled bey the rechense of the draught of erater, "tut the hrowth of the eesset.

The power of an engine capathe of communicating a required velority to aboat may be found, he informs us, by multiplying the cube of the velocity by the breadth, and by the draught of water, and dividing the resulting product by 7.26 , or by 6 , as the circumstances of the vessel may require.

The surface of the parallelogram also, which has the breadth of the vessel for its base, and the draught of water for its altitude, may be determined, by dividing the number of horse power of the engine, by the cube of the required velocity, and multiplying the resulting quotient by 7.20 , or 6 , as the conditions of the ressel may require.

In considering the motions of steam vessels in rivers, M. Marestier introduces the consideration ol \({ }^{2}\) the velocity of the current, and also attends to the effect produced, by causing the action of the engine to be applied to winding a rope mound a roiler, the outer end of the rope being attached to a fixed point on the shore. His general results are as follow: To stem a current with the least consumption of fuet, the cibsolute cetacit! of the vessel shomht be onty half the relocity of the steem. Thut the relocity resuitimer fiom the use of the rope and raller is areater then that whirh resutles from the we of the patillembed, in the propertion of the culbe root of the retocity of the paddle to the cube root of the celority rommmaiedled by the pradilles to the eressel. That to emalle the eesed in stom a current
 crorent, it retuives thece times the motive poreres, if that
 if the power were 'dplict to the rolle. That when the cument is refate, it is atcontuspens to ace the rope for houling, in ardtr lo stom it; inn thent if the cmornt is not strone, it is preftrable to ter the puitultes whed that
 urhen the edosolute returity of the reaset is ereeter then the eclocily of the juddites, ore when the velocily of the strean is greater then ther relority with whith the patdles stritie the wati, which witl temeally te the reesc."

Nuch remains to be done to petlect the theory and practice of steam boats: yet ia a lepatment ol knowledge so comparatively new, it is remarkable what rapid steps have been already mate towards its improvement. "The molion of bowls, their formx, and proportions.", says Mr. Trederold, in an ingenious and able paper on the subject, \(\cdot\) will afford many fine subjects for the application of science." Let us hope,
that "Man, nature's minister and interpreter," will not cease his rmedeons to carry it onwards on perfection.

Mr. Tredsold, in his ingenious disquisition, shserves, that in still water, it may be issumed, that the resistance of the sane wessel is sensibly preportional to the square of the velority: the variation liom the law being, he considers, tow small wormence a sensible effect within the range to which the velocity is limited in practice. 'Pherefore if a be the turer that will kerep the boat in miform motion at the welority ", the force that will keep it in motion at the who i:y. will be found by the amatosy.
\[
u^{2}: \boldsymbol{r}^{2}:: 1: \frac{11 r^{2}}{n^{2}}
\]
which is the measure of the resistance with the velo. city \(v\). Hence the mechanical power reguied to keep the boat in motion with the same velocity, will be \(a b^{3}\) \(\frac{a}{u^{2}}\); and liom which it follows, that the power of a steam enginc to impel a boat in still water, must be as the cube ol its relocity. Therefore, il an engine of twelve borses power will impel s boat at the rate ol' seven miles an hour in still water, and it be reguised to determine what power will move the same boat at ten miles per hour, we shall have
\[
7^{3}: 10^{3}:: 12: \frac{10^{3} \times 12}{7^{3}}=35
\]
or an engine of thirty-five horses power.
This immense increase of power to obtain so small an increase of relority, says Mr. Tredgrods, oughe to have its influence in fixing upon the speed of a boat for a long royage, and its proportion ought to be adapted for that speed, with a proper excess of power for emergencies. A low velocity should be chosen, when goods as well as passengers are to be ronvered. The example before given, places this in a very striking point of view: for to increase the velocity of the same boat l'rom seven to ten miles an loour, requires very neurly three times the power, and of course three times the quantity of fuel, and thee times the space for stowing it besides the additiona! space occupied by a larger engine. Therefore il seven miles per hour will answer the purposes of the trade the ressel is to conduct, the advantages of the lesser speed must be evident.

According to these principles, N1r. Tredgold has computed the lollowing table, illustrating the porer necessary to communicate to a bont different velocities
\begin{tabular}{llll}
2 & \\
2 & miles per hom & 52 \\
4 & - & - & - \\
\hline
\end{tabular}

\footnotetext{
*The work of M. Maresticr is the mont important that has yet appeared on the subject of steam navigation, and ric carncetly recommenl its claborate content to the attention of our readers. The report to the Institnte on it was male by sanc, biot, Poison, and bupin. These distinguished men remark, "Lorsqu'un nouveaugenede forces mécaniques s"introduit dune maniere utile dans quelque branche de l'industric mamane, it donne au peuple qui s'en empare le premier, nu que l'exploite aur la plus srande échelle, un puissant moven de superiorité sur les autres peuples. Souvent, cofin. le renversement los rapports le prosperite, de richesse et de puistance entre les antions, wat la suite necessaire de ladnption et du progres des appheations dume espece notwelle de forces mecaniques."
thee an Whay on Steam boats by Mr. Tredgoll, in Mr. Partington's Iistorical and Deacriptire Account of the Steam Engina.
Yol. XVII. Part I.
}

In short voyages, the extra quanticy of engine room and tomnage for fuel is not so objectionable; but in a long royage, it reduces the useful tomage to so small a proportion, as to render it doubtful whether such vessels will answer or not. The consumption of fuel to produce a given effect, is much greater than in engrines on land; and perhaps much in consequence of the draught of the chimney, and the limited space for the boiler.

When the paddles of a steam boat are in action, there is a point in each paddle, wherein if the whole reaction of the fluid was concentrated, the effect would not be altered. This point Mr. Tyedgold denominates the centre of reaction.

By supposing the fluid at rest, the velocity of the centre of reaction V . and the velocity of the boat \(v\), the velocity with which the parldes strike the water will be \(\mathrm{V}-r\). Or the difference between the velocity of the paddes and the velocity of the boat, is equal to the velocity with which the paddles act on the water. Hence when these relocities are the same, the padules have no force to impel the boat; and if the paddles were to move at a slower rate, they would retardit.

Now, as \(\mathrm{V}-v\) represents the relocity, the force of the reaction will be as \((\Gamma-c)^{2}\), since this quantity is proportional to the pressure producing the velocity \(\mathfrak{V}\) - \(\%\) But during the action of the paddles, the water gields with a velocity \(\mathrm{V}-c\); and since the relocity of the boat is \(r\), the effective power is as
\[
\mathrm{V}-v: v:(\mathrm{Y}-v)^{2}: v(\mathrm{Y}-v)
\]

The effect of this power in a given time, is a maximum, when \(r^{2}\left(\mathrm{~V}^{-}-v\right)\) is a maximum; that is when \(2 \mathrm{Y}=3 \mathrm{r}\) : or when the velocity of the centre of reaction of the paddles is \(1 \frac{1}{1}\) time the velocity of the boat.

It is desirable that the action of the paddles should be as equable and contimous as possible, watess they be arrangel so that the variation of the power of the tagine may coincide with the variation in the action of the paddics. Bat in attempting to vender the action of the paddles equable, their number ought not to be increased more than can be avoiled, because there is not then time for whe water to flow between them, so as thaftord a propery quantity of reaction: neither do they clear themsclves so well in quiting the water. If we seppose IVL, Fig. 3. Plate Di. to be the line the water would assume when at rest, the most favouralife arrangemem, with the smallest number of padities appears to be, to make the paddle \(A\) of the wheel \(A\) just entering, when the preceding one \(B\) is in a worical position, and the one \(\mathcal{C}\) guitting the watri. 'This arrangement allows time for the water to now beween, and for it to escape from the retiring paddes. If a smather number be employed, there will be a short inter:ah, dutine which none of the paddles will be in full action. The ntmost variation will be between the penstions of the whecls \(A\) and 13 , and an intermediate position is shown by the whed C.

To determine the radiun of the whece, or the depth of the paddes, when the number of padelles is given, becomes an easy problem, when the preceding conditions are to be ad lieved to.

For this purpose, put \(A 0\)), Fig. \(4 .=r\), and the depthe A of the paddle \(=x\). Let also \(n\) represent their number. Then \(\frac{360^{\circ}}{n}\) will be measure of the
angle AOB, contained between two adjacent paddles; and \(r \cos . \frac{360^{\circ}}{n}=\mathrm{O} a\), will be the cosine of the same angle, being the interval from the centre of the wheel to the surface of the water.
\[
\text { Hence, } \quad r \cos \frac{360^{\circ}}{n}=r-x \text {; }
\]
or \(r\left(1-\cos \cdot \frac{360^{\circ}}{n}\right)=x\), the depth of the paddles:
and \(\frac{x}{1-\cos \frac{360^{\circ}}{n}}=r=\mathrm{A} \rho\), is the radius of the wheel.
From these equations Mr. Tredgold derives the following rules for finding the radius of the wheel, when the number and depth of the paddles are given. Divide 360 by the mumber of pudlles, which will give the degres in the angle contimad belucon tro aljacent paddlles. From zuity subbract the naturat cosine of this angle, and the depth of the padilles divided by the remainder will give the redtus of the whel.

Thus, if the number of paddles be 8, Fig. 5. and their depth \(1 \frac{1}{2}\) foot, we shall have \(\frac{360^{\circ}}{8}=45^{\circ}\), the cosine of which is .7071. Therefore \(\frac{1.5}{1-.707!}=5.12\) feet, the radius of the wheel.
Again, il the number of paddles be 7 , Fig. 4. and their depth 1.5 foot as before, we again have \(\frac{360^{\circ}}{7}=\) \(51^{\circ} 26^{\prime}\), the cosine of which is \(\cdot 6234\). Consequently \(\frac{1.5}{1-.653 \frac{1}{4}}=4\) feet, the radius of the wheel desired.
Both these examples are illustrated in \(\mathrm{Fi}_{\mathrm{s}}\). 6 , and it may be remarked with respect to them, that, when the Jepth of the proddles is fixucl, the greater number of paddes shoah have the preference, because the first impression on the water is then less rertical. The difference may be readily perceived, oy comparing the angles at which the paddles \(A\) and \(\alpha\) strike the water. It will also be remarked, that the larger wheel must have a less tendency to chrow up the water behind at C .
It is obrious, continucs Mr. Tredrold, that, by enlarging the whed. the obliguity of the action on entering the water may be reduced; but it also may be done by lessening the depth of the paddles as will be crident from Figs. 3 and 4, where the angles are the same in both wheels. Hence it is useful to be able to find the depth: and if the number of the paldes and the radins of the wheel be given, the depth may be found by the forcgoing rule:

Nethity the redius of the whed ly the difference between mily full the malural ensine of the engle eontained hetween tiro puddla, wad the product is the depth requical. Suppose, for eranple, the rudius to be 4.5 feet, and the number of paddles eight, there will he 4.5 \((1-.7071)=1.318\) fect, for the depth of the puidlles.

Mr. Tredgold thinks eight paddles to be as small a number as ought to be adopted, and where large wheels can be admitted, nine or ten might be used with advantage, but where many paddles are employed, the whecls must necessarily be of large diameter, to keep them narrow. The advantages of wheels of large diancter consist in the favourable direction
they strike the water, and also quit it; the paddles are also more distant from one another, and white they have more reaction on the water, they splash it about much less; the weight of the whee also renders it more ellective as a regulator of the lorces arting upon it. On the contrary, there are some strong practical objections to very large whecls for sea vessels; they give the force ol the waves a greater hold on the machinery, they are cumbersome and unsighty, and they raise the point of action too high above the water line, so that the choice requires both experience and judgment.

The best position for the paddles appears to be in a plane passing through the axis, as represented in the figures. If they be in a plane which does not coincide with the axis, they must either strike more obliquely on the lluid in entering, or lift up a considerable quantity in quitting it. With respeet to the shape of the paddle, it is clear that it should be such that the resistance to its motion shonld be the greatest possibte, and the pressure behind it the least possible. These conditions appear to be fullilled in a high degree by the simplest of all forms, the plane rectangle; but we might learn much from a judicious set of experiments on this subject.

As there is some variation in the force of re-action against the patdles, it may in some measure be compensated by making its periods coincide with the variation in the force of the engine. 'Jo eflect this, the stroke of the engine should be made in the same time as is occupied by that part of the revolution of the paddle wheel, which is expressed by a fraction, having the number of paddles for its denominator, and the piston should be at the termination of its stroke, when one of the paddes is in a vertical position. For, when one of the paddles is in a rertical position, as in the wheel A, Fig. 2, the re-action is the least, and it is greatest when two paddles are equally immersed, as in the wheel 13, at which time the force would be acting at right angles to the crank.

Having shown the power that is necessary to keep a boat in motion in still water, it will be some advantage to resume the inquiry in the case where it moves in a stream or current; and, for that purpose, let \(c\) be the velocity of the boat, and \(f\) that of the current; a being the resistance when the boat is in motion with the velocity \(u\).

Then the resistance to be overcome to grive the boat the relocity \(r\), is, when the motion is wilh the stream,
\[
u^{2}:(u-c)^{2}:: u: \frac{u(r-c)^{2}}{u^{2}}
\]

And, when the boat moves against the strcam, we have
\[
u^{2}:(v+\iota)^{2}:: a: \frac{a(r+c)^{2}}{u^{2}}
\]

Hence the power is expressed in cither case by
\[
\frac{a(v+c)^{2}}{u^{2}}
\]
the upper sign of which is to be attended to when the motion is with the current, and the lover sign when it is aguinst it.

When \(c\), the velocity of the current, is nothing, the result is the same as before. But the resistance in still water is not the mean between the resistances
in the direction of the current, and against the current; consegumetly, the mean rate of a boat, which alternately goes with and against a current, must bre less than the mean rate in still water. The mean resistance is
\[
\frac{\operatorname{av}\left(1^{2}+r^{2}\right)}{1,2}
\]
while the resistance in still water is only \(\frac{\text { " }^{3}}{w^{3}}\), the difference between which and the lormer is \(\frac{1 e^{\circ} \text { : }}{11^{3}}\); quantity depending on the velocityo of the current, and for any particalar case, should be calculated from the mean motion of the current.

When a boat advances with a current, the velocity with which the paddles act on the water will be \(V+c-r\); and when the boat moves against the current, it will be \(V-c-r\); consequently, in either direction it is \(\mathbf{V}^{\prime} \pm r-r\); and the lorece ol \(\mathrm{l}^{\text {reaction }}\) \((\mathrm{V} \pm e-v)^{2}\). But the effective resistance of the boat is as
\(\mathrm{V}+c-r: r:\left(\mathrm{V}^{2} \pm r-r\right)^{2}: r\left(\mathrm{~V}^{2} \pm r-r\right.\); and its effect in a given time is a maximum, when \(v^{2}(\mathrm{~V}+c-r)\) is a maximam, that is when \(\mathrm{V}=\frac{3 r \mp 2 c}{2}\), or when \(\mathrm{V}=1.5 r \mp c\). Moreover, \(r=\frac{2(\mathrm{~V}+c)}{3}\).

When \(c\) vanishes, or the boat moves in still water. \(\frac{2 V}{3}=r\), the same as before. The mean also between moving against and with the current is \(\frac{25}{3}=r\). Therefore, where the velocity camot be changed to suit the circumstances, this will be the best proportion for all cases. Where the force of a current is considerable, it would be extremely desirable to have the power of altering the velocity of the wheels; but this should not be accomplished by any alteration of velocity in the steam piston, since whatever change is made in its velocity must affect the power of the engine. There is no difficulty, Mr. Tredgold imagincs, in adopting such a train of mechanism as would produce the alteration ol velocity required. and yet be as strong and clurable as the ordinary combination, and not at all expensive, compared with the object to be gained by introducing it. It will only be necessary to provide for an increase ol velocity: fur. when the boat goes with the stream, the rate of the paddles is ahready too great; whereas, when a boat moves against the current, both an increase of the velocity of the wheed, and an inciease of surface of the paddle, is necessary to maintain the mean rate.

Mr. Tredgold concludes his very interesting investigations, by inquiring into the relocity a boat may be expected to acquire when the power is the same. The power \(P\) of the engine may be represented, as we have before determined, by the equation
\[
\mathrm{P}=\frac{a v(r \mp c)^{2}}{u^{2}}
\]
and if the ratio of the current to the velocity of the
boat be as \(1: n\); that is, \(1: n:: v: c=n v\), we shall have
\[
\begin{aligned}
\mathrm{P} & =\frac{a u^{3}(1 \mp n)^{2}}{u^{2}} \\
\text { or, } z^{\prime} & =\left(\frac{1 u^{2}}{u(1 \mp} \frac{1}{n)^{2}}\right)
\end{aligned}
\]

If the boat moves in a current, of which the velocity is a times the relocity of the boat, we shall have

This table shows that a power capable of moving a boat at the rate ol fire miles per hour, in still water, will only move it at the rate of a litule more than three miles per hour against a current of the same velocity as the boat; and that the speed of the same boat would be eight miles per hour, when moving with a current of which the velocity is four miles per hour. It should be remarked, that these calculations suppose the area of the paddles, and their velocity, to be adjusted to the maximum proportions in cach case: were it otherwise, the velocity with the current would be increased, and the velocity against the current diminished.

\section*{いEMARKS.}

Just as this paper was going to press, four ships were equipped," \(f\) f the respective constructions ol' Sir Robert Seppings, Prolessor Inman, Captain Hayes, and Captain Symonds, lor the purpose ni contesting their relative qualities; and so important does the Boad of Admiralty consider the point in question, that and armiral (Sir Thomas Ilardy) has been appointed to command the squadron, to direct its varisus evolutions, and to report on the respective qualithes of the ships. It is needtess to add how much naval architecture must he uhimately improved by tha knowledge to be derived from the many experimental ships that hate been lately constructed. It would be a great adsantage, however, if ach constructer rould publish, in a chetaled lorm, the frinciples he tmithys in the firnatation of his ship. It is not suficient to be: mercly able w comstruct a rood ship. Scicnce reguires that we shoutd know hor and why it is a groed ship: what pinciples have brow conploged in its rometromion, ane whet sencral relo may he de-

It is not in the terible season of war, when the hopes and encrates of man are principally ocopied by conquest, that naval architecture can be experted to make its sreatest steps towards perfection. "In
war," as the celebrated Dupin observes, \(t\) " the object is to do much in a little time, to sacrifice rigorous methods to means ready and expeditious, and the way the best in itself, to the manner most commonly known. At the return of peace, and when a nation begins to feel the benefit of repose, opportunity is afforded for reflection, and extreme rapidity of operation gives place to inguiries into the best methods of executing the details of duty, and ol throwing into the practical operations of the ship-thilder, some of the genuine prineiples of science." Let us hope that this great country, which owes its proud and commanding position among the nations of the earth so essentially to its marine, will lose no opportunity of imparting to it every improvement that the enlarged experience of modern times has disclosed; and to prepare it, if the unfortunate destiny of man should so require, for a more splendid and triumphant maintenance of the national honour and glory, than even our former brilliant achicvements displayed.

The preceding article is another proof, to the many on record, of the hostile and unjust spirit prevailing among the writers of Britain against the United States. It says, first, that "the Americans have with some unfairness, elaimed the original invention of the steam boat." This claim was never made: all that we contend for is, that Robert Fulton first successfully reduced the principle of steam navigation to practice, which had been in vain attempted with profit, before his time. In this position we are supported by cotemporary Eneyclopxdists, a British engincer, and the report of a Committec of the House of Commons.
1. The supplement to the Eneyclopxedia Britannica, (Edinburgh 189t,) article Steam Navigation, contains a letter from Mr. IIenry Bell of Glasgow, to the editor of the Caledonian Mercury, dated October, 1816, stating that he built the Conct steam boat in 1811, which was the first built in Europe that answered the end; but the editor adds, that " the first American steam boat which completely succected, was launched at New York on the Bd October, 180t, five years before the construction of the Comet of Port Glasgow."
2. It the filth report of the select committce of the louse of Cummons on steam boats, fic. publisbed in Jube, is22, (sir IT. Parnell, Baronet, in the chair,) after tracing the different experiments, from Mr. Hull's, in 1:63, in Mr. Symington's, in 1801, it is said, "Still no proetioul uses resulted from any of these altempts. It was not till 1807, when the Americans began to use steam boats upon their rivers, that their salety and utility were first proved. But the whole merit of constructing these boats is due to natives ol (ireat Britain. Mr. Henry Bell, of Clasgow, gave the model of them to Mr. Fulion, and went over to America to assist him in establishins them, Mr. Bell continued to turn his talents to the improving of steam apparatus, aud its application to various manufactures about Gasgow, and in 1811 built the Comet

\footnotetext{

}
to navigate the Clyde, \&c." The editor of the Literary Gazctte adds, "This was the first pretticel t'uropean steam vessel. and hence has sprung those hundreds of nolle ships which convey us and our merchandise to all ports of the empire, with expedition, regularity and cconomy."

This report, which was made after a strict examination by the Committee, of persons who were capable of affording the most correct information on the subject, is of itself sufficient to establish the particular merit of Mr. Fulton for which we contend, but when added to other facts, no doubt can remain in the mind of any one on the question. No mention, however, is made in Mr. Colden's life of Fulton, of his having received a model from Mr. Bell, nor of his having come to the United States to assist Mr. F . in establishing steam boats, and Mr. Bell is also silent on these, points in his letter referred to. It is therefore probable that there is a mistake with respect to them. There can be no doubt of Mr. Fulton having greatly profitted by his conversations with Mr. Symington and Mr. Bell; and the last of these gentemen states that Mr. Fulton wrote to him 's that he had constructed a steam boat from the different drawings of machincry he had sent him, but reguired some improvements on it."* According to Mr. Colden, the engine was made by Messrs. Bolton and Watt, by order.
3. Mr. Buchanan an English engineer, in his " treatise on propelling vessels by stean,", admits the claim of Mr. Fulton so far as is contended for him. He says, "In eighteen hundred and seven, Mr. Fulton of Ncw York, introduced steam Boats in America, which were the first that sucreeded in a prafitable way".
II. The writer of the above articleadmits, that "the honor belongs to Mr. Fuiton of haviug been the first who endearoured to investigate on principle the difficulties of the subjects of steam Narigation," but he had not candour, or liberality enough to say, that the result of this investigation was full success in an object which his own countrymen had not been able to accomplish. Such however is the fact; Mlr. Fulton not only ascertained the "difficultics," but removed them, and his comntymen since his death, have improved upon his plans to a most astonishing degree. In proof ol this, it is only necessary to compare the specd of steam boats during several years after they were first bult, and chiefly on the british plan, by Mr. Fulton, and at the present time. In a letter from Fulton to his friend Jocl Barlow, dated August ed, 1807, he informs him, that "he ran up to Albany in 32 hours, and down in 30 hours." \(\dagger\) 'The first rout was at the rate of a mile in fourteen and a hall minutes, and the last at that of five mites per hour.

In August 1826, the steam boat "new Pliiladelphia," built by the Messrs. Stevens of New York, made an experimental trip from New York to Albany, and performed it in twelve hours and twenty threc minutes, part with, and in part against tide. She must have proceeded at the rate of more than thirtcen miles an bour, the distance being one hundred and sixty miles.

On the 25th October 1828, the North America made the passarge from New York to Albany in ten hours and ten minutes, say 16 miles an hour. During the passage, she stopped at six wharves. The rate of this boat is one mile in lome mimates fiftyedryt seconds. In November of the same year, the be Witt Clinton made the same trip, and returned to New York in twenty-lour hours.

The ferst boat bate at litesburg for the New ()rleans trade, was in the year 1811 , and partook of the slow motion of the original Sew York boats. Viven in 1817, the quickest voyare made from New (orteans to Shippingport, two miles below Louisville, was twenty-two days, and the time reguired to go down with the curron, was fiom twelve to lourteen days. The passage up is now made in from ten to fourteen days, and less, and down in six days.

On the Mississippi, the rates of foing against a strong current, are eight and nime miles an hour, averaging the voyage from New Orleans to Louistille, a distance of 1580 miles, and which was performed by the steam boat 'lecumseh in eight days and two hours. In April, 1827, the same boat did it in mine days and four hours, having lost one wholenight, and part of another by fog. The hoat lluntress made a vorage in Nay 1827, from and to the same places, in eight days and cleven hours, against a rapid current. though she lost ten hours by a fog. The Pioneer and Columbia performed the same rout in nine days. Twelve years before, this voyage required four months in common river boats. Three or four years since, the De Witt Clinton left Cincimati, went to Pittsburg, (against a strong current) transacted business there, and returned on the sixth day, a trip of upwards of one thousand miles!

In March, 1827, the steam boat William Tell, made the voyage from Pittslurg to Cincinnati, a distance of five hundred miles, at the rate of thirtecn miles per hour.

The steam boat Independence, in May 1829, made the passage from Frenchtown, on Elk river, to Baltimore, a distance of serenty miles, in three hours and a half.

In April, 1829, the steam boat Benjamin Franklin, made the passage from New York to Providence, Rhode lsland, dock to dock, in fifteen hours twentythree minutes: distance, two hundred miles. The rates of sailing of the stcam boats up the Delaware. are from one hour and a half to two hours, to Burlington, against tide, and one hour and twenty-three minutes with tide. The shortest passage was one hour nincteen and a half minutes. The distance is twenty miles.
III. The assertion of the writer of the above article, that " the invention of the stcam boat is clue, both in theory and practice, to Great Britain," is not correct, for the Marguis de Jouftroy, in the yca: 1781, constructed a steam boat on the Soanc at Lyons, 140 feet loug, and made several experiments with it \(\ddagger\) and our countrymen, John Fitch and llenry Voigt, many years before the experiments of Mr. Symington, viz. in 1; si, buit

\footnotetext{
* Supplement to the Encyclopedia Pritannica, art. Steam Navigation.
\(\dagger\) Colden's life of Fulton. The reader is referred to this interesting work, for a detail of wrious plans of steam boats in Europe, the difficulties that occurred, and the progressive experiments by Mr. Livingston and Mr. Fulton, which finally led the latter to the adoption of the water wheels at present in use, as propellers.
\# Supplement to the Encycloprdia Britannica, article Stcam Narigation.
Vol. XVII. Part I.
}
a steam boat at Philadelphia,* by subscription, and worked it by paddles. This boat went to Burlington 20 miles up the Delaware, and returned the same day, having the Governor, (Gen. Miflin,) and many other citizens on board. The manuseripts of Mr. Fiteh bequeathed by him to the Library Company of Philadelphia, contain the certificates ol severial distinguished men ol their having gone in the boat at the rate of six miles per hour, several times between the year just mentioned, and 1791. Among these were David Rittenhouse, Dr. John Ewing, l'rovost, and Robert Patterson, Professor of Thathematics in the Cniversity of Pennsylrania, Andrew Ellicott, and others: but it appears that some delect was discovered. or some improsement was suggested in athost every experiment, which occasioned him to make such repeated draughts upon the company, that their patience became exhausted, and the members despairing of tiltimate success, and being probably influenced by the unceasing ridiculc cast on the project, refused to furnish the luads occasionally required, and gradually withdrew lrom the concerm. The one he most regretted, was Alr. Yoigl. to whose mechanical ingenuity, he had been greatly indebted. The debts incurred by Nr. Fitch on account ol repairs fur the boat, his mability to dischage them, and to obtain the means to proceed with his experiment, obliged him funally to abadon it, after years spent in the greatest anxicty lor its completion, and ol the most praisewothy industry, and heroic perseverance to bring it to perfection. Il Fulton hat been placed in the same circumstances with Mr. Fitch, he would hate been deleated from a similar cause, and but for the liberality of Robert R. Livingston, the world might hase been, even at the present day, without a steam boat! The lollowing document, written by one of the carly patrons of Mr. Fitch, will throw light on the subject.
Fhes bhe London Moximiy Mighzine of Oct. 1815. - I stud account of the origin of stam bouts, ly Dr. Thornton, dirtctor of the putent office Washingtoa.
Finding that Mr. Rubert Fulton, whose genius and talents I highly respect, has been by some considered as the inventor ol the Steam Boat, I think it aduty to the memory ol the late Jonn Firch, to set lorth, with as much brevity as possible, the Pallacy of this opinion; and to show, moreover, that if Mtr. Fulton has any clam whatever to originality, in his steam boat, it must be exceedingly limited.

In the year 1788 , the late John Fitch applied for, and ubtainec, a patent for the application of steam to harigution, in the states of Peunsylvania, New York, New Jersey. Delaware, we. and soon after, the late Mr. James Ramsey, concetiving he had made some discobries in perfecting the same, applied to the State of Pemsylyania lor a patent; but a company formedby John Fiteh, under his state patents, of which the duthor of this was one of the principal share-hold. ers, conceising that the patent of Fiteh was not lor any peculiar node of applying the steam to navigation. but that it extended w all known modes of prownilur buats and sersel, cuntested belore the assombly of lemosylymia, and abos before the assembly

contended that the mode he proposed, viz. by drawing up the water into a tube, and forcing the same water out at the stern ol the vessel or boat, which was derived from Dr. Franklin's works (the doctor being one of his company) was a mode they (Fitch's company) had a right to, for the plan was originally published in Latin, about firty years before, in the works of Bernoulli the younger; and two of Fitch's company and I appeared without counsel, and pleaded our own cause in the assembly, of lennsylvania, (the hon. Messis. Findley and Smiley, ol Congress, were then sitting members of the assembly;) and, after a week's. patient hearing against the most learned counsel of P'masylvania, we obtained a decision in our lavour, and afterwards also in Delaware. We beliesed, and contended, that our claim of propelling boats by steam, included all the modes ol propelling vessels and boats then known, and that the patent was for the application of steam as an agent to the propelling puwers; and the decisions of the legistatures were in favour ol' this construction, as Mr. Rumsey's company (ol which the late Messrs. Bingham, Myers Fisher, and many other worthy gentlemen were members) were excluded from the right of using steam boats on any principle.

We worked incessantly at the boat to bring it to perlection, and some account of uur labours may be seen in the Travels ol Brissot de Warville, in the \(\mathbf{U}\). States; and, under the disadvantages of never having seen a steam engine on the principles contemplated, ol' not having a single engineer in our company or pay, we made engineers ol common blacksmiths; and, alter expending many thousand dollars, the boat did not exceed three miles an hour. Finding great unwillingness, in many, to proceed, I proposed to the company, to give up to any one the one half of my shares, who would, at his own expense make a boat go at the rate of eight miles an hour, in dead water, in is months, or lorleit all the expenditures on lailing; or I would engage with any others to accept these terms. Each rehnquished une half his shares, by mating the 40 shares eighty, and holding only as many of the new shares as he theld of the old ones, and then subscribed as lar as he thought proper to enter on the terms: by which many rehinquished one half. I was among the number who proceeded, and in less than 12 months we were ready for the experiment. The day was appointed, and the experiment made in the lollowing manacr. A mile was measured in Front street (or Witer street) Phibadelphia, and he bounds projecice at right angles, as exactly as could be to the whalf, where a flug was placed at each end, and also a stop-wateh. The boat was ordered uader way at dead water, of when the tide was lund to be without movement; as the boat passed one llay it was struck, and at the same instant the watches were set olf: as the bont reached the other lagh it was also struck, and the watches instanly stopped. Firery precaution was taken belore \(\operatorname{li}\) inesses: the time was shewn to all; the experimont dechared to be latrly made, and the boat was lumad to go at the rate of eight miles an hour, or one mile within the eighth ol an hour; on which the shates weresigred over with great satisfaction, by the rest of the company. It afterwards went eighty miles in a day!

The governor and conncil of Pennsylumia were so
haghly gratided wihour labours, that, withont herer jutchtions being previonsly known to us, (iovernot Ximin, attended by the conneil in procession, presented to the company, and placed in the boat as shpros silk thas, prepared expressly, and containing the arms of Pembsyania, and his bag we possessed till Xi: Jitch was sent (1) brance by the company, at the request of Aaron V'ail, erp. om consul at latorient, who, being one of the compray, was solicitous to have stom boats built in France. dohn liteh took the fag, mbnown to the company, and presented it to the national consention. Mr. Vail, linding the workmen all pat inte requisition, and that mone could be obtained to build the boats, paid the expenses ol Nor. Fiteh, who returned to the United States; and Mr. Vail, afterwads, subjected to the examination of Alr. Lulton, when in France, the papers and designs of the stem boat appertaining to the company."

In the year 1827, there were 100 steam boats of the burthen of 18,597 tons employed in the trade of the Ohio, and Mississippi rivers. ' H he greatest is of the burthen of 875 tons; the average is about 170 tons. In 1826, 35 were plying from New York up the Itudson, and to Connceticut, Rhode lstand, and to New Jerser. besides seven steam ferry boats; there were 17 on the Delaware, and 9 or 10 on the Chesapeake.

Upon Lake Erie, the following steam boats were plying in the year 1826:

Statement showing the amonnt of steam boat tonnage of each State and Territory ol the United States; also, the duty collected on the same, during the year 1827.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline States. & & 'Tons. & 95ths. & & & & 1)olls. Cis. \\
\hline Mane, & - & 350 & 00 & - & - & - & 2100 \\
\hline Thode Island, & - & 175 & 07 & - & - & - & 1068 \\
\hline Commecticut & - & 1,652 & -2 & - & & - & 9912 \\
\hline Sen lork, & - 1 & 10,264 & 83 & - & & & 6158 \\
\hline New Jersey, & - & 1,078 & 22 & - & - & - & \(6 \pm 68\) \\
\hline Pemnsy trania, & - & 1,580 & 0.1 & - & & & 9.80 \\
\hline Delaware, & - & 372 & 56 & - & - & - & 2232 \\
\hline Maryland, & - & 2,207 & 4 & - & - & - & 13242 \\
\hline 13istrict of Colu & mbia, & , 87.3 & 12 & - & - & - & 5238 \\
\hline Virginia, - & - & 925 & 57 & - & & - & 5676 \\
\hline South Carolina, & & 3,23.3 & \%9 & - & & - & 19398 \\
\hline Alabama, & - & 3,100 & 21 & - & & - & 186 UU \\
\hline Iouisiana, & - & 17,003 & 37 & - & - & & 1,020 18 \\
\hline (icorgia, & - & 719 & 43 & & - & - & 4314 \\
\hline Treasury bep & partm & nent, & & & & & \\
\hline \multicolumn{8}{|l|}{Regrister's Otice, April 15th, 1828.5} \\
\hline
\end{tabular}

Twenty-two steam boats were built in the city and vicinity of Pittsburg, within twelve months preceding March 1829. Their aggregate tonnage was 4570 tons.

The steam boats of the United States are distinguished for their neatness, and comfortable accommodations; and many of them are fitted up in the most clegant style, contributing thereby to the health, and pleasure of the passengers.

Mease.

SUIIRX\% Sce Sombraz
SHIl?VAN. SeaSmmon.
Sllol: Mschaver. 'The machines for making shoes, ol which we propose to give a bricl and gencral acconnt, were inventod by the celebrated engineer Bla. Brantel, with whose ingenions inventions our readers are already well acquainted.
1) uring the late war Nr. lirunel established at Batlersea Bridge his machinery lior making shoes, principally with the object ol supplying the army. The machines were all managed lyy the invalids of Chelsea Hospital, who were mifit for any other employment.

In shoes of the asual kind the sole was united to the upper leather by sewing, but in the year 1809 , Mr. David Mead Randolph, an American, took out a patent for employing livetting in place of sewing in lixing the soles and heels ol shoes to the upper leather. This metbod was adopted by Mr. Brunel, but he also extended it to all the parts of which the shoe is composed.

The shoes made by this machinery are composed of the following pieces:
1. The upper leather, consisting of three pieces, viz. the camp, or the portion which covers the upper part of the foot, and the two quarters which run round the heel. These three pieces are sewed to one another.
2. The sole part of the shoc, which consists of the real or lower sole with its welt, the heel, and the inner or upper sole. The welt is a running border, fixed by a row of nails on the upper side of the lower sole, so as to increase the thickness of the sole towards its edge, and it lessens gradually inwards.

The upper leathers are made of sufficient size to turn in all round beneath the foot under the edge of the inner sole, for about \(\frac{3}{\text { the }}\) ths of an inch wide, and the imer sole. with its welt, is applied beneath so that the turning in of the upper leather is included between the two soles.

The nails used to fasten toge ther the different parts are as follows:
1. The long nails, which form a complete row as near as possible to the edge of the whole shoe, passing through the two soles, the welt, and the upper leather. The beel is also fastened on by a row of these nails round its edge. The heads or thick ends of the nails are seen on the lower side of the soles, and keep the leather from wearing.
2. The tacking nails, which are such a size as to pass only through the sole and the welt. Of these there is a row all round the edge of the foot, but farther from the edge than the row of long nails.
3. The short nails, which only penctrate through the thickness of the lower sole. These are disposed in parallel rows across the tread of the foot, and also in a double row parallel to the outline of the toe, at about \(\frac{3}{2}\) the of an inch from the edge.

The machines which are employed in manufactur. ing the shoe may be arranged as follows:
1. The cutting up machine.
2. The compressing machine, for pressing the soles.
3. The machine for punching the holes.
4. The machine for cutting the short nails, and inserting them.
5. The machine for punching the long nail holes and inserting the long nails in the holes.
6. The welting stand.
7. The cutting press.
8. The champing machine.
9. The machine lor cutting the long nails.
1. The mechine for cutting out the leather. The varions pieces of leather which compose the shoe are cut out by stamps, each ol which is an iron frame or ring bent to the shape of the picce to be cut. The sharp edge of these stamps being placed upon the skin, and struek with a wooden mallet, will cut out the leather of the same form. The leather for the soles being suftened, is laid on a table of lead, about two feet long, and one and a half wide, and is cut in a simitar manner.

The inner soles are cut by a machine of the following construction. The stamp or knife is placed horizontally, with its sharp edge upwards, and the sole simply cut by a common knile round a wooden patterm, is laid upon the stamp. A lever, with a plate of lead lastened near its fulcrum, is fixed on the frame which supports the knite. The lever being now brought down by the hand, presses the plate of lead upon the sole, and thus enables the stamp to cut it out ol the exact shape.

The welts, which must be cut out into strips of an inch wide, are made in a quite different manncr. The leather is cxtended on a llat wooden table, two feet square, having its surface covered with small iron rulers, whose width is equal to that of the strips of leather to be cut, and screwed down upon the table, sufficient spaces being left between the rulers to admit the point of a haile. From these rulers several small pins project upwards, which passing through the leather, hold it firm. An iron liame, fixed to the table by hinges, folds down horizontally upon the leather, and is furnislacd with similar vulers, whose intervals correspond exactly with those between the fixed rulers, so that the whole leather is divided into strips of the same breadth as the rulers, which are cut out by introducing the point of a hooked knife between the rulers.

Each of these slips is now to be cut lengthwise into two, by an oblique or bevelled cut, and this is done by the lollowing machine. This machine consists of a pair of brass rollers, one ol which, turned by a whecl, grives motion to the other by a pair of equal \(\operatorname{cog}^{-}\) wheels, onc wheel being fixed on the end of each roller. The rolters are praced one above another in an iron lrame, the lower one baving a groove cut round it to receise the strip of leather pervions to its being divided. The upper roller serves to press the strip of leather into the groove. The leather is gutaded into the srowe through a square hole in an iron stem fixed in tront of the rollers. On the uther side of the rollers is lized a line sharp steel edge, which being placed obliquely to the surlace of the leather, cuts it into two ships with bowelled edtes, or it passes through the roblers. The texture of the leather is also improved by the pressure of the rollers.
2. Cimpmosobieg muchines for prepering the soles. This machine supples the phace of hammering. It consist; of twa brass rollers, about live inches long, and live inches in diamoter, mounted like the common haminating roller. Instead of screws, howerer, which are usmally employed to bohd down the upper roller, and adjust it to the proper distance from the bower one, two plain eylindrical pins are put into the holes
where the screws would have gone, and upon the upper one the power of a strong lever, with a weight, is applied, giving a pressure of 1200 pounds. At the end of the axis of the lower roller is a \(\operatorname{cog}\) wheel, driven by a pinion on the end of an axis turned by a winch handlc. One works at the winch while another puts two solcs, with the flesh sides together, between the rollers. An iron plate, with thin edges, is piaced between the soles, which are passed backwards and forwards four or fire times, till they are brought to the proper hardness and solidity.

The heel pieces are too small lor this operation, but they are put into a small cell of cast iron, with an iron plate laid above them, and then subjected to the powerful pressure ol' a single blow of a screw press.

The heel picces and the soles are bevelled at the place where they are to be joined, so that when they are united by three or four mails the whole is equally thick. The joints are cut to the proper bevel by a single press. The sole is laid flat on the bevelled edge of a bench faced with iron, and a piece of iron is pressed down upon it by the workman's elbow; the knife is thus properly guided to make the bevelled cut.
3. Themuchine for piering the holes. This machine consists of a semicircular table of cast iron, supported by a column two feet high, which is counected by a projecting iron bracket to the table, which is thus placed between the workman and the column. Two arms project over the table from the column, and have their cxtremities formed imo sockets, in order to support and allow to descend through them a vertical squarc iron slider, into the lower end of which is screwed the piercer. From a treadle moving on a centre pin fixed to the foot of the iron column, there rises an iron rod through a hole in the table, and also through holes in the projecting arm, and at the upper end this rod is joined to a lever moving on a joint at the upper end of the iron column, white the extremity of the lever is connected with the top of the perpendicular slider. When the foot of the workman presses upon the treadle, the slider and piercer are foreed down towards the table, but never so far as to touch it, and these are raiscl up again without any effort, by means of a commerpoise and short lever.

The next part of the apparatus is an iron plate or pattern, of the size and shape of the sole, which is united to it by two sharp guage pins fixed in the pattern. The pattern is perforated with the same nmmber of holes which it is proposed to make in the sole. The pattern, with the sole united to it , is laid on the iron table with the leather uppermost, and brought to a place where an iron stud rising through a hole in the table, and immediately beneath the piercer, enters every one of the holes of the pattern. The stud being only held up by a spring, is casily pressed down if the point of the piercer should, alter penetrating the leather, happen to come down upon the stud. In this way any number of holes may be pierced merely by puting the stud into the holes of the iron pattem. A small piece of iron is lixed immediately above the leather, which prevents it from being lifted up alons with the piercer. There is of course a hole in this picec of iron, through which the piercer moves.
1. The mechine for cutting the shout mails, and insroving them in the holes. The apparatus for cuttingr the nails forms the upper part of the machine. The
shears for cutting the mat consists of a loarled lever connected with a treadle. 'The lever has a cutter near its centre, so that when the foot depresses the treadle the leaver is raised, and cuts agranst the edge of a hard cutter. A slip ol iron being introduced between the cutters, has a smatl picece of mail cat ofl from the end ol it. This nail, the instant it is cut, falls into a tube, by which it is conveyed to a small tube over the leather, where it is ready for a subsequent operation.

The pattern, or iron plate, with the sole fixed to it, is now agrain used, and is brought by the method formerly directed, under a blunt piereer, which descends by the action of the treadle. 'The workman now bringing a hole bencath the pierece, holds a shect of iron or copper, and pushes it between the open shears, then depressing the treadle, the nail in the tube is forced down by the piereer into its hole in the leather. At the instant that the nail fills into the leather, the shears close and cut ofl a new nail, which falls as formerly into a new hole which the operation has wrought bencath it. At every cut the sheet of copper is turned over, in order to form the nails alternately head and point. When all the nails have been inserted, they are beaten down with a hammer.
5. Mitechine for menching the long neil holes, and inserting the long nails in the holes. 'l'his machine is exactly like the punching machine already described, but it is furmished with additional apparatus to supply the nails and convey them into the holes. These additional parts are a circular brass wheel, nine iuches in diameter, and nearly as thick as the nails are long. Great numbers of holes are perlorated in it, and arranged closely in four circles, one within another. The central point within the four circles of holes has six radii like the spokes of a whece, and in the yery centre is a bolt, which fits loosely upon an upright centre pin, placed in the centre of a small ciecular table fixed laterally to the upper projecting arm which holds the upper end of the perpendicuta: slider. The wheel being lixed horizontally, ahout 18 inches above the table which holds the sole, has a mail put into every hole in its four circles. The holes are large enough to allow the mails to drop through them, but the points rest upon the circular tabie, at one part of the circumference of which an opening is cut through it, and a small tube descends lrom the opening to conduct a nail down to the point of the piercer. By the revolution of the wheel, the uails are brought successively over the mouth of the tube, so that each falls with its point downward into a small cell exactly beneath the point of the piercer when at its highest position. By depressing the piercer with the treadle, it forces the nail through the cell into the hole in the leather, bronght bencath it in the form and manner formerly described. The construction of this cell deserves particular notice. It is conical inside, but when the nail which it grasps is to be forced down by the piercer, the cell opens in two haves, being formed by semiconical notches in two pieces of steel, which are helch torether oaly by being screwed together at one end. They are made so thin as to spring tosether to form the conical cell. While the piercer is ascending, mother nail hrops from the wheel through the tube into the space or open joint at which the two halves of the cell separate, so that the nail lies close beside the piercer. As soon as the piercer has risen
out of the cell its two halves spring together, and the space containing the mail having its laces inclined inwarls, these lares throw the nailinto the cerl, where it sticks till the piereer deseends to drive it into the leather.

In order that the rierular wher may furnish a feresta nat after the precerling othe has been inserted, the edge of the wheel has smerater teeth equal the the numbere of holes in each of the form ciow s. A detent took gows into these teecth by a book, bo that it will furn the whe when mowed in one direction, but slip over them when turned in the other diee tion. The detent tooth is jointed to a short lever lixed to the upper end of an upright axis, which, passing downwards through the projecting arms of the main columms, so as to be as mear as possible to the perpendicular slider, ant a short lever attached to this axis, is krpt by a spring against a wetge fixed to the slider. When the slider, therelore, descends, its wedge lorces away from it the end of the short lever. This movement is conseyed by the upright axis and upper lever to the detent tooth which slides over the inclined sides of the teath ol the whed. When the slide reascends, the wedge permits the lever and detent tooth to return to the action ol a springs; and a hook ol the detent catchings a tooth of the whee turns it round through the space of one torth or the distance between two nails. When the nails are all put in they are beat down with a hammer, so as to drive all their heads to a level with the surface, learing the points projecting through the leather. The sole is then severed from the iton pattern, and putinto the welting stand.
6. The welling stand. A small square cast iron table is fixed upon the top of a pedestal so as to turn round upon it; an iron frame is connected with the table by hinges on one side, so that it can be made to rise from it, or to licat uponit, and in this situation it may be fixed by a clamp. 'This frame has an opening in it neaty of the same shape as the sole of the shoe which is placed flat on the tabie, so that when the iron frame is brought down upon it and the clamp fixed, it encloses the sole as it were with an iron hoop or clevatet border. The sole is now lying as it were at the bottom ol a cell ol iron, with the projecting points of the nails uppards. The welt is now applied by laying the strip ol leather upon the edge of the sole, and binding it so as to follow the outline of the sole. Whenever any part of the welt is placed in its position, it is struck down upon the sole with a mallet, which draws it upon the points of the nails. When the welt is brought quite round the sole and heel, it is bevelled at its extremitics, which thus form a joint without any increase of thickness. The welt and sole being well beat together, they are next carricd to the cuiting press, by which the edge of the sole and welt are cut precisely and exactiy to the same size. Previous to this operation, the sole is confined between two iron patterns. made exactly of the size to which the sole is to be formed.
7. The cutting press. A horizontal spindle, like that of a turning lathe, passes through two standards rising from a horizontal plate. It goes through a collar in one standard, projecting some inches beyond it, and carries at its extremity a picce of wood with a flat surface, and of the same shape as the sole. The sole between the two iron plates is pressed against
this flat suface by a screw fited into an iron standard rising from the same horizontal plate, and pressing by the intervention of a lever upon the iron plates opposite to the end of the spindle. By this pressure the spindle retreats in the direction of its length a small guantity: and in consequence of this, a flat circular plate, fixed upon the spindle like the pulley of a lathe, presses against a similar flat plate fixed to the frame, and unabie to turn. The spindle becomes immoreal,le by the friction of these two surfaces, and the srle is kept firm in the press, while the workman with a drawing knife, worked by both hands, cuis the edre all round. Alter having pared the uppermost part of the edge, he releases the screw of the press, and the spindle, pressed lopward by a spring, advances and separates the friction plates. The spindle with its sole being turned rount, a Gresh part of the edge is pared. and so on til! the whole is finished. The edge of the sole thus cut is then ground smoothly on a rapidly revolving grindstone, aud polished on a wooden whed with a litile bees was spread upon it.
8. The clamping machine. The object of this machine is to close or rivet the shoe together. The upper leather being putupon a last, is fixed with its sole upwards about six inches above a small oval table, cupabic of turning roand upon the column which supports it. The sole of the lant is a solid piece of cast Hom bat the lower part which receives the upper leather is of wood. The last is then fixed firmly on the table by two steady pins, and by a strong pin projecting downwards through the table, and confined by a wedge. To the oval table are attached a number of pieces of brass by linges, which are so arranged round the last that they can be bound up against the upper leather, and form clamps, which, when they are all up, form a complete cell or box embracing the upper leather. Each clamp is foreed into its situatica by an inderendent screw, tapped obliquely through the edge ol the table, and pressing up by its perint the end of a small rod jointed to the clamp, near the part where it presses upon the leather. By releasing this serew, the clamp turns back on its hinge and falls back upon the table. The inner sole of the shoe being fastened to the sole of the last by two short pins, one in the sole and the other in the heel, the upper leathers are put on in their true position, and the last is fixed in its place in the middle of the clamping table. The clamps are now turned up, and the upper leathers drawn up all round with a pait of pincers, so as to fit them to the last; the champs are serewed tight up. The edges of the upper leather are now turmed over, and the operation is carried on as in common shocmaking till the sole is put on. The nail which fastens the immer sole to the last is now drawn ont, the real sole is applied and put in its proper place by an iron liame or saddle. This frame. Which is of \(\mathrm{h}_{\mathrm{i}}\) m iron. has its inside figure of the same size as the row of rivetting nails which projeet harough the sole. It is made in two halres, thited by a hinge at the hecl part, and there are two holes at the toe in which a pin can be put to hold the frame together. This pin, and the joint pin of the hinge at the heel, projects far enoush into a hole in each of the two clamps at the ton and heel, so as to guide the frame into its proper position.

When ah the fong matls are inserted in the soles by the machine already describect, it is put into an iron
box, and by a blow of the fly press it is made concave iuside so as to fit the last. When taken from this mould, the inner frame is put together round the row ol nails, the inside of the frame just receiving the projecting points of the nails so as to keep them perpendicular to the leather, and prevent them from spreading out. The sole being then applied by the guide pins of the frame, and the heads of the nats struck, their points penctrate through the turned in upper leather and the inner sole. When they are well cutered, the iron frame is removed by opening it at its hinge, and the nails are driven down into their places. The nail points lall into a slight semicircular groove round the sole and the last, which turns their points all the same way. The last being taken out of the shoe, which is easily done from the heel of the last being macle in a separate piece, the shoe is carried to the rivetting last, without a semicircular groove, "pon which it is beaten, so as to rivet all fast, and smooth the sole inside. The hecl is then put on in its place, and the long nails put through its holes by the nailing machine, and driven down in the same way as for the sole.

All the nail heads are now levelled with a rasp, the shoe is ground and polished up with a composition of bees wax and ivory black, the upper leathers being brushed with a circular brush, and the shoes made ready for sale, except those which recuire to be bound and lined.

The mathine for rutting the long nails. The nails are cut from slips of sheet-iron, which is so cut, that when the nails are cut off from the end of the slips, the grain of the iron will be in the direction of the length of the nail.

In cutting the nails, the workman applies the iron with his hand, and draws the machine, by the action of his foot upon a treadle; the treadle drives a crank and heavy fly; from the crank there proceeds a rod to the longer end of a strong lever, whose axis is supported on pirots above the fly and the crank. A fixed cutter being attached to the frame, a steal cutter, which acts agrainst it, is fixed at a small distance from the centre of the lever, and at the opposite side of the axis to the long lever. Ihis cutter is sharpened on the lower side, and the fixed one on the upper side. As the lever rises and falls by the revolution of the crank, the edge of the moveable cutter is brought close to that of the fixed one without touching it. The slip of iron being admitted between the cutters, a small portion of the end of it hangs over the edge of the fixed cutter, and is cut off into a nail by the descent of the fixed cutter. On the ascent of the moveable cutter, the strip of iron is pushed forward, and another nail is cut. The nails are narrow at the end which is to be the point, but at the other end they are as lroad as the thickness of the plate, so as to have a square figure. In the direction of the thickness of the plate, they are as broad at the point as at the head, so that the nail is a small wedge instead of a pramid. For this purpose the cut across the slip of iron is not perpendicular to the length of the strip of iron, but a little inclined to it ; and as the inclination of the cut is reversed at every suceessive cut, the head of one nail is cut from the same side as the point of the next. The thickness of the nail is regulated by the quantity by which the extremity of the slip of iron projects over the edge of the fixed cutter, and the angle of in-
clination may be made to vary by two stops, against which the end of the slip bears. This is ellected by a part projecting from the lever bencath the edge of the moving cutter, and curved to the arc of a circle described from the axis. This slip is as far behind the edge of the cutter as the thickness of the nail intended to be cut oll. The reversing of the cut is effected mercly by turning the under side of the stip uppermost after every cut.

We have been induced to give this particular account of the shoe machinery, not merely from the ingenuity displayed in its construction, but from the probability of its being, with some modifications, more extensively employed in various branches of the useliul arts. Several of the machines above described were executed by Mr. Itenry Maudslay with that ingenuity and accuracy which characterise all his works.

SIIOEING. Sce Vmemivary Subghy
SIIOREMAM, New, a market and borough town of England, in the county of Sussex, is situated on the cuast of the English channel, and about a mile west of the harbour on the river \(\lambda\) dur. It consists chielly of one strect parallel to the river, which is crossed by long wooden bridge. The principal public buileings are the church, markethouse, custom-honse, and town-hall. The church, which has been lately repaired and beautified, is an interesting specimen of Norman architecture. As the nave to the west ol the tower had been destroyed, the east part only was formerly litted up for divine service. lt appears to have been built about the end of the twollth century. There is much elegance, richness, and variety, in the architectural details within. The markethouse, situated in the middle of the town, is supported by Doric columas. The harbour, which is a tide one, is not good. In spring-tides it has about 18 feet ol water, about 12 in common tides, but only 3 at ebb tide. The town has nevertheless a custom-house, and ships of considerable burden come up to the town. Shipbuilding is the chief business carried on in the town; ressels of 700 tons have been lannched here. The trade of the place is limited to a litte coasting trade, and to the mackerel and herring fishery. The tiver is navigable for harges as high as Steyning, from which large quantites of timber are brought down for the dock-yarts. The borough is governed by two constables anmally elected. It scols two members to Parliament, elected by about 1300 voters, epery fortyshilling frecholder within the rape of Bramber being entitled to rote. Popatation about 800 . Sce the Deauties of England and Wales, vol. xiv.

SHORTSIGHTEDNESS. See Ormes.
SHOR'T, J.mes, a celcbrated Scotioh optician, ras born at Edinburgh, on the loth of June, in the year 1710. Having lost both his parents at the age of 10 , he was received into Heriot's Hospital, where he exhibited his mechanical talents in constructing bookcases with a knife and the few tuols which fell in his way. After remaining there two gears, he went to the High School to receive a classical education; and in 1726, he entered the University, where, after folloming the usual course of instruction, he took the degree of II. A.

His friends were desirous that he should enter the church, and with this view he attended a course of theological lectures; but his passion for mathematics
and mechanics withelrew him from his theological sudies, and soon enerossed all his time and attention. Mr. Macharin, under whom young Short had studied mathematics, saw the bent of his mind, and enconraged him to prosecute his studies and mathematical pursuits as a profession. He accorthergly began in 17.2 to make rellecting telescopes, and the progress which be made will bebest eleseribed in the following letter to Dr. Smith from Mr. Naclaurin, dated December 28, 17.2.
"Mr. Short, an ingenious person, well wersed in the theory and practice ol making telescopes, has improxad the rellecting ones so much, that 1 an fully satisfied he has far outcone what has yet been caccuted is this kimal.

He has not only succeeded in giving so trac a figure to his speculams of glass quicksilvered behincl. as to make the image from them perfect!y distinct, but has made telescopes with metal spectums, which far strpass those I have secn of any other workman.

He has made six reflecting telescopes with glass speculums, three of 15 inches focal distance. and three of 9 inches. One of the first is at present in my Lord Islay's hands, with which it is easy to reat! in the Philosophical 'ramsactions, at the distance \(\mathrm{f}^{\circ}\) 230 lect. Another of them is in the hands of Mr. Allerander Jeyne, our professor of Law, with which he easily reads the Philosophical Transactions at the distance of 280 fect. I made some trials with one of the speculums of nine inches, and can read with it very easily in the Philosophical Transactions at the distance of 138 feet; but at that time had not an opportunity to try it at a greater distance. At another time I read with it a much smaller print cross the strect, at the distance of 125 feet. It cost him a great deal of (rouble to make these of a true figure, and with parallel surfaces, and several, when finisibet. were found useless by reason ol veins that then apo peared in the glass.

In the glass speculums every thing else was very vell, only the light was somewhat faint compared with that reflected from his metal speculums. This I take to have been owing to the speculums no: haiiug been well quicksilvered, and partly to the thickness of the glass. For one of them, [observed, hat a brighter reflection, when huid quicksilver was applied to its back surlice than after it was foiled.

After he found the light in these glass speculums fainter than he expected, ant also because of the great difficulties in finishing them, he applied himself to improve the telescopes with metal speculums. Sy takings care of the ligure, he finds himself able to give them larger apertures than other workmen do; und, by adjusting the speculums and the whote instrument, he has much improved it.

He executes every part himself, and takes rast pains to make the instruntents as perfect as possible. and has malle them of focal distances of two inches and six-tenths, of lour inches. of six inches, of nine inches, and of fiften inches. He perforates the large speculums, and uses a concare litile speculum.

By those of four inches focal distance he saw the satellities of jupiter very well, and read in the Philo. sophical Transactions at above 125 fect distance. By. those of six iaches tocal distance he read at 160 fee: distance. By those of nine inches focal distance he reud st \(z \sim\) fee distance. By those ol iffeen inches.
he and Mr. Bayne have read in the Transactions at 500 feet distance, and have several times seen the five satellities of Saturn together, particularly on the 24th of Norember and the 7 th of December last; which very much surprised me, till I found that Mr. Cassini had sometimes seen them all with a seventeen foot refracting telescope.

I have compared some of these with such as have been brought lirom London, and find one of Mr. Short's, of six inches focal distance, compared with one of the best I have seen from London, of nine inches and three-tenths focal distance, to exceed it in brightness, distinctness, and magnifying power; and when 1 called an indifferent person, who knew not who had made the instrument, to give his opinion, he very readily preferred that of six inches focal distance. It also manifestly exceeded another I had trom London, of eleven inches and a half focal distance. The same was the result of some other comparisons.

Upon the whole, I am convinced he has mach improved this excellent invention, and that his instruments are by far the best of their lengths that have yet been executed."

In 1736 Mr. Short was invited to Loncion by Queen Caroline to give mathematical instructions to William Duke of Cumberland, and he was soon after clected a Fellow of the Royal Society, to whose Transactions he contributed several valuable papers. In 1739 he accompanied the Earl of Morton to the Orkney Islands where he was employed in a geographical survey of that part of Scotland.

Upon his return to London, Mr. Short established himself as an optician, and in 1742 , he was employed by Lord Thomas Spencer to make for him a reflector' of 12 feet focal length, for which he received 600 guineas. He soon exccuted several other instruments with different improvements, and in 1752 , he completed one for the king of Spain, which cost £1200. Mr. Short paid two or three visits to Scotland, the last of which was in 1766. After a short illuess, he died of a mortification of his bowels, at Newington Butts, near London, on the 15th June, 1768, in the fifty-eighth year of his age. He left a lortune of about \(\mathcal{E} 20,000\), about \(\mathscr{E} 15,000\) of which was bequcathed to two nephews, and the rest in legacies. To Lady Mary Douglis, the daughter of his patron, the Earl of Morton, he left \(\mathscr{E} 1000\), and the reversion of his fortune, if his nophews died without issue; but this lady, at the desire of her father, relinquished the reversion by a deed in lavour of Mr. Short's brother, Mr. Thomas Short, and his ehiddren.

Sliovel., Sir Clounsifr, a celchrated British naval officer, was born about the year 1650, of humble parents. llaving been lior some time apprenticed to a shocmaker, he took a dislike to his profession, and went to sea as a cabin boy under the patronage of Sir John Naborengh. By his tatents and industry he became an able seaman; he obtained promotion through the interest of Sir Christopher Myngs. Llaving distinsuished himself under Sir Joln Narborough, in burniug the ships of the Dey of 'ripoli in 1672, -an enterpeise with which he was intrusted, -he was soon after appointed to the Sapphire, a lilh rate, and subsequently to the James galley, a fourth rate, in which he continued till the death of Charles Il.

At the time of the revolution, Captain Shovel commanded the Dover, a fourth rate. At the battle of

Bantry hay, where he commanded the Edgar, he distinguished himself so much, that King William conferred upon him the honour of knighthood. In 1690, he was employed to convey the king and his army to Ireland, and he was on that occasion appointed rear-admiral of the blue, and his commission delivered to him by the king himself. In 1691, he accompanied the king to Holland; and in 1692, he was made rear-admiral of the red, and a second time attended his sovereign to Holland. Upon his return he joined rear-admiral Russel with the grand fleet, and shared in the glory of the battle of La Hogue. In the expedition to Camaret bay under Lord Berkeley in 1694, he embarked the forces with great skill in that unlucky expedition. In the same year he bombarded Dieppe, Dunkirk, and other places on the French coast. In 1r02, he went to Riga to bring home the spoils of the French and Spanish fleet.

In 1.03 he had the command of the grand fleet in the Mediterranean, and exerted himself in aiding the Protestants who were in arms in the Cevennes. Owing to the great share which he had in the victory of the 13 th April, 1708 , he was in January 1709 appointed rear-admiral of the fleet of England, and in the same year he commanded, along with the earls of \(\mathrm{Pe}-\) terborough and Monmouth, the fleet which was sent to the Mediterrancan. Alter aiding in the reduction of Barcelona, he made an unsuccesslul attempt upon Toulon, and sailed for Gibraltar, where he left a sufficient force for the defence of the coast ol'ltaly. From Gibraltar he set sail lor England with ten ships of the line, five frigates, lour fure ships, a sloop, and a yacht. On the 22d Ociober, 1707, he came to soundings, and next morning he had ninety fathoms water. About noon he lay by, but about six p. M. believing he saw the light on St. Agnes, one of the Scilly Islands, he set sail again. Soon afterwards several of his ships made signals of distress. The Royal Anne, with Sir George byng, with difficulty saved herself. Several others encountered the most imminent perils, but the admiral's ship and some others perished with all on board. The body of Sir Clondsley Shovel was cast ashore next day on the island of Scilly. The fishermen stripped and buried it, and took an enamelled ring from his hinger, which proved the means of discovering the body of the gallant admiral. It was accordingly disinterred, and deposited with great soIemnity in Westminster Abbey, where a magnificent monument of white marble was erected to his memory, by order of Queen Amme. The fate of this distinguished man, however, who was cut off in the fiftyscventh year of his age, was lamented by the whole nation. See Camploell's Lives of the Admirals.

SIIREWSBURY, a borough and market town of England, in Shropshire, is situated on two gentle eminences, which are surrounded on all sides but the north by the river Severn. At this open part of the peninsula, a junction is formed on the north-east with the Shrewsbury Canal, and on the north west with the EIllesmere Canal. On the north and west sides, the streets approach close to the river, but in other points a strip of meadow or garden ground separates the houses from the river. An uninterrupted range of well-built houses, commanding beantilul and extensive views, encircles the town, and on the western side is a noble field of twenty acres, called the Quarry, ornamented with columns of trees. The interior

Eppearance of the town is of a difierent chatartere the steces are ill arranged, and are in general natrow, step, ant badly paved. The eaves of the wht houses project so ats almost to mee those on the oppposite side; and the mixture ol ancient and modern buiddings prodaces a disagroable chect.

The primeipal public buldiners are the castle, the town-hall, the five charches, the town and connty gaol and bedtewell, the marke honse the theaters, the bridges, and charitable institutions.

The eastle oemmies a meck ol land abont 300 yards broad. The buitdings which remait. are the keep, the walls of the inner court, and the great arch of the interiorgateway. The keep is now a hanchome dwelling house, composed of two romed towers embatted and pierced, and comected by a spatare building about 100 feet long and 100 leet high; the inter conrt is now a garden, and the arch of the gateway is eighteen feet high. A lew traces of the ramparts and walls which delended the town on its north and cast sides'still remain.

The foun-hell is a modern buitling, completed in 1786. It has a handsome stofte front. In the grand jury room are portrats of George l. and 11., and Admiral Benbow; and in another room is a valuable collection of books.

The churches on the establishment, are St. Ciles', St. Chad's, St. Mary's, St. Allimund's, and St. Julian's. St. Giles, consisting of a noble chancel and north aisle, secms to have been partly built in the Norman era. St. Chat's church, buit in 1791 of licestone, is, generally speaking, a splendid and well-olmamented structure; the body of it is externally a circle 100 fect in diameter. St. Nary's church, in the northeast part of the town, is a large vencrable building. in the form of a cross, with a nave, sitle aisles, transept, choir and chapels, and with a tower at the west enct. At the extremity of the chancel is at spacions window, nearly filled with stained glass. From the ruins of old St. Chad's charch near the iown, which is wery large, and seventr-four feet in height. there rises a lufty and beautifil spire, which is a great ornament to the town. The height of the tower and the spire is 212 lect. The monnments in the church are mumerous and some of them curious. St. Alkmund's chureh is built on the site of the old one taken down in 1793. It is an unseemly imitation of the ancient pointed architecture. The church of St. Julian is a plain and commodious edifice, rebuilt in 1750. The places of worship for disoenters are a Roman Catholic chapel, and meeting houses for Presbeterians; Unitarians, Bapists, Methodists, and Quakers.

The Touen wat conaly Gat and Brillerell lorm an edifice beatifully situated near the castle. It has a good freestone lroni, with an arched gateway, containing a bust ol llowerd by Bacon. It is a spacious. airy, and commodious building.

The Monflhozse, remarkable for its size and magnificence, watrected in 15:5. In the principal fiont, which is towatds the west, the portal is decorated with two Elizabeh's arms in higit relicf: and on eath side of it is an open arcude of three large circnlar arches supported by columas. Large open arches likewise decorate lhe torth and south sides, and arer one of them is a statue of Richard, Duke of York. Close to this building is a conduit, which supplies wich water a great part of the town.

Vol. XVil. Paril.

Tho Market Cross was a massy buideling of brick and stonc. havins at reservoir over it. It was taken dosen in 181\%. The reservoir was removed farther back, and in hatsome new markel house built by sutberaption.

The Thenter is sapposect whe part of the palace which lowmery belonsed the the ler princes of Jowis. It is ficted up with colorable matness.

The fon triders over the Sevmon are called the Viblsh Bredge and the lobslish or last Bridge. The finmer consists of s handsome arches and is 225 feet long. 20 feethigh, and zo fere broat. . I guay laced with stone, and with warehonses, adjenims to the bridge. The English Bridge, built ol the lecestone, consists of 7 semicircular arches. It is an feet long. The middfe arch is go leet span and at high, and the rest 35 feet span and 20 leet high. The width between the balustrates is 25 leet, and the ornaments are light and graceful.

The principal charitahle establishments are a small hospital dedicated to St. Giles, Millington's LIospi1al. severalalms houses, an infirmary, a house of indistry, a free srammar school, and several charity schools.

The fiftrmoty, opened in 1747, is a plain but respectable luick buiklins, with a stone portico in front and stone corners. It is in a healthy situation, and its internal arrangements are on the most approved looting. It is supported by voluntary subscription. 'The llonse of Industry, opened in 1784, maintains about 27: persons. The schoolhouse and the free grammar school is a larse and lofty building, forming two sides of a square court. In consequence of this institution having declined, an act of parliament was passed in 1798 , vesting its management in the Bishop ol Lichfich and Coventry as visiters, and in 1.) trusters, of whom the mayor is one. 'These trustees elect two schoolmasters, one ol whom is superior to the other. The other public schools are Bowder's Charity, fonded in 1724 , for educating and clothing pwor chilhen; Ahart's Charity School, founded in 1798: and a Subscription Charity School, founded in wo. Vor instructins poor children.

I few inconsiderable remains of the Abbey of St. Peter and St. Paul still exist in the suburb called the Hhbey Foresate. lhe sround which it occupied is in a great musure convered into a gatron. Imong the remains is a small octatromal stonc buiteling generatly cathed the Stome l'upit, which is overhung with ive, and mach admired. The abbey was a spacions and magnificent bathing. The only existing part of it is the nave, which is mow used as a Romish church under the name ol the IIoly Cross. The beauty of its oriminal stucture may still be traced in many parts. Among other ancient private structures in the town is one called the Council House. which was once the residence of the Court of the Narches of Wales.

Shrewshury is governed by a mayor, a warden. steward. town clerk, an alderman, is assistants or common councilmen, and other officers. There are in the town 16 chartered companies. Shrewsbury sends to Iarliament 2 members, who are elected by the inhabiting burgesses.

The principal manulactures carried on in the town are two ol linen yarn, an extensive iron foundry, and a porter brewery: Shrewsbury carrics on a considerable trade principally with Wiales: and about 20 ves-
sels are employed on the Severn between Gloucester, Shrewsbury, and Bristol. Flannels were formerly the staple articles, and Welsh webs, which were a coarse kind of woollen cloth made in Montgomeryshire. They were dressed in Shrewsbury for importation to Holland, Germany, North and Solth America, and the West lndies. These webs are now bought up in the counties where they are made.

At the entrance to Shrewsbury by the Jondon road there has been crected a magnificent column of freestone, with appropriate inscriptions, to commemorate the gallant achievements of Lord Ilill, a native of the county. It was completed in 1816 at the expense of above \(£ 6000\), which was defrayed by subscriptions in the town and county. Population in 1821, 21,695. Sce the Beuuties of England and Wales. vol. xiii, and Some. Accoumt of the Ancient and Present State of Shrewsbury, 1sos, and Philip's Mistory and Antiquities of Shroushury.

SIIROPSilIPE, or Silop, one of the midland counties ol England, is bounded on the south by the counties of Wrorcester and Hereford, on the east by that of Staflord, on the north by Cheshire, a detached part of Flintshire and Derbyshire, and on the west by Derbyshire, Radnorshire, and Montgomeryshire. Its shape approaches to that of an oval, and it is about 44 miles long from north to south, 28 broad from east to west, and 134 in circumference. It contains 1341 square miles, or 854,240 statute acres, and about 140 inhabitants to each square mile. This county is divided into fifteen hundreds, which are again subdivided into 229 parishes. It contains 262 churches, of which there are 114 in the diocese of Lichfield and Coventry, 127 in that of Plereford, 12 in that of St. Asaph, 3 in that of Worcester, and 6 in the peculiar jurisdiction of Bridgenorth. Shropshire contains 16 market towns, and sends 12 members to Parliament.

This county presents a very diversified aspect; on the eastern side the surface is partly undulating and tolerably well wooted, exhibiting in many places fertile and well cultirated districts, cuclosed with good hedges. On the western side it exhibits the bold and lofy eharacter of Welsh scenery.

The principal mountain clevations are the Brown Clee llill, 180 a leet high, and the litterston Clee Hill in the southern part of the county, both of which are surrounded with much picturesque scenery: The Wrekin is a singular insulated mountain of a sugar loaf form. मising from a plain to the height of 1324 leet. From it there procecds northward, aceoss the Severn. a range of trap momatains, consisting of the hills of Acent, Bumes, Frodestey, the Lawley, Cace Caradoc, and llope Bowdllo bill. 'These monntans are separ\(\therefore\) ted \(\mathrm{l}_{\mathrm{y}} \mathrm{y}\) a wathy from a singrular mass of bills, called the limminm. dott lect high. \(A\) high rocky track
 Castle ant the vale of Xomtgomery, and in the most
 the lead miars.

The mine ipal tism in Shopshire is the Severn, which runs thenagh the connty fom morth-west to somth-cast, and mealy divites it into two parts. It enters the connty fom llontgomeryshire at its confla-
 buy it lemeds to ands the south, and passintry Wrox--Wr. Nadely, and Bridsemorth, it leaves the comaty near bewdey on the borders ol Stallondshane and Wor-
cestershire. It fows about 70 miles within the county, in every part of which it is navigable at all seasons except the height of summer, for barges, trams, wherries, and boats. In this navigation men are employed instead of horses to draw the barges against the stream. Salmon, pike, flounders, grayling, and cels, are found in the Severn while it flows through Shropshire. The principal streams tributary to the Severn are the Camlet, the Vyrnwy, the Pery, the Meole brook or Rea, the Tern, the Cund brook, the Warf, the Mor brook, the Bore brook, and Dowles brook. The other rivers in the county are the Terne, the Shell-brook, the Elfbrook, the Weaver, the Clun, the Morles, the Ony, and the Corve.

The lakes in Shropshire, though numerous, are not of great extent. The largest is that of Ellesmere, which contains about 116 acres; that of Marton Pool contains 45 acres; and at Shrawardine is a fine lake of 40 acres. The other lakes are Femymere, Lyncly's-pool, and Ancot. There are many canals and several iron bridges in this county, but we have already given a full account of them in our articles Bridge, and Navigation Iniand.

The climate of Shropshire varies with the elevation. On the eastern side, where the land is warm and flat, harvest often begins a fortnight earlier than in the middle of the county, and hay and grain are both gathered earlier there than in the western side. The easterly winds prevail in spring, and the westerly ones in autumn. The former are the most regular, while the latter blow for five or six months strong and frequent, the other for nearly the same length of time with less violence. The cold of winter is felt very intensely on the hills in the western part of the county.
The soil in the eastern side of the county is generally of a sandy nature. For the most part it is more tenacious, and there is of ten a stiff but rich clay in the bottom of the wider vallies. In the most western parts the soil is rery shallow, resting jerincipally upon rocks of different kinds, and is more or less used for pasturing sheep than for raising grain. The rapid progress of improvement in enclosing and draining has greatly diminished the moor lands. A rery great part of the soil of the county rests upon a limestone subsoil.

The operations of agriculture are better conducted in Shropshire than in many other counties in England. The farms are commonly large. They are, in some instances, held on leases for life-in others, on leases of seven, ten, and twenty-one years, and in many cases from year to year. The crops commonly cultivated are wheat, barley oats, pease, turnips, and potatoes. llops, hemp, flax, and cabbages are raised only in small quantities. The growth of hay, and the improrement of pasture land, have been more overlooked than any other branch of rural economy. On the banks of the Severn, however, and on the margin of several of the lesser streams, there are many excellent tracts of meadow land, which are cmriched solely by the deposits of the rivers when in llood. Almost all the cuhtivated lands in Shropshire are enclosed. The princinal commons that remain are that of Morl, near Bridgenorth, about tive miles long. and three broad, and the high lands between Courch Stretton and Bishop's Castle, and from Clun to the borders of Radnorshire. There are several large mosses in the county. The principal herd of sheep is the Sontholows, but there are many of the New Lecicesters: and several of
the bine-woolled Welsh sheep in the hilly districts. In the neighbourhood ol the Wrekin of Bridgenorth and of Clun, the wool is considered to be cqual in quality to that of lececster.

Shropshire has bean long distinguished for its mincral productions, and the trades and manufactures to which these have becn subservient. The principal of these are coal, iron, leal, limestone, lieestone, petrolenm, and pipeerlay. Coot roul is found in abundance in different parts of the connty. 'I'he most important coal liedd, howerer, ocempies a district near Colebrookdate, about eight mites long and twobroad. The coal is here fomed at various depths, aternately with ironstone, sandstone, and other rocks. The strata slope to the east in Madeley parish, and to the north and north-east near Wellinegron and Lilleshall. A long broad range of sandstone homeds the coat district on the east, commencing north of Shiflinall, and Collowing the line of the Severntill it leaves the connty. On the south and west it is bombed by limestone, and the basalt ol the Wrekin. 'The somthern part ol' the coal district, and indeed nearly the whole of it, is considerably elevated above the phain of shropshire, so that at one part the height is 500 leet above the Severn. Near the north-west boundary of the county is another bed of coal, which is wrought to a considerable extent, and is employed in the lime works of Chirk and Lanymyneck. On the west this coalfield is bounded by, and lies above an irregular bed of limestone, which in some places scarcely appears above the surface, and in others rises to a buejeblat of 500 feet. On the cast the coal field is bounded by a ridge of sandstonc, stretching liom lillesmere along the Perry, crossing the Sevem, and euding at Bicton and Onslow. Another coal district in the south of the county, particutarly on the Brown Clee and Titterson Clee Hills, consists of various detached beds or hollows, in which the strata has the form of a cup. In the first of these hills the strata are so thin that they are wrought oult by poor colliers: but intiterson the chief stratum is six feet thick, and there are here six coal fields, the principal of which is the Combrook, the Newbury, and the Hillwork coalfiedls. The first is a mile long, and hall a mile broad.

The ironstone occurs in the neighbourhood of the coal, and frequently elose to it. It is not rich, but. being fond along with coal and lime, the finel and the flux, it has rendered Colebrookdale the seat of the most extensive iron works in the kingdom.

Secul is procured in considerable ghantities from various parts ol the stiperstones, but particularly from the Hope and Smaibeach mines. Its matrix is crystallized quartz, sulphate and carbonate of barytes, and carbonate of lime. It occurs in the form of sulphuret of lead, and the carmonate. It is reduced at Minsterley and other places near the mines, and is sent by land to Shewsbury, where it is shipped lor Bristol in the Severn barges.

Limestome is quarried in various places, but particularlyat Lilleshall, Porth-y-wain, and Llanymyneeh, and likewise in the parishes of Cardiston and Alderbury. The limestone in the south lorms the northern extremity of a long range, which joins Wenlock, in a south-west direction, to Hope Bowdler Hill, near Church Stretton, and thence in a southerly direction to the neighbourhood of Ludlow. In many parts of the irregular band of limestone, mentioned in the para-
graplis on coal, especially mear Oswestry, the limestone is in the state of perfert matble, and towe have been found in it small gmantites both of trat and copper.

The stamedome, whieh is fommed so extensively in Shopsbine, is hiofly red; but in some places it is fomm white, particularly at Crimbith, where it has been quarticd to a secat exturn. For the shurches, bridges, and other public editices in Shewsbury.

In the coal fied of Colebrooktale there is at sprine of petroleum, which lomenty yichled a speat fatatity of this mineral tar. It alsa exutes liom it red sandstone at l'iteblord, about seven miles southerast of 'iharewsbury. From this rock has been extracterl an fil known by the name of Betton's Pritish sil. A quarta and clay have becn lound in the lopdship ol ('adtingon, the first of which is satd to be superior to that imported from ('armarthenshime lior the potteries of staffordshire. Copper and blatle, which yiclds calamine, is also found in the stipertones, but neither of them have heen wrought with athy success. There is a brine spring in the same district with the Pitchlord rock.

The principal seat of the mandactures ol Shropshire is Colcbrockdale, "which," say's Authur Young, "is a windings glen between two cmormons hills, which break into varions forms, being all thickly covered, and forming most beatuful shects ol hanging woods. The noise of the forges, mills, furmaces, fe. with all their vast machinery; the flames bursting from the furnaces, with the burning coal and smoke of the limekilus, are altugether horribly sublime." fron works exist also at Ketley and Oakengates. Besides the process of separating the iron trom its ore, and bringing it into the state oll bar and pige iron, irongrouls of variouskinds are mantactured. All the ironbridges in the county, the iron work of Pontcysylte arpeduct. Which is all ol iron, except the piers, and many of the iron bridges erected in other parts of the kingdom, have been made in Shropshire. At Coalport, coloured china of all kinds, and likewise Quecn's or Wedgewood ware, is manufactured. It Cuughtey there is an excellent china manfacture: and it Broscly, garden-pots, tobacco. paper, and coarse attieles of earthen-wape are made. Comsiderable potteries have beca established in the district of Colebrookdale, particularly one for ironstone china, which has greatly lowered the price of that article. A work is also carried on here for obtaining coal tar liom the condensed smoke of the coal. Colton manulactories have been estabished at Coleham and other places, which rival the largest in Lancashire. Nany branches of the linen trade have beencarried on in the northern part ol the county, and some of the coarser kinds of woollens have been monulactured in different districts, and several mills have been established for dyeing woollen cloths.

The trade ol Shropshire has been greatly benefited by the eanals which have becn carried on to a great extent, and of which a rery minute account will be found in our article Navigation Ixand. The navigation of the Severn yet requires much improvement. Pathways have for some time been constructing along its banks, in order that horses may be cmployed in place of men in towing the barges up the river.

At the time of the Roman invasion, during the reign of Claudius, Shropshire was inlabited by the Ordovices and Cornavii. It was afterwards part of the
province of Flavia Casariensis. The principal Roman stations were Uriconium, now Wroxeler, Alediolanam, near Drayton, and Rutuniam, near Wer. Watling street enters the county on the east between Cracklay bank and TVeston, and passes throngh it in a bending line to leintwardine, in Ilerefordshire. Some of the principal remains of ancient arehitecture are Haugmond Absey; the walls of Wroxiter, which are of Roman and British comstruction; the aboty of Buiddwas: the monastery of Wenlock: Ludtow Castle, the residence of the Sidnees and the place where some of Millon's works were composed; TVamintore Castle; Lilleshall Abber, remarkable for some highty ornamented Nommarches; and Roseabel Howse. with the oak which sheltered Charles 11 . atter the battle of Worester. 'The most remarkable encampments are the Roman camp. called the W, alls at Quatford, and thome of Buryditches, Purslow, Basford Gate, and IIambstone.

The estates ane here of rarions sizes. A lew noblemen and gentemen possess estates from 10, ond to 23,000 acres. The mumber of freeholders entitled to vote for the two members sent liom the coumty amount to 3000 , and the total rental, Euclading lythe , is about £y0). 0 0).

The following are the principal residences iti the county. Volcat Ifall, Ean l'owin; Hardwicke, Lood 11ill: Rosshall and Vifley lark, Lerd furrester: Apicy I'uk, 'lhomus Whitmore, M. P.: Iudmaston. Willian Whitmore, M. P.: Pitehford, IIon. Mr. Jenkinson, DI. P.: liodnct, Reginald Heber, M. P.:
 W. C. Chide, Lsq. DI. l': Stamtey llall. Sir T. Tyrwhitt Jones, batt.: Shingham, Lord Berwick: Itanor Mouse, Sir G. Jemungham, Bart. : Pracioe, ilon. T. Kenyon: Pentraperat Ilall, Hon. F. West: Orlaton Hall, VI. Cludel. Lspl.: Downton Castle, R. Payne Knight. Esq.: Owkey Park, Iton. Robert Clive: Plowden Hall, Edward Jlowden, Esq.: Audtem, Lady Cotton.
The following is the population of the comety and principal towns in 1821:

 of Shemshire, isus. Secealso our articles Bumot.

SHUS, See Kurzasman.
SIIUSTER, the principal district of Kintarsin. already clescribed in that article.

SHUSTER, a city of Persia, and capital of the province ol Khuzistam. It is situated at the fuot of the Backtiari range of moustains, and on an emineme which commands a view of the rapid course st the Karoon, which is here crossed by a bridge, of an arch so lect high. The lecreians are said to throw themselves with impunity from the summit of this bridse into the river. The river defends the town on the west, and on the cast a decayed old wall performs this lunction: the strects are narrow and dirty, but the houses are principally built of stone, and mathy of them are good. 'The castle is situated on a smatl hilt to the west of the town. It is delended on two sides by a ditch almost lilled up with sand, and on the other two sides by a branch of the Karoon. It has one gateway, which was formerly entered by a drawbridge. The hill on which it stands is almost wholly excavated, and formed into subterrancous aquedncts, through which the water still continues to flow. In the vicinity of the castle, is the dyke which Sapor built across the Karoon, in order to irrigate the adjacent lands.

It consists of hewn stone, hound together with clamps of iron, and is about 20 fect broad, and 40 (yards long, with two small arehes in the middle. Mahomet Ali Necrza, governor of Kermanshaw, has lately rebuilt it, with great adrantage to the country. The artificial canal of water, obtained by means of the dyke, falls, after a long wiading course, into the Dezphont, near Bundeket. There is near the canal, a bridge built ol hewn stone, consisting of 32 arches, of which 28 are entire. There is in this city a considerable manufacture of woollen stuffs, which are sent to Bassirah, and there exchanged for Indian goods. This city is resorted to by invalids lor its *alubrity. In summer, the heats are so excessive from 9 A. m. till 9 r. ar. that the inhabitants spend the day in subterraneous apartments, and pass the night on the flat roofs of their houses. The population. which amounts to 15,000 , is composed of Arabians and Persians. East Long. \(45^{\circ} 59^{\prime}\) North Lat. \(32^{\circ}\). See Nacdonald Kimneir's Momoir of the Persitm Empire, p. 97.

SHIVANPAN is the name of a Chinese instrment, for assisting them in their computations. It is a variety of the dhacus (See Anters.) and consists of sereral series ol beads strung on brass wires, and extended from the top to the bottom of the instrument, and divided in the middle by a cross piece going from one side to the other. In the upper row, each string has two beads, each of which counts five, and in the lower row, each string has five beads, the first being reckoned 1 , the serond 10 , and the thind 100 , 8 c . The Chinese Shwanpan dillers from that of the laman, in having strings and beads in place ol pins and sliding srooves. lnstead of lour pins for units as the Roman had, the Chinese have five beads, so that the Chinese instrument sems intended lop the decimat, whereas that of the Roman was suited to the duodecimal scale. Mr. Smethurst bas deseribed a new Shwanpan, formed "on the plan ol our nine mumbers, that in mo case lalls short of the Chinese Shwabran, hat in many excels it." Sce Jhil. Trans. 17.49, vol. xlvi. p. 2. Sce
also some obscrvations by 1)r. Hooke on the Shwanpan in the l'hil. 'rivens. llise, vol. xvi. p. bi.3.

SldM, at kingerom ol Asia, situated beyomithe (ianges, and bombled on tar west by the Biman Bompires on the samth by the (ialf of Siam, wh the aist by Cambodia amd ©ochin China, and on the worth by portions of Chma and 'Tartary. This kingdom consists pronerey of the wide valley of the Ntenam, (a large rive which flows trom Thibet.) bing between two ranes ol monntams; but it comprebends also an extonsive foritary, inchding ahmost the whole peninsula of Mabacra, and romprehoding the following states. begiman!g lrom the North at Bankok:*

The province of Tomasserim, lying the east of the there first of the abore states, has been werest from the Siamese. As histerritory has been already described under the article Nalacea, we shall at present consider Siam in refernce only to the val. ley of the Menam, and the province of Chantibond, which recently was joined to Siam. A great part of this kingdom consists of mountains, at the base of which are extensive and umproductive swamps and jungles. The agriculture of Siam is limited to the production of rice and sugar, which are rabed on the prounds bordering on the river hemam; and as these are ibundated darimpat of the ?at the crop are abmodat; thongh what is raisel on dry soil is prefered.

The sugar cane has been intholuced ino Sian with in the last twontys sears. The culture o! it is manamed solely by the Chinese, and it is suppored that it may be carried to an almost mamited extent. The ambat protuce in 1821, was abont 30,00n pecnls, or nearly 1788 tons. The other productions of siam are pepper, the ammal produce of which, in Chantibond, is so,000 peculs, 135 lbs. cach, benzoin, tea, ivory, aguila bood, thmoreros' horns, hides of cows, buftixlos, and decr, gimboge, cardamoms, Ex. Nost of these articles are obtained most abundantly from Chantibond, where precious stomes and :rohl, exce are also found.

The principal fruits are the durio, the mangostcen, pine apple, tamarind, barana, areka, betel, cocoa nut, from the last of which they obtain milk, oil, and pitch which makes good torches.

Among the animals of Siam, the elephant holds the principal place. The hunting of them is a royal monopoly. The finest are kept for the king's use, and the rest exported. A white clephant is reckoned beyond all value: and in the time of the Prench embassy, there was one which was semed by 100 attendants. It was lodged in a gilded stable, and drank ont of a trough of massy gold, In 1520 , there were five of these in the king's possession. 'These animals are, in short, albinos, and their cye was matural and sound, though the iris was pure white. In one or two of them, the colour was strictly white; and in all of them the iris was of that colour, and the margin of the eye-
lids: but in the rest, the colone had a cast of pint in it. In mone did the colour ind texture of the skin appeat entinely healthy. They were small, but in es collent rondition: amd one ol them, whith was handsome, was tratod with ereat attention. Irach cut grass was phated in abmondice before them, and they were led with sliced sugur "anm, and bronthes ol plantams. 'Tibey stomed on a swall boarabriplatlorm kept clean: and a white eloth was spoted bedore Wem. Alr. V̈alayson deseribes amother dephant covered with back spots the size of a por of at white basc. The discomere ol' a white rephath is roward. ed with a crown of sther, and with a eromt of hamb equal in extent to the space of comma ove whim the elephants cry may be beard. He and his famity are freed from itll sorts of servitude. and their land from taxation, to the third generation. The diber anmals are tigers, hinoceroses, leoparion whitemomkeys, tortoises, hedge-logs. Domestic ammals are fors, and litule estecmed, excepting the hors, the thesh of which is suptior to that of E.troper.

Commerce is in a very singular state in Siam. The king and his ministers are the sule merelants. fodll ins the monopoly of all articles ol importance (ipeat enconragement is given to the Chinese traders. Who have sown the seeds ol commerciat conterprise in Siam. All the Siamese are totally ignorant of maritime setence; the king employs native Christians, Arabs. and other Mahommedans, 10 navigate his vessels. He. nevertheless, sends crery sear to Chma den of towl: junks, ul monizate size, laten with sugar, peppor. japan. and imm woot. He is, however, anxions to chablish commercial relations with Enrope; bnt the fegnlations are so illibural, as to disgust the late trader. The introduction ol' opiam has been long, an! is still strichy prohibited.

The principal towns in Siam are limkok, the capital or the resillence of the king, Siam, Jathea. on Odia, formerly the capitat, and situated on the Alemam, Lowbathlorvone on the Menan, and several others along the west shores of the Gulf of Siam. Ban'. contans many splendid temples, inclading the l'mchadi, of a spiral form, probabsy the sepalchral nonnment of butdha. The palace is situated on an istant two or three miles lomg. and it and the whole istand is -urvonded by high walls, and bostions, and nomerwhs gates. The persoms athathed to the court beesia here in wretehed hats, mate of palm leaves. The greater part ol the spuce which the wall encloses, consists of waste ground. swamps, and fruit gardens. 'The city, which is continuus with the palace. extends on both sides of the river Denam, to the distance of three or lour miles. It is built catirely of wouds the palaces. temples, Exc. having brick or mud walls. 'The houses rurely extend more than one or two miles from the river, ant by far the groteremmber of them float on humbor rufle. secured close to the bank. 'The houses not chus flated, are buitt on posts diven into the inud. Every house has a boat. 'The principal shops are in the floating houses. The Chmese appear to exced the natives in number, The floting houses consist of one foor, and have a sery neat appearance. beiner thathed with palm !ewes, and sonetimes with thes. They are divided into several apartments, the centre
 by a comespondent in India. According to Hancl, Siam and Malacea contain abont Ifinge gequre mites.
one of which is allotted for the household goods. The principal traders are the tinsmith, blacksmith, and currier. Tin vessels are made to a great extent. The preparation of leather for covering mattresses and pillows, and for exportation to China, is very extensive. The skins chiefly used are those of the deer, \(o x\), and buffalo. The skins of lcopards and tigers, with the fur on, are exported to China. There are one or two manulactories of shallow cast iron pots, conducted by Chinese. In 1827, two dreadful fires destroyed above 1500 houses in Bankok.

Juthea, the old capital, stands on the Menam, about 40 miles above Bankok. It is surrounded with a turreted brick wall. The town is intersected with several large canals; the streets rum along them, that the ships may land their goods at the principal houses. Most of the streets are narrow and dirty. The larger bridges over the canal are of stonc, and the smaller of wood. There are three palaces in the city, the chief of which is of Chinese architecture. The suburbs are numerous; some of them consist of floating houses, and of honses fixed in the water on posts, as at Bankok.

The government of Siam is perfectly despotic. In cases where the interests of the king and his minions are not immediately concerned, the laws are often equitable aud severely just; but the judges are corrupt.

The revenuc of Siam is considerable. The landtax is paid chicfly in kind. The privilege of fishing and distilling arrack produces a considerable sum. The most important fruit trees are taxed, and the tax is said to yicld 7000 catties of silver. Gambling houses are also taxed.

The inhabitants seem to be of Mongol descent. Their average height is five feet three inches. Their complexion is yellow. Their face is very broad and flat, their bair is always black, and they have a tendency to obesity. They have the liame without the cuergy of London porters.

The poorest of the Siamese are, alter death thrown into the river. Those a little above them are burnt, and their partially consumed bones lelt to bleach on the plain. Children, before the age of dentition, and women who have died pregmant, are interred in a superficial grave, till after the lapse of a fow montlas the remains are taken up and burnt.

With these cxceptions, the practice of cremation extends to all ranks. In many instances previons to cremation, the muscular and soft parts of the body are cut into small pieces and thrown to dogs, valtures, and other carnivorous animals. Among the higher classes, the body is embatmed previous to cremation, but this art is very little known.

The music of the Siamese is soft and lively. They are very fond of music, and have arrived at great proficiency in the art. 'Their rocal music is ptaintive and melancholy.
'lhe history of Siam, beyond what is given in our account of the Birman empire, is scarcely worth noticing. The late king, who ascended the throne in 1782, has been constantly at war with the Birmantom-
pire, and it was the boast of his reign that he has lost nothing in the contest.*

The population of Siam is not known. That of the province of Chantiboud is stated by Mr. Finlayson to be nearly one million. As very little is known of the modern state of Siam, we have not occupied our pages with any of the antiquated information which is generally detailed. Those, however, who wish such information, may consult La Loubere's Description du Royenme de Sítm, Amst. 1719. Turpin's Histoire civile et nuturelle du Royaume de Siam, Paris, 1771. This work was compiled from the MSS. of the bishop of Tavolia, apostolical vicar of Siam, and other Missionaries. Bemerknogen uher Siam, in the Connuiss unce de le literuture des pays, 1796, cap. 12. The most recent intormation respecting Siam will be found in Finlayson's accome of the Mission to Siem and Hue in 1821-2, Lond. 1826. Sce also Bnit man Empire.

SlampA, or Tsiampa, or Chinmpa, or Binh-tuam, is a state inclucted in the empire ol Tonkin. It is inclosed in Cochin China, which bounds it on the north and south, the Chinese sca bounds it on the east, and Camboge on the west. It is a small mountainous country, which may be crossed in three days. The castern part is a desert composed of mountains, some of which extend their roots to the sea. They are so steep that a horse cannot ascend them. The road from lower to central Cochin China passes across these mountains, though there is no water fit for drinking in the whole of this route.

The middle part of Siampa is inhabited and cultirated, and western Siampa is a mountainous country where there are some wandering savages, many of whom are not clothed.

The imhabitants of Siampa, particularly the mountaineers, are unknown to their neighbours the Cochin Chinesc. They are not known to have any religions belief. They are circumcised, but it is uncertain whether this operation is a precaution, or a medical measure, or an act of religion.

No European is known to have penetrated their country.

The villages are said to be very agreeable, and the mountains abound with witd buffalos.

There are only very small villages in Siampa. The population is reckoned at lrom 6 to \(7(10,000\). See E'xpose Stulistipue du Tonkin, de la Cochin China, du C'amboge du 'I'sicmata, ixc. from 1]. M——n, Londres, 1811.

SIBERIA, an extensive tervitory in Asia, which includes the whole of the northern frontiers of that gharter of the globe. As a part of the Russian cmpire it has received the name ol Asiatic Russia. Siberia is a hat track of country, declining gradually to the frozen ocean, by which it is surrounded on the north, rising gradnally towards the sonth till it joins a great chain of mountains distinguished by the name of the Altai mountains, and the mountains oll Sagansk and Yablonay, which scparate Russia from independent I'artary, and the territories subject to China. ()n the east it is bounded by the Eastern Occan, and
- He was succeeded within these two or three ycars by lrince Prom Chit, his natural son, who declared when he ascended the throne, that lie wodd wo longer be aking merehant, but would allow a gencral free trade. A commereial treaty was conchded in
 and protect the person of the bitish trader.
on the west by the great chain of the Uralian mountains, which divide it from Russia in Jinrope, and from the provinces ol Orenbong and Astrakan. Siberia extends from the 57 th to the \(\begin{aligned} \text { thth degrece of }\end{aligned}\) North Lat. and from the goth to the both despece of Last Longitude. It varies liom 1200 to 2000 miles in breadth from north to south, and is about 4500 miles long l'rom cast to west.

Siberia is divided into three provinces, which form the 49 th , soth, and 51st, of the Russian Smpire. These provinces have the following extent and popuJation.
\begin{tabular}{|c|c|c|c|}
\hline & Population in 1810. & Fitent in square miles. & Inhabitants for cach square mile \\
\hline Toholsk, & 427,066 \(\}\) & 85,387 & 83 \\
\hline Tomsk, & 293,967 & 105 808 & - \\
\hline Irkutsk, & 376,720 & 127,888 & 3 \\
\hline
\end{tabular}

In our article lrifutsk, we have already given a full account of that province, which forms the whole of the eastern part of Siberia. And in our articles Tobolsk and Tomsk, we shall describe the western part of this tervitory.

In our article Russia, will be found many interesting detailfof a general nature respecting the territory of Siberia. See also our articles Ameutian Islands, Altai Mountains, Ashe, Bherung's Islands, Kamtschatia, Kumle Istands. See also the works referred to under our article Russia.

SIBILLS, from oseu or essu of God, and Bounn counsel, is the name given to certain sages who were supposed to possess prophetic powers, and who uttered oracular responses. They were supposed by some to be fou: in number, viz. -

> The Erythren Sibyl,
> The rggptian Sibyl,
> 'The Sibyl of Samos,
> The Sibyl of Sardis, or the Delphian.

Capella enumerates only (wo, the Phrygian and the Erythren; Solinus makes three, viz. the Cumean, theDelphic, and the Erythran. Varro raises them to ten, while more modern writers suppose that there was only one who uttered her oracles in different places.

The Sibylline oracles, which were a collection of the responses of the Sibyls in nine books, were written in verse, and were olfered to Tarpuin the edder, according to Vario, by an old woman for 300 pieces of gold. This sum beins rejected, she threw three books into the fire, and asked the same sum for the remaining siz. This demand being refused also, she burnt other three, and asked the sume sum for the remaining threc. Targuin now began to fear that she would destroy the last threce, and gave her the sum required. These books, which were in the custody of two patrician priests, were burnt in the fre which destroyed the capital in the year 83 D . C. For farther information, as to these and other books to which the name of Sibylline has been applied, see Hyde, De Relig. Vet. Pers.: Prideanx's Commexions, S.c. vol. ir. p. 185; and Lardner's Credibility of the Gospel Mistory, vol. iv.

SICILY, the largest island in the Mediterranean sea, siluated close to the southern extremity of Italy, from which it is separated on the west by the straits
of Messima. In conscquence of its approximation to a triangular form, it was called T'rinucrit, or Trinquefin, by the ancicuts. Its length lrom cast to west is 180 miles: its frletatest breadth about 130 , and its extent, including the small islands uponits coast, is nearly \(12,53.3\) square miles.

Sicily was lormerly divided into three parts:
1. The Val di Mazzara, or western part.
2. The Val di Demona, or northeeastern part; and
3. The Val di Noto, or southernjurt.

But since the year 1815 , when the govermacht of Murat was overthrown, it has been divided into seven intendancies, the population of which and ol the principal towns are as follows:

The following table contains the population of the other principal lowns in Sicily, in the order of their magnitudes:

The general aspect of Sicily is that of a highly mountainous country, raricgated with numerous railies. The principal chain of mountains extends from east to west, and has been regarded as a comtimation of the Apennines. Ouner lesser ranges branch oft from the main range from north to south; and there are some insulated mountains, of which Etma is the most remarkable, and of which we have already given a very full and elaborate description in our article Etwa. The north coast of Jtaly presents a very level surface for nearly 100 miles to the east of Trapani, and also near the gulf of Castello Mare on the opposite side of the island. The plains of Melazzo and C"atania. on the north-cast of the island are the most extensive. and next to them thase of Terra Nova in the south. and of Syracuse in the south-west. In the west of the island there are very extensive districts umbabited and destitute of cultivation.

The principalrivers in Sicily are the Fiume Grande.
the (iiaretta, anciently the Simoctites, and the Saloo. These rivers, and the other smaller ones that watur the island have but a very short course, and descend very rapidly from the momntains. As there are almost no cirringe roads except in the vicinity of Palermo, there are of course rery few bridges orer the rivers.

The principat lakes in Sicily are the biviere and the Pergusa. The Biviere, about eight mies sonth of Catania, has, in the winter scason, a circumference of about 20 English miles, while in dry weather it is reduced to very small dimension, leaving an extensive swamp, which is most injurious to heath.

The climate of Sicily is, generally speaking, an agreeable one. In summer the weather is very hot; the thermometer at Palermo varying from is. \(3^{\circ}\) to sot \(\frac{10}{2}\) in Jane and July. When the sirocto or sonth wind blows, which happens during a lew dars ol July and Ausust, the thermometer rises suddenly to 112 . Thonesh the summer heat is often alleviated by fresh sea ircezes, yet Harch is the only month in which any chilling winds are felt; and the shade is foumd retieshing even in the begiming of Janury. The apring is the finest seasm of the year. Snow is never seen exceptins on the loly mountains, and ian the low grounds are found the protuctions of the tropical countries, such as the banama, the aloe, the sugar canc, se. Against these adrantages, we have to babance the insecurity ol particulur districts, the season of the sirocco, and the exposure of the istand to frequent and desolating earthguakes.

Sicily was laid waste by carthquakes in the years 1638, 1693, 1726, 1782, 1805, and 1818-19; but the most tremendous effects were produced by that which took place in March 1823*. On the sea coast east of Palermo, the shock was immense. At iltavilla, the bridge was shaken. At Trabia, he castle was deswoyed. It Giodiano, the cathedral and some houses lell, and enormous masses were loosened, and lell from bisambra, a neighbouring mountain. it Termini, the shocks exceeded all that had happenced m the menory of its oldest inhabitants. The warm prings then became turbid and increased in quantiIf and warmith. In Sarcari most of the houses were rendered minhabitable. To the west of latermo, the carthrpake had little power: but as it advanced to the cast, its efects vere very injurions. At Celalu, the sea made a volent and sudden rush to the shore, carrying with it arge ship laden with oil, and when the wate retired she was lelt dry; but a second ware returning with immense force, dashed the ship to pieces. lionts which were approaching the shore, were bonde rapilly lorward to the land; but they were caried i. ratpitiy back, at the return of the sea. \(_{\text {at }}\) Some damase 1 as done at Jlessima. At Catania, it was leat so bles? we that same coning. It was heghtiy foll at Syacnoe scatcely at ath wowis Cape l'absato, and no bad effects were potheced in the somenern par of the istand.

Sicily has lons been celebrated lor the lertility ol its soil. Facepting in the vicinity of A:na, the soil is calcareons bamy mould of comsiderable depth.

The copious dews of June supply the want of rain, and the melted snows which fill the rivulets with water, afford excellent means ol irrigation. Although it is not cultivated at present, as when Sicily was deemed the granary of Rome, yet the crops of wheat are so abundant, as not only to supply the inhabitants, but to leave a considerable surplus for exportation. It was only, however, in 1819, that the export of com was declared to be liee. Mr. Brydone assures us, that one good crop of wheat is sufficient to feed the island lur seren years. Large quantities of barley and pulse grow on the istand; and maize, liax, hemp, aloes, saffron, wine and cotton, are among its productions. Canary bird seed, which is almost peculiar to this island, is exported in large quantities. Putatoes vere introduced in the cighteenth century; and in consequence of the goociness of the pasturage, milk, cheese, and butter are obtained in considerable quantities. \(\dagger\).

Silk is considered the second source of riches in Sicily. The management of the silk worms, and the art of manufacturing the silk, were introduced by Roger, king of Sicily: a guantity of silk, ecual in value to a million of ducats, or \(£ 187,500\) sterling, was ammally exported, but this has greatly declined. Palermo and Nessina are the principal seats of the manufacture. Palermo employed 900 looms, Messina 1200, and Catania rather more. Palermo exports little. A rarity ol' silken labrics, made at Messina, went to the Lerant. Cotton, linen, and woollen goods are likerise manufactured in these three towns, and also bits, cutlery, harness, carriages, and household furniture. Large guantities of oil were exported from ports in the north of the istand, and also wines and brandy. The fisheries are productive, and preat quantities of herring, anchovies, and sardines, are sold and exported.

Sicily has not yet attained that commercial importance to which it is entitled lirom the excellence of its harbours, and the salety of its shores, for navigation. lts inhard communications are lettered by the want of roads; and the want ol banks, insurance offices, together with a bad system of guarantine laws, retard the progress of its commerce. The principal exports from Sicily are corn, nuts, liemp, hax, sema, oil, wine, suphur, lish, silk, and liuits, the whole amount of which is said not to exceed \(11,000,000\) ducats, or about E2io, 000 Sterling. \(f\) The imports, which consist of colonial produce, hardware, jewellery, lead, and mamulictured artieles, are estimated at the same sum as the exports. Noney accounts are kegt in ounces, laris, and grains.

> 1 Grain equal to \(\frac{1}{4}\) Sterling.
> 20) Grans cqual to 1 tam, or job. sterling.
> 30 Timis erpal to 1 unnce, or 12s. Gul sterling.

Sicily abounds in valuableminemals. Mineralsprings, both hot and cold, frepurnty occur. Iron and copper are fonnd in the resion of Etna, and cinnabar sulphur, alum, nitre, and sulphate ol iron also occur. A largemine of coal has been discovered near Mlessina, and salt mines have been found new Castoo Giovanni in the middle of the ishand. The quarries of marble

are numerous, and grod building stone is found in almost every part of the istand. Porphyry, jasper, and agates likewise occur.
Sicily used to be governed by a viceroy, in whose absence the archbishop of Palermo was regent. The parliament, before its reformation in 1810, was composed of three branches, viz. 229 nobles, 66 prelates, and 43 demaniale or deputies lrom cities, universities, and erown estates. Out of each of these branches four deputies were chosen to conduct the public business. The ecclesiastical government is in the hands of three arehbishops and seren bishops. The administration of justice was in a rery deplorable state, and of this we have given some examples in our article on Catanis. During the residence of the Britisharmy in Sicily from 1806 to 1816 , very essential reforms were introduced both into the Sicilitu parliament and the administration of justico, and we trust that these salutary changes will not be permitted to go into desuetude.

In the year 1820, the revenue of the island amounted to \(1,637,332\) ounces, and the expenditure to 1,663, 353 ounces. The expenses are limited to \(1,817,680\) ounces, out of which 150,000 onnces are employed to pay that part of the debt which bears no interest, and when that is discharged, this annual sum is to form a sinking fund to extinguish the debts which do not bear interest, but the amount of which is not publicly known.

The Sicilian army amounts to about 10,000 men, including cavalry, infantry, and artillery, and in addition to this, there is a militia of 8000. The nary consisted formerly of 1 ship of the line, 2 frigates, 5 sloops, with numerous gunboats, but more recently it has been united with the Napolitan nary. Many of the officers were paupers, and so small was the pay of the troops, that, in yeans of scarcity, the soldiers were dependent on public charity.

The Sicilians bear a striking resemblance to the ItaIians and Spaniards, not only in their complexion and general aspect, but also in the indolence of their habits, the licentionsness of their morals, and their passion for gaming and public amuscments. Education was for some time an object of interest in Sicily. The colleges of Palcrmo and Catania have already been referred to in his article, and are on a very imperfect footing. The Normal schools establistied in 1789, are on a better footing. The pupils are limited, and the qualifications of the teachers are previously ascertained. At the age of nine, girls are put to a convent, where, for about seven years, they are tanght reading, writing, and the ceremonics of their religion. Several schools on the system of Bell and Lancister have been recently establishect, and there is reason to hope that an improved system of public instruction will banish the ignorance, credulity, and superstition, which so peculiarly visit the Sicilian mind. The religiou of Sicily is of course catholic; and the number of ecclesiastics has been computed at 70,000 , exclusive of a still greater number of mouks and nums.
For an account of the history of Sicily, see our articles Italy, Naples, and Messisa.

For farther information respecting this island, see the works quoted under our article Etsa, Watkin's Travels through Sucitzertand, Italy, Sicily, \&e. Munter's Memoirs relutive to Nuples and Sieily, Vaughan's Fieles of the Present State of Sicily, 1812, Thompson's Vof. XVII. Part I.

Sicily und its inhethiturats, 1815, and Smyth's Sicily onut its Istments, 1823. See also our articles Csansa, Messiv, and labraro.

SHENN, , Sr Smo an ancient city of laly in Tuscany, and capital of a province of the same name, is pleatsantly sitmated on three hills. The strects are consednatly uncurn, winding, and narow, and a great part of the town impassable for carriage. The town is about 5 miles in circumference, and has a very imposing aspect when approached from the sonth. The houses are in general built with brick, and the streets are paved with the sam". "The only public sprave that is reckoned handsome is that which contains the townhouse, and also a beantifulfomatain. The cathectral is a noble gothic bililding, begron in 128 : and thished in 133.3. It is fared both within and withou with white and black marble, and considered next in grandener to St. P'eter's. The nave is supported by rows of beat tilul columns, and its pavement is decorated with mosaics. The front is prodigionsly loaded with ornaments, and the marble sculpture on the pulpit, and the carving in wood on the choir are muchadmired. Many of the chapels and altars, which are extemely rich, are decorated with beautiful paintings and statues. The church of St. John's, which lies directly underneath the cathedral, may be seen from an opening in the pavement of the choir. The entrance is without on the hill, and the cathedral may thus be said to stand on the clurch of St. John's.

The town-house already mentioned, is a large fothic building, surrounded with porticos. The castle, built at an extremity of the city, is not a place of great streugth. The university contains in professors. It was founded by Charles V . who conferred particular privileges on the German students. An academy of physics and natural history established here, acquired sone celebrity from their published memoirs. Near the castle, the university has an academy for martial exercises. A great number of the gentry and literati reside in Siema; and the town has acquired a reputation for politeness, for a taste for literature and the arts, and for the purity of the Italian which is spoken. The archbishop's palace stands near the cathedral, and opposite to it is a large and well endowed hospital, founded by a shomaker. Siema contains many palaces, fountains, churches, and convents. In the Tcuhuini Chapel of the churches of the Dominicans, is an ancient picture of wood, representing the Virgin with the infant Jesus, by Guido Janese, dated 1221. The manufactures carried on here are very trifing. They consist of woollen goods, hats, leather, and paper. There is a little trade in corn; and the marble quarries in the vicinity might be rendered valuable by enterprising capitalists. One of the principal objects of interest to strangers is the Piazza, a large extent of ground laid out in walks, and decorated with statues. It is the place of public resort in the evening. The esplanade is au avenue leading to the citadel, the ramparts of which are planted with trees. and laid out in the form of terraces.
Siemna is mentioned by Pliny under the name of Colonia Senensis. During the middle ages, it enjoyed great prosperity, and was more populous than at present. The territory was once a free republic, but was conquered by Charles \(V\) V. The Siennese, a terri2 N
tory of Siema, is now a province of tise Grand Duchy ol Tuscany, It is about 62 miles long, and contains 34,000 square miles, and ine, 00 inhabitants. The population of the lown i , about 24,050 . Kast long. \(10^{\prime} 15^{\prime}\), morth lat. \(15^{\prime} 22^{\prime}\).

SIERRA LEONE, the name of a British settlement on the west coast of Alrica. It derives its name from the river called the Nitomba, or Sierra Leone, which traverses it. but the origin of which has not becn explored. The territory of Siemaleone lies both on the north and south sitle of the rives. The country on the north is low and flat, but that on the south speedily rises into a long mountainous ridge, which, from being the residence of lions, gave the name of Sierra Leone to the riror. From this ridge descemd many mountain streams, which unite in the Bay of France, alarge basin. which is the best waterines place in the whole coast of Eininea, and which is described as a most delightiul and picturesque spot.

The general aspect of this country is that of an impenetrable lorest, a lew small portions of which only have been cleared and cultivated. Nice is raised on those gromme which are capable of irrigation, and forms the food of the rich, while millet, yams, and plantans, are raised by the poor. The principal lruits are pime apples. oranges, lemons, limes, see. and a fruit like the melon. A wholesome !iquor is obtained from the palm tree.

The woods and mountainous regions abound with animals, particularly lions; apes occur in treat quantities. Serpents are particulaty numerous: and the river abounds with large alligators, and contains a species calied the monatea, or sea cow. Among the articles of trade hera, may be chumerated clephants' tecth, which are remarkable for their size and perfeetion. A considerable quantity of civet is likewise brought to market bere.

The colony of Sierra Leone consists of sixtern small towns or villages, the population of which, in 1818, was 9565 , whereas in 1820 . it had risen 10 12.509. and in 1825, it was estimated at 18,000. The following is a list of the towns and villages. with their population, aceording to the census of 1820 .
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Frectovn and suburbs & - & - & & - & & opulation 4,785 \\
\hline J.eopold, 1ownship & - & & \(\bullet\) & & & 469 \\
\hline Charlotte, township & - & - & & - & & 268 \\
\hline 13:thurst & - & & - & & & 469 \\
\hline Glouccster & - & - & & - & & 56.3 \\
\hline ferent inwn and vicinity & - & & - & & & 1.219 \\
\hline Risscy and vicinity & - & - & & - & & 1,0.3 \\
\hline Wilberforce & - & & - & & & 409 \\
\hline Kent and vichaty & - & \(\bullet\) & & - & & 296 \\
\hline Wratcroos & - & & - & & & 395 \\
\hline Hastims & - & - & & - & & 195 \\
\hline Wellington & - & & - & & & 456 \\
\hline York & - & - & & - & & 297 \\
\hline 1.erecstcr IVamet & - & & - & & & 78 \\
\hline Villages in fremmsula & - & - & & - & & 1,168 \\
\hline Peninsula and the islunds & - & & - & & & 115 \\
\hline 1, bame of cambia & - & - & & - & & 37 \\
\hline The papulation in 1820 & & - & & & & 12,509 \\
\hline This ropulation consist & & & & & & \\
\hline Males & - & - & & - & & 5,596 \\
\hline 1-916acs & - & & - & & - & 3,030 \\
\hline 1串号 & & - & & - & & 2,015 \\
\hline Qisls & - & & - & & - & 1.678 \\
\hline
\end{tabular}

The diferent nations to whom this population bee longs may be arranged as follows:

The principal town of this colony is Frectown. The next town in importance is Regent's Town, established in 1813 . When this town was visited in 1816 by Mr. Johnson, the missionary teacher, he found it occupied by 1 bou captured negroes from 22 different nations. 'The most deadly enmities prevailed among them. Some lived in the woods, subsisting by plunder, and in stealing fowls, which they ate raw. When clothes were given them, they either threw them away or sold them. Destitute of the idea even that marriage was a tie, they were addicted to the most shamelul debaucheries, and, crowded logether in their miserable huts, they contrated various diseases, of which scveral died cyery day; and, in the linst years of the colony, there were only six birtis among these 1100 individuals. A deplorable superstition prevaled among them. They erected mumerous chapels in honome of the evil spirit. Nothing could induce them to cultivate the fields, and the few that did exercise that species of industry, had their crops destroyed by their neighbours. By the exertions of Nar. Johnson, and a lew intelligent negroes, the most remarlable improvements were effected.

The negroes were at length cirilized; they now lead a quiet and laborious life. They Preduent divine serrice. Several of them partake ol the sacrament, and many ol them lead a truly Christian life. By their industry, Regent's Town has been laid out with great regralarity. Nincteen new streets bave been formed, and good roads made in its vicinity. Among its buildings there is already a good church buit of stone; a government house, a house for the clergyman, a bridge of several arches, school-houses and warehouses, and many of the houses of the matives are built of good stone. All of the people are farmers. Every house has an enclosed gavden attached to it. The land in the vicinity is cleared and under cultivation, and in some places even to the distance of three miles. Vegetables, and all the finest lirutits of the orrid zonc, are raised in abundance, and ol domestic animals there is an ample supply. Nany ol the negroes, at the same time, carry on trates. In 1818 there were 50 masons and bricklayers, 40 carpenters, 30 sawyers, so shingle makers, 20 talors, 4 back smiths, and a butchers. In that way upwards of 600 negroes provided for their own mantenance. The femates have learned to make their own cloches. In 1818 about too couple hat been married. Nbout 1400 attend divine service; and the schoots, which began with ta chiddren and 60 adults, now contain above 500 seholars.

The excellence of the moral and intellectmal qualities of the pupils, suggested to the society belonging to the Charel of Eugland, the cotablishment of a seminary called the Christion Instible, where the young matives may be prepared top the missionary service. Whis establishment, at first founded at Leicester, was afterwards transferred to kegents Jorn, and it now contains a considerable number of pupils
from 12 to 18 yenes of ace Several of them who have afreaty eman ont hase paved the way for the
 alons with then the lirst elements of rivilizatom, and disposed the de drsi cultivated brethren to submit to the discipline of Christianity.
 and Wible fore are in the bmathate ricinity of Frectown, and, athes with leretown, contains upwards of 2000 seholats it a regulat course of instruction.

In consequence of these acesssoms to the population, four new and more distant stations have been founded since 1818, viz. W゙aternoo, Wedhaston near Kissey, llastings, and lork. 'The three lirst are on the eastern sitle of the colony, while low is on the south-west side, burdering on the Sherbros, amones whom a settement called Kent had aherady been formed.

In comexion with the colony of Sicra Leone, a settlement called Bathurst has beenestablished at St. Mary's, at the month of the river (iambia, and to the north of Siemat Leone. In 1820 the papulation was only 469; but it is now 2000 . The natives are all Mahometans. 'The climate is healhy, and provisions are much cheaper that at Sierra beone. From the opportunities which it has of commanication with the populous countries on the (iambia, it will, no doubt, become an important station for commercial enterprise. 'lhe missionaries who reside here have been sent out by the Wesleyan Society.

About cight miles from Bathurst the quakers have formed an establishment at Birkow, a place in the country of the Mandingos, on Cape St. Mary. A young neero has opened a school at Birkow, for the imstruction of children of both sexes.

Since the year 1822 the Americans have fonmed a colony at the month of the river Mesavada, to the south of Sierra leone. This colony has been called Liberia, and the principal lown Alonrovia. The population consists ol Alrican-Americans, and of free negroes.

The following were the number of scholars educating in the year 1820, at the different cstablishments in Sicra Leonc. Sitace that time we know hat they have ery greally increased; but the exact increase we are not acquainted with:

The first settlers in Sierra Leone weve the PortuSuese. The English alterwards established a footing in Rance Ishand in the middle of the river: but it was not till near the end of the cight:enth century that the negro colony was established. Hirs3, Dr. Smeatimat saggested the idea of it. Afier the American
war, a number of ficervas who were alischatest from

 grownd fromting the sa. Whan he lume were diwhed amoner the colomists, they abandoned theasclues to indoleace and vice: and the comsoturnce of this
 In addetion to that calninity, the tww wat polumetered in Nowmber 1tBy, by an firion chet, who compethed the colomists wasek low sheleer in Rancelstand. In 17.91, Nr. 1 alconbridse went out with a supply of stores. lfo collected the scattered comonists, and have inis permathed the native chicts to rede again the fomer terbory, a new site for the colony was chosen at Granville town. White these hings were soing on, the original Jfrican dssoriation (sec article dosocmatox. . Tmea, was incorporated by act of parfament in try, with a chater for thity-one years. They immediately semt unt fise ships with stores, arlic!es of trathe and sebebt new settlers. A considorable manber of whites and free negroes, to the amount of 1200 , who had taben shetier in Nova Scotia, after the Americall war, acepted of the offer ol' the comprany to go to Sicrualeone: and they arrived there in logn. I'rectown was again made the rapital of the colony, and for some time it fourished. biscontents, however, sonal awor, and complaints were peronally made w the Cumpany by the Noya Sotian negroes, respecting the lowtess of their wages, and the high price of the Company's goods. When these dissatisfuctons were remored, the town was plundered in September 1794 by a French squadron, and the colonists were thrown into the most destitute coudition. 'l'he Company, however, repaired this disaster: but so freat had been their iosses, and so profuse the expendtare, that they fomat it prodent te make an amangement with somernment, by which Sterra Jewne was phaced like other colonics under its jumadiction.

The cowbliboment ol the African Institution about that time for the improting the condition ol that rast contincut, induced govembent to place Siera Leone under its management. The method which ther have adopted! for recruiting its pepulatio: was. 10 send to the colony all the negroes caplured by the vessels sent to put a stop to the slave trade. From this source of supply, the colony has rapidly increased in numbers, and the colonists now enjoy all the adrantages ol English law. Jrom the unheathiness of the chmate, and the smalluessol the sadaries allowed. it has been found diffocult to eret quatilied persons to fill the official situations: but these evils have sradually diminished, and the colunt has prospered in the manmer which we have described in a preceding part of this article.

Its trantaillity has been very recenty disturbed by the surronding native powers: and untess some more ellectual means of defence are prosided, there is reason to fear that it may yet fall under their repeated assatits.
Since the above article was written, government 2 N 2
has, we understand, resolved to abandon Sierra Leone, and to remove the colony to the island of Fernando Po, where the new buildings for the accommodation of the troops and the civil authorities are already in a state of progress.

SlGHT. See Optics, and a popular treatise by Dr. Brewster, on the Defects of Sight, ant on the mearis of remoring them-now in the press; and also Souence, Ceriosities in.

\section*{sigNALS. Sce Trlegraph.}

SIKlIS. See Inol. See also Sir John Malcolm's Shetches of the Sikhs, in the Asintie Researches.
SILESIA. See our article Prussin, and a short notice in the same article, note.

SMLICA. Sec Chemistry Index, and Mremalogy Index.

SILIIET, an extensive country of Bengal, on the cast of the Burrampooter. It consists of bleak mountains and level plains. which are generally laid under water in the rainy season. Great crops of rice are produced. It is traversed by several rivers, the chite of which are the Megna and the Soormah. They abound with fish, and during the rainy season hoats may sail over a great part of the country. Its chicl exports besides rice, are lime, ivory, timber, oranges, fragrant aloe wood, and a kind of witel silk ealled Muggadooties." Elephants are found in the woods, but they are not deemed valuable. The principal town is Silhet or Siribat, the capital of Azmerigunge. In 1801 the popilation was 492,495. there being two Nahommedans for three Hindoos.

SIllus Italicts Cules, a Roman poct of some ceIebrity, was born abont A. D. 15. He is supposed to have been bonn at Italica in Spain; but he spent most of his life in Italy where he possessed several estates. He was consul at the time of Nero's death, and possessed the friendship of Titellius. After discharging the duties of proconsul in Asia, he retired into private lile, and spent his time in adorning villas which he quiter lor new ones. Ile spent the latter part of his lile at his seat in Campania. In his 5 sth year he was attacked with an incurable ulcer, and it is stated that he died of abstmence from food.

His only work is an epic poem on the second Punic war, the best edtions of which are those of Drakenboreh in to. The 1717, Lelebvere de Villebrune in 1:82. in 4 vols. 12 mo .

Sheastrida, or Drastra, a Lown of Turkey in Rutgaria. I: stands on the south ol the Danube, and is well fortifed and tolerabiy built. It contains several clegant mosques and baths. Population 20,0 on Last. Kong. \(27^{\circ} 6^{\prime}\). North lat. it 13.

SIKK, the name given to a soft, delicate and shininse libre, the produrtion of diferent species of larve or caterpilar. It is most commonty pooduced by the Pholume brmbyer, thongh the Phobene atlos is said to yicld it more abmodanty.

The ancients knew litte concerning this substance. The manufacture of silk, including the rearing of the worms, was introduced into liurope in A. 1). 555 by two monks, who, under the patronage of Justinian, brought great quantities of the worms from India to Constantimople. Athens, 'Thebes, and Corinth, established manufactories of silk, and from them the Venetians supplied the west of Europe for many centuries with it. From Grece the art passed to Paler-
mo and Calabria, from which it was propagated through Italy and Spain. It came into France a little before the time of Francis I.; and in 1489 it was introduced into England, though socarly as 1455 there was a company of silk-weavers.

The sith worm seems to be a native of China, where it has been reared lrom a very remote period. The insect remains for nearly six months in itsegg, which is about the size of a pin's head. From this it emerges in the form of a caterpillar, with eight pair of feet. It now feeds on the leaves of the muberry or letuce, and it increases so rapidly in size, that in six or seven days after birth its skin bursts, and the insect appears in a new form, adrancing for seren days more to another stage. When the worm is about to quit its fifth skin, it then winds for itself a silken bag or cone about the size and form ol a pigeon's egg, called the Coconn. Here it throws off its last skin, and in twenty days after the translomation of the larva into the chrysalis, which is effected within the cocoon, it becomes a moth with white wings. This moth lays eggs, and these cggs about six months after produce larre as before.

It has been stated, that a fibre of silk uncoiled from a cocoon is 406 yards long, and weighs when dry three grains. One lb. aroirdupois would extend 535 miles, and forty-scren pounds would encircle the globe.

The method of rearing the silk worm may be thus shortly deselibed:-The eggs being laid upon shallow trays of brown paper, the chopped leaves of the white mulbery are strewed over the trays. In its second or third stage, the larve are taken to larger trays; placed in a small compartment, where the temperathre is abont \(\mathbf{5}^{\circ}\) Fahr., and an increased quantity of the leaves given them, as will appear from the subsequent tables ol' Count Dandolo. The trays are now removed to a large apatment, where the temperature, at first ahont \(-2^{\circ}\) Fahr., is allowed to diminish gradually to \(69^{\circ}\).

When the cocoons are ready, the nymphae within these, intended for silk, are destroyed by putting them in boiling water, and they are afterwards dricd by artificial heat; but those designed for the future crop are laid out in a coarse linen cloth stretched on a table in a room notused and dark. Fromererylb. of cocoons (mate and lemale) two onnces of oŕd or eges may be obtained by Count Dandolo's method, as afterwards exhibited in the tables, where, if the management is bad, from ten to 30 lbs. may be sacrificed for a single oz of eggs. In order to ascertain the cocoons in which the mymptix are perfect and sound, we must see il the extremities of it are less abundantly supplied with silk, and if it is confusetly arranged; when this is the case, the nympla is likely to be sound.

The mate are distinguished from the lemate nymphex by the greater size of the latter, so that the female eocoons are likely to be larger than the male. The weight of 1000 male cocoons is 1700 grains, whike that of as many female ones is 5000 grains.

When a proper number of each has been selected, those inteuded for moths are placed, as already mentioned, on a cloth in a room whose temperature does not exceed \(72^{\circ}\), a higher temperature occasioning unhealthiness. Stillness and diminished light are considered favourable. When the moths have deposited their eggs on the cloth, they soon dic, and the ova
adhere to the eloth by a silky gummy substance. The temperature is now bronght down \(1066^{\circ}\), and when the colour of the ova has changed to ash-colour, the cloth stretched on a frame may be removed to a cool apartment, where the esges should be kept dry. When the eggs are required, they are detached by immersing the cloth in liesh water, which dissolves the mucilage. 'The ova are then dried with care.

The uncoiling of the silk lirom the cocoons is effected by collecting the ends of the threads, and winding them on reels, the greatest care being taken that the uncoiling goes on liedy throngh all the extent of the cocoon. This effect is promoted by throwing them into caldrons of water nearly boiling. 'The threads are then collected by a whisk or brush, and passing through plates of steel they are wound upon areel by machinery, attached to a water wheel, or any other power.
" Gensoul of Italy," says Mr. Murray, "has invented an apparatus by means ol which the water is heated through the medium of steam, and the nymphe that fall are collected on a grating of iron wire at the bottom ol the boilers, which is frequently raised for the purpose of removing the husks. By this ingenions method much fucl is saved, one furnace with its boiler serving to heat twenty vessels, and from the decreased temperature the cocoons do not suffer any decomposition or change, as is the case in the ordinary way wherein they are immediately exposed to the direct agency of the fire. Another saving might still be effected by this method, in the substitution of ressels or cisterns of wood for boilers ol copper. In the month of August last, at Buffalora, on the MiIanese frontier, I visited an establishment for unwinding the silk. Vomen were arranged in two rooms, opposite each other, and conducted the process. The cocoons contained in baskets on one side were thrown by handfuls into caldrons of water, kept boiling by charcoal fires boneath. Each by a whisk (of peeled birch) collected the threads on masse, the first confinsed portions were rejected, till the threads unwound regularly, freely passing over glass-rods to prevent the injuries of lifiction. The first portions are necessarily useless, and are separated by the hand. When the threads came oft unitomly, the cocoons were raised suspended to the hand by their respective threads, and thus handed orer to these on the opposite side, who, in their turn, threw them into caldrons ol water, the temperature of which was nearly that of blood heat, and more than milk warm-thus sustained by a steam pipe. The water was thus kept clear, and the silk preserved pure and unsoiled. From these the threads were funally wound. The proprictor informed me that this establishment cost 60,000 francs."

The following tables, containing a general riew of the process carried on, and the results obtained by Count Dandolo, were abridged by Mr. John Murray from Count Dandolo's work, and first published in Dr. Brewster's Journal of Science, No. III, p. 59, Jan.
1825. The zero of Bellani's hygrometer corresponds with that of Saussure.

Mantergment of the Silli-2morms, protural from fire Gunces of Gera.

* The common lb, of silk (lilra grossa) contains eight tight ounces.
\(\dagger\) Corresponding to \(17^{\circ}\) Réaumur.

Thungement of the silh-zeorms, protuccd from fiec Ounces of Oba.

Markegemont of the silk-vorms, producel from fice Vinces of Oea-Contimed.

For each omnce of ora, 1084 lbs. of leaves have been taken from the tree.

The silk-worms, from five ounces of ova, hare consumed the above 5421 los. of leaves, iml produced 401 lbs. of cocoons, de.

For eacls prond of cocoons there lave been consumed about 1.3 lins. of mubery leaves.

The Tempercture required for the Production of the
Silli-uorms from the Oce, antcrior to asd May, 1814.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Month & Internal 'Temperature. & IStemal Temperature. & 1814 & Internal Temperature. & 1:xternal 'lempera. ture. \\
\hline May 11 & \(1 \% \mathrm{a} .63 .50\) & Pa. 5026 & May 18 & 13. 50.25 & \(1 \% 50.00\) \\
\hline 12 & 63.50 & 45.50 & 19 & 72.50 & \(5 \cup .03\) \\
\hline 13 & 635 & 15.519 & 20 & 74.75 & 52.25 \\
\hline 14 & 6.3 .51 & 45.50 & 21 & 76 & 52.25 \\
\hline 15. & 65.75 & 47.75 & 22 & 73.25 & 5450 \\
\hline 10 & 65.75 & 52 25 & 23 & 81.50 & 52.25 \\
\hline 1. & 68. & 54.00 & & & \\
\hline
\end{tabular}

The external temperature was ascertained at five oclock, every morning, lrom a western exposure.

During the thirteen days in which the silk-worms were developed liom the ova, 13\& lbs. of food were consumed. 'The lb. of 28 ounces is to be understood, or 21 bs . Yroy equivalent to 0.7625 kilogrammes of France.

The following is the Duily Decrease in Weight of 1000 ounces of Cocoons in a Room, the Temperature of which wells from \(20^{\circ} 25 \mathrm{~F} .72^{\circ}\) 50 F .

So that the 1000 ounces have lost in 10 days, during the mutation, 75 ounces. There is a gradual declension for the first five days inclusive, and a regular gradation for the last five days.

Each srain contains about 68 ova, and an ounce weight 59,163 ova. The oncia Milanese contains 575 grains. The above number is to be understood of fecundated ora. Those which are badly impregnated contain 43,080, and are of a reddish colour: and ol those not at all inmpegnated, and of a yellourish tinge, there are in the ounce 44,100 .

\section*{The Expense of the Contingencies of the 5 ouncts of ('rop) in 1919, are lhus calculated by Count Dandolo.}
rost of 5 munces of ova,
Wood for fuel
5.500 lbs . of leaves of the mulbery at 7 lier per 100 lbs .335.

Expense of :rathering the leates, - - - 96.5
1001 lhe lighe and heary wood, at 32 soldi - - 32.
Supplemental lusks, - . . 4.10
supplemental paper, - - \(\quad\) - \(\quad 4\).
Oill fer light,

Preservative phial，
1.10

Baily labour，

Note－A Lire Mikenese is equal to abont 8d．and there are 20 Shaldi in a hire h \(h\) ．

The calculation，as above，includes not only interest on capital，but a valuation on the mulbery leaves， which is about onc－half ol the total expense．

\section*{The Augmentution and Diminution of the Silk－uorms in Height and Size．}
\begin{tabular}{|c|c|}
\hline Increasiner I＇rogremaiun．Wright． & Jitmrating I＇rugresitme．Micight． \\
\hline 100 wa weight about Gath 1 & Theorain the 1 stinstamer， \\
\hline After the lst change，about 13 & say l line \\
\hline 2 l change，say 94 & Dfow the 1st change， \\
\hline 3 l change，say dun & lungthsay it \\
\hline Whechange，sty 162s & 2ll chancre，－ 6 \\
\hline 5th change，siay gjuu & Sul change，－ 12 \\
\hline & 4h chanme，－Du \\
\hline & Sth chance，－w \\
\hline
\end{tabular}

Note．－In 50 days the silk－Worm has increased in weight 9500 times；and，in is days，the ammal has augmented in size about in times．

The French Linc is equal to 1．6．＂Limes Ingrlish， calculated 100 Lines English to the bach．

I）ecraviars inogression．
100 Silk－worms，nt their reatest si／e，weigh about
100 chersali weigh
100 「emales weigh
Gmung．

100 males weigh
7ind
2y90
100 fionale
IU0 females，naturadly deal，and the egers or ora depo－ sited，sec．

In the space of atont \(2{ }^{3}\) days more，the sith－worm has diminished in weight about 30 times．Thus，the length of the silk－worm from the time of its sreatest increase to the monent it is converted into the chry－ salis，has diminished about three－fifths．The chrysa－ lis is the intermediate state between the eaterpillar and the winged insect．The lurea emerges trom the ova，spins its cocoon or domitory，and therein passes into the state of the mpu．It finally emerges from thence the imugo，or winged insect，which dies so soon as the ova are deposited．

Space occupicel by each ounce of Ora cultivated．
\begin{tabular}{llr}
In the first age，an area of square Braccia， & 4 \\
In the second，an area of & ditto & - \\
In the third， & an arca of & 8 \\
In the fourth， & an area of & ditto \\
In the fifth， & an area of & ditto \\
an & - & 45 \\
& & 100
\end{tabular}

Note．－The Draccio di Milano is divided into 12 ounces or inches，and corresponds to 5.95 palms， which may be calculated at 22 Englis！！inches nearly．

 Ocre，hure herie emonsmet，dividet as julluries，riz．
\begin{tabular}{|c|c|c|c|c|c|}
\hline First asce， & catch & － & 11， 5.1 & \multicolumn{2}{|l|}{} \\
\hline Secont & drs． & － & 1 ！ & & 11， 1 \\
\hline Thisel & do． & － & ［i） & In whame cas． & 2 \\
\hline Forath & do． & － & 121 & In thimd do． & 6 \\
\hline Fifla & do． & － & 7.3 & In liometh do． & 13 \\
\hline \multicolumn{4}{|r|}{11ヶ．91，8} & 1atitht de． & 18 \\
\hline & & & ． 110 & \multicolumn{2}{|r|}{1ちッ．：} \\
\hline
\end{tabular}

In the course of the managemeat of the siberorme， the 1073 ll s．of lates from the tre（home enpora－ tion，and other canses）will have lont \(\begin{gathered}\text { ol Has．}\end{gathered}\)

Note－There have beco devolted be the sill．－Worm
 ol＇leaves as taken from the tree will yikld in Ho．ol cocoons，calculating from one ounce of orat

The artilicial heat necessary in Comit Dandom＇s process，is kept up by a stove of tile thone of iron being injurious．The necessary dryness of lace ait may be produced by absorbent substance，ant when it is two dry，shallow ressels of water are phaced on the lloor．

For larther information on this subject，sce Reau－ mur，Mime ．Rad．P＇ar．1710．Aglionby，l＇hil．＇fruns． 1699，vol．xxi．1．183．Bon，Id．Id．Itio，vol．xxsii． p．2．Daubenton，Men．．Ictil．P＇ur．1759，p．1，1：85， P． 45. Lies．G．Swayne，Trunstactions of the Somity ＂f arts，vol．vii．1）．123，149．Dr．Anderson＇s／bit， So．22，93，156．1）p．Auderson on the（uthrie of linur Sille on the Cocest of Cormandel．Transartions af liwe

 E．diz．Milano，lols．Murray，in Dr．Irewsters Jubrnal of Seisnce，Nu．MI．p．59；and Murray＇s Ri－ moths on the Cullication of the Sith：Horm，with ilhli－ tional Observations mate in Itety during the imment． of 1825，（ilaserow，1825．An Account of the Histu－ ry，Vialue，and l＇resent State of the Silk Manduc：ate in Enghtent will be lomud in our article Liastbor．－ of France，in our article Prases－in Italy，in the ： \(\mathrm{H}^{-}\) ticle Irany．－and in Indiu，in our article lama．

SILIER．See Chemstre，Dembrichoi，am？ aItemalogr．
 maitixg Pownems．

SIMIA．Sec Mizologi．
SIMPSON，THomas，a celebrated English mathe－ matician，was born at Market Dosworn in Leicester－ shire，in lib．He was brourht up to his faticres Irulession of a weaver，but such was his love of smay， that he soon quitted his prolession and supported him－ sell by tecching a school．An absurd propectsity for astrology，while it rendered hima sort ot oracte in his neighbourhood，involved him in some diflentics． which obiged bin to remove to Deroy，where he continued some years，lillowing his trade in the day， and teaching a school in the evening．Notwithotandins his industrious habits，he found it diffent to moride for his lamily，and he was tber indaced to remove to London in 1.36 ．Hepe he followed lis business in Spittalfields．and tawigh nathematics at his leisure hours，and so sreat was his success，that he brough： his wife and three chiddren to London，where he set－ thed himself permanentis．

His first work was a New Trcatise of Fluxions, which was published by subscription in 1737, and such was its reception, that, in 1740, he published A Treatise on the Nature and Lat's of Chunce, which was followed in the same year, with his Esseys on several eurious and interesting suljects in Speculative and Mixad Mathematies. These works extended his reputation even to foreign colutrics, and he was elected a member of the Swedish Academy of Sciences. His Doctrine of Amuities and Reversions, appeared in the same ycar, and an Appendix to it in 1741. Supported by the influence of Mr. Jones, the father of Sir William, our authorwas, in 1743, appointed professor of mathematics in Woolwich, and in the same year he published his Inthematical Dissertations. In 1745 , he was admitted a fellow of the Royal Society, having been cxcused his admission fecs on account of his limited income. In 1744, he published his Treatise on Algebre, which was enlarged in 1555. In 1747, he published his Elements of Geumetry, which was reprinted in 1760, and subsequent years. In 1748, Mr. Simpson printed his Trigonometiyllane und Syherical, with the Construction ent apphicution of 1 ogrrithms. His Select Eurecises for Ioung Proficients in Muthematies appeared in 1752, and his last work, viz. his Miscelleneous Tracts, came out in 1757.

Mr. Simpson was likewise the author of several papers which appeared in the Plilosophical Transactions, and he edited the Lady's Diary from 1754 till 1660 , a work to which he had been a contributor since 1736 , and which he raised to a very high degree of respectability. By the closeness of his application, his healih began to suffer. A languor of mind and body supervenect, and the rexation arising out of a difference with one ol his colleagues exaggerated the calamities under which he suffered. In February, :1061, he set out for Bosworth, to seek in his native air the clements of health, but he gradually grew worse, and expired on the 14 th of May, 1761, in the 51 st year of his age.

Stison, robert, Mr. D. a celebrated Scotch mathematician, was born on the 14th October, 1687, O. S. at Kirktownill, Ayrshire, a small property which, for some generations, had been the residence of his immediate progenitors. He was the eldest son, and was cducated at the miversity of Glasgow, where he devoted his attention principally to the phitosophy and theology of the schools, and such was his progress that, at an canly age, during the illness of the professor, be taught the class of oriental languages.

While be was studying theology at the divinity hall he took a fancy for mathematics, and amused himself occasintally with this new study b but it soon gaincd upon his affections, aned it was not long in supplanting his passion lor theology. He accordingly abandoned himsell wholly to the study of geometry, prefering 'he sure methods of the ancients to the analytical methed which had now so many supporters.

At the "arly age of twenty-two, the members of the college oflired him the mathematical chair in the University of (ilasgow, in which a vacancy was soon expected. Reluctam, howeyer, to advance at so carly an ase from the situation of a stactent to that of a professor in the same college, he solicited and chtained permission to spend one year in London. Here he became arrquinted with Mr. Jones, Mr. Caswell, and Mr. Ditton, whogave him ample information respect-
ing the progress of mathematics both in England and on the continent of Europe. When the vacancy in the mathematical chair occurred in 1711, he was unanimously elected, after giving a specimen of his skill in mathematics, and of his dexterity in teaching geometry and algebra.

Immediately after his admission, which took place on the 20 th November, Mr. Simson entered upon the dutics of his class with much zeal and success, and, instigated by the advice of Dr. Halley, he directed his private studies to the restoration of the ancient greameters. His first labour was to restore the Porisms of Enclic, the history of which we have already given in our article Porisms. The next object of his labour was the "Loci Plani" of \(\Lambda\) pollonius, which he completed in 1731, but which he did not venture to publish till 1746. Notwithstanding all this caution, he recalled all the copies in the hands of his bookseller, and kept the impression by him for several years. Ile afterwards revised and corrected this work, which greatly extended his reputation, and obtained him a high place among the geometers of his age.

In 1750 our author published his Sectionme Conicarum libri Quinque, a work which he intended as an introduction to the study of \(A\) pollonias.

The restoration of the elements of Euclid was the great object of Dr. Simson's care; and, along with the data, he published this valuable work in 1750.

The Sectio Determinata of Apollonius next occupied his attention; but this work was not published till after his death, when it was printed, along with the Porisms of Euclid, and published at the expense of Earl Stanhope.
"As he never entered into the married state, and had no occasion for the commodious house in the miversity, to which, as professor, he was entitled, he contented himself wish chambers spacions enough for his own accommodation, and for containing his large, but well selected collection of books, but without any decoration or even convenicnt furniture. His official servant acted as valet, footman, and bed-maker; and as this retirement was entirely devoted to study, he entertained no company at his chambers; but on occasions when he wished to see his friends, he repaired to a neighbouring house, where an apartment was kept sacred to him and his guests. Ne enjoyed a long course of uninterrupted health, but towards the close ol life he suffererl from acute disease, which obliged him to employ an assistant in his professional labours. He died on the 1 st of October, 1768 , at the age of 81 , leaving to the university his valuable library, which is now kept apart from the rest of the books. It is still regarded as the most complete collection of mathematical works and manuscripts in the kingdom, mary of them being rendered doubly valuable by the addition of Dr. Simson's notes. It is open for the public benefit, but the use of it is limited by particular rules and restrictions. Dr. Simson was of a good stature, and be had a fine countenance, and even in his old age he retained much gracefulness and dignified manner. He was naturally disposed to checrfulness; and though he seldom made the first advances towards acquaintance, he always behaved with great affability to strangers." Those who wish for a more particular account of the life and writings of this able grometer, we must reler to "Dr. Trail's .Iccoment of the Life and Hitings of Dr. Simson,'.

Lond. 1822, a work of great atbility and interest. Sce also our articles Axamsis, Eucum, and Pomsms.

SINAI, M\%, See Arabit.
SINDE, Sindo, or Sornd. See Index.
SINES. Sce Tmaovomarmy.
SINGADORIK, or Smentore, is a town sitmated on a small isfand ol the same name at the sonthern extremity of the Malay peninsula.

The town and principality were founded by adventurers who emigrated originally lrom Sumatra, and it was a place ol litue importance till 1819 , when a British settlement was formed there under the direction ol'Sir 'T'. S. Ralles, Lieutenant Governor of Bencoolen.

The town, though still in its infancy, is rapidly extending according to a regular plan adopted some years ago. It is built near the shore, and the part of it devoted to trade stretches along an inlet of the sea, about 300 feet wide at its month, and atforeling a sale and well shettered harbour. Several parallel and cross roads extend from this over the plain, which is occupied chiefly as a military cantomment. Behind the cantonment is a hill on which it is intended to erect a government house.

The rapid rise of this important station, says Sir T. Stamford Rafiles in a letter written in 1822, is perhaps without a parallel. When I hoisted the British flag, the population scarcely amounted to 200 souls. In three months, the number was not less than 3000 , and it now excceds 10,000 , chiefly Chinese. No fewer than 173 vessels, principally native, arrived and sailed in the first two months. The following is the state of its trade in 1822:-

The interior of the island exhibits a succession of hill and dale, corered with wood. The soil is fertile, the water good, and the climate cool and healthy, The mean annual temperature of Singapore for 1822 was \(80^{\circ} 18\), and for \(182379^{\circ} \mathrm{SI}\), giving a mean of \(80^{\circ}\).* In i822, therewere 218 rainy days, and in 1823, 208. The mean annual height of the barometer for these two years, was 20.91 English inches. An account of the method of collecting the Fucus Saccharinus, (or agar-ag(tr) on the coral shoals, near Singapore, and of preparing it for the Chinese market, will be found in Dr. Brewster's Jourmal of Science, No. XV. p. 162.

The Straits of Singapore consist of innumerable little islands of various shapes, and covered with wood, indented with little bays and caves, in which the finest turtle abound. At the east end of the

Straits, lies the row of Potivhmert, so culled fromits being covered with the white excrements of birds. Amons the animals at Singapore we may mention the haticora dugenge, the liying stuired, ant the galeopithecus variergatus. The janks which visited Singapore in 1821, when Mr. Finlayson was there. were from Canton, Amog, Cochin Chinx, and the istants w, the east. The larger ones were liom 200 to 300 tons burden. They had mether chart, nor book of any kind, but merely a rude compass. A newspaper, called the Singapore Chronicle, is phblished here. Sce İinlayson's Mission to S"em thut /lure. Iar,me. 1826, p. 45-7\%. East Long. 10t? and North Lat. \(10^{\circ} 24^{\prime}\).

SION, or Sirten, the Civitus Sohunorm of the Romans, is a town of Switzeland. and capital of the Canton of Yalais. It is situated on the Rhone, at the loot of three insulated rocks, and is traversed by the Sitten, a brook which springs from an adjacent glacier. The town is tolerably well built and contains a calhedral, an Episcopal palace, a town-house, apublic school, six churches, and several monasteries. On the highest ol the rocks above mentionct, called Tourbillon, stand the ruins of the old lipiscopal palace. On the second rock, called Valeria, stand the remains of the old cathedral, and a lew houses, in which the canons reside; the third rock, Mayoria, is occupied by the Episcopal palace, an ancicnt stone buidding, erected in 1547 . In one of its aparments the diet assembles, and in the other the bishop holds his court. Population 5000. Last Long. \(7^{\circ} 9^{\prime}\), North Lat. \(46^{\circ} 11\).

SIP JAMES LANCASTER'S SOUND, an immense inlet opening from Baffin's Bay at N. Lat. \(z^{\circ}\), and about 50 minutes of Long. W. from the meridian of Washington City. This Sound, the existence of which was long doubted, has been recently explored and made memorable in scographical discovery isy Captain Parry, of the British nayy, who entered it in 1820, penetrated to Melville Island, and ascertained its cxistence as far West as \(117^{\circ} \mathrm{W}\). from Greenwich, or 40 W . From Washington City. Reduced to English statute miles, Sir James Lancaster's Sound is determined cight hundred miles from Baflin's Bay, and gives precision to the geography and hydrography of the earth in those Arctic regions. Commencing with Cape Farewell, the separation of North Ame. rica and Greenland is shown upwards of 2000 miles. Hearne, McKenzic, and Franklin, have found the open northern ocean, at N. Lat. 68, and \(69^{\circ}\). The discoveries of IIcarne and Franklin, have placed the termimation of North America, dircctly south, 7 degrees of latitude from Melville Island. The mouth of the Unjigah is, according to our best maps, at N. Lat. \(69^{\circ}\). The discoveries of the British and Russians, when combined, leave uncertain but a small portion of the northern coast of North America, and prove two very important facts in Gcography, the existence of a Polar continent, or very extensive group of islands, and the slight connexion, if not entire separation of America and Greenland.

\section*{Dirby.}

SIRENE. -The Sirenc, an instrument for measuring the number of vibrations of the air, which are required to produce a sound, was invented by Baron Cagniard de la Tour. It was made on the principle that if, as is the general opinion, the sound of instruments is produced by the regular impulses given to the air, by their vibrations, then any mechanical means of suriking the air with the same regularity and velocity should also produce sound.

The invention is as follows: A current of air is passed from a bellows by a small orifice, which is covered by a circular plate, moving on a centre, at a litule distance on the side of the aperture. Through this plate there is bored a certain number ol oblique holes in a circle round the axis, which passes ored the orifice of the bellows: and the holes are placed at equal distances from one another. When the plate is made to then round, which, owing to the holes being obligue, may be easily donc by the current ol air itself, or by mechantical lorce, the aperture is ahernately open and sint to the passage of the air, by which means a regulat succession ol blows is given to the outward air, and produces sound similar to the haman vice, and waygin in the degre of acutenes, accordians to the relocity of the phate.

In the instrament, in place of one aperture, there are many, which ate opened and closed at the same time, by which means its strength is increased, without the heisht of the sound being at all interfered with. The instrument is a circular copper box, four inches in dismeter, hasing its upper surface perforated whth a handece obligue holes, each a guarter of a line wide, atod wo lanes in tength: there is ath axis apon which the cibcular plate moses on the centre of this surtace: this plate is also pierced with 100 holes, smilar to those below, and equally oblique, but lying in a contary direction. The circumstance of their being obluge is mot hecessary to produce sound, but it gives mution to the plate by the passing air. The connexion between the box and the bellows that supplies with air, is effected by means of a tube.

In the experinemes made for the purpose of ascerfaining the vibrations for each sound, the revolution of the plate was accomplished by whed work, set in motion by a Weight the bellows were then put in acfion ouly to judge whether the sounds of the instrument agred with the notes of the hamonica, which consists of an arrangement of iron or sted bars, made (1) vibrate by a bow.

Thus constructerl, the instrument was made to produce the diatonic wotes of the gamut, and even some heyond them: the revalutions of the phate were estimated by the Eevimisus of a whed, whith tumed
 that of the plate.

The bollowint whte is the restath of these experimente; but the mantor of the instrament intuds to refme and mompore tis mathincte, and then repeat and estend them.
\begin{tabular}{|c|c|c|c|}
\hline Notris. & No of recolas. lumbatiebe the whectin: & \[
\begin{aligned}
& \text { No of reveliz } \\
& \text { tomanation } \\
& \text { the plate in }
\end{aligned}
\] & twis proder col in 1 . \\
\hline 1. & - 19 & , & 427 \\
\hline si & - 21. & - 4 & - 4Ta \\
\hline u! & - - 3 - & - 3 & - 511 \\
\hline
\end{tabular}

No. of recolu- No of revolif. Nio of vibra. tions made by tions made by the wheclin \(\mathrm{l}^{\prime}\). the plate in \(\mathrm{l}^{\prime \prime}\).

The first la corresponds to the sccond of the harmonica, and is the unison ol the common diapason.

If water is passed into the sirene in place ol air, sound is produced, cren though the instrument be contirely immersed: and the same number ol concussions produces the same sound as in the air. It was owing to this circumstance of the instrument being somorous in water, that it has acquired the name of Sirenc.

The instrument now described is nearly the same as one invented by the late Dr. Robison and desuribed in his System of Mechanical Philosophy, rol. iv. p. 403. The following is the passage which conlums it.
lt seems to be the general property of sounds that a certain lrequency of the sonorus undulations gives a determined and unalterable musical note. The writer of this article has verified this by many experiments. He finds that any noise whatever, if repcated 240 times in a second, at equal intervals, produces the note \(C\) sol fout of the gividonian gamut. If it be repeated 560 times, it produces the \(\mathcal{E}\) sol re ut, \& \(\cdot \cdot\). It was imagined that only certain regular agitations of the air, such as are produced by the tremor or ribration of chastic bodics, are fitted for exciting in us the sensation of a musical note. But he found, by the most distinct experiments, that any noise whatever, created the same effect, if repeated with due frequency, not less than 30 or 40 times in a second. Nothing surely can have less pretension to the name of musical sound than the solitary suap which a çuill makes when drawn from one tooth of a comb to anober: but when the guill is held to the tecth of a wheel whirling it such at rate that 720 teeth pass under it in a second, the sound of \(G\) in alt is heard most distinctly; and il the rate of the whecl's motion be varied in any proportion, the noise made by the çuill is mixed, in the most distinct manner, with the musical note corpespunding to the frequency of the smaps. 'The himi of the original noise determines the kind of the cominnons somad produced by it, making it harsh and firetha, or smooth and mellow, according as the ortgimal noise is abrupt or graduab; but even the most abrupt noise protuces a tolerably smooth sound when suflicient! frequent. Nothing can be more abrupt than the snap now mentionet, get the \(g\) produced by it has the smoothness of a bird's chirrip. An experiment was mate of a sound which was less promisiner than any that can be thousht ol. A stopcock was so constructed that it opened and shat the passatge through a pipe 720 times in a second. This apparatus was fitted to the pipe of a conduit leading from the bellows to the wind chest of an organ. The air was allowed to pass gently along this pipe by the opening of the cock. When this was repeated 720
times in a seconel，the sound of in afl was most smonth－ ly metered，copal in sweetness to atear lemate voice． When the frequency was reduced to sote，the：somul was that of a cleat but rather harsh man＇s voice． The cock was now altered in such at mamer that it never shat the hate entirely，bat left about one－third of it open．Whan this was repeaterl 720 times in a second，the somed was uncommonly smooth and sweet． When rednced to sor），the sound was more medlow than any man＇s wice at the same pitch．Various changes were made in the form of the cock，with the intention ol senderins the primitive mose more ando－ gous to that prodaced by a vibating string．Somads were prodtaced which were phasant in the extreme． The intelligent reader will see here an opening made to great additions to practical masic，and the means of producing musical somme ol which we have at present scarcely any conceptions and his manner ol producing them is atterded with the peentiar at－ vantage，that an instument so cunstructed can never go out of tune in the smallest degree．See the ．ln－ nules de Chim．ct de I＇lys．vol．xii．p．16t，and Lhobison＇s System of Merhemical l＇hilosmphy，vol．iv．p．10．i－10．5．

SIPTINGBOURNE，a smatl town of Coggancl，in the county of Kent．It forms chitlly one wile strect， extending along the high road，which here descends towards the cust．The church，which is the princi－ pal public buidding，is a spacious edilice，with a nave，two aisles，a chancel，two chapels，and a tower at its west end．WVith the exception of the tower， the whole has beco rebuilt since 1762，when it was destroyed by fire．There is a carious monmment in the north or Bayford chapel，having in its recess the emaciated figure of a fomate in a winding shect．＇There are here many urns，some of which are very elegant and commodions．In 1821 the tonn and parish contaned 29t houses，325 families， 269 families emphoyed in trades，and 1,337 inhabitats．

SIVAS，ame Conly Camma or Shaste，a large fown of Astatic Turley，and capital of a government of the same name．It is situated wh the great river Kizil Irmak，near its somec，and on the worth side of a plain which it traverses．There are two stone bridges about a mile distant．＂lhe town is dirty and ill built，beinge compored of woud，rooked with mases of stone and clay．In the mande ol the town are some extensive gardens，amb on an artificial hill is an old castle falling into ruins．home of the public buildings are said to be dequat．and some of the monuments lofty．Gracre is a ceforated Armanian monastery not far from the town．Nimbersof horses are reared in the sicinity，and com is rrown in ereat abundance in the valloy．The size and popalation of the town is said to equal Liverpool．Sce Jackson＇s Journey from Indits．

SIUT，Asshot T，supposed to be the ancient Iyco－ polis，is a large city of Lpper Eisept．It stands on an artificial eminenceabout hati amile from the Nile，with which it commonicates hy a canal，erosoed by a bridge of threc arches．It is a wellbuit town，aml iscopiomsly supplied with water．lu the mountain above the city there are several spacions caterns，in one ol which， hewn ont ol a free stome pock．there are three cham－ bers，one 60 by 90 ，：mother 60 by 26 ，and a thitd 26 by 25 ．Caverns still more spacious occur farther up the mountain．The caverns are carved with hierosty－
phicsatlembematical figures．The Somtancaravans Pows thounh this lown，and form its thict support． fine flax ruws in great quatities in the neightome

SWXIL，or Smum，a wow ant an wasis it the libyan descon，cetrbrated as beins the moet probathe site of the temple of Jupiter Enmon．Komeman represents the valley as lifty miks in iremmberer， and Brown，as six miles lones and fone bewat．The twon is situated upon and aroumel a mass of rock．in the subterrancan caserns ol wheh the ame iem inhabi－ tants are sat！to have resided．The hrases still hase the apperance of raves，and are hadded torether in such close confusion that many of them have no light， and a stranger reguites agnite to conduct him throush the labyinth．It is said to resmble a bechioe．from its dense propatation and the ranfused ham which it emits．The torritory is said dof fornish about 1.500 men capable of bearing arms．from being on the great caravan route，it is a place of considerable trate，many of the inhabitants being employed in the convegance of goots betwen Eagyt and ドとzzan．

From the fertility of this territore，in the millte of an extended desert，and the catarombs in the neigh－ bourng mountans．Siwah has been hought to be the site of the temple of Jupiter Immon．Accordingly， there oceurs a few miles to the westward a remarka－ ble mass of ruins，called by the natives E－mmebedio， and the origimal parpose of which canot now be dis－ covered．In the midnle of a space enclosed by a wall dbout 200 feet in circumference，are found the ruins of what seems to have been the pincipal edifice．It is about sofect long， 27 feet high，and at wille．The walls are six feet thich，and the roof consists of herge blocks of stone comented together with small stones ancl lime．

There is no sculpture on the extcrior of the walls． but in the interior are three rows of emblematical fisumes，apparently desisued for a procession，and the space betwen them is flled with hierogtyphes．In some places exen the colours remain．One of the springs near this baideng is sometimes culd and sontetimes warm．After the rams，the ground in the vinity of simah is formany welis conered with sali．

SKDLETON．Sce Ansturg Index．
SKIDDAW．Sce Cembermand．
SKIDTON，a mathet wow ol Fnglant，in the The et Fiding of Yorkshime is stuated in the matche of a fertile vale of the same name．It combists paincipaly of जne longend wide street，and the houser are bait of stone．＇The chureh，uhich stands at the coul of the main strect，is a spacious buildine，with a tower at the uest cold，and seems to have leen rebuilt in 1655．The other bubdings are a new turn－honse， and a grammar schoul，which has a gooll libraty． Skipton castie，a litue to the east of the church，is said to have been erected soon atter the conduest．It s works and delences were destroyed in 1545．Skipton is a great mart lor grain，and sicut quentities of cat－ the and sheep are sold at its namerous fairs．There are here a paper mill and a cothon manatary．The feeds and liverpool canal parses close by the lown， and has numerous warehomsen and wharde on itsbanks．

In 182？，the township of Skipton contaned 60：
inhabited houses, 684 families; 462 families employed in trade, and 3411 inhabitants. See the Beauties of England and Wales, vol. xvi. p. 723.

SKY, Isle of, from Ski, which expresses mist or clouds in the Scandinavian language, the second largest of the Hebrides, or Western Isles of Scotland, is separated from the main land by various channels, the narrowest of which is less than one third of a mile in breadth. Its form is extremely irregular. Its greatest length is 45 miles, and its breadth from 10 to 24 miles. It oceupies 342,000 English acres, of which about 30,000 are arable. It is deeply indented with inlets of the sea, so regularly distributed, that there is no spot of the island more than four miles from salt water.

The shores of this island, excepting at the bottom of the bay, are extremely rocky, and in the north-east and north-west, the const sometimes rises to a height of more than \(\boldsymbol{r}\) oo feet. In its general aspeet the island is extremely mountainous. Blaven, the highest monntain in Sky, exceeds 3000 feet in height, and the mountain ranges vary in height from 1500 to 2500. Some ol these hills are remarkable for the dark blue tints which they reflect, while others present a deeply indented outline, and inaccessible and overhanging peaks.

The principal sea lakes, or arms of the sea, are, Loch Oransa, Loch Ainort, Loch Portree, Loch Snizort, Loch Fallart, Loch Braceadale, Loch Harport, Loch Eynort, Loch Brittle, Loch Scavig, and Loch Eishert. The fresh water lakes, which are few in number, are, Loch Cornisk, Loeh Creich, Loch Columb Kill, and Loeh Shiant, or the Sacred Lake. The vallies are watered with rapid streams, which scarcely deserve the name of rivers. That which issues from Loch Correisk is the longest, but the largest are those which fall into Lochs Snizort and Portree, the principal ol which is the water of Suizort, and the rivulets which issue from Loch Fud and Loch Leatha, the last of which lorms a fine cascade at its exit from the lake. A stream near Loch Staffa falls into the seat through a height of 300 feet. The rivers abound in trout and salmon, and in the small rivers Kilmartin and Ord, is lound the great horse musele, in which pearls occur.

The climate of Sky is very wet, and scarcely three days out of twelve are lree from rain. The clouds attracted by the hills sometimes break in uscful and lefreshing showers, and at other times burst in waterspouts, which deluge the plains and destroy the erops. Stormy winds, too, set in about the end of August and the beginaing ol September, and olten greatl: injure the standing corn. 'The temperature of the lsland comesponds with its !etitude. It is, however, very variable, like the Sootish elimate in general, and about the end of "intre and early in spring the air is cold and sharp. The provalins discases are agres, fevers, rhematioms, and dysenteries. The people, are, howerer, healthy, lor in 1821 there were in the parish of sleat a woman upwards of lyo, and in that of Portere tho men and fiee women upwarels of 100 , and in that ol Duirinish one mate and there femates.

The lsland belonss to the coanty of laverness. It is divided into seren parishes, whose population in 1821 vas as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Houses. & Families. & Families in Trade. & Popalation in 1821. \\
\hline Braccadale & & - 375 & 376 & 18 & 2103 \\
\hline Duirinish & - & - 669 & 707 & 53 & 4147 \\
\hline Kilmuir & - & - 624 & 638 & 40 & 3387 \\
\hline Portree & - & - 530 & 555 & 21 & 3174 \\
\hline Sleat & & - 459 & 476 & 37 & 2603 \\
\hline Snizort & & - 525 & 53.4 & 32 & 2789 \\
\hline Strath & - & - 462 & 472 & 21 & 2619 \\
\hline 'Total & - & 3644 & 3753 & 222 & 20,827 \\
\hline
\end{tabular}

The presbytery of Sky includes, besides the above parish, that called the Small Isles, which is mostly in Argyllshire. The king is the patron of all these livings. The two principal proprietors are Lord Macdonald and Macleod of Macleod, the former of whom possesses three-fourths of the island, principally in its east end. The estate of Macleod occupies the N. W. portion. Strathard belongs to Mr. Macalister, and Macleod of Rasy owns a small track near Portree.

The principal towns or villages are Portree, the capital of the island, Stein, Kylehaven, and Broadford.

There is in Sky every variety of soil, except pure sand. In the district of Trotternish there are 4000 acres of loam, and loam and clay upon a gravelly bottom. In Sleat and Strath, and in Macleod's country, are extensive tracts of light lriable mould upon gravel, and likewise some loam mixed with peat earth, well adapted for the established rotation of crops. The crops usually cultivated are beans, oats, potatoes, and some flax. Artificial grasses and hemp have been lately introduced. The grain raised in good years is estimated at about 10,000 liolls. The live stock of Sky is reckoned to be 4000 horses, of a small but hardy lareed; 18,000 head of cattle of an excellent breed, of which about 3800 are exported amually. The sheep are estimated at about 40,000 , consisting chicfly of the Cheviots and the black-faced Lintons. Hogs, goats, and rabbits abound, and game of all kinds is plentiful.

There are many ancient forts and monuments of a Druidical character in this island, various cairns and stones. At Struan, on the top of a rock, are the remains of a circular fort, 12 licet in cliameter. The romantic castle of Dunvegan, the seat of Macleod, situated on a high rock at the bottom of Loch Fallart bay, forms two sides of a small square, and on the third side there is a Danish tower. The walls are, in two places, about seventeen leet thick. Between Dunvegan and Talisker are the remains of a massy wall, and the vestiges of a ditch encireling a precipitous rock, accessible only on one side; and on the summit of another adjacent rock is a Danish inclosure of a circular form, consisting of strong masonry without cement. The diameter of the inside is forty-two feet, and within it are vestiges of fire small cirenlar apartments. The entrance, which is covered with flags, is six feet high, and the walls of the inclosure are considerably higher. There are two large cairus about two miles to the north of this.

Duntuilm castle, or the castle of the large grassy eminence, was originally a seat of the Macdomalds. It stands on a lofty precipice near the north end of the island. Though in ruius, it is still in tolerable preservation. The remains of the castle of Dunseaicb, the poetical residence ol Cneullin, is boldly situated on an insulated rock, which a drawbridge connects
with the shoce. The ruins of the castle of Kinock stand on the opposite side. The huge caim of bencallfach is said to have heen erected over the grave of a Norwegian princess.

The geology of this island is exceedingly interesting, but even the briefest notice of it would exceed the limits of anarticle like this. In our articte Scorland, we have already given a general view of it in relation to the rest of the kinglom.* Many fine groups ol basaltic columns occur on the island. In the parish of Snizort there is a perpendicular obelisk about 360 feet round at its base, and about 300 feet high, and on the same side of the parish there is a tine cataract about 90 lect high, with an arched hollow path in the middle across the rock, through which five or six persons can walk abreast. The Spur ('ace, one of the greatest grological curiosities in the island, has been already fully deseribed in our article Ginorro.

Many beautiful and even rate minerals are found in Sky, viz. perfect erystals of analcime at 'Talisker, chabasic in the rocks ol the Storr; stilbite, mesotype, madelstein, lammonite, apophyllite, hyperstenc, actynolite, and steatite. \(\dagger\)

Sky is particularly distinguished, not only in Scotland, but perlaps in the world, for its geand and romantic scenery. Every part of its coast and finely indented shores abounds with scenes of unrivalled beauty and grandeur. Among these the most singular is Loch Scavaig and Loch Coruisk. The former is a narrow lake, encireled by rocky mountains dipping into the sea, and variegated with numerous isles of rock. l'rom this we pass on a sudden into the sequestered lake of Coruisk, which occupies a glen about lour miles long and half a mile wide, walled in with tremendous rocks of bleak and desolate grandeur. The lake, with its verdant isles, is about three miles long. All is here dreary silence and gloomy sublimity.
Sky is the country of caves: one of those in Strathaird sheltered prince Charles. Another in Loch Braceadale, disappointed Dr. Johnson. For farther information respecting this interesting island, see Johuson's Tour to the lielrides, 1775. Martin's Description of the Hestem Islants. Dr. Anderson's. Account of the Mebrides. Macdonald's Simrey of the Molrides. Nacculloch's Description of the 'Western Islands. Macculloch's Letters on the Ifighlands, 1824.

SLATE. See Minerilogy, Index.

SLAVE LAKE, if correctly delineated in Tanner's map of North America, is the third il not the second most extensive body of fresh water on this planct. The two great sources of the Unjigah appear to rise from the eastern slope of the Chippewayan mountains, and llow to the north-east. The most southern stream, Elk fiver, after a course of eight hundred miles, enters the western end of Athapescow lake, from which it again issues, and immediately below the outlet receives the Unjigah, an equal if not superior volume of water. The united stream, marked as Slave river, between N. Lat. \(58^{\circ} 30^{\prime}\) aud \(61^{\circ} 50^{\prime}\), flows NNV., and expands in the great body of Slave Lake. The position and extension of this recipient is from NE. by E. to SW. by W. 350 miles, with a very unequal,
but mean width of about 40 miles. lirom its extreme western angle issues Mackenzie's river, or more correctly the Unjigah river. The body ol' Slave lake extends from \(33^{\prime}\) to \(42^{\circ} \mathrm{W}\). from Wiashington City, 1400 miles NW. lrom lake Superior, and very nearly equi-distant, 700 miles liom the Pacilic Ocean and Iludsou's Bay.
1).nesy.

SLAVE TRADE, is the name siven to that commerce in slaves carried on principally between Alica and the West India lstands. This trade was legun by the Portuguese about the year 1481, when they established their first fort at D'I:Imina. 'The other nations in Europe gradually followed the example, and a system was established by which the chicl's of the Aftican tribes doomed their prisoners of war and their convicts to everlasting servitude, and exchanged them lor the luxuries of liuropean commerec. Is the West India Islands advanced in prosperity, the demand for slaves increased. Speculators and adventurers from every part of Lurope carried to the coast of Arrica the alluring articles of their respective manufactures. Thus tempted on all sides, the African tyrants resolved to use every practicable method of obtaining slaves. War was excited for the purpose of taking prisoners. The innocent were charged with crimes which they never committed. The helpless were seized by violence, and the inhabitants of their own villages were sometimes carried of in a body to supply the means for the inhuman barter.

The victims thus seized are marched like catte in droves to the river side or to the seacoast. They are coupled two and two by the neck with pieces of wood, or by other contrivances. Some are loaded with their provisions on with articles of trade for the masters. The weak must keep \(u_{i}\)) with the strong, and the old must proceed at the same pace with the young.

When they reach the coast purchasers imumerable appear on all sides. The sale commences and the slaves when purchased are conveyed to their respective ships. The men are conlined together two and two by fetters of iron, and putinto the fore part of the vessel, the women occupy the after part, and the boys the middle. These apartments are grated at top for the admission of light. In good weather they are brought upon deck for air. They are ranged in a row on each side of the ship, and a long chain passes through the letters of each pair to secure them to the side of the ship. After their meals, which consist of horse beans, rice and yams, with a little water, oil and pepper. they are forced to jump as high as their shackles will permit to the beat of the drum. When the cargo is made up. the ship weighs anchor, and the horrors of the middle passare commence.
The slave vessels vary from 12 to 800 tons, and carry from 30 to 1500 slaves. The height of the apartments varics from three to six fect, so that in some it is impossible to stand erect, and in others to sit down. In the best ships each person has scarcely as much room as a man has in his coffin. Lying on the bare boards, suffocated by the heat and moisture exhaled from themselves, excoriated by the rolling of the ves. sel, and immured in the filth of their lair, death is often

\footnotetext{
*The fullest details on this subject will be found in Dr. Macculloch's work on the Western Islands of Scotland.
\(\dagger\) See our article Scurlaxp, for a list of Scuttish minerals, in which the localities of the above species will be found
}
the least eril which befalls them. Sone destray themselves,and otbers secis evengeaganst theiroppressors.

In this condition the bloudfreghted vessel reaches its destined harbour. Watice into the peaceful bay ol a tropical shote temang with the luxuriance of ammal and restable life, it foats its living cargo amons senes of purity and peace. Here the slases ate prepared for saic. Sometimes they were disposced of to the highest bidfer berpubis anction and sometimes by a procesocalled the . sermble." For this purpose the main and quater decks are covered with sails, and the slases are bronght ont into the efloomy area. 'The purchacers at a signal rush in amone them witb long rupes, and endeavour to chelose as many ol them as possible. On some occasions the sermmble is held on shore in an aporment or court yard, at the deors of which the purchasers are let in in a similar manner. The terror of the poor diticans is beyond description. The wonen cling to each other, and come ol them have ben known to expire with fear. Friends are here scparated for eser. ©he father parts from his child, and the expressions of affection which often accompany the act of separation, are chocked and cren punished by the mercitess purchasers.

About one fourth of the shaves shipped on the Africon coast expire during the passage; and during the first ton years ol their servitude in the West Indies, which is called the period of seasoning, nearly the same number perish. From these two causes the anmual loss of negrocs was computed to be 43.0 n. The weatment of the slaves in the Vest India islands raries with the character of the proprietor; but there can be no dombt that in genemal it was severe and harsh, and in some instances matked with a butality incomnatible with the usages of civilized life.

Such is a brief view of that ratfe which long stained the character of entighened Europe. Mang philanthropists raised the ro roce in luvar of the matappy Alicans:mans politicians sutempe! to remore the stain from their comtry, and many R'brisians wept arer the thought that such crimes cond be tolerated in a Chistian dond. Themiserics of the poop \(\therefore\) Aricans weresumby our poets, nere declamed npon by our oratorn, and even discussed by und sarges; but sether the sons. nor the ceclamation, nor the arguancont mitigated their denting. It was reserved for a band of men,-of Christian meth- - entrembed in the strongholds of their fath, bure h the ir patrotism, and firm in their purpuse, to tree hamerelgion and the er combty from the reproach of patalsmo in the odiotes crime. The men who tock the leading put in brimping about this monal moblion, were Mr. Gramville Shar!e. Ah: Ihonsas Clarkson, and Mr. Wiblemorce, aiced by many wixe and pions, and honowable men, whase natace we camot undertabe: to chancrat." The atise and jusescrins mind which subelite and motion to every combination, and whalt cartiot thromeh exan the dumbery of its de-

 \(\because\) hich were domanded lore so dithoult a work. Whe

interest brought into the field still more formidable antagonists: hat the most alarning enemy of all was the apathy and indifference of the nation. All these dillicultiec he contrived to surmount. Ile unmasked the man of syllogismsin his quibbles. The speculator he amested behmed his counter, and with the hand of Promethens he put life into the incre mass ol the peante.
lt would be interesting to trace in detail the steps by which these erand objects were effected; but our limit; will not permit us: and the subject is perhaps more sthited to a chapter in the life of Mr. Clarkson, when it shall please Providence to call him to his reward. A rapid notice however will be expected by onr readers.

When Dr. Peckard became vice-chancellor of the minersity of Cambridge in 1:85, he gave oat as the s:bject of the bachelor's prize, " Amme liccat invitos in werituitan dere? Is it right to enslave others aganst their will:" Mr. Clarkson, who had gained the bachelor's prize of the preceding year, gained also this. Ilis mind was tumed to the subject, and at the are of twenty-four he resolved to derote himself to the catuse of the negroes. His Prize Essay be was induced to publish in an cularged lorm, under the title of "An jissay on the Slavery and Commerce of the Iluman Species, particularly the Alricans," which was honoured with the first prize in the university of Cambridge for the year \(1: 85\). The judicious and cxtemsive distribution ol this look made the great cause generaty known: and Mr. Clarkson began with zeal to devote limself to the arduous labours which he had mondertaken. Byconversing vith those who had been in Africa and the West Indies-by visiting the slave ships in the Thames-by an extensive correspondence with personsinLiverpool, and by repeated intercourse with members of parliament, he mate himself master of the details of his subject, and he interested influcutial porsons in his canse, by the information he communicated to them. Among those who entered most ardently into his views was Mr. Wilberlorce, one of the members for Yorkshire, who pledged himself to bring torward the measure of abolition in the House of Commons, and who used his influeace and his talents in cvery way in which they could be subservient to Mr. Clarkson's views.

A committec of zealous and good men was formed On the Iad May 17st, to carry through the abolition of the drican slave trade. Ar. Clarkson now drew "17: a "Summary View of the Slare Trade, and of the !rebable consequences of its abolition." This little is ork of about twelse parges, containing the substance of the question, was circulated thronghout the kingchom, and Mr. Clarksonset out on a journey to collect evalace and new information. About 100 petitions to parlianent wereprescnted by those whofavoured the abolition: and, in consequence of Mr. Wilberforce's sereve illmess, Mr. Pitt intradnced the question into the Honse of Commons, on the 9th May 178s, by a motion " that this llonse will early next session take into comsideration the circumstances of the stave trade (omphathed of in the petition, and what may be fit to be chne thereupon." Pursuing the same views, Sir William Dolben, on the zlst May, brought in a bill

\footnotetext{

}
for regulating the number of slaves to be carricel by the tomatge of the ressel. This bill, alter a watm opposition, passed both lluses, and received the ruyal assent on the lith ol July.
llaving esamed these preminary points, Mr. Clankson and the committee were roused to new exertions. Above 50,000 pamphlets were circulated, and much fresh evillence procurct. Ont the 190h Marrly 1789, Mr. Wiblerforee moved the llonse to consider its ow: resolution of last session. This motion was agreel to; but it sermed only to rouse all the passions and interests which it affected. An opposition el the most tremendous haracter was excited, and such was the ery which was raised against the motion, arsainst the charactersol the abolitionists, that many well-wishers of the cause began to waver in their opinons. Ar. Wilberforce's motion was, on a motion ol Mr. Jitt's, postponed till the 12 th May, when Mr. Wiblerforee, in a speech of three and a baff bours, introduced the question into parliament, and laill down twele learing propositions. These ly on the table till the "3 ist May, when the opponents ol the measureinsisted upon bringing forward cridonce agoinst it. In this way they gained time, and Prom the slowness with which they adduced their evidence, the guestion was postponed to next session.

In order to get the better of these ditatory measures, Mr. Wiberfore carried a motion that the witnesses should be exammed in a committec roon. The opponents of the measume closed their case, and that of the abolitionists came to be heard. Mr. Clarkbon, who had been in Paris pleading the cause among the leaders of the liench revolution, and who had been on board every ship, of war at our maval stations to collect witnesses, now arranged his evidence for the House of Commons. '1'wents-five witnesses were examined this session, and forty-he gave their evidence at the begiming of the nest. The revolation in St. Domingo, however, and an insurection in Dominica, furnished the anti-abolitionists with plansible arguments. The complete emancipation of the slaves. the indemaifation of the planters, the massacre of the whites, and the total rma of our colonies. were hedd lorth ats the immetiate consequences of abolition. These cineumstances produced a perworful effect, and notwithstanding the poncrful, and ropacts, and argumentative appeal of Mr. Wiberforect, on the 1sth April 1591, the question was lust by 163 votes atsamst 88. This minotity was graced with the names ol' Pitt, Fox, Burke. Grey, Sheridan, Wyndham, Whitbread, and Francis: and mortifying as the deleat was, it served perhaps to advance the catres. be entinting on its sitle the feclings of the great body of the perple, and by sivins the commitice an apportunity of unmasking the specious pleas of their opponents, and placing in their true light the imaginary horrors which had been hed out as the legitimate consequences of the abolition.

In Junc 1791, Mr. Clarkson undertook to abridge the evidence taken before parliament. It was printed in September, and in order that it might be perused by the people, he followed his book through the island; he cmployed influential individuals to peruse it, and lend it out to others, and with the aid of Mr. William Dickson, a zealous ally, he completed his arduous task.

By the cad of March 1792, no fewer than 517 peti-
tions against the star tade were baid before parliament. On the '?ud ol' Aprit, Mr. Wibserforemosers that the African flate trathe be abolishere. 'The house asperd to its armbul motition, but varions divisions sook place both thom and on the a3d and the 2 sho of the same: menth. on the rgestion whether it should
 179. were rejected: bat the intermediate year ol 1336 was prefered to lano by a majority of is1 to 1.32.

It now came w the lfomse til lants, whete evidhence was agam heard, and the mather postponed to mext sescion.

In 170.3. Mr. Wiblbertope arain moved the Commons on the sulaject: but his motion was lust by a majority ol' Gi aramst 53. la llay, be argan mover for a bill 10 abolinh that part of the trate by which British merchants supplied fordgors with slaves. 'This motion was carried by a majority ol' sevelu, but the bill was lost on the hard realiars by a majority of 31 to 29.

Thus defened on all hands, the abolitionists were theown inte a blate of inconcerable perplesity. Vexation and diappontment had berman whetern the powerdul mind of Xr. Clatkson. Ilis borlity fame now gave way, and he morly bost his memory, his hariug, and even his powers of articulation. Mr. Wibberforce, howerer, still kept the fied, and tried the question in 1790,1699 , and 1790 , but he could gain nothing but the acknowledgment of the principle of abolition in a limited time. The year 180 , 1 sul. 1802, and 180,3 weredlowed to pass withoat any mew application to priliament; but in 1804, after the union with Jreland, which added to the IJonse of Commons sereral warm frients of abolition, Mr. Wiburforce resamed his motion of abolition in a limited time. which was capred by very considerable majorities. When takca up to the Lords, howerer, it was postponed to nest session.

In leos, Mr. Wiblerforces renewed motion wa:s actuaily lost by a majority of to to th: but this dePeat, severe an it war. was compensated by the re-oppearance of Mr. Clakson at his post. "The casto. had dectined with his health, and wis arrain destimed to revive under his manarement. The deatio ul \(\mathrm{ll}_{\text {. }}\) l'itt in Janary 180s, led to the formation of a new ministry under M:. Fox and Lord Grenvilh, who, to a certain degree, took up the ptrestion of abolition a a cabimet measure. With this riew the AttomerGencral browrht in abill \({ }^{\text {a }}\) prohibit batish merchantsand british capital leom being employed ia the foreign shave trade. This bill passed both liousere and in the debate which took place, both Low Gerenville and A1s. Pox derlared that they would exeri themselves to eflect the abolition ot the stave tathe. and that they would consider their success as alding more glory to their administration than any other measure which they could pass. No. Fox accord. ingly, on the toth June, moved "that this llouse. considering the African slave trade to be contrary to the principles of bumanity, justice, and police, will. withall practicable expedition, take effectulmeas:mes fur the abolition of it in such manner. and at such a period as may be dcemed most advisable." "lhis motion was carried by 114 aspainst 15 . Ni:. Wiberlorce then moved an address to his Majesty, praying him " to direct a negotiation to be cutered into by which foreign powers should be inwidd to co operite with
his Majesty in measures to be adopted for the abolition of the African slave tradc." 'This was carried without a dirision.

The resolutions and the address were submitted to the Ilonse of Lords, on the 2.th June, by Lord Grenville in a speech of great power. They were both carricd by a majority of 41 against 20 . It was now Sencrally believed that the slave trade would be abolished during the next session; and therefore it was feared that the merchants would avail themselves of this last ycar to carry on the trade to a tenfold extent. Another bill was therefore introduced and carried, to prevent any new ressel from going to the coast of Africa for slaves.

The session of 1807 was not far adranced when the subject was again introduced. Lord Grenville thought it expedient to introdnce it into the LIouse of Lords under the name of an act for the abolition of the African slave trade. It was presented on the 2d January. Four counsel were heard against it on the 4th, and on the 6 th, after a brilliant debate, it was carried at six in the morning by a majority of 100 to 36 . On the 10th January, it was brought before the Commons; on the goth counsel was heard against it; and on the 2Sd January, upon the motion of Lord Howick (Earl Grey, it was carried by the triumphant majority of 283 to 16 . Apter the blanks were filled up, it again passed both Houses, and reccived the royal assent on the \(25 t h\) January 1807, a day memorable in the anmals of humanity.

SLEAFORD, N゙Ew, a market town of England, in Lincolnshire, is agreeably situated on the Slea. The place is flourishing, and has a handsome Gothic church, with a tower and spire 144 feet high. It has a free school, and a hospital for twelve poor men. Population of the town and parish in 1821 about 2220. Sce Bcunties of Englund, vol. ix. p. 758.

SLESTIICK, or Soeth Jurlaid, is a province of Demmark. It occupics 3600 square miles, and has a population of 300,000 on the mainland, and 40,000 on the islands. The chiel towns are

Sce our articles Deviark, and Kien.
Sles WVlCK, the capital of the above province, is agrecably situated on the river, or Gulf of Sley. It is very bogs, and irresularly built. The houses are of brick, and resemble, in their neatness and general aspect, those of the Dutch. 'lhe principal buitdings are the cathedral, live churches, the town-house, the orphan house, the work-house, and the nunnery of St. John. 'There is here a refinery of sugar, and manufactories of leather, carthen ware, and sail eloth. The Sley is now navigable by means of a canal. The old palace of Gottorp, which is a large brick building, encircled with a rampart and moat, stands close to the town. East Lon. \(9^{\circ} 35^{\circ}\). North Lat. \(54^{\circ} 32^{\prime}\).

SLIDE is the name given to an inclined plane for facilitating the descent of heavy bodies by the force oif gravity. In general, they have been objects of no great importance; but one was lately erected at Alp-
nach, in Switzerland, which has excited great interest throughout Europe.

For many ages, the craggy sides and the deep ravines of Pilatus, a lofty mountain near Lucerne, were thickly clothed with vast and impenctrable forests of spruce fir, of the largest size, and the fincst quality, surrounded on every side by the most terrific precipices, inaccessible to all but a few daring hunters, who, at the risk of their lives, scaled these precipitous rocks and crags, in pursuit of the chamois. It was from these bold adventurers that the first intelligence was derived concerning the size of the trees, and the cxtent of the forests, until a loreigner, who had visited their sequestered glades and gloomy recesses, in pursuit of the chamois, was struck with amazement at the sight, and pointed out to the attention of several Swiss gentlemen, the vast extent, and superior quality of the timber. The project of making use of these rich natural stores, was however rejected as chimerical by persons, whose experience and skill made them competent to judge; and it was consequently abandoned. 'This attempt having failed, these immense and raluable lorests would, in all probability, have been suffered to flourish and decay, without ever being applied to the use of man, if it had not been lor the enterprising genius, and the unwearied exertion of M. Rupp, a native of Wirtemberg, who, owing to some political changes which had taken place in his own country, had settled near the Lake of Luccrne. Ilis curiosity being strongly excited by the accounts he had heard of the forest, he was induced to visit it. Ife was so much struck by its wonderful appearance, that he entertained the idea of being able to convey the trees into the Lake of Luccrne, solely by thic own gravity. During his long residence in switzerland, his character and talents were so much appreciated, that, with the assistance of three Swiss gentlemen, he soon lormed a compary from among the proprietors, with a joint stock, to enable them to purchase the forest, and to construct a road or Slide, down which it was intended the trees should be precipitated in the Lake of Lucerne, an arm of which washed the bottom of the mountain, lrom which they could be casily conreyed by the Rhine to any part of the German Occan. This stupendous undertaking was finished in 1810.

The Slide of Apmach was composed of between 25,000 and 30,000 large pine trees, squared by the axc, and formed into a sort of trough, about six feet broad, and l'rom three to six leet decp. In the bottom of the trough there was a groove for the reception of a small stream of water, let in over the side of the trough every now and then, in order to keep the whole structure moist, and thereby to diminish the excessive friction, occasioned by the rapidity of the descent of the trece.

The slide was sustaned by cross timbers, and these cross timbers were themsclives supported by uprights fixed into the ground. It was sometimes carried along the faces of the most rocky eminences, sometimes it went under ground, and again it crossed the deepest ravines, where it was supported by scalfoldings 120 fect high. The skill and ingennity which were displayed, and the difficulties which were surmounted, in this vast modertaking, gained a just tribute of admiration to the enterprising individual who projected and carried it through. Before the work could even
be bergn, it was neressary to cut down many thousand tress to obtain a passarge for the labourers thromst Lhe impassable thickets. Ind N. Rapis was himsell
 sumpented by topes, at the imminent hazard of his life. And though he was atmaked by a violemt fever, yet his ardow was so preat that he hat himself conreped every dav, on a barrow, to the mombtain, in order to superintend the operations of his worknem. The expense attendins this undertakins was, acrode ing to one accomb, fen, (ko or tho,000; but arcording to amother only 04,230 . Before the wees were lanached into the shde some pervous preparatoon was necessary, which consinted in lopphas off the bratichere, and stripping them of the bark, that they might descend with the greater ease. Exery thang being prepared, the tree was introdnced into the trongh, "ith the root foremost; abd it desecoled with such relocity as to reach the lake in 6 minntes, a distance of abont three learues or nine miles; but the largest tres pur formed the same distance in about thre minntes. In order to present the accidents, which might take place, if the tree was let ofi hefore overy thing was ready at the lower end, a regular wedraphic communication was established between the two extemities of the slide; and workmen were posted at regnlar distances, of about a mile from each other, and so arranged that every station should be visible from the ones both abore am below 登. When the tree was lannebed the workmen at the upper end hoisted their telegraple, (which consisted of a board, turning at its middle on a horizontal axte. The board when placed upright was visible from the two stations above and below it, but when it was turned horizontally it was not perceptible lrom (ither,) the same signal was repeatect by all we rest in succession, so that the workmen at the lowerend ol the tronghreceived intimation of the approach of the tree atmost instantancomsty. In a few minutes the tree came thundering past the men, and plunged into the lake. The lowest board was then turned down, which was fullowed immediately by ail the rest, and thus the workmen at the top were informed of the sate descent of the tree. The same operation was repeated durimg the rest of the day; and it was so arranged that a bree should descend every five or six minater. Whan the progress of the tree was impeded hy any obstacte, or when it started out of the trough, the boand was only hall depessed; and as the workmen knew by this signal that something was wrong those who becrupied the stations above and below the place where the tree had stark, came and assisted in remorins the obstruction, which was generally occasiomed by the springing of a bém in the trough.

In order to prove the emomous fore which the trees acquired by the rapidity of their descem, Xi. Rupp caused some of them to spring from the trough. The result was, that they penctated the earth by their thiekest ends to the depth of 18 and sometimes at fect. Anel one of them having ancidentally come in contact with another, clelt it from top to botom with the violence and rapidity of lightning. In ortar that none of the small wood might be lost, N. Rapp constructed sewabextensive mannactories in ditirecont parts of the forest, for the purpose of reducing it to charcoal. He also built magazimes for preserving it when made. The trees, alter having reached the Vol. XVII. Parif.
lake, were made up into rafis, and fonated down the Renss bey the Sar, into the libince lie whis ratideronweyare, they emotally armed at Baste a liow days alter bhey land left Lacerace. At Baste they passed out of the hands of the company: They were still
 pertomed a journey of abont anom mites in less han a month from the time they left Piatas. until they arrived at the (Beman Ocean.

We are somy 0 arld that this stupendons work of art is now totally destroyed: and that almost every tace of it is chblerated on Wome Pilatus. 'The great demand which formety exinted lom the timber havins catialy ceased, owing to political catises, the cottins and tamporting of the timber was neecssanily discontinued, and the slide was suffered to go wruin. Ser Payliars /Forles, vol. i. Appendix, No. 2, p. 80.

SIIDINCR RULE. See Amamande, where we hase given a drawing and description of has useful instrument. In the Philosophical Transactions for 1815. p. 9-29, Dr. Ruget has publishoel a "description of a new instrament for pertormins the involution and evolution of mambers," in which will be fomuct many useful observations and improvements on the sticlings rule. An account of it will be fomed in the Supplement to this work, together with a description of 'l 1 . Young's improved slidingrule lor gangiag casks. See biande`s Jommal, vol. xvi. p. 36t.

SLIGO, a county of Ireland, in the provine of Conmangh, is bouncled on the cast by Leitrim, on the south by Roscommon, on the south-ivest and west by Nayo, and on the north by Doneeral Bay. Its greatest length from north to south, from liunduil in the Curlew mountains, is \(59 \frac{1}{2}\) miles, its greatest breadth S3, and its area 465,290 linglish acres. It contains six baronies and 69 paribhes, and sends to patlament three members. About a hird part of this connty is occupied with bogs, mommains, and lakes. The best part of it is to the south of shigo, where the county is fertile and beatifal, there boing about 140 square miles where the soil is stited lor grazing or tillage. In otber places a sood deal o! the soll is shallow and moorish, lying above what is caned leterefe on grey Base The waste land lies principally in the north and wert.

The principal streams are the Sligo. Bonnet, Owenmore, Apra, Cooloney, Esky, and Nory, which separates the connty for several miles from Sligo. The Sligo, which hows out of l.ongti (ill. is navigable to Shigo, and the doy is natigable for six or serem miles from the sea.

The chicl fresh water lakes are Loush (iill, Arva, Tat, and (iarat dough Gill, which porsemach some charming semery, has a manber of wouded istants, on one of which, siz. Intismote, are the rnins of a chareh, and the remains of ather buidengs. Lourg Arva is ahont cight miles longe covered with island . and inegular in its form. The Arrat hows out of it notthward to Ballysalere, and throws itself in a stopendurns cataract into the occan. The chiel bays are those of Killala and Sligo, which communicates with Lough (illt. The island of lmismarry lies to the north of Sligo Bay. There are samon tisberies of considerable importance on the sigo and the Noy. Proat abounds in the Talt and diant, ame white foh is found plentilully on the coast.
"ilhe principal minerals ia Sligo are iron, which has ? P
for some years been wrought, lead, manganese, copper, and silver. There are strong indications of coal near Lough Gill, and there are various fine clays fit for pottery. Limestone, and limestone gravel abound, and also marl.

The estates in Sligo vary from \(\mathscr{L}^{5000}\) to \(£ 9000\) a year, and belong chiefly to absentees. The size of farms varies from three Irish acres to 500 . The leases are for 36 years and three lives, and sometimes for 61 years and threc lives. The chiel articles of produce are oats, barley, and potatoes. Illicit distillation is carried on very generally. Cattle and sheep are reared to a considerable extent.

The principal articles of export are linen, salt, kelp, butter, and corn.

The principal places in this county are Sligo, and about 20 hamlets, at which fairs are held.

The state of the peasantry in Sligo is nearly as bad as in any part of Ireland, with respect to their labour, their food, and their clothing. In 1815 the price of Iabour was only lod. a day, and 1 s . 1 d . in seed time and harvest.

The population of the county was about 60,000 in 1790; but in the last census, taken in 1821, it was 127,879. The catholics are to the protestants as 80 to 1 ; and in 1815 there were in the parish of Kilmactige 1200 catholic, and only ten protestant families. See Parlan's Statisticul Survey of Stigo, 1802.

SLIGO, a seaport town of Ireland, and capital of the preceding connty, is agreeably situated at the mouth of the river Sligo, where it falls into Sligo bay. The chief buildings are a court-house, a jail, barracks, an infirmary, and a charter-school, handsomely endowed by the family of Wyunc, the patrons of the burgh. The castle of Sligo, now in ruins, was built in 1262. There was a monastery built about the same time, the ruins of which are of some magnitude. Three sides of the cloister, covered with an arched roof, still remain; the workmanship of the arches and pillars is cxtraorelinary, and scupture adorns some of the pillars. The great east window is beatiful, and the relievos on the high altar descrve notice. The nave is spacious, with a sort of gallery round it, supported by stone pillars.

The harbour of Sligo admits vessels of 200 tons cluse to the quay. The exports consist of large quantities of linen for the English market in a finished state, and also of salt, butter, and kelp. There is here a linen hall, and in the county there are many bleachins greens. The town is governed by a provost and a town elcrt. The population is above 10,000 . The town sends one member to parliament.

SliNG. Sec Ams.
Sl.lP, among shiphobers is used to denote a place with a gradual slope on the banks of a tiver, suited lor shipluildins.

Mr. Thomas Morton, late shipbuilder, Leith, has given the same name to an apparatus for hanling vessels out of the water, in order to be repaired. This contrivanee is a substitute lor thry tocks, and having crected it in his own haldimg yard at lecth, and brought it to perfection by successive improvements, Mr. Norton secured the exclusive right to it by a patent.

Mr. Morton's slip is represented in section in Plate DIl. Vizs. 1, winere \(\Lambda, I 3, C\), are the sections of three ralways, forming a plane, inclined at neally the same
angle, as the slips generally used by shipbuilders. This railway is placed on a sloping beach, and extends from above the reach of the tide down to low water mark. A carriage or frame of timber scen in section at \(\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\), runs along the iron railway upon rollers on truck wheels, guided by hanges. Blocks are laid upon the midele or keel beam Lol the carriage to such a height, that the keel of the vessel may clear the ends of the cross pieces \(D\) and \(F\), and each block embraces four trucks, two on each side of the bean. The blocks seen at \(M\) and \(N\), which slide upon the cross pieces, are made up to suit the rising of the ship's bottom; they run out to the extremity of the cross pieces, and their ropes \(r, s\), (\(r\) belonging to the left hand blocks, and \(s\) to the right hand ones) crossing the carriage, are reeved through a sheave attached to the opposite cross piece, up to the top of the rope rod. The shores \(S\), \(S\), (when any are necessary) are put into their places, turn upon a joint at \(T\), and are prevented, when the vessel is Hoating on, from falling outwards by a small chain. Mr. Morton was at first in the practice of using shores; but having never found the slightest inconvenience or risk, even with vessels of the sharpest bottoms, many of which have been upon the slip, he has not of late found it necessary to use them, though they are particularly specified in his patent. He is still of opinion, however, that they may be useful when ships of war are brought upon it, for which, he is confident, it is well calculated.

In order to hatul ships ashore, the carriage thus prepared is let down the inclined plane generally at low water. The chain of a powerful purchase is then attached to the carriage, ant a waterstaff is placed at the fore end of the keel beam, to marls the depth of the water, and to be a guide in 月oating the vessel on. The vessel is then brought to the lower end of the carriage, and hauled over it, (having bow and guarter lines to steady her) till the adranced part of the keel takes the blocks between the fore loot gnides. The ends of the ropes \(f s\) are now taken on board from the rods \(R \mathrm{R}\), but kept slack, and the vessel is hauled forward as the water flows, until the keel takes the blocks at the contracted part of the guides, which are just witle enough to reccive it. Being still alloat abalt, having been previously so trimmed, the ressel is then adjusted over the blucks abalt by a water liae. When the iren guides ab,cd, are haved ap by their ropes a \(c, d f\), they confine her to settle down truly. By heaving the purchase, she will soon take the blocks abaft, which is observel by the water mark left upon her bottom. She is trimmed uprisht, and the foremost bitge, or sliding blocks, hanled in tipht. As she rises out of the water, each succeeding block is hauled in, but not till the weight of the ressel has settled well on her keel; and the shores (if used) are brought to her sites, and there secured. Thus prepared, she is hauled up the inclined plane at the rate of from 2 ? to 5 feet per minute, by six men to every hundred ton. When hataled up, she is shored from the ground; the keel beam is secured from moving; and the sliding blocks, with the cross pieces are, in a few minutes, removed, when the vessel is ready to be repaired.

The blocks being relieved of the vessel in the usual manner, the keel beam, with the alter cross beam will run from under her. The carriage is again put together, and another ressel can be hauled up astern of
the former. In point of fact, it is usual to have more than one vessel on the slip at the same time.

In launching a vessel, the cross pieces with their blocks are placed bencath her, and she immediately descends into the water. In order to launch and haul up vessels the same tide, temporary blocks are put uader the bottom of the vessel to be launched, upon the cross pieces, instead of the sliding blocks which are prepared as before to suit the bottom of the vessel to be taken up. 'The vessel is then latunched, and she and the temporary blocks which steadied her, float from the carriage. The other vessel is then taken on and hauted up as lormerly described.

The arlvantages of this invention are numerous and important. It can be erected in situations where it is impracticable to have a dry dock, and at an expense which is comparatively inconsiderable; and it can be removed from one place to another, and may even be carried on board a ship, and applied to use on voyages of discovery and in remote siluations, where repairs would otberwise be impracticable. 'The apparatus and the ship under repair being both above ground, the air has a free circulation; the men work with more comfort, and in winter they have the light much longer than within the walls of a dry dock. There is a saving of time in carrying the materials for repairing the ship; and such is the lacility of the whole operation, that ships can be hauled up and inspected, and even get a trifling repair, and be launched again the same tide. As the mechanical power is attached solely to the carriage, the vessel is exposed to no strain, and the work ol repair on one vessel is never interrupted by hauling on another, as in dry docks.

The whole expense of Mr. Morton's slip, exclusive of the cost of preparing the foundation and laying down. (which must vary accorcling to circumstances) may be stated nearly as follows, viz.
\begin{tabular}{rrr}
For vessels of & 100 tons & \(\boldsymbol{x} 150\) \\
200 & 600 \\
300 & 800 \\
400 & 1000 \\
& 500 & 1100
\end{tabular}
and for ressels of greater burden in proportion.
An attempt was made about fon years ago to invade Mr. Morton's patent; but his risht was finally established by a cont of law. On this occasion a number of witnesses were examined, including several oflicers of high rank in the royal navy, who all agreed that the slip was an invention of great practical utility; the maval officers being larther of opinion, that it might be made to answer for hauling ships of war out of water as well as mercamtile vessels. The editor of this work has also seen the most satisfactory statements Crom a number of shipbuilders and others who have used the slip for several years, during which not a single accident has occured in their practice, any more than in that of the patentee himself. It is now in use in many of the seaports of Great Britain and Ireland; slips have also been sent by Mr. Morton to France and Russia by the orders of the governments of these countries; and one, we understand, has been recently forwarded to Philadelphia.

With reference to the introduction of the slip into the United States of America, it may be mentioned, that within these threc years an apparatus, meant to
serve the same purpose, has been erected at New York by a mative of (ireat Britain, all the valuable parts of which seem to have been taken from Mr. Morton's slip, with the addition of oher contrivances of little or no utility, to bive it the appearance of an original invention. The expense of this constraction must have been several times that of Mr. Norton's. The apparatus haid down at Manhattan Island, understood to be for vessels ol for or sor toms, having cost, (but every thing included till it was ready for use, nearly \(\mathcal{L} 17,000\); and it does not appear to be calculated to reccive more than one vessel at a time. We have looked into the documents containing these facts, and think it due to our country and our conntrymen, that our transathatic brethren should not be allowed the merit of an investion to which they have no just claim.

Such we conccive to be its importance to the mercantile interest, that we think it may be usclul to mention some of the ports in different parts of the Enited Kingdom, where it maty be seen in use, viz.
 Edinburgh (Union Canal)
SLOANE, Sum Ilans. See Bothiy.
SLU゙ICE, Governor. See llydmodyamics.
SLUICE, an account of several new and ingenious sluices invented by Mr. 'Thom of Rothsay, will be found in Dr. Brewster's Jomatal of Secience, vol. ii. p. 100, 102, 288 ; vol. iii. p. 154, 155, 343: and vol. iv. p. 180. A drawing and description of the most important will appear in the Supplement to this work.

SLUXSE, Rexé Fraxels, an eminent Dutch mathematician, was born of a noble family at Vise, near Liege, in 1622. He filled the office of canon of St. Lambert in Liege, and abbot of Amaz, and grand chancellor to the bishop and prince of Liege. He died at Liege in 1685, in the 63 d year of his age. Slusius was a man of great literary as well as mathematical attainments. His principal work is entitled Mesolabium seu dur medise prop. jer circulum et ellipsincel. luyp. infontis modis cwhilite. Leod. 1659, the second edition of which appeared in 1668 , with an addition on analysis and geometrical miscellanies. He was a fellow of the Royal Society, and published the following papers in the Philosophical Transartions.
1. A Short and Lasy Method of Drawing Tangents to all Geometrical Curves.
2. Demonstration of the same.
3. On the Optic Angle of Alhazen. See Montucla's Mist. des Mathemeliques, tom. ii. P. 66, 159, Exc.

SMALL-Pox. See Inoculation.
SMEATON, Joun, a celebrated civil engincer, was the son of an attorney, and was born at Austhorpe, near Leeds, on the 28 th May 1829 . At a very early age he crinced a great passion for mechanical pursuits, and displayed much ingenuity in the Cormation of his tools, and in various pieces of mechanism which he constructed; but it does not appear that he had devoted his time to scientific pursuits till he had reached the period of full manhood.

In 1742 his father who was anxious that he should follow his own profession, took him to London, where he atended the courts in Westminster Ilall; but finding that nature had intended him for other purposes, he addressed a memorial to his lather, which obtained him permission to follow the bent ol his own genius.

From this time Mr. Smeaton continued to reside in London, and about 1750 he established himsell as a mathematicalinstrument maker, a profession which brought him in contact with the ingenious men in the metropolis, and from this time he seems to have devoted himself particularly to philosophical pursuits.

In the same year he communicated to the Royal Society an itccoumt of Dr. Kinight's Improvment of the Marinor's ('ompors. In 1752 he commmencated to the same hody three papers, viz. an account of some improcements on the air \(\mu \mathrm{Hm} / \mathrm{s}\) : a deseription ol an cnsine for raising uruter by firt, being an improvement on Satory's ronstruction to renter it cupable of awoting itself. inmented by M. de Woura of Porleged: and a descripition of a nete tuclale of pultys. In 1751 he had invented a muchine for merusuring the way of a ship at seu, and he made 1 wo vogages in company with Dr. Knight to try it, and aso a compass which he had invented. This instrumont be subsequemty deseribed in the Phimsophect Transactimes for 165 t .

In the year 1753 Mp. Smeaton was admitted a membur of the Royal Society. In 175t he laid before them an account of his Fire Pyrometr, * and in the sanse year he undertwok a vogage to IIolland and the Nethe:lands, to see the works of art which these countres contained. The inland masigation ol llolland must have particularly orcupied his attention, and i ? is probuble that he henceforth resolved to devote himsclf to the profession of an enginecr.

In December 1\%5s, when the Eddystone lighthonse was destroyed by hice, the proprictors applied to Lord Mocclesticid, the president of the Royal Society, to recommend a proper person to rebuild it. Ilis londshin recommendied Nip. Smeaton, who exceuted the work to the satisfaction of all partics.

A fuil accome of all Mr. Smeaton's operations has already been given in our article Lignthotset Dr. Smeaton's own account of this great work appeared in a folion volume in 1791, and he is said to have remarked that this work cost him more trouble than the eretion al the highthouse itself.
- culy as the years 1752 ated 1753 he was occupied vitis an Sopprimental E'mquiry respecting thr ur'wat poners of watw and wind to twom mills wad othre mestiour duptulins on cirrular motime. This inquiry was cartid on by matas of working models of andershot, beast, orershot, and wind mills, and an accombt of it under the abore (itle, was in 175 ! lad before the Roval hodety, who honoured it with the Copley medal. A fall aconant of these experiments has been
 Manがasco.

Nuteithstanding the reputation which Mr. Smea-

 cren live jears after its complion. In 176\% he was
appointed cue of the receivers of the Derwentwater estates, and in the discharge of this cluty he made many improvements on the mills, and on the estates of Grecnvich llospital. In 1775 , when his business as an engincer had greatly increased, he was desirous of resignims that appointment, but at the urgent entreaty of his friends lie consented to continue two years longer.

In 1761 he and his friend Mr. Holmes became proprictors of the works lor supplying Deptord with water; and on this occasion it is likely that he made those experiments on the friction of water in conduit pipes, and on the discharge of water through orifices, which were found among his papers, and which were first printed inourarticlellybrobrames, through the kindness of Jir. John Farey.
\(l_{n}\) the cunstruction of mills our author exhibited sagacity and practical talent, improved by theoretical knowledge. Descriptions and drawings of his overshot and breast whets are giren in our article Hydrodymamics. Ife crected also a steam-cnginc at Austhorpe, in order to determine the power ol Newcomen's steam engine, upon which he made considerable improvements.

Abomt the year 1785, when his health began to give way, Mr. Smeaton withdrew himsell, as mach as possibice, from the cares of business. in order that he might complete his description of the Eddystone lighthouse and some other works. These be fortunately lived to finish; but when he was walking in his garden at Ansthorpe, on the \(16 \mathrm{th}^{\text {a }}\) September 1792, he was afllicted with a paralytic stroke, which cut him olf ou the 2sth October 1\%92, in the 69th year of his ase.

Mr. Smeaton was a man of plain and unassuming manners, which were enlivened by a considerable portion of the fervour of groius. In his domestic and social capacity he was affectionate, kind, and sincere, and an ardemt and unsolicited patron of merit. Besides the works which we have already mentioned, he published the fullowing papers in the Transactions.

On the Sffects of Ienghthing the Stecple and Church of Lestaithial in Cormall, Phil. Trans. 175T. p. 193.

Brmatles on the different Tomperetures of the . Gir at the E'ddystone Lighthouse and at Plymouth. Id. 1758, p. 48 s.

On the Menstrual Parallax arising from the Mutual Cirtatilution of the Eath and Nlova: ils Luflurnee on the Oberration of the Sim and Planets, with a Method of Ohsmerine il. If. 1768, p. 156.

Mearigition of a Nixe Wethem of Obscruing the Metezonly Butics aut of the Merilien. It. 176s, p. 17o.

Inswighion of a New Itygromeler. Id. 17al, P. 198.
- lat Sorperimental I.remination of the Quentity and
 ed in gitions diffrem detrems of cemeily to hewry bodies from whate of rest. la. 17T6, p. 450.

Ohasrevelions on the Giraluction of . Astennomieal \(\mathrm{In}_{\mathrm{n}}\).

 cles into any giten number of parts. 1, 1756, p. 1.

\footnotetext{

}

New Fendamental experiments on the Collision of Botics. Id. 1782, p. 337.

Observalions out the light. Asrension anel Dewtimution of Mercury oul aj the Mh ciclien mom his gremest domese.
 his ou'n incention and worlemmaship. 11. 1786 p. 318.

A volume of Xlr. Smeaton's repores was published in 1797. Mr Smeaton bar the merit of establishingr the Sociely "f C'icil Eingiurcs in \(175!\); but in consequence of his having received some improper weatment lrom one ol its menbers, it was disublued in 1792, by the mutual consent of the members. Abse ther Society of Civil Engincers is now in lull actisty, under the anspices and presidency of our distinguished comeryman, Mr. Tellord.

Mr. Smeaton was invited, upon his own terms, by the Empress of Russia, to superintend the preat projects which she had in contemplation. He resisted, however, all the inducements which were proposed; and the Princes Dashkoff, through whom the imitation was made, is said to have replied to his refusal. "Sir Robert Walpole was mistaken, and my sovereign has the misfortune to know that there is one man at least who has not his price."

At ancarlyperiod ol Mr. Smeaton's lite, be met with a curious adventure, arising from his likiness to the poct Gay. Whenhe was walking with Ilrs. Smeatonat Ranelagh, he observed an elderly lady and genteman fix their marked attention upon them. Diter some curns, the strangers stopped, and the lady addressing Mr. Smeaton, said, "Sir, I do not know you, but so strongly do you resemble my poor dear Gay, we must be actuainted: yon shall fo home and sup with us; and if the minds of the two men accord as moch as their commenances, yon will han two cheerlul old folks who can love you well; and I think you can as well deserte it." The strangers were the Duke and Duchess of Queensberry: Mr. Smeaton accepted the invitation, and the friendship of the parties comthued without interruption.

SMELTMGG. See Metalderay.
S.IITII, ADsa, a celebrated scottish moral and political philosopher, was born at Kirkathy, in life. shire, on the 5th June 1723. He was the only chitd of Mr. Smith, comptroller of the ctistomsin that town, and who bad formerly been private secretary to the Lapl of Loudon, when he was principal secretory ol state for Scotland. His father died a few weeks after the birth of his son, whose constitution was lones infirm and sickly. When he was only three years old, and on a risit to his uncle, Mr. Douglas of Stratheny, he was stolen by a party ol tinkers; but in consequence of an active pursuit ol the vagrants, he was rescued liom them in Leslie Wood. From the erammar sehond of Kirkaldy he was sent, in 1757, to the College of Clasgow. In 1740, he went to Baliol College, Oxford, as an exhibitioner on Snell's foundation. At Cilasgow, his principal studies were mathematics and natural philosophy; but the lectures ol Dr. II Iutcheson seem to have inspired him with tinat taste lor moral and political sciences, which guided all his future inquiries.

After a residence of seven years at Oxford, he spent two years with his mother at Kirkaldy. He had been destined lor the church of England; but his love of study induced him to settle in Scotland, in the expec-
tation of one of those moderate appointments which our conmey offers to licerary men.

Ia 17: 18. he delivered lectures oln rhetoric and belles
 Kames, and abont his time he scems to hate obtained
 bopongh. Ia 17.5t, he was chasen proliessom of logice
 (1) the chat of moras phitoseploy. This important situation he titled for thitcen beas. In 1atis, Np. Smith contribnted a review ol Di. Juhmon's litionary to the ldindsurgh Revicw, which was begno in that year. In the year 17.59 , Ahe. Smith published his Theney of Jomel semtimmte, to the second edition of which he athed a dissertation Ont the bitain of /an-
 orieriand and compmunted.

Mr. Chates lowmend was so delishted with this work, that he invited Nr. Smith, about the eard of 1763 , to accompany the Duke of buecleach on his travels: and the liberal terms which were ofered to him. and the strons desime he nad of visiturs the continent induced him to resign his prolesership.
 the cominent. From Paris they went to Coneva, roumb by 'Thontouse, and after their return to l'aris in December 1765 , they spent nearly a year in that capital, where be enjognd the society of 'lupgot. Quesmay, Neckar, D'Alembern, Helvetins, and Mamomel. Nr. Smith retumed to Lomen with the Duke in Uctube \({ }^{\circ}\) 17вб.

The next ten years of Mr. Smith's life were spent chiely at his mother's in Kirkaldy, with the exception of a few visits 10 Eilinburgh and Jondon: and his time scems to have been devoted to the composition of his Inquiry buto the itulure mut Cateses of the Hethlth of Thations, which appeaved in 1ヶT9, and which cxtended the reputation of its anthor to every comer of Curope.

In the year 176 , Nr. Smith was appointed one of the commissioncrs of the customs in scotant. Ite theretore removed with his aged mother to Ddimisergh, where he spent the most of his time principally in the socicty of his literary limonds. In 1787, he was elected rector ol the university ol (lasgow; but his constitution had now begun to give way, and his health and strensth gradually declined till the period of his death, which took place in July 1790, and which arose forn a chronic obstruction ili the bowels. A lew days before his death, he gave orders to destroy all his papers, excepting a lragment ol a great work on the Ilistory of Stronomy. Mr. Smith never sat lur his picture; but the medallion of Tassie gives a correct idea of his profile, and of his general expression. He bequeathed his library and the most of his property to his cousin, Mr. David Douglas, late Lord Reston. on whose education be had employed much of his leisure.

Those who wish to peruse a fuller accomnt of the life and writings of this eminent indivilual, are rePerred to the admirable account of him by Nr. Dugald Stewart, published in the Ledinturelh Tranactions, vol. iii. p. 55. See also our article on Poletres. Economr.

SMITM, Roment, LIL.D. and D.D. celcbrated as the author of a treutise on /harmonices, and of a C'omplete System of Ophics. Wis early bistory is not recorded, but it appears that he was admitted A. l3. in

1711, LL.D. in 1723, and S.T.P. by royal mandate in 1537. In 1716, he succeeded his cousin, the celebrated Cotes, as Plumian professor of natural philosophy at Cambridge; and in 1722 , he published Cote's Hermonir Mfnsmarum with additions. In 1742, he succeeded Dr. Bentley as master of Trinity college, Cambridge. Having been tutor to the Duke of Cumberland, he was made master of mechanics to the king. In 1738, he published his Complete System of Optics, in four books, viz. a popular, a mathematical, a mechanical, and a philosophical treatise, 2 vols. 4to. It is dedicated to the right honourable Edward Wralpole, and contains many original investigations and obserrations. In 1747 , he cdited a second edition of Cotes's Hydrostatical and Pnewmatical Lectures, and in 1748, he published his Hermonics, of which a second edition, improved and enlarged, appeared in 1758. He died at Cambridge in 1768 , in the 79 th year of his agc. He bequcathed two annual prizes of \(£ 25\) to two commencing bachelors of arts who should be the greatest proficients in mathematics and natural phiBosophy. He left also £zooo for repairing Trinity College, and \(£_{2 j 00}\) to the university. See Farmonics.

SMITH, one of the northern counties of Teunessee, bounded by Sumner county of Tennessee W., Wilson SW., Warren and White SE., Jackson E., and Allen and Monroe counties of Kentucky N. Length from north to south 36 , mean width 15 , and area 540 square miles. The surface is rather broken, with much excellent soil. Some of the sources of Big-Barren branch of Green river rise on its northern extremity and flow into Kentucky. Cumberland river is its principal stream, cntering from the east, and with a curve to the southward, traverses the entire breadth of the county, receiving a large confluent, Cancy Fork, near the middle, at the seat of justice, Carthage. Population, 1820, 17,580, or a fraction above 32 to the square mile. Contral latitude \(36^{\circ} 23^{\prime} \mathrm{N}\). Long. W. from Washington City \(8^{\circ} 50^{\prime}\).

Darby.

SMOLENSKO, a town of Russia in Europe, and the capital of a government of the same name. It is situated on two hills, and on the intermediate valley, watered by the Dneiper which is here navigable. The part of the town on the right bank of the river is defended by a wall-thirty feet high, fifteen thick, and about three-fourths of a mile in length. This wall, the lower part of which is of stone, and the upper part of brick, traces the course of the hills, and has towers at every angle. A ditch and a covered way, and some modern redoubts add greatly to its strength. The houses of the common people are chielly built of wood, and are grenerally one story high. It is divided into two parts by a wide street paved with stone, but all the other streets are lloored with planks.

It was at this town that the Russiatus in 1812 gave battle to the French, and were defeated; and on this occasion the town was bombarded and set on fire;* and it was here, on the retreat of the French, that part
of the town was blown up, when they were compelled to fly from it by the Russians.

Since that time, so disastrous to Smolensko, a part of the town has been rebuilt in a good style, and the public burdings are now considerable. The principal edifices and establishments are twenty churches and chapels, two cathedrals, a Lutheran and a Catholic church, a gymnasium, a military and trades' school, a seminary for priests, a foundling hospital, and a consistory. The principal manufactures are those ol linen, leather, hats, and soap; and a very active trade is carried on in corn, flax, hemp, timber, masts, planks, honey, wax, hides, hogs' bristles, and Siberian furs. Riga, Dantzic, and the Ukraine are the places with which the trade is carricd on.

Population 12,000. East Long. \(31^{\circ} 56^{\prime} 36^{\prime \prime}\). North Lat. \(54^{\circ} 50^{\prime}\).

SMOLENSKO, Governmext of. See Russia.
SMOLLETT, Topias, an eminent Scottish novelist and poet, was the son of Archibald Smollett, the fourth son of Sir James Smollett of Bonhill. He was born at Dalquhurn, near Renton, in the parish of Cardross, Dumbartonshire, in 1721.

Smollett was eclucated at the parish school of Dumbarton, and he afterwards prosecuied his studies at the college of Glasgow with diligence and success. Here he contracted a fondness for the medical profession, and was apprenticed to Mr. John Gordon of that city. In this capacity he studied medicine and the belles lettres. He occasionally indulged in satirical eflusions, not only against those who merited it, but against the more decent and respectable persons whom he knew, and his conversation has been describcd as a "string of epigrammatic sarcasms against one or other of the company." In the seventeenth year of his age he wrote a tragedy, called the Regicide, the subject of which was the assassination of James I. of Scotland.

In 1740 , when his apprenticeship was finished, he set out for London to solicit employment in the army or navy, and to bring his tragedy upon the stage. Although the exertions of his friends could not recommend his play to the farour of the theatres, they procured for him the situation of surgcon's mate to one of the ships of the line that went out in the unfortunate expedition to Carthagena in 1741 , under Admiral Vernon. \(\dagger\) Disgusted with the nary, our author quitted the scrvice in the West Indies, and resided for some time in Jamaica, where he became acquainted witi Miss Lascelles, a beautilul woman, whom be af. terwards married.

In 1746 he returned to London, and though a whig in politics, yet the love of his country predominated, and he expressed his feelings respecting the cruelties of the English troops during the rebellion, in a poom, entitled, the Tears of Scollond,-a pocm written with elegance and spirit. In the same year he published his Allvice, a Satire, an acrimonious attack upon several individuals of rank and fortune. In the same year he wrote an Opera, entitled Alerste, for Mr. Rich, manager of Covent Garden; but in consequence of a dispute, which exposed the manager to the shafts of his wit, it was neither acted nor printed.
- See our article Fnaxcr.
1 smollett afterwards gave an account of this expedition in Roderich Random, and one more circumstantial in the Compendium of Foyages, in 7 vols. 12 mo .1756.

In 1747 he published his Reproof, a Satire, being the second part of the Aheire, continuing the same system of inveterate attack upon all the leading personages of the times. In the same year he marricd Miss Lascelles, who expected a portion ol \(\mathfrak{x} 3000\) in West India property. Trusting to this expectation, he lived elegantly and hospitably; but being able to recover only a small part of the above sum, and that by means of expensive litigation, he got into serious pecuniary difficulties, which compelled him to have recourse to his pen.
He accordingly devoted his time to literature, and brought out in 1748 his Allventures of Roderick Random, in 2 vols. 12 mo . a work which both bettered his pecuniary circumstances, and widely extended his reputation.

The tragedy of the Regicile, already mentioned, was published by subscription in 1749, and he derived from it considerable emolument. He went to Paris in 1750, and about this time he composed his Adventures of P'regrine Pickle, with the Memoirs of a Letly of Quality, which appeared in 1751 in 4 vols. This work is marked with broad humour, and great knowledge of the wortd. Real personages and real incidents are often deseribed, as in Roderick Random, but the adventures, and frequently the language, were stained with an indelicacy and immorality that were highly reprehensible. The edition was quickly sold; another was bought up in Iretand; and the work was translated into French. Our author received, too, a very handsome sum for inserting in this novel the Memoirs of Lady lane, which were furnished by herself, and which gave additional popularity to the work.

Notwithstanding the great success of Roderick Random and Peregrine Pickle, Smollett seems to have been anxious to quit the profession of an author. He obtained about this time the degrec of M. D. probably from some foreign unversity, and he announced his intention to practise medicine, by a work entitled, An Essay on the Ertconal Cse of Water, in a Letterto Dr. ——— with particuler Remaths won the present method of using the Mineral Waters at Bath in Somerst thive, and aplan for rentering them more suffe, agreeable, and offretiones, 1552, 4to. In the practice of physic, howeser, he was not successîul, and was compelled again to have recourse to his pen. In 1753 he published his. Idventures of Count Futhom, in 2 vols. 12 mo . but it was neither so ably written nor so popular as its predecessors.

Encouratged by a liberal subscription, Smollett published. in 1.95 , a new translation ol the Ilistory of the renouned Don Quirote, from the Spumish, sec. illustrated uith 28 new comperpletes, in 2 vols. 4tu. When this worl: was printed, he made a visit to Scotland, to visit his mother, who then resided at Scotston in Peeblesshire: and he took an opportunity of visiting various parts of his native country, particnlarly the vicinity of Glasgow, the scene of his early affections, where he spent two clays with Dr. Moore, then an eminent surgcon in that city.

When he returned to London, he was induced to take the chief management of the Critical Revieu, a new literary Journal, which began in 1756 under the patronage of the torics, and in opposition to the Monthly Revicue, which had commenced in 1749. His next work was, 'A Compendium of 'quthentic and En-
tertaining I'oyages, digested in a Chronological Series, in 7 vols. 12 mo .

In 1757, when a stain had been left on the courage of lingland, our author wrote the Reprisel, or the 'Tirs of ohl Einglant, an alter-piece in two acts, intended to excite the national spirit. It was favourably received at Irury Lane, and is still a favourite on the stage.

Early in 1758, Smollett gave to the world his Complote IVistory of Englund, deducrll from the desecnt of Juhius Cosar to the treaty of Aix la Chapelle in 17.18 , in fuur vols. 4to. 'This work is said to have been composed and printed in fourteen months, a mental effort almost unrivalled. It wats reprinted in the following year in eleven vols. 8vo. and the weekly sale was above 10,000 .

When Sir John Mordaunt was tried for his unsuccesslul expectition against Rochefort in 1757 , some blame was cast upon Admiral Knowles, who delended himself in a pamphlet bearing his name. This pamphlet was reviewed in the Critical Review with such improper aerimony, that the Admiral prosecuted the printer for a libel. When sentence was about to be pronounced against the printer, Smollett avowed himself the author, and was sentenced to a fine of \(\mathscr{E} 100\) and three months imprisonment. This spirited conduct on the part of our author was highly applauded, and he was visited in the King's Bench prison by many of the most distinguished characters of the day.

During his confinement he composed his Adecatries of Sir Lancelot Groaves, which first appeared in detached portions in the monthly numbers of the British Marazine for 1760 and 1761, but it was afterwards published separately in wo vols. in 1762. About this time he wrote the historics of France. Italy and Germaty, lor the modern part of the Universal Mistory; and in 1761, 1762 and 1765 , he published, in five volumes, his Continuation of the Ihistory of E'ngland down to 1765 .

The unpopular administration of Lord Bute was naturally delended by Smollett, when he perceired that its unpopularity was in some measure owing to the premier being a Scotsman. For this purpose he established a weekly paper called the Briton, which gave rise to the North Briton, under the management of the eclebrated Witkes.

In 1763 our author had the misfortune to lose his only daughter, who died in the fifteenth year of her arce, and left him in a state of hopeless despondency. The state of his own health, which too assiduous study had impaired, combined with this domestic calamity, induced him to quit England for a milder climate. Ile accordingly spent about two years in France and Italy, and on his return in 1766, he published his Traiels throush France and Itaty, containing Observations on Churacter, Customs. Religion. Govemment, d.e. with an account of the Climute of Nice, and a Register of the Wether, in 2 vols. 8 vo.

Having arrived in Edinburgh in the beginning of 17.6, and spent some time with his mother. he went to Glasgow and made a visit to his cousin Mr. Smollett of Bonhill. At this time he was distressed with rheumatism and an ulcer in his arm. He left Scotland in August without much change upon his health, and spent the winter in Bath. Here his ulcer assumed an alarming appearance, but by mercurial applica-
tions, and corronive sublimate taken internally, a che almost mifaculons was quickly chected.

Thus restored to heahh, he resumed his latiorious toils, and in 1-67 he published his Mistory qud athentrose of en dem, in two vols. 12 mo . a political romancte shapoed to be writton in 1768. and displatying under domemese names the different paty men in Ciseat Britain from 1756 to 1761.

A recumance of his ill health induced Dr. Armstrong and his other friends to recommend a jourbey to Ltaly; and from the inadeguacy of his pectniary resources, they applied to government lor the office of consul at Nice, Naples, or Lergorn. Exen his paltry siluation was redused by the government of britain to one of the most distinguished of her citizens. though it was asked not as a promotion to atminister to his buxaries, but as a medicine to preserve his lile. The minister who thus dared to insalt the sutferings wh renius, and to bring discredit upon the character of his sovereipu and his comber, merits what he will seceive, the imbignation of luture ages. The governnent who had ieflused this piltance to a man whose name will throw a lustre over lingland when ublision has mercilully withetrawn heirs liom execration, had been suppored in office by his wit and argument. and the only blame which they could lay to his charge was, hat he elinsed to degrade himself by the sacrifice of his independence.

The mental agonies of Smollett, already too severe for his delicate and susceptible frame, were deeply aggravated by this act of base ingratitude. Di. Noore has justly obseved, that many feel remorse in a fearful degree on their death-bed from the thought of dying rich; but that none leel it from the thought of dying poor. Smollett enjoyed at least this consolation when he set out for ltaly in 1 :70. After a short tesidence at leghorn he retired to Monte Nuovo, a tomantic situation in its vicinity. Lere he composed and published in 1rtb. his Elapotition of thamphy (bishor, in thee vols. 12 mo . a work which met with high approbation, and is regarded as one of the best of his wotks. This was the last effort of his pen. His bodily strengh gradually declined, and he died a: his house near lerghom on the 21st October 1771, in the blst year ol his age.

Itis widow erected a plain mo:nment to his memore. with an inscription by Dr. Armstrong. Ln 17TA a Tuscan column was erected to his memory on the banks of the keve: by his cousin, James Smollet, Est. of lathill, with aninseription party written by B) Johnsom, Professor (i. Stuath, and Mle. Ramsay of Ochemtye.

An edition of Smolleth's works, in 8 rols. Bro., was publibhed in 1797, with Jlomoirs of his Lile; fowhich is pretixerl a län of the commenermont ame l'reserss of homante by the celedorated 1)r. Moore. 1)r. Snderson hat presionsly collected the poctical works of Smollet, which appeared with an excellent Momodr ol his Like, in the works of the latith Pocts. The same larned editor published a hew edition ol his Aischlmants Woiks, in 15 sta, and in 180.3 . De publishut in a ceporate volume, The Lifi of Toliate Smultill,
 went forough several editions. The following is Dr.

"The person of Dr. Smollett was stout and wellpropertioned, his conntenance chgaring, his manner

Preperct, with a certain dir of disnity that seemed to imbate that he was not unconscions of his own powers. He was oil a disposition so hmante and gencrous that he was ever ready to sorve the umbormate, and, on some occasions, to assist them beyond what his circumstances would justily. Thongh few could pebetrate with more achuncss into character, yet none was more apt to overlook misconduct when attended with misfortme.
He lived in a hospitable manner, but he despised that hospitality which is fommed on ostentation. He invited to his plain but plentilul table, the persons whose characters he esteemed, in whose conversation he delighted, and many for no other reason than becanse they stood in need of his commenance and protuction. * *
frece from vanity, Smollett had a considerable share of prite. and great sensibility; his passions we ere easiIy moved, and too impethons when raised; he could not conceal his contempt of folly. his detestation of frant, nor refrat from proclaming his indignation agaimbt crery instance of oppression. * *
lle was of an intrepid, indepondent, imprudent disposition, equally incapable of deceit and adulation, amb more disposed to cultivate the acquaintance of tho ee be conld serve, than of those who could serve him. What wonder that a man ol his character was not what is called successful in life."

\section*{SMET. Sce Agricelture.}

SMIRNA, a cily and seaport of Natolia in Asia Minor. situated towards the northern part of a peninsula bpon a loug and winding gulf of the same name, which is capable of contaming the largest navy in the world. The town is about four miles round. It presents a front of a mile long to the water, and when approached by sea, it resembles a capacious amphitheatre, with the ruins of an ancient castle crowning its summit. The interior of the city, howc:er, disappoints the expectations thus raised. The streets are narrow, dirty, and ill-paved, and the bazaats are in no respect handsome. Two caravanserahs with quadrangles within have a shows appearance from the cupolas which corer them. The shops are arched over, and have a handsome appearance, notwithstanding the gloom which the houses wear; those along the shore have gardens attached to them, at the foot of which are summerhouses overhanging the sea. 'The castle of' Smyrna, which was probably b, milt by the ficmocse, occupies a large hill at the east side of the city, and about threefourths of a mile in circmberence. There are no appearances of its having been very megnificent, the remains of a very thick and strong wall, being rey like that which surroundch the city.

Theme is now scarcty a trace of those once splendidedilices which rendered Smyma one of the linest citica of Asia Minor. 'Ihe foundations of the theatre still apprar on the slope of the hill. On the grateway wi the castle is a finc, though mutitated colossal stathe, sapposed to be that of the Amazon Smyma. There are marks of an cxtensive agueduct, but its antiguity is doubted.

The river Meles which is bere from 50 to 100 yards wide, waters an extensive and fertile plain behime the city, covered with numberless olive trees. This city is subject to earthruakes, and it has olten suffered
from the plague, which, in 1814, carried off above 50,000 of the inhabitants.

The bay of Smyrna allords excellent anchorage, and the water is so deep, that sloops ol considerable burthen can anchor elose to the wharl.

Smyrna carries on an cxtensive trade with liurope on the one hatd, and Asia on the other. Of all the Asiatic nations the Armenians carry on the greatest trade with this city, and the caravans from l'ersia atre principally composed of them. The Jinoopean shipping regulate their motions by the periods at which these caravans arrive and depart, in order that they may supply the - Isiatics with the merchandise of the west, and may reload their own vessels with the goods of Asiat. The English carry on the greatest trade with Smyma, and are most estecmed. The lerench trade is carried on chiefly lrom Marseilles, and the Italian trade from Leghorin. The exports from Smyrwa are coffec, cotton, wrol, camel and goat's hair, currants, wax, soap, pearls, and lapis lazuli, precious stones, opium, rhubarb, amber, musk, and gums. The imports lrom Europe are piastres, cloth, silken stulls, paper, cochineal, argol, indigo, sugar, lead, tin, glass, spices, dyewoods, ice.

The whole town is a comtinual bazaar, aboumeng with the best commodities of liurope and lsia. In 1790, 1791, and 1792, the exports to London were © 779,610 , and the imports thence to Smyrina, £848,240.

The inhabitants of Smyrna are semerally cstimated at 100,000, and are composed as follows:-

The governor is appointed by the Porte. He decides the civil matters of the city; but in criminal ca. ses he is subject to the cadi who is judge of the district. In the neighbourhood of Smyrna, there are some very finc villages, such as Bourmabat, Cukliretiah, Bugiah, and Sadig, to which the more opulent inhabitants resort in summer. Last Long. \(27^{\circ} 4^{\prime} 45^{\prime \prime}\), North Lat. \(38^{\circ} 29^{\prime}\).

SNAKL. Sce Ophiodorix.
SNELLIUS, Wiliebron. Sed Opties.
SNOU is the name given to the watery vapour in the upper region of the atmosphere, when frozen during its descent to the earth.

Snow is a congeries of an immense nomber of separate and transparent crystals of ice and its whiteness is owing to the same canse as the whiteness of froth or of painted glass, mamely, to the aceumalated light which cach separate cryotal rellects to the eye of the observer.

The specific gravity or density of snow is very rariable, as the following table will show.
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{Nu, of inches of show that vicld one incla of water.} \\
\hline sedilean & - & \(5 \frac{1}{2}\) \\
\hline De la Ilire & - & 53 \\
\hline & in 1-10 & 12 \\
\hline Weidler & 17.28 & 9 \\
\hline
\end{tabular}
No. of inches of snow that yirld one incl of water
\begin{tabular}{|c|c|c|}
\hline Muschenbrock & 1729 & \\
\hline Mr. Mryce & 1760 & \\
\hline Mean of the atro & & 11 \\
\hline
\end{tabular}

When the smow falls during frost the flakes are always less, and they are ereater when the air is warm. In July 1819, in the neishbourlaont ol Eidinburgh, a slight shower of snow fell, in which the fakes wrere fully tro inches and alualf in length. Two on three years alterwards a similat fall was noticed in another patt of Scotland.

Snow is occasionally formel in North America in butls and in rytiontres. On the lst April 1815, Professor Cleaveland obserexed a ereat number of balls of snow from 1 to 15 inches in diameter, the small ones being motrly spherical, and the larger onmes somewhat oval. Their texture was homogeneons, and they were extremely light, being composed of minute prisms of snow irregularly aggregatel. These balls were lormed by having been rolled throngh a considerablo distance by the wind, their paths upon the snow being, in general, distinctly visible. The smaller balls, however, were deridedly formed in the atmosphare, as they occurred in wools and in small enclosures. See Prolessor Silliman's . Iowinal, vol. vi. p. 169.

Cylinders of show were first obscred by the Rev. D. A. Clark in Morris comnty, New Jersey. Whena deep snow was on the gronnd a shower of rain fell, and in consequence of a sudden cold the rain was congealed on the surface of the snow, and formed upon it a cake of ice. Another shower of snow lell to the depth of 3-4ths of an inch, and the sky having suddenly clearet, the cold became very intense, and the wind blew a gale. Nature, says M. Clark, now began her sport. l'articles of snow would move upon the icy crust from 12 to 20 inches, and wotld then begin to roll, making a mack upon the ice shaped like an isosceles triangle. The balls enlarged according to circumstances, and aided by the declivity of the ground, the rolls were of the size of a barrel, and some even larger. 'Thus the whole creation, as far as the eye could see, was covered with snow balls differing in size from that of a lady's muff, to two and a half or three fect in diameter, hollow at each end to almost the centre, and all as tiue ees so menty logs of rood shaped in a lathe.

In 1812 or 1813 Mr. Hitchcook observed at Deer. field, Massachusetts, similar cylinders of snow: none of them, however, were more than six or seven inches in diameter. See Prolessur Silliman's rournel, rol. ii. p. 132 and 375.

In the Arctic Regions, as Mr. Scoresby informsus, it snows nine clays out of ten in the months of April, May, and June. With southerly winds near the borders of the ice, or where moist air blowing from the sea meets with a cold breeze from the ice, the heaviest falls of snow occur. In this case a depth of two or three inclaes sometimes falls in an hour. These heavy falls frequently precede sudden storms.

The crystals of snow present an endless variety of forms. Descartes and I)t. Hook scem to have been among the first who observed and delineated the

\footnotetext{
- This was what Muschenbroek calls starry snow, or that which was fincly crystallized in the furm of stars.
}
figures of the crystals.* Dr. (irecn and Dr. Langwell Jikewise observed them. \(\dagger\) Dr. Stocke has delincated several beatiful furnas of show which lell at Middeburg in Kealand, in 1 ت̈to and \(1742 \neq\) The most cle gant delineations, howerer, of the particles of show are those which were executed by Dr. Nettis of Jiddleburs, to the namber of so, and given in the Philosophical 'Transactions, 1755. p. 611. and those which were observed by Mr. Scoresby in the lotar seas, given in his "Acconnt of the Arctic Regrions." to the amount of 95 . The general size of the particles which exhibit these regular figures, is from one-fith to onetwentieth of an inch. We shonk hate copied several of the figures given by Dr. Nettis, but we prefer taking those of Nr. Scores!e, because he has deseribed the magnitude of each partiche bhich ho has delineared, and the state of the burameter, thermometer, and weather, at the time whotheil. Nr. Soverty arranges the varions modifications and crebtals which he tas observed under lise kinds.
1. Lamellar. ac. A lamellar or spherical nucleus, with spinous ramifications in diferent places. 3. Jine spicule or six-sided peisms. A. Inexagonal pyramids. 5. Spiculx, having one or both extrentics anfised to the centre of a lamellat erystal.
1. Somuliur crignale. Dif. Scomesby assures us hat the varteties of this molification are very mamerons, occumbins abondantiy at all temperathres, and beiner very hin and transparcha, atsel of a highty delicate stracture. These, he stys, may be divided into several distinct species.
a. Stelliform; hating six points radiatiner fom a rentre, with parallal collateral ramifations in the same phane. This speciere represented in l'late CCCCLXXXVIIl. lig. 1 . is the must seneral lorm met with. It raries in size from the smallest speck, to about one-third of an inch dimmetcr. It octurs in greatest profusion when the temperature approaches the lerezing point.
b. Rergular hexagon. This occurs in moderate as well as in the lowest temperatures: but it hecomes move delicate and thin, and diminishes in size as the cold increases. Some specimens consint of simple transparent plates. (ľig. a3.) vibers are beatilully vara-gated, whin the perincter, by white lines, farming smather hexagons or other regular tigares, in immence varicty; lig. 25, 27. 28, 30: lig. 49, 太e. The size wh this species is from the smallest visible speck to alonut one-tenth of an inch diameter.
c. - ferrerations of hexaçuns. This beathiful apecies admis of immense variety. It orcurs chiclly at low temperatures, and presents ereat limits of dimen-
 39. Sere alfun examples of this specters.
(\%. Combinations of hexabons, with radii or spines,
 temire spectes in the arrangement: ant atfords some of the most beantilal specimens. Jig. 7 , is an elegant - ombination ol spines and laxagon; and Figures 50, 5.5, 59, 59, for, \&e. Wegelher withath the others distin-
 novel and beatiful watioy, whith l hate only obe woweme. The prathed times that appore in the ce figuses, are mot imtemed as shations, but artatly of -
curred in be crystals, though with this diffrence, that the lines which appear black in the plate, were all white in the uriginats. ligures \(50,6 \hat{2}\), 6 , and 93, were opaque crystats, and were not su than as the oblers.

The latter of these, as well as Iig. 94, earh having twelve spines, appear to be accidental ratietios, and are produced probably by the correct application of two similar crystals upon one another.
2. A lemallur or spherial mucteus with spinons ramiflatainas in Wherent plames.-This genus not beins easily represented, is not illustrated by any higure. It consisis of two or three species.
(\%. The fumbmental figure, consisting of a lamellat erysta af any whe spectes alove described, from the haterdand terminal planes of whicharise small spines, simitar to the collateral ramincations of Fig. l. These spines arise cither liom one or both of the lateral planes or principal surfaces, or fromboth laterat and terminal planes and always maintain the ustad angle of co " with the phane from which they take their rise.

The diameter ol' this figure sometimes exceeds the fourh of aninch. 'This speries falls most liequemly at a temperature of \(20^{\circ}\) or \(25^{\circ}\).
8. Hasimg a spherular macleus, giving rice to radia in all directions. In the former species, the centrat fighe is a transparent erystal; in this it consists of a small rough white concretion. The spines or ratii are simhlar in both figures. The diameter of this seldom reme hes a quarler of an inch. The form is echinose. This species latls when the degree of cold is near the freczing, and sometmes in rather low temperatures.
\(\therefore\) Fine spiculie or six-sited prisms.-These are sometmes very delicate and crystalline; at others white and rotigh. The finest specimens, which resemble white hair cut into ionghos not exceeding a guarter of an inch, are so small and clear, that the exact lignte is not casily determined; and the larger exhibit a fobrous or prismatic structure. Some of these are occatonally the third of an inch in length. 'This semus is only seen when the temperature is near the freczing puint. When the thermometer is about \(2 s\) desrees, the fine: specimens occur; when abont the freczing, the coarser appear. Tbe latter are very common daring log showers, and appear to be romposed of aseregations of the frozen partieles of the fos, and to have their orisin in the lower parts of the atmosplate.

\section*{4. Mermermal Pyramide-This kind of snow-crystal} I havebutonce seen. A variety, consisting apparentIy ol' a diamulapranid, was observed; bit whether its base was a triangular or six-sided figure, similar to No. 9 , i doubtal. These pyramids were aboat the thiticth part of an inch in height, and fell abong with some other curious ligures, during a lresh gate of wind from the northward, in rery lapere prantity. Figures 11 , and 47 , represent this hind of crystal.
5. N'picule os jurisms harinu ome or hoth extromitics insurtel in the rembe af "lamellar reystul.-This is the mose sinsular ernus ! have ever sean, and has been whered bat ebice. It resembles a pair of wheds, wnited by an axtetree; the wheds consisting of hexasonal or other lamellar crystals, and the axde of a slem-

der prism．Fig．43，45，46，and 48，represent this
 but one tabular crysal and a prism：and Fig．45，of thace lamine and two prisms．The lenesth of hais was one－sixth of ath inch：of the other kind，lrom one－ thirticth \(\mathbf{t o}\) onetonth．Sume of this ：xtraothary figure occurred abore with the last－described erems： of which kimk，principully，：quantity of snow there or foar inches in depth，once lell on the dects of the ship in which I sabod，in the course of a lesw hours． Fhe temperatare，whath thiskind of crystal feh，was in one instane 28 ，and in the oblere \(20^{\circ}\) ．

Flate CCC（1）XXVIII．contains representations of ninerysix differnt smow－cystals，magnilied lrom thirly to about lous humbed times．The latio letter followine the number of the figure，perers to the sr－ cond columa ol the ammexd iable，by which，the state of the atmosphere and wather，when each crys－ tal was observed，may be seen．The fractional nam－
ber which sucecols the Italic ietter．shows the diame－ ter of the corstal in pates of an inth．The largest cestal represented was one－thind of an inch diameter； the smatlest whe－thire－fifis．They were all pertect beraces．Sany imatices，it may be obsorved，occur of mutiated and ineegular sperimens；some wantiner two or three padia，ant others havin！ratlit of difler－ rat sizes and shapes．But in low temperatures，the feratest poportion of crystals that lall are probably perfect geometrical figures．This constant regrard to copality in the form and size of the six radif of the stellates；the geometrical acomacy of the dimpent parts of the hexasons；the beany and precision of the intermal lines of the compound herores，with the proper arrasement of any attendant bamifications， and the semeral completion of the regular hisure，－ compore bue of the most interesting leatures in the Science ol Crystallography．

\section*{} thete（CCCLXXXVMI，areve obsered．
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{late．} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 3 \\
& 2 \\
& 2 \\
& 2 \\
& 2
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{\[
\frac{0}{5}
\]} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{WIN：S．} & \multirow{2}{*}{REMARKS．} \\
\hline & & & & Direction． & rorce． & \\
\hline 1809，Arril 15 & \({ }^{\prime \prime}\) & 31 & 29.92 & \multirow[t]{2}{*}{\begin{tabular}{l}
N．N．t． \\
N N．F．
\end{tabular}} & \multirow[t]{3}{*}{Presh gale reenh gate Light wind} & sumw very protuse． \\
\hline 17\％ 17 & \({ }^{1}\) & 19 & 29.84 & & & A romblecralse quantity of snow． \\
\hline 29. & \(c\) & 19 & 20,108 & E，ミ1，N X．E． & & stusw profise． \\
\hline May 1. & \(d\) & 12 & 20，6， & \multirow[t]{2}{*}{\[
\begin{gathered}
N i i \\
N: 8 .
\end{gathered}
\]} & Strong br． & Oer asimmel erystal，deposited． \\
\hline & \({ }^{c}\) & 10 & 39，84 & & Freslı gruc & \\
\hline 3 & \(f\) & 18 & 29.85 & N．Ferly & Strong gale & －nam in consulcrable quantirs． \\
\hline 11 & \％ & 14. & 31.10 & \[
\mathrm{NNB}
\] & \multirow[t]{2}{*}{Fresh br． bitrons gide} & Profuse in puanty，acompanich by mach opaque small gran smow \\
\hline 15. & \(h\) & \(\therefore 2\) & 29.78 & & & \\
\hline 30. & \(i\) & 21 & 3） 3.194 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { N.F,N. } \\
& \text { [Nearly }
\end{aligned}
\]} & & Alight showers nf show． \\
\hline June 16. & 1 & 32 & 31.54 & & calm］ & Feat in sacat qrantities． \\
\hline 1810，April 12. & \(l\) & 12 & 29.8 & FoN゙心． & Sironir male & A constant light shower． \\
\hline 14 & \(\cdots\) & 16 & （1）．小 & NN．E． & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\text { rresh bre } \\
\text { strong atale }
\end{array}\right.
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline 2.1 & ＂ & 21 & ＂，\({ }^{\circ}\) & \(\therefore\) ¢以 & & \\
\hline 21. & ＂ & & 996 6 & \multirow[t]{2}{*}{N．l．．rly} & |Strong sale & S：ow in considerable＇phantur． \\
\hline Mity 16. & \({ }^{\prime}\) & 19 & 29．－1 & & Mrank side & \\
\hline 1816，April \(2!\) & ！ & 17 & 20 9.6 & N．\(\times 10\) & Sond hrecze
Frestga & Chath how ers of hme creats． \\
\hline \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{\(23-20\)} & \multirow[t]{2}{*}{－0．01} & N．erly & \multirow[t]{2}{*}{freshbrecos} & \multirow[t]{2}{*}{} \\
\hline & & & & & & \\
\hline
\end{tabular}

The erystads then thescribed by Mr．Scoresty，and those delineated by Dr．Netis，are ubsious ice com－ pound crebtuls：brit they allom！as mo clae to deter－ mine the primitive form of the simple erthals of which they consist．This form has genmatly been supposed to be the rombobue？mon：but Mr．Shohs and Mr．Haddinger mantain，＂that there is not，in the whole compass of rhombohedral forms．an cxamp！e of the same lormation as the stars with six ratii of snow，white it is common enough in those speries which belons；to the prishatia system．＂From I）r． Brewsters cxperments on ice（Secour apticle on Ier．） it necessarily fullows that the form ol crestallized water must，as he has inliered，belong citier to the rhombohctat on to the mpramidul system．The pris－ matic system being thus exchuded，so far at least as ice is conccrued，Mr．Haidinger considers the pyra－
midel form as the most probable ome＊from the cir－ cumstance of tin are and refile，whicis belons：the pramialal clas，prolucing．by mentar composibion，
 That this is the case，has beco put berom a dor＇st by more rerent observations by Dr．Lirestster，nade dur－ ing the frost of the 18 th and 19 h November 1827．in which be fome mumorous and resular quatransmbar plates，in the hoar frost，crestallized upon leaves ind stones．

SNOWV．Ren，the name given to mow of a red colour，which was foud by Captain Ross at Rafin＇s Bay on the 17th Angust isho．The montans that were dyed red with the snow were abont eight milles long，and 600 fuet high．The rot colon：rached to the grount in many places ten of twelve fect deep， and continued for a great lengh of time．

Alhough the red snow had no! previonsly excited much notice, yet it had been long belore observed in Alpine countries. Sanssure discovered it on Nlount Beeren in 1:60, and on Mount St. Bernard in 1758. Ramond lound it on the Pyrenees: and Sommerfeld discovered it in Norway. In 1818, red snow fell on the Italian Alps and Appennines. In March is08, the whole country about Cadore, Belluno. and Feltri, was covered with a red-coloured snow, to the depth of six and a hall leet; but as white snow had fallen both before and alter it, the red formed a stratum in the middle of the white. At the same time, a similar fall took place on the mountains ol the Valteline, Brescia, Carinthia, and Tyrol. Another fall of red snow is stated to have occurred between the 5th and 6th March 1803, at Tolmezza in the Frioul, and a still more remarkable one on the night of the 14 th and 15 th March 1813, in Calabria, Abruzzo in Tuscany, at Bologna, and over the whole chain of the Appemines. Red snow has also been fomarl in New South Shetland.

Saussure had lound that the colouring matter of the red snow was of regetable origin, and he supposed it to be the larima of some plant. The Italian naturalists found in the red snow, clay, an oxide of iron, with a considerable portion ol some organized substance; and M. Peschier ol Geneva got the same ingredients in the red snow of Nomat Bernard. Dr. Wollaston and M. Thenard obtaned similar results.

The following is Mr. Peschier's analysis of red snow:

In other specimens, the alumine was less, and in others there was none. In some there were traces of lime.

The botanists, however, have been more successful than the chemists. Mr. Batuer regarded the red matter as a fungus of the genus uredo, and called it uredo nicali\%. MI. R. Brown was of opinion that it had a great affinity to the Tremella cranda, while Sprengel considered it as approaching near to the Iaucherie raizata.

In this state of the subject, Professor Agardh of Lund drew up a learned memoir on the subject, which is published in we Nou. Act. Acud. Nat. Curios, vol. xii. and ol whicha copions abstract has becn published by Dr. It ooker in the Lidinhurgh Ioumat of Science, No. vii. p. 16\%̈-173. The conclusion to which he arrives is, that the red colourimg matter "nust cither be an alzo. or an chimalonle, between which I know no cotain limits. There are forms amougst them which mas, with equal propriety, be ranked with either or hoth. There are alow, which become amimulrutes, and rice irrad. lastly, there are infusoria, which, at one period of their existence, are endowed with the power of motion, while at another, they exist only in the state of a vegetable.

The colour of the red snow is not without analogy among the alga. In autumn, there is produced on shaded walls a greet powdery substance, composed of globules, which afterwards, according to circumstances, change either into oscillatoria murctis, or into
uha crispa. This substance comes nearest to leproriu lermesinte. It has also a great affinity with tremella ermentu, (Figl. Pot., and which must not be confounded with ulea mouton of lightloot.) Both are red, and both consist ol globules; but lepratia hermesina differs in this particular, that its orboules are liree, not sunk in a gelatine. I have accordingly placed Iepraria lectuesima of Wrangel in my systema algermon, as a peculiar genus, under the name of proto-eoccus kormesimes." An account ol Bauer's observations will be found in Brande's .7ownal, vol. vii. p. 222, 229: Peschier's Analysis will be found in the Bibliotheque L'nieprselle, vol. xii. p. 266. See Saussure's Foyuses dens les Alpes, tom. iii.

SNOW Blandess is a disease to which the inhabitants of the arctic regions are subject; though it sometimes occurs in more sonthern climates; it generally commences with a sensation similar to that of sand or dust getting into the eyes. A solution of acetate of lead is lound to remove the complaint in two or three days; and its recurrence is prevented by defending the eyes either with a picce of crape, or a pair of snow spectacles. Xenophon informs us that many of the Greek soldiers were blinded by the brightness of the snow in crossing the snowy mountains of Armenia, between the Enphrates and Phesis, in the middle ol winter; and he mentions, that they covered their eyes with something black.

The Greentander's and Laplanders, who are especially subject to this diseasc, use a network of black horse hair, a little convex anteriorly. The Esquimaux on the coast of Labrador, use snow spectacles, which consist of a smooth piece of wood like poplar, which is driven on the Labrador coast. The back surface which covers the nose is pretty deeply cut. There is a notch at each side on the lower margin to give passage to the tears. The upper margin ol the front projects to keep off the snow, and to act as a shade. The other side is blackened with soot. The apertures for vision are narrow, and slits are placed horizontally, so as to correspond to the opening of the eye-lids when mearly shut. These spectacles may be used with great adrantage by persons with weak or inflamed eyes. This apparatus aids also the sight; and Ellis says, that the savages use it principally to see remote objects more distinctly.

For farther information on this subject, see Xenophon, Cyrop. ir. 5, p. 296, fouth edition of lutehinson, Combr. 1r85. Kand Leem, on the Laplanders of Finmeth, p. 52. Crantz's Mistory of Greenlent, Cartwright's foumal of a Iesidente in Labralor, vol. i. p. 102. Ellis, p. 145. Chardin's Tratels, vol. i. p. 211. Bell of Autermous's Trucels. Captain Parry's Ioyage, 1819-20, vol. i. p. 84. and M. Blumenbach, in Edinbursh Philosophecal Journal, vol. viii. p. 26a.

SNOWHON, is the name of a group of lofty monntains in Cacrnaryonshire. But the name is particularly applied to the highest mountain of the group, which, according to the results of the ordinance survey, is 3571 feet above the level ol the sea, 3548.9 according to General Roy's barometrical observations, and 3546.25 according to Mr. Wollaston's thermometrical barometer. It is generally ascended by Llyn Cawellyn, half way between Bedgellas and Caemarvon. From the summit the view is grand and extensive. The mountains and part of the coast of Scotland, the county of Wicklow in Ireland, the Lancashire hills,
the Westmoreland and Cumbertand hills, with the Iste of Man, areall sern in the distance; while the intermediate commey appears like a map to the observer. Camoden says that Snowdon is covered with snow througbout the year: and thongh this is not the case at present, it misht have bern, and il we believe human testimony, must have been in his time. Ilis words are. "It harbours show continually, being throughout the year covered with it, or rather with a hardened crust of suow, and hence the british name ol Craig Eryri, and the English one of Suowdon." Snowdon was hedd satered by the ancient Britons, as Parnassus was among the Greeks, and it was said that whocver slept upon Snowdon would wake inspired. Letand informs us, that stags were lound here in his time, and according to l'ennant they were extirpated in 1626.

The following description of the summit of Snowdon is given by Pennant:
"The summit which, by way of pre-eminence, is called Y Wydlfi, or the Comphimous, rises almost to a point, or at least there is hut room lor a circular wall ol loose stones, whith which travellers usually take their repast. 'Ibe mountain trom hence seems propped by four vast buttresses, between which are four deep cuems or hollows; cach, excepting one, has one or more lakes lodged in its distant bottom. The nearest was I'ymon Las or the Green IV Cll, lying immediately below us. Its waters appeared black and unfathomable, and the edges quite green. From thence is a succession of hollows, surrounded by lofty and rugged hills, the greatest part of whose sides are perfectly mural, and form the most magnificent amphitheatre in nature. The W'yddfia is on one side: Cribb-y-distill, witi its serrated tops, on another; Crib-Gotch, a ridge of fiery redness, appears bencath the preceding; and opposite to it is the boundary called Lliwed. Another very singular support to this mountain is Y Clawdd Gotch, rising into a sharp ridge so narrow as not to afford breadth even lor apath." Pennant's Tour in Wates, wol. ii. See the Beauties of Lingland and Wites, rol. xrii. p. 411, s.c.

SOAP Mancractore. The soap which is manufactured for domestic purposes is a combination of the fixed alkalies, with different kinds of fat or fixed oils.

The recent discoveries of M. Chevreul have thrown much light on the chemical nature of soap. The fats and fixed oils he has found to consist of two substances, one of which stewine from orexp, suet, is solid at common temperatures, while the other, clane from sazer, oil, is lluid at ordinary temperatures. Suet, lard, and butter, contain a greater quantity of stearine than of elaine, whence arises their solidity; while the fxed oils contain a speater guantity of elainc, and are on that account huid. If we press congealed fixed oil between folds of bibutous pajer, the solid stearine will be obtained separate, and il we press the bibulous paper under water a substance is obtained, which is pure elane.*

In the formation of soap the stearine and elaine disappear entirely, and are converted into margaric acid, oleic aeid, and glyccine. These two acids combine with the alkali, and form soap.

The following processes will convey to the gencral
reater a colerable idea ol the mandacture of the dilferent kinds ol soap.

This process is that ol Naequer. F'uro patts of grod Spanish soda, andme partol quicklime armbored in a vessel with thetre tmes as man water. The dey thas formed is whe filtered and evapmated till a phial, which contams one ounce of water, hetds one and three-cighths of an ounce of this conemotrated bey. In a vessel of glass or carthentare amixtmer is matle of one part ol this ley, with lroo ol oil ol olives, op oil of swer almonds; and it is occasiomaliy stired with an iron spatula till it is thick and white. The ingredients gradually combine, and in seven or cight dayb a firm and very white soap is obtained.
2. Process formah inse Pure White Suap from 'rellove. Mix with 200 grallons of ley ten cwt. of the best home melted tallow. let the whole be melted with a moderate firr, and when it is disposed to boil over, damp the fire either with ashes or with a damper. At the end of two hours it may be drawn away, and the pan allowed to settle abont iwo hours, when the ley may be drawn off. "Two or threc boilings may be givenevery day, and they must be continued day alter day till the whole assume the appearance of a curdy mass. A little is then taken upon the fore linger; and if it squeczes into a thin, hard, clear scale by the pressure of the thumb, it is fit lor finishing. If, on the contrary, it appear greasy, and stick to the finger, and is of a solt consistency, add more ley, and if this does not sufficienty harden it, it must be boiled another time. When it has become such as to squeeze into a scale it must get a good boiling, and the fire be then dram. Alter being cooled down witls two or three pails of ley, pump of the ley as clean as possible in about two hours. When this is done, add eight or ten pails ol water, (each pail containing nine or ten English gallons.) Apply the fire, and when the water and soap are properly incorporated by constant stirring, take some from a boiling part, and having laid it on the handboard see il the ley runs from it. If it does, more water must be added, and the boiling continued. But if no ley runs from the soap, continue boiling for a short time longer, and then add a pail ol a solution of one-third of salt in twothirds of water. This will effect what is called culting up the pem, or separating the soap from the water. When this is done withdraw the fire, let the whole stand for half an hour, and pump off the water, which will carry along with it the remainder of the alkaline ley of the former boiling. This is called the fiest ecolimes: and il kelp ley has been used the water pumped off will have a bottlegreen colour. Six or eight pails of water must soon be added, and when the whole is again boiled and incorporated, try if the water runs from the soap. If it does, add water in small guantities at a time, until the ler, when put upon the handboard, does not run down from the soap. but appears as it were just starting from the soap. When this is done give the whole a good boiling, and swell the soap up in the boiler to near its brim, and haviug withdrawn the lire, spread it about to die away.

The boiling process being now finished, the whoie may stand twelve or fourteen hours, and if the quantity be two or three tons, it will be the better of stand-
in's double that time, kecping it however close and warm in the boiter. If any bheness remains, we washing mast be repeated.

The fames into which it is now to be cast should have a bottom. and be lined with coarse cluth. If a perfiame is wished for, a lithe of the essemiat oil of Caraway seceds, mixed with a small portion of atcohol, may be fucorporated with the seap in pueng it imto Heframes, stimping in a litule of it at a time to diftise it through the mass.
When it is cast into the frames, the phote should be covered up with uld sheets, mats, Sec. and allowed to cool gradualiy for there or fon days, when it may be twen out, and cut imo pieces of the reguired size.

In order to charge a panfor hand yellow soap. pour in 130 or 20 g ghlions of ley, and add 10 chet of tallow, and 9 cus. of rosim broken into small lumps. The whole is now to be boiled and stimed, taking care at "ays to damp the fire when the materials swell up. fiter two or three hours boiling, widhdraw the fire, and allow the whoic to stand four or sis hours, when the weak key is to be pumped ofl and fresh ley added. If it is wishech to pump of sooner, a few parts of cold loy must be thrown in a short time after the fire is drawn. The whole is now to be boiled a second time for two or thece hours, and the boilings continned day after day till the soap squcezes into a scale betrien the fuiger and thumb, as described in the preceding process. When this is effected, the pan is to be treated in the same way as in the process for white soap. si.e or eich parts of water beng in this casc put in, in place of eight or ten in the white soap. If we wish to give a beantiful colone to the soap by means of palm oil, put solibs. of the oil into the boiler, when the soap is considered to be finished, then atter boilling for hall an how draw the fire, and alow the whole to stand for 18 hours, when it may be cast into the frames. If the frames are in inches deep, the soap may be cha in bars in abont the ce days.

The lollowind table has been given as showing the Weage pepprtions of the matials fur yellow soap.

 in the later the whol is maned, Roming a ormpmond body whth the other matment. This seap is if two

 and whely wil.
1. Jïnt was sury. Ior a charge of cigheen birwis tule

When one-third of the les, or 13.3 gallms, is put into the boiler, add the tallow, and after it is melted, put in the olive oil. Let the fire be now drawn a lit. We, and the whole stand tho hours. When the fire is again lighted, put in twenty gallons additional ley. As the whole boils, add urcasionally a litte more ley 10 Hesemt the coap, from hoiling over, until the soap is considered to be ball boiled, when it will be time 1) asectam whe ther the suap has got too much or 100 litue lew. This operation, called froring, and which is reguisite ficenemals, is thus performed: With a kuife tabe up a piece of the soap, and if it turns white unan the knife, and falls from it in short pieces, too much ley has becn put in, and consequenty a little more olive oil mast be added. But if it fall from the knife in long ropy pieces, an additional quantity of ley mast be added. If, on the other hand, it is neither too white nor too ropy, but transparent, it neither needsoil nor ley. When it arrives at this state it may be pat into the barrels or other ressels destined to bok it. After the second lighting of the fire, the boiling should be briskly kept up, and when the soap is nearly ready, it should boil slowly till it is put into the barrels.
2. Scround crourn soft soap. For this soap take,
Tatlow
280 lbs
Whate oil
82 grallons.
140 gallons.

When 100 gallons of the ley are put into the boiler, add the tallow. and when it is melted, put in the whale cil and draw the fire. When the whoie has stood two hours, light the fire and add twenty gallons of ley. Continue to boil briskly till the soap is considered to be hall finished, and then put in ten gallons of additional ley. Add the other ten gallons during the rest of the boiling, and fuish the soap as in the last process.

Hard soap in a proper state lor the market, should contain thirty per cent. of water; but by fraudulent practices it may be made to contain sixty per cent.

The simplest and the most beantiful soap, is the fine white soap mate of olise oil and soda obtained from the best barilla. A more expensive kind is made of soda and oil of sweet almonds. The former kind, which in made at Marseilles. Naples, and several parts of Itwly, is sometimes streaked throughout with red and blue vins. This is effected by a solution of sul. Whate of iron, and by the brown red oxide of irom.
4. Bhthod of Improcing Soup.-Mr. Pope of Lomband strect, has given the following method of im proving soap. Take one cwt. of good soap, slice it into than pieces. and mix with it seven lbs. of marl of duc parest kind, and a suffirient quantity of water, to tedace the whole into a haid state. What the whole ate stined tosetber till they are of the consistency of crem, they are beiled, and then ponred out into suitathe moulds for making them into cakes. by this process, the sorap is rendered smooth and sofi, and the action of the caustic alkali upon the skin instestroyer?

5. Thethod of Dluking Tramsparent Soep.-Put imto a thin mass phial hall a brick of Windsor soap, cut into small pieces; lill the phial hall lill of atconol, and phace it near the lire till the whole is dissolved. This mixture, put into a mould and boiled, is transfrient somp. fir well prepared, it should have the appearance of fine white sugar candy. It may be co-
loured; but vegetable colonrs should be use. in preferenee to milleral anes.

Tallow soap is preterable, in making tmasparent soap, to olive oil soap, as the latere lorms a paste (an diflicult to medt, and its odume too powertal har mixime
 No. xiii. 1P. 172.

Both the vegetalde and the antmal kinghom have supplied the inhabitants of dimerent comatries with at substilute: Por soap.

In Anerica, the mber dhind of the seed of what is called the soap tree, is used by the matises: and iat Alrica, soap is made with a small insect of the earath genus. M. (icolloy de Villeneuse, who a lew years ago sent home some of this soap to laris, gives the following account of it. "Jemin in the villase of Porndal, a lew leagues brom Senegal, employed in collecting insecte, and inviting the megroes womate me supplies, one of them patemted me with a pot. containmg many housands of a shan insect of the carab genus. 'they were reaty dried, and the manbers showed bat they had been collected for some pate ticular purpose. On inemiring. I larned that this insere entered into the composition of the soap useal in the country. The sume negro also showed me a ball of this soap, which was of a blackish colutr, hat had all the properties of onf common soap; and I learned, in the sequel, that these insects are converted to the same parpose all along the coast of senegat. This carab is black, but the edges or bomeres of the corslet, and also the elytes, are of areddish colour; the feet and the autemae are of a pale culour."

For farther information concernints soap, see \(\Gamma, r\) prriences relutiees a le Fubricution diss Stewes dere, from N. Corlin in the dme de Chim., September 1816, vol. i. and a Memoir on the Comses of the Demeraitis foum ia Soup. in reforence to their huritness an lanchi, in the Amn. de Chim., fec vol. xsiti. p. 16.

SoClal WAR. See Roman Empirio.
 institutions cetablished in the pritaipal cities of all civilized comatries, for the purpore of promotins literature, science, antiquities, and the fine and bselint arts. These establishments bave recerived the names ol' actulemits, institutions, and socioties: and we have already described as great mamber of them in one article Acabery. Whenthisarticle waswritam. it was our design to give a similar artiele under the present head, and we have accordingly relered to it more than once. In the prosress of the work, however, the authors of indivitual articles have, in general. described the societics establibhed in particular cities, so that they have anticipated the greater nomber of those which might have been expected here. As the Royal Socictics of London and Edinburgh, which, together with the Royal Irish Academy, (alreaty described) form the thee metropolitan institutions of Great Britain. have only been slighty noticed in our account of these cities, we shall now proced to give a short account of them.
1. Roril Socifty of London.-This distinguished institution had its origita in 1615 b but it was not till 1662 that it was established by royal charter. The Society held its farst meeting al Creshan college in 1667. The following are the volumes of the platlo. sophical 'Transactions which it has published:-

 it 18 thick fte whame with immther rolume con-
 ciety ly Dr. Whomas Fommon, in whieh the realer will lind the most ample information respecting liais institntion.

The Royad Society of lomon adjulses three prizes, viz. the Coppley medat, the lamberd medal, ame the Royal medids.
 Irey Copley, Bat. who was a member of the Socioty from 1691 till his death in 1710 . 'this medal used is be arlondged amatlly for the mose importane paper published in the wansactions; but it has lately been adjudged to foreistmes for discoverics not communicated to the Royal Society. The valne of the medal is not above liz, 5 s . It has leeen ationderd to mathy of the most distinguished ornaments of English sticnce.
a. The Rumpont wald and silder melluls. I'hese medals were presented by Bonjanin Thomson, Connt
 cent. stork, the interent of which, op lat, was to form a bienaial prize \({ }^{\text {a }}\) for the most important diocovery or uselul improwemont in any way mate known to the public during the two precedins years, on hond or on light." The form of the prize is a large gold aud aloo a silver mednel stuck in the same dic. As the medial has not becon ablodged duriarstisht of the biennial perioda, the principal of 1.100 has been considerably increased, and as the interest of the additional sans is given allong with the two medals, the prize is a very valuable one.

The following is a lint of the phiosophers who hate reccised the Rumford medab:-
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Fomat Pummor} \\
\hline Protissor licsle & 14 \\
\hline M. Matas & 1512 \\
\hline \(\cdots\) - Humplay Duw & 1-11 \\
\hline 13. Weils & 1)16 \\
\hline 1ir lirewster & 1:13 \\
\hline A Freshel & 1020 \\
\hline
\end{tabular}
3. The fomplal Metals. At the anniversart dinnep of the lioyal Society, on the Both Nov. 1525 , Mr. Peed amounced his Majesty's intention of granting the sum ol one hundicd grineas anmally. to establish two scientific prizes, to be awarded every gear for the most important discosery or invention.

These medals were adjudged in
182510 Mr . John Datoon, and
James lvory, Esq., and in
1827 to Sir IIumpliry Dury.
The Royal Society of London have a valuabie libra. ry. The admission fer, and the composition lor the annual contribution ol L. \(5,5 \mathrm{~s}\). amounts to about L. 50 . The members receive the lransactions gratis. and authors of papers are atlowed separate copies ol them, but at their own expense.
II. Royal Sochety of Eminetrib-In the yeat

1718, a Literary Society was established in Edinburgh by Ruddiman and others. In 1:31, it was succeeded by a Medical Suciety. In 1739, the celebrated Colin Maclaurin and others extended it under the name of the Philosophical Society of Edinburgh, and between 1754 and 1771 , they published three volumes of papers entitled Essays or Observations, Plysical and Literary. In 1783 , it was incorporated by a royal charter ol the most degrading kind, being prohibited from forming either a library or a museum, and being bound to deposit the books presented to them in the Adrocates' Library, and all objects of natural history in the College Museum! In 1811, this charter was rescinded and a new one obtained, which gave them the power of forming a library and a museum of their own; but it will scarcely be believed that at such a period of liberality, they are actually prohibited "rom appointing a prolessor, lecturer, or doctor of mineralogy, geology, or natural history, or for using their collections to promote any such institution, excepting that which is, or shall be in the University of Edinburgh."

The Society has now a respectable library, and museum containing several objects of interest, which has recently obtained large and valuable accessions from the liberality of George Swinton, Escj. secretary to the government of Bengal.

The society has published the following Transac-tions:-
From 1783 to 1788

Jn all

Periods.
\begin{tabular}{ll}
5 \\
2 & 1 \\
2 & 1 \\
4 & 1 \\
4 & 1 \\
7 & 1 \\
7 & 1 \\
3 & 1 \\
3 & 1 \\
5 & 1 \\
3 & 1 \\
\hline
\end{tabular}

10 rolumes.

The Royal Socicty of Edinburgh adjndges one prize, known by the name ol the Acith Modal.

This prize was presented in is19, by Nexander Keith, Esq. of Dunottar, an ardent lover and patron of science, and who was the first treasurer to the Society in 1583 . We lelt 1.1000 Sterling, under the management of Sir Alesander Keith, Dr. Keith, and Dr. Brewster. for the purpose of atsancing the sciences and the ants of his native comntry. Out of this sum the trusters above mentioned ollimed L. 600 to the president and colncil of the Sociey, the biennial interest of which, vi\%. 1.. 0 on, was to fom a biennial prize for the most important discoverics in stichecemate ju any part of the world, bat commonicated by their anthor to the Royal Socicty and published in their Transactions. The trusters suggested that the form ol the prize shouk be a gold medal, together with a sum of money, or a piece of plate, bearing the devices and inseriptions on the medal.

This offer was aceepterl by the Royal Society, and the Keith Medal was adjudged for the first time, in Jamary 1828, to Dr. Brewster lor his discovery ol two new fluids existing in the cavities of several min-
erals, published in the loth volume of the Society's Transactions.

The society consists ol about 300 ordinary members, 21 honotary and 36 Foreign members. These two last chasses are limited to the number mentioned.

The admission fee ol \(£_{5}, 5 \mathrm{~s}\). and the composition for the annual contribution of \(\mathcal{E}, 3\), 3 . amounts to about £36. The members receive the Transactions gratis, and the authors of papers receive 24 copies of them lree of all expense.

Societies recontly establishod in London.-Among the scientific socicties recenty established in London, and not described in that aticle, we may commerate

Linneax Sochetr, founded in 1788 . Incorporated in 1802.

Extomological Sociery, founded in 180 f.
Geologicri Societr, . 1811.
Horticultural Socicty,* . 1804.
Royal Isiatic Society,
Society of Civil Engincers, \(\quad 171\) and 1793.
Zoological Socicty of London.
Besides these, we may enumerate the following provincial institutions:-

Philosophical Society of Cambridge.
Literary and Philosophical Society of Leeds.
Natural Ilistory Socicty of York.
An account of the societies of Nanchester, Newcastle, Plymouth, and the institution of Liverpool, will be found under these articles.

Societies reccutly established in Edinburgh.-Among the societies recently established in Edinburgh, and not described under that article, we may mention the

Caledonian Horticultural Socicty, established in 1809.

Socicty for Promoting the Uscful Arts in Scothand, founded in 1819.

Among the provincialinstitutions, may be mentioned the Literary and Antiquarian Society of Perth, already described in that article; and the Northern Institution of Inverness, a flourishing society established in 1825.

Among the other societies connected with Great Britain, we may notice, 1. the . Isiolic Soriely of Culruttu, already described under that artiche, and which has published filteen volumes of Transactions. 2. The Medical und Plysical Society of Calenlto. established in 1823. This excellent institution has already published two volumes of Tramactions in 8 or containing many interesting papers. B. The Royel Sociely of Cotfinger. This society was established by George I. in 1751 , and has published many volumes of commentaries in different series.

SOCHETY LstaxDs, a group of islands in the lacific, including Ulietea, Otaka, Bolabola, IIuabeine, Tubai, and Mauraa. Captain Cook gave them this name in \(1 / 69\) lirom their contiguity. They lic in South Lat. \(16^{\circ} 30^{\prime}\), and \(155^{\circ} 30^{\prime}\) ol West Long. The inhabitants, as well as the climate and productions ol these islands resemble those of Otaheite. The first four ol these islands have been converted to Christianity, the number of converts being above 5000 . This happy change we owe to the zeal ol the missionaries who distinguished themselves so much in Otaheite.

Socinlans. Sce Eecheshastical IIstory.

Socotra, or Socotama, an island in the Indian sea, is about twenty-seven lagues long and seven broad. Its surface is mountainous, and its precipitous shores affordmany good harbours, of which Benin and Cora are the best. It has long been celebrated for its aloes, which are in great reguest. It yields also dragon's blood, ambergris, frankincense, ath toral; and bullocks, goats, lish, rice, and dates may be obtained at reasonable prices. The town which is handsome, from the houses being built of stone, contains several mongues. 'The king's residence is in East Long. \(53^{\circ} 33^{\prime}\), and North Lat. \(12^{\circ} 39^{\prime}\).

SOCRITES, an ancient moral philosopher ol distinguished emineloce. was born at Nopece a village near Athens, B. C. 469. His father Sophroniscus was a statuary, and his mother Phamareta a madwife. Haring, lost his small patrimony by the dishonesty of a relation, be pursued his liuther's protession, and is said to have exectited statues of the habited graces, which were thought worthy ol a place in the citadel of Athens.

Crito, a wealthy Athenian, engaged him to echeate his children, and in this sitnation he found leisure to attend the lessons of Xechelans and Anaxagoras, two of the most eminent teachers of the day. Ilis valour was exhibited in saving the lite of Aleibiades, and in carreing off Xenophon when left wounded on the field of battle; and his wisdom and integrity were equally conspicuous when he servel his country in the senate ol 500 .

Aflicted with the moral and intellectual condition of his commtrymen, socrates resolved to become a public instructer at Athens, iy conversation and \(\mathrm{g}_{\mathrm{g}}\) public lectures addressed at all seasomable times to all classes of the communty, from the mechanic up to the senator. In these communications with his fellow citizens, his object was to convince his hearers of their individnal follies and viees, to inspire them with a love of virtue, and to impress upon them the conviction of the narrow limits of the haman understanding. Ilis plan comsisted in asking a series of questions, and in raming the assent ol his pupils to certain truths which they themselves eould not but deduce from their own previous atmissions: and such was the skill with which he olten eoncluded these examinations, that lis pupil was not aware ol the conclusion till he lound it irresistible upon his own principles.

The homility which characterisod the deportment of this great man, the unilom excellence of his conduct, the albstemiousness of his life, and his contempt of wealth and popnhar applanse, point ont Socrates as one of those stiperior beings whom Provitence occasionally exhibits to the wnld as an example lor future ages. "Theman," says Ximophon, "whose memoirs I have written, was so pious that he undertook nothing without askiug the counsel of the gools; so just, that he never did the smallest injury to any one, but rendered essential services to many: so temperate, that henever prefered pleasure to virtue, and so wise, that be was able in the most difficult cases, without advice, to judge what was expedient and right. He was eminently qualified to aid others by his advice; to penetrate into men's characters: to reprehend them for their vices, and to excite them to the practice of virtue. IIaving found all these excellencies in SoeraVol. SVII. Parti.
tes, I have always regarded him as the most virtuous, and the happiest of men."

It was not to be expected that the enemy of publie immorality, and of political corruption and oppression, could escape the hostility of those who smarted under the exposure of their vices. The immoral youth of Athens hired Aristoplanes to lampoon him on the stage, in the comedy of the "Cioucls," written lor this purpose. Socrates himedr attended the performance of the piece, and when the person who represented himself appeared upon the stage. Socrates stood up to exhibit the original of the character to the inquiring andience. When he was asked by a spectator if he was mot chagrined at this public derision, he replied, "By no means, 1 am only a host at a public lestival, where I provide alarge company with entertainment."

Bufled in this attempt to disgrace the philosopher, the malice of his encomies was directed into a new channcl. He was publicly accused before the senate, loy one Melitus a rhetorician, ol "not acknowledging the gods which the state acknowledges; of introducing new deties, and of violating the laws by corrupt ing the youth." Anylus, a leather-dresser and the principal accuser, offered to withdraw the charge if Socrates would desist lrom censuring his conduet: but Socrates replied, that "white he lived he never would disguise the truth, nor speak otherwise than his daty required."

On the day of the trial, Plato rose to address the court in fivour ol his master, but he was soon commanded to sit down. Socrates then made his own defence, and unveiled in the most powerful manner, the characters and motives ol his accusers. A corrupted and unjust court, however, who had predetermined his death, listened not to the truth: and Socrates was eondemned to be poisoned by hemlock.

The lirients of Socrates endeavoured to persuade him to make his escape, or at least to allow them to cary him oll liom his encmies. He rejected. howcver, the proposal as a violation ol the law, and resolved to submit himself to its decrees.

His friends and disciples repaired to his prison, to hear the last words of their great master, and on this occasion the conversation turned principally on the immortality of the soul. Socrates condemued the practice of suieide, and assured his friends that his chief support was the expectation, not free from doubts, of a happy existence after death. "It would," he said, "be inexcusable to despise death, were I not persuaded that it wonld lead me into the presence of the gots, who are the most righteons governors, and into the society of just and good men; but I conlide in the hope that something of men remains after death, and that the condition of good men will then be better than that of the bad." When Crito asked him how he wished to be buried, Socrates replied with a smile. "According to your pleasure, provided I do not escape out of your hands." Then addressing himself to the rest of the party, he said, "Is it not strange, alter all that I have said to convinee you, that I am going to the society of the happy, that Crito still thinks this body, which will soon be a lifeless corpse, to be Socrates? Let him dispose of my borly as be pleases; but let him not at its interment mourn over it as il it were Socrates."

After retiring to an adjoining apartment to bathe, 2 R
he took his last leave of his friends, and then having prayed for a prosperous passage into the invisible world, he drank the fatal poison without the least change of countenance or apparent discomposure. His friends around him burst into tears. Socrates alone was ummoved. He upbraided their weakness, and implored them to exercise a manly fortitude worthy of the friends ol virtue. He continued walking till the influenee of the hemlock forced him to lie down upon his bed. Alter remaining silent for a short time, he requested Crito not to neglect the offering of' a coek, which he had yowed to Esculapius. Then covering himself with his eloak he expired. This event, the account of which Cicero assures us he never read without tears, took place in the year 399 B. C.

The Athenians were roused to a sense of their shame, in having destroyed one of the greatest of their eitizens. Melitus was condemned to death, and Anyles escaped the same fate only by voluntary exile. The Athemians recalled the friends of Socrates from exile, decreed a general mourning, and crected a statue to his memory. See l'ausunias 1, eap. 42. Plutarch, De Op. Plil. Sce. Cicero, sc. Cret. 1, e. 24. Tusc. Quest. 1, c. 41, Faltrius Maximus, 3, c. 4, and Brucher's History of Philosoply, by Einficld, vol. i. Sec also our artictes Athens, and Greege.

SODA. See Alkalifs, and Chemistry.
sodalite. See Mineralogy Index.
SODANE. See Chemistivy.
Sodiunt. See Chemistay.
SOGDIANA, a county of Asia, between the rivers Iaxartes and Oxus. It was bounded on the north by Segthia, on the west by Morgiana, on the south by Bactriana, and on the cast by the Saca. Mareanda was the capital of the country. It is now called Sogd, and is part of the country of Great Bucharia.

SOHAD, or Mosis Sumas, a town of England, in the eounty of Cambridge, situated on the east side of the Cam. It is large and irregularly built, ant has a spacious church, with a tower at the west end. Its principal street is three-lourths of a mile long. There is here a large charity school, and three ahms-houses. Chese of excellent quality is the principal produce of the place. Population of the town in 1821, 2856. Houses 537. Families 691 . Do. in trade 107.
soll. See Agmechiumbindex.
SOMSSONS, the Toriodumm of Casar, a town of France, in the department of the Aisne. It stands in a fine valley, traversed by the Aisue. The public buidings are the cathodral, with a library and a collection of manuseripts, the church of Notre Dame, the acartemy established in biag, a lyenm, and a theatre. Its manalactures are leather, coarse linen, ropes, stockings, and thead. Corn is exported in considerable quantitis. lis haricots are celcbrated. Near Soissons is St. Cobin, ectebrated for its glass manufartury. Jopmbation \(\$ 189\).

Solber is the name of a metallic compound, used to join together other metals. The following are some of the most important of the solders, it being a Eeneral principle that some of the metals to be soldered should le mixed with some higher and liner metals.
1. Sulder for gold consists of fine grold, with oncfouth on one-hall its weishe of fine silier, mixed by fusion, and beat out into leaves thimer than eard
paper, and rendered soft by annealing. \(\Lambda\) portion is then laid on the fracture, or ends to be united, and it is sprinkled with pulverized borax. The flame of a blow-pipe is then used to melt the whole. The borax is removed by boiling water, or a little dilute sulphuric or muriatic acid; and the paler colour of the solder may be deepened, hy melting on its surlace a mixture of two parts of nitre, and one of burnt alum, and washing it off with hot water. Silver after soldering, may be cleansed by boiling it in alum water, and gold by urine and salammoniac.

Solder for gold may also be made with gold and a little copper.
2. Solder for Steel and Iron.-Gold with a slight alloy of copper is a good solder for uniting the finer linds of steel instruments. For larger articles in iron and stecl, an alloy of equal parts of tin and iron is used.
3. Solder for Phmbers.-This solder consists of two parts of lead, and one of blofl fin. It is known to be good when small bright shining stars rise in a small piece of it poured out of the crucible in which it is melted. Equal parts of lead and tin are used when it is wished to be bard; and when it is wanted to be very fusible, bismuth is added in various proportious.
4. Solder for Siller. - The haed kind is composed of equal parts of sitver and fine brass, and the soft is made by flusing the hard solder with one-sisteenth its weight of pure zinc.

A steond solder for silver is made of two parts of fine silver, and one of brass, which must not be kept long in a state of fusion. lest the brass be oxidated.

A thirel solder for coarser silver is made of four parts ol' fine silver, three of brass, with a little borax, and it must be poured ont when melted.
5. Soller for copper. This is made of copper and tin; but for fine work silver is substituted for tin.
6. Solder for copper, bruss, and the hurd alloys of eopper. The best hard solder for these purposes is made of brass and zinc, from eight to sixteen parts of brass to one of zinc, according to the hardness required. The solt solder consists of three parts zinc and one lead, and is applied by a common red hot soldering iron.
7. Solder for orem pijes. This is made of three parts pewter and one bismuth.
8. Soft pertescr's solder, is composed of two parts tin and one bismath, which is very wasily melted.
9. Syeller soliter. This is made of two-parts of specter, (the commercial name for zinc.) and one of brass. It is used by braziers and coppersmiths for brass, copper, and iron. Adwt of silver to each oz. improves it greaty.

SOLEURE, in ierman, Solothern, is the name of a canton ol' Swizerland. It hies between the har and the Jua partly oceupying the phan and party the tace of the ridge. Its surlace is :bout 275 square miles. The land is partly arable and party devoted to pasturage, which is greaty improved ly an exceltont system of irrigation. The canle thus reared are deemed the best in Swizerland. The manalactures are woollen, linen, and cotton goods. Soleure and Olten are the principal towns. Olten is beatifully situated on the banks of the Aar, with the finely wooded peaks of dura rising behind it. The Aar is here crossed by a wooden bridge ol six arches roofed
in with wood. Olten has a new church with two small towers, a gate with a high spmare turet and another small towere The problation is 1300 . The inhabitants are chictly catholies, and amount to 50,000 .

SOLEURE, the Sololuram ol the ancients, and the capital of the ahove canton, is limely situated on the Aar, which divides it into two parts. It is fortificel with walls and bastion, the walls inclosing about fifty acres. it is tolerably well built, and the homses are generally neat. 'low prime ipalbaldings are the lloted de Ville, the public juil, the Jesuits' chuteh, the chareh of St. Urse, the mint, and the publie library, comatining above 11,000 whmes, and the great square Roman tower. The churh of St. Urse, hegun in 1762, and fisished in 1772 , is a noble ediface of whitish grey stone, the lowar part being of the Corinthiat, athe the upper of the" Composite order. 'The laçade, which consists of a portico surmounted by an clegant tower, faces the extremity of the principal street. The exparase is saicl to have bern L. 80,000 . The vicinity of the town is bomifal; and the traveller should aseend to the (halets and larm of Weissenstein. From his is the linest icw in Switzertant, embracing the immense valley whichseparater Jurafrom the high chain of the Nps, together with the showy moantains. At stmset this secme bablles all deseription. See Dict. de le Suisse, Art. Solembe. Coxe's I'rueds in Switzerland, vol. i. and Ehel's Mamull, \&e. vol. iv.

SOLFAlARA, Lake of. Sce Campagna.
Solid ol Gremprspatrmacron. Sce Attraction.
SOLIDS, Atrmatron ol. See Atrrietion.
SOLids, Mrastrimon of. See Mensuration.
SOLON. See Amexs.
SOLWAY Moss, a tract of land in Cumberland, celebrated for an emption ol a very remarkable kind, which is thus described by Mr. Gilpin.
"Solway Moss is a flat atra about seven miles in circumference. The substance of it is a gross tluid, composed of mud and the putid fibres of heath, diluted by internal sprines, which arise in every part. The surlace is a dry coust, covered with moss and rushes, ollering a fitir appertance over an unsound bottom, shaking with the least pressure. Cattle, by instinct, know and avoidit. Where rushes grow the botom is sommest. "The adrenturous passenger, therefore, who sometimes, in dry seasons, traverses this perilous waste, to save a few miles, picks his cautius way over the inblay tussocks as they appear belore him. Il his foot slips, or il he ventures to desert this matr of security, it is possible he may never more be heard of. On the south, Solway Mass is bounded by a cultivated plain, which declines genty throngh the space ol a mile to the river Esk. This plain is lower than the moss, being separated from it by a breast-work, lormed by digening peat, which makes an irregular though perpendicular line of low blatk boundary. It was the bursting of the moss through this peat hreast-work, over the plains between it and the Esk, that occasioned the dreadful inundations that destroyed so large a district. The morc remarkable circumstances relating to this calamitous erent were these:-

On the 13th of Norember 1771, in a dark tempestuous night,* the inbabitants of the plain were alarmed with a dreadful crash, which they could no way ac-
count for, many of them were then in the fiedes watehing their calle, last the lisk, which was then rising violently in the storm, shonld carry them offi. In the meantime, the enormous mass of linid substance, which had burst fiom the moss, moved slowly on, spreading itself more and nowre as it got possession of the plain. Some of the inhabitants, brough the teror of the night, could plambly diserver it atvancing like a moving hill. This was, in fart, the cast; for the gush of mad carried betore it, thoobsh the first two or there humdred yareds of its comese, a prat ol the breast-work, which thongh low, was yet several lee in perpendicular height; hut it soon deposited this solid mass, ant became a hoary tluid. One house after another it spread round, lilled, and rrushed into ruins, just givine time to the ter rilied inhabitants to escape. Searcely any thing was saved except their lives; nothing of their forniture, few of their cattle. Some people: were even surprised in their beds, and hat the additional distress of llying naked lrom the ruins. The morning light explained the cause of this amazing sceme of terror, ant showed the calamity in its lill extent; and yet, among all the conjectures of that dreadlint night, the mischicl that really happened had never been supposed. Lands which in the evening would have let for twenty shillings an acre, in the morning were not worth sixpence. (On this well-cultivated plain twenty-eiglat families had their dwellings and litlle farms: every one ol which, except perhaps a few who lived near the skirts of it, had the world totally to begin again. Who could have imagined that a breast-work, which had stood lor ages, shonld at length give way: or that these subterraneous floods, which had been bedded in darkness since the memory of man, should ever have burst from their black abode? This dreadful inundation, though the first shock of it was most tremendous, continued still spreading for many weeks, till it covered the whole plain, an arca ol 500 acres. and like molten lead poured into a mond, filled all the hollows of it, lying in some parts thirty or forty fcet deep, reducing the whole to one leval surface." Gilpin's Observations on the Mountains and Lakes of C'umberland.

In order to clear the arable and pasture land of this accumulation of moss, Mr. Wilson lrom Vorkshire, adopted a very ingenious plan. He lommed, in the higher grounds, two large rescrvoirs, which he filled with water, the whole force of which he directed against a large knoll in front of Netherby House, and alterwards against the accumulated masses, which be succecded in washing away into the channcl of the Esk. Dr. Graham ol Netherby had sent for a person to survey the ground, and estimate the expense of remoring the moss in the ordinary way. The estimate was L. 1300 ; but while the matter was under consid. eration Wilson suggested that it might be done choaper, and by the method which we have mentioned he cffected it for less than L. 20 !

Another account of the eruption of this moss, by Mr. J. Walker of Moffat, will be found in the Philosophical Transactions for 1772 , vol. Ixii. p. 123. According to Mr. Walker, the mossy ridge was reduced no less than twenty-five feet; but what is not easily explained, he makes the cruption take place on the 16th December 1772, whereas Gilpin places it on the

13th November 1771. Mr. Walker mentions the temarkable case of a cow, the only one out of eight in the same byre that was saved. It had stood sixty hours up to the neck in mud and water; and when it was taken out it did not refuse to eat, but it would not taste water, nor even look al it, without manifest signs of horror. It was soon, however, reconciled to it, and was then likely to recover.

SOMERSETSHARE, a maritime county of England, is bounded on the north by Gloucestershire and the Bristal Channel, on the east by Wiltshire, on the south-west by Devonshire, and on the southeast by Dorsetshire. It is one of the largest counties in England, its greatest length from east to west being about 68 miles, and its breadth from north to south 47 miles; it is 240 miles in circumference, and it is computed to contain 1,050,880 English acres.

This county is divided into two civil divisions, the eastern and the western; in the first there are 20 hundreds and seven liberties, in the second 22 hundreds. Somersetshine possesses two cities, Bath and Wells, and a part of Bristol, seven boroughs, and 29 market towns. The ecclesiastical divisions are one bishopric, three arch-deaconries, 15 deaneries, and 482 parishes. The connty is in the province of Canterbury, and the diocese of Bath and Wells. Bath contains two deaneries, Wells seven, and Tianton four.

Few counties present a more diversified aspect or a greater varicty of soil, changing from the highly cultivated valley to the barren and stony heath, and to the bleak and lofty hills so seldom to be met with in other parts of England. In the northeeast corner are the lolty Nendip Hills, which are chiefly remarkable for the quantity of coals and lead they produce. The other hills of note are Quantock, on the western side of the county, Brendon, near Quantock: Poulden, near Bridgewater, Broadfield-Down, between Bristol and Wrington; Leigh-Down, in the hundred of Portherry; Dundry, near Bristol; Lansdown, near Bath; White-Down, near Chard; and Black-Down, on the confines of Devonshire. Near the Quantock hills is a dreary heath called Exmoor Forest, a part of which, called Dunkeny, is 1658 fect above the level of the sea, and lrom which there is a fine view of the adjacent country, extending as far as the Bristol channel on one side, and the English channel on the other. The bleakness and sterility of these hills, however, is amply compensated by the luxuriance of the meadows and the lertility of the arable lands, which produce such abundant crops as are sufficient not only for the consumption of the iuhabitants, but even for supplyins other markets. 'The seneral appearance of the connty is rich, rather than picturespuc, owing, in a great degree. to the scarcity of woods and the sluggrishness of the streams, which in summer become nearly stagnant, and thereby greatly diminish the beauty of the landscape.

The chicf rivers are the lower Avon, the Ax, the Brue or Brent, the Parret, the Yow, the Cale, Chew, Tone, lrome, lrel, Ex, and Barl. The lower Avon is a navigable river, and rising in the north of Wiltshire, near Wootton Basset, becomes navigrable at Bath, and running on with a circuitous course, it passes lbristol, and empties itself into the Severn, lorming the Bristol chamel at Kingsroad by its conjunction with that river. The \(\Lambda x\) rises in the Mendip, hills, and has its chicf source in a natural excavation
called Wootey Hole, which bears some resemblance to the caves of Derbyshire. This river is not navigable. The Brue or Brent has its origin in Wiltshire, and enters the Bristol channel at Bridgewater Bay; it is navigable for about two miles from its mouth. The Parret rises near the village of south Parret in Dorsetshire, and after its junction with the Jone, runs into Bridgewater Bay through the marsh of Sedgemore. It is navigable from Stert point to Langport, a distance ol' about 20 miles. These rivers all abound with trout, salmon, perch, pike, carp, tench, and other smaller fosh. The only canal that Somersetshire can boast of is the kennct and Avon, which joins the Thames with the Severn.

As this county has long been famous for the richness of its meadow lands and the abundance of its grass, the fattening of cattle and the management of the dairy has, of necessity, become the most important branch of its rural economy. The oxen bred in the less favoured pasturases of Devonshire afford excellent beef when lattened in this district; and supply not only the neighbouring markets, but even those of London. 'The sheep natural to the conaty are of the Mendip breed, but of late years almost every improred rariety has been introduced. The dairies are not less remarkable for the superior excellence of their butter and cheese, the cheese of Cheddar baving long enjoyed the reputation of being equal to any in England, and is often sold at Gloucester; the butter made in the vicinity of Crewkerne is sent to the London dealers, who sell it under the name of Dorsetshire butter. Among the agricultural products, the cider, which is reckoned superior in strength and purity to that either of Herelordshire or Devonshire, is not the least important, as it is the principal drink of the lower orders throughout the whole county. The natural grass is so plentiful, that it has almost entirely superseded the use of clorer or other artificial grasses. Barley is not much grown, but wheat, oats, and bear, together with fax, teazels, and woad, are culcivated very extensively in most parts of the county. The hundred of Taunton Dean is reckoned to produce the best crops of wheat. Elm trees thrive best in the rich loamy soils, which are also particularly well adapted to the growth of flax, most of which is used in the manulactures of the county. Geese feathers formerly yieded a considerable profit, but as many of the marshes weredrained and inclosed a few years ago, and as many are now undergoing the same process, the supply of lewthers is not newly so great as it was when the county abounded with marshes, which are necessary for the subsistence of the geese, and which, in their present state, afford much more profit to their owners than before.

Somersetshire is by no means deficient in mineral products; the Mendip Hills abound with lad, coal, and calamine. The lead is chichy experted for the purpose of makimg bullets and shot, and the calamine is used by the brass manufacturers of bristol. The coals supply the cities of Bath and Werls, and the towns of lrome and Shepton Mallet. Lead is also raised on the Cheddar Hills of a finer quality than that of Derbyshire. Manganese, bole, and red ochre, are foand on the Mendip Llills, and copper near Stowey. Limestone, fuller's earth, and marl, are procured in other parts of the connty.

Somersetshire is almost entirely a manufacturing
county. At lrome, Shepton Mallet, and their neighbourhood, there are extemsive mannfactories of cloths of Spanish and Sixon wool. Ihainster, Chard, 'I'aunton, and Wellington, produce woollen choths of a mitldie quality, while others of an inferior description are made at Wevestcombe, Milvarton, and Watehel. Limen goods, such it dowlas, bedtickings, and sail cloths, are manafactured at Yoovil, Crewkenne, Nontacute, and Martock. There are silk mills at Bruton and Taunton: and gloves are made at Yeovil. Chadd and Wells both possess mantuctories, one for wove lace, the other for line papere: a quantity of valuable articles are made at the glass houses near bristol. At Bridgewater, there is a loundry and a braziery, which give emplosment to a number of people.

The foreign commoree of this county is chiclly carried on at Bristol, which is the place from which such goods as are eligibte for the loreign market are generally exported, with the exception of the woollen articles made at Taunton and Wellington, which are exported from Exeter. Bridgewater enjoys a trade with leland, and many of the smaller sea-coast towns, a coasting trade which they turn to a considerable account. The greatest part of the prodnctions of the county, both agricultural and mandactured, which are not destined for home consumption, find a ready sale at the markets of the adjacent counties. The catlle, butter, and cheese, are sent to the metoopolis. Wales and the western counties are supplied with the linen and woollen mandactures.

The parliamentary represchtatives are two for the county, and two for each of the undermentioned towns, viz: Bath, Weils, Tamton, Bridgewater, 11 chester, Minchead, and Mibom Port, and two for Bristol, which is partly in this county, and partly in Gloucestershire.

Hehester is considered the county town, as the clections are held there, and as it contains the grol and county court, athough the assizes are held at Taunton in spring, aud in the summer season at Bridgewater and Wells alternately.

The population in 1821, was 355,314 , of whom there were 152.16 males, and 165,357 femates. The inhabited houses were 61,852, the unimhabited 1974, and houses buidling 850 . The number of the families was 73,537, of whom 31.48 wete employed in agriculture, 27,132 in trade, and 14,957 in neither of the above classes. See Bellingstey's. Lcoumt of the Agriculture of Somersetshire, and the Beauties of England and /Falcs, vol. xiii.

SOMIERSET, comaty of the United States in Maine. It would be not merely useless, but deceptive to give a description of this county, with its present extent, as the advance of settoment must superinduce perhaps 8,10 , or more countics from its limits. When the census of 1820 was taken, Somerset county extended from Kennebec northward to the extremity of the state, stretching 180 miles in length, with a breadth exceeding 50, and embracing between 7000 and 8000 square miles. But of this great extent, only the southern part was inhabited, and sustained a poptration of 21,187 . The inhabited tract, traversed by the Kennebec river, is a fine, it might be said, beautiful country, and in a state of rapid improvement. Seat of justice Norridgewock. N. Lat. \(45^{\circ}\) and Long. \(7^{\circ}\)
E. from Washington City, intersect near the kennebee river in this county, and about 30 miles a little W. of N. from Norridpewock.

SONDERSL'T, county of the United States in New Jersey, boumed by Middlesex SLE., Hunterdon IV., Nomris N., and lissex Nomb-cast. Lecngrb So, mean width 12 , alld area 30,0 splate miles. This county extends fengthwise from N. to S . and is drained by the various conlamets of hariton river. The face of the country agrecably dipersilied by hill. dale, and even mountain secnery, renter Somerset connty of New Jersey one of the most pleasant to the cere of the infand colntics of the United States. In 1820, the population amounted to 16,506 , or within a very small fraction of 46 to the spuare mile. The agricintural products are various and valuable, and ocoupying a nearly central position between New Tort and Philadelphia, the farmers find a ready market. Somerset divides the city of New Brunswick with Niddlesex, and besides the seat of justice, Somerville, has the villages of Boundbrook and Nidilleburg. with part of P'rinceton. Central lat. \(40^{\circ} 35^{\prime} \mathrm{N}\). Long. liom Wishington City \(2^{\circ} 25^{\prime} \mathrm{E}\).

SOMLERSET, county of the United States in Pennsylvania, bounded by Alleghany county in Maryland S., by Fayette county in Pennsylwama SIV., Westmoreland NTV., Cambria NLi. and Bedford l:。 Length from south to north 35, mean width 26, and alrea 910 syuare miles. Bmbracing a large part of an extensive valley between that particular ridge of the Appalachian system of momntains called the Alleghany, and another lateral ridge, the Laturel hill, the surface of Somerset county of Pennsylvania is a true mountain table land, elevated at a mean of at least 1500 leet above the tides of the Atlantic coast, and upwards of six hundred and sisty lect above the level of the Monongahela at Brownsville. This relative height gives to Somerset a climate near, if not alogether, four degrees of Fahrenheit more severe than that of simitar latitude on the eastern coast of New Jersey. The 40th degree of North Lat. and two degrees of Long. W. from Wrashington City, intersect near the eentre of Somersct. The middle parts of New Jersey, will therefore contrast with the southern mountain valleys of l'emsylyania. The comparative tropical climate of the former is usually aseribed to proximity and absence of an open ocean, a cause perhaps of a share of the effect, but difference of level is the lar more efficient agent.

A very small angle of the south-east part of Somerset is drained by Wills ereek branch of Potomac: Youghioghany river, rising in Virginia and Maryland, flows north into Pennsyluaia, forming fur 8 or 9 miles part of the boundary between lavette and Sumerset countics, receiving from the latter a large confluent. Castleman's river. The northem section towards Cambria is drained by the sonth-eastern sources of Conemangh river. Though bounded by two mountain ridges, Somerset is rather level than even hilly. The soil is varions, and generally well adapted to grain and meadow grasses.

The intended Chesapeake and Ohio eanal is projected to pass over the southern part of Somerset by the valley of Castleman's river.

Somerset, the seat of justice, is situated near the centre of the county, N. Lat. \(40^{\circ}\). Long. W. from

Washington City \(2^{\circ} 05^{\prime}\) Population of the county, \(1820,13,574\), or 15 to the square mile uearly.

SOMERSET, county of the Unitet States, on the eastern shore of Maryland, bounded by Worcester county in the same state E., Chesapeake bay S. and W., Nanticoke river, or Dorchester county, MaryIand, NW., and Sussex county, Delaware, N. This county lies between the Pocomoke and Nanticoke rivers, and is cut into three peninsulas by the Wico. mico and Monokin rivers. The surlace is flat and satdy, though generally productive. From the indentings of the bays or river mouths, the area is estimated with some difficulty; the length from the Pocomoke inlet to the Delaware line 30, and mean width 15, with an area, exclusive of water, of about 450 square miles. Central Lat. \(33^{\circ} 16^{\prime}\). Long. E. from Washington City \(1^{\circ} 18^{\prime}\). Seat of justice, Princess Anne.

\section*{Darby.}

SOMADE, the name of one of the departments in the morth of France, is bounded on the north by the Straits of Calais, on the west by the sea and the department of the Lower Scine, on the south by that of the Oire, and on the east by that of the Aisne. In point of agriculture and manufactures this is one of the most flourishing departments in France. Tillage and the feeding of catte are carried on as in Flanders. The surface contains 604,456 hectares. The principal river is the Somme, whence it derives its name. The chief towns are

The forests occupy 57,000 heetares, and the contributions in 1803 amounted to \(5,630,664\) francs. The population in 1822, was 508,910, and in 1827 526,282; there being 860 inhabitants to every 1000 hectares. Sce Abervilef and Amiexs.
SOMNAMBULISAL is that state of the body in which it walks during sleep, and performs many voluntary actions wittont any consciousness of performing them, or any recollection of their having been performed.

In this state of the body the patient rises from bed, opens doors, windows, or drawers, walks into the fields, sits down to write, crosses hedges, walks along. the tops of houses, ascends precipices, climbs to rooks'nests, and perlorms feats from which he would shrink in his waking moments. To these we may add the delivery of sermons and pragers during sleep, a power possessed, and for many years exercised, by an American laty. Dr. P'ark is of opinion that "the physical cause of this singular affection apperars to be an irregular distribution of blood in the sensorium, or some local congestion that impedes the uniform and simultancous restoration of the corporeal and mencutal faculties." "Phose who wish to study the subject may consult Itoffmann's Dissertatio de Somnambulame, in the Suppl. to his works, vol. iii. Art. Sornatmblism in the Encyclopedic. Cleghom, Ic Sommo, Edin. 1733, Darwin's Zoonomia, vol. i.

Sect. 19. in Dugald Stewart's Philosophy of the Iumom Mind, chap. v. and Dr. Park in the Querterly Journat, vol. vii. p. 258. See also our article Dreams.

SONORA and SINALOA, (Sonora y S'intlot.) nominally a state of the Republic of Mexico, but in fact an immense, and towards the northern part, but imperfectly known section of North America, exreeding in extent the whole Atlantic section ol the United Slates. As laid down and coloured on Tanner's map of Mexico, Sonora and Sinalua extends from N. Lat. \(21^{\circ} 40^{\prime}\) to \(39^{\circ} 40^{\prime}\), or through 18 degrces ol latitude, and limited on the north-west by the Red river of the Gulf ol California, (Rio Colorado,) and V. by the Gulf of California. It tonches the states of Jalisco and Durango on the south-cast, with Chinuahua and New Mexico stretching along the eastem border. Thus restricted, this country reaches from South to North over 1250 miles with a mean width of at least 200, and embraces an area of 250,000 square miles.

Restricting Sonoray Sinaloa to the Colorado river, however, leaves an umamed region of Mexico south from N. Lat, \(42^{\circ}\), which if included would give the state under review a superficies of at least 300,000 square miles. The following will be confued to the region between the Gull ol Bayona, and the Rio Gila.

According to Humboldt, the Intendancy of Sonora comprehended the three provinces of Cinaloa, or Sinaloa, Ostimury, and Sonora Proper. Sinaloa reached from the Rio del Rosario to the Rio del Fuerte. Ostimury occupied the narrow space between the Rio del Fuerte and the Rio Mayo. Sonora, more anciently New Navarre, included all the northern extremity of the Intendancy.

Sonora and Sinaloa is a hilly rather than mountainous country, and from cither the meagre description of Ilumboldt or its representation on onr maps, is in a great degree devoid ol large navigable rivers. The Rio Cila rises in the Sierra de los Mimbres, between N. Lat. \(32^{\circ}\) and \(34^{\circ}, 31^{\circ} \mathrm{W}\). from Washington City, and flowing westerly about lour hundred miles, falls into the estuary of the Rio Colorado, N. Lat. \(32^{\circ}\) 50'. At a long interval of upwateds of four hundred miles, flowing the coast SSE. with the small river Ascension excepted, there is no stream worthy notice from the mouth of the Rio Cila to that of the IIiaqui.

The Rio lliaqui has its remote sources in the same chain with those of the Gila, but the lormer pursues a course of SW., four hundred miles, into the Gulf of California, which it enters opposite Cape St. Miguel, N. Lat. \(27^{\circ} 40^{\prime}\). It is probable that as a navigable entrance the Iliaqui is of litile importance, as no city or extensive settlement has risen on its banks. From the outlet ol Hiaqui to the Gull of Bayona, in a distance of five hundred miles, several petty rivers flow from the interior, but are ol minor value regarded commercially.

The Gulf of California, the American Rol Sea, is, in geographical strictness, the continuation of the Rio Colorado, and stretches along Sonora and Sinaloa, 800 m iles from the mouth of the Rio (iila, to a line from Cape Palmas to the port ol Mazatlan, where it terminates in the Pacific Ocean, N. Lat. \(23^{\circ} 15^{\prime}\). The Califormian Gulf is narrow and much chequered with islands, and represented as of difficult and dangerous
navigation. Between Cape Jalmas, the south-eastern point of the peninsula of Califorma, to the opposing shore of Sinaloa, the Gulf is 120 miles wide, but at Cape St. Miguel, and at the Tiburon islands, not above 40, and may, in all its length, average a mean breadth of 60 miles, or an area of 48,000 square miles.
If the mental eye is turned to a map of North Ame. rica, and the comses of the Colorado and its recipient. the Galf of Catiomia, are taken in comexion, with the great western conlacuts of the Mississippi, the conclusion follows, that in the adrance of popalation and improvement, the ereatest facility to an intard communication between the United States and the Pacilic ocean, is oltered by the ronte of Sonora and Simaloa. If the view of the map of America is extended to that of the world, it will be seen, that a commercial chain extended from St. Louis on the Mississippi, over the Colorado basin stretches towards China, India, and Polynesia, and merges into the Pacific Ocean twenty-thee degrees of latitude more southwardly than by the Columbia.

The population of this region is stated by Humboldt (1803-5) at 121,400; in Tamer's map of Mexico the inhabitants of Sonora and Simaloa are given in a subjoined table at 188,636. Neither adduce their authority or inform us whether the independent Indians are included, or whether the estimate is restrieted to the whites and subject tribes of natives. \(1 f\), however, only the later are inchaded, the distributive population must be very thin. Humboldt (1803) our only authority for the condition of this remote country, has passed the mental state of the whites in silence, but observes that "the Indians who live on the plains adjoining the Cases Grande of the Rio Gila, and who have never bad the smatlest communication with the inhabitants of Sonora, deserve by no means the appellation of savages. (Indius brevos.) Their social civilization forms a singular contrast with the state of the savages who wander along the banks ol the Missouri." The Spanish missionarics who have been able to reach this interesting region, represent the inhabitants as civilized, and social, residing in villages formed of good houses and emvironed by well cultivatedfelds. More, these Indians were found clothed in cotton fabrics of their own mannfacture. These farourable accounts have been recently confirmed by some travellers from the United States.

This domestic and adranced civilization camot be of recent origin. "Pather Francisco Garces, accompanied by Father Font," says Ilumboldt, "who was intrusted with the observations of latitude, set out from the Presidio d' liorcasitas, on the 20th of April, 1rts. After a journey of eleven days, they arived at a vast and beantilul plain, one league's distance from the southern bank of the Rio Gila. They there discovered the ruins of an ancient Aztec city, in the midst ol which is the edifice called la Casa grande. These ruins occupy a space of ground of more than a square league, (\(7 \frac{1}{\text { a }}\) squere miles neterly.) The Casa grande is exactly laid lown according to the four car. dinal points, having from north to south 445 English feet, and from east to west 276 feet. The walls are of clay, constructed in Pisé 3 feet 11 inches thick. The edifice had three stories and a terrace. The same Find of construction is still to be found in all the vilIages of the Independent Indians of the Moqui west from New Mexico. A wall, interrupted by large
towers, sumounds the principal edifice, and appears to have served to defend it. Father Garces discovered the vestiges of an atilicial canal, which brought the water of the Rio diba to the town. 'Ihe whole surrounding pain is covered with brokencarthen pitchers and pots, prettily painted in white, red, and blue. We also lind amongst these, firagments of Moxican stone ware, pieces ol obsidian, (itatli,) a very carious phenomenon, becanse it proves that the dotecs passed through some unknown northern conntry which contains this volranic substance, and that it was not the abundance of obsidian in New Spain which suggested the idea of razors and arms of itztli.
"We must not," continues I Tumboldt, " confound, however, the ruins of this city of the Gila, the centre of an ancient civilization of the Americans, with the Casas grandes of New Biscay, situated between the presidio of Yanos and that of San Buenaventura." Between these points are spread plains and mountains in a distance of upwards of one thousand miles.

Gold is amongst the productions of Sonora and Sinaloa. The hilly country of l'imeria alta is the Choco of North America. All the ravins and even plains contain gold scattered up and down the alluvious land. Iragments are discovered weighing from five to eight pounds Troy.

The most remarkable places of Sonora are Arispé, the former capital of the state, N. Lat. \(30^{\circ} 56^{\prime}\), Long. W. from Washington City \(31^{\circ} 38^{\prime}\), upwards of one thousand miles NNW. from the city of Mexico. Population 8,000.

Sonora the present capital of Sonora proper is situated about 50 miles south from Arispé. Dopulation 6,400.

Hostimury, or Ostimury, is a mining town and capital of the province of the same name, situated on the Pacific ocean, N. Lat. \(27^{\circ}\).

Simaloa, or Cinaloz, otherwise known by its ecclesiastical name of l'illa de sun Felipe \(y\) Sanfiego, is now the capital city of the state of Somora and Sinaloa, containing a population of 13,000 ; and is situated at N. Lat. \(26^{\circ} 58^{\prime}\), and Long. W. from Whashincrion City \(30^{\circ} 55^{\prime}\), upwards of five hundred miles Niv. from the city of Nexico.

Abont one hundred and twenty miles SE. from the city of Sinaloa, stands Culiacan, the Aztec Itneicolhuican, on a small river of the same name. It is still a place of some consequence as the population was stated by Itumboldt at 10,800 .

On the small river del luerte, \(O\) or 80 miles NV. from the city of Simaloa, is situated a considerable town, Alontesclaros, or Villa del Fuerte, with a population of 8,100 ; and ro miles still farber NVF. is Alamos, sustaning 8.000 inhabitants.

A Rosario, near the rich mine of Copala, and approaching the southern extremity Sinaloa and about 200 miles SE. from the city of Simaloa, contains a population of \(6,0 \cup 0\).

\section*{Darby.}

SOPHOCLES, a celcbrated tagic poet, was born at Athens, \(497 \mathrm{~B} . \mathrm{C}\). In his twenty-eighth year he entered the lists with Eschylus and gained the theatrical prize, and in the opinion of the best critics both of Greece and Rome, he has been placed above all the ancient writers of tragedy. Sophocles was dis.
tinguished also as a general. He commanded the Athenian armies, and in several battles he held the supreme command along with Pericles. He exercised also the office of Archon. He is said to have died of joy at the advanced age of ninety, in consequence of having obtained a poctical prize at the Olympic games. Of the one hundred and twenty tragedies which he composed only seven are extant, viz. Ajuer, Electra, Oclipus, Tyannus, Antigone, the Trachinix, Philoctetes. and Oedipus at Colonos. The best cditions of this author are those of Capperonicr, 2 vols. 4to. Paris, 1 izo; Johnson's, in 3 vols. 8vo. Oxom. and Lond.; Brancks, 4vols. 8vo. and Musgrave's, Oxon. 2 vols. 8 ro.

SOREL, river of Lower Canada. This stream, the outlet of Lake Champlain, is known by several local nemes: towards Lake Champlain it is called Richelien river, near Lake St. Joseph the Chambly, and near its entrance imo St. Lawrence the Sorel. From Windmill Point in Vermont, where the current from Lake Champlain begins, to the mouth at the town of Willian Henry in Lower Canada, the course of the Sorel river is a litte east of North, 72 miles, and with but rew partial inflections. The valley of the Sorel is indeed only a part of that very remarkable glen or chasm in the carth's surlace, occupied by the Ludson river, Lake Champlain and sorel. The stream is ample and rendered less subject to flucLuation from the seasons than rivers which are formed without lakes, but is much impeded from shoals and rapids. It serves, however, as a chand for a rery considerable down stream navigation.

Darby.

SORRENTO, a town of Naples. delightully situated in the middle of gardens, on the sonth sidic of the Gulf of Naples, between the momtains of Massa and Vico. It was the birth place of Tasso. The number of ancient marbles, and the ruins of temples attest its former reputation and importance. Population, 42001 .
soymbidgntl. Sce Goyframent.
SouND. See droustices, Mamony and Music. Sce aloo Someren ramosities in.

Southamplon. an ancient town and hargh of England, and capital of the county of Hampshire, is pleasantly sitnated on a tonguc of land bromaded on the sonth and west by the large estuary called Sonthampion water, and on the rast by the river hechin. The townomains many handsome streets, which are buith of bricks, instead of timber, which was formerly the custom. The Ifigh Stret, which mons nothward from He quay, in apmards of half a mile in lenewh, and is no toss remarkable fer itsefeganceandspacionsarss, than for the resembance it bears to the digh street of Oxforct. ()wing the thermstance of the tow being built mose a slighly elevated ridge, and we soil being of a granelly mature, the strets are kept remarkably ctean and dry. They bave also the adrantagen of being well pared, and regntaly lighted and watehed. The phbit: buidnges ate five parish charches. St. Minhat's All-Sames', Itolyrood, St, Lawrenre, and St. Hary There were formerly six danches: but the pant hes of 'st. Jolonand Sit. Lawnence being anit-
ed in the reign of Charles II. it was deemed expedient to pull down the church of the former at the same time. St. Michael's is the oldest of the five, and is ornamented by a lofty octagonal spire, which was erected about sixty years ago for the purpose of guiding shipsentering the harbour. On the north aiste of the chancel, a handsome monument tas been raised to the memory of the Lord Chancellor Wriothesley; and in the opposite aisle on the south, there is a very cnrious antigue font. It is in this church that the ceremony of the mayor being sworn into office takes place. All-Saints' church is a handsome modern building in the Crecian style. The remains of Captain Carteret, the well known circumarigator, and of Bryan Edwards, the cclebrated historian of the West ludies, are interred here. Holyrood church is a spacious edifice, with a tower at the south-west angle, ant a colomade in Pront, gencrally called the Proclamation, where the hustings is erceted and the poll taken at elections. In the interior of the church, thereareseverabmonuments, and a fine organ. The churches of St. Mary and St. Lawrence are no way remankable. There was formerly a honse of Grey liriars, instituted in 1240, of which hardly a trace now remains. At the northend of the IIigh Strect, there is a curious old gatehouse called the Bar gate. On its mom front are delineated two gigantic figures, one on "ach side of the gateway, which, according to tradition, were intended for the giant Ascupart, and Sir Berois of Southampron, who slew him in combat. Sounhmpton being much frequented during the summer months by visiters, for the purpose of enjoving the sea-bathing, and drinking the chadybeate water, a spring ol' which, highly esteemed for its medicinal qualities, ris.es about a homedred yards to the west of Bargate. is enabled to support a theatre, and assembly and ball rooms, which are beautifully situated, and eleganly fitted up. The Audit house is a handsome edifice, in which the sessions are helds it is also the repository of the records and regalia of the corporation. There is a leee grammar school, which was instituted so long ago as the reign of Edward the Sixth. There is likewise a charity school for ten boys, founded by. Aderanan Tamon of his town; and Sunday schools, and a school of indnstry, were establishedin 1786, and are still contimucd. Near the entrance of the town on the right, is a neat ratge of alms-houses, built about fiftern years ago, to accommodate cighteen poor widows, who cach rective two shillings per week from a legary left by Robert Thorner. R:sq. of Baddestey, who died in July 169 n . There is au hospital, called Domus Dei, of God's house, fommed in the reign of llemry the Thied, for four old men and as many women. The poor house is an extensixe, modera, and comenient structure. Near the tewn, on the nom, barracks have been lately buit by erovermem, for the raception of catalry. which occupe nearly two acres of eromed. The prinripal trade of this port is with Portugal, the Battie, and the Islands of lersey and Gucrosey, Wine and fruitare imported fom lortusal. Tar and pitela from Sweden; hemp, iron, and tallow from liussia. Eurlish ifon is brought by the coast from Walen; and coals, lact, and glass, from Newcaste. Southampton is allowed to export ghoci tons of whwrought wool yearly to Jersey and Commery; the mosi part of which is returned, converted into coarse knit hose. The manulactures are inconsiderable, being chielly sill
and carpets. Frigates and sloops of war were formerly built here, but ships of smaller burden only are now constructed. Southampton is governed by a mayor, yecorder, shoriff, two bailills, and a common council, (formed of all those who have filled the foregoing offices,) a town clerk, two coroners, and other inferior officers, and is a county of itself, heing styted the town and county of the town of Southampton, a privilege bestowed on it by King John, and, as such, is independent of the lord licutcnant and sheriff of Itampshire, having its own clerk of the peace, which office was added ly charter to that of the town clerk. It returns two members to parliament, who are elceted by about foo voters, consisting of the burgesses, and those inhabitants who pay scot and lot. The mayor is admiral of the liberties from Southsea Castle to IIurst Castle, and hatf sea over from Cabhot to the Isle of Vight. It was in this town that the Earl of Cambridge, Lord Scrope of Masham, and Sir Thomas Grey, were cxecuted, for conspiring against the life of King IIenry the Fifth. The number of cminent men born at Southampton is not very great; the most remarkable are Nicholas Fuller, an eminent divine, born in 1557, who died in 1622-3; Dr. Isaac Watts, born in 1674, who died in 1748 , and Kichard lococke, a celebrated taveller, and a bishop of Mcath, born in 1704, who died in 1765. In Southampton four fairs are held annually, the principal of which is opened by the mayor and bailiffs with much ceremony; there is a market every Tucsday, Thursday, and Saturday, which is held in an area behind the Audit Mouse, and is plentilully supplied with fish and provisions of every kind, and of the best description.

The population in 1821 was as follows:-
\begin{tabular}{llllll}
Houses & - & \(\cdot\) & - & 2,161 \\
Families & - & - & - & - & 2,960 \\
Wo. in trade & - & - & - & & 2,351
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Malcs & & - & - & & \(!\) & 5,931 \\
\hline Females & - & & & - & & 7.122 \\
\hline 'lotal popubation & & - & - & & & 13,35.3 \\
\hline
\end{tabular}

See the Beauties of lingland and Wales, vol. vi. p. 125.

SOUTIIAMIDION, county of Virginia, bounded south by Nurthampton and Ilertford counties of Nurth Carolina, south-west by the Meherin river, or Creenville county of Virgiaia, on the north-west by (ireenville, Sussex, and Surry combties, and on the east by blackwater river, or Isle of Wight and Nansemond counties. Gireatest length from south-west to noth-cast 40 miles, ant the area being within a trilling fraction of fife spuare miles, the mean width ahout 15 miles. The outlines are nearly triangular, with the base to the north-west, and opposite angle on North Carolina, near the junction of Notoway and Blackwater rivers. Bounded north-east and east by Blackwater, south-west by Meherin, and traversed nearly centrally by Nottoway tiver, the navigable facilities of this county are remarkably abundant. The whole of the preceding rivers unite and lorm the Chowan 9 or 10 miles by water within North Carolina, and cominuing their original course south-cast, open into Albemarle Sound. Extending from N. lat. \(36^{\circ} 50^{\prime}\) to \(36^{\circ} 54^{\prime}\), Southampten cones into the region where cotton can be successfully cultivated, and lying below the falls of the river, the surface is but moderately clevated above tide water. The seat of justice and principal post-office is at Jerusalen, on the Nottoway, near the centre of the county, N. lat. \(36^{\circ} 39^{\prime}\), and only 6 mi nutes of longitude west of the meridian of Washington City. Population of the county in 1810 was: Whites, 3216; coloured persons, 908, and slaves, 3350 ; total 7474:-in 1820, whites 3369; free coloured persons 1013, and slaves 3323; total 7705.

\section*{SOUTI AMERIC\&.}

South Americt, one of the great continental extensions of the earth, and to which has been given avery improper relative name, since though confounded under one general term, the two sections of the newly discovered contincnt stand much more detached from cach other than do Asia and Alrica, and beyond comparison more than Europe and Asia. In gencral features, and in vegetable and animal productions also, the two Amcricas stand very strongly conrtasted.

South Americareaches in a very nearly north and south direction from Cape Vela, N. lat. \(12^{\circ} 15^{\prime}\), to Cape Horn, S. lat. \(56^{\circ}\), or through above 68 degrees of latitude, 4743 miles. The greatest breadth is amost exactly at right angles to the greatest length. From Cape San Roque to Cape Blanco on the Pacific is very near 44 degrees

Vol. XVII. Part I.
of longitude, on from \(4^{\circ}\) to \(5^{\circ} \mathrm{S}\). lat. giving to the continent a wilth of upwards of thrce thousand miles.

On even a cursory glance on its map, coloured to represent, not the political, but natural subdivisions, the mountains and rivers of South America present themselves as the most distinguishing features. We find the continent united to North America by a mere strip of land, and expanding rapidly to the south-east. The connecting isthmus is really or apparently continued southward in an immense system of mountains, to which the original Spanish discovercrs bestowed in their just admiration the title of Cordilleras. In the first ages of Spanish discovery, the Andes, as they are now universally called, were considered as continuous from one continent to the other, but more recent and accurate
\(2 \mathrm{O}^{*}\)
observation has rendered the connexion doubtful between the mountains of North and South America. VVithout attempting to decide the problem, we may proceed to regard the Andes of Soutl America as an immense system of mountains stretching along the western side of that continent in all its length, and dividing it into two very unequal inclined planes. Between the Andes and the Pacific Ocean, the slope of land does not average one hundred miles in width, though extending along an inflected line of upwards of sixty degrees of latitude.

Rising from this confined border, the system of the Andes extends in lateral ridges, with unequal intervening vallies; the system extending in width from 100 to 200 miles. Here occur many of those elevated, and, from their appreach to the equator, habitable vallies, or ratner plateaus, which vary the features of every continent, but which in South America deserve particular notice. This will appear from a comparative view. In Europe, the table land of Spain is ahout 1900 feet above the level of the ocean. 'The table land of the Alps rises to about from 1300 to 1900 feet, and that of Bohemia and Silesia perhaps at a mean of 1400 feet. The highest level in France* is Auvergne, which rises to 2360 fect above the ocean level. The central plateaus of Asia and Africa are not very accurately determined, but must be far more elevated than the high plains of Europe.

In South America, \(\dagger\) the Cordilleras of the Andes exhibit at immense heights plains comparatively level. Such is the plain between the sources of the Meta and Magdalena, N. lat. \(3^{\circ} 5^{\prime}\), elevated 8413 feet, where on its surface stands the city Santa Fè de Bogotà. Some of the vallies and plateaus of Peru are equally, if not still more elevated. But the volcanic region of Pichincha, only 13 minutes south of the equator, sustains the city of Quito at the height of 9500 feet above the Pacific.
The enormous summits or peaks of this vast system may be said literally to pierce the heavens, and not only reach, but pass the region of perpetual snow. Though it is probable that the Andes of Chili are as high as those of Colombia, the latter part of the system has been scientifically measured, whilst the more southern chains have not been visited by traveliers of adequate activity and science. The following tabular view contains the lieight of the most remarkable peaks of the Colombian Andes:-

Irom this congcries of chains, peaks, and ridges, are precipitated westward into the lacific, innumerable small, but locally intercsting rivers. Of the l'acific river sybtem of South America, thic Guaraquil \&i Patia, neither
having a comparative course of 200 miles, are nevertheless the most considerable streams, but on the eastern slope, the lengthened volumes of the Magdalena, Orinoco, Amazon, Plate, St. Francis, Colorado, and Cusu Leuvu, compensate for the brevity of those westward from the Andes.

Without noticing the minor hranches, which would swell this article to an inconvenient length, it will be sufficient to review the great basins, not in their order of extent, but in respect to their position, relatively advancing from north to south.

The basin of Magdalena is long and narrow, and extending from south to north, nearly along the 2 d and 3 d meridian E. of Washington City, is in effect only an extension of the great vallies of the Andes. From Popayan, near the head of the basin, at an elevation of 5900 fect, the valley sinks gradually, but renders the rivers very unnavigable, from the great general descent. The entire basin stretches from N. lat. \(2^{\circ}\) to \(11^{\circ}\), length 700 ; mean breadth about 120, area 84,000 square miles. Down this basin flow the various confluents of the two great constituent branches of the Magdalena, the Cauca and Magdalcna proper. These streams unite at N. lat. \(9^{\circ}\), and flowing thence one degree of latitude more northward, separate into two branches, which encircle the city of Carthagena, and enter the Caribbean sea 70 miles asunder.

The two minor basins of Atrato to the west, and Maracaibo to the cast of that of Magdalena, belong to the Caribbean slope of South America, which is continued eastward to the gulf of Paria or Trinidad by a narrow strip.

From the sources of the Magdalena, a vast arm of the Andes extends north-eastward upwards of eight hundred miles, until imperceptibly merged in the plains of Coro. From this chain flow westward the confluents of the Magdalena, and to the eastward those of the Orinoco.

Entering the basin of Orinoco, introduces us to the most interesting river system of the earth. In this system, though only the third in extent, the basin of the Orinoco embraces an area of nearly four hundred thousand square miles, between N. lat. \(2^{\circ}\) and \(10^{\circ}\), and from \(2^{\circ}\) to \(17^{\circ}\) long. E. from Washington City.

The particular confluents of this great river are too numerous to admit individual notice: it may suffice to observe, that the north-western branch, the Apure, draws its sources from the moumtains of Merida and I'aramo de la Rosa, and from the chain of Venezuela; some of its northern fountains rise within 40 miles of the Caribbean sea in the provinces of Maracaibo and Caracas.

The Mcta, a longer, though perhaps in volume not so great a body of water, follows the \(A\) pure, and is again succeeded by the Guaviare. The latter rises in the main Cordil!eras of the Andes, interlocking sources with the Rio Negro and the Magdalena.

The Orinoco properly so called, rises in the mountains of Guyana, N.lat. \(5^{\circ}\), and long. \(11^{\circ}\) E. from Washington; llowing thence eastward, bends gradually to the south,
* Itumbokl's Nevi Spain, Black's tramatation, New.York, vol. i. page 37.

FImmboht's New Spain, Jhack's tranglation, New-York, vol. i. pare 41.
* t'ntil recenly, it was, as stated in the text, supposed that the first rank in heightamongst American monntans was dne to the Chimbora\%o, but ilin now ascemaned that it is nort than rivalled by the peaks of tpper tern. "1n the castern chain separating the val-

 Mr. L'enfand. Vide Kevue Encyclopédifue, vul, 4り, page 145-Junary, 1830. Paris.
nouth-west, and west, to where a stream flows from it into the Rio Negro. At the efllux of the Cassiquiari, the Orinoco has already flowed by comparative courses upwards of four hundred miles. The junction of the Amazon and Orinoco by the Cassiquiari and Rio Negro on an elevated plateau, is certainly the most singular and important fact in the natural history of rivers. 'This connexion, long denied after discovery, has been added to ascertained fact and science by 11 umboldt and Bompland, who actually passed from the Rio Negro by the Cassiquiari into the Orinoco.

With its great extent, varicty of feature, and peculiar structure, the Orinoco is still an humble stream if compared to the Amazon. The latter basin swecping from the Atlantic to the verge of the Pacific Ocean, embraces the central and southern equatorial regions of South America, and comprises the great superficies of two milJions eight hundred thousand square milcs. Similar to all very large rivers, there is an jdle dispute respecting the source particularly deserving of the title given to the basin. Mcasured from the mouth, by the valley of the Negro, the length is about 1800 miles; by the Madeira, 2300 miles; but following the main volume and the Ucayalc, it is 2900 miles. In a nearly western and castern direction from the sources of the Tunguragua, the chord of the basin is about 2600 milcs. If, therefore, we regard length of course as decisive of the question, the Ucayale is the main stream of the Amazon basin. The Ucayale and Madeira rise together from the Andes in the province of Cochabamba; but pursuing different directions, the former flows 2100 miles, and the latter 1800 miles before their union.
lirom the sources of the Ucayale, \(17^{\circ} \mathrm{S}\). lat., to the most northern branch of the Lauricocha, S. lat. \(1^{\circ}\), the strip ofland between the sources of the Amazon and the shore of the Pacific Ocean does not amount to an avcrage of one hundred miles, and in many places is less than seventy miles wide.

To give a minute description of this wide spread and important basin would demand an extensive treatise; we must therefore be limited by a general view. If the windings arc followed, by the mosilcugthened constituent branches, the Amazon llows from 3000 to 5000 miles. If we assume the Amazon proper, and Tunguragua, as the main stream, it receives from the north, beside innumerable branches of lesser note, the Pastaca, liguena, Napo, Jupura, and Negro, advancing from head to mouth; on the contrary side, and procecding in a similar direction, we hind the Ucayale, Javari, Jutay, Jurua, Purus; the very lengthened Madeira, Tapajos, Xingua, and we may add the Tocantinas.

If the Amazon basin is compared with that of the Mississippi, the great cxtent of the former becomes more striking. The basin of the Mississippi is a trapeeium of 1700 miles diagonal, with a mean breadh of 800 miles, area one million three hundred thousand square miles. The basin of the Amazon approaches a parallelogram of 2100 miles by 1400 miles, with an area of 2,940,000 square miles, forming by at least one half, the most extended basin on earth, having but one point of discharge, and affording much the most expansive navigable system of rivers, flowing towards a single recipient.

The great central vallcy of South America is continued southward from the basin of the Amazon, and beIween \(13^{\circ}\) and \(36^{\circ} \mathrm{S}\). lat. presents another very extended riycr basin, that of the Plate. The range of the Orinoco
and \(\Lambda\) mazon basins are nearly at right angles of the chains of mountains, whilst on the contrary, the llate basin ranges nearly parallel to the Andes and Brazilian systems ol'mountains.

The principal tiver of the Plate basin, the Paraguay, or as it is called in the latter part of its course, l'arana, rises about \(S\). lat. \(13^{\circ}\), between the sources of the Ma. deira and locantinas, and lowing in an opposite direction from those of the lapajos. Comiming a southern course through twenty degrees of latitude to its junction with the Uraguay, receiving in the intemediate distance, from the west, the Pilcomayo, Rio Grande, and Salado, and from the east, the great tributary branch the Parana, which latter name the unted streams assume below their junction.

The whole of these vast arms with licir minor branches, drain a navigable basin approaching the form of a square, with a mean of 114 miles cach side, area nearly one million threc hundred thoussnd square miles. There is a remarkable equality of extemt between the basins of the Mississippi and Plate, but what is more remarkable, they do not, when taken together, equal that of the Amazon. Again, if we add logether the limee great central basins of South America, we have a continuous valley swecping over four million five hundred thousand square miles, and comprising within and contiguous to the torrid zone, more than the one ninth part of the land area of the earth.

The basin of the l'late, between S. lat. \(20^{\circ}\) and \(24^{\circ}\), approaches to within fifty miles from the lacific coast of Upper Peru; and on the opposing side of the continent, in the Brazilian province of St. Paul, the remote sources of the Parana rise but little more than thirty miles from the Atlantic Ocean. On S. lat. \(24^{\circ}\), the continent of South America is 25 degrees of longitude, or 1575 statute miles wide, but the Plate basin has its greatest eastern and western extension on S. lat. \(21^{\circ}\). Along the latter curve the basin itself is 25 degrees of long. wide, where the degree is 64.42 miles cach, consequently it is upwards of sixtecn hundred miles from the fountains of the Pilcomayo, in the Andes, to those of the Rio Grande branch of the Parana.

The breadth of the Plate basin varies less perhapg than does in that respect any other of the great river basins of the earth. From cape St. Antonio, the southern point ol the bay of Rio de la Plate, to the sources of the Pilcomayo, in the vicinity of Potosi, is 1400 miles. A line drawn between these points is nearly the base of the basin, since it leaves the far greater part of the surface to the north east. The breadth from the base contracts in advancing towards the Brazilian provinces, but will average at leas: 950 miles.

From so great a surface in temperate latitudes issue the various constituent streams which iultimately uoite and form the wide estuary known as the bay of Rio de la Plata. This inlet opens to the Atlantic Occan between S. lat. \(35^{\circ}\) and \(36^{\circ}\), and long. \(21^{\circ} \mathrm{E}\). from Washington City, and is from the confucnce of the laraguay and Uraguay to the Atlantic 200 , with a width varying from 30 to 150 miles wide.

In their general characters, the eastern and western confluents of the Plate vary essentially; the Parana and its branches are rather rapid currents, but the flow is gentle, or indeed sluggish, of tho Paraguay and all its western tributaries. Such distinction of fature arises from the general structure of the continent of South

America. Rising as has been observed, by a rapid acclivity from the Pacific Ocean to the table land of the Andes, the short rivers flowing from so great an elevation westward, are brief in their courses, but rapid torrents until near their recipient. The streams again, which are discharged eastward, also are poured down the steeps with great velocity and frequent cataracts, until reaching the eastern verge of the Andes they enter on a plain, over which their channels are excessively vinding and deeply cut, but currents necessarily sluggish.

The central plain of South America stretches with variant breadth, from the north-western sources of the Orinoco, to Patagonia, some places wooded, but in other's presenting on the basin of Orinoco, the grassy tracts of Casanare, and Llanos of Cundinamarca and Pilcomayo; and again the wide spread Pampas of Buenos Ayres.

Crossing the central plain, the continent eastward from the basins of the A mazon and Plate, rises into a table land less elevated and less extensive than the Andes, but distinct, and from which the river currents fall with considerable force. The Amazon, flowing from the Andes, may be said to pierce the eastern platean, and enter the Atlantic by a wide ravine between the Brazilian system of mountains and that of Guyana; but the tributary waters of the Plate issuing from the eastern and western plateaus, flow towards each other, unite in the heart of the continent, and continue over the central plain to the A tlantic.

Considering the Parana as the principal stream, a Spanish author observes, that "one of the peculiarities which most interests the curiosity of the observer, is the nature of its periodical inundations, very much resembling those of the Nile. In fact, we believe that there is not on the globe two other rivers, the qualities of which are more analogous to each other. Both have their sources in the torrid zone; and nearly equidistant from the equator, although in different hemispheres. Both disembogue themselves almost on the same latitude, directing their course towards their respective poles. Both are navigable for many leagues, and possess each their cataracts. Each of them has its periods of increase in the respective seasons, which cause it to rise in its channel, and inundate an immense tract of country."

With the preceding points of resemblance, it may be observed that the contrasts between the Nile and Rio de la llata are equally striking. The Nile enters the final recipient by an extensive Delta, the Plate by a wide bay, and whilst the African river is cnvironed in all the lower part of its basin by arid sandy plains, the Plate and Parana, with their confluents, drain an almost invariable fertile tract.

As a basin of navigation, that of the Plate possesses advantages fully commensurate, in a comparative view, with its relative extent. At the lowest depth, there is 15 or 16 English feet of water in the mouth of the Parana, and a much greater depth below in the bay, or above in the river. Vessels of 500 tons burthen are built above the junction of the l'araguay and l'ilcomayo, and navigated to Europe and elsewhere. The Parana proper, the Salado, Rio Grande, Uraguay, Paraguay, and many others, present navigable channels from 200 ,
to near 2000 miles, following the sinuosities of the rivers.

Beyond the basin of the Plate spreads a triangular slope from S. lat. \(36^{\circ}\) to \(52^{\circ}\), being a continuation southward of the great plain of the Andes. The latter section is least known, and in the existing state of settlement and civilization in Sonth America, the least important of the Atlantic portion of that continent. The Saladillo, Colorado, Cusu Leuvu, Camarones, and some other rivers, traverse the slope south from Buenos Ayres, but are mostly yet inhabited by savages, and as far as known not generally well calculated for civilized settlement. This tract is succeeded to the southward by another equally savage, and much more naturally rugged and inclement, and Patagonia, with the adjacent island of Ticrra del Fuego, closes South America, by the most Austral continental protrusion of the earth.

Returning to more genial climes, and passing the ample estuary of the Rio de la Plata, we discover, skirting the Atlantic Ocean, a narrow extended but very interesting slope. The Brazilian table land, inclining a very little from the meridian towards N. E. and S. W. extends in broken fragments from the outlet of the Plate basin to that of the Amazon, giving existence and course to numerous rivers. If not on the same continent, and contrasted with the Orinoco, Amazon, and Plate, a respectable rank would be due to such rivers as Rio Grande, St. Francis, and Parnaiba.

Much confusion has arisen in Spanish American geograplyy, by a multiplication of the same names. Several rivers are known by the title of Rio Grande, one of which, a very remarkable stream, is disembogued into the Atlantic Ocean, almost on S. lat. \(32^{\circ}\). What is called here Rio Grande, is however only the mere discharge of a basin of about 500 miles from S. W. to N. E. and with a mean width of 140 , area 70,000 square miles.

Two large lakes, the Laguna Patos, 150 by 50 miles, and the Laguna Merin, something less in length and breadth, lie parallel to the opposing coast, the latter discharging its water into the former, and both fed by numerous rivers flowing from the interior table land.

Beiween S. lat. \(20^{\circ}\) and \(28^{\circ}\), and north-eastward from the basin of Rio Grande, extends a narrow zone, varying from about 150 , to less than 50 miles wide, and 900 in length; having the Atlantic Ocean S. E. and the sources of the Parana N. W. Besides many smaller streams traversing this well watered tract, are the Ribeira and St. James, of considerable length of course. With S. lat. \(20^{\circ}\), the Brazil slope of South America widens rapidly, the table land inclining west of north, and stretching towards the mouth of the Tocantinas. The rivers entering the Atlantic between S . lat. 11 and \(20^{\circ}\), are excessively numerous, though of abridged course. The limited length of those rivers, as produced by one of those singular phenomena, which render the geography of South Ainerica peculiar. The St. Francis derives its highest sources interlocking with those of the Parana, within 200 miles from the Atlantic coast, and as far south as lat. \(21^{\circ}\). Pursuing a northern course of 400 miles, the St. Francis inflects gradually to the north-cast, east, and south-east, enters the Atlantic Ocean at S. lat. \(11^{\circ}\), after an cntire comparative course of upwards of 1100 miles, and in this long course overhcading the intermediate \(A\) tlantic rivers.

On the same slope, and nearly due west from the mouth of the St. l'rancis, and interlockingr sources with that river, and with the 'locantinas, rises the Parmaiba. The later incliming to N. N. J... and after a comparative course of six hundred miles is lost in the Atlantic Ocean, at S. .nt. \(2^{\circ} 40^{\prime}\).

Sweeping round the extreme eastern protrusion of South America, forming politically the Brazilian provinces of Pernambuco and Ceara, in a distance of 900 miles from the mouth of St. Jrancis to that of Jamaiba, the rivers are lound still more condined in their courses than on any other part of the occanic margin of South America; but from the estuary of the l'arnaba to that of the Amazon, or rather to that of the Tocantinas, the linare, (iurupy, Capim, and some others, flow from two to three hundred mites, before their exit into the \(\Lambda\) tlantic.
Passing the estuary of the Amazon, we discover between that oullet and the Delta of the Orinoco, another detached slope extending liom south-cast to north-west about one thousand miles, with a mean width of 150 miles; superficies 150,000 square miles. This region, to which, by a rare felicity, a general and elegant name has been given, Guyana, is nearly commensurate with the natural section we are describints, and from extended European colonzation is a very interesting portion of maritime South America. Similar to the other parts of the oceanic border of that continent, the sca coast of Guyana is much indented by rivers, though only threc, the Lissequibo, Surinam, and Marowine, are of magnitude worthy notice.

The most considerable of these rivers, the Esscquibo, is formed by two branches, the Cuyuni from the northwest, of 300 miles comparative course, and the Essequibo proper from the south, of 400 miles comparative course. Uniting at the town of Essequibo, the conlluent waters open in a wide bay, which terminate in the Atlantic Ocean at N. lat. \(7^{\circ}\).

The Surimem or Surimaca, rises in the same mountainous ridge as the Essequibo, but the former flowing eastward about 100 miles on N. lat. \(4^{\circ}\), turns abruptly to the north, and continuing that direction, is finally lost in the Atlantic Ocean at N. lat. \(6^{\circ}\).

The Marowine rises at N. lat. \(1^{\circ} 30^{\prime}\), and fowing thence northward, has a course of abont 4. degrees of latitude, and is merged in the Atantic t)cean one hundred miles east of the mouth of the Surimam.

The rocky, bold, but narrow slope skiating the Caribbean Sea from the Delta of Orinoco, to the Giull and Bay of Maracaibo, completes our general survey of South America. I'rom the Gull of Paria, westwarl to the strait between the Gulf and Lake of Maracaibo, is 600 miles, but the mean width is probably less than 50 miles. The northern abutment of Colombia is continued westwarel of the Gulf of Maracaibo, by the provinces of Rio de la Hacha and Santa Marta. The extreme northern extension of Sunth America is found in that peninsula jutting to the N. E. from the Delta of the Magdalena; Cape Falso, N. lat. \(12^{\circ} 12^{\prime}\), long. \(5^{\circ} 08^{\prime}\) E. from WVashington, is, by Tanuer's mapr of Colombia, the utmost northern cape of that continent, and forms part of a detached slope of abont two hundred miles by one hundred. This peninsular declivity takes its nome from a small river which falls into the Cariblean Sea at a rity of the same name. The mountain tortent Rio de la Hacha, after a

Yol, XVII. Pakt J.
comparative course of little more than one bundrerl miles, forms the hatbour of the city of Rio de la Macha, N. lat. \(11^{\circ} 32^{\prime}\), long \(3^{\circ} 46^{\prime} \mathrm{J}\). from Washington City.

We have completed a cursory survey of the natural features of South America, and proceed to a delineation of the perlitical subdivisions of that continent.

Viewedas a whole, Somb Anericapresemtson its northern extremity the grat Republic of Colombia. Exchuld ing the savage oegions towarels the straits of Magellan, the sonthern part is oceupied thy the Drgentine Republic, or as it is usually calleth, the Uibited Provinces of laio de lat Plata; and on the Jacific Ocean, Chili. Ja the central Pacific part, spready !'eru ant Bolivia. The sast castern cape tominated by St. Ropre, and great part of the bae sin of the Amazon, ate oceupied by the Empire of Brazil.
The Republic of Commbia extends trom \(S\). lat. \(\mathrm{C}^{\circ}\) ac \({ }^{\prime}\) to N. lat. \(12^{\circ} 21^{\prime}\), and in long. from \(\left.1^{\circ} 2^{\prime}\right)^{\prime}\) W. to \(21^{\circ} 13^{\prime}\) E. from UVashington City. The outlines, according to 'Tamer's map of that republic, eommence in North America, at the bay del Itragon of the Caribbean Sea, and from thence fullows the coast of that sea, and of the Allantic Uccan, abont two thousand miles. Across the peninsula from the Bay del Dragon to that of Dulce is about 100 miles. At the latter indenting of the Pacific Ocean begins a second line of sea coast streteling 1:100 miles, and tern nating at the mouth of the little river Tumbez, S. lat. \(3^{\circ} 50^{\prime}\). The land boundary, if we begin the survey on the Pacific, will extend up the Tumbez river 30 miles, from whence inflecting to S. S. E, along a ridge of the Andes 160 miles to the head of the small fiver Chotu, and down that stream 50 miles 10 its influx into the Amazon. Thence up the Amazon 50 miles to the village of Balzas. At the latter place abruptly turning in nearly E. crosses the main ridges of the Andes, 250 miles to the right bank of the Ucayale river, and down that stream 100 miles. Thence inflecting to nearly N. E. 300 miles again reaches the Amazon at S. lat. \(4^{\circ}\) and \(7^{\circ}\) E. from Washington. This great river forms the bourdary 400 miles, to the inundated tract formed iny its junction with a north-western branch the Jupura. Now leaving the Amazon, and following the Jupura 100 miles, turns to nearly north 120 miles to the Rio Negro, which crossine and inence following the wiadings of the small river Calaburis 150 miles, reaches an interior chain, the Sierra Turaguaca. Following the dividing ridge of the waters flowing into the Amazon from those entering the Orinoco and Essequibo 800 miles, reaches the extreme castern extension of the republic. Juming by an acute angle to the north-west, 300 miles, intersects the Essequibo near its junction witio the Repumunuri, and again down the former to the influx of the Cuyuni 150 miles. Fullowing the Cuybmi, about 2 , and thence by a curve of 100 miles in a horberly direction, reaches the Atlantic Orean at the month of the Poumaron river.

Within the engthened outine of 6580 miles is included an area of \(1,180.000\) square miles, including the entire basins of the Ormoco and llugialena, and 41200 in the north-western part ol that of the Amazon, with the narrow but very important slopes along the Pacific, Carribbean, and dilantic coast.

The whole territory of Colombia is divided into twelve departments: 1stmo, Magdalena, Zolia, Venczutla. Maturin, Cauca, Cundinamara, Loyaca, Orinocn, Guyaquil, Equador, and Assuay.

2 1)*

Istmo is the norlh-western department, and lics in North America, along the narrowest part of the isthmus, uniting the two continents, whence its namc. It extends in ncarly an east and west dircction, from the meridian of Washington to \(6^{\circ} \mathrm{W}\). Central lat. \(8 \frac{1^{\circ}}{}{ }^{\circ} \mathrm{N}\). Including the two provinces of Veraguas and Panama, Jstmo embraces a superficies of 24,300 square miles; length from west to east 400 , and mean breadth a small fraction above 80 miles, population 100,085 . The capital Panama, containing a population of 9000 , stands at \(9^{\circ} 0 l^{\prime}\) N . lat., long. \(2^{\circ} 31^{\prime} \mathrm{W}\). from Washington City.
Magdalesa, comprising an area of 53,400 square miles, and subdivided into the provinces of Carthagena, Mompox, Santa Marta, and Rio Hacha, lies along the Caribbean Sea, from the mouth of the Atrato, to the Gulf of Maracaibu, deriving its name from the Magdalena river, which disembogues itself into the Cariblean Sea near the middle of the department. Cape Falsa, in the province of Rio dc la Hacha, is the extreme northern point of the continent of South America, at N. lat. \(12^{\circ}\) \(21^{\prime}\), from whence the department stretches inland to the south-west, and up the Cauca branch of Magdalena to N. lat. \(7^{\circ}\), having a length from north-east to south-east of about 500 miles, and mean breadth of 107 nearly; population 176,983. The capital, Cartagena, at N. lat. \(10^{\circ} 24^{\prime}\), long. \(1^{\circ} 26^{\prime}\) E. from Washington City, is situated on an island formed by the two main outels of Magdalena river, and contains 15,000 inlabitants.
Zulis is subdivided into the four provinces of Maracaibo, Coro, Merida, and Truxillo, encircling the Lake of Maracaibo. The length of this department, following the periphery of the circle, is a little above 500 miles, having ans area of 29,100 square miles, the mean breadth is a small firaction above 58 miles; lying between \(8^{\circ} 21^{\prime}\) and \(12^{\circ} \mathrm{N}\). and in long. from \(4^{\circ}\) to \(8^{\circ} 30^{\prime} \mathrm{E}\). The department of Zulia is formed from the opposing slopes of a valley between the Sierra de Perija, and the mountain chain called Paramo de la Rosa, with the Lake of Maracaibo occupying the lower part of the valley; and having the department of Magdalena west, and that of Venezuela east. Population 43, T 00 .
Venfzeela, containing the provinces of Carabobo and Caracas, with a superficial extent of 43,700 square miles, and a population of 326,840 , is perhaps the most important section of the Republic of Colombia. Having the department of Zulia west, and Cumana east, fronting on the Cariblean Sea, and extending inland to the Orinoco river, the department of Venczucla is favourably situated for foreign and domestic conmerce. As a natural section this department is remarkable, since though stretching along the Cariblican Sea upwards of 220 miles, the slope is inwards towards the Orinoco. The city of Caracas, distant only 8 direct miles from the sea coast, is elceated above its surface 2860 fect, and the sources of the conflaents of Orimaco rise wibhin forty miles of the waters of the Atlantic. This department extends from \(7^{\circ} 30^{\prime}\) to \(10^{\circ} 40^{\prime} \mathrm{N}\). lat. and in long. from \(7^{\circ} 05^{\prime}\) to \(11^{\circ} 35^{\prime} \mathrm{E}\). from Washington City. The capital city, Caracas, situated in a mountain valley, at \(100^{\circ} 31^{\prime} \mathrm{N} .\). long. \(9^{\circ} 51^{\prime}\) E. Irom Washington, contains a population of 28,000 .

Marthan comprises the three provinces of Margarita, Barcelona, and Cumana, having the Cariblean Sea north, the Atlantic Ocean morth-cast and east, the Orinoco
river south, and Venezuela west; greatest length along the Orinoco 400 miles, and cmbracing a superficial area of 48,600 square miles; the mean breadth is a small fraction above 121 miles. Extending from \(7^{\circ} 45^{\prime}\) to \(11^{\circ}\) \(10^{\prime} \mathrm{N}\). lat. and in long. from \(11^{\circ}\) to \(16^{\circ} 45^{\prime} \mathrm{E}\). from Washington City, Maturin contains the great Delta of the Orinoco, a river border along that stream of 400 miles, and an oceanic front of 700 miles. Though the original discovery of Columbus, the region contiguous to the lower Orinoco is yet very thinly peopled. Maturin on 48,600 square miles, contains but 86,017 inhabitants, or not two to the square mile; and of this moderate population, the three capitals, Asuncion of Margarita, Barcelona of the province of the same name, and Cumana of Cumana comprise 14,500. The city of Cumana is the capital of the department, and stands on the Gulf of Cariaco at N. lat. \(10^{\circ} 25^{\prime}\), long. \(12^{\circ} 47^{\prime} \mathrm{E}\). from Washington City; population 7000.

Cavea is the department which unites the two continents of North and South A merica, and stretching along the Pacific coast from the mouth of the A trato 500 miles, comprises the four provinces of Choco, Popayan, Buenaventura, and Pasto. Having a superficial extent of 53,600 square miles, the mean breadth is about 107, with a population of 149,324 . The very remarkable river Atrato, flowing into the Gulf of Darien, has its source and entire course in the province of Choco of this department, and affording a navigable channel, connected with the small river St. Juan of the Pacific, by a short canal, goes far to demonstrate that there exists no real comucxion between the mountains of the two continents. The city of Popayan, N. lat. \(2^{\circ} 26^{\prime}\), and in long. \(0^{\circ} 19^{\prime}\) E. from Washington City, is elevated above the oceanic level 5,825 fect; and the city of Pasto, at N. lat. \(1^{\circ} 13^{\prime}\), and in long. \(0^{\circ} 22^{\prime} \mathrm{V}\). from Washington City, is elevated 8575 feet above the Pacific Ocean. Far above the region of epidemic fevers, and elcyated to that of European grains and fruits, the provinces of Popayan and Pasto have a climate of mildness and uniformity highly favourable to health. Pasto contains 4500, and Popayan 2500 inhabitants. These high tropical vallies of the Andes are amongst the most desirable parts of the habitable earth, where the soil admits cultivation; but the arable land being of small extent when compared with the entire superficies, comparative population will be always sestricted. There does not any where else exist a greater difference in the atmospheric phenomena than does between the two provinces of Buenaventura and Choco, and the contiguous provinces of Popayan and Pasto. The former in particular is a narrow slope along the Pacific falling rapidly from the Cordillera de Sindagua, between \(1^{\circ}\) and \(4^{\circ}\) north, with a climate of unequalled heat, humidity, tempest, and noxious insects.

Cumbinamarca, east from Cauca, and stretcling in a direction of nearly north and south between \(8^{\circ} 35^{\prime} \mathrm{N}\). and \(0^{\circ} 40^{\prime} \mathrm{S}\). comprises the four provinces of Antioquia, Mariquita, Bogota, and Neiva, or Neyva. Wibla anperficial extent of 76,600 square miles, and length of 650 , the mean brealth is about 118 miles. This lengthened department unites the basius of the Magdalena and Amazon; the southern province of Neyva being in great part drained by the sources of the rivers Negro and Jupura, whilat the provinces of Bogoa, Mariquita, and Antioquia, are watered by the Cauca and Magdalena. The
rity of Medcllin in Antioquia, \(6^{\circ} 13^{\prime}\) N. lat., Iong. \(1^{\circ} 15^{\prime}\) F. from Washington City, stands upon a site elevated above the occan 4847 leet; the city of Neiva, capital of the province of that mane, at \(3^{\circ} 07^{\prime} \mathrm{N}\)., long. \(1^{\circ} 31^{\prime} \mathrm{F}\). from Washington City, is elevated 1310; Le IIonda, the capital of Mariquita, at \(3^{\circ} 10^{\prime}\) N., long. \(2^{\circ}\) 04' \({ }^{\prime}\) E. the lowest ol the four capitaly of the department, is elevated 640 feet alrove the occan level, whilst bogotio, the capital of the whole department, at lat. \(4^{\circ} 36^{\prime} \mathrm{N}\), long. \(2^{\circ} 44^{\prime} \mathrm{L}\).. from Washington City, rises to 8413 feet above the Pacific. Neiva and la llonda are both on the banks of the Magdatema, the former lower down the stream, 143 mi nutes of tatitude, and by the intermediate fall of 660 feet, showing the very rapid descent of the country. IIere, as in many other parts of tropical America, near the lacific coast, the extremes of climate and vegetable production exhibil the most rapid transition: the burning sea coast, covered with a tropical vegetation, is bordered inland by mountain plains covered with wheat and other Cereal gramina; and palms are succeeded by the apple. These contrasts are peculiarly striking between the sea borders of Buenaventura and Choco, and the plain of Bogoti. The latter expanse, furrowed by the Magdatena, spreads between the Sierra de Quilidio, and the heak mountain plateau, Parano del Chigasa, with a becadit of 100 miles, having a remarkable resemblance to the valley of Mexico, with the exception that the lakes of Bogotà have disappeared. This valley is again rehdered intercsting from containing near the capital, the great cataract of Tequendama, and the matural bridge of Icononza. The population of Cundinamarea amounts to 391,426 , of which 188,695 are in the province of Bogota.

Boyata, extending from \(1^{\circ} 40^{\prime} \mathrm{S}\). \(108^{\circ} 40^{\prime} \mathrm{N}\). lat. and in long. from \(2^{\circ} 35^{\prime}\) to \(9^{\circ} 10^{\prime}\) E. of Washington City, comprising 195,000 square miles, occupies part of an immense inclined plane, falling by a very slow declivity eastward from the Andes, and the three provinces of Pamplona, Socurro, and Tunja in the Lasin of Magdalena. Indeed, the extreme northern angle of the department and of Nic province of Pamplona, is drained by the river Zulia of lake Maricaibo. Stretching thence to the river Caqueta beyond the equator, this extensive department is traversed by the Apure, Casanare, Meta, and Guaviare, branches of the Otinoco; and by the Negro, Guapes, Apuapures, and Caqueta, confluents of the Amazon. The three north-western provinces, Pamplono, Socorro, and Tunja, lying between the eastern chain of the Andes and the river Magdatena, comprise a territory of 250 miles from S. W. to N. E. with a mean breadth of 100 miles, or 20,000 square miles, is a continuation of the great plain of Bogota, and differs in every physical feature from the much more extended region cast from the Andes. Of the entire population of 409.921 , there exists 390,839 , on the 20,000 square miles we have designated. If the extent of the province and the rabular numbers on 'Tanner's map are correct, Tunja, with a superficies of 6000 square miles and 189,632 inhabitants, is one of the best peopled parts of the repubtic of Colombia. From this productive and cultivaled tract we pass the Ander, and enter on the almost intominable plains and deserts of Casanare, where on 175.00 - quare miles we findonly 19082 inhabitants. Over much of this waste spreads a plan, where rises not a hill or rock; the earth at unequal distances ex-
poses shattered horizontal strata, something more clevated than the adjacent country. The appearance of these plains change with the scasons. After the periodical rams, one wiele spreading verdant turf appears like an: hat with the dry season vegetable hle lanshisnes and dies, and leaves the face ol Casanare a Aybian desert. Aclvancing towards the central parts of the basin of the Amazen, the steppes, J, tanos (Mains) are lollowed hy forests still more desolate and dreary. At long intervals on the lanos, human and civilized habitations have heen made, but in the deep woods of the Amazon, the most loathsome reptites hold sway. 'lunja is the capital.

Orinoco, sweeping over 332,000 brpuare miles, fills the space between the departments of Zoulia and Boyaca, and the Atlantic Ocean, and is subdivided into the three provinces of Varinas, Apure, and Guyana. Boundcd by the Orinoco to the south-cast, the plains of Casanare south, the Sierra de Merida, or provinces of Pamplona, Merida, and Truxillo north-west, and the provinces of Carabobo and Caracas north-cast; and em. bracing an extent of about 30,000 square miles, the two provinces of Varinas and Apurc, contain 109,512, out of an entire population in the department of 125,822, leaving 16,310 inhabitants on upwards of 300,00 ' square miles, or above 18 square miles to a human being. The uninhabied part of Orinoco, between the Orinoco river and the Sierra Paracaiva, and an extension on both banks of the Rio Negro, and stretching to the Jupura, nearly 10 two degrees of south latitude, is a desolate but very interesting portion of the habitable earth. It is in this region at N. lat. \(3^{\circ} 3^{\prime}\), long, \(10^{\circ} 38^{\prime}\) E. that the inland communication between the Orinoco and Rio Negro offers an interior natural channel, connecting two rivers of the first order, upwards of 600 miles from the nearest occan. This great uninhabited tract gains a certain degree of importance also from its vastness, and from the reflection that a civilized population is slowly penetrating and removing its solitudes. Angostura the capital, otherwise called St. 'lomas, is situated on the right bank of the Orinoco, at N. lat. \(5^{\circ} 8^{\prime}\), long. \(13^{\circ} 1^{\prime}\) E. from Washington City ; population 4000.

Guayaquil, to survey this comparatively small but more cultivatcd department, leads us again to the shores of the I'acific. With an extent of 14,200 square miles, the deparment of Guayaquil is subdivided into two provinces, Marribi and Guayaquil proper, with an aggregate population of 73,483 . Though frouting on the great ocean 450 miles, except Guayaquil river there is no great commercial entrance into this department. Compared with the atjacent provinces of Chimborazo and Pichincha, Guayaquil is depressed to almost the ocean level, and lying betwecn \(4^{\circ} 21^{\prime} \mathrm{S}\). and \(1^{\circ} \mathrm{N}\). lat. is exposed to a buming sun iwice amually. "The river of Guayaquil rises near the equator, and howing south to \(2^{\circ} 12^{\prime}\) passes the port and city to which it gives name, and opens into a wide gulf round the island of Puna. The eastern recesses of this gulf are about 30 miles from the sources of the Rio Santiago branch of the Amazon, a fact in physical geograply demonstrating the very rapid acclivity of the Pacific slope of South America. The city ol Cuenza on the eastern slope of the Andes, at a distance of scarce 30 miles, rises above the level of the gull of Guayaquil 86.32 fect ; or almost 288 feet per mile. The city of Guayaquil, the capital \(2 \mathrm{P} 2^{*}\)
of the department, stands on the right bank of the river of the same name, at \(2^{\circ} 12^{\prime} \mathrm{S}\). lat., long. \(3^{\circ} 2^{\prime} \mathrm{W}\). from Washington City. The environs, according to Humboldt, are bighly majestic, from the varicty and magnitude of its vegetable products.

Equador, or the Department of the Equator, is amongst the most elerated habitable regions of this planet. Extending from \(3^{\circ} 5^{\prime}\) S. to \(1^{\circ} 15^{\prime} \mathrm{N}\). lat. and in long. from \(1^{\circ} 30^{\prime} \mathrm{E}\). to \(2^{\circ} 40^{\prime} \mathrm{W}\). this department is subdirided into three provinces, Pichincha, Imbabura, and Chimborazo. Nature has here not sporterl, but exerted a strength at the effects of which the human mind shrinks with dread, whilst enchained by admiration. The Andes, divided into three separate chains in Cauca and Cundinamarca, gradually approach in the province of Pasto, and apparently merge in that of Ymbabura. But though apparently confounded, two chains remain distinct, with a very elevated intervening valley raised above the ocean from 8800 to 9500 feet. Colossal volcanic summits rise in symmetrical opposing lines, which covered with eternal snows, served as signal points to the French mathematicians in the measurement of an equatorial degree. Cotapaxi, Antisana, and Cayambe Urcu, range along the eastern, whilst Chimborazo and Pichincha crown the western chain. On the great table land between these gigantic mountains, where the barometer stands at 21.3 , we find Quito, \(0^{\circ} 13^{\prime} \mathrm{S}\). lat. with 52,000 inhahitants, standing 9540 feet above the Tevel of the Pacific; Ibarra, \(0^{\circ}{ }^{2} 0^{\prime}\) N. lat. at 7591 feet of clevation, and 12,000 inhabitants; Riobamba, \(1^{\circ} 41^{\prime}\) S. lat. at 8441 feet, and 16,000 inhabitants; Loxa, \(3^{\circ} 58^{\prime}\) S. lat. at the height ol 6765 fcet , and 10,000 inhabitants; and Cuenca, \(2^{\circ} 55^{\prime \prime}\) S. lat, at 8632 feet, and 25,000 inhabitants. The habitable platean in the provinces of Chimborazo, Pichincha, and Imbabura, is 240 miles in lengtls, witha mean breadth of 30 , or 7200 square miles; on which area there is already a population of nearly 300,000 inhabitants, upwards of 41 to the square mile. It is on this aerial plain that the travelier and inhabitant, under and contiguous to the equator, range amid the mingled vegetation of the most distant climes. The lama is seen sporting in the same pastures with the sheep of A sia and Europe. The human being feels invigorated in an atmosphere, nearly four times more elevated than the chains of the Appalachian system. When we read, however, of mountains rising above the ocean to a height from 15,000 to 21,000 Eeet, the effect on our minds is very different from what a view of the same summits would produce when actually secn from the equatorial plateau. Already eleveted to 8000 feet, such a system of mountains as that of the Pyrences, would be merged in the flat of vision, and even Chimborazo is depressed more than one-third of its absolute height.

The prosince of Imbabura, confined to the central plain, is more than semicircled by that of Pichincha, which latter rising from the sater and rocks of the Pa(ifie, sweeps over the summit and plain of the Andes, far down the Isa, Napo, Piguena, and other branches of the

Amazon combining in a length of 280 miles, all the effmates, and admitting a large portion of all the vegetables of the eartl. Quito, the capital of the province of Pi chincha, and of the whole department of the Equator, stands un a site too uneven to admit, says Malte Bron, of the use of carriages. The latitude and height of this city have already been noticed. Though so near the equator, Fahrenheit's thermometer ranges between 40 \& 61 , but contrary to what might be expected, the seasons of different years vary greatly in mean and rclative temperature The whole adjacent country is very subject to earthquakes; one of which, attended with peculiar destructive effects, occurred February 4th, 1797. But amid the revolutions of their turbulent atmosphere, and treading on ground so liable to convulsion, the people of Quito are admired by cvery traveller for urbane, kind, lively, and hospitable manners.

Assuay, the extreme southern, or rather south-western department of Colombia, sweeps eastward from the highest summits of the Andes, from within 20 miles from the Pacific Occan, and \(3^{\circ} 10^{\prime}\) W. from VVashington, to the alluvial junction of the Amazon and Jupura, \(11^{\circ} 40^{\prime}\) E. from Washington. Extending from west to east through nearly filteen degrees of longitude, between datitude \(6^{\circ} 35^{\prime} \mathrm{S}\). and \(0^{\circ} 50^{\prime} \mathrm{N}\)., this extensive region embraces an area of 251,700 square miles, with, however, only 127,900 inhabitants, or about one human being to two square milcs. It is subdivided into three provinces of very unequal extent; Cuenca, 170 by 70 miles, and with an area of 11,900 square miles, containing 76,423 inhabitants; Loxa, 100 by 60 miles, and on 6000 square miles, contains 34,47 inhabitants. The residue of the population, 16,000 , is seated on the western border of the immense province of Jaen de Bracamores. Indeed, the inhabited part of Assuay is in great part confined to the elevated table land of the Andes; Cuenca, capital of the province of the same name, rises above the Pacific 8,632 ifect, with 25,000 inhabitants, and Loxa, capital of the province of Loxa, contains a population of 10,000, who exist 6765 feet above the oceanic level. From this temperate region, Assuay falls in a lengthened inclined plane of 1000 miles. 'The rivers Amazon, Gualaga, Ucayale, and Javari, pour their great volumes from the south-west into Assuay, which is again furnishcd by the minor, though still large streams, of Santiago, Pastaca, l'iguena or Tigre, Napo, Putumayo or Isa, and is limited north-east by the Jupura. The latter rivers have their sources on the table land of the Andes, but traverse the great plain which spreads alone the eastern border of that system of mountains. The white or Spanish inhabitants occupy the plateau ol the Andes, whilst the alluvial plains are yet in possession of the aboriginal Indians.

We have now taken a surrey of the widely extended Republic of Colombia, as much in detail as the nature of our work would admit. The subjoined summary will give the reader a condensed view of the extent and relative position of this large section of South America.

Summary Table of the defartmental Subdivisions of the Refublic of Colombia.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Depautsments. & Arca ill Sthare Miles. & Population. & Capritals. & Topmlat10n. & L.aitude. & Longrilude. & Alatude in feet. \\
\hline Istmo, & 24,300 & 100,085 & Panama, & 9,000 & \(9^{\circ} 101 \times N\). & \(2^{\circ} 31^{\prime \prime} 1 \mathrm{~V}\). & \\
\hline Magdalena, & 53,400 & 176,983 & Carthagena, & 15, 1 (0)0 & 10 21. & \(1261 \%\) & \\
\hline Zulia, - & 29,100 & 120,960 & Maracaibo, & 20,000 & 10 41 N & 58.512 & \\
\hline Venezuela, & 43,700 & 326,810 & Caracas, & 28,000 & 1031 N. & 931 l & 2,860 \\
\hline Maturin, & 48,600 & 86,017 & Cumana, & 7,000 & 1025 N . & 1247 F & \\
\hline Cauca, - & 53,600 & 149,374 & Popayan, & 8,000 & 226 N & 019 E & 5,825 \\
\hline Cundinambarca, & 76,600 & 391,426 & Bogota, & 38,000 & 436 N. & \(24.1 \%\) & 8,81\% \\
\hline Boyaca, - & 195,000 & 409,921 & Timja, & 16,000 & 516 N. & 3 J11 \(1 \because\) & \\
\hline Orinoco, & 332,000 & 125,822 & Angostura, & 4.000 & 8 c8 N. & 1301 l & \\
\hline Cruayaquil, & 14,200 & 73,488 & Givayaguil, & 20,000 & 212 S & 302 W. & \\
\hline Licjuador, & 58,700 & 307,614 & Quito, & 52,000 & \()^{1} 13 \mathrm{~S}\) & 145 W & 9,51() \\
\hline Assuay, - - & 251,700 & 127,894 & Cuenca, & 25,000 & 255 S . & 216 W . & 8.6 .32 \\
\hline lotal, & 1,180,900 & 2,396,404. & & & & & \\
\hline
\end{tabular}

In relative position, and in the accuracy of information in regard to the local subdivisions, the Empire ol Brasil, or Brazil, follows Colombia. After Lussia and China, the Empite of Brasil is the most extersive political subdivision of the earth, and the most extensive continuous body of productive soil cver united under one sovereignty. Excluding the Banda Oriental, Brazil stretches along the Atlantic Ocean from Cape Orange, N. Iat. \(4^{\circ}\), to near the mouth of Rio Grande, S.lat. \(32^{\circ}\); and from east to west, from Cape San Roque, long. from Washington \(44^{\circ}\) E. to the mouth of the Javaritiver, long. \(7^{\circ} \mathrm{E}\). from Washington. Extending through 36 degrees of latitude, and 37 degrees of longitude, forming a trapezium, approaching to a square of 2500 miles each side. Within this expanded perimeter, is included between three and four millions of square miles. Having an occan border of 3900 miles, indented by small but convenient bays, and by the unequalled Amazon, and many other rivers. It would not, it is probable, be infringing the truth to say, that every 20 miles of the whole of the Brazilian coast would average a river.

The eastern part, where the civilized settlements are chielly made, is broken and even mountainous, but advancing into the interior, over the basin of the Amazon, the surface is comparatively level. Nuch is low, alluvial, and periodically overflowed. It is deceptive, however, to attempt to give any general character to regions, exceeding the superficies of all Europe, and whose secondary provinces are individually more extensive than Germany, France, or Spain. Brazil is nevertheless naturally divided into two unequal physical sections. A not very well defined, nor elevated system of mountains stretches southward from the estuary of the Amazon, until merged in the Atlantic Ocean, S. lat. \(28^{\circ}\). Eastward from this system, spreads a triangular slope of 2000 miles base and 1000 perpendicular, containing about 1,000,000 square miles. This slope sustains, with the exception of some settlements along the Amazon, and other interior streams, the improved part of the empire, but not more than one third part of its territory. Passing from the A tlantic slope of Brazil, an almost interminable interior opens. In our general view of South America, the great interior valley was noticed. The central parts of this valley are included in Brazil. With-
out any apparent regular elevation that could infuence the courses ol the divers, the waters of the Brazilian valley are discharged northward, towards the Amazon, or southward into the basin ol the Rio de la Plata. The Tocantin, Xingu, 'Tapajos, Madcira, Putus, and Jutay, are ouly the primeipal tributaries of the Amazon, which traverse Brazit. The southern provinces, lio Grande. and St. Paul's, and much ol Minas Geraes, Gias, and Matto Grosso, are drained by the innumerable brancines of the l'arana and Paraguay.

The Atlantic slope of Brazil has been examined by several scientific travellers, but the central regions on both sides of the Amazon have been but imperfectly explored. The connexion between the Orinoco and Amazon basins, by the Kio Negro, noticed in our survey of Colombia, was only recently determined. Sufficient is known, however, to enable us to complete the general sketch of Brazil by including a territory north of the Amazon, comprising the lower part of the valley of the Rio Negro, and an additional tract of 800 miles in length, reaching from the mouth of the latter stream to the Atantic Ocean.

The civil divisions of Brazil, perplexing to the natives, are inexplicable to strangers. In the Spanish and l'ortuguese American colonies, there were ciril and military provinces, with ditferent names, and sometimes confliciing limits. The subdivision of Brazil into captain generalships, is hest known, and is as follows:

Rio Janemo, containing the capital of the empire, lics along the Athantic Ucean, from the river Doce, to the Bana Canessu. It is four hundred miles in Iength along the occan, but in no place much exceeds one hundred inland, and does not average above 80 miles in width. 'Ihis prorince, when under Portugal, was entitled and ruled as a viceroyalty, is traversed from south-west to north-east by a chain of scondary mountains, and is a high, broken, fertile, and healthy country. Rio Janeiro, the capital of the province, and of the empire, stands on a fine bay of the Atlantic Ocean, at S. lat. \(23^{\circ}\), and long. \(33^{\circ} 14^{\prime}\) E. from Washington City. The population in 1817, was by Malte Brun computed at 110,000; the amount at present (1829) is no doubt considerably augmented.

Minas Geraes has a front on the Atlantic Ocean from
the mouth of the Doce to that of the Pardo river, 450 miles, and spreads inland, nearly semicircling Rio Janeiro; having Bahia north, Goias west, and St. Paul's south-west; lying between S. lat. \(15^{\circ}\) and \(22^{\circ} 40^{\prime}\); length 600 miles, and mean breadth about 300 ; superficies 180,000 square miles. The south-western part of Mlinas Geraes, is drained by the eastern sources of the Parana; the western by the St. Francis; and the eastern by the Doce and other minor streams. It is a hilly, in many parts a mountainous combtry, with a population perhaps amounting to 500,000 , amongst whom mining has superceded or retarded agriculture in a soil and climate where vegetation demands slight labour, and where the range of vegetable products is indefinable. This province is divided for civil purposes into the Comarcas, or districes of St. Joao del Rey, Sabara, and Cerro del Frio.

St. Paul's, or San Paulo, is the south-west captain generalship of Brazil, and follows Rio Janeiro, and Minas Geraes, and lying between the Atlantic Ocean and river Parana, having a front on the Atlantic Ocean of 400 miles; greatest length from north-east to south-west 560 miles, with a mean breadth of 300 ; area 168,000 square miles. With the exception of a narrow strip on the Athantic Ocean, St. Paul's is an inclined plane sloping to the north-west, and down which numerous confluents of the Parana are precipitated, and flow, not towards the contiguous ocean, but directly towards the central parts of the continent. The dividing ridge between the short Atlantic rivers and the sources of the Parana, is part of the Brazilian system of mountains, already noticed, and which, in St. Paul's, rise from the margin of the Allantic. The city of St. Paul's, though not io a direct line, 40 miles from the ocean, is drained by a tributary of the Parana. The mountains rise abruptly from the ocean to about 6000 feet, and slope by gentle ascent inland. The city of St. Paul's, connected with its port Santos by a paved road formed with great labour and expense over the mountain gorges, contains a population of 30,000 souls. Its elevated position, and latitude almost exactly under the southern tropic, give to this city a peculiarly temperate climate.

The whole of the province of St. Paul's, lying between S. lat. \(19^{\circ}\) and \(25^{\circ} 40^{\prime}\), contains a population of about 220,000 souls, engaged in agriculture and mining. Such a population, however, when viewed comparatively, shows a country where civilized settlement is only commenced, though, perhaps of all the original establishments in America, the first setlers of St. Paul's were amongst the most active and intelligent.

Rio Grinde, deriving its name from one of the numerous tivers of South America bearing that title, is the southern province of Brazil, having the Atlantic Ocean south-east, St. Paul's nurth, Banda Oriental south, and Uruguay west, with a front of upwards of tive hundred miles on the Atlantic Ocean. The south-western boundary of Rio Grande is of great political consequence, as it is the limit between the empire of Brazil, and Bunda Oriental. On the map published in London in 1825 , and which forms the frontispiece to the "Accoum, Ilisorical, Political, and Statistical, of the United Provinces of Rio de la Plata, the limit between the Banda Oricmal and lio Grande is thus traced: commenciug on the Uruguay river, at its junction with the Ubicui, and lollowing the latter to its source; thence, by a line
south-eastward about sixty mites to the source of the Yaguaron river, and thence down the latter to its entrance into the Laguna Merin. From thence to the Atlantic Ocean, a distance of about 40 miles in a direct course, the bouadary is not either etched or coloured, but most probably was intended to follow the Laguna Merin, its outlet, into the Laguna Patos, and thence to the Atlantic, hy the mouth of the Rio Grande river. The boundary thus traced deserves particular attention, as the original of the map was drawn at Buenos Ayres, and of course acknowledged by the authorities of the United Provinces of Rio de la Plata. On Tanner's map of South America, the limit is drawn across the peninsula, between the Laguna Merin and the Atlantic Ocean, reaching the ocean about 20 miles north of a place named on the map, Marco del Limite.

The physical features of the province of Rio Grande are in a peculiar manner varied and interesting. The southern part is composed of that remarkable basin from which the province derives its name, and which has already been noticed in our general view of South America. The western and north-western sections slope towards the Uruguay and Parana rivers, whilst the north-eastern are composed of a very narrow mountainous slope along the Allantic Ocean. The whole province extends from the river Iguacu, flowing into the Parana, \(25^{\circ} 20^{\prime}\), to the river Yaguaron, S. lat. \(32^{\circ} 40^{\prime}\); long. \(25^{\circ} \mathrm{E}\). from Washington City, dividing the province into two very nearly equal sections. Its extent in square miles is about one hundred thousand, having a length from north to south of upwards of five hundred, with a mean breadth of two hundred miles. Rio Grande, the capital, stands on the very singular outlet of the river of that name. It is a seaport, but the shallowness of the water on the entrance, the violence of the currents, and quicksands, render the entrance dangerous for vessels drawing more than ten feet, thougn within the bar there is a safe anchorage, and depth of water for any ship, of whatever draught. It is along the Rio Grande that the population is chiefly distributed. "A cireuit," says Malte Brun, " of twenty leagues, is supposed to contain a hundred thousand inhabitants."

The small island of St. Catherine, opposite the northeastern coast of this province, and the adjacent shores around the city of Rosario, have been much celebrated for fertility of soil and picturesque seenery. The centre of the island is in S . lat. \(27^{\circ} 30^{\prime}\), but the mountainous elevation of the coast lowers the temperature so much, as to give to the seasons a mean heat suitable to a much higher latitude.

Bama lies between the Atlantic Ocean and the river St. Francisco, and has Minas Geraes south, Maranham west, and Pcrnambuco north. It derives its name fromt that of the great Bay of Todos os Santos, or All Saints Bay, on which, or rabber on a peninsula between it and the Athantic Ocean, stands the capital, San Salvador do Bahia, with a population, it is probable, of one hundred thousand people. The peninsula is narrow, bu: receding from the southern point nothward, rises to about six hundred feet above the ocean and bay. 'The city ranges nearly four miles aloner this neck. The point or ship entrance is at S. lat. \(12^{\circ} 50^{\prime}\).

Under the name of Bahia, are included some comarcas or districts not directly connecterl with its admmistration. The district of Surgipe del Rey lies between
the river St. Francis and Rio Real, and north-cast from Bahia. Hheos extends along the Atlantic Ocean from the Rio dos Contas to the Pardo, and of course between Bahia and Minas (ieraes. However, for the purposes of gencral and physical greography, the bounds of Bahia may be viewed as follows: along the Atlantic Occan, four bundred miles, from \(S\). lat. \(11^{\circ}\) to \(15^{\circ}\). The river St. Francis curves round this province on two sides, and forms a natural boundary upwards of seven hundred miles. On the south it is bounded by the Pardo, and a line, perhaps imaginary, thence to the right bank of St. Francis. Length from sotth-west to north-east about five hundred, and mean breadth two hundred miles, with an arca of one hundred wousand square miles. Situated entirely within the torrid zone, and greatly diversified in surface, the productions of Babia are numerous and valuable. Indigo, tobacco, rice, sugar, \&c. are, with Brazil wood, its most common staple. Coffce is also cultivated, as are inmmerable fruits and grains.

Pernambuco is remarkable as lorming the most castern part of the continent of America. It is bounded south-east, cast, and north-cast by the Atlantic Occan; south by the river St. Francis, and west by a chain of mountains called the Sicrra de l'ianhi. Extending from south latitude \(3^{\circ}\) to \(11^{\circ}\), and along the Atlantic Occan by an immense swecp, from the village of Santa Cruz, on the small bay of Camosin, upwards of one thousand miles to the mouth of the St. Prancis. It approaches to a square of four hundred miles each side, and comprises an area cxceeding one hundred and sixty thousand square miles. A part of the coast only, however, is inhabited, but that contains the capital. This singular city is composed of two towns, Recif, or Permambuco proper, and Olinda. The former is built on two islands, and the latter, three miles distance, on an eminence. Joint population sixty-five thousand. Lat. \(7^{\circ} 20^{\prime} \mathrm{S}\)., Jong. from Washington City, \(37^{\circ} 10^{\prime}\) E. The interior of Pernambuco is singular as a physical section of South America, from the character of its rivers. Those flowing into the Atlantic are extremely limited in their length of course, whilst the interior appears a wide desert, entirely devoid of streams of any kind, giving to its map an appearance similar to that of Arabia. From the first establishment of the Portuguese on this part of America, the principal staples of Pernambuco have been cotton, sugar, and Brazil wood.

Ceara or Seara, and Paraiba, are districts included within Pernambuco, and flependent on the military governor thereof, but are independent as respects their civil jurisdiction.

Makanham follows Pernambuco, to the north-west, and includes the district of Pianhy. Taken in its most extended limits, this province stretches lrom the estuary of the Turuiassu river, S.lat. \(1^{\circ} 10^{\prime}\), to the northern boundary of Mlinas Geraes, S. lat. \(14^{\circ} 25^{\prime}\), or through upwards of thirtcen degrecs of latitude; having the Atlantic Occan north; Pernambuco east; the river St. Francisco, or Bahia, south-east ; Goias south-west, and Para nortb-west. Length from north to south above nine hundred miles, with a mean width of at least two hundred and eighty miles, and an area, at the lowest estimate, of two hundred and fify thousand square miles. In regard to actual settlement by a civilized people, the extended region under the general name of Maranham, is nominal in great part. The comarca,
or district particularly called by the title of Maranham, from the name of the capital, is small, but impertant from its staple productions, which to many mure, may be named annati, capsicum, ginger, and pepper. The city of Maranham, with a pepalation of thity thousand souls, stands on an island at the mouth of the lemare river, S. lat. \(2^{\circ} 28^{\prime}\), long. Washington City, \(32^{\circ} 50^{\prime} \mathrm{LB}\).

The seven provinese, on captain fencralships we have surveycd, stretching from the vicinity of the equator to S. lat. \(32^{\circ}\), and containing an ofergegate superficies of nine hundred and nincty thousand square miles, do not contain, when thus taken together, the one-thired part of the Brazillian tervitory, and we now procecd to notice the still more extended, bulless known tracts of South America.

Gous, as delineated on 'Tanner's map of South America, stretehes from the confluence of the "Jocantin and Araguay rivers, S. lat. \(6^{\circ}\), to the junction of a small river named Pardo, with the Parana, S. lat. \(21^{\circ} 40^{\prime}\); having Matto Grosso west; Jaras north-west and north; Maranham north east; Minas (ieraes south-cast; and St. Paul's sou:h. Length one thousand and cighty miles, and mean widh excecting two hundred miles, with an area of at least two bundred and twenty thousand square miles. This very extensive province is bounded on the west by the Araguay in the entire lengtl of that river, and contains nearly the whole valley of the Tocantin. The southern part is drainct by the extreme northern tributary of the Jarana, ihe Paranaiba, which has interlocking sources with those of the Tocantin and Araguay. The province of Goias, is obviously from the courses of its rivers, composed of two unequal inclined planes, slopiner north and south from a table land between \(16^{\circ}\) and \(18^{\circ}\) S. lat. This plateat must be of considerable elevation, as a chain ol mountains called the Cordillera Grande, is drawn from it on Tanner's map, and extends to the junction of the Araguay and Iocantin, through eleven degrees of latitude.

Goias is as yet thinly peopled, and but very imperfectly cxplored. The scttlements are principally on the higher branches of the Tocantin and Paranaiba. Villa Boa, the capital, stands in a mountain valley on the source of a branch of the Vermelho river, at S. lat. \(16^{\circ} 12^{\prime}\), Jung. \(28^{\circ} 56^{\prime}\) E. from Vashington City, ahout 700 miles N.W. and directly inland from Rio Janeiro. The population of Goias is too much scattered, to be sufficiently well ascertained in regard to number, to admit cven an approximate enturncration.

Matto Grosso, still more extensive and still worss explored, lies west and south-west from Goias, and extends from S. Iat. \(9^{\circ}\), to the tropic of Capricorn, S. Jat. \(23^{\circ} 50^{\prime}\). On the southern boundary, this province fills the space, about 250 miles, between the Parana and Paraguay; and on the northern limit sweeps upwards of one thousand miles from the Araguay to the Madcira. At the broadest part, S. lat. \(10^{\circ}\), this province exterds aboue 1100 miles from east to west; its greatest leugth from the angle on the Paraguay, to that on the Madeira, above twelve hundred miles. The area falls little, if any short of 600,000 square miles, or between nine and ten times the extent of Virginia. With our imperfect knowledge of its local features, it would be mere idle presumption to give a general character of Matto Grosso. It may be sufficient to observe, that the central part is decidedly a table land of considerable elevation, as from it flow,
north-westward, the eastern sources of the Madeira; to the north are discharged the higher branches of the Tapajos and Xingu; the waters of the Rio das Mortes, a branch of the Araguay, flow eastward, whilst the numerous and most northerly confluents of the Paraguay fall to the south down the higher rim of the basin of Rio de la Plata. The table land of Matto Grosso is, in fact, a continuation of that of Goias.

Villa do Cubabu, the capital of Matto Grosso, is situated on a river of the same name, at S. lat. \(15^{\circ} 20^{\prime}\), and long. \(21^{\circ} \mathrm{E}\). from Washington, about 1100 miles north-west by west from Rio Janeiro, and 1200 a little east of north from Buenos Ayres.

If we add the combined exient of Goias and Matto Grosso, 820,000 square miles, to that of the Atlantic provinces previously moticed, 990,000 square miles, we have an area of one milion cight hundred and ten thousand square miles, a superficies exceeding that of the Roman empire under Trajan and the Antonines, and far exceeding China proper, or European Russia, and yet we have not included perhaps one half the Irazilian territories. We have now to launch into the central regions of Amazonia.

Pana reaches from the sources of the Branco branch of Pio Negro, in the mountains of Guyana, N. lat. \(4^{\circ}\), to Fort Principe de Leira, on the Madeira, S. lat. \(12^{\circ}\). In longitude this province extends from the mouth of the Tiver Juriassu, \(32^{\circ} \mathrm{E}\). from Washington City, to the sources of the Javari, \(5^{\circ}\) E. from the same meridian. Length from east to west, 1850 miles. The mean width must exceed one thousand, with an area of \(1,830,000\) square miles. The main volume of the Amazon reaches Para at the mouth of the Javari, and separates Lower Perufrom the dominions of Brazil to Fort St. Fernando, at the mouth of the Ica. Below the latter point, the already great stream of the Amazon enters and continues its entire course of upwards of one thousand four hundred miles in Para. Immense as is the mass of water already accumulated in the Amazon above Para, it receives in that province, beside innumerable smaller streams, the Jupura and Negro from the north-west, and from the south-west, the Jutay, Jurua, Tefte, Purùs, Madeira, Tapajos, Xingu, and Tocantin. We have already waived the attempt to give general characters to regions so im-mense-we may here merely observe, that it would be no hazard to pronounce Para, if all its natural advantages of tropical climate, fertility of soil, and abundance and navigable facilities of its rivers are taken into view, as the most faroured tract of comparative continuous extent on the whole habitable earth.

When we turn, however, from the features of nature to the improvements of man, we find Jara, with a few detached settements, a waste. The immense Llanos, Pampas, or grassy plains devoid of timber, so extensive along the casionn slope of the Andes, in the entire length of Suuth America, have but a limited existence on the lower part of the Lasin of the Amazon. Entangled forests, with all the varicty and lusuriance of a tropical clime aided by a soil exuberantly fertile, spread over Para. The hand of man can be hardly said to have attacked this word of wood. Para, or Grand Para, sometimes culted Belem, a city on the right bank of the Tocantin, at its month, and which contains 20,0 of inhabitants, is the capital, and gives political wame to the province. 'This city stands at \(S\). lat. \(1^{\circ} 30^{\prime}\), and long. \(28^{\circ} 27^{\prime} \mathrm{l}\). from W"ashington City.

The government or district of Rio Negro, is a comarca of Para, but the former, dependent on the military, is free from the civil jurisdiction of the latter. In Rio Negro, there has not yet risen a town deserving the name of city.

We have, as far as our materials admitted, sketebed the outlines of the ten captain generalships of Brazit, and by that means given the general extent and relative situation of the subdivisions of that empire. But, for civil jurisdiction, that sovereignty is divided into comarcas or districts, in each of which there is an ouvidor or judge. These comarcas, where their position is actually and accurately laid down, enable us to fix real settlement much more correctly than can be done by the great military provinces. Malte Brun names twenty-four comarcas, which, as may be seen, in part follow, and in part are different from the provincial subdivisions: of these, Bahia, Porto Seguro, Sergipe del Rey, and Ilheos, are included in Bahia. The comarca and captain generalship of Rio Janciro are commensurate, with the exception of Espirito Santo, which occupies the north-east part of the province from the river St. John. The comarcas of Ceara, Paraiba, and Pernambuco, are included in the province of the latter name. Piahu and Maranhao, are comarcas of Maranhao, or Maranham. San Jaulo, Santa Catarina, and Paranagua, are comarcas of St. Paul's. Porto Seguro, Sabara, Serro do Frio, and Villa Rica, are comarcas of Minas Geraes. Rio do Frio is a comarca of Matto Grosso, on the head of the Araguay. Some other comareas are named from the province in which they are placed, but from increase of population these judicial districts must be subject to frequent change.

The population of Brazil has been a subject of much and mere conjecture. It has been estimated from three to four millions, and may probably, if all castes are included, exceed even the latter amount. If the position of the comarcas is carefully examined on a map, it will be seen how very detached are the settlements. Brazil, separated from Portugal, has become a nation of Ame rica, with an unequalled extent of dominion, and must, under an even tolerable administration, advance to great power and prosperity.

The United Provinces of Rio de la Plata follow the empire of Brazil in relative position. We may remark as a curious coincidence, that in North America, the United States sweep over the great basin of the Mississippi; and in South Anserica, the republic of Colombia embraces the Orinoco, Brazil the greater part of the basin of the Amazon, whilst the United Provinces of the Rio de fa Plata are, with but partial exceptions, commensurate with the basin of the great river from which their title is derived. Thus in America, those wide natural basins, with streams howing to single points, have afready influenced the artilicial outlines of new ations, and will contribute physically to unite commanities morally and politicafly connected.

Simitar to other parts of the Spanish dominions in America, the administration of the parent state gave rise to murmurs long previous to actual revoh. These mumburs rose to a storm in 1810 at Buchos Arres, and the Platane provinces ceased to be Spanish. The revoIntion in that country is in fact not yet termimated, but the aspert of the provinees is sumfeiently hixed to admit a geographical view; whoh we are enabled to take with
some clearness, from the IIistorical, Political, and Slatistical Account already noticed.

Hefore, however, entering on the detailed provincial survey, we may pause to examinc the great condluents of the Rio de la Plata. The basin of the Plate extends from the sources of Paragury, S. lat. \(13^{\circ}\), to Cape St. Antonio, S. lat. \(36^{\circ} 40^{\prime}\), and what is peculiarly remarkable, its greatest breadth about S. lat. \(22^{\circ}\), equal to 26 degrees ol longitude, reaches from less than one hundred miles from the lacific Ocean, to a still nearer approach to the waters of the Atlantic. The Pilcomayo on the west, and the Parana on the east, llow respectively towards the central parts of the continent. It is generally known that the Andes range nearly parallel to, and at no great distance from the Pacific, but it is by no means equally well known, that the corresponding. AtIantic slope from S. Iat. \(20^{\circ}\) to the mouth of the Rio de la l'lata, is still more restricted in breadh. 'The latter, immediately under the southern tropic, in the vicinity of St. Paul's, is not thirty miles wide, lrom the shore of the Atlantic to the sources of the Tieté; and again, at S. lat. \(28^{\circ}\), the higher branches of the Uruguay flow within 50 miles of the \(A\) tlantic waters.

The name of Rio de la llata is only given to the bay below the junction of the Parana and Uruguay, By a misnomer, similar to what has occurred in North America with the Mississippi and Missouri, the D'arana has superseded the main stream of the Paraguay. The latter rises at S. lat. \(13^{\circ}\), interlocking sources with the Tapajos and Xingn. Augmented by numerous confluents, this river flows almost directly south to S . lat. \(21^{\circ} 20^{\prime}\), at the city of Assumption, where it receives from the north-west a very large branch, the lilcomayo, and also from the same side, 100 miles lower, another of great magnitude, the Rio Grande, and again 50 miles still lower', loses its name by receiving the l'arana. The latter takes its source in the long range of mountains situated to the north-west of Rio Janeiro, in S. lat. \(21^{\circ}\). It is increased by uniting with the larancuba, the Tiesse, the Paranapane, and the Curitaba. Winding to the north-west, to S. lat. \(19^{\circ}\) it receives from the north the Paranaiba, and turns to S. S. W., and continues that direction to S. lat. \(27^{\circ} S 0^{\prime}\), into the Missiones de las Guarames. From this place, it begins to display its peculiar character: forming an archipelago, of an infinite number of islands, and curning west, joins the Paraguay at the city of Las Sicte Corrientes. Here the Parana and Paraguay have conjointly drained at least 800,000 square miles, and the united waters under the former name, but continuing the general course of the latter, assume the grand and majestic appearance which it retains, and descending, like a lresh water sea, with a mean course soutl, but curving to the west, to S . lat. \(34^{\circ} 20^{\prime}\), where it rcceives from the N. N.E. the Uruguay, and opening into a wide estuary loses its mame in that of Rio de la Plata. Wibhout regarding partial bends, the Parana llows from Corrientes to its mounh 560 miles, receiving from the west numerous minor confluents. The Parana admits the entrance of vessets of 15 feet draught, and is navigate for those of 300 tons burthen above the city of Assumption. The various coniluents are navigable to near their sources, rendering the basin of the Rio de la Plata, like that of the Mississippi, a vast expanse capable of indefinite intercommunication by water.

Vol. XVII. Pakt I.

The Parana is subject to annual inundation. The rise begins about the cnd of December, some time after the commencement of the rainy season in the countries between the tropic of Capricorn and the equator; and it continucs to rise, without interruption, to the begrinning of \(A_{\text {pril. Thath, elerreasing till July, with a little more }}\) rapidity than it rose, it areain returns in its natural bro The intulations are not invariable as to clevation. The average rising is about twelve feet.

The local features of soil and climate will be best seen by reference to the subjoined description of the provinces.

Buenos Ayres, from which the whole republic is often named, is the most southern and important province, and lies south-west hrom the great bay of laio de la I'lata and the l'arana river. It is in form of a triangle, with the base from Cape St. Antonio north west to Ro. sario on the larana, and stretching inland to a rather indefmite extent. The surface to which settlements have been extended may amount to 20,000 square miles. The capital of the province and of the whole republic, the important city of Buenos Ayres, is situated on the south-western or right bank of Rio de la llata, about 30 miles below the junction of Parana and Uruguay rivers, and at S. lat. \(34^{\circ} 36^{\prime} 29^{\prime \prime}\), long. \(18^{\circ} 32^{\prime}\) E. from Washington City, and \(53^{\circ} 23^{\prime} \mathrm{W}\). from I oncton; at an clevation above ligsh tide in the adjacent bay of 35 Castillian, or \(33 \frac{1}{3}\) English fect. As this city occupies a favourable position in the southern temperate zone of America, and as we have clement derived from respectable observcrs on the spol, it may be well to dwell something at large on the climate and seasons of Buenos \(A\) yres.

To the west and south the territory of Bucnos Ayres is flat, forming a continucd plain, which extends to the confines of the provinces of Cordova and Mendoza. These pampas, or open plains, swcep upwards of five hundred miles to the south-west from Buenos Ayres, which is in fact seated on their margin. 'They spread from the Atlantic Ocean to the Andes, and are parts of the same species of soil which at broken intervals skirt the eastern slope of the Andes from the Llanos of Cundinamarca inclusive, to the recesses of Patagonia. The quality of the soil is generally chalk and productive mould to the depth of three feet. Neither on the surface, nor on excavating, are stones of any kind met with. It is only at the depth of seventy-five or eighty feet that a hardened clay containing lime, and called tosca, is encountered. Directly norih from the city is the inundated valley of the Uruguay, which rising in the Brazilian province of Rio Grande, Hows first nearly west, gradually curving to south, which latter course, with a slight inclination west, it pursues from south lat. \(30^{\circ}\) to its junction with the Parana, at \(34^{\circ}\). To the north-west, again spreads the still more extensive delta of the larana, the whole covered with immense forests. To the north-east, beyond the bay, the surface of the Banda Oriental is high and dry, and finally to the east and south-cast, opens the great bay of La Plata. From these local features, and the great difference of surface over which the various winds sweep, it is obvious that the seasons of Buenos Ayres must be liable to great and sudden revolution; and that health musi be most essentially influenced by prevalent winds. This is the case, and the wind most dreaded at Buenos Ayres is that from the north This wind is humid, at all seasons, and often attended by excessive rains. It produces laxity of the
whole frame, but in a particular manner affects the head. A fact attends the north wind at Buenos Ayres, which almost uniformly precedes copious rain; objects become visible at an immense distance. La Colonia, on the opposite side of the bay, 25 miles distant, is seen under the influence of the north wind. The north-east wind, though in a diminishod ratio, participates in the preceding phenomena. The south-west (hampero) is by far the most wholesome wind at Buenos Ayres. Its elasticity, purity, and vigour, make it desirable in all scasons, as it counteracts the humidity too prevalent in the houses. The effects produced by the pamforos are at once deducible to the cause, by reference to the physical geograply of that part of South America, southwest from the estuary of the Plate. In summer, a breeze from the river, or from the east, is produced every even. ing, with the same regularity as attends those currents of air called trade-winds within the tropics. It has been observed in winter at Buenos Ayres, that often when the air in the strects is warm and bracing, it is cold, moist, and distressing in the houses. This is occasioned by the want of fires. The author, from whom these observations are cxtracted, observes, "Our fathers have handed down to us an absurd prejudice against fire; and the anti-philosophical and hurtiul mamer in which they made use of it, in open brasiers, was sufficient, by its effects, to sanction the prejudice. It is but lately, that forcigners have overcome that aversion in us to artificial hert; and their example, their good state of health, and their not sufiering more than others from the commencement of cold weather, but on the contrary less, have made converts of many of the natives, who already begin to have chimncys in their habitations."

Taking a series of seasons, the general weather is found pleasant and salubrious; the aspect of the sky beautiful; the air bracing, and exciting in the human mind a confidence of healit.

The baroncter has risen to thirty inches, and was never lower than twenty-nine. The thermometer seldom falls even to the freezing point of Fahrenheit. A series of years, from 1817 to 1821 inclusive, give for the greatest heat, \(83,85,85,86\), and 81 , and for the greatest cold, in \(1817,28^{\circ}\), or four degrees below the freezing point, a yery uncommon occurrence in that country.

Such is the territory and productive facilities of the province of Buenos Ayres, that under a free and liberal administration its prosperity must advance rapidly. In 1825, the city contained a population of 81,136 , the country 82,080 ; aggregrate \(163,216\).

The list of staples for expurtation, shows, however, the very low state of agriculture. These staples are hides of horses, cows, and vicunna; sheep's and vicunna wool; horsc hair and ostrich feathers; lamb, otter, chinchilla, wolf, lion, and tiger skins; tallow, beef, and last of all, wheat.

Exine Pros, or Merween Rivers, is a real Mesopotamia, having the Parana south and west, the Uruguay cast, a line from one river to the other, nearly alongs. lat. \(30^{\circ}\), of one humdred and fifty miles. From the northern boundary it extends in the form of a parallelo. gram of about one hundred and forty miles wide, to the confluence of the Parana and Uruguay, in S. lat. \(34^{\circ}\). The lemgth of its course is equal to four degrees of latitude, or 280 miles, in round momers; superlicies 39,200 square miles. No spot of all South America is more
advantageously situated for agriculture and cominerce, bounded as it is by two of the finest rivers of that continent. In its natural state Eutre Rios was a donse forest, and so in a great measure it remains; as in 1825, the inhabitants amounted to only about thirty thousand.

Cormextes lics above lintre Rios, and remarkable as is the river perimiter of the latter, that of the former is not less so ; having the Parana on the north and west, and the Uruguay east. At the north-east angle of the province the two rivers approach to within thirty miles of cach other, and then recede, the Parana westward, and the Uruguay south-west. Spreading thas between those rivers, the province of Corrientes fills the space from the Parana above its junction with the Paraguay, or from S. lat. \(27^{\circ} 20^{\prime}\), to the northern boundary of Entre Rios, S. lat. \(30^{\circ}\), forming nearly a square of two hundred miles each way; area about forty thousand square miles. This province, but litile known, was one of the most early Spanish settlements on the basin of the Plate. The city of Corrientes is situated on the east, or Icft bank of the Parana, immodiately below the mouth of the Paraguay, S. lat. \(27^{\circ} 26^{\prime}\), and almost exactly due north from Buenos Ayres; difference of lat. \(7^{\circ} 10^{\prime}\), or five hundred English statute miles.

With much resemblance to Entre Rios, the surface of Corrientes is more diversified. In the interior are many lakes, and in particular one called Ypicu, or Ybera, boasted of for the beauty of its shores. The inhabitants of Corrientes, similar to those of all other countries where the climate is mild, the soil fertile, and the population thin, are disinclined to labour. The situation of the capital is admirable for commerce, and the dense forests would be as favourable for steam-vessels, but hitherto, pastoral pursuits hare been prefered. Agriculture has not been altogether neglected; sugar, cotton, and indigo have been exported, but in moderate quantities. Coffee has likewise been cultivated with good suc-cess-but nature has done too much in Corrientes.

The river Uruguay scparates on their castern sides both the preceding provinces from Banda Oriental.

Paraguar is the next province to Comientes, with the Parana intervening. Here again, the courses of the rivers give compactmess and a defined natural outline to a political section. The Parana, after having been swelled by imumerable strcams from the mountains of Brazil, crosses the southern tropic, and llows southward with a very slight inclination to the west, to below \(S\). lat. \(27^{\circ}\), when abruptly turning to west, one hundred and fifty miles, unites with the Paraguay, and encloses the province of the latter name on two sides; which province is again washed on the west by the great river from which its name is derived. On the north Paraguay bounds on the Brazilian province of Matto Grosso. The whole forming an oblong 280 by \(\geqslant 00\) miles; area 56,000 . Such is Paraguay on our maps, but the following extract shows how imperfectly the physical or political leatures of this remote region is known even at Buenos Ayres.
"It is undoubtedly one of the provinces which has always been beld in most estimation, on account of the abundance, variety, and value of its productions. For the last 15 ycars, however, (from 1825) which goes back to the time when, with Buenos \(A\) yres, it separated itself from the Spanish domination, it occupies an obscurc place in the politics of that country, and maintains no
social or mercantile relation with any other part of the world; for which state of sechusion it is favoured by its detached local situation. Without knowing whether this circumstance ought to be attributed to tho rustic character ol the only person who has governed Paraguay, during the greatest part of that time, or to the constitutional apathy and ignorance of the persons govetned, the fact is, that notwithstanding it lollowed the sentiment of the whole territory, as regards its separation from Spain, that province has not only taken no part in the war of independence, hut also, since that moment, has cut offall comm:unication with the contiguous and united provinces, and thus comtimed to the present time to prevent the exportation of its interesting productions, and to prohibit the return of all loreigners or natives, with very licy exceptions, who came for the purpose of introducing ultramarine merchandise into Paraguay. Jlence, nothing is known of that frovince which is not of an old date; and that information, of course, is liable to all the inaccuracies zeith which such communications quere constantly divulsced in those times."*

The author of the pecceding goes on to state what important facts are known of Paraguay, It abounds in mountain forests of the finest ship timber, and though so far inland, the construction of vessels has always been one of its principal branches of commerce. Nost of the small vessels employed in the trade of all the internal rivers, have been constructed there. In l'araguay some ships have been built, which have been navigated to Buenos Ayres, a distance of 1200 miles. In the year 1824, one of those ships sailed to Lima, after having made several voyages to Lurope.

This province seems to produce in highest perfection that :emarkable herb, (yerlo mate, or the chenopodium ambrosioides of Limmeus) the tea of South America. It has been noted for the excellence of its tobacco, cotton, and many other vegetables. It has also gained a shameful notoriety by the forcible detention of M. Bompland, who was so long and usefully the companion of Baron Humboldt, and who was sent as a naturalist by the government of Buenos Ayres, to explore those recesses situated between the Missiones of Corrientes and Paraguay.

The three provinces we have surveyed constitute the tervitory of the republic of the United Provinces of la Plata to the east, or along the right bank of Parana; extending through upwards ol ten degrees of latitude, and comprising an aggregate of 135,000 square miles, most advantageously situated for every pursuit necessary to human prosperity, happiness, and improvement. In general character, the face of the country to the east and west of the Parana and Paraguay differs essentially. The dense forests of Entre Rios, Corrientes, and Paraguay, are followed, advancing towards the Andes, by the Llanos de Manso, and other interminable grassy plains, which occupy the far greater part of the regions from the Parana and Paraguay to the mountains of Chile.

Santa Fe gives name to a province north-west from that of Buenos Ayres. This city is the 5"st on the road from Buenos Aytes to Paraguay, at austance of 300 miles above the capital, and at S. lat. \(31^{\circ} 32^{\prime}\). It stands on the Salado, at its emtrance into the Parana. The province of Sta. Fe is bounded by Buenos Ayres south,

Cordova north, and the barbarian frontiers sonth-west. The population is very scanty, and the number of its inhabitants unknown; supposed to be from \(15,(000\) to 20,000. With alt the advantages of position and soil, agriculture is nerslected. The inhabitants are devoted to rearing horses and vicumas. Its productions are conveyed to Buenos Ayres by land, a" well as by water.

Condora is the capital of the province of that name, and the first city to which the raveller comes after learing Buenos Ayres, in following the western road, which is commonly called the road of Peru. It was founded in July 1573 , and is situated at \(S\). lat. \(31^{\circ} 15^{\prime}\), about 400 miles N . W. liom buenos Ayres. Its situation is picturesque, amid mountains. The city alone contains a population of from 12 to 16.009 souls, and that of the whole province may amount to hom 70 to 80,000 . The territory of Corduva remains but vaguely defined, but is usually considered about 330 miles square; which would give nearly one hundred and nine thousand square miles; but such estimates without adequate data are of litule value. Many circumstances of interest respecting this province are, however, known. The city contains a university tolerably well cudowed. In the territory there are many towns and places of whites and Indians; such as Concepeion, Carlota, Tutumba, San Xavier, Rio Seco, l'rayle Muesto, Soto, lichano, Quilino, Y'schitin, La 'Toma, San Marcos, Cruz Alta, and several others, with a very scanty population in each. The greater part of the inhabitants being spread about the country, on the Haciendas or Estanias, establishments for grazing.
Agriculture is neglected, hough wheat andothergrains succeed well; but the pcople are pastoral, mild, and happy. If the pursuits of the people of Cordora did not as. similate to those of the banks of the Parana, we might ascribe the pastoral character of the former to the nature of their rivers: no navigable stream flows írom Cordova. But on the Parana, Paraguay, and Uruguay, and cven at Buenos Ayres, the people are pastoral. This general similarity in the habits of society in places so very remote, and in places so physically distinct, must have for causes something which writers have not sufficiently explained. The effects every traveller must observe. Most ol the rivers of Cordova are lost in the intermediate plains befure reaching the Parana. One is an exception, which reaches the Parana at Rosario, but it is unnavigable. In 1804, and 1810, attempts were made to remove the obstructions to the navigation of this river, but proved abortive. In fact, to complete such works demands a more dense and enterprising population than exists on Cordova.

St. Louis, or San Luis de la Puntz, still more remote from luenos Ayres than is Cordova, and still more deprived also of the benefits of navigable rivers. This cily lies on the road to Mendoza, at S. lat. \(33^{\circ} 22^{\prime}\) about 500 miles a litule north of west from Bucnos Ayres, and 300 miles east from Santiago de Chile. Though founded as eatly as 1565 , it yet contains only 1500 inhabitants. The province is about \(\mathbf{3 0 0}\) miles by 180, and contains on an area of 54,000 square miles a population of 25,000 souls. The temperature of the air is good; and yet, the lack of population in the towns, and culture in the country, greatly diminish its importance. It is well calculated for breeding catle, and the rearing of horses and vicumas,

\footnotetext{
- Historical, Political, and Statistical Account of the United Prerinces of Rio de la Plata, page 251. London, 1825.
}
the chief employment of the people. Occupying a point on the great road from Buenos Ayres to Mendoza, Santiago de Chile, and other places, San Louis, may with a more numerous and more industrious popula'ion, become a city of great importance.

San Juan, a city at S. lat. \(29^{\circ} 20^{\prime}, 60\) miles north from the termination of the jurisdiction of Mendoza, remained until recently almost unknown, though founded 270 years, and contains a population of upwards of 20,000 souls; and 35,000 , if the adjacent villages of Las Lagunas, Pucble Vicjo, Jacha, V Falle Fentul, Exc. are included. It stands 700 miles N. W. from Bucnos Ayres. The province is about 300 miles square, terminating like Mendoza, on the summit of the Andes.

In all the provinces of the republic of Rio de la Plata, hitherto noticed, we have found pastoral life prevailing, hut approaching San Juan and Mendoza, we perceive a favourable change. The former city, is now considered as that which most closely follows Buenos Ayres in the march of social reform. In particular, the people of San Juan have made astonishing progress in ecclesiastical reform. They have incorporated the regular with the secular clergy, and suppressed the convents. In regard to agriculture, this city and ternitory competes with Alendoza. The inhabitants cultivate the vine to great cxtent, and export wines and brandies to Potosi, Buenos Ayres, Santa le and other places. The fertility of the soil is so great that wheat produces a hundred fold. The olive tree is also much cultivated, and the fruit and oil are great objects of commerce. In the northern part of the province gold mines abound; and from one, that of Tacha, an average of 80,000 dollars is drawn annually.

Mendoza, a city containing a population of 15,000 souls, was founded on the eastern side of the Andes in 1560. It stands at S. lat. \(35^{\circ} 50^{\prime}\), on the direct road from Buenos Ayres to Santiago de Chile, 650 miles westward from the former, and 150 castward from the latter city. The ground on which Mendoza stands is elevated 4656 feet above the ocean. The provincial jurisdiction of Mendoza is bounded west by the Andes, south by the river Diamante; on the north and cast it touches San Juan and San Luis, and on the south-east borders on the savage or barbarianfrontier. The whole province is about 400 miles from north to south, with a breadth of 300 east and west. This would give an aggregate of 120,000 square miles, but the far greater part is merely nominally comnected with the capital, and much spread into the pampas, and is uninhabitable.

The really cultivated section adjacent to Mendoza, is, however, amongst the best improved parts of Spanish America. Beside the capital there are several towns of considerable note, such as San Carlos, towards the south in the valley of Uco, Coriconto, towards the east, and another, Las Barriales, in the same direction. Towards the north, at the very extremity of the juristiction, lies a town, the name of which sufficiently expresses its favourabile locality-Las Grandes Lagunas de Giuanacache.* Towards the N. L. six miles from Mendoza, stands San Vincente, a town of considerable importance. Entire population 35,000 souls.

The inhabitants of the city and province of Mendoza, are amongst the most chlightened of the republic, as is
proved by the facility with which religious and political fanaticism have yielded to more liberal opinion. The character of the inhabitants of both sexes is amiable and hospitable. This city was rendered remarkable in the annals of the revolutionary war, because in it was organized the army which carried independence to the republic of Chile, and which also opened the road to that of Peru. The province is the most agricultural of the republic to which it belongs, and its people most devoted to labour. Their chief employment consists in the cultivation of vines, clover, and other productions usually met with in a fertile soil abundantly irrigated. They also carry on an extensive traffic in wine, brandy, and dry fruits, with the ncighbouring provinces, particularly Bucnos Ayres, Santa Fe, and Paraguay, managing even to export dry fruits as far as Brazil. The country produces ladian corn and wheat adequate to the internal consumption. The people of Mendoza are also actively and very extensivcly engaged in the transport trade, from Bucnos Ayres to Chile.

Riosa, a small city situated on one of the highest branches of the river of Mendoza, at S. lat. \(23^{\circ} 25^{\prime}\), and 870 miles to the north-westward of Buenos Ayres, and 400 miles to the northward of Mendoza, though containing only 2 or 3000 inhabitants, is the capital of a province of considerable extent, and with a population of 20,000 souls. The province has the Andes of Chile west, the province of Tucuman north and east, and San Juan south. It is about 400 miles in length from north to south, with a mean bread th of 300 , or wilh an area of 120,000 square miles; but of this great superlicies little is cultivated or inhabited by a civilized people. The deficiency of population is not owing to a defect of soil or climate, since both arc admirable. Wheat and the vine are cultivated, but pastoral pursuits and mining are preferred to agriculture. Famatina, one of the most productive mines of America, lies in the Andes, ahout 100 miles west from the city of Rioja. This province is subdivided into four departments, Los Llanos; (the Plains) Aranco, Famatina, and Guandacol.

Santiago del Estero, (Santiago of the lake) stands on the right bank of the river Dulce, 600 miles N. N. W. from Buenos Ayres, and almost exactly equidistant, 350 miles, and directly between Rioja and Corrientes on the Parana. It may be noted as a very remarkable and important feature in the physical features of that section of South America comprising the provinces of Cordova, Mendoza, San Juan, San Luis, Rioja, and Santiago del Estero, though embracing a surlace upwards of 500 miles square, or 250,000 square miles, have no navigable outlet. The most remote northern sources of the Colorado, which flowing S. E. enters the Athantic Occan at S. lat. \(4^{\circ}\), are found above Rioja at S. lat. \(27^{\circ}\); but though flowing through the provinces upwards of 600 miles, it affords no navigable facilities worthy of notice. Leaving the civilized settlements, this stream crosses the pampas and reaches its point of discharge far south from any whitc establishment. From the Colorado, in the southern part of Mendoza, to the river of Santiago or Dulce inclusive, in a distance from S. W. to N. E. ol 500 miles, only one river, that of Cordova, reaches any outlet. The river which passes Santiago del Estcro, called

\footnotetext{
- Guans, is a species of dmerican palm trec, and this town mushave been named from the Lagunes or lates where that vegetable abounds. tuanacache, on Tamer's map, is at S. liat \(31^{\circ} 1 U^{\prime}, 200\) uiles N. N. E. from Mendoza.
}
the Dulce, rises in the mountains of Tucuman, flows south-castward about five hundred miles, and is lost in an interior lake; and such is also the case with numerous other rivers which issue from the Andes and pursue their courses towards, but never reach the l'arana.

The city of Santiago del Estero was founded about 1551, at S. lat. \(27^{\circ} 28^{\prime}\). The city is thinly peopled, but the number of inhabitants under its juriseliction may be computed at 50,000, whose principal occupation is agriculture. It is a country well adapted to grain, of which sufficient is produced fur home consumption. 'The provincial extent of Santiago is too undefined to admit an estimate of its superlicies.

Tueuman, a city containing 10 or 12,000 souls, follows advancing nothward, Santiago del Estero, at the distance of one hundred miles. The former is at S . lat. \(27^{\circ}\), about 650 miles north-westward from Buenos \(\Lambda\) yres, on the road from that eity to Upper Pert. The popuIation of Tucuman does not exceed 12,000 souls, but the whule province, it is probable, contains an aggregate of 40,000. The territorial extent is smatl, being only about 150 miles from east to west, by 180 miles from noth to south; area 27,000 square miles. It is a country well adapted to agriculture and grazing, and both are followed by the inhabitants; wheat, rice, Indian corn, and tobacco are produced. Esculent roots abound, particularly potatoes of extroordinary size and flavout. Cotton and woollen stuffs are made here of cheap but grod quality, for home use and exportation. Though bordering on the Llanos or plains, the higher part of Tueuman abound in forests of very large timber. The city itself is environed in one of those woods, in which upwards of fifty species of trecs have been enumerated.
I. the war of independence 'Tucuman acted a very distinguished part. In 1812, a splendid victory over the royalists was gained in its vicinity, and in this city, in 1816, was drawn up by the general Congress the Declaration of Independence, as well of Spain, as of every othe: foreign power, which had only been the case, de facto, since the 25th of May, 1810. The inhabitants, are affable, amiable, hospitable, and honourable in their dealings, as well as industrious in their habits.

Catamarea, the territory of which lies cast from that of Tucuman, and south-east from Salta, was founded about 1680 , and contains a population of 4500 souls. The whole province is inhabited by 35,000 , including with those of the city, the towns of Pied:a Blanca, Sierra del Alto, Sierra de Ancasti, Tinogasti, Santa Maria, and Belen. The territory is not well defincd, but in the 26 th degree of south latitude, the climate is mild and the soil productive. Though grazing has been more attended to than agriculture, grain and cotton are made for domestic use and for exportation. Reaching the Bermejo river, the unnavigable character of the streamsloegins to change for the better. The Bermejo, by numerous sources, flows from the Andes of Salta and Jujuy, and crossing these provinces, unite above Catamarca, and turning to south-cast, reaches the Paraguay after a course of 700 miles. With all this great length of course, this fine stream cannot be navigated to its mouth. We have already noticed abortive projects to remove the obstructions in its bed. In the actual state of things, the produce of Catamarca, like that of all the neighbouring provinces, must find a market by land carriage.

Salta, situated at S. lat. \(24^{\circ} 50^{\prime}\), on the road from

Buenos Ayres to Úpper Peru, 950 miles north-horthwestward ol" the former. "This city was founded in ipril, 1582, and has for its territorial boundaries, those of Jujuy, Tucuman, Atacama, and the great Chaco of Potosi. The population of the city and suburbs amount to alosut 10,000 , but the whole country 40,000 , including the in. labitants of Caddera, Rosario de la l'rontera, Rosario do Serrillos, Chicoana, Auta, Sumalas, (ioachipas, Serrillos, Campo-Santa, Zoras, Corras. Valle de San Carlos, Valle de Calley, Rio del Valle, Balwema, Mira-lores, and Macapilto. The province of Salta, hough under the southern tropic, or but litte arlvanced into the southern temperate zone, enjoys a mild clinate. Nany branches of the Andes extend themselves into its recesses, and approach the Bermejo siver. The country abounds in forest timber, and though unprovided with navigable channels, wo country can be more abundantly supplied with pure and wholesone water. 'lhe mines of gold, silver, and copper, are much celebrated, and the province produces also iron, sulphur, and alum. The principal article of exportation is mules, which to the amount of from 60 to 80,000 head have been sent in one year to Peru. Salta possesses the first materials of the three kingdoms, animal, vegetable, and mineral, and it is already peopled by inhabitants worthy of their advantages. Measures are there adopting to render the Bermejo navigable; and a company is forming for that purpose in Buenos Ayres.

Jujur, a small city about 100 miles north from Salta, stands on a river of the same name, a branch of the Bermejo, at S. lat. \(23^{\circ} 50^{\prime}\), and \(13^{\circ} 05^{\prime}\) long. E. Irom Washington City. It was founded in 1591 ; its territorial jurisdiction about 120 miles from east to west, and 210 from north to south; bordering to the north-west on Potosi, to the south on Salta, and to the north and east on Oran and Great Chaco; population of the province 30,000 souls. Wheat, basley, maize, and different kinds of pulse, potatoes, sugar, honey, and brandy are exported, but the principal employment of the pcople is in breeding shcep, vicunnas, horses, and mules. The mules are here, as they are to an immense extent in Spanish America, the means of transportation, and are themsclves again the most valuable article of commerce. Jujuy would be most signally bencfited by the opening of the Bermejo to navigation.

Uprek Peru includes all that territory belonging to the Republic of Rio de la Plata, which begins where the jurisdiction of Jujuy finishes, and ends at the river Desaguadero; on the oppositc bank of which begins the Republic of Peru. Limiting Upper Peru, however, by the Desaguadere, a small river, flowing north-west into the lake Titicaca, or Chicuita, must mean its termination in that direction, since to the northward this country stretches down the ligher branches of the Madeira and Ucayale rivers, 6 degrees of latitude beyond the mouth of the Desaguadero, and reaches S. lat. \(12^{\circ}\).

The author we have followed in our view of the provinces of Rio de la Plata, under the head of Upper Peru, obscrves that, "On account of the occupation of this province by the Spaniards, it has been impossible to obtain any statistical account posterior to the revolution. All that is known for certainty is prior to that event; and with the idca of giving preference to what has been published within the country itself, the following accounts are extracted from a book printed in Buenos Ayres, in
the year 1803, under the title of \(A\) Guide to Foretgners, in the Viceroyalty of Buenos dyres. This authority informs us, that under the Spanish government, Upper Peru was subdivided into the four provinces of Potosi, Cochabamba, Charcas, and La Paz.

Potosi, the city, which contains a population of about 20,000 souls, was founded in 1545 . It stands at S. lat. \(19^{\circ} 28^{\prime}\), on one of the higher branches of the Pilcomayo river, upivards of 1200 miles, following the nearest road, N. N. W. from Bucnos Ayres. The province, as near as we are able to define its boundaries, extends from the river Jujuy in S. lat. \(24^{\circ}\), to the Dcsaguadero, S. lat. \(18^{\circ}\) So'; and from the river 'Tarija to the Andes east and west. Length 350, mean breadth 170, area about 60,000 square miles. It is drained by the Vermejo and Pilcomayo rivers. The name and celebrity of this province and city were derived from the great mine mountain in the vicinity of the city. The mine was opened on the 21st of April, 1545, and the city increased so very rapidly, that in 1611 it contained 160,000 persons, but subsequently declined to about 30,000 . It is supposed, on good authority, that in 255 years, from 1545 to 1800 , that the mines of Potosi yichled upwards of one thousand six hundred and forty-scten millions, nine hundred thousand dollars, or above \(6,462,000\) dollars annually. One consequence of this abundant and continued production of the precious metals has been, that Potosi as a country remains poor, thinly pcopled, and uncultivated.

Carareas follows Potosi, from which it is separated by the river Paspaya, a confluent of the Pilcomayo, and extends north to the river Guapey, a branch of the Madeira, and which separates it from Cochabamba. This province, known by the various names Charcas, Chuquisica, and La Plata, lies between \(18 \frac{1}{2}^{\circ}\) and \(21^{\circ} \mathrm{S}\). lat.; is about 400 miles long from west to east, with a mean width of 100 miles, or 40,000 square miles. This province occupies a table land from which the waters of the Madeira flow northward towards the Amazon, and those of the Pilcomayo descend south-eastward towards the Paraguay. The climate has been the admiration of all travcllers, and to this many incidental advantages recommend it ; for imstance, its university, the superior education of its inhabitants, with their polished manners, and the rich productions of its ficlds and pastures.

La Plata, or Chuquisaca, the capital, stands on a branch of the Pilcomayo, at S. lat. \(19^{\circ} 27^{\prime}\), about 65 miles N. E. from Potosi. It was founded by ledro Azures, and made a bishopric in 1551 , and in 1608 raised to a metropolitan city. Before the late revolution, it was the seat of a royal audience, and contained 15,000 inhabitants; whole province 30,000 .

Cochabamba is the first province which we have reached amongst those appertaining to Buenos Ayres, which lics entirely in the basin of the Amazon. This province was founded in 1572, and from the following account, taken from a manuscript document preserved in the public library of Buenos Ayres, containing the obscrvations of Don Thadeus Haenke, it is very erroneously laid down in our maps.
"The tervitory of the province of Cochabamba forms a long and narrow strip ol land, which, with but little variation, runs from west to cast. Its length is about 1.30 seographical lcagues, (z0 to a degree, we may presume, or about \(3 \frac{1}{3}\) English mites) more or less, supposing it a straight line; and its diameter, under the same supposi-
tion of a straight line, does not exceed the space of 20 or 30 leagues. Its direction is almost from north to south." From these observations, the province of Cocliabamba contains an area of about 43,000 square miles, and although in its territory gold and silver mines are not found as they are in most parts of Upper Peru, it is a country of the first importance. Its soil is proverbially fertile, and the elevation and variety of its surface give it almost every variety of climate. The population amounts to upwards of 100,000 souls, and it is one of the best peopled provinces of the whole republic to which it belongs. The pursuits of the people may be seen from their productions for export, which are indigo, cacao, cochineal, wools of the vicunna and of alpaca (cavia faca of Linneus) grains, Sc.

La Paz terminates the republic of the United Provinces of Rio de la Plata. It was founded in 1548 , at S. lat. \(17^{\circ} 20^{\prime}\), in a ravine on one of the extreme higher sources of the Ucayale, and by any road upwarels of 1500 miles N. N. W. from Buenos Ayres, and 700 S. S. E. from Lima. The provincial territory of La laz lies in one of the great vallies of the Andes, and is drained by the Beni, a confluent of the Ucayale. It extends from S.lat. \(13^{\circ}\) to \(18 \frac{1^{\circ}}{}{ }^{\circ}\), leaving the remarkable lake Chicuito or Titicaca to the westward. On the high parts the climate is cold and variable. Some of the mountains rise above the region of perpetual snow; but the vallies are warm and very productive.

We close our account of the United Provinces of Rio de la Plata by the subjoined tabular summary of the extent of the provinces and their population in 1825. The rcader must be aware, nevertheless, that the estimates are too much founded on defective data to deserve entire confidence, but we trust with all its imperfections it may serve to give a general view of this interesting country.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Provinces. \\
Buenos Ayres,
\end{tabular} & Sq. miles.
\[
20,000
\] & \[
\begin{gathered}
\text { Population. } \\
163,316
\end{gathered}
\] \\
\hline Entre Rios, - - & 39,200 & 30,000 \\
\hline Corrientes, - - . & 40,000 & 50,000 \\
\hline Paraguay, - & 56,000 & 30,000? \\
\hline Santa Fé, & 30,000 & 20,000 \\
\hline Cordova, - & 109,000 & 80,000 \\
\hline San Luis, - & 54,000 & 25,000 \\
\hline San Juan, - & 90,000 & 35,000 \\
\hline Mendoza, & 120,000 & 35,000 \\
\hline Rioja, - & 120,000 & 20,000 \\
\hline Santiago del Estero, - & 250,000 & 50,000 \\
\hline 'Tucuman, - - & 27,000 & 40,000 \\
\hline Catamarea, - - & 25,000 & 35,000 \\
\hline Salta, - - & 25,000 & 40,000 \\
\hline Jujuy, - - - - & 25,200 & 30,000 \\
\hline Potosi, - & 60,000 & 60,000 \\
\hline Charcas, - & 40,000 & 30,000 \\
\hline Cochabamba, & 43,000 & 100,000 \\
\hline La l'az, - & 40,000 & 35,000 \\
\hline & 1,213,000 & 908,316 \\
\hline
\end{tabular}

The physical extent north and south of the Republic of the United l'rovinces of Rio de la Plata, may in general terms be considered as reaching from S. lat. \(13^{\circ}\) to \(40^{\circ}\), or through 27 degrees of latitude: in longitude from the western border of La laz to the eastern angle of Corrientes, from \(7^{\circ}\) to \(21^{\circ} \mathrm{E}\). . From Washington City, or through 14 degrees of longitude. Having the Andes west, Lower Peru north, the Brazillian provinces north-
cast and east, the Atlantic Ocean south-east, and the wide and almost unexplored regions of P'atagonia south.

Rigidly measured, there would be a larger superlicies enclosed within the outlines, than is shown in the preceding table, but as a habitable section of the earth, the table yiclds a more conclusive result than woutd an aggregate including extensive tracts upon which a dense population could not subsist. In its acmal state, if we suppose the inhabitants to have augmented to a million, there are only 82 on 100 square miles. In fact, the great error committed by the Spaniards in colonizing America, was that of spreading their physical force oyer too wide a surface; thercfore, the actual settlements, alter a lapse of three centuries, are detached from each other, and individually weak, if we except \(M\) exico and a part of Colombia and of Peru.

On one million of square milcs of the Republic of Rio de la llata, 200 persons to the square mile could be amply supported, or that country might sustain a population of two hundred millions, which would be nearly equal to that of Europe at the present time.

To the south from the basin of the Rio de la Plata, again spreads a vast region in the temperate latitudes, which in the course of events must receive a civilized population from the contiguous provinces; it is therefore no risk to say that there is a continuous surface of one miltion and a half of square miles on which the popalation of the republic of the Plate may expand, and it is as safe to say, that the population of these regions will double in each 30 years.

In treating of the three great divisions of Colombia, Brazil, and the United Provinces of the Rio de la Plata, though the data was far from being in either case ample or perfect, yet the elements for the residue of South America, are still more deficient ; but we hope to make the view correct, as far as our means will admit.

In regard to geographical connexion, the republic of Cbili, or more correctly Chile, follows that of the Rio de la Plata, having the great system of the Andes intervening.

Chile extends along the Pacific Ocean from S. lat. \(24^{\circ} 20^{\prime}\) to S. lat. \(44^{\circ}\) or through 1180 minutes of latitude, equal to a fraction above 1356 miles; but the breadth inland from the Audes does not execed, if it amounts to 100 miles: the area is about 135,000 square miles. This extent is, however, very much restricted in regard to civilized settlement. The river Biobia at S. lat \(36^{\circ} 50^{\prime}\), separates the white from the Araucanian territory, consequently the population of Chile, exclusive of independent Indians, exists on the \(12 \frac{1}{2}\) degrees ol latitude north from the Biobia river, or on 86,250 square miles. Beyond the lndian country, the republic holds the archipelago of Chiloc, with about 26,000 inhabitants. The main island is about 140 miles long from north to south, with a mean breadth of perhaps 30 , and 4200 square miles. The whole surface of Chile, upon which resides a civilized people, a little exceeds ninety thousand square miles. By a census taken about 1812 the provinces of northern Chile contamed a white population of \(1,200,000\), and the Chile islands 26,000 ; the whole 1,220,000; yiclding a distributive population of \(13 \frac{6}{10}\) ths to the square mile. The provinces arc, advancing from north to south, Copiapo, Huasco, Coquimbo, Cuscos, Petorca, A concagua, Quillota, Santa Rosa, Mellipilla, Mapocho, Rancagua, Colchagua, Curico,

Maule, Canquenes, Isla de Maule, Chilan, Puchacay, Chillan, Rere, Conception, abllsla de laxa.

Simiugo, the capital of Chile, at S. lat. \(3.3^{\circ} 20^{\prime}\), was founded in 1541, by l'edro de Valdivia, under the provincial name ol Nueva l'stramadura. It stands about \(\mathrm{gn}^{\circ}\) miles from the ocean, and 21 fiom the foot of the Andes, about 100 miles noth-westward hrom . 1 entoza, and nearly an cepual distances. V.. by E. lrom the port of V'alparaiso. It is a line city, containing a popubation of 50,000 souls; is well buit, paved, and atmirably supplied with pure fountain water. Standing on the horoughfare From Buenos Ayres to Valparaiso, it is an entrepot for an immense merchandize. The inhabithts lave been noted for their lively and hospitable charater. 'The climate of Santiago is much infuenced by its lacight, which is 2347 l'cet above the level of the l'arific Occan.

Falfaratiso, the port of St. Jago, is built on a rocky peninsula, forminga crescent, within which is the harbour. Population \(6500 . S\) lat. \(33^{\circ} \mathrm{s}^{\prime}\). 'This is the most commercial port, perhaps in America on the l'acific Ocean.

Conceftion is the second largest city, and the outpost of Chile towards A paucania. It stands á S. lat. \(36^{\circ} 40^{\prime}\), on a bay made by the Biobia river, and on the north side of the river, 3 miles above 'Valcahuan the port ; 650 miles S. S. W. from St. Jago. The harbour of Biobia is safe, and admils the largest vessels.

The oblier important seaports of Chile, are Copiapo, S. lat. \(27^{\circ} 15^{\prime}\), Coquimbo, or La Scrano \(29^{\circ} 54^{\prime}\) S., and Valdivia. The latter is, however, in Araucania, at \(39^{\circ}\) 30' S., and though one of the most capacious and safe harbours of America, is commerciully of no moment.

In regard to climate, that of Chile is peculiar in America. South from the Maule, or about S. lat. \(35^{\circ}\), the seasons are variable. Procecding north along the Pacific coast, from the Maule, rains become more and more rare, until in the provinces of Coquimbo, Huasco, and Copiapo, it ceases entircly. 'The ail is from November to May cloudless: dews are light, and throughout the year an unequalled serenity prevails. The temperature fluctuates between \(70^{\circ} \& 80^{\circ}\) ol' Fahrenheit, and very seldom rises to \(85^{\circ}\). 'Thunder storms are extremely rave in this region of atmospheric tranquillity.

Mines of gold, siver, copper, iron, lead and tin, abound in the northern provinces of Chile. The precious metals are in particular produced in great plenty. Wheat and hemp are named amongst the exports, but agriculture is not in an advanced state.

The revolutionary movements in other Spanish American colonies, extended to Chile, in 1809, and from that period until 1818 , the country alternately submitted to the Spanish royalists, or declared themselvesindependent. In 1817, general San Martin led an army from Buenos Ayres, by Mendoza, into Chile, and after many previous successes, secured Chilean independence by ihe splendid victory of Maypo, April 5th, 1818. A constitution of government was subsequently formed, and Chile ranks amongst the nations of the earth.

Our survey of Colombia, Brazil, the CVnted Provinces of la Plata, and Chile, has brought us round to the bighly interesting country of Peru.

Peru, if taken in the utmost extent, includes, as we have seen, the four north-western provinces of the republic of Rio de la Plata, but what has been called Upper Peru will, it is probable, be soon antiquated, and leave the term to designate that great section of South

America, having the Pacific Ocean west and south-west, Colombia north, and Brazil east, and the United Provincos of Rio de la Plata and Chili sonth-east. Extending along the Pacific Ocean from the river of Tumbez, S . lat. \(3^{\circ} 47^{\prime}\), to the Desert of Atacama, \(21^{\circ} 30^{\prime} \mathrm{S}\). and in long. from \(12^{\circ} \mathrm{E}\). to \(4^{\circ} \mathrm{V}\). from Washington city. With. in these limits is included an aggregate area of something above five hundred and thirty thousand square miles; physically divided into two uncqual inclined planes. The western or Pacific plain, narrow and steep, is in no place 9) miles wide, in some not 30 , and does not average above 50 if somuch, but stretches the whole occanic border of Peru, 1500 miles. The Andes of Peru have never, it is probable, been well defined on any map. Their range is, however, known with more precision than the collateral ridges or chains. The whole system of the Andes follows the general course of the opposing coast, and consequently, between S. lat. \(5^{\circ}\) and \(16^{\circ}\), the Andes extend from north-west to south-east.
The middle branches of the Amazon, rising from \(3^{\circ}\) to \(5^{\circ}\) S., flow eastward from Loxa and Jaen of Colombia, crossing the mountain vallies nearly at right angles. On the contrary, the southern confluents of the Amazon rising in the mountain vallies from \(10^{\circ}\) to \(18^{\circ} \mathrm{S} .\), pursue the course of those vallics to the northwest, as is the case with the Ucayale and its numerous confluents; the Gualaga and its branches, and also the Lauricocha. Thus the higher tributaries of the Maranon or Amazon drain an inclined plane, having its descent along, and not from the system of the Andes. It is from this singular physical structure, that the relative terms have arisen of Upper and Lower Peru. The two extremes of the eastern Peruvian plain, the province of Cuzco, and the eastern part of Truxillo, occupy the higher and lower part of this slope, though both are at about an equal distance from the Pacific Ocean.

Under the head of Colombia, we have taken some pains to describe the very elevated vallies of the Andes. We have found those high arable plains from one thousand to ten thousand feet, in the provinces of Popayan, Pasto, Ymbabura, Pichincha, Chimborazo, Cuenca, Loxa, and Jaen; and we find neither their extent nor height diminished in Truxillo, Tarma, Guancavelica, Guamango, and Cuzco in Peru. In Peru, as in the mountain regions of Colombia, all the climates of the earth approximate, but the excess of heat is in no part of either as high as the latitude would scem to indicate. By the meteorological tables of Lima, published by Dr. Unanue, in his admirable work on the climate of that capital, which were made out for the years 1799 and 1800 , it is found that the greatest degree of heat in Lima is \(20 \frac{2}{3}^{\circ}\) of Reaumer, or \(77^{\circ}\) of Fahrenheit, and the lowest \(13^{\circ}\) of Reaumer, or \(61^{\circ}\) of Fahrentieit. On the mountain tabte lands there is scarce any change of temperature. 'The woods and fields are always verdant, and the grains and fruits of Europe llourish amid the vegetation of the torrid zonc-Fahrenheit's thermometer standing at about \(65^{\circ}\) or \(66^{\circ}\), a little below the mean of Lima. Amid this perennial summer on the east and table lands, eternal snow lies on the higher Andes, and the human frame may be reposed on a couch surroundcd with an unvarying, mild, and sahbrious air, with the cye fixed on the regrion of never relaxing frost.

The narrow slope along the lacilic has been called the country of valles; here rain, huoder, and lightning
are rare, indeed scarcely known; but the want of moisture gives barrenness to the soil, except where proximity to rivers permits artificial irrigation. Vine, oil, and sugar are produced on the valles; the high plains abound in grain, Peruvian bark, and cacao. The mountains are productive of mineral wealth. In 1791 the mines of gold, silver, quicksilver, copper, and lead, yielded under a very defective management, an annual amount of \(4,500,000\) dollars, of which seven-eighths was silver.

The most important difference, however, between the valles and high plains regards health. On the latter, intermittent; malignant, and catarrhal fevers are prevalent; on the former salubrity prevails, with as little interruption as in any part of the earth.

Under the Spanish government, l'eru, like Mexico, was subdivided into iatendancies; and sinee the emancipation of the Spanish colonies few provincial changes have been made, it will suffice, for a general view, to give the political sections as they stood in 1795. At the latter epoch Peru was divided, advancing from north to south, into the intendancies or provinces of Truxillo, Tarma, Lima, Guancavelica, Guamanga, Cuzcu, and Arequipa.

Thusillo is bounded north by Colombia, west and north-west by the Pacific Ocean, south by Tarma, and east by the uninhabited regions between the Gualaga and Ucayale rivers. In latitude it stretches from \(3^{\circ}{ }_{25^{\prime}}\) \(108^{\circ} 50^{\prime} \mathrm{S}\).; and in long. from \(4^{\circ} 05^{\prime} \mathrm{WV}\). to \(2^{\circ} \mathrm{E}\). from the meridian of Washington City, Length along the Pacific Ocean 400 miles, mean width about 180, area 72,000 square miles. The north-western part of this province, sometimes distinctively called Piura, is the most western part of South America, a part of a burning and barren slope, but thinly peopled; the eastern section, between the lunguragua and Gualaga rivers, is also in great part uninhabited, leaving for the civilized and cultivated tracts in Truxillo, the mountain valley of the Andes, watered by the Lauricocha river. In 1795 the whole province contained an aggregate population of 230,176 , which was composed of whites 19,098 , Indians 115,647, Mestizoes 76,949, Mulattoes 13,757, and African slaves 4725.

Truxillo, a city and seaport of the province of the same name, stands on the Pacific, S lat. \(8^{\circ} 01^{\prime}\). It was founded in 1535, by Francis Pizarro: present population uncertain. Caxamarca, on the Tunguragua, is about 100 miles inland, and north east by east from Truxillo; S. lat. \(7^{\circ} 40^{\prime}\) This is no doubt one of the most ancient cities of America. It was one of the great capitals of Peru under the Incas, and the ruins of palaces and temples yet exist. Population 12,00).

T'arma, between 5.1 lat. \(8^{\circ} 15^{\prime}\) and \(12^{\circ}\), follows Truxillo, having the Pacific Ocean south-west, Lima south, the uninhabited regions towards the Ucayale cast, and Truxillo north. The oullines of Tarma are very irreguldr, but the area may be estimated at about 26,000 square miles; on which, in 1795, existed a population 200,928 , of whom were whites 15,939 , Indians 105,187, Mlestizoes 78,682, Mulattocs 88.t, and African slaves 236.

The south-east part of Tarma must be amongst the elcrated table lands of South America. The rivers Lauricocha and Gualaga there interlock sources with the Apurimac; the two former llowing to the northwest, and the latter to the south-castward. The Indian
town of Tarma, with about 6000 inhabitants, stands on this elevated platcan, at S. lat. \(11^{\circ} 20^{\prime}\), and about 85 miles north-east by cast from Lima.

Lima, containing the capital of Peru, stretches from S. lat. \(10^{\circ} 18^{\prime}\) to \(15^{\circ} 30^{\prime}\), bounded by the Pacific ()cean on the south-west, by Tarma north and north-cast, Guancavelica east, and Giuamanga and Aicquipa south. east. It is about 400 miles in length along the lacific Ocean, with a mean breadh of go miles inland; area 32,000 square miles. Being comprised in great pat of the valles of the Pacific coast, though containing the capital, Lima is not so well peopled as are the provinces spreading along the table land of the Andes. In 1795, there wete in lima 22,370 whites, 63,180 Indians, 13,747 Mestizoes, 17,864. Mulattoes, and 29,763 slaves, forming an aggregate of 146,924 .

Lima, the capital, stands on the high plain of Rimac, from which by a curious corruption the permanent name of the city was derived. Called in the first instance Cindad de los Reyes, Lima was founded, January 151h, 1535, by Francis Pizaro, and with many other of his works, cunces the keen sagacity of that ferocious conqueror. The city is six miles from Callao its port, and though the intermediate space is level, it is nevertheless an inctined plane, rising from the occan upwards of five hundred fact. This gradual but comparatively great elevation gives to Lima its admired command ol view, and also enables the inhabitants to drain their streets by constant rumning water, from the small river, the mouth of which forms the harbour of Callao. The houses, public and private, are many of them as splendid and solid as the frequent occurrence of earthquakes will admit. The churches are numerous, but the most important edifice is that of the University, founded in 1576 . The number of inhabitants has been stated variously, but generally supposed about 54,000 , of whom one third are whites. Having been for nearly three centuries the centre of commerce and political power, Lima is a city of much wealth and luxury, and is beyond any dispute the finest city of America on the Pacific coast.

Callao, though six miles from Lima, cannot be regarded as wore than a suburb, though conaining a population of 6000 souls. The inhabitants of both cities have been admired for urbanity of manners, and a lively aclive genius. The adjacent country is in a peculiar manner delighaful, but the pleasure of viewing this beantiful picture is damped by the reflection that it is the outside of a region liable to frequent and most destructive earthquakes. In 1786, Lima was shaken and upwards of a thousand of its inhabitants destroyed; and the same moment Callao was ingulfed, and only two hundred out of four housand lives were saved. This was only one of many similar visitations recorded in the history of the two cities.

Guancayelica, containing an area of abont 10,000 square miles, and lying easi from Lima, with Tarma north and Glamarga south-east, is a moumainous a egion, which has been rendered remarkable from one of the most extensive mines of quicksilver yet discovered in America. Though lying between S. lat. \(11^{\circ} 40^{\prime}\) and \(14^{\circ} 30^{\prime}\), it is a cold, and in many places a frozen region. The cily of Ciuancavelica from which the province is named, is perhaps the most elevated town ever inhabited by man. It is upwards of \(12,3.0\) feet alove the ocean level, and the quicksilver mines of Santa Barbara, in the vicinity, are 2200 feet still higher. The population of this

Vol. XVII. Part 1.
acrial city, thongherally diminished in number, still excects five: then sonts. The valley and plains componi a province of Ginancavelica, are drained by the I A A a , Bungara, and other rivers forming the bigher noth-western brathes of the Apurmac. 'The whote province is about 200 miles by 40 miles; area 8000 square mites, with a collective population of \(3!, 917\), of whom only 23.1 were whites.

Guamanga has Guancavelica and the southern part of Lima west, Arequipa south, Cuzco cast, and the plains of the Apurimac morth and north-cast. The cemtral and civilized settemens of this province are contiguous to Guamanga the rapital. The whole provioce contained in \(1795,111,256\) inhabitants, of whom only 5378 were whites, and the residue 75,284 Indians, 29,621 Mestizoes, 943 Mulatoes, and 30 slaves. 'This province is about 300 miles by 60 miles; area 18,000 sequare miles.

The name of the principal river lowing from Guamanga explains the nature of the conntry; it is called the lampas, or river of the plains. The capital containing 26,000 souls, ocrupies an unhealthy situation on a confluent of the Bangara river, at S. lat. \(13^{\circ} 8^{\prime}\), and 250 miles S. E. by E. from Lima.

Cuzco, a city containing about 40,000 inhabitants, the ancient seat of the Incas of Peru, is situated at the foot of a ridge of the Aodes, at S. lat. \(13^{\circ} 41^{\prime}\), and by the road of Guamanga, 550 miles S. E.by E. from Lima. Similar to other Peruvian provinces, that of Cuzco is far from being easily defined, but as laid down on our maps, it is bounded west by Gtiamanga and Arequipa, south-east ly the United provinces of Rio de la Plata, and the lake of Chucuito, and norlh by a country yet in the possession of native lndian tribes. It is about \(35^{\circ}\)) miles long from north to south, being between S. lat. \(12^{\circ} 50^{\prime}\) and \(17^{\circ} 50^{\prime}\), with a mean width of 135 , and area 47,250 square miles. Agsregate population in \(1795,216,382\), of whom 31,828 were whites.

The prowince of Cuzco is one of the most diversified, not only of Peru. but of the earth. High and precipitous chains of mountains are separated by deep vallies or by elevated plains, from which the Jambari, Vilcabamba, A purimac and other rivers flow to the north, and many brief but rapicl currents rush into the lake of Chucuito. The latter is a Caspian on a small scale, of about 180 miles from south-east to north west, and with a very irregular outline. It is in fact a mountain basin, similar to to Bohemia in Europe, amd Mexico in North America, with the exception, that the wo later bave their oullets broken, and the former has no issue for its imprisoned waters. Between lake Chucuito, and the Pacific Ocean at S. lat. \(16^{\circ}\) are the extreme sources of the Lauricocha, or main stream of the Amazon.

Arequipa closes the Peruvian provinces to the south, having the Pacific Ocean south west, Lima norih-west, Guamanga north, Cuzconorth-east, the United Provinces of Rio de la Plata ヶouth east, and the Chilean desert of Atacamas sonth. This province is a long and narmew strip along the Pacifir Ocean between S. Iat. \(15^{\circ}\) and \(21^{\circ}\) \(27^{\prime}\), but extenting from south-east to north-west, the actual length exceerls 60) miles; breadth inland not exceeding a mean of 40 miles; the area 24,0 o stuare miles.

Arequipa, the capital, is an inland town of considerable note, containing a petpulation of 24,00 souls, stoated at the western fool of the Andes, at S.lat \(16090^{\circ}\). The commercial capital is Arica on the Pacific, through 2 R*
which, a trade is maintained with the inland provinces. It stands at S. lat. \(18^{\circ} 20^{\prime}\). The slope of Arequipa entire, partakes so much of the general character already given of the whole Pacific coast of Peru, as not to need much farther description. It may suffice to observe, that along the streams agriculture is more skilfully and extensively pursued, than it is on the plateau of the Andes, where the soil is more productive, but where mines of the precious metals supersede the far more uscful and really more enriching labours of the field.

In 1794, there were in the intendancy of Arequipa, an aggregate population of 136,024 , of whom 39,357 were whites, 66,609 Indians, 17,797 Mestizoes, 7003 Mulattoes, and 5258 slaves.
Summary talle of the population and relative provincial extent of Peru in square miles.
\begin{tabular}{|c|c|c|}
\hline Prorinces. & Agg'te Pop'n. & Extent in sqr. mls. \\
\hline Truxillo - . & 72,000 & 230,176 \\
\hline Tarma . . . & 26,000 & 200,928 \\
\hline Lima - . & 32,000 & 146.92 .1 \\
\hline Guancavelica - & 8,600 & 30,417 \\
\hline Guamanga - . & 18,000 & 111,256 \\
\hline Cuzco - . & 47,250 & 216,382 \\
\hline Arequipa - . & 21,900 & 136,09.4 \\
\hline & 227,000 & 1,079,607 \\
\hline
\end{tabular}

How or in what manner the population of Peru has been affected by recent revolutionary movements we are unable to state, but according to Baron Humboldt, the inhabitants of that country amounter! to \(1,400,000\), about 1820. In 1794, when the estimates were made from which the preceding summary was formed, the components of the people of Peru werc, whites 136,311 , Indians 608,911, and the residue Mestizoes, Mulattoes and slaves. The proportions given by Humboldt, are nearly the same, and it is probable, have not varied materially in the last 34 years.

Since 1821, Peru has been definitively separated from Spain, but the political condition of the former is far from fixed, nor have we document for its actual condition.

When we read florid descriptions of the tropical mountain vallies and plains of America, we are seduced from a consideration of their great disadvantages. In the table lands of Mexico, Central America, Colombia, and Pcru, a perpetual summer may be said to reign, but these gardens are separated from the continent and each other, by steep and excessively lofty mountains, and by deep and precipitous vallics. Here, nature seems to have opposed equal barriers against water or land intercommunication. To construct roads over the chains and vallies of the Andes, or the Anahuac, demands a labour almost beyond all human power, and to open the channels of the rivers to navigation is a task still more appalling. If we turn our attention to a map of Peru, and the south-western provinces of Colombia, we sec the great fountains of the Amazon rising near the very shore of the Pacific, through 16 degrees of latitude, and gradually uniting, trace a direct channel to the Adantic Ocean. But when we learn, that to reach the navigable bosoms of these rivers, we must fall from 2000, to 12,000 feet, we also learn the painful truth, that ages must elapse before united wealth and physical force can render those flowing masses of water available to the inhabitants of the elcrated plains of the Andes.

Since the discovery of America, the commerce of these peculiar regions has been conducted by package transportation on the backs of amimals, with but little exception, and the features of the carthindicate the perpetuity of this caravan mode of conveyance.

Thus far we have surveyed the vast provinces of Colombia, Brazil, the United Provinces of Rio de la Plata, Chile, and Pcru, and to complete the view of civilized settlements on South America, we return to the shores of the Atlantic Ocean.
Guiana-Guyana, taken in the utmost extent, designates a space in South America, stretching south-eastward from the Orinoco, to the Oyapok river, having the Atlantic Occan north-east, the Orinoco river north-west, and the Brazillian provinces west, south-west, and south. Thus extended, Guyana would extend upwards of one thousand miles from east to west, with a mcan breadth of at least threc bundred miles, but under the head of Colombia, the extensive country between the Orinoco, Atlantic Ocean, and the Pomaron and Esscquiloo rivers, has been already noticed. Therefore, under the present article, we have to review the region particularly called Dutch, French, and English Guyana, comprising a tract of 450 miles by 300 ; area 135,000 square miles.

Of the foregoing superficies, the inland, and far greater part is not only unsettled by civilized colonies, but remains uncxplored. The coasts are low, and the river banks in many places liable to inundation, and the very gradual acclivity of the country from the ocean, permits the flow of the tides far inland. From every description of the ocean border of Guyana, it bears a very striking similitude to that of Louisiana; on both, sand bills paralle! to the shore, and of no great, if any elevation above high tides, scem to indicate accretion from the alluvion of the ocean. The great current of rotation from Africa, washes along the coast of Guyana, and no doubt contributes to the deposit of sand. The general range of Guyana is from east to west, as is that of the mountains which separate it from the rivers flowing into the Amazon. The principal rivers of Guyana are thus determined in their course, and the Essequibo, Demerara, Berbice, Corentin, Surinam, Maroni, and Oyapok, flow in nearly a northwardly direction.

The elcvation of the interior mountain chain of Guyana has been stated at 2000 feet, from which the rivers have a direct and rather precipitous course, until they fall over numerous ledges of rock, and reach the level of the ocean. The country is consequently divided into three physical sections; first, the interior, mountainous; secondly, a hilly and broken tract between the mountains and the falls; and thirdly, the sea and river sand alluvial border. This structure is essentially the same in character with that of the Atlantic slope of the United States, and proves that the far finest part of Guyana, is yet an uncultivated wilderness. In latitude, this part of South America lies between N. lat. \(1^{\circ} 20^{\prime}\) and \(7^{\circ} 20^{\prime}\), and in long. between \(18^{\circ}\) and \(24^{\circ} 40^{\prime}\) E. from Washington City.

Along the flat and in part marshy shores, the European colonies have been established. The Dutch settlements of Essequibo, Demerara, and Berbice form what is now called British Guyana, These settlements containing 10,000 whites and 80,000 negroes, line the coast from the mouth of Esscquibo river to that of Berbice, inclusive, and do not extend above 100 miles along the coast. Starbrock, at the mouth of the Demerara, is the capital, and contains a population of 10,000 , amid the most flourishing part of British Guyana. The town and settlements of Essequibo, and Poumaron arc of inferior importance. The scttlers generally reside on their farms, and are many of them excessively wealthy. Whole population 3151 whites, 3220 people of colour, and 96,349 slaves.

Surinam follows the Dutch British seftlement of Berbice, and including the whole of what is yet Dutch Guyana, stretches in an east and west direction from the settlements of Berbice 240 milos to the Marowine river. This llowishing colony is a womment of active industry; "none of the Anilles," says Malte Brun, "are so extensively or so well cultivated." Parmaribo, or Patamaribo, the capital, is buit on the western bank of the Surinam. The streets are lined with orange, shaddock, tamarind, and lemon trees, bearing mingled bloom and froit peremially. In 1815, the whole number of infabitants in Dutch Guyana amounted to 2029 whites, 3075 pcople of colour, and 51,937 slaves; the whate \(57,041\).

Cayenne, or French Guyama, is of very inferior consequence to cither the British or Dutch part. Nominally reaching from the south-east to north-west 200 miles, from the Oyapok to the Marowine river, the actual settlements are restricted to the banks of the small river Cauron. The whole number of juhabitants has been estimated at 2000 whites, and 16,000 negroes, mulattoes, and mestizoes.

We thus find in the three scctions of Guyana only 7180 whites, and 170,581 people of colour and slaves; in all 177,761 .

If the whole region from the mouth of the Oyapok to that of the Poumaron is vicwed on a map, it will be perceived that the extremes differ about three degrees of latitude, and lying so far within the tropics as to approach within 5 degrees from the equator, that buc little difference of climate or season could exist between the parts, but such uniformity of temperature does not exist. The dry season lasts at Surmam from the end of July to November, and the rainy season corresponds to the winter months of Europe; but the summer and winter, or rainy and dry seasons, begin at Cayenne about two months earlier than at Surinam. At Cayenne, Fahrenheit's thermometer does not at any time rise above \(82.3^{\circ}\), and in the rainy or winter season ranges below \(75.2^{\circ}\). The climate of Surinam is still milder. Mr. Stedman, however, represents the seasons as variable as in any part of Europe. The infuence of northern winds during the rainy season, and of the east and south-casterly breezes in the dry months, are felt along the whole coast of Guyana. The effect on health of such a country is obvious; malignant and internittent levers must prevail, and extend their influence more or less from local circumstances; and from what has been stated, it is rendered certain that the fine hilly tract of Guyana above the falls of its rivers, must in the progress of settlement constitute the most healthy, agreeable, and best populated part.

The vegetable productions of Guyana are such as are superinduced by the soil and climate. Sugar, coffee, and indigo are staples of commerce. The fruits of Europe, except the grape, fis, and pomegranate, do not flourish: the orange, Icmon, sapota, guava, amiona, and others, abound. The lorests of Guyana are proverbially dense and specifically numerous.

From those parts of this great continent where civilization has at least commenced, we now turn to that Iengthened peninsula and insular group, which protrutes far into the soutsern temperate zonc This cxtomie region, bounded north by Chle and the province oll Rio de la Plata, stretches from the river Colorado, \(S\). lat. \(40^{\circ}\), to Cape Horn, S. lat. \(56^{\circ}\). or through upwards of one thousand one hundred miles north and south. The
width varies from 100 miles on the north to a point to the south, but will average a breadth of 400 miles, with an area excecding 440,000 square miles. Even the coasts are not very accurately known, and the interior has been but defectively explored. The ignorance, or the indifference of geographers, has designated these southern regions under the names of Patagonia, Terra Magellanica, and Araucania, cach applied vaguely. The latter term, however, admits of sume precision when applied to the country south-east from Chile, and south-west lirom the provinces of Rio de la Plata.

When the Spaniards, early in the sixteenth century, entered Peru, heir sanguinary career swept with unequalled rapidity over Peru and over northern Chile. They advanced without fear of successful opposition until they crossed the river Maule, when they at once encountered at enemy not only their equals, but superiors in the art of war, and though nearly three centurics have elapsed since the Spaniads penctrated into southern Chile, their posterity have rather retrograded than advanced in Araucania. Under the head of Chile, we have found the provinces of that republic bounded by the Biobia river, with the exception of the detached achipelago of Chiloe. On the Atlantic side of the continent, the civilized settlements do not extend beyond lat. \(38^{\circ}\). The intermediate country, therefore, between southern Chile and the extreme southern settlenients of Buenos Ayres and Mendoza, and all beyond to Cape Horn, is in possession of the native lndians. These hordes, few in number, but fierce and warlike, are inimical to the Spaniards, and interrupt the communication between Buenos Ayres and Patagonia. In April, 1822, a commissioner was sent by the provincial government of Bucnos Ayres, in order to negotiate a purchase of a large part of the lndian territory. A confcrence was had with the caziques, but the high price demanded defeated the negotiation. The following extract shows the relative situation of the Indians and whites, and the ullimate views of the latter at Buenos Ayres. "The Indians who belong to these chiefs, (the caziques who met the commissioner) are seven feet in height, naked half way down the body, and painted, wearing leather hats with a plume of feathers. Most of them agrecd to sell lands, but demanded for them silver to an immense amount. Owing to this, and to the opposition made by the Indians called Rangueles, who belong to Clite, and are constantly inimical to peaceful measures, inlluencing, by their courage, all the other Indians; that Congress, or Parlimento, as they call it, produced no advantageous result, as to the laudable idea of buying those countries, and not laking them away by force. In consequence of this failure, no choice is now left to the government of the United States, but to resort to violence; which Buenos Ayres will the more casily carry into execution, as the number of all these barbarians does not exceed 8000 men, armed with slin:... end lances, with no other advantage than the rapidity . their evolutions, which they detive from their dexterity on horseback."*

It would be uselcsa 10 swell tur necessarily brief notice of Araucania and Palagnma with butbarous names which time and chilization must abliterate. This most protruded continemal section of the eath terminates in a broken, barren, and desolate group of iolamots. separated from the main land by the celebrated straits of Nagellan. They were discovered, passed, and named in 1519, by

Magelhaenes, a Portuguese navigator. The tortuous Iength of these straits is about 450 miles, and their navigation difficult and dangerous. The cold sterility and desolation of these Nagellanic regions have been no doubt too greatly exaggerated. More recent and correct information has removed much of the terrific from the face of naturc along its shores, and has shown the navigation much less difficult than was formerly supposed. No permanent civilized establishment has yct been made on the straits of Magellan, though perhaps no other colonial settlement could be made more beneficial to the commercial intcrests of mankind. In the present state of human affairs, the imperfectly known seas and islands which environ southern l'alagonia are regarded as the terror of seamen, and the sources of prolific fable in physical geography.

We have reserved to close this account of the colonized parts of the continent of South America, a notice of the province recently contended for by Brazil and the United Provinces of Rio de la Plata.

Banda Oriextal, so called relatively to Buenos Ayres and Entre Rios, is bounded by the Rio dela Plata south, the Uruguay river west, the river Ybicui north, the Rio Yaguaron and the Laguna Merin north-east, and the Atlantic Ocean south cast. It extends from S. Jat. \(29^{\circ}\) \(30^{\prime}\) at the entrance of the Ybicui rivcrinto the Uruguay to Punta del Este, S. lat. \(34^{\circ} 59^{\prime}\), or through 329 minutes of latitude, cqual to 380 miles nearly; the mean breadth from east to west about 200 miles; area 76,000 square miles. If a temperate latitude, a fruitful soil, and commercial facilitics by occan and rivers are taken into view, no other equal section of the carth can cxceed the Banda Oriental. Without regarding minute bends, it is bounded 350 miles by the most navigable part of the Uruguay; by the great Bay of Rio de la Plata, in all its length from Punta Gorda at the mouth of the Uruguay to Cape Maldonado, 215 miles. Along the Athantic Ocean, from Cape MaIdonado to Fort de Santa Teresa, 100 miles, and thence with but a short land interval, by the Laguna Merin, and the Yguaron and Ybicui rivers, to the entrance of the latter into the Uruguay.

The central part of this fine country is a table land from which flow several rivers of considerable magnitude. The Laguna Merin is the estua:y of the St. Luis, Cebullati, Olinar, and Yguaron, the waters of which, collected in the Merin, are discharged by the strait of Sangradero in the Laguma de los Patos, and reach the Atlantic by the Rio Grande. Beside the Uruguay, and many rivulets, the bay of Rio de la Plata receives at Punta Espinello, seven miles N. W. from Monte Viedo, Rio Santa Lucia, from the interior settlement of Minas. The most considcrable stream, however, of the Banda Oriental, the course of which is entircly within the country, is the Rio Negro. This stream heads with the Yguaron, and Ybicui, and by its most considerable southern branch the Rio Yic, with the Santa Lucia and Cebullati. By a comparative course of three hundred miles to the south-eastward, it falls into the Uruguay, 80 miles directly north from the city of Bucnos \(\bar{A}\) yres. Above the Rio Negro, again issue Prom Banda Oriental, the Guegissay or Quequay, Rio Diamon, and Arapey rivers.

Without any assistance from art, the streams of the Uruguay, Negro, Cebollati, Ybicui, and Santa Lucia, are navigabic far into the interior. A ridge of high land, winds through the whole length of the Banda Oriental, called the Cuchillo Grande, (Large Kinife) from which the rivers have their sources.

As in all other Spanish and Portugucse American colo-
nies, the settlements in Banda Oriental are detached, and in many instances distant from each other. The principal inhabited places are Montc Video, Colonia, Santa Lucia, Camelones, San Jose, San Carlos, Soriano, and Cerro Latgo; which are all towns: and the villages are, Toledo, Pando, Rocha, Penarol, Piedra, San Salvador, Minas, Elorida, Porongos, Colla, Bacas, Vivoras, Espinilla, Mercedes, Piasandu, and Hervidera.

The climate of the Banda Oricntal is temperate and humid in general. The winds from the ocean, which are those from south-wcst to north-east inclusive, are productive of rain, those from the western side of the meridian are dry. In particular, the N. W. called hussageros, are invariably dry land winds. The salubrity of this country has been the boast of its inhabitants and of strangers.

In the ycar 1810, the population of Banda Oriental was between 60 and 70,000 souls, and at present, 1829, it is probable, excceds 70,00 . Monte Video, the capital, stands on the north side of the Bay of Rio de la Plata, at S. lat. \(34^{\circ} 55^{\prime}\), two degrees of long. and diagonally 132 miles, a little S. of E. from Buenos Ayres, and 80 miles almost directly west from the mouth of the Bay at Punta del Este. The width ol the bay from Monte Video S. W. to Punta de la Memoria, is 60 miles. The city stands on a small open bay, and is generally represented as containing about 20,000 inhabitants. The original settlement of the capital and province is disputed between Spain and Portugal, but the general and particular names being Spanish, afford an almost conclusive cvidence in favour of the former. The dispute was national and of long standing, and when Brazil became an empire under the eldest son of the king of Portugal, that monarch risked a war with Buenos Ayres, in preference to yielding the claims of his parent country to the Banda Oriental. This war terminated by a treaty signed at Buenos Ayres, August 27 th , 1828, and the following articles of the treaty show the disposition made by the parties of the object of contention.
"Art. 1.-His majesty the emperor of Brazil, declares the province of Monte Video, at present called the Cisplatane, separated from the territory of the empire of Brazil, in order that it may constitute itself into a state free and indcpendent of any nation whatever, under the form of government which it may dcem most suitable to its interests, wants, and resources.
"Art. 2.-The government of the Republic of the United Provinces concurs in declaring, on its part, the independence of the Province of Monte Video, at present called the Cisplatane, and inits being constituted into a free and inclependent state, in the foregoing article."
The 4th article provides for the formation of a representative convention Congress, by deputies clecled from the Banda Oricutal and by the city of Monte Video; and the \(5 \mathrm{th}, 6\) th, and 7 th articles provide for the formation of a provisional government, and constitute the Congress a Convention to form a permanent Constitution. The remaining 12 articles regulate the various details relating to the troops, rights of removal, and of property, delivery of prisoners, \&c.

With the ultimate procecdings under the treaty, we are unacquainted; but are enabled to regard the Cisplatanc province, or Banda Oriental, as at least nominally an independent republic of South America.

We have, as far as material has been collected, and with due regard to our restricted limits, taken a general survey of the continent of South Amcrica, and close the
article by a notice of the islands, contiguous to and usually regarded as appertaining to that continent.

Therba mel. Fuego, already briclly noticed umiter the head of latagonia, is a large but desolate irregular istand, separated from the cominent by the Straits of Masellan. It is three humdred miles in lengeth from the Straits of Le Mairc, to Black Cape. The surface is mountainous and contains onc or more active volcanocs, whence the name, Tierra del Fuego, or Land of Fire. The main island is environed with many smaller ones of simitar mountainous and desert character.

It is a common error to suppose that Cape IIorn, the Ultima Thule of South America, is a part of the island of Terra del Fuego: on the contrary, Cape Horn, almost exactly on S . lat. \(56^{\circ}\), is the extreme southern puint of Hermit Island.

Between the western outlet of the straits of Magcllan, in S. lat. \(53^{\circ}\), and Maulin Bay, separating Chiloc Island from Chile, in S. Iat. \(41^{\circ} 40^{\prime}\), through upwards of eleven degrees of latitude, the western coast of South America is much broken by istands and small peninsulas; amongst the former, the most worthy of notice are Ancon, Madre de Dios, and St. Martin's, between S. Lat. \(49^{\circ} 20^{\prime}\), and \(52^{n}\), and between the Gulf of Santissima Trinidad, and Cape St. Isabella. Cape Corsa separates the Gulf of Santissima Trinidada from Campana Island, exiending to S. lat. \(48^{\circ}\). The gulfs of Chomos, Guytecas, and Chiloe, form in fact one lengtiened bay from the peninsula of Three Mountains to Maullin Bay, or for about 250 milcs. This labyrinth is filled with numerous islands, the principal of which, Chiloe, was noticed under the head of Chile.

Immediately to the north of the western entrance of the straits of Magellan is the peninsula of Lobos, terminating to the north-west in the Cape of Santa Isabella, and again between S. lat. \(45^{\circ} 22^{\prime}\) and \(46^{\circ} 41^{\prime}\), extends the true peninsula of Three Mountains, attached to the continent by a very narrow neck of land.

It is very remarkable, that leaving the Bay of MaulIin, and advancing northward, that there is not along the coast of South America a single island worthy of notice, or a peninsula from Chiloe to the Pearl Islands in the Gulf of Panama, in a distance, following the coast, of four thousand miles.

The islands of the Pacific, Juan Fernandez, Ambrosio, St. Felice, and the Galtapagos, have been liy geographers attached to South America, but the relative distance renders the connexion doubtiful. A similar remark might also be made with respect to the Malouine or Falkland's Islands in the southern Atlantic, but we may notice the former from their historical notoriety. The group crossed by S. lat. \(52^{\circ}\), lies about 110 mites a little north of east from the straits of Magellan. There are several smaller, but only two of any considerable size are relatively called East Island and West Island, separated by a strait, the San Carlos of the Spaniards, or Falkland's Channel of the English. No wood, and but a scanty vegetation of any kind grows on these islands, except grass, which is luxuriant. They are in reality, though long contended for between Spain and Great Britain, mere barren rocks or marshes, the residence of Phoci and wild fowl.

Though the Allantic coast of South America is lined in many places by islands, they are mostly very narrow and separaied from the main shore by very confined channels. From the straits of Magellan to the equator, the only island of considerable extent is that of Joanes, between the mouth of the Amazon and Tocantin ; lying be-

Tween the equator and \(1^{\circ} 30^{\circ} \mathrm{S}\). Lengeth from N. LE. to S . W. 180 miles. Its form is oval, and comprises an area of abont goves square miles. There are severat villages on its shores.

Trunidot, off the monttr of the Orimoco, is perhaps the lar mest important island of Soula America, to which with Tobago it certainly betongs. The ranges of mountains, and the lomgindinal position of Tobago and Tribidad, comect hem whth the Sierva de Paria. The latter lies between N. lat. 100 \(10 f^{\prime}\) and \(10^{\circ}\) 51'; and excepring lour sharp and narrow capes, the form is nearly a square of 40 miles each side. The outtines of Trimitad are pecular ; from cach angle of the square protrudes a point, to the south-cast Point fialeota, to the south-west Point Yeacas, northewest Point Coroval, and north-east loint Cialera.

The two western points of Trinidad, Punta de la I'ena, Cumana, and the Delta of the Orinoco, nearly enclose the gull of Paria, a sheet of water, of one hundred miles from cast to west, with a mean breadih of swiy miles. This gulf opens to the north, between Trinidad and Cumana, by the chanoct of the Dragon's Moulh, and towards the Orinoco ly the Serpem's Moush. It was through the Dragon's Moult, that Columbus, in 1498 , entered the gulf of l'aria, and gave the island the name of Santissima Trimidad. It was first colonized by the Spaniards, and with casual interruptions from the English and French, continued a Spanish colony to 1797, when it was invaded and taken by the English, and by the trealy of A miens, March 27 th, 1801, it was finally ceded to Great Britain.

The products of Trinidad are cotton, sugar, coffce, indigo, and ginger, with a great variety of tropical fruits, and maize. The climate is moderately heahly, with a soil of boasted fertility. Existing population uncertain.

Tobsgo, lying 23 miles north-castward from Punta de Galera, is evidently a continuation of the Sierra de Paria, and of the northern ridge of Trinidad, is a small island thirty miles from south-west to north-east, with a mean breadth of seven miles. On this confined spot, a few years since, resided 2574 whites, and 15,426 negroes. Tobagn was one of the discoveries of Columbus, in 1498, and underwent perhaps, more changes of masters, than any other American island. Finally, in 1814, it was ceded to Great Britain. Commercial staples nearly similar to those of Trinidad.

Margamita, istand and province of Colombia, cut into two nearly equal parts by N. lat. \(11^{\circ}\), is separated from the coast of Cumana by a channel of 12 miles width. Its greatest length from east to west is 40 miles. The very irregular outline renders an estimate of the surface difficult, but may be stated at 350 square miles. In 1827 , it contained a population of 14,690 , of whom 3000 were contained in Asuncion, the capital.

Cursçoa, Buevare, and Oreba, are three islands lying off the province of Coro in Colombia, but belong to the kingdom of the Netherlands. Curaça, the principal island, is situated at from N. lat. \(12^{\circ}\), to \(12^{\circ} 18^{\prime}\), long. \(8^{\circ}\) E. from Washington city. Buenaire lies 60 miles easterly, and Oruba an equal distance westerly from Curaçoa. The whole three may amount to a length of 70 miles, with a breadtl of seven or cight, with an area of 500 square miles, and of which nearly one half would be in Curaçoa. It was perhaps only the Dutch, of all the European nations, who attempted colonies in America, who could have succeeded in Curaçoa. The land is arid and sterile; the soil, what little does exist, thin. Yet on this
ungrateful tract, there werc in 1815, whites 2781 , free coloured persons 4033, and 6026 slaves, in all 12,840 .

Williamstadt, the capital, is represented as one of the most magnificent, clean, neat, and convenient towns in the whole West lndies. Sugar and cotton have been successfully cultivated on Curaçoa, buton Buenaire and Oruba, the rearing of stock has been preferred to agriculture by the inhabitants.

Summary Table of South America.
The political sections taken in the order of the preceding description.
\begin{tabular}{|c|c|c|}
\hline Political Section. & Sq. miles. & Population. \\
\hline Republic of Colombia, & 1,181,000 & 2,396,40.4 \\
\hline Empire of Brazil, & 3,000,000 & 4,000,000 \\
\hline Republic of Rio de la Plata, & *1,100,000 & 1,000,000 \\
\hline Chile, & 90,000 & 1,236,000 \\
\hline Peru, & 227,000 & 1,072,607 \\
\hline Guyana, - & 135,000 & 177,561 \\
\hline Patagonia and Araucania, & 44!,000 & 500,000? \\
\hline Banda Oriental, & 76,000 & 70,000 \\
\hline Islands, & 41,000 & 87,690? \\
\hline & 6,202,000 & 10,530,462 \\
\hline
\end{tabular}

We have completed our brief survey of the most interesting, because the most fruifful and healthy peninsula of the earth, and we find at its conclusion the striking moral phenomenon, that on much more than one seventh part of the productive soil of this planet, there exists only ten and a half millions of human beines. On a surface where the whole existing luman species could be subsisted, there is a little fraction above 1 human beings to each square mile ; or ahout 16 to each 100 square miles.

If we compare South America to Europe, and take the respective climates into the contrast, it is safe to say that the former could support a population double to that of the latter. Europe, on about three millions of square miles, has an existing population of two hundred millions; therefore, if South America was peopled equal to Europe, il would contain four hundred millions of souls.

The actually inhabited part of the United States of North America, amounts to about 600,000 square miles, on which there is an aggregate of, say thirteen millions of persons: the surface peopled nearly equal to one tenth part of South America, consequently, if the latter had a population even eguivalent to the former, it would then have ONE HUNDRED AND THIRTY MILLIONS OF SOULS.

For a more foll account of the the Provinces, Citics, and Islands of Solith Anerica, see our articles America, Vol. I. p. 578 ; Araucania, Vol. II. p. 285; Arequipa, 321 ; Brasil, Vol. IV.p. 404; Buenos Ayres, p. 778, and Vol. V. p. 1; Cabaccas, Vol. V. p. 318 ; Chili, Vol. Vl. p. 19; Cuenca, Vol. Vll. p. 324; Curacoa, p. 349; Cusco, 372; Tierra del Fuego, Vol. IX. p. 492; New Granada, Vol. X. p. 54; Guamanca, p. 139; Guayaquil, p. 141; Gulaxa, 144 ; Lima, Vol. XII.p. 66, Patagonia, Vol. XV. p. 398; Pere, p. 504 ; Quito, Vol. XVI.p. 296. Secalso Surinam, in this volume, and Tobaco and Tumadad, in Vol XVIII. Darny.

SOUTII CAROLINA, of the eriginal thirteen United States of America, bot..ded south-east by the AtIantic Octan, sonth-west by Georgia, and north and northcast by Nurth Carolina. It has an ocean border from Little Jilet to the mouth of Savannah river, 185 miles; along \(S\) samah, 'Jgatoo, and Cisatuga rivers, in common with Gengia, 270 miles;-ulong the sothem bountary of North Catolina, 300 miles ;--entire outline 755 miles.

The greatest length of this state is from the eastern angle on the Atlantic Ocean, at Little River Inlet, by a line extending N. W. by a westerly dircction to the western angle of Picken's district on the Chatuga river, 275 miles. The area of South Carolina has been generally and greatly underr..ted. Measured carefully, on the recent and excellent state map by the rhumbs, it gives a result of very near 33,000 square miles. The mean width is 120 miles. The state lies between N. lat. \(32^{\circ} 0 t^{\prime}\) and \(35^{\circ} 10^{\prime}\), and in long. from \(1^{\circ} 44^{\prime}\), to \(6^{\circ} 20^{\prime}\) W. from the meridian of Washington City.

Immediately south-west from the Susquchanna river, the physical gcography of the Atlantic slope gradually assumes a separation into threc zones, indeterminate in separating lines, but fully apparent in Maryland, more distinct in Virginia, and completely developed in North Carolina, South Carolina, and Georgia. These three sones are, first, from the ocean extends a level sea sand strip about 60 miles wide, and stretching along the whole front of South Carolina, 180 miles; second, a hilly and higher, but parallel and contiguous band of nearly equal breadth; and lastly, a still more broken and elevated tract, comprising the residue of the state. These three zones may be specifically designated, the south-east or seasand border; the middle, sandy and billy section; and lastly, the north-western or mountainous portion.

The zone near the Atlantic rises very gradually from the Ocean level, near which it is marshy, and is intersected by a net-work of interlocking streams, receiving the tide, though none are sufficiently deep to admit the navigation of large vessels. Receding inland, the surface seems to emerge from the swamps, and hills of moderate, but increasing elevation, appear. The interlocking of the river channels ceases belore reaching the middie zone. In a state of nature, the Ocean zone of South Caroliila was covered with a most dense forest, in which the gigantic Palm Arec Gleracea, raises its majestic stem. The tide in the principal rivers passes over the first to the middle zone.

Great part of the middle or central zone of South Carolina has been called "the Sand Hills." Here pine forests abound, the productive soil lying mostly along the rivers. This central belt passes the tides and reaches the falls of the rivers. In a geological view, the two outer zones have been considered alluvial. The exterior one on the Octan is truly so, and much of the alluvion recent, but the second must, in regard to formation, be referred to a very remote period, though below the falls of the rivers, the whole surface exhibits full evidence of submersion. The great ledge of rock over which the rivers of the Adantic slope of the United States are precipitated, and which in every case arresis the tide southwest from the Hudson, crosses the Great Pedee near Sneadsborough, and almost un the line between North and South Carolina. Comtinuing south-westerly, the rock ledge is passed by the Wateree near Camden, the Congaree at Columbia, inmediately holow the junction of the Saluda and Broad rivers, and by the Savanah at Augusta, where it quiss South Carolina.

Above this ledge and the river falls, commences the high billy or mountainous zone, and though the change is not in many places very rapid, yet a few mites to the north-west exhibits the salutary transition. Below the falls he aspect of nature is more or less monotonous, and near the outer horder vies with the occan in depression andlevel : but above, receding towards the Appalla-

\footnotetext{
- We have taken the superficies and population of the brovinces of tion de la lata in round numbers.
}
chian chain, hills meet the eye, in a succession of form and elevation, round, bohd, and swelling in their contour. The rivers wind through vales, variegated and gently undulating, and where under the hand of culture, smiling in all the gaicty of ficld, garden, orchard, and meadow.

Agriculture in South Carolina has been controlled effectually by soil and climate, and the latter regulated as much or more from relative elevation of surface as by mere parallels of latitude. The extremes of the state, from the marshy surface of l3caufort, Collcton, and Charleston districts, to the mountainous tract embraced by Spartanburg, Greenville, and Picken's districts, differ three degrees of latitude, and at least 1000 feet in relatise level. The difference of height is more than equal to two degrecs of latitude in effect on acrial temperature; therefore, the upper and lower section, or what in South Carolina is the same in position, the northern and southern part, differ in temperature equivalent to five degrees of latitude.

Below lat. \(33^{\circ}\), the orange, lime, and lemon come to perfection; the fig is reared in great part of the statc. Apples and peaches abound in the more northern and higher parts. As staples, rice and cotton have been long the principal objects of agriculture in that state. The former is limited by climate, and the necessity of irrigation, to the sea border, but the latter bas a range commensurate with the entire superficies of the state. The cotton of South Carolina presents, however, two distinct varieties. "The Sea Islant, or black seed," is limited as its name imports; but the green seed, or common cotton, is cultivated in other parts.

Rice and cotton do not preclude the cultivation of grain. Indian corn is reared in every part, and wheat, rye, oats and barley in the interior, and particularly on the high mountainous section. Sugar cane has also been cultivated to advantage in Beaufort district.

Taken as a whole, South Carolina is a fruitful and prosperous state. The natural vegetation combines the pines and palms with the oaks and hickory, and in cultivated plants, the sugar cane and orange to the wheat and apple. Though the sea coast offers to commerce no harbours of the first class, it abounds with those which admit commercial, and exclude large vessels of war. Similar to many other sections of the Atlantic slope, the rivers of South Carolina are more navigable for hoats at a distance from, than near the sea coast; and to aid internal navigation, two very important and several smaller canals have been completed.

The Santee Canal, made to effect a direct water communication between Charleston harbour and Santee river, leaves the latter at Black Oak Istand, or rather opposite that island, and crossing the intermediate swamp in a direction of south south-easterly, enters the western branch of Cooper river about thirty miles, in a dircct line, almost due north from Charleston. Length of the canal 21 miles. This is the most extensive artificial water channel yet executed in the United States south of Virginia.

Before entering the Atlantic ocean, and 15 miles inland, Santee river divides into two great arms, called locally and relatively, North Santee, and South Santee, From the former to Winyaw bay, or the estuary of Pedee river, there is an intermediate marshy peninsula of 12 miles wide. To connect the two rivers, and obviate the danger of the open ocean, a canal called Winyaw Canal, 6 miles in length, has been opened across the peninsula, from Winyaw bay to Kinlock's creek of Santee river.

Above theriver falls, side cuts have been made to melio-
rate the navigation of the Saluda, Broad, and other rivers. A rail road from Chateston to Augusta in Ceorgia has been commenced, and other similar works projected.

The natural chamels aremumerous and extensively navigable. Great Perlee river rising on the line between Virginia and North Catolina, and traversing the later, is a river of upwards of two hondred miles comparative course, and of consilerable volume where it enters South Carolina, and within which it receives from the west Lynche's and Blach rivers, and from the cast Waccaman river. The Pedec also, by its northern and main ributary the Catawha, rises in Noth Carolina, ant is a fine navigable stream at its entrance into South Carolina. between Charleston and Cohmbia, the Congaree joins the ledee with an equal il not superior body of water. The former drains the far greater part of the nomb western section of tho state, and is navigable farabove Ceslumbia in both its constituents, the Saluda and Broad rivers. 'The Savanah, forming the south-western boundary of the state, is navigable to the entrance of the Tugaloo.

Along the marshy sea border, hough none of the channels are deep, they are numerous, and amongst the principal entrances may be named, advancing from N. E. 10 S. W.: Georgetown entrance or Winyaw bay, Nuth Santee, and South Santee; CHARLESTON IIARBOUR, Stone River, North Edisto, and South Edisto; Si. Helena Sound, Port Royal entrance, and Savannah river.

History and Progressize Pofulation. - The name of Carolina is derived from that of Charles \(1 \mathbf{X}\). king of France, and was imposed from an abortive attempt made during the reign of that monarch, by the lirench to colonize that part of America. The first actual settement by an English colony in the teritory now included in South Carolina, was formed in 1680 , though partial attempts had been made as early as 1670. At the former epoch a few settlers fixed on Oyster Point, between Ash. ley and Cooper rivers, and laid the foundation of Charleston. Conflicting grants were made by the English crown to the country, and contributed to retard settement. In 1662, Charles II. granted to Lord Clarendon and others, all that zone of North America from N. lat. \(31^{\circ}\) to \(36^{\circ}\), and two years afterwards the boundaries were extended to \(36^{\circ} 30^{\prime}\). Locke's scheme of government made the previous confusion a chaos, which was in part reduced to order in 1719 , by the permanent separation of the colony into two parts, which were called relatively North Carolina and South Carolina. South Carolina now advanced slowly but steadily. The cultivation of useful vegetables was encouraged. Rice was first introduced into the colony about the year 1695. Indigo followed, (cotton, now the great staple of the country, was introduced at a later period) and South Carolina, though frequently harassed by Indian warfare, flourished until checked by the Revolutionary war. In that great moral contest this state was an illustrious actor and a deep suffercr. Her fields and waters were made classic by being the theatre of many of the most remarkable events of that war. Many of her sons distinguished themselves as patriots and heroes, and some were made martyrs to the cause. To mention no others, the names of Hayne, Harion, Sumpter, and Lee, thew a halo of glory over the state. The character and actions of Marion, give indeed to the history of the southern campaigns the richness of the epic, with the solid grandeur of reality.
In 1790, the population of South Carolina amounted to 240,073 ; in 180010345,591 ; in 181010415,115 ; and in 1820, to 501,154. This gives an increase of 209 per
cent. very nearly, in 40 years. In our review of the natutal subdivisions of the state, three zones were noticed, and it is very remarkable, how much the relative castes
depend upon natural features of soil. With a view to render this important statistical lact obvious, the subjoined table was calculated.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Natural Section & Nra 1 n Square ililes. & Whites. & \[
\begin{aligned}
& \text { Free coidu } \\
& \text { Perso }
\end{aligned}
\] & Slaves. & lggregate. & Popin to the
square Mile. \\
\hline Alluvial, & \(9.0 \div 0\) & 45,241 & 4,451 & 132,637 & 180,329 & 20 \\
\hline EIJy, & 13,000 & 101,537 & 1,801 & 89,013 & 192,351 & \(14 \frac{1}{2}\) \\
\hline Nountainous, & 11,270 & 93,114 & 553 & 34,807 & 128,474 & \(11 \frac{1}{2}\) \\
\hline Amount, & 33,270 & 237,892 & 6.805 & 256,457 & 501,154 & 15 \\
\hline
\end{tabular}

This table exhibits the comparative dersity on the dif. ferent zones, and the respective numbers of each caste, and is the only instance in the United States where, in any state, the Africao race preponderates.

Education.-For the higher branches of education, the principal institutions of this state are the Charleston College at Charleston, and the South Carolina College at Columbia. This latter institution has been established and sustained by legislative bounty. The building, library, and philosophical apparatus, including some necessary repairs, have absorbed 200,000 dollars, and to this may be added an annual appropriation of 15,000 doltars.

Free schools are also supported at the expense of the state. In 1828 the commissioners of free schools reported the establishment of 840 schools, in whith were taught 9036 seholars. the cost of which was 39.716 dollars; and in 1329 the appropriation to this object was 37,200 dollars.

Government -The exisling Constitution of South Carolina was adopted June 3d, 1790, and under the authority of the 1 llis article, was amended by the Legislature, December 17th, 1808, and on December 19th, 1816.

The Legislatire consists of two houses, under the title of General \(A\) ssembly. The senators are chosen for four years, and are divided into two classes, one of which is elected biemially. No person is eligrble to a seat in the Senate, unless be is a free white man of the age of 30 years, and hath been a citizen or resident in the state five years previous to his election; he may be clected whether resident in or out ol the district for which he is chosen; butil a residem of the district, he must be legrally seised and possessed in his own right, of a selled freehold estate of the value of three hundred ponnds sterling, clear of debt, and if a non-resident in the district, be musi be in like manner possessed of a settled frecehold estate, in the district, of the value of one thousand pounds sterling.

The House of Represemtaves is chosen biennially, the quallications for membership in which require the individual to be a lice white man twenty one years of age, a citizen and resident of the state three years previous to his election; il a resident in the clection district, he must pussess a seilled ficehold estate of five hundred acres of land and ten negroes, or a real cotate of one hundred and fifig pounds stepling, clear ol debt: il' a monresident of the distifet, he must be legally puser sed of a setted treehnded estate therein of the value of bee handred pound, stedlins, elcar of debo.

The (averour in chosen liy joime bullot of bonh bunses of the Legistature, lor aterm ol wo years, and at the end of
that term, is ineligible for the four succeeding years. He must have attained the age of 30 years, and have resided willin the state and been a citizen thereol ten years prerious to bis election, and when elected must be seised and possessed of a setded estate within the same in his own right, of 1500 pounds sterling, clear of debr. The Lieutenant Governor is elected at the same time, continued in office for the same period, and must be possessed of the same qualifications as the Governor.

The Governor has the power of pardon after conviction, except in cases of impeachment.

The executive power is vested in superior and inferior courts directed and established by the Legislature : the judges hold their offices during good behaviour, and are only removable by impeachment.

To exercise the eleclive franchise in the choice of members of the Legislature of either branch, it is requisite, that the person be a free white man citizen of the state, and have attained to the age of 21 years; paupers, and non-commissioned officers and privates of the United States army excepted; must have resided in the state two years pretious to the day of election; bave a freehold of fify acres of land or a town lot, of which he must be seised and possessed at least six months before such clection : or not baviug such freehold or town lot, hath been a resident in the election district in which he offers to give his vote, six months before the said election.

By the Ilth Article of the Constitution of South Carolina, it is provided that: "No convention of the people shall be called, uriless by the concurrence of two thirds of both bratiches of the whole representation." But, the Cunstitution may be amended by the Legislalature, when " a bill to alter the same shall bave been read three times in the House of Representatives, and three times in the Senate, and agreed to by two thirds of both branches of the whole representation; neither shall any alteration take place until the bill so agreed to, be publinhed three montins previous to a new election for members of the House of Representatives; and if the altetation proposed by the legisdature shall be agreed In in their first session, by two thirds of the whole represemtation in both branches of the Legisbature, after the same shall have been read three times, on thrce several days in each house, then, and nototherwise, the same shall become a part of the Constitution.

Under all these restricton, the Constitution of Sountr Carolina has becn, as we have shown, twice amended.

For political and judicial purposes, this state, in place of counties, is subdivided into districts. In the sub-
joined table, the italic letters annexed to each district, show their relative situation, \(c, w, n, s\), and \(m\), stand for eastivart, zeestward, northard, southard, or middle.
\begin{tabular}{|c|c|c|}
\hline Districts. & Chief Towns. & \[
\left\{\begin{array}{c}
\text { Popul’n. } \\
1820 .
\end{array}\right.
\] \\
\hline Andersm, s. w.* & Andersonville, & 18,040 \\
\hline Abbeville, u, u. & Abbeville, & 23,189 \\
\hline larnwell, s.u. & Barnwell, & 14,750 \\
\hline Beautort, extremes. & Beaufiort, & 32,199 \\
\hline Charleston, 8 . & CISARLESTON, & 80,212 \\
\hline Chester, \(n\).- & Chesterville, & 14,373 \\
\hline Chesterfied, \(n\). & Cheraw and Chesterfield, & 6.615 \\
\hline Colleton,s. - & Waterboro', & 26,373 \\
\hline Darlington, & Darlington, & 10.949 \\
\hline Edgetield, middle of \(s . w\). & Edsefield, - & 24,309 \\
\hline Farfield, middle, \(n\). & Winnsboro', & 17,174 \\
\hline Georgetown, \(r\). & Georgetown, & 17,603 \\
\hline Greenville, 1 . or.- & Greemille, & 14,530 \\
\hline Horry, extreme e. & Conwaybboro' & 5.025 \\
\hline Kershaw, \(n\). & Camden, - & 12.442 \\
\hline Lancaster, \(n\). - & Lawcasterville, & 8.746 \\
\hline Lawrens, \(\mathrm{m}^{\text {L }}\). & Laurensville, & 17,682 \\
\hline Lexinglon, nearly central, & Gianby, & 8,083 \\
\hline Marion, n.e. - & Marion, - & 10,20t \\
\hline Marlborough, extreme n.e. & Bennettville, & 6,425 \\
\hline Newbury, middle w. & Newbury, & 16,104 \\
\hline Orangeburg, middle, & Orangeburg, & 15,65.5 \\
\hline Pickens, exireme 20. & Pickensville, & 9,922 \\
\hline Ricluand, central, & COLUMBIA, & 12,321 \\
\hline Spartanburg, \(n\) io. & Spartanburg, & 16,989 \\
\hline Sumpter, middle, & Sumpterville, & 25,369 \\
\hline Union, \(n\). \(w\). & Union, & 14,126 \\
\hline Williamsburg, e. & Kingstree, & 8,716 \\
\hline York, middle, \(n\). & Yorkville, & 14,936 \\
\hline & & 501,154 \\
\hline
\end{tabular}

See our article Carolina, Soutif, Vol. V.p. 376 - 384.
Darby.
SOUTH MOLTON. See Molton, South,

SOUTIIVARK. See Lonbon, Vol. XII. p 208 and 217, and Pmonderpua, Vol. XV.p. \(51 \cdot \mathrm{and} 520\).

SOUTILWEILA, or SuELe, a market lown of England, in Nottinghamshire, situated in a fertile and wellwooded country, on the banks of the river (i -rit. It consists principally of one large strect, on the re. From Newark to Mansfictl; and this street is intersected by two smaller ones. 'The church is celebrated for the beauty and variety of its architecture. It consists of a nave with two aisles, two towers at the west end, a transept, a choir with aisles, and a chapter. It is 306 feet long. One part of the town is under civil, and theother under ecelesiastical government. 'I'he first, called the burgage, is governed by justices appointed by the \(\Lambda\) rechbishop of York, and the second, called the prebendage, by prebends. The chapter exercises a peculiar jurisdiction over 28 parishes. A silk and coiton manufactory have been established here, and added to the population of the place. In 1821 the population was 573 houses, 610 families, 279 lamilies in trade, and the number of inhabitants 3051 . See Dickinson's Mistory of Antiquities of Southancll, 4to. 1787.

SPA, a town of the kingdom of the Netherlands, and in the province of Liege, and celebrated for its mineral waters. It stands on a small river, at the extremity of a deep valley, and in the middle of all the romantic scenery, which occurs among wild and precipitous mountains. Its streets, which have the form of a cross, are four in number, and are regular and spacious. The accommodation afforded by the hotels and private lodging houses are, in general, good. There is a theatre and a good ball-room, and the public walks are grand though not extensive.
The springs, which are six or seven in number, are all acidulous chalybeates, an analysis of which we have already given in our article Mineral Waters. Population about 3000 .

\section*{PART I.-HISTORY.}

In giving a short sketch of Spanish history, it cannot be expected that we should enter into any minute details. Our limits would scarcely contain a simple enumeration, in chronological order, of the many important events which have contributed, at various periods, to influence the face of this country. We shall content ourselves, therefore, with a brief statement of the different revolutions through which it has passed, with occasional observations upon its agricultural, commercial, and political state. With this view, the history of Spain may be divided into six periuds.
I. Its state prior to the irruption of the northern nations.
II. While under the dominion of the Goths.

1II. White subject to the Moors.
IV. While under the dynasty of Austria; and
V. While governed by the Bourbons.

\section*{Chap. I. State of Sfatin prior to the irrutation of the Northern nations.}

With respect to the first period, we shall pass over the fabulous legends of Berosus, who traces the origin of its inhabitants to Trubal, the fifth son of Japhet, and gives a long line of descendants, who reigned in Spain for several centuries. But whocver were the aborigines of this country, they are generally known in ancient history under the name of Iberians; and it is also ascertained

\footnotetext{
- In 1820, when the last census was taken, that part of South Carolina west of Saluda river, and N. W. from Abbeville district, composed P deton district; but subsequently, the latter was abolished, and out of its lormer limits Anderson and Pickens dis. tricts were formed.

Vol. XVII. part I.
}
that the Celts or Gauls, at a very early period, had formed numerous settlemerts to the west of the Ebro, and had become so blended with the inhabitants by intermarrying and living together, that they obtained the designation of Celiberians.

The Grecks and Phœenicians had also planted colonies in the marimine districts, but neither of these nations penetrated into the interior, contenting themselves with the command of the sea, for the purpose of commerce, which they were allowed to hold without molestation from the inhabitants, who were glad to benefit by their trade, while they enjoyed in peace and tranquillity the produce of their own lands. This state of anity was at last interrupted by the Phœnicians, who having buitt the city of Gades, now Cadiz, were desirous of extending their authority over the neighbouring termitory. The Spaniards, alarmed at the growing prosperity of the new city, collected their forces, and would soon have driven aut the intruders, had not the Phœenicians invited the Carthaginians to their assistance, who, furnishing them with powerful succours, not only repulsed the Spaniards, but obtained the greater part of the province.

This expedition formed the commencement of the Carthaginian power in Spain. Elated with their success, and delighted with the richness of the country, and the valuable mines of gold and silver which it contained, they contemplated the conquest of the whole peninsula. For a time, however, their arms made very little progress against its warlike inluabitants, who defended themselves with great bravery and resolution, till the whole power of Carthage was directed to their subjugation. During nine years of incessant hostility, the Carthaginians penetrated into the very heart of the country, when their general, Hamilcar, was killed in a general engagement with the Vettones. His successor, Asdrubal, carried his victorious arms as far as the Ebro; and, in order to secure his conquests, built the city of New Carthage, which afterwards became one of the most considerable cities in the world.

These successes excited the jealousy of the Romans, who could not behold without alarm the rapid advance of their rivals to the entire dominion of such a country as Spain. They, therefore, willingly listened to the request of the Saguntines, who had implored their protection, and interposing in their behalf, prevailed upon the Carthaginian general to enter into a treaty, in which it was stipulated that the Carthaginians should not pass the Ebro, and that the Saguntines and other Grecian colonies should enjoy their ancient rights and privileges. No violation of thas treaty occurred during the life of Asdrubal; but extending his conquests in other directions, be, cither by force or persuasion, established the dominion of Carthage over the finest provinces of Spain. A few years alter, however, he fell by the liands of an assassin; and no sooner had llamibal suceceded to the command of the Carthaginian army, than he made preparations for the siege of Saguntum. Though this city was situated within the Carthaginianterritory, it was expressly cxcepted by treaty from all hostilities; but llanmibal promised himself many atvantages from its reduction. It was a key by which the Roman army could cavily enter into Spain; and its possession would serve as a bar. rice against their future encroachments. This colony also was immensely rich, and he expected to tind in it treasure sufficient to defray the expenses of a prenteditated war agamst that ijval power. The Sasmmines, sowever, bravely defendec themselves for eightmonths;
and every inch of ground was disputed with undaunted resolution. Being at last reduced to great extremity by the scarcity of provisions, and having no prospect of assistance from the Romans, the principal senators collected in the market place their richest effects, and the contents of the public treasury, and having set hire to the pile, threw themselves intoithe midst of it, and perished in the flames. Many of the inhabitants soon after followed their example; and the rest, making a sally on the besiegers, were all put to the sword.

The siege, one of the most memorable in ancient history, produced a lengthened and bloody war betwixt the Romans and Carthaginians, of which Spain, forseveral years, continued to be the theatre. The Romans, taking advantage of Hanuibal's absence in Italy, sent an army into that country. After a long contest between these rival nations, and attended with various success, the Carthaginians were driven out of Spain, and the Roman standard planted on the walls of Cadiz, which, as it was the first, was also the last strongnold which the Carthaginians held in that country. But though the Roman power was thus in a manner extended over Spain, they found it no easy matter to maintain their authority. Many of the native princes had remained calm spectators during the struggle hetween their invaders, while others had alternately sided with the forces of Carthage and Rome. But when they saw their country reduced to the state of a Roman province by the appointment of pretors to its government, they evinced a general disposition to throw off the yoke. The avarice, extortion, and oppression of the Roman magistrates, gave occasion to frequent revolts; but their undisciplined troops were as yet unable to cope with the legions of Rome, and every attempt to recover their liberty, served only to rivet their chains the more closely. Among thesc attempts, the most successful and worthy of record, was that of the Celtibcrians in Lusitania, under the brave Variathus. This person, during the distracted state of his country, had been a captain of a banditti, and afterwards became one of the principal leaders of the Lusitanians. In two successive engagements he defeated the Romans with great slaughter, compelled them to shut themselves up in their strong cities, and laid the whole country under contribution. By the dexterity of his movements, he, for six years, put to flight every army that appeared in the field against him, and had drawn off many nations from their alliance with Rome. A consular army for a time checked the career of Variathus; but, soon recovering from his reverses, he defeated the consul Servilianus with the loss of three thousand legionaries, and afterwards, by a most skilful manœuvre, so hemmed in the whole Roman army, that they had no way of escape but by submission. Instead, however, of seizing this opportunity of avenging his country by their destruction, he offered peace, with this single condition, that he should keep possession of the territories now in his power without molestation from the Romans. This generous offer was joylully accepted, and the terms were soon after ratified by the Roman Senate. Variathus thus laid the fonndation of a nuw kingdom, which, had it not been for the treachery of his enemies, would have set bounds to the conquests of Rome int that quarter, and counterbalanced their power. But instead of the generous rivalry of arms. Rome now employed the bascst of means for the accomplishment of her ambitious projects. The laws of nations, he laith of treaties, and humanity itself, were set at defiance during the subjugation of this devoted country.

She cond not brook a rival within the bounds of the pesinsula; and alter repeated attempts to exatsperate Variathus, and lorce him to commence hostilities, be was declared an enemy to Rome, and was soon ater, at the instigation ol the Roman consul, and by the promise of great rewads, treacherously murdered by his own attendants. Spath thes lost one of her mobleat defenders; but she lommin the citizers of Numatia heroes worthy ol the liberty which they sought, but which they were not destmed to enjoy.

Numantia harl mantaned its independence dmbing the struggle betwe'n Rome and Carthage; and its inhabitants had resistedevery attempt at its subjugation, with such daring courace, that the hravest troeps of Rome trembled at the very ichea of a Namantine wat. The first army that sat down belore its walls was completely ronted and dispersed. In the loblowint campaign dooo Nemantines pursucd an army of onotou Romans, seized and plondered the camp which they had abandoned, killed 20,000 it the pursuit, ance shat up the remander in a poushand mountamous comntry. In this situation the lioman commander, seefies no way ol escape, was compolled to ste lor peace 'lhis was gencrouly pranted by the Nomantines, who, liop the lives of do, ovo lamans, merely metpated that they should be allowed to maintan their indepentence, and be reckoncd amome the friends of the Roman people. But, in return lor this noble and dismarester conduct, the senate of Rome refised to ratily the treaty; and, lost to all sense of bonour and ol justice, they basely resolved, in opposition to the remonstrances of all the olficers who had served in Spair, to extirpate that brave and generous people. Scipio, one ol their most experienced generats, and the conqueror of Carthage, was chosen tor this dangerons expedition. Untwilling to expose his men, by hazarding anengagement with the N:mantines, he enclosed the city with 60,000 troops, who were protected by a wall and diteh, being resolved to reduce the inhabitants not by force but by lamine. The besieged, dher several brave attempts to break throngh the enemy's lines and obtain suctours, seeing their ruin incoitable, entreated the Roman commander that he wond either allow them to dic like bruve men in a seneral action, or preserve their liberty by an honomrable capitulation. Scipio, however, would listen to no proposalc, and insisted upon an unconditional surrender. This drove the Numantines to despair, who were now reduced to such straits that they were destroying and devouring each other; but preferming death to slavery, they setfire to their city, and eftherkilled one another, or perished in the flames. "Tbe lill of this city was considered of such consequence that Scipio was honoured with a triumph, and had the surname of Numantinus added to that of Alricanus. It consummated the subjection of Spain; for though that noble love of liberty, for which this nation was so justly famed, frequently led them to attempt their emancipation. yet they were never afterwards able to make any head against the Romans; but were at last compelled to receive the religion, the laws and the customs of their conquerors. The last who submitted were the Cantabrians, who were almost exterminated by Agrippa; and lrom that time Spain continued incorporated with the Roman empire nutil the irruption of the northern nations.

Remarks. - Before the iuvasion of the Carthaginians Spain was divided into a multiplicity of petty king-
doms and commonwealtis, who being entirely detachrol, ant having litele commmacation with each other, liell one by one under the power of their conguerors. llad the Spaniards berom mited as one state or mutuatly assisced wath other, it is wot probable that so bravi and virturas a prople wend aser have been
 formed such sereat and heroic exploits, or wabibited st many moble cxanples of sello-d.vosion to the canse al liberty as the amedent Spamiads. They were tratned from the ir intancy to martial decels, and were carly inspired with a lowe of liberty and a emomapt of death-beins tarsht to esteem nothing so glorions as (1) die ferghtiss in defence of their country. 'Ihas natarally brave, and capable of endaringe great labows and fatigne, no reverses could shake thatir comager. They yieded only inch by inch w the whole power of lbe lioman rompire. Armise, sufficiently mumeros to conguer lingetoms, were staustutered among their mountans; and their subjusation was completed only aber a strusgle ol nearly 200 years. Spain, however, received in exchangre for her indepondence wise laws and an equitable govermaent: and soon became the vichest, the happicst, and the most pewerlul province in the empire. Nany loman lamilies ol distaction settled in the country, and live and twenty colonies were distributed in the most lertile districts, who, intermarrying with the natives, consolidated the two nations as one people. The executive government was, in gencral, milder here than in any other al the loman provinces. It was administered in towns by magistrates uamed by the citizens; and the different districts were under the superintendence of pretors or teputies, who had the charge of the public works, and the collection of the resemue. Many magnilicent ruins, still existing, testioy the opulence and civilization of Romatn Spain; and several of her cities, as Merida, Seville, Cordova, and Tarragona, were anmbered with the most illustrious of the world. During her long tranquillity agriculture and the arts were encouraged atid protected by the emperors; her commerce was extensive and proftable; and her vegetable and mineral riches were improved ancl manufactured by the skill of an industrious and happy people. Dut as Spain had shared in the grandeur and civilizalion of home, she also participated in her decline. Under the last emperors, her population had considerably dminished, her commerce liad become languid, and her agriculture had sufiered by the accumalation ofestates in the hamis of a lew. 'lae peace amd repose ol lone centuries had enfeebled the national character, and almost eradicaled their love of glory: and the Spaniards, whom the liomans conquered, was as another race from those who submitted to the northern barbarians.

\section*{Char. Il. Spain under the dominion of the Goths.}

The Suevi, Alani, and Vandals, in their prorress southward, broke into Spain about the begiming of the fifh century; and, in a lew years had reduced and partitioned among them that beautilul comtry. The native militia, for a time, successfully repelied the inroads of barbarians; but when these were supplanted by the mercenary guards, the gates of the Pyrenees were betrayed to the enems, whose progress was marked by rapine and carnage. They exercised their
cruelty indiscriminately upon the Romans and Spaniards; and ravaged witi equal fury the cities and the open country. Famine, and its inseparable attendant, pestilence, swept away a large proportion of the inhabitants; and the barbarians were not satiated till they began to feel the destructive effects of those calamities which they themselves had occasioned. The majority of the nation submitted to the yoke of their conquerors; while a few maintained their independence in the mountains of Galicia. These barbarians, however, were not allowed long to enjoy their conquests. The Goths had become the allies of Rome by the marriage of their king with the daughter of the Emperor Theodosius; and were induced to draw their swords for the recovery of Spain. During three years the contest was obstinately supported with desperate valour and various success, when the supcrior achievements of the Gothic king at length prevaited, and \(\mathrm{S}_{\text {pain }}\) was once more restored to the authority of the empire. The Roman power was againoverthrown by the Vandals; and after the passage of that people to Africa, the Suevi aspired to the conquest of the country, and threatened to extingnish the Roman dominion. But Theodoric the Goth, by one decisive victory, laid the foundation of the Gothic monarchy in Spain. Rechiarius, king of the Suevi, was taken prisoner and put to death, when the remains of his army retired to Galicia, and for more than a century his successors held a precarious authority in that province. Euric, the son of Theodoric, consolidated the Gollic power; and, in addition to his territories in Spain, his dominion cxtended from the Pyrenees to the Rbone. His son Alaric, however, was stript of his Gallic possessions by the victorics of Clovis; but the Goths were amply compensated for their loss by the secure enjoyment of the provinces of \(\mathrm{S}_{\text {pain }}\) They fixed the royal seat at Toledo: and the Sucvic kingtom of Galicia was soon after adeled to the monarchy. The Romans, who had continued masters of the whole coast from the straits of Gibraltar to the confines of Valentia, and also held considerable possessions on the ocean, were confined within the small territory of Agarve. and this they hedd, by the moderation of the Gothic monarch. for nearly ten years, when king Suintilla became the first absolute master of the whole Peninsula.

The history of the (aothic dominion in this country, from the accession of Euric to that of Roderic, afford fow materials of any interest. Their princes were frequently engagel in civil or religious wars; and long athered to the wandering and warlike maners of their fathers. The dissolute and crucl reigro of Witiza the predecessor of Roderic, had lost him the confidence and esteem of his sulbjects, and had occasioned a general defection throughout the kingdom. A civil war was the consequenct, which ended only with the death or deposition ol Witiza, and the accession of Roderic to the Spanish throne. The soms of the deposed monarch, however, could not brook their degradation from the rank of princes, and endeavoured to wrest the seeptri from the hands of their rival. They were still sipported by a considcrable party in the state: but mable to accomplish their object by their own strenglth, they began to intrigue with the Saracens, which paved the way for the spectly subjugation of their country by that ambitious people.

The followers of Mahomet had overrun the whole of Mauritania and reduced it to the obedience of their master, except the castle of Ccuta, which resisted for a time all their efforts. This fort, with a small district around it, was the only territory south of the straits belonging to Spain, and was entrusted to Count Julian, who defended it with such skill and intrepidity, that Musa, the Moslem commander, was compelled to retire with disgrace from before its walls. This nobleman, it is supposed, was married to a sister of king Witiza, and, being consequently iavolved in the downfall of the deposed family, his resentment was excited against the usurper of their rights. Besides his command in Africa, he possessed extensive estates and numerous followers in Andalusia, and thus held in his hands the keys of the Spanisb monarchy. These, in an cril hour, be betrayed to the enemy; and this Christian commander, who had so nobly repulsed that very enemy from the gates of Cueta, forgetting the highest claims of religion and of country, sacrificed all in revenge ol a private wrong. When the first intimation of his purpose was conveyed to Musa, the wily Moslem hesitated to trust an army of the faithful to the traitors of a foreign land: but having ascertained what might be expected from the intrigues and influence of the count, and having been well informed of the dissensions among the Spaniards, he despatched an army under Tarik to the easy concuest of a populous and wealthy kingdom. On the descent of the Saracens, Roderic bastily collected a small army to oppose their progress, and to check the devastations which they committed upon the unarmed inhabitants. He, at the same time, endeavoured to heal the divisons which were so fatal to his countr?, and was so far successful that the sons of Witiza, with a seeming devotion to the common cause, joined his standard with their dependants. The bishops also, and the flower of the nobility assembled with their followers at the royal summons: and his army amounted to nearly one hundred thousand men; but they were without discipline, and their fidelity was suspecter. The troops of Tarik were composed of twelve thousand reteran Saracens, and a crowd of Moors who were eager to share in the expected plunder. The two armies met on the plain of Xeres, and after three days of hard skirmishing they joined in a general engagement. The issue was long doubtul. Sixteen thonsand Moslems had fallen under the swords of the Goths; and they wonld soon have been overwhelmed by the numbers of the Christians, had they not been saved by the defection of the sons ancl brother of Witiza, who held the most important post in the army of Roderic. The ranks of the Christians being thus broken and thrown into disorder, opened a way for the action of the Moorish cavalry, which made prodigious havock; and during the three succeediag days of hight and pursuit, the remains of the Gothic army were scattered or destroyed. This decisive and fatal batte seated the ruin of the (iothic monarcly in Spain: and in the conrse of a tew years, the victorious Moslems had subjected the finest provinces of the peninsula to the obedience of the caliph. The ranquished were allowed to retain their laws, relggion, and language, upon the payment of an annal tribute; but many who preferred a life of poverty with the unrestrained exercise of their religion, to the precarious possession
of their properties, retired under Pelagius, a prince of the blood, into the mountains of \(\Lambda\) sturias, where, forgetting every other care, sought only to provide for their salety and freedom. Here the vital spark of national independence was cherished and keptalive; and it was thence that the successors ol these warriors emerged in after times, and by degrees recorered their country from the Moorish yoke.

Remarks. During this period, Spain presents to us a compact monarely, concentrated within its natural limits, whose laws, maners, and religrion, have in a great measme remained mablered lor fonteen centuries. The crown was elective in a conncil of bishops and nobility, styled pototiars, who, while they swore allegiance, bound the monarch by a reciprocal oath that he would execute fathlilly his important trust. The only indispensable requisite in the king was his being descended from the illastrious blood of the Goths. But though he derived his title from election, his power was almost absolute. He had the sole command of the army, bestowed all places of trust and profit, assembled and dissolved the national conncils, exercised an ecclesiastical supremacy, and further had the power of making laws, which were revised, conlirmed, and published by the assemblies of the states.

The administration of justice was strictly exercised throughout the kingdom, and the greatest reverence was cverywhere paid to the laws. Belore the reign of Euric, the Goths had no written jurisprudence; but this prince employed some of the most learned and cminent men in the kingdum in composing a body of laws, called the Theodorictan code, which he imposed upon all his subjects both in Gaul and in Spain. His successor Alaric, howerer, abrogated these, and restored the Roman laws, which continued in use until a new code of civil and criminal jurisprudence was examined and ratified by a legislative council at Toledo. This code contained the edicts of a succession of kings from Euric to Ejica, and, uniting a part of the Roman law with the Christian morality, formed a body of laws superior to all others then in existence. The nutive Spaniards, who were long separated from the Goths by the irreconcilable difference ol religion, were at length raised to a purticipation of the same privileges with their conquerors; and all insensibly submitted to the restraint of an equitable rale.

The Goths, on their first entrance into Spain, were Arians; and for more than a century continued devotedly attached to that persuasion, till the conversion of king Recared, who, with the principal nobility, publicly renounced the errors of Arius, and embraced the catholic faith. The Spanish church at this time, though oppressed and persecuted, had retained much ol' its primitive purity; and even after its doctrines becanc the establistied fath of the kingdom, it still maintained its integrity and respectability. It was in a great measure free from those gross superstitions which then prevailed in the church of Rome. The Roman pontiffs were never able to obtain any right of interference in its concerns; and in one of the last councils held at Toledo, his clams of juriseliction in Spain were rejected with contempt, and treated as an usurpation. The pious and temperate lives of its bishops were often conducive to the order and stability of the state, and the inlluence of the clergy in general was uniformly directed to the support of the best interests of the king and the pcople. It was in-
deed greatly owing to the prodominance of episcopal policy in the national councils that the Gothic dominjon in Spain was rentered friendly to the sanfuished at home, and formidable to its foreignenemies, mantaining the allthority and vigonr of the laws, securing the privileges of every class of the community, and protecting all in the enjoyment of their property.

In the earlier ares of the (iothic rule in this rountry, industry and the useful arts were erreatly neglest ed; and the watlike barbarians regated with indifference all those accomplishments which can only be appreciated in a more refincd and cisilized state of society. But during a lons peace, and a succession of wise administrations, agriculture and commeret had rapidly advanced, and had introctuced a state op prosperity and refinment, which corrupted both primee and people. The farourite exercise of atms had been long abatudoned by the Spanish youth. The Moodgates of luxny were opened, and a love of ease and pleasure pervaded all ranks. The walls of thei: cities were mouddering into dust; and the descendants of those hardy bunds who had hambled the pride of Rome were slumbering in security, ready to become a prey to the first invaders.

\section*{Chap. IH. Spain in sulyection to the Moors.}

The lirst Moorish invaders under Tarik, consisting of various tribes, asserted, by assuming the name of Spaniards, their original chaim of concuest; and though they were afterwards juined by namerous bands of Arabs ol dillerent countrics, who were allowed to share in the fruits of this important enterprise, they appropriated to themselres the most fertile districts of the country. "flue royal legion of Damascus was planted at Cordova; that of Enacsa at Seville: that of Kimisria or Calchis at Jatn: and that of Palestine at Algezire and Medina Sidonia. The natives of Yemen and Persia were scattered aromed Toledo and the intand contury; those of Egypt were established at Murcia and Lisbon; and the fertile seats of Granada were bestowed on the ten thousand borsemen of Sytia and Irak, the children of the purest and most noble of the Arabian tribes." A spirit of emulation and jealousy existed among these different tribes, which gave rise to frequent disputes, ant which, being nourished by a factious and hereditary pride, scattered those sceds of division, which afterwards ripened into a full harvest of intestine broils, and which led to their final expulsion from the peninsula.

The Noorish comquests in Spain continued to be governed by a licutenant of the Caliph of Damascus until the deposition and destruction of the Ommiades in Arabia, when Abdahahman, a royal youth, who alone had escaped the massare ol hishouse, fled into Spain, where he was halled with joy by the purty attached to his family. After a shoir and successful struggle with the lienterant ant lurces of the rmal family of the Abbassides, he established the throne of Cordova, and became the first Caliph of the west. The dynasty of the Ommiades continued to reign in this country with great splendour lor nearly two centuries and a hall, when the Spanish Caliphate expired. Their dominions were split into several pety states by the rebellion of the Mourish govemors, who usurped the sovereignty of the provinces uver which they presided, and assumed the royal style in Cordora, Seville, Valentia, and Granada. This dismemberment oceasioned constant wars, which were sometimes
prosecuted with all the rancour of hereditary feuds； and during which the monarchs，as well as the boun－ daries of the different kingdoms，were continually changing．Their limits were abo greatly circum－ scribed b：the conquests of the Christians，who were gradually extending their territories，and threatencd the complete recovery of their native possessions．

The Goths，who had retired with Pelagius to the mountains of Asturias，had chosen that prince as their monarch：and his territories wereat first confined to the small province of Liebana with the hamke of Cangas for its capital．This district was so fortified by nature，that，with a few defenders，it was capable ol resisting almost any number of invaders．Ilere Pelagius laid the foundation of the kingdom of Leon， and of the Spanish monarchy；and defied the whole power of the Moors，who twice attempted with na－ merous armies to dislodge his little band of patriots； but were as often overthrown with dreadful shaghter． By these victories he became master of ali the is siu－ rias，and soon after extended his dominion orer the best part of Biscay．Mis litte territory amoded an asylum to the oppresed Christians，who，retiring privately from the Noorish provioces，repaired in great numbers to his standard，and \(b ;\) thas recruiting his forces，enabled him and his immediate successors， to descend with more conflence into the lower and more fertile parts of the comitry，and to push their conquests，on the one hand，as liu as Castile；and，on the other，to the confines of Portugal．The kinglom of Leon increased rapidly in extent and resources during the reigns of Alphonso III，who subdued

Galicia，and spread his dominion as far as Coimbra， and of llamirus Il，who penctrated to Madrid，which be took by storm，and even threatened Toledo，at that time one of the strongest cities in the hands of the Moors．Encouraged by the successes of the Christians in Leon，other provinces began to establish themselves ts indepentent states，and by similar means，rose io puwer and distiaction．The independence of savarre commenced abont the middle of the ninth centary； that ol Castile thirty years later；and Aragon was wacted into a kinglom in the beginang of the eleventh century．The wars and events which led to the for－ mation of these kingdoms，were signatized by many heroic achicrements；and no bistory records a suc－ cession oll kings so remarkable as those who shone in those difereni states．Several of the name ol Al － phonso were distinguished and able princes，one of whom invented the Aphonsine tables，and superin－ tended the digesting of a code of laws，which like－ wise bears his name．By the establishment of these states the Dloors were driven from the finest provinces of the Peninsula，and confined within the kinglom of Granada．In a＂eries of years，however，by the usual cvents of intermarriages，or succession，or conquest， all these were united under Ferdinand and Isabella， the former the bereditary monarch of Aragon，and the latter，the beiress of Castile and Leon．

As our limits will not admit of any detail of these transactions，we shall content ourselves with present－ ing here a chronological table of the different king－ doms，with the periods of their formation，and the sovereigns by whom they were governed．
\begin{tabular}{|c|c|c|c|c|}
\hline Leon and Asturias． & Barcelona Counts． & Nitvarre． & Castile． & Aragon． \\
\hline \begin{tabular}{l}
718．Pengrius． \\
73\％．F゚ロuila． \\
739．Aplimiso I．the （atholic． \\
757．lroilal． \\
768．Aurclio． \\
774．silo \\
783．Mauregat，an usurper． \\
683．Bermudus 1. \\
791．Mphonse 11．the Chaste． \\
8：2．Ramirus 1. \\
850．Ordogno 1. \\
886．A！phonsolll．the （iseat． \\
911．Garcias． \\
914．Ortosno 11. \\
923．I＇ruila I！． \\
921．Alphonse IV． \\
927．Kamivas 11. \\
9.50 ．Ordogno 116. \\
955．Ondonio，an a－ super． \\
955．Sancho the Big． \\
967． 1 \＆mime 111. \\
982．Wurnudus 11. \\
999．Alphanso V． \\
1027．Licrmudus III．
\end{tabular} & \begin{tabular}{l}
801．Bera． \\
82u．Bermard． \\
844．Ndeman． \\
858．Wifrect． \\
8．2．Salmmat． \\
830．Witred II．the Warlike． \\
911．Miran． \\
928．Seniofred． \\
96\％．Horcllus． \\
983．Waymond I． \\
1017．Herenger I． \\
1035．Raymond il． \\
1067．Raymond Ill． \\
1U81．Raymond－heren． \\
gredr． \\
1101．Itaymond－lieven． gerv．whodied in IIG2，when the county of Ib．urcelona pass－ cal to the king of dragon．
\end{tabular} & \begin{tabular}{l}
8．11．Azmar，Comnt． \\
836．Sancho． \\
8．5）．（arcias． \\
837．（ Barcias－Ximenes． \\
8so．Fortmio 1．the first king． \\
9u5．Sanctiol． \\
926．Gurcias I． \\
978．Sancho II． \\
90．Carcias II． \\
100u．Sancho Ill．the Great． \\
1035．Gurcias III． \\
1051．Sancho IV． \\
1uft．Sancho V． \\
1U94．Betcre． \\
1104．Alphonso． \\
11．3\％．Gurcias IV． \\
1150．Sancho 1 I． \\
119\％．Sanclo VII． \\
 \\
1253．Thibant 11. \\
1770．Henry． \\
1274．Joaniat I．and Philip，king of lyanee． \\
1305．I．onis liutin，king of limance． \\
1316．John 1. \\
Interregnum． \\
1：316．Philip the I．ong，king of Irance． \\
1．32．Churles，king of France． \\
328．Joanma 11. \\
1349．Chatles II．the liad． \\
治7．Chates III． \\
121．Ida！It． \\
1．9．Heonora． \\
147．（antur－Phabus of Fovix． \\
1／：1．1aterwermam． \\
148．Vatherine．John l＇Mbert． \\
It heromur nubject lo Cantle in I512
\end{tabular} & \begin{tabular}{l}
1035．Ferdinand 1. \\
In 1037，the kings of Castile becanc kings of Leon and Asturias． \\
1065．Alphonso V＇t． and 1．of Castile \\
1070．Sancho II． \\
1072．Alphonso Vll． \\
1169．Erraca and A1． plionso V＇lli． \\
1157．Sancho 111. \\
I1．5S．lerdinamd II． \\
1188．Alphonso IX． \\
12J．Henry 1. \\
1217．Fordinand 11t． \\
1252．Alphonso \(X\) ．the Wise． \\
1284．Sincho 1 V ． \\
1295．Ferdinand 15. \\
III2．Alphonso XI． \\
1350．Peter the Cruel． \\
1．369．IIchry 11. \\
1．759．Jolıl． \\
1390．Ilenry III． \\
1406．Jolan 11. \\
1454．Itenry IV． \\
1174．Isabclla and Fer－ dimand V．king of Aragon． \\
1504．Joama and phi lip．
\end{tabular} & \begin{tabular}{l}
1035．Ramirus I． \\
1070．Sancho I． \\
1094．Peter 1. \\
1104．Aphonso I． \\
1131．Ramirus 11. \\
113\％．Pelonille and Ratymond－be－ renger． \\
1162．Rayniond，sur－ named Alphon－ so II． \\
1196．Pcter II． \\
1213．J：mes the Victo－ rious． \\
1276．Peter l1t．depos－ cd． \\
1285．Alphonso 111. \\
1291．James II． \\
1327．Alphonso IV． \\
1．336．Peter 1V． \\
1537．John I． \\
1395．Martin． \\
Interregnum． \\
1412．Ficrdinand． \\
1．1．6．Alphonso V． \\
1458．Joln 11. \\
1：59．Ferdinand 11. marricol 1sabel－ ia of Censtile． \\
1516．Charles 1．who inlerited firom his mother Jo－ annat the mo－ narchy oi＇Spain
\end{tabular} \\
\hline
\end{tabular}

The lirst care of Ferdinand and Isabella, after having wisely setted the interior allates ol their dominions, was the recovery of Cmamada. An opportmity was soon lome for braking the peace with the Noors; and alter a protracted and boody war, this weahloy. kingdom, which had oechuided a large proportion ol \({ }^{\circ}\) the south of the Panimsma, having under its jurboliction thirty-two cities and ninety-seven walled towns, was reduced within the small compass of the cijy of Granada. Being now invested by the Spaniards, and all communation with the surromding comntry cut oll, the inhabitants were reduced to the atmost extremity. 'The Moors, however, made a gallant defence: and received an honommble capitnlation, in which it was stipulated that the inbabitants shombl retain the undisturbed possession of their preperey, the use of theiplaws, and the free exerecte al the religion. "Thus this last strong-hold of the drabs in Spain submitted to the Christian arms, after an almost mantermpted war of eight centuries, and during which, according to the Spanish historians, three thousand seven hambed battles were lought. Shortly alier the batte of Xeres in 712 , the Moors had overrun the whole Peminsula, except a small district in the momatains of the Asturias: but the tide of victory was not long in setting in from an opposite direction; and they were eradually driven by the arms of the Christians lrom all their possessions in Spain: from the Asturias in 716 ; from Salyaba in 750 ; from Catalonia in 820: hrom Leon in 023: From Castite in 1053; from Aragon 1118 ; from Cordova and Jaen in 1236: from Siville in 1298; from valentia in 126 ; foom Murcia 1265; and liom Cranada in 1492 .

The important congrest oil Gramala was, in the same year, lollowed by the more important discovery of America by Christopher Commbus: which, with its snisequent conquest, redonnded more to the glory and lame ol Isabellit than any other act ol her reign; and as she consented to deliay the whole experse of the expedition, without the concurrence of Ferdinand, she reserved loo hor subjects of Castile exclusively all the adrantages resultime from such an undertaking.

Upon the death of Pabella, the archoduse Philip, king of the Nethethands, who had married her danghter Joanna, a princess of very slemder capacity, clamed the crown ol Castite in right ol his wit. Eerdinand, who, by the will ol his gneen, had been appointed regent of the kingtom till her grardson Don Carlos should attain the age of twenty, lound it prudent to resign the regency and retire to his own dominions of Aragon. The reign of Philip, however, was shore and turbulent. Ne disgusted the nobility by his sreat partiality to his Flemish lavourites, upon whom he bestowed all places of trus and emolument; and also by his cruclty to his queen, whom he wished to deprive of the government, and to conline as a deranged jerson. This condict spread universal discontent, the consequences of which were averted only by his death, which happened about seven months alter his arrival in Spain. The affains of Castile were thus thrown into yrat confision, and the states, in order to maintain the tranguillity of the kingdom, invited Derdinand to yesume the regency, which he held umtid his death in 1515

This monarch was one of the greatest princes that ever ruled in Spain, and possessed in a very high degree the love and affection of his people, who lancuted
his loss with mafeigned sormow; and called him with great justice, their lather and deliverer. He begueathed his heredtity dominions, and also the kingdoms of Naples and Navarer, which he obtained by conquest, to Jomme quern of Castite, and after ber to his grandson Don Curlos. He appointerl Catlinal Ximenes, archbishop of Toledo, reopent ol Castile; and bestoncel the recrucy ol Aras and its dependencies upon his natural son Don Alonzo, archbishop of Saragossa.

Remorlis.-It condel scarcely have been expected that durims this period, whon the Penimbula was divided into small limgeloms without forntiers and guaranty; and governed by sovereigns of different nations and religions, who were almost conthundly at war with each ofher, mach attention wond be devented to its astriculturd and commercial interests. Yee that portion ol it which was subject to the Moor's, enjoged a degree of prosperity and civilizationt, uncxampled in Spain during any other period ol its histo. ry. This people were particularly skilled in agricultare, and cartied overy branch ol pablic and private economy to a high degree of perfection. 'They pat the most minute attention to the andesis, ciassilication, and manure of the different soils, io rustic buidings, plantations, and agriculural implements, and to the cate of anmals. They divided their lands into small fieds, which weed kept constandy unter timatre, and by then reservoirs and canals, they conveycel water to the highest and driest spots. "Whey were the first who inmoduced into this country the culivation of rice, sugar, cotton, and siks; and the seneral appearance oi their estates Jormed a striking contast to the domains of the crown, and the immence wastes of the Gothic lords. They were also expert in all the mechanical arts; and in almost every cily were established looms, lorges, mills, glasshouses, ser. The invention of paper is due to this people; and many kinds of manulactures, particularly silk and cotoon stufs, moroccolather, \(i c\). were bronght by them to so great perdection, that, in the \(t\) welfeh rentury, the tissues ol Gramada and Andalusia were hichaty prized at Constantinople and throughout the Eastern empire Fhacir shall in architecture was equally conspicuotis; and the elmombre of Granada, still in existcuce, is an evidence ol the fane taste, studied elegance, and ability ol' their artists. To this improved state of industry the Rioors added be love ol science and learning. These they Entroduced into Europe at a time when it was immersed in darlaness; and they possessed manyluxuries unknown to the neighbourins nations. "The successers of Abdalranmanhad lomed a library of 600.009 volumes, 44 ol' which were employed in the mere catalogne. Their capital of Cordova, with the adjacent towns of Nhara, Almeria, and Miucia, tad given birth to more than 300 writers; and above to pablic libraries were opened in the cities of the Andatusian kingdom." 'lhe Arab historians describe the reign of the Ommiades as the most splendid and prosperous era of Moorish Spain. "The third of the Abdatrahmans derived from this lingdom the annal tribute of 12.04 .000 dinars op pieces of gold, about six milhons bterling, his royal seat at Cordova comained 640 mospues, you baths, 200,000 houses; he gave laws to 80 cities el the lirst, to 300 of the second and third order: and the fortile banks of the Cuadalquivir were alorned with 12,000
villages and hamlets, The inmates of his seraglio, comprehending his wives, concubines, and black eunuchs, amounted to 6300 persons; and he was attended to the field by a guard of 12,000 horse, whose belts and scimitars were studded with gold." To this extraordinary concurrence of indastry, wealth, talents. and learning, this people united that romantic gallantry which so eminently prevailed in the ages of chivalry; and their noble conduct in many instances, inspired with confidence in their homonr, even the enemies of their kingdom and of their faith.

This high state of prosperity and rehement, however, was confmed chiefly to the Momish dominions. The descendants of the Goths were entirely occupied in the pursuit of independence and military glory.
They werc forward to imitate, and often surpassed their rivals in the noble cualities of renerosity and honour, and in all those deeds which spring lrom a romantic and chivalrous spirit, but they disdained to follow them in the pursuits of industry and science. Preferring the wandering and martial life of their fathers, they never could be induced to relinquish their ancient habits and manuers for the adrantages of agriculture and the mechanical arts. The care of flocks and herds, which from time immemorial had enriched the kingdoms of Castile and Lcon, appeared to them a securer source of wealth, and as they were involved in continual wars, was more easily remored from the inroads of an enemy. In those times all the inhabitants capable of bearing arms followed the standard of their lords. Their liocks and herds were entrusted to the care of the old men, women and children, who were totally unfit for the laborious duties of an extended agriculture; and as the quantity of corn which they raised was insufficient for their consumption, they were under the necessity of exchanging their wool, hides, iron, and oil, for the grain and manafactures of their neighbours. Their aversion to rural employments and the arts was thus the consequence of their situation and the circumstances in which they were placed; and during peace the enthusiasm of war and chivalry degenerated into a spirit of pride and of idleness incompatible with an industrious application to mechanical labour. This spirit was almost universal among the Spaniards, except in the Moorish cities, where the Christians by their constant intercourse wilh them, had learned their arts and continued to cultivate them. While the Moors, though a vanguished people, continued in the peninsula, the country was greatly benefited by their industry and their genius: but after the expalsion of a great proportion of them. in conspquence of fregrent rerolts, Spain was never able to stipply the demands of her inhahitants, and so became a constant mibutary th the industery of oher nations. The establisbment of the inguisition by Ferdinand and Isabella also tended in no small degree to deprive this conntry of its most industrions popatation. The lews who, alter the Hoors, had engrossed almost all the wealth and commerce of Spain, were so exposed to its merciless rage, that they were compelled to leave the kingdom or to cmbrace Christianity; and it is calculated, that within lour years after the appointment of Torquemada, the first inguisitor-general, 6000 persons, chicfly of this unforturate race, were burned byorder of this sanguinary tribanal, and that upwards of 100,000 felt its fury.

With respect to the political institutions of the Gothic Spanards during this period, they still adhered to their ancient laws, not only from attachment to them, but out of antipathy to the Moors, who held very different notions concerning property and government. These, howeser, were considerably changed by a variety of concurring canses. As the different kingdoms were wrested from the Moors gradually and with difficulty, the nobles who followed the standard of therir chief conquered not for him alone, but for themselves. "They claimed a share in the lands which their valour had won from the enemy; and their prosperity and power increased in proportion as the territory of the prince extended." The sovereign being thus obliged to conciliate their good will by successive spants of new honours and privileges, before he could establish his dominioy in a conquered province, the greater part of the tervitory was parcelled out by him amons his barons, with such jurisdictions and immunities as raised them almost to sovercign powers. The monarch was thus but a little elevated above his nobles; and they, feeling their independence, often acted as his equals. The cities of Spain had also obtained very considerable power during this struggle. As the open country was perpetually exposed to the depredations of the enemy, with whom no peace or truce was permanent, persoms ol all ranks were obliged, for self preservation, to fix their residence in the cities. These at length became the only places of salety; and as many of them were, during a longer or shorter period, the capitals of little states, they enjoyed all the advantages which accelerate the inctease of inbabitants in every place which is the seat of government. Their number at the begiming of the ffteenth century was very considerable, and were peopled lar beyond the proportion which was common in other parts of Lurope; and as their assistance was freguently required in prosecuting the war against the Moors, their monarchs found it necessary to gain their farour by ample concessions, which not only extended their immunities, but added to their wealth and power. By the exorbitant privileges of the nobility, and the unusual power of the cities, the royal prerogative was hemmed in on every side, and reduced within very narrow limits, and when the Castilian nobles combined against Ifenry IV. they arrogated, as one of the privileges belonging to their order, the right of trying and passing sentence upon their sovereign, which they carried into effect by deposing him liom the throne. Several monarehs, impatient of such restraint, endeavonred at various junctures, and by different means, to enlarge their athority, but it was left for Ferdinand to accomplish in some degree the extension of the sovereign's prerogative, which his predecessors had so long and so l'requenty attompted in vain.

Owing to the restricted power of the monarch and the fecbicness of the govermment, the different Spanish states presented, during the greater part of this period, a scene of the wtmost disorder and insubordination. The bonds of civil society seemed to have been burst asunder. The administration of the laws was so extremely weak, that it afforded no protection to the subject; and robbery and murder became so common, as not only to intercept the internal commerce of the kingdom, but in a great measure to suspend all intercourse between its cities. The feudal
barons who were sufficiently forward to assist their prince in repelling foreign aggressions, or in extencting his dominions, were equally realy in resisting any encroachments upon their privileges, which were alike inimical to the stabilaty ol the throne and the wellare of the people. They clamed and exereised a sovereign jurisdiction within their own territories; and this, with their liecpuent private wars, the want of discipline among the troops, and the incessant depredutions ol the infidels, filled the provinces of Spain with confinsion and mmalt. The inhabitants of the cities were the greatest sufferers; and as a measure of self delence, the cities of the kingrom of Aragon, and after their example those of Castile, formed themselves inte an association, distinguished by the name of the llermumdud, or "lloly lirotherhood." They exacted a certain contribution from each of the associated towns; they levied a considerable body of troops, in order to protect trawders and to pursue criminals; they appointed judges, who opencel their courts in various parts of the kingdom. Whoever was guilty of murder or robbery, or ol any act that violated the public peace, and was seized by the troops ol the Brotherhood, was carricd before judges of their nomination, who without paying any regard to the exclusive and sovereign jurisdiction which the lord of the place might clam. tried and condemned the criminals. By the establishment of this fraternity, the prompt and impartial administration of justice was restored; and together with it internal tranquillity and order began to return. The nobles alone murmured at this salutary Enstitution. They complained of it as an encroachment on one of their most valuable privileges. They remonstrated against it in a high tone: and, on some occasions, refused to grant any aid to the crown unless it were abolished." Ferdinand, however, was too semsible of the good effects of such an institution to listen to any proposal for abridging its powers. He supported it on all occasions with the whole force of royal authority; for to limit and abolish the independent jurisdiction of the nobility was one of the great objects of his policy; and this he in a great measure accomplished by his perseverance and the assistance of the llermandad. When the deputies from the states of Aragon, who had reflused him supplies in his war with france, offered to accede to his demands upon condition ol his restoring the territorial jurisdiction, he ordered them from his presence, declaring that "he would not purchase a supply at the expense of the liberties ol his subjects; that belore his reign the vassals of the nobility were their slaves; that he had made them free, and would keep them so." Notwithstanding, however, the exertions of this able and wise prince, the spirit of liberty was so vigorons among the people, and the spirit of independence so high among the nobility, that the kingly prerogative was less extensive in Spain than in any other of the great monarchies of Europe.

\section*{Char. IV. Spain while under the dominion of the Austrian dynasty.}

The affairs of Spain, until the arrival of Charles, were conducted by the aged Cardinal Ximenes with such wisdom, integrity, and firmness, that the kingdom felt not the loss of the powerful mind of Ferdinand. Many of the nobles who, supposing that the

Vol. XVII. Part I.
reins of government would be raladed under the delegated power of a megent, had taken up arms to prosecute their private quarrels and pretensions, were compelled wopress their hostilities anel or submit to the terms of the ('ardinal. Hhe decisiontand wigour of his admimistration, and the high authority which he assumed, axcited the lioas of the nobility lor the salety of thrir pectilar privileges; and when they sent a deplatation to question his perver, and demand by what right he bed the regeaty of the kingdom, he showed them the will of leedinand, ratified by Charles. 'Ihis, howerer, mot seemims to produce the acquiescence which he wished, be led them to a balcony, and pointing to a boly of wrops and a 1 rain of artillery stationed before the palace, said. ." Those are the powers by which 1 mean to govern Spain antil the atrival of his majesty." but the exertoms of this able minister, who, during bis short regency, did so much for the security of the kinglom, and the extension of the royal prerogatire, were rewarded with neglect and disgrace. On the arrival of Charles at St. Andero, Ximenes hastened to meet him, but was seized during the journey with a violent disorder, supposed to be the effects of poison. This accident obliged him to stop at Aranda, from whence he wrote to the king, earnestly desiring an interview, and at the same time advising him to dismiss all the strangers in his train, whose numbers and inluence already gave great oflence to the Spaniards, and who wonld ere long alienate the affections of the whole people. This advice was disregarded; and the Flemish courtiers, jealous of the power of the Cardinal, industrionsly kept the king at a distance from Iranda, and at length prevailed with him to dismiss this faithful minister and supporter of his throne. Ximenes died a few hours after receiving this communication, leaving behind him a reputation for wistom and sancticy, prudence and boldness, which no monarch or minister had ever enjoyed in that country.

After the death of Ximenes, Charles found great difficuty in establishing his anthority in Spain. His Flemish favourites, by their exactions and avarice, had become odions throughout the kingdom; and several cities of the first rank in Castile entered into a confederacy for the maintenance of their rights and privileges. This confederacy assumed the name of the Holy Junta, and bound themselves by a solemn oath to live and die in the service of the king, and in defence of the privileges of their order. As Charles was now absent in Flanders, they appointed a deputation to wait upon his majesty, and drew up a remonstrance, which contained not only ancumeration of their grierances, but also many new regulations for the security of their libertics; and which show that the Spaniards of that day had acquired more liberal ideas, with respect to their own riglits and privileges, and had formed more bold and generous sentiments concerning government, than other people in Europe. The nobles, while they supposed that the demands of the Junta were contined to the redeens of such grievances as had arisen from the inexporience of the monarch, or the rapacity of his courtiers, connived at, and even fayoured their proceedinss: but when they perceived that their own peculiar privileges were in some danger, they immediately joined the forces of the regent. After a contest of nearly cight months, which was prosecuted with a rage and
fury peculiar to civil insurrections, and which was attended with many fratless negotiations the army of the Junta, under Don Juan I'allla, was completely roted near Villelar, when heree of their chiefs were taken prisoners, ant immediately executed. Alter this deleat, the eity o! 'loleda alone maintaned the struggle, being animated by the presence and courage of Dunna Marial Pacheco, Pachlla's widow, a woman of rank, abilities, and boundless ambition. When driven to the citadel, she defended it for lour months with amazins fortitude; but being at last redaced to great extremities, she made her escape into Portugah. Similar troubles prevailed in Valencia, where the commons assumed the name of Gemtentele, and also in Aragon and Majorea; but the spirit of disaffection was completely erushed befute the arival of the king in 1522.

Charles, who had now obtained the imperial crown, proceeded with great prudence and moderation to heal the unhappy divisions which had distacted Spain during his absence. He proctamed a generad pardon for all crimes committed during the insurrection, with the exception of about eighty persons, of whom, howerer, very few suffered; and many who were of rank had their outlawry resersed, and were restored to their homours and estates. This act of clemency was coudemued by his council, who strongly solicited him to make some more cxamples: but he answered that "enougl: of blood had been alrealy shed:" and when one of his courtiers. in expectation of a reward, officiously informed him where one of the proscribed party was concealed, he sharply replied, "You had done better in advising Ferdinand de Avalos to be gone, than in putting me in the way to apprehend him." By this magnanimous conduct, and by "his address in assuming the manners, and speaking the language of the Castilians, he acquired an ascendency over the people which hardly any of their native princes had ever attained, and brought them to support him in all his enterprises, with a zeal and valour to which he owed much of his success and grandeur."

It would be forcign to our purpose to follow this prince in bis campaigns in the Xlitanese, and his wars with France, which continued with little interruption during the whole of his reign. These belong more properly to his history as Emperor of Cermany, and a succinct account of which will be lound in the article Fraser. Spuin was but as one of the provinces of his extensive dominions: and however mach his successes in these wars might reduand to his own fory, and throw a ghem of splentode around his name as a warrior and a poltician, they were fatal to the internal improvement of this kingolum. The produce ol its soil, the treasures of its colonics, and the fower ol its popalation, were dissipated in foreign lands in the prosecotion of his ambitions schemes. Ilis demands for sumidies weretepeatedly refused by the cortes; and his impoveribod subjects were lreguenty upon the ere of a rebellion, whith was prevented only by his loresisht and prodence.

Afer the thaty of Cambray in \(1 ; 29\), when gave a short repose to burope, Chates meditated an capedition against the piratical states of Nifiea. The lumed Hornc babarossa. Who from a private corsair had raised hamself by his singular valour and addeess so be bing of Agiers and lutic, had becone tertible
by his depredations from the Straits of the Datianetles to the rock of (ibbaltar. Daily complants were made to the emperor by his subjects, both in lat: and Spain; and all Christendom seemed to look io him lor deliverance from this new and odious species of oppression. for this enterprise, which was very pupular among all classes, he obtained abundant sapplics: and having embarked with the llower ol the Spanish nobility for Cagliari, which was the genera! place of rendezous, he liom thence sailed for Iunis with a fleet of 500 sail, having on board 30,000 regular troops. Barbarossa was prepared for the attack. lle had strongly lortified the Portess of Goletta, whicla is situated on a neck of land, and commands the bay of 'Tumis, and in the strength of which he placed his chief conftence. Charles on his landing luid siege to this fortress, and after a month of daily skirmishing, took it by storm on the 25 h of July 15.3.5, whers the whole piratical licct fell into hishands. Ife the: proceeded to Tunis, but was met upon the mareh by the army of Barbarossa, which he completely routed, when his troops, flushed with victory, and eager for pluader, rushed into the city, and, in spite of all his exertions to restrain them, committed every species of excess and cruelty. Thirty thousand imocent in. habitants perished on that occasion, and ten thousand were carried away as slaves. Having restored Muley Hassan, the former monarch, and bound him by treaty to hold the kingdom of "funis as a rassal of the crown of Spain, he garrisoned the Goletta with Spanish troops, and returned to Europe.

The expedition of Charles against Algiers, however, about six years afterwards, was not so lortunate. lle disembarked his army on the coast of Arrica at too adranced a season ol the year: and before the provisions and warlike stores could be landed, his thece was dispersed by a tempest, in which ij ships of war, and 140 transports, with 8000 men perished. Such ol his vessels as had escaped, receired his dispirited troops, bat beins overtaken by another storm, the emperor with dafionty reached Carthagena, extremely mortified at the lailure of his lavourite scheme.

On his return, Charles found himsell embroiled in new wars. Having committed the government of Spain to his son Don lhilip, who, as heir appurent \({ }^{3}\) had received the oath of lidelity lrom the coptes, he passed over to Flanders, and the remainder of his reign was spent in his contest with France and the protestants of Cormany. At the same time, however. that he was prosecuting his plans of conguest and of aggrandizement on the comtinent. he formed the ambitous project of adding England to the dominions ol his family. He succeeded in accomplishing a treaty of mandage between his son and Mary of Cugland, by Whichit was stipulated that theirheirs shomb, togeth. er witis the crown of lingland, inherit the duchy of Burgundy and the Netherlands; and il Don Carlos, l'ailip's son by a lomer marriage, should die with. out issue. they should succeed also to the crown of Epain, with the emperor's hereditary dominions.

Worn out at lemgth by his arduous duties and the rabases of the gout, and conscions of his inability much lonser to direct with rigone the multiplicity of alluils which called for his attention throughomt his extensine dominions, he resolved to resign his hered. itary states to his sun philip, who had now attancel his 23th year, and having becu early accustomed to.

Gusiness, had discovered both inelination and capacity sullicient to sustain the weighty burden which was about to derolve upon him. For this parpose he recalled lhilip from lingland, and having assembled the states of the low commeres and of Brussels, Charles seated on a chair of state, and surrounded by a splendid retinue of the princes of the empire and spandees of Spain, with great solemuity surrendered to his son all his territories, furisdiction, and authority in the low combries. A lew weeks alierwards, he resigned with great solemmity, and in an assembly no less splendid, the crown of' spain, "reserving, of all his vast possessions, nothing for himsell but an ammal pension of one hundred thousand crowns to delray the charges of his lamily, and to afford him a small sum for acts of benclicence and charity." In the following year he returned to Spain, and retired to the monastery of St. Justus, near l'lacentia. Llere in a mean retreat, he forgot the ambitions thoughts and projects which had so long engrossed his mind, and which for hall a century, had lilled with terror all the kingdoms of Europe, and devoting the evening of life to innocent amusements and religious exercises, diedon the 215 t of September 15 si .

Jhilip II., thoursh his father, with all his power and influence, was unabie to obtain for him the imperial crown, succeded to a sceptre more powerlul perhaps than that of any monareh of the age. Besides his dominions in Europe, including Spain, Naples, the duchy of Milan, and the Netherlands, he possessed in the new world territories of such rast extent, abounding in inexhaustible veins of weath, and openingsuch boundless prospects olevery kind, as must have roused into action a mind much less ambitious and cuterprising than that of Philip. He inherited with his crown a war with France and the pope. but this was but of short duration: and the treaty of Chatean Cambresis left him without an enemy. In memory of the batte of Si. (Qumtin, fousht in this war, "on the day eonsecrated to St. Laurence, he built the splendid and magrificent palace of the Escurial. in honome of that saint and martyr, and so lormed the plan of the work as to resemble a sridiron, which, according to the legendary tale, had been the instrument ol St. Laurence's martyrdom." 'This prince, bowerer, was not of a disposition to remain long inactive: and thoust he was not desirous of military glory, yet itn other respects, be was not inferior to his father cither in ambition or abilities: and during a long reign, he gave more disturbance to his comemes by his political intrigues, than the emperor had ever done by his arms.

The severity of Charles's goremment in the Ňetherlands, with respect to peligroms matters, had estranged from him the affections of his subjects in that country; and the violent and bigoted principles ol Philip's administration, mader the l)uke of Alra, exasperated them into open rebellion. This afforded employment to the arms of Spain for nearly hall a century, and at last lost to that crown oue half of its most raluable possessions in the low comntries. (See Nembenlands.)

The same spirit of intolerance which raised such a Aame in the Netherlands, stirred upthe Mours in Spain to a similar resistance. 'Yhis industrious people, siuce their subjection, had lised as quiet subjects. But it had been insinuated to the court of Rome, that though
nominally C"hristians, they stili adhered to the Saho. metan fith, which induced the pope to press aporn Philip the neressity of latinging them lay force wishit the pale of the ('atholic chareh. The king ever ready to listen to the instigations of monkish zeal, sont expressorders into the kingtom ol' (imathada, oblige the Aoors to champe at one their habits, mamers.
 He registration of all Morrish rhihlren bertween live and lileen years of age that theymishat be twught the Castilian tongue, and be instructed in the Catholic faith. Notwithstandiner the humble representations of lovalty and attachmention this unfortunaterace, atm the louder remonstrances of the fonemor and principal ollicers of the province agrabst so impolitio and anpracticable a measure, linitip rematned inflexible. The Moors were driven to despait, and hasing taken up arms, renomed their allegiance to the kiner of Spain, and proclaimed on- of their chicfs king of (iranada and Cordoca. The struggle was prosecuted on the part of the Noors with all the lury of refigious frenzy, committing every where the most ontrageons excesses, and inflicting incxousable cruchies upon the innocent inhabitabts. particularly ceclesiastica: while the Spanish commanders acted with great moderation, treating their prisoners with lenity, and receiviug many to merey. 'This war lasted between iwo and three years, cost the lives of 20,000 Castilian soldiers, of about 100.000 Moors, and depopalated and destroyed some of the linest countries in Spain.

About this time was formed what is called the Iloly League against tic Turks, and in furour ol the Venetians, one half of the expense of which was to be defrated by the king of Spain. 'The command of the armament, consisting of \(2^{(n)}\) sallics, with 50,000 foot, and 4000 horse, was given to Don John of dustia. the king's hall-brother, whoobained a signal victory ower the Ottoman feet, in which boton lorks were killed, boono taken prisomers and ls.no) (Christian slares set at liberty. But the fruits of this victory were lost from want of anamimity amone the foders of the league: and from the sime cabse, in the followingyear, another Turkish flect was saved from destruction. The consegnence of this was, that the 'Turks made a decent upon the coact a' dfica, reduced Tanis and the (ooleta, which the Spaniands were never ater able to recoser.

These losses, however, were amply overbanced by the scizure of the crown of Portusel. 'The yonas king scbastian, who, with most of his nobles. Gell in the battle ol Aleacaroguivir, was succoedod by his uncle Cardimal Ifcirr. who, after an unensy peien of two years, died without maming sacerssur: Ihilip, who was une o! the competitors for the throne and had an army ready to act upon the hest intellireme of lleney's death, immedistely seized upon the kinerdom, which submitted without a strughte. This accession to his dominions. howerer, afiorded himblitie satisfaction. J'ortugal hat beendrained of its weation and population by the unfortunate expedtion of sebastian: and thongh Philip went in preson to lishon, where he resided for some time. and contered mand powers upon the nobility. ret finding that all lifs effforts to gain the affections ol his new subjects were fruitless and ineflectual, he returned home in displea-
sure, leaving the management of the kingdom to a regent and council.

The attention of lhilip was now directed to a more formidable enemy, the queen of England. Having, in the early part of his reign lost his consort queen Mary, he offered his hand to her successor; but that prudent princess, who wished not to make an enemy of so powerful a monarch in the commencement of her career, returned a respectful but evasive answer. The measures of her government, however, soon convinced him that he had nothing to hope for on that head; and he soon after married the sister of the king of France. No open rupture occurred between the two courts before 1569; and this was followed by no material consequences until about fifteen years alterwards, when the Spanish monarch, enraged at the assistance afforded by Elizabeth to his rebellious subjects in the low countries, and at the depredations committed by her fleets, not only on his settlements in America, but even on his own coasts, where Sir Francis Drake destroyed about a hundred vessels in the road of Cadiz, and captured an East Indiaman of great value, bent the whole force of his empire to revenge these repeated insults. Great preparations were consequently made for this purpose; and the inrincible Armada was sent forth with the confident hope of crushing at one blow these presumptuous islanders and their heretical queen. The fate of this armament is well known, (See Armada;) and Philip now tound his attention sufficiently employed as protector of the Catholic league, which opposed the accession of Henry IV. of France; and with his own ambitious schemes for the exaltation of his own daughter, the infanta Isabella, to the throne of that kingdom. But the consersion of Ilenry to the Catholic faith destroyed all his views in that quarter.

During this period the English had not been inactive in retaliating by deeds the threats of Spain. Corunna was sacked, Lisbon endangered, and saved only through a misunderstanding between the English commanders, and the outward-bound India fleet in the port of Cadiz plundered and destroyed. These losses and insults instigated I'hilip to another attempt upon England, which, however, was similarly unfortunate as the former, the elements seeming to combine with his enemies in discomfiting his best laid and most condedent plans. This was the expiring effort of his reign. He died in the following year, leaving Spain drained of her wealth and her populatiou; for it happened with this prince that while he meditated the destruction ol' other kingdoms, the very means which he employed (xhansted his own.

Philip IIf. had neither the ambition nor the abilities ol his fathere; and both from his education and dispositionc, was ahogether incompetent to manage the weighty concerns ol an extended empire. lle consequenty gave himsedl up entimely to the direction ol his lawourite the duke of Lerma, who, though not endowed with splendid talents, possessed great prudence, mildmess, and moderation. Ilis accession to the throne was immediatcly fullowed by the ratitication ol a peace with France, and in a lew years alterwards with lingland. Dhe contest in the low countries, which occasioned such a waste of troops and ireasure, as was gradually wearing out the strength of the monarchy, became also the subject of consideration; and a truce for twelve ycars was concluded, in
which the Dutch republic was acknowledged as a free state. 'This disposition, on the part ol the king's advisers to adopt moderate and pacific measures, promised that tranquillity to Spain of which she stood so mucb in need for recruiting her resources and restoring vigour to her government. But unfortunately the spirit of imolerance still predominated in her councils, which was encouraged by the bigotry of the priesthood, and the superstitious fears ol her monarch; and which led, in spite of the vigorous opposition of the barons and landholders, to the expulsion of the Moors, a measure both impolitic and inhuman, and which lost to the state 600,000 of its most industrious and wealthy population.

Spain still maintained her superiority in Italy, but with difficulty and at great expense; and the intrigues and ambition of her governors in that country rendered her authority odious and insupportable to the Italians.

The disgrace of the duke of Lerma, through the intrigues ol his own son, who succeeded him in the affectioss of the king, produced litule change in the foreign policy of the kingdom; but the death of Philip soon after threw the administration of affairs into other hands, who, disdaining the pacific measures of their predecessors, were eager in the prosecution of plans of aggrandizement.

The same system of favouritism still prevailed, and Philip IV. entrusted all to the Count d'Olivares, a man of considerable talent, but boundless ambition. The political horizon of Europe had continued tolerably serene during the last reign; but it now began to be overcast; and the eventful contest ol the thirty years war had already commenced. Dissensions in Germany and laly called for the interference of Spain; and the renewal of the war with the Dutch republic, notwithstanding that power evinced a strong disposition to prolong the trace, or even to convert it into a solid peace, demanded exertions which the diminished resources of the government were little able to support. The policy of Olivares was ruinous to his country. It excited the resentment of all her neighbours, who, without the ceremony of a general alliance, concerted to attack her on every side; and although she suffered little from their hostility, yet being compelled to exert herself beyond her strength, she was shaken to the foundation. New exactions from the people already overburdencd, and disorders abroad, increased the general discontent, which, being accompanied by the revolt of the Catalans, the revolution in Portugat, and a series of ill-fortune in the Netherlands, brought her to the very brink of ruin. The removal ol Olivares led to the adoption of more moderate measures. l'eace was concluded with the Dutch; and though the war was continued with France, she was greatly relieved by the civil discords which arose in that country during the minority of Louis XIV. The Catalans, who had been treated with greater severity, had thrown themselves into the arms ol that power, by which a foreign enemy was admitted into the heart of the kingdom. This mmatural contest was prosecuted with various success until 1652, when Don John of Austria, a natural son of the king's, compelled the surrender of Barcelona, when the whole country, except Rosas, lollowed the fate of the rapital.

The great efforts made for the recovery of Portugal
and the constant supplies required in other quarters had completely exhausted the treasury, which occasioned considerable embarrassment in the affairs of government. Nost of the revenues were anticipated, the people impoverished, and, what added to her misfortunes, the Spanish galleons were burnt by the English fleet under Admiral Blake. In such circumstances peace became absolutely necessary, and accordingly the treaty of the Pyrenees was concluded in the begiming of 1660 , in which it was stipulated that the French king should reccive the hand of Maria Theresa, the eldest daughter of Philip; but under the express condition that she should, for herself and issue, renounce all right to her paternal inheritance.

The remainder of Philip's reign was employed in an ineffectual attempt to recover Portugal, and at his death he left the kingdom in a most critical situation. His ministers were in absolute disgrace with the people; his successor, Charles II., a sickly infant in the lourth year of his age, and the quecu-mother, whom he had appointed regent, inordinately foud of power, but without talents requisite to govern a great and turbulent nation. This princess was the sister of the reigning emperor, and conscquently entirely devoted to the interests of the cour of Vienna. The first act of her authority was to place at the head of her council her confessor, father Nitard, a jesuit of low birth, of very moderate talents, and totally unacquainted with public affairs. At a juncture when the greatest circumspection and fortitude was necessary to uphold a sinking kingdom, the incapacity of the minister, and the unsteadiness of his mistress, soon excited general discontent, and the nation looked to Don John of Austria as the only person capable of relicving them in their difficulties. This prince possessed great abilities both as a statesman and a soldier, and was besides respected by the nobles and beloved by the people. But the queen-regent, jealous of his superior talents, had prevailed upon ber late husband to exclude him from any share in the administration, and now formed the design of sending him from the kingdom, by appointing him to the govermment of the Netherlands.

In this distracted state of affairs, the government was somewhat relieved by a peace with Portugal, the acquisition of which, from the aversion of the inhabitants to a Spanish yoke, hatl all along been an cmbarrassment rather than an adrantage to the nation, whereby the independence of that kinglom was acknowledged. But Louis XIV. who had now begun his career of ambition and injustice, in defiance of the treaty of the Pyrcnees, claimed the Netherlands in right of his queen, and without waiting to negotiate, made a sudten irruption into Franche Compte, and would soon have overrun the whole of that province, had not the triple alliance betweel Britain, Sweden, and the Dutch republic, one of the boldest political measures of that age, commanded the peace of Aix-la-Chapelle. By this treaty, however, Spain was compelled to cede some of her strongest lortresses between the Channel and the Scheldt, which so roused the popular indignation, that 1)on John found little difficulty in driving father Nitard from the national councils and from Spain. The gucen-regent, however, resisted every attempt to admit the prince to a share of the government; and in order to remove him from court appointed him viceroy of Aragon.

The loss of father Nitard was soon suppliced by another favourite Don Fernandode Valenzuela, equally inexperienced and ungualifed for the situation of a minister, and whose vanity and presumption led to the expulsion of his mistress from the helm of the state. The king having attained his fifteenth year, the term of his minority, thew himself into the arms of Don Jolin, who was received by the people as the preserverof his country. The perplexed state of affuirs, however, made it no easy matter for the new minister to maintain his popularity. The country had entered into another contest with Prance in support of the Duteh, which was attended with disappointment and disasters, and the peace of Nimeguen in 1678 added only to their losses in the Netherlands. This was followed by the marriage of the king with a French princess, a measure highly oljectionable to the nation, whose principles and feelings were at all times hostile to the name of lrance, and this circumstance was employed by the cnemies of the minister to ruin him both with the king and the people. Thair intrigues were too successful. Don John oppressed with chagrin and disappointment, fell sick and died of a broken heart, and with him the sun of Austria set for ever in Spain. The death of this prince, whose abilitics, disinterestedness, and noble nature, rendered him the ouly hope of the monarchy, threw the government into great confusion. The king overcome by a hypochondriac malady, bordering on insanity, was totally incapable of business, and the new minister, the duke of Medina Ceeli, though possessed of a grood capacity and the best intentions, was unable to remedy so many crils. "The misery of the court was so great, that many of the king's menial servants Icft the palace for want of subsistence; and the king, with the advice of his council, was not able to find money for the annual journey to Aranjuez. The navy sunk to nothing, the funds destined for its support being diverted by those whose duty it was to supply them. The soldiers deserted on the frontiers for want of pay, and at last the governors quitted the fortresses, to come and represent at Madrid, in person, what they had often represented by letter to little or no purpose."
In this distracted and powerless condition, the king of France, whom no treaty could bind, commenced again his plan of spoliation. Spain having in rain endeavoured to engage the other powers in her derence, submitted to a truce for twenty years, with a farther loss of part of her territories. The queenmother, who had been imprisoned in a convent in Toledo, and had returned to court upon the death of Don John, again assumed the ascendency in the councils of her son; and upon the death of the queen hastened the marriage of the king with an Austrian princess.
The violent encroachmente, and shameless perfidy of the French monarch at last called for the league of Augsburgh, and plunged Europe into a general war, which raged for nearly ten years; and the peace of Ryswick found Spain distracted by internal intrigues respecting the succession of the crown. Charles, with a constitution naturally weak, was fast declining, and there was no hope of a lineal heir to the throne. In the event of his dying witiout issuc, the principal competitors were the Dauphin of France, in right of his mother Maria Theresa, the daughter of Philip IV. though that princess upon her marriage had re-
nounced all claim to the succession: The archduke Charles, second son of the Emperor Leopold, who was the son of Maria Ame, daughter of Philip Ill., and the Prince of Bavaria, whose mother was the obly child of the infanta Margaret Theresa, daughter of Philip IV. Irance and Austria had both ministers at the court ol Madrid, who were instructed to cmploy every method to induce Charles to make a will in favour of their respective familics. But Lonis, who at first had little hope of success, and was perfectly aware of the injustice of his pretensions, formcd the design of securing a portion ol the Spanish dominions to his own family, "hatever might be their destimation by Charles. For this purpose was negotiated the famous partition treaty between France, Great Britain and llolland, which, when known in Spain, excited universal indignation. By this treaty, Spainand the Indies, with the Netherlands, were assigned to the prince of Bararia, Naples and Sicily, with some smaller dependencies, to the Dauphin, and Milan to the archduke. But the death of the prince of Bararia rendered a new arrangement necessary, which substituted the archluke for the Bavarian prince, and Lorraine was added to the share of the Dauphin, Milan being given in exchange to the prince of that duchy. 'The emperor, who had remonstrated against both treaties, conceiving himsell the sole and indubitable beir to the whole Spanish monarcher, was allowed theee months to declare his acquiescence. While these schemes of spoliation, however, were in contemplation, the struggle between the contending parties at the court of Madrid continued to be prosecuted with great kecaness. The Cardinal Portocarrero, whose personal influence with the ling was of the greatest importance at this crisis, was gained over to the French interest. At his instigation, and by the advice of the pope, Cliarles, worn out by discase and chagrin, was induced to make a will in fivour of Philip, duke of Anjour the second son of the Datphin of France, the signing of which he survised only one month.

Remarlos. - At the commencement of this period, Spain possessed within herself all the sources of agricultural and commercial weath. Separated by a natural barier from the other continental povers, and at peace with the world, she had little interest on account of her situation, in augmenting her empire; and it required only a period ol repose, and the fos. tering care of her rulers, by encouraging industry and consolidating an economical system, to render her formidable and respected among the nations of Enrope. But the ambitious sehemes of Charles I, and Philip Il., whose names hate been blazoned in the annals of the wold, were most injurious to the peace and prosperity of their country. Instead of employbage its popnlation and its weald in improving industry and in sprading cultiration to the descrted portions of its lands, its sons were sent to perish in making lioutless conquests, and its resourees exhansted for the interest of their other domisions. And the only return which it receised for this satrilice of biood and weasure, was the ruin of its commerce and mannfartares.

The impulse given to industry by the rablations of Ferdinand respecting the admission of fareipe choths, continued for at time to give life and vigone to the national manafactures, and while the doors remained
in the country, Spain could still boast of the excel. lence of her fabrics. But even then there was little exportation; and during the boasted reigns of the lirst monarchs of the house of Austria, the Spaniards were still tributaries to the industry of other nations. The whole trade of the Castiles consisted in the exportation of wool, iron, wine, oil, and other raw materials; and in the list of duties paid by the company of Burgos merchants, it does not appear that they exported a single manufactured article. In the middle of the sixteenth century, the quantity of wool sent to Bruges amonnted ammally to between thirty-six and forty thonsand bales, which, after being manufactured, was sent back and distributed over Spain. Besides these cloths, Spain received from the Low Countries, linens, cambrics, cotton and muslin stuffs, Oudenarde and Brussels' carpets, \&c. and an immense quantity of hardware. 'The importation at the same period, of silks, velvets, and brocades from Italy, and hardware, glass. and gold and silver articles from Lombardy and Germany, was very considerable; and also muskets and other military weapons. In 1534, on the cre of a wa:, it was necessary to import from Flanders gunpowder and even timber for artillery carriages; and to bring carpenters from Italy to make them. Exportation was then confined to articles of the first necessity, a little dressed leather and cloth in inconsiderable quantities. "All the demands of the Cortes," says Laborde, "from the commencement of the sixteenth century, tend to the probibition of all those commodities which, they said, robbed the country of the treasures which they sent for to the new world." "6 Lombardy had another kind" of traffic no less injurious, that of lending its money at exorbitant interest. Spain was thus tributary to the Lombards on the one hand, and to the Flemings on the other, though the mother country of both. It is evident how irksome this state of things became to the Spaniards by the repeated rebellions that took place minder Charles I. and by the opposition made to granting him the subsidies he demanded for his foreign wars, while he could easily have obtained them by an amelioration of the country. The deputies of Castile spoke openly on the subject in 1527, and refused crery grant; the petition of the Cortes of Valladolid in 1542 rutis thus: "Your majesty's enterprises in Cermany and in Italy have drawn into this country an cnormous number of foreigners, who, not satished with the exchanges, commissions, and profits they make, and that your majesty allows them, have monopolized every kind of commerce by which your subjects gained their livelihood. They do not contine to themselves farming the estates amexed to bishoprics, lordships, official revenues, \&e and to making a profit of landed property; they even go so far as to buy up wholesale, wool, silk, iron, and other raw materials; thus cutting off all the means of existence from the greater part of your subjects, who see with grief what belongs to them go into the hands of those covetous people." 'The Spanish merchants, discourarsed by the advantages which the foreigners possessed over them, and by the capitals of which those persons had the disposal, resigned all business to them. Damien de Olivares says. that in 1610 there were 160,000 foreigners in the Castiles, and among these 10,000 Genoese, who filled almost all the lictrative places, and transacted all the business of the
country. The represcntations of the Contes, however, and of many of the primeipal cities ol the monarchy; and even the prohibtion of the smandign, were rendered of little dhect from the low state of the finances, which mate it necessary ti) abrment the public revenac by custom-houses, and to peamit importations.

In this wretched state of the kingrlom, the principal am of the govermment seemed to be, he devinims of means to procure moncy; and whitc it: demands were most exobbitant, the system ol taxation was most oppressive and vexations. The whole tevenue of the state was inadequate to delray eren the interest ol the elebt contracted by Charles in ins minous wars; the rebellion in the low Commeries cost his son Philip above twenty millions Sterling; and this monarch, who had given assigmomes upon the revenue for sums barrowed from loreign bankers and his own subjects, was under the necessity of superseding theseassigrments, and thus in a maner becoming bankrupt. The constant influx of specie from the American colonies kept up for a time the apparent prosperity of the kingtom, but this was also absorbed in fruitless and expensive expeditions; and the galleons were as andionsly looked for as if the satety of the monarchy depended on their arrival. This disastrous state grew much worse under the last sove. reigns of the house of Austria. In the reign of Charles Il. the settled revenue of the kiagtom was anticipated for scveral years; and what was still worse, the officers of the crown did not bring into the treasury above one-tenth of what they levied from the people. Following the steps of their predecessors withont possessing their abilities, they completed the ruin of the kingdom; and such was the state of apathy into which the comntry hat sumk, that the potentates of Europe had signed a treaty of partition, and impaticatly waited lor its spoliation.

While manufactures and commerce were thus suffering from the baleful policy of the government, agriculture was equally neglected. One great obstacle to its improvement was the want of labourels to till the soil. The plague, which made such dreadfiol ravages in Spain during the filteenthand sixteenth conturies, lelt extensive districts without an inhabitant: and we lcarn from the account of Niguel Dartines de Leyra, " that, for a century alter, the lands were seen lying waste, and the villages empty; nor have the disasters then sustained been repaired since that period." That little attention was then paid to cultivation appears from a rescript of Philip II in 1594, which begins thus: "We have been intormed that the busbandmen are in want ol' seed to sow their lands, and of cattle to plough them; that the carth being badly culivated does not return what it ought, and that persons possessing farms reap no advantage from them." But though this prince grauted the title of nobility, and exemption from military service to such as wotld devote themselves to the study of agriculture, yet this law was never put in execution, for the agriculturists obtained no honourable distinctions, and upon them also priucipally fell the weight of military service.

Withrespect to its political state, Spain lost her own liberties while attempting to enslave othermations. At the commencement of the sixtecnth century, her insticutions were more favourable to freedom than those of
atur oher of thersent ionopeankingrdoms. 'Theroyat
 ultaembility ant he the pretemsions of the commons. 'The military prawer was lorged if the hands , fle nobles, who appewed in the tied at the head of the in rassals, ame withont whase assibtance the authority of the monareh was torble and precarious. The inhabitants of the cities also persessed valuable immunties. atd were admitted to a comsidurable shate be the legis. lature. They had actured the arts of imdustry, and hat accumulated wealdh by engatsing in commerece Free and independent themselves, they werever reary to act as the gruardians of public freedon and independence. "Their representatives in the Cortes were aceustomed with equal spirit to check the womarla ments of the king, ind the oppression of the walles. They endearoural 10 extent the privileges of their own order: they laboured to shake off the remairans incumbrances with which the spirit ol feudal policy, farourable only io the nobles, hat burdened them; and conscions of being one of the most considerable orders in the state, were ambitious of becoming the most powerlul." These orders, with the clergy, constituted the Cortes. and in this assembly alone resided the power of making laws, granting subsidies, Sec. When Charles, therelore, came to the thone in the lifetime of this mother Joana, and assumed the title ol' king, he found speat difficulty in prevailing upor this body to acknowledge him in this capacity. The Aragonese louked upon him only as the son of theif queen, and opposed the assembling ol the Cortes in his name. 'lhey al last, howerer, acknowledged him under the title ol king in conjunction with his mother, but bound him by a solemm oath, which they exacted from all their kings, never to tiolate any of their rights or liberties. 'The Cortes of Castile proposed that, before acknowledging him as their sovereign, he should promise to observe the laws made at Burgos seren years before; viz. that no loreigner should be capable of any dignity or employment in church or state i: Castile, and that no money should be sent out of the kingdom. But his was overruled, tud a free gilt of 600,000 ducats wanted him, after which he promised to observe the laws. and more especially those on which they most insistect. The promises of Charles, howerer, veregiven without any intention ol fulfiling them: and during the greater part of his reign there was a constane struggle between hin and the Cortes; the one demanding subsidies, and the other a redress of grievances; and often separating without agrecing to ether. IVad the dillement orders of the Cortes been true to each other, they must have at last prevailed; and might harr prevented those unhappy foreign wars which brought the lingtom to such poverty and weakness. For while the cties were forwarel in stating their grievances, and demanding redress with that boldness which is natural to a liree people, the nobles, instigated by a mean jealousy ol that spirit of independence which they saw rising among the commons. stood by in silence, and discovered neither the public spirit nor resolution which became their station. When Charles summoned the Cortes of Castile to meet at Compostella instead of Valladolid, the commons remonstrated against the legality of the assembly in that place, and resisted all the arts ol the courtiers to influence their rote. But the nobility, who were now desirous of court larour, in opposition to the roice of the
nation, granted every demand, without obtaining the redress of any one of the many grievances of which the people complained. The consequences of this was a civil war, which not long after threw the kingdom into such violent convulsions as shook the throne, and almost overturned the constitution. On this occasion the confederated cities put forth a remonstrance, containing a long list of grievances, and some recrulations which they thought nccessary for their own safety and that of the constitution. Among other things, they demanded that the king shall reside within the kingdom, or appoint a native regent; that no foreign troops shall on any pretence whatever be introduced into the kingdom; that none but natives shall hold any office or benefice in church or state; that no member of the Cortes shall reccive an office or pension from the king, either for himsclf or for any of his family; that cach city or community shall pay a competent salary to its representative during his attendance on the Cortes; that the Cortes shall assemble once in the year at least, whether summoned by the king or not; that neither gold, silver, nor jewels, shall be sent out of the king. dom; that the lands of the nobility shat be taxed equally with those of the commons; that all the privilegcs of the nobles, prejudicial to the commons, shall be revoked; and that no man shall be compelled to purchase papal indulgences.

In this contest the government, assisted by the nobles, was victorious; and this "bold attempt of the Commons," says Dr. Robertson, " like all unsuccessful insurrections, contributed to confirm and extend the power of the crown, which it was intended 10 moderate and abridge. The Cortes still continued to make a part of the Castilian constitution, and was summoned to meet whenever the king stood in need of money; but, instead of adhering to their ancient and cautious form of examining and redressing public grievances before they proceeded to grant any supplies, the more courtly custom of voting a donative in the first place was introduced, and the sovereign, having obtained all that he wanted, never allowed them to enter into any inquiry, or to attempt any reformation injurious to his authority. The privileges which the cities had enjojed were gradually circumscribed or abolished; their commerce began from this period to decline, and becoming less weathy and less populous, they lost that power and influence which they had acquired in the Cortes." The Cortes, however, were not always so submissive to the will of the monarch. On several oceasions they peremptorily refused any supplies, and resisted all the solicitations and theatenings of the king. In 1539, when the exigencies of Charles were at the utmost, he proposed io estahlish a general excise upon conmodities; but the nobles, who had now begull to see, with regret, the miseries which their acquiescence to the will of the monarch had entailed upon the country, that it was drained not only of its wealth, but of its inhabitants, ill order to prosecute guarrels in which it was not interested, and to light battes from which it could reap no benefit; and also to feel that the most valuable and distinguished privileges of their order-an exemption from all taxes-was about to be wrested from them, opposed the measure so stedity, by the persuasion of the constable of Castile, that the scheme miscarried, when Charles dismissed the assembly with indignation. This disappointment of Charles
was accompanied by another still more mortifying to a prince oi his temper. As he was returning from a tournament on the plain of Toledo, one of the harbingers, in clearing the way for the king, struck the Duke of Inlantado's horse with his baton, when that proud noble drew his sword and cut bim over the head. Sucb an outrage in the presence of the sovereign called for immediate punishment, and the prorost of the household was ordered to arrest the duke; but the constable of Castile interposed, asserting that it belonged to his office to take cognizance of such offences, and conducted Infantado to his own house. The other nobles applauded the boldness of the constable, and retired with him and the duke, leaving the king unattended except by the Cardinal Tavera, with whom he was conversing at the time. Charles, however mortified, saw the danger of irritating a jealous and high-spirited body of men, and had the prudence to conceal his displeasure. He even sent next morning to Inlantado, offering to punish the person who had affronted him; but the duke pardoned the officer, and gave him five hundred ducats as a compensation for his wound. Charles, however, by degrees broke the power of this formidable body, and left them nothing but the vain distinction of being covered in the presence of their sovereign. From that "period ncither the nobles nor the prelates have been called to the Cortes, on pretence that such as pay no part of the public taxes should not claim any vote in laying them on. Nonc have been admitted but the procurators or representatives of eighteen cities. These, to the number of thirty-six, being two from cach community, formed an assembly which bore no resemblance to the ancient Cortes, and became rather a junto of the servants of the crown, than an assembly of the representatives of the people. Philip II. persevered in the same system. Taking advantage of an insurrection in Aragon, he curtailed many of their privileges, and abolished the office of Justiza, which extinguished the liberties of that kingdom; and so successful was he in extending the royal prerogative, that, during the reigns of his successors of the house of Austria, the will of the sovereign became the supreme law in all the kingloms of the monarchy.

\section*{Chap. V. Syuin while subject to the lourbons.}

Upon the death of Charles II, the junta of regency immediately assumed the luncions of government; and communicated to the king of France the testament of their late sovereign. Lotis, aware of the glaring violation of his most solemmengagements with respect to the treaty of partition, pretended to hesitate about accepting the will in favour of his grandson; but his scruples were casily overcome, and Philip, was conducted to the frontiers to take possession of the Spanish crown. The reception of the young monarch was most cordial and joytul. He made his public entry into Madrid with all possible magnificence, surrounded by exulting and admiring crowds, who contrasted his youthful and prepossessing comentenane with the decrepitude and gloomy melancholy of their lormer sovereign. His title was acknowledged not only by the distant provinces of the monarchy, but by the maritime powers who had been partics to the treaty of partition. But while Plailip secmed in quiet possession of the throne, the Emperor of Cermany issued a bold
and whementremonstrance aganst this art whanpafion on the part of framer: and "fterstioned mot onty the andachticity of (hames' will, but the rient of that sowerign to mate such a divposition, which was eontrary to the acknowledped lambolhis lamily, and the solemm cobligation of treatios." 'This was inmediately fotlowed by a borous proparations for war: and before the conchision of the yeare, the emperor was jotied by Jingland and Mobland, and sometime after by Doplugal, who lormed what was called the srand aliance, the whect of which was, 10 secma satisfation for the clams of Anstria upon the Spanishmonarchy, and to prevent the mion of the crowns of Prance and Spain under one sowerment. I on is had foreseen the issue, and was prepared for it: but the deplomble state of Span-here revene exhausted, her lomiticalions in ruins, without gurisons, of matumes, and ber naval
 prechated any home of efficiont support from that quarter: and comsincer him that the presemation of the (rown of Spdia lor his standson, must depend chiclly upon his own exertinit. He had commenced the wat in laty with consiterable success, but was checked on the sille of limbers by the tatemts of Narborongh. Fhe wat was at lipst combed to the elistant prosinces but the intemal trangallaty of the Peminsula, began snon to be disturded by the impolicy and imprudence of the Spanish rulers.

Portocarrero, thinking no reward too high for his sersices to the house of Bourbon, had absorbed ath the influcnce of the crown, and directed cvery measmre of the sate. A thorough reform was indeed requisite in every deparment, particularly in the fnances; wnt the attempts of the minister, which were confined chiclly to the suppression ol various ofices and phaces under govermment, and the withdrawing of pensions, which the piety of former sovereigus bat granted for the subsistence of poor widows, and the maintenance of charitable institutions, produred avery trihing saving, Whate it involved namerons Camilies in embaressmont and ruin. The Spaniards had lurmed verg cxtravagrat notions of the wistom and energy of the new gosernment, and Batterd themselves that their country would resme all its pristine splendour, whout sweeping away those abobes and encumbrames which had been accumatatig lor ages. 'lohis impuliticeparsimony therefore tended only to excite discontem among the people; and the attachment of Philip to French customs and manners, and the admission of the peers of France to the same rank and honours as were enjoyed by the grandees of Castile. disgusted and alienated the high-spirited nobles. The spirit of disaffection to the new dynasty was aggravated by the destruction ol" a Fremeh selpadron and the Spanis! gatleons, in the harbone of Viso, by the Duke of Or. mond; and by the dalection of some of the principal grandecs, amon? whom was the Duke of Medina de Rio Seco, admiral of Castile, " whose rast possessions, splendid talents, and high descent, rendered him one of the most powerful and distinguished members of the nobility." At the same time the Spanish cabinet was torn by personal feuds and petty cabals. The princess Orsini, camarera mayor to the quecn, was at woman of superior talents and attractions, and had ganed such an ascendency over both their majesties, that no affar of importance was transacted without her knowledge and advice. Though devoted
to the coum of Versablles, beth from self-interest ath Wratitude, yot she soon perceiref the evil, forets of that despotice combor wheh the french monarch was

 onghnizing an anministration chtimely Spanish, "to
 tisatrs, and to atmit into all plames of trast perestors of lamon talents and capacity." Swh at phat was well calculated to promote the wellare and the indepentence ol'span. Jonthe French ambassador, who winhed to arogate to hamself the whole dime tion of adtatrs, represented to his master that the intertiopere wh the pincess was most hurtul to the bernch infu-
 trol. This gave occasion to endess wanerline amol recrimination. Nor was this confined to unm or two. "The whole conte spemed to be involved in one rommon dispute, each imdividual strising who should must thwart, or calamatiate the others." The public interest was thus sacrificed to personal antipathy and private ambitions and, while in this distracted state. We nation was iotally umproviled with the means of defence asainst a powernil enemy.
'The allies, by the persuasion of the atmiral of C'as tike. had resolved to carry the watr into spain, atht to set up a competitor to Philip in the very heat of his kincdom. The Archduke Charles was conserpemy proctamed king ol Spain and the Indies at Vienna, and soon alter arrived at Lisbon accompanied by 1.1,00) British and Dutch troops. This threatened invasion excited a spirit of afucrity and decisios in We Spanish government which had been long absent from its councils. An army was hastily cmbodied and orgmized, and 12,000 french iroops entered Spain under the Dake of Berwick. The allies wasted their time in disputes and inaction, and the erents of the first campaign were favourable io the Spanis? arms. Bat his was counterbataned by the loss of Gibraltar, which was captured by the British, and by the batte of Blenheim, which was haited by the Austrian party as a prolude to the domad of the Bourboss.

Whe feuds in the cabinent continued with freater siolence than ever; and at the moment when prompt and visorous exertions were necessary io resist the increasing force of the allies, a tolal suapension of business ensucd; and the most filling is we!! as the most important measures were equally thwarted. This was occasioned chiedy by the recall of the Prinress Orsini by the king of France, which so aflicted and irritated the gueen, that she secorcty ubstructed every measure of the prench ambassador, and enconaged the cabinct to oppose the extrcise of loreign influcnce, and to demand restoration ol the ancient lorms. The nupromisiag state of aftairs, however, forced her to yield to the demands of Lowis, and a new council was appointed under the auspices of Prance. But she still resisted all reconciliation, and ceased not to cxert all ber power for the retura of her lavourite, which she at length accomplished to the great joy of herself and her husband; and the princess was allowed to new model at pleabure the government and administration of Span.
The affairs of the allies in the peninsula began to assume a more imposing attitude. Charles had landed in Catalonia with a small body of troops under the \(\approx \mathrm{U}^{\circ}\)

Earl of Peterborough; the citadel of Montjuich was taken by assault in a most gallant style by their general; and was soon after followed by the surrender of Barcelona and the submission of the whole province except Rosas. Valencia and Murcia followed the example of Catalonia; and in these provinces nothing remained to Philip but the fortresses of Alicant and Peniscola. The recovery of Barcelona was now the great object of Philip's exertions. There his rival had established his court, and the fate of Spain seemed to depend upon the issue of this enterprise. Philip advanced into Catalonia with 20,000 troops commanded by Marshal Tessé, and was joined under the walls of Barcelona by the Duke of Noailles with a considerable reinforcement from France. A French fiet also blockaded the port, and prevented all communication by sea. The allies, dazzled with their first success, bad neglected the requisite preparations for a siege. They had dispersed their troops in the different fortresses of the province; and 3000 regulars constituted the principal strength of Barcelona. The inhabitants, however, were animated by the presence of Charles, and all ranks vied in derotion to his cause. The Earl of Peterborough also, with a flying camp, kept the besicging army in constant alarm. Anextensive city so weakly garrisoned could not have long resisted the efforts of so powerful a force. After a month's operations, during which the citadel had been abandoned, practical breaches were formed in the rampart, and the last decisive assault was about to be made, when the allied flect appeared in sight. The French squadron immediately withdrew; and Ploilip was compelled to raise the siege, with the loss of his magazines and artillery, and retreat into Roussillon. There he left the remains of his army, and returuing to Madrid, where, notwithstanding his disasters, he was received with sincere affection, he removed the court to Burgos. Saragossa opened its gates to Charles, and the whole kingdom of Aragon submitted without a struggle.

White these disastrous events were occurring in the north, the Duke of Berwick, who commanded on the rontiers of l'ortugal, was obliged to retire before a superior force, under the Earl ol Galway, into the heart ol the kingdom, and leave the way open to the capital. The allied army, consisting of 30,000 troops, entered Nadrid: but instead of taking advantage of the general consternation, and pushing their conquests into old Castile, which would probably have secured the reduction of the whole peninsula, they wasted their time in waiting for the archduke, who had been loitering in Barcelona and Saragossa, and preparing lor a magnificent chtry into the capital. The Duke of Burwick, however, was not slow in profiting by these delays. Ilis army, reduced to 9000 men, was stationed behind the llenares, and had been joined by the troops which had retreated from Barcelona, and increased by numerous new levies. With this increase of force, he pushed a detachment to recover Madrid, and having slut up the communication with Portugal, forced the allies to retreat towards Valencia, and by a vigorous and active pursuit, rendered their loss scarcely less decisive than an absoiute deleat. The distresses and Cortitude of Philip baving endeared him to his subjects, he was received at Madrid with an universal burst of joy, far more impressive than the ncclamations which had hailed
his first accession. During this campaign, while Pbilip was upon the eve of being driven from his throne, the Netherlands was severed from the monarchy by the battle of Ramilies, and Naples was soon after conquered by the emperor.

Both parties prepared, with increased exertions, to renew the struggle in the peninsula. The Duke of Orleans was despatched from France, with a considerable force, to take the command of the \(\mathrm{S}_{\mathrm{p}}\) anish army; and the allicd army in Portugal was reinforced by 12,000 men. liut before the arrival of these succours, the fate of the campaign was decided by the battle of Almanza. The Earl of Galway, anxions to anticipate the expected supplies, attacked the Duke of Berwick in his quarters witha 30,000 men; but that general, having hastily mited his furces, took post in the plain of Almanza; and after a long and wellcontested action, the allics we, a ronted with great slaughter, insomuch, that on then arrival at Tortosa, their forces scarcely amounted to 5000 , of whom ouly soo were infantry. The Duke of Orleans joined the army on the following day, and made such a rapid improvement of the victory, that in less than a mouth he recovered all Aragon and Valencia, and closed the campaign with the capture of Lerida in Catalonia. The joy for these successes at the cont of Philip was heightened by the birth of a prince, who was named Louis Ferdinand, Prince of . Asturias.

The kingdoms of Aragon and Valencia, which had always been forward in embracing the cause of Charles, were made to atone. in some measure, for their rebellion. In Aragon, the city of Saragossa alone was obliged to pay 45,000 pistoles, and the rest of the kingdom 00,000 . The ancient rights and privileges of both kingdoms were abolished, and they were in luture to be ruled by the sane laws and customs as Castile.

The allies, notwithstanding their severe reverses, were no way backward in prosecuting the contest. The army in Catalonia was strengthened by the arrival of Count Staremberg with a body of imperial troops, and by additional reinforcements from England. But even these would not admit of any offensive operations. They were barely sufficient to fill the vacancies occasioned by the late disasters; and, after detaching a corps to the northern fromtier, the Count found them too weak to cope with the victorious army of Philip. On the other hand, however, the plans of conguest formed by the Duke of Orleans were thwarted by the cxhausted state of the Spanish treasury. France was able to afford but a scanty supply; and the arrival of the American litet was ansionsly looked for to make up the deficiency. But while in this emergenc:, intelligence arrived that seventeen galleons had been intercepted by the British squadron off Carthagena, when three of the richest were taken or destroyed, and the rest dispersed. The ouly fruit of the campaign, therefore, was the capture of Tortosa. The duke then returned to Madrid; but owing to some suspicions of his having a design upon the crown of Spain, he was recalled to Paris.

The repeated reverses of the French momarch constrained him to think seriously of putting an end to the war. The battle of Oudenarde, and the consequent capture of liste, had opened a road to the very gates of his capital; and the alarms and discontents of his subjects were heightened by the pressure of fa-
mine and pestilener. In these circumstances, peace seemed to be the only alternative; but the demands of the allies were so degrading and dictatorial, that he rejected them with indignation. They insisted, as the basis of a treaty, that the whole Spanish monarchy should be restored to the house of Austria, and that Lonis should assist in compelling his grandson to abmaton his crown. He, therefore, appeated to the loyaty and homone of his people to preserve him from such an untatural and degrading condition. Hostilities were continned, but he intimated to Philip, his inability, from the distressed state of his own kingdom, to lumish the reguisite assistance for maintaining him upon the throne.

In this trying shation, lhilip, at the instigation of the Princess Orsini, eonvened the chiclministers and grandees; and having stated to them the exorbitant pretensions of the allics. the withdrawing of the French troops, and his lirm resolution to die in defence of his erown, he appeated to their zeal and affection, and demanded from them assistance and counsel. A burst of enthusiasm broke from the assembly, and they protested, "that daty and affection, no less than allegiance, bound them to maintain the sovereign on his thronc." They, however, recommended the immediate dismission of all the Freneh, and the establishment of an administration entirely \(S_{\text {pan- }}\) ish, at the head of which was placed the Duke of Medina Celi, who had always been strenuous in his opposition to foreign influence. 'The enthusiasm of the nobles spread through the nation. Levies of men, and contributions of money and plate, were poured in from all quaters; the clergy also lavished their treasures in the eanse, and the people cevery where flocked to the royal standard. Spain, however, when lelt to herself, notwithstanding the reviving loyalty of her inhabitants, was too much exhansted to furnish adequate resoures for the impending struggle. l'hilip was still direeted by the court of Versailles; for athough he avowed bis determination of throwing himself into the arms of his \(S\) panish subjects, he never gave his confidence to his Spanish ministers, who soon began to discover that the pretended separation from France was merely an affected expedient to stimulate the zeal of the nation. The preparations for the ensuing campaign were not the efore mate with that vigour which the emergency required. The system of finance, which had been planned and rendered efficient under the vigorous control of the lrench ambassador, became unproductive and even injurious under the maskilfol and negligent management of the new ministers; and it soon appeared, that the affairs of the grovermment could not be condueted by them with that energy which was necessary. Some suspicions also lalling upon the Duke of Medina Celi, he was suddenly arrested and committed to the castle of Segovia; but his offence was never publicly investigated, and his death, which happened soon alter, le lt this transaction involved in mystery. His successor Ronquillo, upon coming into office. engaged to supply the deficiency of the treasury and the wants of the army.

The following eampaign commenced by the advance of Philip with 23,000 men, under the Marquis of Villadarias, to the siege of Belaguer in Catalonia; but all his operations were thwarted by the skill of Count Staremberg; and being straitened for provisions, he was obliged to retire upon Lerida. The
allied ariny having been strengthened by reinforecments from Italy, and joined by the Areladne, liotlowed him across the segra, and attempting to cut him off from lis supplies, came to an engagement near Atmenara, when the Spanish army was thrown into confusion, and would have bern totally destroydod hat not nigh favomed their escape. Although their loss in bathe did not ueceed 1500 men, yet a panic spread tirough the army, and it was with tifliculy that they reached saragossa. Here Philip transfered the command of his army to the Maryuis of Bay, who had distinguished himself on the western fromtier. Bat the allies had pressed close upon his rear, and before three days hal elapsed, the batte of Saragossa drove Philip from his capital, and gave at temporary trimpla to the arms of his rival. The Spanish commander, with a remnant of \(8,0,5)\) men. retreated to Soria, and the king hastened to Madrid. Though he retumed a fugitive, without an army or resources, he still possessed the affections of his Castilian subjects: and when he removed the residenee of the court to Valladolid, his departure was the signal of a general emigration. "lle was accompanied by the egreater part of the nobles; above 80,00 persons covered the road to Valladolid; even ladies of the first distinction followed on foot; and seareely any remained in the capital except those whose age, infirmities, or poverty, did not permit them to remove." When Charles, therclore, entered Madrid, no cheers greeted his arrival, but solitude and silence reigued in the deserted streets, and he was compelled to exelaim, "Madrid is a desert."

The firmness and prudence of Philip seemed to rise with his misfortunes; the Castilian spirit was roused to maintain the national glory and independence; and his subjects vied with each other in lavishing their property and their lives to repair the losses of their sovereign. The arrival of the Duke of Tendome to take the command of the army infused additional energy into their comacils. He collected the scattered remains of the Spanish forces, and by the middle of November had a well appointed army of 25,000 men. The troops of Charles had remained in the vicinity of the capital, exhausted by discase and intemperance, and exposed to the incessant attacks of the armed peasantry; and their departure was hastened by the intelligence that a Freneh force, under Noailles, had entered Catalonia, and attacked Gerona. The Arebduke hastened to Barcelona with an escort of 2000 horse; and his army immediately after began their retreat towards Aragon. Yendome followed, and by a rapid movement overtook their rear guard, consisting of 6,000 men, eommanded by the British general Stanhope, who had taken up his cantonments in the small village of Bribuega. Stanhope, though surprised, prepared for a vigorous delence. He threw up entrenchments in the strects, which he defended with great bravery, and disputed every inch of ground in expectation of being relieved, but he was at last overpowered by numbers, and compellet to surrender prisoners of war. Staremberg being apprised of the attack, hastened, but too late to his rescue; and encomitered the Spanish army at V'illaviciosa. After a bloody and doubtful conflict, the two armies were separated by the darkness, and Staremberg kept possession of the field of battle; but he had suffered so much during the action, that he spiked both his
own camon and those of the Spaniards, and retreated during the night to Barcelona. Soon after this, Gerona having submitted to Noailles, the Spaniards graduaty established themselies in the centre of Catalonia, and menaced Barcelona and Tarragona.

The dintresses of France were now come to a crisis: and Louis, with all the energy of an absolnte government, was scarcely able to prolong a defensive war. The only resource, therefore, from impending ruin, was peace almost upon any terms. The preceding campaign had been most favourable to the arms of the allies; and had they prosecuted the warduring another year with similar success, they would have been able to dictate a peace at the gates of Paris. But the house of Bourbou was saved by the shamelul defection of Britain from the prisciples of the gread alliance. A change of ministry in that country had led to a change of measures most larourable to irance and Spain. The overtures of Louis were furourably received, although the resignation of the throne of Spain by his grandson, the great cause of the war, formed no part of them; and the British cabinct, selfishly grasping at the offer of commerial adrantages, meanly submitted to commener nergotiations without the consent of the other maritime powers, and continued these clandestinc transactions, white they were amusing the Jutch with professions of cordality and confidence. Louis, however, had some dificulty to bring Philip to accede to the proposed terms. The cession of the Netherlands was at first wehemently opposed by Count Bergueck, the minister of Philip; but Louis having gained over the Princess Orsini, his objections were silenced or owerruled, and Philip, granted full powers to his erandmather to negotiate in his name. 'ihe cousent of the Dutch to the preliminary arrangements was extorted by the dead that Britain would conclude a separate peace; and Charles, who had been raised to the imperial throne, finding all remonstrances fruitless, did not reluse to take a share in the discussions. The deaths of the Dauphin and his son the Duke of Brittang, which lelt only the duke of Anjou, a sickly infant, between Philip and the throne of France, threw a new difficulty into the negotiations. Lonis, though he tacidy acknowledged, yet was always solicitous to erade one of the pretiminary articles respecting the separation of the two crowas. When their mion, however, became so probable, the British calinet demanded the immediate renunciation ol' Philip for himself and his heirs, of all claim to the crown of France, and a similar renunciation of the Duke of Odeans to the crown of Spain. The king ol France at ferst resisted their demand, and dectared that "No power on earth can after the constitutional law of the kingrom, the prince next the crown necessarily succecds." But when the allies, by their mititary proparations, gave undonbted indications of their determination to resume hostilities, lonis, aftail asain to trust the late of his crown to the fortune of wat, was comperled to acquieser, and Plifips soonafter signod his renumciation in a lull council of state, which was ratificd and confirmed by the Cortes. The great olstacle to peace being now removed, the negotiations proceded, and at last led 10 a general peace. which was conebuded at Utrecht, with all the contending parties except the Emperor and Philip. The principal artiches with regard to Spain wele, that Spain and the Indies should con-
tinue subject to the present sovercign: that Gibrather and Ninerca should be ceded to Britain: the Notherlands, Naples, and Mitan, with the istand of Sardinia to the house ol Austria; and Sicily to the duke of Savoy, with the tille of King. As the emperor refused to renonace his pretersions to spain, the decision of the grand guestion relative to that monarchy betwern him and lhilip, was lelt to luture wars and negotiations.

The war still continued in Catalonia, but as the campaign on the side of Philip was merely defensive. the only cernt of importance was an unsuccesslul attempt of Staremberg against Gerona. The emperor, howerer, in order to concentrate his whole force on the borders of the empire. entered into a treaty for the cracuation of that principality, in which he labonred to preserve for the Catalas their darling constitution. But Philip would admit of only one form of goverment in his dominions, and was resolved to abrogate heir privileges. All, therefore, that could be attaned for these faithful supporters of his cause, was a general ammesty and oblivion of past offences. aml a tender of the constitution of Castile in lieu of their own. England also, who had twice pledged hersell in the lace of Europe to maintain their privileges as the price of their services, meanly shrunk from the fuffiment of their engagements: and the Catalans were left to their fate. Arslenty attached 10 their native customs and laws, and holding in detestation those of Castile, the inhabitants of Barcelona resisted every offer of accommodation, short of the actual acknowicdgment of their ancient privileges. Though abandoned by all, they prepared for a vigorous defence, determined to relinquith their liberty only with their lives. Villaroel, who had received the rank of general in the - Iustrian service, was entrusted with the military commanct. He had only 16.000 troops besides armed citizens, to oppose the whole army of Philip. supported by 20,000 French, under the renowned Dake of Berwick. But every expedient that skill or valour could suggest, was employed to ensare success in the approaching conflict. All who were unt for service, the timid, the sickly, and the aged, were removed to the istand of M , jorca, which also held out against the authority of Philip, the fortifications were repaired and strengthened, the strects barricadoed, and erery house converted into a citadel, by piercing the walls for the use of masketry; and, in order to excite th. popular enthasiasm, and to strengthen their patriotism with the sanctions of religion, they deposited on the high altar of the catoedral the written promise of the cqueen of Engtand to maintain their constitution, making a solm, appeal to hearen against the desertion of thore, of whose selifis ambition and crooked policy they were abont to become the sictims.

The Spanish trenclics were opened on the 12 ths of July; on the 30 ha a fodgement was made in the covert way; and by the 12 th of August, breaches were effected in two of the bastions. Alter a struggle of three days, the ass:ilants obtained a footing nopon the rampart; and, while arrangements were making lor a general assault, the Duke of Berwick, anxious to prevent a farther eflusion of hood in this untalural contest, and to save the city from the horrors of a storm, repeated the offers of a seneral ammesty. Ilis compassiouate elforts were teated with contumely, and serv-
ad only to add fuel to their embusiatm. The signal for the assant was gisen o: the morning of the ! th of September, "Pifig battalinos ol कrenadiers," sass Coxe, "commenced the demalfal work, and were supported by limy others. 'the French attacked the eastern hastion, the Spaniarels that of St. Chata and the new gate. Fhe resistance was obstate even to ferocity. Camon loaded with rrape made the most dreadfil carnase in the brearhes. Without beeng able to advance a smgle step, the assatants perished by hundreds. l'resh troops incessuntly arivings, at kength oferponered the weaker mamber ol the besiessed. I'he French and Spanish columns mounted the breaches at the same instant, and the liench pushed forward into the cown. But bere the conllect rally eommenced. Every street was intersected will batricales every inch ol sround was purchased with the sacrilice of lives. Unprovided with means to liarce the barricadec, or fill up the ditches, the assatamts were swept away ban incessant lipefromevery house. At lengela all obstractions were overcome by torrents of blood. la the heat of the combat, the victors spared not; the Catalans, lavish of lile, demanded no guarter. When they weredriwn into the great square, the assatbmts deemed the comfict at an end, and dispersed for pillage. But the insurgents, profiting by the moment, returned to the charge; the assailants were driven back to the breach, and would have been again precipitated into the ditch, had they not been rallied by the bravery and exemtions ol their oflicers. Again the combat raged with aggravated lury, for the Spanish column, which had penetrated by the other breach, was driven back as the french retreated. Numbers and bravery at length vanguished all resistance. The Spaniards turned their own camon agatist them, and additional artillery was brought up to the breach. Yet, though thrown into disorder, they did not cease to combat. The assailants, galled with a contmatial and terible fire, by a desperate effort Forced the bastion of St. Peter, where the besieged made their principal stand, and turned its artillery agaimst them. In this crisis, the chicts led them to a new charge, but were repulsed, and Villaroel desperately wounced. Though discouraged by the misfortune of the commander, the besieged still maintained the struggle for twelse hours, in every quarter of the town; and there was scarcely an inlabitant of any age, sex, or condition, who did not share in the defence. The history of this century does not furmish an example of a siege so long and bloody. The women at length retired into the convents; the populace, vanquished and straitened on every side, and unable to delend themselves, did not demand quarter; and the French massached all without distinction. At this moment, some individuals raised a white standard; and Berwick seized the opportunity to suspend the carnage, ordering the troops to maintain their josts, till he had heard the proposals of surrender. But a sudden cry of "kill and burn" bursting from the ranks, resived the fury of the troops; the streets were again deluged with blood, and the authority of Berwick himself scarcely sufficed to arrest the disorder. Night arrived, and with it new horrors; for in the short interval of suspense, the imbabitants resumed their arms, and again poured a destructive fire from the laouses. Deputies at length advanced to the breach to parley with Marshal Berwick, but required a gen-
real parlon, and the restomation of their privileges. The marstat omtemptumbly rejected the demand, and
 der belore monning, II is answer inflamed the spint of the insursents; and the combat raged with redoubled lary. a stom of fire poring upon the assailants from the homes, which, by ordere ol the marshat, had bern mespited lion destruction, "lohis nighe was one ol the most horrible that imagination can form. 'lhe marshal owtered the dead anl wounded bobe remosed, kept the trodps meter arms, and propared to peduce bie town to ables. Day broke, and botwithatandines the obstinacy of the insurerots, he granted a delay ol six bours. This concession prodicing mofect, the lonses were set on fire Apprised of their damere by the burst of the flames, the insurgents once mote hoisted a flag of trace. The line was extingnished, the deputies of the magistracy y iched the town without condition, and the oflers of bernith prochred the immediate surrender ol Domjaichand Cardona.

The lives and property of the inhabitants were spared; but twenty of the chicts, among whom were Sillaroel, Amengol, the Marquisol' leral, anel Nebot, were consigned to perpetual implisomment in the casthe of Alicante; and the bishop of Abaracin, with two hundered ecclesiastics, banished to ltaly. ()f the rest, the inferior officers were dismissed on taking the wath ol allestance. The standards of the town were pmblicly burnt, the privileges of the province ammulled, and a new govermment cotablished, according to the constitution of Castile.

Thas cmed a conllice which recalls to recollection the late of the ancient Numantia and Saguntum, and in recent limes finds a parallel in the immortal defence ol' Satagossa. The royalists purchased their tictory with the loss of no less than 6,000 men in the siege, and 4,000 in the assaule; and the besieged were equally sufferers.

The lite of Barcelona ensured the submission of Majorca; and Philip now reigned undisputed monarch of' Spain. The death of the queen, and the marriage of Philip to Elizaboth Farnese, a ptincess of l'arma, was followed by the disgrace ol the Princess Orsimi, and her French adherents; and the death of Louis XIV. to whose will Spain had hitherto been subservient, led to the removal of a foreign domination, which gave uniwersal satisfaction to the Spanisla people, and produced a temporary tranquillity in the court and kingdom which had long been unknown.

Philip, belng now relieved from the control of his grandiather, directed his efforts to the improwemeat and welfare of his adopted country. The distant branches of the monarchy, which had always been supported at the expense of Spain, and in delence of which she had often lavished her tieasare and her population, being lopt off, his attention was confined to the peninsula; and it required only a few years of peace to recruit his resources, and consolidate his power. A hypochondriac maladr, however, had weakened his faculties, and had induced such indolent habits, as prerented him from prosecuting his purpose with any degree of consistency or firmness. ILe was consequently led by those who at any time were fortunate enough to gain his confidence. The new queen had succeeded to all the power possessed by her predecessor and the Princess Orsini, and by lier
talents and intrigues, governed her doting husband with such authority, that, without seeming to rule, she was, during the whole of his reign, the actual sovereign of Spain. Her chief guide and confidant in the science of politics was Alberoni, one of her own countrymen, and to whom slie principally owed her own elcration. This person, by his talents and address, had raised himself from being the son of a poor gardener at Placentia, to the friendship and conBdence of Vendome, and after the death of that general, became minister from Parma at the court of Madrid. By his discriminating and intriguing spirit, he soon obtaincd an ascendency over the sovereigus of Spain; and though he held noother public character than that of agent from Parma, he in fact held the reins of the Spanish government.

As the emperor still persisted in retaining the title and assuming the honours attached to the crown of Spain, Philip was anxious for an opportunity of humbling his rival, and wresting from him his Italian territories, which had been scparated from Spain by the treaty of Utrecht. In the prosecution of this scheme, Alberoni endeavoured to obtain the cooperation of Britain. and for this purpose restored to that power all the commercial adrantages which it had enjoyed under the former sovereigns of Spain. But professions of amity were all that he could obtain in return; and Britain soon after formed with the cmperor and France the triple alliance, which had for its object the preservation of public tranquillity, and the confrmation of the possessions in the treaty of Utrecht, concerning the succession to the two crowns. When informed ol this treaty, Philip was flled with indignation, and reproached Alberoni with betraying him; but the wily statesman soothed the irritation of his master with the hope of soon detaching Britain from the alliance; and laboured to protracta rupture until he was better prepared for hostilities. The allies immediately endeavoured to modiate an accommodation calculated to satisfy both parties. Philip, however, refused to renounce his pretonsions in Italy, and hastened his hostile preparations. But, while Abberoni continued to temporize with the allies, the war was accelerated by the arrest of the Spanish ambassador at Rome on his return through Italy by the Austrian governor, who confined him in the castle of Milan, and having seized his papers, transmitted them to Vienna. This insult from such a quarter destroyed all hopes of a reconciliation; and Alberoni, having been raised to the dignity of cardinal, pressed the requisite preparations for an expedition against Sardinia, which was completely successful, and that island was again added to the crown of Spain. The war, once commenced, required great exertions, and called lorth all the cnergy of Abberoni. The enthusiasm of the nation was awakened by the success of the Spanish arms; and contributions of money and troops were furnished by the diflerent towns and provinces. By these means he was enabled to make a successful attack upon Sicily. Palcrmo submitted, and the restoration of the Spanish grorernment was hailed both by the nobles and the people. But the further progress of the Spanisharms was stopt short by the defeat of the Spanish llect by Admiral Byng in the bay of Naples. The allies still pressed upon Spain the necessity of an accommodation, and Britaia even offered the restoration of Gibraltar provided
that her sovereign would aceede to the alliance. Philip, hovever, was inexorable, and declared that he would never lay down his arms until Sicily and Sardinia were ceded to Spain. Three months were allowed for the acceptance of their terms, accompanied with a threat, that any farther delay would be followed by a declaration of war.

In the neantime Alberoni had drawn Sweden and Russia into a treaty with Spain, the principal object of which was the invasion of Britain in support of the pretender. But the death of Charles XII. and the appearance of a British fleet in the Butic, deprived him of all co-operation from these powers; and when an expedition, with 6,000 men, and 30,000 stand of arms, under the cxiled Duke ol Ormond, left Cadiz for the shores of Scotland, it was dispersed by a tempest off Cape Finisterre, and 300 men only, with a lew officers, reached their destination. The other schemes of Alberoni were equally unsuccessful. He had fomented a conspiracy in France, which was encouraged by his master, with the view of removing the Duke of Orleans, and appointing Philip to the regency of that kingdom. The discovery of this plot was immediately followed by the invasion of Spain by a French army under the duke of Berwick, who destroyed the arsenal and stores of Port Passage, took possession of Fuenterrabia and Urgel, and then retired into Roussillon. These reverses compelled Philip to think of peace; but the allies would be satisfied with nothing less than the dismissal of his minister, which, having accomplished, Philip acceded to the quadruple alliance, by which he relinquished all claims to the dominions which had been severed from the \(\mathrm{S}_{\text {panish monarchy. Sicily was re- }}\) stored to the emperor, Sardinia to the Duke of Savoy, with the title of king, and the crentual succession of Tuscany and Parma was cntailed upon the issue of the queen of Spain. But, while these general arrangements were accepted by the contending powers, many minor claims on all sides were left unsettled as the germs of future disputes, and were referred to a congress to be beld at Cambray. The bonds of amity between France and Spain were renewed by the marriage of the young king of France with the Infanta Mary-Aune in her fifth year, and of Louis, prince of Asturias, with a daughter of the Duke of Orleans; and this double comncxion allayed the personal animosity which existed between Philip and the Regent, and suspended for a time all political rivalry between the two nations.
The removal of Alberoni deprived Philip of an able servant, whose vigorous intellect, and extent of information it was difficult to replace; and, when he aflected to be his own minister, and to conduct the business of the state, he suuk under the weight, and gradually relapsed into his habitual melancholy. The reins of govermment were then alternately seized by various competitors for power, and had found no master hand to guide them, when Philip suddenty abrlicated his crown in fawour of his sou Don Louis.

The young king was only in his seventecnth year when he ascended the throne. Attached by birth and habit to the Spanish manners, he was welcomed with universal exultation. But his youth and inexperience rendered him unfit to direct the helm of the state; and while he stood as the ostensible hatad of the government, he possessed no real authority. Philip,
who with his queen had retired to the beantiful palace of St. Idefonso, which he himself had constructed at great expense, enjoyed all the power withont the trammels of royalty. He had retained the marquis of Grimatdi as his seevetary, and through him regulated the atlitirs of his son's govermment. 'The passive disposition of loutis made him submit lor a time to the orders lrom St. Whefonso; bat the intrigues of his cabinet were directed to his emancipation; and it is probable that be would soon have been induced to assert his right, and to unite the real to the nominal authority of his station, had he not been carried of by the small pox after a reign of only eight months.

The abdicated monarch, anxious to recover that authority which he had never altogether relinguished, Iastened, in opposition to his solemm vow, -never to resume the crown, and also to the wishes of his subjects, - to prepare for his again ascending the throne; which, alter some aflected rebigious seruples, he was not long in accomplishing. The queen, overjoyed at recovering her crown, directed all here eldorts to the accomplishment of her dalling objeet, the reversion of T'uscany and Jarma to her son Den Carlos. 'This subject, however, was received so coldly by the congress at Cambray, that she resolved to negotiate directly with the emperor. She accordingly despatched the duke de Ripperda on a secret mission to Vienna, which be fulftled in such a way as secured her favour, and set aside for a time the farourite Grimaldi. Forgetting their former risalry, the two monarchs entered into the closest bants of amity; and the first fruit ol this new alliance was the demand lrom Britain of the immediate restitution of Gibraltar. In resisting this demand Britain was supported by France and Prussia; but their hostilitics were confined to diplomatic warlare, until Philip became the aggressor by besieging that fortress. This was followed by lengthened negotiations among all the contending powers respecting a variety of points, which none were willing to concede.

The hypochondriac malady of the king had now increased to such an extent, that it occasionally gained the empire over his reason. In these seasons of distress his mind reverted to the happiness of retirement, and he expressed his determination again to resign the crown. The gucen dreading such a measure, removed the residence of the court to Seville. But, eager in the prosecution of her lavourite seheme, she cominued the negotiations, and at last by her intrigues and perseverance effected her object. Don Carlos was put in possession of Parma aud Placentia, and acknowledged the successor to the Grand Duke of Tuscany.

The disputes respecting Poland raised Philip onee more from his stupor, and returning to Madrid, he resumed the duties of government, and joined with France against Austria in support of Stanistaus to the throne of that kingdom. Their united arms were everywhere successlil, but he was deserted by France in the midst of victories; and the only lruit of the war was the possession of Naples and Sicily by Don Carlos, in exchange for Parma and Tuscany. The administration of the government during these struggles had been ably conducted by Don Joseph Patino, who has been termed the Cobbert of Spain, and was perhaps the most able minister, who since the accession of Philip, had directed the heim of the state:

His death was a loss to his country which 1hilip, during the remander of his reign, was never able to supply.
'The Iong continued disputes with loritain respecting commercial rights, both in Vurope and America, at last involved the two tations in war, the lirst fruits of which was the eapture of 100 ressels, valued at one million sterling, by Spanish privateers. The attacks of the linglish were directed chiofly against the enemy's possessions in the new world; but they were repulsed with sreat loss before Carthagena, and also failed in an attemp: upon Cubas and their only reprisals were the taking of l'orto-bello, and the seizure of an Acapulco ship by Anson. Into this contest the other powers of liurope were drawn by the death of the emperor, and the accession ol his daughter Maria Theresa. 'Thagh almost all of them had suaranteed the Pragmatic sanction, by which this princess was dectared heir of all the Austrian dominions, yet few of them were found just enough to support it. Philip, among the rest, regardless of his soltmon guarantee, appeared as one of the clamants of the Austrian inheritance, not with any hope of making gooel his pretemsions but for the purpose of obtaining an establishment in Italy lor the Indant Don Philip. Alter a Iong and expensive war, which was prosecuted with various success, Philip entered into the gencral negotiations for peace; but before they were blought to a close he was carried off by a fit of apoplexy.
lis successor, leerdimand VI., concluded the arrangements, by which Parma, Placentia, and Girastala were assigned to Don Pbilip: and the disputed points between Britain and Spain, which were too numerous and complicated to enter into a general treaty, were referred to a particular and separate negotiation. The pacifie reign of this monarch was spent in cultivating a good understanding with dritains and he lound an able coudjutor in the upright Carjaval, while the interests of France were supported by the marquis Ensanada. The court of Madrid was the theatre where these contending powers maintained a constant rivalry, each being supported by a party in the government. The death of Carjaval, which threatened the aminitation of the British interests, was well supplied by the appointment of General Wall, who followed the politics of the cleceased minister, and by the disgrace of Ensanada, became the sole arbiter of these contentions. 'This peacefil system, however, was overturned by the death ol' Ferdimant.

While the other powers of Europe were engaged in war, Ferdinand had maintained it strict neutrality; but Charles 111., alarmed by the successes of Britain, and more attached to Prance than his predecessor, was drawn into an alliance with that power, which was called the "Family Compact." By this treaty, the Bourbon monarehs agreed to guarantee their respective dominions in all parts of the world, and to consider every power as an enemy, who might become the enemy of either. Spain was thus led to sharc in the misfortunes of her ally. The llayanna, the depository of ber treasure, and the principal magazine of her naval and military establishments in the new world, submitted to the British arms, with a booty of three millions Sterling of public property, besides nine ships of the line, and an immense quantity of stores. Manilla surrendered about the same time, and was followed by the capture of the Santissima

Trinidada from that island, worth threc millions of dollars.

Portural, from her alliance with Britain, had also been lorced into the war, and presented to the capidity of Chates an exsy and important conquest. But even bere his arms were loiled, and his troops were obliged to retire within their own fromict. In this crisis the chivalry of the Spanish character was nobly displayed by the nobility of Atagon, and its ancient dependencies, raliying round the throne, and supplicating their sovereign to accept of their services in delence of their country. "We pray your majes:y to accept the half of onf forces to carry the war into hostile commeries. insteat of waiting for the enemy in our own; the other balf will suffice to kcep them lar distant from our shores, should they have the temerity to approach us. We have little concern in regard to the quality of posts which your majesty may assign us. less lor the climate whither we may be sent, and none for pay. Those who setl only to establish an jnconcstiole title to the rank ol gentemen, need no reward but an open fied to display their vatous, and afiection for their conntry." Sut repeated disasters having exhausted the resources ol the boubon crowns, they became sincercly solicitons for peace; and the treaty of Paris again pestored tranquillity to Europe. By the retiremem of General Wall, and the appomtment of Crimaldi, a partisan of France, the inlluence of that power gained the ascendency in the councils of Nadrid; and the commercial disputes with Britain, which still remaincd undecided, occasioned a degree of irritation between the two courts, which required but a spark to kindle it into a war. But while Charles wated only until he could be assured of the co-operation of lrance, the internalaftars of his own kingdom called for his undivided attention.

Squilaci, the minister of finance, whom Charles had brought with him lrom Naples, had attempted, in his eagcruess for reformation, to change the mational dress. An edict was accordingly issued, prohibiting the use of flapped hats and long cloaks, which were supposed to farour assassination, a practice then very common in Spain. He had also established a monopoly for supplying Madrid with oil, bread and ouher articles of greneral comsmption, which was immediately followed by a rise of price in these commodities. These measures roused the indignation of the populace, and excited an insurrection in the captial sosudden, violent, and powerful, that all attempts to restore tranguillity were mavailius, until Chatles himself appeared in the batcony ol the palace, and promised wdismiss the Neapolitan minister, to :"peal the obnoxions edict, to suppress the monopoly lop supplying the city with provisions, and to pardon the insurgents. The equable temper of the king was so rufled by this tumuht that he left the capital, and established his court at Aranjuce, where he resided for cight months.

As simitar insuractions had occurred in different parts of the kingdom, Charles hegan to suspect that they arose from something else than a mere popalar ferment; and "pon a stict investigation into the circumstances of these disturbances. his suspicions lell upon the Josnits. 'The spint of intrigue and persesermen amition of this celebrated ofoler had obtaned for then prat inllnonce and power in cuery Catholic country. As the instructers of its youth, the confes-
sors of its princes, and the spiritual grides of the nobility, they gained such an ascendency orer the minds of men that they mingled in all affurs; and there was scarcely a pablic intrigue or revolution in which they were not actually implicated, or supposed to beengaged. Devotedly attached to the cont ol Rome, they codeavoured to cxalt ber dominion orer all civil government, and acknowledged no authority that was any way opposed to the maxims of the order or the will of their gencral. They were thus dangerous as subjects, and by their number and wealth were formidable as enemies; and thoush they had become objects of feat and jealousy t'r many of the European Governments, yet, mot the midelle of the sixtecnth century, nomonarch bat been boht enough to set them at defiance. Porthgal was the firat who senthecxample, from whence they were expelted in 1759; France followed in 1764; and Spain in 1767: and the manner of their expulsion from this latter kingdom and its colonics, was as completras it was unexpected. See Jesuits.

Internat irnuquillity being completely restored, Charles, with the assistance of the Count D'Apanda, devoted his exertions to domestic reformation and the amelionation of the finances, while Grimaldi was at the same time concerting measures with the minister of France for again embroiling Europe in war. An unfortumate cxpedition against Algiers, however, drove Grimaldi from the helm, which was cntrusted to Count Florida Blanca, who commenced his adminis. tration by a war with Portugal. This contest arose out of Cormerdisputes relative to their respective boundaries on the Rio de la Plata, and in conseguence of these the two courts had been long cngaged in angry discussions or actual hostilities. The first aggression was on the side of the Portuguese, who reduced several forts on the Rio Grande, and repulsed a Spanish detachment with the loss of 500 men. But Spain inflicted a severe retaliation by the capture ol the isle of St. Catherine, and the colony ol Sacramento; and when hostilitics were stopt by the death of the king of Portugal, she obtained a rery adrantageous treaty, and retained Sacramento, which had long been a bane ol contention between the two crowns.

Upon the breaking out of the revolution in British America, and the interference of lrance, Charles pretended to adopt a strict nentrality, and offered his services lor the accommodation of their disputes. lartial however, to France, and anxious to crush the maritime power of Britain, which had long been the favourite policy of Spain, he used his mediation merely as a mask, and employed the long interval of the negotiation in naturing his maval and military preparations. He at the same time, in order to secure his object, had formed arrangements with almost every power either at enmity with Britain, or that was likely to be turned against her. Britain stood alone in this contest, and the first attempts of ber united foes was the invasion of her territory. Filty thousand troops were ready for a descent upon her coasts, and the combined llects, consisting of 63 sail of the line, besides frigates, bluckaded the channel, with the hope of intercepting the British llect under Admiral Ilardy. But the British admiral having eluded their vigilance, passed up the chamel; and though they fullowed him above Plymonth, they declined an action in so narrow a sea, and returned to Brest mortilied by
their failure, and debilitated by hardship and disease. A greater reverse, however, was awaiting them upon their own shores. Gibraltar had ben invested by sea and tand, and was reduced to such distress, that the Spanish conrt looked with conlidence for its speedy surrender, when Admiral Rodncy was despatched to its relief. Having captured on his passage a convoy of filteen sail, with naval stores and provisions, he encountered the blockading squadron oll Cape St. Vincent, which he defeated with great loss, and threw into the garison whatevir was necessary for its defence. These reverses, however, were in some measure comberbatanced on the side of Spain, by the reduction of the Floridas and the capture of the British East and West India lleets, valued at nearly two millions sterling. In the West Indies their operations were at first equally successliul. They had secured almost the whole chain of the Antilles, and were preparing an immense armament, to consummate theirenterprise by the reduction of Jamaica, when Rodney, as an evil genius, appeared in its defence, and having defeated the French heet under De (irasse, saved that island, and in lact prevented the utter expulsion of the British liom the Caribean Sea.

The capture of Minorca, after a brave defence, encouraged Charles to prosecnte with vigour the siege of Gibratar, which formed the most memorable feature of the war, and for a periot of four years arrested the attention of Europe. All the skill and power of the Bourbon governments were exerted for the recovery ol this important fortress: and they had made so sure of success, that two of the French princes repaired from Paris to witness its fall. Bat the gallant delence of (reneral Elliot, and the admirable manœuves of Lord Howe, who, in the face of a very superior force, passed the straits, and strengthened the garrison with a reinforcement of 1400 men, besides a supply of ammunition and provisions, rendered all their cllorts mavailing, and the cessation of hostilitics saved them from any farther disasters. After a long and lruitess negotiation for the cession of Gibraltar, Charles was under the necessity of acceding to other terms, by which he obtamed the two Floridas; and kept possession of Minorca, which, next to Gibratar, had been the great object of national ambition.

Charles had soon cause to regret his crroneous policy in enconraging the revolt of the American provinces. His own subjects in South America endeavoured to prolit by the example of the northern states, and an insurrection, headed \(\mathrm{b}_{j}\) a descentant of the ancient Incas, threatened to sever them for ever from the parent state. Tranguillity was at last restored, but the seeds of liberty were then sown, of which they are now reaping the barrest, and the maintenance of the royal authority reguired an establishment which absorbed the greater part of the American revenue.

The latter part of Charles's reign, under the wise direction of his favourite minister Florida Blanca, was spent in promoting the internal improvement of his kingdom; and the great object of his interference in the general system of European politics, was to secure public tranquillity, and prevent his country from being again involved in new troubles and commotions. He died in the \(73 d\) year of his age, and the \(19(1\) of his reign. This prince was the only Bourbon sove.

Vol. XVII. Part I.
reign of Spain who was not led by those who happened to surround him. Jte was perhaps, in general, too pertinacions in adtering to his own opinions and resolutions; but his talents were respectable, his disposition benevolont, his morals irreproachable, and he possessed a matuly lirmmess of emper, which was selfom clated by success of depressed by misfortune. He gave every cacouragement to industry and the line arts, and was a distinguished patron of literature and science. Respected and leared as a sosereign, be was beloved as a man; and those who attended on his infancy, frew grey, or died in his service. His most characteristic propensity was a love of shooting and the chase; and so high was the importance which he attached to his exploits as a sportsman, that he kept a regular account of the victims of his skill. It is said, that a little before his death he boasted to a foreign ambassador, that he had killed with his own hand 539 wolves, and 5323 foxes, adding with a smile, "you see my diversion is not useless to my comntry." Ilis dress is thus ludicrously described by Swimburne: "It seldom varies from a large hat, grey Segovia frock, a bull waistcoat, a small dagser, black breeches, and worsted stockings; his pockets are always stuffed with linives, gloves, and shooting tackle. On gala-days, a line suit is hung upon his shoutders; but as he has an eye to his afternoon's sport, and is a great economist of his time, the black breeches are wornto all coats. I believe there are but three days in the whole year that he spends without goiner out a-shooting, and these are noted with the blackest mark in the calendar. With all his peculiarities, however, he was greatly beloved by his people, and universally received the respected appellation ol " the good old king."

Remarks. - When Philip V. took possession of the crown of Spain, he found a kingdom completely ex. hausted, without a marine or efficient army, without industry or manufactures, with scarccly a remnant of her ancient power, wealth, and grandeur. Owing to the neglect or incapacity of her former rulers, every department of her government was in the most deplorable disorder. Incapable of her awn defence, it was only by the assistance of France that Philp was enabled to maintain himself upon the throne. When, by the treaty of Uirecht, the superflaous branches of the monarchy were lopt off, and the integrity of her territorics in the Peninsula and America secured, she began to rise into ber former importance, and to hold a high rank among the nations of Europe. The constant drain upon her resources required for the support of her dominions in Italy and Flanders, was now shut; and while her expenses were reduced, the revenue of Philip exceeded by one-third that of any of his predecessors. As the whole reign of this prince formed a series of inconsiderable projects, imperfect accommodiations, and successive hostilities, he olten experienced considerable difficulty in raising supplies. The money, however, which was expended in the war of the succession remained in the country, and the energy which that struggle produced, called forth a formidable army. Hier disputes with Britain led also to the establishment of a powerful marine, and the strength of her navy once more awakened the attention of Europe. The revisal of trade, industry and the arts, occupied the exertions of some of her ablest ministers. Alberoni laid the
foundation of many important improvements, by surveying the differemt provinces, and ascortaining the state, productions, and resonrecs of the kingdom. He greatly lacilitated the interior commanications and traffic, by remoring most of the inland customhouses to the frontier; and ronted ont a contraband trade ol freat extent, which had been carried on by the people of Biscay, under the privilege which they enjoyed of trafficking with the mannlactures and productions of their own province, free of duty. Ile diminished the introdnction of foreign manufactures, which bad hitherto filled the markets, to the detriment of those of Spain, by establishing a manufactojy of woollens at Guadalaxara, under the royal patfonage, and another olf fine linens, in imitation of those of llolland, and by transmitting the strictest injunctions to the different intendants and governors to encolurage the use of the native fabrics, and to have all the troops in future chothed with the manufactures of Spain. He also revived : lofendry of artillery and small arms, which had fallen into total inactivity; and in the principal ports, he establiohed docks, fabrics of rigging, and magazines. By these and other important regulations be emancipated spain from her dependance upon foreign nations, wot obly for articles of ahost universal consumption, but, what was of immense consequence in time of war, for the neans of naval and military equipment. The shoreterm o! his ministry, however presented him from giving consistency and effect to his rarions plans of internal policy; but his successors benefited by the valaable legracy, and, in the following reign, many of his projerts were completed, and trade and industry steatly relieved from the tramelsimposed upon them by interest and ignorance.
1) uring the pacific reign of Fordinand, the intemal improvements of the kingdom were steady and propressive. The collection ol the revenue was simplified by abolishing the farming systom, which had been found to be bothoppressive and incficient, and by reducing the provincial taxes to a rogal arlministration; and such order and cconomy was introduced into the finances by Ensenada, that the Spanish treasury had never been so well replenished since the accession of the Bombons. Improvements in the marine, which had always been a favourite object of the govermment, were prosecuted with great vigour and success. Tim. ber was collecterl Irom Naples and other pats of Europe; foreign shipbuiders and engineers were enconraged to settle in the conntry: and by fortilying and improving the arsenals of fierol, it was converted from a pattry village into one ol the noblest ports of Europe. New discoseries and improvements in the arts and scionces were vagerly sought for in foreish cotnaties, and transplamed into spain. Strenuons efforts were made to revive the national agriculture, by the fismation of patriotic socicties. and by transJatum into the Castilian onguc a valuable Arabian mannscript, foum in the library of the liscurial, which contained the exccilent system of culture pursued by the Moors.

But these were morely predules to the general sys. fem of ferm which distimenthe theremen of Charles III. and the administration of florida Blathea, who, with the assistance of Componames and wher able cordiatest, carried his schemes of amelioration lar beyont any of his pretecessors. The trate with

America, which had been confined to Carliz, was throun open to all the Spanish ports, except those al Biscar, which spread industry and activity ouer at the kinglom, and so multiplied the connection with the colonies. that in a short time the imports and exports were triphed, and the produce of the ctatoms and revenue in both dominions more than doubled. A new impulse was given to the native manulactures, by increasing the duties upon foreign fabrics; and the condition of the industrious classes was greatly meliorated by the abolition or modification of many oppressire taxes. Many charitable and patriotic institutions were established, for relicving the poor, and promoting industry and cducation among the lower orders: for the encouragement of agricnlture and the useful arts; and for the cultivation of literature and science. Most eflicient measures were also alopted for the prevention of idleness and mendicity: and the gypsies, a numerous and ragabond race in this country, who were lost in licentiousness, idleness, and vice, were converted into useful and industrious citizens. 'Ilae difficulties of intermal communication, which hat always been a great obstacle to industry. and in a great measure prevented the transport of corn and other heavy commorlitics. were remedied by the lormation ol roads in the principal provinces, and by numerous camals, which served also for the purposes ol irrigation. 'The labours o!' the minister were also directed to the administration of justice, both civil and ecclesiastical. By various regulations, he endeavutred to prevent the partiality or misconduct of the subordinate magistrates, and to check rexation, chicanery, and delay in the courts of law: and the formidable tribunal of the inquistion was so shackled and restricted in its operations, that it was allowed to give only such clisplays of its authority as to render it contemptible in the eyes of the nation, and to prepure the way lor its final abolition. The naval and military system lelt also the impulse of his beneficial regulation, and never was it marked by a more rapid amelioration than fluring his ministry. The improvements and changes introduced by this minister were, in fact, so mumerous and varied that they extended to almost every department of foreign or domestic policy; and had his patriotic adrice been foliowed, the burdens of the poor and industrious would have been still further diminished, and those odious impositions, the alcavala and milliones, which may be truly said to have cramped the industry, exhavisted the wealth, and hastened the decline of Spain, wonld have been superseded by taxes less oppressive in their operation. But his dismissal from oflice in the following reign, by the intrigues of the gueens pervented the completion of many of his plans, and the breaking ont of the French revolation turned the attention of the govermment to its own preservation.

Cime. V"T.-Bomaparte seizes the throne-hevolution in Spain-The French driven from the Peninsula.

Charles 111. upon his death-bed, charged his successor to retain Morida Blanca in his sersice, ats an upright and faithlial counsellor, to whose able and unweabed exertions the kingdom was indebted lor many valnable improvements. Charles lV., however, beld only the nominal sovereignty of Spain, the whole power and indacince of the goverument resided virth-
ally in the queen. This pinerss was a daushter of the Duke of Pama, and soon atier her marriage with the Prince of Asterias, diseavered astrons propernity to gallantry, which the sperer and juatons umper of her futher-in-taw was saredy abse to check. But be death of the ohd king feft her withont and obstache in the pursuit of her licentions pleasures, an bere weak and grool-natured himband secmed merther to feed mo to see ber disgracelin comdnet. Her lanomite at his time was Don Alantel (adody, a young oblice in the horse gnards, and descended of an ancient but decayd famity in Estremadura. 'Mhis persmhad oby sincd his preseat cevation by supplanting his brother in the at fections of the glued a and be continued, in spite of his own imprudence and inflethies, which were will known to his royal minteess, 16 mathation his astechdencyover her to the last. Ile hand abo imgratiated himself into the confudence of the monarch, and was rapidly advanced to the tirst ranks of the army. and the highest honours of the state. Having; leen patsed to a grandeesthip of the first tass, he received a princely estate belonging to the crown, with the title of Duke de la Meadial, and the Paindill fordida Blanea was removed to make way for his appoimmen to the head of the government.

At his period the revelation in France bad involued Spain also within the rortex of its influence; but her ill-conducted and disastrous ctionts were of thute a ait to the general conlederacy. The revolutionary forces overran the sreater part of Navarre, and would soon have dictated their onn tirms at Madrid, had not the favonste minister concluded and ratifed the peace of Basie, wh which he Frmen conquests were restored ja exchange for the Spanish part of St. Domingo, The nation had been so ahomed at the successes of the republican army, that this peace was hated with universal foy, and ho reward was considered too extravagant for the person by whose management it had heen accomplished. Anew dignity was created for himp alone, umder the tite of "Prince of the Beace." which placed him next in rank to the princes of the blood royal: and this was soon after followed by his marriage into the royal famidy, by weciving the hand ol the cidest daughter of the king's late brother Don Louis.

The open and unguarded grallatries of the favourite, however, excited the jeatousy of his royal mistress, and she freguenty lomed the lesign of acomplishing his disgrace and driving him from the coum; but her nuextingnished. and ever reviring passion, yiedded to the first offers of reconciliation: and alt her attempts at tevenge cuded only in the ruin of those who were employed as the instrments of it. It was his which deprived Spain of the tatents of the accomplistied and patriotic jovellanos, and consigned him to the fortress of bellere in Najorca. The return of confolence was always followed by an accession of bonour and inluence. The antiquated dignity of high admital, accompanied with great emoluments. and the thll of bighness, was revived athd confersed upou (iodor, and a brigade of cavaly, composed of picked min from the whole army, was given him for a hody guard. His power at length became so mhinited, that every departinent of the govemment was filled by his dependents; and it is sudt, that "the queen linding it impracticable to check his gatlantries, had so perlectly conguered her
jeakong as mat only to live with him on the most anicalde bims, but (0) ambate his base of variely in the nomb apen and impatent manter."

 the suppore of he pleasures, formen the mest perssing

 orderwhemenersitios, forbidimg the suly of motal philosoplay. "Hlis majesty,' it was sat it the ordar, -was met in want of phitosopbere, but of fored and whedicht subjerts.'" Spain consequenty ber ane the humble :oub, frest of the republice and then of the bitn. perop of france. Soun atter the prate of basko she antered into an alliance with the republic, of whish she formished a fleet and large compributions in money; but in her comest with Britain, bor fore of tweyt sever sait of the line was terated of Cape St. Vincent bey a wey inferior force, nader Sir John Jarvis, when lour tine of bathe ships remaned with the vetors.
\(L_{p}, a\) the rencwal of hotilities after the peace of Amicas, Spain, as a a sal take, again attarhod horself
 but the bathle of Tratatgar stripped ber of her marian' and she continned to be the passive instrument of bomaparte, till her population were ronsed to resistance hyasystem of perfilyantaggression, on the purt of the French mater, unexampley in the history of the world.

Nut satisfied with havine it his disposal the tesources of the Spanish monar hy, Bonaparte meditated the total subjugation of the kinghom, and the conferring its soverimaty a a conquered provinceupon one of his own family. Having gained over Coloy to his interests, and sown dissensions among the royal Pamily, he decoyed them, under the mask of friendship, to Bayome, and there by theats compeliod them to sign a remanciation of their rights the crown of Span and the ludies. and placed his brother Joseph upon the throne of that kimgdom. This plan of oppression and ageradisement, with the subeequent transations of he Peninsula until he capture of Cividal Romizo by Lord Wellington in 1812, are circumstantially dictailed in our article Bremals.

It will be seen liom our last reference that the campaign of 1812, commenced on tiee ast of the Peninsula, very undanably for the Spanish cance. The army under (iencral Biake was aminhinted by Surnet, who reduced almost the whole of C'atabnia and Valencia. On the western frontice, however, the captere of Ci vidad Rodrigo secured the safety of Pontugal. and in the same time opened a way into the centre of Spaill. While Lord We llington was prosecuting the sidege of this city General Hill admanced upon Mierida, whinh was evactated on his approach, and by his movement the conntry between the Tagus and the Coadiana wa completely cleared of the chemy, and the forces of Marmont and Soult elfectually separated. Upon the fall of Cividad Rodrigo, Lord Wedlinaton moted the greater part of his army towartis Bulaju, which. in the preceding year, had been sumendered, ofter a ferble defence b, the Spaniards. This furteres wan considered as an object of primary importance to his future uperations. and lie resolved to pash the sicese with the greatest vigour. By the midde of March
the place was completely invested, and on the \(29 t h\), a sortee of the garrison was repelled with considerable loss. On the 31 st the British fire opened from 26 pieces of cannon, which were strengthened by six more on the 4th of April; and by the 6 th, three practicable breaches were effected, which determined his lordship to an immediate assault. About ten o'clock in the evening, the troops destined for this arduous duty adsanced in four divisions. That, under Major General Picton, carricd the castle of Badajos by escalade, and Major Wilson with 200 men established himself in the ravelin of St. Roque. The false attack committed to Licutenant-General Leith, being converted into a real one, was completely successful. The division led by the Honourable Major-General Colville, and Licutenant-Colonel Bernard, encountered more serious opposition. They adsanced to the assault of the breaches with the utmost intrepidity, but such were the impediments raised by the enemy, that after repeated attempts, and the luss of many brave men, they were unable to accomplish their object. As the town and castle, however, were in possession of the British, all resistance ceased; and the French governor, who had retired with his staff inio fort \(S t\). Christoval, surrendered at day-light in the following morning. This brilliant exploit was accompanied with the immense loss of 1,035 killed. and 3,789 wounded. During these operations of the allied army, Soult was rapidly advancing to the reliel of Badajos; and Marmont had penetrated into the interior of Portugal, alter an unsuccessful attempt upon Cividad Rodrigo. As soon, however, as they learned the result of the siege, they both retraced their steps, the one towards Salamanca, and the other towards Seville.

The British commander now meditated more extended operations; and, in order to prevent any communication between the French generals, he detached Gencral Itill to destroy the bridge of Amarez, which formed the only passage below Toledo, by which a large army could cross the Tagus. This bridge was protected by two strong forts erected on each side of the river, and defonded by 18 pieces of artillery; but this galtunt officer, after a liatiguing march, in which he was obliged to leave his artillery behind, carried the one on the left bank at the point of the bayonet; which struck such a panic into the garrison of the other, that they abandoned the fort and lled in the greatest confusion.

Every preparation being made for the adrance of the allied army, it crossed the Agneda; and reached Satamanca on the 16 th of June. Marmont had constructed a strong line of forts in the ncighbourhood of this cily, with which he kept "p a close commonication, but by a mototery mancurre of Lord Wellingiom, he was compelled to abandon them to their fate. Their reduction, however, proved a work of no small difficuly, and it was the add of June belore the army was arrain in motion. "the enemy lad taken up a stroner position on the Douru, which it was considered imprudent to altark. Loord Wellington, therefore, instead of advancing upon Valladolid, threatened the Spanish capital, but Marmont having received reinforcements from the army in the north, and thas become suprior in mubers, by a skilful movement, turned tho nanks of the allies, and re-established his own commmication with Madrid. This was followed by a scifes of dexterous mancurres in attempting
to cut off the retreat of the British army, which, howerer, were met by evolutions not less brilliant on the part of Lord Wellington, who was anxiously waiting for an opportunity to come to an engagement. The over extension and weakening of the enemy's line pointed out the farourable moment, when General Pakenham commenced a furious assault on the flank of the French left, which was at the same time attacked in front by General Bradford's brigade, and the cavalry under Si: Stapleton Cotton, and, though well posted and defended by cannon, was completely overthrown. Gencral Pack made a gallant attack upon the enemy's centre, on the Arapiles, which, however, did not succeed until supported on the right by General Leith, when they were driven from the hill with precipitation. The other wing of the enemy, reinforced by the fugitives from the left, still showed a determination to resist, but, alter a sharp attack upon its light and front, the rout became general, and they were sared from destruction only by the darkness of the night. At daybreak the pursuit was renewed; and, coming up with the enemy's rearguard. their cavalry was routed, and three battalions of infantry made prisoners. The fruits of this victory were eleven pieces of camon, two eagles, sis colours, and upwards of 7000 prisoners, which were bought by the British with the loss of rookilled and above 4000 wounded. Marmont retreated with his broken army upon Burgos; and Joseph Bonaparte, who hat been advancing with the army of the centre to join before the battle, was met by his flying squadrons, and retired to the capital. Lord Wellington, having left a force under General Paget to watch the motions of Marmont, proceeded to Madrid, which was immediately evacuated- the French retreating by Toledo and Aranjuez. The Dritish troops entered on the 12th of August, and a French garrison, amounting to 2500 men, which had been left in the Retiro, surrendered prisoners of war.

The intelligence of the battle ol Salamanca and the occupation of Madrid, determined Mitrshal Sonft to withdraw the besiesing army from belore Cadiz, and to evacuate Andalusia, and, having joined bis lorces to those of Suchet and Joseph, to attempt the recovery of the Spanish capital. This movement enabled the allied forces under the Spanish Gencral La Cruz and Col. Skerret, to advance upon Seville, which was taken by assault.

After remaining some time at Madrid, Lord Wellington advanced to the siege of Burgos, which was held by the enemy as the hey of the north of Spain, and the castle of which they had rendered one of the strongest forts in the peninsula, Ile had been led to believe, from the magnificent promises of the Spanish government, that he would receive the support of the army of Galicia, which was represented as consisting. of 30,000 troops, in the highest state of discipline and eguipment, and led by officers of talent and experience: but discovered, to bis great mortification, that this mighty army had dwindled into 10,000 raw levies, without equipments, and commanded by men who had yet to learn the rudiments ol their prolession. The rapidity of his march prevented the transportation of heavy artillery, which compelled him to abandon the ordinary methot ol attack, and to adopt the slower and more uncerrain process ol sapping the works. The fortifications un St. Michacl's hill were
successfully stormed, and in spite of the skilful and resolute defence of the garrison in the castle. the besiegers bad established themselses within a hundred yards ol the enemy's interior line. On the 1 th of October a mine was sprung, when the breaches were instantly stormed, and a part of the British troops actually conered the works; but a heavy lire liom the garrison compelled them to retire.

While the allies were engaged in these operations before Burgos, the beaten army of Marmont had been greatly reinforced under Souham, and was adrancing to the relied of that important formess; and at the same time Soult was hastening from the south for the purpose of loming a junction with the no thernamy. The intelligence of these movenents determined Lord Wellington to raise the siege, and retire upon the Douro. 'Ihough pressed closely, and at diflerent points by very superior numbers, he retreated in the finest order, without any other inconvenience than what arose from the badness of the roads, towards the frontiers of l'ortugal, where the troops were allowed to repose in their cantomments until the season of action again arsived.

At the opening of the campaign in 1813 , the enemy occupied the ecotre of the peninsula, having their head quaters of the different amies at Madrid, Toledo, and Valladolid; white the line of the allies formed an extensise semicircle reaching from (adicia to the conlines ol Murcia and Valencia. Lord Wellington assembled his forces in the vicinity of Cividad Rodrigo, and having driven the lereach from Salamance, advanced upon the Douro, which he crossed with the main body ol his amy. He procecded without opposition along the northera banks of that river to Valladolid, where the encmy had concentrated their armies. They did not, however, attempt to defend that city, or clispute the passage of the Pisuerga; but retreated at the approach of the allies without intermission, mint they reached Burgos. Though occupging it strong position, and evincing a determination to stand, a charge ol British cavalry turned both their fanks, and compelled them to withoraw and abandon that fortress, alter destroying the works ol the castle, which had cost them so great labour and expense in constructing. Lurd Wellington, instead of following the route ol the enemy, hastened to the Ebro, which he crossed on the t th of June, and continued his March towards Vittoria, which the French had made their central depit in the frontier provinces. Here be fund the enemy strongly posted, and commanded by Joseph Bonaparte in person, having Marshal Jourdan as his major general. The allied army rested on the zoth, and on the following day, alter a severe contest, obtained a most brilliant victory, driving the enemy lrom all his positions, and capturing 151 pieces ol canom, 413 waggons of ammunition, with all their baggage and stores, and a considerable number of prisoners. So complete was their deleat, that the enemy carried with them only one gun and cne howitzer, and this solitary gun was afterwards captured. The fugitive army pursued its retreat, harassed at crery point, until it crossed the Pyrences, and the French were in a short time dislodged from all their posts in the north of Spain, except St. Sebastian and Pamplunia, which it became necessary to reduce, before employing the allied army in more decisive operations.

Soult, who bad been withdrawn from the Spanish war, to assist his master in Germany, was again appointeel as the literst person to restore the grary of the Frenth arms in the Peninsula, and to relieve, if possible, the two principal strongholds which still acknowledsed their temmion in that country. The beaten army, now stationed within the frontiers of France, havins becn greatly reinfored, and completely cquipped, was joined on the \(131 /\) of Jubly by the French marshal, who, when be assumed the command, boasted whis troops that he woulf drive the Butishbeyond the Ebro, and calebrate the emperor's birth day in the town of Vittoria. The allied army occupied the passes of the Pyrences, which afforded very strons; positions, but the lofty chains of mountains which intervoned, rendered the communication between the different divisions tedious and difficult. Soult, aware of the unfavourable situation of the allies in this respect, resolsed to attack them separately; and, on the 24th, burst with an overwheming force through the pass of honcesvalles, which was defended by Cemeral Byner and Sir Lowry Cole, who maintained their post throughout the day, but found it necessary toretire in thenight to the neighbourhood of Zubiri. In the alternoon ol the same day, another division ol the enemy attacked the position of Sir l? Hill, in the valley of Bastan, which was hardly contested fur seven hours, when that officer, being apprised of the retreat ol General Byng, by which his rear was threatened, lell back upon lrurita. Loed Weltington was not informed of these erents till late in the following day, when be immediately adopted measures for concentrating his forces. Soult, on the 27th, arrived in sight of the walls of Pamplana, and after some severe fighting, by the 29th had occupied a formidable position in the mountains. The allies had also formed on a range of heights no less impregnable, but neither secmed willing to become the first aggressor. The enemy, howerer, thusting to the natural strength of his situation, withdrew a considerable bouy of troops from the front, with a view to strengthen his attack upon General llill, when the British commander perceiving his line thus weakened, ordered Lord Dathousie and General Picton to drive him from the heights on which has right and left rested, which beins rapitily accomplished, the centre advanced to the attack and obliged him to abandon his position, which Lord Wellington in his despatches described as 'the strongest and mont difficult of access that he had ever seen ocenpied by troops." In his retreat he lost many prisoners and much baggage, and though he twice attempted to make a stand, he was at last compelled to retire within his own fromtier.
While Lord Wellington was pursuing a brilliant career in the north, the operations of the allies on the eastern coast of Spain were atiended with a less decisive resule. The French held the momerous fortresses of Catalonia and Valencia, and Suchet with a large army occupied an adranced position at \(S_{\text {an }}\) Felippe on the line of the Xucar. 'The allies on the other hand, were stationed at Alicam under Sir John Murray, and consisted of several British and native regiments, which had been withdrawn from Sicily, and a considerable force collected lirom the neighbouring provinces, which had been organized in the Balearic islauds under Britishoflicers: a Spanisharmy
under General Elio also occupiod the fomiers of Aurcia. About the midde of Spril Sir John Muraty advanced to Castella; and Elio, at the sane time, wok post at Villena. Suchet having diven back the spanish force, pusthed forward to Custella, where he encoumered for the first time a British arms; but he was met with such modanted steariness that he was cepuled with considerable loss, and retired with precipitation to his entrenched camp, at San Felippe The british general made no attempt to fullow up his success: and his adrance to Castella seems to have been intended chiedy to prevent Sachet from detaching any part oll his force to the aid of the contral army under Joseph Bonapart.. But when Lord Wellington mored trom Sutmanea, be directed (enneral Murray to conduct an expedtion of 1002 men ly sea, to the attack of Tarragona, which it was supposed would induce sucbet to weaken his force in Finlencia, and enable the Spanish gencrals to take possession of a great part, if not the whote of the open commer in that province. This experlition haring reached its destination, comtn'sed 10 prosecute the siege of 'Tarragona room the 3.1 to the tith of July, when the approach of a superior force to its relief induced the british commander to embark his troops. leaving bethind a considerable portion of his cathon and ctores. The Pailure of this attempt, however, was not attended with any untavomable results to the genera! canse. Lord William Bentinck having assumed the command, ordered the troops back to Alicant, and having there joined the Spanish armies, continued to maintain a war of posts, and to occupy the forces of Suchet, until the third Spanisharmy was detached to co-operate with Lord Wellington on the Prontiers of Prance, when the remainder of the troops were calied to act entirely on the delensive.

St. Sebastian capitubated on the sth of September afer a most gallant delence, and a severe loss to the bestegere, which, with the fall of pampluna on the aist of October, enabled Lord Wellington to become the invader in his turn. The French had formed two successive lines of defence. which they had been diligenty employed in lortifying ever since the batte of -ithoria; the one along the course of the Nivelle, and the other immediately in front of Bayome. The first of these wis stormed on the 10th of November: and though disputed from day light till sun-set, the allics succeded in carrying all the positions on the enemys befo and come; and, by establishing themsclues in the rear of the strong ponitions occupied by their right. obliged them to evachate these atso dura meg the night. Sont now feli back upon his entrenched ramp betore Baymue, of which the left occupied the peninsala formed by the conllucuce of the Allow and the Nise and the right and contre extended lion the hit bank of the Nive to the Adour below the wan. detended in fromt by an impassable morass. Thin position was so fortifed by nature and ant as remoded it impregrable against any direct attack, and it was therefore determind by a movement to the right to theaten his rear and intermpt his commaniation wilh lrance. For this purpose cieneral Hill mosed the Nise on the minth of becentere wast hasing driwen the caemy from the righ bank of the biver, moved with lis right towards the Adome. Soult, aware of the result of these operatoms, if not immodiduly checked, made a most desperate attark
upon the lefo of the aldies under Sir John Hope, which, howerer, was repulsed in a most gallant style. A similar attempt on de \(12 i\) provius equally ansuccessful, Soun passed, during the night, a large force to the left, and attacked (ieneral Itith with great fury, 1nat was driven back with immense loss, and compelled to retire within his cutrembenenis. By the e operations he allies firmly established themsetves between the Nive and the Adour, and thas accomplish. ed the literation of Spain.

Cmis. VII.-Spain under the Cortes-Ferlinand re. turns and ascuin establishes un absolute gocermmen.

When Bomaparte lad decoped within his power the royal family of Spain, and hat raised his brother Joseph to the throne of that kingdom, the junta of government, which had been appointed by lecedinand before his departure from Madrid, basely betrayed his canse by acknowledging the usurper, and the inquisi-tor-general, the highest religious authority in Spain, lent his and in accomplishing the degradation and destruction of his country. The nation in general, however, were actuated by more patriotic feclings, and, as if by one instantaneous impulse, raised the standard of intependence. Juntas were formed in every prorince. who :adopted measures for the general delence, and for the recovery of the combtry and in this strusgle the lead was taken by the supreme junta of Sevilte. Alany of the members of these bodies, howerer, though zealously deroted to the cause of their county. were still too much attached to its old abominations. Commissions and commands were bestowed not upon those who deserved them most, but upon their own litiends and dependants; and even after the bitter experience of twelve months of disasters, no effectual measures were taken for improving the discipline of their armics, or supplying them in the field. The cstallishment of a central junta bronght no remody to those evils: and thongh among the members of this protincial government we find the names of the venerable Florida blanca and the accomplisherd Joveltinos, yet they enjoyed neither the contidence nor the respect of the people. Their proclamations indeed were distinguished by a boldness and an energy worthy of the cause in which they were engagel; but never was language so belied by deeds. Their incapacity was so appatent, that a regency was loudly demander, to whom they transierred all their anthority, providing that it should be retained only until the meeting of the cortes. But no sooner were the ceatral junta denuled of their power, than they became the victims of popular indignation. They were accused of haring peculated the pablic money; and the regency, though convinced how false the charge was with respect to many of them, yet, yietcling to the general clamour. and perhaps courting popularity. included them all in a general censure, by scizing their papers, and registering their efficts. Even dovellanos, whose patriotism and unsullied honour had never been suspected, was ondered to retire to his own province of Asturias, and placed under the ingection of the magristrates. The last act of the central juma consigned to the regency the charge of assombling the general and extmordinary cortes, according to a plan of representation which they had formed alter much labour and researels; but the meet-
ing of this body was delayet for some time, and it
 was issued ordering the wections to be completed wih all possible speced. In this dereer, howerer, the regency departed lroms the phan appored of by the junta, and comoted only one honse. The privitered orders, the mobles and cterey, were not summoned at all, (rither to meet apart, or with the third estate, and were thas earladed catincly from the nationat mpesemation.

The cortes commene their procediners on the \(24 t h\) of September, amd their linst acts were to declare thedronn sovereignty, and to demand an atknowledgment of it lrom all the aththorities, civil, military, or cectesiastical, who were bonad by wath to obey the decrees, laws, and constitution of the curtes. 'Pheir conduct, howerer, on this occation, was marked with great precipitancy and intolmance. Almost at the instant that they deceed the separation of the legisJative, juticial, and exechtive anthoritics, they confounded them in their own practice. Those who hesitated or refused to take the prescribed oath lrom conscientions scruples. as inconsistem with the fidelity which they had sworn to ferdinad, were summarity punished with imprisomment or banishment, among whom were the bishop of Orense ant the maryuis del lalacio. Instead of inlusing into the government, which combued io be hele by a resency, that energy which the crists regnited, they weakened and emburrassed its exertions by comtinally intermed. ding with it; and, instead of simecting their own attention to such measares as were necessary for the delincrance and sectrity of the kinglom, they consumed their sittings in metaphysical discussions, and in framing a new constitution, a work which might well have been elelayed to a lither season.

This constitution was promulgated in 1812, and greaty rescmbled the Freach constitution of 1791. It was violently opposed in many parts ol the kingdoms and cren its lindamental doctrine, the sovereignty of the people, did not meet wibl that corelial reception from the mation which was anticipated. The sudden overthow of the old system, and the extreme change from an absolute monarely to a pure demoeracy, protuced such revulsion of tecling in the hearts of many, as catused them to panse in the career which they had so glorionsly began. 'That burst ol popular conhusiasm which arose in the penimsula, and was lacard throughont Europe, was not the oftspring of revolutionary primeiples, or even of discontemt with their government, but it sprung from hated of the usurper, and in delence of their rights, as an independent hation. 'The people had hailed the accession ol Ferdinand to the theone, as releasing them from the tyranly of Goloy, who was held in almost tmiversal detestation; and they still regarded bim in adversity at theit lawlul and beloved monarch, whose return was the great object of all their exertions. Ilad the curtes then, as a provisional government, contined their attention to the administration of the affairs of the kingdom, and to the gradual adoption of measares for reforming the more staring abuses of the old system, they would have carried with them the majority of the Spanish nation, and wouk have cosurcd at lengla a complete and thorough renovation of the government. But when they showed by their acts such a direct dispegard of the leelings and prejudices of the people, invading, may annililat.
ing the rishes of that prince, in whose betratf they hat gion such demonstrations of allegiance and at fection, the nerve of patriotism was umstrang. abd the nationat enthusiasta ebaporated in at heathers cause. Not that their hatred of the usurper was lossencel, but they harl lost all confildoce in thaip mates; and bence that apathyexhinted by the ma jority of the Spanards, and which was so much rompained ol' by the allies at ath adranced patiol of the war. Mlany of the better informed clabses, thougta aware ol' the nevessity of some retionm, ant peethof considering phis a lavomrable opportunty fot malims such atterations in the gosernment as the (ircum. stances of the country required, beheld with pall the condret of the contes, being convineed that biecil comatryand were totally unprepared for swch an of" der of things, athd that the adoption ol the newe cone stitntion would lend only to retard the prestens of rational liberty. Some even regarded the basmably itsell as unconstitutional, and as rescmbling the athcient cortes only in name. It bore, indeed, some resemblance to the cortes of Charles V., wher he had remosed from its situings the nobles and clergy, and which he then dissipated with a breath. ithese (lisse, whose interests and privileses were thus invarded, possessed great inflacnce amung the people: and the delection and opporition carrice with them the sreat Lody of the nation. The promulgation of the ne: constimion conseguently spread dissatisfaction an 1 disunion throughout the peninsula; and so appr: bessive were the new authorities of a popalar commotiv, that they relused arms to the inhabitants of Gialicia, who had applied lor them to delend their onn province, at that time menaced by the chemy.

From this period, the exertions of the peasantery ccased, and all attempts to orgatize a popular force proved inctlectat. A plan for incorporatimers Spanish recruits i! the allied army, under British oflicers, also latiled; and hat it not been for the desultory operations of the ghtrillas, who, mader Empecinado, Alian, and other patriotic chict', conthued io maintain an unwearied and destructive wafare against the invaders, the national canse was in danger ol beins forgoten amidst internal dissensions. It seemed to oce capy but a small share ol' the attention or exertions of lae Spanish rulers, and the mitority of the people degarded with calm indifference the deliverance which Britain was accomplishing for their country. The British army, it is tute, was every where recerical with ricas, but it was now no uncommon thiag fur Spanish patriotism to ceaporate in these noisy cbunlitions; and had it not been for the support of the British government, and the grallantry of her troops. Spain might have been at this moment an appeodage of France. The umbappy division of the nation into constitutionalists and royalists, or, as they were after. wards called, liberals and scribes, completely neutralized the exertions of the people; and while the cortes were intent upon perfecting the new constitu. tion, and, among many injudicions and even tyramical acts, had passed some very important and beneficial measures, the press, and even the pubpits in many parts of the country, were employed in condemning their decrees, and in consincing the people that all excrions in favour of such a government, was rebelling aguinst the authority ol their lawlut monarch.

Amidist these contentions, !crdinand was restored to his kinglom. Ol the two factions, the preponder-
ance of talent and patriotism was on the side of the constitutionalists, but the royalists possessed greater wealth and influence; and it might easily have been foreseen which cause a prince of Ferdinand's temper and education would most readily espouse. Belore his return, he had sworn to maintain the constitution; but he no sooner found himself surrounded by the nobles and clergy, whose rights and privileges that constitution had in a great measure swept away, than his royal oath yielded to the ambitious wish of reigning the absolnte sovereign of Spain. He immediately annulled the constitution; and, in order to soothe its adherents, promised to convoke immediately the real cortes, and, with their aid, to frame a new system of government. But having escaped from the trammels of the constitution, his promise was forgotten; and seizing the reins of absolute power, be established in all their deformity the abominations of the old government. His will again became the law; and supported by a cabal of crafty and interested zealots, he stalked lorth as the cruel persecutor of all who had in any degree lent their aid in accomplishing his own restoration, and the independence of their country. Sentences of imprisonment, exile, or personal servitude, were passed upon all the deputies of the cortes who had shown any zeal in the cause of freedom. Many distinguished leaders in the Spanish armies met with similar treatment, while others withdrew from persecution, by sceking an asylum in foreign countries. The yoke of despotism, however, was not borne without impatience. Occasional irruptions showed that the flame of liberty might be smothered, but was not extinguished. An attempt of Porlice at Coruma to accomplish a revolution upon the principles of the oppressed liberals, was followed by others in Valencia, Catalonia, and Galicia, but were all attended with similar results, and equally disastrons to their promoters. The unfortunate issue of these designs checked for a time the spirit of opposition, and Spain seemed to resign herself to her late, presenting to a superficial observer an aspect of outward tranquillity, and quiet submission to the yoke of Ferdinand. The goverument reverted to its old principles, and if the term absolute can be applied to any monarch, the king of Spain at this period well deserved the appeltation. The inguisition was restoped with its ancient plenitude of authority; and among its forst acts were, the publication of a long list of prohibited works, and a decree that all prints and pictures, as well as books, should be subjected to its previous censorship. One redeeming act of this government, however, which was passed in 1817, deserves our highest commendation. This was the abolition of the slave-trade, which, with respect to the coasts north of the line, was to be immediately culorced, and on those south of the line, the prohibition was to take place on the 30 th of May 1820; and all who controverted this edict, were subjected to severe penatios.

The mimisters of leediname however despotic and successful in repressing all attempts at insurrection, held no enviable situation. Many subjects of great difficulty called for their attention and exertions. The dediciency of the revenue to meet the current expenditure, the low state of industry and commerce, and the insurrections in the colonies, required a mind of no ordinary kind to remedy and control. 'lobese evils acted upon one another in such a way, as almost to
preclude the possibility of relicf. The state of the colonies produced a stagnation of commeree, by depriving it of that immense transit, upon which it had for many centuries almost entirely depended; this decay of trade produced a corresponding falling off in the ordinary revenue; and this again deprived government of the means of supporting the royal cause in South America. Under all these embarrassments, however, attempts were made to restore order and stability to the finances. A papal bull was obtained for the appropriation of a tenth part of the income of all ecclesiastics, which was to continue for six years; and for the present exigencies of the kinglom, proposals were issued lor raising a loan of sixty millions of reals. But such was the low state of public credit, that although eight per cent. interest, and the guarantee of the war taxes lor future payment were offered, few of the capitalists came forward, and the government was compelled to have recourse to a forced loan, to which foreign merchants residing in the sea-port towns were obliged to subscribe. This supply enabled ministers to proceed with activity in fitting ont an expedition at Cadiz for America, which had been long in preparation, and which the merchants of that city had incessanty called for, as the only hope of restoring their ancient prosperity. But the troops collected for the purpose were very averse to such a service, and their repugnance to cmbark was well known. A plot was consequently formed by several of the officers of the expedition, supported by some of the most distinguished citizens of Cadiz, not merely to escape from a disagreable service, but to orerthrow the government, and to restore the constitution of the Cortes. The accomplishment of their object, howerer, was for a time deleated by the treachery of the Conde d'Abisbal, commander-in-chief of the expedition, who, being informed of the existence ol a conspiracy, pretended to join heartily in the enterprise, and promised to promote it with all his influence. Having by these means become acquainted with the views of its promoters, he adopted the most decisive measures for its suppression. He assembled the garrison of Cadiz, amounting to about 6.000 men, marched to the camp at Sante Narit, where the plot had originated, and arrested above a hundred ol the officers. He then dispersed several of the refractory regiments thronghot the interior of Andalusia, and having appointed new oflicers to the remainder, embarked them for America. This act of dissimulation and treachery did not meet with the expected reward. Abisbal was superseded in the command of the expedition, which was given to the Conde de Calderon; and white his measwes delayed the open expression of hostility, they aggravated the evil, by rendering the conspirators more cautions and determincel. Aware of the prevailing discontent among the troops, the utmost exertions were made by governmont lor the departure of the expedition; but when every preparation was completed, and the fleet in readiness, the conspiracy exploded, and gave a new aspect to the affairs of this mathapy kingdom.

Quiroga, a lieutenant-colonel, and one of the officers put under arrest by Abisbal, baving concerted with Riego and other officers the plan of the insurrection, they fixed upon the first of January as the decisive day, when Riego burst into the town of Arcos, made prisoners of Calderon and all his staff, and proclaimed
the constitution. On the same day (auroga, having made his escape, joined his battalion at Alcala, and, surprising the garrison of San lemando, incorporatd the troops with his own. Ha was then joined by liego, and their united fores, amonnting to more than 6,000 men, were immediately organized under the titte ol " (he constitutional army." An address in the name ol the army was then presented to the king, in which, after enumorating the evils which the brave delemers of their country had suffered from the measures ol his govemmen, they electared "that their sole object was to restore the eonstitution; and that to have it recognized that the nation, legitimately represented, has soldy the right ol giving herscil laws, excited in them the purest ardour, and tanght them to speak in accents of the warmest enthusiasm." At the same time Quiroga issued an address to the Spanish people, reminding them of the ancient glory and liberty of the nation, of its heroic resistance against the usurpation ol Bonaparte, of the recomperse whieh it had met with, and the miseries which had been the consegnence: and calling upon them, therefore, "to co-operate in the glorious cfiort now made to restore to them the rights ol which they bad been deprived."

Shut up within the narrow boundaries of the lsla, and surrounded by 15,000 rovalist troops under (ieneral Fregre, the patriots had no apparent means of extending their operations. Weeks elapsed in this stationary state, and their situation was becoming insensibly worse. The enthusiasm excited by their first success was gratually eraporating. Their resources and supplies were cut off, and litule hope of deliverance remained, motess some effort coutl be made to rouse the country in their favour. In these circumstances, Riego, whose bold and adrenturous spirit prompted him to undertake whaterer was difficult and hazardous, suggested the romantic idea of marching at the head of a flying column to scatter the seds ol liberty in the provinces; while the rest of the army shontd maintam its position in the lsta. Havingr seterted a band ol 1500 men, he set forward on this daring enterprise. In many of the cities he was received with the warmest demonstrations of joy; but, sceing the patriotic caluse supported by so small a force, none of the inlabitants were hardy enough to join its standard. His route was mo sooner known than general O'bomell was sent in pursuit with a considerable body ol royatists. With thi, superior force Riego had constantly to contend, and, liom the want of necessaries, always at a disadvantage. Pursued from post tu post. and daily himned by fatigue and repeated skirmishes, this litte band presented in their progress a series of adrentures and privatons of which history offers lew examples. Driven to seek for safety in the heights of the Sierra Morent, which could be reached only by the bridge of Cordova, Riego formed the daring resolution ol marching the remmant of his column through that large city. As they passed through the streets barefooted, batly clothed, and chanting the patriotic hymn, the inhabitants, assembliner in crowds, viewed them with wonder and admiration. They then hastened towards the mountains, butwere overtaken by the rogal army and suffered considerable loss. Reduced at last to 300 men, destitute ol every thing, closely pressed, and hopeless of suceess, they were compelled to disperse,

Yol. XVH. Paiki I.
and each individual to seck safety for himself. "Such," says San lligurl, "was the fate of a colnmon, worthy by its patiotism and valour of the mest brilliant trimaphs. Wharesomany eoncurent ripemmstances combined against us, it was morally impossible for the result wbe different. Fanaticiom on the part of an enemy always more than triple our mombers; dismay and timidity in the well affocerol: phsiltanimity and weakuess in those who aboudroned us in the homp of dunger: the siotation of promises hy those who had eagaged in the cause; matarat of tabome and latiguc in such rapid torrents, and mathes niyht and day through a monntainoms combtry intersected by ravines, -all thesecircumstancers combined must have disheartened the bravest trops. Wherever the column of patriot soldiers passed, the people applanded then, gave them provisions, deats and moner; but no one jained them; at beir departure they wished them success, and then proceeded to prepare lodgings for the troops that pursied them."

Quiroga still maintained adefensive attitnde at Sm Fernando, and repulsed every attack of the enemy; but insulated from the rest of spain, and enclosed on all sites by superior lopers, the constitutional canse scemect to all appearate liast hastmingto aclose. The column of Ricgo, however, though ambinitated, hat accomplished its object. "he flame of patriotism was excited in the places through which it had passed, and had extended to the remotest parts of the kinglom. The cry of "the constitution" was in a short time raised in (aticia, Navare, and other provinces, with a demonstration of support which could not be resisted. The government made an imperfect attempt at reconciliation: but Madrid, which bad been long secretly agituted. declared lor the constitution. As a last resomree, an extrardinary gazette was published on the th ol March for convoking the Cortes; but his concession came too late. The whole population of Madrid tumultuously assembled, tore down the placards, and set up the constitutional stone, de manding, with lond eries, the constitution of 1812 . The king was compelled to yich, aml to submit to the degrading humiliation of testoring a constitution which it had been the first act of his reign to dissolve with every mark of reprobation, and to condemm to dungeons and to exile all who had been concerned in framing and upholdingit. A decree was consequontly issued by the king, in which he stated that, "as the general will of the people hat been pronomoed. he resolved to swear to the constitution promatrated by the general and extraorlinary Cortes in the year 1812."

This revolution oceasioned univeral rejoiciars among the lriends of therty. The chargens gave up the tenants, who for so many years had been immared within their cerlis; the inguistion was suppressed hy a royal decree; and the liberty of the pressestublished on the same footing as by the forme: Cortes. T"ine general harmony, however, was interrupted by an a:nfortunate collison between the militury and the inhabitants of Cadiz, which produced very dismal consequences, Gencral Fresre, who had steadily supported the royal eause, suddenly formed the resotution of proclaiming the constitution in Cadiz. and invited the chiefs of the national army to be present on the ocession. Quiroga, suspecting treachers.declined attending himself, but sent a deputation to represent the pa-
triots in the approaching spectacle. After a night of joyful preparaton, Cadiz exhibited, on the morning of the loth of March, a scene of indescribable animation. The deputies from the Isla were received with triumph; and the asscmbled multitude, arrayed in their festal dresses, waited only the arrival of General Freyre to begin the cermony; when, on a sudden, the troops commenced firing on the populace, who, dispersing in all directions, were pursued and butchered wherever they were met. Even the houses afforded no protection to the wretched inhabitants; and Cadiz was for several hours like a city giren up to pillage. In this inhuman massacre four hundred and sixty were killed and upwards of a thousand wounded; but its authors were never brought to punishment. Strong suspicions were excited agrainst Valdes, the governor of the city, and Freyre was not without his share; but after a long investigation into this unhappy affair, its origin was never fully ascertained.

The elections for the approaching Cortes werecompleted withont any disturbance, and were decidedly favourable to the liberal party. On the 6 th of July, the king, attended by the queen, the royal family, and his ministers, opened the assembly, and, after renewing his oath of fidclity, strongly expressed his attachmont to, and his determination to support the constitution. "At length," said he, "has come the day, the object of my ardent wishes, when I sec myself surrounded by the representatives of the heroic and generous Spanish mation, and when a solemn oath identifics my interests and those ol my family with the interests of my people. It is to the establishment and the entire and inviolable maintenance of the constitution, that I will consecrate the powers which this same constitutionassigns to the royal anthority; in it I will concentrate my power, my happiness, and my glory." After voting an address in reply to the king's speech, the Cortes receved from the different ministers a siew of the state of their respective departments. Of these the most important was that of firance, which detailed a deficiency ol nearly two millions sterling, which it was proposed should be reliesed by a loan-ol' \(200,000,000\) reals. 'They then procected to the consideration of some permanent reforms in the political system; but here, thowing aside the lessons of experience which might have taught them that the constitation of 1812 , without some considerable modifications, was adapted meither to the wants nor the wishes of the great majority of the poople, they bersisted in a serics of measmes calculated we "ecite the bostility of the nobles and clergy, and throngh them the great body of the peasantry. By abolishing the system ol mutorats or entails, a severe blow was given to the family pride of the Spanish Grandees, which, added to their exclusion from the supteme terislature of their country, completely alienated them fiom the gonemment; and by the suppression of the relierious oreters, and declaring their property national, thus reducing to a state of comparative beggary it munerous body who had always held a great sway over the public mind, and also throwings into a state of absolute destitution those swarms of mondicants who had been accustomed to receise supplies at the convent gates, they raised up a hast ol foes who could not but leed the biterest en-
mity against the authors of their degradation and misery, and would be ever ready to join the ranks of the disaffected, and to disturb the tranquillity of the kingdom. If these proceedings, however wise in themselves, may be considered, in the present circumstances of the country, and from the time and manner of their execution, premature and precipitate, their regulations respecting trade were radically unwise and ruinous. Instead of those liberal views which were recommended in the writings of their most eminent economists, they adopted a system ol commercial intercourse, the leating principle of which was, a complete exclusion of whaterer Spain could produce within her own territory. This not only increased her financial embarrassments, but gave rise to an extensive contraband trade, which induced tumultuous and inregular habits among the people, and which had always been one of the greatest scourges of Spain. Their arrangements, however, for public instruction were of the most enlightened description, and evinced a laudable anxiety lor the education of the people. Three gradations of schools were to be established throughout the kingdom, the first for clementary instruction, of which therc was to be one for every five hundred families; the second for those destined for public employments; aud the third for special and prolound studies.

But while the Cortes were busily employed in these and other important discussions, and fixing the great outhers of the constitution, the nation in general was agitated by the most violent commotions. The king had given a reluctant sanction to the law for the suppression of the monastic orders; and the execution of it was in many places tumultuonsly opposed. The ejected monks every whore called the peasantry to arms in defence of the throne and the atar, which they said were trampled under foot by the constitutional system. Assuming the form of guerillas, they were with difficulty reached by the regular troops, and when dispersed in one quarter immediately reappeared in another. On the other hand, the ultra-liberal clubs in the large cities, outraged and alarmed at these hostile movements, branded the government with want of energy, and even denounced the highest persons in the state as secrely encouraging them. Vinuesa, the king's chaplain, was openly accused of plotting the overthrow of the constitution; and when his majesty appeared in public, the crowd along with their acclamations of "Live the constitutional ling," loudly demanded the death of Vinuesa, the disbanding of his guards, and the dismissal of such ministers as they considered not sufficiently devoted to the new system. These insults were so often reiterated, that some of the king's guards, determined to be no longer tame spectators ol such treatment, charged the multitude sword in hand, by which several of the populace were wounded. This excited a dreadful ferment, and a general cry was raised for dissolving the regiment. The ministers so far yielded that the guards were superseded by another corps in attending upon the king's person.

Amidst these commotions, the Cortes was opened on the lst ol March by the king, who, in the conclusion of his speech, complaned ol the indignities which had been ollered to his person, and broadly stated that "these insults would not have been repeated if the
executive power had displayed all the encrgy which the constitution pueseribes and the Cortes desires. 'The want of lirmaess, and the litule activity of many of the anthorities, have given room to the renewal of such excesses, and, should they continuc, it will not be astonishing il the Spanish mation finds itself enveloped in numberless evils and mistortunes." The same cuening that these complaints were uttered, all the ministers but one receined their dismissal. 'This measure excited an extraodinary emotion among the liberal circtes. It was considered adirect blow against the constitution: and so strong was the expression of public opition, that the king did not venture to appoint their successors without requesting the atvice of the Cortes. This assombly, however, declined interfering with the royal prerogative, but recommended that his majesty's condidence should be given only to those who had given decided prools of their adberence to the constitutional system. A ministry was at length formed, which, in its composition, cmbraced both parties, and conseguently gave satislaction to neither. From this period the king showed evident symptoms of aversion to the ruling party in the Cortes, and they abo had little contidence in his declarations of attachment to the constitution.

The attention of the Cortes was now strongly drawn to the internal security of the kingdom. 'The report of the committee on this subject stated the existence of a combination of plots for the overthtow of the constitution, all directed by at supreme junta. This was corroborated by the diocovery of a document, in the l:and-writing of Vinuesa, detailing a scheme for the re-establishment ol the old government, which produced a strong sensation among the peoplc. Vinuesa, whose trial for treason had been in progress, was soon after condemned to ten years close confinement in the galleys. A punishment so inadequate to the offence raised the indignation of the populace, who, rushing in a body towards the prison, and in spite of the guatds, burst open the doors, and cxecuted that terrible sontence which they jadged due upon the infortmate chaplain.

Strong guerilia parties headed by the monks, continued to disturb the prosinces; and though repeatedly routed by Lopes Banos, an original and zealous champion of the revolution, they as often rallied, and were reinforced by the peasantry, who hocked in crowds to their standard. Severe decrces were passed for the suppression of these insurrections. All who were lound engaged in them were to be tried by a council of war, and executed in forty-eight hours; and every Spaniard who propagated opinions tending to the overthrow of the constitution, was to be punished with fines and banishment.

The fermentation of parties was daily rising higher and higher. Petitions were poured is lrom all guarters for the dismissal of ministers; but they, determined to face the stom, endeavonred, by a course of vigorous measures, to overawe the hostile factions. They resolved that all the high commands should be filled only by persons devoted to their interest; and consequently they superseded the commandants of Ca diz and Scrille. These cities, decply em',ued with revolutionary principles, refused to receive the new governors, and addressed representations to the Cortes, justifying their rejection of chiefs sent by a ministry whom they had every reason to suspect. The
command of the Cortes to submit was met by fresh repmenntations, which called forth the just indignation ol that boty, who chatacterized such conduct as decidedly sceditious and tunding to rebellion. These citics, however, still comtimed refrachory, and gave no signs of submission.

While these disputes wore lheatening the very existence of regratar grommonen, a rontagions tistemper of the most virulent nature !aroke out it liarcelona, and withdrew for a time the public attention frompolitical dissensions. It continumel to rage lion uparads of two montis, and is shaposed to have catried off 20,000 of the inhabitants of Barcolona, and a proportional number in the neighbouring citios. It was umder the protext of guarding against the introduction of this pestimence, that the French government established an army on the frontiors, ander the title of "the sanctary cordon," which afforded encouragement and cern protection to the royalist grerillas, or, as they were now callecl, "the army of the fath." These insurgents were daily gaining strength, particularly in Navarre and the northern provinces. 'The great mass of the peasantry faroured their cause: and their bands were increased by many of the lower ranks from the cities, and by all who were connected with the Church. Ample liunds were mysteriously supplied for their support. Pay, equipments, and even high boumties were given to all who joined their standard; and the soldiers of the laitb were furnished with every necessary, when the regular troops trew neither pay nor subsistence except by forced contributions. They continued for a time to overrun the open country; but their force was at length broken by Lopes Banos, and was compelled to seck reluge in France, or to wander in detached bands amidst the most inaccessible mountains.

The king still retained his ministers, in spite of the representations of the Cortes; and the cities still resisted their authority. The dismissal of the one, however, was immediately followed by the submission of the other, whoopened their gates to the governors, appointed by the king. A new ministry was lormed under Martinca de la Rosa, who soon became equally unpopular with their predeccssors. A proposition, introduced by them into the Cortes, for repressing the licentiousness of the press, and subjecting the patriotic clubs to a close surveillance, was passed by a great majority, in consequence of which the most violent of the clubs were shut up, and a strict police enforced in Madrid and the other great cities. But this seeming tranguillity was of short duration. Insurrectionaly movements became general throughout Catalonia, Aragon, and Navare. The armies of the faith under the Trappist and other leaders, were soon masters of the whole open country in these provinces. They had taken Cervera, surpuised Mequinenza. and carried by a midnight assault the strong fortress of Sco d'Urgel, which, from its situation and inaccessible position in the mountains, afforded them a sure retreat in the greatest cxigencies, and kept open their communication with France. They at one time had entered Tarragona, and, though driven out by general Haro, had gained the outworks of that important place, and kept it closely blockaded.

These events called for the most rigorous measures on the part of the Cortes. Servile principles were evidenty spreading among the people; and, as the
constitution could only be maintained by keeping on foot an overwhelming force, orders were issued for increasing the army to 63.000 men. The state of atfairs, however, was rendered more critical by the well-grounded suspicion that the king himsell encouraged the malcontents, and waited only a lavourable opportunity upenty to join them. This was confirmed by i, is conduct towards his lasourite guards, whom he supported in their rebellion against the constituted athorities; and even declared that, after repeated insults towards his person, aud the refusal of all means ol protection, the constitutional compact was dissolved, and he was entitled to resume all his original rights. The rebellious guard. Bowever, were at last reduced. and the king was unter the necessity of allowing his unpopular advisers to retire. The formation of a new ministry was entrusted to Lopes Banos, which, of course, was strictly constitntional; and the most strenuous efion ts were now made for suppressing the insurgents.

The royalists had, in the mean time. installed a regency at Crgel. consisting of the Marquis of Mata Fturida, the Bishop of Tarragona, and the Baron d"Eroles, who issued a scries of prockmations, declaring that the king was in a state of captivity, and that, till his deliverance, the only legitimate govemment of Spain resided in themselves. They called upon all true Spaniards to rise in the cause of the king and the church: and such was their influence that a levy en masse took place in the valley ol Cerdagne, from which deroles organized an army of 15,000 men, fally equipped and disciplonet, leasing the remainder to actas grevillas. Against thisformilable force, which held fossession of all Catalonia, except the principal fortresses, which the mational troops were with difficuly abde to maintain, the whole power of the Spanish army was directed. The milhta were entrusted with the garrison duty of the large towns, which rendered the regnar troops disposable lur active service; and all the regiments in the southern prosiuces were drawn towards Catalonia. The command in this arduous scrvice was confed to the cclebrated IIma, whose high reputation and particular experience in mountain warlare inspired the most sangume hopes of a successfin termination to the contest. Proceeding to Ierida, he detached a corps to ubserve Upper Aragon, and pusbed forward towards Urgel, the locus of the insurrection. Cervera was evacuated at his approach, and Castelfolit gielded after a vigorous resistance. At Tora he cncountered d'Eroles whose Iitule army forght with the greatest lury, but were at last competted to sive way, and seck refage among the monntains. Dotroles, homerer, recovered and mustered a considerable force in front of Urgel. Here the decisive struggle was long and ubstinately contested, but fmally issuct in the total rout and destruction of the army ol the faith, whose seattered bands crowded oward's the brench frontier. The trimmphant protrese of Mina expelled the insurgents from Catalonia; that his career was maked with that lerocious rancour. which a civil war is so apto tongender, and which dien contounds the imoment wh the guilly. "Ihe " fantions," as they were called, wherever met, vere pat 10 death withont trial or any legal incuary; and sheh villaers as were knewn to haw assisted the rebele, weresacheri, demolished, or reduced to ables. No guarter was given on cither site, and all prison-
ers who fell into their hands were butchered in cold blood.

While Mina was employed in the mountains of \(\mathrm{L}_{1}\) gel, Bessieres and Uman, two insurgent leaders, determined to make a dash at the capital, by which they expected to astound their cnemies, and revive the courage of the royalists. Having collected a force of nearly 5000 men, they, by a rapid movement, reached Gimalalaxara, before the autborities in Madrid were informed ol their approach. The regular troops and militia in the neighbourhood were hastily assembled, and marched against the enemy, who, retiring, took up a position near lorvega. O'Daly, the constitutional general, commenced the attack, but his right wing, which was composed of raw militia, gave way, and he was obliged to retreat upon Guadalarara, which be soon after abandoned to the enemy. In this crisis the Conde d'Abisbal was called to the command. Ilaving ubtained considerable reinforcements, he compelled the royahist army to lall back, which afterwatds separated. Bessieres retiring upon the Ebro, and U1man upon Valencia. The former was closely pursued and suffered considerable loss and dispersion; the latier, having been joined by numerous partizans in the neighbourhood of Segorbe, surptised the strong fortress of Murviedro, the ancient Saguntum, where he was chabled to maintain his ground, and to give a firm footing to the war in that province. In this critical state, Spain was now called to resist a more formidable enemy in defence of her national independence: but whose numbers and resources prechaded all bope ol a successlinl issue.

The affuirs ol' Spain had formed a primcipal object of discussion at the congress of Ferona: and the powers there assembled, with the exception of Creat Britain, assumed the high authority of interfering with the internal arrangements of an independent kingdom, and of dictating terms humiliating and injurious to its present rulers. They demanded an immediate change in ber institutions, and, in case of non-compliance, blueatened her with all the horrors of war. Wutes to this effect were delivered by their respective ambassadors at the court ol madrid, and were conceived in language calculated to excite the most hostile feelings, and a just indignation against their aththors. They described the constitution of Spain as "an erent the most deplorable, -the work of perjured soldiers-overturning the whale social system, and recalling times which made Enrope tremble." 'The replies of ministers to these communications were by no means conciliating, but rather breathed too much a spirit ol deliance and resentment. Alter representing. in answer to the French note, the constitution of 1812 as proluced by the mited will of Spain, and as recognised by all the powers now formins the congress at Verona, they adt, " What the professions of France to contribute to the happincess of Spain canot be beld to be sincere until slie dissolve her leremean army, and repulse the fations enemies ol' Spain who take relige in her teritory." In a circular transmitted to the Spanish ambassadurs resident at the other courts, and which was of a very concise nature, their notes are deseribed ab mathor of an answer, and are characherized as a tissue of lies and calmmies: and they declare, in conclusion, that the Spanish mation will never admit the right of any power to interfere in her affairs. When these documents.
with their answers, were hat before the Corles, they excited a burst of moble and senerons indignation: and the assembly, in the ir address to the thenar, dechate * their sumpres and indignation at he strance calmonnies, the mathere labeboods, and the catmanions intputations contained in these documents, as virtors in their substance, as comtray in heir form to the practices established ammeng cibilized nations, horribly injurious wo the Spanish matom, to its mos distimpabied members, to its Cortes. 10 its feremment, 0 the theste "x en of your majesty, which, restins on the constitution, suffers not less from the attacksol which it is the object: lastly, to your sated person, whese good lath amd love Por your subjeets are attompted with an impions temerity, to be mate the subject of doube." 'l'he result of such language misht easily have been anticipated. Louis XVIB. inh hemeeh at the opening of the chambers, dertared that the safety of lame demanded the overthow of the Span-
 give to his people the institmons atheh they enn hod ombly from him, and which, in socuring their repose, may dissipate the just inquictudes of Prathe"." "Wat such inignitous ductrine should emanate from the conclave of the Holy diliance was not to be wondered at; hut that it slowid be supported by any, except the most illiberal bigots of the most ammiaed despotism. is humbling to haman nature. These sentiments of the kitse were reechoed by the representatioes of the Fremeh mation. "To yotr majesty it belomes to deliberate: it is one part tu conche with all one eforts in the generons enterprise of stiming anarchy to conquer onfy peace; of restoring liberty to a king of your blood; of sceariag the repose of" Spain to contirm that of France; of deliereing lrom the yoke of oppession a magnanmons people, who aded in breaking our chains, and which can receive institmions ronformulle to its arinhes and its manners only fiom its legilimute sourreign."

Six years of dimefol experience had tambe Spain what she derd to expect from the uncontrolled will oi Ferdinand. Ile hat subserted all her liberal institutions, ant hat cumbigned to dumpeons and to exile some of the beavest and most enlightenet ol here sons. Baring that period she inteed enjoyed repose, but it was the repese of the grave, whose gloom no raty of light is permitted to penetrate, -a repose fital to the industry, the intellagence, and the happincss of the feople. IIcr only altemative duerefore was war: and never was she in a worse condition to merl a furcign invader. Her linances in the most deplorable disor-der-one half of her population in insurvection-her army weak and inefficient-her sovereign leagued with her cnemies-and the invader powerlul both in numbers and resources, and backed by all the kingdons of continental Lurope The Spanish rulers were honest and carmest in the canse, bat were miserably delicient in that wistom and energy which such a crisis required. Their preparations were consequently far from being commensurate with the danger. Instead of putting under arms that portion of her people that were devoted to the constitntional canse, and which comprehended the inhabitants of all the great cities, the Cortes ordered the army to be raised merely to the war establishment of 120,000 men, and this order could only be imperfectly executed in consequence of the numerous districts in a state
of insumpection, and the lonse ties by whirhathority was leled in tan 1 est of the kingdom. But besides being greatly deficion in numbers, the Spanish army was greatly inferios in discipline and equipments is Hose velerath tropes with which lbey were destined (1) contert. 'lue Cortoc, however, still held the lan-
 the God ol St. Loni", we will imoke the (iod who protected the Spanish arms at Romervatux and at St. Quentin; we will inwoke the God of jastice and of sictory."

Gereat britam, as the friend of both, cmearoured to avert the miscrics of war, wisely lorbearins, bwe er, (1) commit hersell in the cause: but her exertions were natyailing. The demands of fratuce weve wnreasomable, and spain refused all concession or approximation. Preparations for the camparon were carriad on on both sites with the chatacteristic dispositions of the tho nations: on the one sitle with enersy and activity, on the other with sluggish apathy. While the Spanish ministers were show but honest, the king was watching opportmities lor paralyzing theirexertoms, ansl lor subverting the constimtion. Although le declared in his speech at the dissalation of the extraomdinary Cortes, that "o the law ol matonal imderondence, and the necessity ol presemins tha constitution of 1812, were the replies which the maton would sive to the antisocial principles contaned in the speech of the King of lirance", yet the sam: crening lue dimaissed his ministers, and obstmately opposed the removal of the seat of gosernment lion Matrid to a plate ol greater satety. and more remote from the frontior. This combuct, in the present circumstances of the nation, excited the popalat indigmation to such a heisht, that hae pabace was immediately surrounded by crowds of people, who ladiy demanded the e-establishment of the dissolve: ministry; and occasional cries wase heard of "donn with the tyrat-depose him-lill him." "his intimida. tion had its effect. The ministers were restored, but their resisnation was afterwards amonared to the Cories on the at of March, with this condition, how wer, that the new ministry should delay their oferations till their predecessors had each read reports o: the state of their respective departments. I warm debate ensucd, in which it was openly stated, that a conspitacy was organized in the beart ol the pabace. and that the crisis required the Cortes to declare the physical incapacity of his majesty. The majority, however, agreed that in order to avert the evils which would lollow an immediate dissolution of the ministry, they should delay hearing the reports till the removal of the seat of govemment hat been eflected: and thus, in vistue of the king's dectaration. minister would continue till that time in the exercise of their functions. The king. under various pretences, resioted his leaving Madrid, but it was at last pressed by the Cortes in such a way as left no room lor chuice. when he relnctantly yelded and set ou: for Sesille on the 2oth of March.

The entrance into the peninsula by the French army under the duke d'Angouleme was preceded by a proclamatione in which that prince protessed himseli to be the friend of Spain. ."Born of the same blood with your kings, I can desire only your independence, your happincss, and your glors. The frenchare, and wish only to be your auxiliaries; your standards alone
will float on your cities; the provinces traversed by our soldiers will be administered in the name of Ferdimand by Spanish authoritics; the most severe discipline will be observed; all that shall be necessary for the service of the army will be paid with religious exactness." The defence of the peninsula was intrusted to the bravest and most experienced ol its generals; with means indeed totally inadequate to the struggle, but what was worse, in some with hearts not carnest in the cause. Mina held the command in Catalonia: Ballasteros in Aragon, Valencia, and Murcia; Abisbal in the Castiles and all the centre of Spain; Morillo in the north; and Villacampa was employed in Andalusia to organize an army of reserve.

The French crossed the Bidassoa on the 7 th of April, and reached Madrid on the 23d of May, without encountcring any resistance, cxcept at Logrono, where a sharp action was maintained with the vanguard. The troops and militia, stationed in the different towns, retired on the approach of the enemy. The strong fortresses of Pampluna and St. Sebastian answered the summons to surrender by a brisk sally; and as no immediate impression could be made upon them, they were subjected to a blockade; but Saragossa was evacuated by Ballasteros without striking a blow in its defence.

Everywhere upon the line of march the serciles, consisting chiefly of the priests and lowest classes, rose against their opponents, and maltreated and plundered all whom they suspected of liberal sentiments. Both factions bore a greater cmmity to each other than to the foreign invaders; and the constitutionalists were often obliged to seek protection from the enemy against the infuriate excesses of their own countrymen. The arrival of the French was consequently hailed in many places as a deliverance from more serious crils. The duke, having installed a Spanish regency at Madrid for the general administration of the country, despatched two divisions under gencrals Bourmont and Bourdesoult to the south of Spain, with orders to advance upon Seville and Cadiz, the one by the way of Estremadura, and the other by that of La Mancha.

In the meantime the Cortes had commenced their sittings at Seville; but all their procecdings with respect to the defence of the country were carried on with their usual supinencss and apathy. No symptom of national rising had yet appeared, and theironly hope rested on the force actually under arms, which could not be depended upon for any protracted resistance. But the rapid adrance of the lrench called upon them to consult for their own safety; and they determined to transler the gorernment to Cadiz. 'This was openly resisted by the king, who now expected that in a few days Seville would be in the hands of his liriends, when he would be restored to absolute sovereignty. He was consequently declared to be in a state ol moral incapacity for lulfilling his functions; and a provisional regency was appointed, who set out for Catiz on the i2th of June, carrying with them the king, now openly and avowedly a prisoner. The constitutional canse, however, was rapidly declining; and its sumshine adherents were dropping fast into the ratks of the enemy. The Conde d'Abisbal had been drixen from bis command by his own army on account of his correspondence with the opposite party: the defection of Morillo hastened the subjugation of the northeru pro-
vinces; and Ballasteros had concluded a convention, in which he agreed to acknowledge the regency appointed by the French. As a contrast, however, to these sad instances of weakness and treachery, the gallant Mina was maintaining a desultory and protracted war against a very superior force in the mountains of Catalonia; and the reduction of that province was as distant as at the commencement of the campaign.

The French armies reached Cadiz without any serious encounter, and during the whole of their advance, conducted themselves with great caution and moderation. Not so their faithlul allies, who, urged by personal emmity and the hope of plunder, wished to commit crery species of outrage against their political antagonists; and the attempts of the lrench officers to repress their hostility, occasioned such frequent disputes and dissensions as led at last to the decrec of the duke at Andnjar, which prohibited any arrest by Spanish authorities, without the consent of the French officer commanding in the district, and authorised this officer to set at liberty all those who had been arbitrarily arrested. The duke joined the army before Cadiz on the 16 th of August, where was collected a force of 30.000 French troops, with a formidable train of artillery. As attempt at negotiation laving failed, the French commenced their operations by storming the Trocadero, a small peninsula nearly opposite to Cadiz, and commanding the naval approaches to the city. The fall of this important post spread dismay and discouragement among the constitutionalists. The troops felt the impulse, and began to show symptoms of royalism; and the only body of men that could now be relied on was the militia, particularly that of Madrid. In these circumstances the Cortes would gladly have purchascd peace, by consenting to modily the constitution; which, had it been done in time, might have saved Spain, but it was now too late. The duke d'Angouleme demanded the immediate liberation of Ferdinand, and declared that he could not consider him as free until he saw him in the midst of the French army. He at the same time expressed his confident expectation, that his majesty, on being restored to liberty, would grant a gencral amnesty, and convoke the ancient Cortes of the kingdom. The Spanish goverument, howerer, were not yet prepared for such unqualified submission; but they were also wanting in that heroic spirit of resistance which was requisite to throw a lustre around a sinking cause. The same weakness and inlatuation which had been so conspicuous on the part of the constitutionalists in the progress of this most inglorious campaign, marked also its close; and it terminated by an unconditional surrender ol their liberties and lives into the hands of an unfeeling and senseless despot.

Before his departure for the French camp, the oathbreaking Ferdinand promised a full and complete oblivion of all offences, and that, in the reestablishment of his government, some regard would be paid to the liberties of the nation; but, on the very day of his deliveratuce, he characterized the late revolution as "the most criminal treason, the most shameful baseness, and the most horrible wrong aqainst his royal person." Itc soon after issucd a succession of decrees, breathing the most umbounded fury against every one who was in any way connected with the constitutional system; and all who had been deputics to the Cortes, or had
filled any office or function of government since March 1820, or who lated even bern in the ranks of the national militia, were prohibited fromappronching within live leagues of his majesty on his way to Madrid, and during their whole lives, from coming within fifteen leagues of the capital.

The fall of Cadiz wats soon atter Pollowed by the surrender of all the important fortresses in the kingdom. Mina, who held the conmand of the strong garrisons of Barcelona, Tarragona and llostalrich, obtained an honourable capitulation; and the same terms were granted to Torrijos in Carthagena.

Ferdinand's arrival at Madrid was preceded by that of the Duke d'Angouleme, to whom the mation looked for some mitigution of his proseriptions; but whe ther that prince, who had repeatedly pledged himself that the restored government would act with lenity, and grant some form of a free constitution, lound his advice neglected, or was unwilling to use his influence, no alleviating decree ever appeared. He spent only a few days with the king, and lelt him absolute master of Spain, with a frencla army ready to execute whatever purposcs of vengeance his caprice or his tyramy might dictate.

Only onc noble victim was in his power, who, it was resolved, should be immolated upon the altar of despotism; and this was the gallant and unfortunate Riego. Upon the first investment of Cadiz, he had been entrusted with the command at Malaga, and had been taken prisoner while :gain cndeavouring, at the head of a flying column, to rouse the spirit of the provinces. After a mock trial he was condemned, and he died in a manner worthy of the glorions cause of which he was a martyr. The members of the Cortes, and of the former govermment, with the principal chiefs, lost no time in removing from their oppressed country; and Spain was daily thinned of the most intelligent and industrious of her poperlation.

But while the presence of the French army prevented any effective reaction on the part of the constitutionalists, France made no secret of her disapprobation of the measures of Ferdinand, which were characterized by the most senseless severity; and when her remonstrances were disregarded, she threat-
ened to withdraw her forces from \(S_{p a i n}\), and leave the absolute king to depend upon the loyalty and affection of his own people. This had the effect of producing some alleviating decrees; but they were so clogged with exceptions, that the exiles, deprived of all hope of mery, were driven to despair. Several insurrections in diflerent parts of Spain were the consequence, but they werr all erpailly unsuccesstial; and this fine kinglom, notwithstanding the superion intelligence of many of its imhabitants is last sinking into a state of barbarism.
The lintances of spain are in the most deplorable condition. The great capitalists of Europe have refused every accommodation until the loans of the constitutional government be recognised; and the expenses of the army of occupation have fithen entirely upon Prance.

The sway of Ferdinand, however, has been considered even too mild by the servite and monkish facdion; and a plot was formed for his dethronement, and the substitution of his brother Don Carlos. In this conspiracy many of the nobles and prelates were seriously implicated; and general Bessieres, its ostensible organ, who had raised the standard of revolt at Torrija, was taken and shot. Nearly at the same time two constitutionalists, Paul Iglesias, and the famous Empecinado, Don Juan Martin, were apprehended at Tariffa, and publicly exceuted. The serviles have now the complete ascendency in the councils of Spain; but it, infatuated monarch is only preparing for himsell and for his country new troubles and commotions. The bands of oppression are already stretched nearly to the utmost, and must sooner or later give way, when this unhappy kingdom may be again involved in all the miseries of revolutionary anarchy; and in the reaction of parties, the happiness and safety of its inhabitants may be sacrificed in the gratification of private ambition or revenge. See Laborde's Fiew of Spain: Townshend's, Swinburne's, and Burgoing's Travels in Spain; Dobledo's Letlers from spain; Ancient and Nodern Universal History: Gibbon's Roman History: Robertson's History of Charles I.; Coxe's Memeirs of the Kings of Spain; and Edinbergh Annuel Register, vols. v-xviii.

\section*{PART II.-STATISTICS.}

\section*{Ceap. I.- Boandaries and Extcnt-Progressive Geo-graphy-Modern Division-Mountains-Rivers-Canals-Climatc-Natural History.}

Spare, a kingdom, famous both in ancient and mo. dern history, Jorms. along with lortugal, an extensive peninsula in the south-western division of Europe; and is separated from the Continent by a chain of monntains, which furnish it either with an easy communication, or a formidable barrier. ltlies between \(43^{\circ} 44^{\prime}\) and \(35^{\circ} 57^{\prime}\) north latitude; and \(21^{\circ}\) and \(8^{\circ} 20^{\prime}\) west longitude from Paris, making it? greatest breadth from Cape Creus to Cape Finisterre, 219 leagues, and its greatest length from Cape Ortugal to Gibraltar, 195 leagues. It is bounded on the north and north-cast by the Bay of Biscay and Pyrenees; on the south and south-east by the Mediterranean, the

Straits of Gibraltar, and the Atlantic; and on the west by the Atlantic and Portugal.

This Peninsula was first divided by the Romans into Mispania Cilerior and Ulterior, but was soon after known by the names of Lusitania, Boetica, and Tarraconensis. Lusitenia formed the western part, and had its limits marked by the Douro on the north, and on the south by the Guadiana, iacluding in its extent Portugal, Leon, and part of Estremadura. Botica was surrounded on three sides by the sea and the Guadiana, and had for its eastern boundary, a line drawn from Cazlona to Murgis on the Mediterranean. It extended from Badajos to Cape de Gatte, and contained modern Andalusia and part of Estremadura. All the other parts of Spain were comprehended under Hispania T'arraconensis. This division, however, underwent some alterations under the last Roman Emperors, and was totally changed after the invasion of
the Visigoths. But it is from the conquest of this country by the Moors that we must date the mokern division of Spains and the origin of the different kingdoms and principalities, which were progressively formed lion the middle of the 8 th to the end of the 15th century.

The gcographical division of Spain most commonly adopted in modern times, is limited to fourteen provinces, kingdoms, or lordships, all of which are govemed by a captain-gencral, except Navarre, the governor of which has the title of viceroy. These are

\author{
Biscay, \\ Asturias, \\ Galicin, \\ 1,eon, \\ Estremadura, \\ Andalusia, \\ Gtancla,
}

As all these prorinces, except Valencia, have been already particularly described in this work, we shall content ourselves merely with reficences of the abore articles, and proceed to a general account of the kingdom.
"No country of Europe," says M. Humboldt "presents so singular a configuration as Spain. It is this extraordinary form which accounts for the aridity of the soil it the interior of the Castiles, the power of evaporation, the want of rivers, and that difference of temperature which is observable between Madrid and other towns situated in the same degree of latitude." The interior of the country is an clevated plain, gradually declining towards the south-west; and the table-land of the two Castiles excced in height and extent any of the same kind of Europe, having its mean elcration 300 fathoms abore the level ol the occan.

The Spanish mountains appear to be arranged in distinct chains: but they are, in fact, ramilications from one another, and though separated by considerable intervals, are all linked to the same stock. "The first chain that we perceive," says Laborde, "on learing Cape Finisterre, stretches along the whole of the north ol Spain, and joins the Pyrences; in this are the sources of the Minho and Donro, which throw themselves into the Atlantic, and that of the Ebro, the course of which is towards the Mediterrancan. These mountains, advancing towards the southeast, divide the streams which llow into the Ebro from those which augmone the Douro. On one side, they form the outine of Aragon, and on the other, that of Old Castile. They adrance thos as fat as Cumefa and Molina, the names of which they take; and soon after give rise to the Tagus on the right, and the Xucar and the Guadalaviar on the lift. Here we hond the nacleus, and, as we may say, the knot of the whole chain, Hount Cayo, which seems to be the reservoir ol all the waters that rise in springs around this point, and take thar course towards the iwo seas. 'This same chain, still adrancing towards the sonth, forns a mass from whonce the Guadiana hows, and liuther on the Cuadaluivir; it then stretches on and temmates at Cape de (atte. Let us now reflect, that de rivers which rise within this chain, in a manmer divide it, into an many large valleys and intermediate plains, yet leavine in ibe intervals, considerable ramilications, all of which are attached to the principal trunk. Just a they all flow in pratilels towarels the ocean, so do the mountains
which overhang and swell them with their waters, run in parallel ridges from the mountains of the Astarias in the north to the Apuxarras in the south. Thus, the momntains of St. Audero, which join the Pyrenees, run along between the Douro and the sea. The mountains of Guadarrama, which separate Old from New Castile, ran between the Tagus and the Douro. Another chain which divides New Castile from the plains of La Mancha, rises from the north-east to the south-east, betwen the Tagus and the Guadiana; in this we find the Sieraa de Guadaloup. On the other sicte of the Guadiana, is the lamous Sierra Morena, from which we descend into the beautiful plains of Andalusia, which are watered by the Guadalquivir, and overlooked by the last chain of mountains in Spain, the Alpuxarras, which extends to the coast." The other remarkable mountains, besides those mentioned in the preceding cxtract, are, the Sierra Nivada, situated nearly in the centre of the kingdom of Giranada, and which takes its name from the circumstance of its summits being constantly covered with snow. It is seen from an immense distance, and is well known to matincrs, its highest peak, called Mulahacen, being 182: fathoms above the level of the sea. The Sierra de Mondonedo covers the whole extremity of the north-east of Calicia, and extends to the north as far as Cape Ortugal, and to the Atlantic occan on the west. 'The Sierra d'Occa, one ol' the principal ramifications ol the Pyrences, stretches across the southern parts of Spain, and the Sierra d'Orihuela, a loliy and extensive momtain, is situated on the boundaries of Murcia and Valencia.

Spain abounds with rirers and rivulets, many of which become impetuous torents upon the melting of the snows. or after heary falls of rain. They cxpand themselves over the country, and sufficiently serve for the purposes both of commerce and of agriculture. With the exception of the Ebro, all the principal rivers run into the Atlantic, and some of them are navigable to a considerable extent. The Ebro rises in the mountans of Asturias, near Reinosa, and after pursuing a south-castern course of about 380 geographical miles, enters the Mediterrancan below Tortosa. This river was once navigable as far as Logrono, about 60 leagues from its embouchare, but at present it is very dilficult of access, being obstructed by shifting banks ol same, which increase and diminish in size, and which change their situation after storms and the swelling of the water. The Cimadalquivir, the ancient Boctir, which gave its name to the district of Boctich, has its source in the Sierra Morena. It flows into the Ciull of Cadiz, a distance of 300 miles, and is mavigable for large ressels as high as Seville. The Guadiana originates near Cuidad Real on the morth site of the Sierra Norema. Where it springs from the gromad, it forms several small lakes; and the apertures through which the water flows. are called the eyes of the Guadiana. It lalls into the Gulf of Cadiz, and its circuit is neally equal to that of the Ebro. The Minho rises in the Sierra Mondonedo ard is said to derive its name from minimm, or vermilion, which is found in abmadance in its neighbouhood. It sepurates Galicia liom Portugah, and lalls into the Athotic, after a course of 160 miles. The Douro springs near the ruins of the ancient Numantia, on the frontiers of Aragon and Navarre, and crossing Leon and Portugal, reaches the Athantic
below Oporto. Its cours is \(3: 0\) miles. The Titgris hasits source uear Albarazin, in a sprims called Abregat, and holding a course of 150 miles, embonchers into an arme nl the Xthatic in Portugat. The other rivers ol less importance are the Ciumbatasiar, the Xincar, and the Sagura, which run into the Nediterrathean, and the Ansa, which emplees itsell into the Bay ol Biscay.

Nany attompts have been mate to improwe the ine land marigation of this combry, but amont aceypres ject has had a sinitar resmle, and still remains murecented. The narigution oll many of the rivers, whirh in the time ol the Romans, wore covered with barks and gallico, has been completely neglected, and hats become impracticable. During the reign of bhilip 11. in 1580, the navigation of the 'Magus was estathlished from lisbon to Nomara. It was alterwards, according to a plan of Jean baptiste Antomill, carried as far as Poledo; and at the lower part ol hat city, the guay where the boats were loated and discharged, still bears the name of Phermbe de las Jitrects. 'This navigation, howerer, entively ccased in the begiming of the 17 the contury, but the cause of its cessation is unknown. In the succeediug roignt, various plans were suggested for agitin opening the river, and atso for cuting canals lrom Madrid to Aranjucz, and from Aranjucz to Nicala de Ilenarez, which, however, were never carried into chect. The establishment of canals between the intand and maritime prorinces, have also been frequenty attempter, but none of them have been lully executed. Ol these, the most important is the canal of Aragon. It was begran in 1529, and after lieguent and lons interruptions, it is now brought nearly to a conclusion. But the success of this chterprise was greaty owing to the eforts and indefatigable zeal of a citizen ol' Suragossa; and to him Aragon is chiefly imebted for the revisal ol its industry and its commerce. This cand commences near Tudela, in the kingtom of Navarre, and from thene to where it discharges itself into the Ebro, its extemt is about twenty-six leagues am a hall. It has !een proposed to cary formard this undertaking to the opposite coast, through Naware and part ul Biscay, which would thas form a communication beiwen the Bay of Biscay and the Dedintrancan. Severalbideres areconstrucleduponit; and it hasevery whem ondetsto consey the water to the neighburing tands, for the purposes ol irrigation. This camal has cost upwatis of £135,000 sterlins. The canal of Compor, which was intended to open a commmication between Oid Castile and the Douro, passime by Valencia and Duenas, and extending to Segoria, is still in an unfuished state: and even the part of it which had been completed, has been formtirely nerbected, that the excavations are insensibly fillims up by the lathing in of the earth. The canal of Damzanarez was umbertaken for the purpose of sapplying Madrid with provisions and other articles. Jt was to extend from the bridge of Poledo as far ats the river Xarama, which was to be rendered navigable to foma a commonitation with the sea. A part has been executed, and seren sluices constructed; but the scheme appeats to be relinquished. Another canal was projected and determined upon some tince ago, 10 open near the palace of the Escurial, extend to the Tagus, join the Guadiana, and abat on the Guadalquivir, below Anduxat. 'This canal would have passed through great part of Spain,

Vol. XVII. Parti.
and womld have bean attemed with the most sold advamares: but lse death ol Jec Naure who limaisber the plan, and was rommissioned be see it constmaterla

 irrespation of the eonntry, but they have been aboblon-
 sobatere.

The chate of Span is graty infumand by local causes, such as clevation of sta, provinity to the sem,

 that of the coast from the it w the er- of loat is be-
 dey, and consequently exposed th serote dromefle, which have lrequently of casioned lamines and epi-
 great scapcity was belt in the kingelom al tokedu; there washot a drop of rainformine suecessive months, insomuch that the husbanmen were loned in quit their laths and their dwellings. to sock and asslum int orber provinces." It has, howerer, beco ilesemedly prased as equal if mot superior, th that of aty rourtry in Enrope. Accordins tu Laborde. "the dimate of Sew Custile is more mild than hat ol the ofd; inthe former the winters are tomperstic, and the sammer vory hot: in the latter, the plaths ate rey twoplote, amb the monntains as well as the parts bordering on them, very cold; there ate cren some pars a the low country where the cold is severcy fell in winter. The shies of both are very fime, almost always clear, serene, and of a beautiln blime, but those ol xew (astite are the mose constantly so in some purts of the atci, it is olen chomis.

The climate of Vatencia is very temperate in winler, bos in summer. but refeeshed by berezes fiom the sea: dry in the interior, somewhat moist in the phan of labencia, gencrally inconstant, and subject to winds. The sky is lisually clear and hue except in the plain of Vatmide where the atmospme is shighty thickencd by the vapours rining from the great quantity of water collected there for the purpose of jritwation.

Catalonia, considered with pegard 10 its mancrous finans, is the most temperate province of spatas the winters with some exe cplous. are pidn, and bine hent ol summer is not often extremely valent: lut: the hitis and valleys bormetins upan the l'yenees atre bery hot in summer, and cold in winter, at which time the sumbits ape conered will ice and shers. The hagher parts are bere less subject to sariations of the atomosphere than the fower: these lietter, espectally on the \(^{\text {phe }}\) sitte of Barceloma. experince comaral combes: it varies rapidly, somethanes in th: valme dary, form but to cohd, from dry to wet, from rath in stumad, and from a clear sky, to rain or clume. 'The ar is dy in the interion, and maist on the sea const. coppecia!ly in the basin in which barceluna is situned. The cori and south-cast winds are those which how with most Preguency and violence in the parts near the sus. I 1 my bring with them a constant moisture and wra taili.
 temperature is even rather cold than lantyet i's plains and valleys are sometmes scotchins, and a keen culd is lell upon its mountain. Wisds are frequent ind violent. The sky is (lear, and more constanty so こ Z
than in the maritime parts of Catalonia. The vicinity of the Pyrenees renders storms frequent in this province during the summer.

Navare being situated among the Pyrences, is a cold tract: its winters are usually very severe.

Biscay, comprehending the three districts of Biscay, Guipuzcoa, and Alava, is cold; the winters are sharp, and the summers temperate; it is chry in the interior, and moist on the coasts, where the cold is less felt. The sky is of en cloudy and the air loaded with fogs.

The Asturias are mild near the sea, but cold farther up the country and upon the mountains: there are frequent and violent winds; the sky is seldom very clear, but rather cloudy; the air is moist and it rains frequently.

The climate of Galicia is very similar in all respects; its sky is the most cloudy of any in Spain, and more rain falls here than in any other part.

The climate of the kingdom of Leon varies in different tracts. In the eastern part it is very similar to that ol Old Castile; in the north and west it resembles that of Galicia; and in the south it is similar to that of Estremadiura.

Estremadura is a very hot and dry country, where the heats of summer are very violent, and the winters extremely mild. Its air is usually very dry, and its skics are perhaps the finest and brightest of Spain.

Andalusia is very hot on the coast, temperate in the interior, very cool at the foot of the mountains, and cold on their summits. It is a dry country, though watered by several rivers, and is exposed to several winds, especially near the sea. The east is the most prevalent near the Mediterranean; and a wind sonctimes blows there from the south-south-east called the Solduo, which has a very dangerous effect upon the human frame, and oceasionally produces a state very simitar to phrensy.

The climate of Murcis is cool upon the mountains, temperate towards the sea and at the foot of the mountains in the south, but very hot in the valley which is watered by the river Segura, and in which the city of Murcia stands, as well as in the Campo de Lorca, and burning in that of Carthagena. It is very dry, except in the valley of Segura, where it is almost alvays moist. The skies of this kingdom are most beantiln, almost always clear, bright, cahm, and of a brilliant blue; on which account this country has been named the most serene kingdom of Murcia."

The natural history of Spain presents a vast field of inquiry, but it has hitherto been but little cultivated; so that our account ol this department of science must be very gencral and imperfect. The highest ridge of mountains, between Daroca and Saragossa, are composed ol arsillaceous schistus and frecstone, probably. resting on franite. "Those in the neighbourhood of Ansuela are limestone with shells, and sometimes contain betls of red yrpsum with reystals of the same colour. 'The mountains north of Madrid, and also those surrounding Toledo are granite; and those to the north of leron, which rise in bold and rugged rocks, are chielly marble or limestone resting on a basis of argillaceons schistus. The higher regions of the Sierra Morena are granite; the lower, argillaceous schistus with gypumm and limeston"; and the branches of the Sierra Nivada near Malaga present limestone and marble, surmounted by argillaceous schistus. On the south-east of the city of Granada
are found rocks, which, on a basis of shingle, present sandstone with shells, surmounted with pudding stone; but in general the rocks are gypseous with strata of the same substance crystallized. The soil of La Mancha is sandy, and the rock gypsum; in fact gypsum appears to be as abundant in Spain as chalk is in England. The soutb-east part ol the kingdom seems calcareous. The mountain ol Montserrat in Catalonia is a compound of calcareous stone, sand, and pebbles, cemented together, and forming the kind of aggregation known by the name of pudding stone; and the cathedral ol Nurcia is buit with a kind of limestone resembling the roe of a fish. The hills near Cape de Gatte are supposed to be volcanic.

The gold and silver mines of this comuty must in former times have been both numerous and productive, as the Carthaginians drew immense quantities of the precious metals from their colonies in Spain; and alterwards the Romans, when it became a province of the empire, cxplored its treasures with extraordinary success. Polybius informs us that the silver mines near Carthagena yielded 25.000 drachms daily. "Cato, alter his proconsalar government of this province, brought into the treasury of the republic no less than \(25,000 \mathrm{lbs}\). ol silver in bars, \(12,000 \mathrm{lbs}\). of coined silver, and 400 lbs of gold. Ildsius from his province of Andalusia alone, brought into the treasnry 37,000 lbs. ol coined silver, and \(4,000 \mathrm{lbs}\) of silver in bars. Minutius exhibited on his triumph 8,000 lbs. of silver in bars, and 300.000 lbs of silver coin: and lilaccus returned from Spain witha treasure ol 124 crowns of gold, 31 lbs . of gold in bars, and \(70,000 \mathrm{lbs}\). of coined silver." Many vestiges of rold and silver mines are still in cxistence, but scarcely any of them are in operation; and what are so are very umproductive. Several, which were in a state of activity in the seventeenth and eighteenth centuries, are now abandoned, either in consequence of an inflax of water, or for want ol resources. Mines of lead and also of copper are very numerous and considerably abundant. The principal lead mine, which is wrought on the king's account, is near Linares, in Andalnsia. The ore, which is galena, when analyzet, produces from 60 to 70 and sollos. ol lead per quintal, and three fuarters of an ounce of situer. It is wrought at a small expense, and furnishes amually about 12,000 quintals of lead. Iron abounds in almost every province, but the most celebrated mine of this description is that of Samosostro in Biscay. The ore foms an irregular bed between three and ten leet in thickness, under a stratum of whitisla calcarcous rocks; and is of the species called by mineralogists aputhose iron. It yields about 30 per cent, and the metal is soft and ductile, and perinaps the most malleable of any in Enrope. A mine of antimony, belonsincs to the king, is wrought near Santa Criz de Mudela, in La Mancha. The ore is very abumtant and rich, the mineral being in almost a pure state; and sometimes lumps of metal will occur, weighing from wo to three hundred pounds. A very abundant and productive mine of mercury and cinabbar united, also wrought for the king's benefit, is situated in la Mancha, near Almaden. The cimabar is generally mixed with a large proportion of pyrites; but is olten lound in masses of great purity, one lb, of ore yielding ten ounces of mercury. Mines of rock-salt, and also salt springs and marshes, are found in many parts of Spain.

Three of the most productive of the former, with two of the later, besides five salt pits in the environs of Cadiz, belong to the kime. The two salt marshes furnish ammally about gomo tons, and the five pits about \(1,600,000\) quintals of salt. But the most remarkable mass of this mimeral is the monntain of salt near Cardona in Catatonia. It is nearly three miles in circumberence, and soo feet high, withont cleft or crevice. 'the salt ol' which it is composed is very white; and the river Cardonero, which washes its base, is so impregrated with salt that lish camot exist in its waters within three leagues below the mountan. Some beantilal specimens of this substance, perfectly wamsparent, are manufactured at Cardona into various opmanontal articles, such as crosses, ligures ol saints, chandeliers, \&e. Amethysts, agate, chalcedony, and garnets are found near Vich, in Catalonia, and at Cape de Catte, in Granada; and the marbles of Spain are abundant and valuable.

With respect to the botany of Spain, we refer the scientific reader to the llora llispanica of Joseph Quer, and the work of Cavenilles; and must confine oursclues to a lew general notices on the subject. Whhife the plains of this extensive country produce a great variety of curions and useful vegetables, the mountains are covered with rare and valuable plants well worthy the attention of the enterprising botanist, particularly Gaudalonpe, in Estremadura: Moncayo, in Aragon; Pineda, Cinadarrama, and Cuenȩa, in New Castile; Carascoy, in Murcia; Pena-Colosa, Mongi, Aytona, and Marioln, in Valencias and the Pyrenees. The extensive and arid tracts of heath present a gayer and richer prolusion ol plants than those of any country in Enrope. Among the thick woods of the yew-leaved fir, and stone pine, and the groves of cork trees, "the traveller is regaled with the fragrance of numberless aromatic plants, the mastick thyme, spike lavender, common and Spanish sage and rosemary. 'The golden blossoms of the gorse, a plant chiclly lound in England and in Spain, and the crimson, llesh-coloured, and snowy flowers of the arborescent hasths mutually beishten each other: the elegant lithospermum fruticosum entangles itself among the thickets of dwarl myrte, and every spot of sand or dry rock, lorsaken by other vegetables, is adorned and perlumed by the cistus: of this plant there are no less than fourteen species natives ol Spain, all of them eminently beatiful for the ir broad silken blossoms of pure white and yellow, with deep crimson eyes: the laurel-leared cistus is most frequent in Old Castile, but the commonest of all is the gram cistus, a most elegant and liagrant shrub from six to seven feet high, which occupies whole miles of dry rock, and, on this account, forms a very peciliar feature in the scenery of Spain." The flat sandy tracts on the sea-shore are occupied by the sea daffolit, and some coarse kinds of grass: and in the neighbourhood of Alicant and Barcelona are extensive plantations of the falsola fativa, from which are manufactured ammally some thousand tons ol barilla, which is partly exported, and partly used for the preparation of fine Spanish soap. The calcareous rocks on the coast abound with samphire, tree violet, tragracanth vetch, caper bush, and esparto grass; this last, on account of its extraordinary toughness, is used for makiug ropes, mats, chair bottoms, and other similar purposes. In the woodlands the trees are neither so large, nor is the fo-
liage so ample, as in England and Germany. There are several clamps of chestnat and box: but the ereat mass of the words consists of the evererreen sweet oak, intermixed with the wide olier, the kermes oak, the walnut and carob trec. The almond, alone with the sumach, fix themsedees in the revices of the rooks; and the laurel, the bay, the lauristins and leonesgal lanrel attain to such a herght as waflomat arool and shady summer retreat. In deep and rich soils a number of beautiful bubous ronted plaths appear in early antumn and spring, of which the mose cotmons in the Spanish landscape are, two sperios of atsphodel, yellow amaryllis. jompuil, chastered hyar inth, dors's rooth violet, orange and matagon lily, and wild tulip. The banks of the rivers are adorned with the wleander, laburnum, tamatisk and myrthe the fallows and dry thickets abound with the fan-palmetto, yollsw lupiin, Spanish and white broom; and in the loderes are found the laurel and common passion fower. The high monntains in the maritime districts are crowned with the finest timber: the oak, the lime, the birch, the mountain ash, the gew, the beech, the larch, the holly and the juniper, grow to a considerable size. In the interior provinces, however, trees are very mare; and whole districts are almost entirely destitule of wood.

Besides the domesticated animals, of which the most important in Spanish zoology are the horse, the mule, and the sheep, wolves are met with in all the higher and mountainous parts of the country: wild boars are found in some of the monntains of "Valencia; lymes and ibexes in the Sierra de Cuencau and in the valleys of Gistau and Aure; and rocbucks in Navare. Bears occur in several parts of the great Pyrenean chain, and especially on certain monntains in Aragon and Old Castile. In general, the birds, quadrupeds, reptiles, and insects of this country, are the same as those found in the southern provinces of France. The rivers abound with fish, of which those in highest estimation are from the river Tormes, some of them weighing above 20 lbs . The tench of some lakes in New Castile are remarkably fine and delicate, and are taken in great plenty during the months of May and Junc. The Cocrus ilicis, or gall insect, familiarly known by the name of hetmes, which affords the fine crimson dye, so highly estemed by the ancients, abounds in many parts of Spain. '1hesc insects leed upon the leaves of the feterus ilea, or ever-green oak, and ure collected in great quartities as an article ol commerce, or ol domestic mamblacture.

\section*{Chir. II. - Aericullure-Soii-Productions-Furests -Pastures-Domestic Animels.}

From the genial nature ol the climate, and the general fertility of the soil. Spain, in the reign of dugustus, became the granary of the Roman Empire. It continued to be an exporting country until the expulsion of the Moors, whell the Spaniards, deprived of the skill and industry of this people, and maccustomed themselves to agricultural pursuits, allowed some of their most productive districts to lie waste; and, at present, this country is under the necessity of importing from foreign states a large supply of corn for the subsistence of iss scanty population. Scarcely two-thirds of the land is now under cultiration. Com-
mons are sofrequent that, for six, eight, or ten leagues together, not the smathest trace of culture appears: and what land is under tillage, with the exception of a lew districts, presents only a languid system ol' slovenly husbandry. Many atempts hare been made at dithent times, and by varions encouragements, to rouse the spinit and invigorate the system of agriculture; vat a varjety of obstacles are still in operation which tend to impede its advancement, and also the prosperity of the country. The principal of these obstacles are, 1 . The deficiency of agrarian strength; and, 2 . The Mesta, or the privileges granted to sheep proprietors in prelerence to agriculturists.

Spain does not nearly possess power adequate for the cultivation of her territory. Out of a population of above ten millions, scarcely two millions and a half are employed in husbandry; and this diminished nomber is owing to screral causes:-1. The lacility aflorded in this comntry lor persons to enter into the church, which induces many to become students who would otherwise be employed in agricultural pursuits. These receive their edncation at the monastic sebool, and often depent entirels upon public alms for their subsistence. 2. The crowd of mendicants and ragrants which infest erery comer of this kingdom. 3. 'The great number of ufficers belonging to the different judicial courts and departments ol government. 4. The swarms of domestics which are here retained as a principal object of luxury, and the greater part of whom are unprofitable, and even injurious to their master's service. And 5. The continual emigration from Galicia especially to Portugal, where from sixty to eighty thousand Spaniards are generally reckoned to reside. This want ol agricultural strength is greatly aggravated by the loss of much time, arising l'rom the multiplicity ol feast days, the heat of the climate, and the indolence of the peasantry. The Spanish labourers consume a great part of the day in taking their sieste, and smoking their cigarros; and besides the usual feast days, which are now abridged to fortyone. and when they are obliged to attend mass, they seldom neglect to celebrate the different feast days of the titular saints of particular parishes, the patron saints of private families, and the guardiau saints of individuals, which is just so much valuable labour lost io the community. *

The greatest obstacle to agricultural improvement, howerer, is the Mesta, which is a name given to an incorporated company of proprietors ol migratory shecp, who are endowed with particular prisileges highly prejudicial to the interests of agriculture. This association is formed chiclly of the nobles. persons in parer, members of rich monasteries, and ecchesiantical chapters. Their locks are mitited into one collective borly, which does not strictly attach to any distict, but tusct backwards and lorwards twice in the year, pussing part of it in one place and part in another. 'lise pastures upon which they feed are similat to the commons in England, and are denominated worsfe lamls, which are prohbited by the Jegislature frome ever being encloned, or brought intes a state ol culdivation. These llow ks they call Merions or tirmahememtes, and consist usually of about !m,0u0)
sheep in earl. The nomber of the whole has varied at slitlerent periods. but at present they may be exilmated at neaty 5000,000 . Each Hock is conturted by an officer called a motyoial, who has under his atothority fifty shepherds, with as many dogs. He las the sole management of the sheep, directing thetr route and choosing their pastures. They commonce the ir migrations the latter end of Appil or begimains of May, and learing the plans of Estremadura, Andabsia, Lcon, and the two Castiles, where they winter, they repair to the mountains of the two latter provinces, and those of Biscay, Navarre, and Aragon. Toward the end of September, they descend from the mountains, and again repair to the warmer parts of the country, generally wintering on the same pastures, which they had grazed the preceding year, and where most of them had been yeaned. "The journe" which the locks make in their peregrimations is regulated by particutar laws, and immemorial customs. 'The sheep pass unmolested over the pastures, belouging to the villages, and the commons which lie in their road, and have aright to feed upon them. They are not, howerer, allowed to pass over cultivated land, but the proprietors of such lands are obliged to leave for them a path nincty creres, or about eighty-four yards in breadth. The whole of their joturney is unatily an extent of one hundred and twenty, thirty or forty leagues, which they pertorm in thirty or thirty-five days." The Mesta has its pectliar laws, which are digested into a code entitled, Leys y ordenunzas de le Mesta, and there is also a particular tribunal consisting of four judges, under the title of Monrada consejo de la Wesia, whose jurisdiction extends to all matters that are in the slightest degree connected with the interests of the mesta, and who are particularly watchful against any infringement of its privileges. Of the numerous grievances to which this system has given rise, the lollowing are stated by laborde as the most vexatious, and the most opposed to agricultural improrement. I. The number ol persons it employs is very great, 40,000 or 50,000 , which are so many subjects lost to the state, as to the purposes of agricuiture and population, as they almost never marry. 2. An immense extent ol highly valuable land is converted into pasturage, and produces comparatively nothing. 3. The cultrated lands which lie near the ronte of the llocks to and from the mountains, are subject to continual trespass, which is committed with impmity, for in vain do the owners appeal against such abuses, and solicit indemmity: The damages sustained on these oceasions are so mach sreater, owing to the srason of the year in which the journeyings of the focks are made. The first is when the corn is generally far adranced in its growth, and the second when the vinesare loaded with grapes. t. The commonable pastures also, which are in the line of the route, are equally devastated, so that the focks belonging to places in the vicinty can scarcely find a bare subsistence. 5. 'lhe flocks of the Mesta are unprofitable for agricultural purposes, Po nerer being fotded upon the arable tat, they consequently contribute nothing towards the ir lertilization. The directors and shepherds are dreaded in every

\footnotetext{

 days amomets \(26,83,3,3,3,63\). Bed sterling.
}
piare thongh which they bass, for they exereise a most insulterable despotism, the conseguence ol the improper, privilege which they possess, ol hringing whoever they may choose to insult before the tribunal of the Mesta, whose decisions are almost intariably in facour of its servants.

These grievances have freguenty called lorth the protestations ol the public, and even the genemel states of the realm have repeatedly reguested the supprese sion of the Mesta. But for a long series of gears these calls were made in vaim, till towards the middle ol the 18 th century, when the government found itsell obliged to pay some attention to such powerfal appeals. A committee of inguiry was then formed, and has continued lor above half a century, but whobot proe posing one remedy for any of its evils, so that the interest of a few powerful individuals still obtains the advantage over the public good. In a memoir, addressed to the Supreme Council ol Castile, by the Patriotic Society of Nadrid, on the advancememe of agriculture, and drawn up by one ol its ablest members, and a disinterested patriot, Don Gaspar Metchor de Jovellanos, we find the following observations on this subject: "The memioers of that body, (the Mesta, bave always aimed at soliciting pechliar privileges, and having been sufficientiy powerful to obtain and extend them, have invariably given the most decided resistance to every system proposed for enclosure. Not pleased with possessing the privilege ol keeping lands, once under pasturage, for ever in the same state; not content with preserving and extending the concelas, (roads for the sheep); not satisfed with the right of successively participating in all the public pastures, and obtaining an miversal fictitious franchise, directly in opposition to the meaning and intent of the ancient laws; the Mesta wishes also to alienate individual property. Its laws perpetuate the prohibition ol enclosures; its courts support this prohibition with increasing zeal; its oppressions ctemize the laying open estates, and by its undue inlluence and authority the liberty of proprietors and their tenauts is annihilated." "Even the very existence of such a pastoral assembly, on which such privileges have been conferred, is an outrage upon all law and reason, and the one by which it subsists the most prejudicial of all. Were it not for the existence of such a fraternity, which combines the opulence and power of the few against the imbecility and wretchedness of the many, and who form a body capable ol resisting the representatives of the provinces, and even of the whole nation, who, for two centuries past, have found all their zeal vainly exerted in favour of agriculturists, and proprictors of stationary calle; were it not for such a fraternity, how could privileges so unhonded and shameful be maintained." "Sufficient has been advanced, and the subject is so evident, that you should not refuse to pronounce a prompt sentence of dissolution upon this powerftil association, annal its abused privileges, abrogate its majust regutations, and suppress its oppressive tribunals. Then would disappear for ever that convention of nobles and monks, turned shepherds, whotraffic under the revered sanction of political magistracy. 'This would eventually produce subsistence for stationary cattle, restore libery to agriculture, to propery its just rights, and allow reason and justice to exercise their proper offices."

There are variols other impediments in thas country to the proterss of agriculture, of minar importance indeed when compared with the Nesta, but which atl liom additional discouragements to its ime provemont, namoly, the difficultics attending the tramsporting of heavy ardicles, particmardy in the cental provinces, from the wantof canals and good roads; We uncertainty of a market lor larm protuce, owinz th the freymont chames in the laws respecting exportation; the bigh price ol labour, and hac sarious imposts, tolls, and taxes, which the local magistrates bay upon the productions ol the soil, according to the price for which they are supposed to stll.

The soil ol Spain is almost in every pat excellen' ; and it requires onty a litue assistance to render it both valable and productive. But the industry of the inhabitants is paralyzed by the oppressive restaic. tions and exactions of the government. Their implements of husbandry are in general rude and imperlect. The plough in matay provinces is compored entirely of wood, and has nether coulter, lin, mor mond-hoard; but instead of these, some of them have two wooden pins placed near the tail of the share, and so disposed as what the firrow in high ridges; and others have only the tail of the share divided, so as io perlorm the same operation as the heel and ground wist of our ploughs. Mr. 'lownsend has given a description and drawings of several ol these ploughs. Those near Oviedu he represents as of the most clumsy construction. 'lhe coulter is lixed in a beam by itself, with two uxem and aman to work it; the plongin then follows in the same tract, the point of the share only being shod with iron; and alhough the land is mostly strong and recuires to be well ploughed, this instrument nerely scratches the ground. There the harrows hate no iron, and are used only for maze; the wheat and barley being alwass left unlarrowed. In Catalonia they usea lightplough drawn'by two oxen, or one strong mule, and their harrows have iron furniture; but instead of a roller to break the clods they use a board, on which a boy stands, and drives the mule which draws it. In the rich vale of llucra neur Alicant, and also in the vale of Valencia, the carth is never allowed torest. They use a one-horse plough, and never attempt any thing more than to pulverize the soil, which is casily done, as it is mowed eight or ten times arear. . Wheat is put into the ground the beginning of November, and is reaped the middle of June, when they obtain from twenty to lorty for one. Barley is sown in October, and fin May they receive from eighteen to twenty-four for one. Oats are in the ground from the middle of October to the middle of June, and yiedd from twenty to thirty for one. Maize follows the barley as the second crop in the same year, and with a favourable scason gives at the end of October a hundred for one. Rice, commonly sown about the first of April, is transplanted in June, and in October rewards the farmer forty fold. Beans may be put into the ground either carty in the autumn, or in the begimums of the year. Hempseed is scattered on the land in April, and is cleared about the middle of July. The intermediate crops are vetches, cabbages, caulifowers. carrots, turnips, cucumbers, melons, sandias, and a varicty of otheresculents. Thus with a warm sun, plenty ol water, and a rich choice of crops, suited to every season ol the year, the gratelul carth repars the labours of the hese
bandman at least three times in the course of twelve or thirteen months." In some places particularly on the coast, they often sow barillit for a fallow crop, which is one of the most valuable productions of the conntry. After the land is well manured and ploughed they smooth its surface with boards instead ol harrow's, and sow the sced only in wet weather in Jannary and February. When the plant is about the size of a shilling, they clear off all the weeds, and in September they collect the crops, which yield from ten to twelve quintals on a fanega of land, about an English acre. 'This crop, howerer, is liable to be instantaneonsly destroyed even at the moment of harvest, by a beetle, a species of scarabeus, depositing itslarva in the roots of the plant. The foxes also are particularly fond of it, and will in one night lay waste an entire field.

A very particular mode of cultivation prevails in Biscay. The ground is dug up with an instrument called a loye, which resembles our dung grape with one of the outer prongs taken away, and the clods being broken with a mattock, are left to pulverize during winter by the action of the frost. In the spring the clods are again broken by means of harrows and wooden beetles, and afterwards levelled by a cylinder; deep holes about two feer apart, and in a straight line, are then made with hoes, in which are deposited seeds of Indian corn, French beans, peas, pompions, \&e. and filled up with manure. When the plants appear above ground, the suckers both of blossoms and ears are cut away, and, when dried, constitute an excellent fodder for cathe. Alter the crop is cut, which happens about the end of September, the land is sown with com whout any farther preparation than covering the sced with the plough. In the course of the winter it is hoed to destroy the weeds, which operation is repeated in Mlay and June; and the harrest commences about the end of August, when the stubbles are depastured. The light lends are allowed to rest for one year; but the stronger lands a tew months after, undergo the process of the laya, and are again manured and cropped.

The manures generally emploged are dung from the stables and sheepfolds, and the sweepings of houses and strects. In some districts of Gibipuzcoa, the fields are covered with a marly earth which greatly fertilizes the land; and in Valencia the upper lager of the high roads, which is supposed to be impregnated with excrementitious particles, and the sand from the unpared streets, which has been loug subjected to the tread of animals, are carelally collected, and form an excellent manure for strong soils.

In a country like Spain, however, where the soil is gencrally dry, and the climate warm, nothing in the shape of mamure is so bencficial to the land as regular irrisation. "la the nordacroprovinces, situated at the foot of the Pyrences, and the mountanoms conntry branching from that Apine chain which extends far into the interior of spain, searely a district can be lound where irrigation would not multiply threefold the produce of the soil; and there are large tracts of land which can yied mothing, of at best a scanty pasturage, untess assisted by the benclits of irrigation." This lerilizings system, howerer, is either neglected or not properdy understood throughout the greater part of the kinglom. The lamls which lic contiguous to rivers or streams are made to profit a little by
their situation; but the art of conveying water above the level of the land by means of canals, and distributing it properly over the surface according to the quality of the soil, is very seldom practised. In Asturias, owing to the mountainous nature of the country, it would be difficult and expensive to profit in this way by its numerous strams; but the rivers of Leon, which supply a vast body of water, are suffered to run mheaded through extensive plains, without the inhabitants deriving the least adrantage from them for agricultural purposes. The practice of irrigation is equally limited in OHJ and New Castile, though theseprovinces are watered by a mutiplicity of rivers. It is almost entirely neglecied in Aragon, and it scarcely deserves to be mentioned in Estremadura and La Mancha. But Catalonia, Valencia, Murcia, and some parts of Andalusia, lorm an exception to this general indifference to the means of agricultural improvement. In these provinces the system of irrigation is extensively and successfully prosecuted; and in Granada the skill and industry of the Noors are perpetuated by the numerous reservoirs and canals still in existence, which they formed lor the purposes of watering and fertilizing their land.

Spain produces a great guantity of wheat, which is of a most excellent quality, plump, well grown, and well flavoured. It yields a very white flour, and a small quantity of bratu, and the pellicle or skin is so thin, that, in the process of prinding and dressing, it does not lose more than a fifteenth, while the corn of the north of Europe loses a fith. 'The difference which exists in the quality and quantity of bread produced from a given measure of cach is also very considerable; and it is on this acrount that the wheat grown in Andalusia sells at Serifle lur nearly domble the price of that imported from the north ol Europe. The principal wheat districts are Amdulusio, Old Castile, Arasgon, and Murcia, which, besides supplying their own population, grow a suff ient surplus io satisly the demands of the neishbouring provinces; while few of the other provinces prothce what is necessary for the consumption of their inhabitants. Barley and maize are cultivated to a considerable extent throughout the kingdom; very lew oats are rrown: ame rice is confincel chielly to Cotalonit and Valencia. The crops in this conntry, however. are often exposed to severe droughts; and a hot and blasting wind occasionally prevails which instantamonty blights and scorches the tender blate. Severe scarcity is sometimes the consequence ; but the disastrous effects of famine are in a great meabure prevented by the judicious measures of the roverament, who many years ago formed an establishmem, by which subsistence is provided for the inhabitants, in case of menenial scasons or bad harrests. " Magazines or store-houses, denominated positors, are erected in varions parts of the kingrom to the number of more than fise thousand. When it is requisite to establish any of these granaries every occupier ol latel is obliged to bring and deposit a certain quantity of corn proportionate to the extent of his larm. The foltowing year he takes back the corn be had thas deposited and replonishes the empty garners with a larger quantity and thus he continues ambually to increase the stock, by these increments called rerses, till a certan measure ol grain is deposited; then every one receives back again the whole corn which he has furnished,
and replaces it by an equal guantity of new corn. Whenever a scarcity happros, these repositories are openced and the com dealt out to the people at a moderate price. In some places sect corn is also distributed to meressitous husbandmen, who are botmel to restore as much in lien of the ensuing barvest."

Though thax is produced of an excellent quality, particularly in the contral provinces, yet its cultivation is much meglected. Nome attention seems to be paid to the raising of hemp, which is successfully and profitably cullisated in biscay and Galicia. A considerable quantity, ahmut lis. (mo quintals, is srown in Catalonia, Valencia, and Aragon; and it alse forms a part of the produce in some parts of Audalusia and Old Castife. "The hemp and thas raised in the interion districts of Spain are of a shomer and finer fibre than those of the northern provinces, and are consequently better adapted lor fecueral ase, and capable of being better and more expeditously bleached.

The sugar-cate at one time was extensively cultivated in Spain, but owing to the inteduction of West India sugar, this species of produce is now almost entirely mestected, except in Gramadia, where a sulticieni quantity is still raised to supply a considerable manulacture of susur, and the cancs prodnced in this country are usually disposed of to Provençal merchants, whoby them for the purposes of lemmentation. Madder is grown in several of the provinces, but particularly in Old Castile and Andalusia, where are reckoned above two humdred mills for grinding the root, and which produce ammally 7500 quintals of fine madder. The plants from which sodat is made are almost all indigenous in this country. Some of them are cultivated with great care, cspecially barillu, (the Salsole sode of Limens.) and "ģue-ezul; but others grow widd in great abundance. The largest plantations of the former are found in Murcia and Valencia, which alone furnish 300,000 quintals of soda. The ctilivation of saffron has lones been on the decline, and is now confined chictly to Murcia, which supplies annually about 150 quilutab. Honey is produced in every district, but that which is most esteemed for the delicacy of its flavour is collected on the mountains to the north ol Alicant in V"alencia. The mountains of Cuença afford about 1000 quintals of honey, and forty-one and a hall guintals of wax.

Though the soil of Spain is ingeneral faxourable to the growth of fruit trees, yet their cultivation in the interior and western provinces is entirely neglected; but in the other districts of the kingdom almost every species of liuit is produced. "Catalonia produces a considerable quantity; several districts in Apagon have scarcely any but fruit bearing trees; Biscay and Guipuzcoa abound with varieties; the four kingdoms of Andalusia are still more abundant; and the whole of the kingtom of Valencia is covered; the latter, in conjunction with Aragon, supplies Madrid and the greater part of Now Castile. The fruit of Biscay, Cuipuzcoa, and Catalonia is grood; of Aragon and Andalusia, excellent: and that of the lingdom of Valencia the most beautiful, but less succulent and less delicate in the flavour."

Olive trees abound in almost every part of the country, but there is a considerable difference in the flavour and size of the fruit. The olives of Aragon are sweeter than those of Catalonia, and both are surpassed by those of New Castile. The olives of

Valoncia, and also those which grow in the vicinity of Sevile are very large and beatilul: and as they contain a small quantity of oil, are more agrecable to the palate, and are grometly prefired for eating. The olives of bosille were in high restmation amons the Romats, and still recain their celebrity: lout the best and most adapted for piekling ate these grown in the districts ol Alcata and Gitatayra. 'The oil, however, of spatu is by me means equal te the livait, and this arises from the way in whin hit is extacted. Oil of the limest quality mistu be obtabed were only the necessary precallions taken in its mandiarture. liat the Prait is often over ripe, black and shrivelled, before it is grathered; the puteid and somol are indiscriminately mixed togelher, and it is allowed to remain lor some time collected in heaps before the oil is expressed, all which tends to produce that shap and often rancid llavour which is so observable in Spanishoils. In somedistricts, however, more attention is paid to the manufacture of this article; and when proper precantions are used, olimoil is produced not inferiop in quality to the best sil of provence. The principal oil districes are Grandal, Seville, New Castile, Aragon, Catalonia, Murcia, and particularly Valencia. 'The amual produce of the threplast provinces is about 266,600 ytuintals; ant the district of Malaga contains 500 oil presses constantly a work during the season.

Almonds are very abondant in Catalonia, and in the environs of Malaga; but the most delicious are those which are grown at lbi in Valencia. There they have a particular method of cultivating almond trees. They engraft them on the wild almond, which is supposed to bring them sogner "operlection. The fruit produced in this way is superior to any in Spain. The husk is smooth, and they keep fresh for several years, while the others often spoil in a shopt time. Fig trees are very numerous in Biscay, Aragon, and Catalonia; but the greatest puantities grow in Valencia and some districts of Andalusia. Those in the neighbourhood of Jaen and Ronda are most estcemed. Quantities of this fruit are dried both for exportation and home consumption: and Andalusia exports antually, by the port of Malaga alone, nearly 100,000 quintals. Nut trees are very general throughout Spain, but theyare most successfully planted in Biscay and Catalonia; the latter prosince producing amually 105,000 bushels, of which 78,000 are exported.

This comtry ahounds in vines, especially its eastern and sonthern prozinces, but they are most numerous in Andalusia; and the kingdoms of Seville and riranada are usually !emominated the wine-raults of Spain. In many districts, however, very little atcention is paid to the kind of soil on which the vines are cultivated; and, in general more regard is had to the guantity than to the quality of the fruit; for though his plant thrives best upon a gravelly slope, and produces grapes of a very superior flavour to those grown on a rich level soil, which is more congenial to the production ol corn: yet vineyards are indiscriminately planted upon either, as if both situations were equally well adapted to its culture. The general mehod of planting is by cuttings, which are not permitted to grow very high, and consequently form very stout stocks; but upon sandy soils the stocks are sometimes set in small round hillocks about two feet and a half in height, and separated about three feet distant from
each other. Poles for supporting the sines are not used in Spain: bat espaliers are numeroas in Andalusia and Valencio, on which are produced grapes of an extraordinary size, the branches frequenty weighing thetre and liutreen pounds. In the districts aromed Matega they gather the grapes at three differcat period of the ir ripening. In the month of Jume thase called cerly are gathered, which yield a wine of the consistence of hone: but the greater part of these aredried for misins. The second crop is collected in September, which furnishes a clearer and strunger vine; Lut the real yalaga wine is lormed from the last crop, cailed turdies, which is gathered abont threc weeks latur. Besides the Malaga grapes, which are excellent, those of Aragon, Valencia, and Granada, are mext in cstimation. There is a small white grapr, peculiar to liseay, which has a very thin skin and is of an acido-saccharine havour. The muscalline grapes of this province are also grod and very similar to those of Fromignac.

The principal wine districts are Malasa, producing annally rounon quintals: Aragon 537,540 quintals; Catalonia 180,000 quintals: Valencia 955,000 quintas and Duscia 020,0 g quintals. The best red wines are those of Aragn, which possess a good body, and are bery rich: those of La Manchaz are pleasant, but thin and wak: those of New Castile are generally harsh and poor; those of old Castile are very light; those of Aincia are luscious and heavy: those on the plains of Valencia are below meliocrity, but those on the hills with a sonthern aspect are ol a very superior quality: those of Granada have an agrecable scent and pleasant flavour; and those of Biscay are destitute of boty, rough and sour. Many districts of Spain produce excellent sweet wines. The wine of Alicant in Valencia, and that of Carthagena in Nurcia, are toth good and yery similar in their quality. Some monscadel wine is mate in Aragon, and abo in New Cistile at Paencarat in the sicinity of Madrid. Navate produces the wine of Tudela and of Perata; the formar much like Burgund, though not so delicions, and the other a sweet wine not untike the wine of St. Lawrence, bat stronger and more grateful. But Andausia is particularly famous fors sweet wines. The wine of Mombilo is seryexcellent, and those of Seres, or Shery, whd Rota are well known. The most esteemed, however, is Mataga, of which there are two dif. ferent sorts pmincipaly distinguished by connoisscurs, Letrerimen and Gemates. The forme is the mutessed wine from the grapes of the best districts; and the other is the common Aralaga, in which are inlused the solt tmats of a chery tree, the finit of which, called in Spanish crimbles. gives its mame to this winc. 1)isthmes for making brandy are confact chielly to Aragon, Valencia, and Catalonias and this last pro-

brided apes or misins are prepared in considera. he quantins in 「atencia, and in the emirons of Mandsatand constitute an imponat banch of com-

 The Patara maisus are of a very sumber quatity, and obain the highest price in the marke be beng both larger end of a more delicate Ravone that thene pro. anced in onthernecs. They are simply died in the : Ha withont ather preparation, and conseqnenty
retain all their juice: white those of Valencia arg steeped in hoiling water sharpened with a lye mate of vane stem, and then exposed to the sua and air till they are sumiciently dry; by which process much of their subutance is lost by escaping througth the shin: part ol it indeed crystallizes on the outside of the irnit, and lorms a saccharine crust, which harders in the coider combtries to which they are expurted.

Forests are numerons and extensive in the maritime provinces of span; but the interior is almost eminely destime of wood. This scarcity of timber arises principally from the many absurd restrictive statutes existing in this kingdom respecting woods and forests; and from the prohibiting of enclosures throughout a great portion of the country. It camot be expected that proprictors of land will incur the tronble and risk the expense of furming plantations, or pay any attention to their management and prescration, white they are prevented lrom raising enclosures to defend them from the depredations of the julle, and the encroachments of catle; and the timber of which they cannot dispose of but at the will of the govermment. What inducement can proprietors have to cover their land with wood who must "submit to have their trees marked with a stamp of slavery, which places their disposal in the hands of another; to solicit as a favour, and pay for the permission of cutting a single tree for private use; to shroud and lop in a prescribed time, and subjected to certain regulations, and to sell the wood, whether agrecable to themsclies or not, at a stated price; to allow the inguisitorial visits ol official survegors; and to make returas of the state and number of trees in their respective plantationse", Were these restrictions abolithed, and timber become exclusively private property, the country would soon be rich in beautiful and extensive forests. The mountains of Catalonia are covered with beech, pines, evergreen oaks, and cork trees: and elms and willows fringe the margins of the rivers. In the plains, olives, almonds, walmuts, oranges, lemons, figs, piuns, pears, apples, cherries, apricuts, and peaches are everywhere abmant and flourish to an astonishing extent. Valencia abonals with trees of almost every description, but Carob trees, palm trees, olives, and muberries are particularly prevalent; and not only are the mountains and hills, but the valleys and plains are clothed with borests. Some parts of Murcia, as the lluerta, produce an immense number of difierent kiads of trees, espectially the mulbery: in other parts searcely a tree appears for leagues together. Andalusia is equally defectise. Fruitbearing trees are exceedingly mimerous in the plain of Grathada, where are also woods of ash, edm, and white poplars more than four miles long: but the plain which teals from Cantillana to Seville, an extent of nearly thirteen miles, presents nothing except here and there a sprinkling ol miserable olives. Nany of the monntains, however, are well chathed with lentisks, cistuses, and evergreen oaks; and others with firs, yews, and cork trees. Istrematura, Lenn, and the two Castiles, are but scantily atomed with sytran scencry. Some of their mountains are covered with pines and oaks of different species; and in the platis of New Castile are some large lorests of olives. Frnit trees abomad in the Asturias, especially apples, which alford a considerable quantity of cider. Aragon and Natrare
have a few oaks and pines, with some cork, ash, and cedars. Biscay, however, exhibits more extensive forests than any province ol the kingolom. The mountainous part of Guipuzcoa is beantilully clothed with wood, and the hills ate covered with evergreen oaks, hard oaks, chestumes, and various kinds of limit trees, particularly apples, and a great variety of shrubs. Orchards are abundant in the cultivated parts, where are immense guantities of ligs, cherries, walnuts, peaches, and a variety of delicions peats. In some parth of Spain, more particularly in the two Castiles, lestromadura, and Andalusia, the acoms ol the eversreen oak, whichin other parts ol the country serve only for food to the vilest animals, are eaten by the indabitants and considered adelicacy. The ladies are particularly fond of this frait, which they call brllofas, and which they use cilber raw, or roasted upon the coals like chestuuts. The taste is satid to be very similar to that of walnuts, and when roasted more delicate.

Spain abounds with excellent pastures. The Spanish Pyrences, and the collateral range of monntains, which ramily and extend into the provinces of CataIonia, Aragon and Nuvarre, arr covered with them. The mountains of Asturias, Galicia and Andalusia, together with the plains of lithemadura, almost wholly consist ol pasture land. New Castile abounds in grass, and the urritory of Vellon for several leagues trom Madrid is covered with beautilind and rich meadows, linely interspersed with a diversity of trees. The best grasses are found in Ohl Castile; and the mountains of Burges are clothed with the richest herbage. Notwithstanding this abundance of pasture land, few homed cattle are reared in this country, except in the Asturias and some parts of Castile, and these are by no means adequate to the average consumption ol' the inhabitants. 'This deficiency is supplied by importation from other countrics, especially from France. In the neighbourhood of Burgos, howerer, this branch of rural economy is very successfilly cultivated. Cows ronstitute the principal wealth of the inhabitants and their milk is manalactured into exceilent cherse and butter. A sufficient quamty of the batter article might be made in this district to supply the demands of the whole kingdom; but the people are deficient in industry, and are unacquainted with the proper method of curing by sathong and preserving it in casks. Mules form an important class of Spanish amimals. They are employed as beasts of hurdem, and for agricultural purposes; and are generally prefered to horses and oxen for domestic use. The greatest attention is consequently paid to the breeding and rearing, and also to the proper breaking and training ol these animals to fit them lor the respective services in which they maybe subsequentlyemployed. Themostesteemed are to be fonnd in La Mancha, and also in Andalnsia and Leon; but the numbers reared are not suflicient for the service of the comntry, and a large importation is anmully made from France. The Spanish horse owes his high reputation to the care of the Moors: and the breed which this people introduced still exist in the province of Andalusia. The strongest horses are bred in Asturias; but the most beautiful in Andalusia; and this animal, though of a low stature, possesses almost perfect symmetry ol form, carries his head re-

Vol. XVIl. Part I.
markably well, and shows a bold forr-head; but is mabble to sustain much fatigue. Those in highest estimation are rated in various parts of the kingdom ol Cordensas and the royal stud at Cordora contains six humdred animats of all ares, among which are twenty stallions. Thare is another sturl established at Aranjuc, where are rechoned twenty stallions, and fone handeed mares. (iteat attention is paid to the preservation and incpease of the native breed; and every precaution is used to prevent any admixture of a Foreign race. The impentation of lismegn honses is absolutely prohibited; and ther are abo severe aiactmonts agrailst the exportation of Spanish horses. It was in contemplation, however, to try the experiment of crossing the brecd, and tor this phopose a bundmed beautilal mares were bronght into the royal studs from Normandy. This may be the means of introducing more bone and hardibood into the Spanish horse, and render hin in every respect more adapted Por military purposes. But notwithstanding the greatest care the breed has much degenerated; athd the number of good horses is daty decreasing. The food of horses and mules in this country is grenerally straw, which in some provinces is chopped, and in others given whole. Jlay is rery rare: and aats are seldom siven as provender, bardey being substituted in their stead. Carob beans, mixed with bran, are very generally used both in Valencia and Catabonia.

Spain appears to have always abounded with llocks: and its breed of sheep has been long celebrated as perhaps superior to any in the world lor the delicacy of the mutton, and the beaty of the tleece. The wools of Betica and Cantabria were in high rsteem at Rome lor their fincomss, colour, and lengeh of fine. The excollence of the wool of this country is said to be oning to the crossing of the Spanish breed by the introduction of English sheep, which took place - in the year 1394. When the hereditary prince of Castile, son of king Henry the Ihird, maried Catherine, the daughter of the duke of Lancaster that princess brought with her from England a numerous flock of peculiarly fine sheep. Those animals so chrove in the climate ol Castile that they specdify formed one of the most considerable branches of commerce: the manufacture of cloth flourishecl in proportion, and so rapidly, that in the year 1419 , the eleputation of the kinglom requested the prohitsition of the sale of foreign cloth, lest it might injare the use of the national labrics." The shecp of this country are distimguished into two kinds- the mismeny sheep, and stationary sheep. The former reccive the appellation of Merinos, and have been already mentioned when treating of the Mesta: He latter always abide in the fields, and by night are peaned in the sheep folds; and amount to nearly cight millions. The greatest number of them pasture in the prorinces of Audatusia, Catalonia, and Valencia: and while the owners of the migratory flocks derive little more benefit from them than the profit of the wool; the lands where the others are fed are strengthencd and enriched, and rendered capable of producing vigorous and flourishing crops of grain. In Septmber the sheep are ochred. their backs and loins being rubbed with red ochre or ruddle dissolved in water; and this practice is supposed not only to delend the animal liom the inclemency of the approaching winter, but also to improve the quality
of the fleece. Sheep-shearing commences in May. It is introduced by a pompous preparation, and is considered a time ol leasting and recreation. "One hundred and twenty-five men are usualiy employed for shearing a thousand ewes, and two hundred for a thousand wethers. Each sheep affords four kinds of wool, more or less fine, according to the parts of the animal whence it is taken. The ewes prodnce the finest lleeces, and the wethers the heariest: three wether fleeces ordinarily weigh, on the average, twenty-five pounds; but it will take fire cwe fleeces to amount to the same weight." The Spanish wools are, in general, cxcellent, being long and fine in the staple, and solt and silky to the touch. The ammal produce is about 500,000 quintals, one hall coarse, and the other fine wool. The Merino sheep afford the most valuable fleeces; and this superiority has been atwibuted to their being exposed to at more edual temperature, ranging upon the northern mountains daring summer, and pasturing in winter on the plains and valleys of the south. In some districts, howerer, the stationary flocks bear an equally fine flece, especially in the environs of segosia, and in some parts of Estremadura and Aragon: but considerable differences exist between districts of the same province. In general, the finest wools are those of Scgovia, Avila, Leon, and Aragon. Nir. 'lownsend states, that the woul ol the Nerino sheep is worth aboat twelve pence a pound, while that ol the stationary focks sells only for sixpence: and that every sheep is reckoned to yiedd a clear probit of tenponce to the proprietor, after all expenses are discharged.

\section*{Char. MI.- Mamifactures.}

In remote periods Spain was equally celcbrated for the industry of its inhabitants as for the fertility of its soil, and the rariety of its protuctions; and many of the uselin arts had arrived at considerable perlection in the time ol the Romans. Jinen stuffs were first manafactured in the city of Zoeta, in the dis. trict of 'Tarragona. and the ciuths of' San Feilippe, the ancient Setabis, were famous laroughout Italy and Grece. 'The mantacture of fine woollen cloths was also in a very fourishing state. The Spaniards had derived from the lhonicians the art of dyeing these of a beatifal purple colour: and of this article great ghantities were ammally exported to Italy. Thacy were expally celebrated tor theib mote of tempering steel; and the military ams of the Celliberians were eally adopted by their conguerors. The mantfactures of Spain fell with the Roman power; and were amost ambibated white under the domino ol the (inths. Dut they were agan woved by the genias and jadusty of ha* Monts, who lomed several madepentent kiagrons in the centre of the conatry. The Spaniards, driven io lhe momatain. and having ace gaired a spirit of encery which they hat not lor a long time experjenced, hat the wistom to proft by the exumple of the drats. Dossessitio the mines of Biscay, and the floctis of leron, thry retained the fabatation of woollen clotho and of :ums and allowed the mandacture of leather. himen, silk, Sec. 10 pemain ahmost entimely in the hand of the Noors. Darins the period betwern the maldie of the bith and the emp of the bsh century, Spain is mpresented
by her own witers as perfectly independent of forcisn nations; manufacturing the greater part of its silk. and wool; supplying the wants of its inhabitants from whinin itself; and exporting more manufactured that raw articles. This, however, is a very exaggerated picture, and is not supported by cotemporary historians, who make no mention of her manafactures, while they give an account of the quantity of wool and other raw materials exported from ber shores. We know, however, that after the death of Philip li. a sudden and rapid change took place; and manufactures experienced an almost instantaneous decline, which neardy amounted to an absolute ambibilation of trade. ihis revolution was produced by the combimation of various canses; the expulsion of the Moors in 1614; a gencral taste lor foreign stuffs in preference to those lamicated in the country: and the impolicy of the gorernment in not only permitting the importation ol foreign manulactures, but in laying a stamp duty, cabled bolla, upon articles manalactured in Catalonia, and a heary tax upon silks. The effect of Hese measures was such, that the national manufactures were generally neglected, and in a short time almost absobitely abandoned. The manutactures of cotton. linen, gloves and swords, entirely vanished, and by the close of the 17 th century, scarcely a vestige ol its former prosperity remained. Such was the state of destitution in which Philip V. found the wade of Spain, when he ascended the throne in 1700 . The intestine wars which accompany a disputed succession; and the low state of the national finances prevented for a time any attention being paid to the subject of manufactures. But Philip, having restored trangullity to his dominions, and established the public revenue, induced his subjects to wear the national fabrics; and thus hat a foundation for the revival of trade, which was ably and cordially supported by his successor Perdinand VI. This prince not only encouraged the formation of manalactorics by peculiar privileges, and pectiniary assistance, but also cstablibled several at his own expense; and by giving employment to loreign artisans, induced many of them to settle in the kinglom. Charles III. followed his example, and greatly increased and multiplied the means ol encouragement. A spirit of competition introluced lile and vigour into trade; and though this regeneration was not cqually prompt in all parts of the monarchy, yet gradually new branches of manufucture started up; and the different ramifications are nuw suflicicutly numerons.

The woollen stuftis fabricated in Spain are, in general, of a sery iuferior quality, and cannot stand a comperition with the woollen goods of foreign countrice. This is owing, in a great measure, to their imperfect knowledge in the arts of fulling and dyeing, the latter being so badly executed that the colours are never permanent. From this general rellection, howcver, we may execpt the superline cloths mannfactured at Terrassa in Catalonia, and at Brihuega, Ecg via, and Cinadalaxara in New Castile. These are intrinsicaly of the most excellent ruality, and mot inferion to the best Jrench choths, though they da not possess their lustre. In Guadalaxara is an exitusise manulactory of V'igogna clothe, which are so mach esteemed and so difficult to procure. Thais entablishment is maintained at the expense of the
king, and is consequently making but litte progress. Those emploged in its mathagement leel no interest in its suceess. Prolusion, waste, and idleness, proail in every department: and this undertaking, which would have prospered moder private owners, is, under. its present directors, scarcely able to support itself. Manulactorics of coarse clobls, baize, hamels, swandowns, druggets, and other common woollen stults are seatered over the kinglom; but none ol any extent, except at Puebla de Yalencia, in Leon, which mandfactures ammally 5,000 pieces of flamel, estimated at L. 18, 8.t Sterling. Woolien stockings are made at lurgos in Old Catile, and at Aulot, and Vich in Catalonia. Aulot supports 400 looms; the namber woven at burgos is considerable; aml Vich produces annually 24,000 pairs. Numerous looms for blankets are established at loarcelona, but they are not collected in factorics. Burgos has twelve factories for this purpose; but the finest bankets are made at Valencia, which limoishes annually about 63,000. 'This town also manulactures tammies to the amount of L. 10, 5u0 Sterling. Woollen carpets are woven at Cuença in New Castile; and fily looms are employed at Aulot in making bateds for woollen caps. An elegant manulacture of tapestry is carricel on at Madrid, which was established by Philip V. in 1720. Its productions are carpets and tapestry, the subjects of which are often drawn from fable or history; and it affords daily employment to 80 persons, including dyers, drawers, designers, and all its rarious branches.

The silks of this country are in general stout and excellent; but destitute of the brilliancy observable in French silks. The damasks ol Valencia are extremely beautiful; and that city produces mohair stuffs which appear superior to those of France and Englamed. The manufacture of silk handkerchiefs and bands, employs 500 Looms at Reus, 600 at Manresa, where are annually made 60,000 dozen of handkerchiefs. Barcelona produces a moch larger quantity. This eity possesses also an extensive sitk-stucking manufactory, besides a considerable mandacture of ribands, and of gauzes. The stockings are of a loose textare, badly dressed and glossed: and very inferior to the French stockings. few of them are worn in the country, being exported chichy to America. The ribands are also thin and himsy, possessing neither permanency nor brilliancy ol colotr. Silk tafleties, serges, common and figured satins, damasks, plain and flowered velsets, are made in various parts of Spain; but it is only at Tolech and Tatavera de la Reyna that the looms for these purposes are collected in factories. The making of blond lace is confind chiefly to Catalonia, and is fabricated in the villages upon the seacoast by poor women and children. The principal manufartory lor this article is at Amagro in La Mancha, which gives employment to about twelve or thirtecn hundred persons.

The manufacture of linen cloth is still in a very imperfect state in Spain: and there are only two considerable manulactories for this article in the kingdom. The rest is made in the towns and villages by what are called custom weavers, who work for private families. The ereatest quantity, and the best, is made in Galicia. This province produces ammally above 5,000,000 yards. of which nearly 790,000 are exported to America; \(1,740,000\) are scat to the two

Castides; and the remainder consumed at home. IXe schent tathe limen is made at barecelona, which also furnishes a considerable quantity of the earl stockings. These, howerer, are of an inferior gatity. Inthe district of Bayombe are manalactured ammally abont 100,000 pairs. Cordage, cables, and sabloth, are prepared principally in the threematine departments, Cadiz, Carthagena, and leerol. Jarious oller articles composed ol linen thread, as nets lior the hair, laces and tapes, are Pabricated in diblement plares; and at Barcelona this mamblacture employs 12,000 persons.

The cotton mandacture has of late ycars preatly increased in Spain; but it prevals chicdy in Catalonia; and the principal factory for coton clotho of diflorent qualities is established at Barcelona. 'lhis city procluces annually about \(4,090,000\) yards, valued it \(\mathfrak{E} 369,000\) Sterling. At Aulot 600 looms are employed in the manulacture of cotton stockings aud caps; and Tarrarona produces ammally 9,000 pieces of cotton riband. Cotton spimning was lirst introduced at Barcelona in 1790; and there are now not less than 100 spinning factories, some of which are very considerable. Aulot has 200 spiming machines, and Reus 250. 'There are also two luctories of' this description at San Llacar de Barrameda.

Manulactorics for preparing hides, skins and all kinds of leather are very gencral throughout the kingdom. The greatest quantity ol sole leather is manufactured in the provinces of Aragon and Catalonia. At Aragonare tanned annually 800 quintals and 75 at Brea. A much greater guantity, howerer, ant also of superior quality is preparet in Cutatonia, which afler the supply of its own consumption, furnishes anmally zoo, oot pair of soles; and further, exports leather to the amount of 241,660 sterling. Shoemaking is prosecuted to a great cxtent at Barcelo. na, which, besites supplying the demand of the conliguous provinces, exports large quantities to America.

The paper manufactured in this country is lar from excellent, being deficient both in whiteness ant texture. The number of paper-mills, which are conlined chiefly to the kingdom of Arason, amounted in 1776 to eighty-six, which were augmented in 1785 to one handred and fives and are now above two humdred, fabricating annually 14 t.0.00 reams of paper.

The best dell-ware is made at Alcora and Nanisez in Valencia: and the faest china at Jadrid. it Valencia is a manalacture ol delf paring tiles, which ate finely varnished and beautifully painted, and with which they pave their apartments, and encrust the waths of their houses. These tiles are of different dimensions; and it lakes a certainnamber to forma picture. The price varies according to the size of the the, the beanty of the varnish, and the variety of the drawings, from fifteen shilliags to \(£ \frac{5}{5}, 12 \mathrm{~s}\). Git. a thousand. There is a considerable demand for them, and they are said to be superior, both in beauty and strength to those used in Holland.

The principaliron forges are in Catalonia, Araron, Asturias, and Biscay. Those in Biscay proper, and in the district of St. Andero, produce annually \(12 \pm, 000\) quintals. In Asturias are forty-cight iron mills, of which nine are appropriated forbar-iron, thirty-seven for the nail trade, and two for copper. The cutlery 3 A 2
of this country is in little estimation, being badty finished, worse polished, and destitute both of taste and elegance. The best is made at Solsona in Catalonia; but the greatest quantity at Albacete in Murcia. A manufactory of steel and brass needtes and brass nails has recently been introduced into Valencia, and also into Catalonia; and the two most considerable pin manufactories are established at Corunna in Galicia. Polished arms, such as swords, hangers, bayonets, \&c. of superior temper, are made at Toledo and Barcelona; and the best fire-arms are manulactured at Ripoli. Brass cannon are cast at Barcelona and Seville; and iron ordnance at Lierganez and Cavada.

The glass ol Spain is in general of a very inferior quality; being both dark and destitute of lustre. The most beautiful and transparent is made at Pajarejo and Recuenco in Castite; and at St. Hdefonso, bottles are wrought of a superior quality, and white glasses, which ate carved with great ingenuity. In this town also is established a manulactory for mirrors, which produces the largest that bave yet been fabricated. They are sometimes from 100,130 , to 150 inches in height, and 50, 60, or 65 inches in breadth. The process of polishing is performed by a machine; and they are then transported to Madrid for the purpose of being metallized.

The only manulactory for tobacco is established at Sesille; and is conducted on the government account. The suuff prepared here is made from the tobacco grown in the Brazils, the istand of Cuba, and some other Spanish colonics. The leaves when dried are reduced into an impalpable powder; and then mixed with a very fine uncinons reddish earth found in the environs of Almazarron, a village in Murcia. The earth fixes the volatile particles ol the tobacco, gives it various shades of red colour, and commenicates to it an unctuosity and ducacy of scent. This preparation is called by the Spaniards poleillo, but by other nations Sprenish smufl. Fiolled and cut tobacco are also manufactured in this establishment: and it likewise monopolizes the sale of another kind of tobacco, used for smoking, and called cigarros. These are not prepared at Sesille, but are imported from the American colonies; and the mosi esteemed are brought from the Havama. There is a prodigious consumption of this article in Spain; and vast quantities are annually exported to loreign commies. This mannfactory comprises 202 mills, which employ 1404 persons; and the annual proceeds of net profit, which accrues to the king, is cstimated at about 2833,333 sterling.

Salpetre and gunpowder are made almost every where on the ling's account; and the most considerable manufactory for the latter artiole is established at Villatidiche, which ketps seventy mills in constant cmployment.

The other manufactures of Spain are very unimportant, and we shall therefore content ourselves with merely coumerating the most considerable. Soap is made in a variety of places; and atso hats; but the best are made at Badajos. Aquafortis and salt of lead are manufactured at Manreza in Catalonia; pewter buttons at Githon in the Asturias; playing cards at Macharaviaya in Granada; white wax at l'uerto de Santa Maria; potashat Vatencia; vencered articles at Madrid; and gold and silver laced and brocaded stulfs
at Talavera de la Reyna, which cily consumes annually in this maunfacture 4000 marks of silver and 70 ol gold.

The manufactures of this kingdom in general, possess none of those qualities which give such a preeminence to simitar articles at present manufactured in England and Prance; and the quantity produced, so far from allowing any exportation to other countries, is not adeg口ate to supply her own wants and those of her colonies. Spain is therefore obliged to import large quantities of manufactured goods from Jlolland, England, France, and Germany; and the Count de Campomanez, in the year 1775 , observed that eight millions of people belonging to the Spanish monarchy were clothed with foreign manufactures.

\section*{Chap. IV.-Commerce.}

The commerce of Spain had the same periods of rise, decline, and revival, as its manufactures; and the same canses operated almost equally upon both. In the fifteenth and sixteenth centuries, the trade of this country extended to all papts of Europe. The cities of Almeria, Valencia, and Barcelona, pushed their commercial concerns into Syria, Egrpt, Barbary, and the Archipelago: and Barcelona, under the kings of Aragon, had established factories in the extreme parts of Europe and Asia, as lar as the Tanais, and was enabled to equip and maintain armed ships for the defence of her trade. It that period Spain had a large navy, and possessed a thousand merchant vessels, all constructed in her own ports. Few of these, however, belonged to native Spaniards; for while the principal manulactures were engrossed by the Moors, the Jews constituted their most intelligent and active merchants. The expulsion of this people in 1492 , consequently gave a severe blow to the commerce of the country, from which it with diffeulty recovered, during the lollowing century, by the activity and wealth of the Bloors. Bat when they in their turn were driven liom the kingdom, its destruction became completc; and commerce and mannfactures equally disappeared. By these impolitic measures, Spain was deprived of a great proportion of ber wealth and population. Her shipping interest was annihilated; and what lew ships she possessed were purchased from forcign yards. The monarchy in a short time became so culcebled as to be totally unable to defend the small remains of her trade, and io repress the piracies of the Corsairs of Barbary, who not only seized all her vessels in the Mediterranean, but made iucursions upon her coast, and carried off many of her subjects as captives. Many lruitless attempts were made at different times to revive the commerce of the kinglon; bat these feeble and insuflicient efforts servel only to show the imbecility al the government; and it was not until the accession of the llouse of lourbon to the throne, that a revival of trade could be said to be in operation. Philip V. was no sooner in quict possession of the sceptre, than he deroted bis attemtion to this subject; he encouraged manufactures, bestowed honorary rewards on trade, granted premiums to merchants, and instituted commercial boards. His subjects seconded his endeavours, and suddenly "displayed a spirit and activity of whicin they seemed incapable; the ports were filled, and the
sea was coverel with shipping; they ceased to purchase foreign built ships, but constructed them at home; their dockyards for shipluilding quickly increascd; and at present there are yards for buitiong armed vessels at Ferrol, Cadio, and Carthagena; and for merchant vessels at Bilboa, Cornma, Cadiz, and along the whole coasts of the kingdoms of Valencia and Catalonit. Notwithstanding, nearly the whole coasting trade of Spain is yet cartied on by the lirench, the Englist, and the Dutch. The Catalonian, Valencian, and biseayan veshels are the only national vessels which participate in this trade. The merchant vessels belonging to Spain are destincel for the American rather than the coasting tradc."
The internal and home trate of Spain is very inconsiderable lor want of sufficient means of communication; and chielly consists in the exchange of national produce and manulactures between one province and another. But this subject has been already sufficiently treated in our description of the different provinces. To these we must refer our readers, and also for an account of the various branches of foreign trade which are respectively peculiar to each. We shall merely give a short general statement of the principal commertial tansactions which this country prosecutes with the other states of Europe, and with its American colonics.

The European commerce of this country is confined chiefly to England, France, IIolland, Italy, and the Baltic, and may be considered as entircly passive. For though it exports immense quantitics of its agricultural productions, it sends abroad none of its manufactured articles, except a lew fancy goods from Vatencia; but on the contrary imports them from all countries.
The wine trade suffered considerably from an impolitic reguiation of Philip V. who during the war of the succession, prohibited the exportation of Spanish produce into those countries which were inimical to his interests. The English were of course driven to Portugal for a supply, and have ever since given a preference to the red wines of that country. The wine of Xeres or Sherry, however, and some sweet wines, are still received by England in considerable quantities. Catalonia exports to Italy 4000 eharges;* and Valencia sends to England, America, and France \(1,200,000\) cantaras. The quantity of Xeres wine exported to different places amounts to 80,000 quintals; that of Malaga to 400,000 quimtals; and that of Alicant is estimated at 800,000 reals.

The brandy trade is confined principally to the ports of Catalonia and Valencia. From the former are exported 20,000 pipes to Holland, Russia, Sweden, and Denmark, 10,000 to Engtand, and 4000 to Guernsey and Jersey; and from Vatencia, France and England reccive amually 500,000 cantaras.
Spanish oil constitutes a priucipal article of expor-
tation. That produced in the kingdom of Aragon is sent to France and England; that of Catalomia, to the amount of 8 fofo charges, gors partly to Holland and partly to Prance; and the guantity sent liom AndaIusia, by the port of Malagsa, to England, Itolland, and the north of liurope, is estimated at \(20,000,0\) on reals.

Sodi, barilla, salion, and agua-azul, are exported in considerable quantities, by the portsof \(A\) lirant and Carthagena. The province of Valenciafurnishes upon an ammat average 100,000 quintals of barilla, 25, 020 quintals of soda, and 4000 quintals of arua-azul; and Murcia exports 150,000 quintals, four-fifiths of which go to France, and the remainder to England.

The exportation ol fine wools is greatly encourared by the Spanish government, on account of the vory considerable duties which they bring to the revenue. The quantity ammally exported amounted to about 125,000 quintals of washed wool, and 105,000 of wool in the grease, both of which are sent to Ifolland, France, and lingland. The same wools are returned in a mandactured state, in the shape of cloths, serges, swandowns, flamels, \&c. and the remunerating price demanded by the foreign manufacturer absorbs nearly the whole of the money previously received for the raw material. Spain thus loses all the advantage arising from the employment of her own population; for were these wools kept in the kingdom they might serve both to extend the manufactures of the country and contribute to national wealth. Burgos is the staple for all the wools shipped in the ports of the Bay of Biscay; the remainder is exported by Barcelona, Grao, Cullera, Alicant, Carthagena, and Malaga, in the Mediterrancan: a portion also passes by way of Seville and Cadiz.

The corn trade forms a considerable branch of \(\mathrm{Spa}_{\mathrm{p}}\) nish commerce, but the least advantageous to the country. Though this kingdom be naturally fertile it frequently experiences a scarcity of grain. and is under the necessity of importing this indispensable commodity from France, Italy, Africa, Greece, and sometimes from the north of Europe.

The trade of tobacco is wholly in the hands of the government, and aflords a very ample profit. Besides these principal branches of commerce. Spain exports a variety of other articles, viz. sali, fruits of rarious kind, sumac, anchovies, rice, palmes, kermes, muts, cork both in boards and manufactured, madder, bariron, and anchors, lead, silk, and fancy articles called azulejos. The exportation of piastres, though prohibited by the government, forms a great object of speculation, and they are smuggted into France from the fromtier provinces to a considerable amount.

The following table contains a general statcment of the principal articles exported from Spain into the other countrics ol Europe.

\footnotetext{
* For the weights and measures o: Spain, and their comparative value with those fergland, gec the conclusion of this artocle
}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Articles.} & \multirow[t]{2}{*}{Quantities.} & \multicolumn{2}{|c|}{Valuc.} \\
\hline & & Reals de Vellon. & Sterling Money. \\
\hline & & & \(\begin{array}{ccc}\text { £ } & \text { s. } & d \\ 2,666 & 15 & 0\end{array}\) \\
\hline Wine from Cataonis
Wo. from Valcncia & 1, 2000000 cliarges & 256,000 & \(\begin{array}{rrrr}2,660 & 15 & 0 \\ 95,000 & 0 & 0\end{array}\) \\
\hline 1)o. from Alicant & & 800,000 & 8,333 68 \\
\hline Do. from Xeres - & 50,00) quintals & 12,000,000 & 125,010 0 0 \\
\hline Do. from Malaga & 400,000 ditto & 36,000,000 & 375,000 00 \\
\hline luandy from Vitencia & 500,000 cantaras & 12,000,000 & 125,000 00 \\
\hline Do. from Catalonia - & 35,003 pipes & 25,200,000 & 262,500 00 \\
\hline Dried liaisins from Mit- & 252,000 quintals & 10,0001,000 & 104,166 134 \\
\hline Do. from Valencia - & 38,000 ditto & 1,140,000 & 11,875 0 0 \\
\hline Dried Figs from Malaga & 100,000 ditto & 3,300,000 & \(3 \cdot 1,37500\) \\
\hline 1)o. from Yalencia - & 16,000 ilito & 512,000 & 5,333 68 \\
\hline Walnuts from Catalonia & 26,000 sacks & 2,496,000 & 26,000 0 0 \\
\hline Chestmuts from Biscay & & 320,800 & :2,333 68 \\
\hline Nuts from tlie Asturias & & 800,000 & 8,333 68 \\
\hline Dates from Valencia - & & 400,000 & 4,160 \(13 \quad 4\) \\
\hline Almonds from dito - & 3,000 quintals & 630,000 & 6,562 10 0 \\
\hline Oil from Malaga - & & 20,000,000 & \(208,3.3368\) \\
\hline Do. from Catalonia - & , 8,000 charges & 2,560,000 & 26,666 16 4 \\
\hline Larilla
Sorla \(\quad\{\quad\) from & & & \\
\hline Agua-azul \(\mathrm{S}^{\text {Sorla }}\) Sulencia & 129,000 duentals & 6,006,000 & 63,500 00 \\
\hline & & & \\
\hline Soula \(\}\) ifurcia & 200,000 ditto & 10,000,000 & 104,166 \(13 \quad 4\) \\
\hline Kormes from Valencia & 140 ditto & 700,000 & 7,295 \(13 \quad 4\) \\
\hline Cork from Catalonia - & 30,000 ditto & 21,600,000 & 225,000 00 \\
\hline Corks from ditto - & 1,200 ditto & 862,996 & 8,9891010 \\
\hline Atadeler from Olal Castile & 4,000 ditto & 6,400,000 & \(65,666 \quad 13 \quad 4\) \\
\hline Brooms from 13:rcelona & & 660,100 & 6,8750 \\
\hline Wool washed - - & 125.000 ditto & 61,000,000 & 656,606 13 4 \\
\hline Wool in the srease & 105,000 ditto & 20,700,000 & 215,625 00 \\
\hline Salt from Valencia - & 6,000 tons & 888,00 & 9,250 0 0 0 \\
\hline Do. from Puerto Real & & 80,000,000 & 833,333 68 \\
\hline Total & & 341, 233,795 & 3,640,018 12 \\
\hline
\end{tabular}

The imports of this country are very considerable; but we have no means of ascertaining their amount. Spain receives

From llolland, linen drapery, common lace, tapes, cutlery goods, paper, and spices.

From Silesia, linen drapery.
From Germany, by llamburgh, quantities of haberdashery.

From England, calicoes, iron and steel goods, fine cloth, quantities of cod fish and ling, whate oil and butter.

From France, calicoes, linen drapery, silk stockiness, silks, camlets and other kinds of worsted stuffs, fine cloths, gilded articles, jewellery, iron and steel goods, haberdashery, perfumery, and spices.

Whe principal trade of Spain is with her American colonies. Previous to 1720 , this trade, for two centurics, hat been confined to the city of Scrille by an absurd regulation of Charles 1 . in 1529 , who, though he permitled merchants to freightressels from Carthagena, Malaga, and the chicf ports of Gahicia, Asturias, and Biscay, bound them, under the penalty of death and confiscation of their cargoes, to recurn to Seville. In consequence of this exclusive system, and the heavy duties imposed upon alt goods exported to, or imported from America, litale businces was done to advantage; and the contraband trade beeame very lacrative and extensive in its operations. About the midde of the 17 the century, when the tade between Seville and the colonies was at its height, it never employed more than 27,500 tons of shipping. In 1720
the emporium was changed to Cadiz; and the whole American trade was carried on by twenty-seven galleons and twenty three flotas, the smaller vessels being about 550 , and the others between 800 and 1000 tons. The galleons sailed anmually to Porto-Bello, for the commerce of Peru, and the flotas once in threc years to Vera Cruz, for that of Mexico. During the annual fair at Porto-Bello, which lasted lorty days, the merchants brought their gold and silver, with bezoar stones, lemwian bark, and Vicuna wool; and received in exchange provisions and European goods. On the return of the fleets the market was glutted with colonial produce; and, as no single slips were permitted to sail in the interval, the occasional demand was left to be supplied by the contraband trade; so that the trate to Peru, when confined to the galleons, gradually decreased, insomuch that instead of employing 15,000 tons, it was reduced in 1748 to 2000 . It began to revive, however, upon the introduction of resister ships, which, upon paying a donceur to government, were allowed to make voyages between the sailing of the periodical neets; and when Charles III. extended the privilege of a general trade between Vent, Buba, Hispaniola, Porto-Rico, Marguerita, Trinidad, Louisiana, Yucatan and Campechy; and the ports of Seville, Carthagena, Alicant, Barcelona, Coruma, St. Andero, and Gijon; this trade, "which," says Mr. Townsend, "had been like the summer's brook, soon resembled a great river, and emriched all the countries through which it llowed." This lrecdom ol trade was no sooner established than the mercantile spirit availed itself
of so fevourable an opportanity; and in the same year 162 vessels satided for Americatrom the diblerent ports of Spain.

But notwithstandins this permission to particular ports, the Spanish govemment has granted fom time to time, exchasive privileges to chartered companies, which have in gencral greaty tended both to the injury of the mother country, and also to the oppression of hose transatantic provinces which have beco sub. jected to the momopoly: Jhe first of these was the Caraceas company ol Guipuscoa, established in 1723. Chis company possessed the exclusise trade of Caraccas, with the privilese of reshipping by smaller ressels all its surphos commodities for Cumana and Guayana, with Trinidad and Marguarita, two istands at the mouth of the Oronos o, hat they might exchange Luropean goods for gold, silver, hides, tobacco, cocra, sugar, and such other fruits as these countries produced. This trade was carried on by the ports of Cadiz and St. Sebastian, and employed twelve carsing ressels, with as many more tor the suppression of smuggling, and 2,500 scamen. Cocoa became at last theie staple commodity, and unter their managemest its importation increased so considerably that the price of chocolate in the Spanish market lell one hall. From the year \(15: 0\) to 1654 , they imported 179,156 pancjas of cocoa, 75,496 hides, 9032 quintals of tobacco, and 221.432 pezos in specie, arising from the sate of cocoa which had been sent to Mexico. This company, howerer. sustained many sovere losses at the conmencement of the American war, among which was the capture of a rich convoy by Lord Rod. ney, valued at more than fono, 000 Sterling: and a few years afterwards it was completely dissolied, and its capital absorbed in a new establistiment called the Company of the Philippines.

This new company commenced its operations in 1785 , with a capital of \(115,200,000\) reals, and with valuable privileges granted to it for a term of twentyfive years. lerevoas to this estathishment the trade of the lhilippine islands was carried on by means of two large falleons which sated amually; the one, from Acapulco, crossing the l'acific occan, carricd the treasures of America to the Philippines; the other returning by the same course, a distance of nearly 8400 miles, came to Acapulco laden with china ware, spices, tea, perfumes, silks, calicocs, muslins and printed linen, the produce of the East, which were bartered with the merchants from Lima for cocoa, quicksilver, and hard dollars. The direction of this traflic was immediately changed. The precious metals of Mexico and Pera were sent directly westward to the place of their final destimation; and the productions of the East, to the same amount in value, was brought round by the Cape ol Good Ifope to Spain, where they were admitted under easy dutics, with a drawback of one-third on their exportation. The prospects of this company were at first very thattering, but soon alter it met with many unfarourable circumstances. and sustaned very heary losses; yet at the close of the year 1790 it had derived a profit of 22,000,000 reats. This tuffic, howerer, had a tendency to injure the national manufactures, by the quantity ol foreign articles, such as silks and muslins, which were imported; and as they had extended their speculations to Vera Cruz, Buenos Ayres, and to most sea-ports of South America, where no limited
rapital conld stand in competition with their operations, had they met with the support they hat reason to expect, they mase soon have swallowed up the whole trade of Spain, and, in the issue, have been the ruin of that conntry.
"The chicltate between Spain and Imerica consists in exporting a consideratile quantity of Spanish manulactures, and impertines a large quantity of god and sifver, the produce of the coldaies. Spain sends 10. America a vast guantity of the lancy artioles called azulyos, and couse woolien, for chothing the troops. from Valencia; numerous iron utensids, quantities of marbied paper, dyed and printerl cottons, and caliones,
 cotton bibands, and so, oro dozens ol silk bandloerchicls liom the same province: liom (ablicia 5 over pairs of knit thead stockings, \(859,10 n\) varas of limen drapery table linen, tapes, hides, skins, and ratious kinds of dressed leather; numbers of silk stockings are sent from Talavera de la Reyna and barcelona; quantities of silks and silk stulls mixed with gold and silver, from Talavera de la Reyna, Doledo, Requena. Valencia and Barcelona; large quantities of writines paper lrom the kingdom of Calencia; about 2 onoo \({ }^{\prime \prime}\) reams of the same kind of paper Prom Catalonia, from whence are atso sent 200 , ono pairs of shoes; playing cards from Giramada; and house brooms and brushes from Barcelona.

In return the colonies supply Spain with coffee. sugar, some cotton, tobacco, cocon, leather, and particularly gold and siver, both in ingots and coincd into moncy. Part of the precions metals belong to the king, and the remainder is imported on acromt of the merchants, being sent as the balance for articles obtained lrom Spain. Upon a moderate calena. tion the ambual value of eroll and silver imported amounts from five to six millions Sterling. In the year 1591 there arrived in llie port of Cadiz alone. gold and silver, in money, bars, or ingrots, to the valuc ol'25,788,175 piastrés, (15,3-0,619.) This only includes the quantity known to be imported, from its having paid the duty: it is supposed what is clandestinely imported amounts to nearly an equal sum."

The following tables will give a brief riew of the extent and value ol the . American trade. In 17-s. when the American trade was first thrown open, the exports liom Spain were,
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{3}{*}{In national merchandise Foreign merchandise} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Hesls se Vellon. } \\
& 28,636,619 \\
& 48,3 \pi 8,342
\end{aligned}
\]} & \multicolumn{2}{|l|}{Sterling Moner.} \\
\hline & & 2. \(208,2 y 0^{\circ}\) & 23 \\
\hline & & 503,941 & 1 \\
\hline Total & 7-014,961 & 802,239 & 363 \\
\hline
\end{tabular}

Whinin ten years, in \(1: 83\) the exports were nearly quadrupled, as appears from the next table.
\begin{tabular}{|c|c|c|c|c|}
\hline In national merchandise & 158,223,239 & £1,648,158 & & \(9 \frac{1}{2}\) \\
\hline \multirow[t]{2}{*}{Foreign merchandise} & 1:2,494,200 & 1,484,315 &) & 5 \\
\hline & 302,-17,529 & 3,132,154. & 5 & \(\because 1\) \\
\hline Imports from America in 1783 & 804, \(51.3,733\) & 8.389,220 & - & 9 \\
\hline Excess of imports & 503,970,26. & 5,240,-52 & 2 & 51 \\
\hline
\end{tabular}

This commerce is still chiefly carrich on by the port of Cadiz, from which were exported in 1792 merchandise to the amount of \(2-0,000,000\) reals, and its im ports amounted to \(000,00,000\) reals. From that period the Spanish trade with America has continued to increase; and America has egtally profted by the
freedom of traffic. The trade with Vera Cruz in the year 1802, amounted in imports to 21,998, 588 piastres: and in exports to \(38,4+7,367\) piastres, of which sum thee millions and a half were paid for cochineal, three millions for indigo, and one million and a half for sugar.

The inlormation contained in the following tables, which we have selected from M. Cxsar Moreau's excellent Commercial Tables, will give the reater some idea of the trade between Spain and Great Britain.

\section*{Table of the value of British soods Imported into Spain.}

The following table shows the amount of the trade of Great Britain with Spain, includire Majorca, Minorca, Ivica, and the Canaries; W. signifying war, and \(P\). peace.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{lmports into britain.} & Exportsto Spain. \\
\hline W. 1697 & - & £う6u,893 & - & ¢183,98.5 \\
\hline P. 1700 & - & 631,718 & - & 610,16? \\
\hline W. 1710 & - & 298,643 & - & 237,123 \\
\hline W. 1720 & - & 291,627 & - & 519,169 \\
\hline P. 1730 & - & 541,711 & - & 811,514 \\
\hline W. 1740 & - & 231,690 & - & 101,636 \\
\hline P. 1750 & - & 386,835 & - & 1,813,212 \\
\hline W. 1700 & , & 466,098 & - & \(1,117,107\) \\
\hline P. 1770 & - & 523,018 & - & 941,169 \\
\hline W. 17S0 & - & 85,863 & & \\
\hline P. 1790 & - & 738,485 & - & 665.222 \\
\hline W. 1800 & - & 717690 & - & 15,381 \\
\hline W. 1810 & - & 1,473,8,30 & & 1,392,677 \\
\hline P. 1890 & - & 926.698 & - & 666, 12 \\
\hline P. 1821 & - & 861,406 & - & 421,27 \\
\hline P. 1822 & - & 827,561 & - & 51.1,653 \\
\hline I'. 1523 & - & Su8,748 & - & 452,882 \\
\hline P. 1824 & - & 845,3,39 & - & 684,8u6 \\
\hline P. 1825 & - & 1,372,957 & - & 4.6:,687 \\
\hline
\end{tabular}

Table of Prilish and Foreisn vessels that hater entrred inuetrds and cloared ommords to and from Girat Britain for Spain, Majora, Ivira, and the C'muries, \(P\). denoting years of Peuce, and \(H\). those of Hitr.
\begin{tabular}{|c|c|c|c|c|}
\hline P. 1787 & - & ships. 6.32 & - & \[
\begin{gathered}
\text { Tons. } \\
6.422
\end{gathered}
\] \\
\hline 1'. 1790 & - & 567 & - & 66, 1,5 \\
\hline 1. 1792 & - & 725 & - & 84,904 \\
\hline W. 1794 & - & 5.12 & - & 67,07: \\
\hline W. 1756 & - & 275 & - & \(51+176\) \\
\hline W. 1798 & - & 15.3 & - & 25,764 \\
\hline W. 1800 & - & 240 & - & 61.218 \\
\hline P. 1802 & - & 638 & - & 90,96 \\
\hline W. 1804 & - & 5.82 & - & 81,382 \\
\hline W. 18,0 & - & 349 & - & 5!), 187 \\
\hline P. W. 18:4 & - & 963 & - & 117,579 \\
\hline 1'. 1816 & - & 588 & - & 71,676 \\
\hline 1'. 1818 & - & 741 & - & 92,573 \\
\hline
\end{tabular}
\begin{tabular}{ccccr}
& & Ships. & Tons. \\
P. 1820 & - & 570 & - & 68,735 \\
P. 1822 & - & 599 & - & 69,387 \\
P. 1823 & - & 648 & - & 74,897 \\
P. 1824 & - & \(\cdots\) & - & 78,614 \\
P. 1825 & - & \(\cdots\) & - & 100,831
\end{tabular}

At one period few national ships were cmployed in the trade ol' Spain. The number, however, has considerably increased. Catalonia alone possesses above a thousand vesscls; and in the city ol Cadiz are more than a hundred shipowners.

The following account of Spanish probity, in commercial transactions, is given by Laborde:-" Good faith and punctuality are generally prevalent among merchants, the instances of decrption, nerligence, frandulent dealing, and non-fulfiment of engagements, so general in the trading world, being unknown, or not practised among them. Their integrity has been manifested on many important occasions: a few examples will be sufficient to justily this assertion. The fleets that sail from Spain to Porto-Bello, ontheir arrival attract a concourse of merchants, who give the silver coinage of America in exchange for the commodities of the European continent; and not a case of the former, nor a bale of the latter is opened, but all is received with a noble and mutual confidence upon the simple verbal assurances ol the parties respecting the contents; and only one single instance of deception was ever known, for the space of two centuries, to have been practised. All the coined silver sent home in the year 1654 was found debased by the admixture of a fifth part of baser metal; but no sooner had the fratd been discovered, than the Spanish merchants appeared eager to support the whole loss themselves, and to indemnify all loreisners, with whom they had transacted business on that occasion. The treasurer ol Bnance, Du Prom, was convicted as the author ol the debasement, and lor the crime was publicly burnt alive. The contraband trade of America furnishes daily new prool's of the probity which is evinced by the Spanish merchants; the French, English, and Dutch bear testmony to this hish character, who lend their names, and in other ways assist the merchants of Spain: and scarcely an instance has occurred where these have not proved faithlul to their engagements. Neither apprehension of danger, nor the attraction ol gain can ever induce them to betray or deceive those who honour them with their confidence:"

\section*{Cilap. V.-Population- Vational Cheracter-Usages and Customs-Ricligious Fistivals.}

When we consider that this country is one of the richest in the world, and possesses resources equal to any nation in Europe, we cannot but wonder at the deficiency of its population; low while Romghand yields 169 inhabitants, France 174, and Naples 201 to the square mile, Spain has only 74 . It is however agreed on all hands that, in more distant periods, this country was much better peopled than at present. Abundant vestiges indeed still exist ol its lormer populousness. "The heights," says Laborde, "are covered with the ruins of Gothic castles, mansions, \&c. and throngh the whole comntry appear dilapidated chapels, and other religious edifices in solitary places, situated in the midst of fieds or uncultivated lands. The num-
ber of these in Catalonia, of which nothing remains but the names, is equal to a fourth part of those which at present exist. In Aragen are reckoned 149; in Catalonia sot; welve in the hingdom of Jaen; 70 in the jurisdiction of Leon and Poros 87 in Valencia; 11 in La Manchat 194 in New Castile; and in Old Castile 308 ; constituting a sum total of 1141 . Under the caliphe, limgs nil Cordona, 1200 villages enlivened the banks of the (illadatguivir, of whieh 200 searcely are at present hell. In the district of Makiga, to the west ol that city, were so villates: and 16 only remain. A part it the dioces of Salamanca, in Lron, comprised 748 viltages; whechmmber is now reduced to 333. On the confines of the same bishopric 127 villages existed in the space of fise leagues, and only 13 remain. Nany of the villages and hamets still subsisting present lithe more than mins, and are in most instances reduced to a lew houses, and a small number of inhabitants: 385 of this description may be enumerated in Aragon atone." Some itea may be formed of the loss in inbabitants which Spain has sustatned, from the differnce ol population in some of its chties in atocient and modern times, as contained in the following table:
\begin{tabular}{|c|c|c|c|}
\hline Cilies. & 1)ite. & Ancicnt poprulathon. & Hodern jopul: tion. \\
\hline T:urigrona & tulder the limmans & 2,500,000 & 10,000 \\
\hline Mcrid: & Had a Romath garrison ol & 90,000 & 5,000 \\
\hline Trusillo & 15 the entury & 12,000 & 4,000 \\
\hline Montijo & Witlo & 10,000 & 3,600 \\
\hline seville & Lith century & 300,000 & 96,000 \\
\hline Corclora & cruler the Cabiples & 1,000,000 & 35,000 \\
\hline Mcdina del Campo. & loth century & 60,000 & 6,0130 \\
\hline Salamenea & bitto & 50,000 & 13,000 \\
\hline 1:umgos & bilto & 40,000 & 8,060 \\
\hline Yalbadolicl & bitto & 60,0u0 & 20,400 \\
\hline hegrovia & 1)itto & 38,000 & 12,000 \\
\hline Tolecto & 1-thr century & 200,000 & 25,000 \\
\hline Civirlad real & 1 Bito & 25,000 & 9,000 \\
\hline Granada & 15th contury & 250,000 & 50,000 \\
\hline
\end{tabular}

Many causes lor this depopulation have been assigned by ditferem writers, of which we may enumerate the following as the most considerable. Ist, The plague, which spread over Europe in the years 1341
and 1348 , marle a most rapid and destructive prosres in Spain, contimed its ravages for thre years, and carried off nearly two-thieds of the inhabitanes. The same scourge renewed its desolations in the sucereding centuries, in 1.183 and 1489,1501 and 1515 , and
 it swept away a population of more than armonor;
 ants. 2d, The exputsion of the Jows atorl Boors deprived this comatry of the most indastrions and intelligent portion of her popalation. "The former in 1492 , to the mmber of aro, mon . Felt the kinerfom, and carried with them all the wath and property Which they had acopiowd by indostry and trath: and in 1614, 2,000,000 of Moors wer driven from their homes, and their towns and villages orft desenatr. 3d, The atmost incessant and samginary conllicts berweon the Spaniards and Moors. which continued with litheintermption formearly seven comuries, and which terminated only with the takins ol (ipanata in 1492 by leedinand, carried ofl many millions of Spaniards: and the civil wars, which have so frequemty divided this kingrdom, have probably been equally destructive of its population. Ath, The Mesta, by which immense tracts of land are converted into a state of pasturage, aftords few means for the lower classes to obtain a subsistence by being employed in the labours of agriculture; and the 50.240 persons, who are engaged in taking care of the mocks, lead a wandering lile, and seldom or never marry. Besides these, we may mention the constant emigration to America; the great number of ummarried monks and clergy; and the uncmilted operation of a bad government. It would appear that the poputation of this kingdom had erraduatly decreaserl from the time of the Romans to the begimning of the 18 th century; since which period, howerer, its increase has been uniform and rajid. Under the Romans, Spain is supposed to have contained at least twenty millions of inbabitants; in 1715 this number was reduced to six millions; but in 1799 it had increased to twelve millions.

The following table exhibits a state of the comparative population of Spain in 1788, divited into classes, when the population amounted only to \(10,043,975\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Provinces. & 1rarishes. & Villages. & \begin{tabular}{l}
Secular \\
clers:
\end{tabular} & Convents. & Monks. & \[
\begin{gathered}
\text { Nins and } \\
\text { friars. }
\end{gathered}
\] & Nobles. & Servantz. & mudividuals. \\
\hline Andialusia & 1,001 & 767 & 5,610 & 745 & 12,111 & 4,737 & 9,914 & 31,629 & 1,832,024 \\
\hline Mureia & 101 & 108 & 1,077 & 91 & 2,000 & 646 & 4,704 & 6.418 & 337,686 \\
\hline Vakneia & 562 & 550 & 3,221 & 225 & 5,311 & 1,688 & 1,076 & 18,963 & 783,094 \\
\hline Cataloni: & 2,738 & 2,103 & 6,614 & 284 & 4,54.4 & 1,257 & 1,266 & 24.963 & 814.412 \\
\hline Aragon & 1,396 & 1,62.5 & 4,843 & 228 & 3, 80.4 & 1,551 & O,144 & 22,009 & 623.308 \\
\hline Nubare & 75.3 & 830 & 1,827 & 70 & 1,121 & 1,510 & 13,0.34 & 9,910 & 227,382 \\
\hline Biscay & 720 & 632 & 2,511 & 111 & \(90^{2}\) & 1,141 & 116,913 & 8,713 & 308,15\% \\
\hline Asturias & 689 & 670 & 2,268 & 23 & 393 & 205 & 114,274 & 6,111 & 34-,-6 \\
\hline Leon & 2,460 & 2,695 & 5,598 & 196 & 2,064 & 1,570 & 31,540 & 25,218 & 1.65,4.32 \\
\hline Galicia & 3,683 & 3,658 & 9,382 & 98 & 2,394 & 60.1 & 13,-81 & 18,961 & 1,345, 5, 3 \\
\hline Estremadura & 415 & 360 & 2,782 & 172 & 2,060 & 1,748 & 3,724 & 11,036 & 416.922 \\
\hline La Mimncha & 111 & 167 & 749 & 78 & 729 & 614 & 603 & 8,410 & 206,160 \\
\hline New Castile & 1,190 & 1,140 & 4,676 & 375 & 5,949 & 2,845 & 12,698 & 51, 528 & 930,601 \\
\hline Old Castile & 4,555 & 3,909 & 9,014 & 39.4 & 5,564 & 3,21u & 146,036 & 36,683 & 1,190,180 \\
\hline Royal demesncs & 5 & 5 & 78 & 4 & 264 & 12 & 119 & -5,60 & 1,10,118 \\
\hline Total & 20,378 & 19,219 & 60,240 & 3,094 & 49,270 & 22,337 & 478,736 & 276,091 & 10,04,3,975 \\
\hline
\end{tabular}

Respecting the proportion between the extent of ferritory and the number of inhabitants, no very acVol. XVII. Part I.
curate estimate has ever been made in Spain. It is, however, stated in Hassel's "Satistique Europeenne,"

3 B
which is sufficiently correct for general purposes, that the whole of Spain contains 9053 German square miles, and 10,730,000 inhabitants, which will allow 1185 inhabitants for every German square mile, or 74 for every geographical sfuare mile.

The people who now inhabit Spain have derived their origin from a variety ol stocks, its soll havins been occupied in sticcession by the Carthaginians, Romans, Goths, Arabs, and French. The oriscinal natives were in course of time confounded with their concucrors; aud, as all of these nations introduced, in sume degree, their own laws, manners, and customs, hence has resulted that diversity ol appearance and character which is so observable among its presemt inhabitants. As the physical constitution of a people is almost uniformly influenced by the nature of \({ }^{\text {b }}\) the climate under which they live, and as every prorince of Spain differs materially in this respret, this circumstance may likewise in a great measure account for this variety. ""he Castilians," says Laborde, "appear delicate, but they are strong. The Galicians are large, nerous, robust, and able to codure fatigue. The inhabitants of Estrematura are strong, stout, and well made, but more swarthy that any oher Spaniads. The Andalusians are light, slender, and perfectly well proportioned. The Nurcians are gloomy, indolent and heary; their complesion is pale, and almost lead-colowed. The Vatencians are deticate, slight, and efiominute, but intelligent and active in labour. The Catalans are nervous, strong, active, intelligent, indefotigable, and above the middling stature. The Aragonese are tall and well made, as robust as, but less active than the Catalans. The biscayans are sirong, vigorous, agilc, and gay; their complexion is fure, their expression quick, animated, chectful, and open." In general terms, the Spaniards may be described as rather bdow than above the midde stature, well proportioned, and of a swarthy complesion, with an intelligent conntenance, regular features, and eyes quick and animated. The lemales are naturally beatilia, and the greater part are banctes, of a shender and delicate shape, with a fone oval face, and black or rich brown hair. "they have large and open eyes, asually black or dark hazel, delicate and regular features, a peculiar suppleness, and a charming nataral srace in their motions, with a pleasing ant: xpmesivegresture. Their countenances are open, om fullol tont and intellignce; their look is gentle, anmatel, worsise, the smile agreable; they are naturally pare, bat this paleness seems to vanish under the brilli...ey and exprossive lastre of their eyes. Theyare fanofraces, whichappear in the ir discourse, in their low ? , the ir gesture an! all their motions, athl "wey lhate that they do."
?he diapmatoms and inatarter of this prople ate

 indolem: tias we the most severoyerave of all the

 sont, and on andieruble pordidy and uprightarss:

 actins abe! ares in trade, and ate the pedlats of a
great part of Spain. The inbabitants of the valley of Mena are robust, courageons, and employed in agriculture, they believe themselses descented from the ancient Camabri. The Maragatos are lean, dry, frank, but the most tacitam ol the Old Castilians; thme are some among them who were never seen to lagh; they particularly addict themselves to the busimess ol carriers.

The character of the natives of New Castile is nearly the same, but more open and less grave and taciturn; it is also somewhat modified in the districts bordering on other provinces. The qualities usually acquired by residner in or near a capital may be observed in them. 'The inhabitants of Alcarria ought to be distinguished from the rest, as simple, amiable, and industrious.

The inhabitants of La Mancha greatly resemble those of New Castile, but are more selious, more gloomy, and more laborious; they are a good kind of people.

Indocility and conceit make part of the character of the people of Navarre: they are distinguished by lightmess and adroitmess.

The Biscayans are prond. conceited, impetuous, and in ritable, they have something abrupt in thscourse and in action, and an aif of hatyhtiness ond independence: hey are less sober than most other Spaniards; but are industrious, diligent, faithful, hospitable, and sociable. They have an open countenance, and a quick. animated, and latring expression. The women ate equally hanghty and courageous. They labone in fieds and at other works, where strengh is reguired, like the men. The ithea of something noble attached to being a native of Biscay, inflnences the character of the inlabitants of this province in a singular maner; it keps up amons them a feeling of dignity which gives a hanghtiness to the ir carriage, and an elevation to their sentiments, even in the lowest stations of life.

The Gulicians are froomy, and live very litte in society; but they are bok, laborious, very sober, and distinguished for their fillelity.

The Asturians participate in the character both of the Gaticians and Biscaytus, but they are less industrious than the forner, less civilized, less sotiable, le's amiable, and more hanghty than the later. Their haughtiness, derived from the same somere, anopinion of imate nobility, is also more marked, more repulsive, and less softened by their temper and manners.

The people of Estrematha atre proud, hauphty vain, scrions, indolent, and still more sober than the Galicians. They selfom goont of their awn prowince, are afraid ol strangers, and shon thene company; but they are true, honomable and comageous.

The Nurcians are lazy, listless, ploting and suspicions; they scarcely ever go ont ol their own conn1ry, and beiber addict themselves to science, to the arts, to commerce, navigation, nor a militury lili-; they only cultivate their land from necessity, and make but litte adrantage of a ibch and lertile soil, a facility ol irrization, and a most happe elimate. The common people are sometimes datserons: they too Prequently make use of the bnile and the dagger: people ol' a superior condition lead amelancholy and monotomons life.

The Valcheians are light, inconstant, and witiout decision of character; ğay, fond of pheasure, litte at-
tached to one another, and still less so to strangers; but they are allable, genth, atal aspeceable in the intercon'ses ol socicly, and able, by lacir diligrone, to ally the lose of pleasure with induswions ocenpation. They are accused of being sinefetive, and biding mot der a calmand mild exteriop the in wishes and sebemes of vengeance, till an opporthaty offers of execoming them in as safe and secoet mamert but the hired assassinc, formerly common in Valencia, have disappeared, and the people are daty beconing more civilized by the aperation ol weahb and prosperity.

The Catalans are prome, hanghty, volent in their passions: rude in discomse and in action, labulent, untractable, and pasiontately form of independence; they are not particulaty liberal, but active, indusfrious and indelitigable: they are sators. husbandmen, and buikers, and rum to all comers of the world 10 seck their Portmes. ITiney are brave, imtrepid, somelimes rash, obstinate in adheringlotheir schemes, and often successlal in vanguishins, by their steady perseverance, obstacles which would appear insurmountable to others.

The Aragonese are hanghty, intrepid, ambitious, temacions of their opinions, and completely prejudiced in favour of their conntry, their customs, and themselves; but prudent, judicions, ahle to appreciate foreign merit, good politicians, good soldicrs, and zealous for their laws and privileges.

The Andalusians are boastful and arrogant; their discourse is always lall of hyperbole; their exprese sions, their gestures, their manners, their tone of voice, their carriage, all bear the stamp of this prevailing dispositioti; in short, they are the Gascons of Span. Of this country are the Majos, or bullying coxcombs, whose faronrite weapon is the dasger, and they handle it with skill. Andalusia is a dangeroms country in summer when the solano blows; a south sonth-west wind which blows from dirica, and the efiects of which mach resemble those of the siroceo in laty, but aremore obvious and violent. It infames the bloon, caluses vertigo, and produces eacesses of every lind."

There are, howerer, some traits of character which may be called national, and which are almost universal. Almost all Spaniards possess a matural dignity of sentiment, and base the highest opinion of their nation and themselves, which they chergetically express by becir gestures, words, and actions. They are very reserved, especially 10 strangers. Their address is serious, cold, and sometimes cren repulsise; but under this apparent grasity they possess an inward gatety, which somethes bursts out and, though usually noisy, is gemune, lrank, and natural. The sum of their virtaes is thus summed up: "They are sober, discrect, adrout, lrank, patient in adversity, slow in decision, but wise in deliberation, ardent in enterprise, and constant in pursuit. They are attached to their religion; faithlul to their king; hospitable, charitable: moble in their dealings; sencrous, liberal, magnificent; good lricuds, and full of honour. They are grave in carriage, serions in discourse, but gente and agrecable in conversation, and cnemies to latsehood and evil speaking. They are of quick and lively parts; intelligent, ingenious, fit lor the sciences, literature and the arts." The Spaniards, indeed, possess many of these virtues in an cminent chegrec; but the defects of their character are equally conspicuous;
and superstition and a bad government have degrarled themfar beten the aretage of the other mations of Finvere Ond at the mone pevailing defeces in this people is their insincible indolence, and hatred of labour, which has, at all time", paralysed the fovernment of their best princes, and impoded the success of thar most billiant enterprises. In cevery undertaking, even the most triming, bes Spaided deliberates when he ought to art, and serms to be continually influracel by the spitit of on ol the common prexeris ollos country, "That ome shomblyeser do to day what may be put off till w-momow." The happiest eras of this mation have not beon exemped frem this fatal apathy, which has almost atway kop them depundent on the industry of their neighbours, of at least lar behind them in improvement; and the eflects of which have been deplored by all their historians. "Sloth and idleness," said Suncho de Moncada in 1619, "are the prevailints iers of the Spaniards, atud foreqners are so well aware ol it, that they come running from all sitles to bring us the products of their industry; they have redued this poor kingelom of Spain to the condition in which the children of I rad were, when they were obliged to go and seok even the smallest instraments of laborar among the lhilistimes." "In this comtry alonc," says another Spanish writer, "are the mechanic alts hedd in dishomom: whence that matiturle of idfe people, and women ol bad fame, and all the vices which accompany the want of employment. The result is, that our lands lie fallow, and that our combtry is at slan to the industry of suangers." This lintesshess of disposition, however, is not so general but that there are some exceptions; and the inhathtants ol some of the districts on the sca coast are concpicuons lor their activity and imdustry. But this defect of the Spanish character is a rirthe when compared with that depravity of morals which pervades every class ol socicty in this conntry. The high and chivalrons spirit of a former age, when love, honour, and religion, maintained a gencrous rivalry, and gave birth to many splendid achievements, has been succeeded by a love of low intrigue and stratagems. The example of a dissolute conrt has given prevalence 10 practices which were belore restrained, and has made that honourable which furmerly had becn attended with disspace. Spanish jeulousy, which was once proverbial, has siven place to the most culpable indifterence: ant the most tegrading connertions have assumed among this people an authentic and respected character. The marriage ceremony is the prelude to the most ruinoms gallanury. White it would be considered indecorous in an umarried female to be seen alone out of doors, or sitting tete-ct-tefe with a genteman, the married lady goes where ble pleases, receives what company she likes and even when indisposed in bed, she does not scruple to see every one of her male visiters. Mant gentlemenare introduced to hadies of the first fashion. and visit them on the most familiar looting, withorst the least acpuaintance, or even personal knowledge of theif husbands. Immediately after mariage the lady must have, a matter of course, a cortrio we lover, who has in general a very strong hold upon ber affections, and compared with whom the hushand is a person of rery secondary consideration. He attends her upon all occasions, in private and in public, in health and in sickness. When she sits athome, he is at her side;
when she walks out, his arm supports her; and when she joins in the dance, he must be her partner. This connection, however, is invariably attended with jealousy and suspicion. Both are conscious that there is no other band between them but the precarious tie of mutual affection; and each, therefore, must tremble at the approach of any one who might interrupt their union. Hence they are coinstantly engaged in watching each other's looks; and for want of confidence, renounce, in a great measure, the chams of social intercourse. "It sometimes happens," says Mr. Townsend, "that a lady becomes weary of her first choice, her lancy has fixed upon some new object, and she wishes to change: but the former, whose vanity is flattered by the connection, is not willing to dissolve it. In lower life, this moment gives occasion to many of those assassinations which abound in Spain: but in the higher classes, among whon the dagger is proseribed, the first possessor, if a man of spirit, maintains possession, and the lady dares not discard him, lest an equal combat should prove fatal to the man of her affections. In this contest the hasband is out of sisht. and tells for nothing." "It is reckoned disgracelul to be fickle: yet innumerable instances are seen of ladies who often change their lovers. In this there is a natural progress; for it canot be imagined, that women ol superior understandings, early in life distinguished for delicacy of sentiment, Por prudence, and for the elevation of their minds, shond hastily arrive at the extrense, where passion trimplis, and where all regard to decency is lost: as for others they soon finish the carcer. It is however humiliating to see some who appear to have been designed by nature to command the reverence of mankind, at last degraded, and sunk so low in the opinion of the worle, as to be never mentioned but with contempt. These have changed so often, and have bcen so unfaithful to every engagement, that, universalis despised, they end with having no cortejo. So goneral is this system, that there is scarcely a lady ol respectability who has not her cortejo. The author already puoted mentions the circumstance ol a senteman in Carthagena saying one morning to a lriend, 'Before I go to rest this, night, the whole cits will be thrown into confusion.' This he himself occasioned by going home an hour belore his usual time, to the no small rexation of his wife and of her cortejo, whose precipitate retreat, and mexpected arrival in his own house, occasioned the like conlusion there; and thas by successive and similine operations, was literaliy fulfilled the prediction of the morning." Thoush it wouk appear liom this extract that mavied men do not hesitate to hold the sitation ol a contejo. yet in this disgracelal connection the clergy in fenctol hold the principal places; in the great cities the canons of the cathedrals, and in country villages the monks. 'The compution or morals in gencral may be tram? to the eclibacy of the cler-
 vows in thiscometry origimated in the introfaction of Itatian manmers on the arion of Chates Ill. from Naples, comberted with the previon! wat of reasonable freedon in the commeree of the sexps.

The Spaniat's masy in gencral be divided into two classes, noblesordidatgos, and phedne ians. The former inclutes all these whase lamilies, cither by immemorial prescription, or by the kins's patent, are entitud to particular pribileges. This honour branches out
through erery male whose father enjoys that privilege, and thus Spain is overrun with gentry, many of whom carn their living in the meanest employments. The grandees hold the first rank, and are divided into three classes, which, however, differ from each otheronly in the form of the ceremonial to be observed by them when introduced at court. A grandee of the highest rank, when presented to the king, covers himsell before he replies to the salutation of his majesty; one of the second lemains uncovered till he has paid hiscompliments, but one of the third rank is not allowed to cover himself till he has paid his compliments, made his bow, and mingled with the crowel of courtiers. The character of these grandees is thus drawn by an admirable painter of Spanish nammers; "surrounded by their own dependants, and avoided by the gentry, who are seldom disposed for an intercourse in which a sense of inferiority prevails, few of the grandees are exempt from the natural consequences of such a life; gross ignorance, intolerable conceit, and sometimes, though seldom, a strong dose of vulgarity. 1 would, however, be just, and by no means tax individuals with every vice of the class. But I believe I speak the prevalent sense of the country upon this point. The grandees have degraded themselves by their slavish behaviour at court, and incurred great odium by their intolemble airs abroad. They have ruined their estates by mismanagement and cxtravagance, and impoverished the country by the neglect of their immense possessions. Shoutd there be a revolution in Spain, wouthed pride and party spirit would deny them the proper share of pover in the constitution to which their land, their ancient rights, and their remaining influcnce entitle them. Thus excluded from their chief and peculise duty of keeping the balance of power between the throne and the people, the Spanish grandees will remain a heavy burthen on the nation, while, either fearing lor their overgrown privileges, or impatient under relorms which must fall chicfly on them and the clergy, they will always be inclined to join the crown in restoring the abuses of arbitrary government." The privileges of this body are sery important. They are alone admissible into the four milizary orders; they are exempt from certain imposts, from service in the militia, and from the billeting of troops. They are not liable to imprisonment for debt, except for arrears ol tases payable to the king; they camot be confined in the common prisons, nor can their house, their horse, their mule, or their arms, be taken in execution. The nobility of Spain in 1788 amounted to 458.736 , above \(1_{2}^{2}\) of the whole popubation: of these 129 were grandees, and 5.3 marunisses, counts, and viscounts; bat nearly one half of this privileged order belongs to the provinces of Asthrias and Biscay.

The Spanish dress is now very much altered from what it was a century ago; and Jrench fahhions are daily gaining ground, especially among the higher ranks, and destroying entirely the national costume. During the seventemth century, it consisted of light breches, bound with garters, and fastened up with points: a short doublet, with large flaps, and hanging slceves, covered with a fricze cloak, all of black; a round hat, usually tarned up in fiomt. and often adorned with a plume of feathers; a golilh, or white ruff, worn round the neck; a dagger at the girdle, and a very long sword. The accession of l'hilip V. how-
ever, introduced a total change; and the costume of France soon prevailed over that ol' Spain. Black was exchanged for the most varied and conspicuous colours; the old swords disappeared; and bays and quenes came in place of the simple crop. The cloak and slouched hat are still much in use, except in the large cities, where they are seldom worn except in winter as a protection from the cold. Uniforms are very common, and a wrllored Spaniard would be ashamed to show himsefl withont one. They are not contined to the military, but are worn by all the officers employed in the king's homschole, or attached to the treastiry, post-uffice, \&c. Judges, magistrates, and prolessors of the universities, are also distinguished by peculiar dresses. The nobility have an uniform for the holy weck, which they wear at court and in town. The coat is ol black veluet lined with crimson satin, with gold, or gold embroidered buttons, and facings of gold brocade on a crimson gromed, or of satin of the same colour embroidered with gold. The waisteoat is the same as the facings, and the beeches are black. This dress is worn by the king and the royal lamily.

Women of rank in spain hate all adopted the French dress, which they wear athome, in their carriages, at visits and public spectacless and assume the Spanish habit only when they walk ollt, or go to church. This at present consists of the busimina, or black petticuat, which is sometimes ornamented with gold embroidery, and trimmed with coloured ribands; she mentele, a broad black veil hanging from the head over the shoulders, and crossed on the breast like a shawl; and a showy liun, which is indispensable in all seasons, both in and out of doors. This instrament is ol' singular utility to the ladies; and "an Andalusian woman," says the author of Dubledo's Letters, "might as well want her tonguc as her fim. The fan, besides, has this adrantage over the natural organ of specch, that it conveys thought to a greater distance. A gentle tap commands the attention of the careless, a waving motion calls the distant. A certain twirl betwen the fingers betrays doubt or anxiety, a quick closing and displaying the folds indicates cagerness or joy. In perfect combination with the expressive features of my countrynomen, the lan is a ma;ic wand, whose power is more easily felt than described."
The peasantry still preserve a disersity of dress in different provinces, but the common dress anong them is a dark-coloured frock strapped round the waist, short breeches, with neither butons nor gatiters, and a large round hat, or a montere, which is a cap of woollen oi leather, sometimes round, and sometines pointed at the top.
The usages and customs of this people have a reference in gencral to the national religion, and almost all their actions are blended with some superstitious observance. Every one has his patron saint to whom he applits on any cmergency. The bed of an invalid is covered over with rehes, amulets, and pictures; and a lady near her confinement is often wrapt in the episcopal robes of some sain, which are supposed to act most effectually when in contact with the body of the distressed petitioner. Their very mames are derived from the same source; and it is a general notion among them, which is encouraged by the priests, that as many saints as have their names given to a chitd at baptism, are in some degree engaged to take it under
their protection. Few have less than ball-i-dozen manes cotered in the parish register, and many of them double that number. Tharir devotion to the Virgin Alary, who has immerable images and tides in this conntry, lumistes them with aconsiderable variety. Ahmost every other Spaniard has Maria for a second name; and the most rommon names amons the lemates are Vacamacion, Concepecion, Natitidad, Esperanza, \&ec.
It used whe a common practice among the Spaniards to make pilgrimagrs to the shrines of their most celchated saints, as St. James of Compostella in Galicia, our lady ol Guadedoper in Estrmathra, our Lady of Monserrat in Catalmis, and one Lady of the P'illar in Aragon. This custom, however, has fallen much into disuse, as alse that of making short journcys to celebrated chapels and hermitages on the cere of the festival of the patuon saint. The promischous crowd, assembled on these occasions. often spent the night in the most invererent and dissolute revelries; and it was on account of the inpieties which were there commited that the praction has been almost generally abolished. A few pilgrims still remain, but they are mostly strangers: and when persons of rank and oputence make a vow to beg alms, "they travel," says Latuorde, "with every comenicuce, dismonat from their carriage at the chtrance of every town and village, beg through the stecets, give away all that they receive to the pror, and then get into their carriage again and continue ther pilgrimage."

Religion with this people is rather a business than a feeling, and their devotion consists merely in extermal ceremonies, to which they are so habituated as 10 perform them almust instinctively, and the neslect of which would expose them to the horrors of the inguisition. In populuas towns the inhabitants are frequently thrown into derotional attitudes by the sound of the little iell which precedes the priest who is carrying the conseciated water to a dying person. Its sound operates upona Spaniand like magic. In whatcrer company ur situation, in the strect or in the house, he hrows himscif upon his knees, and in this posture he remains wint the tinkling dies away in the distance. In the midot of a gay and noisy party, this sound brings ciery one to his the cotions; if at dinner, he must leave the table, and il in bed he must at least sit up. Lien in the ipublic theatres, as soon as the bell is heard, " \({ }^{\text {Dios, }}\) Dios," resounds from all parts of the house, and crery une falls that moment npon h s knees. The iscor's raning, or the ratling of the castancts in the fomlungo, is hushed for a lew minutes, till the sumad of the beil growing fanter and fainter, the amusement is resumcu, and the derout performers arconce moreupon theirlegs, anxious to make amends lor the interruption."
The spaniards are very fond of public walks, and almost cyery town has its alantila or promenade, where the better classes assemble in the afternoon. Their chief amusement here, however, is not to walk. but to sit upon the stone benches, and take a view of the surrounding objects, or to carry on a whispering conversation with the next lady, which is termed in the idiom ol the country peler lu Para, "to pluck the hen turkes." Dimer parties are extremely rare, and only when an extraordinary occurrence happens in the family, as that of a young man performing his
frrst mass, or a danghter taking the reil. On these occasions the dinner is always brought ready dressed from the colfe-house; and even then they never sit at table after the descre, but evers one goes home or retires to his chamber to take his siesta. Evening parties for cards and comersation, which they call Pertulid, are very common, and often numerously attended, and which generally conchede with a light supper. There is litte ceremony in these partics, every one catering and retiring as itsuits his convenicnce or his humont. Snoking has become very presalmt among all classes, even the ladies frecly partake of it: and a Spaniard is seldom seen without his eigar-in the streets or public walks, in coffechouses, at cards, or cren at a ball. As these cigars are very expensive, the poor imhabitants make imitations of them by rolling up bruised tobacco in paper cylinders. Their ideas on this subject are not the most delicate; for sometimes a smoker presents his cigar to his neighbour, who passes it on to the rest, and thus all use it in turn. Mr. 'lownsend mentions the circumstance of a tradesman of Luanjo having lighted his eigar, began to smokt, and fonding it work well, presented it to the Countess ol l'enaba. She bowed and took it, smoked it hall out, and restored it to him again; but as the Asturians consider smoking to be of no use unless the smoke passes through the lungs, a few minutes after she hat joined the conversation, she opened her mouth and sent out a cloud of smoke.

The Spaniards are greatly attached to their mational spectacles and public festivals. These festivals, however, are differently ectebrated in different parts of the country. They are brilliant and magnificent in the provinces of Aragon, Valencia, and Catalonia; but simple and unostentatious in the other provinces. In the latter processions are very rare, but in the former they are very frequent, and performed with great pomp and preparation. The prineipal of these festivals are, the Carnival, lloly Thursday, Good Friday, Corpus Christi, St. Johu's Eve, \&e. It would be tedious and difficult io describe all that passes at these festivals. The strects and squares are crowded from sun-rise to midnight. Busibess is completely neglected: and the spirit of devotion, which prevails in the morning, is converted by the sharles of hight into that of intrigue and licentionsness. There is on such oceasions litthe fear of their evil practices being discovered. They are surromded by muttitudes who have the same intemions, and therelore indulgence is reciprocal. But the ereat national spectacle of Spain is the bell fighl. 'l'his amusement was at one time suppressed by order of the govermment: and the prohibition continued for several years. This favourite spectacle, however, was again granted to the wishes of the people in 1793: and "the news of the most decisive butory," says lobledo, "could not have more clated the spirits of the Andatusians, or rolnstd them into sreater activity." But for a description ol this spectacle, we must refer our reders to the article Bush-btinits ill his work.

The shadow of ancient chivalry still existe, in some part of Spain, in those festivals called perijets, which ate given by the macstranzets of V'alemia. Cranada, Scoille, Eze The maestranza is a body of mobility, commanded by a lientenant, who is ushatly a prince of the blood, and is elected every jear; and is divided
into four companies, each under the command of a knight. levery member, before admission into this corps, must prove a descent of four degrecs. Three feasts are given every year on the birth days of the king, queen, and the prince who is at the head of the particalar maestranza; and the whole expense is defrayed by the licutenant. On these occasions they perform a yariety of military evolutions, which are excuted with great exactness. They also run at the rimg, engage in sham-fights, dart their lances, and throw balls made of spongy earth. These imperfect representations of the ancient tonmaments of ten terminate the amuscments of the court before leaving Aranjuez. Mr. 'Pownsend saw one of these parijas at Aranjuezin 1786, in which'othe prince of Asturias, with his two brothers, the infants Don Gabrice and Don Antonio, attended by five and lorty of the first nobility, all in the ancient Spanish dress, and monnted on high-bred Andalusian horses, performed it variety of evolutions to the sound of trumpets and Freneh horns; forming four squadrons, distinguished from each other by the colour of their dresses, which were red. blac, yellow, and green; they executed this firured dance with great exactness, aud made an eleSant appearance."

\section*{Cutp. Mr-Goverment-Laus-Administration of Mestice—Kinances-Army-Vary—Military Orders.}

Before the union of the crowns of Castile and Aragon, each ol these kingeloms possessed constitutions extremely liwourable to liberty. Their assembly of the states or Cortes, which were composed of the clergy, the grandees, the nobles, and the commons, or representatives of cities and towns, enjoyed many privileges well calculated to restrain the anthority of the sovercign. In Castile the four different orders met and deliberated as one collective body, and their decisions were regulated by the sentiments of the majority. In them alone resided the right of imposing taxes, of acknowledging the heirs of the ctown, of enacting laws, and of redressing gricvances; and in order to secure the assent of the king to such statutes and regulations as related to the public welfare, it was usual to grant no supplies till such business was concluded. "There was not any body of nobility in Europe," says Dr. Robertson, "more distinguished for independeace of spirit, haughtiness of deportment, and bold pretensions, than that of Castile. The history of that monarehy affords the most strikins examples of the vigilance with which they observed, and of the vigour with which they opposed, every measure of their kings that tended to eneroach on their jurisdiction, to diminish their dignity, or to abridge their power. Evel in their ordinary intercourse with their monarchs, they preservel such a consciousness of their rank, that the nobles of the furst order claimed it as a privilege to be covered in the royal prescuce, and approaching their sovereigns rather as equals than as subjects."

The constitution of Aragon, however, had some pecnliarities, which distinguished it from that of Castile. '1hough the form of its government was monarehical, its genius and maxims were purely republican; and its laws had a reference to the monareh as well as to the lowest subject, the infraction of which might cost him his crown. The following
compact, entered into between the states and the king on his accession to the throme, shows what were their ideas of the submission of subjects, and in which an opentag was evidemly lefi for rebellion: "We who are equal to you, and who have more power that you, make you whe king, upon condition that you do mot intringe our priviteges; if not, vor." The cortes of Aragen was composed of the same mamber of ordere, and endowed with simituppivileges as that of Cabsile: but no law eould pass without the assent of every single member who had arierlat to vote. This court was assembled on fonr dillerent occasions: Ist, On the accession of the king to the throme, to do homatre to him, and (0) administer the math; ally, To deliberate ugon the supplies and servires which they ought to aftord him whenthey werenecessiny; Sdly, Toagree to the establishment, atteration, or suppression of laws; and, thly, to debate upon the ta:as, tributes, and claties that they should allow the prince. Alter the cortes was called together, the king had no risht 10 prorogue or dissolve it withont its own consent, and the session continned forty days. This body exercised powers, unknowninamy oher kingly government. They clamed the privilege of tominating the members of the king's conncil, and the officers of his househotd; and of appointing oflicers 10 command the troops raised by their anthority. Theiresersions, however, were not confined merely to the upholding of their own privileges, and maintaining the freedom of the constitution, but they were equally solicitous in securing the persomal rights of individuals; and in 13.3 they abolibhed the practice of torture, which was then permitted by the laws of every other uation in Europe. The same spirit prevailed among the people in 1185 , when an attempt was made by ferdinand and lsathella to introdnce the inguistion ituto Aragon, they took up arms, put to death the chicf inguisitor, and long opposed the establishment of that horrid tribunal. So jeatous were the Aragonese of their freedom, that, not willing to commit the sole guardianship of their liberties to the vigilance and power of the Cortes, they had recourse to an institution peculiar to themselves. They electcd a Justicit-mayor, of supreme judge, whose ollice bore some resemblance to that of the Ephori in ancient Sparta: and who acted as a judge between the king and the nation-moderating the athority of the monarch, and delinding the rishts of the people. The person of this magistrate was sacterl, his puwer and jurisdiction almost unbounded, and he was responsible to the Cortes only lor the manner in which he discharged the duties of his high office. "The attachment of the Aragonese to this singular constitution oí gonerament was extreme, and their respect for it approached to superstitious veneration. In the preamble to one of their laws, they dectare that such was the burrenness of their commer, and the poverty of its imhabitants, that if it were not on account of the liberties by which they were distingrushed from other nations. the people wond abandon it, and go in quest of a settement to some more fuitlul region."

The peculiar privileges of the two kingdums of Castile and Aragon comtinued to existlong after their reunion: but, in the beriming of the 16 th cemmer, the princes of the howse of Austria began to take umbrage at their exercise; and, while they dared not
openty attack them, they had recourse to the more clicetual mothod of seerety tudermining them; and thas were so far cliministect, that, at the conclusion of the 17 th montury, they were litule more than mere fomas. la Castike the bobles harl been formally exchaded from the legistative assombly in 1538 , by which step the privileges of the commons were virtually abolished; and thongh the states-general in this kingdom comtinued io liom a part of llac constitution, their convocation was reduced to a wan ecremony; and before the invasion of Spain by Bonaparte, they had not been assembled for more than a century. Philip V. suppessed the states-general ol A tragon in 1720.

At present the government of \(S\) pain is an aboblate monarehy, be whole anthority centerin:s in the lims and his ministers. These ministers, and ako the members of the difierent comeils which conduct the national aftairs, ate appointed by the crown, and are removable at pleasure. There are live ministers of state, i . . the minister lor foreignaflairs; the minister for administering justice, and dispensims favours; the minister of war; the minister for conchet. ing the business of the navy; and the minister of linance. Connected with these are live commets: The councl of C'astlit, which possesses bouh legislative and executive powers, and exercises the dowble lunction ol adrising the king, atnd administering justice. Its decrees are decisive in the conds, imtits judorments are under the control of the kins: The Joynt ant stoprome council of the Inties, which is invested with the same powers, and exercises similat lunctions for the colonies, as the former does for the comtane of Spain: The supieme council of arer, which conducts every hing relatiog to military concerm: Ther royn comal of finunce; and the royat comencil of orders. It in council ol state, or privy conncil, which, at its in. stitution, consisted of the king's confidental adisecre. has for a century past, been merely an homotary asso. ciation, and serves at present only torecompense sach persons as the king wishes to distinguish by cotifor ring on then the high honours and appointments attached to the title of a counsellor of state. All the most important ofices are lilled by men taken from the lower ranks of society. The grandees, satisfice? with hereditary wealth and honours, have no oljectiors to partate of the splendours of the throne, or to bask in the sumshine of royal favour but sherak from the drudgesy and responsibility ol official situations; and such is the gentral neglect of education in this com:try, that the ministers tind it difficult to obtain proper persons to fill the common ofices.

The common law of Spain has undergone various modifications. The code established bs the Romam was abrogated by the Gotis: and theirs in their tum was abolished by the Sitractus. During the re-conquest of Spuin by the Christian princes, many diffe: ent systems sprung up in the ralious small kinglome into which the coundy was divided; and mpon it fual recover: to Christendom, each of these was goo verned by its own peculiar laws, wheh were. i: groeral, a misture of homan and Gothic Jaw, with somb particular usages and local statutes. Epon the unton ol the differem independent states under. Ferdinam. and lsabella, these sovereigus estabibbed some ne: laws under the tith of (a,dentmionto real: and in \(15: 13\) the states of Castile published a new code, which be-
came the established code of that kinglom, and afterwards of all Spain, except Navarre and Biscay, which still retain their ancient laws and constitution. The laws, by which justice is at present administered in Spain, are contained in the codes known by the following titles: Fuero juzgo; Ley de las siete partidas; Ordencmiento real; Fiuero real: and Recopilacion, which last is a collection of occasional edicts of the kings of Spain, and enjors very high authority.

The tribunals of justice are sufficiently numerous. Every city, town, or village has its corregidor or alcalde, who excreise their jurisdiction within a certain extent of disurict. They have also the superintendence ol the police in the places where they reside, and are the official presidents of the municipal body. These magistrates are nominated by the king, and take cognizance of all causes whaterer that occur within their particular districts, except such as belong to the Tribemuls of Exception, which will be afterwards noticed. In the principal cities, which are at once the centre of a corregidorate, and the residence of a military governor, the two offices are united, and the administration of justice is committed to the superior alcalde; the former being entrusted with the command of the military force, the immediate execution of the orders of the cout, the regulation of the markets, the price of commodities, and with all that relates to the billeting and expediting the march of troops; and to the latter, it belongs to determine in all suits of law, whether civil or criminal. From the decision of the inferior courts, appeals are carried to the Royal Autiences, of which there are seven, namely, that of Galicia at Corunna, that of Seville, that of Asturias at Oviedo, that of Aragon at Saragossa, that of Valencia, that of Catalonia at Barcelona, and that of Estremadura at Cacerez. 'These tribunals take cognizance ol all matters of police, and of appeals from the sentences or judgments of the lower courts. In criminal cases their sentence is final: but in civil suits their decision is absolute only when the object of litigation does not exceed 10,000 maravedis, about three pounds sterling, when an appeal lies to one of the Chanceries, or to the Council of Castile. There are only two Chanceries, one at Valladolid, which comprehends within its jurisdiction all the territory of Spain lying begond the right bank of the Tagus; and the other at Granada, which inclades the country beyond the left bank of the same river, except the kingdom of Navarre, which having retained a considerable portion of its ancient privileges, possesses a royal council at Pampeluna, which judges definitively without allowing farther appeal to any of the audiences or chanceries. The chanceries, besides receiving appeats from decisions made by the courts of audience, take cognizance of all civil and criminal causes that occur within five leagres of the citics wherein they are established; also of all causes in which the royal houschold is concerned, or it which the corregidors, alcaldes, and other ollicers of justice, are personally interested as plaintill's or defendants; also of all questions relative to the privileges of the nobles, and the recognition and maintenance of nobility." From theirsentence there is no appeal, unless it he in a civil suit involving property to the amount of 5000 gold doubloons (\(210,(000\)) and upwards, when a petition is presented withintwenty days to the king, who refers the final deeision of the cause to the Council of Castile. This council, as it regards its judicial
capacity, is the supreme tribunal of the state, and before it all sentences pronounced by the superior courts may be brought for revision. For the better despatch of business, it is divided into five cliambers or committees; two chambers of government, the chamber of fifteen hundred, the chamber of justice, and the chamber of the provinces. Vach of these has its own department ol business, taking cognizance only of causes of a partichar description.

Besides these various courts of jurlicature, there are others of a very peculiar mature, generally called Tribunuls of Excrption, and which are so very numerous that at least hall the business of the kingdom is withdrawn from the ordinary tribunals. The principal of these, besides the military courts, the erclesistical courts, and the fifteen conrts of the inguisition, are, the Court of gentral sumerintontence of rumal affars, and of suectsions in cases of intestucy: the Count of Prato Medirt, which takes cognizance of affairs relalive to medical, surgical, and pharmaceutical police; the Court of the Meste, which has been already alluded to; the Conert of general lircetion and superintendonce of couricrs, posts, imns, roads, and commls; the Real Junta de Obras y bospmes, which has the superintendence of the forests, fisheries, chases, parks, and palaces of the king: the Comm of Heculdes de Corte, or of the royal household, which is intrusted with the police of the capital, and whose jurisdiction also extends to every place where the king and his household actually reside. There are also lour cours of exception relative 10 particular branches of the royal revenue; and Consulutes in the principal commerciul towns, which take cognizance of clisputes between the buyer and seller of mercantile produce.

Notwithstanding, however, this maltiplicity of tribunals, justice is very badly administored in this kingdom. The lacility of appeal from one court to another renders law-suits both tedious and expensive: and the circumstance, that the losing party, howerer unjust his claim, or however weak his defence, is scarcely ever obliged to pay his adversary's costs, puts it in the power of the rich to oppress and ruin those who are unable to support the expenses of a law-suit, which in Spain are enormons. But the greatest evil of all arises from the oppression and misconduct of the provincial judges, who are hrequently influenced in their decisions by mercenary views. Their venality is so notorious, and their power so sreat, that to complain would be dangerous, and therefore every citizen is anxious to secure the farour and protection of a corregidor or alcalde as the only means of salety for his person and his property. Mr. Wownsend mentions several instances of the rapacity of these magistrates. A military governor, who was much faroured by the king, when new in olfice, refused taking bribes, and ruled his rapacious oflicers with a rod of iron, but soon became infected with the love of money, and received it upon the most infamous occasions without a blush. Under his protection merchants delianded the revenue, and bankrupts found shelter from their creditors. Anothermagistrate, having promised, for a bribe of one hundred dollars, not to errant an attachment to a person, who had pretensions to some property, yet granted it, and being reproached for his conduct, he replied with coldness, " How could I avoid it, when he gave me lorty dollars; but be not uncasy, lor to-morrow I will take off the attachment."

When such abuses prevail we may be certain that the goverament is vicious, that the laws are weak, and that iolence has usurped the throne af equity

The revemmes ol the kinghom of Old Spain are derived from sarions somece, and are classed tomer the lenlowing heads.-1st, fersomul licermens of the Sorereter, which comprine the produce of cartan crown lates: the srand mastemhips of the loter anilitary orders, whith were anmexed to the crown by Ferdinand V. ; the patmente of the Serent, in listre-
 the mines, whith are wronght on the ling's ancome: the effects of cleweymeat hime intestate, and seme other rights a minor comsheration- - 2h, Rights of
 turs of maturalization, an I dinporsation respertin: age impediments, and illestimacy: lettorspurat lap erectas, or restorime the math of pereses, whoth, in the former cabe, ronth fors dmonsmat ments, and in
 levied upon all whos succol wrank or bithe: the and nual fates called hanzos, pridin lien of milhtary ber. sice, and teried upon a! who bear the lide of dake,

 ments and sithations filled by rosal nominatom, shet upan the athasion of physicians, combellors, Ex. 3d, Cimeral fienls, "hich comprehemal the resenne of the post wficte duter won imports amb exporth: premiums paid for licenses to ships tradeder to A ancrica: athlaxes on tehdico, bahe learl, platimg cards, quickshler, stamped paperatating wax, grnpowder, and sulphor. Wh, lrocincial hotse, which inclmic the
 batered, whether bedongig to agriantare trate or manubutures, ant is pat! erery time the propery is translemed, at the rate of two per ront. Ad retheren,
 and lifteen per cont. Por those bronght liom facien
 the last, and in a chuty "pon moneathes and immone.
 in dillomi prosinces aml cities accorling tw their
 seven per cent. at felloren. These are the most griadine of any cescripsom of taxes, aml lath heation upon the lower orders, who liom their seanty meats of subsintemece are obliged to purchanc from a fourah or difth hand, and who consetpenty mat pay this duty an equal mmber of times over; white the rich, who can buy by wholesabe. ant of the first suphties of the matket. pay it only once. Their collection also gives rise to many seations procedings on the part of the subardinate ofticers af excibe, whose dishonesty and cobetomstress ape well homone and whose exactions it is fillime io shisfy. Oning to the inconvenience attembing this bratach of the revente, Ferdinand VI. estatbi, hed a commassion in \(1 \overline{7}+9\), which was empowered to consolidate all imposts of this description into one general tax: but this abject still remains to be accomplisbecl. 5th, Locel 'Funcs, which embrace the dutiesupon a great variety of articles, as guld and silver coin, brandy, beer, woot, a per centage apon leases of land, \&x. Gth. Taves peruliar to cortain procinces.-Biscay is subject to none of the preceding imposts, but prays its portion of taxation under the name of a benevolence, which is assessed
"pon the inhabitants without the interfernace of the ollicers of the erona smel the impors trade old Navare pays no dusy maless the artic les are bent ont of

 1ands, tithes andmille: a simid at tax apent the supposed gratus of merchans and mothank he duty of eight
 mamfacturers, op day labomets: a poll-ta" uphani-

 monisums for the army. 'The prosimes of bateon

 lent. "lhis is assessed equatly upon all ! amen eif pros furty, and is wery molcrate. Thh, Iorers "pant the Cleagy, which comsist of varions imposts l... ind upen

 "Ihe amsonnt of these difatent taxes fop 1759 was as fullows:
serenth

B+fore the Sonth imericon stater hat rased the stundard of in Sepentence, the kins of Sum derived a considerable revenue lrom the bwo findies. The proluce of the mines wibl the alcawila, contoms and duties upon barions articles, giehed ammallyagross
 collection, and of the colmial fovemment. aboorbed nearly two-thinds of the whole amomat, so that scarcely more that \(\&\) if, 0 on, 000 reals antised at the royal treasury.

\section*{}

We give the subjoined acrombt from Iaborte, as aftodntry reve necensary informaton respectin the recripts and cibbursernets of the foremmabi. It contains a statement of the sums lutgent ia the poyal treastary, and paymmes made ont of the sume in 1.91.

> Recipts. Inewle de Ithon INot
leceipts on tomarco \(55,111,433 \quad 3\)
Provincial receipts - \(\quad 0.15, \ldots 214\)
Salt pits - - . . 10, 水, in \(^{\prime} 10\)
Gencpul receipts - - - 1.33 .300 .2023
branties -
Wools
1),01,518 33

Extratdinary or casmal effects \(8,040,3519\) produce on lead, in! playing cards -95.9.5 7
La casa de aposento
291,353 33
Proprios y arbitrio: 486,432
Tax upon beer
\[
\begin{aligned}
& \text { (1) 1*m } \\
& \therefore \text {-comil } \\
& \text { Shim } 1 \\
& \text { Foumela } \\
& \text { Fifll } \\
& \text { Sivth }
\end{aligned}
\]

Stamped paper
Duty on ims
Farmed dutics
Cloth manufactory
Badance in the treasury at the end of 1791
Receipts and revenues in the Indies
Demi-:mbates
lanz:s
F"ines granted by the tribunals
Privileges erranted by the chamber of Castile Produce of the pasturage in the screna
bent of matsters
Bail of notury -publies
Tar da subsidio de l'escusado, and ecclesiastical pensions

4,337,741 3
Bulls for the crusade -
Permanent tax de la casa excusada
The lottery
All sums received by the treasurer up to the time his function ends
Deficient remittances, for which goods have been distramed
Sums paid and remitted to the treasurer
Tor the consentimientos, according to the re-
ccipts given by the treasucer of the army

\section*{Total,}

Reals de Tillon. Nara.

\section*{Dishursements.}

Expenses of the royal household
The offices of foreign athins and the exchequer
The ufficers and courts of justice
State pensions
Sums paid for ceclesiastical pensions to vicars To ambassadors and envors in foreign courts
The is per eent and premiums
Extraordinary expenses of government
Treasurers and paymasters
The 4 per cent, royal debentures
Discharged receipts, audited and approvel
Testamentary tents
Grants, bills, and debts before licuidated by the treasury
The equipment and clothing of the army
Victualling the army
Life guards and hatiserdiers
Spanish and Walloon gitards
\(8,97, .395\)
\(19,759,879 \quad 1\)
3,336,1998 1.1
9,201 0
\(0,316,-290\)
\(4,854,598 \quad 0\)
82,551,362 0
\(34,-68,930 \quad 4\)
17,373,498 17
146゙, 829, リ25 5
5,321,050 3

Infantry, invalids and mintia
11,93(1,597
8,960,820
\(25,744,297\)
\(4,748,6-9 \quad 9\)
\(12,521,918\) 24
Artillery und stuft
Cavalry and dragoons
Staffs of different places
General officers
To ministers of war and state
Supernumeraries
Engineers
Widows for remittance in arrears of sis rloubloons

\section*{War pensions}

58,-97,-84 11
7,213,314 24
22,-90,643 27
\(7,4 \cup 1,01 \div \quad 20\)
5,935,261 11
4,506,449 2
\(5,396,030 \quad 11\)
\(1,616,3.34 \quad 14\)
- \(\quad\) 2,035,172 4

The te
The descemants of oran, and the peaccable Nooms 60,461
pay of the smm and navy
51,710,646
Jay of soldiers and expense of hospitals
Fortification ambarthery experaser
\(0,536,783 \quad 27\)

Bank of picty for the military and its mbmais. trition
\[
\text { 1ootal, } \quad 8(10,188,687 \quad 17
\]

Previous to the year 1 TAT, the taxes were leased ont or farmed. and consequently the aboses comamited in the collection were namerotas and grievous. "lobe poor peasants were robbed and plundered with impanity, wot merely by the farmers general, and those who rented under them, but by the judgres, who, being bribed by the farmers, justihed their oppression. The acople reiterated their complaints from ycar to year;
but the evil was never wholly removed until the Marquis de la Ensenada, the minister of Ferdinand \(\backslash\) I. abolished the farms, and placed the collection of the taxes in the hands of administration. This plan, however, is very expensive, owing to the great number of tax-gatherers, which, besides the numerous guards, which are reguisite to conforce payment, and to prevent smusgling, amount to nearly 28.000 . The state of Spanish finances is so very complicated, that their collection is still every where attended with many harassing circumstances, and perplexing difficulties; and though mumerous tribunals are attached to the different branches of revenue for the hearing of complaints, and the setlement of disputes, yet the people still suffer from the impositions and extortions of the collectors.

The national debt of Spain has been contracted at different periods. According to the Abbe Raynal, Charles V. alone, for the support of the rash and ruinous wars in which he was engaged, borrowed to the amount of \(4,000,000,000\) of reals, equal to \(\mathfrak{R}_{4} 1,666,666\), 13s. Ad. sterling. As the interest ol this sum exceaded the whole revenue ol the state, the government became bankrupt. Upon the accession of the Bourbon dymasty, public credit was again restored, and PhilipV. taking adrantage of this reviving confidence, contracted fresh engagements to the amome of nearly 700,000,000 reals. Ferdinand refosed to discharge any debts coutracted by his predecessors, and left his coffers replenished with \(640,000,000\) reals. Charles IIl. expended the half of this sum in the redemption of the debt, and the remainder in fruitless wars. Since that period additions bave been made to it at different times, and also small portions of it redeemed; but in the beginning of the present centurg. il amounted to the very moderate sum of \(1.800,000,000\) reals, or £18,000,000 sterling. This debt consists of bills issued by government, which bear interest at 4 per cent. and are divided into rades reales, which are not in circulation, neither taken in payment of taxes, and rales dinero, which are payable at sisht by the casa de consoliturion, or redemption buard. Large portions of the debt hase been redeemed by this board; but since the commencement of the penimsalat war the redemption of the coles has entirely ceased: and when we consider the low state of credit at present in that mhappy conntry, it is not likely that it will soon be renewed.

The following table shows the amount of moncy raised in England for Spain from 1820 to 1823.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{} & \multirow{3}{*}{\[
\left\{\begin{array}{c}
\text { Amoment of } \\
\text { Ciapitals } \\
\text { created. }
\end{array}\right.
\]} & \multicolumn{2}{|l|}{Rate percent.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Lxtreme } \\
& \text { liates. }
\end{aligned}
\]}} & \multirow[t]{3}{*}{Amonnt of money raised by Eng land.} & \multirow[t]{3}{*}{Annual obligat tion.} \\
\hline & & & \[
\mathbf{1}^{\prime} \mathrm{cr}
\] & & & & \\
\hline & & 1 & An. & Mas & Min. & & \\
\hline 1820 & L \(3,001,000\) & & & 10 & 71 & & \\
\hline 1821 & \(3,0100,000\) & \()^{47}\) & & 83 & & \(5 \cdots, 020,000\) & \\
\hline 182? & 3,001,000 & ? 5 & 5 & 7 & 71 & \} & 700,000 \\
\hline 182? & 1,000,000 & 5 & & 7 & 711 & \(5 \times 2 \sim\) & 100,000 \\
\hline 1823 & 1,0100,000. & 26 & & 4 & \(\therefore 3\), & 801,0001 & \\
\hline
\end{tabular}

When lhilip V. ascended the throne of Spain, he had not a single ship fit for sea; and there were scarcely 15,000 troops in the whole kingdom. But no sooner was this monarch in quict possession of the crown, than be dirccted his principal attention to the
increasing of his army, and the establishment of military discipline. When Mr. Townsend visited Spain in 1787 , the military establishments of every description were upon a very respectable boting. Since that time the army has been considerably angmented; and in 1798, the whole forces of the kingedom, inelading militia and invalids, amonned to 163,992 men, which consisted of the fullowing deseription ol troops:
\begin{tabular}{|c|c|c|c|}
\hline & officers. & N(\%). & Total. \\
\hline \multicolumn{4}{|l|}{1. Army siafl.} \\
\hline Cicneral officers & 560 & & \\
\hline \multicolumn{4}{|l|}{tuspectors, intendants, commisst.} \\
\hline & \(7 \cup 0\) & & 700 \\
\hline 2. Wing's Monachold Tronps. & & & \\
\hline lite grards, t companices & 87 & 880 & \\
\hline 1\%lyng atillery, 1 ditto & 7 & 01 & \\
\hline Italbersiers, 1 ditto - & S & 100 & \\
\hline Spamish grards, 6 battalions & 171 & 4200 & \\
\hline W:alloon gramis, 6 ditto \({ }^{\text {a }}\) & 17 t & 4.00 & \\
\hline Camabiniers, i spuadrons & 51 & 640 & \\
\hline & 400 & \(10,0.11\) & 10,531 \\
\hline \multicolumn{4}{|l|}{3. Horse Tregiments.} \\
\hline \[
\begin{aligned}
& \text { Cavalry, } 1.3 \text { requments of there } \\
& \text { squadrons each }
\end{aligned}
\] & 364 & 5382 & \\
\hline - , 2 litto, of 4 ditto & 7.4 & 1101 & \\
\hline Dragoons, 8 ditto of 5 ditto & 240 & 4416 & \\
\hline Clanseurs, 2 ditu of 5 ditto & 60 & 1104 & \\
\hline thussars, 2 ditto of 5 ditto & 06 & 1104 & \\
\hline & 798 & 13,110 & 13.908 \\
\hline \multicolumn{4}{|l|}{4. Infantry.} \\
\hline Spanish, 38 regiments of 3 battal- & & & \\
\hline lims each - - & 2210 & 59538 & \\
\hline - 10 clitto of 1 tlitto - & 280 & 6930 & \\
\hline 1talian, 1 ditto & 58 & 1536 & \\
\hline Swiss, 6 clitto & 330 & 7658 & \\
\hline Artillery - - - - & 40.4 & 41400 & \\
\hline Engineers, with sappers and miners & ¢ 1.0 & 1400 & \\
\hline Invalids, effective, 4.5 compranics & 1.37 & 3510 & \\
\hline -- - ineffectise, 2f ditto - & 82 & 1820 & \\
\hline Milita, provineial, 4 battalions & 14\%0 & 31340 & \\
\hline & 363 & 9317 & \\
\hline Provincial gremalicrs, 4 regiments & 121 & 2800 & \\
\hline & 50.4 & 133,249 & 138,853 \\
\hline Tutal & - & - & 163,992 \\
\hline
\end{tabular}

The Spanish troops are all distinguished by a red cockade, except the Walloon and Swiss guards; that of the former being red ame black, and that of the latter red and yellow.

The pay ol the infantry is fixed at the following sums per month, the reals being equal to \(2 \frac{1}{2}\) d. sterling.

The militia are raised only in the provinces belonging to the crown of Castile, the others being exempted from these levies. The provincial militia in times of peace are embodied one month in the year in the principal city of the department to which they belong, and reccive the same pay as the infantry of the line. 'They are liable at an hour's notice to be
called out upon actual service, athe have frequently been most advantarroonsly emploved in deferaling the fromtior, and in mamaining intermal trangallity. The cisice militia wortherecene pay, nor are liable to be catled away lemon the particular stations to which they belong. They choose thedrown oflicers, and most ol them have peculiar commatotants.
Spain its divided intw rewon gram military depatments, viz. Old Castile: Sraton; Cotalonid; V'a lencis, and Nurcia; Navarre: (iuipustoa; Intabusia: the coast of Granada; Gablioti lisumathra; and Madrid. Bach of these comprions sexam smatler divisions, which have an appointmon of a latroe on smather statr. The elicie command rester in the growernor, who assumes the title of captain-gemal, io which the governor of Navare adth that ,f sheres. In general, these governors passers both rivil and military powers, preside in the supreme comets, atod have the sole management ol the police.

The military character of the Spaniarls, which shone so conspicuous in the 150 h and 1 Gth cemories, has now so completely degenerated that the grovernment have great difficulty in rasing the regnlar quota ol troops, and none of the national reginants have their lull complement of men. All clusses have a natural repustance to a military life. 'The bewer ranks are in general grave and sober, attarlied to home, and have no relish for moving about liomptace to place. They, howerer, make excellent suldiers; and are seldom wanting in valour. The nobles have even a greater reluctance to the service; which, however, arises from a clifferent cause. No person can arrive at the rank ol an officer, withont baving perviousty served as a cadet in the same regriment: ant as the number ol cadets in the cavalry and infantry are inclefonte, their promotion is conseducntly so rery slow, that they sometimes remain five or six years without rank. Serjeants are also promised promotion among all the different lorces. except the artillery and the Spanish and Walloon guarls. these regiments requiring crery candidate for rak to exhibit some prool's of his alliance with nobility. These regulations, while they produce emulation among the privates to become serjeants, and among the serjcants to be promoted as officers, disçust the nobles. whose Spanish pride cannot endure to see ufficers of mean birth become their equals, and sometimes their superiors. The consequence of this is, that a great many officers, who have been elected from cadets, after is short time quit the scruice, while those raised from scrjeants never retire: so that the regular army is commanded by oflicers principally, who have arrised at that rank from serjeants. In some instances the number amounts to a half, and in others to a hird. At one period there were not four noblemen in all the troops of the Spanish monarchy.

The Spanish nayy, in 1:76, was so low, that it contained only 5 : ships of 30 guns and upwards, besides small craft. In a lew years, howerer, it adranced so rapidly, that in 1793 it was more than doubled, as appears in the subjoined statement.

The marine department comprises the naval forces, the sea and port service, the arsenal service, the naval administration, hospitals, sic.

The natal forces consist of a marine staff. officers, cadet guards, engincers, artillery, and infantry, or marines, appropriated entirely to the service of the nary.

The set and port service comprehends all persoms employed about the shipping, both those who are actualiy employed, and those who are kept in reserve, but ready to act when their services may be required. The former includes the port captains and different orders of pilots, with a considerable number of seamen and boys. The latter consists of the registered seamen, amomting to above 60.000 , who, during peace remain at bocir homes, but are subject to be summoned and employed at a moment's waming: the war commissaiter, recorders, sub-delegates, Eic. who are stationed at the different depots, and constitute conts for taking cognizance ol all affars relative to the registered seamen.

The arscuml scrice is carried on chielly at Cadiz, Ferrol, and Carthagena, which are the three grand naval depots, at which a great number of persons are constanty employed, under the orders of an inspectorgeneral of marine, and a general of engineers.

The netal atministiation is composed of the commissioners, superintendents. comptrollers, elerks, \&ec. belonging to the various marite departments.

The following is a general statemeat of the Spanish marine:
\begin{tabular}{|c|c|c|}
\hline Naval forces in 1798 & & 16,552 \\
\hline seasmen port service in 1192 & & 64,363 \\
\hline Arsemal service & . & 20,257 \\
\hline Nasal arlministration & & 470 \\
\hline ILuspitals & & 227 \\
\hline & Total & 101,8七9 \\
\hline
\end{tabular}

The Spanish nave. bowever, was c:ippled in the bast war with Diggtand: and the ships of the line will now scatcely (xeced 5)

Spain has muncrons extablinhments for the education of the gontis intodenf fin the army and nasy. The princimal military sohools are at Cadiz, Bare lona, \%amora, sme semonis. The three first are chied? designed for the imbtration ol sheh young men as are intended for the emine dine department, though youmg ofticers ol' abry desertptom ato atmitteth, and where are tanzt draniner, mathembers, engenerins. and lomilication. '] hat ul' Segovia is con-
 fomaded at Xradid for the be mit of the gomater ofteres belongins to the senps of cosmostraplacal chenmers, and who are insermed in geomely, mathematics, geography, meteorolong, abd abtrmony.
 ed at the three naval stations, Cadiz, Ferrul, and Car
thagena. Those appointed for the marine guards, into which or!y sous of gentlemen are admitted, have mas. ters ol mathematics, physics, gunnery, and mancuvre; atid in those established for the naval artillery are taught those parts of mathematics which are essential to the artillery and pyrotechnic service, drawing, fortification, statics, hydraulics, bydrostatics, and aerometry. Nautical seminaries and schools ol pilotage are distributed in various places along the coast.

The widows of all officers of the army above the rank of lieutenant are entitled to an annual pension; but the husband mast have obtained the ratuk of captain previous to marriuge. The funt. from which these pensions are paid. is not supplied by the state, but is derised from dillerent sources: 1st, A sum of 6.000 dombloons, appropriated to the establishment: ad, Twenty per cont. granted by the king lrom the reventes of vacant bishoprics: Sci, Half a month's pay from all officers upon promotion: 4th, Two per cont. upon all militury appointments: and 51b, The effects of officers who die intestate and whonot natwral heirs. The administration of these funds is condncted by an establishment at Madrid, called \({ }^{-}\)The Mount of Picty."

The principai military orders of Spain are those of Calatrava, San Jueo, Alcantara, and Montesa, which, at their ariginal fomatation, were intended for active strice agatint the enemies of the futh. particularly the Moors, who thea possessed a cominderable portion of the Spanish tervitory: but, since the amexation of the grand mastarships of these orders the crown by Fedmand V., they no longer constitute a peenliar description oi the public luice. 'To these arters are attuched several valuable commanderies. amounting in all 11 19, 650,000 reals. Of these the lowest is 1260 veals and the highest 840 .0no. Besibes knights, cach order has also so many monks and nuns anoced to it, who are bound be particular vors. "There are in all 10 honses containing ! 69 monks, and 11 convents with 1.3 wans. The quatitications for athission into. these military orders at present are, eight years of active service in the Spanish army, and prool's of nobility of tour degrees on the side of both father and mother; but no knight can be appointed to a commandery tabless he bas tatben the yow of rombating the infidels, of fulelity towards the sovercign, and of conjugral chastity.

The wher orders are those of the Folden Flefce and of (hates \(/ / /\). The first was founded by lailip) the Good, Duke of Burgundy, and passed bẹ succession to the Spanish crown upon the accession of the Austrian family. It is contimed to fifty members, of whom the king is the soveregn chief: and has alone the disposal of the cullars. Abonat a thated of these are at persent in the poscession of formsomes. "lace order of charles lll. was lounted in 10t by the king of that name, and is composed ol sixty grand crosses, two humdred pensioned knights, and an indelinte number af others. The pensions of the knimhts, which are lixed at foon real, are griven to military men, to mon of lethers, to lavyers, to sombemen, and to those emploged in the ministerial drparmantio. Besides these, we may mention the order of Natia Louisa, Which was cestablished in 1792 by Charles IV. in hemone of his queen, in whom the grand mastership. was vested. Laties only are admitted, and the mumber is confined to thirty.

Chap．Vil．Religion－Eedesiastical Dinision－（brey

Strabo informs us that the ancient inhabitants of Spain adored a nameless God，of whom they formed no visible represcmation，and to whom they erected no temples，performing their simple rites in the upen adr，on the lirse might ol every full mom．＇lhis simple worship，bowerer，by the compuests of the Cathati－ nians and Romans，was exchanged for the supersti－ tions and lables of laganism；but these in their turn soon yidked to Christanity，which met wilh an carly and welcome reception in this commy：and leom the first agesol the chareh，Spainfumished many martyes to the fath．＇The introduction of Arianism by the Goths and Suerioceasioned many disacmions．Wiate the natives admered to the Roman Catholic creed， their conguerors were devuted to the heresy of Arias， and each party had their separate charches，bishops， and priests．An attempt was made in 509 to estab－ lish uniformity of religious lath and worship．But this was resisted by the Catholies，and was followed by a civil war with all its mmberless evils．Abont ten years after，however．Biouredo，king of the Goths， abjured the doctrines of dolus in a mononal assembly beld at＇fotedo，when the whole of spain was ：c－ wated to the Catholic chareh．From this period to the invasion of the Mon＇s，the Spanish church was remarkable for the purity of its doctrine，and the efficacy of its disciphate：and even bubler that people the Spaniards commad lor a time to retain their re－ Iigious establishments，and held severat ceclestastical councils．But they began insensibly to adopt the manners and customs of their conqueroes，and their faith became atlast a monstrous mixture of Isfamism and Christianity，in which the leading tonets ol cach were undistinguishably confounded；and so completely was the Christian religion corrupted，and almost eradicated from these parts of Spain under the do－ minion of the Arabs，that on he recomplest of Serille in 12.5 by Ferdinand 11I．，and of（aranala in 1.192 by Ferdinand V．．the staves were the only Christians that could be lound．

At present，the religion of Spain is strichy Roman Cathotic；and，until the miduthe of the last century， the pope nominated to all benctices and dignties min－ der ecelesiastical patronage if they became vaemt in the months of Jamars，february，Aprit，May．July， August，October，and November；and at all times if the incumbent happened to die at Rome．Ite also levied a considerable revenue from benefices，uniter－ sities，colleges，\＆ec．All these pribileges，however， were manilingly ceded by leatedea It． 10 Ferdinand Vh．and his successors in 1553 ．Bat in this foreded renumciation of his rights the pope retained two very important priviteges，viz．the supreme administration of the contentious jurisdetion over all cases that are brought before the ceckesiastical tribumals，which is exercised by his numcio，and the coum of menciature at Madrici；and the nomination，at all times ol the year， to fifty－tho of the best benefices，independent of the royal anthority．The king，besides nominating to all bencfices under the immediate patronage of the crown， now appoints also to those under ecclesiastical patron－ age，which fall vacant in any of the eight months above mentioned；and ecclesiastical patrons have the
ripht of momination only when the vacaney happens in any of the wher form months．Lay patosus lill up vacancies moler their momination at whatever limb of the yar they happen；for bether the kimp nof the
 their prisileses．Tha indmence of the papal court is
 thatity or jurialiction in the teraporal concerns of
 is paid to the sonercign pontift，his prawer is hircua－ scribed within narpow limits．

Spain is dividedimo rightecelesiastiral provinere， overeach ol whinh presiches an archaiohap．with the rank ol metropolitan；and those again aro subeliviled into forlyfoll dinceses，somerned by bishar．The archbishopics，with their revemues and sufferaths， are stated in the followine table．
\begin{tabular}{|c|c|c|}
\hline Archai－ shoprics． & Stcrang Wりに？ & Sufragins． \\
\hline I＇ulcdo & くしてう，吅」 & \begin{tabular}{l}
 \\
 \\
 \\
 （l），：un！the onlaw at Na herk．
\end{tabular} \\
\hline Suville & 34.305 & Malag．，Cathe，femta，whel Whe Camar： isles． \\
\hline Simliago & 28,221 & \begin{tabular}{l}
 \\
 \\
 B．aluyos．
\end{tabular} \\
\hline diranamla & & butatu and Almuria． \\
\hline llurgos & & cia，and santanler． \\
\hline ＇Tamagron & 18，333 & \\
\hline Suragons．a & 25，208 & Mbarrazin，and turncl． \\
\hline Valenera & 32，08．3 & Segorbia，Oatmelı，and M：jusca amb Minoren． \\
\hline
\end{tabular}

The cities of Oiedo and Leon have likesise earh an episcopal seat．independent of any metropolitan anthority，being under the immediate jariseliction ul the pope．

There are in span fify－eight cathedrat chapters， and eighty－two collegiate chapters，and abory of dithent orders；and almost every religions order is to be found in this country The mostmumerons are the frameicans，who have 610 coments and 191t： monki．The Spanish chutch，as may be secal from the princty resenues of the archbishops，is sery richy entowed．Some of the bishops，ant other dignitaries，have atoo wey considerable iacomes．The bishop of Murcia receives amually about 1.23 .35 sterling，and the bishop of Lerida l．10．04n．Tloe canomaes are rot less opulem in propoption，averas－ ing between 100 ，（k）and to，ovo reals：and the dishi－ taries of the chapters are still more richly beneficed． Some of the monastic orders also possess immense wealth；愔C Cumbsians and Ilieronymites in partich－ lar are proprietors of the greatesi part of the dis． tricts that they inhabit，and the latter have a mori－ astery at the Escurial，the revenae of which amount， to L． 29,165 sterling．The following statement is drawn up from the enumeration of the Spanish clergy in 1768 and 1788 ．by which it appears that the num． ber ol the clergy had been very considerably dimin－ ished within the space of twenty years．
\begin{tabular}{|c|c|c|c|}
\hline & In 1768. & In 1788. & Diminution. \\
\hline Secular clergy - - & 66685 & 60240 & 6447 \\
\hline Subaltern ministers of the church & 25248 & 15875 & 9.373 \\
\hline Monks of 1925 conrents & 56457 & 49270 & 7187 \\
\hline Nuns of 1081 convents & 27665 & 22337 & 5328 \\
\hline rotal & 176,057 & \(14-, 129\) & 29,335 \\
\hline
\end{tabular}

Since 1788 the diminution of the elergy of Spain has been comparatively much greater. In many conrents the religious of both sexes have been reunited, and many have become extinct by having been prohibited from receiving novices.

All the clergy of this coluntry, both secular and regular, are anmenable to no secular tribunal, cither in civil or criminal cases. The church has tribunals of its own, whose jurisdiction is sufliciently ample, extending in certain circumstances even over the laity. The police of each diocese is entrasted entirely to the bishop, who generally has a prison within the boundarics of his own palace. From the diocesan courts an appeal lies to the metropolitan tribual, and from thence to the court of nunciature at Madrid. The most drealed tribunal, howerer, is the inquisition, which camot be named by protestants but with horror and detestation. It was first established in this country by Ferdinand and lsabella in 1480 and there are now filteen tribunals of this description in the different cities of Spain. Each ol these has a department or district, within which alone it is allowed to exercise its functions: but the principal tribunal, and that on which all the others depend, is established at Madrid. The inquisition, however, which, at its first establishment, was intended for the special purpose of watching over the purity of the Christian faith, is now rather an engine of state-policy; and the objects ol its notice are political principles, rather than religious opinions. We are told that it is no longer what it formerly was, that its sentences are now dictated by sentiments ol mildness and peace; and that its prisoners, while in custody, are treated not merely with hamanity, but enjoy every possible indulgence. But no change has taken place in the form and manner of its proceedings, which are always covered by impenetrable secrecy; and. thongh the light of knowlelge and civilization, which has been diffused were Europe, may have tught exen inquisitors humanty: yct, wherever impuisitorial power exists, it must be liable to abose, and clemency must be merely aceidental. Its name will always continue to be adious, however its inturuec may be diminished, or its constitution modilicat and it is ancorge of tyames to which no fice people will submit, and which errey wise gonmment will be anxious to abolish. See our aticle lemteratos.

The Spanish clersy, citlur. with respect to intellectual endowments or moral chatactor, when compared with those of most nations of Enuope are far below mediocrity. Many of their dignitaries, howerer, are bright examples of charity, purity, and piety; aud it is stated by laborde that "whaterer may he the rank of an ecclesiastic in the sacerdotal hierarchy, he never habitually absents himsell from his proper plare of residence, where he expends the revenue ol his bernefice in alms or public works." This author records several instances of the public spirit and
beneficence of those venerable men. "The most beautiful aqueducts, fountains, and public walks in the cities, have been constructed at the expense of their bishops; from them also the poor have received the most effectual relief in times of scarcity, epidemic discase, and war. The bishop of Orense converted his episcopal palace into an alms-house, where were lodged and supported three hundred French ecclesiastics condemned to transportation during the furies of the revolution: the prelate himself took his place at their table, and relinsed to partake oll any inclulgence that he could not also procure for his guests: and the bishop of Cordova, during the scarcity of 1804 , and for a long time aftewards, made a daily distribution of twelve hundred rations ol bread to the poor imhabitants of his diocese." But our commen. dation must stop here, for lew of the clergy, either secular or regular, think it necessary to imitate the virtues of their superiors.

The religious orders, in particular, are the most degraded and depraved. They may all be comprehended under two classes, -monks and friars, - of whom the author of Dobledo's Letiers has griven the foliowing accurate and spirited description: "The distinguishing characters of the monks are wealth, case, and indulgence; those of the friars, vulgarity, fith, and vice. Amoner the monks the Benedictines are at the top of the scale for learming and decency of manners, white the llieronmites deservedly occupy the bottom. To the friars I am forced to apply the Spanish proverb, 'There is litule to choose in a mangy hock.' The lranciscans, however, both from their multitude and their low babits of mendicity, may be beld as the proper representatives of all that is most objectiontable in the religious orders. The inveterate superstition which s!ill supports these institntions among us, has lost, of late, its power to draw recruits to the cloister from the middle and higher classes. Few monks, and scarcely a friar can be found, who, hy taking the cow, has not escaped a life of menial wil. Bors of this rank of life are received as novices at the age of tourteen, and admitted after a yeares probation, to the perpetual rows of obedience, porerty, and celibacy. Engagements so discordant with the first lans of haman nature could hardly stand the test ol time, eren if they arose from the deepest feeling of enthusiasm. But this affection of the mind is seldom lound in our convents. The year of noriciate is spent in learmine the cant and gestures of the vilest hypocrisy, as well as in strengthening, by the example of the professed young friars, the orisimal sross mamers amel vicious babits of the probationess. The result of such a system is but too visible. It is a common jest among the litars themselves, that in the act of taking the rows, when the superior of the convent draws the cowl over the head of the probationer, he uses the words 'Tolle verecurditm, 'Put ofl' shame.' And inderd were the friars half so true to their profession as they are to this supposed injunction, the chureh ol Rome would really teem with satints. Shameless in begeing, they share the scanty meal of the labourer, and extort a portion of every prodact of the carth from the farmer. Shameless in conduct, they spread vice and demoralization among the lower classes, secure in the respect which is felt for their prolession, that they may engage in a course of prolligacy without any risk of
exposure. When an instance of gross misconduct obtrudes itself upon the eyes of the public, exery pious person thinks it his duty to hush up the report, and cast a veil on the transaction. liven the sword of justice is glanced aside lrom hose consecrated criminals; and erimes of the backest description were left unpunished daring the reign ol Charles III. Prom a fixed and avowed determination ol that monarch not to inflict the panishment of death upon at priest."

The state of science and literature in Spain has been marked by dillerent eras: but perhaps at no period has it been so lettered and degraded by the deadening influence of absolute despotism as at the commenecment of the present century, I'his combry, when subject to the Roman power, could boast ol names still held sacred in the annals of knowledge. Seneca, the Philosopher, Pomponius Mela, (Quinctilian, Lucan, Martial, Cornclins Balbus, \&c. were natives of Spain, and even under the barbarous Visigoths a few were distinguished for their genius and their virtues. Upon the invasion of the Moors, bowever, when driven to the mountans of Asturias ant Galicia, they lor a time sunk into a state of powerless apathy. The very name of science was forgotter, and their priests could hardly read the services of the temple. But these invader's introdaced a high degree ol civilization, and united with the most romantic bravery a passionate love of seience and the arts. As the basis of national happiness and improvement, public schools were established in almost every town, and colleges, with well selected libraries, were splendidly endowed in all the principal cities under their dominion. In these the sciences ol geography, experimental philosophy, optics, botany, natural history, and geometry, were cultivated with great success. The Moors were the first great improvers of chemistry; they excelled in astronomy; they enriched the medical art which they had acquired lrom the writings of the Grecks, with many important discoveries; and to them we owe both the science of arithmetic, and the invention of those numerical characters. which have been adopted by all Europeannations. Their most renowned universities were those ol Seville, Cordora, and Granada; and such was the reputation which they hat acquired, that crowds of learned men from various countries resorted to Spain to study those sciences which were no where else tanght so successlully. Among those distinguished foreigners were the famous Gerbert, afterwards Pope Sylvester II., Daniel Morley, Campamo de Novare, and Gerard de Carmana. To this people also we are chicfly indebted for the treasures of Greek and Roman learning, which they collected and translated, and thus preserved this sacred deposit when it was lost to the rest ol Europe. The works of many distinguished Arabian authors who flomished at this period, have been handed down to on times; and the illustrious names of Arerroes and Avicenna will ever occupy a high rank in the amals of philosophy and medicine. The Spanish Arabs were, in short the bravest and most cnlightened people of their age. Their learning, their industry, their generosity, were the admiration of all Europe; and such also was the noble confidence which they inspired, that many of the Christian princes in Spain sent their sons to be instructed in their schools, and called in their physicians in dangerous cases.

When the mative Spaniards were restored to the
quied possession of their country, by the linal expralsion ol the Arab armies from the perinsula, they were lortunate in having a momarel who knew hat value of learning, and who was anxions lor its revival among his suljects. Niany ol them had studied under vecir Moorish congureors; and by the: manificent patronage ol ferdinath and lsabella they were the means of dissemmating a taste lise semer and litwatumemong beir countrymen, whothad lones sat ificel every other kind ol knowledge what at the art of war. is spirit wab thas excited, whichbecing lontored and emonemged by suceceding princes, raised Spain, in the reign of Philip II. to a high ramk among the civilizal mations of Europe; and the period between the emt of the filteents and thebeginmingol heswenternthenturirs, maty well be comsitleted as the godden atge of Spanish learning. During this era flourished many cininemt philosophers, bistorians athd prets, whose lam: added lustre to the age in which they lived, and whose names still continue to cmbellish the amals of theit comntry. Bat the successurs of 1rilip inherited neither his tialents nor his lowe ol learned mom; and, thongh the impulse which the sciences bad reepived liom his prostection and bomnty continnct to manitist its chergy for several years, yet, when withdrawn lrom muter the shade of royal fanour, thein prospres became impeded,
 lic disasters, arising fiom tedious and mastecesstal wars, also contributed to hasten heip decay, and to direct the attention of the nation other mutters. From that time science and literature have been ablowed to languish, neglectert alike by the throne and the people; and though a few eminent and lawoured geniuses have arisen during this inatuspicions period as meteors in the midst ol darkuess. yot Spain has never been able to recoser her celebrity as at learacd nation, though the names of Lopuz de Vas?, Cerwantes, Francisco Comandes, Ulloa, Qucredo, Suredra, Benedict Feyjoo, Authony Ausustine, Arehbishop of Tarragona, called by te Thou " the lamp of Spain," Christopher Acuma, ind Cuderon, may well prescerve her fame.

There were lommerly iwenty-four unirersities in Spain, but they are at present reduced to seventect, and ol these six only deserve the name:-Satamanca, Toledo, Saragossa, Yilencia, Alcala, and Cerverı. That of Salamanca is the most ancient, and was at one tine the most celebrated in Europe. It was founded by diphonso IX. about the begiming of the thirteenth century and considerobly embarged by his grandson Ferdinand 1II. It consisted of twentr-fre culleges, a libeary, and an hospital, called del Estudio, intended for the amelioration of poor schotars; and such wis the high reputation which it enjoyed, that students flocked to it from all parts of Spain, and from forciga countries. Its celebrity continued for nearly three centuries, but as rival institutions sprang up it began to deciine, and the number of its students, at the conciusion ol the sixtenth century, had decreased from 15,000 to 7000 . At present though the establishment is still unimpaired, and consists of sixty-one professors, yet its schools are almost deserted, there being seldom more than 1000 scholars. The university of "Coledo has twenty-lour professors, and 3000 students: that of Saragossa twenty-two professors, and 900 students; and that ol Cervera forty-three professors and 900 students. None of these establish-
ments are of any great repute; and the last is scarcely known berond the butndaries of Catalonia. The university of Alcala, fommed by Cardimal Ximemes, was once a splentid institution. It consists of thirty-one general prolessors, and thirteen colleses, cach of which has its particularestablishment of masters, and the studens receive gratuitous support and instruction. Scaboly a restige, howerer, of its anciont splendum remains, and the whote mmone ef its scholars does matexeced ston. But the mootpopular aniveroity in Spain is that of Valemi... It has filly-
 etry ath oratory, tion fir Cirek, one for lobrew, six forphilusophy two for mathematica one for mechathe
 for medicine, seven fur fill law. five for the catern

 cd entacts from the phitundpy of Arbuthe, and the thenhos of 'Thoman Aqumas: and as late an 1 :93

 p ilosuph
 schowe, which hase heen aheac! y montimed, hacte are tumatons other estathathemts for the educarion of youth. Beerymonastey abmost has a schonf tor the bose ata philusoplay, when is opent to the puthic. ahere ite aho mans colleses indepencome of the mi-
 pat sees, and under the direction of the bishops. But ith all the system is radically defectinc. In what re lates to sciemtife discoveries they are hall a century behind: and they fevote too mench of their attention to subjects which hase bong since beem abandomed by the rest if Europe. "Their schools of astronomy," says laborde, "are destitue of instuments and whsemaiotics: thein courses ol natural phanopoy are without experiments: Howe tearhers of nataral hasto.

 chembioty we withont laboratorbes and appatatos: and thir lidarics are destitate of modern bouss.'

Tifits worg to what is called protite lifratum, they
 strictions lathpon the pablication of national watts.
 the wh:

 those al the herblactors of their commers

The perery of spain is perhapes dir depamment of

 sures by liaseano and Garcilaso in the foth remtary
 Petrated. 'The protix and pompons sely of he wro ters of that solmole thoush sometimes exhithins an
 of sublimity. bear reident marhs of a comfanion of ideas; and bun isnatius de Luzan", who published an

Art of Poctry in 1737 , attributes the scarcity of good writers to "a certain banglatiness, whichaccomnts it a degrathation to submit to prescribol rules, and which mistakes for enthasiasm and inspiration, what is only the frnit of a bewildered imaginatom." Some pres, howerer, have arisen in the preselt day, who hate endeasonded to emancipate themselves from the prevalimer erross, and we correct the nationat taste. In this manter may be ranked Yiarte, Nolendez, Norath, Quimama and Driaza. Yet ouch is the at mans complete destuction of the lose of literature in this comoter: that the worksate rearl and apprecintcalbuby a fow. The grat butk of the nation matiofers merelinh op dentre for mental improvement. Bonlos ate littereat: aml all, who are mot chaged in
 laties, wi:h whem mothing of this kind is heated of.
- Yeats pasa away." says the aththor of Dobledo's Letres. " whome the pultitation of amy origimal both. A Complation, entided El Viagero Universal, and the trambtaton of (enthric), (irammar of Geograths, are hooked won as dioms bothof literary industreand ensmeatial emterphe. There exist two royd aiculenate one for the inaporemben of the Spanish langaya, the other for the atrancemont of mational hasiong. Weswe to the former an ill-digested dictonary. wha a bery bat grammar: and to the latter some saluable discourses, and an in omplete geographical and historical dictionar:. The Spanishacademy has podished a rohme of prize essays and poems, the fruits of a very feeble competation, in which the poctry partakes hargely of the servility of inatation, and the prose is scmerally stiff and affected. Out sisle. in fact, is at mesem quite masenled. Ructuatiog betneca the wordy pmopusity of mar old writers, whout their casp. and the eptorammatic conciseness of second-rate foench writers striperd of the it spmightimss and eraces. Is long, honever, as we are comdmond to the dead sibnce in which the nation las becu kept liar cemation, there is litue chance of

The Spanish Langast is a comprand of the Latin and Tentonic, with a small athmetme of Arabic. When the country was disided into a variety of independent sovereproties, tach kingdom had a diabet of its uwn. But since the mion of the cromns, the dialect of castile has become the gemernllanguge of the whok monarche, and is still called the Cumbilat langrage. It is spolen in its purest state in New Castike, specialty in the ancient kinglom of Toledo, and is once of the haest of the Luropean languages. "It is dignilicd, harmobions, enoretic and expressive; and abonds in gratad and yomorousexpressions, which unite into measured periots, whose caldence is very agreoable w the ear. It is a laggage well adapted to poetry, but it aho imblomes 10 examernetion: and its whomence casily degenerates into bombast. Though maturally yrate it easily almits of pleasamry. In the month of well educated men it is moble and expersive; lively and pointed in that of the rommon people; swet, seductive, and persusise when hatered by afonate. Amongst the orators it is tonchiner and imposins, thoush rather dilluse; at the bar and in the schools it is barbarons: and is spoken by those abont the cont in a concise and ascecable manmer." In the oher porinces its purity has suffered comsiderably from the introduction of foreign words and idioms. It
is mixed with French in Navare, Catalonia and Valencia; with lortuguese in Galicia; and with Arabic in Murcia and Andalusia. The Basque, which is still spoken in Biscay, is supposed to be the ancient larguage of that conntry, helore the invasion of the Romans, and is mentioned by Strabo and Seneca. It has no analogy with any known tongue; and is preserved without ateration or corruption in the mountainous parts of Biscay. Thongh it appears harsh and coarse to those who do mot mederstandit, yet it is said to be destitute neither of elegance nor expression.

The liberal arts in Spem have had the same periods of splendour and declime, as science and literature. The architecture of the 16 th century is worthy of being compared with that of the liomans: and the bridges of Badajos and 'Toledo, with some ol' the pulslic buiddings of the latter city and Madrid, deserve the carelul attention of the skillul observer. The famous Escuriah, of which a description has beengiven ill this work, belongs to the same age, and is called by the Spaniards, the eighth wonder of the world. This buidiong astonishes by its great extent, and the magnificence of its execution, as much as by the repubsive appeatance ol its site and neighbourbood. Spainc can also boast of some distinguished seulptors; but "ol' all the liberal arts," says Laborde, "painting is that which has been most cultivated in Spain, and in which its natives have best succecded. The Spanish school is little known, and deserves to be more so; it holds a middle place between the Italian and Flemish scools: it is more matural than the first, more noble than the second, and participates in the beauties of both." In this deparment Spagnolet, whose name was Joseph de Ribera, and Bartholomew Murillo, are well known; and in more modem times, Antonio Raphael Mengs supported the eredit of the Spanish school. But here also the cfforts of genius have sunk under the black and noisome influence of Spanish bigotry and despotism: and while the preseat sovernment, both civil and religions, of this comatry continues, Spain must remain the most wretched and degraded of European nations.

We shall conclude the statistics of this comatry in the words of Mr. Jownsend, who was well acquainted with the mational character, instatuions, abd resources of this people, and whose faithful and lively descriptions have been miversally appreciated. "Should this people banish the ingiaisitors, and assert their freedom; should they, happy in possessims one of the richest commties upon carth, contract the bounds ol their untieldy empire: should they confne their riews "ithin the limis ol their own peninsnta, and cultivate the arts of peace; should they, to cherish industry, abohsh the monastic orders, lessen the number of their lestivals, entablibh an agratian law, and strike off the fetters by which their commerce has been bound, considering the soil. the climate, the abundance of water, the natural prodactions, the rivors, the harlsouss, and the local situation, we may venture to affim, that no country of the same extent would be more populous, more wealthy, or more powerful than spain."

The weights and measures of Spain vary in almost every province, and oceasion much trouble and perplesity in esery linst of commercial relation. The standard measure of length is the royal foot, which is divided into 12 inches, and each of these into 12 lines,

Vol. XVII. Pari.
and is to the English foot as 153.41 to 14. The royal foo, however, is very litte used, many prosinces hasing their own peculiar foot. The font of Catalonia measures 11 inches and \(\hat{i}\) thes of a line of the rosal foot, that of Vatencias 11 inches, and \(2 \frac{1}{2}\) lines, and that of Castile 10 inches, and 4 lines.

Cloths and stuffs are measured in Catalonia by catnas, and by raras, in other parts ol the kingdom; the cana is divided into right pams, and the vara into four; but the peam varies in dilferent places.

> The grom of catalenia \(=7\) in. 4 lines of the royal foot. Aragon \(=6\) 73 Valencia \(=8 \quad 4\)
> Castile \(=7 \quad 8\)

In the provinces belonging to the crown of castile, land is measured according to the following table:
\[
\begin{aligned}
& 2 \text { varas }=1 \text { brass }=5 \text { feet } 1 \text { in. } 4 \text { lines. } \\
& 2 \text { brasses }=1 \text { estarlel }=10 \quad 2 \quad 28 \\
& 400 \text { estathales }=1 \text { fanctra }=4.088 \quad 108 \\
& 50 \text { f:nesras }=1 \text { masulut }=2 \mu 4.4 \% \quad 5 \quad 4 \\
& \begin{array}{rrrr}
\text { 'Ihe fancgrat serille ind Ioledo is } & =5.111 & 1 & \text { t } \\
\text { Vallenciat only } & 1.950 & 0 & 0
\end{array}
\end{aligned}
\]

In itiocrary measure, the common league of Spain is cqual to
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{1.3.610 feet 7 in. 62.3 lines.} \\
\hline Ancient legral league & 170.37 & 7 & \\
\hline \(\mathrm{r}^{\text {resenent legal league }}\) & 10.222 & 2 & \\
\hline Now league nixed in 1:60 & 16.355 & . & \\
\hline
\end{tabular}

The measures of capacity, both dry and liquid, are also very various, diffring very considerably both in size and denomination; but we have room only for the principal ones. Their relative value is shown by comparine them with the pound of 16 ounces.

In the kingdom of Castile corn is measured as fol-lows:-
\begin{tabular}{|c|c|c|c|c|}
\hline \({ }^{4}\) duartillos \(=\) & 1 celemine & \(=\) & \multicolumn{2}{|l|}{\(10 \mathrm{lbs} .5 \frac{1}{5} \mathrm{oz}\).} \\
\hline 120 colemines \(=\) & 1 faners & \(=\) & 12. & \\
\hline 12 fanegns \(=\) & 1 cathiz & = & 150 & \\
\hline The fancga of Asturias & is & \(=\) & 161 & \(5 \frac{1}{3}\) \\
\hline of Cumatha & & \(=\) & 1.36 & \(5 \frac{1}{5}\) \\
\hline of ltiscay & & \(=\) & 131 & 5 \\
\hline 'The cahiz of Valencia is & & \(=\) & 463 & , \\
\hline of Aragom & & = & 203 & 1 \\
\hline
\end{tabular}

In oilmeasare the crolut of New Castile
\[
\begin{array}{rlr}
\text { an l beville is } & =25 & 0 \\
\text { of Madrid } & = & 24 \\
\text { of Vilenciat } & = & 81 \\
\text { of Dragon } & 8 \\
\text { of Citalonia } & = & 27 \\
22 & 12
\end{array}
\]

In wine the cantars of New Cantile
\begin{tabular}{|c|c|c|}
\hline an.l -rrille is \(=\) & 34 & 2 \\
\hline of Madrid & 48 & 0 \\
\hline of Asturitas \(=\) & 89 & 3 3-5 \\
\hline of Villencia \(=\) & 26 & 4 \\
\hline The allu of Gidicia \(=\) & 340 & 0 \\
\hline The torneaux of Cadiz \(=\) & 1020 & 0 \\
\hline 'Ilte charge of Aragon \(m\) & 420 & U \\
\hline of Catalonia \(=\) & 2-3 & 12 \\
\hline
\end{tabular}

Every province has its own particular weights, but in the kingtom of Castite the pound generally consists of 16 ounces, and of 12 in the kingdom of Aragon.
\begin{tabular}{rlrl}
The quintal of & \(=100\) lbs. 0 oz. \\
of Gastile is & \(=\) & 125 & 0 \\
of Biscay & \(=\) & 154 & 13 \\
of Gupuscoa & \(=105\) & 158 \\
of Aragon & \(=111\) & \(12-6\) \\
of Valencia & \(=\) & 126 & 0 \\
of Catalonia & \(=91\) & 0
\end{tabular}

The weights for gold and silver are the same almost throughout the whole of Spain, and are as follows:-
\[
\begin{aligned}
12 \text { grains } & =1 \text { tomina } \\
6 \text { tominas } & =1 \text { ochava } \\
8 \text { ochavas } & =1 \text { ounce } \\
8 \text { ounces } & =1 \text { marc. }
\end{aligned}
\]

Owing, however, to the grains of Catalonia and Valencia being heavier than the grain of Castile, 100 marcs of Catalonia are equal to 116 marcs \(5 \frac{1}{3} \mathrm{oz}\). of Castile, and 100 marcs of Valencia are equal to \(103^{\frac{1}{2}}\) mares of Castile.

The monies of Spain, like most countries are real and imaginary; the former used for the purpose of exchange, and the latter serving only for keeping accounts and striking bargains. The real monies, both gold and silver, at present in circulation, have been coined at three different periods. Those coined previous to 1772 consist of different sized picces of metal, unequally cut, whose currency is only by weight. Those of more modern coinage bear the head of the king on one side. and on the other the arms ol' Spain; and are current throughout the whole kingdom. Several ol the provinces, however, have both real and imaginary money peculiar to each. The denomination and value of the latest coinage is as follows:

\section*{Sterling Moncy.}

\section*{Silver Money.}

\section*{Gold Money-}

> Imaginary Moncy.

Ducado de vellon - - \(=111\) nearly \(0 \quad 2 \quad 3 \frac{1}{2}\)
Ducado de Plata muera - \(\quad=\begin{array}{lllll}16 & 17 & 0 & 3 & 5 \frac{1}{4}\end{array}\)
Ducado de 1 liatit doble, or ducado
de 1Plata de Antigua \(\quad-\quad=202\) incarly 0 4. 33
pezo, pezo seazillo, or piastra \(\quad=1500 \quad 0 \quad 3 \quad 11\)

The smather denominations of money are,
\[
\begin{aligned}
& 2 \text { maravedis }-\quad=1 \text { ochavo } \\
& 2 \text { oclavos }-\quad=1 \text { quarto } \\
& 81 \text { quartos or } 34 \text { maravedis }=1 \text { real. }
\end{aligned}
\]

The monies peculiar to the provinces are chicfly
fictitious: those that are not, are of small value. The denier of Valencia is equal to one maravedi; and the denier of Catalonia is equal to \(1 \frac{1}{2}\) maravedi.

There are three mints in the continent of Spain, at Madrid, Seville, and Segoria. At the latter place, however, only copper pieces are coined. 'The greatest part of the silver duros are imported from Mexico. All the business relatire to the colnage is under the superintendence of a supreme court established at Madrid under the title of Real junta de comoreio, menede, minus, s.e.

SPAN.* See Bradges in our supplementary volume.
SPARTA. See Lacedemon.
SPAWN of Salmon. See Fisheries, and Dr. Brewster's Journal of Scienee, Oct. 1826. No. x. p. 238.

Specific Heat. See Cuemistry.
SpeCifiC Granty. See Chemstry, and Hy drodymamics.

SPECTACles. See Optics.
spectirum. See Orties.
Speculudi. See Optics.
SPENSER, Ldmuxd, a celebrated English poet, was born in London in 1553. In 1569 he was a sizer in Pembroke College, Oxlord. A love adventure with a lady, whom he has immortalised under the name of Rosalinda, is supposed to have been the origin of his "Shepherd's Complaint," which appeared in 1577. In 1580, he was secretary to Lord Grey of Wiiton, Lord deputy of treland; and in that capacity he exhibited great capacity for business. Having received from the crown a gramt of 3000 acres out of the Desmond estates, he went to Ireland in 1587, and resided in Kitcolman Castle, where he was visited in 1589 by Sir Walter Raleiph. At this time he had written thre books of the Fuiry Queen, and accompanding Sir Walter to England. be published it in 1590, and dedicated it to Queen Elizabech, who rewarded him with a pension of \(\mathfrak{L} 50\) per annum. In 1591, he returned to Ireland, where he married a young woman of hamble degree. In 1596, he published a new edition of his Fairy Queen, with additional books.
In conseguence of the rebellion which broke out in Ireland in 1598, he was competted to take refuge with his wife in England. His house was bumt, and an infont is said to have perished in the flames. Thus reduced to indigence, be sunk under his misfortunes, and died in 1599 or 1600 , and was buried at the expense of the Larl of Essex. Anne, Commess of Dorset, afterwards crected a momanent to his memory.

The Faing Queen, thoughobscure in its allegories, has always becn considered as one of the finest poetical compositions in our language.

SPERMACETI. See Chemistry.
Spherk. Sce Geogratiy.
SpidER. Sec Еntomology Index, under Aranea; and Dr. Brewster's Journal of Science, Nu. xv. p. \(153^{\circ}\). spinning. Sce Cotron Smemeg.
SPINOZISM, is the name given to the metaphysical docuines of a celebrated Dutch Jew, who was bom at Amsterdan in 1632, and who died in 1667. Sec Metapiysios.

\footnotetext{
* In the article timuals, vol N. p. 5.3 , reference is made to this article for an accont of the timber and chan bridges in America; it is, however, decured more consistent with the plan of this work that it should appear under its proper head as aboverefarted to.
}

SPIRITS of Winf. See Cufmistix.
Splirits. See Distlidation.
SPOTTING. Sce Batocane.
Springis. See Paysmal (ieograpity.
STADE, a town of Hanover, situated on the Schwinge, a tribatary to the lille Its chicf public buildings are a town-hall, merchants' hall, gymmasium, two churches, containing handsome monuments, and an orphans' hospital. It has mannlactures of hats, fambl, lace, and stockings. The different poblic offices lor the provinces of Bremen and Verden are situated bere. A packet sails daily for Hamburgh. Population 4800.

SI'ADIUM, a measure of length in use among the ancient Greeks. M. Ie Chevalier Lapie considers that he has demonstrated that the length of a starlium is the 700 th part of a degree; a result which was rejected by D'Amille, but adopted by Ml. Gosselin. M. Jomad has recenty lound that the length of the ancient cubit is between 523 and 524 millimetres. See Dr. Brewster's Jommal of Science, No. xii. p. 572.

STAFEA, a small island in the llebrides, on the west coast of Scotland, celebrated for its grand cavcros and basatic columos. It is situated in the parish of Killninian and connty of Argyle, abont five leagues to the west of Mall, and three leagues from I colmkill. It is of an irregular oval form, consisting of an elevated table land, wemmating on all sides in precipices of various altitudes. It is abont one mile long and hall a mile broad. The lofitest clifts, which are on the south-west of the island, are 144 feet high; and on the north it cleclines to a flat rocky shore, only a few feet raised above the sea, and where the landing place is sittated.

The objects of interest in this island are Fiagel's cave, Jlachimon's cave, and the Boot cave.

The cate of limgal, which looks to the south-west, was first pointed ont as an object of interest by Mr. Leach, an lrish gemtemat, who visited the island in 1772. It was afterwareds visited by Sir Joseph Banks, Dr. Von 'Troil, bishop of Linknping, and M. St. Fond; and it is now frequanted by crouds of visiters, who are carried thither by steam boats, which leave Glasgow in the summer season once every fortnight for the express purpose.

The operning of the cave into which the sea flows is perpendiculat at the sides, and terminates above in something like a Gothic areh. The following are its dimensions, given chicfly by Sir Joseph Banks:

The sides of the cave eonsist, like the mouth of it, of basaltic columas, similar to those which we have
alrearly described in our articles Giant's Causeway, and Fandead. They are, generally speaking, perpendicular; but they bave not that resplarity which is given to them in the ordinary engravings of the cave. 'The roof of' the cave varies in dillerent places. A deep chanmel forms the ridge of the roof. On each side of this lissure towarls the month of the cave, the roof is lormed of minmaly liartured rock, similar to the stratum incumbent on the rolumns; about the middle of the cave the roof' is composect of the broken ends of columns, and at the imere end of the cave, a portion of each kith ol rock enters into the formation of the roof. Calcareous spar fomed by inerustation between the ends of the columas in the roof, render them more distinetly visible.

The rave is never entirely free of the sea; but the broken range of colamas, which forms the extensive causeway, is continued on each side within it. This causeway is most perfect on the eastern side, and allows the visiter to pass over it to the farthest extremity, provided the state of the tide permits \(i t\); but on the western side, the columns terminate at a considerable distance from the end of the cave. "When we beholel," says lor. Von Troil, "the Cave of liingral, we are forced to acknowledge that this piece of architecture, formed by nature, far surpasses that of the Louvre, that of St. Peter at Rome, all that remains of Palmyra and Postum, and all that the genius, the taste, and the luxury of the Gireeks were capable ol inventing."

Mackimon's Cave, also called the Cormorant's Cave, is situated on the north side of the island, in the midst of a magnificent colomade. When the sea is a quarter ebb, he height of the cave is 50 feet, and its breadth 48. lis length is 224 feet, and it has nearly the same height and breadth throughout, excepting at the end where the roof and walls approximate, and a pebbly beach is formed. The general effect of the cave is very finc, though, in point of symmetry and elegrance, it is inferior to the Cave of Fingal.

The Boot Cave is situated farther to the east, and from its mouth being beset with rocks, it can only be entered in calm weather, and at high water. It is from 141016 licet high above high water. Its breadth is 12 leet, and its length 130 . The ronl and sides are smooth, and resemble the gallery of a mine. But though small in size, its effect is very picturesque, from the great symmetry of the columnar range in that part ol the fuce, beneath which it is situated.

A family used to reside on the island both summer and winter, but we believe they now guit it at the end of summer. For farther information respecting this island, see lemnant's Tour in Scotlemel 1790, containing Sir Joseph Banks' description ol Stafid, which has been lately reprinted in Thomson's Pleasure Tours in Scolland, Dr. Von Troil's Letlers on Icclend, St. l'ond's Tour in S'cotland, and Macculloch's Descriplion of the Hestern Istands.
STAFlORD, a borough and market-town of England, and capital of the county of the same name. It is built on the north bank of the river Sow, about three miles from where it joins the Trent. Its form is that of at irregulat ellipsis, the greatest breadth of which is from south-east 10 north-west. Formerly
it was surrounded by a wall, and defended by a castle, some remains ol which still exist: it had also four gates. It is a very ancient borough, having been incorporated by King John in the seventh year of his reign. Stafford is very pleasantly situated; the streets are in general well paved, and most of the houses are neatly and regulatly buitt of stone, and rooled with slates. The principal streets are built in the form of a cross, and the two largest ones occupy the sides of the road from Newcastle-under-Line to Wolverhampton. It is 135 miles north-west from London, and 16 from Litchfiedd, in the same direction.

The public buildings are numerous. There are two churches, St. Nary's and St. Chad's. The lormer is a spacious buidding, in the lorm of a cross, and consists of a nave, two side aisles, a transept, and a chancel of three aisles, in the middle of which is a large octagonal tower, with eight bells and chimes. The chureh atso possesses a good organ, and a very ancrent font. There are several fine monuments, both ancient and modern, in this church, the most remarkable of which are, an altar tomb in honour of Lord Edwarel Aston of Tisal, and the Lady Am, his wife; a monument to the memory of Sir Edward and Lady Aston, and one 10 Laly Darbara Crompton, wife to Sir Thomas Crorapton, jutge of the Iligh Court of Admiralty in the reign of Quecn Elizabeth. The other charch, viz. that of St. Chad's, is a very ancient strucure, with a fine tower, but not containing any thing worthy of particular notice. The other public buildings are, the Comnty Llall, ain extensive modern structure, 100 leet long in front, in which the atssizes and quarter-sessions are held. The county infirmary is a platin and substantial edifice, buit about the year 1752. The county gaol, which is opposite the infirmary, is a large and convenient modern buiding, with accommodation for 150 prisoners. The free school is an ancient edifice. lounded by Edward the Sixth in 1550. Stanord contains a number of alms-houses, built for the accommodation ol the indigent inhabitants of the town, each of which has a garden adjoining to it. Stafford is governed by a magor, recorder, twelve aldermen, twenty common council men, a iown clerk, two serjeants at mace, and other inferior officers. The principal manulactures are those of cloth, cutlery, bhoes, and beer. The town enjoys a considerable trade with the neighbouring coumties by means of its canal. Staflord returns two representatives to parliament. The right of election is rested in the mayor, aldermen, and burgesses, there being about 100 voters in all. In 1821 , the popalation was 5736 of both sexes: the bumber of bouses was 921 ; the number ol lamilies 1090; and the number of families employed in trade 712 . See the licantios of Linstand and llales, vol. siii. p. 881.

S'AElORDSHORE, an intand and contral county of England. It is bounded on the north by Cheshire and Derbyshire, on the east by Lecicestershire, on the west by Shopshire, and on the south by Warwickshire atul Wereestershire. lis ligure is that of an oblong, extending liom nomb to south. Its utmost length from norti-rast to south-wese is 60 miles, and its speatest breadth from east to west is 38 miles. It contains 1118 statute miles, or 731,720 acres, the greater part of which is arable. The civil divisions are five haturels, onecity, (Litchfield) three botoughs, and tiventy-luar market towns. Stuffordshire is in
the province of Canterbury, and, with the exception of a snall portion in the diocese of Litchlichl and Coventry, it contains 180 parishes, and is included in the archdeaconry of Stafford. The general appearance of the connty varies extremely in the different districts: thus, the middle and southern parts, which consist ol one level plain, only interrupted by a lew inconsiderable elevations, present a remarkable contrast to the northern district, which is distinguished by desolate and unproductive hills, and by the general air of bleakness that pervades its scenery. In this district, which is called the moorlands, there are several hills of considerable height, of which Bunster and the Wecver Hills are the highest; the latter are 1154 fect above the level of the sea. 'The general elevation of the moorlands above the soathern districts, is between 100 and 200 yards. Ahhongh the appearance of the uplanls is so des blate. yet there are some districts in the suathern part of the county, on the banks of the rivers, which may vie with any other part ol England in beaty of scenery, and luxuriance of regetation, the most celebrated of which are the banks of the Dove especially at Ham, and the country between Litchfich and Stone.

Stafordshire contains almast every variety of soil, but the most prevatent are the strong clays, and the sravelly and sandy solls. There is very litale calcarous soil, and no chalk. In the waste lands, there is abundance of peat, which, however. when drained is highly capable of improvement. The meadows, partirulurly those on the banks of the Trent, are ich aud fertile. The climate ol Staffordshire is decidedy wet and moist. The amual fall of ram is about 36 inches. In winter, a considerable guantity ol snow falls on the moorlands, which may account for the culderss of that district.

The rivers of Stafiodshire, most of which have their origin in the moollands, are not ol any great size, and none of them are navigable. Iet they are of inestimable value to the county, as they supply with water the mumerous canals that intersect it. The principal rivers are the trent, which is the third river in England, the Dove, the Stour, the Blytim, the Tame, and the lenk, which last are all tributaries ol the Trent. The Trent has its source at Newpool, near liddulph, on the borders ol Cheshire; it enters Derbyshire at Burton, where it receives the Dove. While it flows through Staffordshire it is a bold and rapit strean, bearing some resemblance to the Thames. Alter llowing through Nottinghamshire and Lincolnshire, it emplies itsclf into the llumber, about lonty miles below Gainsboroum, to which place it is nasigable for vessels of considerable burthen. The Dove, which is the river in Staffordshire next in importance to the 'Trent, rises in the moorlands, and alter ruming through the beautifully picturesque comWy called Dovedale, and receiving the Mambld and Wamps, it joins the Treat at Burton in Derlyshime. Stationdshare is better suppited with navigable canals than any other county of England, which amply compensate lor the want of navigable rivers, which otherwise would be a serious loss to the commercial interest of the county. 'The Grand Trunk Camal, which was plamed and carried through by the iate celebrated engineer Mr. Brindley, mites the three ports of Liverpool, bristol, and llull. lis total lenghth is about nincty-one miles; the lall of water on the northera
side is about 326 feet, and on the southern side 316 . In the former there are thirty-tive locks, and in the latier forty; we nsual breadth at the top is twentynine feet, and it is fonr and a hatf leet deep. The numerous branches of this catal serve to establish a regular communication between the principal seaports and the erutral districts, and also at tealy mote of conseyance for thase goods, the value of which, owing to their weight and batk, would be more than comterbataned by the expense atombery the cambare by land. 'There arre ferw lakes of any size in this county, but the larsest is that of Aguelate, whech is 1818 yards lone and nit browe

Stallordshire is remarkable buth for the variety and the abundance of its mineral products. Coal exists in such abundance that more than 60,000 aneres bave been fomed to comatin abmest imexhaustible strata of coal, which vary in thikness from twemeform to thirty-six feet tron ore is patiset in considerable quantities in the coal mines; the strata of iton nsmally occurring under a stratum of coal. I rematkable species of coal called the peacock coat. owing th the circumstance of its exhibiting primatic coburs, is ratsed at llandy (iseen. Copper and lead atso exist, although by mo means in such atondance as the iton. The other prodncts are ochre, fremstone, limestone, gypstm, alabaster, matbles of diblement colours. A great variety of clays are dug up, which are of the greatest serice, as they supply the pottertes, which are the chice suppurt of the county.

The manulactures of Stafiordshire are as extemsive as they are various. The working ol metals is carpied on to a great extent in the southern pate of the county. At Wolserbampton a great guantity of the heavier som ol iron goods, besides locks, hinges, keys, steel chains, \&ec. Wednesbury fuminhes guns, saws, hammers, erge tools, and atmost cvery desetiption of cast iron articles. Stalford produces a number of articles in the leather and cuttery trade. Walsal supplies bits, spurs, buckles, stirrups, ant all the iron work required by madtlers. 'The potteries, which are carricd on in the nothern part of the countr, have been long celebrated for the superior excelience of the earthenware they prodace, which is exported to almost erery part ol Forope. '1hary occupy an extent of ten square mikes. in which the ere are several considerable towns. This district, which goes by the general name of the loteries, although the most bar. ren, is now the most populous and wealhy part of the county. These potteries owe all their celebrity to the skill and perseverance of the late famous Mr. Wedgewood, who by his judicious admixture of the various descriptions of clay with which the county abounds, brought the earthenware to its present state of perlection. At Stourbidge there are extensive manufactories of glass. A quantity of salt is obtained at Shirley Wick, and at Ingestric, by boiline brine from natural springs. Burton has long been celebrated for its ale, and possesses manufactories for hats and cotton goods. At Tamworth there is a large establishment for primting calico. There are brass and copper works at Cheadle. At Leck a considerable quantity of silk goods of various descriptions are made.

The agricultural products of Staffordshire are chiefly wheat, barley, rye, oats, potatoes, and lurnips; crops of dax, hemp, pease, beans and vetches are also
raised. The grasses most in use are clover and trefoil, and several attilicial grasses have been intreduced of late.

The catle of statfordsire, which are of the longhorned bered, are reated in such mambers as to supply the whole county, and still en leare a comsiditable surplas loe other matiels. The shewp are of diferent beeds; bat the mew lerienters ate the most commont. Pbeblack-faced sheep whols homs ame reared on the: commons in the west of the comaty. AC Canaock amil Suthon Colfocd there is a satricty, bratiof a strong rescmblance to the Sonth Down.

The bred in the eantern part of the mentands ato white-fiaced withou horms, and havias loseg combings wool.

The only Roman antiguties in Stafomblame are the Watling Street, and Irhined military roads which pass throush the cotnty. There are aho a lew andent encampments. There are few remains of the Suxu:s worthy of notice.

The parliamentary representatives are ten, two for the contry, and two lor earbol the matementinned towns, biz Litchlielel, Statord, Newcastle, and Tamworth.

The proputation, by the returns under the ernses of 1821, was 311.040: of whom the males were 177.668, and the femates \(169.0-2\). 'loe number of inhatitod houses was 63,319, and of limilies. 69.780; out of these families, 18.285 were employed in astiouthre, 42.435 in trade and mandifuctures, and \(8: 00\) in meither of these departments.

STAlll. Enves\% See Cimmatri.
STAMFORD or Sraworb, it town of Englaral in the county of Lincoln, is situted on the stope of a hill on the banks ol the river Welland, which is crossed by a tratrow and anctent stone bridge. The town is built in the form of a cross, its principal strects coinciding with the great nopth road ated that which goes from Uppingram to Market Deeping. The houses are gencrally well buile with stome and corered with slate. Stamfore contains six patish churches. St. Nichael's, St. Mary's, St. George's, All S.imlo, St. John the Baptist's, and St. Murtin's. St. Michael's consists of a nave and choir with north and south aislec. and chancels, extending beroul the nave. In St. Mary's church there is a mondament to Sir David Phillips, who distingrished himself in the batte ol' Bosworthiedd. St. Ceorge's chureh is a large plain buidiner with chancel, nave, north and sonth aisles, amb a square embatled lower. All Stints is lurge and symmetrical, having a fofty and handsome embatted spire at the westend ol the north aisle. The lumader of it, Mr. John Brown, is interred in the north aisle. "The church of St. Jon the Baplist contains some excellent specimens of stained glass. St. Martin's church is a large and handsome edifice, with a sruare pinnacked tower, and contuining, among other monuments. one of Lord Bulleigh. The other public buildings are the town hall, built in 1756, and having two handsome fronts, an clegant theatre recently erected, and a good assembly room. New shambles have been lately built. The schools in Stamford are Radeliffe's free school, Wells' schoo', the Blue Coat school, and a girls' school on Dr. Bell's plan. The charitable establishments in the townare numerous. The most opulent of them is that founcled in the reign of Richard M1. by William Brown, of
whom there is an effigy in All Saints church. By the river Welland the neighbourhood is supplied with articles of foreign and coasting trade, and the inhabitants export malt and freestone. The town is governed by a mayor, a recorder, town clerk, 12 aldermen, and 24 capital burgesses. It returns two members to parliament, and the right of election is vested in about 500 voters. The practice of bull baiting is said to be still repeated here on the 13th of Noveniber. In 1821 the population was as follows:
\begin{tabular}{llllllllr}
Inhabited houses & - & - & & - & & & 892 \\
Number of families & & - & & - & & - & & \\
\hline
\end{tabular}

About a mile to the south-east of Stamford is Bur-
leigh house, the seat of the Marquis of Exeter. See the Beauties of England vol. ix. p. 793, and Blo.e's Account of the Public Schools and Hospitals, \&c. in Stamforl, 1813.

\section*{STARCH. Sce Chemistry.}

STARS. See Astronomy, Index, and Parallax. STANNANE. See Chemistry.
STATIUS Surculus Papinius was born at Naples about A. D. 61 , and died about A. D. 96. His works, which are extant, are his Sylva, a miscellaneous piece in five books, his Thebaid, an Epic Poem, on which his fame rests, and two books of an unfinished poem entitled Achilles. The best editions of the Thebaid are those of Caspar Barthius, 4to. 1664, and of Veenhuysen, Ludg. Bat. 8vo. 1671.

STAUROLITE. See Mineralogy, Index.

\section*{STEAM.}

Steam is the name generally given to the visible vapour which is driven off from buids or moist bodies by heat. It is most frequently applied, however, to denote aqueous vapour, or the vapour raised from water by eloullition.

When water, exposed to the pressure of the atmosphere, is heated to the temperature of \(212^{\circ}\), globules of steam, composed of heat and water in a state of combination, are formed at the bottom of the ressel, and rising through the fluit, may be collected at its surface. In its perlect state it is transparent, and consequently inrisible, but when it has been deprived of a part of its heat by coming in contact with cold ait, it becomes vesicular and of a cloudy appearance, as when it issues from a tea-ketle.

By increasing the heat, the temperature of the water never rises above \(212^{\circ}\), nor that of the steam which is generated; the only cffect being a more copious production of vapour. But it the water is confined in a strong copper vessel, both it and the steam which is produced may be brought to any temperature.

Like all gascous fluids, steam is highly clastic; but if it is separated trom the fluid from which it is generated, it does not possess a greater clastic force than the same quantity of air. li', for instance, a copper vessel is filled with steam only, at \(212^{\circ}\), it may be brought even to the temperature of red heat, without any danger of bursting; but if water is also in the vessel, each additional quantity of caloric canses a fresh quantity ol steam to risc, which adds its clastic force to that of the steam already generated till the constantly accumulating lorce bursts the resselinpieces.

The latent heat of steam,* according to the experiments of different philosophers, is given in the following table:
\begin{tabular}{lcll}
Rumford & \(1021^{\circ}\) & Watt & \(9500^{\circ}\) or \(960^{\circ}\) \\
Thomson & 1016 & Southern & 945 \\
Lavoisier & 1000 & Black & 800 \\
Clement & 990 & &
\end{tabular}

The mean of these results is \(950^{\circ}\) agreeing with the measnre obtaned by Mr. Watt.

Since steam therefore of the temperature of \(212^{\circ}\) contains \(900^{\circ}\) of heat, which is not detected by the thermometer, while it retains the grascous state, its
real quantity of heat will be \(950^{\circ}+212^{\circ}=1162^{\circ}\); consequently, if we mix a quantity of steam with \(5^{\frac{1}{2}}\) times its weight of water, at \(32^{\circ}\), the temperature of the water will rise nearly to the temperature of ebullition, because \(5 \frac{1}{2} \times 32^{\circ}+32^{\circ}=208^{\circ}\). Hence the great utility of steam not only in manalactures where great quantities of hot water are required, but also for heating large buildings, and for drying whatever is liable to combustion.

The elasticity of steam, arising, no doubt, from the great quantity of beat which it contains, is very great, and from its extensive application as an impelling power, it has been investigated with considerable attention.

Mr. Watt was the first philosopher who made any accurate experiments on the elasticity ol stean. The following account of them which Mi. Watt deew up at the request of the editor of this work, for his edition of Dr. Robison's System of Mechanical Philosophy, is as follows:-
"In the winter \(\mathrm{i} 764-5\), I made experiments at Glasgow on the subject, in the course of my endeavonts to improre the steam-engine, and as I did not then think of any simple method of trying the clasticities of steam at temperatures less than that oi boiling water, and had at hand a discster by which the elasticities at greater heats could be tried, I considered that, by establishing the ratios in which they proceeded, the elasticities at lower heats might be lound nearly enough lor my purpose. I therefore hited a thermometer to the digester with its bulb in the inside, placed a small cistem with mercury also within the digester, fixed a small barometer thbe with its end in the mercury, and left the upper and open. I then made the digester boil for some time, the steam issuing at the safety-valve, until the air contained in the digester was supposed to be expelled. The safetyvalve being shut, the steam acted upon the surface of the mercury in the cistern, and made it rise in the tube. When it reached to 15 inches above the surface of the mercury in the cistern, the heat was \(236^{\circ}\); and at 30 inches above that surfare, the heat was \(252^{\circ}\). Here I was obliged to stop, as I had no tube longer than 34 inches, and there was no white glass made nearer than Neweastle-upon-Tyne. I therefore seal-
ed the upper end of the tube hermetical!y whilst it was empty, and when it was cool immersed the lower end in the mereury, which now could only rise in the tube by compressing the air it contained. The tube was somewhat conical; but by asectaining how much it was so, and making allowances accordingly, the following points were lound, which, though not exact, were tolerably near for an apperçu. At \(29 \frac{1}{2}\) inches (with the sealed tube) the heat was \(252^{\circ}\), at
 (That is, alter making allowances lor the pillar of mercury supported, and the pillar which would be necessary to compress the air into the space which it occupied, these were the results.) From these elements I laid down a curve, in which the abscisse represented the temperatures, and the ordinates the pressures, and thereby found the law by which they were governed sufficiemty near for my then parpose. It was not till the years 1773.4, that 1 fonnd leisure to make further experiments on this subject, of which, though I do not consider the results ab accurate, I shall give an account here, as they were in point of date prior to any other that \(I\) was then acquanted with.

A tin pan of about live inches in diameter, and four inches deep, had a hole made in its bottom near one side, and in this hole was soldered a socket somewhat conical, which neally fited a barometer tube with which the experiments were to be made. This tube was about 36 finches long, and hat a ball at one end abont \(1 \frac{1}{8}\) inches diameter, the contents of which were nearly equal to those of the stem of the tube; some paper was lapped found the tube near the ball, and it was forced tight into the conical socket of the pan, so that the ball was within the latter, at such a height that it might be immersed in water. The tube and pan were then inserted, and the ball was filled with clean mercury, and the stem with distilled water fresh boiled. The tube was re-inverted, so that the ball and pan were uppermost; the lower end of the tube being shut by the finger, the water ascended into the ball, and the mercury occupied the tube. The lower end of the latter being then placed in a cistern of mercury, and released from the finger, the mercury and water descended, and the ball was left partly emp\(t y\) : being agitated in this position, and let stand some time, much air was extricated from the water; the tube was inclined as much as it could be, and again inverted. the air let out, and its place supplied with boiling water. It was again placed with the ball uppermosi, the end ol the tube stopt, the pan filled with hot water which was mate to boilby means of a lamp, the lower end of the tube being placed in the cistern, and released lrom the finger, the mercury descended into the cisterin, but, upon the water in the pan being suffered to cool, parly rose again into the tube. Much air was thus liberated, and more was got rid of by agitation, in the manner of the water-hammer, and by leaving it standing for some time erect, until at last I got it so free from air, that when I raised it upright, it supported a column of mercury 34 inches high; and no vacumm was formed until it was violently slaken, when it fell down suddenly and setted at 28.75 inches, but upon beines inclined, a speck ol air always remained, hough, when it was expanded by a pillar of mercury 27 inches high, this speck was not larger than a pin's head.

In this state, when !!en iune was perpendicular. I found the merculy to stand at 28.75 inches, the column of water above it was abont 6 ! inches, half an inch ol mereury. The whote then being 29.25 inches when the stationary batometer stood at 29.4 , the difference, or pillar supported by the clasticity of the stean \(=0.15\) ine li. Ilie water in the pan was then beated excecding slowly by a lanne and stimed continually by a feather, to make the heat as equal as possible. The results are shown in the following table.

To determine the heats at which water boils when pressed by columms of mercury above 30 inches, a tube of 55 inches long was employed; one end was put through a bole in the cover ol a digester, and made tight by being lapped round with paper, and within the digester the end of the tube was immersed in a cistern of mercury. A thermometer was lixed in another opening, so that the bulb was in the inside of the digester, and the stem and scate without: and the bulb was kept half an inch lirom the cover of the digester by a wooden collat. The cover being fixed on tight, and the digester half filled with water, it was heated by means of a large lamp.

The air in the upper part of the digester expanding by heat, the column of mercury in the tube was considerably raised by that expansion before the water boiled. Fhe air was let out, and the water heated to boiling; still, however, some air remathed, for the mercury stood at \(213 \frac{1}{2}\). That deduction beins made, the following table shows the heats and corresponding elasticities.
In making these experiments, the direster was heated very slowly, and the heat was kept stutionary as much as was possible at each observation, so that the whole series occupied some hours. The degrees of elasticity were observed by my friend Dr. Irvine, whilst I observed those ol the inermometer in all these experiments.

With the whole of the observations. I wis. after all, by no means satisfied, as I percetved there were irregularities in the results which my more urgent avocations did not permit me to explore the cause of. and to correc:.

\section*{Table of the Elasticilies of Sifam for Meats beloue ant} aboce the Boiling Point, according to Mr. Halt.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\sim}{\underset{\sim}{c}}
\] & & & & & & \(\stackrel{\sim}{\square}\) & 号 \\
\hline lueg. & Inches. & \(1) \mathrm{cg}\). & tuches & 1 Cug . & Inches & 10.g. & Inclies \\
\hline 55 & 0.1 .5 & 1.5 & 12.85 & 223.5 & 36 & 2485 & 36 \\
\hline 74 & 0.15 & 1775 & 13.81 & 25 & 37 & 2515 & 33 \\
\hline 81 & 0.80 & 18) & 1.1.3.3) & 2.65 & 38 & 2535 & 0.9 \\
\hline 9.5 & 1.31 & 182.5 & 15.66 & 228 & 3. & 255 & 63 \\
\hline 104 & 1.75 & 185 & 16.54 & 229.5 & 40 & 257 & 64 \\
\hline 118 & 2.69 & 187 & 17.51 & 231 & 41 & 257 & 66 \\
\hline 128 & . 3.69 & 189 & 1845 & 225 & 42 & 261 & 6 \\
\hline 155 & 4.33 & 191 & 19.38 & 23. & 43 & 20.3 & 70 \\
\hline 142 & 5.16 & 193.5 & 30.34 & 235 & 44 & 2645 & 72 \\
\hline 148 & 6.49 & 195.5 & 21. 26 & 2.365 & 45 & 26) 5 & \(7 \%\) \\
\hline 15i & 7.395 & 213 & 30 & 2.37 .5 & 46 & 268 & 76 \\
\hline 157 & 8.25 & 215 & :1 & 238.5 & \(4 \pi\) & 269.5 & 78 \\
\hline 161 & 9.18 & 217 & 32 & 24) & 49 & 271 & 83 \\
\hline 164 & 10.10 & 219 & :3 & 2425 & 50 & 2725 & 8. \\
\hline 16.7 & 11.07 & 220.5 & 1. & \(2 \cdot 45\) & 52 & & \\
\hline 172 & 1: 1.95 & 22. & 13.5 & 247 & 54 & & \\
\hline
\end{tabular}
lished, in the Nemonts ius
ments on the elasticity of steam, from the rema.... ture of \(32^{\circ}\) to that of \(212^{\circ}\). The following are a few of the resulte, which are here compared with those of Mr. Wath and Mr. Robison:
\begin{tabular}{|c|c|c|c|}
\hline "'mperature. & Achard. 1:laticities. lnches. & W:att. El:sticitics. Inches & Robison. Elasticities. luches. \\
\hline \(169^{\circ}\) & 11.05 & 12.24 & 1).5.9 \\
\hline 189 & 18.5 & 1i45 & 17.47 \\
\hline 209 & 28.1 & 27.88 & 20.05 \\
\hline
\end{tabular}

The fullowing results were obtained by Dr. Robison by the different operations which he has deseribed in the article Steam in his works.
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline \(32^{\circ}\) & 0.0 & 151 & 8.65 \\
\hline \(4)\) & 0.1 & 170 & 11.05 \\
\hline 50 & 0.2 & 18) & 14.15 \\
\hline 60 & 0.35 & 190 & 17.85 \\
\hline Tu & 0.55 & 200 & 22.62 \\
\hline 8 & 0.82 & 219 & 28.65 \\
\hline 10 & 1.18 & 220 & 35.8 \\
\hline 100 & 1.6 & 230 & 41.5 \\
\hline 110 & 2.25 & 240 & 54.9 \\
\hline 120 & 50 & 259 & 66.8 \\
\hline 139 & 3.95 & 269 & 80.3 \\
\hline 1.49 & 5.15 & 97.5 & 14.1 \\
\hline 150 & 6.72 & 280 & 115.9** \\
\hline
\end{tabular}

The next experiments on the elasticity of steam were made by Mr. Bettancourt, an ingenions Spaniard, who commanicated them in \(1: 90\) to the Academy of Sciences, who published them in the Memoites des Scorams Elrangeros.

The following are some of the results reduced to English inches, and to Fahrenheit's thermometer:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\underset{\sim}{\mathrm{E}} \underset{\mathrm{E}}{\mathrm{E}} \mathrm{E}
\] & & & \[
\underset{y}{z}
\] & & 立 & \\
\hline , & 1. & 1.46 & & & & \\
\hline 41 & i i & \(24 ;\) & \(1 \%\) & 1 & \(\therefore 9\) & 7. \\
\hline St \({ }^{\prime} 1.18\) & 12. & . 17 & 153 & 15, in & '-1 & \\
\hline 590.313 & 1.17 & 4.05 & 19 & 19 & & \\
\hline 63 (1.) W) & 1.1. & 511 & - & & & \\
\hline 7.711 .7 .3 .6 & 11 & 1.i.3 & \(\cdots\) & & & \\
\hline \(8 ; 1.02\) & 13. & 8. 31 & 221 & 8.5 & & \\
\hline 1) 1.31 & & & & & & \\
\hline
\end{tabular}

Pir. Bettancome made imilat experimathts on the dasticity of the rapond of spirit of whe and he foumd

FBe next set of "xprethemis on steam were made 1,5 Mr. Dallon about 180 , with a degrece of are way
 fron \(32^{\circ}\) to \(212^{\circ}\) wete abtained by dimetexpelaneai,
 lation.
\(\because\) Gr forionimg is his onin account of the method by they were made:-
take a barometer tube perfectly dre, and fill it with mercury just boiled, marking the place where it is stationary; then having graduated the tube into inches and tenths by means of a lite, I pour a little water, (or any other liquid the subject of experiment) into it, so as to moisten the whole inside; after this, I astain pour in mercury, and carefully inverting the tubce exclade all air. The barometer, by standing some time. cxhibits a portion of water, \&ec. of oneeishth or onc-tenth of an inch upon the top of the mercurial column, because, being higher, it ascends by the side of the tube, which may now be inclined, and the mercury will rise to the top, manifesting a perlect vacum from air. I next take a cylindrical gluss tube, open at both ends, of two inches diameter, and fourteen inches in length, to each end of which a colk is adapted, periorated in the middle, so as to admit the barometer tube to be pushed through, and to be hedd fast by them; the upper cork is fixed two or three inches below the top of the tube, and is half cut away, so as \(t 0\) admit water, and to pass by, its scrice being merely to keep the tube steady. Things being thus circumstanced, water of any temperature may be poured into the wide thbe, and thus mate to sulround the upper part, or vacullm, of the barometer; and the effect of temperature in the production of rapour within, can be observed from the depression of the mercurial columns. In this way, I have had water as high as \(155^{\circ}\) surrounding the vacuum; but as the highest temperatures might endanger the glass apparatus, instead of it I used the following:-

Having procured a tin tube of four inches in diameter, ant ten-feet long, with a circular plate of the same, soldered to one end, having a round tube in the centre. like the tube of a reflecting telescope, I got another smaller tube of the same length soldered into the larger, so as to be in the axis or centre of it; the small tube was open at both ends, and on this construction, water could be poured into the large vessel to fill it, whilst the central tube was exposed to its temperature. Into this central tube, I could insert the upper half of a syphon barometer, and lix it by a ronk, the top of the narrow tube also being corked; thas, the effect of any temperature under \(212^{\circ}\) could be ascertained, the depression of the mercurial colamms being known by the ascent in the exterior leg ol the syphon.

The force of rapour from water between \(80^{\circ}\) and "12", may also be determined by means of an atrpunp: and results exactly agree with those determined abose. Take a thorence hask, ball filled with hot water, into which insert the bulb of a thermometer, thencoser the whole with a reciver on one of the pamp-plates, and place a barometer gate on the other: the air beins slowly exhatsted, mark both the themometer and barometer at the moment ebullition commences, and the height of the barometer gate will denote the forec ol rapour from water of the obsorved temperature. This method may also be used for other liguids. It may be proper to observe, the varions themometers nsed in these experiments were duly adjusted to a good standard one.

Afer repeated experiments by all these methods， and a carclul comparison of the results， 1 was enabled to digest the foflowing table of the force of stam from water，in all the temperatures lirm \(32^{\circ} 10212^{\circ}\) ．
 ＂t every Temperature，from thet of the conselation of Mercury，or 40 degrers below Zoro，or 325 detgetes．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & 岂 & & & & 岂 & \\
\hline 4.0 & 0.013 & 55 & 0.143 & 11.4 & 2.84 & 17.3 & 13．02 \\
\hline 30 & 0.020 & 50 & 0.453 & 11.5 & 292 & \(17 \cdot 1\) & 1．3．32 \\
\hline 20 & 0.0 .30 & 57 & 0.474 & 116 & 3.00 & 175 & 1．3．62 \\
\hline 10 & 0.04 .3 & 58 & 0.420 & 117 & 3.08 & 17\％ & 1.3 .92 \\
\hline 0 & 0.0164 & 59 & \(0.50{ }^{-1}\) & 118 & 3.16 & 177 & 1．1．32 \\
\hline 1 & 0.066 & 60 & 0.521 & 119 & 3．2．5 & 178 & 1－1．52 \\
\hline 2 & U． 063 & 61 & 0.512 & 1：10 & 3．3； & 179 & 11.00 \\
\hline 3 & 0.071 & 62 & 0.5010 & 1：1 & 3．1．2 & 180 & 15．15 \\
\hline 4 & U．0．7．1 & 63 & 0．578 & 122 & 3.50 & 181 & 15.50 \\
\hline 5 & 0.076 & 64 & 0．5リ5 & 123 & 3.59 & 183 & 1.5 .86 \\
\hline 6 & \(0.0 .-9\) & 63 & 0.616 & 124 & 3.69 & 183 & 16.23 \\
\hline 7 & 0.0832 & 66 & 0.635 & 125 & 3.79 & 18.1 & 16.61 \\
\hline צ & 0.085 & 67 & 0.653 & 126 & 3.89 & 185 & 17.00 \\
\hline 9 & （0．1187 & 63 & 0.676 & 127 & 4.00 & 186 & 17.40 \\
\hline 10 & 0.090 & 69 & 0.698 & 123 & 4.11 & 187 & 17．8） \\
\hline 11 & 1.093 & 70 & 0.721 & 129 & 4.22 & 188 & 18.20 \\
\hline 12 & 0.096 & 71 & 0.745 & \(1: 0\) & 4.34 & 189 & 18.60 \\
\hline 13 & 0.100 & 72 & 0.770 & 131 & 4.57 & 190 & 19.00 \\
\hline 14 & 0.104 & 73 & 0.796 & 132 & 4.50 & 191 & 10.42 \\
\hline 15 & 0．108 & 74 & 0.823 & 133 & 4．7．） & 192 & 19.86 \\
\hline 16 & 0.112 & 75 & 0.851 & 134 & 4.86 & 193 & 20.32 \\
\hline 17 & 0.116 & 76 & 0.880 & 135 & 5.00 & 19.4 & 20.77 \\
\hline 18 & 0.120 & 77 & 0.910 & 136 & 5．14 & 19.5 & 21.22 \\
\hline 19 & 0.124 & 78 & 0940 & 157 & 5.29 & 196 & 21.68 \\
\hline 20 & 0.129 & 79 & 0.971 & 138 & 5.44 & 197 & 22．13 \\
\hline 21 & 0．1．34 & 80 & 1.00 & 139 & 5.59 & 198 & 22． 69 \\
\hline 22 & 0.139 & 81 & 1.04 & 140 & 5，74 & 199 & 23.16 \\
\hline 23 & \(0.1 .14^{4}\) & 82 & 1.07 & 141 & 5.90 & 200 & 23.64 \\
\hline 2.1 & 0.150 & 83 & 1.10 & 142 & 6.05 & \(2 \cup 1\) & 2.12 \\
\hline 25 & \(0.150^{\circ}\) & 81 & 1.14 & 143 & 6.21 & 202 & \(\because 1.61\) \\
\hline 26 & 0.162 & 8.5 & 1.17 & 141 & 6.37 & 203 & 25.10 \\
\hline 27 & 0.108 & 86 & 1.21 & 145 & 6.5 .3 & 214 & 2561 \\
\hline 28 & 0.174 & 87 & 1.24 & 146 & 6.70 & 203 & 26．1； \\
\hline 29 & 0.134 & 85 & 1.28 & 1.16 & 6.87 & \({ }^{2} \cup 6\) & 26.60 \\
\hline 30 & 0.186 & 89 & 1.32 & 148 & 7.0 .5 & 207 & 2720 \\
\hline 31 & 0．19； & 90 & 1.36 & 149 & 7.23 & 208 & 27.74 \\
\hline 32 & 0.200 & 91 & 1.40 & 150 & 7.42 & 209 & 28.29 \\
\hline 33 & 0.207 & 92 & 1.44 & 151 & 7.61 & 210 & 23.84 \\
\hline 34 & 19.214 & 93 & 1.48 & 152 & 7.81 & 211 & 9941 \\
\hline 35 & 0.221 & 94 & 1.53 & 153 & 8.01 & 212 & 50.00 \\
\hline 36 & 0.239 & 05 & 1.58 & 154 & 8.70 & 213 & 30.60 \\
\hline 35 & U． 237 & 96 & 1.63 & 155 & 8.40 & 214 & 31.21 \\
\hline .88 & 0.247 & 97 & 1.68 & 156 & 8.60 & 215 & 31.83 \\
\hline 39 & 0.27 .1 & 98 & 1.64 & 137 & 8.81 & 216 & 3246 \\
\hline 4.0 & 0.263 & 99 & 1.80 & 158 & 9.62 & 217 & 33.09 \\
\hline 41 & 0.273 & 100 & 1.86 & 159 & 9.24 & 218 & 33.72 \\
\hline 42 & 0.283 & 101 & 1．92 & 160 & 9.4 & 219 & 31.35 \\
\hline 43 & 0.29 .1 & 102 & 1.93 & 161 & 9.68 & 290 & 31.99 \\
\hline 44 & 0.305 & 103 & 2.04 & 162 & 9.91 & 221 & 25．63 \\
\hline 45 & \(0.31 \%\) & 10．1 & 2．11 & 163 & 10.15 & 222 & 36.85 \\
\hline 46 & 0.328 & 105 & 2.18 & 164. & 10.11 & 22， & 36.88 \\
\hline 47 & 0.3 .39 & 106 & 2.25 & 165 & 10.65 & 221． & 37.53 \\
\hline 48 & 0.351 & 107 & 2．32 & 166 & 10.96 & 22.5 & 38．20 \\
\hline 49 & 0.363 & 109 & 2． 59 & 167 & 11.25 & 226 & 3889 \\
\hline 50 & 0.375 & 169 & 2.46 & 168 & 11.54 & 2.7 & 39.59 \\
\hline 51 & 0.388 & 110 & 2.53 & 163 & 11.83 & 228 & 4）．30 \\
\hline 32 & 0.401 & 111 & 2.60 & 1.0 & 12.13 & 229 & 41.02 \\
\hline 53 & （1． 115 & 11．？ & 263 & 171 & 12.43 & 230 & 41.75 \\
\hline 54 & － 0.429 & 113 & 2.76 & 1，3 & 12.73 & 2.11 & 42.49 \\
\hline
\end{tabular}
 \begin{tabular}{|l|l|}
0.429 & 113 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & 或 & & 第 & \\
\hline 23：2 & 43.21 & 258 & 63.76 & 289 & 84．75 & リ3 & 115．34 \\
\hline 23．3 & 14．010 & 257 & 6.1 .82 & 9\％！ & 6． 2.85 & ，リ） & 116.31 \\
\hline 231 & 4.4 .78 & 238 & 1.373 & \(\cdots 2\) & （1） 18.1 & 305 & 11－\％ \\
\hline 235 & 4.5 .53 & 239 & 66.75 & 243 & 9 \(\therefore 1.1\) & 2， 3 & 11 ¢っった \\
\hline 2， 5 & & 260 & 6.7 .73 & 281. & （1，3．2． & ．117 7 & 1 21．1 \\
\hline 237 & 17.20 & 2til & \(68.7{ }^{3}\) & 285 & \(91 . .65\) & ． 213 ； & \(1 \sim 121\). \\
\hline 239 & 48.02 & 262 & 69.72 & 285 & 9.5 .15 & \(\therefore(1)\) & 1．2． A＇\(^{\text {a }}\) \\
\hline 239 & 18．8．81 & 26．3 & 70．7．； & \(2{ }^{2} \overline{7}\) & ！ 6 （1）．64 & ．31） & 12：\％ \\
\hline －動 & 49.67 & 26.1 & 71．74 & 2 （13） & ¢7． 71 & S 11 & 12！．6！ \\
\hline 211 & 59.515 & 265 & －2．06 & 289 & 98.94 & 312 & 1 （5．4．） \\
\hline 212 & ． 1.3 .1 & 20.6 & 73.77 & 2：11 & 100．1． & ． 313 & 1270， \\
\hline 243 & 52.18 & 267 & 7.15 .7 & 291 & 101.28 & 314 & 123．15 \\
\hline 2.14 & 5．3．0．3 & 268 & 73.83 & 293 & 102．45 & 315 & 129．22 \\
\hline 2.15 & 53.83 & 269 & 76.82 & 29.3 & 103．6．3 & 316 & 1．30．2！ \\
\hline 216 & 5.1 .68 & 270 & 77．8．3 & 29.1 & 10.1 .80 & .317 & 131.4 \\
\hline 247 & 5.5 .5 .1 & 271 & －8．89 & 29.5 & \(105 \cdot 57\) & 318 & 132．87 \\
\hline 243 & 56.4 & 2－2 & \(79!4\) & － 16 & 107.14 & 319 & 133.74 \\
\hline \(\bigcirc 19\) & 37.31 & 273 & 8198 & 207 & 108.31 & 221） & 1.35 .16 \\
\hline 2.30 & 58.28 & 271 & 82．1）1 & 298 & 109．18 & 321 & 1.36 .14 \\
\hline 251 & 59.12 & 275 & 4．3．1．3 & 299 & 111．f． & 323 & 137．24 \\
\hline 252 & 60.05 & 276 & Y．1．35 & 300 & 111.81 & ．223 & 1，8．4． \\
\hline 25，3 & 61.60 & 27.7 & 95．17 & ．311 & 112．9 & 324 & \(139.5 \%\) \\
\hline 25.4 & 61.92 & 278 & 86.59 & 302 & 114．15 & 323 & 110.7 \\
\hline 235 & 62.85 & 279 & 87．6．3 & & & & \\
\hline
\end{tabular}

Dissatisfed with his own experiments，in the re－ sults of which he observed irregularities which he could not explain，Mr．Watt，in the year 1796， requested Mr．Southern to try them over again， and，in fulfiling his reguest，he was assisted by Mr． William Creighton．The results ol these experi－ ments，which were first published in Dr．Brewster＇s cdition of P＇rofessor Robison＇s works，vol．ii．p． 16. are as follows：－

\section*{Mr．Southern＇s Experiments on the Ehasticity of Slem．}
\begin{tabular}{|c|c|c|c|}
\hline Tomperature 1 ：ahn． & Elastic Furce in Inches of Mercury． & lemperature． Fahr． & Ehastic lores in lnches of Nercury． \\
\hline 32 & 1181 & 132 & 4.71 \\
\hline 42 & 0.2311 & 142 & 6.10 \\
\hline 52 & 0.750 & 152 & 7.90 \\
\hline 63 & 0.520 & 162 & 11.45 \\
\hline 72 & 0730 & 172 & 12.72 \\
\hline 82 & 1.02 & 182 & 16.01 \\
\hline 93 & 1.42 & 212 & S0．09 \\
\hline 102 & 1.96 & 230 & 60.09 \\
\hline 112 & 266 & 293 & 121.00 \\
\hline 122 & 8.53 & 3 2． 6 & \(2+1.00\) \\
\hline
\end{tabular}

The next experimemts on the elasticity of steam were those of Dr．Ure，which were made at tempera－ tures from \(24^{\circ}\) to \(312^{\circ}\) ．They are as follows：－

3 E

Table af Dr．＇re＇s Experiments on the Elastic force of Steam from \(24^{\circ}\) to \(512^{\circ}\) ．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\vdots}{\vdots}
\] & & \[
\underset{\underset{\sim}{\dot{E}}}{\stackrel{\dot{E}}{2}}
\] & & \[
\underset{E}{\mathrm{E}}
\] & \[
\begin{aligned}
& \text { 总荷 } \\
& \text { 药 }
\end{aligned}
\] & E & 䍖 \\
\hline \(2 \pm\) & & 55 & & \(212^{\circ}\) & 53.600 & \(281.8^{\circ}\) & \\
\hline 3. & 10.20 & \(16)\) & 9.600 & 245 & 56340 & 283.8 & \(10^{-7.700}\) \\
\hline 40 & 10．254 & 165 & 10.800 & －4．5．8 & 57．100 & 285.2 & 11220 \\
\hline 50 & U． 366 & 170 & 12.05 & 248.5 & 60.400 & 287.2 & 114800 \\
\hline 55 & 0.416 & 75 & 13.550 & 250 & 6190 & 289 & 118200 \\
\hline 60 & U． 51 & 180 & 15.10 & 2.16 & 63500 & 290 & 120．15 \\
\hline 65 & 0.63 & 185 & 169 & 2545 & ci67ub & 292.3 & 123 \\
\hline 70 & 0．720 & 190 & 19.000 & 255 & 6725 & 294 & 120.600 \\
\hline 75 & 0.866 & 195 & 21.1 リリ & 2375 & 69800 & 295.6 & 130.400 \\
\hline 80 & 1.01 c & 200 & －3．600 & 260 & 7230 & 295 & 129．300 \\
\hline S5 & 1.170 & 205 & 2500 & 269.4 & －2．800 & 297 & 1.33 \\
\hline 90 & 1.36 & 10 & 2， 88 & 202.4 & 75900 & 2988 & 135.400 \\
\hline 95 & 1.646 & 122 & 30.000 & 264.1 & 75．900 & 30 & 139 \\
\hline 100 & 1.56 & \(\bigcirc 16.6\) & 33.40 & 205 & 78040 & 3U0 6 & 140.9 \\
\hline 105 & 2.101 & 220 & 3.5 .5 & 267 & 81.90 & 102 & 144.3 \\
\hline 110 & 2.454 & 321.6 & 318.80 & 269 & 84900 & 303.8 & 1：7．700 \\
\hline 115 & 2.82 & 225 & 39.110 & 270 & 86300 & 305 & 1.50564 \\
\hline 120 & 3． 304 & \(2 \geq 6.3\) & 40.106 & 2712 & \(\therefore 8.1000\) & 306.8 & 154.400 \\
\hline 125 & 3． 80 & 330 & ＋3．106 & 3737 & 91.200 & 308 & \\
\hline 130 & 4.366 & 230.5 & 43.50 & 275 & 93.48 & 10 & 161. \\
\hline 135 & 3．0ic & 2if． 5 & 16 8ut & 275.7 & 9460 & 311.4 & 164.800 \\
\hline 140 & 1．7．6 & 235 & 17．2．2 & 275 & 97.8 L & 312 & 167.0 \\
\hline 145 & i． 601 & 238.5 & 5u 306 & 279.5 & 101600 & 312 & 165.5 \\
\hline 151s & \(\cdots .531\) & 240 & 151.701 & 280 & \(101.9 \cup 1\) & & \\
\hline
\end{tabular}

As Dr．Ure＇s experiments have been regarded as furnishing us with the most accurate and uniform series of results，we shall hy betore our readers an account of the apparatus and methads by which they were made．

Fig．1．Plate DIV．＂represents the apparatus used for temperatures below and a little above the boiling point，and Fig．2．and 3．lor higher temperatures， Fig．S．being the most convenient．＂One simple principle，＂says Dr．Ure，＂pervades the whole train of experiments，which is，that the progressive in－ crease of elastic force developed by heat from the liquid incumbent on the mercury at \(/ l^{\prime} l^{\prime \prime \prime}\)（Fig．1，2， 3．）is measured by the length of columns which must be added over L，the primitise level below，in order to restore the quicksilver to its primitive level above at \(l\) ．These \(t\) wo stations or points of departure are nicely defined by a ring ol platina wire twisted firmly round the tube．

At the commencement of the experiment after the liquid now freed lrom the air has been let up，the quicksilver is mate a tangent to the edge of the tpp－ per ring，by cantonsly pouring mercury in a stender stream into the open leg of the syphon D．The level ring below is then carelully adjusted．

From the mork of condincting these experiments， there remained alwas a guantity ol lignidin contact with the vapour，a circumbtance essential to aceuracy in this research．

Suppore the tomperature of the water or the oil in
 or by the figuefletion of ice．commmameme heat to the eylinder A büacans ultworeand thames playing gently on its shomather at each side．When the ther－ mometer indicates 42．medify the llames，or remove them，so as to mantain an milo ，momperature lor a few minutes．A hilot，or life ol light，will now be perceived betwem the merary and be ring at \(l\) ，as is seen under the vemier of in mountain barometer，
when it is raised a few feet off the ground．Were the tude at \(l\) and L ，ol equal area，or were the rela－ tions ol the areas experimentally determined，then the rise ol the quicksidver above L would be one half， or a known submuliple of the total depression，equi－ valent to the additional elasticity of the vapone at \(42^{\circ}\) ，above that at \(32^{\circ}\) ．Since the deplessions，how－ ever，for 30 or 40 degrees in this part of the scate are exceedingly small，one half of the quantity can scarcely be ascertained with suitable precision，even after taking the above precautions；and besides，the other sources of error，or，at least，embarrassment， from the inequalities of the tube，and from the lengthening space occupied by the vapour as the temperature ascends，renders this method ol reduc－ tion very ineligible．＂

By the other plan，we avoid all these evils．For whatever additional clasticity we commanicate to the vapour above \(l\) ，it will be faithfully represented and measured by the mercurial column，which we must add over L，in order to overcome it，and restore the quicksilver amder \(l\) to its zero，or initial level，when the platina ring becomes once more a tangent to the mercury．

At E，a piece of cork is fixed between the parallel Jegs ol the syphon to sustain it，and to serve as a point，by which the whole is steadily suspended．

For temperatures above the boiling point，the part of the syphon under \(E\) is evidently superfoous，mere－ Iy containing in its two legs a nseless weight of equi－ poise mercury．Accordingly，tor high heats，the ap－ paratus，Figs． 2 or 3 is employed，and the sume method of procedure is adupted．The apertures at O，Fig． 3，admits the ball ol the thermometer，which rests as usual on l．＂The recurved part ol the tube is filled with mercury，and then a litte liquid is passed through it to the seated end．Heat is now applied by an argand fame to the bottom of C ，which is filled with oil or water，and the temperature is kept steadily at \(212^{\circ}\) for some minutes．Then a few drops of quicksilver may require to be added to \(\mathrm{D}^{\prime \prime}\) till \(\mathrm{L}^{\prime \prime}\) and \(l^{\prime \prime}\) be in the sanse horizontal plane．The lurther conduct of the experiment differs in no respect from what has been already described．The liquid at C is progressively added over \(L^{\prime \prime}\) to restore the initial level or volume at \(l^{\prime \prime}\) ，by cquipoising the progressive elasticity．The column above \(L^{\prime \prime}\) being measured， represents the succession ol clastic lorces．When this column is wished to extend very high，the verti－ cal tube requires to be placed lor support in the groove of a long wooden prism．

The height of the column in some of the experi－ ments being scarcely twelve leet，it became necessary to cmploy a ladder 10 reach its top．It was found to be convenient in this ease，after ohserving that the column of rapour had attaned its primitive magni－ tude，to note dewn the temperature with the altitude of the column，then immediately to pour in a mea－ sused guantity ol mercury，nealy equal to three ver－ tical inches，and to wat till the slow progress of the heating again brought the bapourinconilibrio with this now pressure，which at first had pashed the mercury within the platina ring at \(l^{\prime}\) ．When the lower sur－ lace of the mercury was again a tangent to this ring， the temperature and altitude were both instantly ob－ served．This mode of comlucting the process will accuunt for the experimental temperature being very
often odd and fractional numbers. They are, therefore, presented to the public as they were recorded on the instant.

The thermometers were constructed by Creighton with his well known nicety; and the divisions were read off with a lens, so that one-sixtecmb of a degree could be distingnished. Alier bestowing the utmost pains in repeating the experiments during aperiod of nearly two months, it was found that the only way of removing the little discrepancies which crept in beween contiguons moasures, was to adopt the astronomical plan of multiplying observations, and deducing truth from the meath. It is essemtial to heat with extreme slowness and circumspection the vessels \(\Lambda, \mathrm{B}\), C. One repetition of the experinent occupies, on an average, screll homps."

The next experiments on the elasticity of steam, were those of Mr. Philip Taylor, at temperathres from \(212^{\circ}\) to \(320^{\circ}\). The results which be obtained, are given in the following table.

Mr. Philip Teylor's Experiments on the Elusticity of Stean, from \(212^{\circ}-320^{\circ}\) Fuhrenheit.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\stackrel{\dot{E}}{\stackrel{E}{E}}
\] & & & & & & \\
\hline \(214^{\circ}\) & & & & & & \\
\hline 210 & 32.3 & 526 & 270 & 8:5u & 29 & 12605 \\
\hline 217 & 33.00 & 24.53 .5 & 271 & 8.39 & \(29_{7}\) & 128.06 \\
\hline 218 & \(\cdots 3.70\) & 215 34.4 & 272 & 854 & 298 & 129.8 \\
\hline 219 & 24: & 24655 & 75 & 8095 & 299 & 1.316 \\
\hline 220 & 35 & \(247 \quad 56.23\) & 74. & 88.50 & 309 & 133.75 \\
\hline 221 & 355 & 24850 & . 75 & 9. U0! & Jut & 13560 \\
\hline 222 & 362 & 24958.2 & 76 & 91.3.3 & i03 & 137.55 \\
\hline 22 & 17.00 & \(25059.1:\) & 37 & 9315 & 303 & 139.75 \\
\hline 224 & 1.35 & 2.51 6U. 1 & -3 & 9.40 & 304 & 14190 \\
\hline 22 & 38 & 252 61.1. & 79 & 95.26 & 305 & 14.105 \\
\hline 226 & .38 & 23.) 6210 & - 3 & 9785 & 306 & 146.15 \\
\hline 22 & 39.5 & 25403.2 & 2s1 & 51923 & 307 & 114.30 \\
\hline 22 & 412 & 25364 & - & 10,711 & 308 & 1506.3 \\
\hline 229 & 4083 & 25665.5 & 28. & 1120 & 309 & 15370 \\
\hline 230 & :1.5. & 3.7606 & S! & 1038 & . 30 & 15,5,00 \\
\hline 2 & 12.25 & 208675 & 231 & 1056 & \(\therefore 11\) & 1.57 .20 \\
\hline 232 & 4.3 & 2.5969 .4 & \(\therefore 86\) & 1053 & 312 & 15945 \\
\hline 233 & 13.75 & 20 -0.1. & 257 & 1090 & \(1 ;\) & 1615 \\
\hline 23.4 & 146 & 26181. & 233 & 11/S & . 314 & 16.420 \\
\hline 2.35 & 155 & \(202-245\) & 289 & |11 26. & 315 & 165.70 \\
\hline 236 & 164 & 20 73. & 9.) & 11480 & . 16 & 109.15 \\
\hline 237 & 17.3 & 20.1 T- 4 & 1 & 116.40 & 317 & 171.70 \\
\hline 230 & 182 & 2557600 & 292 & 118.30 & 318 & 17.4 .30 \\
\hline 239 & 9.1 & -66 77.2 & \(\because 3\) & 120.32 & 319 & 17680 \\
\hline 20 & 30.0 & 267 -8.5 & こ4 & 122.20 & 320 & 179.40 \\
\hline 241 & [in 912 & 21898 & & & & \\
\hline
\end{tabular}

Most of the phitosophers who have investigated the elastic forre of stram, have endeavonred to construct empirical formula, for representing the relation between the temperatures and the elastic forces. It would be a waste of time to reprint and to explain these formule, as they are of lithe service when we possess the experimental results.

Our distinguished countryman, however, Mr. Ivary, has recently investigated a mumerical formula, with the view of linding some property or law which may give us some general information respecting the elasticities beyond the range of our experiments. For this purpose he makes Dr. Ure's experiments the ground work of the following table:-

Mr. Hoory's Comparative Table of Dr. Ure's Exporiments on Stcam.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\left\lvert\, \begin{aligned}
& \dot{y} \\
& n \\
& \tilde{y} \\
& \dot{\underline{c}}
\end{aligned}\right.
\] & & Flastic forees in inches of
mercury \(c\). & & & & 会 & & \begin{tabular}{l}
nited ities.
\(\qquad\) \\
Filus forses in inche
\end{tabular} \\
\hline 0 & 50 & 0.360 & -1.291082 & -152 & . 011857 & & (1)113; & 30\% \\
\hline 1 & 70 & 0.726 & -1.61618 & -112 & (011381 & 175 & 91110. & 0.721 \\
\hline & 90 & 1.360 & -1.31359 & -122 & . 111013 & 368 & 01096 & 1.378 \\
\hline & 110 & 2.156 & -10968 & -102 & .910656 & 35-1 & (010.3.3 & -634 \\
\hline 4 & 130 & 430 & -083:04 & -82 & . 11010208 & 44 & (1)101.58 & 4.458 \\
\hline 5 & 159 & 7.53 & - 1.61132 & - 62 & -009682 & 520 & 019\%8. & 7.424 \\
\hline 6 & 170 & 120.5 & --0.3961. & - 42 & . 010432 & 2.50 & 100942\% & 12.05 \\
\hline \% & 190 & 19019 & -61983: & - 22 & (109017 & 425 & , 1090,93 & 1893 \\
\hline 8 & 210 & 29.65 & -00165? & - 2 & .108260 & & 010875 & 2881 \\
\hline 9 & 230 & 4.3 .10 & + 015736 & \(+15\) & 10108.4 & & 0198482 & 4263 \\
\hline 10 & [:50 & 619 & \(+0.31457\) & + 38 & .0, 827. & 461 & 103 :16\% & 61.50 \\
\hline 11 & ? 20 & 86.39 & +045889 & + 53 & .006-912 & 36. & 0, 046 & 8670 \\
\hline 12 & 390 & 120.15 & +060060 & +78 & \(000-20\) & 186 & 006714 t & t199 \\
\hline 1 & 310 & 161.30 & \(\underline{+0.73051}\) & + 98 & . 010 (454 & 27. & 0, 7 - \({ }^{\text {a }} 71\) & 162.8 \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & & 9 \\
\hline
\end{tabular}

In the above table, col. 2, marked odenotes the temperatures begsinming at \(50^{\circ}\), and increasing by \(20^{\circ}\) as far as Dr. Ure's table carries us. In col. 1. are the indices \(x\), or the number of intervals of \(20^{\circ}\). Hence we have lur any temperature the corresponding index.
\[
x=\frac{\tau-50}{20}
\]

The third column contains the elasticitiese as found by Dr. Ure, and then foltow in column fourth, the logarithms of the same clasticities estimated in parls of an atmosphere of 30 inches. Column filth rontains the temperatures, reckoned from the boiling point. those below it being negative, and those above it positive. Column sixth is the quotient of column fourth divided by column filth. These quotients are irregular, near \(212^{\circ}\), because as \(\frac{f}{30}\) approaches to unity, its log. varying rapidly with any variation of \(\epsilon\), the errors ol observation have a great influence in this part of the table. It is remarkable that the numbers in this columm continually decrease, and it would be interesting to determine if they would decrease to a fixed limit, or if they would decrease to a minimum and then increase again. Colnmn seventl contains the differences in these quotients which are extremely irregnlar, and which, taken directly, seem to lurnish no clue to guide us in our present research. But as they decrease slowly, we may infer that the guotients may be expressed with tolerable accuracy by means of the first and second orders of differences. If we represent the first and second differences by and \(د^{2}\). we have the following general expression of the quotient corresponding to the index \(x\).
\(\frac{\log \cdot \frac{e}{30}}{t}=.011857-x . \Delta+\frac{x^{2}-x}{2} \Delta z\).
\(T_{\text {wo }}\) values in the table answering to giv 3 E ~
are sufficient for finding \(\Delta\) and \(\Delta^{2}\); but on account of the irregularities of observation, it will be better to proced as follows: Form the expressions of the seven gnotients in the table corresponding to the indices 1, \(2,3-7\), and take a mean of the whole; thus
\[
.010198=.011857-4 \Delta+8 \Delta^{2}
\]

In like manner, form the expressions of the four last quotients, and take a mean; thus,
\[
.007842=.011857-\frac{23}{2} \Delta+61 \Delta^{2}
\]

By means of these two equations we get
\(\Delta=.0004545\) and \(\Delta^{2}=00001986\), and by these values of \(\Delta\) and \(\Delta z\) the values of \(\frac{\log \cdot \frac{e}{30}}{t}\) and of \(c\) are computed by the formula \(A\), and inserted in columns 8 and 9. Thus to find \(e\) for temperature \(130^{\circ}\) and inclex 4
\[
\frac{\log \cdot \frac{c}{30}}{-82^{\circ}}=.010158 \text { whence }
\]
\(\log \cdot \frac{\rho}{30}=-0.8329=-1+.1651\), then
\[
\text { Log. } 30 \begin{array}{r}
\text { - } 1.1671 \\
1.4 .71 \\
\hline
\end{array}
\]

Log.e \(0.64+2, e=4.408\). In this way all the clasticities in col. 9 . have been calculated, and their agreement with the experimental quantitics is very striking, so that the formula A may be considered as representing the elasticities as exactly as could be wished.

In reducing the formula to a proper form for use, Mr. Ivory proceeds thus, substituting the values of \(د\) and \(د^{2}\), and arranging the terms according to the powers ol' \(x\). 'lhus
\[
\begin{gathered}
\frac{\text { Log. } \frac{c}{20}}{t}=.011857-.00046143 \cdot x+.00000993 \cdot x^{2} \\
\text { But } x=\frac{\tau-50}{20}=\frac{162+t}{20}
\end{gathered}
\]
wherefore by substinuting,
Logaritlms of co-efficients.

At \(32.1=-180^{\circ}\) and \(c\), comes out 0.185 , very near 0.2, 1)r. Ure's result. Hence the formula (\(B\), is nearly exact for the range of Dr. Ure's experiments.

Mr. Wory then proreded to apply this lumula to two experiments, at temperatures ol \(345^{\circ}\) and 419 , made by Mr. Southern and Mr. (hement. lle finds that at \(3.0^{\circ}\), it gives the clasticity 201 inches, which is 24 inches above Ar. Southern's mesult: but at \(419^{\circ}\) the formatagives conly 23.3 atmospheres in place of 35 atmospheres, as determined by Als. Clement. "The formula therefore", suys Nif. Ivorg, "ahbomgh it is wey accurate lom a lons range ol temperatures, finalls digresses allogeoher fiom the wath." Mr. Hory is led to the impootant resul! What the guatient \(1.05 \cdot \frac{6}{3 n}\) \(t\) that not ouly in the rormula, hut in nature. Fot cxamph, in Clement's experiment, where 6 - -207, we
have \(\frac{\log \cdot 35}{207}=.007454\), but in the table we find .007454 in the column of quotients opposite \(310^{\circ}\); consequently, while the temperature increases from \(310^{\circ}\) to \(419^{\circ}\), the quotient must have decreased to a minimum, and then increased again to its first magnitude. Hence Mr. Ivory concludes that the minimum takes place at \(364 \frac{1}{2}^{\circ}\), or about \(152^{\circ}\) or \(153^{\circ}\) beyond the boiling point.

Mr. Ivory concludes by stating, that the quotient is represented by the square of the ordinate to the conjugate axis of a hyperbola, the square of the semitransverse axis being the minimum, for the expression B becomes \(\frac{\log \cdot \frac{e}{30}}{t}=\mathrm{A}+\mathrm{B}(n-t)^{2}\)
\(A\) and \(B\) being known numbers, and \(n\) the distance of the minimum from the boiling point.

The expansive power of steam hat been hitherto examined and used onfy at moderate temperatures, till Mr. Oliver Evansol' Philadelphia, and Mr. Jacob Perkins, conceived the idea that great advantage would be gained by usings steam of a high expansive force. "When I reflected," says Mr. Perkios, "on the almost infinite power that is sometimes displayed in the eruptions of Mount Vesurius, throwing up incalculatble masses of matter into the very clouds, 1 was induced to consider how this immense power could be generated. How is it that this power is so wonderfully great? Is it not high elastic steam? 'The thought struck me that it must be owing to the water being confined by pressure, until it got sufficiently charged with heat to enable it to rend asunder whatever confined it, thereby driving every thing before it. If one wanted farther proof of the tremendous power ol stean, we have only to inquire of many practical iron founders what it is which has sometimes caused the liquid iron to leare its mould, and pass off through the roof of the foundry, in a metallic shower. The answer would be, that a small quantity of water had accidentaly found its way into the bottom ol the mould; and it might also be added. that a thousand times that quantity thrown on its heated surface would be perfectly harmless."

These considerations led Mr. Perkius to make a number ol experiments on the clastic force of steam gencrated at very high temperatures, with the view ol improving the high pressure engin. lle has applied degrees of temperature so great, hat the water in the boiler or gasometer was brought to a red heat. He has not, we believe, completed any regular series ol experinents on the elastic force ol steam generated with such enomous heat; but be considers the observations which he has made as leadmo to the lollowing result:-Thut while the temperaturer rises in an arith. meticel ratio. the expetnsice forec will be thet of an inerousing retio, and the incroments of fuel will be a decrasing ratio.
1) uring these experiments, Mr. Jerhins had oceasion to observe the very curious phenomenon that steam generated at such high temperatures prodtaced no scalding effect. "1 have frequently observed," says he, "that when the stop-cock ol" a high pressure boiler was opened, whether at the water or steam cocks, the temperature was lowered in proportion to the height of the stcam, In a recent experiment on
high steam it occurred to me that the great force and rapidity of motion of the steam cansed the atmospheric air to bedriven before it, evidently tendiner to produce a partial vacmum, to which the surrommeng atmosphere would rash in and diminish its temperatture. To test this theory, the following contrivance was resorted to: 1 took a vessel containing beated water of a temperatire of 420 degrees ol fahmoneit; a tube cight inches in diameter. and fonr leet in lengeh, and open at hoth ends, was suspended immediately over the stop-cocks, and in such a manner as to be raised or lowered at pleasure. This tube was raised cight inches above the stop-cock; the stop-cock, the area of which was onc-fourth of an inch, was thon opened, and the steam rushed out with great velocity itho and through the tube. It was observed, that the steam condensed rapidly on the inside as well as the outside of it . 'The tube was lowered directly over the stop-cock, and when it came in contact with the vessel, it allowed rery little air to lind its way between it and the tube. The condensed steam in the twhe immediately evaporated. and the dube soon became 200 hot for the touch of the hand; and when the thermometer was inserted cight or ten inches into the upperend of the tube, it indicated 230 degrees of remperature. The tube was again raised to abont the same locight, and immediately the condensation commenced ats before.

A lighted lamp was now introdnced, and when it was within 24 inches of the tube, the fame ol it isibly inclined to where the steam entered the tube. The
lamp was then moved gratually towarels the lower end of the tube, and at six inches from it the llame disapprared, heing carried away by the strong current of the air: 'The tube was now wholly removed, and it was evident from the inclination of the flame of the lamp, as it was moved eight op ten inches from the volume of the stean, that a strong atmospheric eir was comtinatly passing into and going ofl with it.

The thermometer, when phaced twelve inches from the stop-cock, and in the centre of the volume, slowed the temperatare to be 12 derees; but whon at four or five inches from the contre, although within the circumference of the volume, it was down we righty degrees, showing, as might have been expecterl, that where the air lirst joined the volume, it was less lacated. 'lwenty-lour inches above the cock the thomometer was at uincty degrees at the contre: thirly-six inclies from it, it was at eithly degrees at the cemtre.

Nay we not conclude from thisexperiment that the cooling down ol the stram is occasioned by the great guantity of ait which is combined with it; aiked in a slight degree isy the expansion which akes flace im. mediately alter leating the stop-cock.

I have frequenty, since the experiment was mate, washed my hands in the water, which, when in the generator, was at \(500^{\circ}\) of heat, and which was rushing from the stop-cock with very litue expansion, but with great velucity, showing cleally, that it is the rapid moh thonsh the atmosphere, and not bice expansion only, which cools it down."

\section*{STEAM ENGTNE.}

Steam Engini: is the name given to a machine in which the moving power is obtained from the elastic force of steam, and from its capability of being condensed into water, and thus creating a vacumm in the space which it occupied.

Like every ohter invertion which has become im. portant to society, the stem engine has been aseribed to a varicty of allthors, and he who engoys the undoubted title to that distinguished homonr, bas been robbed of his just rights by the obtrusise clams of a number ol contrivances, as deroid of genius as they are destitute of utility.

The power of national prejutice has been sinsularly exhbited, and the spirit of scientific criticiom as singularly degraded, when the invention of the steam cogine has been ascribed to Hero and Branca, who whirled round a whed by the steam of a kettle, or to Solomon de Catas. who squirted water out of a vessed by the steam which it generated. Uponsuch pinciphes, we may refer the invention of the telescope to him who first looked through a glass ball hilled with water, and the discovery of the air batloon to the little urchin who first committed his soap bubble to the at mosphere.

That the Marquis of Worcester was the inventor of the steam ensine, or of a machine in which the chastic force of steam was proposed as the hirst mover in raising water, is a fuct beyond dispute. In his Conlury of Imrentions, a work published in 1663, he has described this engine in No. 62, and he has again referred to it in Nos. 98, 90, and 100. He has also left
behind him what he calls a definition of his ensinc, the only copy of which is preserved in the British Muscum. These different articles we shall now lay before our readers.
"No. 68. An admirable and most forcible way to drive up water by fire, not by drawing or sucking it upwards, for that must be, as the philosopher calleth it, infor sphacrem acheitalis, which is but at such a distance. But this way hath no bounder, if the ressel be strong enough; liof, I have taken a piece of a whole canmon, whereol the end was burst, and flled it three quarters foll, stopping and screwing up the broken cod, as atso the louch hole: and making a constant fire under it. within twenty fur hours it burst, and made a steat crack: so that having lound a way to male my : enels, so that they are stremghent by the loree within them. and the one to fill after the other, have seen the wate run like a constant foumtain's strean. lorty feet hieh; one ressel of water ratefed ly fire, drimeth up lurty of cold water: and a man that tends the work is but to turn two cocks that une ressel of water being consumed, fnother begins to furce and refill with cold water, and so successively, the live bein: tended and kept constant, which the self same person may likewise atound aty peatorn in the inierim betwren the necessity of turning the sait cocks.

No. 98. An engine so contrived that working the primum mobile forward or hackward, upwayl or downward, circularly or cornerwise. to and fro, straight upright or downright, yet the fremended operation
continueth and advanceth; none of the motions above mentionerl, hintering, much less stopping the other; but unanimously, and with harmony agrecing, they all augment and contribute strength unto the intended work and operation; and therefore I call this a semiomnipotent engine, and do intend that a model thereof be buried with me.

No. 99. How to make one pound weight to raise an hundred as high as one pound falleth, and yet the hundred pounds descending doth what nothing less than one hundred pounds can effect.

No. 100. Upon so potent a iselp as these two last mentioned inventions, a water work is by many years experience and labour, so advantageously by me contrived, that a child's force bringeth up one hundred feet high an incredible quantity ol water even two feet diameter; and I may boldly call it the most stupendous work in the whole world.

Not only with little charge to drain all sorts of mines, and furnish cities with water thongh never so high seated, as well to keep them sweet running through several streets, and so performing the work of scavengers, as well as furnishing the inhabitants with sufficient water for their private occasions, but likewise supplying the rivers with sufficient to maintain and make navigable from town to to wn, and for the bettering of lands all the way it runs, with many more advantageous, and yet greater effects of profit, admiration, and consequence; so that deservedly I deam this invention to crown my labours, to reward my expenses, and make my thoughts acquiesce in way of farther inventions. This making up the whole century, and preventing any larther trouble to the reader for the present, meaning to leave to posterity a book, wherein under each of these hearls the means to put in execution and visible trial all and every of these inventions with the shape and form ol all things belonging to them, shall be printed by brass plates. Besides many omitted, and some of three sorts wilIingly not set down as not fit to be divulged, lest ill use may be made the reol', but to show that such things are also within my knowledge, I will here in myne owne cypher sctt doun one of cach, not to be concealed when duty and affection obligeth me."

The following is the Marquis's definition, which is primed on a single sheet without date, and which \(\mathrm{Mr}_{\mathrm{r}}\). Partington, supposes, bad leen written to procure subscriptions in aid of a water company then about to be established.
"A stupendous, or a water commanding engine, bountless for height or quantity, requiring no external, not even additional help or lisece to be set or contimued in motion but what intrinsically is aftorded from its own operation, nor get the twenticth part thereof. And the engine consisteth of the following particulars:

A perfect comerpoise for what quantity soever of water.
A perfect comtervall for what height soever it is to be brought unto.

A primmm molit, commanding both height and quantity, regulator-wise.
A sicegerent or comntervail, supplying the place and performing the full force of man, wind, beast, or mill.

A betm or stern, with bit and reins, wherewith any
child may guide, order, and control the whole operation.

A particular magazine for water, according to the intended quantity or height of water.

An aqueduct capable of any intended quantity or height of water.

A place for the original fountain or river to run into, and naturally of its own accord incorporate itsell with the rising water, and at the very bottom of the aqueduct, though never so big and high.

By divine providence and heavenly inspiration, this is my stupendous water commanding engine, boundless for height and quantity.

Whosoever is master of height is master of force; whosocreer is master of water is master of both; and consequently to him all forcible actions and atchievements are casie."

That the engine thos described was actually constructed and put to the test of experiment in some form or other however rude, we think cannot well be doubted. 'There is mothing in the character of the noble Marquis to justify the supposition that he could deliberately recorl a falsehood; and still less that he could leave behind him the prayer which he offered up to heaven on the completion ol his experiment. This curious document is entitled, "The Lord Marquesse of Worepter's fjuculatory and extemporary thanksiving prayer, when first rith his eorporal eyes he did sea finished a perfect trial of his water commending engine, delightfil and useful to mhomsoever hath in reeommendation cilher kmouledge, profit, or pleasure." In this prayer he thanks God, next to his creation and reclemption, for " vouchsafing him an insight in soc great a secret of mature beneficial to all mankind as this my water commanding engine."

Those who have opposed the claims of the Marquis ol' Worcester, have alleged that it is impossible to construct a steam-engine on the principles which he has latid down; but this is not entirely true, and we have great pleasure in giving the following sketch of what was probably the first steam-engine, communicatce to us by our abte and ingenious correspondent, Ale. Scott of Omiston.

In Plate DIV. Fig. 4. A represents a boiler placed in a common air furnace: \(a b c d\), and of \(g h\), two water ressels; \(i k l\), the steam pipes, ant \(k\) the steam cock; \(x x x\), \(r\) the force pipe; RS a cistern, which may be supposed to be placed at the height of lorty feet above the ensrine, to reccise the water from the foree pipe; and \(v{ }^{c}\) valves placed within the lorce pipe to prevent the return of the water; m \(n\) o the cold water pipes, and \(n\) the cold water cock; the dotted lines \(b z\) \(e\) represent the cold water fountain, which is here supposed to be immediately behind the engine, and the water in it standing nearly upon a level with the stop of the cold water vessels. Fig. \(A\) is a ground plan of the lountain, where \(m\) o represent the cold water pipes, \(n\) the water cock, and F the reservoir. Fig. 6. represents a section of the two cocks, which are in cevery respect similar; the black circle a be represents the key of the cock, and the black shated part the pabsarge throngh the key; the dotted circle \(r\) s \(t\) the shell or body of the cock, the two dotted lines \(t\) z the pipe that leats from the boiler, the two eloted lines \(s\) z the pipe that leads to the right hand water vessel, the two dotted lines \(z u\) the pipe that
leads to the left hand water vessel, and the curved dotted line \(r z y\) the top of the boiler.

From an inspection of l"ig. B, it will appear that by a quarter turn of the key of the cock \(k\), (ris. 4.) the steam may either be directed into the right or lelt hand wator vessel, and in like manner, by a guarter curn ot the key ol the cock \(n\), cold water may be permitted to pass into cibher of the vessels.

Suppose the fare burning, and the boiler sending forth steam, and the kry of cock \(k\) turned so as to permit the steam to enter into the vessel abe \(d\), then will the stcam drive out all the air of that vessel up the force pipe \(x, x x x\), and occupy its place; steam will then be seen to issue from the noste of of the force pipe. When this is observed, the key of the steam cock \(k\) must be turned, to permit the steam to pass into the vessel \(e f g h\), and at the same time the key ol the cold water cock \(n\) must also be turned, to permit the watce from the Countain to be forced into the vessel abca, (by the pressure ol the atmosphere) as the steam therein condenses with the cold water; and when the vessel \(a b c d\) is filled with water, and the vesselef er with steam, the key of the steam cock \(k\) is to be turned back into its lirst position, which will again permit the steam to pars into the vessel a \(b c d\), to act upon the sarlace of the water in that vessel, so as to drive it up the force pipe \(x x: x\), and, at the same time, the key of the cold water cock \(n\) must also be turned, to permit the cold water to condense the steam and fill the vessel efgh, and which will also be forced into this ressel (by the pressure of the atmosphere) to occupy the vacuum (ffected by the condensed steam. The cock \(n\) is next to be turned so as to permit the vessel \(a b c d\) "to force and refill with cold water," and, at the same time, the steam cock \(k\) is to be turned, so as to permit the steam to act upon the surlace ol the water in the ressel ef \(g\) \(h\), and so on allernately, producing a constant stream from the top of the force pipe. The boiler may be supplied with water liom the cistern RS, by means of a small pipe and stop-cock.

To produce" a comstant stream forty feet high, one vessel of water rarefied hy tire driveth up forty of cold water, (or in other words, forty times the quantity in the boiler.) A nan that tends the work is but to tirla two cocks, that one vessel of water being consumed, another begins to force and refill with cold water, (hy the pressure of the atmosploce) and so successirely, the fire being tended and kept constant, which the self same person may likewise abundantly perform in the interim between the necessity ol turning the said cocks."

Although the Marquis of Worcester has only proposed to force water by his engine to a great height, yet it appears that he knew that water could have been brought up from a limited depth by suction, (by the pressure of the atmosphere into a vacuum;) lor the 68th article commences with these words: "An admirable and most forcible way to drive up water by bre, not by draning nor sucking it upwards, for that must be, as the phitosopher calleth it, intra sphorram activitatis, (within its sphere of activity) which is but at such a distance."

It is therefore very obvious, that the Marquis had a knowledge to what height water could have been raised liom the effects of a vacuam, and which he had put a small value upon in comparison of what he
bat in view; for he adds, "but this way hath no bontuler if the vessels be strong conourh." "The Marguis a litute lurthor on says, " so that having a way to make my pessels, so that they are strengthened by the force within them."

This can only apply to strengtiening his boiler and vessels hy risecting rarliating arms inside of them, and making them in other resperts strong:

Sir Sammel Mopland, celebrated as the inventor of the speaking tromper, appears to have directed his attention, in 1682, to the lonce of steam as a means ol raising water. In 1681 , he was scont by Charles \(I I\). to Louis XIV., to direct the execution of water works in lerance, and while he was in that conntry in 168.9 , he wrote a small treatise in French, entithed Eltrution des E'eme por toutes sortes des Mhuthines reduite a la Mesure an Poids, et a la Bralance. This work was presented to the fronch king, and is preserved in the harleian collection at the British Maseam. The chapter on Stem Engines, which occupies only the last four pagers, is as lollows: "The Principtes of the Neur Force of Fire invented by the Cheralier Mbrland in the year 1682, and prescuted to his Christian Majesty 1683. Water being eyaporated by the force of fire, these vapours immediately occupy a much greater space (about 2000 times) than the water occupied before, and its power is so great that if closely imprisoned it will hurst a piece of cannon. But being governed according to the rules of statics, and refuced by scicuce to measure, weight, and balance, it then bears itsell quielly under the barness (like good borses) and becomes of great use to mankind, particularly to raise water according to the following table, which shows the mumber of pounds which can be raised 1800 times per hour to the height of six inches, in cylinders abott half filled with water, as well as the different diameters and depths of the cylinders.

Cylinders.
\begin{tabular}{ccc}
Diameter in fect. & lepth infeet. Pounds weight to be raised \\
1 & 2 & 15 \\
2 & 4 & 129 \\
3 & 6 & 405 \\
4 & 8 & 960 \\
5 & 10 & 1575 \\
6 & 12 & 3240
\end{tabular}

Number of es linders, having a diameter of six feet, and a length of twelre fect.
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline 1 & - & - & - & 3,240 pounds \\
\hline 2 & - & - & - & 6,43) \\
\hline 3 & - & - & - & 9,72) \\
\hline \(\cdot 1\) & - & - & - & 12,960 \\
\hline 5 & - & - & - & 16,200 \\
\hline 6 & - & - & - & 19,4:0 \\
\hline 7 & - & - & - & :2,680 \\
\hline 8 & - & - & - & 25, 20 \\
\hline 9 & - & - & - & 29,160 \\
\hline 10 & - & - & - & 3.400 \\
\hline 20 & . & - & - & 64,8,0 \\
\hline
\end{tabular}

Among the eminent men who speculated respecting the use of steam as a moving power. Dr. Denys Papin deserves an bonourable place. Driven from his own country by the revocation of the edict of Nantes, he resided in London from 1080 to 1687 . He seems to have invented his digester in 1680, and during the experiments which he made with it, he was necessarily led to observe the expansive force of steam, and to
ascertain its great power from the strength which his digesters required, and the ments which were weessary to liecp duwn the ir covers. In the .tche Emeditoruat of Leipsic, for 1690, he has described the following engime, which cannot fail to be consitered by cuery candia inguirer as a real step to the invention of the stean engine. A cytinder A. D, Plate DIV. Fis. 7. made of thin metal, is fitted with a piston B, rhich can stide freely up and down in the cylinder. A small quantity of water being put into the bottom of the cylinder, and the 1 ,iston \(B\) depressed so as to tonch the water, the air being drisen out through a hole in the piston, which is aftewards closed by a plag M. The water being made to boil by a fre beneath the cylinder, it is changed into rapour, which excres so strong a pressure against the piston that it surmounts the pressure of the atmosphere, and pushes the piston upwards to the top of the cylinder. The piston is prevented from descending by a lateh E fallfing into a noteh in the stem 11 of the piston. The tire must now be removed from tencath the cylinder, and the vapours in this cylimer soon recondense themselves into water by coll, and leave the cyinder ontirely frec of air. In this state the machine is ready to exert its lore, for, by loosening the lateh E , the piston will be pressed down into the cylineler by the weight of the atmosphere which presses upon its upper surface while there is no air beneath to resist its descent, and a rope fastened to the stem of the piston H may be taken over pulleys TT, and applied to raise weights. Papin actually tried his experiment with a cylinder \(2 \frac{1}{2}\) inches in diameter, by which he raised 60 bbs., and he made it repeat its action once in a minute. Hence he computed that a cylinder about two feet in diameter and four feet bigh would raise 8000 lbs. cuery minute four feet high, which is nearly a horse power.

Papinstates that this invention is suited to draw water from mines. to throw bombs, and to row vessels against wind and tide. For this last purpose, he proposed to fix on the sides of the vessels revolving rowcrs or paddie wheels, and by means of three or four of bis new invented cylinders, to give a combined motion to the axis on which the paddle wheels are fixed. In order to give this motion to the wheels, the piston rods were to be toothed so as to drive small toothed whecls litted on the axis of the padde whecls, whenever the pressure of the atmosphere caused the pistons to descend into their respective cylinders. In order to make the motion of the patdle wheels uninterrupted, severale glinders were to work in succession one acting while the rest wereheating. The toothed wheels on the axis of the paddes were to have ratchcts and clicks that they might revolve fiecty in an opposite direction to the Axis when the pistons wore rising in their celinders, but when the pistons were pressed down isto the cylinders, the clicks would catch in the lecth of their ratehets, and carry the axis ronnd whth the toothed wheds.

This seheme was reprimed in \(169{ }^{2}\) in the Perecil de dieerses pieves touchand gudenes monelles Aherhines
per I). Pupin, Cassel 1695, in which he describes a new invented lumare and revolving bellows, which he had contrived to boil water by an internal firephace, surrounded on ald sides by the water; and he endeavours to bow how it could be applied to heat the cylinders of his proposed engine with such increased rapidity as to perform four strokes in a minate. rupirs made one of these machines in 1698 , but before he had put it to the test of experiment it was destroyed by an accident.

It is impossible to peruse these details without being convinced that this ingenious author harl advanced a considerable way in the construction of the steam engine, and had almost invented some of its mostuselial applications. We feel much satislaction in hating anopportunity of acknowledging the merits of this ingenions foreigner, as we had been induced, on the authority of Dr. Robison, and by an imperfect examination of the subject, to do ingustice to the genius of this able author, when we had occasion to diseuss the suljeet in another work.*

Notwithstanding all these attempts to construct a steam engine, no machine of this kind had yet been executed and applied to actual use. The honour of this great step was reserved for Captain \(\dagger\) Thomas Savery, treasurer to the commissioners of sick and wounded. In a pamphiet entitled the Miner's Friend, published in 1696, he described a steam engine in which water is raised not only by the expansive force of steam, but also by its condensation, the water being raised by the pressure of the atmosphere into receivers, from which it is forced to a greater height by the elastic force of the steam. After havimg erected scueral of these engines, Savery took out a patent, in 1698 , for a new invention "for raising water and occasionings motion to all sorts of mill work." In June 1699, he exhibited a workimg model to the Royal Society, who printed in their transactions for that year a drawing and description of it; but the most complete account of it appeared in a small pamphlet of eighty-four pages 12mo. which Mr. Savery published in 1707, under the title of "The Miner's Priend, or an Engine to raise Water by Fire described; and the manner of fixing it in Mines, with an account of the several uses it is applicable unto, and an answer to the objections made against it." This book was separately addressed to King William III, to whom the engine had been shown at Hampton Court.

This engine, which is perfect so far as it goes, displaysmuch ingennity. The following is Savery's own description of it, with some additions as given in IIarris's Lexicon Technicum, vol. i. Art. Evgene.

A A The furnaces which contan the boilers.
131, 132. The two fire places.
C The funticl or chimney which is common to both limanaces. In these two fiumares are placed two vessels of copper, which I call boilers, the one large as 1 , the other small as D.
D) The small boiler contained in the furnace, which is heated by the fire at B 2 .

E The pipe and cock to admit cold water into the small boiler to fill it.
F The screw that covers and confines the cock E to the top of the smatl boiler.
G A small guage cock at the top of a pipe going within eight inches of the bottom of the small boiler.
H H A larger pipe which goes the same depth into the small boiler.
I A clack or valve at the top of the pipe II, (opening upwards.)
KK A pipe going from the box above the said clack or valve, into the great boiler and passing about an inch into it.
L L The great boiter contained in the other furnace, which is heated by the fire at \(B 1\).
M, Fig. 9. The screw with the regulator which is moveri by the handle \(/\), and opens or shuts the apertures at which the steam passes out of the great boiler into the steam pipes 0,0 .
N \(n\) Two small guage pipes which go down into the great boiter, one of which N has its lower end a little above the proper depth of water, and the obher \(n\) alitule below it, so that when N gives steam upon turning the cock, and \(n\) water, the water is at its proper height.
O1, O2. Steant pipes, one end of each is screwed to the regulator, (See Fig. 9.) and the other ends to the receivers \(P P\). to convey the steam from the great boiler into those receivers.
P1, P2. Copper vessels called receivers, which are to receive the water which is to be raised.
Q Screw joints, by which the branches of the water pipes are connected with the lower parts of the receivers.
R1,2,3, and 4, valves or clacks of brass in the water pipes, two above the branches \(Q\), and two below them; they allow the water to pass upwards through the pipes, but prevent its descent; there are screw plugs to take out on occasion, to get at the valves \(R\).
S The forcing pipe which conveys the water upwards to its place of delivery, when it is forced out from the receivers by the impellent steam.
T The sucking pipe which conveys the water up from the bottom of the pit to fill the receivers by suction.
V A square frame of wood or a box with holes round its bottom in the water, 10 inclose the lower end of the sucking pipe to keep away dirt and obstructions.
X A cistern with a buoy cock coming from the force pipe, so as it shall always be kept filled with cold water.
YY A cock and pipe coming from the bottom of the said cistern, with a spout to let the cold water run down on the outside of either of the receivers \(P\). \(P\).
7. The handle of the regulator to move it by either open or shut, so as to let the steam out of the great boiler into either of the receivers.
The mechanism of the regulator and the guages Vol. XVII. Part II.
will be better understoot from the section of the boiler shown in ligg. 10 . R being the remplator mowed by the bamble \(\%\) in lity. 8,9 , which can thus be brought to slide atternately over the mouths of cither of the pipes () 1, O 2.

The two boilers 1), l. are fixed in a good double furnace, so constructed that the fame of the fire mixy circulate round them. Before the fire is lighted, unscrew the guage pipes and cocks \(\mathrm{F}_{\mathrm{a}}\) and N , and at the holes fill the great boiler L two-thinds full of water and the small boiter 1) quite liall. When these pipes are again serewed as tight as possible and the water brought to boil by the fire under the large boiter B , steam will be raised, and will endeavour by its ctastic force to make its eseape. This is elfected by prshing from you the handle \(\%\) of the regulator (li lig. 1\%., as far as it will go, when the steam will rush with great force through the steam pipe \(O_{1} 1\) into the receiver \(\mathrm{P}^{1} 1\), driving out all the air before it, and forcing it up through the clack R1 into the force pipe. When the receiver \(P 1\) is thus thoroughly emptied and has become very hot, pull towards you the handle \(/ 2\) of the regulator, which will remove the slide R, Fig. 10 . From the mouth of the pipe \(\mathrm{O}_{2}\), and place it on the mouth of the pipe \(O\), so that no more steam can come into the receiver \(P\) 1, when it passes lirecly through the other steam pipe \(O_{2}\), and fills the other receiver \(P\) ? heating it and discharging its air through the clack R 2 up the force pipe.

Having condensed the steam in the receiver PY by cold water, from the spout \(Y\), a racuum will be created in it, and as there is mothing at the botom of the receiver \(\mathrm{P}_{1}\) to counterbalance the pressure of the atmosphere on the surface of the water at the lower spout \(V\) of the sucking pipe \(T\), the water will be pressed up and will fill the receiver P l by suction, the water lifting th the clack valve \(R\), which afterwards falling down prevents the water from returning that way.

The receiver \(P 2\) being emptied of its air, admits the steam again through O 1, and by its elastic force, which exceeds the weight of the column of water in the receiver and pipe \(S\), it will press on the surface of the water and drive it up through the passage Ii 1 into the force pipe \(S\), discharging it at the top as shown in the figure. In the same manner the receiver P ? is alternately filled with water by suction, and then emptied by the elastic force of the steam, so as to keep up a constant stream at the top of the force pipe \(S\). When the water has half filled the force pipe \(S\), it also fills the little cistern \(X\), by which the condensing pipe I' is supplied. This pipe can be turned sideways by its handle \(n\), so as to throw cold water on the outside of either of the receivers.

The labour of turning the regulator \(Z\), and the handle \(h\) of the condensing watercock, may be easily performed by a boy, though Mr. Savery recommends the employment of an intelligent workman. The use of the small boiler \(D\) is to replenish the large one \(L\) with water, which sinks in it abbut one foot in one and a half or two hours. For this purpose, the small boiler D is supplied with water from the force pipe by a small pipe and cock E, Figs. 8 and 10 , which is closed when the boiler \(D\) is nearly full. A fire is then lighted in the furnace \(\mathrm{B} r\), and in consequence of the elasticity of the stean which it produces being stronger than that in the boiler 1 , it presses upon the water in
D. Fig. 10, lorces it up the pipe HH, and through the cock I (which is for this purpose open) into the boiler L, into which it will flow till the surface of the vater in I) has descended to the lower end of the pipe \(H\), which is within eight inches of the bottom. The size of the boiler D is such, that it supplies L with exactly one foot of water. In order to ascertain when the boiler L requires more water, we have only to tirn the guage cocks \(N\), \(n\). If steam arises from \(N\) and water from \(n\), as will happen in the state shown in Fig. 10, then no water is required, but if steam issues from \(n\) there is then a want of water, and if water should issuc from \(N\) there is more than is neecssary.

After giving the deseription of his engine, Mi. Savery enumerates the following purposes to which it may be applied, viz: 1. Raising water for turning all sorts of mills. 2. Supplying palaces, noblemen's and gentlemen's houses with water, and affording the means of extinguishing fires therein by the water thus ruised. 3. Supplying eities and towns with water. 4. Draining fens and marshes. 5. For ships.* 6. Draining mises with water, and preventing damps in these raines.

The safety valve, which was invented by Papin in 1681, does not seem to have been used by Mr. Savery in any of his engines; and it is also evident from the preceding description of his engine, that be was not the inventor of the injecting pipe, or of the principle of condensing by injection, an honour which Als. Watt has, by mistake, aseribed to him. \(\dagger\)

In examining with some care the various accounts which have been given of Mr. Savery's labours, and the details of his engine, we are strongly disposed to believe, with Mr. Farey, that the whole of it was his own invention, and that he was even unacquainted with the previous contrivance of the Marquis of Worcester. The story told by Dr. Desaguliers, that Savery borrowed his invention from the Marquis of Worcester ; and that, in order to conceal the matter, he bought up all the Marquis's books that he could purchase in Paternoster Row, and burned them in the presence of a gentleman who mentioned the thing to Dr. Desaguliers, is so improbable that we eannot give it eredit; and cven if we did, it could not affect the ingenuity and originality of Savery's engine. Whatever merit we may attach to the contrisance of the Marquis of Worcester, and in "hatever manner we may apportion a certain share of merit to the different candidates to whom national partiality may have adjudged the invention of the stuam engine, there cannot, we think, be any doubt that Mr Savery stands at the head of the list, and is more cmitled to have his name associated with the invention, the constuction, and the introluction of the steam engine into actual use, than any o ther indisidud that has yot heen named.
D) Papin, who had sill continued to direet his attention to the subject of the steam engine, published in 1707 a small traet, entilad Vourelle maniere pour lever l'en" per le fore det fent, mis ph lumiere. Cassel. Papin admits in this work that he had sect the engravine ol Sawerys engime, which It. D, cibnitz had sent to him from london ; and, therefore, he does not
bring forward his engine as having the precedence of Savery's, but merely as a construction which possesses superior adrantages. He proposed to the Royal Society, ol which he was a member, to bear the expense of constructing an engine upon his plan; but this learned body, who had a communication with Mr. Savery on the subject, do not seem to have attached any value to the contrivance of Papin, which we have represented in Fig. 11.

A copper boiler A communicates by means of a pipe \(Z\) with the cylinder I, which is connected by a curve pipe \(X\) to an upright OQ, which ries nearly to the top of the cylinder RR. This cylinder, which is air tight, is furnished wit! a pipe \(W\) and stop-cock P, Plate DIV, Fig. 11. Another pipe terminating in a funnel K with a stop-cock at \(M\) branches of from the bent pipe \(X\). The pipe \(Z\) has a stop-cock at \(C\), and another small pipe at E also furnished with a stop-cock. A safety calee \(F\), of which Papin is the undoubted inventor, is placed above the boiler A. In the cyinder \(I\) is a piston or float \(N\) made of thin plates of metal, forming a bollow eylinder which hoats on the surface of the water. A pipe and stop-cock D is inserted in the eylinder I. When steam is generated by lighting a fire bentath the boiler A. the cock \(C\) is opened to allow it to rush into the pump cylinder I, which is uearly filied with water. The elastic foree of the steam depresses the float \(n n\), and thus lorces the water beneath it through the valve \(O\), and up the pipe OQ into the receiver \(R R\), the air in which it ol course condenses. The stop-cock \(p\) is then opened, and the water pressed out by the elasticity of the condensed air in the receiver rushes out through the cock \(P\), and strikes the float-boards \(\mathrm{U}, \mathrm{S}, \mathrm{X}\), ol a whecl which gives motion to any other machinery. When the float \(n n\) has descended to N , the farther admission of steam intol is prevented by turning the cock \(C\), and the steam above the float is allowed to escape into the air by the eock D. At the same time the stop-cock \(M\) is opened to allow the water in the lunnel K to descend and raise the float \(n n\) to its first position as in the figure. The cocks \(D\) and \(M\) are now shut, and \(C\) is opened to re-admit the steam from the boller, and impel more water against the wheel, which will thus be kept in constant motion. A pipe and coek is placed at E to allow the air in the boiler to escape when it is first filling with steam. A similar pipe empties the pipe X of water.

In order to increase the force of the steam, Papin proposed to introduce a red bot heater, H through \(\mathbf{G}\), but this was a clumsy contrivance, ol no value; and indeed the whole machine, though ingenions, could not be put in comparison with the previous invention of Surery.

Dr. Gravesende, having come to England as secretary to the Dutch embassy in 1716, went through a rourse al experimental philosophy with Dr. Desagutiers. When they were considering Savery's steam mogine, it appeared to them that there was a great waste ol stram by its continually acting upon the recover without intermission, since it became useless till it had lacated the surlace of the water in the re-
- This does not mean impelling shipa, but emptying them of water.

ecivers. 'They therefore made a model which could work either with one or two receivers, and they soon lound by it that, "one receiver could be emptied three times, while two succeeding ones could be emptied only once a piece." Hence they concluded, that such an engine would save a third more water, and be erected at only hall the expense.

This ingenions contrivance is shown in plate D) \({ }^{+}\), Fig. 1, where \(\lambda\) is the receiver of copper communicating at bottom with the making and lorcing pipes between E. and (i, and at top with the steam pipe at D, and the rejecting pipe at I. The boiler B, which is also of copper, contains at least five times more than the receiver, round which the fire and thame are conducted at \(\mathrm{T}, \mathrm{T}, \mathrm{T}\). It has a copper cover screwed, in which contains the steam pipe Cl) communicating from the boiler to the receiver, and guage pipes \(\mathrm{N} n\), \(O\), with a valve at \(P\), kept down by the steclyard \(P^{\prime}(Q\) and weight \(Q\). 'The surface \(S S\) of the water in the boiler must be lower than the bottom of the short guage pipe at \(o\), and higher than the bottom of the long one at \(n\). The steam cock D] has its key \(K\) kept down by the screw L held by the arm Di, while the handle \(K\) is either turned to \(k\) to receive the steam issuing from the boiler, or to \(K\) to shat off the steam and admit a jet ol cold water coming from the ascending pipe Elez through the cock \(M\), the mechanism of which is shown in detail in Fig. 2, where 1 is the serew which, passing through the stirrup 2, presses on the piece of cast iron 3 , made tight to the brim under it by double canvas, while the returns of the stirrup draw up the ring 4 under the brim to support it; \(5,6,7\), shows the key of the stop cock with a hole on the side at 6 , which passes down through the bottom of the key to throw down alternately into the receiver the steam and the jet or injection. There is a notch in the key at 7 to reccive the water from the force pipe, and carry it to the boiler, when it receives a fresh supply of water. The annexed section of the steam cock and key will make its construction perfectly intelligible.

The horse or pipe EEG7, with several elbows, is soldered at E to the forcing pipe EE2. The sucking pipe \(Z 11\) is soldered to it at \(\%\), and the receiver at \(F\). This horse contains the sucking valve at \(G\), and the forcing valve at F , which are easily got at by unscrewing 1 to loosen the strap 2 , and let down the flath 3 , as shown in Fig. 2. The cistern P communicates with the lorcing pipe by a cock and small branch \(Y\) to fill the lorcing pipe when required. A spreading plate I is used to make the steam and the water be alternately divided into littic jets, and \(b c\) represcuts the surface of the steam pushing down the water in order to drive it up again into the force pipe EE through the value E. The toor of the hire place is shown at \(V\), and the ash hole at W .

This engine operates as follows. Take off the stee]. yard \(\mathrm{P}^{\mathrm{Q}} \mathrm{Q}\), and open the cock O of the short guage pipe O \(o\), then hodling up the valve by a long nail, pour in water at the valve, which will blow oth the air at \(O\) till the surlace of the water rises above the bottom o of the guage pipe, when the boiler will be sufficiently filled. Having then stopped the communication between the steam cock DI and the boiler, and shut the two gruage cocks at N and O , replace the stcelyard on the valve with its weight \(O\) near \(P\), and light the fire at ' I '. As the fire is increased remove the weight \(Q\),
noteh by notch, till it comes to the last motel at tr. and see that no additional weight is put to it .

When the steam begins to lift the safety valve \(l^{\prime}\), and when the receiver A has been filled with water. which is done by taking out the key ol the cock under the screw 1 ., and opening the cocks \(Y\) and \(M\), turn the hanclle of the steam-cock on the rereiver from K to \(k\) (0) admit the steam liom the briler along (\({ }^{\prime}\)), first opening it patially, and then fully. The stram will now spread through the small holes of the plate at \(I\), and pressing on the surface of the water at \(b f\), will lonce it through the valve F , and up the pipe EE. This pipe being now full, and the cock MI ojem, tarn back the handle from \(k\) to K , and a jet of cold water will spout through the spreading plate I among the steam, which it will immediately condense, and the air pressing on the water in the well at II will push it ap into the receiver \(A\), and will forec it up I. The handle being turned to \(k\) as formerly, the steam will be again admitted, and will again draw the water up the pipe EEinto the cistern R.
'The engine will thus continue to raise water four or five hours, till both the guarse pipes \(N\) and \(O\) give steam, which shows that the boiler requires a supply of water:

In order to replenisls the boiler, turn from you the hande \(K\) behind \(L\), which will bring the notch 7 of the key in Fig. 2, to the situation in the right hand secLion in Fig. 2, and then the cocks 11 and \(Y\) being still open, the water will flow from the cistern through the forcing pipe and steam pipe into the boiler without going into the recciver, the steelyard being off the valve, and the cock \(O\) open to let ont the air as the water enters. Whenever the cock O ceases to blow, and the valve descends, turn back the handle to K . and shut the cock \(Y\).

Some of Dr. Desaguliers' engines were erected after 1717-1718, and one of them was for the Czar, Jeter 1. for his garden at St. Petersburg. The water was drawn up by suction 29 feet high, and then forced up 11 feet higher. In another the water was drawn up 29 feet. and forced up 24 feet higher.

Various cagines on the principle of Mr. Savery's have been erected since his time, and various improvements have been made on the original construction ; and as there arc many circumstances under which they may still be advantageously cmployed, we shall describe one which was crected by Mr. P. Keir at St. Pancras, and which was employed lor many years 10 turn lathes, \&x. The following description of it is given by Mr. Keir himself in Nicholson's Philoso \({ }_{i}\) hical Jozmai.

The figure, Plate DV , Fig. 3, is a section of the engine, taken through the centre. B represents a boiler, shaped like a wagon, seven feet long, five feet wide and fuedeep: it was considered asbeing of dimensions sufficient to work a larger engine ; a circumstance which must, in a certain degree. diminish the effects of the present onc. The boiler leceds itself with water from an elevated cistern, by a pipe which descends into the boiler, and has a valve in it, at the upper end, which shots downwards, and is connected by a wire with a lloat on the surface of the water within the boiler, so as to open the valse whenever the water subsides below the intended level; for the float which swims on the water then sinks, and by its weight draws the valve np, to allow the water frome the cistern to sun down the pipe and supply the defi.
ciency: but as the water in the hoiler rises the float closes the valve. The boiler therefore remains constantly or nearly at the same degree of fulness.

The steam is conveyed by a pipe \(C\) to a box \(D\) through which, by the opening and shutting of a valve it can be admitted to the cylindrical receiver \(A\). The axis K serves as a key to open and shut the valve, which is a circular plate, formed conical on the edge, and fits in a corresponding aperture in the bottom of the box \(D\). \(H\) is a cistern from which the engine draws its water through a vertical suction pipe, in which a valve, \(G\), is placed to prevent the return of the water. \(R\) is another cistern into which the water is delivered from the receiver \(A\), through the spout \(E\), which is provided with a valve opening outwards. WW represents an overshot water wheel eighteen feet in diameter, of which the axis \(S\) communicates motion to the latches and other machines used in the manufactory.

The engine raises the water from the lower cistern \(H\), by suction, into the receiver \(A\), from which it runs into the upper cistern \(R\), and thence flows through a sluice into the buckets of the water-wheel W to give it motion. The water, as it is discharged from the buckets of the wheel, falls again into the lower cistern H. As the same water circulates continually in both the cisterns, it becomes warmer than the hand after working a short time; for which reason the injection water is forced up by a small forcing pump from a well. This injection pump is worked by the water. wheel, by means of a loaded lever, or pump handle, which is raised up by the motion of the wheel, and then left to descend suddenly by its weight, and force up the water into the receiver. A leaden pipe passes from this forcing pump to the upper or conical part of the receiver A, for the purpose of injecting cold water at the proper time. Neither of these could be represented with convenience in the present section.

The manner in which the steam and cold water are alternately admitted into the receiver \(A\), remains to be explaned. Upon the extremity of the axis S of the water wheel, a solid wooden wheel \(T\) is fixed; it is about four feet in diameter, and turns round with the water wheel. It is represented separately, as seen in the front; \(a, b, c, d\), are four cleats, all or any number of which may be fixed on the wheel at a time. Each cleat has its corresponding blocks \(e, f, g, h\), on the opposite surface of the wheel. The use of these is to work the engine. Thus, suppose the water wheel, and this whecl \(T\), with all the revolving apparatus, is turning round, one of the cleats a meets in its rotation with a lever, which it lifts up, and this opens the steam valve 1) by a rod of communication reaching to the handle of the axis \(K\). The steam consequently passes into the receiver \(A\), and the steam valve shuts again, as soon as the cleat a of the wheel \(T\) has passed away lrom the lever by the motion of the wheel. All this time the corresponding block \(e\) on the other side of the wheel \(T\) had been operating to raise up the loaded lever which forms the handle of the forcing pump: and at the same instant that the steam valve 1) is shut, as above mentioned, the block \(e\) quits the loaded lever, after having raised it up, and leaves it to descend suddenly by its own weight. This depresses the forcer of the pump and thereby throws a jet of cold water up into the recciver \(A\), and it falls in a shower of drops through the steam which fills the
receiver, so as to cool and condense the steam and make a vacuum.

The pressure of the atmosphere upon the surface of the water in the cistern K then causes the water to mount up the perpendicular suction-pipe, through the valve \(G\), towards the exhausted recciver.

When the engine is first set to work, the waterwheel being motionless, the steam valve and injection pump are moved by hand, and if the engine has been long out of work, two or three strokes may be necessary to raise the water to the top of the receiver \(A\), so as to fill it full of water. As soon as this is the case, and the steam valve is opened to admit steam into the receiver, the whole contents of water, above the spout and valve \(F\), then flows out of the receiver \(A\), by its own gravity, into the upper cistern \(R\).

The water which is thus raised, is suffered to flow from the cistern upon the overshot water wheel W through a sluice; and by that means keeps the wheel in motion, and replenishes the lower cistern. There is no reservoir for the injection water; but the requisite quantity is driven up at each stroke; and as this is done by the sudden descent of the loaded Jever of the pump, the water is injected very suddenly into the receiver."

Before the improvements upon Savery's engine were proposed by Desaguliers, a very important in vention had been made by Mr. Thomas Newcomen, an ironmonger in Dartmouth. There is reason to believe that this ingenious workman was occupied in the improvement of the steam engine as early as Mr . Savery. Switzer, indeed, who was a friend of Savery's, and therefore not likely to make any statement injurious to his reputation, distinctly informs us that he had good authority for stating that Newcomen was as early in his invention as Savery; but that the latter being nearer the Court, obtained his patent before the other knew of it, on which account Newcomen was glad to come in as a partner in the patent which was granted to them in 1705.

Dr. Desagulicrs, however, has given a different account of the matter, and as the passage contains some interesting details, we shall give it in his own words. "Thomas Newcomen, ironmonger, and John Calley, glazier of Dartmouth (Ana'oaptists) made the several experiments in private, and having brought the engine to work with a piston, \&c. they, in the latter end of the year 1711, made proposals to draw the water at Griff in Warwickshire; but their invention meeting not with reception, in March following, through the acquaintance of Mr. Potter of Bromsgrove in Worcestershire, they bargained to draw water for Mr. Bach of Wolverhampton, where, after a great many laborious attempts, they did make the engine work; but not being either philosophers to understand the reasons, or mathematicians enough to calculate the powers, and to proportion the parts, very luckily by accident found what they sought for. They were at a loss about the pumps, but being so near Birmingham, and having the assistance of so many admirable and ingenious workmen, they so soon came to the method of making the pump valves, clacks, and buckets, whereas they had but an imperfect notion of them before."

The engine thus constructed has received the name of the atmospheric engine, in consequence of the power which is employed, being only the weight of the atmosphere, the steam exerting no force whatever
either upon the surface of the water, or upon the piston, and having no other functions to pertorm but that of forming a vacuum. Newcomen's engine, in its original state, is shown in Plate DV F lig. 4. The steam generated in the boiler 13, passes throngh the cock D into the steam cylinder \(\Lambda\), beneath a piston \(S\), which is attached lay means of the piston rod \(r\), to the great beam I, 1. 'This beam or lever has at its extremities arch heads, npon which the chain \(R\) laps ant unlaps itsell during the motion of the beam round the linlerum C, the chambeing fixed at the upper end of the arched head. 'The cylinder \(A\) is surrounded with another cylinder \%/Z, concentric with it, and communicating by a pipe F , with a reservoir G of cold water, while its lower end communicates with the well \(O\), by another pipe Lis.

The piston being at the top of the eylinder, as shown in the ligure, let steam be admitted into the cylinder till it is full. When this is done, turn the cock D to present the entrance ol any more, and open the cock I ', to allow cold water lirom (i to flow into the outer cylinder \(2 / 2\). By cooling the steam cylinder A, this will condense the steam within it, which will form a vacuum under the piston S . 'The whole weight of the atmospliere, which now presses on the upper side of the piston, having no force on the other side to connterbalance, it will force the piston S down to the bottom of the cylinder. By this means, the end I of the great beam is depressed, and the opposite end I' raised, so as to work the pump \(L\), and raise the water which it contains. When the piston has reached the botom of the cylinder, the cock \(F\) is shut, and the cock E opened, and the water in the outer cylinder \(Z Z\), descends into the well \(O\), while the small quantity formed by the condensation of the steam in A, descends also into \(O\) through the pipe \(P\). By means of a counter-weight M, placed on the rod K , the piston \(S\) is brought up to the top of the cylinder, and steam being again admitted, and again condensed as already described, the piston is again lorced down, and a fresh draught of water brought from the well L. The fire bencath the boiler is shown at \(N\), the ash-pit at W, the flues at XX, and the pipe which supplies the reservoir G at TT'. The mouth of the well or mine to be drained, is shown at \(L\), and \(H\) is a pipe for admitting water above the piston, to keep it water-tight.

Such was the state of the atmospheric engine belore March 1712, when the patentees, as abore stated, obtained such important aid from the Birmingham artists. But an accident now occurred which turned out of great importance. Having observed the engine perform several strokes in very quick succession, they found, upon a strict examination, that there was a hole in the piston, which let the cold water in to condense the steam in the inside of the cylinder, whereas this had always been done on the outside. Hence arose the use of the injection pipe, which was alterwards made to squirt a jet of water upwards from the bottom of the cylinder into the steam which it contained. The outer cylinder \(Z Z\), was thercfore no longer necessary, and the pipe \(f\) entered the bottom of the cylinder, as shown in Fig. 5.

Dr. Desaguliers remarks, "that they used to work with a buoy in the cylinder, enclosed in a pipe, which buoy rose when the steam was strong; and opened the injection, and made a stroke, thereby they were capable of only giving six, eight, or ten strokes in a
minute, till a boy, Ilumplary Potter, who attended the cogrine, added (what he called scoggrong) a catch, that the bean (2 always opened, and then it would go fifteren or sixtecn strokes in a minute. About this time (in 1713) the leathering of the piston was found ont by ace cident. "Waving then serewerl a large broad piece of leather to the piston, which turned up the sides of the cylinder two or threc inches; in working it wore through, and cut that piece from the other, which fall. ing llat on the piston, wrousht with its edge to the cylinder, and having been in a long time, was worn very narrow; which being taken out, they had the happy discovery, wherelsy they found that a bridte rein, or even a solt thick piece of rope or match going round, would make the piston air ald water-tight." A few years alterwards, in 1717, Dr. Desaguliers communicated to Mr. Beighton the use of the stectyard safety valve.

Notwithstanding these great improvements, the mechanism of the steam engine was still very imperlect. The necessity of cock buoys to open and shut the cocks, and the number of catches and strings employed gate a character of complexity to its parts, which rendered them liable to derangement lrom the slightest irregularity: All this apparatus, however, was superseded in 1818 , by the invention of what is called hand-gear, which Mr. Henry Beighton, an able engineer, first applied to an engine which he erected at Newcastle-upon-Tyne. In this engine, the cocks were all opened, and that by the hand-gear, which was put in motion by a rod susperded from the maia beam. Mr. Beighton made atso several other changes upon the engine, which improved the form and arrangement of its parts, and he introduced a neatness and accuracy ol workmanship unknown to his predecessors.

The steam engine as constructed by Mr. Beighton, is shown in Plate DV. Fig. 6, where \(h h\) is the great beam, C the cylinder, \(A\) the fire, and \(B\) the boiler, atl of which act in the manner already described. The part which we intend principally to describe, is the working perpendicular beam \(Q Q\), with all its machinery for opening and shutting the regulator and injection cock. This machinery is contained within the compass of the letters D dC61 541 Q NF E, but its parts are here on such a small scale, that we have given them separately in Fig. 7. Between two perpendicular pieces of wood on cach side of P, Fig. 6, and marked AB in Fig. 7, there is a square iron axis AB, which carries four iron pieces necessary for turning the regulator, by pushing lorward and drawing back the fork fastened to the handle of the regulator Fig. 6, and marked QOLL, Fig. 7. In the beam QQ, there is a slit so contrived that its pins work on the fore part, middle, and back part, to raise and depress the levers 5, 4, that move the axle \(\Lambda B\), as far abont its centre as is necessary. A piece CED called the I moves round \(A B\) on an axis, and carries a weight \(F\), which by means of a key and wedge can be slipped along the arm C. By means of a hooked stirrup GLE, the axle AB is joined to the horizontal fork ON. A spanner or handle \(G 4\) is driven on upon the axle AB; and another shorter spanner H 5, at half right angles to this, is forced on to where it is made fust. When the working beam \(Q Q\) rises, the pulley \(p\) will lift up the spanner II 5, which turns the axle AB so far round as to throw the Y, CED with its weight \(F\) from C to 6 , in which direction, after passing the per-
pendicular, it would continue to move towards \(O\), if it were not stopped by a strap of leather fixed to its top at CE, and matle fast at the points \(m, n\), in such a manner as to allow the Y to vibrate about a quarter of a circle in fallitg forwards and backwards alter it has passed the perperdicular. The horizontal fork ON is joined at its cud \(O\) to the spanner or handle of the regulator P9 Q10, there being several bules in these pieces, that any part of the end O may be kept in any part of the slit in the spanner, as may be necessary For the better motion of the two pieces. The other end N of the fork is fastened to the bottom EKNL of the stirrup by the long horizontal pin L, so that the fork may continue borizontal as it is pushed forward and drawn back by the spanner P 10 , to shut and open the regulator in the manmer to be afterwards described. There is a borizontal piece \(u l\) so placed that the end 10 of the spanner may bear upon it, and be supported as it slides backwards and forwards.

The situation of the machine as represented in Fig. 7, is as fullows. The regulator is open, as appears by its plate 'TY', being removed from under the communication or throat pipe SS that goes into the cylinder. The piston is now at the place CW, Fig. 6, at the top of the cylinder, and consequently the great beam \(h h\) and the working perpendicular bean QQ are now almost at their umost height: And the pulley \(P\) in the slit of the working beam has so far raised the spanner \(h 5\) that the weight E is brought so much from beneatb \(N\) as to be past the perpendicular over the axle \(A B\); and being ready to fall over towards N , it will with a smart blow of its shank E strike the pin L, and drawing the fork OL horizontally towards the working beam, will draw the end 10 of the handle of the regulator towards \(l\), and then shut it by slipping the plate \(Y\) 'under the pipe SS. ln Fig. 6, the blow is already struck, as may be seen by observing that the weight at the head of the \(Y\) has got to 6 , as far as the strap P 6 (or \(n 6\) in Fig. 7.) will let it go.

When the regulato: is shut, the next thing is to open the injection cock to produce the racuum, and immediately to shat it when the piston begins to come thown. The part of the pipe coming from the injecting cistern is shown at 0 , Fig. 7, and \(c\) is the part that leads to the cylinder, \(e\) is the key of the cock which has a narrow long upright hole, instead of a round one, that it may be the somer opened. On the top of this key there is fastened a quarter of a toothed wheel l, turned by another quarter of a toothed wheel ihanging down from the axis \(h\) g. which is moved by the leser \(h k\), commonly called the F .

As soon as the regulator is shut by the ascent of the pulley \(p\), the beam \(Q(Q\) not inmediately losing its motion upuards, the pins on its ontside lifis up the extremity 1 of the \(k, 1 / h\), and opens the injection cock; atid the jet immediately making a vacuum, the beam begins los descend, and the pin \(r\) which ean be put highte or lower, clepressing the la shats the injection cock; while the beam \(Q(Q\) contiming to descend, the palleyp prossing on the handle \(C\) 4, hams back the Y, whose shank i) throws forward the fork and opens the regulator watmit fresh steam in the way Pormerly described, which steam is shut off by shut-
ting the regulator till the injecting cock is againd opened.

In the engine represented in Fig. 6. there is a strong frame F 1 F 2 , upon which fill two strong wooden springs S 1 S 2 , that if the arch of the great beam \(h h\) should come down too low, no mischief may be done to the piston, and the whole stroke may be made upon S 1 S 2 by the strong iron pins P 1 P 2, which will there be stopped. The pump which the engine is to work, is shown at \(p\), the pump rod at \(i\), and \(k\) is the rod of another pump which raises some of the water at \(p\), by the injection reservior \(s\), through a pipe which passes by \(o\), and behind the attemdant \(c\).

Hitherto the steam employed as a mechanical power had been reconverted into water by condensation ; but about the year 1720, Leupold, the anthor of the Theatrum Machinarum, suggested the plan of blowing it ont into the atmosphere, and may therefore be considered as the inventor of the high pressure engine. This engine is shown in Fig. I of Plate DVI, where A is the boiler communicating by the four way cock X with the lower ends of two cylinders R,S, in which two pistons C, D move up and down, and put in motion two levers \(\mathbf{G}, \mathrm{H}\) by the intervention of the piston rods, E,F. Pump rods K, L, fixed to the other ends of thase levers, work the pumps \(O\) and 1 , and raise the water up the main pipe \(Q\). The fire-place is shown at \(Z\), and the ash-pit at \(Y\). The levers \(G, H\) move upon pivots 1,1 , and the four way cock \(X\) is so constructed as to shut off the communication between the boiler A and either of the cylinders R,S, while it opens a communication with the external air. The operation of the engine is as follows.

The stean from the boiler A beingadmitted through the passage 3 into the cylinder \(R\), forces the piston \(C\) up to the top, and thus depresses the pump rod K , which forces the water up \((2\). When \(C\) is at the top, the cock \(X\) is turned, and the passage \(B\) between the boiler and the cylinder closed, while a communication is opened from the inside of the cylinder into the atmosphere. The weight of the piston and piston rod FG , being made greater than that of \(K\) and \(O\), the piston \(C\) will fall to the bottom of the cylimeler, driving out the steam that had remained in it From the construction of the cock \(\mathbf{X}\) a passage is opened between the boiler A and the other cylinder S , when the passage into \(R\) was closed. Hence the piston \(D\) is forced up wards, and the pump rod of the pump \(P\) descends ard lorces water up \(Q\). The cock \(X\) being again turned, the steam is shut off from \(S\), and a passage open into the external air, so that the weight of ED being greater than that of LP, the piston D will descend and press ont the steam into the atmophere.

No attempt had yet been mate to convert the reciprocating motion of the piston into a continuous rotatory motion: but Mr. Jonathan llalls, who in 1736 proposed to apply the steam engitue to tow vessels or ships into and out of harbotur, described a contrivance by which the rise and lall of the piston should give a continued rotatory motion to the paddle whecls, but the proposal excited no notice; and his steam boat as well as his rotatory mechanism, "wore left as a legacy to his successor. See our article Stwam Boat.

\footnotetext{
 mitted : scrions mistatice in aberibung the insemion of the erumb to J. Hults, atd thus depriving Mr. Watt of the honour of an invention which he had considered so completely lis win as to secure it by a patent. "hat scheme," (meaning
}

In the year 1756 a patent was taken out by \(\mathrm{Mr}_{\mathrm{r}}\). Blakey, for a comtrivance which prevented the steam from coming in contact with the water, as in Savery's engine. One of his contrivances eonsisted in interposing a quantity of nil between the steam ancl the water. He employed also two receivers or eylinders, the one placed above the other, so that the water beneath the oil might not be changed at cachinjection. Another contrivance was to interpose air in place of oil; but none of these were fond to answer in practice, and Blakey's engine never attained any celebrity. In principle, indeed, it was the same as Savery's. At a much later period, viz. in 1775, Mr. lilakey made an important improvement in the boiler, whereby much fuel is saved. Three cyliudrical vessels were placed, the one above the other, as shown in ligg. 2. P'late DVI, and connected so as to constitute a boiler. It is then surrounded with the fire, and the steam let off by the cocks shown in the figure.

In the year \({ }^{17} 57\) Mr. Keane Fitzgerald communicated to the Royal Society of London, a paper entited In altempt to improce the monner of urorting the aen. tilator by the help of the Fire Eingine." "As the lever of the fire cogine works up and town alternately, and performs at a common medium about a dozen strokes in a minute, it was necessary to contrive some way to make the beam, hough moving alternately, to turn a wheel constantly round one way, and also to increase the number of strokes to 50 or 60 in a minute. The model ol a machine for this purpose, is composed of four wheels of different sizes, two elicks, three pinions and a fly, which is put into motion by the part ol a wheel fixed to the arch of a lever of the fire engine. The wheel which is turned by the lever, or rather moved up and down by it, is loose on its arbor, and likewise one of the ratchets, and the whecl next to it. The outside ratchets and outside wheel are fixed on the arbor. There are two pinion wheels fixed on the arbor, one on each side near the edge of the wheel moved by the lever which turns them. There are also two clicks, one fixed to the great wheel, the other to the frame. These are exclusive of the wheel that moves the fly.

The effect is, when the lever moves the wheel downwards, its click forces the ratchet fixed on the arbor to move along with it, and the other wheels the same way. When it moves upwards, the click fixed on the frame stops the larger rathet, and the whed next to it, which are pinned together. This wheel being stopped, and the great wheel carried upwards by the lever, the pinion towards the edge of the great wheel is forced round it, and moves the pinion on the other side of the great wheel, which pinion moves the
wheel fixed on the arbor the contrary way to the great wherl, which is carricel upeards by the lever. By which means the arbow is constantly curned the same way, when the lever of the line engine is moved either upwatds or downwath.

Upers the arome, there is also another great wheel fixed, which turns a pinion, on the arbor of which pinion is a cratak to mowe the vemtiator, and also at ay fixed to the cmet, to help the motion of the erank, which, in the model, is turned there times for cach stroke of the lever, and may be incerased of riminished atecording to the mamber of tecth in the pinion. The number of teeth in the great wheal mowed by the lever is 66 , but need not have teeth abow hall way round. The wheed fixed to the ratchet has in feeth, and its pinion 11. The wheed fixed on the armo on the outsite bas 24 teeth, and its pinion 10 . The wheel which turns the lly has 90 teeth, and the pinion turned by this whee to. The greater the number of teeth in the ratchets the better. This machine may also be applied to other useful purposes at mines, and may casily be made to tum a mill, to grint corth, or 10 turn a wheel to raise coals, or whatever clse is wanted to be raised from the miaes."

Dr. Robison hat, without due consideration, regrarded this contrivance of Mr. Fizgerald as involving the invention of the crank, with which Mr. Watt hat afterwards converted the vertical motion of the piston into a rotatory motion, and had therelone deprived Mr. Watt of that bonour. Mr. Watt, who as it vill afterwards be seen, had been particularly hatassed regarding the subject of the crank, corrected to a certain degree this error in his amotations on Dr. Robison's paper; but in a letter which he wrote to Dr. Brewster, dated February 23, 1814, he speaks still more decidedly: "Dr. Robison," says be, "mentions, that Mr. Keane Fitzgerald published in the Transactions, ' a method of convertug the reciprocating motion ol the steam engine into a continued rotatory motion, by means of a crank, or a trait of wheel work,' and adds, in sec. 52 , 'by this contrivance he hoped to render it of most extensive use, and that he, and others associated with him, obtained a patent for it. They also published proposals for erecting mills of all kinds driven by steam engines, and stated fairly their powers and their advantages.'
. Now, I litud, (continues M1: Wrat1,) in the Philosophical Transuctions, vol. 50, part ii, an invention by Mr. Fingerald lor working rentilators by means of a steam engine, in which the rotative metion is produced by a tain of wheelwork, which zhtimutty herns a crank, which works the ventilators, a vory diflerent thing from a rotatory motion produced by the inter-

Hull's,) says Mr. Stuart, "it was necessary to convert the ulternute rectitineal motion of a piston rod into a coatimutas rotutory one, and which he ingeniously suggested might be accomplished by means of a crant. This is now with justice convidered that invention which introduced the stean engine as a first mover of every varicty of machinery. Hulls was unable anderest the publie in his project; and his mode of applying the crank was so completely forgotten, that at its revisal abont forty years after this period, a patent was obtained for the invention, and the merit of the apphcation was aho chimed by the celebrated Mr. Watt, evidently without any knowledge of Hull's suggestion." In Hulls' method the rotatory motion is effected by ropes and wheels, as will be seen in the drawing which will be given under our article Spean Boif, an morank is ever mentioned. It is true that Ifulls afterwads says, "up inland rivers, where the bottom can possibly be fached, the fans m:y be taken out, and cranks placed at the hindmost axis to strike a shaft to the bottom of the river, wehich will trive the vassel forward with the greater force." But this cannot by any stretch of criticiom be considered as the converion of it reciprocating into a rotatory motion by means of a crank. Iad Ilalls once got hold of the itlea of applying the cranla in this way, he would never have adopted the other contrivance, the exposure of which to ingury by the sen, he obnomsly considers as an objection. Mr. Witt must therefore be allowed the great merit of the application of the crank to convert the revical motion of the piston rod into a continued rotatory motion.
- I'hil. Trans. 1758, p. 727.
vention of a crank: As to the mill scheme, we can find no trace of it, nor of the patent; and being a matter of some consequence to clear up, I have written to some friends in London about it, but have yet received no answer. I shall thank you, if you camot otherwise find out the matter offact, to get a search made among Dr. Robison's memoranda, to learn upon what authority he made the assertion. If nothing more is learned about it, I must conclude the note to be a mistake, and comment upon it accordingly." No record of a patent was found at the public offices, and Mr . Watt accordingly made those alterations, \&c. on Dr. Robison's paper, which are already before the public."

It is impossible to pass over this statement respecting the crank, without calling the attention of the reader to the annoyances to which an inventor is exposed by the rash decisions and criticisms of his friends. If Dr. Robison and Mr. Stuart, men of talents and character, and great admirers of Mr. Watt, have, under a sense of justice, attributed one of his finest inventions, the one to Mr. Fitzgerald, and the other to Jonathan Hulls, without any other foundation than the recommendation of a crank, as part of the machinery, it is not to be wondered at that writers of inferior judgment and integrity should so often commit the same mistake. To this species of persecution, Mr. Watt has been particularly exposed, and yet the whole history of science does not present to us an individual whose inventions were more original, and to which less approach had been made by the ingenuity of his predecessors.

When Mr. Watt's attention was turned to the subject of steam in 1759 , it was then an effective and useful machine, and was used to a considerable extent in the mines and manufactories of the kingdom; but though it was then an effective machine, it was a very imperfect one, and required for its improvement all the energics of a mind deeply imbued with mechanical and chemical knowledge. In the year 1761 or 1762 , Mr. Watt had constructed a model, with which he showed the practicability of what is now called the high pressure engine; but it was not till 1763 , when he was repairing a model of Newcomen's engine, belonging to the college of Glasgow, that his mind was usefully directed to the subject. Having repaired it mercly as a mechanician, he found, upon setting it to work, that its boiler, though apparently quite large enough, \({ }^{*}\) could not supply it with steam. This he found to be causcd by the small cylinder exposing a greater surface to condense the steam, than the cylinders of larger engines did in proportion to their respective contents. The cylinder of the model also, which was of hrass, conducted heat better than the cast iron cylinders of larger engines, (generally covered on the inside with a stony crust) and hence Mr.

Watt conceived the idea of making this cylinder of wood baked to dryness, and soaked in linsced oil. He soon found, however, that the steam which was condensed in filling it exceeded the proportion of that required for large engines, according to Desaguliers. This effect Mr. Watt ascribed to the fact (newly discovered by Dr. Cullen and some other philosophers) that water boiled in vacuo at heats below \(100^{\circ}\), because at greater heats the water in the cylinder would generate steam, which would contribute to resist the pressure of the atmosphere.

In the progress of his experiments, Mr. Watt ascertained that one cubic inch of water formed about a cubic foot, or 1728 cubic inches of ordinary steam, and that the condensation of that quantity of steam would raise si.x cubic inches of water from the temperature of the atmospherc to the boiling point. Hence he concluded that six times this rise of temperature, or about \(800^{\circ}\) of heat, had been actually employed in the conversion of the water into steam, and all of which must be withdrawn before a perfect vacuum could be formed under the piston. Struck with this remarkable fact, and not understanding the reason of it, he mentioned it to his friend Dr. Black, who then explained to him his doctrine of latent heat, which he had for some time beforc this (summer of 1764) taught in the miversity.

Mr. Watt now perceived that, in order to make the best use of steam, two things were necessary. First, to maintain the cylinder as lot as the steam which entered it; and secondly, to cool down to \(100^{\circ}\), and lower, if possible, the water produced from the condensation of the steam, and the injection water itself. The means of accomplishing these two leading objects did not immediately present themselves, but carly in 1765 it occurred to him that if a communication were opened betwcen a cylinder containing steam, and another vessel exhausted of air and other fluids, the steam would immediately rush into the empty vessel, and continue to do so till it had established an equilibrium, and if that vessel were kept very cool by an injection or otherwise, more steam would continue to cnter until the whole was condensed. Thus did Mr. Watt discover the great principle of condensation in a separate vesscl; \(\dagger\) but in its application he had to contend with difficulties which required new resources. As both the vessels were exhausted, or nearly so, how was the injection water, the air which would cnter it, and the condensed steam, to be got out. 'This he proposed to effect in two ways: one of these ways was to adapt to the second vessel a pipe reaching downwards inore than 34 feet, by which the water would descend, (a column of that length overbalancing the atmosphere) and by extracting the air with a pump. The second way was to employ one or morc pumps to extract both the air and the water, which would be applica-

\footnotetext{
* The boiler was nine inches in diameter, and the cylinder two inches in diameter, with a stroke of six inehes.
\(\dagger\) The invention of a scparate condenser has been strangely though indirectly ascribed by Mr. formblower to the Rev. Mr. Gainshorough, and this is said to have taken place about the time that Mr. Wrath was engaged in lringing forward the improvement of the engine. This is in reality an acknowledgment of Mr. Watt's priority, for Mr. Watt did not hring forward this great improvement till long after it was made. In the Review (Lelinhurgh Review, 1809, p. 328,) of Dr. Gregory's Mechanics, (vol. ii. P. 362 ,) where Mr. flornblower's Itistory of the Stean Engine appeared, (an article which Mr. R. Sturthas erroneously ascribed to Dr. Brewster) it is stated, and we believe with perlect correctness, that Mr. Bainsborough's idea was twenty years postrior to Mr. Watt's. This claim, in behalf of Mr. Gainsborough, urged neither by himelf nor by any of his friende, but by one of Mr. Watt's avowed enemies, must be considered as establishing Mr. Watt's original and undivided claim upon an impregrable basis
}
ble in all places, and essential in those cases where there was no well or pit. Mr. Watt prefered and invariably used the latter method.
In order to lubricate and keep the piston steam tight, Mr. Watt employed wax tallow or any other grease. This was effected by Newcomen, by having water above the piston; but when any of it eutered the partially exhansted and hot cylinder it boiled, and prevented the production of a vacuum, besides cooling the cylinder byits evaporation during the descent of the piston. As the mouth of the cylinder was open, Mr. Watt found that.the air which entered to act on the piston cooled the cylinder, and condensed some steam in again filing it. lle, therefore, proposed to put an air-tight cover on the cylinder, through which cover there was a hole with a stuffing box for the piston rod to slide through; and when this suggested itself, it immodiately occurred to him to almit the stam above the piston, to act upon it instead of the atmosphere. Another source of the loss of steam still remained, namely, the cooling of the cylinder by the external air, which would occasion at every stroke an internal condensation whenever the steam entered it. Mr. Watt proposed to provide against this, by placing the working cylinder within another cylinder containing steam, and to surround this by another of wood or of some bad conductor of heat. "When once," says Mr. Watt, "the idea of the separate condensation was started, all thesc improvements followed as corollaries in quick succession, so that in the course of one or two days the invention was thus far complete in my mind; and I immediately set about an experiment to verify it practically.

This experiment succeeded perfectly, and confirmed Mr. Watt's highest expectations. He therefore applied in 1768 lor letters patent for "methods of" lesscning the consumption of stcam, and conscquently of fucl in sleam cngines, which passed the seals in January 1769. The specification recited seven different principles, viz.
1. To keep the steam cylinder as hot as the steam which enters it.
2. To condense the steam in separate vessels, to be kept as cold as the adjacent air by water or cold bodies.
3. To draw the air or vapour ont of the cylinder, and condense by pumps wrought by the engine.
4. 'To employ the expansive force of steam to press upon the piston; and in cases where cold water is not plentiful, to work the engines by this force of stcam only by discharging the steam into the open air after it has done its office.
5. Where rotatory motions are required, to make the steam ressels in the form of hollow rings, with inlets and outlets for the steam, mounted on horizon. tal axles.
6. To applya degree of cold to contract the steam, so that the engine may be wrought by the alternate contractions and expansion of the steam.
7. To render the parts of the engine, air, and steam tight, by using oils, wax, resinous bodies, fat of animals, quicksilver, and other metals in a fluid state.

While this patent was passing through its different
stages, Mr. Watt was engaged in experitnents with an engine which, with the assistance of 1)r. lioctorek. who herl prochased part of his patent right, he: harl erected al a coal mine near Borrowstommess. It hat a cylinder: 8 indme indiancer, and was successim. ly aftered and improned so as to embody several of the principles above mentioned. When these experiments were linished, Mr. Whatt and D)t. Roebuck began their arrangements for manuarturng the eque gines on a great scate, but pecuniary diffontows prevented Dr. Roebnek from giving the most mereray aid, and he accordingly, in 1773, with Ahe Wratt's consent, resigued his share in the patent 10 Mr. . Hatthew Bolton, a man of generosity, chacerive, athil talent, and every way hitted for bringing into action the talents and inventions of Mr. Watt.

The extent of the arrangements, and the lenesth if time necessary to bring the improved steam chgint: before the public, were soon discovered by expericnce. and Mr. Watt saw that it was impossible tor reimburse himself lor the great outlay which these armagements rendered necessary during the lew years of his patent which had yet to run.

He therefore applied to parliament in 1771 for an extension of the term of his patent; and with the zealous aid of Mr. Bolton, Dr. Rochuck, and Dr. Robison, he obtained in 1778 the exclusive privitege of manufacturing his improved engine for the space of twenty-five years.

About that time Mr. Watt and Mr. Bolton commenced a partnership for the manufacture of the improved engine, which continued till the expiry of the exclusive privilege in 1800. At their establishment at Soho near Birmingham, many admirable engines were soon made; and erceted in Staflordshire, Shropshire, Warwickshire, \&c, and Messis. Watt and Bolton granted licences to use their engines, on the condition of securing a third part of the saving of rout, compared with an atmospheric engine performing the same work with coals equal in quantity. The amount of this saving was determined by ascertaining experimentally the coals consumed during any number of strokes macle by the common and the improved engine. The numher of strokes made in any given interval was ascertained by a piece of machinery called the countor, which was struck at every ascent of the working bean. Two keys of this machine were kept, one by the patentecs, and the other by the proprietors; and a traveller who examined it at stated times, calculated the saring of coal from the number of strokes. *

These different inventions of Mr . Wiatt we shall now proceed to describe in their order.

\section*{Description of Mr. Watt's Single Recimocating Enefine, as constructed in 1758.}

This engine is represented in Plate 1)V゙ll. Fig. 1. The cylinder is shown at A surrounded with its steam case E. The cylinder, which is truly bored, is closed at its top by a cover, in the centre of which is the stuffing box D, through which the piston rod C moves. This stuffing box is constantly supplied with melted tallow, and the piston rod being turned to a true cylinder, no steam can escape. The piston \(B\) is also

\footnotetext{
* For three large engines erected at Chacewater mine in Cornwall, the proprietors paid 6800 annually instead of the third of the aving of coal. Hence the saving of coal in using the three engines must have been \(3 \times 3 \times 8: 0=17200\) annually.

}
made steam-tight, and for this purpose it is supplied with melted tallow, through a funnel in the top of the cylinder. The boiler for generating the steam is shown at the left hand side of the engine, where \(n\) is the boiler, \(p\) the grate, and \(o o\) the flues on the side of it, \(r\) the damper, \(s\) the chimney, \(t\) the feed-pipe by which the boiler is supplied with water, and 1,2 , the guage-cocks. The steam pipe \(F\) proceeding from the boiler, and passing through the well, conveys the steam to the upper steam nozzle or valve \(G\), through which it enters by the horizontal passage above the piston, and presses it, by its elastic force, down to the bottom of the cylinder. The perpendicular steam pipe which conreys the steam from the top of the cylinder into the bottom of it is shown at \(I\). \(K\) is the equilibrium valve or nozzle, or the lower steam valve, which admits the steam below the piston, through the curved horizontal passage, to the left of L. When the valve is open there is an cquilibrium between the steam entering both above and below the piston, from which circumstance it derives its name. \(J\) is the eduction pipe by which the steam is conveyed from the cylinder to the condenser \(M\), which is a cylindrical vessel surrounded by cold water. N is the injection cock, which admits a jet of cold water from the cistern to condense the steam in \(N\). At \(O\) is seen the termination of a copper pipe, called the Snift or Blowvalve pipe. It reaches to the ontside of the cistern, and has its orifice closed with a little valve opening outwards and immersed in a small vessel of water. The object of it is to discharge the air from the vessels when the engine is first set a going.
\(P\) is the air pump, communicating with the lower end of the condenser by means of the valve \(R\), which by the action of the air pump opens to allow the water and air to escape from the condenser, but closes in order to prevent cither of them from returning.
\(m\) is the upper valve or discharging spout, opening outwards, which conveys the air and hot water into the hot well, from which the boiler is supplied with water by the means of the hot water pump \(U U\), and pipe \(u\), the continuation of which to the boiler is not shown.
\(V\) is the injection or cold water pump, which, rising from a tank without the engine-bouse, supplies water for cooling the condenser, and supplying the injection.
\(Z\) is the plug-tree or beam which drives the working gear \(Y\) of the nozzle and regulator valves.
\(a\) is the main lever or working beam, made of oak, and moveable upon its gudgcon or centre of motion \(b\), which is fixed to the upper side of the beam by iron straps.
\(d\) is a king-post, from the top of which iron straps ceextend diagonally to each end of the beam, so as to form a truss.

Two iron catch pins, not seen in the figure, are fixed on the arched beats \(e, f\), to strike upon the springs \(\varepsilon, \beta\), in order to limit the downward excursions of the pistons.
\(\mathfrak{g}, f\), and \(e\), are threc arch heads fired to the main beam. The arched head \(g\) is double, the one on the other side, not being seen in the figure. The one is to receive two chains, by which the plug tree \(Z\) is suspended, the rods from the two chans being joined and connected with the upper extremity of the plug trees, while the piston rod \(S\) ol the air pump 1 is fixed to its lower extremity. 'The plug tree is kept
steady by a horizontal bar fixed across it at its lower end, the two extremities of which slide in the vertical grooves of two upright posts. Three projecting pieces of wood, two of which are shown at \(\pi \pi\), are fixed to the plug tree to give motion to the intermediate handles of the working gear.
\(e\) is the arched head for receiving the chain \(f\), which carries the piston rod \(h\), and piston \(i\) of the pump \(j\) having a clack valve at \(p\).

\section*{Operation of Mr. Watt's Single Reciproeating Engine.}

The engine is supposed to be at rest, and its valves shut, and all the parts brought into the position shown in the figure, which is effected by the preponderance of the puinp rod \(h\).

When the steam is generated in the boiler \(n\), the three valves, \(G, K\), and \(L\), are opened by relieving the handles from their catches and the steam rushes through them above and below the piston, and into the condenser. The cold metal at first condenses it, but as the different parts become hot, all the above cavities are occupied with elastic steam, which displaces the air, and drives it all out at the blow valve O, an operation called blowing through, the completion of which is indicated by a smart crackling noise at the blow valve \(O\), arising from the condensation of the steam by the cold water, when the air is all discharged. When this has been repcated two or three times, the valves \(G, K, L\), are shut, and the farther admission of steam prevented. The steam remaining in the condenser will be speedily condensed, especially when a jet from the injection pipe has been thrown into it ; but the cylinder both above and below the piston \(J\) will be occupied with steam.

If we now open the valves \(\mathbf{G}, \mathrm{L}\), and \(\mathbf{N}\), Plate DVII, Fig. 1, by allowing the two handles at Y to rise, the steam will pass through \(G\) to the top of the piston, and, at the same time, the steam below the piston will escape through \(L\) into the condenser, while a jet of water from \(N\) will condense the steam, and producing a vacuum beneath the piston \(B\), will allow the elastic force of the steam above it to press it to the bottom of the cylinder. The pump bucket \(i\) will be drawn up, and a column of water raised in its barrel \(j\). When the piston B has descended hall way down the cylinder, the upper piece of wood \(\pi\) strikes the cxpansion handle \(Z\), and forcing it down, shuts the valve \(G\), and excludes the steam, so that the piston performs the other half of its descent by the expansion of the steam already admitted above it. When the piston is at the bottom of the cylinder, another picce of wood on the opposite side ol the plug tree presses down the middle handle above \(Y\), which closes the cxhausting valve \(L\), and also the injecting valve, by means of a strap and rod connected with it. At the same time, the equilibrinm valve \(K\) is opened by the working grar, so as to occasion an equilibrium in the state of the steam above and below the piston.

In this state of things the counter weight of the great piston rod will, by its preponderance, descend in its barrel, and cause the piston IB to rise in the cylinder. When the piston 13 has risen hall way up, the equilibrinm valve \(K\) closes; and when the piston is quite at the top, the exhaustion valve L , the injection value \(N\), and the expansion valve \(G\), are all opened by the action of the catches upon the handles of the working gear.

The steam consequently again rushes through \(\mathbf{G}\) to the top of the piston, while the steam heneath it escapes into the condenser, where it receives the jet of the injection, and is converted into water, again creating a vacuum beneath the piston 13, and in the condenser. 'The piston \(B\) consequently again descends, and the engine continues to act in the same manner, and thus to work the pump \(h j\).

The ait pump \({ }^{\prime}\) does not begin its operation till the water of condensation and the injection water have accumulated. When this is the case, this water, flowing through \(R\), rises above the piston \(Q\) through its valve; whenever it is at the bottom of the cylinder \(l^{\prime}\), and the valve closed upon it , and preventing its descent, it is raised and discharged through the valve \(S\) into the hot well. In like manner, il there is any air or vapour in the condenser, it will help to press the water through \(R\), and will itself escape through the valve in the box \(Q\), when all the water has been discharged at S .

The hot-noter promp UU, which enters the hot well, forces the water from it along the tube \(u\) and feeding pipe \(t\), to supply the boiker \(n\), so that there must be a saving of fuel by using this hot water in place of cold water.
Although we have mentioned generally the construction of the plug tree, and the way in which it opens and shuts the valves, yet as this is an essential part of the engine, we shall give a separate drawing of the mechanism which opens and shuts the nozzle valves and regulator, along with Mr. Watt's own description of it. "The piston approaching the top of the cylinder, the slider \(a\) fastened upon the plug tree \(z\), raises up the handle \(b\), which is fixed upon the lower I shaft or axis \(c\), as is the detent \(d\), and the latter takes hold of the double ended catch \(e\); but, in doing this, the upper end of the catch allows the detent \(f\) to escape, and a weight hung to the rod \(g\) turns the axis \(h\). The arm \(i\) and rod \(j\) are moved out of the straight line at \(l\), and by a lever \(k\) turn the spindle \(m\) in the upper nozzle, which, by means of a toothed sector \(n\), and rack \(o\), raises the valve \(p\), and admits steam iuto the cylinder above the piston through the horizontal pipe A. At the same time, another arm \(u\), fixed upon the same shaft, by means of the rod \(w\), acts upon a spindle, \&c. in the lower nozzle, and opens the exhaustion valve L (Plate DVII. Fig. 1.), and thereby forms a communication between the cylinder belou the piston and the condenser. The piston now descending, another slider \(q\) moves the handle \(r\) into the position \(s\); this raises the weight \(g\), while \(i\) and \(k\) are brought back to the position \(/\), and the valves \(p\) and L are shut. The detent \(f\), in acting upon the catch \(e\), disengages \(d\); the lower \(Y\) shaft turns upon its axis, and two arms attached to it (similat to those upon the upper V shaft, which are omitted to avoid confusion) by means of the rod \(x\) and \(y\), open the lower steam valve K (l'late DVII. Fig. I.) and the upper exhaustion valve \(t\). The cylinder above the piston becomes exhausted, and the steam, entering below it, causes the piston to re-ascend."

The steam engine of the form, which we have now described, continued long in use for draining mines. Beiween 1778 and 1790, great numbers of them were erected by Messrs. Bolton and Watt, in different parts of England, but chiefly in Cornwall. Their cylinders were generally from forty-eight to sixty-six inches
in diameter, and according to Mr . Watt, hey were found to raise from twenty-four to thirty-two millions of pounds of water one foot high by means of one bushel of good Newcastle or Swansea coals, when working more or less expansively.

As the action of these engines is suspended durimg the ascent of the piston, they were particularly suited for pumping up water, since during the intermission the piston ol the pump descended to make a new stroke. But whena continucd power was required for the purpose of driving machinery in which there was no intermission of action, this form ol the steam-engine was by no means applicable.

Mr. Watt proposed to remedy this defect lay pharing a cylinder under each end of the great beam, in order that one of the pistons should bo rising while the other was falling; and as both the cylinders were to be: supplied from the same boiler, and the steam condensed in the same condenser, it was probable that these two actions on the beam would be regular and uniform,

This plan, however, was we beliexe never caried into effect, and Mr. Watt resolved upon using ouly one cylinder, and upon giving the engine a donble action by introducing steam both above and below the piston, and thus forcing the piston both upecards and downuards. For this donble engine he took out a patent in 1782 , but as it was alterwards greatly improved, we shall describe one of those which existed at a later date for the Albion Mills. In his specification of 1782 , the piston rod gave motion to the beam by a toothed rack, at the upper end of the rod, which wrought in a toothed arch, which replaced the arch head at the end of the beam, and the irregularities of this action were equalized by a \(l l y\)-wheel placed near the top of the piston rod. This was, hovever, soon laid aside, and the contrivance adopted which is now in universal use. 'The following are the parts of this engine (Sce Plate DYIII. Fig. 1.):

A The cylinder 34 inches in diameter.
B The piston which makes a stroke eight feet long.
C The piston rod.
D The stuffing box or the cover of the cylinder.
E The steam-case or jacket of the cylinder.
\(e\) The sypton which empties the steam-case of water.
\(f\) The pipe which supplies the steam-case.
G The upper steam nozzle and ralve, or regulatorbox and resulator.
H The upper exhaustion nozzle and valves.
1 The perpendicular steam pipe.
\(J\) The eduction pipe.
K The lower steam nozzle and valve.
L The lower exhaustion nozzle and valves.
M The condenser immersed in a cistern of cold water.
N The injection cock which is always open during the working of the engine.
O The blow valve.
\(P\) The air pump.
\(Q\) The lower valve and air pump.
\(R\) The bucket and rod of the air pump.
\(S\) The upper valve of the air pump.
T The hot water pump with its bucket and rod.
U The cold water pump.
V The pump for supplying the boiler.
W The governor turned by a belt from the shaft of the fly wheel.

3 Gr2

X The lever and rod which connects the governor with the throttle valve at \(t\).
Y The working gear of the nozzle valves.
\(Z\) The plug tree which drives the working gear.
a The main lever or working beam.
\(b\) Its main gudgeon.
\(c\) The perpendicular links of the parallel motion.
d The parallel bars.
\(e\) The regulating radiuses.
\(f\) The small perpendicular links.
\(g\) The secondary parallel motion for the air pump.
\(h\) The comnecting rod.
\(i\) The planet-wheel fixed to the connecting rod.
\(j\) The iron wheel.
\(k\) 'The shaft ol the fly-wheel on which the sun-wheel is fixed.
\(l\) The connecting link which retains the planet-wheed in its orbit.
\(m\) The fly-wheel.
\(n\) The boiler.
o The tube through the boiler and the flues around it.
\(p\) The grate.
\(q\) The feeding mouth.
\(r\) The damper.
\(s\) The ehimmer.
\(t\) The feed pipe.
u 'The guage pipes with their cocks.
y The salety valve.
The boiler \(n\), in which the water is converted into steam by the furnace \(p q\), is most frequently made of iron though sometimes of copper. Its bottom is concave, and the flame is made to circulate round its sides in the flue \(o o\), and is sometimes conveyed through the very middle of the water by a tube 0 , in order that a great surface may be exposed to the action of the fire. In some of Mr. Watt's engines, the fire contained in a vessel of iron was introduced into the very middle of the water.

Before proceeding to describe the operation of Mr. Wati's double engine, we must first give an account of the construction of the regulating valves, and the manner in which the plug-tree acts upon their levers in opening and shutting them. A section of the regulator box is shown in Fig. 2. Plate DVIII, by the letters IHJJ. The opening into the eylinder is shown at HH. A spindle A passes through one side of the box, and upon this as an axis moves a toothed sector B, which works into the toothed rack \(C\) fixed to the brass value I), fitted by grinding to its seat EE, F being the guide for the stem \(D d\) of the valve. On the spindle \(A\) is fixed a lever I \(A\), jointed at \(L\) to the rod I.MI, which is again jointed at M to the arm MN of a bent lever MNO, movable round the axis N. Part of the plag-tree is shown at QR , and P is one of its pins. From this description it is obvious that the valve 1) will be opencd or shat by the ascent or descent of the phag arce QR, the pias ol which act upon the lever No. When the piar pushes down the spanner No, the arm AN Nises to the right hand, and pulls down the spamer \(\Lambda\) ! by means of the uniting rod Mll; there parts are so arranged that when the rock is shat, 1,31 and MN formone suaght lime as in the ligute. Hence when the spaner begins to raise the valve. its mechanical chergy is ahmost inlinitely freat, and from the same cause, il any thing should ry to open the ralve it would be ineflectual.

\section*{Operation of Mr. W'att's Double Engine.}

By means of the steam pipe F', Plate DVIII. Fig. I, the steam is conveyed from the boiler \(n\) to the cross pipe or upper steam nozle \(G\), and by the perpendicular steam pipe \(I\), to the lower steam nozle \(K\). In the nozle G there is a valve (D. Fig. 2.) which, when open, admits steam into the cylinder above the piston B, through the horizontal square pipe at the top of the cylinder, and in the lower steam nozle \(K\) there is another valve like that at D , which, when opened by the pin of the plug-tree, admits steam into the cylinder below the piston. In the upper exhaustion nozle H there is a similar valye, which, when open, allows steam to pass from the cylinder above the piston into the eduction pipe \(J\), which conveys it to the condensing vessel M, where it meets the jet of the injection from the cock \(N\), and is reduced to water; and in the lower exhaustion nozle L there is also a ralye, which, when open, allows the steam to pass out of the cylinder below the piston into the condenser \(M\).

The enginc, says Mr. Watt, being at rest, the cylinder quite cold, and the condenser cistern full of water, when the water in the boiler begins to boil, steam will enter by the small pipe \(f\) into the space between the cylinder and the heating-case E, which will expel the air contained in that space, and between the two botions of the cylinder, at a cock fixed in the outer bottom, which, when all the air is expelled, and the cylinder thoroughly warmed, is to be shut, and the water which may be formed in these spaces during the working of the engine, will issue by the inverted syphon \(e\).

Things being in this situation to produce a commencement of motion, the first operation is to open all the four valves, \(\mathrm{G}, \mathrm{H}, \mathrm{K}, \mathrm{L}\); (the injection cock being shut) the steam will drive the air out of the steam and exhaustion-pipes I and \(J\), and out of the condenser M, through the blow-pipe and its valve O , and as soon as this is succeeded by a sharp crackling noise in the little cistern \(O\), the valves are to be shut until it is thought that the steam which has entered is mostly condensed.

The same operation is to be repeated, giving a longer time to cool between the times of blowing, until it is found that, upon opening the injection-cock, some water will enter, and the barometer shall show some degree of exhaustion, after which, the repetition of blowing will soon empty the cylinder of air.

The piston being then at the top of its stroke, the valves \(G\) and \(L\) are to be opened, and the fly-wheel \(m\) turned by hand about one-cighth of a revolution, or more, in the direction in which it is intended to move; the steam which is then in the cylinder will pass by L into the condenser, when, mecting the jet of water from the injection-cock, it will be converted into water, and the cylinder thus becoming exhausted, the steam, entering the cylinder by the valve \(\mathbf{G}\), will press upon the piston and cause it to descend, while, by its action upon the working beam through the pistonrod, \&e., it pults down the eylinder end of the beam, and raises up the outcr end and the comecting rod \(h\), which catses the planet-wheel \(i\) to tend to revolve round the sun-wheel \(i\); but the former ol these wheets, being lixed upon the connectingrod so that it cannot tum upon its own axis, and its teeth beinge engaged in those of the sun-wheel, the latter, and the fly-wheel,
upon whose axle or shaft it is fixed, are made to revolve in the desired direction, and give motion to the mill-work.

As the piston descends, the plug-tree \(Z\) also descends, and a clamp, or slicler \(q\), fixed upon the side of the plug-tree, presses tipon the handle 1 of the upper Y-shaft, or axis, and thereby shuts the valves \(G\) and \(L\), and the same operation, by disengaging a detent, permits a weight suspended to the arm of the lower Y-shalt to turn the shaft upon its axis, and thereby to open the valves \(K\) and II. 'The moment previous to the opening of these valves, the piston had reached the lowest part of its stroke, and the cylinder above the piston was tilled with steam; but as soon as II is opened, that steam rushes by the educ-tion-pipe \(J\), into the condenser, and the eylinder above the piston becomes exhausted. The steam from the boiler entering by I and K , acts upon the lower side of the piston, and forces it to return to the top of the cylinder. When the piston is very near the upper termination of its stroke, another slider a raises the handle 2 , and, in so doing, disengages the catch which permits the upper \(Y\)-shalt to revolve upon its own axis, and open the valves \(G\) and \(L\), and the downward stroke recommences as has been related.

When the piston descends, the buckets \(R, T\) of the air-pump \(P\) and hot water pump \(T\) also descend. The water which is contained in these pumps passes through the valves of their buckets, and is drawn up and discharged by them through the lander or trough \(t\), by the next descending stroke of the piston. Part of this water is raised up by the pump \(V\), for the supply of the boiler, and the rest runs to waste."

The engine now deseribed was one of fifty horse power, and was erected along with another of the same power, to drive twenty pair of mill stones, of which twelve or more pairs, with all the machinery for dressing the flour and other purposes, were generally kept at work.

Although Mr. Watt's double engines were chiefly employed in producing rotatory motions, yet in the case of very deep mines they may be applied with very great advantage to work pumps, by a reciprocating motion.

For this purpose one set, or half of the pumprods, are suspended by means of a sloping rod from the working beam near the cylinder, and the other half of these rods are suspended directly from the outer end of that beam, so that the ascending motion of the piston palls up one half of these rods, and works the pumps to which they belong, while the descending motion of the piston pulls up the other half of the rods and works their pumps.

A double engine of this kind was erected at Wheel Maid Mine in Cornwall in 1787. It had a cylinder of sixty-three inches diameter, and nine feet stroke; but the stroke in the pumps, which were eighteen inches in diameter, was only seven feet. When it was inconvenient to divide the pump rods into two sets, the ascending motion of the piston was employed to raise a weight equal to one half the colum of water in the pumps, and this weight acted in addition to the power of the engine during the descending stroke of the piston.

Such is a general description of the new engine as improved by Mr. Watt, but some of its individual parts still remain to be noticed.

The litst of these contrivances is the Sun and I'lomet Whect, which is shown in Fig. 1, late 1)V111, where the whecl \(j\) is catted the Sun Wheed, and \(i\) the I'laret Wheel. The sun wheel \(j\) is fixed in a horizontal axis, to which it is rerpuired to commenicate a continuous rotatory motion by the reciprocating motion of the rod \(h\), suspended from one extremity of the preat beam. The planet whed \(i\) is fixed to be lower end of the \(\operatorname{rod} h\), so that it camot turn roum its ixis. 'Ihe sun and planct wheels are ol the same size, move in the same vertical plane, and have the same number of teeth; and their centres are connected torether by an iron strap, which prevents them liom tritting cat 1 other. If we suppose the rod h to rise with the end of the beam which carries it, the teeth on the imer or left hand side of the planct wheel \(i\) will obviously work in the tecth of the inner or left hand side of the sun wheel \(j\). When the centre of the planet wheel comes on a level with the centre of the sin whecl, it will then have performed one-fourth of a revolution, so that the two wheels will have made ore guarter of a revolution in respect to one another; but the phanct wheel will also have made one-fourth of a revolution in its orbit round the sun wheel, and have carried the sun wheel along with it, so that the latter will have completed half a revolution. In like manner when the centre of the planet wheel is above the centre of the sun wheel, the former will have completed hall a revolution, and the latter a whole revolution. This double velocity of the sun wheel arises liom the motion of the planet wheel around it. If the planet wheel were twice the size of the sun wheel, the latter would perform three revolutions for one of the former. See Mechanics, Vol. X̌ll., p. 66,

The following is the history of this beautiful contrivance as given by Mr. Watt himself:
\(\because\) Having made my reciprocating engines very regular in their movements, I considered how to produce rotative motions from them in the best manner: and amongst various schemes which were subjected to trial, or which passed through my mind, none appeared so likely to answer the purpose as the application of the crank in the manner of the common turning lathe, (an invention of great merit, of which the humble inventor, and even its xra, are unknown). But, as the rotative motion is produced in that machine by the impulse given to the crank in the descent of the foot only, and behoves to be continued in its ascent by the momentum of the wheel which acts as a fly, and being unwilling to load my engine with a fly heavy enough to continue the motion during the is cent of the piston, (and even were a counter-weight employed to act during that ascent, ol a fly heavy enough to equalize the motion), I proposed to employ two engines acting upon two cranks fixed on the same axis at an angle of 120 degrees to one another, and a weight placed upon the circumference ol the lly at the same angle to each of the cranks, by which means the motion might be rendered nearly equal, and a very light fly would only be requisite. This had occured to me very early, but my attention being lully employed in making and erecting congines for raising water, it remained in petto until about the year 1768 or 9 , when Mr. Wasbrough erected one of his ratchetwheel engines at Birmingham, the frequent breakages and irregularities of which recalled the subject to my mind, and I proceeded to make a model of my method,
which answered my expectations; but having neglected to take out a patent, the invention was communicated by a workman employed to make the model to some of the people about Mr. Wasbrough's engine, and a patent was taken out by them for the application of the crank to steam-engines. This fact the said workman confessed, and the engineer who directed the works acknowledged it, but said, nevertneless, the same idea had occurred to him prior to his hearing of mine, and that he had even made a molel of it before that time, which might be a fact, as the application to a single crank was sufficiently obvious. In these circumstances I thought it better to endeavour to accomplish the same end by other means, than to cnter into litigation, and, if successful, by demolishing the patent, to lay the matter open to every body. Accordingly, in 1781 , I invented and took out a patent for several methorls of producing rotative motions from reciprocating ones, amongsi which was the method of the sun and planet wheels.
"This contrivanee was applied to many engines, and possesses the great advantage of giving a double velocity to the fly; but is perhaps more subject to wear, and to be broken under great strains, than the crank, which is now more commonly used, although it requires a lly-wheel of four times the weight, il fixed upon the first axis. Myapplication of the double engine to these rotative machines rendered unnecessary the counter-weight, and produced a more regular motion; so that, in most of our great manufactories, these engines now supply the place of water, wind, and horse mills; and instead of carrying the work to the power, the prime agent is placed wherever it is most convenient to the manufacturer."

But whether the rotatory motion is produced by the simple crank,* or by the sun and planet wheel, there is an irregularity in its action, which it is necessary to correct. The force of the planet whecl to drive the sun wheel is constantly varying. In the position shown in Fig. 1, Plate DVIII, and also in the position when the planet wheel is exactly above the sun whecl, it is nothing. It then gradually increases till the centres of the two wheels are in the same horizontal line, and from that point it again diminislres. In the two positions when the force is nothing, we might expect that the engine would stop, as the action of the steam tends only to press the axis of the planet wheel against that of the sun wheel. But as the planct wheel, when once put in motion, has a tendency to go on, it never can stop at these two positions of minimum force, and the instant it passes them it acquires fresh power to continuc its motion. Itris obvious, however, that such a motion must be irregular, being slow in one position and quick in another.

In order to remedy this evil, a large and heavy flywheel \(m\) is fixed on the axis of the sun wheel \(j\). This heavy wheel, when once putin motion, equalises the irregular motion of the planet wheel in the manner which we have already lully explained in our article Mechanics, (Vol. Xll. p. 6i66.)

The other contrivances invented by Mr. Watt we shall describe in his own words.
"The Parallel Motion, in the single engines, serves in place of chains, and in the double engines, supplies
the place of the rack and sector. It has been mentioned, that the racks and sectors were very subject to wear, and that, when perfect, they did not move with that smoothness that was wished; and to chains there were many objections. It occurred to Mr. Watt, that if some mechanism could be devised moving upon centres, which would keep the piston-rods perpendicular, both in pushing and pulling, a smoother motion would be attained; and, in all probability, that the parts would be less subject to wear. After some consideration, it occurred to him, that if two levers of equal lengths were placed in the same vertical plane, nearly, as shown in Fig. 3 of plate DVIII, moveable on the centres B and C , and connected by a rod A D, the point E , in the middle of that rod, would describe nearly a straight and perpendicular line, when the ends \(A\) and \(D\) of the levers, and of that rod, moved in the segments of circles FG, and \(1 H\), provided the arch FG did not much exceed 40 degrees, and consequently that if the top of the piston-rod were attached to that point E , it would be guided perpendicularly, or nearly so.
It necessarily followed, that if for convenience the lever CD (which represents what he called the regu-lating-radius) were made only half the length of the lever AB (which represents the half length or radius of the working-beam) a point situated at one-third of the leagth of the rod AD, from the joint A, woule then move in a perpendicular line. These were first ideas, but the paralie! motion was soon moulded into the form in which it appears in all Boulton and Watt's engines, and in which it is seen in Plate DVIII, Fig. 1, of the second engine at the Albion Mill. A patent for the protection of this, and some other of Mr. Watt's invention, passed the seals in April 1784, but the invention was made in the latter end of 1783.
The regulation of the speed of the rotative engines, is a matter essential to their application to cotton spinning, and many other manufactorics.

It is performed by admitting the steam in to the cylinder more or less freely, by means of what is called a Throttle-valec, which is commonly a eircular plate of metal A, Fig. 4, having a spindle B fixed across its diameter.

This plate is accurately fitted to an aperture in a metal ring CC, of some thickness, through the edgeway of which the spindle is fitted steam-tight, and the ring is fixed between the two flanches of the joint of the steam-pipe which is next to the cylinder. One end of the spindle, which has a square uponit, comes through the ring, and has a spanner fixed upon it by which it can be turned in cither direction.

When the valve is parallel to the outsides of the ring, it shuts the opening nearly perfectly; but when its plane lies at an angle to the ring, it admits more or less steam according to the degree it has opened; consequently the piston is acted upon with more or less force. For many purposes engines are thus regulated by hand at the pleasure of the attendant; but where a regular velocity is reguired, other means must be applied to open and shut it, without any attention on the part of those who have the care of it. For this purpose Mr. Watt had various methods, but at last lixed upon what he calls the riovemor, (shown at W. Plate IDVIIl, Fig. 1.) consisting of a perpen-
dicular axis, turned by the engine: To a joint near the top of this axis are suspended two iron rods, carrying heavy balls of metal at their lower ends, of the nature of pendulums. When this axis is put in motion by the engine, the balls recede from the perpendicular by the centrilugal lorec, and by means of a combination of levers fixed to their upper end, raise the end of a lever which acts upon the spanmer of the throthe-ralve, and shuts it more or less according to the speed of the engine, so that as the velocity augments, the valve is shut, until the speed of the engine and the opening of the value come to a maximum and balance each other.

The application of the centrifugal prineinle was not a new invention, but had been applied by others to the regulation of water and wind-mills, and other things; but Mr. Watt improved the mechanism by which it acted upon the machines, and adapted it to his engines.

From the begiming, Mr. Watt applied a gage to show the height of the water in his little hoiler, which consisted of a glass tube communicating at the lower end with the water in the boiler, and at the upper end with the steam contained in it. This gage was of great use in his experiments, lant in practice other methods are adopted. He has always used a barometer to indicate the degree of exhaustion in his congines. Sometimes that instrument is, as usual, a glass tube 33 or 34 inches long, immersed at hottom in a cistern of mercury, and at top communicating by means of a small pipe and cock with the condenser. The oscillations are in a great degree prevented by throttleing the passage for the steam by means of the cock.

But as glass tubes were liable to be broken by the workmen, barometers were made of iron tubes, in the form of inverted syphons, one leg being about half the length of the otber. To the upper end of the long leg a pipe and cock were joined, which communicated with the condenser; a proper quantity of mercury was poured into the short leg of the syphon, which naturally stood level in the two legs: A light float with a slender stem was placed in the short leg, and a scale divided into half inches applied to it, which (as by the exhaustion the mercury rose as much in the long leg as it fell in the short one) represented inches on the common barometer.

The steam-gage is a short glass tube with its lower end immersed in a cistern of mercury, which is placed within an iron box serewed to the boiler steam-pipe, or to some other part communicating frecly with the steam, which, pressing on the surface of the mercury in the cistern, raises the mercury in the tube, (which is open to the air at the upper end) and its altitude serves to show the elastic power of the steam over that of the atmosplaere.

These instrments are of great use where they are kept in order, in showing the superintendant the state of the engine ; but slovenly engine-tenders are but too apt to put them out of order, or to suffer them to be so. It is the interest, however, of every ouner of an engine to see that they, as uell as all other parts of the engine, are lept in order.

The barometer being adapted only to ascertain the degree of exhaustion in the condenser where its variations were small, the ribrations of the mercury rendered it very difficult, if not impracticable, to ascertain the state ol the exhaustion of the cylinder at the dif-
ferent periods of the stroke of the engrine ; it beeame therefore necessary to contrive an instrament for that purpose, that should be less subject to vibration, and should show nearly the derree of exhaustion in the cylinder at all periods. The lollowing instrument, called the ludirntor, is found to answer the and sufficiently. A cylinder about an iurls diameter, and six inches loug, excecting! truly borcd, has a solid piston accurately litted to it, so as w slide asy by the help of some wit; the strm of the piston is maided in the direction of the axis of the cylinder, s's that it may not be subject to jum or cause lirition in any part of its motions. The batom ol the cylineler has a cock and small pipe joined to it, which, haviner a conical end, may be inserted in a hole dritled in the eylinder of the engine near one of the ends, se that by oponing the small cock, a communication may be ctfeeted betwem the inside of the eytinder and the indicator.

The cylinder of the indicator is fastened upon a wooden or metal frame, more than wice its own length ; one end of a spiral steel spring, hace that of a spring steelyard, is allached to the upper end of the piston-rod ol the indicator. The spring is made of such a strength, that when the cylinder of the indicator is porfectly exhasted, the pressure of the atmosphere may force its piston down within an inch of its bottom. An index being fixed to the top of is piston-rod, the point where it stands, when quite exhausted, is marked from an observation of a barometer communicating with the same exhausted vessel, and the scale divided accordingly.

Mr. Watt very carly found that, although most kinds of grease would answer when mployed to keep the piston tight, yet that beef or mutton tallow were the most proper, and the least liable to decompose; but when cylinders were new and imperfectly bored, the grease soon disappeared, and the piston was left dry ; he therefore endeavored to detain it by thickening it with some substance which would lubricate the cylinder, and not prove decomposable by heat ant exhaustion. Black-lead dust seemed a proper substance, and was therefore employed, especially when a cylinder or the packing of a piston was new; but it was found in the sequel that the black-lead wore the cylinder, though slowly; and by more perfect workmanship, cylinders are made so true as not to require it, or at least, only for a very short time at first using.

The joints of the cylinder, and other parts of New. comen's engines, were generally made tight by being screwed together upou rings of lead covered with glazier's putty, which method was sufficient, as the entry of small quantities of air did not materially affeet the working of these engines where only a verg imperfectexhaustion was required. Lut the contrary being the case in the improved engines, this method would not answer Mr. Watt's purpose. He at first made his joints very true, and screwed them rogether upon pasteboard, softened by soaking them in water. which answered tolerably well for a time, but was not sufficiently durable. He therfore endearoured to find out some more lasting substance; and obscrving that at the iron founderies they filled up hars by iron borings or filings, moistened by urine, which in time became hard, he improved upon this by mixing the iron borings or filings with a small quantity of sulphur, and a little sal-ammoniae, to which he after-
wards added some fine sand from the grindstone trougbs. This mixture, being moistened with water and spread upon the joint, heats soon after it is screwed together, becomes bard, and remains good and tight for years, which bas contributed in no small degree to the perfection of the engines.

Mr. Murdock, much about the same time, without communication with Mr. Watt, made a cement of iron borings and sal-ammoniac, without the sulphur, But the latter gives the valuable property of making the cement set immediately.

The following is an account of the actual performance of some ol Mr. Watt's engines, as given by himself:

The burning of one bushel of good Newcastle or Swansea coals in Mr. Watt's reciprocating engines, working more or less cxpansively, was found, by the accounts kept at the Cornish mines, to raise from 24 to 32 millions of pounds of water one foot high: the greater or less effect depending upon the state of the enginc, its size. and rate of working, and upon the quality of the coal.

In engines upon the rotative double construction, one having a cylinder of \(31 \frac{1}{2}\) inches diamcter, atd making \(17 \frac{1}{2}\) strokes of 7 fcet long per minute, called 40 horses' power,* meaning the constant exertion ol 40 horses (for which purpose, supposing the work to go on night and day, 3 relays, or at least 120 horses, must be kept) consumed about 4 bushels of good Newcastle coal per hour, or 400 weight of good Wednesbury coal. A rotative double ensine, with a cylinder of \(23 \frac{3}{4}\) inches in diameter, making \(21 \frac{1}{2}\) strokes of 5 feet long per minute, was called 20 horses' power ; and an engine. with a cylincler of \(17^{\frac{1}{2}}\) inches diameter, making 25 strokes of 4 feet long per minute, was called 10 horses power : and the consumption of coals by these was nearly proportional to that of the 40 horses' power.

A bushel of Newcastle coals, which thus appears to be the consumption of a 10 horse eugine for one hour, grinds and dresses about 10 bushels, Winchester measure, of wheat.

The quantity of water necessary for injection may be determined on principle for engines having a separate condenser. Having found the contents of the cylinder in cubic fect (that is, the arca of the piston multiplied by the length of the stroke \(+\frac{1}{0}\) to allow for the vacuities at top and bottom through which the piston does not pass,) it is to be considered that every cubic foot of steam produces about a cubic inch of water when condensed, and contains about as much latent heat as would raise 960 cubie inches of water one degree. This steam must not only be condensed, but must be cooled down to the temperature of the hot well: therefore as many inches of cold water must be comploged as will require all this heat to raise it to the temperature of the hot well.

Therefore let \(c\) be the quantity of steam to be condensed in cubic feet;
\(a=\) the temperature of the cold water (per Fahrenheit); \(b=\) the proposed temperature of the warm water, or hot well;
\(117 \approx=\) the sensible and latent heat of steam;
\(x=\) the cubic inches of cold water required to condense \(c\).
Then \(c \times \overline{1172-b}=x+\overline{b+a}:\)

\section*{Therefore \(c \times-\frac{}{b-a}=x\).}

Thus, if the proposed temperature of the hot well be \(100^{\circ}\) (and it should not be higher to obtain a tolerable vacuum in the cylinder), and that of the injection be \(50^{\circ}\), we have \(a=50^{\circ}\),
\(b=100^{\circ}\); hence \(\frac{117^{\circ}-100}{100-50}=21.44=x . \quad\) That is, for every foot of the capacity of the stroke in the cylinder \(+_{10}^{1}\), calculated as has been directed, or for every cubic inch of water evaporated from the boiler, about \(21 \frac{1}{2}\) cubic inches of water at \(50^{\circ}\) will be required to condense the steam.

But as the injection water may not be obtained so cold as \(50^{\circ}\), and other circumstances may require an allowance, a wine pint of water for every inch boiled off, or for every cubic foot of the contents of the stroke in the cylinder, may be kept in mind as amply sufficient. This greatly excecds the quantity necessary in a good Newcomen's engine, and by showing the more perfect condensation, points out the superiority of the new engine; for the Newcomen's engine, if working to the greatest advantage, should not be loaded to more than 7 pounds upon the inch, whereas Watt's engine bears a load not much less than II pounds, cxclusive of friction, when making twelve 8 -feet strokes per minute.

What has been now said is not a matter of mere curiosity: it affords an exact rule for judging of the good working order of the engine. We can measure with accuracy the water admitted into the boiler during an hour without allowing its surface to rise or fall, and also the water cmployed for injection. If the last be above the proportion now given (adapted to the temperatures \(50^{\circ}\) and \(100^{\circ}\)), we are certain that steam is wasted by leaks, or by condensation in some improper place.

It is evident that it is of great importance to have the temperature of the hot well as low as possible, because there always remains steam in the cylinder of the same of rather higher temperature: possessing an clasticity which balances part of the pressure on the other side of the piston, and thus diminishes the power of the engine. This is clearly scen by the barometer which Mr. Watt applies to his engimes, and is a most usclul addition to the proprictor. It shows him the

\footnotetext{
- "Witen Boulton and Watt set about the introduction of the rotative stam-engines, to give motion to mill-work, they felt the necessity of adopting sone mote of describing the power, which should be casily understood by the persons who were likely to use them. Horses being the power then fencratly employed to move the machinery in the great breweries and distilleries of the metropolis, where these chgines came first into demant, the poner of a mill-horse was considered by them to aflord an obvious and conrise standard of comparison, and one sufficient? definite for the purpose in view.
"A howse goine at the rate of 21 miles an hour rasesa weight of 150 lbs. by a rope passing over a pulley, which is equal to the raising ar, po lbs. one foot high in a minute. This was considered the horse's power; but in calabating the size of the engines, it was jumerd whisable to make :a very ample allowance for the probable ease of their not being kept in the best order, and there fore the loa! was only assmed at ahout 7 lhas. on the spuare inch of the piston, although the engines work well to 10 tbs. on the inch, exehas of their own triction." W.
}
state of the vaturm, and, with the height of the mercury in the steam-guage, points out the real power of the engine.

Mr. Watt finds that, with the most judiciously constructed furnaces, it requires 8 feet of surliace of the boiler to be exposed to the action of the lire and flame to boil off a cubic foot ol water in an hour, and that a bushel of Neweastle coals so applied will boil off from 8 to 12 cubic leet, and that it requires about a cwt. of Wednesbury coals to do the same.

Having thas given a general view ol the inventions of Mr. Watt, we shall proceed to give an account of the labours of his contemporaries and his successors. The variations, however, which the steam engine has undergone are so numerous, that it would be impossible in a work like this, intended for general readers, to embrace all those contrivances which have been published; so that we must confine ourselves to those which have been regarded as combining ingenuity with practical utility.

\section*{Description of Mr. Homblower's Engine with two Cylinders.}

As this engine is now in more extensive use than any other variety excepting Mr. Watts, and notwithstanding its similarity in principle to Mr. Watts, displays much ingenuity, it is necessary to give a full description of it. Horublower does not seem to have published any account of his own engine, excepting the one which he sent to Dr. Robison, so that we have no alternative but to lay this before our readers.

Mr. Hornblower had erected his engine for different manufactories, and for winding up coal at collierics, and in 1796 he erected one at Messrs. Meux's brewery in London. Messrs. Boulton and Watt raised an action against Messrs. Hornblower and Maberly for an infringement of the patent, and a decision was given in the Court of Common Pleas in favour of Mr. Watt.

The principal parts of Mr. Hornblower's engine are two cyliuders, A, B, Plate DIX, Fig. 1, the largest of which is \(A\). A piston moves in each, having their rods \(C\) and \(D\) moving through collars at \(E\) and \(F\). These cylinders may be supplied with steam from the boiler by means of the square pipe \(G\), which has a flanch to conmeet it with the rest of the steam-pipe. This square part is represented as branching off to both cylinders. \(c\) and \(d\) are two cocks, which have handles and tumblers as usual, worked by the plugbeam W. On the fore-side (that is the side next the eye) of the cylinters is represented another communicating pipe, whose section is also square or rectangular, having also two cocks \(a, b\). The pipe I, immediately under the cock \(b\), establishes a communication between the upper and lower parts of the small cylinder B, by opening the cock \(b\). There is a similar pipe on the other side of the cylinder \(A\), immediately under the cock \(d\). When the cocks \(c\) and \(a\) are open, and the cocks \(b\) and \(d\) are shut, the steam from the boiler has Pree admission into the upper part of the \(c y l i n d e r B\), and the steam from the lower part of 13 has free admission into the upper part of \(A\); but the upper part of each cylinder has no communication with its lower part.

From the bottom of the great cylinder proceeds the eduction-pipe \(K\), having a valve at its opening into Vol. XVII. Part II.
the cylinder, which bends downwards, and is connected with the conical condenser 1 . The condenser is fixed on a hollow box \(\mathbf{1 1}\), on which stand the pumps N and Ofor extracting the air and water; which last runs along the trougl, 1 'into a cistern \(U\), from which it is raised by the pump \(V\) for recruiting the boiter, being already nearly boiling lot. Immediately under the condenser there is a spigot valve at \(S\), over which is a small jet pipe, reachimg to the leond of the celuc-tion-pipe. The whole of the condensing apparatus is contained in a cistern \(R\) of cold water. A mall pipe \(I^{\prime}\) comes from the side ol the condenser, and terminates on the bottom of the trough 'I', and is there covered with a valve \((Q\), which is kept tight by the water that is always rumning over it. Lastly, the pump-rods \(X\) cause the outer end of the beam to preponderate, so that the quiescent position of the beam is that represented in the figure, the pistons beiner at the top of the cylinders.

Suppose all the cocks open, and steam coming in copionsly from the boiler, and no condensation going on in \(L\); the steam must drive out all the air, and at last lollow it through the valve Q. Now shut the valves \(b\) and \(d\), and open the valve \(S\) of the condenser. The condensation will immediately commence. There is now no pressure on the under side of the piston of A, and it immediately descends. The communication between the lower part of 13 and the upper part of \(A\) being open, the steam will go from \(B\) into the space left by the piston of \(A\). It must therefore expanct, and its elasticity must diminish, and will no longer balance the pressure of the steam above the piston of B. This piston, therefore, if not withheld by the beam, would descend till it is in equilibrio, having steam of equal density above and below it. But it cannot descend so far; for the cylinder 1 is wider than \(B\), and the arm of the beam at which its piston hangs is longer than the arm which sopports the piston of \(B\) : therefore when the piston of 13 has descended as far as the beam will permit it, the steam between the two pistons occupies a larger space than it did when both pistons were at the tops of their cylinders. Its density, therefore, and its clasticity, diminish as its bulk increases. It is therelore not a balance; for the steam on the upper side of B , and the piston B , pulls at the beam with all the difference of these pressures. 'The slightest view of the subject must show the reader, that as the pistons descend, the steam that is between them will grow continually rarer and less elastic, and that both pistons will pull the beam clownwards.

Suppose now that each has reached the hottom of its cylinder. Shut the cock \(a\) and the eduction cock at the bottom of \(A\), and open the cocks \(\|\) and \(l\). The communication being now established between the upper and lower part of each cylinder, nothing hinders the counter weight from raising the pistons to the top. Let them arrive there. The cylinder \(B\) is at this time filled with steam of the ordinary density, and the cylinder A with an equal absolute quantity of steam, bit expanded into a larger space.

Shut the cocks \(b\) and \(d\), and open the cock \(a\), and the eduction cock at the botom of \(A\); the condensation will again operate, and the pistons descend. And thus the operation may be repcated as long as steam is supplied; and one full of the cyliader \(B\) of ordinary steam is expended during each working stroke.

3 H

Let us now examine the power of this engine. It is evident, that when both pistons are at the top of their respective cylinders, the active pressure (that is, the difference of the pressure on its two sides) on the piston of \(B\) is nothing, while that on the piston of \(A\) is equal to the full pressure of the atmosphere on its area. This, multiplied by the length of the arm by which it is supported, gives its mechanical energy. As the pistons descend, the pressure on the piston of \(B\) increases, while that on the piston of \(A\) diminishes. When both are at the bottom, the pressure on the piston of B is at its maximum, and that on the piston of \(A\) at its minimum.

Mr. Hornblower saw that this must be a beneficial employment of steam, and preferable to the practice of condensing it while its full elasticity remained; but he has not considered it with the attention necessary for ascertaining the advantage with precision.

Dr. Robison then proceeds to an investigation of the effect of this engine, and he finds it to be exactly the same with the accumulated pressure of a quantity of steam admitted in the beginning, and stopped in Mr. Watt's method, when the piston has descended through the \(m\) th part of the cylinder. In considering, says he, Mr. Hornblower's engine, the thing was presented in so different a form that we did not perceive the analogy at first, and we were surprised at the result. We could not help even regretting it, because it had the appearance of a new principle and an improvement; and we doubt not but that it appeared so to the ingenious author; for we have had such proof of his liberality of mind as permit us not to suppose that he saw it from the beginning, and availed himself of the difficulty of tracing the analogy. And as the thing may mislead others in the same way, we have done a service to the public by showing that this engine, so costly and so difficult in its construction, is no way superior in power to Mr. Watt's simple method of stopping the stean. It is even inferior, because there must be a condensation in the communicating passages. We may add, that if the condensation is performed in the cylinder \(A\), which it must be unless with the permission of Watt and Boulton, the engine cannot be much superior to a common engine; for much of the steam from below B will be condensed between the pistons ly the colduess of the cylinder A; and this diminishes the downward pressure on A more than it increascs the downward pressure on B. The disposition and connection of the cylinders, and the whole condensing apparatus, are contrived with peculiar neatness. The cocks are very ingenious; they are composed of two flat circular plates ground very true to each other, and one of them turns round on a pin through their centres; each is pierced with three sectoral apertures, exactly corresponding with each other, and occupying a little less than one half of their surfaces. Byturning the moveable plate so that the apertures coincide, a large passage is opened for the steam; and by tuming it so that the solid of the one covers the aperture of the other, the cock is shat. Such regulators are now very common in the cast iron stoves for warming rooms.

Mr. Ilomblower's contrivance for making the collars for the piston rods air tight is also uncommonly ingenious. This collar is in factero, at a small distance, from each other. A s'nall pipe, branching off
from the mainsteam pipe, communicates with the space betweea the collars. This steam, being alittle stronger than the pressure of the atmosphere, effectually hinders the air from penetrating by the upper collar; and though a little steam should get through the lower coltar into the cytinder A, it can do no harm. We see many cases in which this pretty contrivance may be of signal service.
But it is in the framing of the great working beam that Mr. Hornblower's scientific knowledge is most conspicuous; and we have no hestation in affirming that it is stronger than a beam of the common form, and containing twenty times its quantity of timber. There is hardly a part of it exposed to a transverse strain, if we except the strain of the pump V on the strutt by which it is worked. Every piece is either pushed or pulled in the direction of its length. We only fear that the bolts which connect the upper beam with the two iron bars under its ends will work loose in their holes, and tear out the wood which lies between them. We would propose to substitute an iron bar for the whole of this upper beam. This working beam highly deserves the attention of all carpenters and engineers."
Before concluding this account of Mr. Hornblower's engine, we shall describe a very ingenious skeleton valve of his invention, which has been found of great advantage. It is shown in Plate DIX. Fig. 2, 3. where AAAA is the box containing the valves, BB is an inverted valve firmly fixed to the bottom of the socket S ; this socket serves as a guide to the part of the valve which is to be lifted by a short cylindrical rod as in common cases. The part which is to be lifted is DDEE, and the lifting is to be performed by any of the usual methods attached to the eye \(F\), which is part of the cross bar EE in Fig. 3, which is a plan of the upper surface of the valve and its upper seat. The valve has \({ }^{\text {wo }}\) seats, and the principal passage for the steam is at the lower seat, for the steam in its passage goes through the body of the valves, having always access to the lower seating, as the body of the valve is entircly open, excepting what is taken up by the cross bar EE; so that in this sense we lift the thickness of the metal only, of which the body of the valve is constructed. In order to understand the operation of the valve better, we must conceive the upper space in the box to be always full of steam, and consequently the inner part \(O O\) of the valve also full; then the lower space of the box will be a vacuum, when upon lifting the valve (which is a cylinder open at both ends) the steam will pass through it and into the lower space at the inverted lid BB. The cylindrical part is raised a little in the figure to show how it separates from the lower lid BB. An improvement in this valve has been suggested by Mr. Tredgold. The practical difficulty being to make it fit steam tight on two seats, he proposes to make the outside of the cylinder to slide in a stuffing loox, or in an elastic packing of metal. When this is done, the largesz valves will present no other resistance to being opened than the pressure on the seat, and the friction of the surface of the cylinder. "It is simply," says Mr. Tredgold, "the common conical valve inverted, and that which formed the seat in the common val ve moves instead of the plate, and should obviously slide in a steam-tight case."

\section*{Account of Trevithick's High Pressure Engine.}

We have already described the high pressure engine invented by Leupold. Without knowing what had been done by Leupold, Mr. Watt conceived the same idea, but his views were never put in practice, and it was reserved to Mr. Trevithick of Camborne in Cornwall, to bring the high pressure engine into general use. In conjunction with Mr. Vivian of the same place, he took out a patent in 1802, for a ligh pressure engine. Ilis principal object was to form an engine so compact and portable that it could be applied to the moving of carriages on rail roads. This great object he completely attained, and it was first applied as the moving power of carriages on a railway at Merthyr 'Tydvil in 1805. Since that time it has been employed in various collieries near Leeds, Wigan, and Newcastle upon Tyne.

This engine is represented in Plate DIX. Fig. 4., where AA is a cylindrical boiler ol cast iron lrom three to four feet in diameter, and from nine to twelve feet long. The fire is made in a double wrought iron tube of the form of a syphon (one ot the legs is shown at D) lying horizontally within the large cylinder \(A\) A. The two ends of the double tube are attached to the plate \(d\). One of the ends is occupied with the fire door and ash pit, and the bars on which the fire is made, while its other end contracts into the iron chimney or flue T, having a door Z below for removing the soot. The boiler is filled with water above the surface of the double tube \(D\), as shown in the figure. The steam cylinder \(A\) is almost wholly inclosed within the boiler, so as to be kept at the same heat as the water. The piston rod \(H\) attached to the piston G is fixed to the middle of a cross bar \(I\) at right angles to the length of the boiler. At the extremity of the cross bar are two connecting rods L, the lower ends ol which are jointed to two cranks which drive the axis of the lly-wheel M. When a vertical reciprocating motion is required, it is attained at once from the cross bar I. The fouruay cock for admitting the steam into the cylinder, and already represented in Leupold's cngine, is shown at \(i, f, g, k\). The steam from the hoiler passes directly through the passage \(g\), and brings stearn to the cock, so that it can be admitted cither above or below the piston, according to the position of the cock, \(f\) being the passage that carries it above the piston, and \(k\) that which carries it below the piston. The fourth passage \(i\) al. Bows the steam to fly off into the flue \(I\) after it has exerted its expansive force upon the piston. The method of opening and shutling the cocks is similar to that used in other engines. The safety valve \(n\) is kept down by a lever \(p v\) with a weight \(p\). The cold water is carried to the boiler by a pipe \(r\) enclosing the waste-pipe \(1 F\) which is kept hot by the discharged steam, and which, therefore, gives out its heat to the cold water.

In the engines which Mr. Trevithick erected in Cornwall, he introduced the cylindrical tube boiler which is now generally used in that part of England. It is shown in Plate DIX. Fig. 5, where aa represents the part containing the water. The fire place is at the end of the tube \(A\), and the heated air, after passing through \(A\), returns through the flue \(B\), which passes
horizontally bencath the boiler to the end at which the fire is situated. Ifere it divides into two branches which pass along c c, into the flues DD, by which it is conveyed along the sides of the boiler, and thence escapes to the chimncy.*

\section*{Hoolf's Enginc.}

The engines introduced by Mr. Woolf were founded on an erroncous law of expansion, which, having been given by so respectable an engineer as the direct result of experiment, misled many writers into the belief of its correctness. But though the law which he assumed was erroneous, yet the engines which he introduced had considerable merit. They were nothing more indeed, than the application of high pressure steam to the double cylinder engine of Ilomblower, in which Mr. Vatt's condensing apparatus was employed in consequence of the expiry of his patent.

When Mr. Woolf went into Cornwall he erected some engines of this kind, and by having them made and fitted together with much more accuracy than had hitherto been the practice in that neighbourhood, he obtained from them a much better performance than had yet been obtained from Mr. Watt's engines. One of these at Huel Abraham mine was lound, during a trial of twenty-four hours, to lift scventy million of pounds one loot high by the combustion of one bushel of coal (Mr. Ilenwood in Dr. Brewster's Journal, No. xix, p. 36.) Their effect was very far beyond that ol any of Mr. Watt's engines which were then at work in the neighbourhood, as appears from a statement of their performance which was published periodically; but this arose not from any superiority in the principle of Woolf's engine, but solely from the great attention which he paid to the joints, and the fitting together of the parts.

In 1820 when Mr. Woolf was appointed engineer of the consolidated mines, he was anxious to erect some double cylinder engines; but this proposal met with opposition, and some very large engines of Watt's construction were madc. Every attention was paid to proportion and workmanship, and from a performance of twenty and twenty-five millions of pounds lifted one foot by the combustion of a bushel of coal, they rose to lorty and even forty-eight millions. 'The sufficiency of Mr. Watt's engines was now placed beyond a doubt, and only one of Mr. Woolf's has been since erected. Mr. Woolf, however, has great merit in having introduced that accuracy of workmanship and niceness of fitting by which Mr. Watt's engines ebtained their superiority.

Mr. Woolf made some improvements on the boilers of steam engines which merit notice. His boilers consisted of a horizontal cylinder or reservoir for containing steam and water, having a series of horizontal tubes below it crossing it at right angles, and connected by short necks with the reservoir. Between these tubes, and uver and above them alternately. the flame and lieated air traversed in its passage to the chimney. He proposed another ingenious plan of having an upper and a lower boiler connected by short tubes; but though this exposes much surface, it is troublesome to execute ; but, as Mr. Henwood \(\dagger\) remarks, being usually made of cast iron, and continually
exposed to the intense action of the fire, the water was frequently driven out ol them, and their temperature became considerably elevated; by the readmission of water at a comparatively low temperature, they were rapidly cooled, and the consequent contraction occasioned lirequent fracture, not only of the joints, but also of the tubes themselves. Frequent trials demonstrated their inferiority to those of Trevithick, in favour of which they were soon relinquished.

\section*{Account of Mr. Grose's Improvements on the Steam Engine.}

About the end of the year 1826, Mr. Grose was called upon to superintend the manufacture of some steam engines at Huel Towan, and the average duty (performance) of the one which was first worked was nearly 50 millions of pounds. Mr. Grose now applied a coating of saw dust about ten inches thick to the steam-pipes, nozle, cylinder, \&c., and a stratum of ashes of nearly the same depth to the top of the boiler. By this means the duty was raised to about 65 millions. As there was still, however, a considerable loss of heat, another coating of the same material of the same thickness was applied on the outside of the first coating, and the result of this was an increase of the duty to cighty-seven millions, which was the average of a trial made in the presence of Mr. Henwood and several engineers and scientific individuals. Pursuing Mr. Grose's idea, Mr. Woolf has brought one of his engines to a duty of nearly 70 millions, as already mentioned.

The gradual improvement which has taken place in the steam-engines in Cornwall, may be seen from the following table drawn up by Mr. Henwood.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{No. of Engmes in Cornwall.} & & Average duty in millions of pounds. \\
\hline 1823 & - & 55 & - & 26.9 \\
\hline 1824 & - & 57 & - & 28 \\
\hline 1825 & - & 62 & - & 28.97 \\
\hline 1826 & - & 63 & - & 28.36 \\
\hline 1827 & - & 62 & - & 31.9 \\
\hline 1828 & - & 60 & - & 34.85 \\
\hline 1829 & - & 56 & - & 40.9 \\
\hline
\end{tabular}

The details respecting these engines are given by Mr. Henwood in Dr. Brewster's Journal, No. XlX, p. 45; and the same gentleman publishes regularly in the same Journal quarterly reports of the performance of the steam-engines in Cornwall.

\section*{Mr. Perkins' Steam E'ngine.}

Although the high expectations which were entertained from Mr. Perkins' labours on the steam engine have not been realized, our readers will still look for some account of the method fiom which so much was anticipated.

The general construction of the apparatus is represented in liate DIX, Fig. 6 , where a a a represents the section of the Cienerator or boiler. It is a strong cylindrical vessel made of metal, about three inches thick in every part. This vessel is filled with water and heated in a cupola lurnace fed by a bast, which almost entirely surrounds it. On the top of the generator there is an escape valve \(b\) pressed down by the loarled lewer \(e\), the pressure being capable of aljustbent by placing the weight at diferent distances lirom the fulcrum. This valve admits the steam to the
steam-pipe \(d\) which leads to the working cylinder. A lateral fipe \(e\), intended merely for safety, is connected with the generator, and has an apparatus \(f\) attached to it for indicating the pressure. A forcing pump \(h\), wrought by the engine, feeds the generator with water by the pipe \(g\), which terminates near the bottom of the generator.

In order to generate steam, the generator is tilled with water by the forcing pump \(h\). When the heat of the surrounding furnace has laised the water to a temperature of 400 or 500 of Fahrenheit, an additional quantity of water is pumped into the generator, suffcient to force a portion of that which is already heated from under the loaded valve \(b\) at the steam-pipe \(d\), where it instantly flashes into strong steam, which proceeds to the piston of the cylinder. The valve \(b\) is shown on an enlarged scale in Fig. 7. It is a spherical bulb falling into a concave seat in the lower part of the square chamber. The upper part of the valve is a cylindrical rod, on the top of which the weight of the pressing lever \(\epsilon\) is exerted. The lower part of the valve is a triangular stem sliding up and down in the cylindrical passage. When the additional quantity of water is injected into the generator as above described, the bulb of the valve rises from its seat, and a corresponding quantity of heated water passes up between the cylindrical passage, and the sides of the triangular stem into the square chamber, where, from the pressure no longer operating on that portion of the water, it becomes steam, as already mentioned.

For the renewal and the regular continuance of the operation, an adjusting weight \(i\) is placed on the handie of the pump, which is a small single stroke forcing pump with a weight \(w\) performing the office of an air-vessel. At the end of the pump handle is a chain \(m\) which is comected with a single crank movement, and thus by a corresponding adjustment between the escape valve \(v\), the throttle valve (which is not shewn in the figure) and the weight \(i\), a certain quantity of water is forced into the generator at every stroke of the pump, and a corresponding quantity forced from beneath the loaded valve \(d\) to become steam.

From the difficulty, we presume, of constructing generators of sufficient strength, Mr. Perkins has more recently substituted a numerous series of very thick and strong cast iron tubes of small bore, and all connected with each other, in place of his cylindrical generator.

Such is a brief account of Mr. Perkins's method of generating powerful steam. Among the practical difficulties which Mr. Perkins encountered was the difficulty of constructing generators of the requisite strength ; but it is probable that the real causes of his failure were the great lorce which was lost by the injection of the cold water into the generator, and the loss contained by the passage of heat up the chimney.

\section*{Aecoment of Mr. Seott's lingine withoul a Boiler.}

In the year 1823, our ingenious countryman Mr. Alexander Scott of Ormiston, constructed a model of a steam-engine without a boiler, with which experiments were made in presence of several persons in his neighbourhood. Owing to accidental causes, the engine itscif was not completed till 1829. The following accome of it transmitted to the editor of this work by Mr. Scott, and published in the Lidinburgh

Journal of Seience, New Scries, No. III, p. 21, will convey a clear idea of this important invention.

When water of a low temperature is forced by a pump into a small generator placed over a fire, every stroke of the pump tends to lower the temperature of the whole body of water. This led to devise a generator by which water ol a low temperature can be forced into it without lowering the temperature of the hottest part of the water. In constructing a gencrator with that property, two truly flat circular patterns of wood were made, having each corresponcling projecting parts. In one pattern a continned spiral groove was cut from the centre to neally its circumference; the other pattern was left plain. Pig. 8, Plate DIX, . opresents the one, and Fig. 9 the other. Both these patterns were made twenty-one inches in diameter, exclusive of the projecting parts. The spiral grooved pattern was one inch and three fuarters in thickness, and the plain pattern one inch and a quarter thick, as also were the projecting parts of both patterns. 'The spiral groove was cut half an inch in depth, hall an inch wide at botom, and seveneighths of an inch at top. The ridge between the grooves was left hall an inch in depth, hall an inch in breadth at top, and seven-eighths of an inch at bottom. From these two patterns iron casts were taken. The faces of both these cast-iron plates were made truly fat, and a very small chiseled groove was cut along the middle of the ridge between the grooves, and a corresponding chiseled groove was cut in the inch and quarter thick plate. These two plates were then cemented together by means of well prepared iron cement, part of it filling the chiseled grooves in both plates; the projecting parts \(a, b, c, d, e, f, s, h\), Figs. 8 and 9, were bolted together by screw bolts, five-eighths of an inch square, made of the best iron; in all fifteen bolts, as marked by the small square boit holes in Figs. 8 and 9; the projecting parts of Fi g. 8 being all, except that marked \(h\), one and a quarter of an inch in thickness, which leaves a space of half an inch between the projecting parts of the two plates, for the more effectually screwing the plates close together. These wo phates when thus joined form only the one-half of the generator, as there is another hall almost in every respect similar to be placed perpendicularly over the one described: having a strong cast-iron pillar with flanges, as represented by Fig. 10, placed in the centre between the halves: These flanges are strongly sccured by four screw bolts to each of the halves of the generator. "The centre pillar is twelve inches in height and four and a half inches in diameter, with a bore up its centre of one inch and a quarter in diameter.

Fig. 4 represents a section of the generator answering to the description already given, placed in a furnace, of which a section is also given.

The generator is supported in the furnace by castiron brackets represented by Figs. 12 and 13, built into the sides ol the furnace for the projecting parts of the generator to rest on, where \(\mathrm{F}, \mathrm{Pig}\). 11 , is the fire place, A the ash-pit, and C part of the chimney. \(R\) represents part of the pipe that leads from the force pump to the generator, whence the water circulates round and round the spirals from the eircumference to the centre of the under half of the generator, ascends the centre piltir P , then circulates outwards from the centre of the upper half of the generator to
its circumforence, and escapes by the pipe \(S\), that teads to the cylinder of the engine. 'The pipe \(T\) is the one that conveys part of the escape steam from the cylinder into the chimney. This generator works a smatl high pressure angine, of which the following is a short deseription:

The frame of it is of cast-inon, of the form of the upper part of Mr. Matsiay's portable engine with its parallel motion. 'The piston of the cylinder is six inches in diameter, and the length of the \(\varepsilon\) ylinder permits the piston rod to make a stroke of seventeen inches. The steam is permitted to enter the eylinder alemately above and below the piston by means ol a spring slide valve wrought by the engine, and has a stroke of one and twoelighths of an inch. 'The axis of the fly-wheel cranks, Sic . is two inches and a quarter square: the rounded parts two and one eeighth inches in diameter. "The fly is seven hundred weight. and six leet in diameter. In the steam-pipe that leads from the generator to the eylinder, here is a threcway cock introduced, with a branch procceding from it to the hot well of the engine, by which the steam may be permited either to pass the rylimer, or by one-thind turn of the cock into the hot well of the engite. This three-way cock answers for stopping or starting the engine. As there is no spare in this kind of generator, as in common engine-boiters. for the steam to condense no expand, the common throttle yalve is not applicable to this kind of generator: but in place of it, a spring slifle valve is introduced in the steam-pipe between the threeway cock and generator, with a branch from it communicating with the hranch pipe that leads between the three-way cock and hot well. This slide valve is raised and lowered against a very acute angled aperture by means of centrilugal balls, so as to permit a necessary regulating quantits of stcam to escape into the hot well. In the pipe by which the steam escapes from the cylinder into the chimuey, there is a branch to the hot well; in this branch there is a cock by which the temperature of the water in the hot well is regulated. The forcing pump is wrought by the engine, and supplies the generator with water from the hot well. In a side ressel that communicates with the hot well, there is a forcing pump wrought by hand for starting the enginc. Intu this ressel additional water enters to supply the engine. and where the height of the water in the loot well is regulated. As the engine is intended to work different kinds of machinety, either together or seporately, different powers are required.

To produce these several powers, there is a shon branch from the steam-pipe near the generator, that reaches to a convenicnt place, where a steel yard safety value is placed. On the tever of this safety value. the safety valve weight is to be hung at divisions. marked on it answering to the power required. and a corresponding length of stroke is also to be giren to the forcing pump of the engine.

The engine was first publicly tried in January 1828, before it was connected with machinery of an kind: but that it might meet with some resistance, a friction bai of iron with a considerable pressure was applie? to the periphery of the fly-wheel, when the engin* made eighty-eight double strokes per minute.

The engine was tately tried connected with grindimg and turning-latse machinery, and at the same time it wrought cast-iron rollers bruising bleas for fire clas.

Although the bleas were very irregularly fed into the rollers, yet the engine continued to make sixty-four double strokes per minute. A greater number might have been obtained; but from the irregular manner the bleas was fed in, there was reason to fear that the main axis of the engine might give way.

On the bottom and sides of vessels that have been long used for boiling fresh water, a calcareous crust is generally formed more or less in thickness.

It is proposed, if it shall be found that the spiral grooved generators are liable to be incrusted in this manner, that a water-tight cistern be placed somewhat higher than the generator. This cistern is to be connected with the upper part of the generator by a pipe and stop-cock. There is also to be a branch pipe from the steam-pipe close to the under part of the generator, with a particular stop-cock, that when open, it shall cut off the communication between the generator and the slide valves. Let this cistern be filled brimful with water, and the cock at the bottom of the generator left open. If the cock of the cistern be opened, the whole water of the cistern will escape through the generator; and if the time it takes to escape be observed by a pendulum or stop-second watch, the repetition of this experiment at any time will show if the passage through the generator be contracted since last experiment. Should it be found to be so, it is then proposed to fill the generator with diluted muriatic acid, taking care to cut off the communication between it and the slide valves. After letting it remain in the generator a sufficient time, it is then to be washed out with warm water poured into the above-mentioned cistern. If the cistern be filled brimful it will serve to ascertain if the passage be clear, by observing the time it takes to pass through the generator. Repetitions of these experiments will undoubtedly free the generator of all calcareous matter. But as none of the strong acids act on the crust formed by sea water, it is therefore proposed to proceed in the same manner with diluted sulphuric acid, taking care never to give time for much crust to form by sea water, so that by the diluted sulphuric acid partly acting on the iron, it shall effect the removing of an imperfect crust produced from salt water; the generator to be always thoroughly washed out with warm water.

The length of time that this engine has been in constructing, gave ample time to devise improvements. Several were proposed, but few of them were thought of in time to be introduced without making material alterations on the parts made; such as improvements in the manner of constructing generators of greater strength, but of which it is unnecessary to lengthen this paper with a description. However, one thing may be mentioned, as it would add to the improvement of the engine. In place of working the escape steam slide value by the immediate action of the centrifugal batts, it was proposed that the axis of a bevelled wheel should be turned by the machinery of the enginc, and which is to turn other two bevelled wheels on one axis. These two last mentioned wheels are neither of them to be fixed to the axis, but both to slip round frecly upon it , turning in contrary directions as they reccive motion from the opposite sides of the first mentioned wheel. A locking stub box is fitted upon the axis between the two wheets, and can, by moving it one way or the other, be made to lock either of the wheels to the axis at the same time
that it leaves the other disengaged. It is proposed that the centrifugal balls shall shift this stub box back or forward as their centrifugal motion shall be affected by the velocity that they receive from the engine. The axis of these two wheels is proposed to be so connected with the escape steam slide valve, that, on its turning one way round it shall raise the valve to let the steam escape, and by turning the contrary way, it shall depress the valve that less may escape; and it is further proposed, that there shall be spring sockets on the axis of the first wheel, to prevent any part giving way when the valve is fully wrought up or down. In like manner it is proposed to work the furnace damper for regulating the heat of the fire.

The engine, as now completed, is a handsome piece of well finished accurate workmanship, and performs its part admirably. The young man who made all the principal parts of the engine is a self-taught mechanic, and merits the highest praise for the ingenuity, elegance, and perfect workmanship which he has displayed upon it.

\section*{Hccount of Mr. G. Gurney's Tube Boiler.}

Various attempts have been made to construct boilers with tubes, hut practical difficulties occurred which the ablest engineers sought in vain to remove. These difficulties arise from the water being carried off along with the steam, which left the containing vessel dry, oxidated the metal, and produced hydrogen, the heat of which destroyed the packings of the joints in the pipes and the working cylinder ;from the deposition of earthy concretions in the tubes, -and from the destruction of the joints by the sudden and unequal expansion of the metal composing the boiler.

Mr. Gurney's boiler is constructed with the view of obviating this objection. It is shown in Plate DIX, Fig. 14 and 15, Fig. 14 being a section, and Fig. 15 a front elevation of the boiler. A section of one of the tubes is shown in Fig. 14 surrounding the flame. Each end of every tube opens into two cylindrical chambers \(c c\), and these chambers communicate by pipes with the vertical chambers \(a a\), which receive the steam and water generated in the pipes. Here the steam and water are separated, the steam rising to the top, and the water falling to the bottom. Hence these chambers are called separators. These separators are united with the top of a tube \(b\), in the centre of which the safety-valve is placed. The injection pipe of the forcing pump is inserted into either of these chambers, \(d\) is a small well to receive any extraneous matter which may pass into the boiler, \(e \in\) are the guage cocks for steam and water, the lower cock being the water level of the boiler. The fire-door is shown at \(f\). Fig. 15 and 17 and 18 , show the manner in which the tubes are fixed to the chamber \(c\).

The incrustation of salt and its corrosive action on the tubes appeared at first hostile to the use of the boiler at sea; but Mr. Gurney has removed this objection by condensing the high pressure steam instead of blowing it off, and returning the water thus procured by means of a forcing pump into the boiler, so that by beginning with pure rain or distilled water, steam is continually generated without any great expenditure of fresh water, as the steam from the engine is not only condensed, but also a part of this procured from the fresh water which is successively employed
in condensing it, and which without loss of power in a steam vessel can be led from the water thrown up by the paddle wheels to a cistern for the purpose. The following is the condenser employed by Mr. Gurney.

\section*{Description of Mr. Gurney's Condenser.}

Mr. Gurney's Condenser is shown in Plate DIX, Fig. 19, 20, where \(a\) is a bent pipe joining the eduction pipe of the engine to the cone \(I\) of the condenser, which is a cylindrical vessel \(3 \frac{1}{2}\) feet long, and 7 inches diameter inside, for a to horse engine. Within this cylinder 40 copper tubes five-eighths of an inch in diameter, are arranged in circies, and are inserted in plates at each end by steam tight joints as shown in Fig. 20. The nozle \(c\) is connected with a cold water pump which discharges about two gallons per minute for every horse power. In steam boats this is not necessary, as the water can be procured from the paddles. This water will rise in the cylinder so as to surround the tubes until it is ejected from the nozle \(d\), from which it may return to the well or cistern. The steam which passes from the engine into the tubes is condensed before it reaches the lower cone \(e\) and falls into the close chamber below, from which it is carried by the suction pipe \(g\) to the injection pump of the boiler. When there is too little water in this chamber the ball of the cock falls and admits the proper quantity from the cylinder through the tube \(i\). By the tube \(k\) air or vapour may be drawn out. Captain Ross, who saw this condenser in operation, is of opinion that it makes Mr. Gurney's boiler quite perfect for naval purposes.

Having thus described the most important improvements ou the Steam Engine, we shall now give an account of some miscellaneous contrivances connected with it.

\section*{Misccllancous contrivances connected with the Stcam Engine.}

Murray's Sliding Valve.-The idea of a sliding valve has been long ago suggested, and seems to have becn first applicd to the air pump by Lavoisier or some of his associates. Mr. Murray of Leeds, however, has the merit of having applied it with great ingenuity to the steam engine, and may be regarded as its real inventor. This valve is represented in section in Plate DIX, Fig. 21, and the object of it is to cover alternately the passages \(a c, \varepsilon b\). The sliding cover is put in motion by the rod \(o\), which passes through a stuffing box. The steam from the boiler is introduced at S , passes through the opening \(a\) to the top of the cylinder, when the slide is down as shown in the figure, while the passage \(c\) to the condenser is open through the interior portion of the slide. When the slider is up the passage \(b\) to the bottom of the cylinder is open, and the passage \(a\) from the top, to \(c\), the passage to the condenser is open. Owing to the pressure of the steam against the box, the friction of the valve is considerable. This disadvantage, however, has been remedied by Mr. Murdoch, who packs the slide, and this keeps out the steam. Messrs. Paylor and Martineau have substituted for the slide, pistons sliding in a pipe, which is a valuable improvement.

Sim's Valve. - This valve is shown in Plate DIX, Fig. 22, and has been extensively used in large engites. The seat is shown at a \(a, a, a^{\prime} a^{\prime} a^{\prime}\), and is
solid at \(a\) a \(a\). Apertures are cut in its sides at \(a^{\prime} a^{\prime} a^{\prime}\) for the passage of the steam, and at \(a^{\prime \prime} a^{\prime \prime}\) is the beat, into which it is ground with emery. The valve \(b b\) is a plain cylinder very accurately bored, and packed at \(d d\) with the usual materials, the packing being kept in its proper place by the ring ee. A second ring ff rests on \(\varepsilon e\), and is kept in itsplace by the screws \(g\) g, which help also to keep the packing in a proper state of compression. The valve is tileci by the bare. It is cevident that the steam can excre no pressure to prevent the valve from being lifeed, and when it is closed, the vapour has no power to open it. This valve answers its purpose so completely, that an infant might lift the values of a 90 inch engine. It woukd be desirable to dispense with the packing, as it increases the dimensions of the valve. See Dr. Brewster's Journal of Science, No. XIX, p. 42.

Carluright's Mctallic Piston.-Mr. Cartwright took out a patent in 1797 lor the methorl of using metal in place of elastic substances for the packing of pistons. This method is shown in Fig. 23, where \(a\) a \(a\) are six or more segments of rings made to fic the internal surface of the cylinder, with a second series \(b b b\) crossing the joints of the former. Each series of segments were pressed against each other, and against the cylinder with \(V\) springs, and by having two sets with the junction of the rings in the one, set opposite to the solid parts of the rings in the other set, any escape of steam out of the joints was prevented. The upper and under sides of the sets of segments were connected by plates to which the piston rod was united, as shown in the section.
Jessop's expanding Coil Piston.-This very ingenious contrivance was sccured by patent in 1823, and is shown in Fig. 24. It consists of an elastic expanding coil of metal AA which winds round the body of the piston in a spiral form, as shown in the section at \(A \mathrm{~A}\). BB is a bed of hemp packing which prevents the steam from passing at the joints, and presses the springs against the surface of the cytinder. The piston is kept tight by the pressure of the steam on the upper and under plates. Mr. Barton's metallic expanding piston is very ingenious, and has been improved by Tredgold; but we must refer for an account of it to the work of the latter on the Steam Engine, p. 228. Perkins' metallic piston, from which much has been expected, is considered inferior to those described. See the Repertory of Patents, vol. i, p. 224.

\section*{On the Application of the Steam Engine.}

The Steam Engine is, of course, applicable to every purpose where mechanical power is required, but some of its applications have been of such vast importance to the progress of the useful arts, that they require to be specially noticed. The most important of these are as follows:
1. Raising of water.
2. Drawing ores and coals.
3. Driving cotton machinery.
4. Paper mills.
5. Thrashing mills.
6. Corn mills.
7. Iron manufactures, \&c.
1. Raising of Water.-By means of a single steam engine acting expansively 280,000 cubic feet of water can be raised one foot high by oue bushel of coals;
and an engine of one horse power working eleven and a half hours daily will raise 280,000 cubic feet of water one foot high in a day. It will cost 8.. per annum, for eacli horse power, to return the first cost and repairs. In raising water the stroke of a pump should not exceed eight feet, nor its diameter fourteen inches, and the velocity of the piston should not be greater than ninety-eight times the square root of the length of the stroke.

The quantity of water in cubic feet delivered at one stroke of a pump in the best order is .005 \(18 / d^{2}, l\) being the length of the stroke, and d the diameter of the pump in inches. The following table will show the quantity of work performed in 1826, at Wheel Hope, by one of the best Cornish engines made by Mr. Grose. The numbers are taken from a monthly report.
\begin{tabular}{l}
Diameter of cylinder \\
Load per square inch on piston \\
Length of stroke in cylinder \\
Number of strokes per minute \\
Number of lifts, 1 st 1 through \\
2d fathoms \\
\hline
\end{tabular}
2. Drauring Ores and Coals...-The engines used for this purpose are double engines from twenty to thirty horse power. From three to seven cwt. is generally raised at onee; and as the work is irregular, from stoppages and ehanges of motion, onc pound of coals raises only about 70,000 pounds of ore.
3. Driving Cotton Machincry.---Double acting engines working expansively are best fitted for cotton mills. One horse power will drive one hundred spindles with cotton yam and the preparatory machinery. The same power will work twelve power looms with preparation. If the day's work is eleven hours, ninety pourids of the best caking coal will be required for each borse power.
4. Puper lills...-A beating machine requires a seven horse power, and the new machines for making paper a two or a two and a half horse-power.
5. Thrashing Mills.---Engines from 4 to 6 horse power are çenerally used. The feeding rollers perform from 35 to tris revolutions per minute, their diameter is \(3 \frac{1}{2}\) inches, and their length from 4 to 5 feet. The straw rollers revolve 80 times per minute, and their diameter is \(3!\) feet. The drum revolves 500 times in a minute, and is st fect in diametre. The quantity of wheat hrashed by a machine with feeding rollers 4 lee broad, varies according to its quality from 12 to 24 Winchester bushels per hour, and the guantity of oats per hour from is to 30 bushets. The power required is 100,000 pounds raised one loot per minute for thrashing abone, and 18.3 .000 when winnowing machitiery is also wrought. Each inch of the straw receives three strokes ol' the beaters. 'The stroke should be mate with a whocity of 55 lect per second, of the beater shoutd move 3300 feet per minute.
6. (orm Mills.-.-The double expansive engine is best fitted for com mills. With low pressure steam it should griad if bushels of wheat for each bushel of
coals when working in the best manner. The average however, will be \(11 \frac{1}{2}\) bushels. The power required to grind and dress a Winchester bushel of wheat per hour is 31,000 pounds raised one foot in a minute. The velocity of the circumference of the mill-stone should be 93 feet per second, and with that velocity a pair of 5 feet stones should grind 4 or 5 bushels per hour, according to the state of the grain.
7. Iron Manufactures.--In the iron manufactures the steam engine is applied to blowing machines, forge hammers, rolling, flatting and slitting mills. See our Articles Blowing Machinery and Iron.

Many of the other applications of steam will be learned from the following table given by Mr. Cleland, and showing the quantity of steam power used in Glasgow in April 1825.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Horse Power.,} & \multicolumn{3}{|r|}{Horse Power.} \\
\hline Spiuning cotton, - & & Twisting yarn, & - & 18 \\
\hline Weaving, & & Smith work, & & 18 \\
\hline Raising wa & 262 & Drug grinding, & & 14 \\
\hline Bleaching \& dyeing, \} & & Coach making, & - & 12 \\
\hline Washing Sedischarg & & Glass grinding, & & 12 \\
\hline Calendering, - & 160 & Grinding malt and & & \\
\hline Corn grindiug, & 153 & pumping wash, & & \\
\hline Founding, & & Grinding colours, & & 14 \\
\hline Distilling, & 119 & Veneer sawing, & & 10 \\
\hline Engine making, & 68 & Tambouring, & & 10 \\
\hline Chemical operations, & 39 & Wool-carding, & & \\
\hline Machine making, & 37 & Pottery, - & & \\
\hline Suuff making, & 22 & Singing muslins, & - & \\
\hline Fire-brick making, & 19 & Tanning, & & \\
\hline Sugar refining, & & Gas, & & \\
\hline Cutting wood, & 18 & Coppersmiths, & & \\
\hline Lamp-black making, & 18 & Total, & & \\
\hline
\end{tabular}

Besides these there are in the vicinity of Glasgow, Collieries, 18, with 58 engines, of horse power, 1411 Quarries, 7, \(\quad \cdots 7\)

39

In 1824 upwards of 200 steam engines were used in Manchester.
Mr. Cleland has added to the above interesting documents, the following comparison of the price of coals consumed by stcam engines and the keep of horses.

A heary horse vorking 10 hours will consume 15 11 s . avoirdupois of oats, and 14 ll s. of hay per day: An engine of 30 horse power, working 10 hours per day in a mill, will consume, on an average of summer and winter, about 4 tons of coal dross. The steamboat loward Castle, from Glasgow to Rothsay, and back again, a distance of about 80 miles, consumes \(5 \frac{1}{2}\) tons of hard coal in 12 hours.

These are some of the principal applications of the stean engine ; but the most important of all is its application to Carriages and vessets, which is treated of in the separate Artictes Stmam-Boar and SteamCarmage. For farther intormation on the subject
of this section, see Tredgold on the Steam-Engine, sect. ix.

As the preceding article is intended only for the perusal of general readers, those who wish to prosecute the subject farther may consult the following works:Switzer's System of Mydrostatics ; Belidor's Architecture IIydraulique; Desagulier's Experimental Philosophy; 'Ferguson's Lectures on Mechanics, vol. i. p. 312; Smeaton's Reports ; Prony's Nowe. Architecture Hydraulique; Robison's Mechanical Philosophy, vol. ii. ; Stuart's Descriptive History of the Steam E'ngine, Lond. 1824; Montgery's Notice Historique sur l' Invention des Mlachine- \(\alpha\)-l'apeur; Farey's I'rcatise on the Stcam Engine, Historical, Practical, and Descriptive, Lond. 1827; Partington's Mistorical and Practical Account of the Steam Engine; Tredgold's Steam Engine, Lond. 1827; Lardner's Popular Lectures on the Steam Enginc, Lond. 1828; Birkbeck and Aldcock on the Stcam Engine.

An account of the most recent improvements on the steam engine, as made in Cornwall by Mr. IIenwood, will be found in Dr. B;ewster's Journal of Science, No. XVIII. and No. XIX.

It is not only agrecable to know the gradual progress which all arts, sciences, and improvements have made, from the first rude attempts to perfection; but proper, in a work of this kind, to detail them. The author of the preceding article makes no mention of Hero of Alexandria, or of Porta the Italian, both of whom may be said to have invented steam engines, or at least to have demonstrated the elastic force and moving power of steam. The first lived about 130 years before the Christian era; and in his work entitled Spiritalia, describes a machine to which motion is to be given by the force of steam. It consisted of a hollow globe, having tubular arms extending in opposite directions, and having openings at different sides near their extremities. The globe was suspended upon centres, fixed upon pillars, one of which and one of the centres was hollow. Steam was introduced from a cauldron, and issting through the hollow column and centre into the globe, passed through the arms into the open air, producing a rotary motion.

In the year 1560, Mathesius, a German, suggested the practicability of a plan by which steam could be employed. In Leipsic, a machine upon a similar. plan to that of Hero was proposed to be substituted for the turnspit-dog, then in use.

Porta, a Neapolitan, published the account of his apparatus in 1606, in an Italian translation of Hero's work. The boiler a has a long neck, which passes through the bottom of the close cistern \(b\), containing water. A bent pipe or syphon \(\varepsilon\) is closely fitted into the top of the cistern, and desconds nearly to the bottom. When the fire is lighted under \(a\), the steam ascends into the cistern, presses upon the water, and forces it up the syphon \(c\), whence it runs in a stream.

Mr. Ainger observes that this was an extraordinary suggestion, and it is surprising that the
 project was not sooner reduced topractice, than is found to be the case. The contrivance is a great improvement on that of llero (who proposed to use sotar heat), because the steam from heated water in one vessel is made to drive up cold water from another vessel, insteat of driving up the heated water from which the steam is produced. With this important modification, the apparatus resembles that of the Marguis of Worcester, in 1663 , excepting only in the extent ol its power.

In the year 1615 , according to M. Arago, De Caus, a native of Normandy, published at Frankfort a work entitled Les Raisons des forces mounantes avec diverses Machines tant utilcs que plaisantes,* Sc., and dedicated it to Louis the XIII. The fifth theorem is thus beaded: " L'cau montera par aide du fous phus haut que son nivecu ;" \(\dagger\) and the explanation of this with a diagram exhibits a real steam engine, capable of producing a vacuum. This was forty-eight years prior to the appearance of the Narquis of Worcester's Century of Inventions, which was written in 1655, and first appeared in print in 1663.

The announcement forms the third of five modes of raising water. "Let there be a globe," he says, \(\because a\), having a valve \(b\), to introduce water, and a tube \(c\), soldered into the upper part of the ball, and descending nearly to the bottom: after having filled the ball with water, and
 well closed the valve, place it on the fire; then the heat, acting on the ball, will cause the water to ascend through the tube \(c\)." Mr. Angier says that this apparatus is so obviously inferior to that of Porta, which had appeared only nine years before, that it would be an insult to the reader to say why; and yet Mr. Arago rests his claim for the invention of the steam engine in France, on the part of De Caus, to this simple contrivance, and gives a diagram of it, not exactly like the one figured by De Caus, from whose work Mr. Angicr faithfully copied the annexed figure.

Brancas published an account of his apparatus in 1629 , in a work entitled "Le Machine." The boiler \(a\) terminates with a bent tube \(b\), from which the steam issues, and impinges upon the vanes of a wheel \(c\), which receives motion in the direction of the arrow. This principle does not differ from the first

\footnotetext{
- The proofs or account of moving forces with different machines equally useful as amusing.
\(\dagger\) Water will show, by the aid of fire, a greater height than its level.
Vol. XVII. Part II.
}
apparatus of Hero, and the practical effect would probably be inferior.

The Marquis of Worcester. Newcomen, Savary, and others followed: an account of whose inventions is given in the preceding pages, and nomerous other works.

Moreland's work referred to, p. 399, consists of thirty-eight pages in MS., wrillen on vellum, richly illuminated, but the part which has reference to the steam engine occupies only four payes. It is also accompanied by a table of the sizers of cylinders, and the amount of water to be raised by a given force of steam. Moreland was presentect to the French monarch in 1682, and the next year, his machine is said to have beell exhibited at St. Germains. He can not however be entitted to the merit of an original, his apparatus having been eridently suggested by the work of the Marguis of Worcester.

The ingenious Papin then follows, who is noticed in p. 399 : M. Arago, in the "Annuaire da Bareandes Longitudes" for 1829, gives a paper on the carly history of the stam engine, and claims for his coumtrym the honor of completing the invention: but Mr. Ainger has critically analyzed that paper, and assets that the apparatus, upon which he founds the claim for Papin, was never made as a working machine; and does nothing more than illustrate a well known physical fact. That a racumm was left by condensel steam, was known from the time of Hero at least. That the air, or some other power, would force a liguid or sotid body into a vacum, was equally well known. Mr. Ainger Parther asserts that Papin never experimented on such an apparatus as Mr. Arago ascribes to him; bever even suggested such a one: and that the two diagrams, given by him of Papin's invention in 1690 , are portrats of the apparatus of Newcomen, mate fifteen yeurs afterwards, viz. ill 1705;* yet notwithstanding this mfair conduct, Mr. Arago complains of professor Robinson, who in Kis accome of the steam engine, merdy refers to a work of lrapin's published in 1707, thine years after Savary's patem, describing it as his first publication, and actually denies the existence of those of 1690 and 1695 , althongh be might have found an analysis of the latter in the l'hilosophical 'Transactions of' the Royal Society of London, Lor March 1697, a whole year before Savary's engine was heard o!. In another instance he is sail to have post-dited a little work of

Papin's seventeen years, in order to attribute the merit of his observations to Dr. Hooke of England. These misstatements and errors have been copicd, by professor Millington, Dr. Larelnes (the author of the article on Stean Engines in Rees's Cyclopedia) and the writer of the preceding article, who acknowledges, p. 400, that he also had been led, upon the authority of Dr. Robinson, to do injustice to the genius of Papin, when he had occasion to discuss the subject in another work. He however most unaccountably omits 10 notice the invention of a Safety Valve, by Papin, to be attached to bis digester; without which, as Mr. Galloway truly remarks, " steam would 'ere this, long liave been abandoned, as a most dangerous and ungoverable agent, and entites him to universal admiration; since it has contributed more than any single aldition or improvement to the maturity of the steam engince."

In the preceling article of the Encyclopedia, no mention is made of American steam-engines, although Dr. 'Thornton's account of Fitch's early and success. ful caperiments in natigating the Delaware with a stean boat was publisted in the London Monthly Magazine lor October 1815: \(\ddagger\) and the history of Oliver Evans's progressive knowledge of the powers of steam; his various propositions for its use in driving carriages and boats; and the description, with a plate of his Columbian steam engine, was published by Elijah Galloway, in his "History ol the Steam Engine." London 1827; a work. by the way, which is overlooked in the reference to those recommended for consultation at the close of the foregoing paper. The great merit of our ingenious countryman Evans, for his numerous mechanical improvements, and for the benefits which he has conlerred upon the United States by his steam engine, entite him to the gratitude of the present and liture gencrations, and to a republication in this work of the record he has left of them.
llis inventive genius has done more for the United States than any other, living or dead, and his improvements would have greatly added to the riches of our country, long before they began to opecrate, had he not bean prevented from bringing ibem into use by his narrow circumstances, and the want of a liberal patron, to enable him to force then on the public, without waiting for the slowly acquired confidence of a people beyond whose intellects, on the sulject of steam, he was lull half a century in advance.

Evans could not have heard of the first high pressure engine constractal by Lenpold the German in 1720, lor there was not one in the United States to give him any advice; and it is known, that the work of that mechanician has only becn recently introduced into the country by a German artist. The merit of Evans was therefore his own. Ilis claim was for the "application of high clastic stcam, the great advantage of which, he says, I had discovered, demonstrated, explained, and made known. lhave dispensed with the heavy beam, condenser, and air pump, and simplified

\footnotetext{
- Tranklin domrnal, 4 vol. 189.9 p 363.

I la this publication lapin athandoned his eylinder and piston, and proposed nother plan, copied unquestionaly from Savary. und altered, as is miversally admitted (according to Mr Arago), for the norse.
4 sec p. 253 of his volume.
}
the construction of the boiler, cylinder, piston, and working gears: my plan requires a small forcing pump to supply the boiler. l'hus, I have produced an engine ten times as powerful, more governable, and easier varied to suit any taste assigned to it , than that of Bolton and Watt: it can be constructed at half the price, and will expend only one third the fuel to do as much work as theirs." His patent was taken out in 1801, one year before the date of Messts Trevithick's and Vivian's, for a high pressure stean engine in England.

No man can pretend to compete with Evans, except Fulton, and esen the wealth produced by his successful use of stcam in navigation, cannot axcecd that arising from the improvements on milling by Evans. In point of originality there can be no question as to the one to whom the honour is clue; for while Fulton was a child, Evans, from the mere torce of his genius, after hearing of the imrnense power of steam exhibited in a boyish frolic, with a gun barrel, followed up the principle, and in 1792 he filed in the patent office drawings and specitications ol his principles, with a view to secure to himsell' at a luture time the right to his discoveries, when he should be cnabled to put them to the test, and perlect them. 'lwenty-one years before Fulton applied Bolton and Vatts' low pressure engine to boats, he pronounced upon the extensive utility of steam, not only in navigating boats, bet in propelling land carriages, and the ciriving of machinery, and actually demonstrated the truth of his theory in Philadelphia, in respect to the last mentioned object in 1801, and in reference to the two first, he proved it three years before Mr. Fulton had his first boat in operation in the North River, which was in the summer of 1807. 'Thus, in the opiniun of Mr. Galloway the British entinecr, " he fully established his claim to the first contrivance of a practicable steam boat." \(\dagger\)

About the ycar 1772, being then an apprentice to a wheel-wright, or wagon-maker, I laboured to discover some means of propelling land carriages, without animal power. All the modes that have since been tried (so far as I have have heard of them) such as wind, treadles with ratched whecls, crank tooth, \&ec. to be wrought by men, presented themselres to my mind, but were considered as too litile to deserve an experiment : and I conclucled that such motion was impossible for want of a suitable original power.

But one of my brothers, on a Christmas evening, informed me that he had that day been in company with a neighbouring blacksmith's boy; who, for amusement, had stopped up the touch-bole of a gun barsel, then put in about a gill of water and rammed down a tight wad-after which they put the breech in the smith's fiee; when it discharged itself with as loud a crack as \(i i^{i}\) it had been loaded with powder.

It immediately occurred to me that here was the power to propel any wagon, il I could only apply it; and I sitt myself to work to find out the means. I laboured for some time without success. At length a book fell into my bands describing the old atm:ospheric steam engine. I was astonished to observe that they had so far erred as to use the steam only to form
a vacuum to apply the mere pressure of the atmos. phere, instead of applying the clastic power of the steam for orisinal metion; the power of which I sup. posed irresistible.

I renewed my studies with increased ardour, and soon declared that 1 could make steam wagons, and endeavoured to commonicate my ideas to others; but however practicable the thing appeared to me, my object only excited the ridicule ol those to whom it was made known. ButI persevered in my belief, and confirmed it by experiments that satished me of its reality.
In the year 1786 I petitioned the legislature of Pennsylvania for the exclusive right to use my ionprovements in four mills, as also stean wagons, in that state. The committec to whom the petition was referred beard me very patiently while I described the mill improvements, but my representations concerning steam wagons made them think me insane. They, however, reported favourably respecting my improvements in the manufacture of floar, and passed an act granting me the exclusive use of them as prayed for. This act is dated March ——, 1787. But no notice is taken of the steam wagons.

A similar petition was also presented to the legislature of Maryland. Mr. Jesse Lollingsworth, from Baltimore, was one of the committee appointed to hear me, and report on the case. I candidy informed this committee of the fate of my application to the legislature of Pentisylvania, respecting the steam wa-gons-declaring at the same time, without the en. courargement prayed for, I wonk never attempt to make them ; but that, if lhey would secure to me the right as requested, I would, as soon as 1 could, apply the principle to practice; and I explained to them the great elastic power of steam, as well as my mode of applying it to propel wagens. Mr. Ilullingsworth very prudenty obscrved, that the grant could injure no one, for he did not think that any man in the world had thought of such a thing before: he therefore wished the encouragement might be afforded, as there was a prospect that it would prodnce something useful. This kind of argument hat the desired eflect, and a favourable report was mate, May 21, 1787, granting to me, my heirs and assigns, for 14 years, the exdusive right 10 make and use my improvements in tlour mills and the steans wagons, in that state. From that period I have felt myself bound in honour to the state of Maryland to produce a steam wagon, as soon as I could conveniently do it.

In the year 1789 , I paid a visit to Benjamin Cbandlee and sons, of Nottingham, Chester county, Pennsylvania, clock-makers, men celebrated for their ingenuity, with a view to induce them to join me in the expense and profits of the project. I showed to them my dranghts, with the plans of the engine, and ex. plained the expansive power of steam; all which they appeared to usderstand, but fearful of the expense and difficultes attending it, declined the concern. However they certiged that lad shown to them the drawings and explaned the powers, \&ec.

In the same year, I went to Ellicott's mills on the

\footnotetext{
* Steam Fingineer's Guide, p. 173.
\(\dagger\) Durime this application to the legislature of Maryland, while Mr. Evans was explaining the principles of his intentions to se. veral gentemen, a person present asked him "how he could get out of the way of other wagons?" Mr. F., rephed, "why sir, if you were the wagoner, and dint not give me room to pass, 1 woold crush you and yo ir waron to the e wht," "hich sucompletely turned the laugh, that the would-be-wag was silent afterwards.-Patent hight Oppresion Exposed, Philudelphia, 1s13, p. 26.
}

Patapsco, near Baltimore, for the purpose of persuading Messrs. Jonathan Ellicott and brothers, and connections (who were equally famous for their ingenuity) to join me in the expense and profits of making and using steam wagons. I also showed to them my drawings, and minutely explained to them the powers of steam. They appeared fully to comprehend all I said, and in return informed me of some experiments they themselves had made, one of which they showed me. Thcy placed a gun-barrel, having a hollow arm, with a small hole on one side at the end of the arm, similar to Barker's rotary tube-mill, as described in the books; a gill of water put into this barrel, with fire applied to the breech, caused the steam to issue from the end of the arm with such force as, by reaction, to causc the machine to revolve, as I judged, about onc thousand times in a minute, for the space of about five minutes, and with considerable force, for so small a machine. I tarried here two days (May 10 and 11,1789) using my best efforts to convince them of the possibility and practicability of propelling wagons, on good turnpike roads, by the great elastic power of steam. But they also feared the expense and difficulty of the execution, and declined the proposition. Yet they heartily esteemed my improvements in the manufacture of flour, and adopted them in their mills, as well as recommended them to others.
In the same year I communicated my project and explained my principles to Levi Hollingsworth.* He appeared to understand them ; but declined a partnership in the scheme, for the same reasons as the former.

From the time of my discovering the principles and the means of applying them, I often endeavoured to communicate them to those I believed might be interested in their application to wagons or boats. But very few could understand my explanations, and I could find no one willing to risqua the expense of the experiment.

In the year 1785 or 6 , before I hat petitioned the legislatures, I fell in company with Mr. Samuel Jackson, of Redstone; and learning of thim that he resided on the western waters, I endeavoured to impress upon his mind the great utility and high importance of steam boats, to be propelled on them; telling him that I had discovered a steam eugine so powerful, according to its weight, that it woutd, by means of padlle whetls (which I described to him) readily drive a vessel against the current of those waters with so great speed as to be highly beneficial. Mr. Jackson proves that he :!:!derstood me well, for he has lately written letters, declaring that about twenty-six years before their date, I did describe to him the principles of the steam engine that I have since put into operation to drive mills, which he tas scen-and that I also explained to him my plan for propelling boats by my steam engine, with paddle whels, describing the very kind of wheels now used for this purpose; and that I then declared to him my intention to apply my engine to this particular object, as soon as my peciniary circumstances would permit.

In the year 1800 or 1801 , never having found a man willing to contribute to the expense, or even to encourage me to risque it myself, it occurred to me that though I was then in full health, I might be suddenly carried off by the yellow' fever, that had so often visited our city (Philadelphia), or by some other disease or casualty to which all are liable, and that I had not yet discharged my debt of honour to the state of Maryland by producing the steam wagon. I determined, therefore, to set to work the next day and construct ore. I first waited upon Mr. Robert Patterson, professor of mathematics in the university of Pennsylvania, and explained to him my principles, as I also did to Mr. Charles Taylor, stcam engineer, from England. They both declared these principles to be new to them, and highly worthy of a fair experiment, advising me without delay to prove them ; in hopes I might produce a more simple, cheap and powerful steam engine than any in use. These were the only persons who had such confidence, or afforded me such advice. I also communicated my plans to B. H. Latrobe, at the same time, who publicly pronounced them chimerical, and attempted to demonstrate the absurdity of my principles, in his report to the American Philosophical Socicty on steam engines \(; \dagger\) in which same report he also attempts to show the impossibility of making steam boats useful, on account of the weight of the engine; and I was one of the persons alluded to, as being seized with the steam munia, conceiving that wagons and boats could be propelled by steam engines. The liberality of the members of the society caused them to reject that part of his report which he designed as demonstrative of the absurdity of my principles; saying they had no right to set up their opinion as a stumbling block in the road of any exertions to make a discovery. They said, I might produce something useful, and ordered it to be stricken out. What a pity they did not also reject his demonstrations respecting steam boats! for notwithstanding them, they have run, are now running, and will run : so has my engine, and all its principles completely suc-ceeded-and so will land carriages as soon as these prineiples are applied to them, as explained to the lcgislature of Marylund in 1787, and to others long before.

In consequence of the determination above alluded to, I hired hands and went to work to make a steam wagon, and had made considerable progress in the undertaking, when the thought struck me that as my stcam engine was entirely different in form as well as in its principles from all others in use, that I could get a patent for it, and apply it to mills more profitably than to wagons; for until now I apprehended that as steam mills had been used in England, I could only obtain a patent for wagons and boats. I stopped the work immediatcly, and discharged my hands, until I could arrange my engine for mitls, laying aside the steam wagon for a time of more leisure.

Two weeks afterwards, I commenced the construction of a small engine for a mill to grind plaister of Paris-the cylinder six inclics in diameter, and stroke

\footnotetext{
- I certify that Ouven tivans did abont the year 1789 communicate a project to me, of propelling land carriages by power of steam, and did solicit me to join him in the costs and profits of the same. LEVt IGOLLINGSWORTII.
Battimare, Nowember 16,1812.
1 do certify that some time about the year 1781,31 years ago, Obysu Fvass, in conversation with me, declared, that by the power of ste:m he could drive any thing-wagons, mills or vessels forwidd, by the same power, \&e.

ENOCIt ANUERSON.
Nonczaber 15, 1812
* Mr. Latrobe's paper is in the 6th Vol. of the Socicty's Transactions, page 89.
}
of the piston eighteen inches-belicving that with 81000 I could fully try the experiment. But before 1 was done with experiments, I found that I had expended 83,700 -all that I could command. I hat now to begin the world anew at the age of forty-eight, with a large family to support. I had calculated that if I failed in my experiment, the credit 1 had would be entirely lost; and without money or credit, at my advanced age, with many heary encumbrances, my way through life appeared dark and gloomy indeed. But I succeeded perfectly with my little engine, and preserved my credit. I could break and grind 300 busbels of plaister of Paris, or 12 tons, in 24 hours; and to show its operations more fulty to the public, I applied it to saw stone in Market-street, where the driving of twelve saws, in heavy lrames, sawing at the rate of too feet of marble stone in 12 hours, made a great show, and excited much attention. I thought this was sufficient to convince the thousands of spectators of the ntility of my discovery: but I frequently heard them inquire il the power could be applied to saw timber as well as stone, to grind grain, propel boats, \&c. and though I answered in the atfirmative, I lound they stilt doubted. I therefore determined to apply my engine to all new uses, to introduce it and them to the public.*
This experiment completely tested the correctness of my principles, according to my most sanguine hopes. The power of my engine rises in a geometrical proportion, while the consumption of fuel has only an arithmetical ratio; in such proportion that every time I added one fourth more to the consumption of fuel, the powers of the engine were doubled ; and that twice the quantity of fuel required to drive one saw would drive 16 saws, at least; for when I drove two saws the consumption was 8 bushels [coal] in 12 hours, but, when twelve saws were driven, the consumption was not more than 10 bushels; so that the more we resist the steam the greater is the effect of the engine. On these principles, very light, but powerful engines, ean be made, suitable for propelling boats and land carriages, without the great incumbrance of their own weight, as mentioned in Mr. Latrobe's demonstrations.

In the year 1804. I constructed at \(m y\) works, situate a mile and a loall from the water, by order of the board of health of the city of Philadelphia, a machine for cleansing docks. It consisted of a large flatt, or scow, with a steam engine of the power of five horses on board, to work machinery to raise the mud into flatts. This was a fine opportunity to show the public that my engine could propel both land and water carriages, and I resolved to do it. When the work was finished, I put wheels under it, and though it was equal in weight to two hundred barrels of flour, and the wheels fixed with wooden axletrees, for this temporary purpose, in a very rough manner, and with great friction, of course, yet with this small engine I transported my great burthen to the Schuylkill with ease; and, when
it was launched in the water, I fixed a paddle wheel at the stern, and drove it down the Schuylkill to the Delaware, and up the Delaware to the city [14 or 15 miles, leaving all the vessels going up, behind me, at least half way, the wind becing a-head, and in the presence of thousands of spectators, a sight which 1 suppose would have convinced them of the practicability of both steam carriages and steam boats. But in this I was sadly disappointed, for they made no allowance for the disproportion of the engime to its great load, nor for the temporary manner in which the machinery was fixed, nor the great friction, ill form of the boat, \&c., but supposed that it was the utmost I could do. Had I been patronised as Mr. Fulton was by the state of New-York, with the exclusive right for thirty years, and by a Mr. Livingston, with thity thousand dollars to make the experiment, I might have showed steam boats in full operation long before Mr. Fulton began his boat, which was finished in 1807, twenty years after I petitioned the legislature of Pennsylvania, and three years after the above mentioned experiment.] \(\dagger\)

Some wise men undertook to ridicule my experiment of propelling this great weight on land, because the motion was too slow to be useful. I silenced them by answering, that I woukl make a carriage, to be propelled by steam, for a bet of \(\$ 3000\), to run upon a level road against the swiftest horse they would produce. I was then as confident, as I am now, that such velocity eould be given to carriages.

Having no doubt of the great utility of steam carriages on good turnpike roads, with proper arrangements for supplying them with water and fuel, and believing that all turnpike companies were deeply interested in putting them into operation, because they would smooth and mend the roals, instead of injuring them, as the narrow wheels do, on the 26th of September 1804, I submitted to the consideration of the Lancaster turnpike company, a statement of the costs and profits of a steam carriage to carry 100 barrels of flour, 50 miles in 24 hours-tending to show, that one such steam carriage would make more nett profits than 10 wagons drawn by five horses each, on a good turnpike road, and offering to build such a carriage at a very low price. My aldress closed as follows :
"It is too much for an individual to put in operation every improvement which be may invent.
"I have no donbt but that my engines will propel boats against the current of the Mississippi, and WAGONS ON TURNPIKE ROADS, WITH GREAT PROFIT. I now call upon those, whose interest it is, to carry this invemion into effect. All which is respectfully submitted for your consideration."

In the year 1805 I published a book \(\ddagger\) describing the principles of my steam engine, with directions for working it, when applied to propel boats against the current of the Mississippi, and carriages on turnpike roads. And I am still willing to make a steam carriage that will run 15 miles an hour, on good level

\footnotetext{
- While Mr. Evans was exhibiting the little steam engine, he discnvered the chairman of the committee of the Pennsylvania legislature, to whom his petition had been referred in 1786, and thus addressed him. "Sir, this steam engine works on the principles with which thad intended to propel my steam carriages when I pettioned the legislature, and which itendeavomed to explain to the committee. If you had granted me then the exclusive right for twenty-five years, it might have been driving wagons, boats, and mills, many years ago." His reply was "to tell the truth, Mr. Evans, we thought you were deranged, when you spoke of making steam wagons."
\(\dagger\) Patent Right Oppression Esposed, p. 168. Pliladelphia, 1813.
; Steam Engineer's Guide.
}
rail ways, on condition that I have double price if it shall run with that velocity, and nothing for it, if it shall not come up to that velocity. What can an inventor do more han to insure the performance of his inventions? Or. I will make the engine and apparatus, at a fair price, and warrant its utility for the purpose of conveying heavy burthens on good turnpike roads.

I feel it just to declare that, with Mr. Latrobe, I myself did believe, that with the ponderous and feeble steam engine, now used in boats, they could never be made useful in competition with sail boat-, or to ascend the Mississippi, estecming the current more powerful than it is. But I rejoice that, with him I have been mistaken; for I have lived to see boats succeed well with those engines; and I still hope to see them so completely excelled and out-run by using my engines, as to induce the proprietors to exchange the old for the new; more cheap and more powerful principles.

When we reflect upon the obstinate opposition that has been made by a great majority to every step towards improvement: lrom bad roads to turnpikes, from turnpikes to canals, from canals to rail-ways for horse carriages, it is too much to expect the monstrous leap from bad roads to rail-ways for steam carriages, at once. One step in a generation is all that we can hope for. If the present shall adopt canals, the next may try the rail-ways with borses, and the third generation use the steam carriages.

But why may not the present generation, who bave alreaty good turnpikes, make the experiment of using steam carrages upon them? They will assuredly effect the morement of heavy burthens, with a slow motion, of two and a half miles an hour; and as their progress need not be interrupted, they may travel fifty or sixty miles in the 24 hours. This is all that 1 hope to sce in my time, and though I never expect to be concerned in any business requiring the regular transportation of heavy burthens (on land), because if I am connected in the affairs of a mill it shall be driven by steam, and placed on some navigable water, to save land carriage---yet I certainly intend, as soon as I can make it convenient, to build a steam carriage that will run on good turnpike roads, on my own account, ilno other person will engage in it ; and I do verily believe that the time will come when carriages propelled by steam will be in general use, as well for the transportation ol passengers as goods, travelling at the rate of fiftecn miles an hour, or 300 miles per day.

It appears necessary to give the reader some idea of the principles of the steam engine which is to produce such novel and strange effects; and this I will endeavour to do in as lew words as I can, by showing the extent to which the principles are applied already.

To make steam as irreststible or powerful as gunpowder, we lave only to confue and increase the heat by fuel to the boiler. A steam engine with a working cylinder only mine inches in diameter, and a stroke of the piston thee fert, will exert a power sufficient to lift liom 3.00) to 10,000 pounds perpenticularly, two and a hall' miles per hour. 'This power applied to proped a carriage on level roads or rail-ways, would drive a very great weight with much velocity, belore the friction of the axletree or resistance of the atmosphere would batanceit.

This is mot spereutatise theory. The priaciples are now in practice, diving a saw-mill at Manchacks on
the Mississippi: two at Natchez, one of which is capable of sawing 5000 feet of boards in 12 hours; a mill at Pittsburgh, able to grind ' \(: 0\) bushels ol grain per hour ; one at Marietta of equal powers; one at Lexington, Ky. of the same powers; one, a paper mill, of the sane; one of one fourth the power at Pittsburgh; one at the same pluce of three and a half times the power, lor the forge, and for rolling and splitting sheet iron: one of the power ol 24 horses at Midfletown, Conn. driving the machinery of a cloth manufuctory; two at Phitalelphia of the power of five or six horses; and many maknor for different purposes: the principles applying to all purposes where power is wanted.

\section*{OLIVER EVANS.}

Nov. 13, 1812.

\section*{Columbian Steam Engine.}
explanation.---Plate 510. No. 2.
A, the boiler; B , the working cylinder; C , the lever beam: D, the by-wheel; \(E\), the comenser; \(F\), the water-pump; G, the supply pump; II, the furnace; I, the chimney lue; K , the salety-valve, which may be loaded with 100 or 150 lbs . to the inch area; it will never need more, and it must never be lastened down.

\section*{OPERATION.}

The boiler being filled with pure water as high as the dotted line, and the fire applied, the smoke enters the centre flue, which passes through the centre ol the water to ascend the llue \(I\), and thus acts on a large surface.

When the steam lifts the safety-value, it is then let into the cylinder by opening the throttle-valve, to drive the piston up and down, which, by rod 1 , gives motion to the fly-wheel, and wheel 2 gives motion to a shaft, passing through the posts, to turn the spindle of the rotary-values 3,8 , which lets the steam both off and on the cylinder at the proper time.

The stean escaping by pipe 4, curved and immersed in the water in box E, which is supplied by pump \(F\), it is condensed, and the water formed descends by pipe 5 into supply pump \(G\), and is lorced into the boiler again by pipe 6 .

But boiling decomposes water, slowly changing it into air incondemible. Therefore the shifting valve 7 is necessary. 'This valve lilts at every puff of steam, and a small quantity of air escapes ; and it shuts, and a vacuum is instantly formed, as the crank passes the dead points.

The small waste of water may be supplied by condensing part of the steam rising from the condensing water, to run down the pipe 9 , through a hole in the key ol a stop-cock, \(\overline{3}^{-1}\) e parts of an inch diameter. A small hole indeed to supply a boiler of twenty horses power.
No sediment can accumulate in the boiler, it being suppliced by distilled water. Ihberefore it will last much longrer, and require less fael than others. Muddy, limestone, or salt water, or the juice of the sugar cane, Sec. Sec. may be used to condense; and as the engine works equally well while we boil away the condensiner water, we may boal for sals, sugar, \&e. in working the engine, -thus using the luel for double purposes.

If the steam be confined by the load on the safety-
valve, to raise its power to 100 pounds to the incli, area of the piston and the eylinder be nine inches in diameter, and the stroke of the piston three liet, the power will equal that of twenty horses, and will griad 20 bushels of grain per hour, or saw 5,000 feet of boards in 12 hours. If the steam be contined by 150 pounds, the power of the engine will be equal to 30 horses, when the steam is shut ofl at one third of the stroke, and striking thirty-six strokes per minute..Double strokes double the poner.
The more the stem is confined, and the shorter it be shut off by the regulator 8 , the greater will be the power ubtained by the fuel. For every addition of 30 degrees heat to the water doubles the power. So that doubling the heat of the water increases the power about 100 times. On these principtes fuel may be lessened to one third part consumed by other eugines. This engine is not more than one fourth the werght of others; is more simple, durable, and cheap, and more suitable for every purpose ; especially lor propelling boats and land cabriages. It tequites no mote water than the fuel will evaporane in steam, and this steam may be employed to warm the aparments of lactories; or the comdenser fe coudd be used as a still to distil spirits; or a vat lor paper making, boiler is a bewery, dye factozy, \&c. Sx.

To the preceding accomnt of Mr. Evans, the following may be added, taken trom the preface to " the Steam Euginecr's Guide."

In the year 1787, Mr. Evans explained to Captain Masters at Annapolis, Maryland, at his request, the principles of his Columbian Steam Engine, that he might commanicate them to the people of England, to propel carriages and boats: and in 1794 or 1795, he sent drawings and deseriptions to England by Joseph Stacey Sampson, of Boston, to endeavour to get some one to take out a patent there on shares with him; but he wrote from London that he could find no one io belices that the scheme would prove useful. Mr. Sampson died in London. In 1803 he entered into a contract with Mr. Edwards, enginect from England, and spent two months in luraishing him with complete drawings and descriptions of his cugine, inexhaustible steam cngine, and volcanic steam engine, all of which he said he could set up with his own hands. His Columbian high pressure engine was erected in Philadelphia in 1801, atal in 1802 Messrs. Trevethick and Vivian took sut their patent in England for a high pressure engine, which Mr. Galloway says, "has been found the most compact, simple, and effective engine perhaps cver known."

The following handbill was pulslished by Mr Evans as a circular, and it will be useful to insert it on the present oceasion. He may unduly estimate the economy of his eugine, but il lie is wrons, as much may be said for several philosopiers who have undertaken to give tables of the expansive power of stem, no two of whom agree as to the results of their experiments or calculations.

Philadelphia, October 28th, 1817.
The subscriber continues to manufacture his Columbian Steam Engines, containing the following peculiar propertics: viz.
1. It operates on the great advantageous principle of
nature. As the beat is increased arithmetically, the elastic power of the steam is increaser geometrically; every admion ol abont thirty degrees heat in water doubles the elastic power of the steam. Or, in other words, very little increabe of inct produces great increase ol power ; doobling the consumption of fucl in a given time, proluces about sistern bimes the power and effect in we sume enorme. 'lome it enables the smati, simple atel light steam engione, w do work cqual to the large, complex, expensive and ponderous one, with about hull the consmoption of fuct.
2. It is constructed on the true principles of nature. All its pats are of a ciocular form, that eamot be bent and changed so as to break and explode, by the clastic power. It will therefore beas greater eldatic power than boilers of other forms, in the proportion that a bar of iron will bear more pulling straght endwise, than it will on its middle, to beod and break it, when lad horizontally, supported at the ends; above one hundred times the power that any other form will bear.
3. The boiler being constructed of sheets rivetted together, of circular forms, it is impossible to make everypart of equal strength. And the pressure of the stean, acting cqually on every part, he weakest part will yield first, by a very small oproing, to let the power of the stean or water escape, which will extinguish or check the lire, and stop all danger. It is therelore impossible to explode the boiler in so dangerous a degree as others do, by bending and breaking, in changing their form to a cirele, by the elastic power of steam, which rises gradually.
4. The greater the elastic power, and the hotter the water in the boiler, the less willbe its heat at the small distance of two or three fect, issuiag from one of these small apertures, that will liest yelsi; because the very instant it issucs, the clastic power in the hot water explodes, and disperses the steam in mist so thin, and mixing with the air, that it instantly gives out its heat, and is reduced below the scalding degree, at the distance of three feet.* No injury has been done in any of the numerous instances where such leaks have yielded, in boilers worn by use, or bumt out; yielding so often that new ones have been made. Nor need any danger be apprehended, as it is cvident that the boiler cannot be exploded.
5. It requires no more water than is boiled into steam. And the boiter may be made incxhaustible, by letting the steam that escapes from the encrine pass into a tight ressel; there to be condensed into water again, by its own pressure, and the water may be returned to the boiler to supply it. This vessel may be a tight tube, passing though all the apartments of a manufactory to warm them, or to heat water. And thus the fuel may be applied to double purpose in many instances.
6. The boiler generates more steam than others, being so formed, that sediment does not adhere to its bottom, to form a non-conductor, and cause it to burn out; and it is well planned to receive the heat and retain it in the water, until a great elastic power is obtained.
7. It is less complex, and more easily kept in order, repaired, understood, and attended.

Those who may want a steain engine for any use,
are not expected to believe implicitly, but are requested to hold in suspense, assertions made by persons ignorant of the principles and properties of the engine, until they inquire for themselves, respecting some of the many Columbian Steam Engines now in use; or visit one personally, and they will find it to contain all those properties; and to be preferable for the following purposes; viz.

Steam Boats. It being lighter, more powerful, more governable; to vary the power, to stem the various currents, consuming and carrying less fuel and water ; will carry more freight or passengers ; and ascend currents, or perform any passage in less time.

And for salt or turbid waters, such as bays, and the Mississippi, the inexhaustible principle may be used; the boiler may be filled with pure fresh water, and a pure supply be obtained from steam, arising from the salt or turbid water used outside, to condense the steam in the tight vessel. Iron boilers will then suit better than copper, and there will be no danger from explosion, nor of being scalded by the small leaks.

The difference in the expense of fuel, of the profits of passengers, freight and time, will amount annually, to more than the whole price and expense of the engine, on many waters, or for many purposes.

Manufactories. As the steam may be applied to heat the water, and to warm all the apartments.

Paper Mills. The steam may be applied to heat the vats, and warm the drying rooms.

Saw or Grinding Mills, Furnaces, or Forges. As so little water is necessary, that it can be set at the ore banks, or in any convenient place, where a well can be had.

For every other purpose where power may be wanted, there is a difference between this and the low pressure engines, equal to its full price, in a few years use.

Several persons have begun to infringe my rights, having found that what I had published was true; viz. That as the elastic power of steam should be increased, the power of the engine and speed of the boat would be increased, without a proportionate increase of the consumption of fuel.

Some construct and use my specified boiler, in whole, or in part, by using high pressure steam to a condensing engine, to evade my rights. Others have
constructed boilers of different forms, which they believed to be equally safe and strong : and attempting to use high pressure steam, until they exploded their boilers; neither of which can succeed perfectly. And they unitedly proclaimed, that it was the invention of high pressure, which caused the injury; to my very great damage, by depriving me of the profits of my invention, and to the injury of the public, by depriving people of the benefits of the useful discovery. And I am constraincd to put the engine of the patent laws of the United States in force and motion, which will probably overtake them.

\section*{OLIVER EVANS.}

It would be unpardonable to omit noticing the steam engine of our ingenious countryman Jacob Perkins, which has excited so much interest in London. "Mr P.'s original idea of substituting pressure for surface, in gencrating steam (which appears to be the basis of his invention) if satisfactorily established, must certainly be considered as of the utmost iniportance, particularly in its first feature, absolute safety. From the mode of constructing the compound generator (of steam) as now adopted, it becomes a safety valve of itself : for the pressure is divided into so many compartments, that any one of them may explode with impunity, without even disturbing a brick of the furnace."* Mr. Perkins says " the piston was 8 inches in diameter, with a 20 inch stroke engine, a good 70 horse power, and consuming but one fourth of the coal of a condensing engine. The weight on the end of the lever was soolbs. To prove the safety of the engine, he says, he has worked it under a pressure of 1400 lbs. to the square inch, or at 100 atmospheres, and cut off the steam at one twelfth of the stroke. The usual pressure is 800 lbs . per inch, cutting off at one eighth, and letting the steam expand to below 100 lbs . per inch. He lets off at the dead point, at one flash." As this engine has not yet been introduced into practice by any one except the inventor, those who are desirous of a more full account of it are referred to the Franklin Journal, Vol. III. pp. 354, 407; to Galloway on Steam Engines, p. 185 ; Silliman's Journal, Vol. VII. The two last contain plates of the engine, and in Silliman is an account of the application of Mr. P.'s invention to engines of the old construction.

\footnotetext{
- Remarks of the editor of the London Journal of Arts.
}

\section*{STEAM-BOAT.}

Tue subject of steam-boats has already been so amply treated in a separate chapter of our article Sunpbulldinf, in p. 24.4* of this volume, that very little remains to be done under the present head.

The action of impelling boats by mechanical power was suggested and put in motion more than three centurics ago ; \(\dagger\) but the proposal to employ stcam as the first mover of vessels was first made by Mr. Jonathan Hulls in the year 1736, as we have already stated in the article Shipbuikding. The contrivance by which he proposed to produce this effect is shown in Plate DX. Fig. 1, which the author describes in the following words.
" Whereas scveral persons concerned in navigation, have desired some account of my invention for carrying ships out of and into harbours, ports and rivers, when they have not a fair wind;

But I could not fully describe this machine, without writing a small treatise of the same, in which I shall endeavour to demonstrate the possibility and probability of the matter undertaken.

There is one great hardship lies too commonty upon those who propose to advance some new, though useful, seheme for the public benefit; the world abounding more in rash censure than in a candid and unprejudiced estimation of things, il a person docs not answer their expectation in every point ; instead of friendly treatment for his good intentions, he too often meets with ridicule and contempt.

But I hope that this will not be my case; but that they will form a judgnent of my present undertaking only from trial. If it should be said, that I have filled this tract with things that are foreign to the matter proposed, I answer, there is nothing in it but what is necessary to be understood by those that desire to know the nature of that machine which I now offer to the world : and Jhope that, through the blessing of God, it may prove strvicedble to my country.

In some conscnient part of the tow-boat, there is placed a vessel about two-thirds full of water, with the top close shut. This ressel being kept boiling, rarifies the waterinto steam. This steam being conveycd through a large pipe into a cylindrical vessel, and there condensed, makes a vacuum, which causes the weight of the atmosphere to press on this vessel, and so presses down a piston that is fitted into the cylindrical vessel, in the same manner as in Mr. Newcomen's engine, with which he raises the water by fire.

In Plate DX. Fig. 2, \(P\) is a pipe coining from the furnace to the cylinder. \(Q\) the cylinder wherein the steam is condensed. \(R\) the valve that stops the steam from coming into the cylinder. whilst the steam within the same is condensed. \(S\) the pipe to convey the condensing water into the cylinder. T a cock to let in the condensing water when the cylinder is full of steam and the valve \(p\) is shut. \(U\) a rope fixed to the piston that slides up and down the cylinder. Note.This rope \(U\), is the same rope that goes round the wheel \(D\) in the machine, fig. 1 .

It hath been already demonstrated, that a vessel of so iuches diameter, which is but two foot and a half,
when the air is driwn out, the atmosphere will press on it to the weight of 1 tons 16 hundred and upwards. When proper instruments for this work are applied to it, it must drive a vessel with a great force.

Nofe. -The bigness of the machines may be proportioned to the work that is to be performed by thern; but if such a force as is applied in this first essay, be not sufficient for any purpose that may be refuired, there is room to make such addition as will move an immense weight with toterable swiftuess.

It is my opinion, it will not be found practicable to place the machine here recommended, in the vessel itself that is to be taken in or out of the port, \&ec. but rather in a separate vessel, for these reasons: 1. This machine may be thought cumbersome, and to take up, too much room in a vessel laden with goods, provisions, \&c. 2. If this machine is put in a separate vessel, this vessel may lie at any port, sce. to be ready on all occasions. 3. A ressel of a small burthen will be sufficient to carry the machine to take out a large one. 4. A vessel will serve for this purpose for many years, after she is thrown off, and not safe to be taken far abroad.

The Erplanation of the Machine. (See Plate DX. Fig. 2.)
\(A\), Represents the chimney coming from the furnace. B, The tow-boat.
\(C C\), Two pieces of timber, framed together, to carry the machine.
\(D(a, D)\) and \(D) b\), are three whecls on one axis to receive the ropes, \(M F b\) and \(F\) 'a.
\(I I a\) and \(I l b\) are two wheels on the same axis with the fans 11111 , and move alternately in such a manner, that when the wheels, \(D a, D\) and \(D b\) move backward or forward, they keep the fans \(1 / 1 / I / /\) in a direct motion.
\(F\) is a rope going from \(I t b\) to \(D b\), that when the wheels \(D_{c}, D\) and \(D b\) move forward, moves the wheel \(I b\) forwards, which brings the lans forward with it.

Fa is a rope going from the wheel Ha to the wheel \(D a\), that when the wheels \(D a, I\) and \(D b\) move forward, the wheel Ha draws the rope \(F\), and raises the weight \(G\), at the same time as the wheel \(I l b\) brings the fans forward.

When the weight \(G\) is so raised, white the wheels \(D a, D\) and \(D b\) arc moving backward. the rope fit gives way, and the power of the weight \(G\) brings the wheel Ila forward, and the fans with it, so that the fans always keep going forward, notwithstanding the wheels \(D a, D\) and \(D b\) move backwards and forwards, as the piston moves up and down in the cylinder.
\(L L\), are teeth for a catch to drop in from the axis, and are so contrived, that they eatch in an alternate manner, to cause the fans to move always forwarct. for the wheel \(H a\) by the power of the weight \(\left(C_{1}\right.\), is performing its office, while the other wheel 1 lb gots back, in order to fetch another stroke.

Note.-The weight \(G\) must contain but half the weight of pillar of air pressing on the piston, because the weight \(G\) is raised at the same time as the wheel \(H b\) performs its office, so that it is in effect two ma-

\footnotetext{
\(\dagger\) See Robertus Valturius De Re Militari. Verona, 1472.
}

3 K
chines, acting altermately by the weight of one pillar of air of such a diameter as the diameter of the cylinder is.

If it should be said that this is not a new invention, because I make use of the same power to drive my machine that others have made use of to drive theirs for other purposes. I answer, the application of this power is no more than the application of any common or known instrument used in mechanism, for new invented purposes.
Answers to some Queries lhat hare been made, coneerning the Possibility and Lisefulness of this undertaling.
Query I. -Is it possible to fix instruments of sufficient Strength to move so prodigious "Weight as muy be contained in a very lurge Tessel?
"Ansuer. - All mechanics will allow it is possible to make a machine to move an immense weight, if there is force enough to drive the same; for every member must be made in a proportionable strength to the intended work, and properly braced with laces of iron, se. so that no part can give way or break. If the braces, Sxc. necessary lor this work, had been put in the draught, it would have been so much crowded with lines, that the main instruments could not be so well perceived.

Query 1.-_ Will not the force of the waves break any instrument to pieces that is placed to move in the water?

Ansecer-1st, It cannot be supposed that this machine will be used in a storm or tempest at sea, when the waves are very raging: for if a merchant lieth in harbour, \&c. he would not choose to put out to sea in a storm il it were possible to get out, but rather stay until it abated.

2lly, When the wind comes a-head of the tow-boat, the fans will be protected by it from the violence of the wares; and when the wind comes sideways, the waves will come edgeways of the fans, and therefore strike them with the less force.

3dly, There may be pieces of timber laid to swim on the surface of the water on each side of the fans, and so contrived as they shall not louch them, which will protect them from the force of the waves.

Up inland rivers, where the bottom can possibly be reached, the fans may be taken out, and cranks placed at the hindmost axis to strike a shaft to the bottom of the river, which will drive the vessel forward with the greater lorce.

Query H1.-Il being a contimual expense to keep this mathine wt work, will the expense be ansuered?

Anser. --The work to be done by this machine will be upon particular occasions, when all other means yet lound out are wholly insufficient. How often does a merchant wish that his ship were on the ocean, when, il he were there, the wind would serve tolerably well to earry him on his intended voyage, but does not serve, at the same time, to carry him out of the river, \&c. he happens to be in, which a liew hour's work of this machine would do. Besides, 1 know engines that are driven by the same power as this is, where matcrials for the purpose are dearer than in any navigable river in lingland; therelore, experience demonstrates, that the expense will be but a trifle to the value of the work performed by those sert of ma-
chines, which any person that knows the nature of those things may easily calculate.

Thus, I have endeavoured to give a clear and satisfactory account of my new invented machine, for carrying vessels out of and into any port, harbour, or river, against wind and tide, or in a calm ; and I doubt not, but whocver shall give himself the trouble to peruse this essay, will be so candid as to excuse or overlook any imperfections in the diction or mamer of writing, considering the hand it comes from ; if what I have imagined, may only appear as plain to others as it has done to me, viz. that the scheme I now offer is practicable, and, if encouraged, will be useful. J.H."

The contrivance for converting the reciprocating motion of the piston into a rotatory motion, which does great credit to the ingenuity of Mr. Hulls, will be better understood from the enlarged drawing given in Fig. 3.

Although the invention of this steam-boat was thus distinctly laid before the public, yet it does not seem to have been put in practice till the year 1782, when the Marquis de Jouffroy constructed a steam-boat to ply on the Saone at Lyons. It was 140 feet long 15 feet wide, and drew \(3 \frac{1}{5}\) leet of water. He seems to have made several experiments with it, and it is said to have bcen in use filteen months.*

In 1785, Mr. James Rumsey, of Virginia, and Mr. John Fitch of Philadelphia, made experiments on the propulsion of boats by steam, but though their labours were patronized by General Washington, and though they received patents from some of the States, yet 110 satislactory results were obtained.

In the year 1ヶ85, Mr. Patrick Niller of Dalswinton, conceived the idea of propelling vessels by paddle wheels driven by men or horses. A twin vessel for this purpose was put on the stocks at Leith on the 7th Jamuary 1786, and launched on the 14th October 1787. He published an account of his plans in February 1787, and in that publication he stated that he " had reason to believe that the power of the steamengine may be applied to work the wheels so as to give them a quicker motion, and to increase that of the ship, and that in the course of the summer of 1787 he inteaded to make the experiment." The suggestion of applying the steam-engine seems to have been make to Mr. Miller by Mr. Taylor, then living as tutor in his family, and this gentleman also recommended his school-fellow, Mr. William Symington of the Wanlockhead mines, who had recently contrived a method of applying the lorce of steam to wheel carriages, as a proper person to construct the steamengine. In the spring of 1788 , Mr. Symington began the steam-engine for Mr. Niller, and in October it was placed in a pleasure-boat in the lake of Dalswinton, and on the 14 th October 1788 , this boat was moved by steam in the presence of several spectators. \(\dagger\) After several trials, however, it was found that the engine and wheel, which were of the same deseription as Hull's, required the aid of manual labour with a windlass. Anotber experiment was made with a larger engine (constructed at the Carron works,) on board a (iabard, but the machinery does not seem to have answered Mr. Miller's expectations, and all farther trials were discontinued.

\footnotetext{
- Dictionuaire de I'lysique, Art. Chuloupe a I'apeur.
\(\dagger\) Scots Mtugraine, Nov. 1788.
}

In 1794 the Earl of Stanhope constructed a steam vessel with paddles below her quarters, but the result of the experiment was not satislactory.
Lord Dundas, while governor of the Forth and Clyde navigation, employed Mr. Symington to construct a steam-vesselfor that canal. Anengine with a cylinder of 22 inches was accordingly madc, and put on board a boat called the Chatlote Dundas. In March 1802 , an experiment was made in presence ol Lord I) undas, and his son-in-law, the present Mr. Spiers of Ehderslie, and other gentemen. This steam-boat towed two loaded sloops, the Active and liaphemia, of 70 tons burden each, from Lock No. 20 to Port Dundas, a distance of \(19{ }^{1}\) miles, in six hours, against a head wind. Some of the canal proprictors, however, were of opinion that the agitation of the water would destroy the banks of the canal, and the boat was laid up in a creck near Bainslord Bridge, where it lay as a wreck for many years.

Hitherto we may safely say that steam navigation had no real existence. Virious individuals had proposed it as a national benefit, while others, supported by capital and influence, had entirely failed in all their attempts to reduce their plans to practice. Jn this state of things Mr. Henry Bell, a house carpenter in Glasgow, who had retired from his profession to the baths of Helensburgh on the Clyde about 1808, alter making several experiments on the propulsion of boats by steam, and overcome some of the obstacles which at first beset his progress, employed Messrs. Wood and Co. of Port Glasgow to construct a boat for him on a particular plan. This boat had a 40 lect keel, and was \(10 \frac{1}{2}\) feet on the beam, having a paddle wheel on each sidc. Mr. Bell made the steam-engine himself, and having completed his stean-boat in 1811, he gave it the name of the Comet, by which that year was distinguished. In January 1812 this boat began to ply on the Clyde between Clasgow and Greenock, and though the engine was only a thrce horse power, yet the boat went against a head wind at the rate of five miles an hour, and by merely increasing the power of the engine, her rate was increased to scven miles an hour. It appears from a letter addressed to Mr. Cleland by Mr. James Couke, steam-engine maker, " that there was very little difference in the principle or construction of the impelling machinery of steamboats in general use at present (April 4, 1825,) from that applied by Mr. Henry Bell in his steam-boat Comet, erected by him in 1811 or 1812.*** The best possible proof," he continues, "that I can adduce in support of this observation, is the Glasgow steam-boat, built by Mr. Bell's direction in 1812 or 1813. The engine and impelling machinery were made and put into the vessel by me in 1813 or 1814 . The vessel was, I believe, lengthened a little since, to give accommodation; the engine and machinery are still the same, and there are not many boats on the river at this day, that exceed her far in point of speed in still water. I do not recollect now what kind of speed the Comet went at, but if it was slow, I am inclined to think the cause of that was the want of a proper proportion betwixt the size of the vessel, and the power of the engine and impelling machinery, and not owing to any
defect in the principle or construction of the machinery, those being nearly the same then as at this day."

But though Mr. IT. Bell was undoubtedly the first person who introduced steam navigation into Great Britain, we must in justice io our American brethren admit, that this did mot take place illl fonr years after steam navigation had bern introduced into America. In the month of ()ctober 1807, Mr. Robert Fulton of New York launched a steam-bont, which soon after plied with jerfect success betwern New York and Albany, a distance of 1 got miles. It is no doubt true that Mr. Fulton, when in England, derived great information from Mr. Symington, and afterwards received plans l'roon Mr. Henry Bell, but this can never diminish his merit, or deprive him of the high honour of being the first individual who sate the vast importance of steam navigation to his country, and who collected all the information which he coutd procure, and, aded by his own original powers, at last trimmphed over every difficulty, by constructing the first steam vessel that sailed upon the deep. Fulton was honoured and rewarded by a grateful country; but Ifenry Bell, a subject of Great Britain, the land cver famed for its science and its arts, and still the mistress of the ocean-has been allowed to spend his old age unlionoured and unrewarded.*
'Ihe history of steam navigation in America and in England has been so fully detailed in our article Shipbulding, that it is unnecessary to pursuc it any farther at present. The steam-boat has crossed the Atlantic, and has forced its way even to our territorics in the East, where its utility has been recognised in the enterprises both of peace and ol war.

The following table given hy Captain Ross will convey an idea of the comparative lengths of voyages made in steam boats and sailing ressels.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{From Holyhead to Dublin,} & \[
\begin{aligned}
& \text { Steam } \\
& \text { vessels. }
\end{aligned}
\] & Sailing & Distance. \\
\hline & 8 his & 70hrs & 55 miles. \\
\hline \multicolumn{2}{|l|}{Portpatrick tol)onaghadee, 3} & 8 & \(19 \frac{1}{2}\) \\
\hline \(\dagger\) London to Leith, & 55 & 5 days & \\
\hline London to Dublin, & 84 & 16 & 610 \\
\hline Dublin to Liverpool, & 14 & 36 hrs & 131 \\
\hline \(\ddagger\) Greenock to Liverpool, & & 3 days & 224 \\
\hline London Bridge to Calais, & 12 & 36 hrs & 120 \\
\hline London to Margate, & 8 & 20 & 84 \\
\hline - Plymouth. & 38 & 10 days & 315 \\
\hline - Belfast, & 110 & 18 & 725 \\
\hline - Ostend, & 12 & 21 hrs & 90 \\
\hline - Texel, & 22 & 54 & 170 \\
\hline - Scarhorough, & 25 & 68 & 255 \\
\hline - Portsmouth, & 29 & 8 days & \\
\hline - Hull, & 23 & 50 hrs & 215 \\
\hline Brighton to Dicppe, & 9 & 30 & 7.3 \\
\hline Southampton to Havre, & 18 & 36 & 120 \\
\hline - Guernsey, & 16 & 57 & 25 \\
\hline Millord to Waterford, & 11 & 25 & 81 \\
\hline Greenock to Belfast, & 13 & 30 & 90 \\
\hline - Glasgow, up, & 3 & 12 & \\
\hline doun, & 21 & 6 & \(\}^{2+}\) \\
\hline Dublin, . & \(25^{2}\) & 52 & 200 \\
\hline Ayr, & 6 & 12 & 48 \\
\hline
\end{tabular}
* The Town of Glasgow, by an act of well judged liberality, saved this meritorious individual from poverty by setuling upon him a small annuity.
\(\dagger\) This vorage was once performed by the United Kingdom in 42 hours.
\(\ddagger\) This voyage was once made by the Xlajestic in 21 hours, including 1 hours delay at the Isle of Man.
\begin{tabular}{|c|c|c|c|}
\hline From Greenock to Largo, & 2 hrs & 4 hrs & 18 miles. \\
\hline - Port Patrick, & 9 & 20 & 90 \\
\hline - Isle of Man, & 18 & 40 & 135 \\
\hline - Campbelltown, & 16 & 18 & 67 \\
\hline Edinburgh to Aberdeen, & 12 & 25 & 90 \\
\hline __- Stirling, - & 4 & 8 & 36 \\
\hline Harwich to Helvoetsluys & 13 & 28 & 90 \\
\hline
\end{tabular}

Having thus given a general and brief sketch of the progress of steam navigation, we shall proceed to describe the construction of a steam ship, and of the engine by which it is propelled.

The external form of a steam boat is shown in Plate DX. Fig. 4 ; and Fig. 5 represents the section of the two engines in the Royal George steam ship, as executed by Mr. Gutzmer, civil engineer, Edinburgh. At the two extremities of the two horizontal axles, A P, \(A^{\prime} P^{\prime}\), passing across the steam boat, are fixed the paddle wheels, one of which is shown at IV W. The cylinders of the engines are placed behind the steam chests \(\mathrm{F}, \mathrm{F}^{\prime}\), and by the alternate ascent and descent of the piston rods \(B \mathrm{~B}\), attached to the cranks C C', a rotatory motion is communicated to the horizontal axles \(\mathrm{A} \mathrm{P}, \mathrm{A}^{\prime} \mathrm{P}^{\prime}\), and consequently to the paddles W VV, which are fixed to them. The cranks which work the steam valves are shown at \(\mathrm{K}^{\prime \prime}\). The air pump \(E\) is wiought by the crank \(D\), which is driven by the inner branch \(H\) of each of the cranks. The boiler G G extends quite across the ship. The top frame \(i\) iti of the engine, and the machinery are supported by the pillars \(h, h, h, h\). The sides of the ship are shown at \(l, l, l, l\), the deck at \(m, m, m, m\), and the funnel at \(k\).

As the object of the preceding ligure is principally to convey an idea of the manner in which the steam engines are arranged on board of a steam-boat, we must refer to Fig, 6 for a distinct view in isometrical perspective of one of the engines for a boat, as arranged by Boulton and Watt. This arrangement, however, was adopted by Boulton and Watt, in common with others, from the engines erected on board the Clyde steam-boats. A section of a steam boat engine, but not exactly the same as that shown in Fig. 5, is shown in Fig. 7, and as we have put the same letters of reference to both, we shall describe them together, so as to give a perfect idea of the construction of the most approved steam-boat engines. The steam from the boiler is introduced into the top or botlom of the cylinder A by the steam pipe \(S\) S, after passing through the shide valve already described in p. 423. When it has acted upon the piston, it passes from the slide valve to the condenser B , where it is condensed into water by a rose jet in constant play. The air pump shown at \(O\) receives the condensed water frem \(B\), and forces the air and water into the cistern D, from which it nows out by a pipe. The reciprocating motion of the piston is conveyed to the crank by means of the beams or levers, one of which is shown at \(\mathrm{E} F\) moving romel \(G\) as an axis. These beams are connected with the l -piece L L, or cross head of the piston, by the side rods m \(n o p\), forming part of the parallel motion, the guiding bars of which are \(\mathrm{M} N, \mathrm{I}^{\prime} \mathrm{N}^{\prime}\). The working end of the lever \(E\) is united with the crank \(i l l i^{\prime}\) by the connccting rod HII. The air pump C is also wrought by side rods ec connected with the beams ELE, and the hot water pump from the same ' l -piece or cross head. The slide valve is on Murdoch's plan, and
is moved by a wheel on the shaft I of the crank, with a sliding frame \(P\), and it may also be moved by hand by means of the lever \(T\), the slide rod being moved by slings from the arm R. The steam passes into the condenser by the valve \(O\), when the engine is set to work, and the air and water are driven into the cistern D at the discharge valve.

Two of these engines are generally placed on board every steam boat, a passage being left between them, and space being reserved for working the fires between the cylinder and the boiler. The coals are kept in iron tanks in the engine room.

The weight of an engine of this kind of 40 horse power, with suitable cluplicate parts, water, \&c. is about 100 tons.

The steam-engine of Mr. Gurney, as applied to steam-boats, is so very unlike those in common use, that we have given a representation of it in Fig. 7 , from the engraving published by Captain Ross. The figure represents it as placed between the two decks of a vessel. Its boilers are exactly similar to those already described. (See p. 422, and Plate DIX. Fig. 14). The right hand boiler and fire place is shown open with the flame acting upon one of the tubes of its boiler, while the left hand boiler, represented shut, is shown with a case \(g\), as it appears when in use. In the open boiler the dircction taken by the flame to the chimney pipe or flue \(s\), is pointed out by arrows. The flue \(s\) is common to the two boilers. The ash pit is shown at \(d\), and \(v\) is the bridge for directing the passage of the flame. The extremities of the chambers which receive the ends of all the bent tubes that form the boiler, are shown at \(c, c\), the separators at \(a, a\), with their safety valves \(b, b\), and guage cocks \(e\), , formerly described.

The engine has neither beam nor parallel motion. The cylinders \(h, k\), are suspended like guns on trunnions at \(p\), so that they can vibrate up and down. The steam is brought from the separators by pipes in the direction \(w, w\), which introduce the steam through the trunnions. The opening and shutting of the valves is effected by a series of levers \(g, r\), which act like hand gear. The piston rod of each cylinder. is attached to cranks \(m\), \(n\), rising from the main shaft \(o\), which carries the paddles, and are placed at right angles to eachother, that when the one is in the position of producing a maximum force, the other is in the position of producing no effect at all. "The main shaft \(o\), the trumions of the cylinders, and the working parts of the machinery, are supported on a frame work marked \(i\) ii, u u u.

Mr. Gurncy is said by Captain Ross to have succeeded in conttiving a modification of the centrifugal blast, as a substitute for the chimney, by which a carrent of air is diffused below the whole furnace over a large body and surface ol fire, at a very low and constant pressure, sufficient merely for the perfect ignition of every part of the fuel. In this way the smoke is nearly consumed, the awkward funnel is rendered umecessary, and the fuel is economised.

Mr. Gurney has added a small separate cylinder for working the supply pump, and also the blower: The price of a boat engine of 10 horse power, with one cylinder, is \(\mathcal{L} 400\), and \(\mathscr{L} 100\) for collateral expenses, such as patdles, wheels, shaft, fixing, \&x. For higher or lower powers \(\operatorname{ESO}\) must be added for every horse poner. Captain Ross states, that, though Mr, Gur.
ney's engine has not made its way in this country, yet it has in France. IVe ascribes this to its never having liad a fair trial in England, in consequence of the inventor not having capital to bring it forward against the opinion of those who have an interest in keeping up the low pressure engine, which is the most profitable to the manufacturer.

The following table has been given by Captain Ross, as calculated to show the crews which are proper for steam vessels employed in conveying goods and passengers, and which each should be obliged to have on board.

Table of the Crews of Steam-Boats.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \dot{m} \\
& \frac{m}{0} \\
& \frac{1}{2}
\end{aligned}
\] & & & \[
\left|\frac{\dot{e}}{\frac{\dot{v}}{2}}\right|
\] & & \[
\stackrel{\ddot{0}}{\underline{g}}
\] & \[
\left\lvert\, \begin{gathered}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}\right.
\] & & & \[
\left\{\begin{array}{c}
\dot{x} \\
\frac{1}{3} \\
\frac{x}{n}
\end{array}\right\}
\] & & & \(\stackrel{-1}{\square}\) \\
\hline 1 & 1000 & 200 & 1 & 1 & 1 & S & 2 & 142 & 6 & 5 & & 12 \\
\hline 2 & 500 & 150 & 1 & 1 & 1 & 5 & 2 & 8 2 & 5 & 1 & & 31 \\
\hline 3 & 300 & 100 & 1 & 1 & 1 & * & 1 & 62 & 4 & 3 & & 21 \\
\hline 4 & 200 & 60 to 50 & 1 & 1 & 1 & 3 & 1 & 42 & 2 & 2 & I & 14 \\
\hline 5 & -100 & 30 to 50 & 1 & 0 & 1 & 2 & 0 & 32 & 2 & 1 & & 13 \\
\hline 6 & b boats & under 30 & 1 & 0 & 1 & 1 & 0 & 21 & & 1 & 0 & 8 \\
\hline
\end{tabular}

The following are the dimensions of the United Kingdom and Majestic, which are said to be the fastest packets that have yet been built.

\section*{Dimensions of the United Kingdom Steam-Boat.}

\section*{Dimensions of the Majestic Steam-Boat.}
\begin{tabular}{|c|c|c|}
\hline Length on deck, & & 144 feet. \\
\hline Length of keel, & & 125 \\
\hline Extreme breadih, & & 39 \\
\hline Breadlu between paddles, & & 221 \\
\hline Depth of hold, & & 11 \\
\hline From upper deck of keel, & & 16 \\
\hline Three fect water fore and aft, & & \(j\) \\
\hline ree feet water with coals, & & ¢ \(86 f\) \\
\hline & & < 996 \\
\hline
\end{tabular}

Mr. Tredgold has given the following table of the dimensions of one of the best American steam-boats, and one of those lately constructed.

\section*{Dimensions of the Nohth Amemican Stram- Boat}

The average force of the stcam is 9 inches of mercury above the atmosphere, and the maximum force, 14 inches. The distance from New-York to Albany is nearly 160 miles, and the voyage is performed, at an average, in 12 hours. The boilers are placed before, and the machinery abaft the paddle wheels. The two engines consume two cords of wood in an hour and 25 cords of wood during the above voyage. A cord of wood weighs about 3826 lbs . and the ratio of coal to wood is about 22 to 26.6 , so that the equivalent quantity of coal per hour would be \(16 \frac{1}{2} \mathrm{cwt}\). nearly.

In our article Simpbeilding, p. 247, 249 , the reader will find very copious tables of the dimensions of the earlier steam-boats.

One of the most important desiderata in the construction of steam-vessels is the proper formation of the paddle wheels. Hitherto they have almost universally resembled common undershot wheels, in which the float boards are a continuation of the radii of the wheel, and though such wheels have theoretical disadvantages, yet their firmness and strength have given them a superiority over other contrivances, which, consisting of numerous parts and movable float-boards, are very liable to be broken.

There is, perhaps, no branch of the mechanical arts that has called forth so many inventions as the subject of paddle wheels, and yct, so far as we know, no modification of them has appeared which is likely to supersede those of the common form.

One of the latest and most ingenious of thesc is the invention of Mr. John Oldham, engineer to the bank of Ireland. By a simple and elegant mechanism the
float-boards revolve on axes, independent of the axis of the wheel. and each float-board revolves once, during every two revolutions of the whecl, and in an opposite direction.

The following account of the principal of these paddle wheels is given by Dr. Lardner, who has instítuted experiment, with them, compared with the common wheel, and bas found the results to coincide satisfactorily with those which he has dednced from mathematical calculation:-
"The consequence of the combination of the motions of the paddle boards and the wheel is, that the edge of every paddle board is always presented to the highest point of the wheel, as shown in Plate DX. Fig. 9. The entire action of each board, perpendicular to its surlace, being revolved into two actions, one horizontal and the other vertical, the proportions, quantities, and directions of these actions will be seen at once, by observing the sides of the several parallelograms in the figure and the directions of the arrows. One peculiarity which this presents, and in which it differs most strikingly from other wheels, is, that all the horizontal arrows point in the same direction, indicating that all the horizontal elements of the forces of the boards act in the same direction, and that they, therefore, can be made to propel without any back action whatever. It will also be observed, that the vertical elements, which, on the one side of the vertical diameter lift, and on the other side depress, are much smalle: in proportion to the whole force than in the common wheels, see Fig. 10. and therefore the force expended without any useful cffect is much less in proportion to the whole force in these than in the common wheel.

A wheel of this kind having no back action, might be totally immersed, and would still continue to propel. In consequence of the diminution of the lifting and depressing efforts, or what is the same, of the degree of the fealhering principle with which it is endowed, its motions through the water is smooth, and attended with but little agitation, and is, therefore, the more effectual as an impellent power."

Among the ingenious contrivances for propelling steam-hoats, we must mention that of Mr. Gladstone's of Castle Douglas, who has proposed to have two wheels on cach side, with a chain of float boards between them, as shown in Hydronynamics, Plate CCCXX. Fig. 6, float boards or paddles being substituted in place of the buckets \(\mathbf{C}, \mathbf{F}\). The two wheels A, l3, are ol course placed so that the line joining them or the direction of the line of paddles is a little inclined to the horizon. Such a construction has great theoretical advantages; but the looseness of all the parts has, we believe, been the cause of its lailure in practice.

A method of propelling steam-boats without wheels was proposed and carried into effect in 1820 by J. 3. Fraser, lisq. and (i. Lilly, lisq. who took out a patent for the invention. The method consists in forcing out from the stem of the boat a small jet of water by means of compressed air. M. Jernouilli was, we believe, the lirst who suggested the idea of propelling boats by this means. He proposed to fix on the hoat an uprisht bent tube like the letter \(L\), the vertical part having a sort of lunncl top convenicnt for filling the
tubes with water, which, descending through the horizontal part, and issuing at the middle of the stern, and below the surface of the water, propels the boat by the reaction of the cffluent stream. Dr. Franklin* proposed an improvement upon this method, which consisted in adding another tube of the form L. "The two standing back to back, the forward one being worked as a pump, and working in the water at the head of the boat, would draw it forward while pushed in the same direction by the force of the stern. And after all, he adds, it should be calculated whether the labour of pumping would be less than that of rowing. A fire engine might also in some cases be applied in this operation with adrantage." Dr. Franklin next proceeds to show how the boat might be propelled by the use of air in place of water, and he suggests the use of an air ressel with proper valves to permit the force to continue while a fresh stroke is taken by the lever.

The apparatus described in Mr. Fraser and Mr. Lilley's patent consists of a cistern or condensing reservoir placed near the bow. From this cistern there descends a main tube, with a plug that may be opened and shut at pleasure. Two tubes, each of them having a plug, branch off from the main tube, and extend to a point rather nearer the bow than the centre of gravity of the vessel. From these two tubes the water issues in propelling the vessel. The main tube, however, continucs to extend till it reaches a point about one-third of the length of the boat from the stern, and then divides into two tubes, which are bent back so as to open towards the bow of the vessel. The water is made to issuc from these tubes in order to repel the vessel or give it stern way; other four tubes branch off from the main tube belore the two first, two going to the bow and two to the stern of the vessel, and they are put at right angles to the keel, one of cach pair being directed to one side, and the other to the opposite side of the vessel. The plugs of these tubes are united transversely, so that either pair being opened the water may issuc near the bow on one side of the keel and near the stern on the opposite side of the keel for the purpose of turning the boat. A pump wrought either by men or by steam is then connected with one side of the condensing reservoir. A boat thus fitted up and wrought by two men, who pulled at separate levers in the same manner as in rowing. went at the rate of three miles in an hour, though the two apertures which discharged the water was only one-fourth of an inch in diameter each. A full account of this apparatus, with engravings, was given by the editor of this work in the Edinburgh Philosophical Journal, Vol. V. p. 120.

Many different contrivances have been invented, and some of them secured by patent, for rendering steamboats fit for a tempestuous navigation. Messis. Redhead and Parry have proposed to extend two horizontal channels through the whole length of the vessel, with apertures at the stern and the bow at which the water can enter and escapc. The water rises nearly to the top of these chamels, and two or more pair of paddle wheels are mounted, having their paddles immersed about one foot bencath the water in the channel. In very stormy weather the apertures of the channels may be closed by the shutters, and the water
pumped out. In this condition the ship may be navigated by sails.

The fine American steam ship the Savamah, which crossed the Atlantic, and arrived at Liverpool on the 20th Junc \(1827, *\) alter a passage of 21 days, had its paddle wheels constructed so that they could be taken to pieces; and removed in bad weather, exeept two principal arms of each, which being of cast iron and firmly fastened, are placed in a horizontal position in high seas. The engines were in use during 18 days of the 21 that the passage lasted.

For farther information on the subject of steam navigation, see Jomathan ILulls's Description of a new invented muchine, \&e. 1737. Buchaman on Steam Natigution, Glasgow, 1816. Marestier, Memoire sur les Butcaut a 「apeur, Paris, 1824. Cleland's Mistorical Account of the Stcam Engine, and its applieation in Proptling Vessels, 1825. Memoire sur la Natigation a rapeur, par M. Seguin. Simé Paris, 1828. Dr. Lardner's Lectures on the Steam Ensine. London, 1828. And Dr. Brewster's Etition of Ferguson's Lectures, Vol. II, p. 112-117.

It is only of late that the world has been informed of the first attempt made to use the powerful agency of steam in propelling vessels. Blasco de Garay, a sea captain, in the presence of Charles the Fifth of Spain and sundry officers of state, in the year 1543, made an experiment upon a ship of 200 tons at Barcelona with an engine, all of which was not exposed, but it was observed to consist in part of a large caldron or vessel of boiling water, and a movable wheel attached to each side of the ship. The emperor, prince and the other spectators applauded the engine, and especially the expertness with which the ship could be tacked: and Garay was munificently rewarded. The exhibition being finished, he took the engine from the ship, and having deposited the woodwork in the arsenal of Barcelona, kept the rest himself. \(\dagger\) This account is given in a note to the first volume of a work lately published in Spain, containing original papers relating to the voyage of Columbus. It was communicated to the author by Thomas Gonzales, dated Samancas, August 27, 1825, and said to have been taken from the Royal Archives of Samancas for 154 s .

In page 258 some account was given of John Fitch's steam-boat, which was built in Pliladelphia, and made several experimental excursions on the Delaware. In plate D. . Fis. 2, its form may be seen. The following account ol it is given by the unfortunate inventor in the Columbian (Philadelphia) Magazine, Vol. I. lor December 1786. "The cylinder is to be horizontal, and the steam to work with equal lorce at each end. The mode by which we obtain what I term a vacuum, is, it is believed, chtirely new, as is also the method of letting the water into it, and throwing it off against the atmosphere without any friction. It is expected that the cylinder, which is of 12 inches diameter, will move a clear force of 11 or 12 cwt . alter the frictions
are deducted; this force is to be difected against a wheel of 18 inches diameter. The piston is to move about three leet, sud each vibration of it gives the axis about forty evolutions. Bach evolution of the axis moves twelve oars or paddes 5 lect; they work perpendiculaty, and are represonted by the strokes of a paddle of a cathoe. Ss six of the padelle, sare raised from the water. six more are chtred, ant the two sets of paddees make their serokes of aboa: 11 liee in each evolution. 'The crathl of the axi- acts umon the pate des, about one third of their tometh limen theillower ends, on which part of the oar the whine forer of the axis is applied. The engine is placed in the bottom of the boat, about one third from the stern, and both the action and reaction turn the whee! the same way."

Fitch gives a particular account of the progiess of his operations in steam, from the first the that the thought occurred to him of using it, to the completion of the boat, so far as to make bumerous experiments on the D. laware: the subseguent attorations made in it, and the final abandonment of the scheme by the original subseribers. This accoumt shows him to have been a strong minded, but untettered man, with a perseverance almost unexampled, and a determination to tet no difficulty in the execution of his plan prevent him from endeavouring to bring it to perfection, so long as the share-holders furmi-hed the means of delraying the experiments. As stated, p. 258 , they refused to advance more funds. This they did after interfering with his views, and attempting expensive plans ol improvements, which faited of success. The conviction of Fitch, however, respecting the power of steam continued firm; and in June 1792 , when the boat was laid \(u p\), he addressed a letter to Mr. Rittenhouse, one of the share-holders, on the subject, in which he says "it would be much easier to carry a first-rate man of war by steam, than a boat, as we would not be cramped for room, nor would the weight of machinery be lelt. This, Sir, will be the mode of erassing the Atlantic in time, whether I bring it to perlection or not, for packets and armed ressels. I mean to make use of wind when we have it, and in a calm, to pursue the vogage at the rate of seven or eight miles an hour." He further suggests the use ol steam to conquer the cruisers of Barbary, by which several American vessels had been taken about that time. He says, "a six foot cylinder could discharge a column of water from the round top 40 or 50 yards, and throw a man off his feet, and wet their arms and ammunition." He complains of his porerty, and to raise funds, he urges Mr. Rittenhouse to buy his land in Kentucky, that he "might have the honour of enabling him to complete the great undertaking. His enthusiasm on the subject never diminished one moment, and steam was the constant theme of his discourse, whenever he could prevail upon any one to listen to him. Upon one occasion he called upon a smith w!o had worked at his boat, and afier dwelling for some time upon his favourite topic, concluded with these words: "Well, gentlemen, although I shall not live to see the time: you will, when steam-boats will be pre-

\footnotetext{
* This is an error : the voyage here refered to was made by the Savanmah in 1819. It appears by reference to ber Los-book that she left New York for Savanah on Sunday, March 2s, 1819, and arrived there on Tuestay, April Geth. Left Savannih on Fues
 pool for st. Petersburgh, and on Thurstay Sept. 9th at 4 P. h. moored off Cronstadt. Sunday Getober 1 Gth. at 9 ocloch. left Cron.
 and wrived on the 14 th, where she was sold-Editor Am. Edition.
+ North American Review for 1826, p. 489.
}
ferred to all other means of conveyance, and especially for passengers, and they will be particularly useful in the navigation of the river Mississippi," He then retired, when a person present observed, in a tone of deep sympathy," Poor fellow, what a pity he is crazy."* The prediction of the benefits which this country would one day derive from steam navigation, are made inseseveral places in the course of his manuscripts left to the library company. The distress ol mind, and mortilication he suffered, from the failure of his protracted exertions, and his povery, were too much for him, and to drown his reflexions, he had recourse to the common, but deceptive remedy, strong drink, in which he indulged to excess, and retiring to Pittsburgh, he ended his days by plunging into the Aileghany.

James Rumsey was a native of Virginia, and resided at Shepard's Town. He proves by affidavit that he had conceived the idea of propelling a boat by steam in 1783, and actually made two experiments with a small one in the Polomac in December 1781, in the first of which she went three miles an hour against the current, and in the last her speed was increased to four miles. His plan was to admit water through a trunk on the kelson of the boat, and by means of steam to discharge it at the stern, calculating that the power of reaction would propel her forward. The boat however was not made practically uscful. Leaving the United States to his opponent Fitch, he sailed for London, where he made another experiment on the Thames, but whether on his former principle, or on some other, is not known. His death put an end to his operations. A controversy was carried on between Fitch and Rumsey for the honour of the first discovery of the power of steam for navigation, and two pamphets were published by them, in delence of their respective pretensions, in 1788.

But for one of those unfortunate accidents which so often totally defeat the best contrived plans, Mr. Evans would have had the satisfaction of seeing one of his steam engines propelling a boat in the Mississippi two years belore steam boats were seen on the Hudson. In the year 1802, having inlormed gentlemen in Kentucky that he had his engine in motion, which he had long before invented for propelling boats and carriages, Captain James w'Keever, formerly of Philadelphia, and Mr. Louis Valcourt agreed to build a steam boat to ply between New Ortcans and Natchez, and Mr.V. came to Phitadelphia to order the engine. Two of Mr. Erans's worknen went with the engine to meet the boat al New Orleans, and set it up. She was of the burthen of 150 tons, and built in kentucky. Soon after her arrival at New Orleans, she was sunk and destroyed during a hurricance. The engine was then applied to sawing timber, and when fairly in operalion, the mill was destroyed by fire. Capt. Al'Keever died in 18:0, and the chyine was then sold to press cotton, and was worked with success. \(\dagger\)

From the report of the late Mr. Stackliouse, one of the engineers who was sent to put up Captain M'Keever's engine, it appears that "in twelve months and fifteen days, with three saws (but with power for four) he sawed 367,000 feet of boards and scantling ; that nothing relating to the engine broke, or got out of order, so as to stop the mill one hour. They sawed by day only, and the three saws cut from 2,500 to 3,000 feet per day of twelve hours, with the consumption of about one and a half cords of wood per day. The engine was of 20 horse power; the cylinder was only mine inches diameter, and the stroke of the piston three feet, making thirty-six strokes per minute, and working without a condenser; the fire place was outside of the boiler. \(\ddagger\)

In 1812 there were ten of Mr Evans's engines in use in different parts of the United States; ten were made, making, or engaged. \(\S\) After that time, several were erceted in boats; but owing to the explosion of the Etna at New York, in the year 1824, such a prejudice was created against them, that the proprietors were forced to take them out of all the boats plying on the North River and Delaware, and to substitute those on the low pressure principle, although fully as liable to explosion as the boilers of those on the high pressure principle.
In page 256 of the present volume, ample justice is done to Mr Fulton, to whom the United States and the whole world are under evcrlasting obligations, for showiug the possibility of doing effectually, what had been only partially accomplished in Europe, in respect to the power ol steam in navigating boats: no more need be said upon the present vecasion on his great merits.

Mr Stevens, of Hoboken, New Jersey, had been for many years making experiments upon steam to no purpose, and at an immense expense; but it was not until the momorable year 1807 that he had been able, with the assistance of one of his sons, to set a boat in motion. Being prevented by the monopoly of Livingston and Futon from sailing in the waters of New York, she was sent round to the Delaware, and plied in it for about two years.

Since that time the improvements in steam boats have gradually progressed, and there is now no question about the superiority of the speed of the American boats over those of Europe. The common rate of going, in the North River, of the boats built by Mr Robert L. Stevens, is \(13 \frac{1}{2}\) miles per hour. The noble boat, the President, Captain Punker, plying between New York and Providence, through Long Island Sound, distance 200 miles , commonly performs that voyage in 16 hours. In page 257 of this volume, several facts on the subject of the rates of speed by the United States steam-boats are given. The two following instances were published in the newspapers in the month of April 1831.

The steam-boat De Witt Cliuton, (of the North

\footnotetext{
- Hazarl's Register of Penmblamia, wol. vii. p. 92.

a Arehives of thefinl kamberlge, vol. ii. p,ig67.
\(G\) Archives of Useful Kinowletge, wh. ii. p. 36., in which the places of their crection, and the purposes of their use are given. on the western wators, from recent prisate inlormation from an anthentic sonece, it appears "that the proportion of low to high pressure engines, both for latige and small boats, is as \(t\) to 8 , many of them over tou tons burthen. The simple and convenient form of
 presume engines, renter this kind of engine peculiaty athpted to the mudy and sandy waters of the Mississippi. Several dine large boats lave come rond from the Alantic ports with low pressure engines, but have not been able to compete with the western boats, until the boilers were changerl."
}

River Line,) left Albany at 4 minutes past 4 o'clock, Tuesday afternoon, April 1831, and arrived at the landing place in New York, at the foot of Barclay street, at 12 minutes before 3 o'clock Wednesday morning, making the entire passage, including the landings at Mudson, Catskill, Rhinebeck, IIyde Park, Poughkeepsic, Newburgh, West Point, and Caldwell's, in 10 hours and 44 minutes.

The steam boat Hightander left Wheeling, on the Ohio, at 12 o'clock, on the 12 h of April 1831, and returned in less than 18 days. The distance to St. Louis is 1200 miles, 200 of which up the Mississippi, a river of very rapid current.

A citizen of the United States set the first example of crossing the Atlantic in a steam ship. Captain Moses Rodgers, in the ship Savannah, sailed from Savannah, ia Georgia, in May 1819, to Liverpool, and Hence to Russia, and returned to the United States in November of the same year: and from 1819 to 1821, the steam ship Robert Fulton plied between New York and New Orleans, calling at Havanna. The English ship Enterprise has since that time performed a voyage to India in 118 days; and steam boats are in operation between the various British ports in India, and thence to the Cape of Good IIope.

\section*{On the Explosion and Rupture of Steam Boliers.}

The remark, that it is the lot of mortality to have good united to evil, has been made a thousand times, and applies with peculiar force to the case of Steam Engines. A great drawback upou the profit and convenience derived from the powerful agency of steam, and from the satisfaction consequent on the facilities and rapidity of travelling afforded by steam-boats, and the comforts enjoyed on board of them, is the fear of the explosion of their boilers, or the rupture of their steam tubes. It has been thought proper therefore on the present occasion to collect all the information possible on the subject, to examine and detail the circumstances under which they have occurred, to state the causes of the accidents, and to point out the means most likely to prevent their occurrence. The causes which are known to have produced these explosions and ruptures, are as follow:
1. The eontinucd application of heat to a boiler, while any part of it is uncovered with water, or in which it is expended.
2. The steam being prevented from passing off, owing to, 1 . The rusting of the safety valve. 2. Its adhesion to its scat. 3. Stopping the steam pipe by the valve, owing to the improper form of the pipe. 4. Overloading the salety valve, or of lastening it down, so as to increase the power ol the steam beyond the maximum point which the force of rohesion in the metal of the boiler would bear, or while the congine was stopped from working. Small size of the valve.
3. Wint of proper precautions to strengthen the boiler, when first made.
4. The use of internal flues in boilers.
5. The use of improper metal in the construction of the boiler.
6. The use of metals for boilers, of different expansive powers.
7. Weakness of the boilers from long use, or unequal thickness in the metal, and raising the steam to a height beyond its strength.
8. Faulty lorm of the boiler.
9. A collection of earthy or saline sediments on the bottom of the boiler.
10. The sudden increase of the pressure of steam on a boiler.

\section*{1. Loss of water in the boilers.}

The cases embraced under the first cause are, the loss of water in or around the boiler or boilers, from, a. leaks; b. neglect of a supply of it; c. the beeling of the vessel from the concourse of passengers on one side, thus forcing the water from one or more of the boilers, when several are in use; or causing the boat to heel so much to one side as to render the guage cocks useless; \(d\). obstructions in the pipe or pipes feeding one or more boilers.

It is believed that most of the explosions of steam boilers may be ascribed to the first cause, and its several modifications. The neglect to supply boilers when leaky, or to keep those filled which are sound, admits of no excuse : and misfortumes arising therefrom, to passengers on board of boats, affords as just and legitimate grounds for an action of damages, as those that occur in stage-coaches from racing, mismanagement, intemperance in the driver, or his wilful indifference in any way, to the safety of travellers.

The explosion in one of the high pressure boilers of the Union Rolling Mill at Pittsburgh, a few years since, can be ascribed only to this cause. There were three cylinder boilers, each of thirty inches diameter, one of which had been observed for some time to be getting red hot; but as the other two had supplied a sufficiency of steam for the works, it was disregarded until it exploded, and shooting through the air, at an angle of forty-five degrees with the horizon, fell into the river two hundred yards from the works.* The over heating of the exploded boiler cannot be ascribed to any other cause than the want of water in it. Boats on the western waters are particularly exposed to danger from this cause, Many of them have several boilers connected with one

\footnotetext{
* The steam was said to be on fire. but Dr. Jones justly attributes this appearance to the boiler being at one ent heated to redness, and supposes that the meteor-like appearance which it exhibited, was owing to the rapid pasage of the projected boiter through the atr. To the eye, this, like the whirling of an ignited coat, would present a lengthened stream of light, and apparently justify the conclusion, that there was real combustion.-Frankitin Journal, vol. ii.

Vol. XVIl. Part. II.
}
another; when one of these boats leaves port with a full cargo of passengers, goods, and a supply of wool, she sinks deep in the stream, and the boilers are all surrounded with water to the proper height. In the course of her voyage wood is consumed, passengers and goods are landed, the forward portion of the vessel rises a little from the wenght of wood being removed, and when a landing place is reached, all the passengers invariably rush to the side next the land, and thus cause the boat to heel, and the water to run out of the boilers on the opposite side. The same effect is produced by 400 or 500 passengers sometimes sitting on one side of the boat in summer, to avoid the sun. In the meantime the fire is kept up, the empty boiler becomes red hot, and when the boat recovers hor trim, the heated water rushes into the empty boilers, highly expansive steam is instantly generated, and when the throttle valve, or safety valve is opened, the water mounts up with the steam, and filling the boiler, presses on the weakened metal beyond its power of cohesion; an explosion therefore must take place. The awful disaster on board the Helen M'Gregor, March 1830, is a case in point. The explosion took place at Memphis in Tennessee. The engine was on the high pressure principle. She had six or eight boilers, and was full of passengers; nearly all of whom, when at the landing, came to the side near the shore, and of course caused her to heel greatly, and to drive the water from the boilers on the other side into those next the land. The fire was kept up during her stoppage, and thus must have rendered the empty boiler red hot. The explosion instantly followed the opening of the throtlle ralve to set the engine in motion. Between 60 and 80 persons were killed, scalded and wounded, and the boat was reduced to a mere wreck. The boat Chicf Justice Marshall was another instance of the same kind: "the main internal flue gave way when the engine was set in motion afier a stoppage at Newburgh, North River; the safety valve was either open, or had just been closed; one of the persons on board remarked a peculiar shrillness in the sound of the escaping steam, that can only be ascribed to its beins intensely heated, without having a corresponding density. Another obscrved that it had a violet huc, which may perhaps be explained by supposing it to have been heated until it would have been luminous at night. In opposition to the opinion that the water had fatlen too low, and left the flues bare, It was stated by the captain, that the guage cocks had been tried, but on examination it was found that they were situated on the side of the boiler nearest the landing; and hence the influx of passengers to that side changed the level of the boat so much as to renfler the guage coeks, when so situated, useless as a test of safety. It is also possible that the fireman, who was a new hand, and by no means skilful, may have mistaken the water of condensation in the tube for that coming lirom the boiler. This last mistake is one that ought to be carefully guarded against by leaving the cock open several seconds."*

It would appear from the following statement, that besides the probable over heating of the boiler, the steam had been permitted to collect in quantity beyond the cohesive powers of the boilcr. The editor of the New York American vouches for the respectability of the writer.

From the New York American, April 24, 1830.
Mr. Editor, - I perceive the captain of the Chief Justice Marshall says, that the steam was blowing off continually while landing. I cloubt the correctness of this statement. My own rery strong impression is, that no steam was going off while she was approaching the clock, nor while she was taking in the Newburgh passengers, of whom I was one, and that it was not permitted to escape at all, till within about three minutes of the explosion. For three or five minutes before this took place, I was standing at the door of the captain's office; and having nothing else to do, directed my whole attention to the steam; it was going off at that time, but so very slowly as to make but a slight murmuring sound. This continued three or fonr minutes, and was exchanged for the shrillest and most piercing whistle I ever heard; so that I immediately made the reflection (whether correct or not I do not know), "The steam is excessively high!" Still it appeared to me that very little stcam was escaping, and as if it passed through an exceedingly small aperture. This sound continued a few seconds; it suddenly ceased, and, almost simultaneously, the boiler exploded! My own opinion is, that the steam was suffered to aceumulate in the boiler in a very improper manner; and, as all the disasters of this kind have happened while boats have been lying at or leaving the dock, is it not fair to conclude, that it is owing to this cause-the improper accumulation of steam in the boilers? Why the steam is kept there pent up, I know not; but it seems to me it cannot be done without danger. No law on this subject would probably contribute more to the safety of passengers than one which should provide, that the moment the steam ceased to be employed by the piston, it should be let off in the same proportion at the safety-valve.

A PASSENGER.
As the captain positively states that the safety valve was open, he must be believed: the doubt expressed by "a passenger," as to the fact, except until about three minutes of the explosion. may be explained by the facts discovered by Mr Perkins, viz: 1. That "steam highly surcharged with heat, when rushing from the safety valve, or any other aperture, may be known by its perfect invisibility, even in the coldest day: it is, however, he says, condensible, as may be secn by holding any cold substance in its range." 2 . "The whistling" mentioned is another prool of the highly heated steam in the boiler: for, Mr Perkins fonnd by a truly important experiment, that steam highly heated, when issuing from a small aperture, produced such a noise. \(\dagger\)

\footnotetext{
- Remwick on Steam Engines, p. 97.
\(\dagger\) Ar Perkins "diseovered that a steam generatar'at a certain femperature, although it had a crack in it, would not emit either water or steam. A friend ascribed it to the expansion of the metal closing the fissure. To remove every doubt, he drilled a tmall hole, one fonth of an inch in diameter, through the side of the generator: alter getling up the steam to a proper temperafure, he took out the plug, and although he was working the engine at 50 atmospheres, nothing was sech or heard to issuc from
}

The fatal accident on board the Oliver Elsworth in March 1827, near Saybrook, when on her passage to New York, may be ascribed to the same cause. During a" heavy sea and high wind from the S. W., the boiler burst by collapsing the main lluc, and forcing out the furnace head with a tremendous report, louder than the heaviest cannon." Mr. E. Hat zard judiciously asks, " supposing the water to have been at its proper height in the boiler, may not the motion of the vessel from a head sea have left portions of the boiter exposed to the fire for a length of time sufficient to make them red hot?"

A boiler about eighteen fect long at Kensington, Philadelphia county, in which the water had been greatly, if not entircly expended, owing to the lire being kept up during the absence of the fireman at dinner, collapsed from the over heating of the return flue, which was reduced from one foot in diameter to two inches.

Stoppage of the Fecd-pipe. The E'ma. This was the sccond steam-boat in which an explosion took place in the United States. It happened in May 1824, between Washington in New Jersey and New York. The Etna had three boilers below deek, and on the high pressure principle, and all new. The feed pipe of the centre one was longer than the other two, and near its internal extremity was bent; a circumstance that favoured the deposition of the solid contents of the brackish water which had been used to supply them for some weeks, and which did not take place during the several years she had previously ran in the Delaware. Hence the supply of water was cut off from this boiler, which is known to have become red hot, and must have been nearly empty. It was observed too that just before the explosion the pressure was diminished from 150 lbs . 1050 lbs ., owing no doubt to a sudden projection of a limited portion of the remaining water into the hot vapour, of which the heat of temperature became latent heat, and in this condition was less efficacious in producing pressure than it had been in the free state.

It was ascertained that at the time of the explosion, the engine was making only cighteen strokes per minute, and had often made twenty-two the common rate of working was twenty strokes. The first joint of the boiler over the fire was torn ofi, and driven up through the whecthouse, not in the direction of the boiler, but at a considerable angle, breaking the arms of the wheel; the body split in a spiral form, one and
a half turns, and was thrown up flat on the deck, with the exception of the back ent, which retained its form from the strength derived from the cast iron head.

The explanation of the mode in which the explosions take place from the loss of water is as lollows: In consequance of the continued application of fire, or of highly heated stean wo the apper part of a Loiler, when not covered with water, it becomes red hot," the cohesive power of the metal is greatly weakened, or destroyed, technically "ucaled," and may be easily broken with a slight force. A boiler thus weakened would be unable to resist the pressure of the highly heated and expansive steam produecd from the continned fire under the above eiremmstances, and might burst before it was subjected to a pressure sufficient to raise the safety valve. This effect is more certainly produced by water coming in contact with the metal when in this heated state, an event which Mr. Perkins suggests may take place'by the weight being taken from the salety ralve, of by a small rent occurring in the boiler owing to the pressure of the steam, when an explosion will be sure to follow." The water woutd also be forced up by the opening of the throtte or safety valve, as has already been mentioncl; and in any of these cascs, the water being relicved lirom the pressure of the steam on its surface, would rise with it in proportion to the rapidity and suddemess of its escape. Such instances have been noted above. Mr. Ierkins states, that in the case of the English boat Grahan. twenty pounds had been taken off the safety valve just before the explosion took place. Two explosions in cotton mills in France, which are quoted by Arago, and said by him "'to appear so paradoxical as to excite a doubt," may be added to the above cases. White the stcam engines were working very slowly, the safety valves opened, and the boilers burst: no doubt the water in buth cases had descended too low, and the upper part of the motal hitd become red hot. In respect to one, it is stated that the workmen "supposed it to be almost woid of steam." Another similar case occurred in a low pressure engine at Lyons, and is noticed by Arago. In all these, the steam must have received an excess of heat, without acquiring a proportionate elasticity : hence the engines worked more slowly than usual. but when the water rushed up, on the overheated metal, highly clastic steam was formed, and the mischiel produced. The same effect may ensue from the a:-
the phaghole: he next lowered the temporature by shouting the damper and opening the furnace door: a singing from the aperture was soon obocrable, and when a coal was hild before it, ropid combustion ensucd: nothing houtatr wets yt wisible; but as the temperature decrased, the seam became more and more risible, the noise at the same time increasing, until tinally the roar wus tremendous, and might have been heard at the distance of half a mile. The iron at the aperture was red hot." Mir P. gives this experiment to illustrate the repellent pheer of heut, and to prove that caloric is matter - Fronklin Journal, iii. p. 413 .
*"Mr. Moilinformed Mr. Perkins that on groing to his boiler room, he observed a lacher, the form of which rested on the top of his boiler, to be in flames. He instanty ascertained that the top of the boiler had become red hot. the fire was quench ed, and upon examining the boiler when cold, he found very little water in it." Franklin Jour. iii. . 420 . "On board the Dublin and Lirerpool steam boat, a piece of pine wool on the top of one of the boilers was burnt to a coal, although the engine was working with steam only a few pounds above the atmospheric pressure. The leaden joints of the stam pipe once melied, when the steam guage indicated only the pressure at which the engine was usully worked. In both these cuses the water was so low in the boiters, that the heat was communcated to the steam through a portion of the boiler which had no water in contact with it, and which of course became red hot, while the steam could not part with its heat focmwards, to the water."-E. Itazard, Frankilin Jur. iii. p. 421. Several instances have occured where there was sufficient time, by the rushing of the steam from a rent or fracture, for the bystanders to escape from the injury befurc the explosion took place. In one case the boiler was raised from its bed into the air, by the force of the steam issuing fiom the rent (upon the principle of the rocket) before the water had sifficiently expanded by the removal of the stcam caused by the rent or fracture, to take up the heat of the boulcr and the surcharged steim; when an explosion took place after the boiler had been rased many feet into the atmosphere, and it separated with a very great report, one part rising still higher, while the other was dashed with great force on the ground."-Perkins, Franklin Jour. vol. iii. p. 417.
tempt to remedy the neglect to supply the heated boilers with water, by pumping in cold water, until it rise to the level of the overheated and weakened part of the boiler. To this cause may have been owling the fatal explosion that took place on board the steam-boat Tricolor at Wheeling, on the \(19 t_{h}\) April 1831. A letter states' \({ }^{6}\) that she had been puffing off steam in the morning, until 9 o'clock, and that the explosion happened the instant the engine was started, and cold water was injected into the boiler." Upon examining ruptures in boilers, they have sometimes been found to follow the water line.

The interesting discovery of the want of proportion between the temperature and elasticity of steam is due to our countryman Perkins, whose experiments to prove it are given in the Franklin Journal, vol.iii. To this cause he aseribes the tremendous explosions that suddenly take place as well in low, as in high pressure boilers. These explosions having taken place when no apparent reason could be assigned for them, have been ascribed to the formation and inflammation of hydrogen gas in the boiler. But this opinion is contrary to true chemistry. On this subject professor Hare observes, that red hot iron may decompose the steam slowly, but it can do so only by absorbing oxygen, which must lessen the quantity of elastic matter in the boiler, and render the evolved hydrogen gas inert, as by itself it cannot explode.* Dr. Jones adds, that the hydrogen would be altogether incapable of producing an explosion without admitting atmospheric air, which air must find its way into a vessel filled with vapour in a state of tension, and exciting a pressure outwards much greater than that of the external air. \(\dagger\)

Arago admits the possible formation of hydrogen gas from the contact of steam with metal heated to redness, mixed with steam; this gas will pass into the cylinder of the engine, and not being capable of condensation, will be thence expelled at a great expense of power. He can allude here only to condensing engines. Upon the supposition that the oxygen, an admixture of which with the hydrogen is necessary to prodace an explosion, would be furnished by the atmospheric air in the water of the boiler, be answers, that this water is warm, and therefore contains but a small quantity of air; and this air, as fast as it is disengaged from the water, passes in a state of mixture with the steam into the engine. Farther, the oxygen of this air would combine with the beated metal more readily than that contained in the water would do; and thus, il hydrogen gas should be produced from the water, it wonld find nitrogen present with which to mix, but no oxygen.

In connexion with the subject of explosions referred to the overheating ol the boiler, through the defieiency of water, we may mention a paper in a late number of the American Journal of Science (vol. XIX. p. 294), by Mr. Walter R. Jolmson, in which he details several series of experiments undertaken expressly to ascertain what ellect might be produced by a known quantity of metal heated to dedness, and then plunged below the surface of water at boiling temperature. As the experiments were made with all due precautions to avoid loss of temperature by the water
during : he process, to determine the weight of steam produced, and its relation to that of the metal employed, and to expend the whole of the surplus heat of the latter, above boiling temperature, solely in giving the elastic form, there cannot be a doubt that they furnish very accurate practical data by which to judge of the effeet of an overheated boiler, when suddenly supplied with hot water.

These experiments demonstrate, that at a dull red hoat in day light, each pound of wrought iron is capable of generating one ninth of a pound of steam; in other words, that nine pounds of metal in that state, are sufficient to give the elastic form to one pound of boiling water under atmospheric pressure. Of east iron, it appears that \(8_{1}^{2 \frac{28}{0} 0}\) pounds are adequate to the same effect.

The lower arch only of a cylindrical boiler 20 feet long, 30 inches in diameter, made of \(\frac{1}{4}\) ineh rolled iron, would, together with a returning llue one foot in diameter, and of the same thickness, weigh not far from 1500 pounds, and would consequently, if made red hot, be capable of producing more than 160 pounds of steam, with a bulk of upwards of \(4400 \mathrm{cu}-\) bic feet-more than fifty times the contents of such a boiler-and all this tremendous energy would be developed in a time not exceeding thirty seconds!

Mr. Thomas Earl has also given a neat demonstration on this subjeet, in the Franklin Journal, vol. vii. p. 156, and in accordance with the abore theory.

\section*{2. Obstructions to the Escape of Steam.}

The obstruction to the escape of the steam from the eauses noted, are so intimately connected with the safety of the boiler, as searcely to reguire any remarks to enforce the propriety of preventing it from taking place, by constant attention to the safety-valve. The only instance of the adhesion of the salety valve to its seat, that has been recorded in the United States, is one that is said to have taken place in the North River, New York, and of which the following account has been published by Mr. J. B. Calhoun.
" In the summer of 1829 I was engineer on board the steam-boat Legislator, of Hudson; and noticing that the engine was working faster than common, and not seeing any steam flow as usual lrom the safety valve, I went to the fire-room, and was told by the fireman that he had on twenty-one inches of steam, and that the steam-guage was up against the boiler-deck. As the safety-valye was loaded to carry only sixteen inches, I became alarmed, and taking hold of a cord that ran over a pultey, and was attached to the lever of the safety-valve, 1 allempted to raise the valve, but could not; on going to the top of the boiler where the safeg-valve was, I lound all right there; that is, there was no extra weight on the valve. I then slifed the weight into the length of the lever, up to the fulcrum, where the weight was merely nominal, still the valve did not rise; I became confunded, and taking botel of the lever lifted on it pretty stoutly, and continued lilting for some seconds, when all of a sudden, with an explosion like that of a small licldpiece, the valve opened, and the steam rushed out violently for some

\footnotetext{
Pranklin Jour. vol. ii. p. 142. \(\quad\) Franklin Jour. newseries, vol. iii. p. Ti. \(\ddagger\) Franklin Jour. new series, vol. vi. p. 53.
}
lime before it got down to the usual pressure, the engine being at work all the time. There was no water on the valve, nor any visible obsurtion to its rising of its own accord after the steam got beyond the pressure of sixteen inches, which it had invariably done before; the valve and the valve-seat were both of the same metal. For many reasons I had not placed full reliance in the mercurial steam-guage, but had always entire confidence in the correctness and salety of the safety-valves; but in this case I was deceived, and perhaps in a few moments more an explosion might have taken place, for I had no doubt, il' a small rod in the steam-guage could have had a free passage through the boiler deck, it would have tenoted thirty instead of sixteen inches.
' It is usual to have the steam-guage so graduated, as to show as many inches of steam as the engine will take, and to have the safety valve loaded so as to agree with the steam-guage, believing that when the steamguage indicated sixteen inches of steam, all the surplus steam would escape through the safety valve. Many engineers do not blow off any steam when the boat stops to make a landing, but depend wholly on the safety valve rising of itself, after the steam has risen a little above its required height. This has been considered a safe way of procecding; but the case above stated, shows that it is wrong to depend too much on the safety valve." Mr. C. recommends that when a boat stops to land passengers, the safety-valve be raised, let the guage indicate what pressure it may. Before tne occurrence described, he believed the cause of boilers exploding was almost invariably the want of a sufficient quantity of water. He now thinks, that some explosions may be attributed to the being deceived by the safety-valve not rising as was expected by the engineer.*

The two following cases illustrate the necessity of attending to the proper lorm and construction of the safety-valve.

About six years since, a new copper boiler of one of the ferry boats plying between New York and Pawlus Hook, New Jersey, burst in consequence of the safety valve having been fitted too neatly, so that when heated by the steam it expanded and stuck. The boat had made several trips during the morning, and no steam had been observed to pass off for several hours.i The boiler was turned upside down, and flattened.

In another boat, on the Delaware, the escape pipe for the safety valve was of a conical form, the greatest diameter of which was below, so that when the valve raised, it closed the pipe, and prevented the steam from passing off. The defect was, however, observed, and an explosion prevented.

Explosions from overloading the safety value have frequently occurred. The evidence of Mr. Richter before the committee of the House of Commons, p. 122, proves that the dreadful explosion of the sugar refinery in Wellclose Square, London, several years since, was owing to this cause. The engineer, being informed that the engine did not work well, put an immense weight upon the lever of the valve, so as to render it useless, still urging the fire,
and in a few minutes it exploded, and blew the whole house to pieces. The same cause, according to Nr. Lect, produced the explosion in the tobacco manulactory at Chester, Englatad, in July, \(1822 . \dagger\)

Aragof mentions that from this cause the boiler of the steam-boat Rhone exploted on the the March 1827, and killed several persons. "Vexed at not being able to overcome the rapidity of the current as completely as he had hoped, the engineer lastened down the salety valves of all the four boilers; three of them burst almost simultancously.

Another case occurred in a boiler attached to a wagon in Sunderland, England, by which several were killed.S

The Norwich (English) steam-boat exploded in part from the same cause. The attendant engineer seated himself on the safety-valve, in order to give his comrades the spectacle of the oscillating motion that he would undergo, as he said, as soon as the vapour should become strong enough to lift him. The valve did not open, but the boiler burst, and killed and wounded a great number of persons.

Arago quutes another case, of a steam-boat on the Ohio (name not mentioned), in which the explosion took place while the crew were engaged in weighing the anchor; when there was no consumption ol'steam, although the fire had attained its full force, and the safety valve was loaded with additional weight.

In 1803 the safety value of a high pressure boiler in England, was fastened down by a boy, with a piece of timber, and rendered entirely useless for some time; and then the engine was stopped by another workman, who knew nothing of what the boy had done. Shortly after the boiler burst. \(\|\)

Several accidents have happened in the United States and other places, in boats from these causes. The rash conduct of the engineers or firemen was excited from an anxiety to beat other boats bound to the same places. All the particular cases in the United States cannot be mentioned, but they were stated at the time in the newspapers.

\section*{3. Original Heakness of the Boiler.}

In the account given of the explosion of the United States steam-boat, September 1830, on the East River, New York, it was stated that in nearly all the accidents that have occurred in the New York waters, the ruptures have taken place in the same part of the boiler. In the Constitution, Legislator, Bellona, Chief Justice Marshall, and the Carolina, all low pressure boats. the rents were made in the lower part of the flues. In these boats there were no braces between the flue and the outer shell in the bottom of the boilers. The Constitution alter her accident had them put in, and no explosion has since taken place. The United States boat, when the explosion happened, was going at her usual speed, with \(12 \frac{1}{2}\) inches of steam, as had been ascertained two minutes before by the captain, who examined the guage. The boat could carry 13 inches of steam, and the boiler was so fixed that the steam blew off at 14 inches. The engineer had also just before examined the water cocks, and found that there

\footnotetext{
*Franklin Journal, vol. v. p. \(355 . \quad \uparrow\) Philos. Mig. 1822, p. 67.
\(\ddagger\) Franklin Journal, new series, rols. r. ri.
\(\$\) Evidence before the llouse of Communs, p. \(40^{\circ}\).
; Philos. Mag. xvi p. 372.
}
was a sufficient supply of water. The part that gave way, viz. the lower part of the main flue, ten feet back of the bridge wall, bad been repaired about a week before the accident, and four sheets of iron put into the flue. These were torn away, but the rivets remained in the old sheets. The boiler was of sheet iron of a cylindrical form, 22 feet long, and 8 feet in diameter, with what are called "kidney flues," forming one large cylinder, and one return llue; and had been nine years in use.*

\section*{4. Use of Internal Flues.}

In the United States steam boats, the fire is made under the boiler, which returns through flues passing through the boiler, and are connected with the chimney proceeding from it. \(\dagger\) These flues, although always intenced to be covered with water, often get uncovered from the causes before mentioned, and become red hot; the metal is expanded, and consequently has its cohesive power greatly diminished; and this being repeated may give rise to explosions at a time of apparently perfectsafety. With careful firemen or captains there may be no danger of the water falling below these flues; but we know that the most wanton inattention has prevailed on board of stcam-boats to this important point. It is therefore necessary to diminish the sources of danger to travellers, by placing them as much as possible out of the power of ignorant, obstinate, or negligent men. The four cases of collapses in Cornwall, referred to by Mr. Taylor, \(\ddagger\) occurred in boilers with return flues. The Chief Justice Marsha! 1 and United States, in the waters of New York, also had them; and several others that have exploded.s

They are indeed commonly introduced at present.
The Constitution (first named the Oliver Evans,) which was the first boat that exploded on the Ohio, was built with flues passing through each boiler, by Mr. Geo. Evans, who deviated from the plan adopted by his father. Having proved them with a pressure of 200 pounds to the square inch, and regulated the safety value to 150 pounds, he thought them perfectly safe, but more might have been employed; il not, no other cause can be assigned than neglect to keep the water above the flues. He concludes by saying, - flues of this description are not safe, and ought not to be used."

On the western waters of the United States, flues are not only generally introdured into high pressure boilers, but under circumstances peculiarly dangerous. In a boifer of thity inches liameter, the flues are from ten to sixteen inches in diameter, which often heare no more than a space of lour inches between the botom of the boiter and the lower llue, and fiom ten to sixteen inchesfor water and steam room; and hence from inattention on the part of the firman, the water may soon fall below the flucs, and by becoming red hot they are rendered liable to explosion. The fuc of a boiler at Kensington, Phitadelphia county, which col-
lapsed, \(\quad\) as sixteen inches diameter, and the two sides came close in contact. In the boiler at the distillery called Lochrin, near Edinburgh, and at the tobacco manufactory at Chester in England, the bottoms of the boilers, which were convex to the interior on the side next the fire, to allow the flame from the furnace to play in the centre almost of the liquid, were rendered convex outwards, so strong had been the pressure from within.

Mr. Taylor states that at East Cremis Mine, Cornwall, the inner tube was compressed as if the fire had softened the part above it, though there did not appear to be any other reason to think that the water was too low. At the Mold mines in Flintshire, the inner tube was not moved from its place, although it was very much flattened for a sreat part ol its length, the sides having come together.

A writer under the signature "An Engineer," in commenting upon the cases of explosions in Cornwall, related by Mr. John Taylor, says he "considers the introduction of a tube within a high-pressure boiler to be bad under any circumstances, but it is particularly so where the furnace is placed in it. The ash-pit, also, is by necessity most objectionably small, where the furnace is inside the boiter. This is an evil ol some magnitude, both as regards the draught, as well as the wear and tear ol fire-bars."

\section*{5. Material Composing Boilers.}

Boilers were frequently made of cast iron when steamboats first began to run, and gave rise to many explosions, owing to internal defects of the iron, and to its liability to crack from heat. Wrought iron is therefore now generally substituted. It is also preferred to copper, from its greater tenacity. But when salt water is used, copper is preferable, because it acts less powerfully upon the deposits from it than iron. Cast iron even for the ends of boilers is objected to by O. Evans, unless the fire be kept from them, owing to their liability to crack when heated.

\section*{6. Use of metals of different expansive powers for boilers.}

To this cause may in part be attributed the explosion of the Norwich Steam-packet. It was ascertained that the boiler, although cylindrical, had one end of cast iron, the other of wrought iron. These ends were flat. The cast iron end was only \(\frac{3}{4}\) of an inch thick, and it was this end that gave way. The body of the boiler was composed of wrought iron. The propricty of only using one kind of metal for a boiler must be obrious.
7. Hecakness of the boilers from long use: unequal thiekness in the gnetal; andraising steam too high for its strenglh.

The infuence of these causes is apparent to all. A boiker sent to Mr. Oliver Evans to repair, had been reduced to the thimess of paper in se-

\footnotetext{
- Youlson's Ancricin D:ily Alvertiser, Sept. 4, 1830, from the New York Courier.
\(t\) The high pressure boilers of Rushand Multenberg lave no internal flues.
(1hilos. Mag. 1427, p. 126.
G On the authority of an experienced steamboat navigator, it can be stated that the rent in the Chief Justice Marshall took place at the farther extremity of the man fire fhe, and the water was driven through the doors toward the forwarl cabin, and killed and seatied a! who were in the fire room The Constitution boiler had 1) flues; and the collapse took place on their fat sides.
i Philos May. 1827, 405
}
veral places, and had been used in this dangerous state for some time. It had discharged its steam in two or three instances, through a small vent, without howerer injuring anyone. A boiler of the low pressure steam-bont [bristol collapsed, from this cause, in the spring of 1820 , in the Delaware. There were two boilers, one on each side ol the engine, connected with steam and water pipes. 'The top of the furnace was flat. The boilers were old and corroded, and the cap. tain, who is still living, says that "they ought to have been condemmed before be took charge of the boat. There was a great competition from four boats at the time, and the 1 bristol being ahead ol a better sating boat, belonging to another line, the engineer desired the fireman to increase her fire to preserve her dis. tance. The fireman replied that there was as much fire as was necessary, and if he wanted more he might make it himself. He did so, and sulfered for his folly. While the captain was in the fire-room, he was alarmed by the leaking of the boiler, followed speedily by a tremendous hissing of steam, and retreated in time. On inspection, it was lound that the furnace or flue, in the centre of the boiler, had been forced inward, and the steam and water from both boilers had rushed into the fire of the injured flue, or inside shell of the boiter."

The boiler that exploded at the Union Rolling Mill, Pittsburgh, was worm out.

The boiler of the sugar relinery, in Well-close Square, London, was ol different thicknesses. At the bottom it was two and a half inches in thickness; on the two vertical faces, an inch and a half; in the lower part of the dome, not more than sevensixteenths of an inch; and in one place, the thickness was reduced to an eighth of an inch. It was of cast iron.*

The explosion of the Norwich was in part owing to one of the causes noted. Mr. Tilloch observes that "it was usual to raise the steam to a pressure of 70 lbs. to the inch before starting for the voyage; the end of the boiler was quite incompetent to hazard such a pressure, and the steam was urged beyond all pradence to beat a rival boat. The wonder is, that it did not explode long before, for it was more common to have steam at liom 100 to 120 than even at 70 lbs. to the inch." \(\dagger\)

The boiler of the boat Tricolor (low pressure) exploded at Wheeling on the \(19 t h\) of April 1831, by which eight persons lost their lives, from the immediate effects of the explosion or by drowning; eight others were scalded very severely. A private account states, that the boiler was is years old, the Tricolor being the third boat on board of which it had been placed; and for several hours belore the explosion a hot fire had been kept up.

\section*{8. Form of the Boiler.}

Mr. Evans, from his first attenpt to make steamengines, was aware of the superior strength of the circular form for boilers. In his "Steam Engineer's Guide," be says, "a circular form is the strongest
possible, and the less the diameter of the circle, the greater the elastic power it will contain. Therefore we make cytimdrical boilers not exceeding three feet, and to increase their capacity, their length is ex. tended to 20 or 30 fret, gr their number increased."

The adoption of the cylindrical form for boilers, evinces the correct philostphical principles upon which Mr. Evans acted. Nothing can be more clear than that by this form the expansive lurce is equali: exerted over the whole of the intemal surface of the boiler, and consequenty that the steam will have no effect tending to change the form. Experience has proved the justness of his theory.

To ascertain the power exerted by steam to burst one of those boilers, and the thickness of iron necessary to hold it, Mr. Evaus gives a rule, example, ant demonstration of the problem of a circle 36 inches diameter, the result of which is, that \(54,000 \mathrm{lbs}\). weight are required to break the two sides; half of which. 27,000 , are necessary to break one side in any one place. 'To the solution of this useful problem, which be never met with, he adds a table, showing the power exerted to burst each ring of one inch wide of the boilers of different diameters, and the thickness of iron necessary to hold steam of power equal to 1500 Ibs. to the inch area.

In another publication he illustrates the strength of this form by a familiar illustration. "It will bear," he says, "greater elastic power than boilers of other forms, in the proportion that a bar of iron will bear more pulling straight end-wise, than it will on its mid. dee, to bend and break it when laid horizontally, supported at the ends." Boilers, however, are not atways made in this form, and, to compensate for the deficient strength of other shapes, stay bolts are used.

The boiler of the London sugar refinery, already referred to, was made of flat iron pan, of eight feet diameter: therefore, extending the bursting surface in proportion of four to sixteen. \(\ddagger\)

Connected with the form of the boilers, is the mode of their construction, and applying the fire. In Cornwall the most common arrangement is to fix one tube within another; the interior one containing the fireplace, and the space between it and the exterior containing water, and in the upper part, steam. The ends of the boiler fix the tubes together, so that the interior tube is opened at both ends, at one of which is placed the fire grate, and at the other the smoke and flame pass out, and are conveged to the stack or chimney most commonly by flues passing under and along the sides of the outer case. They are from 20 to 35 feet long, and from 3 to 4 fect in diameter; the outer one from \(5 \frac{1}{2}\) to \(6 \frac{1}{2}\) or 7 fect. Four accidents by collapsing, according to Mr. J. Taylor, occurred in the two or three years preceding 1827, from the use of boilers of this description: the particulars of which he gives. \(\oint\) The fire is now made under the boiler. Arago mentions several more that occurred in France, in similar boilers. Boilers of this description were formerly very common in the United States, but are now entirely given up.

\footnotetext{
- Fvidence before the Committee of the House of Commons, p. 122: in Dodd on Stean-Engines
\(\dagger\) Philos. Mas. xlix. p. S02, and the Evidence before the Committee.
\(\ddagger \mathrm{Mr}\) John 'Tay lor's lividence before House of Commons Committee, p. 44
§ Philos. Mag, 1827, p. 126.
}

\section*{9. Sediment in Boilers.}

This cause has frequently produced bursting of boilers, and the inattention to it by those who own steam-engines, or command steam-boats, is truly surprising. It is evident that a crust formed within or upon a boiler, offers a non-conducting material to the heat from fire or water; and that the bottom of a boiler, the inside of which is so coated, will require much more fuel to bring the water to the boiling point, and to keep up its temperature, than if this obstruction did not exist. Hence arises additional expence. This increased operation of the fire on the metal softens it, and allows the expansive force of the steam to push it out like a bull'seye glass light, to the extent of sevcral inches in diameter, thus diminishing its substance. Mr. Burr states that the protusion of the bottom of a boiler at Richmond, Virginia, \({ }^{*}\) was as large and as deep as a hat crown, from sediment collected in four or five weeks. The protusion in the bottom of a boiler of an engine in a cotton mill at Kensington, Philadelphia county, from the sediment three inches thick collected on it, was about half that size. The sediment when picked off, will bring scales of the iron with it, and thus tend to lessen the thickness of the bottom plate still more. When the water is over the fire flue, the sediment will descend to the legs, and space in front of the boiler. The effect of a continued application of fire to the meral of boilers thus expanded and weakened, may easily be conceived. The fire and accumulated coals finally burn out the part, the water and steam then rush below, and the pressure from above will cause a collapse of the boiler. This was probably the case of the Legislator of New York. Several years since one of the four boilers of the high pressure engine at Fairmount Waterworks, on the Schuykill, was burnt out from the collection of sediment in one end of it. The deposition of the sediment in that part was promoted by the position of the boiler, which, in order to favour the operation of the fire, was fixed so that the farther end was several inches lower than the door end. The boiler had been cleansed the day before the accident, but, owing to the difficulty of reaching the further end, it was neglected, and a thick hard crust, to which the grease in the water greatly contributed, was permitted to remain. The rent took place under this crust; the water ran into the ash-pit, and followed by that and the steam in the other three boitcrs, rushed out with a mass of ashes, closing the door of the ash-pit, which opened inwards, and filled it in an instant. Two men were severcly scalded, and additionally suffered from the inhalation of aslues and hot steam, in which they were enveloped: they died within two days.

When the Etua ran in the Delaware, with a high pressure engine, a leak in the bottom of the boiler took place, owing to the eollection of sediment in it, but no injury was sustained by any one: and the bursting of one of the boilers of the Bristol, already mentioned, proceeded from the same eause, according to the opition of the eaptain. "The small space between the bottom of the firmace and the outside shell, was very difficult to be kept cleam, and that was the spot where the rent took place." This was doubtless heated red from the accumulation of coals underneath the bars of the grate. The boats plying in the muddy and sandy waters of the westem country, are particu-
larly sutject to danger from the accumulation of sediment.

\section*{10. The Sudden Increase of the Pressure of Steam on a Boiler.}

A sudden increase of pressure of the steam on a boiler, there can be no doubt, has often occasioned explosions which could not be accounted for by any apparent defect in it, owing to the unequal expansion of the metal which ensues, on the same principle that hot water poured into a glass or china cup will cause it to crack. The bursting of the boiler in the tobacco manufactory at Chester in England, already referred to, took place from this cause. Mr. Leet relates that "it was connected with machinery reguiring steam of great expansive force for its movements, and when used for the first time since its repair, the steam was speedily raised in such a powerful manner, that the boiler was perceived to have an oscillating motion for a considerable time, and finally exploded, spreading desolation all around." A greater pressure, if produced gradually, might not have been attended with any rupture.
It has been mentioned that owing to the explosion of the Etna, a prejudice arose against high-pressure engines for steam-boats, and that those in the Attantic waters have since that time been supplied with others on the low-pressure principle. The term low-pressure is, however, most commonly, merely nominal; for there are few boats professedly working with low steam, that do not carry many more pounds to the inch than the low-pressure principle, or the strength of their boilers will warrant. On the western waters this is notoriously the case. From a well-informed and highly respectable source, it can be stated, that "many boats in those rivers run under the name 'low-pressure,' merely from the circumstance of their having the condensing apparatus, and from disposing of the steam by that means as distinguished from those which suffer it to escape in the air, although it sometimes happens that the condensing boat uses stean of a greater density than the other, called 'high steam.' Boats thus working the high steam, but condensing, are technically termed ' medium engines.' It was formerly thought that a good vacuum could not be maintained in the condenser when working high steam, but practice as well as theory teach otherwise, for from the same boilers and fuel burnt, an equal quantity of heat passes to, and has to be overcome ly the condensing apparatus, whether the steam operate through a small cylinder under high pressure, or through a large cylinder at a consequent low-pressure. It is not unliequent for boats on the Ohio and Mississippi, which condense their steam, to work it as high as eighty to one hundred pounds per square inch; now the nett gain by condensing is not in any engine much over ten pounds to the inch, so that this litile apparent increase of force is scarcely worth the expense and care of condensing;" and besides, it is lost by the reduction of temperature, which must be below one hundred and serenty degrees; whereas when supplied from a high pressure engine, the water would be two hundred and twelve degrees; but the steam is disposed of in an insensible manner, and the boat obtains the securityereating name of " Low l'ressure:" how justly, let the above remarks determine.

It has already been stated, that notwithstanding the prejudices in the public miad against high pressure engines on board of boats, those propelled by low pressure, were as much liable to explosion as others driven by high steam. The following list comprises the cases of some of the accidents, which have occurred in low pressure boats.
1. Paragon of New York, built by Mr, Fulton.
2. Atalanta, ruming between New York and Elizabeth Town.
3. Washington, on the Ohio, June 1816.
4. Powhatan, between Norfolk and Richmond, March 1817.
5. Bellona, New York and New Brunswick, March 1822.
6. Eagle,* Balt:more and Annapolis, April 18 , 1824 .
7. Maid of Orleans.
8. Cotton Plant of Mobile.
9. Superior, of Charleston, South Carolina.
10. The Rariton, of New York.
11. Oliver Elswortl, March 1827, near Saybrook, Connecticut.
12. Constitution, 1825, North River.
13. Legislator,
14. Carolina,' \(\}\) Waters of New York,
15. Franklin, \(\}\)
16. Chief Justice Marshall, off Newburgh, North River, New York, April 22, 1830.
17. United States, Sept. 11, 1830, in the East River, New York.
18. Tricolor, at Wheeling, on the Ohio, April 19, 1831.

In all of the above cases, more or less persons were killed outright, or died soon after being scalded, or were disfigured or crippled for life. The greatest number suffered on board the Helen M'Gregor. Fifteen hundred persons, it has been computed, have lost their lives by explosions of stcam engines in . American boats.

\section*{Colifapsion of bollers.}
"Boilers constructed of plates of laminated copper, or iron, low pressure boilerspurticularly, are subject to accidents from collapsion." Some cases of this kind in American boats have been mentioned in the preceding pages; it not having been thought necessary to separate them from those strictly called "explosions," and which proceed from the expansive force of stean. "These boilers," says Arago [or their internal tubes], "are sometimes completely crushed; the sides bending to the pressure from without. The cities of Lyons and Etienne in France have been the theatres of several accidents of this kind. The inner cylinders of boilers having the furnace and flues within, give
way occasionally, from their inalility to resist the pressure of the stem in the circular space around them, and become flatened; this change of figure cannot take place whthou the metal giving way, and hot water thus escaping produces dreadful havoc. Four collapses took place in Cornwall, of boilers of this form, as has been already mentioned, p. 447. "An engineer" in commenting upon these accidentst says, "that as far as appearances after explosion are to be relied upon, they were such as to justily a suspicion, that the boilers were short of water;" and condemns their construction.

Arago mentions another cause of collapse. "At the time of lighting the lire under a boiter, the space within the boiler not occupied with water is filled with atmospheric air. This air mixed with steam passes by degrees into the engine fed by the boiler, and at last is completely expelled therefrom. If the machine be stopped, and the fire suffered to go down, the steam will be gradually condensed as the cooling proceeds, and after some time, the space which it occupied will be almost void. The boiler is then pressed inwards by the pressure of the atmosphere, without there being any interior force to counterbalance the action. A sudden eondensation would crush the boiler. Toprevent such accidents, interior valves called air valves opening inwards were invented. They are kept in place by a spiral spring within the boiler, the strength of the spring being a little more than equal to the weight of the valve; or it is suspended horizontally to the arm of a lever, placed on the outside of the boiler, so arranged that the valve exactly touches the interior face of the opening, which it is to close. With this arrangement, the elasticity of the steam within the boiler, can never become less than that of the atmosphere, without the immediate opening of the valve, which will admit the air into the boiler; thus when the engine is stopped, no vaculum will be formed within the boiler. \(\ddagger\) It seems that we cannot so safely conclude, that the same arrangement would prevent certainly the erushing of the boiler, for such accidents result from an abrupt diminution of elasticity in the steam. The gradual action of the valve might, to a certain degree, lessen the evil, but could not prevent it. There is but one remedy against sueh aeeidents; to watch carefully the means of supplying the boiler, and to prevent the reservoir of stean within the boiler from being suddenly coolect, as would happen for example, if a quantity of cold water should be thrown upon the exterior. It is important also when we use this kind of boiler, not to close the register doors until the fire is extinguished." \({ }^{\circ}\)
* The Eagle formerly ran from Philadelphia to Bordentown, New Jersey, and at a time when there was not a high-pressure boat on the Delaware. We may judge whether a low-pressure engine can do mischict from the account of the captain of the Constitution, who assisted the people of the Eagle soon after the explosion. IIe says, "the after head of the starboard boiler bursted into atoms;" and, "I never saw so complete a wreck below decks." He tells 1 s further, that one part of the boiler went aft to the ladies' cabin, and annther killed a soldier who was asleep in the forward cabin. It is somewhat remarkable, that this tremendous explosion scarcely excited a remark in our newspapers; there was no clamour raised against low-pressure engincs in consequence of the accident.
\(\dagger\) Philos. Mag. 1827, p. 403.
\(\ddagger\) A puppet valve reversed answers the purpose; they have heen long in use in stills to prevent a collapse.
§ An explosion was produced in a common close stuve in Fhiladelphia, from covering a fire of anthracite coal with wet ashes, at night: on re-lighting the fire with shavings and charcoal the next morning, an explosion took place in a drum connected with the stove, and placed in the second story of the house, of whoch the stove occupied the ground floor: part of the drum was thrown with violence against the ceiling of the room. "By the heat remaining in the stove, a carburetted hydrogen gas was evolved from the shavings, and formed with the atmospheric air in the drum and stove pipe, an explosive mixture. An analogous result, upon a more limited scale, may be frequently observed, when paper or shavings are thrown upon a fire where there is no flame so situated, as immediately to ignite the gas evolved. If a piece of paper had been lighted beforehand, and thrown on the top of the mass, the explosion would have been prevented. - Dr. Hare, Franklin Journal, new series, vol. vi. pp. 414, 337.

Vol. XVII. Part II.

\section*{A New source of danger.}

On the soth Sept. 1830, a joint in the pipe that conveyed steam from the boiler of the steam-boat William Peacock, of Buffalo, New York, gave way, and instantly discharged the whole head of steam into the steerage cabin on deck, killing and scalding several persons. Here is another point to which a careful captain ought to direct his attention. It is truly shocking to think of the sacrifice of lives, from the sheer neglect of the captain of a boat to guard against every possible source of danger; and criminal on the part of those guilty of it.

\section*{MEANS OF PREVENTING EXPLOSIONS.}

Several of the causes which have been ascertained to produce explosions, haring been mentioned in the preceding pages, it follows, that the means of preventing these fatal occurrences, are to guard against their causes. It is a fact, that the greater part of these explosions have originated from the wanton forly, neslect, or inattention on the part of those, to whom the management of the fire is committed.
1. Metal for Boilers. The first point to be attended to is the material of which the boiler is made. The propriety of rejecting cast iron, and substituting wronght iron, has already been mentioned. Where salt water is employed, copper is preferable, as it does not decompose water at any temperature, and hence an incrustation of oxide will be less liable to be formed internally, in a boiler of copper, than in one of iron; for this metal, at a high temperature, rapidly decomposes water per se, and with the aid of rarious salts or acids, decomposes it at the ordinary temperature of the air, and still more rapidly, at, or above boiling heat.
2. The form of the Boiter. No other than that of a cylinder should be permitted, for reasons before given.
3. Strength of the Boiler. The third point would seem to be, the strength of the boiler.

It has long since been proposed, that every boiter intended to be used under steam of high pressure should be previnusly proved by injecting, by means of forcing pump, cold water into it, while the safetyvalve is loaded with a much greater weight than is to be employed when working with steam; or Bramah's hydraulte press may be employed.

The waterprouf having been pertormed, the boiler should be next subjected to a similar trial by steam, of twice the loree that is usually to be generated in the boiler, wibout causing the safety-valves to act. In lrance it is regnired by law, that all high pressure boilers be subjected to a proot fire times as great as the boiler is intended to bear, when in service. Arago says that this pressure is reduced to three times lor boilers of rolled or hammored aron, but that even these do not aftord entire security. Ile judiciously remarks that "these trials only show what a boiler can bear when new, not what it will be able to sustain after some weeks, or some months use; after inequalities of temperature have strained
the mital in every direction; or after rust has acted upon it," \&e. A boiler shond therelore be proved from time to time, aud occasionally examined to detect any weak part.

Mr. Bramah in confirmation of this advice may be quoted. He says, if a boiler was prepared to sustain one hundred pounds, and strained with a force of two hundred pounds, it might afterwards break at forty, the straining having injured it.* The extreme proof reguired in France is injudicious. A prool of double the pressure imtended to be used would seem snfficient; more might defeat the object of the trial. Mr. Vivian adds, that explosions may be easily prevented by pro:ing the boilerevery time it is cleansed, which should be at least every month.t John 'Taylor says in prool of this, that a cast iron boiler was proved to one hundred pounds to a square inch, by the water prool, and commonly used with about forty pounds pressure, but it broke one day with less than lwenty pounds pressure; the fracture being caused by the heat expanding unequally. \(\ddagger\) Mr. Donkin has known a boiler wear out in six months; and another used for fourteen years. \(\oint\) Mr. Dodd says, that when a wrought iron boiler will not support the cold water test of twelve pounds to an inch, it is time to have a new boiler. \|
4. Size of the Boiler. Mr. Erans never exceeded the didmeter of three leet, and to increase capacity extended their length to twenty or thirty feet, or nore; or increased the number. Messis. Rush and Muhlenberg, his successors, now make their high pressure boilers of thirty inches diameter. The " Engineer," before quoted, restricts their diameters to five feet; from which it wonld seem that in England high pressure boilers are sometimes of a greater diameter.
5. Meight of the Water in the Boiler. As it has been ascertained, that the greater part of the mortality from steam explosions proceeded from inatention to the great point of keeping up the due supply of water in the boilers, this should never be lost sight of. Captains ol boats ought not to trust this business solely to the engineer or freman.

To ascertain the height of the water in the boiler, it is well known that the oiginal expecient, and the one commonly used, consists of two stop-cocks in front of the boiler, one of which communicates with the water, the other cnters the boilerabore it. The issue of steam from the first indicates the deficiency of water, and the discharge of water from the last, shows that it stands too high. But these cocks do not upon all occasions answer the end intended by them. Mr. Potts observes, \({ }^{\text {I } "}\) when an engine runs regularly, it is not diflicult by this means to make the supply of water to the boiler by the hot water pump equal to the evaporation; but every variation that takes place with regard to the load with which the engine labours, or the relocity with which it rans, tends to disturl) the equilibriam between the supply ol water and the evaporation, attained by any previous adjustment of the pump. Again, when a temporary stoppage of an engine is necessary, as for taking in, or discharging pasuengers, the fire is rarely abated to such a degree

\footnotetext{
- Fridence before the Committee of the House of Coramons, p. 38.
\(\ddagger\) P. \(163 . \quad \ddagger \mathrm{P} .43\).
§ P .8.
|| P. 213.
TI Franklin Journal, 1830, P. 42, vol. vi. new scries.
}
as to prevent all further evaporation. The supply from the pump being cut off, the water sinks rapiclly."

Cases have even occurred in which explosions have happened in the boats of the United States, when going at their regubar seect, as was shown by the stean guage, if the solemn thseverations of the captains are to be believed, and immediately alter the water-cocks had been opened and indicated the supply. The boats Etna, United States, and Chief Justice Marshall, are cases in point, as has already been mentioned under the third bead of the catuses of explosions.

This lact shows clearly, that implicit reliance ought not to be placed for sality, upon the guage-cock emitting water. But lurther, "even where the water is not so lar reduced in the boiler, as to be below the top of the tube, I am by no meansinclined to consiter this boiler in a sale statc. The plates of a boiler urged by an intense fire, and covered with only a thin stratum of water, become rery considerably hotter than the steam and water above them. The unegual expansion resulting therefrom, renders the parts more disposed to give way, when further stress comes upon them." A boiter or tue therefore, repratedly thus treated, may give way upon the occasion of an extra strain liom high steam, although the guage-cocks will show water in the boiler. This deficiency in the guage-cock may be remedied in low pressure stationary engines, by the means mentioned by Mr. Farey as having been used by Mr. Smeaton, viz. "A pipe going down beneath the surface of the water in the boiler, and at the upper end of the pipe, at the top of the house, a whistle mouth-piece is formed; then, if the water sinks too low, the steam will issue at the pipe, and give the alarm."' \(\dagger\)

Professor Mare proposed that a hollow globe, swimming on the water of the boiler, should open a small cock so as to produce a jet of steam in front of the boiler, whenever the water should sink too low. \(\ddagger\) This contrivance is applicable to high and low pressure engines; an objection to it has been raised, riz. that by lrequent expansion and contraction, the parts soldered together have opened so as to cause the vessel to fill with water and sink. A little attention may certainly obviate this difficulty. Pumice stone is used as a lloat, for Watt's leeder at the Globe Mill. The glass tube water-guage will afford additional means to determine the height of the water.

With the same object Mr. J. L. Sullivan has invented an alarm bell-float, and phonic guage for boilers; the object of which is to cause the water itself to give the alarm. For this purpose he uses bells or metallic triangles within the boiler, to ascertain where the surface of the water is within certainlimits. The principle of their operation is founded in the fact, that bells emit a louder sound in compressed air, than in the atmosphere. Two bells are to be placed in a boiler, one an inch higher than the obher, with suitable wires leading from each tongue through packing to the front of the boiler: il the lower one touch the water it will not ring, while the upper one being above the water will sound and be heard; thus making
it known that the surface is between them. It is intended toring spontanconsly, whenever the water shall happen to subsite: so much as to make bare and expose the furnace or Due to the action of the fire within; or if a single eylimelical briter exposing some part of the sides to the action ol the fire without, or under, whereby the llue or sides umprotected by the water might become red hos, ancl impatt great heat suddenly to the water, and cansing so ereat an increase of higle steam, that the safery-walves camot vent it. A specification of this plan is comtained in Silliman's Journal for 1831, amd deserves an reperiment by all those to whom passengers entrust their lives, on brard steam-boats.

To insure a constant and due quantity, Mr. Watt contrived a simple plan for low pressure stalionary engines, by which the engine is made to supply the boiler. One of these is in ase at the dibobe-milt Cotton-works, near Philadelphia. Mr. Doolittle of Vermont has invented another, and described it in the Journal of the l'ranklin Institute, vol. iv. Phis leeder, like that of Mr. Watts', bas a aegulating cock, or valve, between the forcing pump and boiler, and the pump must continually urge towards the boiler its maximum duantity of water, whether the boider is in a state to receive it or not. Mr. Charles lotes of Philadelphia, has recently taken out a patent for an invention to effect the same object; an account of it may be found in the Franklin Journal for 1830 , vol. vi. pp. 42 and 327 , illustrated by a plate. Ilis object is to secure the self-action of the supply pump, by the falling and rising of a float in the boilet. In the same work and volume N!r. Ewbank of the state of New York has proposed another plan, and with the exception of this principle, somewhat on that of Mr. Potts; who amounces that Messrs. Rush and Muhtenberg: of Pbiladelphia, will attach his apparatus to engines. In vol. vii. p. 183, is a specification of another patent granted to John S. Williams, of Kentucky, for the same object, with a cut illustrative of the apparatus. Finally, Mr. Farey describes at length. and figures a contrivance wherewith the boider will always feed itself as last as its eraporation requires: the water being admitted by a fecding yalve, which is opened by a lloat on the surlace ol the wate in the boiler. This is the mode adopted in Entsumbl. With all these contrivances to prevent a coinmon cause of explosion, no admissible excuse can be offered by proprictors of boats, lor deaths which may take place tor want of them.
6. To lessen Seliment in Boilers. In the collieries in Scotland, where steam engines are applied to the drawing off the water in mines, the earthy sediment has been found very troublesome, but its deposition is prevented by the simple ex. pedient of throwing a bustel of comings into the boiler once a week. This substance is the radicles of barley produced in the process of malting, which are separated before the malt is sent to market. Mr. Bald of Alloa says,ll be effect is immediate when the stean is again raised. When sulphate of lime (gypsum) is held in solution by the water.

\footnotetext{
 \& On Steam Engines, p. 4.3. Lombl. \(182 \pi .410\)
}
they use peat earth in its natural plastic state. From Silliman's Journal vol. vii., it appears from a statement of Professor Griscom, of New York, that potatoes have long been used in the United States for the same purpose. Arago says that they answer even when the deposit is saline, by which it is presumed, he alludes to the contents of salt water. The diffusion of the starchy fecula through the water forms a viscid liquid, which envelopes the solid matters of the water, and keeps them suspended, and prevents their cohesion. Alter a month's serviee, the boiler is emptied.

To prevent the formation of serliment in the boiler, one of the experienced captains on the Delaware says, that the water should be changed while the boat is under way, as the sediment would thus be made to flow out of the legs of the boiler and space in front; and to determine whether the force pump supplies as much as is let off, and the flues are covered, one guage cock should be kept open. The superb boat, Robert Morris of Philadelphia, the works of which were made by Mr. Holloway, has not only a man-hole to clean the boiler, but additional facilities to remove sediment, consisting of a rent hole or tap in each of the three front legs of the boiler, a hand hole covered with a screw plate, in the middle front leg; two hand holes, one on each side of the further end of the boiler, and another hand hole on the side of the boiler, opposite the bridge wall.

The apparatus adopted at the mint, and formerly referred to, to lessen the deposit in a stationary engine, is as follows.

The operations of the coinage in the Mint at Philadelphia are effected with the aid of one of Oliver Erans' high pressure engines. For sometime after its erection, the grease from the \(c y l i n d e r\), being carried into the boiler with the water of the condensed steam, muited with the earth in the water of the boiler, and forming a hard sediment on the bottom plate caused it to burn out. The boiler being mended required to be cleansed once a month. To lessen this trouble, and prevent the lrequent suspension of the work, Mr. Eckfeldt, chief coiner, some years since adopted the following plan. He surrounded the escape pipe with a copper cylinder twelve iuches in diameter, and containing thirty gallons of water, which is let into it by means ol a pipe lying on the side and near the top of the cylinder, and kept constantly hot by the steam in the pipe. The steam passes into a cast iron reservoil: the portion of it condensed flows into a sink through a hole in the side of the reservoir, with the filth from the cylinder, while the uncondensed portion of the steam is conveyed up a pipe fixed in the top ol the reservoir, and leading into a chimney. When the builer requires replenishing, the hot water in the cylinder is lel into a reservoir, and forced into the boiler. Thus, while there is great economy in supplying the boiler with hor, instead of cold water, the deposition of the hard crust on the inside of the bottom plate is greatly lessened, and no sediment precipitates but that which is formed from the earth contained in the water, with which the copper eylinder is filled. This is so trilling, that the bobiler does not require cleansing oftence than once in hree or four months. l'rom the great head on the Schuylkill
water, the workmen are enabled to draw off the heated contents of the cylinder, by merely fixing a pipe to the aperture in its top, intended for the admission of the cold water. This heated water being in perpetual requisition for various purposes about the establishment, the constant supply of it is found a great convenience. A safety valve in the cylinder prevents all danger from the too great accumulation of steam in it.
7. Safety I'alves. Under the tenth head of the causes of explosions, six particulars are enumerated, all tending. to disappoint the expectations of security from safety valves; and in the commentary uponthem, some facts in illustration are given. It seems astonishing that an error should be committed as to their diameter, and yet such is said by a careful and experienced steam-boat navigator to be often the fact. As the rules lor their construction are well understood, and fully laid down, it is criminal for those who undertake to make an engine, not to avail themselves of the important knowledge in their power. This may be obtained by consulting Mr. Farey's large work, or that of Mr. Renwick, p. 86. The object of the present article is not to enter in the minute details of the mechanism of engines, but to point out the causes of the dreadful explosions that have taken place, and to suggest the general means of preventing them. The aclhesion of the disk should be constantly guarded against; in the case of the Legislator already noticed, the vigilance of the engimeer, and his prompt attention, probably prevented the occurrence of a most serious explosion from this cause. To prevent the possibility of an adhesion, Mr. Mausdlay, an experienced worker of steam in England, placed near his boilers a cord within reach of the fireman, by which he could raise the safety valve from time to time. But this is not enough. Supposing that the valves are properly constructed, it has often been recommended to have two to every boiler, one under the control of the fireman, to be used whenever the steam is to be let off; the other to be inclosed by a grated box, of which the engineer, or captain of the boat, proprietor, or superintendant of the engine, should have the key. Arago says, that in France a royal ordinance makes this precaution absolutely essential; and the government of the United States, or the State Governments, should follow the wise example. The preservation of 1500 lives, which may again be lost in the course of a few years, by inattention to the subject of steam-boats, is certainly of more importance than the inspection of hog's-lard and butter for exportation, for which strict laws are in force.

Mr. Dodd, an eminent British steam engineer, "disapproves ol those safety-valves which have a conical seat, as they are liable to be jammed in, and also fastened by contraction: and also those that are pressed dowin by a weight on a lever, as accident or design, by altering the position of the weight, may increase or decrease the pressure, and they are peculiarly inapplicable to the motion of ressels at sea. Vith lever salety-valves even the most cautious man may, in the hurry ol business. place the weight too far out on the lever, and il the lever be too short to admit this, rash men frequently put on an extra weight, and thus endanger the property and themselres, and those on board. The best inaccessible
valve* is formed by fixing round the hole or orifice on the boiler, a circular brass ring fiat on the upper surface. From the centre of this ring, and secured to the under side thercof, arises a spindle or pivot, passing into a cylinder closed at the top in the middle of the valve and weight. This pivot should be grooved on the sides, to allow the entrance of steam; and should not extend to the top of the cylinder, nor fit tight by the tenth of an inch. This cylinder has a brass flat bottom resting on the flat eircular ring, and both surfaces so finely ground as to be air and steam tight: valves similar in this respect have been long and successfully used. A leaden circular weight, having a hole up the centre, is placed over the brass tube or cylinder, and rests on its base. The whole is surrounded by an iron box rivetted to the boiler, and has a lid fitting tight and locked. From the side of this box passes a pipe of sufficient bore to convey away the escape steam. The steam from the accessible or common valve is conveyed by a pipe through the vessel's side into the water, and to prevent a vacuum in this pipe, and the cold water rising up to the salety valve, commected to this steam-escape-pipe is a reverse or atmospheric valve. That it may be known when the accessible safety valve is out of order, we pass the escape-steam-pipe of the inaccessible valve into the paddle boxes, from whence the steam will be heard and seen to issue in the event of that valve being forced to act; and all on board may know that something is wrong with the other valve. Yet this circumstance should create no alarm, for however much he may urge the fire, the steam will escape by that valve, and foil his utmost effort to raise it to a dangerous strength." \(\dagger\)

These particulars are given, as Mr. Dodd's work is not common in the United States.
8. Stcam Guage. Ample and aflicting experience having demonstrated, that safety-valves do not on all occasions afford security against explosions, no steamengine on shore, or in a boat, should be without a mercurial Steam Guage. For, "although the load on the salet \(y\)-valve makes a sufficient regulation of the strength of the steam, to avoid any danger of bursting the boiler, it is not a sufficiently accurate indication, to enable the engine man to kcep up the steam always to the same elasticity. Mr. Watt, therefore, employed a steam guage, which operates by a column of mercury. This steam guage consists of an inverted syphon, or bent tube of glass or iron; one leg of which communicates with the boiler, being joined to the steam-pipe, and the other is open to the atmosphere. A quantity of mercury is poured into the tube, to occupy the bent part which joins the two legs; and the mercury in merely being exposed to the pressure of the steam, while the external air acts upon the other, it is evident that the difference of level of the two furnaces, will express the elasticity of the steam above or below the atmospheric pressure, by the height of a column of mercury it will support. When the tube is of glass, this difference of level may be seen and measured on a scale of inches; but when an iron tube is used, a small light wooden rod, floating on the surface of the mer-
eury in the open leg, points out the height of the column against a scale of hatil inches, lixed above the open end of the tube. In this case, the divisions, which are numbered for inches, must be only half inches; because the merenry will descend in ene leg, as muchas it rises in the other; so that the seate must be doubled, to show the real difference between the two surfaces.
"The tube is made of wrought iron, in the same manner as a gun-barrel, but with the two ends bent parallel, like the letter \(U\) : the interior of the tube ought to be bored, in order that both legs may be precisely of the same diameter, otherwise the guage will not show the pressure correctly, because the mercury will not sink so much in one leg as it rises in the other. A steam guage of this kind is usually attached by two screws to the steam pipe, or else to the end of the boiler, or at any part having open communication with the boiler, and in a convenient phace for the engine keeper to sce it, because this should be his constant guide for the regulation of the fire and the damper." \(\ddagger\)

If this steam guage be properly fixed, so as to be always kept upright, and of a diameter adapted to the size of the boiler, it can never lail to point out the elastic force of the steam within it; as by the rising of the mercury, which is shown on the scale attached to the tube, the fireman can ascertain at once, whether the pressure be greater than the boiler is calculated to bear. If the mereury becomes stationary, it would instantly point out that the tube was stopped, and give time to guard against danger. "It is also a capital counter security to the valves, for if this guage indicate a higher pressure of steam than that at which the valves ought to rise, the engineer may know that they are impeded, and rectily the error. It is the cluty of the man freguently to look at this guage, that he may know when to increase the fire in the furnace, and occasionally to tap the guage, that by the excited action of the mercury, and the indicating rod (where the syphon is not ol' glass but of metal), he may be assured that the action of the guage is l'ree and uninterrupted. Every stean packet on the Thames is provided with one of these guages." The utility of the steam guage was shown in the ease of the Legislator of New York (p. 445). The rod rose as high as the deck would permit, thus proving an immense pressure on the boiler.
9. Plates of Fusible Metal. "As soon as it was found that the common safety-valves sometimes got out of order, and did not present a certainty of security, it was proposed to replace them by an entirely different contrivance, the action of which should never be uncertain. This was the fusible metal valve, described in the ' Annuaire du bureau des longitudes' for 1829 and 1830 . To understand rightly the wse of these valves, we should know: that it is possible for steam to have a very high temperature, with but little elasticity, but not possible, that a great degree of elasticity, should not be accompanied by a high temperature. Experimenters have determined the lowest temperature necessary for steam to acquire

\footnotetext{
* Inaccessible, except to the one who has the key of the bor containing it.
\(\ddagger\) Farcy on Steam Engines, p. 371 .
\(\dagger\) Dodd on Steam Fingines. p. 210.
\$ Dord on Steam Engines, p. 216.
}
a tension of one, two, thee, ten or more atmospheres. By using these results, we can know what temperature the steam must not surpass after we have fixed on the pressure. If we then cover an opening in the boiler with a plate made of an alloy of lead, tin and bismuth, in proportions such that the alloy will melt at the limit of the temperature fixed upon beforehand, this temperature can never be excceded, for on reaching it, the plate melts and gives vent to the steam.
"In France, a royal ordinance requires that every boiler shall be provided with two fusible plates of mequal sizes. The fusing point of the smaller is \(10^{\circ}\) centigrade (\(18^{\circ}\) of Fahr.) a hove the tempetature of stcam having an elasticity equal to that which the stean to be used in the engines, should have. The second plate fuses at \(10^{\circ}\left(18^{\circ}\right.\) Fahr.) above the first.
\(\because\) The plate does not approach the point of fusion without being softened: it is therelore to be feared that it might give wat: under a tension much less than that which produces its fusion. At the outset this actually did take place, but the difficulty has been obviated, by covering the plate with a wire gauze with small meshes, before it is fixed by bolts 10 the aperture whichit is to close. Even now parts of the plates yield partially, swelling out in different places as the fusing point approaches, but cxperience has shown that it is only rery nest to this point that the metal yields entirely, opening a free passage to the steam. When the fusible plate has been melted, all the steam escapes through the opening which it closed, and it may take some time to replace it, to fill anew the boiler, and to heat the water, during which the engine stands still. In certain cases, this sudden absence of the moving powers might occasion serious accidents. This is a real and a great difficulty,* and perhaps is the reason why our neighbours (the English) have not adopted the fusible valve, but give a preference to the ordinary safety valve, which never opens, except wher the elasticity of the steam within has passed a certain limit, previously fixed by the engincer, and falls, closing the aperture, when the clasticity has returned within this limit without the moving power failing entirely." \(\dagger\)
M. Gualtier directs, that ' these fusible disks should be compoied in such proportions, that they will melt at a temperature but little higher than that at which the stean boiler of the machine ordinarily works. 2. That they should be placed in a proper situation, as it is known that in different points ol the surface of the boiler, the temperature is not perfectly equal, and that a disk which would melt at one point will remain solid in another; the best position lor them is orer the fire place.'
10. Dampers. To enable the lireman to have full command of the fire, to increase it when necessary, and to diminish it when too intense, and more steam is generated than is wanted, dempers, at the junction of the flues with the chimacy, should never be omitted.

These dampers should be self-acting, and be connected with the safety-valve as proposed by the Chevalier Edelcrantrz; for nothing should be left to the vigilance of the fireman. \(\oint\) Mr. Renwick suggests that "there should be another, to be worked by hand as occasion may require; and morder to place the fuelunder the control of the firemen, the passage by which the air is admitted to the ash-pit ought also to be capable of being opened and shut at pleasure. Doors and valves for this purpose shonld therefore be provided, and the apparatus is called a Register.'"l Too many precautions to prevent the loss of lives cannot be adopted.
11. Attention to the working of the Engine. As it has been mentioned in the preceding pages, that just before an explosion has taken place, the engine has been observed to labour, or work more slowly, the engineer shouid bear this fact in mind, and prevent the calamity by timely attention. The cause of this slow motion has already been explained, p. 443. The means of prevention therefore is, to avoid opening the safety valve, or steam guage cock, which would cause the water to rise suddenly, and come in contact with the over-heated metal; to withdraw the firc as speedily as possible; to check the dianght of the chimmey by the damper, and to avoid a sudden change ol position of the boat.
12. Strengthening the partitions between the Boilers and Passengers. A great means of security to passengers in case of an explosion, is to strengthen the partition between the boilers and the passengers, and to weaken the other parts of the enclosure, so that the steam should issuc out at the place of least resistance. T Professor Silliman recommends that this bulwark of timber should be made so strong as to resist not only water and steam, but also the fragments that may be projected, or cren the cntire boiler should it be thrown from its bed;** that two boilers be placed on the guards of the vessel over the water, and that the side next to it should be open. This bulwark has been many years adopted in the English steam packets. \(\dagger \dagger\)
13. Tow-boats. The only infallible means ol preventing danger from explosions remains to be mentioned.

As it has happened, that explosions hare occurred on boaid of boats, when, according to the declaration of those concerned in their management, they could not be ascribed to any of the causes before cnumerated, and as similar cases may again take place, the only certain means to insure perfect safety to travellers, is to place the machinery in one boat, and to tow another containing the passengers. This was one of the measures which the unfortunate Fiteh intended to adopt, il he succeeded with his boat, and mentions it in his manuscripts bequeathed to the library company of Philadelphia. It has recently been again proposed by Mr. J. R. Sullivan, and demands the serious attention of the proprietors of stcam-boats. The attempt was indeed made three yoars since by the owners of the Commerce, on the North Riser, but,

\footnotetext{
- But not co great an inconvenience as being blown up, a misfortune which these fusible plates would prevent.
+ Arags, Franklin dnarnal, wol. ©. 1830, p. 410.
\(\ddagger\) Bide vol. vi. p. 60.
\$ 1 ardaer on steat ragines, lecture 8th.
I Renwick.p. g.
This was recommended by a comentte of gentemen who were applied to by the councils of Phitadelphia, on the sub. ject of the prevention of explosions, in the year 1817.
- Ametiran Journal of Science, 1439. Nobulwak wouth be able to resist the entire boiler, or a large portion of lt.
- Boden stean Eingines, p 214. Lomdun, 1818.
}
owing to the deficient power her speed was much slower than that ol other boats, and thertore not much patronized. Mr. S. proposes to use the strongest form of boiker, and to have the lollower ol a lisht sharp) construction, withone deck, that the resistance of the water might be small. Professor Silliman remarks that " there seems to be no objection to the plan of any weight, upon waters generally smooth. The excessive specd now aimed at is of no importance; no reasonable man will be dissatisfied if (sleeping and waking) he can go ten miles an hour. 'this degree of sperd, and probably more, is attainable in tow boats." lle adds this important consideration; "the proprietors of steam-boats must answer to their country and to God, if they neglect any practicable means of delending their fellow creatures from the most awlul calamity to which the confiding traveller is exposed." But this argument will have litte avail with them; the conclutling one used by him will have much effect, siz. that "the first boat mhirh is ascertaincal to afford absolute secwily will be a forteme to its proprictors.":*

\section*{On the Economy of using high pressuie Engincs acting expansively, and condinsing.}

In p. 431 , it was intimated that Mr. Evans overrated the economy in fuel from the use ol his highpressure engines. His deductions were the result al experiments recorded in the seventeenth val. ul the Ency. Britannica. But later experiments by the French Academicians, Arago, Dulong, \&ic., give a different result. According to those, an increase of \(30^{\circ}\) of Fahrenheit does not double the pressure of steam. Even ly the experiments of Dalton, made long since, \(40^{\circ}\) of Fahr. are required to produce this pressure. The French commitue prove that the doubling of the pressure at high temperature, requires a greater angmentation of heat han at a lower temperature. Thus, white an augmentation of \(21^{2}\) of the Cemtigrade therm \(=38^{\circ} .5\) of lahn. increases the pressure from one to two atmospheres, it reguires an atdition of \(31^{\frac{1}{2}}\) Cont. \(=56^{\circ} .7\) Fahr. of temperature to angment the pressure from 3 to 16 atmospheres: and to raise the pressure from 12 atmospheres to 2 t. the increase of temperature necessary is \(61^{\circ} .5\) E. dhr., and if we may rely on their formulat given for compating the pressures at temperatures above 24 atmospheres, it will require an increase of \(71^{\circ} .28\) Fahr. to the temperature to ausment the pressure from 25 to 50 atmosphercs.

The following little table of differences, by Profess.
or Wather R Juhnson, i, deribed matery feem thas
 stwated lion their apowiments, and shens that tion

\begin{tabular}{|c|c|c|}
\hline 1)ifference of pressure & \multicolumn{2}{|c|}{Difference} \\
\hline in atmosphere. & Call & Fabr \\
\hline 1.1103 & -1: & 41 \\
\hline \(3 \quad 10 \quad 13\) & \(2 \cdot 7\) & 46.3 \\
\hline 61012 & 23.4 & 53.3 \\
\hline \(12 \quad 1024\) & 31.2 & 61.5 \\
\hline
\end{tabular}

Thus ahhongh the general position of Mr. E: ans is 1one, vi\%. that while the temprathre is incmased arithmetically, the dastic power of the stam is in-
 crease, as lat down by Mr. Lums, is mat sutaiment.

In conformity with this general position, Nr. Perkins, p. 396 , considers the observation which he has made upon chastic steam trenerated with ownmons heat, as leadins to the lollowingersult: Thet white the temperature rises in an arthonetical matio, the expansive force will be that of an increastag ratio, and the increment of fuel will he a decreabing tatio.
shr. Henworl, an adrocate of the low prosare engine, statest that the aremage daty oi Mr. iWats" engines was abont a mallonslbs. lifted with one botshel of coals, and according to Mr. Fare, all the water works in London are now served by W'att's ensines. workinglow pressurestam, acting expansinely in one cylinder, and the performance of the best of them is abont 25 millions. Mr. John iaylo states, that according to the official monthis repori of the Nine agents in Cornwall, one enrinc (high pressure) of Mr Woolf at Wheal Towan, risised in liszs. on a! aremage t-, 290,000; in 1829, it was 70,233.097 liss. with one bushel of coals. Daring an experiment by Mr. Renaic with the same en rine, it raised an. 22 , ojn lis. with the same quantity of lueles anl Sirli. Duy states in the Tramo. of the Royal Soc. for 182t ant 1329. that this engine performed a duty in the whole month of December 1829, exceeding tine avorage of i: engitues on Mr. Watt's construction in 1098, by a poo portion of nearly 4 (0) Winally, Nr. Futy gave his opinion before the commatae of the lanse fit Com-
 ty of coalsconsmmedty the engine \(n\), w in use which are all on Mr. Wooll's sytem, and by an chaal force of engines such as were in use before be went 10 Comwall, in 1813, would absert the profit of all the the? mining that is now carried on in Cormwall.' Nubing,

\footnotetext{
* Sillimen’s Jonirnal, 1833.
 "This table, calculated after the formulx deduced from experiments of Dalton, hat not been caried beyond 130 , be cance it woint
 which are sensible, with the experiment, hat arecompared. Wemust not ifen cary them to limas beyon lhose which theee gh. servations would inchude, since the neglected terms would then acquire an influence which had mot been fund to beions :o them. while their absence would occasion great errors.
: For example, if it were wished to carry the furmula to \(200^{\circ}\), the chastic force would be seen to cease angmenting, and cuen begin to diminish. But that means no more than in making the proper appheation of the firt obseraton, we hase ne fleted some terms which should have been regarded ia making calculations to such high degrees. This defect emht be remedid, if we possessed some data relating to the tensions of the stean obeered at those derrees, for then could beaplacd to them the formba in adding a termin n, \({ }^{4}\) which would be insensible at lower degrees. But from the want of fuch observations, we have limitel the formula to the extent allowed by the experments of Mr. Dalton." Biol. Traite de Physique, vol. i. p. 530 .
\(\ddagger\) Philos. Mag. 1830, p. 324.
§ Do. pp. 423, 430.
}
it would seem, can more fully demonstrate the superior power and conomy of high pressure engines.

Mr. Thomas Lean, the professional inspector of steam engines in Cornwall, stated to a committee of the House of Commons, of England, in 1817, that 'rhigh pressure engines save at least two-fifths of the whole consumption of coals in Cornwall."

In \(p .397\) the discovery that steam at a very high temperature will not scald, is attributed (but erroneously) to Mr. Jacob Perkins, for it was first accidentally made (in this country) sixteen or seventeen years since, at the Fairmount Waterworks, on Schuylkill, by a workman named Kissick, who had the care of the high pressure engine which was used at the time, to raise water from the river for the supply of the city; and who has at present the charge of the powerful water wheels erected for the same purpose. Having opened the guage cock for the water, to ascertain the height of it in the boiler, he received a stream of high steam in his face, and thought himself ruined, but in a minute or two he was agrecably disappointed, on finding no inconvenience from it, except the trickling down his face and breast, of the water from the condensed steam.

The fact being thus aseertained, the workmen of Mr. Evans made no difficulty about caulking boilers, while high steam from them was pouring out on their faces and hands, through leaks. A short time after the first discovery, an occurrence similar to Kissick's happened to Mr. Eckfeldt, at the mint. The aperture of the guage-cock of the high-pressure engine, used for driving the machinery ol the mint, was originally at the botom, but in consequence of a deposition from the water in the boiler, it became closed. The place of the apcrture was thercfore changed to the front, in order that a wire might be easily inserted to clear the passage when necessary. Some time after, the cock was turned, and Mr. Eckfeldt, who was standing about two feet from it, received the full blast of the steam directly in his face: at the moment he was much alarmed, but in turning round, he was agrceably surprised to find he was not scalded. The writer made the experiments in the presence of Mr. Eckfetdt, on the 20th of April, 1831, while the engine was at work, with a pressure of nearly 150 lbs . to the inch, the usual extent to which it carried. He held his open hand first at the distance of 18 inches from the cock, while the steam was rushing with tremendous lorce from the aperture in the cock, and finding it little more than warm, he placed it within nine inches of the cock, and cven then the sensation excited was not more than that of an agrecable warmth. Oliver Evans mentioncd the fact, in a hand bill, on the 28th of October, 1817, that high steam does not scald, see p. 431: this was before Mr. Perkins left Philadelphia, which he did in May 1819. Mr Brunton, an experienced English enginere, save another proof of the fact to the committe of the IIouse of Commons, in \(1817, *\) and Mr. Vivian also said, on the same occasion, that "the steam from low pressure scalds much worse thau the steam from high pressure." \(\dagger\)

Mr. Perkins, however, confirmed the fact in Enerland, by a set of ingenious experiments, as related in 1. 397, and explains it thus: "I have frequently observed, that when the stop cock of a high-pressure
boiler was opened, whether at the water or steam cocks, the temperature was lowered in proportion to the height of the steam. He ascribes the phenomenon to the great force and rapidity of motion of the steam causing the atmospheric air to be driven before it, evidently tending to produce a partial vacuum, to which the surrounding atmosphere would rush in, and diminish." This explanation, however, is only in part true, because the diminution of temperature of the steam is observed in tubes when the atmospheric air is excluded. A very neat set of experiments by Mr. Ewart, of Liverpool, show that the reduction of the temperature of steam, is owing to the great expansion of it, and the recovery of its capacity for heat. He ascertained that the heat of the boiler was \(292^{\circ}\), and that of the issuing steam \(185^{\circ}: \ddagger\) thus confirming a well-known law, viz: the diminution of the capacities of bodies for heat when condensed, and their increased capacity for it when expanded. This law equally applies to fluids in an aeriform state, and hence the temperature of steam condensed in a boiler is raised, and lowered if allowed to escape and expand.

The following papers may be found useful to those who are desirous to enquire into the subject of steam engines.
1. On the comparative power of steam engines, and rule (with example) to find the power of a steam engine on Watt's principle, in horse power. Franklin Journal, vol. iii. p. 333.
2. On the relative proportions of the various parts of the Boulton and Watts', or low pressure engines; the fuel required for working engines of different powers, and the effect produced in pumping water or grinding wheat. First published in the Franklin Journal, vol. iii. p. 336.
3. Specification of a patent for an improvement in the application of the escape heat from the high pressure engine, by A. Brown, Onondago county, New York. Ibid, vol. iv. new series, p. 273.
4. On the economy of using highly elastic steam expansively, by Jacob Perkins, Ibid, vol. iv. 1827, p. 24. Remarks on the same, p. 120.
5. Method of using hcated air, gases, elastic fluids, and products of combustion, which are available to the increase of stcam power, by M. Ward, Baltimore. Ibid, p. 49.
6. Account of Mr. Perkins' new high pressure steam engine, vol. iii. 1827, with plates rol. iv. p. 39, p. 239, p. 349, by Mr. John March, p. 414.
7. Dolittle on sccuring a constant and uniform supply of water in steam engine boilers. Silliman's Journal for 1827, vol. xiii. p. 64. Remarks on the same by Dr. Jones, Franklin Journal, vol. iv. p. 347.
8. On the true mode of computing the power of a high pressure steam engine, by Charles lotts. Ibid, vol. v. new series, p. 111. Remarks on the same, Pp. 251, 398.
9. On the difference between the absolute efforts cmployed to move a locomotive engine, when the force procecds in onc case from the cngine itself, and in the other from a stationary engine, supposing the place over which the motion takes place to be horizontal, by Charles Potts. Ibid, vol. v. p. \(2 \cdot 16\).
10. Arago, on the explosion ol' boilers. Ibid, vol. v. and ri. new series.

STEAM CARRIAGE. The idea of driving carriages by means of mechanical power is of considerable antiquity, and in the older works on mechanics, we meet with drawings of carriages impelted by the action of wind upon sails, and of others driven by the action of the fect of men in the carrage. Maillard's chaise driven by winches, Brodie's selldriving chaise, and Maillard's chaise with an artificial horse, may be enumerated among carriages driven by mechanical power.
Dr. Robison seems to have first suggested the idea of driving carriages by steam, and it appears that Mr. Symington of Falkirk, so carly as 1787, was occupied with a plan of applying the steam engine to carriages. These proposals, however, were never carried into elfect, so that the seal merit of introducing the steam carriage belongs to Messrs. Trevithick and Vivian, who invented their high pressure engine with the express view of using it in propelling carriages on railways. Athough their patent was taken out in 1802, y. yt was not till 1805 that it was actually applied in the experiment of moving carriages on a railway at Merthy. Tydil, when trials were made at differnt times, but it was not till 1811 that the first steam carriuge was actually used for practical purposes. This was done by Mr. Blinkensop (proprictor of the Middleton coal works, which supply the town of Leeds with coal), who introduced stean for the purpose of convering coal wagons along his rail-roads. In the stean carriage which Mr. Blinkensop used, the boiler was supported by four wheels without teeth; but it was driven by a crank connected with the piston, which needed other two wheels in the centre of the carriage having teeth in their circumference. These tecth engraged in teeth on the rail-road, and in this manner the cartiage was moved along followed by a train of thirty coal wagons.
In the year 1816 Messrs. Losh and Stephenson of Newcastle took out a patent for improvements in steam carriages and railways, which we have represented in Plate DXI. Figs. 1. 2, 3 and 4. Fig. 1, is a section of the steam carriage, Fig. 2 . is a view of it dragging after it the carriare El', containing coals at E and wateratf, and the first wagon Gi of the train. The steam-engine shown at \(A B\) has two cylinders, whose pistons T, B, drive the crank rods AC, BD, which give a rotatory motion to the two wheels C, I), to whose axles they are fixcd. The two opposite wheels, which are not scen in the figure, are driven by similar rods. The circumferences of the wheels take hold of the rail rod RLR merely by friction. The middle pair of whels receive their motion from the other two pair by means of a chain passing over two rag wheels \(m, n\), placed in the centre of each axle as seen at \(c\), Fig. 5. This chain drives a third rag wheel \(c\), and thus drives the middle pair of wheels. In the steam-carriage used by Mr. Blinkensop, the angine was supported directly by the asles. Gut Messrs. Losh and Stephenson connect the boiler with the axle by means of six floating pistons \(b, b, \& \mathrm{sc}\), movable within cylinders \(a, a, a, a\), into which the steam and the water is allowed to enter. These celinders are best seen in Fig. 1. where \(b, b\), are the floating pistons connected with wrought iron rods below; the ends of which restupon the hearing brasses of the axles of the wheels C, D. These pistons press equally on all the axles, and thus rake each wheet bear with equal

Vol. XVII. Part II.
force on the rail-rod \(R, R\), and act upon them with equal friction, even though the rails should not be all in the same plane. 'This effect is produced in consequence of the bearing brasses having a certain degree of play in a groose of slide in aterio al ditection; and as they carry the axles and whels alone with them, they force the wheels to arcommodate themsetves 0 the irregrdaritirs of the wad. A steatly motion is thus obtained, and shocks are better provented than if the engine rested on the lincut steol springs. The constraction of the rail-road and the whenls is shown in ligs. 3 and 4.

The engine used in steam-carriages is the high pressure one of Trevithick, alreariy desctibed and replesented in llate DIX. Fig. 4: but as this subject has now become one of national importance, we have given in Plate DXI. Fig. 5, a drawiner of one of the mose approved steam-carriages with its engine atter Mr. Tredegold.

Jig. 5 is a side revation, and lig. b, a verticat section of this carriase, the same letters indicating the same parts in each. Vrom the cylindrical boiler A, surounded with the fire and hlocs, the steam passes into two large cylindrical reservoirs ol steam \(\mathrm{f}, \mathrm{Al}\), of the same diameter. In these reservoits are placed the engine eylinders (C , (a'. lhe pares ll, are a reservoir of water not exposed to the pressure of the steam, but warmed by the llues and chimmey so as to be heated previous to its beiner pumped into the boiler. For distributing the heat of the lind over a larese surface there are two fire places with fire doors at \(B, B\), which are lied with coals by hoppers from the boxes \(\mathrm{D}, \mathrm{D}\), the doors being used only to clear the bars. The flaes meet at the middle, the one from the fire b rising at lo, Fig. 6, passing along the upper surfare of the cylinder i round \(I I\) at \(M\), then round the end of the boiler, and returning on the oppo-ite sitle to ascend the chimmey in the division \(\mathrm{F}^{\prime}\). 'The other the proceeds in a similar manner but in an opposite course, and ascencls at E; there are two apertures beneath each ash-pit \(\mathrm{C}, \mathrm{C}\) ', for admitting air, and both of them should be provided with registers, so that those may be open, which either face a strong winch. or the direction of the motion of the carriage when there is not sufficient wind. For the same reason the top of the chimncy should have two mouths to assist the draught. The cngine and boiler rest upon frame supported by the axis; but in order io prevent the carriage from resting on three wheels, four spiral springs may be fixed on the boxes LI, and the cross heats must be connected to the piston rods, atd all the bearings must be formed so as to accommodate the parts to the sinking of one of the wheels. The pipe K carries the waste steam to the chimney, and there should be two salety values, one locked in a box at J, and the othe: at \(J^{\prime}\) for the use of the engine man.

In the year 1324, our late ingenious countryman Mr. David Gordon, to whom the arts are indebted for the invention of the portable gas lamp, took out a patent for improyements in the construction of steamcarriages. His improvements relate to the machinery by which the power of the engine is to be applied to the ground, and the principal part of the contrivance consists of rods or propellers jointed to cranks situated at different angles upon the same axis, so that the extremities or feet of the propelters will act upon the ground in succession at a time when they are moving with the greatest velocity, or nearly so. The under
surfaces of the feet of the propellers are curved, being described by a circle of about the same radius as the radius of the cranks which put them in motion, in order that the feet may accommodate themselves to the ground, particularly in the act of turning. Bristles, whalebone, or other pliable materials are fixed on the under surfaces of the curved feet of the propellers, as a substance to come into contact with the ground and take sufficient hold of it. During winter, when the ground is frozen, it is proposed to furnish the under surfaces of the feet with steel points projecting sufficiently to seize the ground. Notwithstanding the ingenuity of these views, it is obvious that nothing can be gained by substituting feet for whecls, and that much power must be lost by the very action of the mechanism employed.

Great difficulties have yet to be overcome before steam-carriages can be used on common roads. On level and well formed lines there is no difficulty whatever, and the present steam carriages are perfectly capable of performing useful work under such circumstances: but unless some great invention is made by which we can increase the power of steam engines, without greatly increasing their weight, we can see no prospect of their being advantageously employed in any other way than upon rail-roads.

For farther information on this subject, see the works referred to in the two preceding articles.

From the statement given by Oliver Evans, p. 427, it is certain that he proposed to drive wagons by steam, in the year 1786, and his experiment with the scow, p .429 , shows that it is possible to do so. The writer, and a thousand others now alive, witnessed this gratifying spectacle. From the commencement of his speculations on the subject of steam, he looked forward to applying it as a moving power to carriages for the transportation of passengers and merchandize; and he never lost sight of this gitat object. He only wanted the assistance of a wealthy friend to enable him to succeed; but it was his lot hot to find any one, who, while he had the means, had se much confidence in the altimate success of the project, as to risk his capital in making the experiment. Had such a bold spinit been found, the state of Pemasylvania would have had the immortal honor of seeing the first trial with steam carriages, and of anticipating the example set to the world by the Britishengineers, and which has conferred such high and lasting honor upon them for their success.

In the Steam Engineer's Guide, p. 54, may be seen the proposition to the Phitadelphia and Lancaster lurnpike company, in Sept. 1sot, which is referred to by liatus in p. 429, "to build a steam wagon, which should transport 100 barrels of flour 50 miles in 24
- Predictions ty olliver Evans in 1813:

1 The time wift come, when perple wift travel in stages mored ly stean engines, from one city to another, almost as fast as birds fly, fifteen on twemty mites an homr.
2. A carrage will set ont from Washington in the morning, the passengers will breakfast at baltimore; dine at philadelphia, and sup at Aew Yonte the same day.
to accomplish this, two cets of mil ways will be taid, trayelled by night as well as by day, and the passengers will sheep in there stages as confortably as they now do in steam stage-boats.
; A stan engine, consuming from a quarter to a balf a cord of wood, will drive a carriage 180 miles in twelve bours, with twenty or thirty prossengers, and will not consmme six gallons of water.
i. The ee engines will drive boats ten or twelve mikes per hour, and there will be many hundred steam boats on the Mississippi,* and hher western watcre, is prophessied thirly years age.
Ponterity will not be able to discover why the begislatures, or Congress, did not grant the inventor such protection as might have enabid him to put in operation these great improvements sooner; he having asked neither money, nor a monopoly of any existugs thing.

\footnotetext{
- Mr. Iwam hwed bo know, that in \(18 / 3\) there were threc steam hoats on his Mississippi and recent information gives the maber lfor most of which have been built and completed at Pittsburg amd Cincinnati.
}
hours:" and gives the calculations and items of expense attending its first cost and maintenance, and those of common wagons, five of which, with five horses each, are required to perform the same work. He makes it clear, that the profits of the steam wagon on the joumey, would be \(\$ 104\), or \(\$ 52\) per day, while that of the wagon is S 366 per day, or \(\$ 18 \quad 33\) for the whole route; and adds the important consideration, that the steam wagon would roll and mend the roads, while the horse wagons cut them up. He concludes by observing, "I have no doubt, but that my engines will propel boats against the current of the Mississippi, and wagons on turnpike roads with great proft, and now call upon those whose interest it is, to carry the invention into effect." 'This call was unattended to.

From a publication in the Philadelphia Aurora of December 10, 1815, it appears that Mr. Cvans made another proposition on the \(8 t h\) of the preceding Oc tober (which cannot be found) to "establish a line between Philadelphia and New York, for the transportation of heavy produce, merchandize, and passengers, on carriages to be drawn by steam engines, on railways, or smooth roads." In this last paper he gives partially the details of the scheme, and concludes thus: "I renew my proposition, riz: as soon as either of these plans shall be adopted, after having made the necessary experiments to prove the principles, and having obtained the necessary legislative protection and patronage, I am willing to take of the stock five hundred dollars per mile, to the distance ol fifty or sixty miles, payable in steam carriages, or steam engines invented by me for the purpose forty years ago; and will warrant them to answer the purpose, to the satisfaction of the stockholders: and even to make steam stages to run twelve or fifteen miles per hour, or take back the engines at my own expense, if required." This second offer met with the same fate that had attended the first. It is somewhat singułar, and much to be regretted, that at this very time (1813), when such immense sums were expended in manufacturing, and often by persons totally ignorant of the business, and S 1500 were giren readily for a pair of merino sheep, that none could be induced to engage with him in prosecuting the business he proposed, even after he had evinced the probability of success by his first attempt with the scow (sce p. 429), through the streets of Philadelphia to the Schuylkill -a success, which, from the british experiments, we have well-grounded reason to believe would certainly have taken place. Had his valuable life been prolonged to the present day, when the whole country is engaged with rail-road projects, capital in abundance woudd have been at his oller, and he might have seen several ol his predietions verifed, to the fullest extent.*

In the Franklin Journal, Vol. I, p. 187, is a list of the numerous patents granted in lingland for steam carriages, all of which were taken out sulsequently to the lirst proposition of Oliver Evans.

The following statements show in part, how well founded the predictions of the ingenious and enthusiastic inventor were. From what has been done at Baltimore, and Manchester in England, on rail roads, there can be no doubt of the possibility of accomplishing every thing predicted by him.

\section*{From the Baftimore American, of March 21, 1831.}

The experiment of the transportation of two hendred barrels of flour, with a single horse, was made on the rail-road on Saturday with the most triumphant success. The flour was deposited in a train of cight cars, and made, together with the cars and the passengers who rode on them, an entire load of 30 tons; viz:
\[
\begin{array}{lc}
200 \text { barrels of flour, } & 20 \text { tons } \\
8 \text { cars, } & 866 \\
30 \text { Passengers, } & 26 \\
& -30 \text { tons. }
\end{array}
\]

The train was drawn by one horse from Ellicot's Mills to the relay-house, six and a half miles, in for-ty-six minutes. The horse was then changed, and the train having set out, reached the depot on l'ratt Street, ia sixty-nine minutes-thus accomplishing the thirteen miles in one hour and fifty-five minutes, or at the rate of 6 and three fourths of a mile an hour. The road between the relay-house and the depot is a perfect level, except at the three deep excavations, where an elevation of seventeen to twenty fect per mile, has been resorted to, for the purpose of drainage. The horse, except at the points just alluded to, brought the train along at a moderate trot, and apparently without any extraordinary labour ; he is not remarkable, and was not selected, for any peculiar powers of draft, and had performed a regular trip outwards on the morning of Saturday. It is, we believe, only about a week ago that we noticed the fact of the transportation of seventy-five barrels of flour, by one horse, as a circumstance worthy of remark in comparison with the number of horses required for the conveyance of a load of a few barrels over a turnpike road. The experiment detailed above shows, that on Saturday a single horse drew three times as large a load ; and there is no doubt that horses could be found, who could with the same ease transport a loarl of three hundred barrels.

The following statement was furnished by a gentleman who kept the time.*

From the mills to the relay-house
46 min.
From the relay-house to the depot
h. 155 m .
\begin{tabular}{|c|c|c|c|c|c|}
\hline The first mi & & & & & . 20 s . \\
\hline Second do. & - & - & . & 7 & 20) \\
\hline Third do. & - & - & - & 7 & 29 \\
\hline Fourth do. & - & - & - & 6 & (1) \\
\hline Filth do. & - & - & - & 6 & 00 \\
\hline Sixth do. & - & - & - & 8 & 30 \\
\hline Seventh do. & - & - & - & 8 & on \\
\hline Eiighth do. & - & - & - & 9 & 100 \\
\hline Ninth do. & - & - & - & ir & 00 \\
\hline Tenth do. & - & - & - & 12 & (0) \\
\hline
\end{tabular}

No account was kept of the last three miles. \(\dagger\)
11:ise.
[Errotu.-Page 440, line 21, for 1781, rearl 1787.
In some copies, p. 455, the heading of the section should read, "On the economy of wsing high pressure engines, acting expansively, and condensing."

STEAM GUNS. White Mr. lerkins was making experiments with the high pressure steam of his generator, he observed that all metallic substances were projected lrom the tube of the stop cock with very great velocity. The idea then occured to him, that with a gun barrel properly constructed, bullets might be discharged with precision and great force: and upon constructing such a barrel, his expectations were realized. By placing musket balls in a hopper from which they fell in succession into the gum burrel, he was able to project two hundred and forty balls per minute, with a velocity grater than that of gunpowder. Anounce ball was discharged from a musket with the ordinary field charge agaimst an iron target, while another similar ball was discharged against the same target from a six feet steam barrel, impelled by steam of forty atmospheres. The distance was the same in both cases; but it was found that the ball discharged by steam was much more flattencd than that discharged by gunpowder. In another serics of experiments Mr. Perkins projected balls with a force of one hundred and ten atmospheres; he found that thoy perforated a block of wood through a greater thickness than those impelled by gunpowder. He sucrecdelin throwing a shower of balls at the rate of one thousand per minute. Mr. Perkins avers that he could keep lep the same force of steam without intermission for twenty-four hours, or any unlimited time. Arery inportant result of these expcriments is said to be, that one pound ueight of cord is capable of producing a quantity of steam equal in force to fice pounds weisht of gumpowder. These experiments were the foundation of Mr. Perkins's patent in 1823, for an improved method of throwing shells and other projectiles by steam. Some farther details respecting the steam-gur will be found in our article Screxce, Curiosities in. Vol. XVI. p. 622.
[For an account of Perkins' experiments with his steam-gun, see Franklin Journai, Vol. I. p. 79, and Vol. III. p. 411.\(]\)

STEAM ROCKET, Perkins. Sec Science, Crriosities in. Vol. XV1. p. 622.

\footnotetext{
* Raltimore Gazette, March 21, 1831.
\(\dagger\) A late report of the directors of the Liverpool and Manchester Rail-way states, that on the 25 th of February 1-31, the Samson locomotive engine drew 30 wagons, carrying 107 tons of merchandize, the gross weight conveyed (besides the engine and templer) being 150 tons. She was assisted up the inclined plane by three other engines, and without turther aid proceeded to . M whester, where she arrived with her train in two hours and thirty-five minutes from the time of starting:-distance 30 miles. Passemgers are conveyed on the cars in one hour and a hatf, and even in one hour and a quarter.
}

STEAM DRYING MACIIDNE. - The mode of drying linen and other cloths by steam was first suggested by Mr. Watt, who, so early as January 1781, contrived a machine of this purpose for his relation, Mr. James Nlacgregor, Clober, near Glasgow. This machine was erected, but no description of the invention was ever published.

A lew years betore his death Mr. Watt put into the Ihands of Dr. Brewster several MSS. and drawings of some of his minor inventions, for the purpose of publication, either in this work or in his Journal of Science, and one of them was his account of the steamdrying machine. The following description and relative engravings are copied exactly from the MSS. and drawings of Mr. Watt.

Fig. 7. of Plate DXL is an end view of the machine, the frame for supporing it being omitted.

A A the ends of three copper cylinders.
H1H two rollers to wind the cloth on and off.
Fig. 3. is a side view. A A are two of the copper cylinders \(\sim\) feet diameter, and 4 feet long.

B B two conical bell-metal sockets fitted steam tight to a hollow axis.

C C two copper steam pipes from the boiler.
D) boiler two leet diameter.

E a conical ralue \(1 \frac{1}{2}\) inch diameter to discharge the spare steam.

F a fummel and pipe to supply the boiler with water.
G two small cocks placed 2 inches asunder, by opening which it is known if the boiler be too full or too empty.

Fig. 9. and 10. views of the box which returns the condensed water to the hohow axis. It consists of a circular box of copper 13 B , 4 inches deep, divided into 4 divisions. In two of the divisions are holes D D, which take in the water when they are at the bottom: and as the cylinder turns round, transmit it to the holes. E. E in the hollow axis C C, by which it is returned through the steam pipe to the boiler, being directed by the partition \(G\) in the axis. In the other two divisions are holes F F to admit the ingress and egress of steam from the cylinder to the box. Mr. Viatt was of opinion that the hollow tube C might consist of two separate tubes, opening into each other at their extremities.
sTEDTITE. Sce Mineralogy, Index.

Smatite is a kind of saponaccous stone, which is sometimes found of a white colour, at others crey or green, and but rarely red or yellow. Its specific gravity varies from \(\div 60\) to 2.66 .

This substance is composed of a mixture of silex, alumine, masnesia, oxiche ol iron, and water; but it differs according to the locatities in which it is lound. It is very common in Cermany, and in Cornwall; and we has me dombt that it may also be found in the westom parts ol Prance.

As steatite is not lusible excepting at a very high tomperatur, and as it ran be werked with the greatfat facility, so it lorms actellent erncibles, which harden in the fire, and which litharge penctrates with sreat difliculty. italio serses as a lacing to protect moulds for rasting iron, and other metals.
11. V'iscot, of Liege, made a great number of experiments to prove that this substance might be em-
ployed by the lapidaries. He formed cameos with it, to which be gave a fine polish, after exposing it to the action of the fire; and it becomes so hard, as to give sparks like flint, when struck upon hardened steel.

By polishing it, he gave the appearance of agate, and even obtained some pieces which perfectly resembled the onyx ; but this appearance was quickly destroyed by the fire, and he found it impossible to restore it.

Having a great affinity with glass, the steatite, when reduced to a very fine powder, and mixed with the colours, becomes exceedingly convenient in painting upon it. It is also used as a kind of sympathetic crayon, for drawing or writing with upon glass, and on which it leaves no apparent trace, after the drawing or writing has been wiped over with a woollen cloth. However, the marks are rendered instantly visible, by breathing upon them; but they disappear anew, when the glass becomes diy.

The embroiderers and tailors prefer steatite to chalk, to make traces with; as they are more durable, and do not affect the colours of their cloth.

As steatite has the property of combining with oil or grease, so it enters into the composition of the greater part of the balls, which are used for cleaning silks and woollen cloths from oil or grease spots. It also serves as a basis, in the preparation of certain colours for paining with.

It is employed to give a fine polish to marble, serpentine, and other gypseous stones. Mixed with oil, it is used to polish glass and metallic mirrors.

If the surface of newly prepared leather be sprinkled over with it; and if, when it has become dry, it be rubbed with a picce of horn, it will give the leather a fine gloss.

Steatite is also employed to glaze paper, upon the surface of which it is sprinkled, when it is reduced to a very fine powder: or, which is much better, when mixed with the colouring materials. To glaze the paper, it must be rubbed over with a hard brush.

The powder of steatite, owing to its unctuosity, is one of the substances employed in lessening the friction of serews, toothed wheels, and other metallic contacts.

Steatite is a mineral, which belongs to the primary or secondary formations. le ofter constitutes beds of great extent, but when pure, it usually forms lumps of greater or less magitude. That variety of it termed Venice tite, abounds in the Tyrol and the Valteline. The briancon and the Spanish chalks are found, the one in the \(\lambda l_{\text {ps }}\) of Dauphiny, near Briancon, and the other in the mountains of Arragon. The Venice tale affords a powder, which renders the skin smooth and shining, and is cmployed as a cosmetic. The lard stome is also another kind of graphic tale, and is used in China, to lorm small grotesque figures.

Fat, and fixed oils, have long been used to lessen friction in machincry. lbut their bad properties, and the ill seents of these matters, onglit to induce us to abandon their employmont, and to substitute others for them. And we may likewise add, that the emanations which they diffuse in the workshops or mills, are frecucntly inconvenient ; and it would, therefore, be much better to sell them to the manulacturers of
oil gas. Plumbago, or the carburet of iron, has heen successfully used for diminishing friction in machinery; but this material is too rare and costly to be ordinarily used. There are, however, other unctuous minerals to which we may recur, and amongst these, steatite scems to hold the lirst rank.

The citizens of the United States of Noth America, who culcivate with success the employment of machinery, as we may judge from their numerous steam boats and other machines, both for naval and other purposes, appear to be the first persons who have employed steatite in the large way. It is not, howerer, used alone, but mixed with a small quantity of oil, suet, or tar. They commence by reducing it to a very fine powder, and then mixing or triturating it with the material intended to render it more unctuous. The first experiments on using it were made at Lowell, in the state of Massachusetts ; and the coachmen and wagoners have found it highly benelicial.

Mr. Moody, superintendent of the great iron works established upon the mill dam near Boston, has alforded us means of estimating the advantage to be derived from the use of this new mixture. In one of the works is a wheel of great size and weight, which makes from 75 to 100 revolutions per minute, and turns upon necks or gudgeons of five inches in diameter. It has moved with this speed during three, and sometimes fire, weeks logether, without renewing the lubrication of the gudgeons. Nevertheless, Mr. Moody thinks it best to renew it oftener. 'The machinery, of which this great wheel forms a part, manulactures about 200,000 pounds of iron per month.

It is to chance, that we are indebted to the discovery of this valuable employment of steatite, the use of which is now continually extending in the United States; and will also, no doubt, be speedily adopted in Europe.-De Moleon's Reeuiel Industricl.

Additions ly the Editor of the Teehnological Reposi-tory--Steatite is also used in the United States to line furnaces with: a type founding machine, sent from thence, and patented here, had a furnace of this kind. And the Editor lately saw, it the hands of Mr. Lemuel Wellman Wright, congincer, a cubic mass of it, a foot square, and which had been sent to him by an American friend. Ie had sawn off a portion of this block, and exposed it to the heat of his fire for several hours; after which it had assumed the appearance of a mass of mica, still, however, cohering together. The Chinese also make small portable furnaces of steatite.

The lapis ollaris or potstone, is also another variety of steatite. Bishop Burnct gives the following account, in his travels, of the mode of using it in Switzerland. "There are a sort of pots, made ol stone. which are used, not only in all the kitchens here, but also in those of almost all Lombardy, called Lavere The stone feels oily and scaly, so that a scale adheres to the finger of any one that touches it, and it is somewhat of the nature of slate. There are but three mines of it known in these parts; one near Chavennes: another in the Valteline; and the third in the Grisons; but the first is much the best. They gencrally cut it round in the mine, in masses of about a foot and a half in diametcr, and a foot and a quarter in thickness; and they work it iuto shape in a
mill, where the blorks of stone are drisen about by a wherl, set atoring by water ; atnd which is so ortered, that he who manages it, curns the ontside of the stome, first, till it is quite smooth; and then separates one pot after another, by small and hooked chicils, by which means lie makes a nest ol pots, one within another; the outwam and biggest one, being as large as an ordinary corsking pot, unt the inward one, no larger than a common pipkin. These pots they arm with looks and circle of hass ; and so they are used by them in their kitchens. One of these pots heats and boils sooner than any metal pot: and yet the bottom is twice as thick as that of a metal one. It never cracks by the hrat, nor gives any sort of taste to the liguor that is boiled it it ; but il' it falls to the ground, it breaks, as it is very britthe ; nevertheless, it is soon repaired again; for they piece their broken pots so close, by sewing the broken parts together with iron wire, which completely fills the holes they make to receive it , that there is no breach made, althougin no cement is used. The passage to the mine is very inconvenient, for they must creep for near hall a mile throngh a rock, which is so hard, that the passuge is made mot above three leet high; and so that those who draw out the stoncs. ereep all atong upon their belly, having a cardle fastened to their forehead, and the stone laid upon a sort of cushion, made for it upon their hips. The stones are commonly two hundred weight."

STEEL is the name of a well known metal, consibting of iron combined with carbon, or a carburct of iron. When small pieces of fine malleable iron, surrounded with powdered charcoal, are exposed lor eight or ten hours to a strong red heat, the iron is conserted into steel, and is then found to have united with the 150 th part ol its own weight of carbon. The following are the general properties of this important metal:

Steel unites with the malleability of bar iron the fusibility of cast iron, and if immersed in a cold fluid when hot, or otherwise suddenly cooled, it becomes intensely hard, sonorous, and elastic, - these properties varying according to the beat of the steel, and the temperature of the fluid, or other substance in which it is cooled. In consequence of these properties, steel is of great use in the arts for all sorts of cutting instruments, for springs. and cren for musical instruments. In general, stcel is britile, resists the file, yields sparks with flint, and retains magnetism for a very long time. The hardness, in virtue of which it possesses these properties, disappears after ionition and slow cooling. At a red heat it is malleable, but less so at a white heat. It is capable of being beat out into thinmer plates than iron. It melts at \(150^{\circ}\) of Wedgewood. Its specific gravity varies from -.78 tu 7.84. By repeated ignition under exposure to the air and hammering, steel again becomes wrousht iron. According to Kirwan, steel may be easily distinguished from tron by letting fall a drop of dilated nitric or muriatic acid on a plate of steel. When washed off after lying a few moments, a black spot is left, whercas on iron with nitric acid the colour of the spot is whitish green. The canse of the black spot is, that a portion ol the iron is clissulsed, while the carbon is left.

There are three differenthinds of steel, which are
obtained by three different processes. 1st, Natural steel;2d, Stcel of cementation; and 3d, Cast"steel.
1. Natural steel. The natural or native steel of Eisenhartz in Styria, is obtained directly from the ore. The ore used is the Spathose ironstone, consisting of the carbonates of iron, manganese and lime, together with a mixture of clay, which occurs abundantly in the neighbouring hill. The fuel emploged is always charcoal, and generally amounts to about one-fifth of the ore in weight. The ore is first converted into cast-iron by repeated meltings, and removals of the scoriæ, and the cast-iron thus obtained is purified in the crucible of a refinery previously lined with charcoal, particular care being taken that the carbon contained in the cast iron is not burnt away. When the natural steel is thus sufficiently purified, it is extended under the hammer, and cut into bars which are examined by their fracture, and separated into hard steel, soft steel, and steely iron, the last of which is used for pointing ploughshares, and other rough work. The other two kinds ol bars are made up into packets, the hard steel being placed inside, and when drawn into bars at a lower heat than that used for iron, it becomes natural steel.

In this process a portion of the carbon is supposed to combine with the oxygen in the cast iron, and to escape as carbonic acid gas, while the rest of the carbon unites with the pure iron, and forms steel. In quality this steel is inferior to other kinds. It is less homogencous, and is softer and less frangible. From the cheapness of the process, it brings a lower price.
2. Steel of cementation. The process of forming steel by cementation is performed in two parallel troughs constructed of fire brick, or of an open-grained siliceous free stone, unalterable by the fire. These troughs are placed upon a long grate beneath an arched vault, surrounded with a cone of masonry. Bars of the best Dannemora or oregrund (Swedish) iron, free of cracks and flaws, are then selected for the purpose of cementation. A layer of coarsely bruised charcoal, capable of passing through a guarter inch riddle, is now laid at the bottom of the cementing troughs, and above this is laid a row of bars of iron, another stratum of charcoal succeeds, and then bars of iron, and so on till the trough is nearly full, containing about eight tons of iron. The whole is then covered with clay and sand mixed, and rammed as close as possible to exclude the air. The heat of the whole is raised to a glowing red, which is kept up from seven to eleven days, according to the quantity of iron. Through a small hole in each trough a bar is allowed to project, that it may be taken out from time to time to observe the progress of the operation. When the trial bars announce the perfection of the proces, the fire is extinguished. The bars retain their original shape, but their surface is covered with blisters, as if a gaseous fluid had been confined in different parts of it. Hence it is called Blistered Steel. The bar iron when thus converted into steel is found to have increased in weight from four to twelve oz. percut. of on ath average 1 part in 224. The first proportion constitutes milh, and the second very hard stecl; and if the process hatl becon pushed much farther, the steel would bave melted. and in the act of fusion would have taken an additional dose of
charconl, so as to bring it to the state of Cast Iron, No. 1.

Blistered steel thus made is used only for the coarsest purposes. Its texture is greatly improved by being formed into smaller bars under the tilt hammer, in which state it is known by the name of tilted steel.

In order to improve the steel still farther, the bars are broken into short pieces, and these being put up iu small parcels, are welded together in a furnace, and drawn down into bars, which, by repeated welding and tilting, acquire a compactness and toughness, which fit it particularly for swords and other large articles of cutlery. This steel is called sheer steel, or German steel, from its having been prepared in great perfection in Germany.
3. Cast stecl. The finest kind of steel known by the name of cast steel was first made by Mr. Huntsman of Sheffield in 1750. At first he kept his process a secret, but it is now well known and universally practised. Blistered steel, broken into small pieces, is mixed with a certain proportion of pounded glass and powdered charcoal. It is then melted in a crucible, and cast into ingots, which, by gentle heating, under the influence of the tilt hammer, are wrought into bars. By this process it becomes more brittle and fusible than blistered stecl: but though it is incapable of being welded with either iron or stcel, it has acquired an uniformity of texture, and a closeness of grain, which fit it for the finest articles of cutlery.

According to M. Clouet (Journal des Mines, No. 49, An. vii. 3), cast steel may be formed by fusing thirty parts of iron, one of charcoal, and one of pounded glass, or even by melting iron in a crucible, when surrounded with equal parts of chalk and clay, and keeping the whole a sufficient time at a white heat. There is reason to think that the pounded glass is not essential to cast steel; and while some are of opinion that this substance differs from common steel only in having a greater quantity of carbon, others maintain that it actually contains less carbon, and therefore that the difference must have another origin. In rich cast iron the carbon is supposed by some to exist in a mechanical state, while in steel it is chemically united with the iron.

Various methods of working cast steel have been published, among which that of Mr. Mushet deserves to be studied. A method of a novel character has been recently discovered by our ingenious countryman, Charles Mackintosh, Esq. Glasgow. The principle ol' the method is to inpregnate iron at a high temperature with carbon in a gaseous form. The gas which he employs as the most economical and convenient for this purpose is that obtained from the distillation of coal, or the common coal gas. The iron to be converted into steel is enclosed in a crucible, or meltingpet, of the usual materials, and placed in the furnace; and when it is raised to a very high degree of temperature, a jet or current of the gas is thrown into the crucible through a tube and aperture provided for that purpose. In the cover ol the crucible another aperture is made to permit the escape of that part of the gas which is not absorbed by the iron.*

A series of very valuable papers on iron and steel
by Mr. Mushet has been ptiblished in Dr. Tilloch's Philosophical Magazine. Ite has shown that the hardness of iron increases with the carbon which it contains, till the carbon amounts to one-sixtieth of the iron. At this point the harduess is a maximum, the metal acquires the lustre and colour of silver, loses its granulated appearance, and assumes a crystallized form. If more than one-sixtieth of carbon be added, the hardness of the compound diminishes in proportion to its quantity.

The following table by Mr. Mushet shows the proportions ol carbon which combine with iron during the formation of the different carburets.

The following are the specific gravities of steel in different states.

\section*{On the Case-hardening of Iron.}

The process of casc-hardening iron is that by which the surface of articles already manufactured are converted into steel. It is chiefly used for tableknives, and particular surgical instruments, where toughness and hardness are required. The articles which are to undergo this process are laid into a pan of plate iron, and surrounded with bone shavings, pieces of hern, or old leather shoes. A forge fire of considerable size is now made up, and when the upper part of the lire has caked together, it is carefully lilted off without breaking, and the iron pan when laid upon the red coals, is covered with the caked mass. In this state it remains for two bours, without urging the fire. The progress of the operation is ascertained by small pieces of trial wire previously introduced into the pan, which are taken out, and dipped in water, then by means of the file and the character of the fracture, the condition of the articles is known. When the process is deemed complete, the fire is increased, and the articles, when brought to a proper heat, are taken out and immersed in cold water.*

\section*{On the Tempering of Stecl, and the colours which accompany it.}

The art of tempering steel and fitting it for various kinds of cuting instruments and other purposes, is one of the most important in the arts. The heat by which this change in its character is affected, must always be less than that which was used in hardening it. The common method of tempering consists in
laping the sted artiches on a clean eroal fire, or on a heated bar till they receive the degree of heat which is required. They ate then cooted by immersion in water. The degree of herat, the colour by which it is indicated, and lare debrees of temper necessary for different instrummets ate shown in the following table:-
Instruments. Vowons. Temperature
1. Razors and hastramente with a stout back andfincerlge Sivas Cobloury \(400^{\circ}\) qu \(451^{\circ}\) 2. Scalpels indrentaises fill bellow - \(470^{\circ}\) 3. Scissors, small bhews Jown Yicllos - 4910 4. Pocketand Proning kinive Jinst Tinge of Imple - \(51 \%^{\circ}\) 5. Watch springs, Swords, and Elastic Instruments bifieront Purples 550005050 6.

As many articles of rutlery require to be tempered with great precision, Mr. IIarley, in the year \(1: 89\), took out a patent for a new method. This method consists in using an iron trough filled with the firsible metal, consisting of eight patts of lead, two of tir, and he of bismuth. A mercurial thermometer graduated to \(600^{\circ}\) of Fahrenheit is then immersed in it, and the fusible metal is brought to the required temperature by means of a furnace or lamp placed betow the trough. In place of the fusible metal oil may be used, but as the articles are in this case immersed in the oil and out of contact with the atmosplare, the colours arising from oxidation are not produced. Mercury may be used in place of the fusible metal. No change of colour will appear on the steel till the thermometer indicates \(430^{\circ}\), and it is so faint that it can be even then only seen by comparing it with a plate not heated. A very ingenious method of tempering very delicate steel articles was proposed by Dr. Wollaston to Mr. Stodart. The steel article's yhen placed in a tube were surrounded with the fusible metal. The tube with its enclosures was then beated to redness in a furnace, and afterwards immersed in a cooling fluid. The whole is then thrown into boiling water, which melts the fusible metal and leaves the steel perfectly hardened and unaltered by twisting, cracking, or suffering any change of form.

Mr. Stodart made several experiments in order to determine the best fluid for cooling the heated sted. He plunged a scalpelin a mixture of snow and muriate of lime, but without perceiving that any advantage was derived from the extreme cold. A large quantioy of water brought to the temperature of about \(40^{\circ}\) of Fahrenheit he found to answer the purpose as well as any that had been cricd. In tempering stecl and the alloys of steel, to be afterwards described, Mr. Stodart recommends it to be performed twice, first at the usual time before grinding, and again just before the last polish is given to the blade. " \(\quad\) This second tempering," says he, "will perhaps appear supertuous. but upon trial its utility will be readily admitted; we were led to adopt the practice by analogy, when considering the process of making and tempering watch springs." \(\dagger\)

The following table, which is different from the one given above, is drawn up from a series of fine specimens of oxidated stcel, which the late eminent Mr. Stodart presented to the writer of this article. The
different tints are twelve in number, and exhibit very perceptibly the progress of the oxidation :-

In the production of these colours the access of oxygen is absolutely necessary, in order that it may combine chemically with the metal. Sign. Ambrosio Fusinieri, who has made a number of curious experiments on the subject in reference to the other metals, found that these colours are produced in the same order on all metals cxcept platinum, upon which, whether in the state of wire or plate, he never could produce any colour.*

\section*{Observations on the Hardening of Sicel, addressed to the Franklin Institute, by Rifus Tyler, Mochumician, Philadelphia.}

The following remarks on the subject of hardening steel, are offered to the Institute as the result of much expericuce in the regular course of my business, and of essays suggestad by some peculiarity, accidentally noticed, and made for my own satislaction. It is, perhaps, to be regretted, that I have not had leisure to repeat them with a view to greater accuracy of detail; by some, however, this may be decmed a lavourable circumstance, as they are not fortified by any array of numbers, or formulx, and may, therelore, be the more readily discussed, corrected, and amended, for which I am fully aware my best endearours leave ample room.

The pecoliar kind of hardening of which steel is susceptible, depends upon two conditions: first, a sufficirnt degree of heaf (somewhat above the lowest red), which may be termed the hardening heat: and second, sudilen cooling. A deficiency of only a few degrees of heat, of an excess of two or three seconds of time, beyond certain limits, will entirely defeat the operation.

The usual method of hardening steel for common purposes is to heat it to the proper degree (the lower the better, provided it be not so low as entirely to fail to harden, and then to plange it suddenly into cold water. When it is requisite to protect the surface from the corvoding effects of the atmospheric air, as in engrarings, dies of delicate workmanship, \&c. it shonld be imbedded in fine chareoal powder, previously heated to redness, in an iron box, to drive off the evaporable matter, and when sufficiently heated, the piece must be removed to the cooling liguid with as little exposure to the air as possible. If the contents of the box be thrown, with the stecl, into oil, so as completely to exclude the air, it will preserve its polish and brightness unchanged.

All articles of steel are more or less liable to become warped, by rapid cooling, from the unequal contraction of the parts, and many, from the same cause, require the greatest dexterity and skill to prevent them lrom breaking in pieces during the operation.

Whenever, therefore, the nature of the case admits the use ol oil, as a cooling medium, it is safer than water, being much less rapid in its operation. It is obvious. however, that as large masses of steel can with difficulty be cooled, even in water, within the hardening limit of time, only small articles, such as springs, thin blades, \&c. can be hardened at all in oil. It is sometimes pretended that oil imparts a degree of toughness to steel hardened in it, just as it would to a bit of horn, or leather, by penetrating its pores; and I believe the patent obtained for the use of it, in hardening a celebrated patent oil-hardencl-spring truss, was grounded upon such a supposition.

The danger of breaking increases with the thiekness of the piece, whatever may be its form; and that form is least liable to break, in which there is the greatest freedom of motion, or in which a simultaneous contraction can be effected in all the parts.

In hardeuing a roller, say two or three inches in diameter, and about the same in length, the first tendency of the contraction of the surface is to separate it. But this strain being equally diviced around the circumference, and the metal being in a yielding state, the only effect, in general, is to cnlarge the surface beyond its original dimensions. The surface thus enlarged immediately becomes bard and fixed; so that the subseguent cooling of the centre reverses the strain upon the surface, tending to compress or shorten it, and that to such a deg:ee, that a segment is often thrown off with great violence, or, when the outer portion has sufficient strength to resist the comtracting force of the centre, that portion in its turn tends to separate, being prevented by the outer part (to which it adheres), from retuning to its original dimensions. In this case, a separation at the centre is ineritable, unless a part of the heat be allowed to remain, until the surface be relaxed by tempering, after which it may be suffered to cool. When a rent commences at the centre, the parts generally separate with such force, as to sunder the mass, accompanied by a loud report.

It sometimes happens in the breaking of dies, rollers, \&c. (in which the tempering has been omitted) that the effect does not take place until several hours, and even days, after they have been hardened.

Stecl is allowed by authors to expand about \(\frac{1}{8}\) th of an inch to the foot, in heating to the hardening point, and to contract, on cooling, about \({ }_{3}^{2} d s\) of what it had been expanded, provided the hardening effect takes place; otherwise it returns nearly to its original size. Accordingly, I have been in the habit of making allowances for this cnlargement, which is generally found to take place, in a \({ }^{\text {greater }}\) or less degree, and for many years held the opinion that it was a necessary consequence of hardening steel, and that this effect ought to take place, just in proportion to the degree ol harduess produced.

With this doctrine, however, facts are at variance, and I believe, that the circumstance, above alluded
to, as the cause of breakiug, may also explain most satislactorily, the phenomena in question, (to wit) that of hardening the exterior, before it can possibly be perinitted to contract to its proper size, because of the expanded mass within.

I have found in a number of cases of thin hollow cylinders, or hattened rings, where there was the best chance ol thorough, and almost instantancous cooling, and of course, of producing the greatest degree of hardness, that no enlargement was perecptible.

Particular care should be observed, in the act ol cooling, not to suffer any intermission, in any part, as is often done by moving the piece backward and forward, too briskly, in the water, alternately cooling, and exposing to a vacuum, the opposite sides; for a part thus exposed, after moving rapitly against the current, until liaily hardened, night be let down or tempered, as it is called, by the heat rushing from the centre, loward the side exposed to the vacum, without being sulficiently re-heated to prepare it for hardening at the return of the current of the water. In this way, solt places are oflen produced, which will erroncously be attributed to uneven steel, want of sulficient heat, \&c.

By dipping the end of a small bar (heated to several inches in length), and keeping it quite still, until it is hardened nearly to the surface of the water (which should be very cold); and then raising it quickly, an eighth of an inch, or more, according to the size of the bar, a portion of what was hardened will be softened by the heated part above;-as soon as this is perceived, let the bar be again sunk into the water, to where it remains of a hardening heat, which will be perhaps half of an inch lower than before, another portion of about \(\frac{3}{3}\) ths of an inch will thus be hardened; let the bar be again withdrawn a small distance, as before, repeating the operation, until there no longer remains st:fficient heat in the bar for hardening; the result will be, a number of successive hard and solt rings.

While resting the strength of different kinds of stecl, by repeatedly hardening each kind, until a lracture should take place, I was somewhat surprised to find the pieces, which were small (such for example, as were an inch square, and \(\frac{3}{3}\). or \(\frac{1}{2}\) an inch thick), considerably swollen, alter three or four times hardening, and that every hardening increased their convexity, until they actually burst the surface, in the middle of one of the faces. Repeating the experiment, with a piece prepared perfectly flat, I found the first, second, third, and fourth time, of hardening each, to produce a small additional elevation of the surface. On the fourth attempt the piece cracked.

I have scon a thin picce ol steel very beantifully hardened, by chilling in its passage through a rolling mill; this piece afterwards exhibited in its fracture an exceedingly fine grain, a probable consequence of its being hardened under immense pressure.

Small drills, and other articles of the thickness of a small needle, may be cooled, with sufficicnt rapidity to become hard, by moving them briskly through the air.

Water, to be active, in cooling, should be perfectly free from soap,-a small portion of that substance will cause the time of cooling to be extended beyond the hardening limit, especially if the piece of steel be not very small.

Vol. XVII. Part II.

The grain of sted, hough finer when hard than when solt, becomes still finer, the lower the temper be drawn, untib about a medium between hard and soff. when the fineness begine to deerease.

Cast iron is capablo ol being hardened in the same manner as sterl, except the kind which is already hardence at the time of eabting. 'This kind prossesses a superior degree of hardeses, which ditlers materially from that obtained in the mamber ol hardenimes sect. It takes place in passing from tho llaid w the solid state, and can only be chatged by pe-melting. As som as time will permit. I intend offering some remarks on hard and soft cast-iron.

The most satisfactory theory of hardening steel, which also applies to cast iron, is one suggested by Mr. William Mason, of this place. He supposes, that at the bardening heat, the component parts of steel exist in a state of perfect chemical mion, and that if time be allowed in cooling, that union is dissolved, or changed to a simple mechanical mixture. This he conceives to be supported by the following experiment: melt together certain preportions of zinc and quicksilver, and pour one part of the amalgam into water, and the other into a wooden or papes mould; that which is ponred into water being suddenly chilled, retains its chemical anion, and becomes of the consistence of paste; the other separates, the zinc forming a solid cellutar body, bolditig the guicksilver in very minute globules, in its interstices.

\section*{On Innealing Cast Strel, so as to make it as snft are Irom.-By Jicob Pehmis.}

We were lately shown by an American friend, some slips of thin cast-steel, which were as solt and pliant, and as easily bent into any required shape, as thoush they had been timned shcet-iron. They were of it light grey colour, perfecty free from oxidation or scales, and were still capabie ol hardening, on being heated and quenched is water.

On mentioning this fact to Mr. Perkins, he stated that the process was known to him, he having practised it in America with great advantarge ; and he had even communicated it to one intelligent engincer in this country, who had since constantly cmployed it.

The sccret consists in inclosing the cast-steel in close cast-iron vessels, which completely exclude the external air; and in kecping them at a moderate red heat, in a proper amealing furnace, a sufficient length of time, according to the thickness of the steel ; and, lastly, letting them cool very slowly.

This process is superior to the usual practice of decarbonating cast steel, and reducing it to the state of iron; which renders it necessary to restore its steely nature again, by casc-hardening it, before it can be hardened as usual.
[Terl. Rep.

\section*{On Annealing Iron and Steel Wire.-By Thomas Gille.}

Although ' the amealing of cast-steel in close ressels," as described to us by Mr. Perkins, and as given in the preceding article, was a new and valuable fact; yet we well knew that a similar practice bad long been used both in this country, and in France. for annealing iron, and stecl wire.

The late scientific M. Nicolas Paul, of Geneva, de30
scribed to us, twenty years since, the practice employed in an iron wire drawing manufactory in France, to anneal their wire ; which was by enclosing the large coils, in cast-iron vessels of an ammlar or ring shape, open in the middle, to allow the flame of the furnace to play through them; and the section of which rings was a semi-circle, having flat east-iron rings, as covers to the flat tops of the vessels. Ears were made around the internal, and external boilers, both of the vessels and their covers, with corresponding holes in them, into which wioughtion pins, with heads, were put, and which pins had also holes near heir cnds, through which iron wedges were driven, to draw the covers close to the vessels, the juncture being previously made air-tight by a loting of loam. These vessels were heated in a kind of oven-shaped furnace, having a grate of iron bars, for the fuel, and vessels, to rest upon, with doors both to the oren and ash-pit.

We also saw, about the same time, the method employed by the late Mr. John Burr, at his steel wire works, near Hales-Owen, in Shropshire. He enclosed his bundles or coils of stecl witc, for needle and lish-hook making, in east-iron vessels, with covers fitted closely to them, to exclute the air. These vessels were unformby heated in a cylindrical furnace of brick-work, covered with a dome, and having a hole in the centre of the dome, to serve as a chimney. The lurnace was strengthened by a number of projecting buttresses, which were built around it, and by ison chains surrounding the brick-work. 'The fire was made upon a circular grate, which ran all round the inside of the furnace, and was supported upon walls: air-holes to supply the fire being also made at regular distances through the external wall of the furnace. A door of brick-work was built up, after the coal fire had been lighted, and the ressels containing the ster-wire, had been deposited in the furnace; this of combe was taken down again after the annealing was performed, and the furnace had become sufficiently cool to remore the vessels.

In Cadell's "Journey to Carniola, ltaly, and France, in the vears 1817 and 1818 ," he says, vol. i. page 243, that in the iron wire works, near to Pistoja, in ltaly, "after the wire has beon drawn, it is hard; and, in order to restore its bexbility, it must be heated, and suflered to cool, gradually. For this process of anncaling, large castipon vessels are employed, four feet high, in form of a truacated cone sith the base uppermost. The sire is put into the vessets, which are thencorerd and luted tight. The vessel is surrounded by a biek-wall, at some distance from its sides, and burning , harcoal is put in, be tween the wesel, and the wall. These rastimon wes sels we mate at the fismaces in hae Atremma, and :hey are almost the only artirles of castironlobbervel in T"uscans:."

In onf first velume. pare aze, we meationch, that Wr. Coreoran. of Mark-lane, wime weawe imelesed his wise in clased cinstiten wessels, sarrommed with srount flim, and then axpord them 10 a redtheat, in proper fumares. And that, athough the wite thos became quite flesithe and pliant, fer it was as bright as thongli it hat mot beon beated at all. If.

Remaiks by the Eiditor of the I'ramilim Jomenal.-We had been so long lamiliat with the Poregomep process, that we had suppocet it to be the miversal practice
in wire manufactories. The Messrs. Sellers of this city bave used it for many years ; it was aiso followed by Messrs. White \& Hazard, at their wire drawing manufactory, at the falls of Schuylkill, and by many other persons in this country; but as it may be new and useful to some persons who work in wire, we have re-published it.

\section*{On a new method of Colouring or Oramenting Steel. By M. Leqpold Wobili, of Regerio, in Ilaly.}

In the Bulletin de la Socicté d'Encouragement, for January 1829 , is contained a report made by \(\mathbf{M}\). Gualthier de Claubre, a member of that sociely, as follows:
"A learned foreigner, known by his ingenious researches, M. Leopold Nobili, having presented to this society the results of his experiments relative to a new art, to which he has given the name of milallochromic; you charged your committee of the chemtalarts to examine these products; and I have, in its name, to report thereon.
"A sreat number of experiments, more or less successful, hare been made by various persons, and at different periods, 10 apply, in a solid manner, paintings apon metals: but the solility of the pictures did not equal their wishes, and the himess of the colours appled remdered their traces vague and greatly diminishod the sharpness and finish of the designs.
"A. Nobili bas lately, by his assiduous researches, and the dabour of many years, produced, by a process which he has not marle known, designs upon rarious metals, in which the brilliuney of the colours, and the harmony of the tints, leavenothing to be desired; thus these colours possess none of the inconveniences above stated; and they are de reloped upon the surface of the metals withont being too hinly diffused; but are stable, and will not disappear unless by the application of a high red heat, which, by its action, would aiso destroy the surfuce of the metal, as well as the chemical agents employed upon it.
*Nothing can be more molliant and siogular than the coloum upon 11 . Nobili's plates, especially by day light: and all his designs are exceuted with a fine taste, the regularity of their forms, and the sharpness of their ontines, beine all that can be wished.
"A. Nobila has not merely manultactured these plates as objects of curiosity, but has mounted several, which have been singulary esteemed by amateurs; and we can readily believe that this pleasingart would meet with great success were it carried into effect on a proper scate; and it is, therefore, marh to be desired that so new and curions an art should not be lost to France, and especially as M. Nobili appears disposed to brine it into practice. We can casily form a jast idea of be exteat to which it mish be possible to carry this brabe of mandactare, when we remark that many metals assume their colons in very differemt orders by the application of heat ant we can casily conceive, that in the hands of a skilfal man, and one well conversant with commerer the greatest advantages might be derived from the emplogment of this new bratuch of industry. Thus, for instance, nothing presents mowe harmony than gold, as its tints are wery diflerent from those allorded by heating sted. It is upon this last me?al that atl the designs preseated by M. Nobith have been executed. Siloer like-
wise affords different colours on applying heat; and an experienced artist cannot fail to make many fine applications of M. Nobili's process.
'This process not being exactly known, many persons have accordingly formed suppositions, and even made experiments respecting \(i t\); but it does not appear that theirsuppositions have been well founded; and their success has been much less happy, and their colours less pertertly developed upon the surface of the metat, than can be clfected by an art which has acyuired perlection in the hands of M. Nobili.
"Under the impossibitity, then, of being able to speak positively as to the manner in which M. Nobili has been able to produce these curions effects, we can only applated the incessant ellorts which he must have made to bring his art into the perfect state in which we find it. All thase, who have attempted new branches of manufactures, may well conceive the dilficulties which every day presents, and which can only be overcome by a continued zeal and efforts to sumount unsuceessful endeavours; and M. Nobili could not otherwise have arrived at the point of perfection to which he has brought his mitallochromie, nor can he be too much praised for the suceess he has obtained.
"We again repeat, that it is much to be desired that so chrious an art should not be lost to France: and the committe of chemical arts, in order to forward this object, have charged me to propose, that M. Nobili be recompensed for his interesting communication, by inserting this report in the Bulletin ol the society."

The follozing Lefter on omathoming Neel wilh Goll and I'rainat tras addressed to the E'ditor of the 'Iechnical liepository.

Bridge Cothore, Cimbleruch, den. shth, 1826.
Sar, In a paper insented in your Repository for Norember last, I suggested some inguiries respecting the various mohods el molding practised by artizans. Since that period, I hase beco prosecuting some experiments with succes. for ascertaining the proper mode of superficial gidding upon steed: and I transmit the result to yon, for the benefit of that class of artists. It is necessary, pertaps, to premise, that the instructions giten, in most elementary works upon chemistry, for gilding with the ehereal solution of gold, are either eproneous, or not sufficiently explicit: and to this catuse may be traced the many latures which have oecured in practising this art.

The following is the procens which I used: and which answers "gually well, cither lor gold or batima.

Dissolve any quanty ol gold or platina innitromuriatic acid "traterif, wnil no farther eflemesceace is occasioned by the application of heat. Siva. porate the solution of subd or platime thas lormed, to dreness, in a gentle hrat (it will then be freed liom all excess of acid, which is čecmith: amd redissolve the dry mass in as litule watee as possible: next take an instrument which is usod by chemists loo dropping liquids. known by has name of a sepacatingefmanel, havins a pear-shaped bosty. taperinge to a line poime, and a leeck capable of being sopped with the lingen or a cork; which may contan a liquid onner, of more: fill it with the tiquid about one guaster part: and the other three parts must be fllted with the very
best sulphuricether. If this be rightly managed, the two liquids will not mix. Then place the tube in a horizontal position, and sently tuta it round with the finger and thamb. The rther will very soon be im preguated with the platita or gold, which may b: known by its change of colour. Replare it it a per pendientar positions and let it rest for twentegrour hours; having lirst stopped the upper orifice with a small cork. The liquid will then be divided indo two parts; the darkest colowed being dadernath. 'Tos separate them, take out the cork, and let the dark liquid flow out: when it has disapmated, stop the tabe immediatyly with the ropk and what remains in the tube is fit low use, and may be caltod the githere liguid. Let it be pat into a brotle, and taybly corkcd. When an article is to be gilderla a versit if stass or unglazed ware must be provided, of jost sufferient sime to admit the article: it must then be lilied with the gilding-liquid, nearly" whe top. 'The sterelmust be cory hichty polishod, and be entirely liee from omst or gratase. A basin, lill of clean water, must be ready at hath: the ardicte must be immersed inte the sidi-ine-liquist, and allowed wo remain as shot atime ass possible; then be taken ont, puick!y plunged into water, and well rinsed: it must mext be dried with blote-ing-paper, and be phated in a temperathere of \(130^{\circ}\) Falre. till it be complewly heated thomghouta it may then be polished with rouse and a solt leather; os. which is better, be bumished.

It will be: as well to observe, pertaps, that the moriate of gold or piatian, formed by disesting these metals in aitro-muriatic aciel, must be cntirely free from all exeess of atid; becatuse it will otherwise act too forcibly on the stecl, and canse the coating of gold to pect off. Dure grold mast le employed. 'The cther must not be shaken with the maritie of grold, as is adrised in chemical publications, for it will be sure, then, to comtain acid: but, il the two liguids be continually brought into contact, by the motion l have described, the affimity between wher and gold is so strmg, as to orercome the obstacle of eravity, and it will hotd the gold in solution. The etherial solution may abo be concentrated by gentle maporation. Coure must be taken not in wipe the atwel until the heat has been applied. This gitlines is an effectual protection against rust: and is. at the same time. vely obnamental.

Thomess Gill.
Nicholis Mint.

\section*{Damaseus Stod.}

The steel of which the beantiful sword blade of Damascus arc manulactured, has hitherto bafted all altompts it imitation. It is gancrably atryposed to be mate of tips or thin rods or wires of ibon and steet. bound together by iron wire and them melted toge:her by heat. The mot abillal workmenal' other countries have sttompied on imitate this proctso. hote iti vain: so that there is reason to think that the eecoct of the mannlacture has not yet tramphed. The ofore of
 exerods in hardmess common sted trom the fintace It

 or a peculisp way apparan rutaty fata the hile to the paint in natow hats. Whe lhathos of a happsieord wire, wheld bexd coons eath viber. These
waving lines arise from a slight difference in the degree of polish occasioned by the unequal action of acid upon the steel : any weak acid would produce this effect, but at Damascus sulphate of alumine is acid. This appearance of waving lines has been imitated by a false damasking or etching, but the genuine Damascus blade is distinguished lrom the false one by the obliteration of the lines in grinding, which takes place in the latter. In the real Damascus blades, grinding uearly removes the water ; but it immediately reappears by rubbing the blade with lemon juice.

\section*{On Indian Stecl or Wootz.}

This valuable material has lately been introduced with great success into cuttery. Sir Joseph Banks was the first person who drew the attention of the public to Wootz, having received it from Dr. Scott of Bombay, and submitted some of it to the trials of skifful workmen so early as 1795 . It is imported in the state of round flat cakes, about five inches in diameter, and an inch thick, each weighing more than two pounds. The following is the method of making it in India. Pieces of forged iron and wood are enclosed in a crucible, and heated together in a furnace. The fire is urged by three or more pair of bellows peculiar to the country. In this way the wood is charred, and the iron is melted and converted into steel. It crystallizes in the crucible in the state above mentioned. According to Mr. Stodart it ought to undergo a second fusion, which should be conducted with the greatest care, and when this is well done, it is so much improved as to be fit for every purpose of fine cutlery, and infinitely superior to the best cast steel of England. In forging, it requires the utmost attention. Dr. Scott informed Sir Joseph Banks, that it "cannot bear anything beyond a slight red heat;" for when this happens, part of the mass seems to run, and the whole is lost as il it consisted of metals of different degrees of fusibility. Mr. Stodart also found that it was useless when overheated, that in hardening it should be quenched at a cherry-red colour, and white tempering, it should be heated lrom thirty to forty degrees higher than the best English cast steel.

According to Dr. Pearson's * analysis, it seems to differ lrom steel only in containing a little oxide of iron. INe and Mr. Moore obtained the following measures of its specific gravity.
\begin{tabular}{lllll}
1. Wootz - & & \\
2. Ditto another specimen & - & - & 7.181 \\
3. Ditto forged - & - & - & - & 7.647 \\
4. Another specimen forged & - & 7.503 \\
5. Wootz which had been melted & - & 7.200 \\
6. Wootz quenched while quite hot & 7.166
\end{tabular}

The following measure of the specific gravity of wootz in different states was obtained by Messrs. Stodart and Furaday. The results are remarkable for being so much higher than the above:
\begin{tabular}{lll}
Wootz unhammered from Bombay & & 7.665 \\
Wootz tilted from IBombay & - & 7.6707 \\
Wootz in cake Irom Bengal & - & 7.7 .30 \\
Wootz fused and hammered from Bengal & 7.787
\end{tabular}

Wootr has been more recently (1819) examined by Mr. Faraday. \(\dagger\) The piece which he used was cut from the middle of the cake given by Sir Joseph Banks to Mr. Stodart, when heated cherry-red. In 460 grains he found besides the carbon and iron, 0.3 of a grain of silex, and 0.6 of a grain of alumine. The best English cast steel, submitted to the same experiments, yielded no earths. Mr. Faraday attempted in vain to imitate wootz, although he obtained specimens of iron giving abundance of silex and alumine by analysis.

On a future occasion, however, he was more successful by employing the following method. Pure steel in small pieces, and in some cases good iron when mixed with charcoal powder were heated intensely for a long time. In this way were formed carburets highly crystalline, and of a dark metallic grey colour, like the black ore of tellurium. When broken the facets of several buttons of 500 grains were about the eighth of an inch wide. This carburet consisted of
\[
\begin{array}{ll}
\text { Iron - } \\
\text { Carbon }
\end{array}-\quad-\quad \begin{array}{r}
94.36 \\
5.64 \\
100.00
\end{array}
\]

This metal when reduced to powder in a mortar was mixed with pure alumine, and the whole subjected to an intense and long heat. An alumine alloy was thus obtained of a white colour, a close granular texture, and very brittle. It contained 6.4 of alumine. With 67 parts of this alloy 500 grains of good steel were fused, and formed a perfectly malleable button which forged well, and gave the beautiful damask peculiar to wootz, by the application of dilute sulphuric acid.

This spccimen had all the appreciable characters of the best Bombay Wootz. Hence Messis. Stodart and Faraday were of opinion that wootz is steel accidentally combined with the metal of the earths, the earth being either in the ore, or derived from the crucible in which the prism is made. It will appear, say these chemists, from the following experiment, that we had formed artificial wootz when it was not the object of research. In an attempt to reduce titanium, and combine it with steel, a portion ol menachanite was heated with charcoal; a part of the button thus obtained was next fused with some good steel in the proportion of
\[
\begin{array}{lrr}
\text { Steel - } & 96 \\
\text { Menachanite button } & - & 4 \\
\hline & 100
\end{array}
\]

The alloy thus obtained worked well under the hammer, and the bar obtained was evidently superior to steel. This was ascribed to the presence of titanium, but no titanium could be fount in it, not even in the menachanite button itself. The product was iron and earbon, combined with the earths or their bases, and was in fact excellent uootz. On this specimen a beautiful damask was produced by the action of dilute acid.

\section*{On the Alloys of Steel.}

The curious observation of Sir Humphry Davy, that mercury is rendered solid, and experiences a diminution of specitic gravity from 13 to 5 by combining with \(1_{2}{ }^{1}\) ordth part of ammonium, seems to have impressed on Mr. Stodart's mind the important fact that a very minute guantity of one metal is capable of producing extraordinary effects by combining with another.
Hence he was led, in conjunction with Mr. Faraday, to perform a series of interesting experiments on the alloys of steel with small quantities of gold, sitver, platinum, rhodium, iridium, osn tum, and palladium.* A bricf account of the results is all that our limits will permit us to give.
1. Alloy of Steel with Silver. When one part of silver and five hundred of steel were properly lused, a button was produced which forged well, and lormed various cutting tools decidedly superior to those made of the very best steel. The metals were in a state of perfect chemical combination, and by a delicate test the silver could be detected in every part of the alloy. When more than \({ }_{50} \frac{1}{00}\) dth part of silver was used, the excess was only mixed mechanically with the steel, and a silvery dew exuded from the metal when it contracted by cold or was hammered.
2. Alloy of Steel and Platimum. An alloy of 100 parts steel and 1 platinum \(\dagger\) was forged into bars remarkable for smoothness of surface and beauty of fracture. Though less hard than the preceding alloy, it was considerably tougher. This alloy is powerfully acted upon by weak sulphuric acid, the action increasing with the quantity of platinum in the allog.

Equal parts of steel and platinum produced a beautiful alloy, which takes a fine polish, and does not tarnish. It is peculiarly suitable for specula, and its specific gravity is 9.862 .
s. Alloy of Stecl with Rhotlium. Alloys of stcel with from one to two per cent. of rhodium, posscss the valuable property of hardness, with tenacity sufficient to prevent cracking either in forging or hardening. This superior hardness is so remarkable, that in tempering for cutting articles, Messes. Stodart and Faraday found, that they required it to be heated fully \(30^{\circ}\) Fahrenheit higher than the best wootz, wootz itself requiring to be heated fully 400 above the best English cast steel. The great scarcity of rhodium will, however, prevent this alloy from ever getting into general use.
4. Alloy of Steel with Gold. This alloy is good, though it does not promise to be so valuable as the preceding ones.
5. Triple Alloy of Stecl, Iridium, and Osmium. This alloy is also one of great value.
6. Nlloy of Stcel with Palladium resembles the preceding.
7. Alloy of Steel with Chromium. This alloy was first made by M. Berthier, \(\ddagger\) who speaks very favourably of it. Messrs. Stodart and Faraday fused 1600 grains of steel with 10 of pure chrome. The button forged well, and though hard showed no disposition to crack. Another button, made of 1600
grains of steel and 48 of chrome was harder than the first, but was as malleable as pure iron.

Tin and copper were also alloyed with steel, but they did not seem to improve it.

The editor of this work has now before him highly polished specimens of four of these alloys, viz. those of platinum, gold, silver, and rhodium, which were presented to him by the late Mr. Stodart. They have now been kept for nearly seven years with different specimens of highly polished steel also griven him by Mr. Stodart. The specimens of stecl atre all rusted, while there is not a spot upon any of the atloys. The much lamented death of Mr. Stodart has, we foar, delayed for a while the introduction of these valuable alloys into the arts; but we trust the subject will be again resumed by some skilful individual, who unites great practucal skill with scientilic knowledge.

STERL, Engrancg on. This highly important art has been recently revived and perfected by out countryman Mr. Warren, an engraver in London. Mr. Warren unfortumately died in the middle of his labours, but the ant has been generally introduced into Great Britain by Messrs. Perkins and Fuirman, two American gentiemen, who, along with Mr. Iteath, an eminent London engraver, formed an establishment in 1819 for printing bank notes and engravings for popular works from steel plates.

The following history of Mr. Warren's experimeuts and discoveries was drawn up by a committee of the Society of Arts.
"Some of the earliest specimens of engraving upon stecl were produced by Abert Durcr. There are four plates etched by this attist, impressions of which exist in the British Museum, which in all books of art are recorded as having been executed on steel; of these one has the date 1510 inscribed upon it. Since that time attempts have been made occasionally to employ steel instead of copper as a material to engrave upon, but apparently with little success, on account principally of the great hardness of the material. which in a short time blunted ant destroyed the tools which were made use of.

Steel exists in two states, the clastic and the briffle. the former being considerably softer than the latter: of the elastic steel a saw blade may be considered as an example, and in fact pieces of saw blade were the material upon which nearly all the first attempts have been made, of late years, to revive a practice which, if successful, offered so many advantages to the artist and to the public. Mr. Reimbach, a few years ago, executed an engraving on a block or thick plate of stecl, but met with so many difficulties in the execution that his experiment remained insulated, and produced no sensible effect on the art of engraving.

Mr. Warren, in his early youth, was much employed in engraving on metal for the use of calico printers and gunsmiths, and the experience thus acquired induced him afterwards to turn his mind to the subject with a view of applying it to the fine arts. It was suggested to him by Mr. Gill, that the Birmingham artists, in the manufacture of articles of ornamented steel, subjected the steel, when rolled into sheets, to the process of decarbonization,
by which it was converted to pure soft iron. It was then made into the required instrument, the ornamental work engraved or impressed upon it, and it was then by comentation with the proper materials, again converted superficialy to steet, and thus rendered capable of acguiring the highest polish.

In the attempt, howerer, to apply thin process to plates for the engravers use, two upposite difficulties occurred. A plate of sted of the same thickness as that of common copper plate, when thoronghly decarbonized, and thos reduced to the state of very soft iron, yields readily to the sraver and other tools, and, especially, is susceptille of the process of horking \(u p\); this consists of scraping out the error, and alterwards striking the umber side of the plate with a punch and hammer, in order to raise the cavity to the general level, and thas allow the artist to take the error ont without occasonmen any unctomes at the engraved surface: it was fonm, howeror, that plates of the thimesss requisite for this operation, and of the usual dimensions, were sory liahl to warp in the last, or re-carbonizins procoss, ant were thus remdered incapable of giving perfect imprextons. If, in order to aroid his disats amage, bloch, i. é plates of three op four times the ordinary thancss, were made use of, the waping indeed was promented, but at the same time the process of knocking up became impracticable an! it waznecesoaty, in order to remore an error of defective pat, to armil ont the surfare, of to drill a hole from the umber strlace atmost though the plate, ant then, by forcing in a screw, 10 raise that part of the lace which was immodiately above it. This latter proces, howerer, was so tedions and dificult, as exerelingly to detract from the alvantare of subtituting sted for copper.

In this state of thinge, is became a very interestiog object of inguiry to ascutain how many impressions may be taken fiom a plite of suft or decarbonized steel: and it was liond that suh a plate, prepared according to dr . Warmen's process, is capable of
 any visible wear. In pont this, impresion were lat before the commona by Nr. Warsen from the plates of decarsomizal wed. cesecuted by him,

 both in the lenderape en! in the ferters. her most duborate and delirate sork: fixe thenand impres sums hase been fakem leren one and four thousand from the other, and yot inetwee: onm of than first and one of the last inpmes.ins it was imporsible

Il Nr. Warmen hat randed on his opermonts

 plete is it actull ?

servedly and gratuitously communicated. The consequence of this liberality was, that besides the plates of Mr. Warren's own engraving produced before the committee, impressions were shown of portraits engraved on decarbonized steel, for the Evangelical Magazine, demonstrating that after 25,000 copies have been taken. Whe plates still remain in a good state, and are not yet in want of repair. Mr, Mar stated, that having made an engraving on one of Mr. Warren's plates, he did not take his own proofs till after the goonh impression; and, in another instance, the engraving being a portrait, Mr. La Hie, the primter, certified that the artist's own prools were not taken off till after the \(20,0 n 0\) in impression.

Mr. Warren’s orimimal process fur decarbonizing the steel plates, comsisted in procuring a box; or case of iron, and covering the bolom of it with a mixture of iron turninges and pounded oyster shella: on this a steel plate is laid, another bed of the mixture is then added, and so on alternately, till the hox is full, taking care that the test of the compositions shall form the uppe: as well as the lower layer. The box so charged is chus to be phaced in a farnace, and to be kept for several hours at the hishest heat which it will bear without melting, after which, being allowed to cool gradually. the plates are fomed to be refluced, Sor the most part, to the state of soft decarbonized steel.

Mr. Hughes; a copper-plate maker, having been instracted by Mr. Warmo in his process, and bading that the steel did not always turn out suffi-icmly and uniformy soft (particularly for the purpene of engravers in mezzotinto), imesined that these necasional defects were owing to a deficiency of heat in the cementing process; accordinsly, be subatitutd a case or oven of refractory clay, for th: cast iron one, and then applying a consichrably himber brat than the cast iom box would have coflured withont melting, was emabled to obtain plates so soft that the may be bent over the kace. Each plate rapina two or more comentations; and, as the first cementation warps them mone or less, Mr. Warren was in the habit of tectilying them by means of a hammer. Mr. Mughes finds that the places struck by the hammer are apt to be less softened by the sccond comentation then the other parts, and therefore, that plates so treated will often turnout nuegual in hardmess. His on hpractice is to use a mallet, and as little force as ommibne in detachme the coment from the surfece, and in rectilying the plate.

The plate. beiner cleand and polished (hut not too bighly, is reade for the engraver. Whan it comes int. his hancs, the fire operution is to lay the erehing gronat, in doing which the plate mast be rather less heated than is lasal with copper, oth mane the mpomm, as it cools, contracts, premontinc a honey. combed sumface, and leavin, pats of the phate unrovered. 'Thes same delece is apt to areand the plate is (ox) histhly polished. 'the groman shand be laid 1. Hher thicher that! on copper.

 produced the same effects: suphate of copper but light
tints very beautifully, but its farther action rendered the lines rough. The best menstrum, however, is hatf an ounce of crystallized nitrate of eopper, dissolved in a pint and a half of distilled water, and a few drops of nitric acid added to the soltion. This will be found to bite both deeper and cleater than dilute nitric acid.
It will be advisable for the artist, when first ctching on sted plate, to keep a register of the time which be finds mecessary for the menstrams to act belore the parts have attamed their due degrees of strength, and this will serve as a guide to him in his subsequent operations. Mr. Warren generally found about two minutes sulficient for an outhar, moless it was requived to be very strongs; the middle tint was produced in about ten minutes, and the dakest shadows in lorty minntes. The menstrumms shond not be more than onesixth of an inch deep on the plate, otherwise it will be dilficult to see the work, and it becomes exhansted in about ten minutes, and lhas requires to be replaced. Whild the menstrumm is acting, the work must be constantly swept with a camelhat brush, in order to remore the precipitated copper, which, if allowet to remain in the lines; renders their edges rugged, and destroys their beauty, especial care must be taken to clear the ends of the lines, as they are most liable to bite fonl. In stopping out the groand (Brouswiek blacks) must be laid on very thin and even, and, instead ol teminating abruptly, must be re-washed ofl very gradually; lor the smallest ridge or prominence will retain the copper, and then the ground will infillibly be penetratet, and the bitus will become foul. By attending to these directions, an etching may be obtaned on decarbonized steel, as decp and quite as sharp as it can be on copper. Concerning the great superiority of steetplate over copper-plate, for all works that requare a considerable number of impressions to be taken, there can exist no doubt; for though the use of the graver, and of the other tools, wequies more time on steel than on copper, and though the process of re-bitiag has not get been carred to the degree of perfection in the former that it has been in the later, yrt the rexture of stexl is such as to admit of more delicate work than copper: and the lisest and most claborate exertions of the art, which on copper would soon wear so as to reduce them to an indistinct smeary tint, appear to undergo scarcely any deterioration on steet; even the marks of the burnisher are still distinguishable after several thousand impres. sions.

The improvements on the art of engraving upon steel made by Messes. Perkins, Fairman, and Meath, are of such a nature as to give them amost the character of the lirst inventors of the art. The followiug is their process of multiplying engravings, etchings, or engine work. The sted blocks or plates which are to receive the intended engraving, have their surlaces softened or decarbonized, and thas rendered more suitable for receiving all linals of work than on copper. When the engraving upon the block has been executed, the plate is completely hardened by a new process which does not injure in the slightest degree the most delicate work. A cylinder of steel
previously softened is then paced in the transferring press, and repeatedy passed over the engravel bleek, by which the engraviors is translered in relief to the circumference of ther blinder; the press having a vibratios motion "qualling that of the cylinder upon its ciremmberence, by whid new surfaces of the cylinter are presented equal to the extent of the engrasing. This cylimed is them liademeen, and is employed to indent comper sterl plates with engravings itentically the same as the one on the original steel block. and this may be repeded ad imfotem, as the original ensraving will remain, loom which other colinters may be inepressed il required. When the ragraving is of too great a size to be transferred, it is execoted upon a sted block, firm which when hardoned, 200,000 perleet imprensions may be taken.

In our pentery mantactures, in calico-printins, but paticularly in pownoting the forgery of hank motes, Eec., this art with be found of the greatest importance.

We have already seen that Mr. Warren experienced diflicultes in obtamine a good menstrumm lop bititog in upon steel. Nr. W'ilson Lowry discovered at menstruam, the composition of which he sold to Mr. Itcath, by which the lines cond be bitten in deep as well as broath, and the reguisite limeness preserved. It is well known that some mentina succeed well on batd stet. ind yot grise unatistantory results on soft and decarbonized stecl. Nitric acid, which is the active ingredient in all these menstras, usually reduces part of the iron to the state of that oxide which is soluble in the atcl, and also convert a smaller portion to the state of peroxide whirh remains for the most pari undiosolsed, adsering to the surlace of the irom, and preventing that clean, ceep, and uniform biting which it is the great object of the artist to obtait. The presence of corbem in a fonely divided state has a tendency to interline with the peroxidaton of the iron, and has probably is the reason why it is less dif. ficult to obtain a good effect with hard than with soft steel.

Hence it became of consequence to have a men. struum by which these effects would not be prodnced, and this seem; to howe been obtained by Mr. Hum. phateys. who was rewatdod by the society of arts for the discovery of the folowint menctrutam.
bissolve iugerther in hall a pint of hot water a quatier of an onnce of corrosise sublimate, and a quarter of an unnce of powdered alum. It is ready lor use when coll. "White using it keep it stirring with a camel's haip bush, and take care to wash the plate perdecils after each boiling. As this acid, thount elear befure uce, becomes turbid iluring its action on the stecl, it may be prodems in fine works to throw away each portion of acid ufter it has been on the plate. The tarte and experience of the artist must dictate the lath of time he may leave it on his plate; defoche tints are obtained in about three minutes." For lurther information on this subject, see The Trunsuctions of the Society of hrts for 1823, vol. xli. p. 83 ; and Newton's Journal of the Arts, vol. xiii. p. 42.

On an improved mode of etching Stecl Plates. By Mr. W. Cooke, Jun., Engraver.

From the Transactions of the Society for the encuuragement of Arts, Manufictures, and Commerce.

Dec. 21, 1825.
Sir-As the Society of Arts have given a portion of their attention to the subject of engraving on steel plates, and as many experiments have failed, I feel great pleasure in making the following communication public through the medium of the society.

For the best mode of biting-in hitherto published, we are indebted to the great perseverance of Mr . Turrell; but the difficulty and danger of using his menstrutum on a soft ground, or when the varnish is not sufficiently dry, induced me to use the acids in different proportions, and to leave out the alcohol, as the composition was found to act on the ground, causing the whole surface of the plate to be corroded; this has frequently happened.

It is necessary to mention, that all plates for landscape engraving should be made of steel not completely decarbonized.

I beg to submit a few preparatory directions previous to etching.

The steel should be carcfully cleansed (before laying the ground) with turpentine only, omitting the whiting which is used in preparing the surface of copper.

The ground should be laid with as little heat as possible, steel needing not so much as copper; too high a temperature decomposes the ground, and occasions it to produce small air bubbles, or to evaporate in a light smoke from the surface of the plate; should this take place, the ground must be re-laid. It is also highly necessary that in etching the point should penetrate the surface of the steel, and the breath not be suffered to condense on the etching, as it will cause the lines to rust, and will prevent the acid from biting well. The plate being ready for biting-in, the process is as follows: mix, by gentle shaking, six parts of acetic acid, and one part of nitric acid.
'This mixture, being very rapid in its action, should be taken off the plate at half a minute, and the acid well washed out of the lines with water, drying the plate well, but without the assistance of heat. Stop out the light tints with Brunswick black varnish; and then, for the purpose of washing the oxyd out of the lines, pour on the plate a mixture of six parts of water, and one of nitrous acid, letting it remain two or three seconds; take this off, and immediately repeat the former mixture without washing the plate between, with water. This process should be repeated for each tint.

The biting-in of a steel plate should be accomplished, if possible, in one day: this observation holds good in regard to other methods of biting, as the lines will sometimes attract oxygen from the atmosphere during the night, which will prevent their biting with the same degree of clearness as the day before.

When the biting is completed, and the ground taken off, with a strong tooth-brush and turpentine, clean out the remaining oxyd from the lines, using the fingers for the light tints; then rub the surface of
the plate, to remove the bur, with the finest emery paper previously well used on the back of a steel plate to take off its roughness; the more this paper is used the more valuable it becomes lor taking out the marks of the seraper from dry point tints.

Re-biting is performed by dipping a clean rag in a very dilute nitric acid, and rubbing it over those parts intended to be re-bitten until the surface becomes dull ; clean the plate out as before mentioned, and in laying the ground the dabber should be used but little, as it is likely to take up the ground again; re-bite with a few drops of nitrous acid in four ounces of water, sufficient to make the water taste sharply of the acicl.

The whole process for biting, or re-biting, should be performed in a temperature of about sixty degrees, or higher, and certainly not much below that point.

As the time required to bite-in is the principal thing to be observed, all the light tints should be tried every minute alter the first biting; but the deeper ones will require a longer time. A little practice will show these remarks (apparently trifling) to be important.

Biting on very soft steel plates may be accomplished by using the following mixture:-three ounces of warm water, four grains of tartaric acid, lour drops of nitric or sulphuric acid, one drachm of corrosive sublimate.

I also submit to the society a new method of graduating skies and other tints.

Incline the plate, by tilting it with two wedges, and pour the re-biting acid into a glass funnel, with a stick inserted in the tube, and kept steady by a twisted copper wire loop; drop the acid on the dark part, and according to the colour of the tint the acid should be made to drop faster or slower, which is regulated by the raising and lowering the stick in the centre, and gives to the acid a tremulous motion, until it is floated over the whole sky ; this obviates the old method of sweeping or feathering, which, from the quick action of the acid, occasions streaks to appear in the tints when the ground is taken off.

It is important that engravers should make use of the best acids, and perfectly free from adulteration. From the cheapness of sulphuric acid it is sometimes used with muriatic, to adulterate the nitric acid. The following tests will discover them:-dissolve a little nitrate of barytes in distilled water, and add it to a small quantity of the nitric acid in a phial or test tube; if a white precipitate is discovered at the bottom, sulphuric acid is present; and muriatic acid will form, with a solution of nitrate of silver, a white cloudy precipitate; should either of these effects take place, the acid is not fit for use.

The purest acids are those manufactured by Mr. Remmant, Smithfield-bars, who has made them some years for the use of engravers.

Since writing the foregoing account, I have discovered means of making the ground adhere to the surface of the steel, without using acid to dull the surface.

Dissolve, by gentle heat (in a Florence flask), some powdered copal in oil of spike lavender, and evaporate to a thick consistence; then to one ball of ground, add about one drachm ol the copal solution, each having
been made warm previons to mixing: lay the ground as before mentioncd, avoiding too much heat; the ground may then be laid with the satme facility as on copper. I am, sir, \&ec. \&c.

\section*{W. Coore, Jun.}

\section*{A. Aikin, Misq. Secretury, \&e.}

The above processes were performed on tinted steel plates, in presence of the committee of polite arts, to their cutire satibliction, and that of several engravers, who were specially invited to witness them.

On a Menstruma for Etching Plates of Soft Stecl. By Mr. W. Hempmers.
From the Transactions of the socicty for the fincouragement of Alts, Manditumes and Commerce.

Ipril, 19, 1826.
Sir,-I have a communication to make to the Socicty for the promotion of A ets, Manulactures, and Commerce, of a menstruan for biting-in steel plates. I have lor some time back communicated it to various artists, to get their opinion of its merits, and have the testimony of Messrs. Turrell, W. F"inden, \&c., that it is the bes:, cheapest, simplest, and safest in its operation of any acid yet discovered; and those gentlemen will be happy at any time to meet a committee to explain its qualities. In addition, I have specimens of its performance, from several engravers, to lay before the Society. I \(\mathrm{am}, \mathrm{sir}\), \&e. Sec.

Wm. llumphes.

\section*{A. Ainin, Esq. Secretury, \&ec.}

The composition of the menstrum is as follows:
Take a quarter of an ounce ol corrosive sublimate powdered, and a quarter of an ounce of alum powdered, and dissolve them in a pint of hot water.

Directions.-Let it cool before use. White usiugg it, kecp it staring with a camel's hair brush, and take care to wash the plate perfectly, alter each biting. As this acid, thouth clear before use, becomes turbid during its action on the stecl, it may be prudent, in finc works, to throw away each portion of acid after it has been on the plate. The taste and experience of the artist must dictate the length of time he may leave it on his plate; delicate tints are obtained in abont three minutes.

It appears liom the experience of those artists who have practised engraving on stecl, that several of the menstrua emploged in the process technically called biting-in, will succeed with hard steel, but give results by no means so satislactory, when employed on very solt, or meatly decarbonized steel. Nitric acid is the essentially active ingredient in all these menstrua; and the chemist well knows that when this substance is brought into contact with iron, it usually brings part of it to the state of protoxid, which is soluble in the acid, and also reduces a smaller portion to the state of peroxid, which remains, for the most part, undissolved, adhering to the surface of the iron, and thus preventing that deep, clean, uniform biting which it is the great object of the artist to obtain. The presence of carbon, in a finely divided state, has a tendency to prevent, or at least to retard, the peroxidation of the iron, and this, probably, is the reason why it is less difficult to gain a good result with hard, than with solt, or decarbonized steel.

The composition employed by Mr. Humphrys contained no nitric acid; and, from the testimony before the committee of Mr. W. Finden, Mr. Warren, Mr.

Vol. XVII. Part II.

Romncy, and others, who have tried it, and also from the result of the experiments made in presence of the: committe, appears to be superior, for biting-in on soft steel, to any menstrum that has hitherte been used.

STEFLE, Sus Rocuan, a celcbrated author, was born at Dublin in 1671 or botg. lice recrived his education at the Charter llouse and at Oxtord. His principal works are The ('heistion /hro, The Fiucral, or Grief a la Mode, Ther Tomer lhesbout, The Tatler, The Getardien, The Consciones lorrers. He sat twice in Parlament, and was knighted by (seo. I. in 1715. Broken in his fortune and his constifution, he quitted the world and died in Wales in 1727.

STELLYAR1). Sce Mrehanics, Vol. Xll. p. 603.

STENOGRAPIEY, or Short-HAND, from aterer confinfl, and reapery to wrile, is the art of writing in small compass, of employing chatacters, which, by a few strokes, express many words, and enable a prohicient to follow a speaker, and mote his discourse with accuracy. But shorthand writing is also of great importance in those private departments of life, where mach is to be composed, aral many writings to be put in due form. It is of no small utility to gentemen of the bar, who are ofien pressed for time, as, by means of this art, they can commit their thoughts to writing with rapidity and precision.

It is highly valuable to the elergy, who have 10 address the poople on the most interesting subjects; and where, on that account, every thought and word should be correct. When the sentiments and expressions are properly arranged in the mind, they are easily committed to shorthand writing; and, if the characters be distinctly formed, and of an adequate size, which they ought always to be, they can be caught, by a glance of the cye, in the course of delivery, and without seeming to read much, which is sometimes disagrecable to the audience, the discourse may be giver, with all the correctness and elegance with which it was composed, and this can scarcely be done, il there be a total dependence on the memory.

The history of shorthand cannot be accurately ascertained; but it may be presumed, that when the art of writing became common, certain contractions ard arbitrary tokens would be contrived for private use; and attempts would soon be made 10 employ marks and characters, for assisting to recollect such specches and harangues as were supposed to be worthy of remembrance.

Ilieroglyphics are a kind of shorthand writing, and certain signs and emblems, as memoranda and means of reckoning, were lound to be in use among the people in South America, when they were first discovered. Stenography appears to have been carly in use among the Greeks and Romans, and baving found its way into Britain, it has made rapid progress within these 150 years, and has now arrived at grear perfection. To acquire this useful art there is less difticulty than to become master of the Greek alphabet, and the conmon contractions of that language.

The difficulty which a learner finds to read what he has written is the most discouraging part of the process; and it is generally on this account that so many have abandoned the parsuit after they have begun it. But most assuredly, if the rules be attended to which are given in the following system, the whole will be-
come easy and delightful. The chief embarrassment has arisen from writing short-hand, according to some systems, altogether without vowels; but although this may be done, and read by a proficient, yet the difficulty attending it is discouraging to a beginner.

The method recommended in this system, and which I have found in practice to be completely effectual, is to express the long vowels, but to omit those which have a short sound. This is in perfect analogy to the method of reading the Hebrew language without the points. The letters alcph, he, yod, ain, and rau, express the vowels \(a, \ell, i, o\), and \(u\), when they are sounded long; and wherever they are not in use, which sometimes happens in whole words of that language, these vocables are read without difficulty, for by adding the consonants together, a short or obscure yowel sound must be heard, and the word perfectly intelligible. Thus the following sentence, "The commands of God are steadfast," could be easily read, although written without a vowel, in this manner, The commnds \(f\) Gd r stdfst; but every obscurity will be removed if, in general, at least one long vowel be expressed in every word, though in those which are of frequent occurrence, and easily read, this rule may be omitted.

Much has been done to render this short-hand expeditious as well as easily read. By using dots instead of characters for the long vowels, there is a great saving both of time and labour; for, excepting in a very few instances, the vowels occur much more frequently than the consonants. It has been the object of the author also to have all the characters as simple as possible, and to apply the more simple forms to represent those letters which more frequently occur. Thus straight lines, in perpendicular, oblique, and horizontal directions, were first adopted, then a circle, with several of its segments, and afterwards some parts of an oval and oblong figure. Lastly, a few loops were added, to represent the characters which were still wanting; but these loops frequently facilitate the joinings, and in every case are easily formed.

The object in view, in composing this system of short-hand, was to overcome some difficulties, which had been encountered in attempting to learn one of the systems which were then in use; and the end in view has been completely gained, for it is not only easily written, but the author can read that which was done many years ago, as readily as that which was written but a few days ago.

It is now made public for the first time, in the hopes that it will be extensively useful; and this expectation is encouraged by the full approbation which it has met with from several persons to whom it has been communicated, and who now use it in daity practice.

The characters are shown in Plate DXII. Fig. 1.
There is only one dot employed to express the vowels, and that is the round one which marks the period in common reading, and it denotes the different long sounds of the vowels, by a diversity in its position. A dot on a line with the top of a short hand character represents the long sound ol \(a\) as in shatife, one between the top and middle of the character sounds e long, as in here; one at the middte sounds zor \(y\) long, as in sigh or by, one between the midde and bottom sounds olong. as in hone; and a dot on a line with the bottom of the character sounds \("\) long,
as in cube, or \(\bar{u}\) broad as in full. See Plate DXII. Fig. 3, § 1. The vowels of horizontal letters are thus expressed. See Plate DXII. Fig. 3, § 2.

Some of the dipthongs have the same sound as some of the long vowels, and these are to be expressed by the corresponding long vowels. Such as have a compound sound are to be represented by the vowel which is most prevalent in the pronunciation of the dipthong. A dot in the place of \(\bar{\imath}\) may also stand for by. \(K\) is used instead of \(g\) and \(c\) hard, and \(s\) for \(e\) soft and \(\approx\).

It might be supposed that any of these dots, not being correctly placed in their proper situations, might occasion mistakes in the reading, but no difficulty of this kind is found in practice, as no material error of this sort happens to the expert writer, and when any mistake does occur, the sense of the passage directs the reading. A dot in the cavity of a letter expresses son, sion, ac. See Plate DXII, Fig. 3, §4. Where there is no cavity either in a single letter, or in the characters combined to form a word, the terminations son, sion, tion, \&c., may be written if needful. But words ending in ation, ession, ition or ution have these terminations expressed by two dots being put in the place of \(\bar{a}, \bar{z}, \bar{z}, \bar{o}\), or \(\bar{u}\). See Plate DXII, Fig. \(3,65\).

Every thing might be written, by the characters, which have already been exhibited; but the additional ones, which are subjoined, greatly shorten, and facilitate writing, and they may easily be acquired and re-membered.-See Plate DXII, Fig. 2.

For examples of the following directions see Plate DXII. Fig. 3. §6. A stroke above a word signifies over, a stroke under a word, implies a repetition of it, and lor every repetition of it an additional stroke may be drawn under it; an oblique stroke through a word expresses opposition; the short-hand character for \(m\) under another character, stands for dom or ment; the short-hand character for \(l\) under another shorthand character means full, and when written by itself, below the line of the other words, it signifies also full, \(e\); the short-hand character for \(p\), written below the lime, below another short hand character, signifies ship, or shape, or shop; a dot before the short-hand character for \(b\) means before, and one after signifies behind, and one both before and after, means before and behind, or before and after, g; a dot by itself, as a character, stands for \(a\), auce, \(O\), oh, ou'e. No pointing is made use of but by the comma, as the period mark is otherwise emploged, and lor the same reason a period is shown in this system of shorthand, by leaving space, two or three times as large as you have between the words, and without any point.

Though there is a character in this shorthand for the letter \(r\), yet when immediately following a consonant, it may be more easily lormed, by drawing a ray from tue side of the consonant, and in cases where this cannot be conveniently done, as in horizontal characters, and the characters for \(l\), an inverted touch with the pen, at the end of the character, will be suflicicnt. When the character for \(t\) follows an \(r\), expressed by a ray from a consonant, it should be formed by drawing the pen upwards in a diagonal direction liom the ray. la making the claracter for suter, inter, \&e. begin with the lower part, and draw the pen upwards, and in the same mamer, the character standing lor seref, service, \&x. is to be lormed.

The long vowel sounds are to be expressed by a dot
at the beginning and end of a word, but never in the midelle of it; for in that case, you are to begin the next consonant in the place where the vowel should be. This rute could not be strictly complied with in the case of horizontal letters, when the rowels are to be expressed on the upper side of the characters, for this would oceasion much a whwardness in the writing, and make one of the characters cut another. Tos avoid this inconvenience, begin the character which is to stand in the place of a or \(e\), a little above the horizontal letter, as bearing a reference to the places of these vowels; but so placed as not to touch the other character \(m\).

When a consonant is repeated, with a rowel between them, the syllable will be expressed by doubling the size of the consonant. It is oftener more easy and expeditious to denote the plural by a dot under the word, than by adding the character for the plural; but these methods are at the pleasure ol the writer. In short-hand, every word is written according to the sound, without regard to the true spelling. You ought never to vary the terminations of the persons of verhs, becanse omitting these gives much lacility to the writing, and cannot embarrass the reading. I forbear from giving many rules for contracting, as every person will lorm those lor himself, so as to be able to lollow a speaker, and then only they ought to be freely employed. But when writing such things as are to be kept for private use, and luture perusal, I would recommend lew contractions, and the regular or general use of the vowel marks.

\section*{examples in plate dxif. \\ The 23d Psalm.}

The Lord is my shepherd. I shall not want. ITe maketh me to lic down in green pastures; he leadeth me beside the still waters. He restoreth my soul, he leadeth me in the paths of rightcousness, for his name sake. Yea though I walk through the valley of the shadow of death, I will fear no evil; for thou art with me, thy rod and thy staff they comfort me. Thou preparest a table before me, in the presence of mine cnemies: thou anointest my head with oil, my cup rumneth over. Surely goodness and meres shall follow me all the days of my life, ancl I will dwell in the house of the Lord for ever.

\section*{On Specch, from Dr. Blair's Lectures on Rhtoric.}

One of the most distinguished privileges which Providence has conferred upon mankind, is the power of communicating their thoughts to one another. Destitute of this power, reason would be a solitary, and in some measure, an unavailing principle. Spech is the great instrument by which man becomes beneficial to man; and it is to the intercourse and transmission of thought, by means of specch and writing. that we are chiclly indebted for the improvement ol thought itself.

What we call human reason is not the effort or ability of one, so much as it is the result of the reason of many, arising from the lights mutually communicated, in consequence of discourse and writing. (J.w.)

The preceding article is a literal copy from the Edinburgh edition of this work; the following is furnished from the 8th or stercotype edition of Gould's American Short-hand. The author of that work says:

In England and some other parts of Europe, the great utility of this art is now fully acknowledged, and professional gentlemen are beginning to consider it an almost indispensable accomplishment.

In the United Sitates, a land of legislation, publir discussion, and universal interchange ol thought and word, its manifold advantages are too obvious to require comment, op to demand an apology lor the introduction of another artick, under the same hearl.

Although the caly hishon of shorthand camot be traced with entire precision, still it is evident, that under different names and forms, it was practised to some extent by the most remote civilized nations of the earth. The Egyptians. who were at a very early period distinguished for their learning, represented objects, words, and ideas, by hieroglyphics. The Jews also used this species of writing, adding a number of arbitrary characters, for important, solemn, and awful terms, such as God, Jehovah, Sec. A similar method was practised by the Grecks; it is said to have been introduced at Nicolai by Xenophon. The Romans adopted the same method; and Ennius, the poet, invented a new system, by which the Notari recorded the language of celebrated orators. He commenced with about 1100 marks of his own invention, to which he afterwards added many more. His plan, as improved by Tyro, was held in high estimation by the Romans. Titus Vespasian was remarkably fonsl of short-hand; he considered it not only convenient and uscful, butranked its practice among his most interesting ammsements.
l'lutarch tells us, that the celebrated speech of Cato, relative to the Catalinian conspiracy, was taken and preserved in short-hand. We are likewise informed, that Seneca made use of a system of short-hand witing, which consisted in the use of about 5000 characters.

The first publication upon the subject, of which we have any correct information, was about the year 1500 , from a Latin manuscript, dated \(1+12\). Various other publications followed in succession, without materially advancing or changing its character, till about the commencement of the 18 th century; nor were the principles, till many years afterwards, settled upon a basis which could insure stability to the art.

Byrom was the first who treated the subject scientifically, and to him we are indebted for the promulgation of those fundamental principles, which will ever constitute the true foundation of every rational system of stenography. Ilis first edition appeared is the year 1767, previous to which, many systems had been published under the name of short, or swift-hand, which were so involved in philological refinements, or superfluous arbitrary sigus, as to be more terlious in the acquirement and practice, than the usual long hand, and scarcely intelligible, except to the inventors, or those who devoted their lives to practice it. Nor did Byrom rest, till he had much obscured the merits of his original plan by the introduction of numerous grammar rules, plausible in theory, but useless in practice. Much difficulty was experienced by him and later writers, in selecting appropriate characters, and assigning their respective functions; but a still greater difficulty by learners, from the too frequent introduction of arbitrary signs, and subtle theories, which have rendered useless to the world much that was otherwise valuable, in the elementary principles of Byrom and his successors.
Books upon shorthand have been rendered voluminous, intricate, and expensive, by theoretical niceties, which serve only to discourage the learner, to keep the art from schools and colleges, and thus prevent its general extension and usefulness.

Under these circumstances, few individuals have
been successful in acquiring a knowledge of the subject; and while these bave generally found an interest in suppressing its dissemination, the multitude have ignorantly rejected it, as a mystic and useless art. This negleet was just, while confined to some of the ponderous volumes of crude and unintelligible hieroglyphics, which appeared between the 16 th and 18 th centuries, but when applied to the more improved systems of a later date, it is grossly illiberal and unjust. Still, the prejudices excited previous to the publication of those scientific principles, which now characterize the art, are unjustly kept up, by those who are more ready to condemn what they do not understand, than to acknowledge their ignorance of a subject with which others are familiar.

Under these embarrassments, the subject received, comparatively, little attention in the United States, till within the last few years; and thereare many yet unaware of the simplicity and practicability of the art, or of the facility with which it may be acquired.

Without descending to other particulars, it may be remarked, that since the appearance of Byrom's system, not less than one hundred treatises have been published, in the Enghish language, besides a number of elaborate works in French, German, and other languages, -each professing superiority over all that had preceded; but, in fact, adding little to which the term improvement can be justly applied.

The most distinguished English writers upon this subject are the lollowing, viz. Addy, Aldridge, Angell, Annet, Blandmore, Blosset, Boty, Bridges, Byrom, Coles, Cross, Dix, Everardt, Ewen, Facey, Farthing, Gibbs, Grame, Gurxfy, Ileath, IIoldsworth, Hopkins, Jeake, Labourcr, Lane, Lyle, Macauley, Muson, Mavor, Metcalf, Nicholas, Palmer, Rich, Ridpatl, Shelton, Steel, Turner, Taylor, Thickness, Tiffı, Webster, Weston, Williamson, Wills, and Willis.

The systems now principally used in England, Ireland, and Scotland, are those of Byrom, Mavor, Taylor, and Gurney. In the United States, Gould's System has nearly superseded all others, and may be pronounced the standard of American Stenography This plan combines within narrow limits the practical merits of the lour last mentioned systems, and appears to be peculiarly adapied, not only to the genius of our tanguage, but to the present condition of the American people-being more concise and less expensive; and at the same time adequate to all the demands of literature, arts and sciences, so rapidly spreadingthough this mighty empire of independent commanities.

We shall, by permission, present our readers with an abstract of the theory ol this system, as taught by the anthor in the principal cities and colleges ol the United states, pratised by hinn in courts of justice and legis,avive bodies, and recently illustrated by a series of lectures published in " The American Repertory of arts. sciences, and uselinl literature," vol. i

We shall also exhibit a far simile of the author's hand, in an cutire copry of the 1)erlaration ol \(\Lambda\) merican Independence (see l'late 1)X111, No. 2).

In the introduction to this system the author remarks, it is his aim to adapt his work to the are in which we live; to lay aside every hing unnecessary, and to express in few words all that is necessary for a general system of short-hand.

He asks, would our common writing be more easily arquired, or its execution in any way facilitated, by
increasing the number of letters in the English alpha. bet? Would arithmetic be improved by the introduction ol arbitrary marks to represent the numbers \(11,12,13\), and so on to 100 or 1000 ? Would the art of printing be rendered more simple, easy, and cxpeditious, by the construction and use of leaden syllables, words, and sentences, instead of the letters of which they are composed?

Till these questions can be answered in the affirmative, the following theory will be found, with practice, amply sufficient for the purposes proposed, and without practice the efforts of human invention will prove abortive.

To convey a more just idea of the present state of the art, it is necessary to speak of earlier systems. This recapitulation will enable us to appreciate more fully the triumph of modern improvement over the rude attempts ol former times; while it will furnish a reasonable ground of hope, that a general standard of stenography may yet be established, notwithstanding numerous attempts have proved abortive.

Shorthand formerly consisted in the use of almost innumerable hieroglyphics and arbitrary characters, which could only be learned with much time and labour, and when learned could not be retained without continual practice. This was tolerable only while words were few, and the cultivation of the human mind in its infancy. For howe: er numerous these characters, the advancement of arts, sciences, and general knowledge, rendered a continual multiplication necessary to the representation ol new words and ideas; nor could such a system, by the constant aid of human invention, even approximate perlection, while resting on this false foundation. Every appendage to the already overgrown structurc, only served to make it more unwieldy, and to hasten the downfall of the whole fabric; fur the characters were some of them so seldom used, that the utmost powers of human memory could scarcely retain them, and if recalled by memory, it could not be with sufficient facility to answer the end for which they were intended.

We have thus far traced the subject as an art mere-ly-we will now proceed to unfold some of its beauties as a science and an art.

We are all aware, that ten simple figures, or the nine digits and cipher, have been foumd sufficient for all the purposes of numerical catculation. We also understand, that these ten figures are now used for nearly the same object, by every civilized nation on earth. We likewise know, that seven notes comprise the whole of written music, and that by a proper arrangement of these few notes, may be intelligibly represented all the varieties of harmony. It is also known, that, by means of these lew simple, but acknowledged signs, this music is transmitted from individual to imdividual, and from nation to nation; requiring litle interpretation but that afforded by the visible signs themselves. And though individuals are antipodes, totally ignorant ol each other's language, discordant in all their other feetings, habits, and views, yet, in the signification and use ol musical signs, they have not only a perfect understanding, but hold communion, at the distance of thousands of miles, and reciprocally drink, as it were, from the same fountain, the rich melody of borrowed sounds with which the ear and heart had never before been grected.

It is also evident, that, notwithstanding the infinite number of combinations, produced by the organs of
speech, and the varied modifications of the human voice, the whole may, for all the purposes of short writing, be resolved into a few prominent sounds. Hence the practicability of assigning to each sound a particular representative, which shall be understood like arithmetical figures, or musical signs, by all people, and at all times, without regard to the language in which they are employed.

As a proof of this position, to a most satisfactory extent, let us look to the 26 letters of our common English alphabet. We all know, that with these few signs may be recorded the language of a thousand tongues for a thousand ages: nor would the object be at all facilitated were the signs 26 hundred, or as many thousands, though the modes of expression are beyond all human computation.

It is also a fact of notoriety and philosophic interest, that our alphabetic signs are now employed in common by the inhabitants of England, France, Spain, Italy, and many other countries.
by these facts we see, that the powers of arithmetical figures, musical signs, and alphabetic letters, are alike unlimited, in the extent of their application. Having established this important fact respecting the use of sounds and visible sign, we may with propricty approach the subject in question.

The system of shorthand which is about to claim our attention, is not, as some have erroneonsly imaginer!, an arbitrary art, necessarily confined to the indefatigable reporter of specehes-it is in fact a science as well as an urt; and as such, claims a degree of attention even from those who may never employ it as an art.

As a science, adapted to the powers and faculties of the human roice and human ear, it determines upon the use of alphabetic characters, for the purpose of swift writing, instead of arbitrary signs for words, sentences, or ideas.

In the next place, it fumishes rules, which, if reduced to practice, will enable us to record language with the least possible time, labour, and space; compatible with legibility.

It shows the common alphabet to be totally at rariance with the primary object of short-hand, which is despatch-that several of the letters are superfuous, and none of them well chosen, as they contain umecessary crooks and curves, which tend to perplex and embarrass the learner, while they require time and space, to the sacrifice of ease and facility.

In this system, the alphabet consists of twenty characters, which are extremely simple, easily made, and readily combined, without loss of time, labour, space, or legibility, They are employed, ist. To represent, individually, certain words, which are known to occur very frequenty. 2d. Asletters, or representatives of sounds, to be joined together in writing all words not denoted by individual characters. 3d. For some of the most frequem prefixes; and 4 th. For the most frequent terminations of words.

There is a symmetry not only in the adaptation of these visible signs to eael other, so as to insure the greatest brevity, perspicuity, simplicity, and beauty; but the elementary rules harmonize with each other and the whole, according to fixed scientific principles.
The learner should not be discouraged, though he be not able at once to record the entire language of a \&uent speaker; nor should he hence infer, that the
system is incomplete, or the art unatainable: for with the same propricty might the young reader condemn and abandon the use of the common alphabet. beeause he camot at once ruad ingantly, - the musician his notes, or the Tym in mathematics his dilements of Euclid: 1et him prrserre in pratice, and he will soon attain the object of parsuit.
'To turn this necersany practice to the best possible account, he should record in at common place book from day to day such facts and other items of information, is may be considered immediately interesting, or worthy of future perusal. At first, his motes should be read white the subject is faniliar, and by this course, the writurs and reading of short-!and may in a lew days be made easy, uselal, wat amusing, white the art canmo fall to berome a potent habour and timesaving engitue, not only for the actual atcumalation and prescration of knowlodge, but for the cultivation and expansion ol the mind, and improvement of the memory. Fiur by judicious exrecise, this faculey can be trained to recrive more and ratan longer, whatever may be worthy of its attention.

This improvement, hawerer, does not depend on the substitution of one facmly for another, but on their mutual co-operations as anxiliary, each to the other. For though we are able by shorthand to preserve a literal copy of any particular subject, for our gratification and instrnction, thereby inopeasing on stock of tangible knowledge: yet, if memory be lelt to tanguish in sickly inactirity, and thus gradually lose its energies or become cnervated for the want of proper exercise, the loss is cqual to the grain.

The memory, then, while it should not be averburdened with unnecessary rerbiage, should never be released from that habitual exertion on which itsown preservation and uselulness depent; the great seeret of preserving and improving the memery consists in giving it a sufficient quantity of the right kind of aliment, afiording due time for its digestion, and no more relaxation than is absulutely necessary to its health and vigour.

The person who ean write rapidly does not consequently substitute writing for memory, but employs it as an assistant; and every person when committing words to paper tor lis future use and improvement, should endearour to fix in memory, at least the leading features of the subject, depending on short-band, only for thit whith memory cannot reeall.

When the memory is thus properly exercised, it cannot fail to be improved; and the mind, being released from the unnccessary incumbrance of words, will find more time to grow and expand, by reflecting, or comparing and analyzing the ideas which words may have infused: for the memory should be rather the repository of ideas than of word, which are the mere vehicles of thought, and always at hand.

Although the fullowing system is in itself complete, so far as intended for correspondence and general use; yet, for the gratification of those who wish to make other abridgenents, and particularly those of the learned professions, who think proper to engrale upon the established system certain technical o: other aboreviations, adapted to their own respective professions, the following hints may be useful.

The luzyer or judere may, with much propriety, even if writing short-hand, substitute in place of certain words which occur very frequently, the initial com-
mon hand letter, as P, for plaintiff, D. for defendant, W. for witness, C. for court, 'I. for testimony, V. for verdict, J. for judgment, \&c.

The physician may, with like propriety, use P. for patient, pulse, or perspiration, F. for fever, I. for inflammation, R. for respiration, \&e.

The clergyman may find it convenient to use H. for heart, or heaven, S. for sinner or salvation, R. for redemption or resurrection, J. for judgment, C. for conscience, condemnation, \&c.

Young gentlemen who attend lectures on chemistry, anatomy, or other subjects, may save much labour and time, by using the initials of certain technical terms, which occur frequently in the course of their study.

\section*{Explanation of the system.}

This diagramexhibits at once, all the characters employed in this system ; they are 20 in number, and of four distinct species, viz.
1. The right line.
2. The semicircle.
3. The circle and line combined.
4. The quarter circle and line combined.
1. The horizontal diameter is used for the letter s; the perpendicular diameter for \(t\); the oblique diameter, drawn downwards on an angle of \(45^{\circ}\), to the left, is d; the same line running upwards is \(r\); the oblique diameter drawn downwards on an angle of \(45^{\circ}\) to the right, is \(f\), or \(v\), either, as may be required.
2. If a circle be divided horizontally, into two semicircles, the upper one is \(k\), or \(q\); the lower one, \(n\) : if disided perpendicularly, the left semicircle is ch, and the right \(g\), or \(j\).
3. If any of the right lines above described be joined to a small circle, and project as a tangent, the circle and line logether form a stenographic letter of the third class, as seen upon the third limb of the tree, viz. - If it project from the top of the circle, to the right, horizontally, the circle and right line together constitute the letter m. If the same figure be turned, so that the tangent project doumuard, propmbinkery, from the right side, it will represent the letter p-if obliquely to the left, downuturd, on an angle of \(45^{\circ}\), it is \(h\)-if oblipucly to the right, dommmorl, on the same angle, it is \(b\); if obliquely to the righl, upurard. it is 1 ; or, if the upper segment of a larger circle be joined to the whole cirele, in the Corm of a curved tangent, projecting to the right, the letter w is produced.

By joining the risht line to a guarler, instead of the while, or helf cirche, the letters ol the fourth class, are respectirely produced-viz. If the right line be joined as a tangent to that segment or quadrant of the circle, lying lof lon' the horizontal diameter, and on the left ol' the perpondicular, and project to the right, horizontally, it prodnces the letter \(x\);-If atfached to the upper guadrant, on the lfft of the perpendicular, and project horizonfally to the right, the character sh is formedif attached to the other extremity of the same quarliant, and projeet from the left side ol the circle, porpomdirularly down, it is 1h-if attached to that segment or guadrant, contamed between the lower extremities of the two ohliquer diancters in the diagram, and be extended abliquely upuatd to the right, on an angle of \(45^{\circ}\), it is the character \(y\)-and if a
horizontal right line, be drawn from left to right, till it strike the lower edge of the circle, and be joined to the lower quadrant, on the right of the perpendicular, the character ious is produced.

These characters have a fourfold application.
1. To represent, individually, a few common words.
2. The most frequent prefixes.
3. The most frequent terminations.
4. The alphabetic letters, for which they have been substituted.

ALPHABET AND COMMON WORDS.*

* The words above are alwayg rapretuthd by sugle characters, and will constitute about one third of any common discourse; all other worde are spelt according to their sumat, and writen with the characters of the stenographe alphatiet, having the phwer of letters only. The sowels a, \(e, i, o, u, y\), ate rcprescuted by is lut.

\section*{Bules for making the Characters.}

1sl Class.-Make s to the right, t down, d downward, rupward, f f downward.
\(2 d\) Cluss.-Make \(k \mathrm{q}\) and n from left to right. ch and g d downward.
sed Chass.- Make the circle lirst in all cases.
4th. Chass.-Make the hook or quadrant first in all cases, except ious, this always ends with the look. For double letters make the line longer, or the circle larger.

\section*{Rules for joining Characters.}

Make one letter as if no other were to be made, and then without lifting the pern, make the next as if the first had not been made, observing to turn in that way which is most simple and casy, but let the line always take the same direction from the circle.

\section*{Rules for Spelling.}
1. Use no vowels in spelling, except when distinctly sounded at the beginning and end of words. Example: entity ntt, chastity ehstl, obey oba, away awa, pay pa, lay la, say sa.
2. Omit all silent letters. Ex. Light lit, sight sit, night nit.
3. When two letters sound like any one, use that one in their stead. EX. Laugh lauf, physic fysic, Utica Utk, emply mt.
4. The letter c must be supplied by k and s . Ex. Comply komply, celestial selestial, receiver resciver.
5. If may liequently be omitted as follows. Eix. Beloold beold, how ow, highway iway, heaven even, help elp.
6. Ph and gh are never written in short hand, being always sounded like \(\mathrm{l}^{\mathrm{l}}\) or v (when not silent), and therefore represented by these characters. Ex. Enough enul', tough tul', Philadelphia Filadelfia, philosophy filosofy, Stephen Steven.
7. When double consonants occur, use only one; but if a vowel intervene, use both. Ex. Restlessness restlesnes, commendation comendation, memory mmory, people pple.
8. B and w may be omitted, as follows. Ex. Number numer, encumber encumer, slumber slumer, answer anser.
9. The ch character is used only where it has its natural sound, as in charm, church, chapter, choice. Where ch have the sound of \(k\) or sh, let these signs be used.
10. Let \(z\) be represented by \(s\) in all cases; but to distinguish it, let the mark be made thicker than for s.

REMARKS.--Although this method of spelling may appear difficult to the beginner, he is assured, that it may be made quite familiar in a few hours, and that without injuriag his common spelling. To do this, pronounce words distinctly and rapidly, retaining for short hand nothing but the most prominent sounds: as nv, for envy; ntt, for entity ; ldr, for elder; flstr, for philosopher, \&c.

\section*{Rules for I'riting.}
1. Provide a good pencil, or fine hard pen, good ink and paper.
2. When a vowel is to be written make a small dot, and if it belong to a particular word, let it stand near that word, at the right or left.
3. Do not lift the pen in a word, except to write a prefix, termination, or vowel.
4. Make the character \(y\), for the words you, your, year; and at the beginning of words, but never at the last end, as it is there a rowel and represented by a dot.
5. Prefixes, \&c. At the beginning of words use \(r\) for recon, recom; \(m\) for multi, magni; \(\mathbf{k}\) for contra, contri, counter; \(n\) for inter, intro, enter; s for satis, super, circum; ifor trans. It must be remembered, that all these signs should be made small, and placed just before the word, but not joined to it. For under, beneath, below, make a small cirele below the line of writing; for on, upon, over, and above, make it \({ }^{\circ}\) over the line; for before make it in the line \({ }^{\circ}\); for up and doun make a small dot or touch above or below as the case requires.
6. Terminations. At the end of words a scratch through the last letter is tive; a dot below is \(l y\); a dot above is tion, sion, cian; a touch' above is tions,
sions, cians; at the right it is ing, ong, ung ; if below, it is ingr, ongs, ungs; if thus' it is ity, ality, clity, ility; a horizontal touch above is al, ial, tial, rial; and we same touch, below is less, fess, ress; and without lifting the pen, the following letters may be used for some of the frequent endings of words ; vi\%. n for ness, \(b\) for ble or bees, m lor ment or ments, s for self or selves, fior fiell, ference, w for wert, sh for shiph, and - for ious, rous, uous, ius.
7. Use common figures to represent numbers, but make them larger than the other clareaters, that they may be readily distinguishod.
8. The common marks for punctuation may atl be used in short hand, except the period, which would be taken lor a vowel. But the following distinction is all that is necessary in following a speaker-when a sentence is complete, leave a blank of half an inch, and let each paragraph begin a line.
9. Long words may often be represented by two op three of their leading consonants, or by their initials, when the sense is clear ; and in most long sentences a number ol small words may be dropped, without impairing the sense.
10. When a word or sentence is immediately repeated, write it once, and draw a line under it for the repetition. If it be a sentence, and not repeated till something else occur, write a word or two and make the \(\partial\) for \&c.

Rules to improve Lesibility.
Ist. As a, I, O, are the only vowels ever used alone, they may be easily distinguished as follows, \(\cdot_{0}^{a}\); that is a above, \(I\) in the centre, and \(O\) below, the line of writing.

2d. At the begrinning and end of words make use a or e
of the same distinctions, ior \(y\)
3d. To show certain omitted rowels in the middle ol words, place a comma over the word as follows, thus:

4th. For diphthongal sounds place the comma under the word, as follows, - for ou; and - for oy.

5th. In doubtfil cases, let

Rulc for Reading.
When a word is not known at sight, proceed to speak each letter of which it is composed, separately and distinctly, aud then pronounce the whole togethe!, as rapidly as possible-thus; \(n\), \(v\), when pronounced nv, would give the word enry-n, \(t\), , pronounced ntt , would give the word entity-l. d, r, would be elder-f, l, s, f, r, or flali, would be radil! recognized as philosopher; and the same of all otace words.

REMARK.-The characters of this system are simple and few, and may soon be known at sight, like the letters of our common alphabet, and when thus familiar, the sense of the subject will render the reading sure and easy.

Much might be said on the subject of omissions. and contractions, but as these must after all depend more upon the practical experience of the writer than upon any written rules. I shall simply quote from a former edtion of the Edinburgh Encyclopedia, from

Rees's Cyclopedia, and the Encyclopedia Brittannica, the rules of Byrom and Mavor. Upon this subjeet Byrom says, "It may be proper to advise the learner, not to embarrass himsell with short-hand abhreviations, till by a competent practice ol writing, according to the rules already laid down, he is become so well acquatinted with the characters, as to be able to write and read them with nearly as much ease as common long hand. He will then meet with litule more difficulty in reading words contracted, than he formerly did in those written more at length, prosided that the rules of abberevation be duly attended to. A summary of the principal rules and most prac. tical methods of abbrestation is here given, and it is left to the skill and discretion of the writer, by observing their nature, and proceeding upon the same principles, to make such other acivances and improvements as his occasion may recuuire."

Before l proced to the rules, I will subjoin another extract. "Inmbidet (a French writer), in his Researches upon Printing, observes, that modern stenography, which, like the telegraph, dates in France from the foumation of the republic, has nether the inconvenience, nor the obscurity, nor the danger of the ancients. The old characters wried under the hand ol the copiers, and the sense changed according to the genius ol the interpreters: so that their contractions are become so many caigmas, because we can refer to no other copies to ascertain the true reading, and because the athors are no longer in existence. But." conthues the writer, "by the present bystem of stemography, the writers lollow the words of the public oratols, take down their speeches, the motions, the debates of the tribunce, of the lectures of the professors of the Lyccum, and produce a literal transtation at last, in the usual characters and in print."

\section*{A brief Summary of Pyrom's Rules of Abbreviation from the Encyclopedire Brittentica.}

Rulf 1.-'To join the anxiliary verbs, the particle not, and the pronouns together: as cam he, hawe heen, must be, camot be, he mist be, ousht not to br, ive.

Rete 2.-To join the marks in an unusual manner, in order to show that cach particular mark denotes a word, and not an single letter: as in the, it is, as it is, since it is, it wes, it wes not to be, ite.

Rule \(3 .-1\) derivative substantives may be very conveniputly represented, by placing a point at the end of the words lrom which they are derived. Derivative adjectives and adrertos may be represented also by points, distinguishable by their situation, both from the substantive and the rowed points; which may he dane by plating them in at line, which, if prodnced, would pass through the substantive point, and would also be perpendicular to the late consonant mark; one placed before the smbstantive proint, signifying the adjective, one effer it, the adserb: as, forestful, foruretjularss, foretfully: reasomulhe, reasmableness, ifasourlhly; srifficien, suffecimey, sufficiatly.

No great ancurary is moctsoary with respect to the adjective and udverb poincs, prosided they be placed so as to be clatarly distimeraished liona the vowel and substantive points.

Pime 4. -Such words as, wither by therie particular relation to the subject, or fiequent oncurrance, are easily discowerable, howerer eonciscly written, may
be dencted by the first letter, if they begin with a consonant, if not, by the first vowel and consonant, with the adjective, substantive, or adverb point annexed; as "life and immortatity are brought to light by the gospel;" the "resurrection of the dead, and a future state of rewards and punishments, are plainly and positively tauglat in the gospel." The adjectives which usually accompany such substantives may also be denoted by their first consonant, joined to the substantive; as, " with humble submission to your lordship."

Most writers of short-hand accustom themselves to mark such words as most frequently occur in their own particular professions, by the initial letters only, with the substantive, adjective, and adverb points, which, through custom, easily suggest those words to them at first sight. But it must not be understood, that those marks imply those words exclusively, and no other. They may stand for any other beginning with the same letters, which the sense ol the passages necessarily requires.

Rule 5.-A dot placed at the point of coneurrence of two consonant marks, denotes two substantives, of which those marks are the first consonants; and also that the latter is governed of, or connected to the former by some preposition, which is omitted; as, "the tove of money is the root of all evily" "seek ye first the lingdom of God, and his righteousness," \&e.; "the effects of gravity are visible in every part of that system to which we belong, but the cause of gravity still remains undiscovered."
And if an adjective precedes either of the substantives, they may all three be represented by their first eonsonants joined together, with the dot always placed at the end of the first substantive: as, "the great goodness of God is manifest in all his dealings with his creatures;" "his majesty the king of Great Britain."

Thie 6. -The substantive point, plaecd before a single consonant mark, denotes that the substantive is to be repeated, with some intervening preposition; as, "duy ufter dey:" "from time to time."

Ru/c 7.-The substantive, adjective, or adverb point, placed before \(i\) wo or more consonant marks joined together, denotes two or more substantives, adjectives, or arlverbs, of which those marks are the first consonants, and also that they are connected by a conjunetion; as, " the precepts both of natural and revected religion forbid us to do our neighbours any injusy:" "what doth tha Lord thy God require of thee, but to live soberly, righteousy, and godly in this present world."
liule 8.- Many long words, especially those in which the marks for the consonats will not join neatly, may be denoted by their first syllable, with as many points annexed as there are syllables wanting; as mullitude, correspondence. And when great despatch is required, the points may be omitted, especially il' the words do not begin with prepositions; as, signiffation, difficulby, negligente.

Rule 9.--Words beginning with prepositions may be denoted by their respective prepositions, together with the next consonant and vowel, and sometimes with the bext consomant only, adding, when necessary, the substantive, adjective, or adverb point; as, deliberate, transmutation, recommendation, consanguinity, \&e.

The participles may be abbreviated after the same manner, by adding, instead of the points, the terminations -ing or eed to the latter consonant mark; as, considering, considered.

Words beginning with double or treble prepositions, may be written alter the same manner, joining the prepositions together; as, representation, misrepresentation, ineomprehensibility. If two consonants begin the next syllable, the writing of them both will help to discover the remainder of the word; as, misunderstanding, transubstantiation.

Rule 10 . - Vords ending in any of the terminations, which in the alphabet are denoted by consonant marks, may be expressed by their first consonant and vowel, together with the proper mark for its termination; as, arbitrary, opportunity, curiosity, lawfuluess.

Rule 11.-Such words as are easily discoverable by the particular prepositions which they require, may be denoted by their first consonant only; as, "this belongs to me;" "he made some good observations upon it \(;\) ''" we must guard against such passions as we are most liable to."

As few English words end with the syllable -to, the preposition to may be joined to the preceding word, which is signified by its first consonant only; as, this belongs to me, liable to, satisfactory to.

Other prepositions which are denoted in the alphabet by a single consonant may, in like manner, be joined to the preceding word; as, " he made some good observations upon it."

Rute 12.-Prepositions generally require after them either a noun or pronoun. The pronouns being few in number, and used as substitutes lor nouns, must occur very frequently, and by that means soon become familiar to the learner; pronouns, therefore, may be joined to the prepositions, withont danger of creating any difficulty to the reader; as to me, to my, to you.

Rule 13.-The preceding word, the preposition, and promoun, may be jomed all together; as belongs to me, extends to us, agreed with me, depend unon me, observations upon this.

The words some, any, none, which, each, both, followed by a preposition and pronoun, may be denoted by their first consonants, and may be joined to the preposition and pronoun; \(\mathrm{a}_{5}\), some of them, any of us.
Rule 14. - The adverbs preceding the verbs, and the substantives following the pronominal adjectives, may be joined to the verbs and adjectives respectively, denoting both the adverbs and substantives by their first consonants, or at most by their first consonants and vowels; as, " you may sefely depend upon my word."

Rule 15.-Many common phrases, formed by a substantive preceded by the prepositions with, without, in, \&c., and followed by to, of \&e. may be very conveniently abbreviated; as, witle regard, respect, or referenee to, in order to, in consequence, comparison, or consideration of.

Rule 16.-Common adverbial phrases are, in like manner, often denoted by their initial consonants joined together; as, at the same time, at present, in this manner, in like manner, in a great measure, in the same mamer, in the mean time, in general, in particular.

And when the proportion of equality is expressed, with some one word intervening, they may be all Vol. XVII. Part II.
joined together; as, so much as, as well as, as soor as.

Rule 17.-The contractions which may be made, when it is or it was, are followed by an adjective, and to or that, are very numerotas; as it is impossithe to, it was unnecessary to, it is controry to, it is according 10.

I now proceed (says the American athor) to give a few of the rules of abbreviation lat down by Dr. Mavor, and published in a lormer edition of the Eedinburgh Encyclopedia; from which, with the other authorities already quoted, and the examples that I shall herealier furnish, the learncr will be prepared to make such advances in the reduction of labour as he may deem expedient, without endangering the uselulness of the previously acquired system.
" The value of stenography, says the editor, is not unknown to the learned; and the ease and success with which it has been lately cultivated in these kingdoms will, in all probability, soon render it an object of general attention. No one, however, appears io us to have simplified and improved the art so much as Dr. Mavor, author of the Universal Stenography, who has liberally permitted us to present our readers with a complete view of his scheme; which, in many schools of the first reputation, now stands a deserved class-book."

Having given an outline of his theory, Dr. Mavor proceeds:-
"Though a more concise method of writing, or more numerous abbreviations, may not be indispensably necessary, il the loregoing directions be practised for a considerable time, yet contractions will be found extremely useful and convenient to those who have attained a proper knowledge of the subject, and lead to a greater degree of expedition, at the same time that they diminish the labour of writing. It has been observed in the introduction, that abbreviations are only to be emploved by prolicients in this art; because expedition is not the first, though the ultimate object in view : and that an casy legibility is of the utmost cousequence to the learner, which, however, cannot be preserved, if he adopts too soon those very rules, which in time will afford him the greatest case when applied with judgment.
'The following short and practical rules will be found, we hope, lulty adequate to every purpose for which they were intended.
"Rule ist. The usual abbreviations in long-band are always to be followed; as Mr. for Master, M.D. for Doctor of Physic, and Abp. for Archbishop. Sc.
"Rule 2d. Substantives, adjectives, verbs and participles, when the sense will direct to the meaning. are to be expressed by their initial consonant with their distinguishing marks; viz. a substantive must have the dot exactly over its initial consonant; an adjective must have a dot under it; a verb is to be expressed by a comma over its initial consonant; and a participle by a comma under. These being the four principal parts of speech will be sufficient: and an adept will never be at a loss to know when he can with safety apply this rule to them.
"Rule sd. To render the writing more legible, the last letter of the word may be joined to the first. and the proper mark applied.
" Rule th. The constituent or radical part of words, 3 (
especially if they are long, will often serve for the whole, or sometimes the first syllable ; as we ought to moderate our ex. by our circum. ; a man's man. commonly shape his for.
"Rule 5th. All long words, without exception, may have their prepositions or terminations expressed by the incipicnt consonant of such preposition or termination.
"Rule 6 th. When there is a great dependence between the parts of a sentence, the initial letter will often suffice ; as L. is the capital of Great B. The eldest son of the king of Great B. is styled prince of W. Every one, it is presumed, will allow this to be perfectly legible in long hand [particularly in Engand], then why should it not be in stenography ?"

Although I decidedly reprobate the use of numerous arbitrary signs, as heretofore employed in short hand, still to a limited extent, they may be useful. Mr. Gurney, a celebrated reporter in the British parliament in his own work upon short-hand, when speaking of arbitrary characters, says:
"A principal advantage in this system of shorthand consists in the small number of arbitrary and contracted characters; and in their conspicuity, by which they will be soon understood, fixed in the memors, and read again at first sight."

He afterwards introduces the capital letters of the common writing alphabet, as the arbitrary signs of certain words of frequent occurrence-the plan I think a good one, if confined within proper limits; and I therefore give it as prepared by him, together with remarks and additions by the editor of the last American edition of his work.

Arbitrary characters formed from the waiting ALPHABET.

T-s The italic types are used as most convenient to represent the common uriting letters.
\begin{tabular}{|c|c|}
\hline A Administrator, -tion B & \(a\) accord -ing -ingly 6 bankrupt -cy \\
\hline \(C\) Congress, Congressional & \(e\) circum -stance -es \\
\hline J) Demonstrate -tion & \(d\) evident \(-\mathrm{l} y\), evidence \\
\hline \(E\) Ecclesiastic -al & \(e\) establish -ed -ment \\
\hline \(r\) & \(f\) Craud -ulent -ulently \\
\hline G & \({ }_{9}\) govern -ing-ment \\
\hline II & \(h\) hereditary -aments \\
\hline 1 & \(j\) justify -ing -able -cation \\
\hline \(K^{\prime}\) & \\
\hline 1. & \(l\) legislator ture -tive -tion \\
\hline M & mmultitude-ply-ed-cation \\
\hline \(N\) & \(n\) notwithstanding \\
\hline O) Origin-ate -al -ally & o order -ing \\
\hline I' President of the States & 1 precedent-cy \\
\hline \(?\) & \\
\hline Re Representatives & \(r\) represent -ed -ation \\
\hline \(S\) Senate & s statute, spirit -ed -ual \\
\hline & \(t\) trespass ees, transport- \\
\hline U U'nited States & u unlawfut -ly -ness [ation \\
\hline \(H^{\prime}\) & \\
\hline \(X\) Christianity & \(x\) extraordinary \\
\hline \(I^{\prime}\) & \(y\) y \\
\hline \(\%\) & \(z\) \\
\hline
\end{tabular}
stenographio ren, by m.t. c. gould.

This instrument being chiefly employed in Stenographic writing, and invented by the author of the preceding system of Short-hand, may be very properly appended to this article.

The following is a full and exact description of the parts, construction and use, ol the Perennial or Self-supplying Fountain Pen:

1st. A cylindrical barrel, of gold, silver, glass, or other material, about five inches in length, and one third of an inch in diameter, to be filled with ink.

2d. A shaft of mctal or other substance screwed into the lower end of the barrel, and projecting downward below it, about half an incl, forming in its diminished size, a collet upon which is slid a common or metallic pen.

Sd. A small tube or conductor, of gold, sitver, or other material, passing upward through the collet, and communicating with the column of ink by means of a regulator, hercafter described, and at the same time extending downward, along the centre of the pen, with the lower end so bent as to open directly upon the split of the pen.

4th. A hollow wire, or rod, called the regulator, passing through the upper end of the barrel, and extending downward throngh the barrel and shaft, till it mcets the ink tube, about midway of the shaft and collet. This regulator has a small groove or other opening near each end (and within the fastening or packing box, at each end of the barrel), for the purpose of admitting, when unscrewed, ink below, and air above-that is, ink into the tube below, and airinto the barrel above; and at the same time, opening an uninterrupted channel the whole length of the instrument, through which, if the regulator be screwed down and opened above, air or water may be forced, for the purpose of cleansing the tube, without communicating with the ink in the barrel.

5th. A piece of sponge or other porous substance attached to the wire, immediately above the shaft, and filling the entire diameter of the barrel, about a quarter of an incli upward-thus forming, when the regulator is unscrewed, and the pen in use, a strainer of the ink, and a regulator of its flowing; or, when screwed down, and the pen at rest, a general valve upon which the whole column of ink may rest. Immediately above this spongy substance is attached to the rod, a thin, flat, circular plate, or follower, equal in width to the inner diameter of the barrel; this plate should be finely perforated in various places, near its circumference.

6th. A small stopper, at the upper end of the regu. lator, and a suitable cap at the lower end of the barrel, give a finish to the whole instrument.

When in proper order, this pen will write for hours, supplyiug itself with ink as fast as desired by the writer.

STEREOGRAPHIC Projection of the Sphere. See Geography, Vol. IX. p. 622.

Stereotype Printing. See Piming, Vol. XVI. p. 156.

S'TERNE, Lawhence, a celebrated writer, was born at Clonmell in Ireland in Nov. 1713. He received his education at Halifax, from which he went to Jesus College, Cambridge. In 1759 he published his Life and Opinions of Tristram Shandy, in 2 vols. which were followed by seven more, the last of which came out in 1766 , and in 1768 appeared his Sentimental Journey, in 2 vols.; he published also 4 vols. of Sermons, two in 1760 and other two in 1766. He died in March 1768 at the age of 55, leaving behind him a widow and a daughter. This daughter, who married a French gentleman, published in 1775 a collection of her father's Letters in 3 vols. 12 mo ., preceded by Memoirs of his Life and Family. IHis private and domestic character were such as might have been expected from a clergyman, who, at the age of serious thought, had published works so questionable in point of morality and decorum.

STETTIN, a town of Russia, and the capital of Pomerania, is situated on an eminence upon the left bank of the Oder, about sixty miles from the Baltic. It is connected by a long bridge over the largest of the four streams into which the Oder is here divided, with Lastadie a part of the town. It has three suburbs, five gates, and several squares. The largest of these is a fine square containing a pedestrian statue of Frederic Il. by Schadow. Many of the houses in the town are very elegant, and some approaching even to palaces. The principal public buildings are the castle, the government house, the arsenal, the barracks, the exchange, the public library, the theatre, the hospitals, an academical gymnasium, a school of navigation, and five parish churches. The gymnasium is conducted by several professors, with assistants, who give lectures in theology, philosophy, medicine, law, mathematics, and languages both ancient and modern.

The principal manufactures of Stettin are woollen, linen, and cotton goods, leather, soap, tobacco, ships' anchors, ships and boats. Stettin is the outlet of the manufactures of Silesia, and also part ol Brandenburg and Poland, and hence it enjoys a very considerable trade. Its exports are chiefly grain and timber. The wheat is inferior to that of Dantzic and Elbing, but it is cheaper. The oak timber and stone of Pomerania are much esteemed. The imports are coffee, sugar, dyewood, rice, rum, cotton-wool, and Buenos Ayres hides. In 1816 the number of ships engaged in the export trade were 984 , and in the import trade 1311. All vessels which draw above seven feet of water are obliged to load and unload at Swinemunde, a small town sitnated at the month of that branch of the Oder, which is called the Swine.

The country round Stettin is delightful, and the lofty shore of one side of the Oder affords charming views. In the river, which now widens and now contracts its channel, are several islands both above and below the town, which increase the charms of the prospect. The poputation of Stettin is 26,000 , and it publishes two Journals. Last Long. \(14^{\circ} 45^{\prime} 45^{\prime \prime}\). North Lat. \(53^{\circ} 25^{\prime} 36^{\prime \prime}\).

STEUBEN, county of New York, bounded W. by Alleghany county in the same state; NW. by Living-
ston county; N. by Ontario; NE. by Yates county and Seneca Lake; E. by Tioga county of New York, and S. by Potter and Tioga counties, Pennsylvania. This county is very nearly a square of 40 miles each side; area 1600 square miles, cxtending in lat. from \(42^{\circ}\) to \(42^{\circ} 34^{\prime} \mathrm{N}\). and in long. from \(0^{\circ} 2^{\prime} \mathrm{E}\), to \(0^{\circ} 48^{\prime}\) W. from Washington City.

The surface of this county if not mountainous is very hilly and rocky, but possessing much excellent soil. Compared with the actually determined level of Tioga river below the castern boundary of Steuben; the lowest part of the arable surface of that county must exceed 900 feet, and the far greater part rise above 1000 feet, relatively with the mean Atlantic tide. 'lhis elevation is equivalent to \(2 \frac{1}{2}^{\circ}\) of lat., Lake Ontario being but 231 feet above the occan level; the higher valley of Tioga river, comprising the much greater part of Steuben, is about 800 feet, or nearly equivalent to \(2^{\circ}\) of lat. above the lake. 'This dillerence of relative height explaius the true reason why a milder temperature is lound along the lake border, than on any part of Steuben.

With the exception of the north-eastern part which slopes in that direction, and is drained into Seneca Lake, the body of the county is in the valley of Tioga, with a declivity to the south-eastward. As a physical section it constitutes the extreme north-western part of the basin of Susquehanna.

The Tioga or Chemung is formed by three branches: Tioga proper flowing westrardly from Tioga county. Pennsylvania; the middle branch, Canisted, having its most remote sources in Alleghany county; and the northern branch Conhoctor, rising in Livingston county. The Tioga and Canisted unite, and two or three miles below their junction receive the Conhoctor, near the Painted Post, in the south-eastern part of Steuben. It is remarkable, that though rising in so high and hilly a country, all these small rivers are navigable for down stream craft and ralts from near their sources.

The rapid and extensive settlement of this elevated and hilly county is shown by the list of Post-Offices, which amount to 49 according to the recent list now (April 1831) in the course of printing. Bath, the county seat on the left bank of the Conhocton, a litt!e north-cast of the centre of the county, is a fine thriving village, with a waving and pleasznt site, N. lat. \(42^{\circ}\) 옹, long. \(0^{\circ} 21^{\prime}\) W. from, and by post road 299 miles a little W. of N. from W.C., and 216 miles NIV. by W from Albany. By the census of 1820 this county contained 21,989 inhabitants.

STEUBENVILLE, post village and seat of justice, Jefferson county, Ohio, situated on the right bank of Ohio river, 40 miles SW. by W. from Pittsburgh, 82 NE. by E. from Zanesville, and 136 in a simitar direction from Columbus; and by post roads 284 miles NIV. by W. from WV. C. It was laid out in a dense forest in 1798. The site is a bottom or plain rising by a gentle acclivity to the loot of the adjacent hills. The opposite bank on the Virginia side rises from the river margin in craggy precipices, which with high but rounded hills on its own margin gires to Steubenville the appearance of occupying the base of a deep valley, and such is the fact; the hills on both sides rise to upwards of four hundred feet above the level of the plain on which the town stands. The streets are elevated above high watcr, and the whole has a
a romantic and pleasing effect on the eye. The dwelling houses amount to about 500 , extending along streets laid out at right angles to each other in a northern and southern, and eastern and western direction, and very nearly parallel, or at right angles, to that part of Ohio river opposite the town. In 1820 the population amounted to 2539.

The public buildings are a court-house, two banks, several places of public worship, two large factories, one of woollen and the other of cotton. There are two weekly newspapers printed here, and an academy lor education in operation.

Derby.

STEWARJ, Matthew, D.D. a celebrated Scottish Mathematician, was the son of the Rev. Dugald Stewart, minister of Rothsay, and was born in the year 1717 . At the age of seventeen, he went to Glasgow, where he studied mathematics under Dr. Robert Simson, from whom he imbibed that love of the ancient geometry which characterized his future studies. As his views in life required his attendance at the college of Edinburgh, he went there in 1741, where be attended the lectures of Colin Maclaurin. Here he devoted himself to his favourite studies, and kept up a regular and intimate correspoudence with Dr. Simson of Glasgow. In the midst of these pursuits, he was appointed to the living of Roseneath, where he completed his "General Theorems," a series of curious and interesting propositions which he published in 1746, and which, though given without any demoustrations, placed the author among the geometers of the first order.*

In the summer of 1746 , the death of Mr. Maclaurin created a vacancy in the mathematical chair of the University of Edinburgh, and such was the superiority over the other candidates which the General Theorems gave to Mr. Stewart, that he was elected to the office in September 1747.

In the 2d volume of the Essays of the Philosophical Society of Edinburgh, Mr. Stewart published a very neat solution of Kepler's Problem. In 1761 appeared his Tracts Plysical and Mathematical, which relate to the doctriue of centripetal powers, to the theory of the lunar motions, and to the determination of the sun's distance from the earth. In 1763 he brought out his Propositiones Gcometrice more veterum demonatrata, and in the same year he published his Essay on the Sun's Distance from the Earth. In this tract be made the sun's parallax only \(6^{\prime \prime} .9\), and consequently his distance so much as 29,875 semi-diameters of the earth, or 118,541,428 English miles. This result was received with surprise, and brought forth two answers to the tract, the one by Mr. Dawson of Sudbury, and the other by Mr. Landen, who pointed out certain errors which had been committed by Mr. Stewart. To these animadversions Mr. Stewart made no reply. ITis health had now begun to decline, and with the view of restoring it he made a tour through lingland, and paid a visit to Earl Stanhope, from whom he received singular marks of attention. In 1772 , when his son, Mr. Dugald Stewart, was able
to lecture for him, he retired to the country, where he spent the greater part of his life. In 1775 he resigned his chair, and his son was elected joint professor with him. His health continued to decline, and he died on the 23d January 1785, at the age of 68.

STEWART, Dugald, a celebrated metaphysical writer, was born at Edinburgh on the 22d November 1753 , and was the only son who survived the age of infancy of the celebrated Dr. Matthew Stewart, professor of mathematics in the College of Edinburgh, and Miss Stewart, daughter of Mr. A. Stewart, writer to the signet. When a child, his health was feeble and precarious, and it was only by the greatest care that his parents succeeded in re-establishing it. At the age of seven he went to the High School, where his talents were favourably displayed, and after completing the usual routine of instruction at that academy, he was admitted a student in the University. Under the roof of his father, he was early initiated into geometry and algebra; but the peculiar bias of his mind was exhibited during his attendance on the lectures of Dr. Stevenson, then professor of logic, and of the celebrated Dr. Adam Ferguson, who filled with so much talent the chair of moral philosophy. It was this circumstance, no doubt, that induced his fatlier to send him, at the age of eighteen, to the University of Glasgow, to attend the lectures of Dr. Reid, who was then sustaining, single-handed, the honour of that seat of learning, which had in the course of a few ycars been deprived of the services of Dr. Rohert Simson, Dr. Adam Smith, and Dr. Black. In the session of 1771-1772, he attended a course of Dr. Reid's lecturcs, and was thus enabled to prosecute, under his great master, that important science which he was destined to illustrate and extend. The progress which he here made in his metaphysical studies was proportioned to the ardour with which he devoted himself to the subject; and, not content with listening merely to the instructions of his master, or with the speculations of his leisure hours, be composed during the session that admirable Essay on Dreaming, which he afterwards published in the first volume of his Philosophy of the Human Mind.

The health of his father had been for some time declining, and in the autumn of 1771 it had become so precarious, that Mr. Stewart was called upon to prepare for teaching the mathematical classes during the eusuing session. This duty, which devolved upon him at the age of nincteen, he discharged with great credit to himself, and, notwithstanding the high reputation ol his father, the great success of his son brought an additional number of students to the class.

In the year 1774, when he had reached his twentyfirst year, he was appointed assistant and successor to his father, -a situation which he continued to fill till the death of Dr. Stewart in 1785 .

In the year 1778, when Dr. Adam Ferguson was appointed secretary to the commissioners for quieting the disorders which had broken out in America, Mr. Stewart undertook to supply his place during the session of that year; and this unexpected occupation was the more severe, as he had previously pledged

\footnotetext{
- The first demonstration of any considerable number of these was printed in the Edinburgh Transactions by the Rev. Dr. Small if Hudec. The demonstrations of others have been lately communicated to the Royal Society of Edinburgh, by Mr. Alexander 1: Howay, of the Royal Nilitary College, Sandhurst.
}
himself to deliver a course of lectures on astronomy, in addition to the usual labours of his two mathematical courses. Three days after he had undertaken this dillicult task, Mr. Stewart commenced his course of Ethics, and with no other preparation but that which he was able to make in the morning, he delivered a course of extempore lectures, which displayed in a remarkable degree the vigour of his mind, and the extent of his general information. Before the close of the session, his health had obviously sulfered from the bodity as well as the mental fatigues to which he had been exposed, and such was the degree of his exhanstion, that it was necessary to lift him into the carriage when he set olf for London at the close of the session.

The reputation of Mr. Stewart had now become so great, that several of the Enghish and Scottish nobility were desirons of placing their sons under his superintendance; and he accordingly, in 1780, agreed to receive some pupils nto his house. Among these were the late Marguis of Lothian, the late Lord Belhaven, Basil I.ord 1)are, the late Loord l'owerscourt, Alexander Muir Mackenzie, Esq. of Delvin, and the late Mr. Henry filassford. He accompanied the Marquis of Lothian to D'aris in 1783, and on his reLum from the Continent, in the antumn ol the same year, he marricd Aliss Bannatinc, daughter of Neil Bannatine, Esq. a merchant in (ilasgow, by whom he had a son, the present Lieutenant-Colonel Matthew Stewart, who inherits no small share of the talents and acuteness of his father.

In consequence of the fuilure of Dr. Ferguson's health in 1784, he resolved upon giving up the duties of a public lecturer, and an arrangement was made, by which Mr. Stewart should receive the moral philosophy class, while Dr. Ferguson should be conjoined in the prolessorship of mathematics with Professor Playfar, and thas retain the larger salary which was attached to that chair. In 1787, Mr. Stewart was left a widower, and in the following summer he accompanied the late Mr. Ramsay of Barlton on a visit to the Continent.

In the year 1790 he married Miss Cranstom (the youngest daughter of the Honourable Genege Cranstoun), a lady of congenial sentiment and talent, who contributed greatly to the happiness of his future years. In the tranquillity of domestic life, so favourable to the pursuits of science, Mr. Stewart seems to have begun with carnestness to prepare for the press the first of that series ol works by which he has been so highly distinguished. In 1792 he published the first volume ol his Elements of the Philosoplyy of the Human Mind. In this work he has stripped the science of the Human Mind of much of that mystery and paradox in which it had been involved; and while he has treated its most important and difficult fopics with all the depth and clearness of mathematical talent, he has, at the same time, enriched his speculations with the stores of his varied learning, and adorned them with all the elegancies of his classical taste. This volume contains a review of the intellectual powers of man. On many important points, Mr. Stewart's views necessarily coincided with those of his illustrious master; but while he treated the opinions of Dr. Reid with all the veneration of a disciple, he never scrupled to cxamine them with the freedom of an equal, and to advocate
opposite opinions, or strike into a new train of thought, into which he had been led by a more profound or a more ingenious investigation. In this, as well as the other two volumes of his work, Mr. Stewart's great aim was to vindicate the pinciples ol human knowledge agianst the attacks of motlem sceptics, and to lay a solid foundation for a rational system of logic.

The first volume of Mr. Stewart's work diel not excite that motice when its own merit and the high reputation of its author unguestionably entited it. 'The philosophy of the mine was then a subject of comparatively litte interest, and though disested of its usual repulsive aspect, it was mot comsideteds as it is now, a necessary branch of a polite education. The long interval of twenty-one years, which elapsed between the publication of the lirst and the second volume, and the publication of his volume of Philosophical Lissays at an intermediate period, may allord us some reason los belicving that Mr. Stewart had abandoned the prosecution of his platn.
'lhe continuity of his studies was, indeed, interrupted by a scrics of biorraphical works, which almost necessarily devolved upon him. The liest of these was An. Iccount of the Life and H゙ritiness of Dr. Adtam Smith, the celebrated author of the "icalth of Nations. This memoir, which occupies 82 quarto pages, was read before the Royal Socicty of E'thubureth on the 28th January and the 1 Sth March 1793 , and is published in the third volume of then Transactions. It forms one of the finest examples of biographical composition, and, independent ol the value which it derives lrom its luminous exposition of the principles of Dr. Smith's philosophy, it is reudered interesting by the numerous ancelotes which it contains of the great men which had a short time belore adorned the literary history of Scotiand.

At the reguest, we believe, of 1)r. Robertson himself, made a short time before his death, Mr. Stewart undertook to draw up an accoum of the life and writings ol that illustrious historian. It was read belore the Royal Society of Edinburgh in March 1796, and was afterwards published in a separate volume in 1801. To the memory of Dr. Reid, Mr. Stewart felt it his duty to pay the like homage, and he accordingly completed, in 1802, his account of the life and writings of that eminent metaphysician.

In the year 1796 , Mr. Stewart was again induced to receive a lew pupils into his house, and at this time the present Earl of Dudley, the Earl of Warwick, the late Lord Ashburton, the son of Mr. Dumning, Lord Palmerston, his brother the IIonourable Mr. Temple, and Mr. Sullivan, the present Under Secretary of War, were placed under his care. The Marquis of Lansdown, though not under Mr. Stewart's superintendance, was at this time studying in Edimburgh, and was honoured with Mr. Stewart's particular regard. Their friendship continued umabated, and Mr. Stewart had the happiness of seeing the Marquis of Lansdown, Lord Dudley, and Lord Palmerston, members of the same cabinct. Mr. Brougham and Mr. Horner were at the same time two of the public pupils of Mr Stewart.

Mr. Stewart had been long desirous to deliver a course of lectures on Political Economy, but it was generally understood that he was deterred from carrying this design into effect by the peculiar character of
the times in which he lived. In 1800, however, when the effervescence of political speculation had subsided, he gave a course of lectures on Political Economy, but we believe they were not repeated more than once in subsequent sessions.

In 1806, when an accidental circumstance led the English and the French governments into an amicable correspondence, the Earl of Lauderdale was sent to Paris to adjust the preliminaries of a general peace. This nobleman requested Mr. Stewart to accompany him as a friend, and they accordingly spent some time in the Freach metropolis. Here Mr. Stewart had an opportunity of seeing many of the eminent individuals with whom be had formed an acquaintance previous to the Revolution, and of being introduced to some of the great men who then adorned the science and literature of France.

While individuals of inferior talent, and of rnuch inferior claims, had received the most substantial rewards for their services, it had long been felt that a philosopher like Mr. Stewart, who derived so small an income from his professional occupations, should have been so long overlooked by his country. It fell, therefore, to be the especial duty of the administration of Mr. Fox and Lord Grenville, to correct the oversight of their predecessors. They created for Mr. Stewart the office of Gazctue Writer for Scotland, a situation which, as it could be performed by deputy, required no personal labour, and which added largely to his income. The creation, or rather the revival of this office, excited a considerable difference of sentiment. It was agreed on all hands, that the distinguished individual on whom it was conferred, merited the highest recompense; but it was felt by the independent men of all parties, that a liberal pension from the crown would have expressed in a more elegant manner the national gralitude; and would have placed Mr. Stewart's name morc conspicuously in the list of those public servants, who are repaid in the evening of life for the devotion of their early days to the honour and interest of their comntry.

In the year 1808, Mr. Stewart sustained a severe domestic calamity in the loss of his second and youngest son, who was cut off by consumption in the 18 th year of his age, while pursuing his academical studies. To divert his thoughts from this decp afliction. Ar. Stewart devoted himself to the composition of his Phitosophical Essays, a work which appeared in 1810, went hrough three editions, and added greatly to his reputation. As the first part of this work is a commentary on some elementary and lundamental yuestions which divided the opinions of philosophers in the eighteenth century, Mr. Stewart regarded it as so far a continuation of his great plan, that he recommends his younger realers to peruse it atier they have completed the first volume of his Phitasophyy of the the man Alind. About a year after the death of his son, Mr. Stewart essigned the Moral Philosoplay Chair, and was re-appointed joint professor atons with Dr. Thomas Brown. By this arrangement, which his appointment from Government allowed him to effect, be was enabled to retire lrom the duties of active life, and to parsuc in retirement those phitosophical inquiries, of which he had yet published but a smatl part. He therefore quitted Edinburgh, and removed with his family to Kinneilllouse, ncar Borrostowmess,
a seat of the Duke of Hamilton, and about twenty miles from Edinburgh.

Although it was on Mr. Stewart's recommendation that Dr. Brown was raised to the Chair of Moral Philosophy, yet the appointment did not prove to him a source of ummixed satisfaction. The fine poetical imagination of Dr. Brown, the quickness of his apprehension, and the acuteness and ingenuity of his argument, were qualities but little suited to that patient and continuous research which the phenomena of the mind so peculiarly demand. He accordingly composed his lectures with the same rapidity that he would have done a poem, and chiefly from the resources of his own highly gifted but excited mind. Difficulties which had appalled the stoutest intellects, yielded to his bold analysis, and, despising the patient formalities of a siege, he entered the temple of pneumatology by storm. When'Mr. Stewart was apprised that his own favourite and best founded opinions were controverted from the very chair which he had scarcely quitted; that the doctrines of his revered friend and master (Dr. Reid) were assailed with severe and not very respectful animadversions; and that views even of a doubtful tendency were freely expounded by his ingenious colleague, his feelings were stongly roused; and though they were long suppressed by the peculiar circumstances of his situation, yet he has given them full expression in a very interesting note in the third volume of his Elements, which is alike remarkable for the severity and delicacy of its reproof. Upon the death of Dr. Brown, on the 2d of April 1820, Mr. Stewart resigned the Chair of Moral Philosophy, and was succeeded by Professor Wilson, a man of varied and powerful intellect, admired as a poet, and distinguished as an orator.
In October 1810, our eminent countryman, Mr. James Wardrop, communicated to Mr. Stewart an account of a very remarkable youth, James Mitchell, who was born both blind and deaf, and who consequently derived all his knowledge of external objects from the senses of touch, taste, and smell. Mr. Stewart was delighted with the prospect which this case afforded of establishing the distinction between the original and the acquired perceptions of sight. This expectation was not realized; but Mr. Stewart collected all the facts regarding the remarkable youth, and embodied them in a highly interesting memoir, which was read before the Royal Society of Edinburgh in the beginning of 1812. It is entitled "Some account of a Boy born Blind and Deaf, collected from wuthentic sources of information, with a few remarks and comments:" and was published in the seventh volume of the Trensuctions of the Royal Socicty of Edinhurgh. In consequence of the interest which was excited by this communication, Mr. Stewart was anxious that Mitchell should be brought to Edinburgh, and educated under the superintendance of persons capable of studying the development of his mental powers. He accordingly submitted this idea to the council of the Royal Society, who entered eagerly into the plan, and resolved to apply to Government for a small pension to enable Miss Mitchell and her brother to reside ncar Edinburgh. Lord Webb Seymour, one of the VicePresidents of the Society, transmitted the wishes of the council to the Eirl of Liverpool, then hirst Lord of the Treasury. The Prime Minister of Great

Britain not only refused to science and humanity the small pittance which was craved, but ventured to strengthen the ground of his refusal, by expressing a doubt whether the object which the Society had in view was likely to add to the comfort of the unfortunate object of their patronage. The writer of these lines was one of the five members of council to whom this answer was rearl, and be will never forget the impression which it made upon the meeting-the suppressed feeling of mortification and shame which was visible on every countenance. The guardian of the British treasury was entitled to refuse the application which had been made to him, but he had no right to question the humanity by which that application was dictated. The character of Mr. Dugald Stewart should bave been a sullicient grarantee that the personal comfort and happiness of Mitchell would be the first objects of his solicitude.

In the year 1813, Mr. Stewart published the second volume of his Elements of the Philosophy of the Iluman. Mint. This volume relates entirely to Remson or the Conderstanding, properly so called, aud ats the autho: himsell observes, the subjects of whech it treats are of necessity pecuilarly dry and abstruse; but he regarded. them as so important, that he laboured the whole of the materials which compose it with the greatest care and diligence. In the fourth chapter he treats more particularly of the method of inguiry pointed out in the Nowem Organum of Bacon, and he has directed the attention ol his readers chiefly to such questions as are connccted with the theory of our intellectual facultics, and the primary sources of experimental knowledge in the laws of the human frame.

In the month of January 1822, Mr. Stewart experienced a stroke of palsy, which considerably impaired his powers of speech, and unfitted him in a great degrec for the enjoyment of general society. Unable to take regular exercise, or to use his right hand, he was reduced to a state of great dependence on those round him. The faculties of his mind, however, were in no respect impaired by this scvere attack, and with the assistance ol his only daugliter, who acted as his amanuensis, and who understood his imperfect articulation, he was enabled to prepare his works for publication with an ardour of mind and a freshness of intellect which formed a striking contrast with his bodily weakness.

Alhough the progress of his great work was inter. rupted by his Dissertation on the progress of Metaphysical and Ethical Philosophy, which be composed for the Supplement to the Encyelopedia Britannicu, yet he was able to complete the thirt volume of his Philosophy of the Humen Mind in 1827. This volume contains a continuation of the second part, viz. two chapters, onc on Language, and the other on the Principles or Law of Sympathetie Imitation: and also the third part, which consists of two chapters, one on the Varieties of Intellectual Character, and the other a Comparison between the Fueutties of Man and those of the loower Animals. To this last chapter he has added as an appendix, his account of James Nitchell, with a supplement containing a recent account of the manners and habits of this interesting individual.

In \(182 \%\) and 1828, M1. Stewart was occupied with the fourth volnme ol'his Philosophy of the Iluman Mind, contaning his lnguiries into the Active and Moral Powers of Man, and he was fortmately able to complete it a lew wecks before his death, and thus to bring to a close that great work, on which he had spent the llower of his youth, and the maturity of his more alvanced years.

Mr. Stewart's health harl been for some time declining, but when he was on a visit to Edinburgh in the month of \(\Lambda_{\text {pril }} 1828\), be experienced a tresh paralytic attack which carried him off on the blth of Junc, in the 75 th year of his age. His remains, which were accompanicd to the grave by the magis. trates of the city, and the prolessors of the university, were intered in the family burying-ground in the Canongate church-yard, already honoured as the barial place ol' Adam Smith. Mr. Stewarts personal frionds and admirers have contributed a large sum. with which a montument will be speedily erected to his memory on some conspicuous spot in our northern metropolis.

Mr. Stewart lelt behind him a whdow and two children, a son and daughter, whom he loved with the tenderest aflection. To Mrs. Stewart and his only daughter he owed that sunshine of happiness, which. but with one cloud, Providence shed over his domestic tife. They had been the ornaments of his social circle when his public station reguired him to mix largely with the world; and when they were calleal to higher duties by the infirmities of his age. they discharged the obligations of conjugal and filial love with that self-devotion and sustained tenderness, which have their residence only in the femate heart. Ilis only son, Lientenant-Colonel Mattherv Stewart, already known by an able pamphlet on Indian affairs, and who, we believe, is now occupied in a larger work on the same subject, was fortunately in Scotland at the time of Mr. Stewart's death, and was able to pay the last duties of affection to his renerable parent.

Mr. Stewart was about the middle size, and was particularly distinguished by an expression of benevolence and intelligence, which Sir llenry Racburn has well preserwed in his portrait of him, painted for the tate Lord Woodhouselee before he had reached his 55 th year.* Mr. Stewart had the remarkable peculiarity of vision which made him insensible to the less refrangible colours of the spectrim. \(\dagger\) This affection of the eye was long unknown both to himsell and his, friends, and was discovered from the accidental circumstance of one of his family directing his attention to the beauty of the fruit of the Siberian crab, when he found himself unable to distinguish the scarlet fruit from the green leaves of the trec.

Mr. Stewart's name honoured the lists of various learned academies. He was one of the members of the Philosophical Society of Edinburgh at its incorporation with the Royal Socicty in 1783 . He was a fellow of the Royal Society of London, an honorary member of the Imperial Academy of Sciences at St. Petersburgh, a member of thic Royal Academies of Berlin and Naples, of the American Philosophical

\footnotetext{
- At a much later period Sir Henry painted another port rait of Mr. Stewart, and Mr. Wilkie still more recently executed a striking likeness of him in black lead. Mr. Ioseph has als o completed a bust of Mr. Stewart with his usual talent.
\(\dagger\) See The Edinburgh Journal of Science, No. xir. p. 153.
}

Societies of Philadelphia and Boston, and honorary member of the Philosophical Society of Cambridge.

Besides the works which we have mentioned in the course of this motice, Mr. Stewart published his Outlines of Moral Philosophy, which appeared in 1793, and which he used as a text.book. This work has been recently translated into French; and it has been used as a text-book in several Colleges in America. He was also the author of two eloquent pamphlets on a local controversy now sunk into oblivion. He had laid down the resolution of never publishing any thing anonymously; and we believe he never deviated from so excellent a rule. See Dr. Brewster's Journal of Science, No. xx, p. 194, for a fuller account of the philosophy and private eharacter of Mr. Stewart.

> STEWART, county of Tennessec, bounded by Montgomery county, Tennessee, NE; Dickson SE; Humphries S; Tennessee river separating it from Henry county, Tenncssee. W; and Callaway county, Kentucky, NW; and by Trigg county, Kentucky, N. Length diagonally from SE. to NW. 40 ; mean breadth 20; and area 800 square miles. Extending in lat. from \(36^{\circ} 14^{\prime}\) to \(36^{\circ} 57^{\prime} \mathrm{N}\).; and in long. from \(10^{\circ} 43^{\prime}\) to \(11^{\circ} 12^{\prime} \mathrm{W}\). from W. C. This county is bounded SW. and WV. by Tennessee river, and traversed by Cumberland river, both streams howing to the northwestward, at a distance apart of from 23 to 8 miles, inclining towards cach other as they leave Tennessee and enter Kentucky. The surface moderately hilly, and soil productive. Dover, on the left bank of Cumberland river, is the county town. It is situated about 75 miles by the landroad NVV. by W. from Nashville, at \(N\). lat. \(36^{\circ} 28^{\prime}\), and long. \(10^{\circ} 49^{\prime} \mathrm{W}\). from TV. C. Beside Dover there are post-offices in this county at Brunsoris, Dover Furnace, Green Trec Grove, Hamlet's and Trougdale. In 1820 Stewart contained a population of 8388.

> STEWARTSTOWN, township and post village, Coos county, Newllampshire. situated on Connecticut river, opposite the mouth of lIall's river, by postroad 164 miles N. from Concord. N. lat. \(44^{\circ} 56^{\prime}\), long. \(5^{\circ} 31^{\prime} \mathrm{E}\). from W. C.

> STETVARTSTILLE, post-rillage in the western part of Westmoreland county, Pennsylvania, on the main road from Grconsburg to Pittsburg; 13 miles NWV. by W. from the former, and 19 SE. from the latter, and by post-road 204 miles NW. by W. from IV. C.

\section*{STIRIX. Sce Simbia.}

STIRLING, an anciont town of Scotand. and capital of the comty of Stirling, is sifutted in a plain watered by the Forth, and on the sloping ridge of a rock, on the western and precipitous extremity of which stands stirling castle. The town is irregular, the street on the erest of the hill is broad, but the other streets are narrow; several now strects containing elegant modern buildings have been erected on the north side of the town. At the south side of the town, several elegant villas extend along each side of the road, and a little farther southois Wrellington llace, where several handsome houses have been built.

The principal public buiddings are two churelies,
three hospitals, the town bouse, the jail, the school house, a public library and reading room, a military hospital and the castle. The east church, erected in 1494, is a fine building, which received some additions from Cardinal Beaton; the west church, said to have been built also in 1494 , and to have constituted one building with the east chureh, is in the rude Gothic style, and has been lately repaired after a plan by Mr. Gillespie; it is now internally one of the most commodious and handsome churches in Scotland. The oldest of the three hospitals, built in 1530 , for the support of poor tradesmen, was endowed by Robert Spittal, tailor to James IV.; the second, for twelve decayed guild brethren, was founded in 1639 by John Cowan. It is furnished with a steeple and bell and apartments for the guildry. Its annual revenue is about \(\mathfrak{£ 3} 3000\). The third, for maintaining and educating the children of decayed tradesmen, has a revenue of nearly \(£ 500\), and was founded by John Allan. The town house is a spacious building, with convenient apartments for the town courts. The jail, which has been recently built on an approved plan, contains an elegant hall for the sheriff and circuit courts. The grammar school, the academy for arithmetic and mathematics, and the English school, are commodious and good buildings. The public library and reading room is a new and elegant buidling, having a spire 120 feet high. The library contains several thousand volumes. The military hospital occupies Argyll's Lodsing, built in 1633, and in which John Duke of Argyll lived in 1715.

The castle is situated at the precipitous extremity of the ridge on which the town stands. It is of very ancient date, and still exhibits marks of royal magnilicence. James II. was born here, and the room ealled Douglas's room is still shown where that eruel monarch stabbed with his own hand his kinsman William Earl of Douglas. A skeleton supposed to be that of the earl was some years ago found in the cleft of the rock directly beneath the window of this room. The hall for the meetings of parliament, built by James III. is now used as a barrack. The chapel royal, built by James VII. for the baptism of Prince Henry, adjoins to the barracks, and is now a storeroom and armoury. The palace is a large building of a square form, enclosing a quadrangular court. A number of grotesque ligures on pedestals adorn its exterior. It now forms barrack-wards to the garrison, a house to the governor, and apartments for the inferior officers. The aparments occupied by George Buchanan while tutor to James VI, are still shown. In one of the apartments of this quadrangle, called the kiug's room, the roof was covered with rich earvings in oak, which have been eugraved and described in a work published in 1817, called Lucunar Shecdincnse. (Queen Ame's batery, with bombproof barracks, was crected at the begimning of the last century on the south side of the castle; the rampart is mounted with about 36 guns. On the south side of the castle is a piece ol llat enclosed ground which was deroted to tournaments; and a rock whence the ladies observed them is called the Ladies' Roek. No fewer than frefoe lields of battle are seen from the castle, the prospect from which is universally aclmired. Towards the cast, Edinburgh and the windings of the forth form one of the most interesting
portions of it. The castle rock is basaltic. Around it is an agrecable walk, in many places cut from the solid rock.
Stirling enjoys a considerable inland trade, besides a small trade with the lialie; vessels of about 70 tons can come up to the quay. Cotton and woollengoods, but particularly carpets, are among its chicl manufactures; it has two banks and wo werkly papers; it is governed by a provest, lour bailies, a dean of guild, treasurer, and fometen other commsellors; it sends a momber to parliament along with Dunfermline, Inverkeithing, Queenslery and Cuhross. The revenue of the town from the salmon fishing amounts to 22250 per amum. The population of the burgh and parish in 1821 was
\begin{tabular}{|c|c|c|c|c|c|}
\hline Inhabited houses & - & - & & - & 76 \\
\hline Families & - & - & - & & 1688 \\
\hline \multicolumn{6}{|l|}{Do. employed in agriculture - 18} \\
\hline Do. in trade - & - & - & - & & 11.89 \\
\hline Miales & - & - & & & 3275 \\
\hline Females & - & - & - & - & -830 \\
\hline Total Population & - & - & - & - & 7113 \\
\hline
\end{tabular}

See the Ticurties of Scotlond, Vol. III. and Chalmers. Colcdomia, Vol. I.
STIRLINGSHIRE, a central county of Scodand, bounded on the north by Perthshise and Clackmanmanshire: on the east by the Firth of Forth and Linlithgowshire; on the sonth by lanartshire; and on the south-west and west by Dumbartonshire; is about 36 miles in lengt!, and from 12 to 17 in breadtl; and contains an extent of about 645 sfuare mites, wi 412,800 English acres. The ecelesiastical divisions are, twenty-one parishes, besides portions of other four, parts of which are in the adjacent comnties. This county contains one royal borough, viz. Stirling, which is the county town, and two large fowns Falkirk and St. Ninians, besides several large and nourishing villages.

The appearance of many parts of Stirlingshire is mountanous to a considerable degrec, particularly in the vicinity of Loch Lomond on the north, and in the parishes of Denny, Kilsyth, Kilpatrick, Campsie, and Baldernock on the south. Some parts of the central district are also very hilly. The principal ranges of hills are those of Lemox, Campsic, and Kilpatrick in the southern district. The Lennox hills extend from Dumbartonshire to the vicinity of the town of Stirling, and seldom exceed an eleration of 1500 ticet above the level of the sea. The height of the Campsie hills is about 1500 , and that of the Kilsyth hills 1368 . From the highest of the last mentioned range of hills, there is one of the funest views in Seotlansl, which has been computed to embrace an extent of more than 12,000 square miles. 'The highest mountain in the county is Benlomond, in the north, which is 3262 feet high; the nert highest is Bencloch in the parish of Alva, which attains the height of 2400 fect. Many of these hills, especially in the southern district, partake more of the lowland than the highland appearance, as their summits, and many parts of their sides, are covered with green sward, which affords excellent pasturage for sheep.

Yol. XVII. PartiI.

On the morth, and especially on the cast of the lennox hills, the fovation of the comntry above the lewel of the seat is so low ats blat feet. This distrion is wery rich and lestile, proturing excellent crops of
 which are very hilly, lien the mest part eronsist of moso. and tracts of heath, and erewn pastmen, interspersed with arable land, which is chirlly mathered in thes benks of the ribers.

Amost every variety of soil to be mot with in Scotand accurs in Stirlineshare; hut lan: most common is the allnvial or cuares land. which wectpans an extent of about ineron acres on the banks of the lorth, which is the mast inptic part of the cosunty. In this soil there are beds of sholls, clay, mardo and moss. Small patches of rich loant orcur in many parts of the county. The soil on the banks of the rivers, in the westem and emoral districts, is chacle: of a light amd sravelly description.

Stirlingshire is inferion on liew districts of Scofland, in the quantity and varict; of its mineral productions; the most abondant of whel are coal, ironstone, limestone, and sandstone. 'The principal coal pits are situated ia the sonthern base of the Lennox hilts, and extend from Baddermock on the west, to Denny ard St. Ninians on the east. Coal is also found in the castem district, in the virinity of the Forth and Clyde Canal. Stirlingshire yitds this mineral in sheh abundance, as not only to be sufficient for home comsamption, but, by means of the Cnion Canal, to supply the inhabitants of the metropolis at a much cheapee rate than they were formerly accustomed to pay. The ironstone, limestone, and sandstone is found in the same district with the eoal, one stratum of limestone being ofen fomd above, and another below a stratum of coal. Veins of silver were discovered, and wrought about sixty years ago, but the working of them was soon discontinued. Copper, lead, and cobalt, have also been raised at different periods, but not in any considerable quantities.

The Forth is the principal river in Stirlinsshipe, and though not the largest, has always held the first rank among the rivers of Scotland. It has its origin in a spring near the summit of Benlomond, and after running eight or ten miles under the name of the water of Duchray, and flowing through part of Perthshire, where it is called Avendow, or the Black River, it again enters Stirlingshire, under the denomination of the Forth, and after receiving the Teith, Bannockburn, Ardoch, and Allan, it enters the Carse of Stirling, about six miles to the west of that town; a few miles further on it becomes navigable for vessels of to tons. Below Stirling the simusity of this river is very remarkable; the distance from the above town to Alloa, which is only seven miles in a direct line, is more than twenty by the course of the river, owing to its numerous windings, which are called the Links of the Forth. A little below Alloa it is joined by the Devon from the northeeast, and shortly after expands into that noble estuary called the Frith of Forth, and leaves Stirlingshire a little to the south of Grangemouth. The Carron, which is the next river in size to the Forth, rises in the central district, and after flowing on in an easterly direction, joins the Forth a: Grangemouth. This river is navigable for vessels of
2) tons, for about two miles from where it joins the Forth. The smaller rivers are the Bannockburn, celebrated lor having been the scene ol the battle between the English and the Scotch armies, in which the latter, under Bruce, completely routed the linglish, and established the independence of Scotland (See Baxiochburis, the Avon, the Eurick, the Blanc, and The Kelvia, none of which are worthy of particular 1:otice.

The manufactures of Stirlingshirc are various. At sirling there are manufactories of carpets. coarse cloths, and cottons. There aresceral large establizhments lor cotton, paper, copperas, alum, Prussian bhe, soda, Exc. near Campsie. There are many large uistilleries in different parts of the county, in which an immense quantity of spirits is made. But the principal mandactory in the shire is one for ironware of cuery description, on the banks ol the Carron, which is celebrated over all Europe, an:l which we ha:ceaready fully described under our article Caneos Monrs.

The agrichature of Stirlin, shire is subject to considerable variation. owing to the great varicty of soil and situation. The carse lands which are arable wep portioncd ont into small farms, of from 15 to 100 ancs, which sometimes afford a rent of \(f=\) an acre. Bat the hill farms sometimes extend to near 1000 actecs. Large crops of wheat, barley, leans, pease, turnips potatoes, \(\mathbb{E c c}\). are raised: the use of artificial Sonssen has also been very generally adopted in this comty. The cxtensive ranges of montand, in the upland districts, are exclusively devoted to the leeding of'numerous focks of sheep. There are few cattu bated in Stirlingshine, as the county is very generally supplied by the Hightand drovers. The sheep are of the blackfaced or IIighland breed.

Stirtingshire, which had in 1929,129 frecholders, sends one representative to parliament; and the town ol' Simling, in conjunction with Culross, Dunfermline, Inverkeithing and Qucensferry, clects another.

In this county there are several highly interesting relics of antiquity. There are still some remains of the Roman Wall, called the Wall ol Antoninus, which intersected the county. At the scene of the battle of Bannockburn a stone is exhibited, in which the royal standard was pitched. In the eastern part of the county several other battles were fought bewoen the English and Scots.

The popalation of Stirlingshire was 65,376 in 1821; of which 31,718 were mates, athel 33,658 females. The number of limiliws employed in agriculture were 2600; and those comployed in trade and mambactures, f664; and of those in nether of the above classes, 1492. see our articles Avonanes's Wham, Banvochburs,

stockbliblefic, port village in the western part of borkshire commy: Massachasetts. situated on the lonsatomick river, 12 miles \(S\). of Pittsheld, and

STOCKHOH.入, the metropolis of Sweden, is whaterl on the nopthern and southern shome of the bate diaclar, and embraces likewinc a number of island lying between them. The greatest part of the cosn stands on the continent, the part which ocopies the southern shore being called Sodermalm, and that
on the northern Nordermalm, these being called the suburbs of Stockholm. The city, properly so called, occupies the largest island. It is the busiest part of the town, being in reality a sca-port, having bandsome quays, bordered by stately ranges of buildings, where the principal merchants reside. The houses are, however high, the streets narrow, and the general aspect of it gloomy; but it contains what was called the new palace, the great church, or that of St. Nicholas, the bank, the corn-market, the spacious custom-house, and a great number of other elegant buiddings. The palace occupies a great part of this istand, and towering above all the other buildings of the city, it is visible on all sides, and commands a riew of crery part ol Stockhom. The city is connected by means of a fine granite briftge with the Nordermalm or Norrmalm. This bridge leads at once into the oreat square, the stately magnificence of which, accordiag to Dr. Clarke, is very imposing, and affords a concentration of almost every thing worth secing in Stockholm. One entire side of it is adorned with the royal palace, another is occupied with the opera-house, containing the inscription Musis Succicis Crusturus III. and in which that monarch was assassinated. Opposite to the operahouse is the palace ol the princess royal, and in the centre ol' this area, opposite to the granite bridge, is a gigantic equestrian statue of Gustarus Adolphus in armour, facing the royal residence, and having an air ol great grandeur. It is ol gilt bronze, and stands on a pedestal of finely polished porphyry. The principal street bere is Qucen's Strcet, stretching in a straight line lor more that a mile from the obscruatory to the side of the lake. The streets are here at right angles to each other, but several of them are narrow. From the grat square a street conducts to a quay, near which stands the Stepholm church. Betwecn the square, the quay, and that of the city, is the port of Stockholm, where all the ressels lic.

The Nordermalm contaius likewise the ancient arsenal, now a theatre, the royal gardens, the surveyor's office, the great orphan-house, the frce-mason's orphan house, the workhouse on the Sabbath Mountain, the church of St. Clare, the steeple of which commands a finc riew, and which has a fine altarpicce, the churches of St. James and Adolphus Frederic, the observatory, the exhibition of models, the institution for widows, the lying-in hospital, and Drotninghouse.

The city is comected by a bridge with the Ritterhoh towards the west. The Ritterholm contains a spacions squate, near which is the church of libterloom, a good looking buidding, and the burial place of the royal family. Itere also stands the scmate house, and the town house, the last of which contains two halls, one for the citizens, and the other for the peasants at the diets. The old palace, with the regalia, and the chamber of models, and the academy of arts, are also situated in this island. Betwen the city, the Nordermalm and the Ritternom is the island of the Holy Ghost, which contains the king's stables, an extensive and splendid building. In the city and the Ritterholm, are the great Swedish school, a synagogue, a German, a

Iinfandish, and a French church;-the academy of sciences, with its library and other collections, the mint, and the college of mines, with its line cabinet of matural histery.

The other islands are Armiralty-holm, consisting of naked romantic rocks, and contaning the naval arsenal;-Castheolm, contaning litte more than a small palace on a naked rock;-Jbeckhohm, Langholm, and Racknimsshohn, all thre of litte importance; and Congsholn, part of which is built upon, and the rest occupied with gardens and desem rocks, and containing a church, the glass house, and the royal bospital;-Ladustads-land, containing the Ilummel Garden; atso lrederickshol, with the arsenal, and a collection of artificial curiosities, the artillery house, the laboratory and the docks; Litle Ilessinger and Beckholm.

The last portion of Stockholm is Sodermalm, situated to the south of the city. It contains it number of good stone buildines, which gradnally fall off into a village bounded with gardens, and an uncultivated country. In the Sotermatm is situated the town house (an object worth visiting), the courts, the semate homse, the fireck and Roman Catholic chapels, the charehes of St. Mary and St. Catharine, with the schools and work-houses, the hospital, the mad-house, and the house ol correction.

The number of bridges in Stockholm amounts to twedre. The houses are foumded generally on piles. In the cily they are built of stone, and are four or fivestories high, but a freat portion of the city is composed of mean buildings, constructed of wood, and even of miserable hats, inhabited by the most indigent persons. From this catuse, Stockholm is, according to Kutner, like no other city. After leaving the principal parts of the town, " you arrive," says Kutter, "at immense naked rocks of granite, betwean which you meet with gardens, windmills, tobacco plantations, and wetched huts, all of which belong to the town, and are situated within the enclosure by which it is surrommed. In those parts of the town I have met with situations in which I imagined myself amoner the.\(~ 1 l_{p s}\), where I saw nothing but a l'ew miserable huts scattered among the wildest and most ronantic rocks, which conceal the other part of the city so completely, hat you imagine yourself in an minhabited country. li, however, you asceud to the summit of one of these rocks, you enjoy the most romantic, and at the same time the most maguificent views of a splendid metropolis; in a word, you survey with one look, palaces, churches, islands, lakes, harbours erowded with ressels, intermingled with maked rocks. This it is that renders Stockholm perhaps emique in its way. I never beheld from one point of riew, any thing so beautiful, so magnificent, and so sublime, nor yet any thing so mean, so rude, and so wild, within the circumference of a metropolis."

The principal public building in Stockholm is the royal palace, a large quadrangular structure, with a court in the middle. It is said to be surpassed only by that of Versailles. The lower part of the wall
is of polished granite. The upper part is of laris.s. coveral with stucos, ant the rool is of eoppore. I: contains, besides the royal apartments, a mat thand. the hall of the sates, a reallety of patatiares, the muscum, and the King's libraty. 'The muscom is a collection ol amtigues, made by Gastarus 111 . Amons the stathes is the celepnated linemaion, foumd in the villa Aelriana; it is a figure somen hat laterer than life. lying asleep, and quite maked. The royal hibatry
 among other curiosities, contaius the ropy of the (Vulgate) bible, nsed by Lither, with manam diy. notes in his own hath: and aldo thr leatin l's: look of the emperor leadimend, when in the wo wers war fell into the hando of Ginstavos SI.

In Lofin, otherwise called lowhinghtm. of the Queen's island, stands the most matgalicomt patace belonging to the kings of Swederl. ©xhitatios the elegance, the laste, the laxury, and the matrolifeme of Versailles. The cabinct of hatural hishory, adjoining the king's parate harary is mandiable as hating beon arrangeed and described by labmanz. Amons the oldeets of interest in the capital, is the Fredericshot, or collection of artilicial curiontioss and armour, otherwise called the arsenal. 'The vothes and ams of Charles Xlí. and those of Cotravus 115 . are carcfulty preserved in this collection, which contains an inamense number of standards and trophietaken chielly from the Imperialists, Poles, Runsionand Dancs. Bere also is the stuted skin of the homet which carried Colustavus Aduiphus at the battle of Lutzen, and the boat made by Peter the fireat, at Sardam in Ilolland, which was taken by a Swedish ressel as it was conveying by sea io St. Feteroburer.

The principal socictics and institutions in this Metropolisare, 1st, The Icadeny ol sciences, fumber in 1730 , divided into nine clasoes, and comprehending 100 native and \(2 f 0\) foreisn members. Dd, The Swedish academy, founded in 1716 , consisting of 18 members. whose object is, \({ }^{*}\) the improvement of the Swedish language, poetry, and clogucnce. St, The acatemy of painters and statuarics. founded in 1735.4 th, I military academy, established in 1540. sth, An academy for painting and scmpture. 6th, An academy of music, establishod in 1T61. Sth, A statistical agricultural society. established in 17:2. 94h. Amedical college. 10th. A saving bank, in which 5000 workmen have deposited money.

The harbour of Stockholm is particularly commodious. It can accommodate with safety a thousand sail of shipping, and the largest can come close to the quay. The entrance, howcver, to the harhonr, is rendered dangerous by the numerous rocks and small islands with which it is beset; the distance of the harbour from the Ballic is more than twenty miles, and in one place the passage is contracted and bounded by high rocks. There is here a regular institution called the company of divers, which is bound to have persons ready to assist at all shipwrecks on the Swedish coast; they are entitled to a proportion of the goods saved as salrage. The number of vessels that enter the harbour amually is from
* It is a curious fact that this socicty awarded the gold medal to Gustavus III. for the best biographical Essay on Leonard Forstensoln, without knowing who was the author.

900 to 1100 , and the trade of Stockholm is equal to two-thirds of that of the whole kingdom. In 1816 Stockholm shipped

The chicf exports are the above articies, also pitch, iar and timber. The annual export of iron is about 400,000 shippounds. The imports are salt and colonial produce, wine, French and British manufactures. The vessels employed in this trade are chiefly Swedish. The inland trade ol Stockholm is considerable, and is greatly facilitated by the lake Maelar, which stretches sixty miles into the interior, and by means of the lake Hielmar, which is crossed by an old stone bridge, and the canals of Arboga, it extends from Stroemsholm over the four provinces, and reaches the boundaries of Datecarlia.

The manufactures of Stockholm are leather, silk, cotton, hats, stockings, earthenware, watches, clocks, and articles of gold and silver. There are here also iron-founderies, glass-works, sugar-refineries. The population of Stockholm has been reckoned as high as 92,000 , but very recent accounts make it only 78,000. \({ }^{\text {. The number of Journals published in Stock- }}\) holm is estimated at thirty. E. Long. of the observatory. \(18^{\circ} 30^{\prime} 30^{\prime \prime}\). North Lat. \(59^{\circ} 20^{\prime} 31^{\prime \prime}\). For farther information respecting this capital, See Cox's Travels in Polund, Russia, Sueden, Sec., vol, iv: p. 33; Kutuer's Tiatels through Denmark and Suceden, Es. in 1798 and 1599; Catteau's Voyage en Allemagne et en Suede, tom. ii. p. 267, Paris 1810. Dr. Clarke's Trevelr, vol. \(\operatorname{r}\) p. 152. Rordanz's European Commerce, p. 211. Schubert's Travels in Seeden, Exc. in 181\%. 1818 and 1820, in German.
STOCKING MANUFACTURE, Sef Chanwork, Vol. V. p. 597. chap. ii. where this subject is fully treated. Sce chapter on the Manifacture of Hosiery. See also Exgland, Vol. Vill. p. 584.

STOCKPORT, a large market and borough town of England in Cheshire. It is situated on the river Merss, principally on the top and sides of a hill, and the sucets are very irregular and stecp. The primcipal public buildings, \&ec. are the parish church of St. Naty, a large but decayed structure; a Calvinist chapel; a Roman Catholic chapel; various meetinghouses for Presbyterians, Methodists and Quakers; a free school, lounded in 1487; a large Dispensary built in 1797: a subscription school erected in 1805; and several Sunday schools, one of which, conducted by the Nethodists. educates 3000 children gratuitously.

The coton trade and the manufiacture of silk form the principal employment of the population of this place. \(\quad \ln 1810\) there were twenty-live large factories for cotton gouds, one silk mill, and several establishments for muslin; one of these factorics is on a very extended scale, and is driven by the Mersy, which is brought to if be a subterraneous tumel. Nany of the

London haberdashers have establishments here. I3y the canal lately mate to Manchester, the trade of the town has been greatly facilitated. Stockport has two annual fairs. It is a place of great antiquity, the Romans having had a camp here, and the Saxons a fortress. The lollowing was the population of the township in 1821.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & \\
\hline
\end{tabular}

STOCKTON upox Tees, a market and borougt town of England in the county of Durham, is situated on the north bank of the Tees, which is crossed by a handsome bridge of five elliptical arches, that cost 8000l., and was built between 1764 and 1771. The centre arch is 72 feet span and 23 high. It is neat and clean, and is reckoned the most handsome rown in the north of England, both for the breadth of its principal strect, and the general elegance of its buildings. This street, which is formed by the road to Durham and Sunderland, is a bout half a mile long, and sixty yards broad, with the market place in its centre, continting nearly as broad to both ends. Several smaller streets branch off in different directions, and there is a spacious square at the northeast side of the town, which contains some good houses, and has been recently enclosed and planted by subseription. The houses are in general built of brick and covered with tiles, and the streets are well paved, flagged, and lighted. One of the principal public buildings is the church. It is a handsome brick building, with the doors and windows faced with stone; its length is 150 feet, and the tower eighty feet high. There is a theological subscription library kept in the vestry. There are also meetinghouses for Presbyterians, Roman Catholics, Quakers and Methodists. The town-hall, which stands in the middie of the principal street, is a large square structure, with a lolty cupola and spire. It is partly used for a tavern, and comprehends an elegant suite of assembly rooms, a court room, a coffee room, and other public apartments, with warehouses, shops, and a piazza underneath. In its vicinity in the market place is a handsome Doric column, thirty-three feet high. The custom-house is a commodious building. Stockton has a neat theatre and several libraries. The charitable institutions are a charity school for twenty boys and twenty girls, to which has been added a national school with about 350 children, a school of industry for girls, two Sunday schools, a dispensary, and amshouses for thirteen poor fimilie's. The almshouses occupy an elegant Gothic building, in which is a committee-room, where the affairs of the poor, and those of a savings bank are transacted.

Stockton, from its convenient situation, enjoys a
great trade, which has bect much facilitated by a navigable cut made in 1810 for shomening the navigation of the river. The export trade consists of lead, hams, butter, pork, cheese, leather, srais, lluur, sailcloths, huckabucks, tammies, and plan linen. The imparts, which are chielly trom the Batic, llamburg, Nonway, and holland, consist of hemp, hax, iton, timber, lincn, yarn, sheetings, hides, bark, seeds, Genera, Ece. In 1795 the mmber of ressels betonging to the port was 47 , carrying 5733 tons.

The principal manulactures of Stockton, are two ol saifecluth, two brewerics, two rope-walks, two shipyards, two irou fouderies, a soap house, also manufactories lor damask, diaper, and huckaback, towelling and check limens. There is also here a large dry dock.

The town is divided into two parts, one called the borough, and the other the town. 'Ihe civil grovernment is vested in a mayor, alderman, and recorder, besides inferior officers. Stockton had once a castle, but the moat is the only remaning vestige of it.

The population of the township in 1821 was
\begin{tabular}{lrr}
Inlabited honses, & & 893 \\
Number of ramilies, & & 1113 \\
Ditto employed in Igriculture, & - & 60 \\
Ditto in Trates, & & 454 \\
\(\quad\) Total Population, & & - \\
\hline
\end{tabular}

STODDARTSVILLE, post village, on a branch of Lehigh river, and in the southeastern part of Lazerne county, Pennsylvania, 18 miles SE. by E. liom Wilkesbarre, 40 miles NV. from Easton, and by posi road 239 miles NNW. from Washington city.

STOKES, county of North Cirolina, bounded by Rockingham NE.; Guillord SE.; Davidson S.; by Yadkin river, which separates it lrom Rowan, SW.; and Surry W.; by the northern part of Surry NW.; and by Patrick county, Virginia, N. Length from south to north 58; mean breadth 24, and area 912 square miles. Extending in lat. \(36^{\circ} 02^{\prime}\) to \(36^{\circ} 30^{\prime}\), and in long. from \(3^{\circ} 32^{\prime} \mathrm{W}\). From Washington city. This county is a table lund, from which fow Dan river from the northern part; different branches of Haw river from the southeastern; and some conlluents of the Yadkin from the southern and southwestern. The soil is excellent. Germantown, the comnty seat, is situated near the centre of the county, at N. lat. \(36^{\circ} 20^{\prime}\), long. \(3^{\circ}\) 1S' WV. From Washington City, by post road, 355 miles SWV. from Washington City, and 127 NIV. by W. hrom Raleigh. Population of the county in 1820 was 14,033 .

Besides Germantown, there are post offices at Belew's Creck, Bethenia, Blakely, Boyle's store, Chesnut Ridge, Dobson's Cross Roads, Frost's ironworks, Little Yadkin, Red Shoals, Salem, Waughtown, and Webb's.

Darby.

STONE, a town of England, in the county of Stafford, is situated on the northern bank of the Trent. It consists chiefly of one long strect, with a new mar-ket-place, and several very excellent houses. The church is a neat building. There is a free school, and an endowed almshouse, a considerable manufac-
tory of shoes, and om: wh patent roller prampso In 1821, the population of Stone was, honses, 3.3 .2 famio lies, 555 ; ditto in trade, iss. Fotal papalation, 2835.
 with Dack river ant with Somey fork river, and nowing northeestand, latls into Cumbertand river, 6 miles abore Nashalla. Thar valley of Stone tives and Rutherlowd connty ane meaty commansurate. The county from it; outine hats been evidently lad out with reference to the smrlace inamen by this stream. I 1) nitas.
 Scotland, in the county of Sincardine, is -ituated on \(^{\text {on }}\) the east coast at the junction of the waters of Cowic and Carron. 'The old town lies on the south bank of ' the Carron, and theoblow is a peninsula bormed by the Coure and Curron. The old town has two considerable streets, and the new town, foned by Mr. Biatelay of Uric, has a square in the centre, with broed streets on a regular plat. The harbour is lormed by an inland basin delended on the Sli. by a high rock, which extends into the seat, and on the N. L . by a commodious quay. As the mouth of the harbour is beset with submersed rocks, it is wot very sale, thoush capable ol great improvencot. The browat linen manufacture has been for some time estublished here, and the trade of the place is considerable. The Sheritl Court of kincardineshire is held here. The public revenue is \(\mathcal{E} .45\). 'The population is about 2000 .

STONEILENGİ. Sce Wiltsme.
STONINGTON, post town, borough and seaprort, in the southeastern part of New London counts: Connecticut, 10 or 11 miles a little S. of E. from New London, and 55 SE . by E. from Hartford. N. lat. \(41^{\circ} 19^{\prime}\), long. \(5^{\circ} 0 \mathbf{7}^{\prime}\) E. Trom Washington City. Stonirgton was incorporater as a borough in 1801, and in 1820, contained, independent of the residue of the township, 800 inhabitants, une cotton factory, two woollen factories, an academy, and two or three places of public worship.

STORNOWAY. See Lhwis, Vol. XIf, p. 17.
STOURBRIDGE, a market town of England, in the county of Worcestershire. It is situated on the river Stour, over which there is a good stone bridge. It consists of several irregular streets on the road to Kidderminster, the chicf of which contains many sood houses. The church is a plain building. There are also chapels for presbyterians, quakers, and methodists. A theatre was built in 1790 . The free grammar school founded by Edward \(1 V^{r}\). is well endowed, and managed by eight governors. The town is governed by a bailiff, a town clerk, and other officers.

Stourbridge has been long celebrated for its manufactures. 'The chief one is that of glass, which is carried on in ten glass houses, where broad glass, flint glass, and a kind of transparent red glass are made. Owing to the number of iron works in the vicinity, nails, agricultural implements, and other articles of ironmongery are manufactured in the town. Here are also manufactories of crucibles, stovepots, bricks, and tiles. Broad and narrow cloths are likewise manufactured here, and leather from sheep skins. Coal, iron ore, and clay, are found in the neighbourhood. The clay, which is unrivalled, is found at the depth of 150 feet, beneath three different strata of coal. It occu-
pies 200 acres, 48 of which contain clay of a very superior quality, and not less than 1000 tons of it are amually taken up. The Stourbridge canal unites that town with the great limes of inland navigation. The population in 1821 was
\begin{tabular}{lrr}
Number of lıouscs, & - & 079 \\
Number of l'amilies, & - & 1081 \\
Number in trade, & 1034 \\
Total population in 1821, & - & 5020
\end{tabular}

STOURPORT, a market town England, in Worcestershire which has sprung up since 1 ati in a barren heath. The town is handsome, and even elegant, and the houses in it are commodions. The streets are full of shops and througed with people. The principal objects here are a handsome chapel ol ease, and the irom bridge over the Severn. It consists of one arch of 150 feet span, and 50 fect above the water. The avenues to this main arch consist on both sides of a long range of smaller oncs of brick, extending on the whole between ron and \(\operatorname{tog}\) feet. The toll has been farmed at \(f\) sot per anmm. Population 3000.

STOM Market, a town England, in the county of Suffolk. It is situated on the river Cipping, and is a flourishing place, with several excellent honses. The ehurch is a handsome building, with a wooden spire \(1: 0\) feet high. The house of industry for the hundred, which is an elegant building, stands ahout a mile from the town. There is here a manufacture of ropes and sacking. From fitten to twemt houses are engaged in the malting trade. The population of the town in 1821 was 2250 . Sec Iazam Naveratmo Yol. XIV. p. 2si, for a notice of the camal to Siow Market.

STRIFFORD, county of New Ilamphive. bound(cd, by Rockingham, S: Meminack SIV; Crafton W. and NTV: White Dountains separatiog it from Coos N; Oxford county, Maine, NE: and lork county, Maine, l\% and SE. Length from Great Bay to the Thite Monntains is miles: mean width 21 , and area, 140 square miles. Extuding in lat. from
 L. from Wishimgon City. The nowthern part, ahong and near the base of thite Blountains, gives source th Sace river, which hows eastwand into Oxford, Taine: sonthward of Saco rises Great (ossipeariver, also a bramh of Saco, and flowing rastward into Whine, stparates Oxlord and York comuties. The northwestron and western border is drained into Nersimas river. The central section is ecenpiad by Wincpisseogee lak: and its comflumts. This marms and imeruater shere of water is about 23 mites home whin a breadth varying liom one te cight miles. It is diocharsed into Nertimac riser by Winepissengre tiver. The southeatem ancle ward (ircat bay is datined by some recks of Piscataqua.

The fental dechisty of this commy is sonthwart. The sutface hilly, and rocky, and in part moumainous. Soil produrnse in grain and pasturage. The onts are held alemately at Dover and (inifined. Dover is situated on Conchecho river, by post road 5 miles E. From Concom, the seat of govemment of he state. Cinillord is on the left bank of the Winphisseogee river, 30 miles a little E. of N. from Com-
cord. Besides the two county towns there are 50 other places, each having a post office. This large county in 1820, contained 54,617 , or something above 34 to the square mile.

Darbe.

STRALSUND, is a sea-port town of Germany, and the capital ol a government of the same name belonging to Prussia. It is situated in the strait which separates the island of Rugen from the main land. From the sea it has a good appearance, but upon a nearer approach its aspect is gloomy, from the narrowness of the streets, and the lowness of the brick honses, which are pointed at the top. It contains four Protestant and one Catholic churel, two of which. the cathedral and the church of St. Stary, are handsome. In the lormer the baptismal lonts, the altar, and the lamps, are worlhy of notice; and in the latter the paintings and the organ. The principal public buildings are the govermment house, the govemor"s house, the town-house, the arsenal, and the mint. The town-house is a singularly beautilul Gothic building, in a very peculiar and remarkable style. There are here an academy, a public library, an orphan house, a poor house, and a lunatic hospital.

The harbour ol Strulsund is safe and capacious. Kutner remarks that he saw more vessels in it than in any of the ports ol'Sneden or Demmark, excepting Stockhoh, Copenhagen, and Gottenburg. Vessels of more than filteen leet draught of water are obliged to unload in the roads. The chief manufactures are woollen and limen goods, tobacco, soap, glass, and earthenware, with breweries and distilleries. Shipbuilding is also a considerable branch ol trade. The principal article of export is corn, of which about 55,000 quarters are amually exported. It is, however, inlerior in quality to that of Neckenburg. The imports are principally colonial produce and foreign manulactures. Irom being bounded at one part by the sea, and other places by lakes and marshes, it is accessible only by bridges. Belore 180 \({ }^{\circ}\), it was a well fortified town, but since then the works have been in a manuer dismantled. The town is supplied with water by hydraulic machinery, near the Gate of Kuter. The promenades are the Giadens of Westphal, ol Richter, of llagemeister. and of Wollf. Population 10,00n, exclusive of the grarison.

SThange, Sin Roneme, an eminent Scotish engraver, was bom in the Orkney Iskes in 1721. He entered into the rebel army in 1745 , and after its disconfoure he went to lerance. Llavine returned to England in 1751, he became the head of historical engraving in this conntry. He died in \(1 \pi 92\), leaving behind him the reputation of great talents, and a good

STRUNRARR. SoC Wigtoxshane.
SThASl?URG, a city of lrance, and capital of the deparment of the lower Rhine, is sitnated at the junction of the Brusche and the Ille, about hall a mite liom the lhbine. The town occupies a space of a semicirentar lorm, and is intersected by canals crossed with bridges. The houses, built in the German fashion are bigh, massy, and consist of a soft red stonc. The great street, and a few others, are regular and spacious, but the rest are exceedingly narrow: The
number of strects are said to be 200. The Pluce D'Armes, a square, survoucled with trecs, contains some good buildings. The town is delended by a regular l'entagon, composed ol five bastions and live half-moons. Its citadel lies towards the east, and its outworks reach almost to the Rhine. There are six bridges across the Ille, two of stonc, and four of wood, and a wooden one sano leet long, across the Rhine, supported in the middle by an islaud on which is a strong castle.

The principal public buiding is the Gothic cathedral, founded in 1015, and fimished in 1275 . Its stecple terminating in a pyramid, is 470 l'eet high; is ascended by is stair ol 635 steps, and is the highest in the world, excepting the great pyramid, which e:ceeds it by about 30 Ceet. The tower has the openness of lacework. During the revolution many of the omaments together will its statues were destroyed. 'ihe clock which exhibits the movements ol' the planets, was made in 1571. The chureh ol' St. 'Thomas contains the mausoleum of Marshall Saxe. 'The other public buiddings are the town hall, the episcopal palace, the arsenal, the loundling hospital, the town hospital, the public framaries, the theatse, the observatory, and the monument to Gencral Dessain.

Strasburg possesses sereral small manufactories of common clotlis, lace, skins, pens, hats, candles, hair powder, artificial llowers, cutlery, paper hangings, vermilion, Exc. The articles of export are com, beef, flax, wine and spirits, likewise linen, blankets, carpets, and hardware, leather, cotton, and tobacco.
The establishments for eclucation, sec. of Strasbures, are the Protestant gymmasium, conducted by ten professors, the central school of the department, the
school of medicine, the society of ats and sciences, the liete soricty ol agriculture, an anatomical theare. two public libraries, the physical and matural histery cabinets, cabinets of aminginies and mechanics, ant is botanic farden. Suashoter is the scat of a hishatp: and the capital of the deproment of the lower lathe.
 and Xorth lat. I: \(_{3} 31^{\prime}, \sigma^{\prime \prime}\).
 England, in Warwickshime, mdedratmen ai the linthplace of Shakspearce It stands on :lat: wost hank of
 large and six small arches, and lladuedone. Theor are twelve streets, several of which in." it a point like the rays of a star. The chid buikdin, are f!a church, and the town hall, the lormoe is the place os Shakspare's interment, and the latere contaias cach lent pornaits of Shakspare and rimick, be Wilson and Gamshoroush. The townisernerned by amayor: recorder, hith steward, 13 ahlermen, und iss capioal burcesses. Bymeans of the Stratlurd on Aron cantat, large quantities of millat ant com are here copported. Population in 1:221, 3150. For liather information of Stratford, sce Mr. Mbuters Mistory of Stration. 1sun, and his Gimile to \(S^{\prime}\) melfort, lith.
 Buckinghamshire, is situated on the Amon, which is here crossed by a stone bridere. The honaw which are ol' freestone, cxtend a'rout a mile on cacle sitle of the road. 'The church of'St. (iiles is neat, und the ef is a good market wom. The principal orcupation a! the people is that of lace making. The poprutation in 1921 of the west side and cast side parishes, was 1tte inhabitants.

\section*{STRENGTI OF MATERIALS.}

Under the article Carpentuy, we have taken a concise view of the strains to which timber and other materials are exposed in buildings and other constructions, and hase promised our readers to enter upon the subject again more at large in a subsequent part of our work, a pledge which we propose to redeem in this place. At the time that article was written, we conld not but regret the poverty of direct information to be obtained as to the absolute experimental strength of various materials of common application in the arts, and we expressed our hopes that something of this kind would be undertaken by some of our scientific men, in order that the practical mechanic might be furnished with principles on which he might place reliance, and not be left to the mere result of his own experience. Since that time much has been done towards obtaining the data then so much wanted, first by Mr. Barlow of Woolwich, who ob-
tained permission from the nary board to make any selection of timber, and to avail himself of any iacilitics which the duckyard at that port might fiumish for carrying his viewsinto excention. "These results. with a pretty general abstract from most preceding experimemiers, have been published by him in his . Es say on the Streneth of Timber, we." which contains alse a valuable set of experiments made by Thomas Telford Esq., and another by Captain Brown the ingenions inventor ol iron cables) on the direct strensth of malleable iron. Nlr. Tredgold also in his Principles of Corpentry, and in his Trective nat the brenteth of Cast Iron, has added much important information on these subjects, as has also John Rennie, E:sy in the Philosophical Transactions for 1818, and lastly, Mr. Hodgkinson in volume lourth of the Manchester Memoirs, has given us a detail of various cxperiments of this kind which cannot fail of being considered
highly curious and important. From these sources we shall in the present article endearour to make such a collection of results as to furnish the practical builder and engineer with data on which he may securely depenc, and rules proper for making the requisite computation in any new case that may present itsclf.

The following divisions are generally made of the various strains to which materials are exposed.
1. They may be drawn asunder by a force acting endwise.
2. 'lhey maty be compressed and destroyed by a force acting also endwise.
3. A bar of any substance may be strained laterally, one part being supported, and the strain applied immediately at the point of the support, as when a tenon bereaks or a rafter fails at the wall. If the material is cast iron or any similar substance, viz. nonfforous, the direction of the force with respect to the body is important, but in fibrous bodies, as timber, this strain mar be considered under two distinct heads: accordingly as the force acts perpendicular to, or parallel whithe the direction of the fibres.
4. A bar or beam may be strained transversely, as in the case of a girder or rafter.
5. It may be twisted. as in the axle of mills, Exc.
5. It may be strained by any two or more of these forces combined.
\(\therefore\) A material may also be strained by an intemal pressure, as in the case of hychraulic cylinders, picces of ormance, water pipes, \&c.

Treshall consider each of these strains in the order in which they are stated above, and make such additions to the results given under the article carpontry, as are supplied by the recent experiments to which we have reftred, and as these have generally been made with more precautions, with better means, and on largo sprecimens, we beg distinctly to state, that where these results differ essentially from the former, "here can, in our opinion, be no doubt that the ereatest comflenter is due to the latter, we shall therefore senerally omit all carly and doubtful results.

\section*{Wh the rexistance to extonsion in lenerth wising from the dind colursinn of the fibres or particles of mat\(1+r\).}

Is fill as the mechanism of this strain is concerned it is the most simple of any of those above enumerated, but it is by momeans the casiest to submit to experiment, particulaly in timber, becaluse, if the lore is not directiy opposed to the lixed point, the fibres are liable in be destroyed by a twist or strain differnt from that we are endearoming to estimate: it is probably to this ircumstance we must attribute the discombance observed in the results obtained by diflerent experimenters and it is for this reason we have thought it risht to inform the reader of the means employed wissure arruracy in this respect in making the following experiments. Referring to Fig. 1. l'iate AB represents one of the pieces whose streugth is to be letemmined. its whole length being twelve inches: the fength of earh square three and a half inches, thl the side of the square one and a hatd inches: the
intermediate part, five inches, was turned in an excellent lathe and by a good workman, and brought down in the centre to one-third or one fourth of an inch in diameter, its exact diameter being ascertained by winding a piece of silk ten times round the circumference, which length divided by ten, gave the circumference, and hence the diameter was compuied. The other cylindrical parts were each threc-form ths of an inch in diameter. CC, DD, Fig. \(\sim\), represent two strous iron bars brought to the form shown in the drawing. GG, are two screws which are passed through the lones IIH, in the bar DD, and are there screwed fast by the nuts 11 ; EE are two semicircular collars rivetted, one to each bar, which, when the two are screwed together, form a circular piate, as represented in Fig. 4. The circular hollow parts ce, are three-fourths of an inch in diameter, so as to fit exact\(1 y\) the larger part of the cylinder shown in Fig. 1. These bars, alter being screwed together, were rested on the supports as in Fig. d, ancl then broucht out of winding and accurately adjusted to a borizontal position by a spirit level.

The two iron boxes, NNO, M'N'O', Fig. 3, were made exactly to fit the square head B of Fig. 1, having also two semi-circular holes at the top correctly fitted to the larger part of the cylinder: these were shut by passing the holts M'N' through the holes NM, and were thus secured by the shears shown in Fig. 4. In making the experiments. the head A of Fig. 1, was placed ahove the collars EE, Fig. 2, the upper larger cylindrical part of Fig. 1 being placed in the hollow parts ef of Fig. 2 , when the two parts were securely fixed together by the nuts and screws IG. IG. In the same manner, the lower cnd of Fig. 1, was enclosed in the two iron boxes \(M \mathrm{NO}, \mathrm{I}^{\prime} \mathrm{N}^{\prime} \mathrm{O}^{\prime}\) Fig. 3 , and fastened in that position by means of the bolts \(\mathrm{MI}^{\prime} \mathrm{N}^{\prime}\), and the shears abore described. The whole were then rested on the props Fig. 4, and the hook of the seals being inserted in the circular hole formed by \(\mathrm{OO}^{\prime}\) Fig. 3, the whole was ready for the experiment as shown at large in the former figure.

Every thing being thus prepared, the wedges shown in the plate were introduced under the scale to keep it steady, whic the larger weights were put in. The wedges were then removed, and smaller weights added in succession till the fracture took place. As a small ribration in the scale might cause a fracture in the small cylinder submitted to the operation of the weight, four small braces were made use of, one at cach corner of the scale, to prevent any such motion; and erery other possible precaution was had recourse to in order to cosure accuracy in the results, which in this case was the more necessary, as these were afterwards to be introduced in order to examine some of the more complicated strains and resistances. The following are the principal results obtained in these experiments, the smaller cylinders being reduced to what they would have been on square inch bars: it being assumed that the strengtla or resistance is proportional to the section of tracture, of which, it is presumed, no doubt can be entertained, it should be observed that these were select specimens of tim. ber which had been a long time in store and perfectly dry.

Experiments on the direct conesive strensth of timber.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Names of the woods. & & & & & \[
\begin{aligned}
& \text { Mean re- } \\
& \text { sult. }
\end{aligned}
\] \\
\hline 1 & Fir. & 600 & +12ch. & 1140 & 12993 & \\
\hline 2 & do. & 600 & 1.10 & 1260 & 13473 & \\
\hline 3 & do. & 600 & 1.10 & 1191 & 12037 & 12875 \\
\hline 4. & do. & 600 & 1.05 & 1160 & 13230 & \\
\hline 5 & do. & 600 & 1.11 & 1213 & 123:1 & \\
\hline 6 & do. & 600 & 1.05 & 1180 & 13448 & \\
\hline 7 & lir, different sorts. & 581 & 1.10 & 1059 & 11009 & \\
\hline 8 & do. & 564. & 1.10 & 1201 & 124.72 & \\
\hline 9 & do. & 601 & 1.10 & 1094 & 11360 & 11549 \\
\hline 10 & do. & 611 & 1.10 & 1150 & 11756 & \\
\hline 11 & do. & 532 & 1.10 & 1076 & 11180 & \\
\hline 12 & do. & 500 & 1.10 & 1112 & 11548 & \\
\hline 13 & Ash. & 594. & . 8800 & 11100 & 17850 & 1 \\
\hline 14 & do. & 611 & . 9000 & 11056 & 17003 & \} 17207 \\
\hline 15 & do. & 611 & . 8750 & \(1(24\) & 16:70 &) \\
\hline 16 & do. & 600 & . 8375 & 881 & 15784 & \\
\hline 17 & do. & 600 & . 862.5 & 1025 & 17315 & 16947 \\
\hline 18 & do. & 600 & . 8750 & 1081 & 17\%42 &) \\
\hline 19 & Beech. & 712 & . 880 & 716 & 11026 & \\
\hline 20 & do. & 694 & . 890 & 721 & 11.437 & \(\} 11407\) \\
\hline 21 & do. & 700 & . 900 & 731 & 11338 &) \\
\hline 22 & Oak. & 700 & 1.10 & 8.56 & 8889 &) \\
\hline 23 & do. & 700 & 1.10 & 887 & 9211 & (9198 \\
\hline 24 & do. & 700 & 1.10 & 908 & 949.1 & \\
\hline 25 & do. & 920 & . 8800 & 740 & 12008 & 11 \\
\hline 26 & do. & 920 & . 8750 & 712 & 11660 & 11580 \\
\hline 27 & do. & 920 & . 8900 & 698 & 11072 & \\
\hline 28 & Teak. & 860 & . 8625 & & & \\
\hline 29 & do. & 860 & . 8625 & 900 & 15203 & (15090 \\
\hline 30 & do. & 860 & . 8625 & 912 & 15405 & \\
\hline 31 & Box. & 960 & . 8625 & 1168 & 19730 & \\
\hline 32 & do. & 960 & . 8625 & 1160 & 19595 & \} 19891 \\
\hline 33 & do. & 1024 & . 8625 & 1200 & 20348 & \\
\hline 34 & Pear. & 646 & . 8625 & 683 & 11537 & 20800 \\
\hline 35 & do. & 646 & . 8500 & 523 & 9096 & 9822 \\
\hline 36 & do. & 646 & . 8625 & 523 & 8834 & \\
\hline 37 & Mahorany. & 637 & 1.1125 & 783 & 7950 & \\
\hline 38 & do. & 637 & 1.1125 & 753 & 7950 & 8041 \\
\hline 39 & do. & \(637^{\prime}\) & 1.1125. & , 8101 & 8224 & \\
\hline
\end{tabular}

These experiments were made, as is above stated, upon select specimens, and, therefore, exceed the general strength of wood of their respective descriptions; but, on the other hand, they were made with great care, and the general unilormity in the strengths of the similar specimens shows, that we may place great reliance on the results. These strengths, in the nearest round numbers, may be stated as below.
\begin{tabular}{ll}
l3ox, & \(20,000 \mathrm{lbs}\). per square inch. \\
Ash, & 17,000 \\
Teak, & 15,000 \\
Fir, & 12,000
\end{tabular}
\begin{tabular}{ll}
licech, & \(15,000 \mathrm{lbe}\) per square inch. \\
(bak, & 10,000 \\
Pear, & 9,1500 \\
Malhogany, & 8,000
\end{tabular}

The results, and the description of the apparatus, are taken from l3arlow's E'ssay on the Strength of Timbrr, and they may, it is conceived, be considered perfectly satislactory; therelore, where lormer results differ widely from these, they will be best omitted; for it is difficult to say whether furnishing a practical man with no information on this subject, or giving him a variety of discordant results, is most injurious? For this reason, in the following table we have omitted all those experiments given by Emerson and by Anderson, commonly found in our books: they are both clearly very inaccurate, unless they are meant to indicate the strain that may be safely borne, and not the ultimate strength, which probably is the case. In ascertaining the direct cohesive power of metals, much less delicacy of operation is required, because they are not so liable to rupture from a want of direct application of the power; but, on the other hand, they are generally made on specimens which require great force to break, and some inaccuracies are thus introduced into the results. A remarkable case of this kind occurs in the experiments reported in the preceding work, made by Mr. Telford, at Brunton's cable manufactory, and those made at Captain Rirown's manufactory; the specimens of iron were the same, yet the results differed in about the ratio of 29 to 25 . Mr. Barlow has shown the discrepance is most probably due to the two machines: In Brunton's experiments the machine employed was an hydraulic press, and the power exhibited by the small valve was opposed both to the friction of the piston, and to the bar, whereas it is supposed to be opposed only to the latter; this machine, therefore, overrates the power. Captain Brown's, on the contrary, was constructed on the principle of the weigh bridges, and, consequently, all the inertia was to be overcome before the exhibition took place in the register; we have, therefore, assumed the mean effect 27 as the truth, and have, accordingly, diminished the several results in Telford's experiments 7 per cent. and increased those of Brown's 8 per cent. They will thus be found to accord very nearly with some other experiments on which we have great reason to place reliance.

This being premised, the following tabulated results, will, it is presumed, be found highly valuable, and for which we are principally indebted to Mr. Tredgold, who has collected and arranged most of them in his edition of Buchanan's Practical Essay on Mill Work, and in his Elementary Principles of Carpentry.

Table of Experiments on the direct cohcsiv powers of various Materials.

\footnotetext{
*Wire being stronger than a bar of the same metal, it is probably proportionally stronger, as it is more reduced in diameter. The diameter therefore should be given
the experiments by Telford and Brown were principatly upon the same gpecimens of iron; some of them the same bars parted; they were made on bars aod bolt from one inch to two inches diameter, and we eonecive by far the most satisfactory.
}
\begin{tabular}{|c|c|c|c|c|}
\hline Names of materials. & & & Experimenters. & Quoted from \\
\hline Alloys. & \[
\left|\begin{array}{r}
5.6,0 \\
8.351
\end{array}\right|
\] & 32015 & Muschicmbrack & Intr. ad Phil. Nat. \\
\hline - 1 & 8.342 & 3ters & do. & do. \\
\hline \(6 \quad 1\) & 8.707 & 4, 4181 & do. & do. \\
\hline \(\pm 1\) & 8.723 & 357.39 & do. & \({ }^{1}\) \\
\hline \(2 \quad 1\) & & 1067 & do. & 10. \\
\hline Gun metal, hard & & 3ri3tis & lemnic & l'hil.'l'rs. lor 1918. \\
\hline Hrass, line yellow & & 173108 & do. & do. \\
\hline Tir, English 10 lead 1 & & \(69 \%\) & Muschenbrock & do. \\
\hline 88 & & 7920 & do. & do. \\
\hline 61 & & 6997 & 10. & do. \\
\hline i 1 & & 1160 & do. & do. \\
\hline \(2 \quad 1\) & & 740 & do. & do. \\
\hline 1 1 & & 7074 & do. & do. \\
\hline 'I'in, Banca, 10 Antimony 1 & 7.359 & 11181 & do. & do. \\
\hline \(\stackrel{8}{6}\) & 7.276 & \(!1881\) & do. & do. \\
\hline 6 & 7.228 & 12032 & do. & do. \\
\hline 4 I & 7.192 & 13480 & do. & do. \\
\hline \[
2 \quad 1
\] & 7.105 & 12029 & do. & do. \\
\hline \(1 \quad 1\) & 7.060 & 3184 & do. & do. \\
\hline Tin, Banca, 10 Bismuth it & 7.576 & 12688 & do. & do. \\
\hline \begin{tabular}{l}
\(\stackrel{4}{9}\) \\
\hline 1
\end{tabular} & 7.613 & 16692 & do. & do. \\
\hline \(\stackrel{1}{2} 1\) & 8.076 & 1.1017 & do. & do. \\
\hline \(\begin{array}{ll}1 & 1 \\ 1 & \end{array}\) & 8.146 & 12,20 & do. & do. \\
\hline \(\begin{array}{ll}1 & \\ 1 & \\ 1\end{array}\) & 8.580 & 10013 & do. & dro. \\
\hline Tin, Banca, \(10 \frac{1}{\text { Kine ludiand }}\) & 9.009 & 7 M 5 & du. & do. \\
\hline Tin, Banca, 10 Cinc Indian! & \%.24S & 12914 & do. & 10. \\
\hline - \(\quad 1\) & 7.000 & 15125 & do. & do. \\
\hline \(1 \quad 1\) & 7.321 & 158. 1 & do. & do. \\
\hline \(1 \quad 1\) & 7.100 & 1 6023 & lo. & fo. \\
\hline Tin \({ }^{1}\) - \({ }^{10}\) & 7.130 & 5671 & do. & do. \\
\hline Tin, English, 8 ZincGosl:u1 & & 10007 & do. & du. \\
\hline \(\begin{array}{cc}4 & 1 \\ 2 & 1\end{array}\) & & 10258 & do. & do. \\
\hline \[
\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}
\] & & 10964
\(902 i\) & do. & do. \\
\hline Tin, English, 1 Anlimony 1 & 7.000 & 1450 & do. & do. \\
\hline 3 2 & & 3184 & do. & do. \\
\hline \(4{ }^{4} 1\) & & 11343 & do. & do. \\
\hline Lead, Scolch 1 Bismuth 1 & 10.931 & 7319 & & do. \\
\hline \begin{tabular}{|r|}
2 \\
10
\end{tabular} & 11.090 & 58.0 & do. & do. \\
\hline 10 - 1 & 10.827 & 2824 & do. & do. \\
\hline
\end{tabular}

In addition to the above table of the cohesive powers of different simple materials, we may add the following on the strength of iron and hemp, when manufactured into chain and rope.

Table of Experiments on the strensth of chain* made of rarious descriptions of re-manufaetured iron (Foreign and British.) By Capt. S. Broun, R. N. from Bartow's Essay.
\begin{tabular}{|c|c|c|}
\hline Diameter of bolt. & Description of iron. & Mreaking wempht increased 8 perrent. \(\dagger\) \\
\hline inch. & & tons. cwi. \\
\hline & Old sable \(1 \frac{1}{2}\) inch square bar cut into two feet pieces, piled, and rolled into bolts, & 5914 \\
\hline 11 & Ditto do. . & \\
\hline \(1 \frac{1}{2}\) & liurcoft new sable, do. & \\
\hline \(1 \frac{1}{2}\) & Keiolsken archangel inch square bars, cut and rolled as above, & \(79 \quad 17\) \\
\hline 13 & Old bolt taken promiscuously, piled and faggotted by hand hammers, & \(80 \quad 9\) \\
\hline lull \(1 \frac{1}{2}\) & English bars piled and rolled, . & \(96 \quad 15\) \\
\hline bare \(1 \frac{1}{2}\) & Ditto do. & 90 \\
\hline & Old Dutch bolts faggotted by hand hammers, & \(79 \quad 17\) \\
\hline \(1 \frac{1}{2}\) & No. 1, 5-8 inch Welsh iron, hammered into bloom, aod rolled into bolts at King and Queen works, & 8816 \\
\hline & No. 2, \(\frac{3}{4}\) inch Velsh iron, manufactured as above, & 328 \\
\hline & No. 4, Welsh iron faggotted and hammered at Captaio Brown's works, & \\
\hline & No. 6, 5-8 ditto rolled but not hammered, at King and Queen works & \\
\hline & & \[
\begin{array}{rr}
85 & 10 \\
90 & 0
\end{array}
\] \\
\hline
\end{tabular}

The mean of these experiments give about \(85 \frac{1}{2}\) tons for the strength of a double bolt of \(1 \frac{1}{2}\) inch diameter, which is about \(21 \frac{1}{5}\) toms per spuare inch, whereas from a mean of the experiments at Desses. Brunton's and at Capt Brown's mannlactory, the strength in the simple bars is about ats tous per square inch, loence the strength of iron manulactured into chain without stays to the link is th that in the simple bolt at \(24 \frac{1}{5}\) to 27 f, viz. it loses about 11 per cent of its strength ; but when protected by stays, the loss is scarcely two per cent.

Table showing the different kinds of best tower cables at present employed in the British Nuery, with the correspondine Iron Cubles, their respective stornsths, and Rope of different dimensions.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fiatey of ships,
soc. & & inn & litt & & & & Briaknug -tr:ain by 1.xperathe'al. & Diameter and werght of loolt of tron cably 4rab. thtuted for hemyen rable \\
\hline Ist Rate large middle small & \[
\left\{\begin{array}{c}
\text { ne h. } \\
2.5 \\
9 \\
2+ \\
23
\end{array}\right\}
\] & \[
\begin{array}{r}
c z o t \\
11 i \\
10 . j \\
10 . j
\end{array}
\] & \[
\begin{array}{r}
T \\
2 \\
2 \\
2 \\
2
\end{array}
\] & \[
\begin{array}{r}
112 \\
17 \\
27
\end{array}
\] & \[
\begin{aligned}
& 32.40 \\
& 295.3 \\
& 2 \pi .31 \\
& 20
\end{aligned}
\] & & & 21.8 inch bolt 7.2 19 cmt \\
\hline Qd rate & 23 & 94 & 2 & \(2{ }_{2}\) & 2\%.iti & & -114 0 0 & siscwl. \\
\hline 31 rate large & 23 & 915 & 2 & 27 & 27.39 & & & \(1)\) \\
\hline small & 22 & N9 & 0 & 12 & 25: & & 89 00 &) 22 inch bolt \\
\hline ith rate bof grous & 21 & \(8!\) & 0 & 2.2 & 2:305 & & & § 150, 1-2 cwt. \\
\hline 59 Jo. & 19 & 6it & U & 21 & \(14 \% 2\) & & & (1 \(i-9\) inch bole \\
\hline 50 do. & 181 & 62 & 1 & 11 & 1751 & & & 1701-2cwi \\
\hline 5 th rate 45 do. & 18 & 58 & \(\mathcal{L}\) & 6 & 10.30 & & \[
63 \quad 0 \quad \text { (}
\] & \({ }^{\prime} 13.4\) inch bolt \\
\hline & 1.12 & 56 & 0 & 1 & 1585 & & & \(\int 1453\)-icst. \\
\hline 6thrate 28 do. & 141 & 33 & 0 & 21 & 11950 & & 40 \% U & 13.8 inch \(971-2\) ewt. \\
\hline Ship sloop & 13.3 & 23.3 & 0 & 10) & 4.30 & & &) 1-1-1 inch bolt \\
\hline Brig large & \(1.3 \frac{1}{2}\) & 3.3 & 0 & \(11)\) & 936 & & & \(\int-43-+\mathrm{cwt}\). \\
\hline Do. small & \(11^{-}\) & & 2 & 5 & 61: & & & 1 1-9 inch 61 3-icwt \\
\hline & 1 & & & & & & 4190 & \\
\hline Rope \(\}\) & \(3 \frac{1}{2}\) & & & & & & \(\begin{array}{lll}3 & 12 & 1\end{array}\) & \\
\hline & 3 & & & & & & \(9 \quad 101\) & \\
\hline
\end{tabular}

The above are, we believe, the most extensive and best authenticated results relative to the strength of the direct cohesive powers of materials any where collected, and will, we are persuaded, be highly useful to persons having occasion for any reference of this kind, for by a general comparison of all that has hitherto been given on this subject, we have been enabled to detect the erroneous results, (generally arising out of the employment of too small specimens) and have not introduced them into the tables.

It will of course be seen, that in this simple strain the resistance is proportional to the area of section, and that the strength of any sized rod of any material given in the table may be found by multiplying the area of section in inches by the strength per square inch, as given in the table.

\section*{Of the Resistance of Materials to Compression, or to a Crushing Force.}

The exciting force in this case acts dircetly the reverse of that in the preceding section, but its effect is by no means so simple and defined. There are, in lact, here two cases to be separately considered, one when the body acted upon is too short to bend, and the other when it is of considerable length with regard to its other dimensions. In the former case, the mate-
* The links of these chains were of an oval form: greatest interior diameter six ioches.
\(\dagger\) The machine underrates itself 8 per cent, see p. 497.
rial is destroyed by actual pressure ; hut in the latter, it generally bends in one or more directions, and is ultimately broken by a force similar to that exerted by a transverse strain; it will be better therefore to reserve the latter case till we have treated of the transrerse strain, and confine ourselves here merely to the crushing force, on which subject the following valuable table of experiments have been published by John Rennie, Esc. in the Philosophical Transactions for 1818.

\section*{E.cperiments on the Resistance of Cast Iron to Pressure.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Slze of prim.} & \multirow[b]{2}{*}{specific glavity.} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Crushing } \\
& \text { waytht. }
\end{aligned}
\]} & \multirow[b]{2}{*}{Nean from tach set.} & \multirow[b]{2}{*}{Remaris.} \\
\hline \[
\begin{aligned}
& \text { salc of } \\
& \text { lase }
\end{aligned}
\] & Height. & & & & \\
\hline inch. & incil. & & lbs. & lbs. & \\
\hline 1-5th & 1-sth & 71133 & 1,151 & & These speci- \\
\hline do. & do. & do. & 1,416 & \} 1,440 & Cmens were from \\
\hline do. & \(2-5 t h s\) & 697\% & 1,92: & &) Iron from a \\
\hline do. & do. & do. & 2,3111 & \(\} 2,116\) & \(\}\) block. \\
\hline do. & 3-bths & do. & 2,363 & & \\
\hline do. & \(4-5\) Stirs & do. & 20.105 & & - These speci- \\
\hline do. & 5- 4 (h) & do. & 1,417 & (1,759 & mens nore \\
\hline do. & 6-sths & do. & 1,7is & [1,754 & from the same \\
\hline do. & 7 -stha & do. & 1,594 & & block. \\
\hline 10. & 5-sthes & do. & 1, +39 & & \\
\hline]-ith & 1-ith & do. & 10,561 & & \\
\hline do. & do. & 10. & 9,596 & & These speci- \\
\hline do. & do. & do. & 9,917 & < 9,743 & Whe same block \\
\hline do.
do. & do. & & 120180 & \(\}\) & j as abore. \\
\hline do. & do. & do. & 1059 & & 7 These sprei- \\
\hline do. & do. & do. & 10,6015 & & mons were from \\
\hline do. & 10. & do. & S,049 & & horizontal \\
\hline do. & do. & 7074 & 12,665 & & castiogs. \\
\hline do. & do. & do. & 10,950 & & ? These speci- \\
\hline do. & do. & do. & 11.058 & & mens were ver- \\
\hline do. & do. & do. & 11544 & & tical castings. \\
\hline do. & 10. & do. & 11,990 & & \[
j
\] \\
\hline do. & \(\frac{1}{2}\) & & 9,455 & & SIlorizontal \\
\hline do. & do. & ¢,113 & 5, 50.4 & ¢ 0,4it & \(\}\) casting. \\
\hline do.
do. & do. & C-0\% & 0.935 & \[
\sum 3012
\] & S Yertical cast- \\
\hline do.
do. & do. \({ }_{\text {dostis }}\) & \({ }_{7113}\) & 10,027
0,000 & S 3.082 & 之iog. \\
\hline do.
do. & \(3-8 t 1 i s\)
\(5-8415\) & 7113 & 50.906 & & \\
\hline do. & 5-8the
\(6-811,5\) & do. & 5,965
8,302 & & Ilorizontil \\
\hline to. & 7-sths & do. & 6,430 & & castings. \\
\hline do. & \(8-8.10\) & do. & 6,321 & & \\
\hline do. & , - -tils & 70.4 & 9,325 & & \\
\hline do. & 5-8ths & \(d\). & 8,385 & & Vertical cast. \\
\hline do. & \(6-51 / 5\) & do. & 7,596 & & Yings. \\
\hline do. & 7-Sths & do. & 7,018 & & \(\int\) ings. \\
\hline do. & S-S41ss & do. & \(6,4.30\) & & \\
\hline
\end{tabular}

Similer experiments on Different Metals.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Size nf jumm.} & \multirow[b]{2}{*}{Name of metal.} & \multirow[t]{2}{*}{\[
\left.\begin{gathered}
\text { Crmbing } \\
\text { welght. }
\end{gathered} \right\rvert\,
\]} & \multirow[b]{2}{*}{nemarks.} \\
\hline sude of & Height. & & & \\
\hline nech & \[
\text { inc } \vec{f}
\] & Cast Copper & \[
\begin{aligned}
& l b s \\
& i, 31 B
\end{aligned}
\] & \begin{tabular}{l}
Crumbled by pressure. \\
Fline yellow brass, re-
\end{tabular} \\
\hline do. & do. & Hrass & 10,304 & \[
\left\{\begin{array}{l}
\text { duccel one-tenth by } \\
3215 \text { lbs. and one-balf } \\
\text { with } 10,30 \mathrm{i} \text { lbs. }
\end{array}\right.
\] \\
\hline do. & do. & Wrought Copper & 6,400 & \[
\left\{\begin{array}{l}
\text { Reluced one-sisteenth } \\
\text { with } 3427 \text { Ibs. one- } \\
\text { eighth with } 6 \text { tio lbs. }
\end{array}\right.
\] \\
\hline do. & do. & Cast tin & 966 & \[
\left\{\begin{array}{l}
\text { Reduced one siateenth } \\
\text { with } 552 \text { lbs. ooc-third } \\
\text { with } 960 \text { lbs. }
\end{array}\right.
\] \\
\hline do. & do. & Cast lead & 483 & \[
\left\{\begin{array}{l}
\text { Reduced one-half with } \\
483 \mathrm{lbs} .
\end{array}\right.
\] \\
\hline
\end{tabular}

In these experiments, after the metals had been compressed to a certain extent, the resistance is stated to have been enormous.

\section*{Experiments on the Resistance of various Materials to a Crushing Foree.}
\begin{tabular}{|c|c|c|}
\hline Names of materials. & Surific gravity. & \[
\begin{gathered}
\text { Craining } \\
\text { weight. }
\end{gathered}
\] \\
\hline 1. Elm, cube of one inch & & \[
\begin{aligned}
& l b s . \\
& 12 s 4
\end{aligned}
\] \\
\hline 2. American pine, do. & & 1606 \\
\hline 3. White deal, do. & & 1928 \\
\hline 4. English oak, do. & & 3860 \\
\hline 5. Portland stone, 2 inches long & & S05 \\
\hline 6. Statuary marble, 1 inch & & 3216 \\
\hline 7. Craigleith, do. & & 8688 \\
\hline S. Chailk, cube of 1-2 inch & & 1127 \\
\hline 9. Brick, pale red do. & 2085 & 1265 \\
\hline 10. Roe-stone, Gloucestershire, do. & & 1419 \\
\hline 11. Red brick, do. . & 2168 & 1817 \\
\hline 19. Do. Hammersmith paviors' do. & & 2254 \\
\hline 13. Burnt, do. do. . & & 3243 \\
\hline 14. Fire brick, do. & & 3864 \\
\hline 15. Derby srit, do. & 2316 & 7070 \\
\hline 16. Do. another specimen, do. & 2428 & 9766 \\
\hline 17. killaly whitefreestone, do. & 2423 & 1026 t \\
\hline 18. Portland, do. . & \(2 \div 28\) & 1028 : \\
\hline 19. Craigleith white freestone, do. & 2458 & 12346 \\
\hline 20. Yorkshire paving with the strata, do. & 2507 & 12956 \\
\hline £1. Do. do. against strata, do. . & & 12856 \\
\hline 22. White statuary marble, do. & Q 260 & 13632 \\
\hline 23. Bramley Fall \({ }^{\text {sandstone, do. }}\) & 2506 & 13632 \\
\hline 2i. Do. against strata, do. & & 13032 \\
\hline 25. Cornish granite, do. & 2662 & 14302 \\
\hline 26. Dundee sandstone, do. & 2530 & 149]8 \\
\hline 27. Portland, a two inct cube, \({ }^{\text {a }}\) & 2423 & 14918 \\
\hline 28. Craigleith, with the strata, 1 1-2 inch cube, & 2452 & 15360 \\
\hline 29. Devooshire red marble, & & 16732 \\
\hline 30. Compact Limestone, & 258i & 17354 \\
\hline 31. Granite Peterhead, , & & 18636 \\
\hline 32. Black compact limestonc, & 2598 & 19924 \\
\hline 33. Purbeck, . . & 2599 & 20610 \\
\hline 34. Freestone very hard, & 9528 & 21204 \\
\hline S5. Black Brabant marble, & 2697 & 2074 \\
\hline 36. White ltatian marble, & 27.0 & 21783 \\
\hline 37. Granite, Aberdeen, Blue kind, & 2625 & 24556 \\
\hline
\end{tabular}

The above experiments, although they will certainly be found useful in many inquiries, are not so valuable to an engineer as those given in our first section, because we cannot in the same way establish a general rule to derive from them the resisting power of similar materials in similar blocks. In the former ease, there can be no doubt that the strength varies directly as the section, but in this it varies in a much higher ratio, and we are unable from thcoretical considerations alone to ascertain what that ratio is. It is obvious, that as we increase the base of our specimens, the interior particles in granulated substances, and the fibres in fibrous bodies, are protected from yiclding by the lateral resistance of the exterior ones; and to what extent this proceeds as we increase our dimensions, it is impossible to estimate, because so much depends upon the internal structure of the body. By comparing the first set of Mr. Rennie's experiments on cast iron with his third, fourth, or fifth, it would appear that the resistance is as the cube of the side; but we can by no means lay this down as a generallaw.

When wood is submitted to this strain, its destruction takes place by separating the fibres from each other, the lateral adhesions being altogether destroyed,
(the pressure being endways of the grain.) Mr. Sinart, the ingenious inventor of the hollow masts, and the patentee for the compression of wood in the formation of casks, cantecus, sadde-trecs, \&c. has several curious specimens of compressed wood, in which the fibres are reduced nearly to the state of a painter's brush, by the separation of them as above stated.

\section*{Of the Cohesive Powers of Wood resisting a force acting Perpendicular to the Direction of the Fibre.}

On this sulject very little rew matter can be collected to add to that given under the article carpentry; for although numerous experiments have been made since that article was written, on most of the other strains to which materials are exposed, this has been almost wholly neglected. We know of nothing that has been done, except two or three experiments by Mr. Tredgold, and one by Mr. Barlow, which latter, however, was on the lateral adhesion of the fibres, but those of the former were made on their transverse strength; these are as below.

If we allowed ourselves to form any general estimate from these few experiments, we might say that the resistance to the strain across the fibres is about double that of the direct cohesion, but that the lateral adhesion is only about one hall of the direct strength. We cannot, however, state this as correct in all cases, nor even as approximative; a few experiments on this subject would be highly interesting.

\section*{On the Resistance of Timber and other Materials to a Transverse Strain.}

We have entered at some length upon this subject, under the article Campentry, having there examined the result of all the most common strains of this kind to which materials may be exposed; but as in the preceding cases we had not then the means of furnishing satisfactory experimental data for computing the amount of the resistance, the dimensions of the timber being given, or for computing the dimensions requisite to resist any proposed strain or load, we shall therefore principally confinc ourselves in this place to laying before our readers such experimental results, as will enable them to submit the principles laid down in the article quoted to practical cases, with such few additional rules as may appear necessary.
It is shown, article Carpentry, p. 502, that the strength of a rectangular beam to resist a transverse strain varies directly as the breadth and square of the depth, and inverscly as the length; consequently, if from a series of well-conducted experiments we have been enabled to determine the breaking weight on a piece of timber, of any given species and of given dimensions, we may thence compute the weight necessary to break a piece of timber of the same kind, loaded in a similar way, and of any dimensions whatever.
It has also been demonstrated in the same article, that the strains upon a beam fixed at one end in a wall, and loaded at the other, is four times greater than when the same weight is hung upon the middle of the same beam, and the latter supported at its two extremities.
It has also been shown experimentally that when a Vol. XVII. Part II.
beam is fixed at both its extremities in a wall, and loaded in the middle, its strength is to that, when only supported at its two ends, as 3 to 2 .

And lastly, that when a weight is uniformly distributed over a beam, its mechanical action to-protuce fracture is only one half of what it is when collected in the micdlle.

It follows, therefore, that from a series of experiments made on the resisting power of timber or other material, in any one of these cases, the resistance in any other may be found, or rather pertaps we ought to say, that the resistance in all of them is the same, it being merely the strain that is altered loy the different modes of fixing and loading. Let \(1=\) the length, \(b\) the breadth, and \(d\) the depth of any rectangular piece of timber, all in inches, and \(W\) the weight in pounds, requisite to break it. Let also \(S\) be the weight requisite to break a piece of similar timber, whose length, breadth, and depth, are each one inch, then form our first rule.
\[
\text { As } \quad \frac{b d^{2}}{l}: 1:: \mathrm{W}: \frac{l \mathrm{~V}}{b d^{2}} \equiv \mathrm{~S}
\]

Which \(S\) will be a constant number of reference for computing the strength of any piecc of timber of the same kind, under all variety of dimensions and modes of fixing and loading.

Suppose, for example, this constant is formed for the case in which the beam is fixed at one end and loaded at the other, and the weight V were required that would break any given beam, under any of the circumstances stated above, then we should have
1. Beam fixed at one end, and loaded at the other
\[
\mathrm{W}=\frac{\mathrm{S} b d^{\mathrm{x}}}{l}
\]
2. Beam fixed at one end and loaded unilormly throughout \(\quad W=\frac{2 \mathrm{~S} b d^{2}}{l}\)
3. Beam supported at each end and loaded in the middle
\[
\mathrm{W}=\frac{4 \mathrm{~S} b d^{2}}{l}
\]
4. Beam supported as above and loaded uniformly
\[
\mathrm{W}=\frac{8 \mathrm{~S} b d^{5}}{l}
\]
5. Beam fixed at each end and loaded in the middle
\[
\mathrm{V}=-\frac{\mathrm{S} b l^{2}}{l}
\]
6. Beam fixed as above and loaded uniformly
\[
\mathrm{W}=\frac{12 \mathrm{~S}}{l} b d^{2}
\]

And in the third and fourth cases, if the load be applied in any other point than the middte, then calling \(m\) and \(n\) the distance from the ends. The above results are to be respectively divided by \(\frac{4 m n}{l^{2}}\) for the resistance in these cases, which thus become
\[
\mathrm{W}=\frac{\mathrm{S} l b d^{2}}{m n} \text { and } \mathrm{W}=\frac{3 \mathrm{~S} l b d^{2}}{2 m n}
\]

It has been explained under Carpestry that we ought to proceed correctly to introduce into these formula the cosine of the beam's deflections, but this leads to considerable intricacy, and is of little value, because we do not generally require to know the actual but rela. tive resisting power, and in all practical cases the deflection is too inconsiderable to be regarded. Indecd it has been asserted that our inquiry ought not to be directed to the ultimate strength; we think, however,
that it is desirable in all cases to know what this is， and we may then keep as much within the limits as we please，or as the case seens to require．

The following table，containing the value of \(S\) ， deduced froma variety of well conducted experiments， is taken from Tredgold＇s＂Elementary Principles of Carpentry．＂We have only multiplied that author＇s constant by 3．to make it correspond with our con－ stant denoted above by \(S\) ，and added a few other results from Barlow＇s Essay on the Strength of Timber，Sc．
Table exhibiting the experimental strength of verious spe－ cies of＇Timber opposed to a transuerse strain．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline kinds un woul & & & \[
\begin{gathered}
z \\
z \\
\end{gathered}
\] & & \[
\begin{aligned}
& E \\
& E \\
& y
\end{aligned}
\] & & & Anhorities \\
\hline \[
\begin{aligned}
& \text { Oak Engish } \\
& \text { yount tree. }
\end{aligned}
\] & ． 593 & \(\stackrel{\sim}{\sim}\) & 1 & 1 & 1．87 & 142 & 2892 & Trealghal． \\
\hline Do．chlf ship tim－ ber & －2 & 2.5 & 1 & 1 & 1.5 & \(\because 6\) & 1450 & du． \\
\hline Do．hrom ally tree & ¢5 & \(\because\) & 1 & 1 & 1.38 & 215 & 1514 & do． \\
\hline Ua．medium ¢ra－
liey． & ．715 & 2.5 & 1 & 1 & & 234 & 2130 & Elfuels． \\
\hline Witlo，gretn & \(\therefore\)－ij & 2.5 & 1 & 1 & & 211 & 174 & do． \\
\hline 110．do． & 1.143 & 11.85 & 4.5 & 8.5 & 3.2 & 21812 & 1：55 & Piultun． \\
\hline Reech，medium quahty & （ros） & 2.5 & 1 & 1 & & 271 & 2031 & Ebbels． \\
\hline Alder ．． & ． 555 & 2.5 & 1 & 1 & & －1： & 1.590 & do． \\
\hline Plane tre & ． 64 & 2.5 & 1 & 1 & & －1． & 15：1 & do． \\
\hline Ss comore & ．ith & 2．5 & 1 & 1 & & 21. & 1605 & do． \\
\hline Chesputirce & ． 5.5 & 2， & 1 & 1 & & 130 & 1350 & 10. \\
\hline ish，from young tree & ． 511 & 2.5 & 1 & 1 & 0.5 & 32.1 & 2330 & Tiedzeld． \\
\hline Do．medium giti－ & & & & & & & & \\
\hline \({ }_{\text {lish }}^{\text {lit }}\) ： & \(\begin{array}{r}401 \\ \hline 250\end{array}\) & 2． 5 & 1 & 1 & & 23.4 & 1905 & Eubels． \\
\hline Ish－ & \％ 5.3 & 2.5 & 1 & 1 & 2.55 & 31.1 & 2.355 & Tredyold． \\
\hline Fira，common & ． 544 & 3.5 & 1 & 1 & & 916 & 1690 & Libbels． \\
\hline Ho．weych，green & ． 86.5 & \(\underline{9.5}\) & 1 & 1 & & 1！ & 140 & do． \\
\hline Acacia，green & \(\therefore 20\) & 2.5 & 1 & 1 & & Q \({ }^{\text {a }}\) & 1806 & do． \\
\hline \begin{tabular}{l}
Jalog：ny Span－ \\
ish，seasoned \\
Ho．Ilomduras
\end{tabular} & ． 532 & 2.5 & 1 & 1 & & 150 & 1205 & \[
\begin{gathered}
\text { 1'redsold. } \\
\text { du. }
\end{gathered}
\] \\
\hline seasorsed & ． 56 & 2.5 & 1 & 1 & & 25.3 & 1911 & \\
\hline Walmu，green & ． 1125 & 2.5 & 1 & 1 & & 150. & 1461 & Eubels． \\
\hline \[
\begin{gathered}
\text { Poplat, Lum- } \\
\text { burty }
\end{gathered}
\] & 33.5 & 2.5 & 1 & 1 & & 131 & 4.51 & do． \\
\hline Diter，ibele & ． 511 & 2.5 & 1 & 1 & 1.5 & 20.5 & 1710 & Tredgold． \\
\hline Teak ． & ， 314 & ？ & 2 & 2 & 1.100 & 200 & 2151 & Barlos． \\
\hline Willow & － 8115 & 2.5 & 1 & 1 & 3 & 159 & 1095 & 1 redgum． \\
\hline Birch \({ }^{\text {d }}\) & － 21 & 2． & 1 & 1 & & 20. & 1.551 & Ebbels． \\
\hline Comble of Libarms． dry & － 596 & 2.5 & 1 & 1 & 8.75 & 10.5 & 12.36 & liedsold． \\
\hline Rigat fr．． & － 511 & 2．5 & 1 & 1 & 1.3 & 212 & 15910 & du． \\
\hline Wetmel fir & － 35 & 2.5 & 1 & 1 & 1．1．7 & 218 & 1635 & do． \\
\hline Numay fir from 1．015 Gomal & R，\({ }^{\text {a }}\) & \(\stackrel{2}{2}\) & 1 & 1 & 1.15 & 396 & 1236 & 110. \\
\hline Nar fowest fir & ． 715 & 7 & \％ & 2 & 5.5 & 360 & 94， & Jatiow． \\
\hline ticuth fir，ling－ tich growth & ． 529 & 2.5 & 1 & 1 & 1.75 & 23．3 & 1514 & l＇redguld． \\
\hline 10． d \％ & ， H0）\(^{0}\) & \(\therefore 2\) & 1 & 1 & & 150 & 1170 & 1，buels． \\
\hline Christiana white ded & ． 512 & 2 & 1 & 1 & ． \(23 \%\) & 31.3 & 2058 & lredgold． \\
\hline Anwriem white． Spure： & ．ifis & 2 & 1 & 1 & 1.368 & 995 & 1710 & do． \\
\hline Emper fir，J3ri－ & & & & & & & & \\
\hline tishir owth & ． 5.55 & 2.5 & 1 & 1 & & 1－3 & 13.95 & Vibbels． \\
\hline Anuriean pine Weymouts & ． 64 & 2.0 & 1 & 1 & 1.125 & 329 & 197 & Trealight． \\
\hline barch，choice spuctimers & （6i4） & 2.5 & 1 & 1 & \(3.1)\) & 2.33 & 1490 & dio． \\
\hline \％o．nectimon fra－ & & & & & & & & \\
\hline lity ． & ．102 & 9.5 & 1 & 1 & & 293 & 1671 & do． \\
\hline （1）＂．very young word & ． 345 & 2.5 & 1 & ， & 1.75 & 129 & ！195 & do． \\
\hline Finglishork & ． 934 & \％ & 2 & \(\ddot{\sim}\) & 8.1 & 6,3 & 11302 & Barlow． \\
\hline Camadian，do． & ．872 & 7 & \(\stackrel{1}{2}\) & 2 & 611 & 6i3．） & 176 & do． \\
\hline Itambic，do． & ． 750 & 7 & \(\stackrel{\square}{\sim}\) & 2 & 4.85 & 56.3 & 15.58 & do． \\
\hline IIriatic，do． & .993 & 7 & 2 & 2 & 5.73 & 52 & 1.38 .3 & dis． \\
\hline 1 sh ． & ． 860 & 7 & 2 & 2 & 8.92 & 72 & （1）2i & ln． \\
\hline iseech & ． 697 & 7 & \(\because\) & 2 & 5.73 & 59， & 15.15 & （1）． \\
\hline Pitch piuc & ． 61810 & 7 & 2 & 2 & C，619 & 612 & 16.32 & In， \\
\hline Red juine & ． 6.57 & 7 & 2 & 2 & 5．8．3 & 511 & 13.31 & lo． \\
\hline Nou Fingland fir & ． 553 & 7 & 2 & 2 & 4.66 & 1219 & 1112 & do． \\
\hline
\end{tabular}

Table exhibiting the Strength of various descriptions of Cast Iron opposed to a transverse struin from experiments re－ ported in Tredgold＇s Essay on the Strength of Cast Iron， Barlow＇s Essuy，de．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Nimes of iron & & \[
\dot{\bar{E}}
\] & \[
\begin{gathered}
\overline{y y y y y y y} \\
\end{gathered}
\] & \[
\underset{\underset{\Xi}{E}}{\stackrel{y}{E}}
\] & & & 为 & luthorities and remarks． \\
\hline Wikefied foundry， air furnace， & ） & 3 & 1 & 1 & & 9.1 & 87.39 & \(\left\{\begin{array}{l}\text { Binks sup－} \\ \text { ported at the }\end{array}\right.\) \\
\hline Bo．enpolis， & & 3 & 1 & 1 & & 96.1 & 7：\％ & \begin{tabular}{l}
Cends． \\
Do．
\end{tabular} \\
\hline Ond pank iron， & & \(\stackrel{\sim}{\sim}\) & 1.3 & ． 15 & & 151 & 8040 & STredgoldfix－ \\
\hline Alfution iron． & & ： & 1.3 & ． 0.5 & & 1.71 & n¢as & ＜edat one end． \\
\hline Serap iron， & & 2 & 1.3 & ． 15 & & 164 & \(73+1\) & 13. \\
\hline 011 park and good oid iron mived， & & 2 & & ． 05 & & 17. & & \\
\hline Aloy prig iron 16 & & 2 & 1.3 & ． 03 & & 17 i & －604 & Do． \\
\hline coplut 1 ， & & \(\because\) & 1.3 & ． 05 & & 111 & 5177 & Do． \\
\hline Cast Bars， & & & 1 & 1 & & & 6804 & \(\int\) Supported at \\
\hline & & & & & & & & （lianks． \\
\hline 130. & & 2． 3 & 1 & 1 & & 100 & 7550 & Do． \\
\hline 1）o．mean of thece experiments， & & & 1 & 1 & & & S7． 4. & Do． \\
\hline Do．mean of dnece & & & 1 & & & & & D． \\
\hline －expmiments & & & 1 & 1 & & S0． & －821 & Do． \\
\hline Cast bars， & & & & 1 & & 29.1 & 8960 & \｛ Rennie fixed at one end． \\
\hline
\end{tabular}

Comparing the relative strength of oak and cast iron to resist a transverse strain，it appears that the latter is about five times that of the former，while its direct cohesive power is not more than one and a half times，and its weight is about eight or nine times greater than an equal bar of oak．

The application of the numbers given in the above tables to the formula preceding them，is so obvious as to reguire very listle firther illustration，we shall therelore confine ourselves to a single example．

To find the weight which，（applied at the centre of a rectangular beam supported at both ends，and of given dimensions，is necessary to produce fracture．

The rule，in words，is here obviously as follows： Multiply the breadth by the square of the depth，and again by four times the constant value \(S\) of the par－ ticular material given in the table．Then divide the product by the length，in inches，for the weight re－ quired．

E．ecmple．What weight would it require suspend－ ed as ahove，to break a teak beam twenty feet long six inches，broad and ten deep．
\[
\text { Here } \frac{4 \times 6 \times 10^{2} \times 2151}{240}=21510 \mathrm{lbs} .
\]

If the beam were fixed at one end，and loaded at the other，then the co－efficient 4 is omitted，and the weight
is \(\frac{6 \times 10^{2} \times 2151}{240}=5577 \mathrm{lbs}\).
If，in the former case，the beam is loaded uniformly throughout，then by the formula the weight required is \(\frac{4 \times 6 \times 10^{2} \times 2151}{240} \times 2=43020 \mathrm{lbs}\) ．

Of the Stiffess of Beams in Resistints a Transuorse Strain.

In the preceding section on inguiry has bean directed to the ulimate strength of materials, viz. the greatest weight they will support, or rather, perbaps, the least weight that will despoy the beam ; but this in gencral is not the information a practical man most reguires, ahthoush, it is obvious, if he knows the uttimate strength, he may keep as much within those limits as his case may seem to require, and thus far the tables and rudes taid down in the preceding pages with be found highly aselul, but commonly it is not the strength but the stilfuess of his beams and rafters, that is of gratest conseguence to ant archi tect or engineer for a certain deflection, in many cases, is ncarly as dangerous or injurious as an actual fracture, we should therefure leave this subject incomplete, if we did not also lurnish such experimental data comected with it, as have been obtained from the sompces ahready refered to since our arlicle Carparirs was published.

When a beam is supported at its two ends, and loaded cither at its middle point or uniformly throughout, the centre of the beans will sink bolow the horizontal line, and this sinking measured where it is greatest, is called the deflection.

The stiffess of a beans is the proportion between its length and deflection, the weight and dil other things being the same, therefore, when the length is different, and the stiffness the same, the deflection must be proportional to the length. Now, it has been found from humerous experiments, as well as from theoretical investigation, (see Carpmetres and Bumloze's E'ssay,) that the deflection of beams of the same material similarly loaded, varies as the weight and cube of the length directly, and as the breadth and cube of the depth inversely, or \(d\) varies as \(\frac{l^{3} \times W}{b d^{3}}\), but the stiffness is as the length, divided by the de. flection, this therefore varies as \(\frac{b d^{3}}{l^{2} \mathrm{~V}}\). Let now \(d\) be an experimental deflection found to be due to a given length \(l\), depth \(l\), breadth \(b\), and weight V and \(d\), any proposed dellection with the same beam, to fund the corresponding weight \(w\) that will produce it; this is found by the simple proportion \(d: d^{\prime}:: \mathrm{W}: \frac{\mathrm{W} d^{\prime}}{d}=u\). Then this value of \(w\) being substituted in the formula \(\frac{b d^{3}}{l^{2} \mathrm{~W}}\), (instead of W,) ought to produee a constant quantity \(=a, d\), being always taken proportional to the lengtl, and from this constant the proper dimensions in any other case may be computed.

Mr. Tredgold has computed the value of the constant \(a\), when the deflection is \(1-40\) th of an inch to a foot, or 1-480th of the length, from the experiments reported in the following tables, consequently his constant is obtained by the formula \(a=\frac{40 b d^{3 s}}{l^{3} \mathrm{~W}}\).

Trable of Esperiments on the 'Viffiness of tak.

Treble of Lidperimeruts on the Stiffiness of Fir.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Kinds on' tir. & & \[
\begin{aligned}
& \\
& \\
& = \\
& y
\end{aligned}
\] & & \[
\begin{aligned}
& i \\
& \overline{\#} \\
& \equiv \\
& \equiv \\
& E \\
& E \\
& E \\
& =
\end{aligned}
\] & & & \[
\begin{aligned}
& \bar{\equiv} \\
& =- \\
& =- \\
& = \\
& =
\end{aligned}=
\] & Bitherime - \\
\hline Fir, Riga, yellow merliwn & & 1.4 & 2 & 7 & 11.25 & 10: & , 11.15 & \\
\hline (1) No. Noway & .6394 & 9 & 1 & 1 & 0.5 & 24 & \[
\text { , } 1419.5
\] & 1) 1. \\
\hline Du. Niga yel- &) 4810 & 9.5 & I & 1 & 1.. \({ }^{\text {a }}\) & 19: & .1142 & 13. \\
\hline low . & (3 +1it & 2.5 & 1 & 1 & 0.1 & \(11 \%\) & .01111 & Eubels. \\
\hline Bo. Memel & \(\{.55\), & 2.5 & 1 & 1 & \(1 . . \bar{i}\) & 1 1. \({ }^{\text {\% }}\) & 10980 & 5 Tret- \\
\hline medium & ¢ . Sii & 2. 3 & 1 & 1 & \(1+.5\) & 14 & (10)5, & \} rolu. \\
\hline American pine & \{ 4 40 & \(\stackrel{1}{3}\) & 1 & 1 & \(14 . .5\) & 23 & .1105 & \\
\hline & (.415 & 3 & 1 & 1 & 1). 5 & 89 & 0112 & \(\mathrm{S}^{10}\) \\
\hline White spruce, Christiana & . 512 & \(\because\) & 1 & 1 & 0.5 & \(2 \square 1\) & -nons 7 & \\
\hline 1)o. Quebee & - 465 & \(\stackrel{2}{2}\) & 1 & 1 & 11.5 & 150 & . 1135 & D. \\
\hline Pitch pine & \(\therefore 12\) & 7 & 2 & \(\bigcirc\) & 1.33 & 150 & .0165 & Barlow. \\
\hline Fir, New England & . 560 & 7 & 8 & 2 & . 970 & 150 & .0121 & D). \\
\hline Riga fir Mar Forest, & . 605 & 7 & \(\pm\) & \(\bigcirc\) & . 212 & 150 & . 01137 & Do. \\
\hline Scotland & .115 & 7 & 2 & 2 & 1.560 & 12. & .023.3 & \\
\hline Larch, Blair, Scotland, dry & .622 & 2,5 & 1 & 1 & 0.5 & \begin{tabular}{l}
123 \\
\hline
\end{tabular} & & \\
\hline Do. seasoned & \(\{.644\) & 2.5 & 1 & 1 & 0.5 & 101 & . 0126 & Tredgold. \\
\hline medium & (.55i & 2.5 & 1 & 1 & 0.5 & 112 & . 0111 & Ebbels. \\
\hline Do. very young & & & & & & & & \\
\hline wood & . 396 & 2.5 & 1 & 1 & 0.5 & 45 & .028 & Tredgold. \\
\hline Scots fir & . 529 & 2.5 & 1 & 1 & 0.5 & 59 & . 0143 & Do. \\
\hline Spruce, British & . 555 & 2.5 & 1 & 1 & 0.5 & 03 & . 0126 & Ebbels. \\
\hline \[
\begin{aligned}
& \text { Fir (bois- dis- } \\
& \text { brin) }
\end{aligned}
\] & & 1.3 & 10.48 & 0.48 & 1.02 & 4.359 & . 0115 & \\
\hline Do. do. & & 10.65 & 10.58 & O. 4 & 0.225 & 4.122 & , 220 & Girard. \\
\hline
\end{tabular}

3 T 2

Table of Experiments on the Stiffness of different Woods.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Kinds of woud. & & & & & & & \[
\left.\begin{array}{ll}
E & 0 \\
0 & \infty \\
0 & \approx \\
0 & 0 \\
0 & \ddots
\end{array}\right)
\] & Authorities \\
\hline Ish young tree, white coloured & . 811 & 9.5 & 1 & 1 & 0.5 & 141 & . 009 & Tredgold. \\
\hline Do. old tree, red coloured, & . 753 & 2.5 & 1 & 1 & 0.5 & 113 & . 0113 & Do. \\
\hline ```
Do. medium
 quality,
``` & . 690 & 2.5 & 1 & 1 & 0.5 & 75.5 & . 0163 & Ebbels, \\
\hline Asb, & .760 & 7 & \(\stackrel{1}{2}\) & 2 & 1.97 & 225 & . 0105 & Barlow. \\
\hline Beecti, & . 688 & 7 & 9 & 2 & 1.025 & 150 & . 01977 & Do. \\
\hline Teak, & . \(7.4 \pm\) & 7 & 9 & \(\underset{\sim}{2}\) & 1.276 & 300 & . 0076 & Do. \\
\hline & . 510 & 2.5 & 9 & 2 & 1.42 & 125 & .0212 & Do. \\
\hline Elim, & . 514 & 2.5 & 1 & 1 & 0.5 & 99.5 & . 012 S & Ebbels. \\
\hline Cedar of Lebatnon, & . 486 & 2.5 & 1 & 1 & 0.5 & 56 & .0335 & Tredgold. \\
\hline Maple, common & . 625 & 2.5 & 1 & 1 & 0.5 & 65 & . 0197 & Do. \\
\hline Abele, & . 511 & 9.5 & 1 & 1 & 0.5 & S: & .0152 & \(\mathrm{D}_{\mathrm{G}}\). \\
\hline Willow, & . 405 & 9.5 & 1 & 1 & 0.5 & 41 & . 031 & \(\mathrm{D}_{0}\) \\
\hline IIorse chesnut, & . 48.3 & 0.5 & 1 & 1 & 0.5 & 79 & .0262 & \(\mathrm{D}_{0}\) \\
\hline Lime tree, & . 453 & 9.5 & 1 & 1 & 0.5 & Si & . 0152 & Do. \\
\hline 11 alaut, green, & . 280 & 2.5 & 1 & 1 & 0.5 & 62 & . 020 & Ebbels. \\
\hline Chesnut, Spanish. & . 895 & 2.5 & 1 & 1 & 0.5 & 68.5 & . 0187 & Do. \\
\hline Acacia, & . 820 & 9.5 & 1 & 1 & 0.5 & 195 & . 0100 & Do. \\
\hline Plane, dry, & . 648 & 2.5 & 1 & 1 & 0.5 & 99.5 & . 0128 & Do. \\
\hline Alder, do. & . 555 & 9.5 & 1 & 1 & 0.5 & S0.5 & . 0159 & Do. \\
\hline lirets, do. & . 720 & 9.5 & 1 & 1 & 0.5 & 90.5 & . 0141 & Do. \\
\hline Wych elm, green, & .763 & 2.5 & 1 & 1 & 0.5 & 92 & . 014 & 13. \\
\hline Lombardy poular, dey, & . 37. & 2.5 & 2 & 1 & 0.5 & 56.5 & .022 & Do. \\
\hline Mahogany, ? Homduras, & . 560 & 2.5 & 1 & 1 & 0.5 & 115 & .0109 & Tredgold. \\
\hline Do. Spanish, & . 553 & 2.5 & 1 & , & 0.5 & 93 & .0137 & Do. \\
\hline Stcamore, & . 590 & 2.5 & 1 & 1 & 0.5 & 76 & . 0168 & Ebbels. \\
\hline Pear, green, & . 792 & 2.5 & I & 1 & 0.5 & 59.5 & . 0215 & \(1)\) \\
\hline Cherry, do. & .690 & 2.5 & 1 & 1 & 0.5 & 92.5 & . 0138 & Do. \\
\hline Beechi dry, & .696 & 2.5 & 1 & 1. & 0.5 & 97.5 & . 0151 & I) \\
\hline
\end{tabular}

Table of Experiments on the Stiffiness of Iron.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Find of fron. &  &  &  &  &  & \[
\begin{aligned}
& 2 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  & Authorrites. \\
\hline Malleatle lion Swedish . & & 3 & I & 1 & .25 & 560 & .0066 & Barlow. \\
\hline Do. & & 3 & 1 & 1 & . 30 & 560 & . 0073 & Do. \\
\hline Englih hinys
Cgheen & & 3 & 1 & 1 & 25 & 560 & . 0066 & Do. \\
\hline Cist lion, old patk & 7.092 & 23 & 1.3 & . 65 & 27 & 162 & . 00114 & Tredgold. \\
\hline Cust Irongat & & 3.83 & 1.1065 & 1.066 & . 17 & 335 & . 00134 & Rondelet. \\
\hline Do - & & 3.83 & 1.066 & 1.066 & . 411 & 335 & . 00135 & Do. \\
\hline Do. & & 1.91., & 1066 & 1.066 & .089 & 433 & . \(00111^{2}\) & \(\mathrm{D}_{0}\). \\
\hline \(1 \%\) o. & & 1.91; & 1066 & 1.066 & 078 & 153 & . 00115 & Do. \\
\hline
\end{tabular}

The application of the results contained in the preceding table is sufficiently obvious, at least while the deflection is intended to be \(\frac{1}{6}\) th of the length, and if in any case a greater deflection be admissible, or a less be reguisite, it is only necessary to find a new value of \(a\) from the tabular one, by saying, as the proposed deflection, divided by the length, is to \(\frac{1}{8}-\), so is the tabular value of a to the value sought; with which proceed according to the following rules or formula:

Whan the length, breadth, and weight are given, to find the depth then
\[
d=3^{3} \frac{a l^{2} \mathrm{~W}}{b}
\]

When the length, depth, and weight are given, to find the breadth
\[
b=\frac{a l^{2} W}{d^{3}}
\]

These are the only cases which arise in practice, and the numerical operations are sufficiently evident without any numerical examples.

\section*{On the Resistanee of Columns to a Dertical Pressure.}

We have already given a detail of various experiments on the force requisite to crush certain materials, but in the case here to be considered the material is not destroyed by the actual crush, but by a flexure which always takes place, and after which the mechanism of the operation resembles that already considered, under the denomination of the transverse strain. 'The results, however, from actual experiment, are, in this case, by no means so uniform as in the former; and theory, it must be acknowledged, can assist us but very little, because theory always supposes an uniformity of result in practical cases, where all the conditions are the same, but here with two trees, of the same wood, the same specific gravity, and the same dimensions, owing to some internal and hiddencause, will give results very wide of each other; the bending will take place in different parts and in different directions, and the fracture produced by different weights. It is therefore only within certain limits that practical rules can be laid down in these cases. In pieces of timber submitted to a transverse strain, the effect of the weight is greatest in a certain and determinate point, and if the material be sound at that place, a defect in another part is seldom of any consequence; but when the whole piece is submitted to pressure endwise, every defective part has an influence in the operation; and to this cause may be principally attributed the irregular nature of results obtained in experiments of this description. Therefore, in stating the following principles of computation, the reader will be aware that the same security cannot be placed in them as in those which have preceded, and that they are ouly applicable when the timber is uniformly sound throughout. They may be stated as follows, viz.

The resistance to flexure varies directly as the breadth into the cube of the depth, or as the least dimension into the cube of the greater;

And the strain varies as the square of the length into the weight;

Consequently, if we have a series of experiments, showing the flexure which has been produced by certain weights in beams of given dimensions, we may hence compute the weight that would produce any other given flexure, and hence again the length and weight, in any other case, being given, we may compute the requisite breadth and depth, these being either equal, or bearing any given proportion to each other.

The two following tables are of this description, the one extracted from "Construction des Ponts, Sx."" of M. Gauthey, and the second from the "Traite Analytique de la Resistance des Solides," by M. Girard, as they are given by Mr. Tredgold in his Elementary Principles of Carpentry. The elasticity \(c\), however, as deduced from these experiments, the latter author considers too strong for general practice, and he recommends in practical cases to use the mean value \(\varepsilon=\) lor oak, and this being assumed, he has computed the mean value for the other woods stated in a preceding
table for the transverse strain; this table we have also given. And since, accoording to the preceding analogies, it appears that \(\frac{b^{2} d^{3}}{l^{2} \mathrm{~W}}=c\) or constant quantity, we shall have at once for computing the depth or least thickness of beams (all the rest being given),
\[
l==^{3} \sqrt{l^{2} W e} \frac{\text { Wr }}{b} \quad b=\delta \frac{l^{2} W e}{l^{3}}
\]
when \(d\) is given, and \(b\) the greater side is sought.
It appears also to have been determined that a column or cylinder has a less power of resistance than a rectangular beam (in which \(\left.b d^{3}=1\right)^{4}, D\) being the diameter of a circle) in the ratio 1: 1.7, therefore for a cylinder, the formula for the diameter is \(\mathrm{D}={ }^{4} \sqrt{ }\left(l^{2} \mathrm{~W} \times 1.7 \mathrm{c}\right)\)
also a rectangular beam is said to be weakest in the direction of its diagonal, and when square to "equire the multiplier 4 , so that in a square bean
\(d^{\prime}=\sqrt{4}^{l^{2}} \mathrm{~W} \times 4 e\), where \(\mathrm{d}^{\prime}\) is the diagonal.
We have, in compliance with general practice, given these rules, the investigation of some of which may be seen in Tredgold's work above quoted, and in Dr. Young's Lectures on Natural Philosophy; but we have already stated our opinion of their inadequacy, that is, they would be true provided we could assume an uniformity of texture throughout, but this is seldom to be expected in practice. 'The tables, however, are computed on the lowest possible resisting powers, so that the dimensions determinable by the rules will never fail in point of strength, unless the timber be very deflective, and it is much better to have our dimensions in excess than our strength in defect. For the reasons stated in the preceding section, the numerical appli. cation of these tables and formula are omitted.
Experiments on the Resistance of Seasoned Oak Beams to Forces pressing in the dircction of their length.


Experiments on the Resistancs of Oak liertins when presoch in the dircction of its length, hy . M. Girath.


Table of the Elasticity of various Woods to be cmployed in the preceding rule, as computcel by Mr. Tredgold.
\begin{tabular}{|c|c|c|c|}
\hline kinds of word. & \[
\begin{gathered}
\text { Ehistio ity } \\
=0
\end{gathered}
\] & - Kinds of wood. & \[
\begin{gathered}
\text { Elavart } \\
=e
\end{gathered}
\] \\
\hline Euglishoak, & 9.(0)15 & 11ahogany, 11onturas, & 9.101611 \\
\hline Beecl, & 0.140195 & Teak, . & 19.01119 \\
\hline Alder, - & 0.0023 & Cedar, Lebarion, & 0.010053 \\
\hline Chesnut, green, & 0.042087 & Rigatir, & 0.06152 \\
\hline A sh, & 0.01169 & Wemed fir, & 0.0413; \\
\hline Elm, & 0.chilsi & Nowway spruct, & 6,09142 \\
\hline Acacia, \({ }^{\text {a }}\) & 0.14150 & Weymouth pine, & 0.1415 \\
\hline Mahogany, Spanish, & 1104205 & Larcl, ... & 1.1019 \\
\hline
\end{tabular}

\section*{On the Resistance to Torsion.}

Mr. Tredgold, in his Practical Essay on the Strength of Cast Iron, has the following illustration of the nature of this strain. If a rectangular plate be supported at the corner A and B, Fig. 5, and a weight be suspended from each of the other corners \(C, D\), then the strains produced by loading it in that manner will be similar to the twisting strains which occur in shafts. In a cast iron plate, the fracture would take place in the directions \(A B\), and \(C D\), at the same time; but before the fracture, the ore ol the strains will serve as a fulcrum for the other; and the resistance to the forces at \(C\) and \(D\) will be sensibly the same as if the plate were supported upon a continued fulcrum in the direction AB.

Hence, the strains may be considered as a transverse strain of the same kind as that already treated of with the leverage \(a \mathrm{D}\), or \(c \mathrm{C}\), acting at D or C , the breadth of the strained section being AB .

To find the breadth of the section of fracture, and the leverage in terms of the length and breadth of the
plate, we have \(A B\) the breadth, and by similar triangles \(\frac{A D \times B D}{-1 B}=D\) a the leveratge. These values of the leverage and breadth being substituted in the equation, expressing the transverse strain, becomes
\[
\begin{aligned}
& \text { W } \times \frac{b^{5} l}{b l}=\frac{f d^{2} \times A B \times A B}{6 \times A D \times B D} \\
& \text { Or since } A B^{2}=B D^{2} \times A D^{2} \\
& W=\frac{f d^{2}}{6} \times \frac{B^{2} \times A D^{2}}{{A D^{2}}^{2} B D}
\end{aligned}
\]

But when a force acts upon a shaft, it is commonly at the circumference of a wheel, and if \(R\) be the radius of the wheel. then \(\frac{2 \Gamma W}{B D}=\) force collected at the surface of the shaft: substituting therefore this instead of W in the above equation. we have
\[
\begin{aligned}
& \frac{2 \mathrm{RW}}{\mathrm{D} 13}=\frac{f d^{2}}{6} \times \frac{\mathrm{BD}^{2} \times \mathrm{AD}^{2}}{\mathrm{AD} \times \mathrm{BD}} \\
& \mathrm{O}_{1} \cdot \mathrm{~W}=\frac{f d}{12 \mathrm{R}} \times \frac{\mathrm{BD}^{2} \times \mathrm{Al}^{2}}{A \mathrm{D}} \\
& \text { Lreperiments relating to Torsion. }
\end{aligned}
\]

The following experiments were made by Mr. George Rennie, and published in the Phitosophical 'Tramsactions for 1818. T'be apparatus consisted of a wrought iron lever, two fect long, haring an arched head of about \(60^{\circ}\), and four fect diameter, of which the lever represented the radius: the centre round which it mored had a square hole made to reccive the ent of the bar to be twisted. The lever was balanced, and a scale hung on the arched head: the other end of the bar being fixed in a square hole, in a piece of iron, and that again in a vice. The following are the results of these experiments:-

\section*{EAPERINENTS.}


> On Tuists of different lengths Horizontal Cast. Weight in Scale 1bs. oz.
7. by \(\frac{1}{2}\) long
8. by \({ }^{3}\) do. - \(\quad . \quad 8 \quad 1\)

9: by 1 inch do. - \(\quad-\quad 8 \quad 8\)

\section*{V'ertical.}


Cast horizontal Twists at 6 Inches from the Bearing. 134 by 6 inches long - - 109
\(141_{i}^{i}\) ly do. do. - \(\quad\) - 9
15:by do. do. - \(\quad-\quad 9\)

Tuists of half an Inch Sfuare Bars, east Horizontal.
\(16 \frac{1}{2}\) close to the beam \begin{tabular}{cc} 
girs. lbs. & \(0 z\) \\
3 & 9 \\
\hline
\end{tabular} \(17 \frac{3}{8}\) do 2180 middle of the bar. 18 at 10 inches from bearing
lever in the middle 1240
\(0_{n}\) Thists of differen Muterials.
These experiments were made close at the bearing, and the weishts were accumalated in the scate until the substances were wrenched asunder.


It will of course be understood that these experiments give only the relative resistance to torsion, and not the actual resistance.

\section*{On the Resistance of Cylmulers to Internal Pressure.}

With respect to internal pressure, such as that sustained by water pipes, hydranlic cylinders, \&c. we know of no actual experiments, but the amount of resistance is so directly dependent on the resistance to tension, that no experiments are in this case necessary. If we examine the force which tends to produce the rupture in this case, it will be seen immediately that it varies as the lougitudinal section of the cylimeler; or which is the same, the circumferential strain on any given point of the interior of the cylinder, is equal to the pressure on a square inch multiplied by the number of inches in the radius. That is, the furce tending to rend the cylinder along any line parallel to its axis, is equal to a pressure on a section between the circumference and axis.

Hence it would appear at first sight that the determination of the thickness to resist this pressure would be simply to determine the sectional area of the metal requisite for this purpose, on the supposition of crery part bearing an equal torsion: this, however, is not sufficient, and practice has pointed out that in presses and pipes, it is always necessary to increase the thickness in a higher ratio than the pressure. This subject has been investigated by Mr. Barlow, and the following is the result of his inquiries. If we imagine, as we ought to do, that the metal, in consequence of the internal pressure, suffers a certain degree of extension, it will be found that the external circumference participates less in this extension than the internal, and as the resistance is proportional to the extension divided by the length, it follows that the interior circumference, and every successive circular lamina from the exterior to the interior surface, offers a less and less resistance to the interior strain. The law of which it is our object to investigate.

In the first place, it is obvious that whatever extension the cylinders or ring may undergo, there will be still the same quantity of surface, independently of the small change due to compression, in the section of the ring, which area is always proportional to the difference of the squares of the two diameters.

Let D be the interior diameter before pressure, and \(\mathrm{D}+d\) its diameter when extended by the pressure.
let also \(\mathrm{D}^{\prime}\) be the exterior diameter before pressure, and \(\mathrm{D}^{\prime}+d^{\prime}\), its diameter when extended by pressure.

Then from what is stated above we have
\[
\begin{gathered}
\left.\left.1^{\prime 2}-D^{2}=(1)^{\prime}+d^{\prime}\right)^{2}-(1)+d\right)^{2} \\
\left.O r 2 D^{\prime} d^{\prime}+l^{\prime 2}=21\right) d+l^{2} \\
\text { Whence } \left.2 D^{\prime}+d^{\prime}: 21\right)+d:: d: d^{\prime}
\end{gathered}
\]

Or considerinc \(l^{\prime}\) and \(l\) as very small in comparison with \(2 D^{\prime}\) and 2 D, this becomes
\[
\left.1)^{\prime}: 1\right): ~: d: l^{\prime}
\]

That is, the extersion of the exterior surlace is to that of the interior, as the interior diameter to the exterior,

But the resistance is as the extersion divided by the length, therefore, the resistance of the exterior surface is to that of the interior, as \(\frac{1)}{1}, \quad \frac{D^{\prime}}{1^{\prime 2}}\) OP \(D^{2}: D^{\prime 2}\),

That is, the resistance oflered by cach successive lamiar is inverscly as the square ol its diameter, or inversely as the square of its distance trom the centre; by means of which law the actual resistance due to any thickness is readily ascertainecs.

Let \(r\) be the interior madius of any cylinder, \(p\) the pressure per square inch on the nuid, the whole thickness of the metal, and \(x\) any variable distance from the interior surface. Let also \(s\) reperent the strain exered, or the resistance sustained, by the interior lamina, then by the kaw last deduced
\((r+x)^{2}: r^{2}: s: \frac{r^{2} s}{(r+x)^{2}}\) the strain at the distance, a from the interior surface, consequently,
\[
\int \frac{r^{2} s d x}{(r+x)}+c o r=\text { sum of all the strains. }
\]

This, when \(x=t\) becomes
\[
\mathrm{R}=r^{2} s\left(\frac{t}{r}-\frac{t}{r+t}\right)=\frac{s r t}{r+t}
\]

That is, the sum of all the variable strains or resistances on the whole thickness \(t\), is equal to the resistance that would be due to the thickness \(\frac{r t}{r+t}\) acting uniformly with a resistance \(s\).

Let us now suppose (the above law being established) the radius \(r\), and the pressure \(p\) per square inch on the fluid, to be given, to find the thickness necessary to resist it, or such that the strain and resistance may be in equilibrio, the cohesive power of the metal being also given. Let \(x\) represent the thickness reguired, and \(c\) the cohesive power of the metal persquarcinch; then, the greatest strain the area \(\frac{r x}{r+x}\) can sustain, is \(\frac{r x}{r+x}\), and that which it has to sustain is \(p r\); hence, when thesc are equal we shall have
\[
\begin{aligned}
r p & =\frac{r x}{r+x} c, \text { ог } p r+p x=x c \\
\text { Whence } \quad x & =\frac{p r}{c-p}
\end{aligned}
\]

Hence the following rule in words at length.
To find the thickness of Metal. - Multiply the pressure per square inch by the radius of the cylinder, and divide the product by the difference between the cohesive power of the metal per square inch, and the pressure per square inch, and the quotient will be the thickness sought.

As an example, let it be required to determine the thickness of metal in two presses, each 12 inches in
diameter, in one of which the pressure is 1/tons, and in the other, 3 tons per circular inch: the cohesive strength of cast iron being le, oortbo. per sequare inch. Here \(1 \stackrel{1}{2}\) tons per circular inch \(=1278 \mathrm{lb}\). per -1 . inch. 3 to: s
\[
=9.55
\]

Hence by the rule
\[
\begin{aligned}
& \frac{\text { Virst } 4278 \times 5}{1890-1278}=1.6 \text { inches thickness. } \\
& \text { And } \frac{85506}{180(0)-8556}=543 \text { inches thickness. }
\end{aligned}
\]

It appears, therelore, that in this second rase, at though the pressure is onty druble the binmor, the metal rerquires to be mearly there dimes the thickness.

STROAIS, see Camatess, Vol. V. p. 13 2.
STROMBOI.1, the most northerly of the Lipari lstes. It is abont tern miles in circuit. 'the poprotition of the island, amonming to about lema perempe. are lodged in an irregular collection of contug's apd fishormen's huts. A small portion of the istaml is cultivated, and the imbalitants are chiclly uccupied in fishing. Kabbits are lare aboudant.

The island comsists of a single conical mountain, having on one side of it several small craters, one of which is in ceaseless activity, havines in all probatolity continued so during the last why years. The mours. tain rises at an angle of nearly in . The crater is placed upon the slope of the precipice. The gaseous fluids escape from the voleano in suecessife explosions, the greater ones at intervals of about seven minutes, and the lesser ones almost continually. The lava is thrown out only is projected scorixe, and is seldom or never discharged in any quantity. The inhabitants assured Mr. l'. Scrope that in the storms of winter the side of the cone oceasionally split, and dis. charged into the sea a current of lava which destroyed the fish.

Dr. Daubeny found that that part of the island not in the immediate vicinity ol the volcano, was chichy composed of a 4 fff. \(\ln\) one place the carities were lined with very minute laminx of specular iron. 'The tuff is in some places penctrated by dykes of a cellular description of rock approaching to trachyte.

According to Mr. Scrope, the lavas of Stromboli have a high degree of fluidity, as their cellular nature shows, and also an extremely high specific spavity. being solely augitic. East Long. \(15^{5} 55^{\prime}\); North Lat. \(38^{\circ} 58^{\prime}\). Sec Spallanzani's Trects, vol, ii. and iv. Mr. Scrope's Considerations on Tolemocs. Lond. 1 S25. p. 6, 56. Dr. Daubeny's Description of TVleamoes. Lond. 1826, p. 183-186.

STROMNESS. Sec Orkney, Vol. XV. p. ís.
STRONSAY. Sce Orkney, Vol. XV. p. 81.
STRONTIAN, a small village in Argyleshire. situated on Loch Sunart, celcbrated for its lead mines, and for having given its name to the new earth of Strontites, first analysed by Dr. Hope. The minerals found at this place will be learned from the list of Scottish minerals given in our article Scotlavd, Vol. XVI, p. 697, See also Dr. Brewster’s Journal of Science, Vol. I. p. 225, and Chemstry, Vol. V. p. 685-706.

STROUD, a town of England, in Gloucestershire. situated near the junction of the Frome and Stroud Water. The houses stand irregularly on the bank of the river. The Church of St. Lawrence consists of a nave, chancel and side aisles, with a tower and spire. There are also chapels for the Wesleyan Methodists
and Independenta, a free school, and several charity schools. Stroud is the centre of an extensive trade in fine cloth, most of which is in grained colours, particularly scarlet, the water of the river being supposed particularly fitted for such purposes. All the surrounding vallies are covered with houses and villages, inhabited by those engaged in the manufactire. The Thames and Serem Canal gives great facility to the trade of the place. Population of the parish in 1821; 1419 inhabited houses; 1493 families: 1144 families employed in trade: and 7097 inhabitants.

STRCENSEE, Junn F. Sce Demmark, Vol. VII. p. 491.

STRICHNLA, the name of a new alkali, which has been obtained from the fruit of the Strychnos ignatik, the Strychnos mur comict, and from the Cpas. It was discovered in 1818 by MM . Pelletier and Caventou.

The following process for obtaining it is recommended by M. Carriol. The solution of nux vomica, treated with successive portions of cold water, is eraporated to a syrup, and the gum precipitated by alcohol. The alcoholic solution is then evaporated to an extract by the heat of a water bath. This extract, which is the Igastrate of Strychnia, when deprived of a little fatty matter by solution in cold watei, is heated and the strychnia precipitated by a slight excess of lime water, and then dissolved by boiling alcohol. By eraporating the spirit, the al\(k\) ali is obtained nearly pure. It occurs in four-sided prisms. It is highly soluble in boiling alcohol, but almost insoluble in water, reguiring 6000 parts of cold, or 2500 of boiling water. It is intolerably bitter, and water containing only one 600,000 th part of the weight of strychnia, tastes bitter. It is united in the nux romica with igasuric acid, the existence of which, as a separate acid, is still doubtfu. This alkali affords a red colour with strong nitric acid.

It is a most virulent poison. Half a grain blown into the throat of a rabbit kills it in five minutes. It is composed of 78.22 carbon, \(6 \cdot 38\) oxygen, 6.54 hydrogen, and 8.92 nitrogen. For farther information see Dr.Turner's Elements of Chemistry, 2d edition, 1829, p. 651. Wem. de Chim. vol. x. and xxvi. and Jourmal de Pharmacie, 1825, p. 492.

STUTTGARD, the capital of the kingdom of Wirtemberg, is situated in a valley on the banks of the Nisselbach, about two miles from the Neckar. It consists of the city, two well built suburbs adjacent to each other, and the insulated sumbrb of Esslingen. Some of the streets are broad, and others very narrow. The houses, which are chiefly of wood, are tolerably good. The principal public buidelings are the palace, which is a sptendid buiding, near an extensive park. \(1 t\) contains a fine library and collection of paintings. The library consists of above 100,000 volumes, among which is a very interesting collection of battles, and a collection of platis and military charts. Near the patace is a commodious opera house, a theatre, a muscum of natural history, ant an academy of paintings, sculpture and architecture. There is also at Stutgardargmnasium, a collegre, a socicty of physicians and lovers of natural history, founded in 1804. The collection of the old miversity still exists, and the natural history cahinet of Rorsler now helongs to the gemnasium. The other pubtic buttings are the olt palace, the collegiate church, the hotel de
ville, the barracks, the town library, the mint and the royal stables. In the environs of Stuttgard are the Solitude, the Hirschbad, and the palace of Ludwigsburg, with its fine collection of pictures, the park of Hohenheim, the Roman baths, the house for the orphans of soldiers, the prison and the porcelain manufactory. The chiel manufactories are cotton, silk, hats, leather and snuff. Population, 18,000.

STYRIA, a large province of the Austrian empire, is bounded on the north hy Austria, on the east ly Hungary, on the south by Carniola, and on the west by Carinthia. It extends about 110 miles from east 10 west, and liom 25 to 45 from north to south, and contains about 8500 square miles. It is subdivided into UPper and Lower Styria.

\section*{Upper Styria. \\ Circle ot judenburgh. Bruct. \\ Lower Styris. Circle of Gratz. Marburg. Cilley.}

A branch of the \(A 1 p s\), rising in different parts to the height of \(6000,7000,8000\) or 9000 leet, extends through Upper Styria from west to east, part of them being covered with perpetual snow. The ramifications which are sent out into Lower Styria, gradually decline into small elevations. The prineipal rivers are the Drave, the Save, the Enns, and the Muhr. In Upper Styria, the elimate is very cold, though the air is pure. The winter lasts from November till May, and as cottages are inhabited at very great heights in the mountains, the people are kept prisoners for several months when there are falls of snow. The steep deelivities of these elevated regions are eultivated by the plough, and produce a fine species of wheat, whieh they are able evell to export. The Styrians have large herds of cattle, on which they bestow mueh care, and they are well shaped and of a middle size. Sheep are not yet brought to great perfection, and the horses are fitehient fordraught. There are here wild fowl, game, and the ehamois, with abundance of fine fish in the mountain lakes.

In Lower Styria, wheat, barley, oats, rye, and potatoes, and, in warm exposures, maize, are cultivated. In some ol the warm vallies very fine eorn is success. fully eultivated.

Styria abounds in valuable mines. Gold, silver, and copper oceur in small quantities, but lead is searce. Coal is wrought in some places, but not with the spirit whiel it deserves. The mountain of Erzeberg is a solid mass of iron ore, and yields annually 15,000 tons. The total produce of Styria in iron is from 16,000 to 20,000 tons. There are good salt works at Aussee, and mineral springs are numerous. Cobalt, arsenic, and molybdena, are lound in this province.

There are in Styria 200 forges, and 30 manufactories, where about 300,000 sickles and some scythes are ammally made. The other articles of manufaeture are nitre, alum, gunpowder, and sulphur. Varthenware is also made, and some coarse linen. The imports are woollen and linen goods, silk, oil, tobaceo, and eolonial produce. The exports are iron, stecl, siekles, seythes, cor:1, wine, flax, olive oil, and rathe. There are nearly 120 towns or little villages in the provinee, and 500 citadels, many of which stand on the highest summit of the rocks. ludenburgh is the eapital of Upper, and Grat\% of Lower Styria. The people are principally Roman Catholics. Abmut 15 inelies of rain fall annually. Populationabout 840,000 . Sec Gratz,

STYLE. See Curonology, Vol VI. p. 252.
SUABla. See Swama.
SUAKIN, or Suakea, a Turkish sea port town, and Island of Nubia, anciently Theon Soter. The town has an imposing appearance at a distance, from the effect of two minarets, but it is mean when seen nearer. The harbour is capable of holding 200 large vessels. Water and provisions are good. The town carrics on a small trade with the coast of Africa, Arabia, and Egypt. East. Long. \(37^{\circ} 35\). N. Lat. \(19^{\circ} 48\).
SUbTraCtion. See Armtumetie, Vol. 1I. p. 357 ; and Algebra, Vol. I. p. 403.
SUDBURY, a borough of England, in Suffolk, situated on the river Stow, which is crossed with a stone bridge, and occupying several irregular streets.
The principal buildings are the threc parish ehurches of 'St. Gregory's, St. Peter's and All Saints, which are bandsome, besides an aucient market house. The town has a considerable manufacture of toys, perpetuanas, buntings, and crape, and as the Stow is now navigable to Manningtree, an active trate is carried on in the produce of the neighbourbood. The town returns two members to parliament by the votes of 725 freemen. Part of the priory of' St. Augustine, converted into a house, still exists.
The population of the borough in 1821.
\begin{tabular}{lrrr} 
Houses, & \(\cdot\) & \(\cdot\) & 819. \\
Families, & \(\cdot\) & \(\cdot\) & 955. \\
Do. in Trade, & & 671. \\
Population, & \(\cdot\) & \(\quad 3950\).
\end{tabular}

See the Beauties of England, vol. xiv. p. 147.
SUDERMANIA, or Sudermanland, one of the middle provinces of S weden, is about 100 miles long and about 55 broad, containing 3470 square miles. The mountainous part contains mines of lead, copper, iron and cobalt. There is much arable land, which is fertile and well cultivated. The principal lakes are the Maelar, which bounds it on the north, the Hielmar and Bawer, and many smaller ones, which abound in fish. Nykioping is the capital of the province. Population 156,000. See Swziden.
suderoe. See Faroe.
SUETONiUS, Tranquillus Caius, a celebrated Roman author, was born A.D. 117. He was secretary to Adrian, but was banished from the court in consequence of disrespect to the empress. He enjoyed in seclusion the friendship of Pliny, and composed various works; the only one of which extant is his Lives of the Twelve Cxsars, with some fragments of his Catalogue of Famous Grammarians. One of the best editions of his work is that of Eruestus, Lips. 1775.

SUEZ, a town of Egypt, situated on the Red Sea, on the isthmus of the same name. It was the ancient Arsinoe. The town is supposed to have been built within the last 300 years. In the time of Nieblur it was as prosperous as Cairo, but it has since greatly declined, the French having destroyed one half of its houses, which then amounted only to 900 . Vessels cannot approach nearer than about two and a half miles of the town. The country around is a desert; but there is still some trade with Gaza, Joppa, and Jerusalem, by caravans which bring soap, oil, and tobacco. Coffee, tea, pickled ginger and tamarinds are the chief exports. East Long. \(32^{\circ} 28^{\prime}\), and North Lat. \(30^{\circ} 1^{\prime}\).

Vol. XVII. Pait II.

SUFFOLK, a maritime county of England, is bounded on the east by the German Ocean, on the south by lissex, on the north by Norfolk, and on the south by the county of Cambridge. It is about 47 miles long and 27 broad, and contains 1,512 square statute miles, or 967,680 statute acres. The rental of land is \(\mathcal{C} 694,078+\mathscr{C 1 1 7 , 4 0 5}\) of tithe, and the annual value of a square mile is . 537 . In 1806 it paid \(£ 1,731,763\) of property tax.
Suffolk is politically divided into the franclaise or liberty of Bury St. Edmunds and the Geldable land ; and though there is only one assize fur the county, yet two grand juries are always appointed, one for the Geldable land, and the other lor the liberty of Bury St. Edmunds. These are subdivided into 21 hundreds and 523 parishes. The county pays 20 parts of the land-tax, furnishes 960 militiamen, and returns 16 members to parliament, two for the county, and two for each of the towns of Aldhorough, Dunwich. Eye, Ipswich, Orford, Sudbury, and Bury St. Edmunds.

The county is governed ecclesiastically by the bishop of Norwich, aided by the archeleacons of Sudbury and Suffolk. In 1803 the money levied for the poor was \(£ 149,666\), or \(4 s\). \(10 \frac{1}{2} d\). per pound of annual rate.

Suffolk in general presents a level surface, diyersified with but few eminences of any considerable height. The great chalk ridge extends from Ilaverhill to Thetford in the county of Norfolk.

Suffolk is bounded on the south and west by navigable rivers, and is intersected by numerous streams. The navigable rivers are the Lark which joins the Great Ouse near Mildenhall. The Waveny, which, after approaching the very sea-shore, is driven back abruptly by a rising ground, and runs due north to the Yar, the Deben, which passes Woodbridge and falls into the sea; the Gipping, which receives the name of the Orwell below Ipswich, to which it is navigable, and joins the Stour opposite to Harwich; the Blythe, which runs near Saxield, and is navigable to Framlingham ; and the Stour, which scparates the county from Essex, falls into the sea, between Harwich and Landguard fort. The other rivers are the Little Ouse and the Alde. The only canal in Suffolk runs from Ipswich to Stowmarket.

The soil of Suffolk embraces almost every variety from the lightest sand to the heaviest clay; the former occurs principally in the northwest of the county, which is a dreary barren district, sustaining upon its patches of heath a few sheep and rabbits. Even here, however, by means of the free use of clay, much valuable land has been reclaimed. The interior of the county is a strong fertile loam, which rewards the skill with which it is managed by most abundant crops. The portion called High Suffolk has a very stiff ant retentive soil, hut yields fine wheat, oats, beans. hemp, and cabbage. The bean crops are highly productive. Turnips and carrots are extensively cultivated. Erery garden rears a small portion of hemp, and a few hops are grown near Stowmarket. The seaward district is generally sandy, but it bears excellent barley when enriched with shell marl, which occurs in vast beds near Woodbridge. A small part of the county is fenny, and peat bog is in some cases found from one to six feet beneath the surface.

The farming stock of this county is highly valuable. 3 U

Suffolk furnishes an excellent breed of draught horses, which are strong, active, and capable of great exertion. The cows, which have no horns, are excellent milkers, yielding from five to eight gallons a day. The dairy district is extensive, and the quantity of butter seat annually to London is about 40,000 firkins. The sheep, which are very numerous, are chiefly of the Norfolk breed. Within the last 40 years the breed has been nearly changed by the introduction of the South Down breed, which was effected by Arthur Young. Hogs, poultry, and pigeons are numerous.

There are many rabbit warrens; one near Brandon yields 40,000 rabbits annually:

Suffolk has almost no manufactures, the woollen manufacture occupying in 1785 about 37,600 persons, having been chiefly transferred to Yorkshire. At Stow market coarse linen is made, at Sudbury, says, \&c. (See Sudbury) some bone lace near Eye, and at Lavenham some calimancocs. The principal exports are corn and malt. Woodbridge has a share of the coasting trade and makes some fine salt, and lime from fossil shells. Lowestoff and Southwold have a mackarel and herring fishery in which many vessels are engaged.

One of the principal objects of antiquity in Suffolk is the Roman castle of Burgh situated on an eminence near the confluence of the Yare and Waveney. It is supposed by Camden and others to be the Garianonum of the Romans, erected in the reign of Claudius by Scapula who conquered the Iceni. It forms three sides of a parallelogram with rounded angles. The north and south sides are each 321 fcet long, and the east side 642 feet long; the walls are sixteen feet high and nine feet thick, enclosing five and a half acres, including the walls: The chief entrance was on the east side. There is a circular moat at the south-west corner. A little to the north are the remains of a monastery, built by an Irish monk. The monasteries of Bury St. Edmunds and Framlington, and several old churches are among the most remarkable of the Saxon antiquities.
The following was the population of the county in 1821:


The population of the chief towns are as follows:-
\begin{tabular}{|c|c|}
\hline , & \\
\hline ary St. Edmunds, burgh & \\
\hline Woodbridge town & 4,060 \\
\hline adbury, burgh & 3, \\
\hline westoff town and parisl & S, \\
\hline leceles town and parish & 3 \\
\hline angay town and two parishes & \\
\hline  & \\
\hline adley town and parish & \\
\hline amtington town and parish & 2,327 \\
\hline owmarket town and parish & 2,25 \\
\hline desworth town and parish & \\
\hline & \\
\hline
\end{tabular}

For farther information respecting this county, see the Beauties of England and Heles, Vol. xiv. Young's Asriculture of Suffolk, and Kirby's Sufjolk Traveller.

SUFFOLK, county of, Massachusetts, containing only the townships of Moston and Chelsea. See Boston. Including the city of l3oston, this county in 1820 contained 43,941 inhabitants; and in 1830, 62, 162, or above \(41 \frac{1}{5}\) per cent.

SUFFOLK, a county in the state of New York,
comprising the eastern part of Long Island, bounded by Queen's county W.; Long Island sound N.; and the Atlantic Ocean northeast and east. Length from W. to E. 80 miles. The width varies from one to near eighteen miles, but is at a mean of about eight; arca 640 square miles. Extending in lat. from \(40^{\circ} 25^{\prime}\) to \(41^{\circ} 25^{\prime} \mathrm{N}\). ; and in long. from \(3^{\circ} 33^{\prime}\) to \(5^{\circ} 8^{\prime}\) E. from W. C. The general range of this part of Long Island is from NNE. to SSIV., and composed of a ridge extending in a similar direction with the island, and a slope falling from the ridge towards the Atlantic Ocean. The ridge rises rather abruptly from Long Island Sound, to from one hundred to in some places three hundred feet elevation. The eastern declivity near the base of the ridge also falls rather rapidly, and thence slopes by a more gradual descent to the level of tide water. This plain is followed by a chain of shallow and narrow sounds, which are again succeeded by a series of low, long, and narrow sand islets. The sounds are from two or three miles to a quarter of a mile wide, and in no place admitting vessels of more than two or three feet draught. The eastern extremity of the island and county is broken into two long points, with an intervening intricate bay. The southern promontory is terminated by Mortaug Point, and the northern by Oyster Pond Point. The northern, and relatively to the continent, the interior peninsula is about 30 miles long, and is evidently a continuation of the central ridge, and is continued in Plumb Island, Gull Island, Fisher's Island, and Stonington Point, outside the bay of Pawcatuck. On the whole the surface of Suffolk county on Long island may be regarded as level. Soil rather sterile; and much of it wooded with pine timber. The climate is, however, more mild and agreeable than that of the continent opposite; and such are the other advantages ol position, that as early as 1820 the distributive population was 38 to the square mile, ncarly the whole county having an aggregate of 24,272.

Though along the Atlantic side of the island the depth of water and want of harbors is very unfavourable for shipping, that is not so much the case on the eastern and western sides. The gulf which penetrates between Mortaug and Oyster Pond points, called Gardner's to the castward, and Peconic bay still farther down the island, affords, beside some of lesser note, the haven and town of Sagg Harbor. This is indeed a very prosperous port of entry, and had in 1820 about 150 dwelling houses, 6000 tons of shipping, two extensive rope walks, three salt works, and 1296 inhabitants. N. lat. \(41^{\circ}\); long. \(4^{\circ} 38^{\prime}\) E. of W. C. By post road 108 miles a little N. of E. from the city of New York, and 26 miles a little W. of S. from New London in Connecticut. Beside Sagg Harbour, and Sulfolk, the seat of justice, there are thirty other post offices in Suffolk county.

SUFFOLK, post town and scat of justice, Nansamond comnty, Virginia, situated on the right or eastern bank of Nansamond river, 28 miles SWV. by W. from Norfolk, and by post road 224 miles a little E. of S. from W. C., and 102 miles SE. from Richmond. N. lat. \(36^{\circ} 42^{\prime}\); long. \(0^{\circ} 26^{\prime} \mathrm{E}\). of W. C. Vessels of considerable tonnage ascend Nansamond river to Suffolk. Population about 400 .

Dabbr.
SUGAR, the name of a well known vegetable product, of the general and chemical nature of which we
have given a pretty full account in our article Chemistiry, Vol. V. p. 747.

The art of refining sugar, however, which is not described in that article, and which has heen brought in this country to great perfection, still.remains to be considered.

In the common method of refining sugar, the ordinary Muscovado sugar is boiled with fresh bullocks' blood and lime water, and the scum or impurities produced by the successive additions of the bullocks' blood, is continually removed, till the sugar casts uponly a clean milky froth, which indicates the removal of impurities. In order to heighten the whiteness, a little of the finest indigo is added. In this operation the heat of the fire is applied directly to the pan containing the sugar.

The next process is that of evaporating the pure saccharine solation: This is effected by a moderate fire, and the boiling is continued till the sugar has the proper degree of viscidity or ropiness, which is easily ascertained by what is called the proof stick.

When the evaporation is completed, the hot sugar liquor is removed out of the pans into coolers, and it is here gently stirred to prevent the formation of a crust. It is then granulated by an oar, the violent motion of which continued for several minutes, destroys the viscousness of the sugar, and completes the granulation. The beauty of the sugar depends on the perfection of this process.

The next step is to fll the moulds, which are earthen vessels like inverted cones, the apex of which is undermost. The clarified concentrated juice is then poured in by three different pourings. In order to prevent adhesion to the moulds, and to lay the grain of the mass even and regular throughout, the sugar is scraped from the sides of the cone by a wainscoat knife, the fluid is allowed to rest a few minutes till it has got some firmness. The moulds are then stirred round three or four times, and the process is finished.

The above is the process for single loaves, or sugar once refined. The double loaves, or those doubly refined, are made by a process in which the clarification is effected by the whites of about 200 eggs for each pan, and with fresh water in place of lime water.

The scums taken off during these processes are employed to yield an inferior sugar by methods of purification, which are not intercsting to the general reader.

We had left the sugar in the conical moulds. These moulds are now placed above pots, and the stopper or rag at the bottom or apex of the moulds having been previously taken out, and a punch made with an awl, there will exude from this aperture a syrup or molasses, which in twentyfour hours will fill one half of the pot. This syrup is then removed, and the pot replaced under the apexes of the moulds. A small ladleful of wet clay is then poured on the face or base of
each loaf or cone of sugar, which, after drying into a cake, in five or six days is remored and laid by for future use. On the day following the loaves are clayed a second time, and the cake when dry, is removed like the first. liach loaf is now drawn out of its mould, and irregularitics and impurities brushed off. They are next lel't some days in tha moulds to acquire hardness of surface. They are then turned out upon paper, lieed lrom all little specks, and then dried on a stove for five, six, or seven days, when they are fit for sale.

In the preceding method of refining sugar, between twenty and thirty-five per cent. of molasses are found in the pots, and it is supposed that about two-thirds of this are produced by the intensity of the heat employed for concentrating the syrup. To remedy this evil various ingenious methods have been devised and successfully put in execution.

The first of these was invented by Edward Charles Howard, Esq. and was secured by patent in 1812. He brings the sugar liquor to a temperature of from \(190^{\circ}\) to \(200^{\circ}\) of Fahrenheit, by surrounding the pan with boiling water or steam, under the common pressure of the atmosphere.

A second method consists of covering the pan or boiler at top, and by creating a vacuum within the pan, to favour elullition and rapid evaporation, at moderate heats. In these very ingenious processes Mr. Howard dispensed with the use of bullocks' blood, and he effected the clarification of the liquor by a system of ingenious canvas filters, assisted by a small quantity of pasty gypsum and alumina, formed by a saturated solution of alum in quicklime. In the last purification, in place of covering the base of the sugar loaves with a stratum of wet clay, he covers them with a stratum of very fine saturated syrup.

In 1815, Messis. P. and J. Martineau took out a patent for an improved method of refining sugar. It consists in employing animal charcoal, such as ivory black, bone ash or bone black, aluminous earths, ochres and lamp black. They prefer, however, the animal charcoal, and they use from two to five pounds of it for every cwt. of sugar to be refined. The usual finings of eggs, blood, or other albuminous matter, are used also in larger quantities than formerly, in order to combine the charcoal, \&c. with the dirt in the sugar. The rest of the processes are the same as in common use; but the sugar thus produced has a high degree of purity and whiteness.

The most recent process for purifying sugar, and one which, from an accidental circumstance, has acquired great notoriety, is that of Mr. Daniel Wilson, who conceived the ingenious idea of boiling sugar by means of heated oil, passing through a worm or coil of copper pipe, fixed within the par containing the sugar.

A view of this apparatus is annexed. 3 U2


In the preceding elevation \(A\) is a wrought iron vessel for heating the oil, similar to the boiler of a steam engine. It is set in brick work, with a fire under it of a moderate size, and without any flues round the sides, so that the whole action of the fire is upon the bottom. It is made of an oblong form, and its length should exceed its breadth as much as the situation it is to be placed in will allow. The size depends upon the quantity of oil to be heated, or the liquor which is to be evaporated ; and it is observable, that the more the surface presented to the fire exceeds the craporating surface, the greater witl be the economy of fuel. Whale oil, free from sediment, is found to answer better than any other for this purpose, and the quantity necessary to be employed is merely sufficient to cover the bottom of the vessel, to the depth of six or eight inches.
\(B\) is a thermometer for ascertaining the heat of the oil.

C is a small tube, opening at the lower end into the oil ressel, while the upper extremity passes into a long flue, called a steam vent, and communicating with the atmosphere. This pipe serves three different purposes: the first is, that before the pump begins to work in the morning, there is a quantity of air contained in it, and it is necessary there should he a vent for this when the pump is set to work, in order to prevent any compression in the inside of the vessel. The next is, that with a common suction-pump it is necessary there should be a communication with the atmosphere. Thirdly, it is designed to carry off the aqueous vapour from the fresh oil, which has a very bad smell, and such vapours would injure the sugars, if they got abroad in the sugar-house.

D is a cast iron pump, with a spring metallic piston communicating with the oil ressel \(A\), by means of its suction-pipe \(E\). lt is set in mo-
tion in the usual manner, by some mechanical power.
F is a copper vessel, the bottom of which is covered in the inside by a coil or pipe, communicating at one of its ends with the pump at (i, and at the other end with the oil ressel through the pipe II. Through this coil of pipe the heated oil circulates, and being surrounded on all sides by the liquid in the pan \(F\), it gives out about \(100^{\circ}\) of heat in its passage, and returns to the oil ressel to obtain a fresh increase of temperature. This pan is surrounded by brick or wood work, to prevent cooling. Of course it has no fire under it.

This ingenious apparatus was erected in August 1819, by Messrs. Severn, King and Company, and one of the pans was wrought with great satislaction and profit for nearly three months, when in Nov. 1819, a fire broke out and occasioned a loss of L. 80, 000. On the ground that this new mode was more dangerous than the other one, the insurance offices refused to make good the above loss, and that celebrated trial took place in which half of the London chemists gave evidence the reverse of the other half. The point was decided against the insurance offices.

Mr. Wilson's process differed also in other respects from the common one. For every cut. of sugar a solution of sulphate of zinc, in as small a quantity of water as possible, is added to the melted sugar in the pan. The oxide of zinc combines with the extractive matter, tamin and gallic acid, and renders them insoluble, while the sulphuric acid combined with the lime is insoluble also. When a strong grain is required, and the raw sugar contains much acid, a mixture of lime, consisting of an oz. of powdered lime in water is added about five minutes after the sulphate of zinc solution has been added. This method is used along with the patent filtering apparatus invented by Mr. J. Sutherland.
It is well known that sugar can be obtained from many vegetable substances, but particularly from the root of White Beet. In consequence of the destruction of the sugar plantations of St. Domingo, and the resolution of Bonaparte to exclude the colonial produce of Great Britain from the continent, he exerted all his means to supply the place of colonial produce by articles of indigenous growth. Chaptal, Dombasle and others, seconded his views; the Institute reported on the subject in 1800, 1810; and in 1812, the manufacture was extending rapidly. The events of the war put an end to such operations, but in 1819 they were again in considerable activity, and in 1825, there were 100 manufacturers who furnished altogether about 4 or 5 millions of Ibs. of raw sugar (from 2000 to 2500 tons), which was not the twenticth part of the consumption of the kingdom.

The following table from M. Dubrunfaut shows the expense of growing the beet in ten different estates in France and Flanders, and the quantity produced in each for every hectare ( \(2 \frac{1}{2}\) acres). The expense in the last column inchades that of labour, \& 8
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{No. of kilogrammes Of beet permartare} & \multicolumn{2}{|l|}{} \\
\hline 1 & 12,500 & - & 14 lirancs & 56 centimes \\
\hline 2 & 30,000 & - & 9 & 20 \\
\hline 3 & 25,000 & - & 7 - & 50 \\
\hline 4 & 30,000 & - & 6 & 65 \\
\hline 5 & 25,000 & - & 8 - & 40 \\
\hline 6 & 16,390 & - & \(9-\) & - \\
\hline 7 & 16,500 & - & 8 - & 66 \\
\hline 8 & 18,000 & - & 7 - & 95 \\
\hline 9 & 26,625 & - & 6 - & 25 \\
\hline 10 & 37,500 & - & 10 & - \\
\hline \multicolumn{2}{|l|}{Total, 237,515} & Total, & 88 & 5 \\
\hline Averag & 2s,75! & verage & & 80 \\
\hline
\end{tabular}

According to our author about 4000 tons of roots (4,114,200 kilogrammes), cost \(\mathfrak{E} 5600\), or 136,082 franes, when manufactured into sugar.

The produce ol this quantity of roots he estimates thus:-

As 70 per cent. of juice is extracted, this would leave 30 per cent. pulp, worth 15 lrancs per 1000 kilogrammes ( 12 francs per ton), or 18,514francs. Raw Sugar \(4 \frac{1}{2}\) per cent. on the weight
of the roots, or 185,139 kilogram-
mes, - - - - 222,167
Molasses, 153,960 litres \(=201,600 \mathrm{kil}\). fit only for distillation, 10 francs

and deducting for the expenses 135,082, and the sum of 38,674 francs, for the value of the pulp and pure molasses, we find a balance of 97.408 , which, divided by the weight of the sugar, 185,138 kilogrammes, gives 58 centimes, per kilogramme, or \(2 \frac{1}{2} d\). per lb. At the manufactory of M. Crespel, near Arras, the cost is \(3 \frac{1}{2} \mathrm{~d}\). per 1 b .

Several very remarkable views and facts respecting the formation of sugar, have been lately brought to light. M. Kirchoff, a Russian chemist discovered that starch may be converted into sugar, by being boiled for some time in very dilute sulphuric acid. M. Theod. Saussure found that one hundred parts of starch yielded one hundred and ten parts of sugar, and he concluded that sugar is merely a compound of water and starch. Thus,
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{starch.} & \multicolumn{2}{|l|}{sugar of grapes-} \\
\hline Oxygen 55.87 & - & - & - & - & 56.51 \\
\hline Carbon 37.19 & - & - & - & - & 36.72 \\
\hline Hydrogen 6.84 & - & - & - & - & 6.78 \\
\hline 100.00 & & & & & 00.00 \\
\hline
\end{tabular}

According to the analysis of M. Berzelius, starch and common sugar are thus composed:
\begin{tabular}{lccccc} 
& & Starch. & & \multicolumn{2}{c}{ Common Sugar. } \\
Oxygen & - & 49.6 & - & - & 49.856 \\
Carbon & - & 43.5 & - & - & 43.265 \\
Hydrogen & - & 7.0 & - & - & 6.879 \\
& & \(\boxed{100.0}\) & & & 100.000
\end{tabular}

Hence the abstraction of a little hydrogen and carbon would convert starch into sugrar.

The most mmarkable discovery, however, relative to surgar, is that made by M. Braconot relative to the formation of sugar lrom the sawings of wood, old rags, athe paper, of which a brief account will be lound itl our article Senence, Amusements in, Vol. X'I. 1. 6ito.

SULLIVAN, county of, Newllampshire, formed recently from the northern or upper towns of Cheshire county. Sullivan is boumled N. by Giralton; E. by Merrimac; Sl:. by llillsborougli; S. by Cheshire; and by Connecticut river separating it from Windham comuty, Vermont, SW.; and from Windsor county, Vermont, W. and NW. Length from S. to N. 32; mean width 18; and area 576 square miles. Extending in lat. from \(43^{\circ} 10^{\prime}\) to \(43^{\circ} 37^{\prime} \mathrm{N}\). ; and in long. from \(4^{\circ} 30^{\prime}\) to \(5^{\circ} 5^{\prime} \mathrm{E}\). from W. C. This county lies entirely in the basin of Connecticut river, and has its declivity eastward from a range of hills separating the basins of Merrimac and Connecticut; and is drained by the sources of Ashmelot, and by Cold river, Sugar river, and some smaller streams. Surface very broken, but soil excellent for grasses of all kinds.

Deside Newport, the seat ol justice, there are sixteen post-offices in Sullivan; the principal villages in which these offices cxist are Charlestown, Claremont, Croyden, Goshen, Lempster, Plainfield, Springfield, Unity, and Washington.

Newport, the seat of justice, stands a small distance west of Sunapee lake, on Sugar river. N. lat. \(43^{\circ} 20^{\prime}\); long. \(4^{\circ} 52^{\prime}\) E. from W. C. by post road; 40 miles NW. by W. from Concord, and 467 miles NE. from W.C.

SULLIVAN, county of, New York, bounded by Delaware county of the same state, NW.; Ulster N. and NE.; Orange SE. and S.; and by Delaware river, separating it from Pike county of Pennsylvania, SW.; and from Wayne county of Pennsylvania, W. The longest line that can be drawn in this county is one very nearly due N . and S ., from the southern angle at the mouth of Mongarep creek, to the most northern angle, 39 miles; and the area being within a small fraction of 819 square miles; the mean breadth is about 21 miles. Extending in lat. from \(41^{\circ} 26^{\prime}\) to \(42^{\circ} \mathrm{N}\).; and in long. from \(1^{\circ} 55^{\prime}\) to \(2^{\circ} 38^{\prime} \mathrm{E}\). from that meridian of Washington city.

The surface of this county is elevated, broken by hills, and in part mountainous, and nearly the whole drained by creeks flowing into Delaware river. The northern part has a western declivity, and gives source to Beaver Kill, a confluent of the Popachton branch of Delaware river. The central and southern part of the county declines sonthwardly, and is also drained into Delaware river by the Mongaret, Nevesink, and other creeks. By the levels taken on the Hudson and Delaware canal, the lowest part of Sullivan county must exceed 455 feet above the ocean lerel; and of consequence, from its mountainous aspect and position, the arable soil must lie between 500 and at least

1000 feet of such relative height. It is probable that the mean height of the farms exceeds 800 feet, or an equivalent to two degrees of Fahrenheit in the mean temperature of the climate. This difference is distinctly seen in the advance of spring and autumn in Sullivan, and in similar latitude on Hudson river.

The southeastern and Iower part of Sullivan county has gained public importance and local adrantage from affording a part of the route of Hudson and Delaware canal. This canal leaves the Delaware river at Carpenter's Point, at the mouth of Nevesink river, and in the western part of Orange county, and passes thence in a northeastern direction along the valleys of the Nevesink, Rondont, and Waalkill, to the Hudson at Eddyville, nearly opposite Rhinebeck, and passes by the villages ol' Essopus, or Kingston, Marbletown, Mombacus, Warwassing, \&c. The rise from tide water in Hudson 535 feet, and fall from the summit level to Delaware river 80 feet.

By the post lists publishing at this time (May 1831), there are beside Monticello the seat of justice, post towns Bethel, Bloomingburgh, Cochecton, Fallsburgh, Forrestburgh, Grahamsville, Liberty, Nevesink, Philipsport, Rockland, Searsville, Thompsonville, West Brookville, White Lake, Woodbourne, and Warsborough. In 1820 the population amounted to 8900 .

SULLIVAN, county of, East Tennessee, bounded by Carter's mountain separating it from Carter county, E. and SE.; by Washington county S.; Hawkins W.; Scott county of Virginia NIV.; and Washington county of Virginia NE. This county lies in a near approach to a right angled triangle, longest side on Carter and Washington counties in the same state 45 miles; the perpendicular south from the Virginia line 18 miles, but a southern curve of the longest side increases the area to about 500 square miles. Extending in lat. from \(36^{\circ} 22^{\prime}\) to \(36^{\circ}\) S5', and in long. from \(4^{\circ} 58^{\prime}\) to \(5^{\circ} 50^{\prime} \mathrm{W}\). from the meridian of Washington city. The entire declivity is to the southwest, and the far greatest part of the area included in the valley of the main branch of Holston river. This stream rising in Wythe county of Virginia traverses Washington county in that state, and entering Sullivan county in Temessec, receives the Vatanga from Carter county, and flowing a few miles farther to the SW. curves abruptly to NW., and receives the north branch on the boundary between Holston and Hawkins counties. The surface is elevated and mountainous, but with much good soil. In the post list of 1831 there are enumerated in Sullivan county, lennessec, five post towns, beside Blounsville, the county seat; these are llilton, Kingsport, lactolus, Paperville, and Rockhold's Store. The population in 1820 amounted to 7015 .

SULLIVAN, colluty of, Indiana, bounded by Vigo county in the same state, N.; Clay NE.; Greene li. and SE.; and Wabash river, separating it from Crawford county of Illinois SW., and Clark county, of lllinois NW. 1ength from S. to N. 28, mean width 20 , and area 560 square miles. Exfording in lat. from \(38^{\circ} 53^{\prime}\) to \(39^{\circ} 17^{\prime}\), and in long. foom \(10^{\circ} 16^{\prime}\) to \(11^{\circ} 42^{\prime} \mathrm{W}\). from W. C. 'The
slope is to the southwestward obliquely towards Wabash river. Surface moderately hilly, and soil excellent. In the beginning of 1831 there were but three post offices in this county; these were situated at Merom, the seat of justice, Carlisle, and Yurman's creek. Population in 1820, 3498. Darby.

SULLY, Maximilian Bellevue, Duke of, was born at Rosni in 1559, and was descended from an illustrious Protestant family of the counts of Flanders. At the age of eleven, when he was in Paris, he escaped from the massacre of St. Bartholomew in 1572 , by being concealed for three days. The leading events of his public life and his character will be found in our article France, Vol. IX. p. 301 -307. He died in 1641, at the age of 82. The OEconomics Royales, or the Memoirs of Sully, written by himself, are much esteemed for the simplicity of the style, and the interesting anecdotes they contain.

SULPHATES and Sulphites. See Chemistry, Index.

SUlpHUR. See Chemistry and Mineralogy, Indexes.

SULPHURIC and Sulphurous acids. See Chemistry, Index.

SUMACH. See France, Vol. IX. p. 414.
[SUMASINTA, river of the republic of Mexico, as laid down on 'Tanner's Mexico, rises in the mountains of Gnatemala, N. lat. \(15^{\circ}\), and \(15^{\circ} \mathrm{W}\). long. from W. C.; and in the extreme southern part of Chiapa; flows thence northwardly, first separating Yucatan from Chiapa, and then from Tabasco, is finally lost in the Gulf Terminos, after a comparative course of about 220 miles. The gulf or bay at the mouth is shallow, admitting only small vessels.] Darby.
SUMATRA, a large island in the Eastern Sea, and the most westerly of the Sunda Islands. It extends about six degrees on each side of the equator, and is about 1050 miles long, and 165 broad. A chain of mountains in double and treble ranges, extends through the island. Mount Ophir, under the equator, rises 13,842 feet, but snow has never been seen on its summit; or on that of any of the rest. Between the ridges of these mountains there are extensive plains of great elevation, where the inhabitants principally reside on spots cleared of the woods which clothe every part of the island. These plains abound with large lakes, from which issue rivers and streams, the largest of which is the Siak, the Indragiri, the Jambi, and the Palembang, flow to the eastern coast, while the small ones in great number discharge themselves into the western sea. The most important of these are the Kataun, the Indrapura, the Tabuyong, and the Sinkel.

The mean temperature of Sumatra is, we are persuaded, not above \(81^{\circ}\), the average measure of the equatorial heat. According to Mr. Marsden, the thermometer fluctuates between \(82^{\circ}\) and \(85^{\circ}\) in the inost sultry heats. At Fort Marlborough, he never saw it higher than \(86^{\circ}\) in the shade; though at Natal, in north lat. \(0^{\circ} 344^{\prime}\), it is not unfrequently at \(87^{\circ}\) and \(88^{\circ}\). Now, at sunrise, it is usually as

Low as \(70^{\circ}\); so that \(81^{\circ}\) will be found a lull measure of the average mean temperature. Beyond the first range ol hills the people light fires in the mornings. The southeast monsoon, or dry season, is between May and September inclusive, and the northwest monsoon begins about November; and the hard rains cease in March. There are a number of volcanic mountains; and earthquakes frequently occur. 'Thunder and lightaing are also frequent.

The soil of Sumatra is generally a reddish stiff clay, burned nearly to a state of brick with the sum, but covered with a stratum of black mould. 'The principal article of produce is rice ol various kinds, which, in some cases, gives a retarn of 140 for 1 , though in general it is only 30 for 1 . The cocoa nut, the sago tree, the sugar cane, are also cultivated, lut very little sugar is made. Maize, chilly pepper, turmeric, ginger, coriander and cumin seed, are reared in gardens. Hemp is cultivated in order to obtain hang, which is smoked in pipes along with tobacco, which is also cultivated.

The principal lruits of Sumatra are the mangostcen, the pine apple, oranges, the white and red shaddock, limes and temons, the bread fruit, the jack fruit, the mango, the papaw, the pomegranate, the tamarind, nuts and almonds, wild grapes. Among the medicinal and useful trees may be enumerated the castor-oil plant, the caoutchonc tree, the camphor tree, the coffee tree, the indigo tree, aud the upas tree, which is not injurious to those who come near it.

Sumatra is rich in mineral productions. There are mines of copper, iron, and tin. Sulphur and nitre are also plentiful. Yellow arsenic is also found. Coal, washed down by the floods, is procured in many parts. There are mineral and hot springs, and springs of petroleum. Yellow, red, and white ochres, are abundant.

Gold, which is found chiefly in the interior, occursimbedded in the rock, lorming veins in guartz. The mines are generally at the foot of the mountains, and are wrought by horizontal shafts from 50 to 150 feet long. The gold is also found in smooth masses like gravel, one of which seen by Marsden weighed 9 oz. 15 grains. There are nofewer than 1200 gold mines in the dominions of Menancabow. It is said that 11,000 ounces have been annually received at Padang, 2000 at Nalaboo, 800 at Natal, and 600 at Mocomoco.

Among the articles exported from Sumatra may be enumerated the edible birds nest, the Biche de Mer, bees wax, gum Lac, ivory, pepper, cassia, aloes, gum dammer, benzoin, camphor, dragons' blood, salted roes. The imports are, from Coro. mandel, cotton goods, blue and white long cloth, chintz and coloured handkerchiefs, and sali; from Bengal, muslins, cotton goods, taffetas and opium; from Malabar, coarse cottons; from China, porcelain, iron-pans, tobacco, gold thread, \&x.; from Celebes, the rough striped cotton which forms the dress of the natives, krises, hats, small pieces of
brass ordnance, spices; and from Europe, silver, iron, steel, lead, cutlery, lurdware, brass wire, and broarl cloth, particularly scarlet.

The inbabitants of Sumatra have made but littla progress in the useful arts. lire arms, nails, adzes, axes, hoes are made in dilferent parts. They are good carvers itn wond and ivory; they make good cane and basket work. Silk and cotton cloths, gold and silver embroidery, eathenware, gunpowder, salt, gold and silver lilagree work, are the chief objects ol their industry.

The doosoons, or villages, are generally situmet upon an eminence, on the banks of a river or a lake The houses form a guadrangle, with lames between. The balii or town-lall stands in the eentre of the square. It is a room lirom nincty to a hundred lieet long, and from twenty to thirty liet wide, and open at the sides, unless when it is hung with mats on chintz. The houses consist of a wooden frame. lashed with split bamboos, and generally roofed with the leaf of the Neepal's palm. To secure themselves from wild beasts, the inhabitants raise their houses to different elevations, and they ascend to them by a piece of timber or stout bambou cut in notches. The better class of houses are ornamented externally with uncouth carved ornaments: they have neither tables nor chairs, nor knives of forks. In cooking they employ an iron ressel.

Sumatra is chielly occupied by the empire of Menancabow, and the Malays; by that of the Achecnese; the Battas, the Rejangs, and that of Lampong. The Nalay language is universally spoken along the coast. It prevails also in the inland territory of Menancabow, and is understood almost throughout the island. Their written character is the Arabic. Many other languages prevail in the island, but of these the Rejang and the Batta are the chied.

Sumatra abounds with witd animals, the tiger, the elephant, the hippopotamus, the rhinoceros, the bear, deer of various kinds, sloths, squircels, monkeys, the gigantic orang-outang,* civet-cats, tigercats, porcupines, hedgehogs, alligators, boa-constrictors, guanas, chamelcons, flying lizards, tor. toises, and turtle. Among the domestic animals are the buffalo, which affords milk, beef and broth, the cow, the horse, the sheep, the goat, the hos, the otter, the cat, the dog and the rat. Among the birds are the beautilul Sumatra pheasant eagles, vultures, peacocks, kites, crows, \&cc. The istand swarms with insects.

For farther information respecting this island, see Beschreibuns der insel Sumatru, besonders in Ansehung des Handels, d•e. von Adolph. Eschelsiron, Hamb. 1781. Marsclen's IIistory of Sumetra, Lond. 1783. Shelbeare's History of Sumatra, Lond. 1787. Van Schirak's Description of the Commerce of Sumatra, in Dutch, Harlen, 1789: and the Asiatic Researches, vol. x. See also our article Aeheen.

SUMNER, one of the northern counties ol' Ten-

\footnotetext{
*See Dr. Brewster's Journal of Science, No. YIII. p. 193. Nó. XIII. p.162. No. XY'Il. p. 1. and New Series, No. 11
}
nessee, boanded by Smith county in the same state E.; by Cumberland river separating it from Wilson county S.; by Manpoes creek separating it from Davidson SWF; by Robertson eounty NIV.; and by Simpson and Allen counties in Kentucky N. 'This county reaches in lat. from \(35^{\circ} 12^{\prime}\) to \(36^{\circ} 37^{\prime}\); and in long. from \(9^{\circ} 8^{\prime}\) to \(9^{\circ} 42^{\prime} \mathrm{W}\). from W. C. 'The separating summit level between the vallies of Cumberland and Greene rivers traverses Sumner from E. to W., dividing it into two inclined planes. The northern and least extensive slopes to the NNW., and gives source to creeks flowing into Big Beaver branch of Green river. The largest or more extensive declivity falls southwardly, and is drained by creeks lalling into Cumberland river. Surface waving rather than hilly, with an excellent soil. In the beginning of 1831 there were post offices in Sumner, at Bracken's, Cairo, Fountain Head, Gallatin, Green Garden, Hartsville, Hendersonville, Long Hollow, Nontgomery, and Tyree Springs.

Gallatin, the seat of justice, is situated near the middle of the county, from east to west; but, towards the southern border, on Cumberland river, 27 miles NE. from Nashville, and as stated in the recent post office list, 699 miles from Washington city.

Cairo is on Cumberland river, five miles a little E. of S. from Gallatin. Hartsville is also situated on Cumberland river, in the extreme southeastern angle of the county, and by post road 41 miles above, and NE. by E. from Nashville.

This county is in length from east to west 38; mean width 17 ; and area 646 square miles.

SUMPTER, district of, South Carolina; bounded NW, by Kershaw; NE. by Lynches river separating it lrom Darlington; E. and SE. by Williamsburg; S. by Santee river separating it from Charleston district; SW. by Santee separating it from Orangeburg; and W. by Wateree separating it from Richland. Greatest length from the extreme southern part on Santec liver to the extreme northern on Lynch's creek, 62 miles; mean width 20 ; and area 1240 square miles. Extending in lat. from \(33^{\circ} 23^{\prime}\) to \(39^{\circ} 17^{\prime}\), and in long. liom \(2^{\circ} 51^{\prime}\) to \(3^{\bullet} 38^{\prime} \mathrm{W}\). from Washington city. General declivity SSE. It is bounded on two sides by navigable rivers, whilst the central parts are drained by Black river, braneh of W"inyaw.

Sumpterville, the seat ol' justice, stands on a small braneh of Black river, near the centre of the district, 93 miles a little W . of N . from Charleston; 44 miles a little S. of E. Vrom Columbia; and by post road 481 miles SSW. from the eity of Washington. N. lat. \(33^{\circ} 53^{\prime}\), long. \(3^{\circ} 22^{\prime} \mathrm{W}\). from IV. C.

Beside at Sumpterville, there are post offices in this distriet at Bishopville, Bradford Springs, Bradlerville, Frieudship, Fulon, Jacksonville, Jamesville, Manchester, Mill (irove, Mount Clio, Salem, Statesburg, and Willow Grove.

In 1790 Sumpter contamed a population of 6940 ; in \(1800,13,10.3\); in 1810 it contained 19,054 ; and in 1820, 25,369. For the population in 1830 see the
general table of the counties under the head of United States.

SUNBURY, post town, borough, and seat of justice, Northumberland county, Pennsylvania, situated on the left bank of Susquehanna river, on the point immediately above the mouth of Shamokin creek, two miles below the junction of the two main branches of Susquehanna river, and a similar distance below the borough of Northumberland, with the breadth of the east branch superadded; 52 miles above and N. from Harrisburg, and by post road 162 miles a very little E. of N. from Washington eity.

From Philadelphia there are two roads to Sunbury. The most direct is by Reading and Orwigsburg, 123 miles; the second by Lancaster and Harrisburg, 148 miles. Population about 1000.

SUNBURY, post town and sea port, Liberty county, Georgia, situated at the head of St. Catharine's sound, and mouth of the small river Medway, 10 miles E.from Riceborough, the county seat; 34 miles SSW. from Savannah; and by post road 212 miles a little S. of SE. by E. from Milledgeville. Lat. \(31^{\circ} 45^{\prime} \mathrm{N}\). Long. \(4^{\circ} 22^{\prime} \mathrm{W}\). Irom W. C.

The harbour is open to the sound, distant about eight miles from the Alantic ocean; but the northern projection ol St . Catharines island contributes to shelter vessels from southern and south-eastern winds.

Darby.

\section*{SUN. See Astronomy, Index.}

SUNDERLAND, a borough and sea-port town of England, in the county of Durham, is situated on the southwest bank of the Wear. It is united to Monk Wearmouth by the celebrated iron bridge, of which we have already given a full description and drawing, (see Bridge, Vol. IV., p. 479, and Plates XCI, and XCIII.) so as to form altogether a town about one and a hall mile long, and one mile broad. It consists of one principal street, called the High Street, formed by the road to Durham, which contains many handsome houses. Several of the other streets, which branch off from it, are narrow and dirty. Lately, however, great improvements have been made in widening, lighting and repairing the strects. The church is large and handsome, having a light and elegant east front. A spacious and elegant chapel of ease was erceted in 1767, and there are also excellent places of worship for the Presbyterians, Independents, Baptists, Quakers, Methodists and Unitarians. The Methodist chapel is a handsome building, which holds 1500 persons. The other public buildings and institutions are the exchange, a handsome editice, a theatre, assembly roon, an excellent subscription library, a dispensary, a humane society, a charity lor deeayed seamen and their widows, a girls'school, a blue-coat school, besides two charitysehools, one on Laneaster's plan, and the other on Bell's plan, at Bishops Wearmouth. On the moor to the east of the town, are commodious barracks capable of accommodating 1800 men .

The harbour is inclosed by two piers, one on each side of the river. 'I'he south pier is old, but the north one has been ereeted since 1788, and gives
great security to the shipping. The tide now flows sixteen feet, and admits vessels of 300 and 400 tons burthen. An elegant circular lighthouse has been erected near the end of the northern pier.
The trade of Sundetand has been long progressively increasing. The principal imports are corn, hour, wines, spirituons liquors, timber, tar, deals, flax, iron, scc. The exporls are coal, lime, glass, glass bottles, grindstones and copperas. The coal trade employs about 500 vessels, besides 492 keels, or flat-bottomed craft; which convey the coal from the staiths to the ships. The coal is chiefly sent to London, but also to the Bahtic, France, Holland, \&c. The quantity annually exported was reckoned at 315,000 Neweastle chaldrons; but in 1820 it amounted to 421,061 chaldrons. The persons employed in the coal trade on the river Wear only amounted to 26,000 . The lime is sent chiefly to the coasts of Scotland and Yorkshire.

The principal manufactures here are those of cordage, bottles, flint glass, broad glass, white and brown earthenware and copperas, tar, \&ec. Shipbuilding is carried on to a greatextent. In 1814, 8000 vessels eleared out of Sunderland harbour. The town is governed by a vestry or association of the imhalitants, having frechold estates, at the ammal value of \(£ 10\). They continue in oflice three years. A little to the sonth of Sunderland, on the edge of the sea, is a chalybeate spring, nearly as strong as that of Inarrowgate. The following was the population of the tewn in 1821:


See the Beautics of England, vol. v. p. 135.
sUpERIOR, LAKE. Sce Canada, Vol. V. p. 233.

This greatest sheet of fresh water on the earth is itself a reservoir for a circular band of territory around it rarying in width from 40 to 80 miles, and measured at about mid-distance from the lake equals in length 15 degrees of a great circle, equal to 1042 statute miles. Including the whole valley, or the lake and land surface drained into it, we find a physical section in the form of a vast triangle; base from east to west passing through St. Mary's strait to the height of ground between St. Louis and Rum rivers 500 miles. Perpendicular 350 miles. These elements give an area of 87.500 s spuare miles. Of this expanse, lake Superior itself occupies a triangular surface; base 350 miles from the outlet of St Mary's river to the mouth of St Louis's river 350 miles. Greatest width 160 miles, but mean width about 86 miles as the area is by careful admeasurement on numerous maps, within a small fraction of \(30,000 \mathrm{scquare}\) miles. The valley of Superior lies, according to Tamner's United States, and his North America between N. lat. \(46^{\circ}\) and \(51^{\circ}\), and between Long. \(7^{\circ}\) and \(17^{\circ} \mathrm{W}\). from the meridian of Washington city.

The present is a favourable opportunity to correct a prevalent error. Lake Superior has been called the American Caspian, and very frequently Vol. XVII, PartiI.
stated to be equal or even more extensive than the Caspian. But these comparisons are very erroneous; the Caspian is 690 miles from south to north, and the mean width at least 180 miles, giving an area ol \(124,200 \mathrm{sq}\) guare miles; or upwards of lour fold more extensive than is lake Superior. In reality the whole five great lakes of Canada, and all the intermediate land taken togrether, but little exceeds the surlare of the Caspian; and the actual water surface ol the five Canadian lates is to that of the Caspian as one to there very nearly.

The surliace of lake Superior is revated above the Atlantic tides 6.1 feet, but the btmost depth sinks below the occan level, and of course if a strat level with the ocean comnected it with the lake, the latter would still exist as an inland sea.

The immense depth of the Canadian lakes, exeept Erie, is indeed amongst the most extraordinary facts in their natural history, Lake Superior is perhaps the deepest of the three higher lakes, but each admits the navigation of the largest vessels. Similar to the Caspian, the lakes of Canada have shores very deficient in harbours; and lake Superior in particular has immense walls of rock stretching along much of its border.

The enormous mass of water from Superior passes over what has been very erronconsly called the falls of St. Mary, but which is in reality not a very steep cataract, and is passable with boats. The entire fall determined by general Gratiot is 22 feet 10 inches. The strait of St. Mary if measured from the lower end of St. Joseph's island into the open water of lake Superior, is about seventy miles in direct length. The real narrows at the cataract, where Fort Brady now stands, is at N. lat. \(46^{\circ} 31^{\prime}\). Long. \(7^{\circ} 18^{\prime}\) WV. from the meridian of Washington city.

From the geographical position and the long and intense frosts so near the eastern side of a large continent, the upper lakes of Canada would be annually frozen in winter, if that phenomenon was not prevented by their prodigious depth. Their bays and rivers are anmally frozen, in fact: but the great mass and depth of the open lakes prevent the formation of solid, compact, and passable fields of ice.

Darby.
SURAT, a large city of Hindostan, in the province of Guzerat, situated in a fertile plain on the south bank of the Tappi or Taptee. It is defended on one side by the river, and elsewhere by a brick rampart about twenty feet high, and a ditch, having a strong citadel, with an esplanade. The squares of Surat are spacious, but the streets are generally narrow, irregular and unpaved. Every street has its own gates, which are shut in eases of alam. The citadel, which is the principal building, is a large quadrangular building, of hewn stone, with a circular and spacious bastion at each angle, mounted with three tiers ol guns, the lowest being 36 pounders, the second 24 , and the upper 18 and 12 pounders. In all, there are 200 cannon mounted, besides 24 at the saluting battery. The houses for the officers are elegant. The durban palace is about two hundred paces distant. The mint is a large 3 V
pile of building, encircled with a lofty wall. There are two caravanserahs in Surat, and numerous bazaars or market places. Some of its mosques are handsome. There are here some fine water tanks.

As the Hindoos never willingly deprive any thing of life, they have here a large hospital for maimed or diseased animals, with an annual revenue of 6000 rupees, and occupying an extent of twenty-five acres. It is full of decrepid cows, sheep, rabbits, hens, pigeons, \&c. who are attended by a physician. Niebuhr saw here a blind tortoise, said to be 125 years old.
The trade of Surat, once very great, has declined rapidly, both from the badness of its harbour, and the rise of Bombay. The river is full of sandbanks, and all large vessels are obliged to remain at its mouth, called Swallow roads, where there is good anchorage, but no shelter. Nearly two-thirds of the distance between the anchorage and the town, a distance of nearly twenty miles, is a continued chain of banks, with narrow channels between
them. In the burial places of the Europeans in the suburbs, are many large and handsome tombs, worthy of being visited. Shipbuilding used to be carried on to a considerable extent, but much of it has been transferred to Bombay and Damaun.

From 1794 to 1796 the trade of Surat amounted annually to about 600,000 rupees, half of it being carried on with the Arabian, and half with the Persian gulf. In the year 1811 and 1812 , the total imports amounted to \(4,881,410\) rupees, and the total exports to \(3,966,523\) rupees. This trade was carried on by fifty-seven vessels, whose tonnage amounted to 5318.

In 1796 the population of Surat was estimated at 800,000 souls, and by others at 600,000 . It has been stated also at 400,000 , and lately so low as 70,000 , composed of persons of all nations and religions. East long. \(73^{\circ} 3^{\prime}\) north lat. \(21^{\circ} 13^{\prime}\). See Milburn's Oriental Commerce, vol. i. Hamilton's East India Gazeteer, and our article India, passim.

SURDS. See Algebra, Vol. I. p. 423425.

\section*{SURGERY.}

Surgery is that branch of the medical profession wherein manual operations form part of the occupation of the practitioner, and during certain periods of its history constituted the exclusive department of the individual who professed it; being derived from \(x^{\prime \prime p}\), a hand, and egrop, a work, whence it was termed chirurgery. This, however, will be better understood after we have detailed the history of surgery from the earliest ages.

\section*{History of Surgery.}

Although there cannot be a shadow of doubt that surgery was coeval, if not prior to medicine, yet there is no account of any surgical operations before the siege of Troy, when that eventful strife immortalized in song the chirurgical deeds of Podalitius and Machaon, the godlike sons of Esculapius, together with those of Patrochus, for in that memorable war, princes were as much renowned tor their exploits in surgery as for those in battle.

Esculapius lived about the begimning of the Trojan war, and was instructed in medicine and surgery by Apollo, and Chiron the Thessalian, named atso the centaur. According to Diodorus Siculus, he was the inventor of medicine and surgery, which were in great repute during the Trojan war; and he carried botany to perfection as well as the use of medicines and operative surgery; at the dawn of medicine, all the departments of the medical profession were prastised by ouc individual, and that person frequently either a prince or a deiked king.

It is supposed that the temples dedicated to E sculapius were chielly for his skill in surgery ; and Podalirius and Machaon according to Celsus, confined themselves to the chirurgical part of physic, being the most ancient branch, as medicine, in the era of Aisculapius, 1263, before Christ, was chielly practised by consulting the oracle at Pergamus. When we consider the restless spirit of man in the
earliest ages, it is presumptive that wounds, fractures, and luxations must have existed from the creation, and that consequently many surgical remedies would originate nearly at the same period with man, for surgery and medicine must have been coeval with injuries and diseases inflicted on the human frame.

From the fall of Troy until the Peloponesian war, an interval of 700 years, and 431 before the Christian era, we have no accurate account of surgery; it is only known that the Asclepiades, descendants of Esculapius, exercised the art. The great Hippocrates, also a lineal descendant of Æsculapius, appeared at that time, and has handed down to us works not less celebrated in surgery than in medicine. His writings, however, are more devoted to medicine than to surgery, having only composed chapters on fractures, diseases of the joints, ulcers, fistulas, hemorrhoids, wounds of the head and midwifery, the genuineness of some of which are questioned by his commentators; indeed, if we believe the singular oath which he administered to his pupils, he despised operative surgery, for in that extraordinary document he ordains, that "cutting for the stone I will not meddle with, but will leave to the operators in that way. He however used the lancet, the scarificator, the actual cautery, and the crotchet, and practised as a physician, a surge on, an accoucheur, an apothecary and even a nurse. ILe is also exceedingly bold in his directions to "operators in that way," for in calculus of the kidney he thus observes, "when however there is tumefaction in the region of the kidney, an incision ought to be made, and the calculus carefully extracted ; fur if this operation be not performed, there are no hopes ol a cure, and the disease will prove fatal." The reasou, says Meibomius, why Hippocrates would not allow physicians to treat calculus in the bladder, was simply because it was too difficult.

The surgery of Hippocrates has, to the misery of the sufferers, been implicitly followed by nearly all succeeding authors; for as the great Bacon observes, authors have written, not that their works should stand as consuls, to give advice, but as dictators; and as John Bell justly states, "most unfortunately for science, Hippocrates wrote with such truth and brevity, with so sound and discerning a spirit of observation, and recited so carefully the signs of danger in all kinds of wounds and injuries, that he has been held in continual reverence, and holds an inlluence over the profession even to the present hour." His directions for the treatment of fractures arc very unscientific, and even crucl, when we consider his extension and machines; his treatment of injurics of the head may be said to be both inert and cruel, incrt as regards active bloodletting, and cruel in trephining for every fissure or crack of the skull.

In Egypt, according to Herodotus, lib. ii. c. 129, surgcons were divided, as in the present day, into oculists, capitists, dentists, \&c. ; and in Persia, A. M. 3483 , according to the same historian, the surgeons ol Egypt were held in high reputation. Democedes is mentioned as having become the principal favourite of Darius, of being loaded with honours and riches, merely for having succeeded in reducing one of his ankle-joints which was dislocated. Xenophon states, that Cyrus had an excellently appointed medical staff to his armies. In Egypt and Babylon, according to Herodotus and Strabo, the sick were exposed on the roads, in order that those passengers who had been similarly affected might give them their advice. The Egyptians considered the god Hermes the inventor of physic. About 500 years before the Christian era, the celebrated medical school of Alexandria flourished, at which \(\mathrm{He}-\) rophilus and Erasistratus had the boldness to introduce the study of human anatomy, the source of all its renown; but in consequence of the clestruction of the Alexandrian library, we possess few of the writings of these great men; they were founders of particular sects; and Galen and Cœlius Aurelianus have collected all the scattered remains of their works, together with those of the other successors of Hippocrates, down to Celsus, a period of four centuries. It is presumptive that surgery was far advanced in perfection during the zenith of the Alexandrian school, when we consider the advantages then derived from a knowledge of dissection, and the many opportunities of practice which must have occurred in the celebrated campaigns of Alexander and his successors.
In Greece, during the time of Herophilus, there were dietetic, pharmaceutic, and surgical practitioners; the surgeon was restricted to the use of the knife, and was not permitted even to treat wounds, ulcers, or tumours. In this age also reigned the famous sects of empirics, dogmatists, methodists, \&e.

Arcagathus, a Greek, was the first who practised surgery at Rome, U. C. 535, but he operated so frequently and rashly, and it may be presumed unscientifically, as he received the opprobrious appellation of hangman. Celsus, who lived during the
reigns of Augustus and Tiberius, about the beginning of the Christian era, greatly advanced both medicine and surgery, and condensed all that was then known in one small volume; he has the merit of being the inventor of the ligature on wounded arteries, of union by the lirst intention or adbesive inflammation, of amputation in gangrene from external causes, of a scicntific mode ol performing amputation, of the operation of couching lior cataract, and of perlorming lithotomy on the gripe, now termed the Celsian mode or operation, operations of the utmost importance in surgery, and improvements in operative surgery of the most vital consequence. It appears doubtful, however, whether Celsus really is entitled to the merit of being the inventor or discoverer of these important facts and operations, for he describes them not as his own invention, but as the practice of the day. Thus, under lithotomy he observes, " multi hic quoque scalpello usi sunt." We entertain the same opinion with Richerand concerning these ancient authors; thus, with regard to Hippocrates, he says, "Hippocrate n'est point le pere de la medicine, elle est la fille du temps et de l'cxperience. Ses ouvrages doivent etre regardes comme une sorte d'encyclopedic medicale." Celsus talks of Philoxems, Gorgias, Sostratus, the two IIcrons, the two Apollonii, and Ammonius Alexandrinus of Egypt, having made discoveries in surgery; and ol Tryphonius, Euclpistus, and Meges having made considerable additions to this art. It has been questioned whether Celsus practised as a plysician and surgeon, but of this there can be no doubt, after an attentive perusal of his writings; no one who had not practised surgery could describe the operation and treatment of lithotomy as he has done; besides, he occasionally employs the first person singular. His qualifications for an operator are, "that he must be young or middle aged, have a strong and steady hand, never subject to tremble; to be ambidextcr, to have a quick and clear sight, to be bold; and so far void of pity, that he may have only in view the cure of him whom he has taken in hand, and not in compassion to crics, either makc more haste than the case requircs, or make his cut less than is necessary, but to do all as if he was not moved by the shrieks of his patient.". There is much truth in this sentence, but Celsus does not appear to be aware, that the greater part of these can be acquired, as was the case with Chesselden, who had a natural repugnance to operations; and hence also we presume does Richerand consider the firmness of mind requisite for a surgeon to be a gift of nature. Haller also confesses he could never summon up resolution or fortitude to operate. Bichat considered two things essential to form a great surgeon, genius and experience; and in his eulogium upon Desault, he thus observes, *La nécessité de l'anatomie en avoit fait naitre le goût. Son étude précéde celle de notre art, ses verités ajoutent à l'intelligence des siennes: et telle est depuis un siecle l'opinion publique, qu'elle ne sourit aux efforts du chirurgien, qu' apres avoir couronné ceux de l'anatomiste. Fabrice honora le théâtre de Padua, avant de s'immortaliser par ses
œurres chirurgicales. La science longuement meditée de nos organes, traça au lithotome de Raw et de Chesselden, la route methodique qu'ils semérent de tant de succès. Petit, Hunter, furent applaudis dans leurs amphithéatres, avant de briller sur la scêne éspineuse de la pratique; et dans ces premieres pages consacrées aux premiers travaux de Desault, je n' aurai à retracer que ceux qui firent sa reputation en anatomie." Our own opinion is, that daily dissection of the dead, combined with occasional operations on the living, is alone required for a scientific and dexterous operator; for, as John Bell observes, what are our great operations, but carelul dissections on the living body. It is the habit of dissecting, with address, that fits a man for operating. An operator should be in the meridian ol life, and ought to have begun his career early, both as a dissector and an operator, and must continue daily to prosecute dissection, that he may be familiarized with every part of the human body on every emergency.

Galen was the last author of distinction that practised physic and surgery at Rome, A.D. 160; he was educated at the Alexandrian school, and would have done deeds of wonder, had dissection been permitted in Rome, but being confined to the anatomy of monkeys, and the other lower animals, he was only able to add to the surgery of his day, a Treatise on Bandages; his works upon Anatomy rank high. He has entered more minutely into the different species of ruptures than his predecessors, but throughout his writings he is a contemptible. dictator.

The compilation of Oribasius, who lived about the end of the fourth century, may be passed over in silence in its relation to surgery, but not so that of Etius of Amida, who studied at the Alexandrian school, A.D. 500, in which are many observations on surgical operations, and some on the effects of the Guinea worm.

Paulus Egineta, who lived in 640, and practised at Alexandria and Rome, wrote an excellent work on Surgery, containing all the improvements of his day; he invented some operations, of which tracheotomy was one, and improved others, particalarly lithotomy. Lle also improved the doctrine of, and operation for aneurism, and is the first who treats of liacture of the patella; he was hold and decisive in his practice, opening the temporat or occipital artery, or external jugralar wein in affections of the eyes or head, and relieving strangulated hernia by an operation.

Nothing but a chaos presents itself from this period to the begiming of the temth century. Forrents of nothern barbarians inumated the Roman empirt, and swept man and civilization from the lairest provinces ol Europe; and, almost in immediate succession, the hosts of Saracens, under Amron, viceroy of Erypt, sel fire to the noblest monument of atitiquity, the Alexamdrian library. Thus ucarly three centuries were buried in oblivion, with respect to the sciences, literature, and the arts; while war, and all its attendant horrors, raged from the Euxine to the Athatic.

The Arabians, at last contented with their con-
quests, requested, in 820, the Greek Emperor at Constantinople, to give them some of their best literary and sciemific works; among those sent were Galen's, translated into the Syrian language, in which astrology and superstition were mingled with medicine. In the works of Rhazes, Halyabbas, and Avicenna, we have no facts or remarks concerning surgery, which are not to be found in Galen, excepting those relating to spina ventosa.

Avenzoar wrote on surgery, but apologizes for condescending to write on a subject so contemptible. for in his days, surgery was practised in Arabia by the servants of the physicians, while all operations on the female sex were performed by women.

Albucasis ranks highest of the Arabian surgeons; he has given a long list of surgical operations, and an equally formidable catalogue of instruments and machines, fit to terrify the operator himseif, much more the patient. At this period they plunged amputated stumps into boiling pitch. In an Arabian work, by Abi Osbia, we have a cataloguc of 300 medical writers, who have justly merited oblivion, being mutilated translations of the Greeks, adulterated with the magic and astrological fables of the Arabians.

In consequence of the tyranny and aristocratic despotism which reigned over Europe, the sciences, literature, and the arts remained in obscurity, and even in Greece, theological controversies absorbed all other kinds of literature or science until the middle of the fifteenth century, when they again began slowly to revive. The revival of literature and science is probably solely to be attributed to the crusades, lin England, it was actually near the end of the fifteenth century before medicine was cultivated at Oxford as a regular science, and even at the medical schools on the Continent, the diploma of surgery was conferred after one year's study of anatomy. At the famous school of Salernum, where this law cxisted, and where there was compiled a system of medicine, entitled " Schola Salernitana," only one chapter is devoted to surgery, and that on fistulas. The degrees of bachelor and doctor had no doubt been conferred at Paris during the reign of Charlemagne, in 1231, but generally on the clergy and monks, who practised physic at this epoch, and who were, in consequence of the barbarous anathema pronounced by the Council of Tours, in 1163, prohibited from performing any surgical operations: in consequence of this, surgery was again formally separated from medicine, and practised only by the most illiterate of the laity. Tha Scelesia Abhorret is Sanguine continued long a satislactory cloak for preventing the study either of anatomy or the practice of surgery. Ciilbertus Anglicus is the first who wrote on surgery in England, which was about the year 1300; he copied chiclly Rhazes. Bemardus Gordon, a native of Scotand, and John of Arden, are said 10 have tlourished at this period; the latter wrote a work, entilled the Chirurgery. From the llth to the middle of the 15th century, numerous works were published, but all mere compilations, or extracts from Arabian authors: from this mass we
ought to except a treatise on Surgery, written by Guido de Cauliaco, or Guy de Chauliac, professor at Montpelier, who lived at \(\Lambda\) vignon in 1363, which continued for many years the sole classical work in France. For from this period until the day of the great Paré, surgery was degraded to the lowest possible degree. Pare, in his first editions of his works, styles himsell' Barbier chirurgien.' 'There were then bitter civil wars carricd on between the clerical physicians and these unfortunate barber surgeons. Vidus Vidius, however, published a splendid Latin edition of Greck surgery in 1544. 'The great Paré, enlightened by the labours of Vesalius, Fallopius, and Eustachius, gave birth to an able work on surgery, founded on antomy, in 1585 , which had been previously published in separate treatises. IIc has been considered by some the inventor of the ligature on wounded arteries, but as that merit clearly belonged to Celsus, he must be viewed merely as the reviver of that important surgical means of stopping hemorrhage; for in the dark ages the ligature had fallen into disuse, and the boiling pitch, cautery, escharotics, and astringents had succeeded in their place; he is cutitled however to the merit of discovering the curved needle. Paré, who was a military surgeon during the reigns of Menry the II., Frame is the II., Charles the IX., and Henry the III. of France, is the first surgeon who gives a scientific account of gun-shot wounds, which treatise is truly valuable in consequence of its simplicity. In 1560 Botallus published a treatise "De Curandis Vulneribus Sclopetorum;" and in 1561, Pierre Franco, a celebrated lithotomist, published "Traité des heries, de la pierre, de la cataracte et autres maladies des yeur," a work of considerable merit.
In Italy, there were several surgical authors. In 1563 Fallopius, an excellent anatomist, wrote a ireatise " De Ulceribus et de Tumoribus preter Naturam," and in 1597. Caspar Tagliacotius wrote bis remarkable work "De Curtormm Insitione per Chirurgiam." Marcus Aurelius Screrinus wrote several surgical treatises in 1613, and in the same year, Fabricius ab Aquapendente, a profonad anatomist and physiologist, wrote a system ol surgery. In 1616, Cresar Magatus wrote a treatise on wounds, Felix Platerus, in 1614, published his "Observationes in Hominum Affectibus Plerisque." a work of considerable merit; he is the first who treats of the malignant nature of carcinoma. In 1644 T . Bartholimus wrote a work on aneurism.

In Germany and Switzerland, surgery was in the hands of quacks until 1641, when Fabricius Hildanus and Scultetus flourished. The former produced a volumizons work, entitled, "Opera obsservationum et curationum Medico-chirurgicarum," and the latter an able work, styled "Armamentarium Chirurgicum."
In Holland, the same empiricism reigned until the days of Tulpius, in 1641; J. V. Horne, in 1644, and Ruysch, in 1691 . In England the College of Physicians was not founded until the reign of Henry the VIII., in the begiming of the sixteenth century, but anatomy, the foundation ol both medicine and surgery, was not taught until two centuries
after this. Prior to this period, the bishop of London and the dean of St. Paul's sold licenses and diplomas to the clergy, laity, and empirics, to practise physic and surgery. Bartholomew's hospital was not erected until llenry's reign. Surgery was held in contempt, and practised indis. criminately by barbers, farricrs, and sow gelders. Both in Paris and London, in the sixtecnth and even the begiuning of the seventecnth centuries, the barbers and surgeons' companies were incorporated. In 1676 Viseman redeemed surgery. by publishing the result of his valuable observations daring the civil wars, in his work, termed "Several Chirurgical Treatises."

In France and other countries, many insulated works were published about this period; in 16.46 Covillard’s "'Traité Mcthodique des principales operations de Cbirurgie." In 1681 F . Tolet's 'Traité de la Lithotomie." Lambert of Marseilles wrote an able work on discases of the bones, also " Commentaires et (Eurres Chirurgicales," in 1656 and 1677.

The cighteenth century opens with an era of intelligence truly astonishing when compared with the preceding. In France there were Mery, Dionis. Duverney, J. L. Petit, F. Pctit, Le Dran, Garengeot, La Faye, Lecat, la Motte, Louis, Maitre, Jean, David, Frere Cosme, Portal, Ravaton, la Peyronic, Quesuay, Faure, Morand, Sabatier, Pouteath, Moreau, Deschamps, and Desault. France has just canse to boast, for having given birth :o so many able men.
J. L. Petit communicated his observations on surgery to the Memoirs of the Royal Acarlemy of Surgery in Paris, a truly valuable journal; his communications rank very high, especially that upot: the diseases of the bones, and he has the honour of being the inventor of the screwed toumiquet, a most useful instrument; lor "the ancients," says a historian, "previous to amputation, only made a tight ligature round the member, lion which defect, amputation of a large member was too frequently fatal." Petit was the first who operated for fistula lacrymalis by an incision of the lacrymal sac, and is the inventor of the eighteen tailed bandare.

Le Dran contributed a few papers to the Memoirs of the Academy of Surgery, and published several separate treatises, "Parallele des differentes Maniers de tirer la pierte." "Supplément an parallele." "Observations de Chirurgie." "Traite. ou reflexions tirées de la pratique sur les playes d'armes à feu." "Traité des Operations de Chirurgie." "Consultations sur la plupart des Maladies qui sont de resort de la Chirurgie." Some of these are translated into different languages; and his observations and consultations are translated into English, the latter of which are interesting and at the same time amusing, and the operations are well drawn out; bis works througliout are replete with many valuable facts and cases.

Sabatier's medicine operatoire is considered so complete on this department ol surgery. that addi. tions have been published by Dupuytren, Sansor
and Begin. The edition published in 1822, contains every modern improvement in French operative surgery, and in this light is a valuable work; he also communicated some papers to the Academy of Surgery.

Pouteau's Mclanges de Chirurgie, and les Cuvres Posthumes, are consulted at the present day, as they contain many valuable facts and observations. The Melanges are translated into German.

The works of Desault deservedly stand very high in reputation. He was the first in Paris who taught surgical anatomy and gave clinical lectures on surgery, one of the most important modes of instruction. He was not less profound as an anatomist than a surgeon, and infused an ardent zeal for both sciences into his pupils, among whom were Duhois, Boyer, and Bichat, who have cqualled their preceptor in reputation. He invented several ingenious apparatus for fractures, some of which retain his name, and modified the common amputating knife, converting it from the ancient curved shape to a straight one; he also improved Hawkin's gorget. He renewed the use of the imsmediate ligature on arteries, which had again failen into disuse after the demise of Paré, and has the merit of proposing that scientific mode of securing arteries beyond or distant to the aneurismal tumour, in cases where the reverse is impracticable, an operation now perfectly established by the success of Mr. Wardrop and others. He is stated to have been a scientific and dexterous operator, and was the first who attempted to cure an artificial anus formed alter strangulated hernia; and also the first who treated scientifically schirrous tubercles of the rectum. In France be is as much esteemed as an authority as John Hunter is in England.

In Italy there were Bertrandi, Mollinella and Moscati.

In Germany and the north of Europe, there were F. Hoffman, Meister, Platner, Bidloo, Bilguer, Cal. lisen, Richter, Ruysch, Trew, Meckel primus, Schncider, Schmucker, and Haller.

Heister wrote an able system of surgery, which is deservedly quoted at the present day ; it is a work of extensive practical experience. He appears to have been an able anatomist, a sound pathologist, and abold operator. Callisen's Systema Chirurgix Hodierne is an excellent compilation of the day, written by a vigorous mind.

Richter's Medical and Surgical observations are deservedly valued.

Schmucker ranks high as a military surgeon; many of his observations on injuries of the head are quoted by his successors. He published an excellent work in 1774 , termed "Chirurgisch Wahruchmungen," and another entitled "Vermischte, Chirurgisch," Schrilten in 1785.

Haller's Disputationes Chirurgiex, like the other works of this great man, are extensive and elaborate dissertations on surgery.

Gireat Britain, during this century, prodaced Chessckten, Douglas, Monro, primus et secundus, Sharp, Cowper, Pott, Allanson, John Hunter, Hill, Warner, I'ord, White, Broomfield, Ranby, Gooch,

Park, O'Halloran, Dease, Latta, Benjamin Bell, John Bell, and a number of others.

Chesselden's great celebrity consisted in per forming the lateral operation of lithotomy so scientifically, that he is said scldom to have exceeded 24 seconds in its performance, he was the greatest operator of his day, and a most profound anatomist. He published a work on the anatomy of the human body in 1713, in which several of the operations of surgery are described, and in 1733 some splendid plates on the localthy and diseased structure of the bones; also a treatise on the high operation for the stome, in 1723.

Alonro primus has contributed largely to the pathology of surgery, as, for example, that of luxation of the inferior maxillary bone, of fistula parotidea, of aneurism, of the lacrymal canals, of cataract, of the knec-joint, of caries, of cancer of the mamma, and of the ovarium. He improved the operations of paracentecis abdominis, and amputation.

Monro secundus was a man of great learning, a profound anatomist, physiologist, pathologist, and a most scientific consulting physician and surgeon.

Sharp wrote an excellent treatise on the operations of surgery. Gooch's cases and practical remarks on surgery, and his practical treatise on wounds and other chirurgical subjects are extremely valuable.

Pott's chirurgical works continue the standard of reference, although the doctrine of injuries of the head, hernia, and hydrocele have undergone some modification and improvement since his time.

John Hunter's works continue the admiration and boast of English surgeons. His treatise on the venereal disease, pathological doctrincs of the blood, union by the first intention, inflammation and gunshot wounds, are creations of a great and inventive mind.

John Bell's principles of surgery is a work of great merit; his obscrvations on aneurism, especially that by anastomosis, are valuable; he has proved more than the great Haller, that the largest arteries of the human body may be freely secured, without any lear of the collateral circulation not being carried on. It is much to be regretted, that he has written in so diffuse a style, and in so elaborate a manner, as to render the work too voluminous for general reading; again, the style and manner are so peculiarly his own as not to admit of being curtailed. He was a good anatomist, an elegant scholar, and a dexterous operator. He has written on the healthy structure of the bones, ligaments, muscles, heart and arteries; and his work on gunshot wounds is highly prized by the profession. His lectures on anatomy were probably the most eloquent ever delivered in Edinburgh.

We shall now conclude this bricf historical sketch, as it will be better to advert to living authors, in the accounts of the different surgical subjects concerning which they have written. We have to refer the reader who wishes further information on this interesting subject to the able article Medicinc, in a preceding part of this work; also to the following treatises, - Meibomius: Mippocratis jus-
jurandum commentariis illustratum, 1643; Le Clerc histoire de la Medicine, 1702 ; Friend's history of Physic, 1725; Histoire de la Chirurgic par Peyrihle, H. Boerhavii Methodus discendi artem medicam; Hallcri Boerhavii Methodus discendi artem medicam; ILaller Bibliotheca Chirurgica, 1774 ; Keisneri Bibliotheca medica; Recherches historiques, et critiques surl'origine, les divers états et les progres de la chirurgic en France, par Quesnay. Gesner de chirurgia scriptores optimos veterum et recentiorum. Black's historical sketch of Medicine and Surgery, 1782 ; Gooch's practical treatise on wounds and other chirurgical subjects, together with a short historical account of the rise and progress of surgery and anatomy, 1767 ; Portal, histoire de l'anatomie et de la chirurgie, 1770 ; Richerand Nosographie chirurgicale ; Prolegoménes histoire abrégée de la chirurgie; also, Histoire des progrès récens de la chirurgie; Sprengel histoire de la Medicine, 1815.

Before concluding, it becomes necessary to make a few observations on the changes or revolutions which have taken place in the practice of the profession. At the begiming ol medicine, all its departments were practised by one individual, and it is evident that it was from Hippocrates's universal knowledge he so excelled, and it could have been only from a conscientious feeling of the difficulties attendant on lithotomy, that he separated it from the surgery he wrote upon and practised. Surgery appears then to have been first partially separated from medicine, which circumstance must have contributed to degrade it, as the physicians retained whatever was scientific. It appears to have continued in the most degraded condition until the time of Celsus, who, from his writings, embracing both departments, and evidently practising both, and since he was the companion of the first men in Rome, he must undoubtedly have raised surgery to a high rank in the estimation of the public. In consequence of surgery having no natural foundation at Rome, dissection of the human body being proscribed, it gradually degenerated, and particularly after the suppression of the Alexandria school, when it was again separated lrom medicine. It is presumptive from the scattered fragments collected by Galen and Colius Aurelianus, that surgery must have arrived at great perfection, and been held in high estimation during the fourishingstate of that school, when dissection was publicly sanetioned by the government. It is evident from the history of surgery, that it has only flourished according as it has been founded on anatomy, and enriched with medicine or pathological doctrines. At its dawn it was combined with medicine, and in the days of Celsus, Herophilus, Erasistratus, and Galen, it was also united with medicine and founded upon anatomy. After this period, when anatomy could only be prosecuted by stealth, surgery continued in a truly degraded and insulated condition, and in the llth century was stigmatized by the council of Tours. In the 12 th century, the school of Salernum, and also that of Naples, required only one year's study of anatomy for the diploma of a surgeon. In the 15 th century we find
the great Paré still a barber surgeon, and eontrolled frepuently by the physicians. At Oxford and Edsinburgh, the two first universities in Great lspitair, anatomical chairs were not established until the last century, and at neither school was dissection prosecutcd until this century, and that only at Edinburgh; and even yet throaghout (ireat Britain, the study of anatomy is onty prosecuted by stealth ; in many schools on the continent, however, its study is sanctioned by the governments, so that it has only beenat the dawn ol medicine, and in the present era, that surgery has been blended with plysic and rendered a respectable profession ; and it is much to be regretted there exists any separation, since it only tends to degrade each deparment; as physicians must be occasionally consulted in accidents, the province of the surgeon; and the surgeon, again, must be acquainted with the treatment of fever occurring from operations. All, therefore, ought to have the same elementary education, and be able to practise every department. The operating surgeon ought to dissect daily. Lately the college of physicians of Edinburgh have wisely rescinded a law, which prohibited their fellows from using the lancet or the scalpel. "Etenim omnes artes," says Cicero, "quæ ad humanitatem pertinent, habent quasi vinculum communem."

\section*{Arangement.}

The arrangement of the different surgical affections nosologically, is not so essentially necessary in this place, as it has been already done under the article Medicine, for surgery ought not to be separated from Physic. "La science de l'homme malade constitue un tout indivisible."

The classification, according to the textures affected, is objectionable, on the ground that one disease affects many structures, and frequently proceeds from the one to the other, it has been founded on the healthy division of the textures which has been carried to an extreme, and such has been the baneful influence of Bichat's divisions, that his followers in the treatment of disease have conferred as many lives upon man as the vulgar attribute to the cat. The arrangements adopted by Bell, Boyer, Richerand and Allan are all arbitrary.

As Pathology, and even the doctrines of inflammation have been elaborately detailed under the article Medicine, it is unnecessary to describe them here, particularly when we take into consideration the narrow limits allowed us to include so comprehensive a system as that of surgery. The ehief object which shall be kept in view shall be a practical detail of surgery, the grand aim to which all our attention ought to be directed.

We shall first treat of inflammation, a disease which more or less follows all the operations of surgery. Inflammation is a term lamiliar in common language, and is derived from inftammo, to burn or inflame, au expression applicable enough. when we consider the kind of pain excited by a very violent degree of it, and the ideas formerly entertained of the temperaments of our bodies. Inflammation is evinced by pain, increased heat, redness. and swelling, which are caused by a morbidly in.
creased action of the nerves, arteries and veins: and in poisoned wounds, the lymphatics are also involved. The nerves are first thrown into action, which instantly excite the contiguous arteries and reins, and as inflammation increases, the excitement extends to the brain and heart. The pain and heat are more dependent upon nerrous than arterial action ; in very slight degrees ol inflammation, arising from some trifling injury, a sensation of warmth is only felt, in which case it is not completely established, since the phenomenon resembles more an increased healthy action. When inflammation is fully developed from a more se. vere injury, there is a thrilling pain and intolerable sensation of heat at the moment of receiving it. And if the inflammation be so severe as to threaten mortification, the pain is insufferable. The degree of pain seems proportionate to the distribution of the nerres, and to the density or unyielding nature of the structure affected, which prevents the expansion of the nerves, as is evidenced in toothache, diseases of the bones, \&c. To prove that increase of heat is also consequent chiefly on nervous action, a sensation of warmth is experienced instantly after the infliction of the pain, and if a severe blow or wound be received, the sensation of heat is intolerable at the moment of the injury; and not until the inflammation has lasted for some time, does the increased quantity of blood contribute to form the increased heat. The redness is caused by the arteries carrying red blood becoming enlarged in their calibre, and conveying more, for the contractility of the arteries is soon enleebled by over action, and also by those arteries which previously conducted pale blood or lymph, becoming enlarged and transmitting colonred blood. The capillaries, and communicating vessels between the arterics and veins, and even the commencements of the veins themselres, are similaty dilated. The blood flows with increased velocity, which is caused by that part ol the artery which is immediately contiguous, or leading to the infamed or dilated portion, being morbidly excited.

The artery of an inflamed part therefore is at first smaller than during health, in consequence of the spasmodic action of the nerves, and the distention of the vasa vasorum, diminishing the calibre of the vessel, but it very soon becomes enlarged, lrom the nerves being partially exbausted and the vessel over distended with blood; while the portion leading to the inflamed part is contracted in diameter. The swelling is first caused by the increascel fuantity of blood circulating in the bloodvessets aflected, and secondly, by a deposition or effusion of coagulable lymph, which appears to occur very early in inflammation. In what is termed the phlegmonons inflammation, of which a common whitlow is a good example, there is generally more or less throbbing present, which is solely caused by the pulsation of the inflamed arteries.

In severe inflammation, the nerwous system, the heart, and the whole circulating system, are involved, and constitute inflammatory fever; sometimes the quickened pulse precedes the appearance of the inflammation, while at other times it follows.

In the former, the increased circulation, from whatever cause, so excites the nerves and arteries, that they are incapable of returning to their wonted quiescence, and the inflammation may be either partial or general, according as any part of the body is feebler than another. In the latter, the nervous system, together with the heart and arteries, are excited by the diseased action of the nerves of the part affected being transmitted along the nerves to the brain and heart. Our narrow limits will not permit us to examine the humoral theories of Hippocrates, Galen and Boerhaave; the alchemical theory of Paracelsus; the spasmodic theory of Hoffman, Staahl, and Cullen; the excitability and excitement of Brown; the irritation, sensation, volition, and association of Darwin; the materia vita conservata, chordæ internuncix, and materia vitæ diffusa of John Hunter; the debility of the capillaries followed by increased action of the larger vessels, or an inequality in the distribution of the blood, according to Vacca Berlinghieri of Pisa, Drs. Lubboch, Allen, W. Phillip, and Hastings; the increased action of the vessels in moderate degrees of inflammation according to Drs. Thomson, Pary, and James. For further information the reader is referred to the article Medicine; to the Edinburgh Med. and Surg. Journal, No. 60., and to Lizars's Inutomical Plates, part 9, Physiological and Pathological Obscrvations. The great subject of clispute in these theories, is, whether obstruction to the circulation of the blood actually exists in inflammation. 'That this is the case in well formed inflammation there camot be the least doubt: but in mild cases, especially erysipelas, there appears no ground whatever for such an obstruction.

Inflammation has been divided in a variety of ways by Hunter, Kirkland, Pearson, C. Smith, Pinel, Bichat, Burns, Thomson, and James. From these great authorities, a very simple arrangement may be formed; for inflammation, whether acute, sub-acute, chronic, phlegmonous or erysipelatous, must be identically the same. Phlegmon and erysipelas are only varieties of inflammation, while the acute and chronic are merely different stages of it. The adhesive, suppurative, ulcerative and gangrenous, are its terminations. Healthy inflammation comes under phlegmon; unhealthy, under phlegmon, erysipelas, and chronic; specific, which cmbraces scrofuta, syphilis, cancer and fungus bematodes, evidently involves two diseases in each of these peculiar constitutions; thus inflammation occurring in cither the scrofulous, or syphilitic constitution, may be either phlegmonous or erysipelatous, acute or chronic.

Acute inflammation, whether phlegmonons or erysipelatous, is mild or violent according to a varicty of circumstances. In a healthy, temperate constitution, with a placid mind, and residing in a salubrious situation and temperature, it is natural to expect the attack will be mild, and more likely phlegmonous than erysipelatous; on the contrary, in a diseased, debauched constitution, with a fretlul unhappy mind, and living in a confined filthy abode, we have every reason to expect the attack will be violent, and more probably erysipelatous
than phlegmonous. We find, however, phlegmonous and erysipelatous inflammation occurrits occasionally in both of these habits. Chronic frequently supervenes after the acute, as for instance, in opthalmia, and in adsanced life is occasionally an idiopathic disease. It is ascertained that, according as the part ablected is more or less vascular, the progress of the inllammation is more or less lavourable. The phenomena of general intlammation are evidenced in acute, or chronic, whether phlegmonous or erysipelatous; and when these symptoms are conlined to a small space they are said to be local, and when they extencl to, or involve the nervous and circulating systems, the affection becomes general, or constitutes inflammatory fever.

The treatment of local inflammation depends much on the part affected; if a finger, it reguires less promptitude than if seated in the eyc; generally speaking, local bloud-letting, anodyne fomentations or poultices, perfect rest, attention to the bowels, and abstemious dict, are all that is requisite. The treatment of general inflammation is by abstracting blood from the system, bo:l locally and generally, by active purging, tobacco enemata, the warm bath, low diet, perfect quiescence, and confinement in a darkened apartment. By a diligent exercise of these remedies, the infamed part, or inflamed constitution, may be restored to its wonted state of health; and when local, the ressels gradually become more and more quicscent, until they return to their former healthy condition; but if the inflammatory action has been so severe that the capillary arteries have effused coagulable lymph, then the absorbents are excited to remove this superabundant Guid, and the affected part is longer of returning to health. In the case of the constitution being involved, or a general inflammatory action of the system, the nervous and circulating systems progressively decrease in their excitement, until they at last resume their natural course. Either of these favourable results is termed resolution, but this name is more applicable to the local than the general affection.

A plilegmon, which is derived from \(\phi^{2}\) gra, to burn, is distinguished by the colour being of a dark purple hue, by the inflammation being circumscribed, by tumefaction, and by an intense pain, which soon becomes throbbing; when this tumour is pressed upon with the finger, the purple colour disappears for a moment. In the treatment of a phlegmon, leeches, anodyne fomentations or poultices, gentle laxatives, mild diet, and rest should be ordered; and after suppuration, treated as an acute abscess: it is very liable to suppurate, and when occurring in the axilla or groin is styled a bubo. When these phlegmons occur on the face or scalp, they excite the whole system, and then require the treatment recommended for general inflammation, combined with blisters to the nape of the neck.

The manner of applying leeches is familiar to all. When few leeches can be procured, it has been proposed to cut of the tail while the animal is sucking, that the blood may flow out as fast as Vo: XVII. Part II.
it enters; or to incise the inflamed surface with a lancet or bistoury. In order lo encourage the beeding afterwards, the part should be fomented or poulticed, or a cupping giuss applied. Leeches are preferable to cupping, in atfections of the cyelids and othere patts of the face, of the forepart of the neck, the scrotum, the penis, the pudenda and the anus.

Fomentations and poultices are preferable to cold saturnine lotions, in all instances of acute inflammation; heat being more natural and manageable than cold. Caloric sublues the action of the nervous and circulating systems by reldxation and exhaustion, and can be procured either in cold or hot weather; while cold does it by eausing torpidity, but not until it is recluced to a very low temperature, and then it is liable to produce mortification. Many authors consider that hot and cold applications should be respulated by the feelings of the patient, but these ought wever to influence the practice of the surgeon; lor the reason why cold at one time, and heat at another, is more agreeable to their feclings, depeads entirely upon the time or stage of the inflammatory action. Thus, for example, cold applied during the incipient stage, will be more liable to produce pain, than when applied in the chronic; atsain, heat in the chronic stage, is more apt to prodace pain than in the acute; and whenever suppuration is established, or the inflammation becomes chronic, heat invariably increases the pain, and should be discontinued, cold then being the better remedy. When heat is employed, it must be kept constantly up by renewing the poultices and lomentations whenever they become cool. Poultices are made of turnip, carrot, linseed, barley-meal, onions, oatmeal, and bread and milk, \&c., but their virtues depend more on the heat and moisturc, than on the materials of which they are comprosed; the best probably is one made of aatmeal, in a solution of opium with acetate of lead: they ought always to be so large as to cover a great extent of the contiguous healthy surface. 'The best fomentation is a decoction of poppy heads and chamomile flowers, with a little opium added. Poultices and fomentations will never promote suppuration, they only appear to do so by moderating the increased action, which, if not attended to, might terminate in mortification; when applied, therefore, in inflammation, before the vessels have advanced to sappuration, they will favour resolution; but if not until the vessels are on the verge of suppurating, they merely moderate the increased action, and hence appear to promote suppuration. The practice of applying altermately cold saturnine lotions the one day, and warm poul. tices the next, must seem absurd to the most superficial observer.

We have already stated that this varicty of inflammation has a more diffused character, and is then termed phlegmonous inflammation, which includes Paronjechia, Opthalmia, Cynanchetonsillaris, Pleuritis, Pneumonia, Carditis, Peritonitis, Gastritis, Enteritis, Ifepatitis, Sic. The treatment of these diseases may be said to be the same as that of phlegmon, or general inflammation, and requires
to be combined with external irritants, such as rubefacients, blisters, and moxas.

The causes of phlegmonous inflammation are very various, but they may be classed into mechanical and chemical. Fevers frequently give rise to it. An individual phlegmon is sometimes produced by the irritation of extracting one of the bulbs of the hair. The alternations of temperature is a very common cause, especially when the constitution is not in a healthy condition, either from irregularity of the bowels, intemperance, or distress of mind. The operation of cold on the system in producing inflammation has long been an interesting investigation. When an intense degree of cold is applied for a short period to a part of the surface of the body, it paralyses or arrests the action of the nerves for a time, and also constringes the bloodvessels, which causes a reaction of the contiguous nerves and arteries to overcome this torpidity and obstruction, and produces an effusion of the serous part of the blood between the cutis vera and cuticle. When this intense degree of cold is sustained for a length of time, both nerves and blood-vessels are so overpowered, the former rendered so torpid, and the latter so constringed, that too often they are unable to recover their vitality; and in some instances, even life is destroyed, when congelation of all the structures of the body is the result. According, therefore, to the continuance of so severe a degree of cold, will either inflammation, with recovery of the frost-bitten part be the result, or inflammation with mortification of the part; consequently, on the same principle will a more moderate degree of cold only produce inflammation. In the last case, the nerves are merely chilled or impeded in their functions, while the arteries are constringed, so that reaction is the result, or inflammation is produced. Inflammation of the throat, chest, or belly, arising from wet feet, appears to depend on those cavities being more delicate, sensitive, and vascular in their structure, cateris paribus, than the rest of the body, or from one of these parts having been formerly attacked with inflammation; for it is a singular fact, that when any part has once suffered from inflammation, it is liable to a relapse from every exposure to cold; erysipelas of the face is probably the most familiar example. The cold must be transmitted from the feet to these organs through the medium of the nerves, and must at first produce such a commotion in the nervous and vascular systems as to threaten general fever, for it is more than probable, if inflammation of these organs did not take place, fever would ensue. This effect of cold must occur more readily when there is any irregularity of the constitution.
Phlegmonous inflammation is said to have its scat in the cellular mombrane, but this is evidently incorrect, unless this texture be allowed to form the substratum of all the other structures of the body. This phlegmonous variety generally terminates in suppuration; sometimes, however, in resolution, but seldom or never in mortification.

It has aiready been mentioned, that phlegmonous inflammation is often so diffused as to involve both the nervous and circulating systems, and constitute
inflammatory fever, or synocha, or cauma. See Article Medicine.

Its treatment consists in local and general bloodletting, active purging, tobacco enemata, warm bath, low diet, perfect rest, and the apartment kept darkened. Blood is to be abstracted from the system by the lancet, which may be cmployed either to open a vin or artery, and the blood should be allowed to flow until fainting ensues, or a marked effect is produced on the constitution; a check must be given to the increased action of the nervous and circulating systems; for it is of no avail in an active disease such as this, to bleed without producing a decided effect on the system. Whenever the constitution has rallied from the effects of the first blecding, which generally happens in four or six hours, if the violent symptoms are not very materially subdued, a second bleeding should be repeated and carried also to syncope; but much depends on the periorl of the fever at which blood-letting was first adopted, for it is a law in acute diseases, to modify vencsection according to the duration of the disease; further bleeding may be even necessary, but the quantity required then to produce fainting, will generally be very small. Syncope takes place more quickly in the erect than in the horizontal posture, but it the fever be severe, the patient is unable to be raised, even to the sitting attitude.

Besides venesection from the general system, it is generally requisite to abstract blood locally; when the head, for instance, is much affected, leeches or cupping glasses ought to be applied to the temples or nape of the neck. Immediately after the first bleeding, a brisk cathartic of calomel and jalap should be given, and if this does not operate ill five hours, a tobacco enema of 15 grains to the pint of water should be administered, and afterwards a dose of the sulphate of magnesia. When the nausea of the cathartics has subsided, the patient should be immersed in a warm bath between \(90^{\circ}\) and \(100^{\circ}\) of Fahrenlieit, and remain until nausea, syncope, or perspiration occurs. Effervescent draughts may be given every two or three hours. Acidulated drinks may also be allowed, and low diet, consisting of plain boiled vegetables, ripe fruits, farinaceous substances, weak tea with a little milk, and toast water. If the local injury will not admit the patient to be removed into a warm bath, a vapour one may be used while he remains in bed.

In idiopathic inflammatory fever, when all increased action has been subdued, the dict should be gradually and carefully rendered more nutritious; but in the symptomatic, it may generally be in. creased more quickly, particularly if suppuration has commenced.

Venesection acts upon the system by diminishing the sensibility of the heart, first by removing a portion of the stimulus to the brain, and secondly by lessening the quantity of the stimulus to the heart itself; but this does not always occur in proportion to the quantity abstracted, for some faint from the loss of a very small portion, white others are able to bear the removal of a much larger quantity, and this difference seems to depend on the firmness or
flabbiness of the fabric of the individual. In the lean frame, pressure seems to be kept up betwern the different structures of the system; white in the loose and llabby individual, pressure or support is deficient, in consequence of which, fainting takes place sooner than when the patient is of a firm habit of body; upon the same principle, a person faints sooner from being bled in the erect, than in the horizontal posture ; the blood cannot be propelled so quickly and easily to the brain, which organ being deprived of its wonted support or pressure, and also of its stimulus, is unable to perform its functions, and fainting consequently is the result; but apparently more from the want of support than stimulus, a lact which is corroborated by the phenomena in paracentesis abdominis for dropsy of that cavity, and also by leaping suddenly out of bed in the morning, or in raising a patient too quickly after fever, or long continuance in the horizontal posture.

The heart contracts or palpitates more quickly by twelve beats in the erect than in the horizontal attitule, but this varies in different constitutions, particularly in the native of a cold climate, who has resided long in a tropical one. In feeble people it is greater, and in all after eating, drinking, or exercise.

Cupping is performed with a scarificator. See Plate DXV. Fig. 1. glass cups and spirit lamp or syringe. Some art is requisite in the performance of this little operation, for the scarificator must be promptly raised during the transition of the lancets from the one side to the other, to allow them to move freely round ; and they should never be set to strike too deep, as they then completely divide the skin, and reach the cellular tissue, the blood-vessels of which are not so large and numerous, and when wounded pour their contents into the cells. In some cases it is requisite to strike twice with the scarificator, crossing the wounds that were formerly made ; and in other instances, the cups are applied before the scarificator, in order to determine the blood to the part. Cupping is a most valuable remedy in many diseases, being preferable to leeches in affections of the spine and joints, without being a painful remedy.

Of the two modes of abstracting blood, viz. generally and locally, the latter is on all occasions preferable to the former, as we abstract blood more directly from the diseased part, and in all complaints, even in fever, one organ is more affected than another, consequently general and local bloodletting ought to be combined almost on all occasions.
In the treatment of disease much reliance is placed on the nature and colour of the blood abstracted, and many experiments have been performed to elucidate this interesting point. The spontaneous change of the blood, in passing from the iiquid to the solid state, or its coagulation, has also been frequently the object of experiment and investigation. The coagulum appears to form merely from the blood being allowed to remain at rest; and happens in the living body whenever it flows
out of its natural channel, or whenever that channell is so enlarged as not to be able to circulate it with its accustomed rapidity and keep it fluid, as illustrated in aneurism, in varicose veins of the leg, and when an artery is secured either for aneurism or amputation. The nature and appearance of the coagulum or clot vary very much according to the state of the constitution, when the blood is abstracted; sometimes it is of a natural purple colour, at uther times of a yellow or bulf tinge, white at other times again, it is of a milky hue. The buff-coloured blood, named also sizy and inflammatory crust, is occasionally turned up at its edges, and is then termed cupped buffy blood, and not unfrequently presents an oleaginous appearance; this buff colouris in consequence of the red particles falling to the bottom of the coagulum, and leaving the fibrin pure on its surface. To convince us that these peculiarities of the coagulum of the blood, even the buffy coat, ought never to direct us in our diagnosis of disease, or influence us in the slightest degree in our practice, we have only to refer to the experiments performed by Mr. Vines, detailed in the 195, 272 , and 284 Numbers of the Lancet. From these it is evident, that the conclusions hitherto drawn respecting the blood of man in disease, are incorrect. Many causes producing sudden death prevent the coagulation of the blood. During pregnancy the blood continues buffy from conception until parturition. In pueumonia, the blood, ill proportion to the quantity abstracted, becomes more buffy; in many cases where only two cupfuls are taken, the last is occasionally more buffy than the first; and in some instances, when four or five are abstracted, each cupful presents a different appearance; the first has a natural purple colour, the second a buff, the third cupped and buffy, while the fourth and fifth are again purple. The buffy appearance has been attributed to the magnitude of the orifice of the vein, but this is incorrect; the cupped appearance is certainly a better test of the existence of inflammation than the buff colour, but no weight should be given to either; the milky colour is generally present in diabetic, bilious, and dyspeptic habits. For the chemical composition of the blood, See Chemistry.
In the inflammatory fever, when the head is more affected than any other part of the body, the external jugular vein, the temporal, or the occipital artery, should be opened, as the relief is greater the nearer the blood-vessel is to the affected organ ; again, as arterial blood affects the system more quickly and for a longer period than venous, the temporal or occipital artery ought to be preferred to the external jugular vein, as in general one half the quantity of arterial, compared with venous blood, produces fainting.
The operation of opening an artery is termed Arterintomy, and is now almost exclusively confined to the temporal, in consequence of its being more easily reached, although the occipital, which was preferred by the ancients, would be the most beueficial, from its direct inosculation with the vertebral artery. In the days of Galen the arteries of the
hand werefrequenly opened. In the Medico-Chir. Trans, of Edimburgh, vol. i., a case is mentioned, where the radial artery was opened by Mr. Rhind, surgeon in India. When the temporal artery is to be opened, the patient should be in the horizontal position, with his head resting on a pillow; the operator then fecling the conrse of the trunk of the artery, as it runs over the zygona, or one of its branches as it ascends along the temple, places the fore and midille fingers of his left hand on the vessel, in order to render it steady, the one above or distad, the other below or proximad, of the artery, while with his right hand be makes an oblique incision, about half an inch in length, through the integuments down to the artery, with a lancet, cutting as if it were a scalpel. When the artery is distinctly seen traversing this little wound, the surgeon is to make a similar oblique incision of the vessel, cutting it in a contrary direction, or picking it from below upwarels, as if he were opening a vein of the arm. See Plate DXVII. Fig. 6. When the necessary quantity of blood has been taken, the lips of the wound are to be approximated, a firm compress made ol a roller of calico, about one inch in diameter, as delineated in Fig. 12, applied over it, and a donble-headed roller to encircle the head, crossing as often as possible over the compress. Sce Fig. 8. The wound should be dressed on the third day, either with admesive plaster, or simple cerate, according to its appearance, and the compress and bandage reapplied. Afterwards it ought to be dressed daily, and the compress and bandage worn for at least a month, as aneurism is very liable to supervene to this little operation. Arteriotomy is preferred to phlebotomy, in inllammation of the brain or cye, especially Iritis.

The opening of a vein is termed Pblebotomy, from dis \(\psi\) a vein, and \(\tau \varepsilon \mu v \omega\) to cut, also venesection op bleeding. Venesection is commonly applied to blood-letting at the bend of the arm, although we sometimes select the externil juggular, or one of the veins on the back of the hand, foot, or ankle. It is sometimes performed on the veins of the scrotum ; it has been done in the veins under the tongue and on the forehead, but these last are now ahandoned. The extemal jugular is preferred in apoplexy and croup; the veins at the bend of the arm, in general inflammatory diseases and after accidents; those on the back of the hand, foot, and ankle, in very fat people, when a vein at the bend of the arm or external jugrular can neither be secn nor felt. In many individuals, the veins at the bend ol the arm can only be lelt; and in such cases the surgeon should be experienced, and most carelul, as a nerve, the artery, or the tendon of the biceps, might be mistaken.

When the hand or foot is selected, it should be immersed in hot water, and retained there during the flow of the blood ; and the same should be done when the scrotmo is the part alfected, and the patient may stand before the fire, as be should be in the erect position.

The manner of opening the external jugular vein, is to plate the head of the paicnt on a pillow, while his body reclines in the horizontal posture; then
press with the thumb of the left hand on the vein after it has crossed the sterno-mastoid muscle, and when it becomes turgid, place the fore and middle fingers of the same hand above and below the point to be wounded, which should be in the region of the sterno-mastoid muscle ; then with the lancet in the right hand an incision is to be made obliguely across the integuments from above downwards, using the lancet as a scalpel, and when the vein is distinctly seen, it is to becut upwards as at the bend of the arm. See Fig. 7 , Plate DXVII. Whenever the blood his begun to flow, the middle fingers of the left hand are to be remored, Jut the thumb is to remain until the quantity required has been abstractecl, and the wound closed with adhesive plaster, as air may enter in by the wound of the vein and prove latal ; a case of which is detailed in the Lancet, No. 259. No compress or bandage is to be used, for it would cheek the cutaneous venous circulation of the head.

When the vein at the bend of the arm is the vessel selected, the patient should stand, sit, or lie, according to the effects to be produced. If the intention of the surgeon is to prolluce fainting at the least expense of blood, as in luxation or rupture, the patient should be held in the erect position, and a large orifice made in the vein in order to remove the 月uid quickly. In inflammation of the bowels, the object should be to abstract as much blood as to cause syncope, but not hurriedly, the patient therefore should be placed in the sitting or horizontal attiude, and a large wound of the vein made. Daring pregnancy we occasionally abstract blood, in order to relieve congestion, and have then to guard particularly against producing syncope or any uterine irritation; we therelore place the patient in the horizontal posture, and make a very small wound.
When a vein at the bend of the arm is to be opened, as represented in Fig. 4 of Plate DXVII, the patient must hold it on the stretch, and have something to grasp in his hand, to keep his fingers in motion, to promote the llow of the blood. The skin must be hirmly stretched upwards along the vein, in order to prevent the wounds made in the skin and vein from shifting; and this is generally done with a fillet or bandage, which should encircle the arm twice, as close as possible to the point to be wounded, and be tied with a slipping knot on the outside of the arm. The surgeon then places the fore and middle fingers of his left hand as in arteriotomy, in order to keep the vessel steady, and with his right hand holding the lancet somewhat like a writing pen, he wounds or pricks the skin and vein at once, and gradually cuts obliquely upwards; making the wound in the skin somewhat larger than that of the vein. The blood should flow at the side of the lancet before it is withdrawn; and when the recessary quantity has been removed, the fillet should be unhound, and the rein compressed beneath or distad to the wound with the thumb of the left hand, the arm washed with tepid water, the lips of the wound neatly approximated, and a square compress of limen applied, and then bound up with a bandage rolled round the elbow joint in the figure
of 8 . The wound should not be dressed somor than the thicel diy, and bocn treated according to appearances, rither with a hew eompress and bandage, athesive fitaser, of simple ointment. It not frequenty happens, that ahtabug the vein is compressed distad to the wound, the blood still flows, which arises lrom an inosculation with one of the deep-seated veins.

However simple this elegant litte operation ol venesection at the bead ol the arm may appear, yet there sere instances of indivislaals losing their lives, even in skilful hands, in eensequence of a high division of the beachial artery into the radial and ulnar, one of which sometimes runs immediately bencath the skin, between it and the faseia of the biceps, and is thas liable to be wounded. A carcless operator may transtix the vein and wound the fascia ol the bieeps or the brachial artery, and thus varicose and false aneurism may be protuced: or extersise inflammation of the faceia of the arm, together with suppuration beneath it. Besides these formidable diseases, there are ecchymosis, inflammation of the rein, of the skin, of the cellular substance, ol the lymphatics, and the wound of a nerve, which may all occur after venesection at the bend of the arm.
Eechymoxis, from exzut, to pour out, is an effusion of the blood into the cellulat tissue, contiguous to the wound in the vein, occasioned by the wound in the skin not corresponding with that in the vein, or the wound of the one not being kept in apposition to that of the other during the llow of the blood, or from the integuments overlapping the wound in the vein, the skin not laving been braced with sufficient firmness by the bandage; or lastly, by not making the wound in the skin a trifle larger than that in the vein. When the blood lorms a circumscribed tumour, \(i\) is termed a thrombus, from spoubo:, coagulated blood. The one, therefore, is a circumscribed tumour, and the other a diffused effusion of blood; they both reguire the same treatment, and unless the quantity of blood be profuse, either effusion is of little consequence, and requires no attention. If however the effusion be extensive and produce pain or inflammation, poaltices should be applied and continued until alt inllammatory tendency has subsided. The inflammation induced, seldom or never ends in suppuration, even of the lips of the wound. If the ecchymosed fluid does not disappear, and the lips of the orifice are healed, but not otherwise, it may be discussed by exciting absorption by means of stimulant embrocations. All surgical operations are followed by more or less ecchymosis, according as the parts may have been torn or bruised during the operation; but it even supervenes in a slight degree in operations most seicntifically performed, especially in the face and other delicate parts of the body, as the knile cuts on the principle of a sav.
'Too often from an over anxiety to heal the wound inflicted in phlebotomy, it is dressed the day following the operation, the consequence of which is, that the process of adhesive inflammation is dis. turbed, and too great a degree of inflammation is excited, which either spreads all over the arm, con-
lining itsclf to the skin, and assumins eommonly the erysipelators typer, or involves the subjacent cellular tissue, forminer erysipelas phlegmonodes, or extencls to the lascia of the arm, or alfects the lymplatics, or the sein iteell.

Inllammation of the will is also said to arise from foul lancets, which however appears to be very seldom the case; neverincless. a wein ought never to be opencel by one which has been employed in opening a syphilitic bubo, or in performing vaccination. When a patient requires to be bled twice in the course of twenty-four hours, a common practice is to abstract the second quantity of blood from the same orifice, by applying another bandage round the arm above or proximad to the wound, until the veins become swollen, then remoring the first banlage, and tearing away the compress adhering to the wound, when the blool commonly springs out; but il not, the wound is Corcibly opened eilher with the fingers, or by squeczing the blood along the vein onwards to the orifice, or by inserting a probe or lancet; such teazing steps are even pursued in a third bleeding, il performed in twentyfour hours. Il there is mot moch inllammatory action present, and the second bleeding is performed within twelve hours of the first, this plan may be adopted; but if otherwise, it is extremely liable to produce inllammation, as the adhesive process takes place very quickly between the lips of a vein and so small a wound in the skin. It is therelore preferable to open a vein of the opposite arm. The same vein is sometimes opened close to the first wound in the course of twenty-fone bours, which is also an improper practice; and neither this, nor opening the same wound twice, should be adopted in hospital practice, particularly in thoracic inflammation, as the veins are more liable to be inflamed, when lanced in this, than any other disease.
lnfammation of the vein is characterized by tumelaction ol the arm, pain in the wound darting to the axilla, and even to the thorax, accompanied with difficult respiration and inflammatory fever, which advances rapidly to typhus. The vein to the touch feels hard, is rery tender, and sometimes inAlumed both upwards and downwards; the lips of the wound are everted, swollen, and occasionally pus or sanies, mixed with blood, can be pressed out from it. Not unfrequently there is an odematous boggy feeling in some parts ol the arm, with more or less inflamatory discolouration of the integuments. On dissection, the vein is found so thickened in its coats, that it has all the appearance of a nerve; and coagulable lympis and pus are deposited in its cavity, sometimes to the extent of plugging it up; the internal coat is of a redelish purple colour, resembling elaret. There is more or less effusion of purulent matter in the contiguous cellular tissue, and even in that entering into the formation of the muscles, and in some instances the two pectoral and the contiguous intercostal muscles are infiltrated with pus. The pleura is often found inflamed, with abscesses forming in the lungs; and sometimes the right auricle and ventricle will also be inilamed, with even pus in the pulmonary artery. Infammation of a vein proceeds with great tapidity,
and as veins circulate their contents onwards to the heart, the inflammatory action is conveyed to this viscus with alarming celerity, frequently proving fatal between the fifth and tenth day. The coagulable lymph and purulent matter effused into the veins, must also be carried onwards to the heart. From these alarming consequences, it is evident that the treatment of this disease must be very prompt. The patient should be bled to syncope by opening a vein of the neck or opposite arm, and this ought to be repeated in four hours, or whenever he rallies, and until all inflammatory tendency has been subdued; and as there is a disposition to inflammation in the venous system, the same vein ought never to be opened twice. Together with active blood-letting, should be combined tobacco enemata, brisk cathartics, warm bath, a profusion of leeches to the part affected, or scarifications with the bistoury, represented in Fig. 2, Plate DXV, followed by large anodyne poultices, or fomentations, with low diet and perfect quietness. When scarifications are made with the bistoury, the wounds should be plugged with lint, after a requisite quantity of blood has been abstracted. If these local applications do not seem to arrest the extension of the disease, large blisters should be applied. The general treatment in all these affections is the same with that recommended for inflammatory fever. John Hunter and others have recommended pressure on the vein both above and below the wound; but we should rather consider, that the compression would increase the inflammation; Mr . Abernethy proposes the division of the vein, a line of practice certainly preferable to that of Mr. Hunter.
Inflammation of the lymphatics begins by the wound appearing fretful, inflamed and suppurative, by a cord or cords being felt sometimes above or proximad, and at other times below or distad to the wound, but not precisely in the course of the vein. These cords appear of a delicate rosy red colour, are exceedingly tender to the tonch, and have frequently one or more tumefied points on the inner or ulnar margin of the biceps muscle, in the course of the brachial vessels; similar tumours are also often seen on the fore-arm, between the elbow and the wrist joints. The glands of the axilla become carly affected, and there is general tumefaction of the arm, with acute pain in the wound, in these corded lines and tumou:s, accompanied with considerable symptomatic fever. Either before or after the inflammation of the lymphatics, the contiguous cellular substance becomes very early involved, frequently producing extensive suppuration of both, which also spreads to the axillary glands, in which case there is more or less exdematous feeling. According to the extent of the affection, the treatment requires to be either entirely local, or both local and general. The same remedies, with the exception of blisters, are to be employed as in inflammation ol the vein, and need not again be described.

Inflammation of the fascia of the arm commonly takes place, when the operator has carelessly transfixed the vein and wounded this membrane; but this
accident may occur in the most skilful hands, for occasionally the most prominent vein at the bend of the arm, and the one any surgeon would select, runs beneath or centrad to the fascia of the biceps. The symptoms of this affection are acute pain in the arm, extending to the shoulder, whenever the forearm is moved, which latter is in some degree bent on the arm, with the fingers also bent and contracted. There is great tension, some degree of tumefaction in consequence of anasarca, and slight erysipelatous inflammation; there are also generally sympathetic spasms over the whole body.

As suppuration quickly supervenes, with thickening of the fascia, and consequent contraction of the elbow joint and fingers, the treatment should be extremely prompt, this affection being strictly erysipelas phlegmonodes, consequently the same means sloould be used as for inflammation of the vein: and in the event of contraction resulting, the fascia of the fore-arm must be divided either at its connexion with the biceps muscle, or what is preferable, immediately below or distad on the pronator and flexor muscles, avoiding the course of the veins and nerves, and even the ulnar artery in case of a high division of the brachial. When there is great tension during the inflammatory stage, accompanied with severe pain, the fascia even then should be divided.

A nerve at the bend of the arm is extremely liable to be wounded in venesection, in consequence of the twigs of the internal and external cutaneous nerves, and evell some ol the spiral nerve entwining the different veins. When a nerve is wounded, the patient feels acute pain the moment the lancet pierces the vein, and inflammation of the wound follows, the nervous symptoms immediately commence, and acute pains are experienced darting along the arm, to the neck and head, and even down along the fingers; convulsive twitchings ensue, accompanied with restess nights, being disturbed by frightful dreams. When inflammation of the wound does not take place it heals up, and some days, even weeks, elapse before the convulsive symptoms begin, and in this case, which is the more rare of the two, it resembles tetanus more than the other. On some occasions it assumes the appearance of neuralgia. If the convulsive symptoms have been severe, in a few days spasms occur which dart from the head along the back and bring on trismus or locked jaw, which puts an end to the patient's sufferings.

The treatment ol this affection in the first noticed case, reguires to be very prompt. The wounded nerve must be divided close above or proximate to the wound, the arm enveloped in an opiate poultice, haviug half an ounce of opium dissolved in half a gallon of water, and if this should not give relief to the patient, the actual cautery should be applied to the wound. The patient ought to be bled in the other arm, or jugular vein to syncope, put in the warm bath, have powerfill cathartics given, followed by large doses of opium, and have tobacco glyster administered. The blecding to be repeated as frequently as circumstances require; and if all these remedies fail to subdue the tetanic symptoms, a vein of the opposite arm should be opened, and a
solution of opium injected into the circulating system.*

We have already mentioned the most common cause of inflammation of the skin supervening to venesection at the bend of the arm, and it may also arise from the same causes as those producing inflammation of the vein and lymphatics; and we have already stated, that the variety of inflammation which generally occurs here is erysipelas. This variety then, or type of inflammation, for it appears nothing else, has been divided by authors into a number of species, as may be seen by consulting the works of Cullen, Bateman, Pearson, Smith, Pinel, and James, for it attacks the same structure as the plilegmonous, thus the velum pendulum palati is as often affected with erysipclatous as with phlegmonous inflammation; the former named cynanche maligna, the latter cynanche tonsillaris. -We shall confine ourselves to erysipelas, and erysipelas phlegmonodes.

Erysipelas from eques to draw and monas adjoining, termed in common language rose, or St. Anthony's fire, when it occurs after blood-letting at the bend of the arm, begins in the contiguity of the wound, and soon spreads both upwards and downwards, frequently involving the whole arm, which becomes swollen, the skin assumes a delicate rosy tinge, and is clear and shining, and when pressed gently with the finger, a white mark remains for a little. A yellowish hue is frequently observable, and there are occasionally serous vesicles which either dry up, or burst and desquamate, or ulcerate, or slough and ulcerate. The patient feels a hot burning pain in the part, and when the constitution becomes affected, which is early in the disease, there is inflammatory fever with considerable nausea. By some it is stated, that the wound of the vein often heals before the erysipelatous affection takes place, and continues so, while on other occasions it breaks out. The treatment is the same as that recommended for inflammation of the vein; for bleeding, blisters, poultices, and anodyne fomentations, are as proper remedies for the one affection as the other; but if there be any tension, incisions should be made as in erysipelas phlegmonodes. The reader is also referred to the treatment of inflammatory fever, and the Article Medicine, Vol. XIV. Page 4.

In this disease, a vein opened in the opposite arm never assumes the erysipelatous type; nor do leechbites, according to the common opinion, mortify; blisters often arrest the extension of the inflammation, and the blistered surface never assumes the erysipelatous action, but, on the contrary, limits it. Warm poultices are as beneficial in erysipelas as in phlegmon. Flour is a common but most inert application. A solution of the sulphate of
magnesia, with tartrate of antimony, is found to be an excellent aperient. Bmetics are pernicious remedies, particularly when the head is the seat of the disease, as they propel the blood to that organ. When erysipelas attacks the face or scalp, it ought to be treated with great promptitude, in consequence of the vicinity to the lrain; and when once either of thesc parts have been attacked, it is peculiarly liable to return on the slightest exposure to cold. It is also very apt to move from one place to another, in this manner, extending all over the body, from the head down the lack and breast to the arms and even the legs, the one part desquamating as the other makes its appearance. It is likewise subject to be translated from one part of the body to another like rheumatism, from the leg to the lungs or face, and it has been known to occur periodically. The integuments of the head are particularly prone to erysipelas after all wounds, especially punctured ones; it also often occurs after compound fractures of the leg, and occasionally in the anasarcous leg. It not unfrequently attacks the umbilical region of new born children, and extends along the umbilical veit, or downwards to the pudenda. Erysipelas is described as being confined to the skin, and when it involves the subeutaneous cellular tissue, it is termed phlegmonous erysipelas, or erysipelas phlegmonodes, or diffuse inflammation of the cellular texture. 'The epidermis, the rete mucosum, the cutis vera, the cellular tissue, and the celfular substance forming the aponeurosis of the muscles, have all individually and collectively been supposed by authors to be the seat of erysipelas.

We find erysipelas attacks mucous structures, as the mucous membrane of the fauces, and we leel confident that we have seen it evidenced in other textures, as the serous, namely the pleura and peritoneum, also fibrous textures, as the periosteum, and we can see no reason for its not attacking every tissue. Erysipelas phlegmonodes is distinguished from simple erysipelas, by the part affected presenting a combination of the \(t\) wo colours, the vermilion and purple, and often a yellow tinge, by the cedematous bogyy feeling, and by the patient having rigors or shiverings. An cedematous spongy sensation is one of the best criteria of suppuration having taken place. Whenever matter can be distinguished, free incisions should be made to evacuate it, and as it is often diffused over a great extent, these require to be numerous. If much tension is present, or if the disease be severe, it will be adrantageous to make these incisions even before suppuration has taken place, as they not only relieve the tension, but moderate the inflammation by the local abstraction of blood. Instead of short, or moderately sized incisions, as first

\footnotetext{
* Cauteries are divided into the potential and actual. The potential consists of the different escharotics and astringents, as the sulphates of alum and copper, and nitrates of silver and copper. The actual cautery is an iron heated to incandescence and the moxa. The irnns used for cauterizing are of various shapes. The moxa is made of common cotton immersed in a solution of the nitrate of potass (of the strength of five grains to an ounce of water) and afterwards dried. A small quantity of this cotton is ficmly rolled up and encircled with a piece of card half an ineh broad, and three inches long, and afterwards tied roand with a thread. It is then fixed in a port.feu (See Plate DNV. Fig. 3) the one end set fire to, and the other held firmly on the part to be chemosed. The common bellows are then employed to keep up the ignition of the cotton, which now resembles a common fuse, until it is entirely consumed. The ignition should be merely kept up, for the more slowly it burns, the more powerful is the effect.
}
recommended by Mr. C. Mutchison, Mr. Lawrence makes a long incision, even the length of the leg, which is evidently objectionable. Erysipelas terminates either in resolution, suppuration, vesication, or gangrene. When resolution, or an abatement of the disease is the termination, the skin assumes a pale yellow colour, and ultimately the cuticle desquamates.

When gangrene supervenes, the parts become first bluish and then black; an inflamed line of demarcation next takes place between the sound and the mortified parts, ulceration succeeds, and the gangrened parts slough or sphacelate, and sometimes leave the principal artery of a limb exposed. In dissection of the more severe cases of erysipelas, the cellular tissue of the arm is universally gangrenous, even that forming the basis of the muscles, which texture is also distended with a sanious fluid. There appear no grounds for considering erysipelas infectious, and it is even doubtful how far it is contagious; nevertheless, in this as in all other diseases, every attention should be paid to cleanliness and ventilation. The treatment will be detailed under mortification.

Paronychia, or Whitlow, named also, Panaris, Onychia, Onychia maligna, and Panaritium, is so common an inlection attacking the finger, that all are familiar with it; writers, however, make out a number of species, as detailed in the Edinburgh Medical Journal, No. 95, which subdivision appears truly frivolous and unnecessary; in general, the less the finger is diseased, the more the hand, fore-arm, and arm are affected. It is usually a phlegmonous inflammation attacking the finger near the point, but sometimes is erysipelatous, and arises from a variety of causes, some of which are oceasionally very obscure, or enticly unknown. The causes are commonly cold, a piece of the nail fretted, or what is vulgarly termed rag-nail, a prick or wound in the finger liom a thorn, small splinter of wood, needle, hook, scalpel, forceps, spicula of bonc, a broken bottle, an abrasion, or dirt getting access to the cutis beneath the nail. The finger affected generally presents a swollen inflamed appearance, and has a painful hot throbbing sensation. In some cases the malady is confined to the nail and its vicinity; in others the finger feels acutely painful, the pain extending to the hand and forc-arm, with litile or no tumefaction: in others again, the pain is confined solely to the finger, unaccompanied with tumefaction. When confined to the nail and neglected, there commonly shoots forth a fungoill excrescence, and the finger becomes swollen and deformed. From what has been stated, a whitow may be considered a discase of the linger, of an inflammatory nature, attacking one or all the structures, rapidly terminating in suppuration, and occasionally in grangrene even of the bones; and as the inflammation, suppuration, and gangrene are liable to extend upwards along the arm, fatal consequences may ensuc.

As the finger is exceedingly sensitive and vas. cular, whitlow should be treated early and vigorously. If the finger be merely inllamed. and no
degree of tension, warm poultices, will absolute rest and low diet, will be sufficient; but if there is tension, or matter apparent! sectetect, a longitudinal incision of some depila shoukd be ficely made in the centre of the linger, and generally on the palmar aspect, to give relici, and wextract blood locally. When the cuticle acts as a sheath, and restrains the expansion of the inllamed finger, it ought to be cut uff with scissors: and when matter insulates the nail, the latter should be removed with scissors and lorcep;, otherwise a fungous excrescence ferminates around it, lomming what is termed ulcus meti moris, or in common language, the growth of the mail into the flesh, when the slightest motion causes exquisite pain. The nail then is more diffi ult to remove, produces more pain, and the excreacence requires to be removed with the scalpel and escharotics, or both. The best escharotic is the ritrate of copper. This latter variety often attacks the toes, especially the great one, and various ways have been devised to remove his source of irritation, by Paré, Dupuytren, and Wardrop, the last of which is the preferable, and is detailed in No. 209 ol the Lancet.

If the hand be involved in the disease, it should be treated as recommended for infammation of the vein, and if the inllammation still rontinue, one or two incisions should be mate in the palm of the hand, to divide the palmar fascia so as to remove the tension and obsiate permanest contraction of the hand, care being taken not to wound the pahmar arch of the ulnar artery, an incision may be also necessary on the back of the hand. If the disease extend to the fure-arm or arm, the same treatment will be required as in inflammation of the fascia. In this alitection the phatanges of the fingers become soon carious, proving the necessity of active treatment; and whencer the bone or bones are ascertained to be bare or rough, they should be removed either by cxtracting them individually or by amputation; on some rare occasions, the finger degenerates into a carcinomatous condition, and requires to be amputated.

The fascia palmaris, especially the threads extending along the fingers, is frequently so contracted lrom this malady as to impede the fanctions of the fingers or ceen the whole band, and should therefore be divided by a cross incision, the fingers being afterwards helil out straighi by a piece of wood. From an attentive examination of such fingers in the di-secting room, we can speak with confidence of the nature ol this contraction; the tendon being only gradually contracted, in consequence of this arch ol the lascia palmaris being so: and from the different positions in which the fingers are beld, tie same derangement takes place in their joints, which progressively become dislocated.
pure and simple whitow, the most common affection resulting from punctures in the dissecting room, is fiequently produced from the puncture of a hook, scapel, lorecps, medles, or the spicula of a rib, in the examination of the thoracic viscera. In the mildest cases, there is mercly a small serous vesicle of a milky colour, from being filled with a lluid more or less purulent, and surrounded with
an erysipclatots or phlegmonous blush. In the severest cases, the disease is either at once ushered in with rigors, high constitutional excitement, advancing rapidly to typhus, with a peculiar despondency of mind, of the infammation extends along the fore-arm and arm to the axilla and thorax, involving the moscles of the axilla, those situated on the thorax, and ceen those on the abdomen and back, rescmbling arysipelas phlegronodes, or inflammation of the lisscia consequent on venesection at the bend of the atm: indeed the only dillerence between these affections is, that in this origimating from a puncture in morbid dissection, we have frequently no chain of comection between the puncture and the muscles and cellular tissue of the axilla; but the same want of comection, or eause and effect, appears to exist in erysipelas and a wounded nerve succeeding to phlebotomy. There can scarcely be a shadow of doubt, that in one and all of these affections, some exciting cause must have existed; and that although the wound healed in either without being observed, yet nevertheless it must have inflicted irritation or excitement, or a morbid action, cither in a lymphatic, a nerye, or a blood-vessel, which has not been called into action until the constitution was excited either by stimulation or by fever induced by cold. We have known many by dining out and indulging in wiuc, rouse to action such punctures even when healed; also if afterwards attacked with febrile symptoms induced by cold. The lymphatic vessels appear to be those which suffer, because the axilla is the most frequent seat of the first development of this affection, and yet the glands situated there are seldom affected. 'The greater number of individuals are aflected in consequence of being punctured while labouring under some febrile attack. The mind has a powerful influence in this clisease.

Assuming this view of our theory to be correct, we must next ascertain whether any poisonous matter is absorbed. 'The fact ol' the same affection being produced by clean lancets, clean needles, common skewers, delicate splinters of wood, various kinds of thorns, the spicule of the bones of the ox or sheep, broken glass, or an abrasion of the finger against a wall, should at once put to rest the idea that absorption has any concern in producing such a discase; for since to the same causes we are entitled to ascribe the same effects, why should we search for the unknown and lancilul, when such simple and natural causes are before us? Before the time of Paré, musket bullets were supposed to be poisonous, and there are modern authors who are so credulous as to believe, that Malaria travels, like the carrying pigeon, from Italy and Ilolland to London!

Some authors assert, that recently dead morbid animal matter is more poisonous than putrid, while others the reverse, and some think that the saline solution employed in injecting dead bodies is a corrective. If what has been adranced be correct, it follows that putrid dead morbid matter, and saline dead morbid matter, should be more irritative than recently dead morbid matter. We do not mean to deny, that putrid dead morbid matter may be ab.

Vol. XVII. Partil.
sorbed, although it is well known that the syphilitic virus and many other living anmal poisons cease to allect the living bystem the moment death takes Hace; but we do mean to deny, that absorption ofecurs in punctured wounds, producing erysipelas phlegmonodes or diffise inflammation of the: cellular tissue. By sumbe a speritic virus is supposed to be generated ith the dead body, but this appears fallacious if we are correct in our theory. It is also imagined that this sirus is absorbed even when the skin is sound in those constitutions considered in be peculiarly susceptible of the impression of dead animal matter, and that gloves, oil or lard, are excellent prophylactics ; but that these are totally inert there appears searcely a shadow of doubt. Some authors contend, that a person cugaged in dissection, will resist this disease and the putrid eflluvia better if his diet be nutritious; but the very reverse ought to be the case.

With regard to fever, we have already stated, that idiopathic inflammatory fever is caused by the application of cold to the body while heated. Tho same appears to be the cause of all other fevers with the exception of hectic, so that we are ol opinion that neither putrid efluvia, marsh miasmata, nor pestilential vapours, cyer give rise to fevers. These ellluvia appear only to render the constitution ill-conditioned and feeble, and more susceptible of cold, and hence, when attacked with fever, make it more violent.

The treatment of this variety of erysipelas phlegmonodes, originating from punctured wounds received in morbid dissections, is as various as its theory, which must ever be the case so long as we are ignorant of the correct pathology of the disease: it equals tarefarcical medley of a thousand remedies as applied to uleers, so liumorously deseribed by John Bell. When suppuration is established, all are agreed that vent should be given to the matter by free incisions. Nor has the general treatment been more consistent than the local. The treatment of this should be the same as that recommended for erysipelas phlegmonodes. See also inflaned vein and inflammatory lever. In the last stages of this learlul affection, as in other fatal disorders, hiccup, which is an inverted action of the stomach and diaphragm, is no unfrequent concomitant, and is easily checked by the patient sipping any bland fluid, swallowing it constantly without intermission until the hiccup ceases ; and afterwards he must avoid speaking, for it is exceedingly liable to recur, sneezing and coughing reproducing it.

Adhesion is that termination of inflammation which takes place when the inflammatory action is moderate, and coagulable lymph only is secreted: in common phlegmon, this occurs very soon after the increased action has begun, the lymph being effused into the contiguous cellular tissue, which limits the extension ol the inflammation. It takes place also in all acute abscesses, and in all incised wounds, whether accidentally or intentionally inflicted. Adhesive inflammation or union by the first intention, although a termination of inflammatory action, begins a new series of operarions, and
its doctrine being one of the most interesting and important in surgery, has engaged the pen of our most able pathologists. When a clean incised wound is made, such as that in amputation of a limb, and the sides of such a gap are made to approximate, the first process in nature to effect a reunion, is a moderate degree of inflammation, by which coagulable lymph is effused, which appears to be effected by a modification of the capillary arteries, influenced by the nerves, to secrete this organizable fluid. That coagulable lymph is a secretion, appears evident from the consideration that in slight degrees of inflammation of serous membranes, it is unquestionably secreted, and in abscesses and ulcers it is poured out in profusion; that in fractured bone it is a pure secretion; that in incised wounds, the blood acts as a foreign body, and that every fluid, either healthy or diseased, is secreted, or undergoes modification in vessels; it is also one of the simplest of diseased secretions. The bleeding of a wound must have entirely ceased before coagulating lymph can be effused, hence it appears that some modification of the bleeding or capillary arteries, influenced by the nerves, takes place. This coagulating lymph differs from that obtained when recent blood is allowed to coagulate, by being of a lighter colour, nearly transparent, like animal jelly or made starch, and being more tenacious, also more organizable.

The common doctrine of this lymple either issuing from the half-closed mouths of the vessels, or from the surface of the opencd cells of the cellular substance, seems incorrect. After this coagulating lymph is effused, the capillary arterics and reins of each side of the wound shoot into it, soon rendering it a firm bond of union; and an inosculation has been proved to take place in the short space of twenty-four hours. In inflammation of the serous mombranes, the pleura, pericardium, peritoneum, internal tunics of arterics, \&c. the degrec of the inflammatory action is often excecdingly mild, and the duration very short which accomplishes adhesion, apparently almost as soon as inllammation is established, the serous secretion is checked and that of coagulable lymph substituted. On the principle of this adhesive inflammation, are the various incised wounds healed, also as the renovation of a nose, or under lip, or a deficiency of the urethra.

The formation of a new nose or under lip, when cither of these has been removed by accident or some previous disease, was first practised in lndia by Branco, afterwards by Tagliacotius in Italy and Germany, and is now termed the Talicotian or thino-plastic operation. Tagliacotius used to take a piece ol shin oll the arm or some other part of the body to make the new feature, upon which Butler has written a humorous stanza, and Addison an amusing paper. It is now performed by taking a piece of the integuments in the vicinity of the feature, from the neck when it is the under lip, and from the forchead when the nose. The latter operation is performed in the lollowing manner:-A piece of leather is cut the shape of the nose, and placed upon it, or where the nose slould have been; and, if any skin remains, it is removed, and the
margins rendered raw by clean incisions; when all bleeding has ceased, the leather is then laid upon the forehead, and traced round either at once with the scalpel or pen and ink; this portion of the skin is then dissected off from its attachment to the oc-cipito-frontalis muscle, taking along with it as much cellular substance as possible, and leaving a tolerable point of connection at the root of the nose; it is then gently twisted round, and laid upon whatever remains of a root or dorsum, makiug it correspond with the surface already rendered raw for its reception, only a degrec larger; and lastly, stitching it with two silk ligatures on each side of the nuse, and one at the columna. If the skin to form the new nose has no support in consequence of the columna and cartilaginous septum being destroyed, it should be gently supported with dossils of lint inserted in each naris; but if there be enough of septum to prevent the skin hanging or dragging, no foreign body should be inserted, as all source of pressure or irritation ought to be carefully avoided. Whenever adhesion has been effected, the nose should be supported by silver tubes. The raw part on the forehead should be approximated with stitches as much as possible, and afterwards healed like any ulcerated surface. Whenever adhesion is perfect, and all irritation and tumefaction have subsided, the little twisted portion of integuments that formed originally the point of connection should be divided, and laid neatly down.

Before performing this operation, the surgeon should be satisfied there is no constitutional affection present, and in those cases where the nose has been destroyed by noli me tangere, all tendency to this berpetic ulceration ought to have entirely ceascd. If a small portion of the skin of the old nose remains, it had better be removed, as it will disfigure the countenance by a contrast of colours.

Suppuration is another termination of inflammation. Whenever the inflammatory action is more violent than what is necessary for the capillary arteries to secrete coagulable lymph, these capillaries, modified and influenced by the nerves, form small suppurative papillæ that secrete purulent matter, which theory of action constitutes suppuration. When this ensues from acute inflammation, and the matter is circumscribed or confined in a sac, the diseasc is named acute abscess; for we have purulent matter, or a puriform fluid secreted by mucous membrancs, which are the most subject to this termination of inflammation. It is also secreted in incised wounds, and in the skin or cutis vera after a scald with boiling water or the application of a blister. In mucous membranes, such as the urethra, the capillaries are naturally endowed with the power of secreting a mucous fluid; and if these ressels are inflamed, they are casily and quickly modified by the nerves, to secrete a puriform luid, as for example in Gonorrhoa, occasionally twelve hours after infection. In this case the capillaries do not seem to lorm suppurative papillx, as in common suppuration and ulceration. In the cut the capillaries perform the functions of exhalants naturally, so that when stimulated by a blis-
ter, they are soon modificd by the nerves to perform the function of secreting purulent matter; and if the irritation be kept \(u p\) by blistering ointment, they soon form suppurative papilla. In incised wounds, the capillaries perlorm the same office as in ordinary suppuration; small suppurative papillx being rapidly lormed and then pus secreted. In all cases of suppuration there must be a precedence of inflammation, however slight in degree, even in serofulous tumours or abseesses. All loose textures, as the cellular, when attacked with inflammation, are more prone to terminate in suppuration than condeused compact structures, because the blood-vessels have greater latitude to form suppurative or ulcerative papillac.

The symptoms of suppuration are rigors or cold shiverings, which occur at irregular intervals, and are commonly lullowed by a hot fit and slight increase of the preceding febrife symptoms, if the inflammation has been extensive; a total quiescence of the pain of the inflammation lor a time, which is soon resumed if the hot applications are continued, especially if the suppuration be superficial. In a short while the pain returns, but changed to a dull, heary, and constant feeling; the tumour hecomes conical, with a white or yellow tinge at the apex, while the surrounding inflammatory colour is deeper and the skin more glistening; there is occasionally more or less of an cdematous feeling, and matter is then distinguishable to the fingers. One of the best examples of an acute abscess, is the termination of an inflamed inguinal gland in suppuration. Whenever the fuctuation of matter is perceptible in a circumscribed acute abscess, a frec incision should be made from the one end of the tumour to the other, with the bistoury; but in an extensive or diffused abscess, the most depending part should be selected to make the aperturc. Unless a free incision is made in the circumscribed abscess, the matter is liable to loiter at one of the extremes, and form a sinus or sinuous uifer or tube, which afterwards requires to be laid open, an event frequently exemplified in the syphilitic abscess. Some authors recommend that abscesses should be allowed to break of themsclues, while others recommend caustic instead of the bistoury, but the knife is preferable, as it inflicts lcss and more transient pain, makes an aperture proportionate to the abscess, and prevents the disease making further progress. Alter the evacuation of the matter, poultices should be applied for the first twentyfour hours, when the wound ought to be dressed with simple dressings, compress of tow, and a calico roller; and in the case of the groin being the seat of the discase, the bandage should encircle the body and the thigh in the figure of the digit 8 . The periods of dressing an abscess must depend on the quantity of matter secreted. In ordinary cases, once or twice in twenty-four hours is sufficient.

In those cases of acute abscess of the palm of the hand, fore-arm, arm, thigh or leg, where the matter is situated beneath or centrad of the fascia, there is generally a dull cutaneous inflammatory discolouration, and an cedematous feeling, which, with the other symptoms alleady enumerated, indicates the
prescnce of matter. In such cases the fascia must be freely divided with the bistoury. An odematous bogry sensation is the best index of matter being secreted, yet it is often exceedingly difficult to distinguish its presence; the tactusermetitus is a valuable acquisition to a surgeon. When an acute abscess is examined, it is coated with coagulable lymph of a smoothmembranous-looking ash colour, which is termed the sac or eyst, and adheres by a vascular cushion to the surrounding cellular substance, the latter of which, in the vieinity of the abseess, is more dense and vascular: and its cells are closed with coagulable lymph. In this vascular cushion and stratum of coagulable lymph, the capillary vessels modified to secrete the purulent matter are situated, together with the nerves, veins, and absorbents. In all abscesses, a secreting and absorbing action is going on. A remarkable circumstance is that an abscess adrances almost always te the surface of the body, which has been attempted to be explained on the principle ol plants growing towards the light. It appears, however, more probable from the skin offering less resistance, for when matter is deposited bencath a lascia, it burrows in all directions. 'The matter secreted in an acute abscess, occurring in a healthy constitution, is named pus or purulent matter, and is of a yellow cream colour, and about the consistence of rich cream. For its chemical properties the reader is referred to the article Chemstry. Pus sligbtly irritates the contiguous skin of an abscess or ulcer, and even the granulations: therefore, from these fretting qualities, it ought to be absorbed by lint and tow as soon as secreted.

An abscess, when licely opened and dressed daily with simple dressings, gradually fills up by the formation of suppurative papillæ or cranulations, and when these arrive to be hearly on a level with the skin, it is generally termed an ulcer: an ulcer, therefore, is simply a diseased, or abraded secreting surface, (for therc are numerous healthy secreting surfaces, and has been correctly defined by authors to be a solution of contiuuity in any of the soft parts of the body, attended with a secretion of pus or some other discharge. Another delinition, but not so perspicuous or corrcct, is, that it is a chasm formed on the surface of the body by the removal of parts back into the system by the action of absorbents; and a third is, a granulating surface secreting matter, the last of which is most satisfactory. The ulcer consequent on an acute abscess occurring in a healthy coustitution, is named a healthy ulcer, from its being a process of nature to repair the breach of continuity, but the same is applicable to the syphilitic ulcer. Sinople, consequently, is a better appellation than healthy to this kind of ulcer, as no diseased action can be said to be healthy. It is termed the 'simple purulent ulcer;' and 'ulcers in parts which have suflicien: strength to carry on the actions necessary for their recovery.' In the Philosophical Transactions lor 1819, Sir E. Home has detailed some most iugenious microscopical observations on the conversion of pus into granulations, by the extrication of carbonic acid gas from coagulated pus, forming
tubes or canals, which are filled with red blood, and thus connected with the circulation : this, however, appears too chemical a process. In this species of ulcer, the granulations are bright red conical points, regularly formed, numerous, firm and distinct; and the matter secreted by them is pus in a moderate quantity. These granulations, when they arrive at the level of the skin, form a thin film or skin, which begins at the edge, il the structure of the skin has been destroyed, and spreads over the sore, and in the middle, or all over the sore, if the cutaneous tissue is preserved, as is beautifully exemplified in the utceration supervening to a gentle scald. The treatment of this simple ulcer is merely to absorb the pus, and afford support to the ed ges and the cutaneous circulation: dry lint, therefore, is often preferable to that spread with simple ointment, and should be notched towards the centre in order to give exit to the pus. For the same reason a pledget or compress of tow should be put over it, and a roller gently applied above. The great art in the treatnent of this ulcer is not to stimulate it, and to preserve the new skin when formed. On renewing the dressings, the old should be thoroughly softened with warm water before removal. When the ulcer occurs in the leg, which, from its exposed and depending situation, is most subject to ulcers, the roller should be applied from the toes to the groin, as exemplified in fig. 1, of Ptate DXVI: and the paticnt should keep as much as possible in the horizontal position. Various substances arc used for bandages, as calico, linen, and flantel.
This simple or healthy ulcer is very easily inflamed or irritated, and then assumes the name of the irritable ulcer, or the 'iuflamed ulcer,' or 'ulcers in parts whose actions arc too violent to form healthy granulations, whether this arises from the state of the parts or of the constitution,' and is characterized by the sore becoming hot and painful, and the granulations of a dark red colour, approaching to purple, very small, and scarcely distinguishable, the edges of the sore thin, ulcerated, or phagedenic, having a worm-caten appearance, and the skin around the ulcer inflamed, of a dark purple colour. The secretion is thin, and either bloody, dirty white, or of a green colour ; and is so acrid as to excoriate the surfounding skin, and cven the granulations themselves. The surface of the sore is occasionally of a brown instead of a purple colour, while at other times white or ash-coloured; and there are frequently irregular elevations and depressions, as if they were excavated by the matter. This species of ulcer is casily produced by the most trifling exciting cause. The treatment of this irritable ulcer is by the application of large anodyne fomentations and ponltices, low dict, and absolute rest in the horizontal position, until the inllammatory action is completely subtued, which is indicated by the absence ol the pain, and the diminution of the inflamed colour of the surrounding skin; by the edges becoming delined and clean; by the sore becoming more florid in colour, and by the secretion becoming creamy and purulcut ; or, in other words, by the sore presenting the characters of the simple ul-
cer. For the first two or three days simple ointment should be used, and a roller applied. The diet and exercise ought to be slowly increased.
Both this irritable and the simple ulcer are very liable to become stationary in the process of healing, and ultimately to be so indolent as to have no disposition to advance; it is then termed an 'indolent or callous ulcer,' which is characterized by the edges being thick, smooth, callous, and of a blue white colour, and by the surface of the sore being below the level of the callous margin, and presenting a smooth, glistening, flably appearance, there being few or no granulations, and those which do exist, generally pale and languid. The discharge is lrequently thin, profuse and viscid, adhering to the ulcer: but sometimes it is scanty, and then the surface of the ulcer is of a brown colour. The skin around is purple and hardencd, but not infamed, particularly if the ulcer has been of any standing; the cautancous veins are commonly varicose. The bluish white colour of the edges is the most characteristic sign of this species of ulcer. This ulcer occurs, like many others, most frequently on the leg, and generally in advanced life ; from the age of maturity, however, all are subject to this disease, which is most prevalent in the labouring classes, and among soldiers and sailors. Its treatment consists in gently and gradually stimulating the parts to action, by the application of a solution of the sulphate of copper, and of a mild ointment of the red oxide of mercury, together with a firm compress and bandage. The judicious arrangement of compresses adopted by Mr. Whately, is particularly applicable to this ulcer. When this solution, and the ointment of the red oxide, lose their stimulating qualities, an event which occurs in all local applications, they must be strengthened gradually and cautiously ; and when the ointment has been increased to the strength of Sij to 3 i of lard; the unguentum resinosum should be substituted for the lard. The patient should be allowed nourishing diet, and even stimulating food, and should keep the leg quiet, in the horizontal attitude. Mercury and cantharides are most powerful auxiliaries, if administercd only to excite the system to greater activity. Such a numerous cata. logue of remedies are recommended for this ulcer, that John Bell has humorously classified them into imnocent drugs, humerous drugs, and devilish drugs. The most common in use are adhesive plaster, ointment of the nitrate of mercury, hot dressings, which consist of resinous ointment and oil of turpentine rendered hot, ardent spirits, solutions of nitrate of silver, nitrate of copper, muriate of mercury, oxide of arsenic, tincture of myrrh, lemon juice, and the gastric juice of ruminating animals. Of these the adhesive plaster is the most valuable, and should be cut into slips of from one to two inches in breadth, and of such a length as to extend some inches on each side of the ulcer, but never solong as to encircle the leg, since it then interrupts the circulation of the skin, unless the roller is applied tight enough to support the cutaneous circulation distad to the adhesive strapping. The slips or straps are applied across the sore, pre-
viously heating them gently by drawing the back of the plaster along the surface of a smoothing iron. The lowest or distad one should be first put on, by fixing its onc extremity to the sound skin on the one side of the ulcer, where it ought to be retained by the hand of the patient, and pulling it across, white with the fingers of the left hand, the opposite sides of the sole ought to be approximated as much as possible, before applying the other extremity of the strap to the sound skin, because the intention is to bind or approximate the edges by force. As many straps should be used as to extend fully one inch at each extreme of the ulcer, and not overlap each other, but rather to have a small gap between each, to allow the matter to exude. Over the adhesive straps, a compress of tow, and lastly, a bandage are used. The ointment of the red oxide of mercury is preferable to the nitrate. Warm dressings are a powerful remedy, but difficult to manage. Ardent spirits and tincture ol myrrhare bencficial. The nitrates of silver, copper, the muriate of mercury, and oxide of arsenic are escharotics, and not stimulants like the sulphate of copper, therefore inadmissible in this species of ulcer. The sulphate of copper never acts as an escharotic, even in its crude state, but always as a stimulant; and it is only when strong compression is combined with its application, that it appears to act as an escharotic, but in reality only as a powerful absorbent. The lemon juice is a good application, and so also is the gastric juice of ruminating animals. The bluish white callous border ought never 10 be excised with a knife, or destroyed with caustic, as it is the newly formed skin sparingly supplied with blood vessels. This callous margin indicates want of action, and is the most favourable for the application of the adhesive strap.

This indolent ulcer, the most generally met with in practice, is frequently healing in one part, while inflamed and phagedenic in another, apparently from the extent of surface involved; as it sometimes extends from the knee to the ankle joint ; and in this case, the inflammatory and phagedenic disposition must be thoroughly subdued by fomentations, poultices, rest, and low diet, before any attempt to heal the callous portion; and even when this irritable disposition has been removed, caution must be observed before we have recourse to exciting treatment, so that simple dressings may be advantageously applied for two or three days. The same inflamed and phagedenic action is also liable to attack this ulcer while under treatment, when the same means must be adopted. The securing of the saphena major vein with a ligature, as practised by Paré, VViseman, and Sir E. Home, is now abandoned in consequence of the inflammation which is sometimes induced; but this vein, in all cases where it is varicose, should be obliterated with the potassa above the seat of the ulcer.

The fungous ulcer is mercly the simple ulcer which has arrived at the level of the skin, and instead of cicatrizing, shoots forth luxuriant granulations, which become pale and flabby, and in common language termed proud flesh, when the sore is of small magnitude. Neither the irritable nor the
callous ulcer can produce these exuberant growths, for in the lormer there is too much action, which checks their production, and in the latter the action is defective. These granulations are found in ulcers occurring in the vencreal and scrofinlous constitutions, as well as in the cancerous and carious ulcers ; and in the latter thesefungous excrescences are best exemplitied. The treatment consists in reducing the exuberant granulations by the nitrates of silver or copper, to the level of the skin, when they generally cicatrize.

By the Phagedenic ulcer, is generally convidered Gangrena Jhagedena, or hospital gangrene, but there is a phagedenic ulcer destitute of a sloughing or mortifying disposition, although it cats away to a horrible cstent, being derived from qage to eut: it is termed by Sir \(A\). Cooper, the gangrenous or sloughing ulcer. It occurs commonly alter ant ulcer has been neglected or suffered to remain ton long open, and not infrequently in the syphilitic constitution. It is characterized by irregular knotted edges, which are smonth and flat on one side, and on the other high and rugged: by its healing in some points, and spreading rapidly in others, but still advancing in extent as a whole; the surlace also sometimes looks well, and at others illconditioned; the discharge is occasionally purulent, at other tines thin and ichorous. and sometimes so profuse as \(t\), induce hectic fever; the skin around is purple and violaceous, and more so where it is phagedenic; the pain is very acute, and at times quite insufferable; the inllammatory action is more frequently chronic than acute, becoming acute only occasionally, from some source of irritation. This ulcer attacks the integuments of the legs, the labia of the female; the penis, the scrotum and nates of the male. The treatment consists in subduing all irritation and inflammation by anodyne fomentations and poultices, low diet and absolute rest; then the application of weak escharotic solutions, together with a weak ointment of the red oxide of mercury; thesc should be changed or increased in strength, whenever they appear to lose their effect. No: unfrequently they produce too much irritation, and require to be given up, and to have substituted the fomentations and poultices. The chief object to be observed in this ulceration, is to endearour to arrest its progress, and to change it from this inveterate species to the simple ulcer. Nothing is so beneficial in the treatment of this and all inveterate ulcers as change of air. The diet should be mild, consisting of vegetables and fruits, together with poultry, eggs and milk, and the decoction of sarsaparilla with the compound calomel pill may be given. This ulcer may be termed the simple phagedenic ulcer.

There is an ulcer which precisely resembles this phagedenic sore in appearance, for they ought to be considered one, being purely phagedenic, but which only attacks the face, and from its supposed contagious nature is named Noli me Tangere; and is classed by authors under the herpetic ulcer. It generally begins at the alx of the nose, but not unfrequently in the upper and even the lower lip, also in the foreliead or angle of the eye, hence no
part of the face is exempt from its first attack, and spreads upwards, downwards, and centrad, until it ultimately removes the whole countenance, producing hectic fever, and repeated hemorrhagies, when death eloses the scene. Its characters are identically the same as the phagedenic ulcer last described, and need not therefore be repeated. The ulceration however is preceded by a yellow pustular or scabby eruption, surrounded by a violet-eoloured circumscribed inflammation. These moist yellow spots either fall off, or are picked off by the patient, and expose this ulceration, discharging at that time a thin serous acrid matter. When the inAammation is moderate, there is commonly little pain, but when severe, there is an acute burning pain, and more or less concomitant lever. It is a most inveterate ulceration, and unless treated in its earlier stages, often foils the labours of the surgeon. The treatment should be the same as that recommended for the simple phagedenic ulcer; but if it does not succeed in curing it, the chloride of lime very much diluted may be tried. The following ointment sometimes produces beneficial effects, 3 ss of camphor, 3 iij of the white precipitate of mercury, 3 iss of the prepared carbonate of lime, and \(\mathrm{B}_{\mathrm{i}} \mathrm{j}\) of lard finely levigated. If after all, the ulceration continues inveterate, the whole base should be excised if practicable, and if not, destroyed or eaten away with the crude nitrate of copper. Some use equal parts of alum and chalk to the edges in order to destroy the diseased structure. A number of authors consider this disease constitutional, and recommend arsenic, antimonials, mercury, purgatives, and sudorifies internally, with vegetable diet and warm baths. There does not appear however the least ground for considering it constitutional, as it begins locally and continues so nearly to the conclusion of the horrid scene. What seems to have deceived us on this subject is, that all ulcers heal from the powers of the constitution, consequently when these are too vigorous or too languid, the healing process does not take place. The constitution, as well as the ulcer, requires to be sound or healthy.
Tinea capitis is also classed under this ulcer, and is a variety of the herpetic or creeping ulceration. Tinea capitis, porrigo, or scald head, consists of six species, according to Bateman, but we shall limit ourselves to two, the porrigo furfurans, and the porrigo scutulata. Porrigo furfurans, or tinca capitis, begins with an eruption of small achores, the excoriation is slight, and the discharge concretes and falls off in innumerable thin laminated scabs. Fresh pustules arise and follow the same course, until the greater part of the scalp of the head is involved. The hair partly falls off, and there is intolerable itching and soreness. This affectiou commonly begins in early life from inattention to cleanliness, and a peculiar prejudice of the parent against washing the head of the child. The treatment consists in removing the whole hair of the head with a razor, applying a large quantity of resinous ointment at bed time, in order to soften the attachments of the crusts, which, on the following morning, are to be washed
off with soft brown soap and warm water. The ulceration is then to be treated with the same escbarotic lotions and ointment, as recommended under the simple phagcdenic ulcer. Pure nitrate of silver is the most prompt remedy. This ulceration is also considered constitutional, and even infectious by many authors; but it can be no more constitutional than noli me tangere, and to consider it infectious appears truly ludicrous; but its contagious character is completely established. In the application ol escharotics to the scalp, we must attend to their stimulating effects upon the brain. Porrigo scutulata, or herpes circinatus, or ringworm, attacks the scalp, face, and neck, in the form of separate patches, of an irregular circular slape, resembling the fairy rings made by some of the fungi, from which it derives its name. It begins with clusters of small light yellow pustules, which soon break and form scabs or scales, beneath which a delicate ulceration is perceptible. When neglected, it spreads all over the head in the form of clustered patches. The treatment is precisely the same as that for tinea capitis, and is frequently as obstinate to cure. A variety of remedies are recommended by authors for both of these ulcerations.

Gangrenous phagedenic ulcer, or hospital gangrene, named also malignant ulcer, putrid ulcer, sloughing sore, contagious gangrene, phagedena gangrenosa, gangrene humide des hopitaux, and pourriture d'hopital. It is divided by some authors into two, and by others into four varieties, which is evidently superfluous. This ulceration attacks all kinds of ulcers, wounds, and even blistered surfaces, in hospitals, ships, and in low crowded filthy situations; and the smaller the sore, the more liable is it to be affected. The ulcer or wound becomes covered with a dirty white coloured slough, or a tenacious viscid ash-coloured matter, the secretion being checked; the edges are surrounded with an erysipelatous blush, and more or less œedema. The patient feels little pain in the sore, which has more the sensation of a sting from a gnat; he is attacked with rigors, has a foul tongue, loaded constipated bowels, and excessive thirst, which soon form active fever. On the following day probably, the ulcer has sloughed all round, and may be double, or even quadruple, its original size, and in a few days becomes of such magnitude as to endanger his lile. The edges and base of the ulcer slough with alarming rapidity, the former becoming hardened, ragged, and everted, and having a most irregular shape, while the latter or granulations are large, tumid, and distended with gas. Small dark coloured vesicles appear on the sound skin surrounding the ulcer, which burst, and also form sloughing sores sultimately communicating with the original. The discharge is sanious, jchorous, viscid, emitting a peculiarly olfensive odour. The patient now suffers continually from burning, lancinating pains. Fresh flabby blackish sloughs are rapidly formed, which overtop the ragged inflamed edges that are immediately involved, until such an extent of ulceration is produced, as either to expose a number of Llood-vessels, usually veins, which by repeated
bleedings exhaust the patient, or the ulceration carrics him off by the debility consequent on so great a source of irritation, or he dies of diarrbea or hectic fever. Blood-vessels, particularly large arteries, do not generally yield so soon to this frightful ulceration as other textures. This ulcer is described to have occurred spontaneously; but it seems very doubtful if this ever occurs, for it is more probable that some source of irritation existed, as the pulling out of a hair of the skin, or the prick of a pin. Some authors contend that the febrile affection always precedes the ulceration, and if by this is meant, that a patient while affected with a simple ulcer or scratch is attacked with fever, which from the nature of the atmosphere, and the state of his constitution, assumes a very violent type, and readily disposes this trifling ulcer to acquirc this gangrenous character, it is no doubt correct, as is satisfactorily proved by the cases of Blackadder. The lymplatic glands of the groin or axilla, whichever extremity is affected, are generally excited carly, and sometimes suppurate, and assume this phagedenic ulceration: while at other times they suppurate and heal kindly, while on other occasions again they merely become swollen. During this suppurative and healing process, they suspend the phagedenic disposition of the original ulcer. By some authors it is stated that the syphilitic, cancerous, scrofulous, and variolous ulcers are not liable to be attacked with phagedena, an error very satisfactorily confuted by Drs. Thomson and Hennen. 'The treatment of this formidable discase, is by the vigorous use of the lancet in the beginning or inflammatory stage, and by repeating it as often as any inflammatory diathesis remains. The inflammatory action does not last long, in consequence of the great debilitating causes present; still, if we do not bleed during the inflammatory stage, the fever will continue to rage, and the ulceration will be the more extensive, and consequently the debility greater, which is clearly and satisfactorily proved by the various cases on record, and is daily cvinced in the treatment of continued and typhus fevers. The propriety of blood-letting is supported by Drs. Trotter, Hennen, and Boggic. The application of the actual cautery to the ulcer, followed by hot dressings, and over these dry lint, tow, and the most gentle bandaging. What is termed the eighteen tailed bandage (sce Plate DXV. Fig. 4), deserves to be preferred in such cases. The ulcer should be divested as much as possible of sloughs and moisture, previously to the application of the cautery, which should then be applied to every point, particularly the edges, and be repeated whenever there is the least tendency of the ulcer to spread. The actual cautery and compression are the only remedies for ulcerated arteries, as they will not bear the ligature, however remote from the diseased action, and a fresh wound would instantaneously assume the gangrenous action. The hot dressings should be applied as hot as the patient can bear them, and bc removed whenever they are moistened with matter, which commonly occurs twice or thrice a day; and the sore at each renewal
ought to be washed with a warm solution of the subcarbonate of potash. No sponge should be employed, but lint and tow substituted, which ought to be immediately burned, as clcanliness is of vital importance in the treatment. The baudages after being thoroughly washed, ought to be immersed in lime-water for some hours, a practice of very bencficial consequence in hospitals. In the inflammatory stage the patient should be put into a hot bath once or twice a day, or the vapour-bath can be administered in bed, or he can be sponged with hot water. If possible, his linens and bedclothes ought to be changed daily, and the most free ventilation permitted. His diet during the inflammatory stage should be mild, and consist chiefly of ripe fruits and succulent vegetables, if the season permits. Great debility is necessarily to be anticipated; therefore, whenever all inflammatory diathesis has been subducd, the diet must be rendered nourishing, with a liberal allowance of winc and porter, if the bowels are not relaxed. Large opiates and the sulphate of quinine should be given. Hospital gangrene is peculiarly liable to relapse, on which account the greatest attention should be paid to the paticut until the wound or ulcer has completely cicatrized, and he is restored to perfect health. An extraordinary variety of remedies lave been used in this ulceration, tha most efficacious of which are, the concentrated or diluted mineral acids, the nitrates of copper or silver, or solutions of these, also the solutio arsenicalis. Amputation is inadmissible in this species of gangrenc, in consequence of the violent inflammatory fever present, which makes it a case of mortification arising from an internal cause. The daring and convincing experiments of Dr. Blackadder, and the narrative of Dr. Trotter, satisfactorily establish that it is not infectious, but its contagious nature cannot be disputed.

Scorbutic ulcer is now rarely met with; it begins with lassitude, indigestion, bleeding of the gums on the least touch, and roughness of the skin resembling that of the goose. The muscles become rigid, the gums spongy, effusions of blood take place in different parts of the body, frequently under the skin in the form of large livid blotches like ecchymosis, and generally on the lower extremities; and the slightest bruisc produces a tumour containing cffused blood, which is very liable to ulcerate. The legs become cedematous, the face presents a livid bloated appearance; he is early attacked with diarrhæa, which is often accompanied with blood, hemorrhage being either spontaneous or arising from the most trifing injury. The least degree of excrtion produces laborious breathing, and any attempt to raise himself to the erect posture is liable to produce fainting and even death. If the individual has been formerly affected with ulcers. these break out again, and if he has had a fractured bone, the union dissolves and the ends separate. Ulcers also occur spontaneously, and one and all are characterized by livid edges, which are puffed up by luxuriant fleshy excrescences under the skin, by want of granulations, the flesh at the bottom of the ulcer presenting a dark grumous appearance, soft
and spongy, and generally covered with cakes of coagulated blood, which adhere so closely as to be with difficulty wiped off. The discharge is thin, fetid, aud mingled with blood. As the ulcer advances, a solt bloody fungus shoots forth, which acquires in twelve hours an enormous size, and even when removed with the knife, is as quiekly regenerated. This was compared to the liver of the bullock by the sailors of Anson and Cook. Scurvy is produced by living solely on animal diet.
'The treatment of this disease consists in the internal use of 'resh fruits and vegetables, particularly of such fruits as have the citric acid, and those vegetables which are acid and succulent, as in the class Tetradynamia; also the alliaceous plants in the class Hexandria. Porter and spruce beer are beneficial remedies. The patient should be in a large well-aired apartment, and have plenty of fresh air, remain constantly in the horizontal attitude, taking his food out of a cream-jug or tea-pot, and using a bed-pan and urinal, when the calls of nature occur. The ulcer is to be treated with lime or lemon-juice and gentle bandaging, but the chiel object is to charge this peculiar diathesis to one of health, and then the ulcer soon heals, and even disunited bones are again consolidated.

When the syphilitic ulcer has been imprudently treated with mercury, without science or system, it inflames, becomes irritable and phagedenic, and is then named the mercurial ulcer; it has irregular hard edges, a deep sloughing base, a dark coloured inflammation around; is apparently healing in one part having a delicate pellicle, while it is increasing rapidity in another. Its treatment consists in applying to the ulcer opiate fomentations and poultiecs, giving up the mercury; in abstracting blood from the system if it can bear it, giving large doses of the sulphate of magnesia, small doses of sulphur, frequently repeated, the use of the warm bath, and avoiding every exertion.
The other uleers, the syphilitic, scrofulous, Sc. are treated of, under the diseases to which they belong, and for which the reader is referred to the Article Medicine.

Chilblains is that kind of pllegmonous inflammation which attacks the fingers, toes, and heels, and occasionally the nose, lips, and ears in cold weather, particularly of those leading a sedentary life, and women more frequently than men, and children oftener than adults. The parts affeeted are swollen, of a purple colour, hot and painful, and not unfrequently suppurate, and even mortify. Small serous vesicles often appear, which burst, and become fretful, troublesome ulcers. These occasionally penctrate to the bone, and discharge a thin ichorous or sanious matter, producing caries, which ultimately requires amputation of the limb. These ulcers are sometimes covered with sloughs, or the inllamed part at once ends in gangrene, and then sloughs. Chilblains should be treated, in the inllammatory stage, like phlegmon; during the suppurative, as acute abseess; and while in the ulcerative stage, the same as the irritable, simple, or eallous ulect, according to appearances; and when gangrene oceurs, the same treatment as that de-
tailed under mortification should be adopted; and if caries superyenes, the same remedies employed as recommended under that disease of the bones. When chilblains have been cured, the parts should be rubbed with rubefacients, kept warm, and in as frequent motion as possible, as they are very liable to recur. In surgical works, the most heterogeneous medley of remedies is given.
Furunculus or boil, a species of phlegmon, is ant exceedingly hot and painful inflammatory tumour. about the size of a pigeon's egg, circumscribed, hard, prominent, of a purple colour, and of a conical shape. A white or oceasionally livid pustule soon forms on its apex, but the tumour suppurates slowly, secreting only a small quantity of matter mixed with blood; the greater proportion of it becoming gangrenous, and forming a firm slough or core, as it is named in common language, which is dead cellular substance. If left to itself, this tumour is very slow of bursting and discharging the slough, and there remains a deep eavity, with a eircumscribed hard base, which continues to discharge the same bloody matter, and is very long of healing. When there are two or more boils at once, which is no uncommon occurrence, there is more or less symptomatic fever; and they also frequently occur in succession. They generally take place in loose cellular tissue, as that on the nates and back part of the thighs, occurring commonly about puberty, and in the spring, apparently from the excitement given to the constitution at this period of the year, and when the system is undergoing those changes peculiar to that time of life The treatment of this tumour, during its inflammatory stage, is the same as that for phlegmon, and when suppuration has taken place, by a crucial incision. The treatment for the ulcerative stage, is the same as that recommended for uleers, whether of the irritable, simple, or callous types. The slough is very tardy in being thrown off, and requires hot dressings. To prevent the recurrence of boils, the diet should be mild and nutritive, the bowels attended to, and the patient take plenty of exercise in the open air.

Anthrax or earbuncle, another species of phlegmon, is merely an aggravated or more violent species of furunculus, and is an extensive, flat, hard tumour, of a dark purple colour, darker in the centre than at the circumference, and feeling very deeply seated. It commonly oceurs on the back between the shoulders, and begins with great heat and acute pain, a diffused tumefaction, followed early by a small itching pimple, which soon becomes a vesicle or blister, and bursts, discharging a thin brown or bloody sanies, followed by the appearance of a yellow coloured slough. Sometimes scveral pimples are produced by the patient scratching the surface, which becomes intolerably itchy, while on other occasions several vesieles occur, which spontancously burst, and discharge the same bloody sanies. When the disease is Ieft to itself, these apertures slowly ulecrate, and run into one auother, exposing to view an extensive slough, which, when thrown off, leaves a large ulcerous carity, discharging bloody sanies. Whenever a
carbuncle begins, it should be freely leeched or scarified, large anodyne poultices or fomentations applied, and as soon as suppuration takes place, it ought to be divided by a crucial incision, and the poultices then should have turpentine, resinous ointment, or camphorated oil mixed with them, and continued until the slough is discharged, when it should be treated with charpie, moistened with turpentine or other stimulants, as it is very indolent, and removing portions of it from time to time as they become loose.
Chronic inflammation is that inflammatory action which continues for a long period, so slow, mild and passive, as sometimes to be imperceptible, and considered by some authors as not to exist on many occasions. The most palpable example is that which follows an acute attack of inflammation of the eye, this organ continuing for months and even years, red, fretful, and weak, but not painful, hot, and fiery; all acute inflammatory attacks are liable to become chronic; but there is a chronic state of inflammation which begins a priori, as, for example, that which precedes lumbar and other chronic abscesses, and also the formation of tumours. In superficial chronic abscess, there is occasionally tumefaction, which is circumscribed and hard, but attended with as little pain as in the cleep seated abscess. In both there is commonly constitutional derangement, and they generally occur in a feeble f:ame of the scrofulous diathesis. In the progress of this disease the local symptoms of inflammation become more manifest, and still more so in the latter stages. This species of inflammation generally attacks serous and mucous surfaces, although every structure may become the seat of it. Bursæ mucosæ, as that under the deltoid or glutxus maximus muscles are very often attacked, and so also is the synovial membranc of the knee-joint.

The treatment of chronic inflammation, when it attacks an exposed surface as the eyc, or accompanies an ulcer, is by stimulant lotions and ointments. The diet should be chiefly farinaccous, bowels attended to, the eyes kept from a bright light, and little or no exercise allowed; when it attacks a mucous canal, as the urethra, by the same stimulant lotions still more cautiously used, and the same diet, with perfect rest in the horizontal posture. When it attacks a deep-seated structure, such as the bursa of the deltoid, the application of leeches or the scarificator is necessary, the latter, however, deserves to be preferred, in consequence of the external irvitation excited; these, together with low diet, gentle laxatives and perfect rest, may prevent suppuration; but they generally require to be followed by the moxa. In deep-seated chronic inflammation, the moxa appears to act by inducing counter-irritation or counter-inflammation, which removes the action of the inflamed vessels from the disease to itself, and also excites active absorption. On these grounds, the more quickly the ulceration produced by the mosa heals, so as to enable another to be applied, the better, and hence, small but deep eschars made by moxas are better than large ones. The practice, therefore, of keeping issues open is now nearly obsolete.

Vol. XVII. PartiI.

Chronic aloscess is the cyst or sac of mater resulting from chronic inflammation, and occurs often in the abdominat muscles, particularly in the psoas magnes, and is then termed psoas or lumbar abscess. This species of absecss attacks likewise the ovarium, and indeed every kind of structure. It affects every age and constitution, but more frequently carly life, and the scrofulous habit, in consequence of debility. We are scthom aware of the existence of chronic alscess until the matter has been actually secreted, when it ought to be evacuated in the following manner. The skin is to be pulled upwards or aside, that it may act atterwards as a valve, when a small oblique aperture is to be made with the bistoury, and a silver probe inserted in the wound, and the matter evacuated, which is thin, scrons, and mixed with curdly flakes, but sometimes purulent. The wound is to be immediately closed with adhesive plaster, and healed by the first intention. During the treatment of chronic abscess, the diet ought to be mild and nourish. ing, the patient as much as possible in the open air, if dry and temperate, and if the seat of the disease will permit it; and he should take sulphate of quinine, or some of the preparations of iron or diluted sulphuric acid. When the psoas muscle is afected, he will reçuire to be drawn in an easy hung carriage. Tepid and ultimately cold bathing, or sponging, with friction, arc powerful auxiliaries. Whenever matter has again collected, however small in quantity, it ought to be discharged. The above treatment must vary considerably according to the seat of the disease.
In lumbar or psoas abscess, the disease begins in the lumbar vertebre, which ulcerate and become carious, and the matter secreted either gravitates in the course of the muscle, being confined by its fibres or fascia, forming a tube, or procecds directly dorsad to the integuments of the loins. If it is confined by the lascia of the muscle, the matter sometimes gravitates to the groin, and presents itself either below or above Poupart's ligament, near the anterior superior spinous process of the os ilium, or near the pubes; sometimes it emerges at the crural aperture and descends below or centrad of the fascia lata to the poples, and even retrogrades upwards or proximad to the tuberosity of the os ischium; at other times it gravitates into the petric cavity, emerges at the great sacro-ischiatic notch, and makes its appearance near the anus. In rare instances, the matter descends along both psox muscles, forming two abscesses or a double abscess. Whenever the matter adrances to the integuments or points, the skin at first is not discoloured, but an impulse is given to the fluctuation on coughing, and in a few days the skin becomes discoloured, inflames, ulcerates, and ruptures. The symptoms indicating this affection are remarkably insidious, being seldom apparent until the abscess points. The patient complains of weakness and uneasiness in the region of the loins, which are much aggravated on ascending a stair, and be is easily fatigued with walking. Occasionally there is lets considerable pain in the loins, which seems to follow acute inflammation of the
vertebre; and not unfrequently there is distortion of the spine. As lumbar absress is liable to be confounded with hernia and fungus hematodes, we must be careful in our diagnosis before opening it. The history of the case, together with the fluctuation of the tumour, which is tense in the erect, and nearly disappears in the horizontal posture, becoming softer, flatter, and looser; and when again placed in the erect attitude, by the impossibility of preventing the descent of the matter, lumbar abscess is characterized. The treatment has been already described, with the exception of the injection of lime water. Lumbar abscess attacks youth, and the male more frequently than the female; however, Mr. Abernethy cites more cases of its occurring between twenty and forty years of age, than at an earlier period.

Hectic fever, which particularly accompanies chronic abscess when opened, is characterized by the following symptoms. The patient begins to have a hot skin, especially in the palms of the hands and soles of the feet, a crimson blush on the chiceks, small quick pulse, loss of appetite, thirst, nocturnal perspirations, lateritious sediment in his urine and diarrhœa. There are exacerbations in the evening, there being a chilly, a hot, and a perspirative stage in succession like in intermittent fever. This is supposed by some authors to depend on the absorption of the matter, but no hectic fever takes place until the matter is evacuated; by others to depend on the irritation together with the increased discharge, but in some cases of phthysis pulmonalis, where the individual wastes away without the slightest irritation or pain, hectic fever accompanies the disease almost from the beginuing; by others again, to be the consequence of a change in the system, induced by the process of suppuration, or even of the previous inflammatory action that gives rise to this process. It appears rather to be consequent on mere debility of constitution, which whenever it is so far exhausted from a discharge in any disease, that the nervons and circulating systems have not their accustomed supply of nutriment, \(i\). e. the blood, then increased absorp. tion goes on with great rapidity, while there is no nutrition, the nutritive lymph being removed by the discharge. The hectic lever which accompanies Nostalpia corroborates this view. Its treatment consists in light nutritive diet, diluted sulphuric aed, and the cretaceous or catechu mixture, when the bowels are affected, attending at the same time to the local affection producing it.

Nortification is one of the common terminations of inflammation, and occurs when the inflammatory action is so extremely violent as to destroy the structure of the nerves, arterics, veins, and contig. nous textures, which are overpowered by exhaustion; while the contignous tissules are destroyed both by inllammatory action and by being gorged with boct, which coagnlates in consequence of not being Rept in motion. This is aswally denominated acute gangene, also inflamatory or humid gragrenc. Gangrene is confined to that degree of mortification where sensibility, motion, and warmh are present: but when these phenomena cease, and the part as-
sumes a livid, brown or black colour, it is then termed sphacelus or complete mortification. Etymologically, these terms do not admit of this explanation, gangrene being derived from ratva, to feed upon, and sphacelus from \(\sigma_{\sigma x}{ }^{2} \omega\), to destroy. Some authors use both terms synonymously, while others consider that sphacelus should be applied only to mortification extending to the bones. Mortification thus dependent on a severe degree of inflammatory action, is originally produced by chemical or mechanical stimuli. When the urethra or urinary blaclder is injured, and the urine escapes into the cellular tissue of the perincum or scrotum, gangrene is lrequently the result; and this also occurs when any of the abdominal viscera are forced out of their cavity and strangulated. Gangrene likewise takes place from the eating of cock-spur rye, the ossification of arteries, tumours impeding the return of the circulation of the blood, diseased condition of the arteries or veins producing coagulation of the blood in their cavities, and from ligatures applicd to the trunks of arteries or veins. Of the two varieties of imflammation, mortification is morc liable to supervene to the erysipelatous, and still more so to their combination or erysipelas phlegmonodes, and although all textures when inflamed do sometimes mortify, yet the most compact, such as bone, skin, stomach and intestines, are the most prone to it, because their blood-vessels have not room to form ulcerative papillx; and the arteries are found to possess the greatest power of resisting mortification.

When a part highly inflamed is on the verge of becoming gangrenous, the pain is violently increased, the colour becomes deeper and extends farther, the tumefaction increases from the effusion of' serum, communicating a doughy feeling, the cuticle is raised up into blisters, and the part appears erysipelatous. The pulse at this period is small and rapid, the tongue brown and crusted, and every symptom of typhus fever. This may be considered the gangrenous stage, which if not arrested ends rapidly in sphacelus. The pain and sensibility then cease, the part becomes odematous, emphysematous, cold, black, and fetid; a profuse watery and dirty-coloured discharge is poured out, the pulse scarcely perceptible, the accompanying fever having as it were ceased, which often takes place studdenly and carries off the patient; but a low typhoid lever more frequently continues for some days, attended with hiccup, subsultus tendinum, low delirium, and diarrhea. This typhoid fever is supposed by some to arise from the absorption of the fetid matter, but as typhus supervenes to synochus or synocha, if severe and of long duration, we are entitled to ascribe it in this case to the same cause, viz. the violence of the inflammatory lever.
The treatment ol the gangrenous or first stage is by applying large anodyne poultices in the hope of subduing the inflummatory action still present, and which is the cause of the gangrene; by keeping the patient quict, on low diet, and administering purgatives. The constitution is generally too exhausted to bear general blood-letting, but lecches or cupping maty be applied to the part. A large opiate
should be given at bed-time. Should the part sphacelate, the yest or charcoal poultice should be used, or hot dressings applied, and the strength of the patient supported with beef-tea, animal jellies, and wine, together with the opiate at bed time. If' the mortified part is to recover by sphacelation, a red line appears on the sound skin at the point ol separation, between the living and the dead portions, which line denotes the adhesive inllammation, soon lorming the ulcerative, which producing suppurative papillic or granulations, secrete puruIent matter, so that the whole forms an ulcerated surface. Consequently, in a limb which sphacelates, no hemorrhage takes place; a circumstance also dependent on the arteries being plugged up with coagula of blood.

Whenever the sphacelated parts have been thrown off and ulceration fairly established, the part should be dressed as a simple ulcer. The sphacelated portions may be eut away with scissors or scalped at cach dressing.

In eases ol mortification occurring l'rom meehanical eauses, as severe contusions, or traumatic gangrene, amputation may be with safety performed at any period; but in mortification arising from constitutional causes, as a general diseased condition of the arteries or veins, amputation proves fatal.

Mortification occurs occasionally from excessive cold. Azute pain is experienced in the part affected, with numbness, weight, and a tingling sensation in the legs; the feet of an obscure red colour, and slightly swollen. Sometimes a light red is perceptible at the base of the toes and patellar aspect ol the foot; at others, they are deprived of motion, sensibility and heat, and appear black and withered. The treatment is by applying snow or ice cold water to the part in order to thaw it, then camphorated spirit of wine or poultices. When the mortification is superficial, the clead parts commonly separate between the ninth and thirteenth day, and leave an uleerated surface, which requires the same treatment as ulcers. When a whole limb is affected with mortification, a slow typhoid fever, accompanied with diarrhea carries off the patient; or the grangrenous portion becomes bounded by the circular line of adhesive inflammation, which suppurates and throws off the mass. Amputation in such cases should be resorted to, for it is mortification from an external cause, the same as that from an external contusion. The operation ought to be deferred until the constitution has rallied from the benumbing effects of the cold, and the reaction of the nervous and circulating systems is fairly established. This mortification from congelation or frost-bite, and also that from ergot, is named by some surgical writers dry gangrene, and by others chronic gangrene.

The eating of ergot, or unsound or cliseased rye, or mildewed wheat, has an effect on the constitution not unlike that which the living exclusively on animal food has in producing scurvy. The rye so impairs the nervous and circulating systems, that they become unable to perform their functions, consequently mortifieation takes place, first, in such
parts of the body as are most remote from the centre of the circulation, an event that occurs in all kinds of gangrene. 'This varicty of mortification commonly begins in the toes, which become red, painful, and hot, as il scalded with boiling water; in a lew days these symptoms suddenly ccase, when the toes leel cold and insensible, become dry, hard, withered, and black as charcoal. The gangrenous action now extends gradually upwards along the foot, leg, and thigh, to the trunk, and is accompanied with fever and delirium. In one instance, the lower extremities were separated at the hip joints from the trunk. 'This singular species of mortification has oecurred chiclly in Prance, and become occasionally epidemic, sometimes in Switzerland, and once in England. Its treatment naturally consists in at once relinquishing the diseased rye or damaged wheat, and substituting the finest and best wheat, with nourishing diet. The gangrened parts to be treated by hot dressings, and when the sphacelated portions are separated, the ulceration to be dressed with simple ointment, dry lint, or other applications, according to the appearance of the sore. Amputation is inadmissible while the constitution is under the influence of the ergot; but afterwards, it might be necessary to form a better stump.

Mortification frequently occurs in old age, in consequence of calcareous depositions taking place in the arteries, a change of structure observed affecting those of the brain, trink, arms, and legs, espeeially the last. The arterics of the lower are more subjeet to this affection than those of the upper extremities. In general the patient complains of great uneasiness of the foot and ankle-joint, particularly during the night, before any disease manifests itself in the toes, which then appear of a purple colout, have a cold feeling to the surgeon, while lot and painful to the patient ; but in some cases only a benumbed sensation is felt for some time. The disease usually begins on the inside or tibial aspect of the little toe, and not unfrequently in both feet; from this it spreads either to the other toes or upper aspect of the foot, ankle, and even the leg; and then produces so much febrile irritation as to carry off the patient. Soon after the purple colour manifests itself, more or less tumefaction ensues, with vesication or phlyetenæ, a dark serous discharge, and a greenish black pulpy appearance of the textures affected. The treatment is by blood-letting, opiate fomentations and poultices, the internal use of opium in small doses, and frequently repeated, but never to produce delirium or impair the appetite, and by the sulphate of quinine. The diet should be light and nutritive, with a moderate allowance of wine. When the fomentations and poultices have subdued the activity of the disease, the toes may be dressed with simple ointment, and kept warm and comfortable with clothing, and on a level with the body. If any of them sphacelate, they ought to be allowed to drop of themselves, as they retain life for a longer period than sphacelated parts arising from active inflammation. This species of mortification, even if cured, is extremely liable to return, to prevent which the diet must be nutritious, with a good
allowance of wine, and the feet warmly clothed, in a moderate temperature, and kept as much as possible on a level with the body.

The same peculiar mortification, characterized by simple symptoms, sometimes supervenes to a generally discased condition of the arteries and veins, in which they become plugged up with coagula ol blood interrupting the circulation. This requires the same kind of treatment as the last; and in neither is amputation admissible.

In a few cases, mortification occurs from the arterial circulation being too fecble, in consequence of some disease of the heart; and in others, from both the arterial and venous circulation being impeded by tumours growing around the aorta and vena cava.

Mortification sometimes ensues when the principal artery of a limb is secured by ligature in wounds, or in aneurism, in which case, the heel generally first affected from the pressure becomes black in colour, the cuticle vesicates, and the whole foot cold, lifeless, and of a leaden colour. The gangrene then extends rapidly along the leg, exciting excruciating pain, profuse suppuration, and hectic fever, which soon put an end to the patient's sufferings. The same result occasionally takes place when the blood, in diffused false aneurism, presses on the comigunas nervec, arterios, veins, and lymphatics, or even in circumscribed false or true aneurism from the inosculation of the smaller arteries being unable to carry on the circulation; the two last cases are, however, extremely rare. The treatment of mortification from these causes is to support the circulation by bandage and warmth; and when these fail, amputation is the only alternative. Mortification also occasionally follows gunshot wounds destroying the principal artery or vein, or artery and vein conjointly of a limb, and is erinced by a similar train of symptoms, only they advance with more rapidity, and require carlier. ansputation.

Mortification also occasionally occurs from long continuance in bed, in protracted fevers, in compound fracture of the bones of the thigh and leg, and from the destruction of the spinal cord in consequence of fracture of the vertebra; in which cases, those parts of the body which sustain the greatest pressure, are affected, as in the region of the sacrum. To prevent pressure producing mortification in such cases, various contrivances are resorted to: pillows of feathers, down, distended with air, and of various shapes, are employed.

The aflections of the heart have been ahready treated of in the Article Medicine, Vol. XIII. p. 4.4 , and the only one admitting of a surgical operation, is dropsy of the pericardium, which, when the diagnosis is certain, is performed as follows: an incision is made between the filth and sixth ribs between the integuments, but in such a way that the skin may afterwards act as a valve, and ought therefore to be pulled upwards. The greater pectoral and intercostal muscles are then to be cautiously divided, the operator keeping sufliciently distant from the sternum, so as to avoid the internal mammary artery. In this division of the muscles, the pleura costalis will most probably have
been divided, as the pericardium will be generally found adhering to it; the latter is now seen distended with fluid, and is to be opened carefully with a lancet or bistoury, making a small aperture, when the fluid will exude. If the pericardium does not adhere to the pleura costalis, the incision in the pleura must be enlarged so as to admit the finger, which, when introduced, will feel the distended pericardium, that can then be puctured with a bistoury, guided along the finger.

A most interesting case of aneurism of the heart occurred lately, wherein a gentleman cured himself, by injecting his own respired air into the left thoracic cavity, by which he has been perfectly cured, although the symptoms were most unequivocal. He took a common ox's bladder, to the neck or mouth of which he adapted a stop-cock, and rery delicate silver tube, and having filled it with his respired air, he punctured his thorax on the left side, with the silver tube, between the fifth and sixth ribs, avoiding the internal mammary and intercostal arteries, and then injected the air into his chest. This he repeated for upwards of seventy times, and several times in our presence. We have ourselves repeated it in other cases with advantage, and consider that it might be employed in other affections of the chest.

The arteries are subject to mary diseases, to inflammation and its terminations, adhesion, suppuration, ulccration and gangrene; to ancurism; to the internal or serous coat being found of a deep red colour with a deposition of coagulable lymph; to a deposition of atheromatous matter, a thickened pulpy substance like steatoma, a eartilaginous matter, and a calcareous matter between their eoats; they are also involved in inflammation and other diseases of contiguous structures. Of these the ealcareous deposit is much the most frequent, and is the most common cause of aneurism.

Aneurism, which is derived from aveuguva, to dilate, consists of several species, the true, false, internal mixed, varicose, and aneurism by anastomosis. True aneurism, strictly speaking, is a circular or uniform dilatation of the three coats of an artery, and is commonly met with in the aorta, accompanied with thickening of the serous and muscular coats, and depositions of calcareous matter on the exterior surface of the serous, and not unfrequently atheromatous pulp between that and the muscular tunics. Some systematic writers describe two varieties of this, a circumscribed and a diffused true aneurism, which appears superfluous. A partial or lateral dilatation ol the three coats of the aorta is also sometimes seen constituting another variety of true ancurism. The true ancurism of the majority of systematic writers on surgery consists in a rupture of the scrous and muscular coats, with a distension of the cellular, which eflect is produced by the brittleness of the serous tunic being studtled with calcarcous depositions, by inflammation and ulceration or mortilication, by partial dilatation from debility or undue impulsion, by absorption in consequence of some discased spot of a blackish colour and slightly inflamed, by a deposition of coagulated blood, or by a separation of the serous
coat trom over exertion plugging up the vessel. The first of these is found to be the most common cause. When the three coats are either at once ruptured in consequence of a wound, or by the cellutar tunic in this true aneurism also bursting, and the blood is diffused in the cellular substance in the contiguity condensing it into a cyst, the disease is styled circumseribed false aneurism, to distinguis! it from that in which the blood is more extensively diffinsed in the cellular tissue even of the muscles, and which is named diffused false aneurism. When the muscular coat only is ruptured, and the serous protruded through it, the affection is denominated internal mixed aneurism. Varicose aneurism consists in a communication being established between an artery and a vein from a wound. Ancurism by anastomosis arises from a congeries of arteries and veins forming a vascular tumour.

Aneurisms occur more frequently in men than in women, the lormer sex being more subject to those occurring in their extromities, the latter to those in the trunk; and in many individuals it is a constitutional disease. Aneurism occurs most commonly between thirty and forty years of age, and is said to attack the irritable, the passionate, the glutton, the drunkard, the debauched, the syphilitic, the mercurial, and the rheumatic. Coachmen, post-boys, postilions, soldiers, particularly dragoons, sailors, porters, labourers, and miners, are said to be most subject to it. These classes of individuals, by indulging in such vices, appear to dispose their arteries either to calcareous depositions or to a brittle condition, so that in the violent exertions which occur in their labours, these vessels rupture and form aneurism, in consequence of the circulation being propelled at such periods with greater force than the artery has powers of resistance; but even in the ordinary circulation of such constitutions, if an artery be weakened, it is unable to resist the momentum of the blood, and therefore, gradually yields and dilates. Violent shocks or contusions, forcible pressure on arteries, the reiterated bruising of parts, the force employed in reducing luxated joints, the violence of falls, fractures and wounds, are also causes of aneurism. The largest artery, the aorta, is most subject to this disease, the next in frequency is the femoral, and its continuation the popliteal, the third is the inguinal, the fourth the subclavian and axillary, and the fifth the carotid. The smaller series of arteries, the radial, ulnar, and tibial, are seldom attacked, with the exception of the temporal, which from being selected in arteriotomy is exceedingly subject to aneurism. The nutritious arteries of the tibia have been found affected with aneurism. The reasons of this order are very palpable, being chiefly consequent on the impetus of the blood, and the deficiency or delicacy of the adventitious tunics, together with the deficiency of support by the contiguous structures.
When true aneurism occurs in the poples, there is at first a small colourless tumour pulsating strongly, and containing only fluid blood; occasioning little or no pain, merely some irregularity of the circulation in the limb, with a spasmodic af-
fection of the museles, which recurs during the night and prevents slcep. On pressing the artery nearer the heart than the tumour, it is easily emptied and divested of pulsation; and on removing the pressure, the aneurismal sac is immediately filled, and the pulsation returns. Gradually as the artery dilates its powers of resistance are diminished, and the interior ol the sac becomes coated with coagulated blood, which is deposited in layers or strata that thicken its walls, and render the pulsation: more and more languid, and also prevent the sat from being completely emptied. Acute pain i= felt in the limb, particularly below or distad to the tumour, in consequence of the pressure of the cosagulated blood on the nerves, and the motion of the fluid in the sac has been compared by the patien: to boiling lead. When the cellular tunic of the ar: tery ruptures from over distension, it is converted from the true to the circumscribed lalse aneurism. The tumour feels now nearly solid, there being 3 . faint pulsation opposite the aperture of the vessel. which however may point centrad, and then nome is felt. When the cellular cyst forming the iimits of this tumour of almost coagulated blood also rup. tures, the blood escapes into the surrounding cellular tissue, diffusing itself in all directions, aric forms an irregular shaped tumour, without the least pulsation, and sometimes nodulated. The pressure of the blood benumbs the nerves, impedes both the arterial and venous circulation, particularly the latter, together with that of the lymphatics, the limb consequently leels benumbed and cold. becomes œedematous, swollen, and of a leader colour, and the joint is impeded in its motions. One or more projecting points of the tumour progressively become thinner from absorption by the pressure of the blood, or the integuments slough and ulcerate, until at last the blood hisses out, and the patient becomes exhausted from repeater hemorrhages, but never dies instantaneously. The same process takes place when aneurism occurs in the contiguity of the trachea, osophagus, stomach, and other mucous structures: but when a serous membrane, as the pleura, forms the wall of an ancurism, it is lacerated. When a bone is pressed upon, it becomes carious. It occasionally happens that the sac increases in the direction of the artery, and presses on it beyond or distad to the tumour, and obliterates its cavity; the sac at the same time becoming entirely filled with depositions of fibrin, which extend into the artery at both ends to the nearest large branches. At other times, the tumour compresses the artery above or proximad to itself, produciag adhesion of its coats with obliteration of its cavity; in other instances, this proximal portion of the vessel is plugged up with a dense compact bloody coagulum. In these cases, according to the blood effused, docs absorption take place, or inflammation, suppuration and ulceration, or infammation and gangrene; and if the patient has strength to support these events, he is cured of the aneurism, the cure being termed spontancous.

In this gradual development of an aneurism, the trunk of the artery becomes diminished in çalibre, and the flow of the blood is also rendered
tardy by passing out of its course, by which means the blood is lorced into the neighbouring small anastomosing branches that become cularged. This results particularly if the artery is plugged up. In some cases, the lateral and central walls of the sac are strong enough to resist the pressure of the blood, while the integuments are too feeble, the latter therefore undergo the changes just described in the circumscribed lalsc aneurism. Some cases of aneurism are exceedingly difficult in their diagnosis, particularly the subclavian and carotid.

The treatment of aneurism consists in general and local remedies, the former being chiefly applicable to internal aneurisms, or those situated within the cavities, the latter to external ones, or those of the extremities, neck, and external aspect of the head. The general remedies are, abstracting blood in small quantities, confining the patient to bed, and keeping him on low diet, the application of a firm compress to the tumour, with a bandage rolled from the toes equally upwards to the groin. This is also named the palliative, or Valsalva's treatment, from his being the inventor, in whose hands, as also those of others, it has succecded. Cold astringent applications, especially ice, have been also recommended. But in aneurism of the extremities there are many cogent objections to this. In the first place, the patient may be so reduced by the confinement, as to be unable to withstand the subsequent confinement after the operation, since, in many cases, it is necessary to remain quiescent in bed for three or four months, for fear of secondary henorrhage. In the next place, if much blood be effused, the absorbents are incapable of removing it, and inflammation, suppuration, and ulceration, or gangrene takes place, producing great reduction of strength. Thirdly, occasionally great pain is produced by the pressure. This plan thereforc can only be judiciously pursued at the very commencement of external aneurism. The reader is referred to the essays and works of Senfio, Freer, Dubois, Sir William Blizard, Deschamps, Scarpa, Seiler, Percy, Duret, Assilini, and Crampton, for various modes of compression.

Formerly when this plan of Valsalva failed, amputation was performed, which however is now limited to those cases of diffused ancurism where it appears the absorbcuts cannot possibly remove the effused blood, and where extensive suppuration and ulceration of gangrenc must be the result. About filty or sixty years ago, the surgeons of Italy, cmboldened by Haller's doctrine, drew a ligature around the popliteal artery both above and below the sac, which they laid open and removed the coagula. This extensive wound healed by granulations, or produced sinuses and caries of the bones, with contraction of the joint. Secondary hemorrhage from sccuring a diseased artery was also a ficequent occurrence; and yet this practice is still followed by Boyer and many of the French surgeons. 'The celcbrated John Ifunter, perceiving such unhappy results, performed several experiments on the lower animals, and proved that an artery close to an ancurismal sac is so discased that it must ulcerate; whereas, if secured between
the tumour and the nearest large branch, so as to have the vessel healthy on the one side, and remote enough on the other from the branch, so that the latter would carry the blood along it on the principle of hydraulics, and leave the tied portion at rest, that a coagulum of blood might take place, and the adhesive inflammation not be disturbed, the operation would succeed in the majority of instances. He also saw, that if this operation was performed early enough, the flow of blood into the aneurismal sac would be so far checked as to allow further coagulation of it, and that ultimately both the blood and cyst would be absorbed. Accordingly, in 1785 he secured the superficial femoral artery for popliteal aneurism, shortly after its giving origin to the profunda, but he improperly employed four ligatures, whereas one is now found sufficient, for which important improvement we are indebted to Freer. This operation has undergone many important improvements by Birch, Foster, Freer, Abernethy, Dionis, Richter, Jones, A. Cooper, Travers, Hutchinson, Roberts, Lawrence, Hodgson, and Dalrymple.

The most improved method of securing the superficial femoral artery for popliteal aneurism, is that recommended by Walker, which appears preferable to that of Abernethy, Sir A. Cooper, Hodgson, C. Bell, Shaw, C. Hutchinson, Harrison, or Averil. To prove the necessity of measurement in this and all other operations for aneurism, the reader is referred to an unusual distribution of the superficial femoral artery operated on by C. Bell, and described in Journal of Medical Science, vol.iv.; also to 'Tiedemann, Barclay, Tumer, Harrison, and Lizars's anatomical works.

The patient should be placed on a firm table, with the feet at right angles to cach other, but the affected separated from the sound limb. The space between the anterior superior spinous process of the os ilium and the spine of the os pubis is to be divided into ten proportional parts, when five and a half measured from the pubes are made the base of an equilateral triangle, which is to be constructed downwards on the thigh, the apex being the refore distad, the basc proximad; and the outer or iliac side of this triangle should be cxtended downwards from the apex twice its length, when the artery will be lound to run beneath this line throughout. An incision should then commence at the apex of the triangle, and be continued down the thigh proportionally to the depth of skin and cellular substance of the patient, the latter of which is often infiltrated with serum; a second incision, equal in length to the first, should cat through the lascia lata, and this cautiously, when the pulsation of the artery will be felt; the artery is then to be denuded to the smallest possible extent of its cellular sheath, the latter of which is to be held up with the dissecting forceps in the left hand, and the scalpel in the right held parallel to the vessel, with its cutting edge pointing outwards or fibulad. The operator seeing satisfactorily the artery, vein, and nerve or nerves lying together, inserts the aneurismal needle, delineated in Fig. 5, Plate DXV. armed
with a ligature, on the inner or tibial aspect, between the artery and the vein, and carries it round to the fibular aspect, as depicted in Fig. 2 of Plate DXVII. securing the artery with a single ligature of common unbleached linen thread, waxed and tied in the manner of the reel-knot of the sailor; and both ends of the ligature ought to be cut off close to the knot, and the lips of the wound approximated with adhesive plaster; the limb rolled with an eighteen-tailed flannel bandage (see Flg. 4, Plate DXVIII), from the toes to the groin, and applying an ordimary sized compress in the course of the artery from a little above its point of securement downwards, for five or six inches, and a larger one over the sac in the poples. The chiel points to be attended to in operations for ancurism are, making clean free incisions, disturbing or insulating the artery as little as possible, and secing distinctly the contiguous veins and nerves before throwing the ligature around; and il any nervous threads, as the nervis saphenus, so interfere as to impede the application of the ligature, they should be divided without hesitation. The surgeon judges of the artery being secured by the tumour becoming flaccid, and being divested of pulsation, with a diminution of the pain; and soon afterwards by a strong pulsation of the articular arteries. In the majority of cases, the temperature of the limb is rather higher after than belore the operation. When an artery is thus secured, the ligature divides its muscular and serous tunics, the vessel shrinks, coagulable lymph is effused, and the adhesive inflammation excited, by which its sides and the wound throughout umite. Some days, or even weeks afterwards, we have known it six weeks, the noose or knot thus left behind, exeites the most trifling degree of suppuration, the matter of which is chielly absorbed, and advances slowly, and unfelt by the patient to the skiu, like a plant growing to the light, and appearing like the smallest possible pimple, is ultimately discharged, the patient frequently not observing it.

Various kinds of ligatures have been invented and used, such as fine silk, inkle, dentist silk, twine, tailor's twist, catgut, and other animal matters, but one and all are ejected, consequently that which is smallest in diameter, and of sufficient strength is the best, and therefore we prefer unbleached limen thread, waxed. Mr. Fielding of' Hull, has lately employed silk-worm-gut, and found it to be absorbed, but Dr. Crampton lost a patient in conseguence ol using it. If the operator shonld insulate the artery too great an cxtent, and thus cut off its comection with the contiguous structures, and destroy many of its vasa vasorum, he ought to throw two ligatures around it, at sufficient distance from each other, and divide the artery between them. If he wounds an arterial branch during the operation, it should be secured with a ligature as in ordinary operations. The wound is to be dressed on the thitd day, and every day afterwards until healed; the patient to remain quiescent in bed on low or larinaceous diet, until the wound is quite consolidated, aroiding every exertion, even in the change of his linens, which ought to be made to
slip on and off so as to occasion the least possible disturbance, and using a urinal and bedpan when required; three weeks at the very least should be allowed to transpire, belore allowing him to sit up in bed, and to have more nourishing lood, but even this only provided the wound be healerl. The patients of Nott and Gracle, wherein the arteria innominata was secured, evidently fell victims to their being allowed to walk about teo early. In such large arteries, and so near the source of the circulation, the patient should be kept in the horizontal attitude, on farinaccous diet, between three and four months.

Not unlrequently a slight pulsation returns in the: tumour, which daily increases and constitutes a secondary ancurism, which may arise either from the inoseulating branches between the ligature and the sac, or lrom others communicating directly with the sac, or thirdly, the blood may retrograde from the inferior or distal aperture of the artery into the sac. In such an event, we should lirst try the general or debilitating plan, and if it fails, secure the artery close above and below the tumour. and ceen il this last lail, perform amputation, but not amputate at once as recommended by some authors. There is another mode of operating for aneurism, invented either by Brasdor or Desautt, and lately practised with success by Messrs. Wardrop, Lambert, Bush, and Evans, and advocated by Bichat, Scarpa, Hodgson, and Breschet. When the tumour is situated in an artery so near the source of the circulation, that a ligature cannot be thrown around the ressel between the heart and the sac; and this consists in securing the artery beyond or distad to the tumour. This method will evidently succeed, provided there is no arterial branch immediately contiguous to the sac, either on its proximal or distal extremity, and none ori. ginating from the tumour itself to induce the blood to enter the sac; for on applying the ligature, the blood will flow by the anastomosing branches proximad of the tumour, leave that in the sac quiescent, which will therefore coagulate and lay the foundation of a cure. This we consider an in. genious and very valuable operation.

Our limits will not permit us to enter into a detaii of the various aneurisms which affect the different arteries with their operations; suffice it to say, that the arteria imominata, with its divisions, and the abdominal aorta, distad to the inferior mesenteric, with its divisions and subdivisions. have been secured. For an account of these aneurisms, the reader is referred to Hodgson on the Diseases of the Arteries and Veins, and for the steps requisite to be pursued in these operations, to Lizars's Anatomical Plates. The carotid artery was first secured by Mr. John Bell or Hebenstreit, a German surgeon; the subclarian by Mr. Ramsden: the brachial by Anel; the arteria imominata by Dr. Mott; the abdominal aorta by Sir A. Cooper: the internal iliac by Mr. Sievens; the gluteal by Mr. John Bell; the external iliac by Mr. Aberncthy: and the common iliac by Dr. Mott.

Varicose aneurism, named also venous aneurism and ancurismal varix, occurs commonly at the
bend of the arm from venesection, but has accurred to the subclavian artery and vein, the popliteal artery and vein, the common femoral artery and vein, and the posterior tibial artery and vein, from punctured wounds of these vessels. In this disease the artery and rein are simultaneously wounded, and a communication is established between them, by which the arterial blood flows directly into the cavity of the vein. When it takes place at the bend of the arm, inffammation is excited at the wounded points of the yein, the fascia of the biceps and the artery, forming a boud of adhesion between them, and a passage for the blood. A tumour is soon formed of a bluish colour, which pulsates like an artery, and communicates a tremulous motion to the touch, and rustling noise to the ear, somewhat resembling the hissing noise of air ejected from a syringe, and occasionally so loud during the night as to prevent the patient sleeping. The pulsation is only distinct in the centre of the tumour, and the contiguous veins are more or less varicose. The artery above, or proximad to the tumour, becomes larger, and vibrates strongly, while below, it is smaller. If the tumour be emplied, and sufficient pressure be applied, either above or below, to check the cutaneous venous circulation, it immediately fills; but if the pressure above be enough to compress. the brachial artery, the tumour diminishes. This species of ancurism appears sometimes within three or four hours after venesection, while at others not for several weeks; it has a circumscribed appearance, is about the size of a large walnut, with the cicatrix made by the lancet in the centre. It increases very slowly, excites little pain. producing more a sense of weight, numbness and feebleness of the arm, and is the least dangerous of aneurisms, never rupturing spontaneously, but being liable to be converted into the false, with which it is sometimes complicated. The treatment consists in the application of compression and bandage, wearing the arm in a sling, or keeping it in the horizontal position: or, lastly, in securing the artery, which probably from its being the shorter means of cure, and perfectly safe, is the best remedy.

Aneurism by anastomosis, named also novus maternus, tumeurs variqueses, or fongueses sansuines, tumeurs erectiles, hæmatoncus, bloodsponge, and in common language, strawbery or raspbery tumour, begins usually at birth, having the appearance of a red, purple, or livid stain, but necasionally there is at once a distinct prominent vascular tamour; in some cases the disease remains long dommant, while in others, this vascular plexus of vessels increases in number and size distonding the skin. which ruptures in sultry weather, or in intense cold, producing hemorrage, which becomes each time more momentous, until at last it proves fatal. This is particularly the case when it attacks a surface delicatcly covered with integroments, as the lips. It is more liequently situated about the head than elsewhere, sometimes involving a great extent of surface, lips, mouth, lances, pharyins, neck, and chest; and the same vasculat plexus has been discovered within as well as without the
cranium, the capillaries of the dura mater being equally affected. This disease has occurred occasionally in the adult, from accidental violence, beginning in the form of a mere pimple or speck, and soon becoming a throbbing incontrollable vascular tumour, bleeding on the slightest exertion, drinking, mental emotion, exposure to the sun or cold. In inlancy this disease must be distinguished from the congenita notæ, or growths of hair, \&c. Join Bell, who first correctly described this vascular tumour, conceived there were cells intermediate to the eapillary arteries and veins, in which opinion he is joined by Dupuytren and Wardrop, but from what we have witnessed in carclul injection and dissection of such tumours, and what is developed in the spleen, placenta, corpus cavernosum et spongiosum penis, especialiy the latter in the elephant, no cells exist in these tumours, but that the delicate veins form large and frequent anastomoses, which, from communicating freely with each other, and adhering together, resemble cellular tissue.

In young children, before they have been inoculated, it has been cured by inducing adhesive inflammation with vaccine lymph, and obliterating the blood-ressels; but this fails in the adult. If this application fails, or the child has been already vaccinated, in which case it seldom succeeds, compression should be tried, together with astringents, and if both of these fail by the time the child is four months old, it should be treated by ligature, as recommended by John Bell, White and Lawrence. The securing the arteries leading to the tumour has been occasionally successlul, but has as often failed, even in the most scientific hands. The extirpation of the tumour is objectionable in early life, as we require to cut at some distance from the tumour, in order to avoid the blood-vessels, thus leaving a great extent of surdace to gramulate and cicatrize, and causing considerable deformity, if situated about the head and neck. Potassa, or kali purum, applied so as to produce gentle ulceration and sloughing, has also succeeded, but it is only advisable in very small nevi materni, as it has proved fatal even in Boyer's hands. For an claborate detail of the diseases of the arteries, the reader is teferred to Hodgson on 7is. of Art. and Veins-Breschet's Translation of same. Ed. Med. and Surg. Journal, vol. xxii. p. 4, and vol. xix. p. 45, and Ed. Med. Chir. Trans. vol. iii., also to mortification, already mentioned in this article

Under bloodletting we have shown the proneness of the veins to inllammation, and its fatal tendency; and atso under ulcers with varicose veins, adverted to the impropriety ol securing them with a ligature. The uterine, the crural, the external, the internal, the common iliac, and spermatic veins, even onwards to the renal and vena cava inlerior veins, have been fomd inflamed, thickened, and filled with purulont matter and coagulated lymph, after abortion, ordinary accouchment, and in pueperal fever. Similar appearances have been seen in phthysis pulmonalis and in carcinomatous allections of several organs. A greyish coloured lluid has been found in the splenic and hepatic veins. Inflanmation in veins, although rarely, sometimes ter-
minates in ulecration, producing hemorrhage, and commonly begins in the scrous tunic; the adhesive infammation, however, more frequently obliterates their cavitics and prevents hemorrhage: and when sphacclation occurs in the contiguity ol veins, they become plugged with coagula of blood, as already mentioned under mortification. In violent exertions, cramps, cold stage of aģue, and blows, the veins are sometimes lacerated. The veins, from gravity or pressure, licequently become varicose, or present a serpentine swollen knotted appearance, on the lower extremities, the spermatic cords and scrotum, the spermatic plexus ol the ovaria, the rectum, especially at its termination or around the anus, and on the integuments in the hypogastric and ingrinal regions. In many ol these, especially the cutancous of the leg and the hemorrioidal veins, coagula of blood are found, which, obliterating, the cavity, have produced a spontancous cure. The veins are also subject to circumscribed distension or dilatation, varying in size from a small nut to that of a pigcon's egg, and sometimes to such an extent as to rupture and prove serious and even fatal. These distensions are occasionally accompanied with pain, and, when situated superficially, sometimes with inflammation and suppuration of the skin and cellular substance in their vicinity, forming ulcers.

The treatment of varicose veins consists in affording them support, or obliterating them with potassa. The saphena major and minor of the leg, when affected, require the roller to extend from the toes to the groins, and are much benefitted by being bathed with a decoction of oak bark, and attention paid to the bowels. When potassa is used, it is applied above or proximad to the varicose portion of the vein, so as to produce an eschar on the skin, by which the rein inflames, the blood coagulates, effusion of lymph follows with an adhesion of the sides of the vein and consequent obliteration of its canal. The veins, like the arteries, have been found cartilaginous and studded with calcarcous depositions, and loose calculi in their cavities. In some cases the same discased structure as that in the vicinity, as, for example, schirrus, has been found growing from the scrous tunic of veins. The largest veins of the system, eren the vena cava inferior, have been found obliterated, and the circulation carried on by the superficial ones, and the vena azygos.

Hemornage from atue blood, and payous to break out, the dread of both the ancients and moderns, has greatly retarded operative surgery, and preciscly in proportion to otr ignorance of anatomy. When an artery is wounded, the blood of a bright vermilion colour flows in distinct jets, while when a vein is cot, it fows of a dark purple colour, in a more equable or smooth stream. In the smaller veins contiguous to the capillary arteries, the stream is interrupted, or flows per saltum, as if an artery was wounded. When an artery is merely punctured, the hemorrhage generally soon produces lainting, and the blood injects its cellular sheath, which lorms a coagulum that becomes a temporary barrier to its llow; but if this process be disturbed, or if inflammation and ulceration follow, the heVol. XVII. Part II.
morrhage recurs from time to time, until at last it proves liatal. In such cases, thercfore, il the vessel be large, as that ol the thigh, it should be instantly secured by throwing a ligature around, above ant below the seat of the wound, as the retrograde flow from the free inoculation is liable to reproduce the bleeding. But if no disturbance accructo this process of nature, the wounded edges of the artery inflame, elfiuse coagulable lymph, and are united by the achesive inllammation; and if the wound be trifling, the continuity of the vessel is preserved A long continuance ol quiescence is reguisite, however, to ensure safety from aneurism. It will be at once seen, that the same causes preventing the success of sccuring the principal artery of a limb for aneurism, will operate here, and that mortilication will be even more liable to follow in this case. When an artery is divided transversely, an impetuous how of blood takes place, producing fainting, its ends are constricted and retract into the contiguous cellular tissue, which is injected with blood, that soon coagulates, while the blood flows by the proximal branches, allowing a coagulum of blood to take place in the trunk, which thus gradually becomes obliterated, as il secured in aneurism, and thus the hemorrhage is for a time arrested. If this natural process be undisturbed, slight inflammation follows with the effusion of coagulable lymph in the artery, between its coats, and in the cellular substance in the vicinity, which becomes gradually eonsolidated, and proves a perfect barrice to after bleeding. This, however, is not always the ease, particularly if a branch be near the wound, the blood flows impetuously by the trunk, produces fainting, which recurs at each successive rallying of the system, or at once proves fatal. The artery consequently ought to be secured, as in the first instance. If the axillary in its mesh of nerves, veins. and branches, be wounded witl a sharp pointed instrument, the subclavian as it runs over the first rib should be tied, and compression applied to the wound, as was lately practised by Langenbeck with success.
Hemorrhage from an artery has been divided into primary and secondary; the lormer when it occurs within thirty hours after the receipt of the wound, or rather when reaction of the system has taken place ; secondary, when it takes place after this period, for the time is so very uncertain, that no definite time can be specified. When the smaller arteries are wounded, as those in the palm of the hand or the sole of the foot, compression with dry sponge. sponge tent, agaric or lint, and a bandage should be employed; and if this fails, the trunk of the bleeding artery secured proximad to the hand or foot, continuing however the pressure. Sponge tent consists ol sponge clipped in melted wax, and forcibly pressed into the smallest possible size. The same kind of compression is applied to the internal pudic artery when wounded in lithotomy, to the intercostal arterics, the temporal, and the extreme branches of the internal maxillary after the extraction of a tooth. When a vascular surface, as the mucous membrane of the nares is blceding. escharotics, styptics, and compression by dry lint
\(3 Z\)
are used. If the bleeding proceeds from the stomaeh, styptics are administered, and venesection to produce fainting, which highly favours the natural process of arresting hemorrhagy; with these are combined cathartic enemata, low dict, and perfect rest. If from the lungs, the same remedies, combined with narcotics and gentle laxatives. When from the corpus spongiosum or cavernosum penis, compression and bandage. The styptics in use are cold water, vinegar and cold water, solutions of the sulphates of zinc, alum, iron, or copper, of the nitrates of silver or copper, the mineral acids, diluted alcohol, alcohol, and sulphuric acid combined. If the bleeding is from the gums, or antrum maxillare, or orbit, after a surgical operation, compression or the actual cautery is requisite.

Fracture, from frango, to break, is applied to the bones, and is divided into simple and compound; simple, when the bone only is injured; compound, when the soft coverings are so injured that cither one of the fractured ends protrudes through the skin, or the skin and muscles ate so lacerated as to expose the bone, the long cylindrical bones of the limbs are most frequcntly fractured; next the flat, particularly of the cranium, for those of the pelvis and scapula must be excluded ; and lastly, the round irregularly shaped bones of the tarsus, carpus, and vertebrex. The bones are fractured by external violence, disease, and the action of the muscles. The long cylindrical bones are not unfrequently broken in more than one point; they are generally fractured at the centre of their shafis, in which case the fracture is more or less oblique; whereas, when it occurs near the extremes, it becomes more and more transverse; hence, fractures have been divided into obliquc and transverse. The spongy bones are also fractured transverscly. The fat bones in various directions, occasionally stellated. A conmminuted fracture occurs when a bone is broken in different places at once, and divided into several fragments or splinters. Longitudinal fractures also occur to the long cylindrical bones. Complicated fractures are those accompanied with luxation, severe contusions, wounded blood-vessels, pregnancy, gout, scurys, rickets, fragilitas, ossium, and syphilis, which diseases prevent the union of the bones, and also cause them to be very easily broken. Cold renders the bones more fragile, and they are also more brittle in old age. The superficial are more exposed to fracture than the deep seated bones; thus the clavicle is more so than the os innominatum. Others, from their functions, are more exposed; as, for example, the radius from its affording support to the carpus.

When a fracture takes place, there is an elfusion of blood from the vessels of the bone, periosteum, and contiguous soft parts, the muscles are violently excited, the periosteum and truncated ends ol the bone inflame ; and after the inflammation subsides, the vessels of the periosteum and ends of the bone are formed to secrete callus, which is an effusion of gelatin that is gradually converted into cartilage, and lastly into bone by the secretion of phosphate of lime, precisely in the same manner as the formaLion and conversion of bone in the fetus. During
the inflammatory action, no diseased secretion whatever takes place; nay, even the healthy natural ones are more or less suspended, so that no advantage is gained by setting a fracture immediately after the injury; on the contrary, this primary setting, as it is termed, re-excites the already spasmodic action of the muscles, and in nine cases out of ten disappoints the hopes of the surgeon. Callus does not harden for many days; in the adult, it begins generally about the tenth or twelfth day; Boyer, however, says that it is not formed until between the twentieth and seventieth day. The treatment of a simple fractured bone is to lay the limb in the easiest position for the patient, which is probably in M'Intyre's fracture splimt, delineated in Fig. 6, of Plate DXV. to apply leeches and anodyne fomentations or poultices, to put him on low diet, enjoin perfect rest, and administer gentle laxatives, until all inflammatory action is subdued; then to extend the limb to its natural length, or apply pasteboard splints dipt in warm water, with wooden ones cxterior to them, and fastened with tapes. This latter is termed secondary setting, and is applicable to all the bones of the extremitics, and is best exemplified in the os femoris.
The thigh bone is fractured at every point, but more frequently in its centre, in which case the fracture is oblique and splintery, accompanied with crepitus and great retraction of the muscles, rendering the limb shorter and thicker, and the distal portion extremely moveable and overlapping the proximal, while the patient is unable to move the limb. If much spasmodic action of the muscles has taken place, no power we possess can lengthen and retain the limb in its situation. The limb should be retained in the fracture-splint, for fully three weeks after inflammation has been subdued, but may be examined every third or fourth day. More or less cdema supervenes, which is easily discussed by friction and bandage. This mode of treatment is applicable to the tibia, fibula, os brachii, ulna, and radius, when affected with simple fracture.

When there is a compound fracture of the os femoris, and if the bone protrudes such a length that it cannot be with facility reduced within the skin and muscles, it should be sawn off, for it would produce too much injury of the soft parts, to make an incision calculated to replace the protruded portion; but in the tibia, and other thinly covered bones, the integuments may be incised to permit the bone to be replaced. After the os femoris has been replaced, the wound, if simple, ought to be approximated with adhesive plaster, but if contuse, leeches and poultices, or fomentations are requisitc. No callus is secreted during suppuration; and as this wound will suppurate, the limb should be placed in an easy attitude on M'Intyre's frac-ture-splint, an eighteen-tailed bandage applied to prevent the pus burrowing, and to kcep on the dressings, which should be simple; and as suppuration ceases callus is secreted, and then the attitude of the limb must be attended to. When suppuration is established, the dict should be nutritious. If the fracture be comminuted, we extract the
loose fragments of bone, and treat it afterwards in the same way as has been described; but from the depth of muscular substance, which prevents extraction of these liagments, and the escape of pus when formed, amputation often becomes a matter of consideration for the surgeon; or if in this fracture the femoral artery is wounded, or the knce joint involved, amputation should be performed. This mode of treating compound and comminuted fractures of the os lemoris is also applicable to those of the tibia, fibula, os brachii, ulna and radius.

In fractures of the bones of the upper extremity, we have to consider that the arm has no weight to support, is nearer the source of the circulation, and its arteries inosculate more frecly with each other, and its returning or venous circulation is more easily perlormed, consequently in compound fractures, an attempt to preserve the limb may be made with more propricty.

The os brachii when fractured is probably more disposed to form a false joint than any other bone, although in several cascs the thigh bone has been affected with this disposition. In this process each fractured extremity secretes callus, which becomes cartilaginous, but never ossifies; and around these ends a synovial pouch is formed by the cellular or muscular tissue, which secretes synovia, and thus forms a rude joint, but so moveable as to render the arm useless. This flexible condition is to be treated with a simple apparatus of leather and iron, to prevent this false joint from moving; and if this fails, the ends of the bone may be rubbed on each other with the view of inflaming and exciting them to more action, the limb afterwards being firmly bound up for a time, or an incision may be made down to the disunited ends of the bone, and rasped or sawn off, and then the bleeding ends put in apposition, and treated as if recently fractured. A third method is the employment of a seton, all of which have occasionally succeeded, and as often failed.

The ribs are generally fractured near their centres, and commonly more than one at a time, and the middle ones more frequently than the extremes; from the langs being close to them, and their fracture oblique and splintery, such accidents are extremely dangerous. When a simple fracture occurs, it is treated as directed in luxation of their sternal ends, together with local and general bloodletting. If the plcura costalis be injured in this accident, inflammation and suppuration of this membrane may follow, and lay the foundation for empyema (from ", within, and wos pus), or a collection ol matter in the pleuritic bag; but empyema may be produced by varions other causes besides a lractured rib. The greatest difficulty in this, and in all discases, is a correct diagnosis, which if clear in this case, the matter must be evacuated by an operation termed paracentesis thoracis (from tapaxiersa to perforate), which consists in holding up the integuments over the sixth and seventh ribs in their centres, in order that they may act afterwards as a valve, and making an incision through them to the
extent of two or three inches, parallel and close to the upper edge of the seventh rib, then dividing to a more limited extent the serratus magnus and intercostal muscles carefully until the pleura costalis appears, which should be punctured with a lancet, and a canula afterwards inserted to remove the matter. When all the fluid has been removed, the wound should be closed and treated on the principle of chronic abscess, which it more liequently resembles, than the acute. This operation is also performed for collections of scrum or water, for extravasated blood, and for dillusion of air in the pleuritic bag. A fractured riboccasionally wounds one of the intercostal arteries, which pours out its blood into the pleuritic bag, oppresses the lungs, and alterwards produces empyema; and various instruments have been contrived to suppress this hemorrhage, but the lirger of an assistant is undoubtedly to be preferred, and if there was only one rib injured and hemorrhage continuing, the surgcon would be justified in making an incision and thus compressing the artery, or first dividing it so as to allow its ends to retract, and then applying compression; on the contrary, however, in conscquence of there being more than one ribs fractured, he is only authorized in using the lancet frecly and administering digitalis and hyosciamus. Onc of thesc arteries may be wounded by a small sword or bayonet, in which case the above treatment by compression is to be adopted. The lungs themselves are sometimes wounded by a fractured rib, producing either hemorrhage or emphysema (from Busaw to inflate.) When hemorrhage is the result, it is commonly alarming and requires active antiphlogistic treatment.

Emphysema consists in the air of the lungs issuing into the bag of the pleura, and generally from thence into the cellular tissue in the vicinity of the fracture, and ultimately over the whole integuments of the thorax, and even the whole body. If the air which is inspired by the lungs, and from them issues into the pleuritic bag, does not escape at the wound of the pleura into the subcutaneous cellular tissue, it makes the lungs of the affected side collapse, and by accumulating in the one bag of the pleura, presses on the mediastinum and diaphragm; and this so impairs the lunctions of the other half of the lungs and the smaller circulation, as soon to prove fatal. The escape of the air, therefore, from the pleuritic pouch into the cutaneous cellular tissue is favourable. Blood is often extravasated, as well as air, in the pleuritic bag, and the lungs become inflamed. The treatment consists in making punctures with a lancet in the region of the fracturc, or wherever the air is diffused, and if oppression of breathing contiuues, paracentesis thoracis should be performed, and a cupping glass with its syringe applied to the wound. Emphysema results also from the wound of a sword, or any other sharp pointed instrument, from the busting of a vomica, from violent respiration during parturition, from foreign bodics in the larynx and trachea, from blows on these organs, and even on the back of the neck; from violence in the reduction of a dislocated shoulder joint: from 3Z2
a suppurated lymphatic gland in the region of the neck, and as a sequela ol pueumonia and typhus fever. The ribs sometimes become carious after fracture, and require to be removed.

Luxation or Dislocation (from luxo or disloc', to put out of place, ) is the displacement of those bones which form a joint, and may occur either spontaneously or in consequence of external violence. When dislocation occurs spontaneously, it arises from relaxation of the ligaments and muscles; from palsy; from matter accumulated in the joints affected with white swelling or morbus coxarius. The other species of luxation, and much the more common, results either from violent motions or external injury, and is divided into simple, compound, primary, consecutive, complete, incomplete, and subluxation.

The shoulder joint is dislocated in four directions; the head of the os brachii may be forced either directly downwards into the axilla, inwards on the venter of the scapula, backwards on the dorsum of the scapula, or upwards on the coracoid process of the bone. The first of these is much the most frequent, and is probably the most common luxation that occurs; it is characterized by a conspicuous depression beneath the acromion, in place of the round swell of the shoulder, by the patient inclining his body to the arm, in order to relax the muscles, nerves, and blood-vessels, and relieve the pain, by his supporting the arm with his other hand or on his knee, and not being able to bring it close to his side, or lift it to his head. The capsular ligament and short muscles around the joint are more or less lacerated, while the pectoralis major, the deltoid, latissimus dorsi, teres major, and biceps are thrown into violent action, and contribute to produce the displacement by their sudden contractile efforts, which are performed to prevent the displacement of the bones. The head of the os brachii is forced out of the glenoid cavity between the long head of the triceps and the subscapularis, and rests on the inferior costa of the seapula. This is an example of simple, primary, as well as complete luxation. The arm is a little longer, but the difference is scarecly perceptible; the head of the os brachii is sometimes lelt in the axilla, when the arm is removed from the side; paralysis oceasionally oceurs from pressure oa the nerves, and crepitus from gergling of the synovial fluid, which latter phenomenon is exceedingly liable to deceive the surgeon. Various modes of reduction have been recommended both by the ancients and the moderns; but the most simple and sure methad is to fix the patient fimly and properly, as represented in Fig. 10, of Plate DXVII. so that the scapula is made the resisting point, which may be accomplished with a sheet or an apparatus having a hole to almit the arm to pass through, to which is to be affixed a rope extencling to a beam of wood or kitchen poker laid across the outside of the door or window ol the room, a wet towel is then to le applied to the alfected arm above the el-bow-joint, and over this, a hank of worsted in the form of the double clove-hitch, to the nooses of which the one end of the pulley apparatus is to be
affixed, while the other end is fastened to a piece of wood placed across a door or window opposite the other. When every thing is thus properly adjusted, the patient is to be bled so fainting, and supported in a chair by an assistant, while another instantly begins extension, and continues it gradually and slowly until the surgeon, by poising the head of the os brachii with a towel folded like a bandage or compress, raises it opposite the glenoid cavity of the scapula into which it starts with a peculiar sound; the assistant then sutdenly loosens the pulley apparatus and removes it. The operator next puts a cushion in the axilla, bends the forearm across the chest, binds it there to the side, and gives support to the elbow with a long roller, as illustrated in Fig. 9 of Plate DXVII. In general, tartiate of antimony in small doses should be given before using the lancet, as a great guantity of blood is often required to be taken in order to produce fainting.

More or less inflammation occasionally supervenes to luxation, and its necessary reduction, and may require local and general blood-leting, lomentations, local irritants, low diet, cathartics and confinement to bed. The arm should be kept quiet for at least three weeks, to permit the lacerated capsular ligament and muscles to heal, and afterwards passive motion allowed; but the patient ought to be cautioned against lifting his arm with too much freedom, as this luxation is extremely liable to be reproduced. Emphysema, ecchymosis, rupture of the axillary artery, and large abscesses have oceurred from reduction. Reduction of this luxation may be attempted during any period within three months; but some have succeeded at the distance of ten months; much, however, must depend on the constitution and violence of the injury, for inflammation, mortification and death have followed attempts at reduction beyond three months. In old luxations, a warm bath should be used immediately before reduction is attempted.

If the head of the os brachii is not reduced, but pulled up by the museles towards the clavicle, it is then termed a consecutive luxation, a form of the disease said by Sir A. Cooper to be primary. Larrey relates a luxation, where the head of the os brachii was wedged between the second and third ribs. The head of the os brachii now forms a new joint, the inhummation induced consolidates the muscles and cellular substance, which form a cartilaginous bed and a rude capsule, the loose muscles around contract and become rigid, and accommodate themselves to their new lunctions; the old capsular ligament beals up and the glemoid cavity is lilled up with a soft gelatinous adhesive substance. Compound luxation of this joint seldom or never occurs; dislocation, however, with fracture of the neck of the os brachii, fracture of the acromion scapulix, or fracture of the cervix seapula sometimes takes place; and each of these fractures occasionally present themselves without the laxation, so that we ought to be carclul in distinguishing between them.

Compound luxation oceurs probably more frequently at the ankle joint than at any of the others:
this consists in a protrusion of either the tibia singly, or tibia aud fibula combined, through the skin, and the foot hangs loosely on either side of the leg. Compound luxation also comprehends the injury of the integuments and soft coverings, and the exposing of the bones of the joint to the extermal air. In such cases, if the bone cannot be reduced within the soft parts, it ought to be sawn off; or the practitioner must take into consideration amputation of the limb; for our own parts, we are disposed to prefer amputation, to the tedium of suppuration, exfoliation, and partial anchylosis, at the imminent hazard of the patient's life, consequent on the violent constitutional and hectic fever, gangrene, or tetanss during the cure. If an attempt be made to save the limb, the wounded arteries are to be secured, as many pieces of bone should be gently removed as can be done with facility and promptitude, the protruded bone washed, and cither reduced or sawn off, the wound approximated by adhesive straps and suture, and covered with dry lint, and laid on a solt pillow or placed in m'Intyre's fracture-splint. Considerable inflammation, together with suppuration, generally follows, and requires most active antiphlogistic treatment. Simple luxation of the ankle joint may be mistaken for fracture of the tibia into the joint, and for a sprain of the tendons in this region.

Sprains consist in the laceration of the vaginal ligaments or sheaths of the tendons of muscles producing an effusion of lymph in the contiguous cellular tissue, and occur most frequently on the back of the hand; they also affect the muscles themselves by overstretching and slightly lacerating their fibres. In sprains, there is almost immediate discolouration, but no tumefaction until some time after the accident, which is generally only on one side of the joint, but occasionally on both. Sprains are treated first with leeches and warm anodyne applications, and secondly with stimulating liniments, frietion and bandage. Ganglions or ganglia are either the result of sprains or bruises, and consist of an effiusion of lymph, or the mucous secretion of the sheaths of the tendons; they appear in the form of a circumscribed, moveable, elastic tumour, free of pain, but frequently incommoding the individual in the motions of the parts, particularly if situated on the foot. They should be tecated with pressure and bandage, and it these fail, with extipation of the entire cyst. Sir A. Cooper recommends striking them a smart blow with a book, in order to rupture the cyst, and diffuse the glairy fluid into the cellular tissue that it may be absorbed.

Besides luxation, the joints are sulject to many diseases, to inflammation, synovial and serous effusion, suppuration, ulceration, anchylosis, and loose cartilages floating in them. Inllammation has been already noticed under luxation, and which may be produced by the same causes as those that excite it on ordinary occasions, and the treatment requires to be extremely active, both locally and constitutionally, according to the magnitude of the joint and the severity of the injury. When the knee joint is very slightly infamed from an ex-
posure to cold, the synovial membrane secretes more synovial haid than in health; and if the inflammation be a litte more severe, this thuid becomes more watery, occasionally pure serum or dropsy, which constitutes hydrops articuti. Irom this view, it will be seen, Hat dropsy is an overabundant eflusion of the serous portion of the blood, dependent either upon increased secretion of the exhalants, or on diminislaed absorption, or on a combination of both. This termination is still better illustrated in the serous cavities of the brain, thorax, or abdomen. If all inflamatory action has abated, the cflused lluid into a joint may be discussed with a succession of blisters, compress and bandage, and if these fail, it should be evacuated by a valvular opening made with a bistoury on the outside of the joint belween the patella and external condyle of the os lemoris. This dropsical effusion is occasionally confined to the bursa under the patelar ligament, and then presents a globular swelling; but when it attacks the bursa under the crureus muscle it invariably communicates with the joint.

When inflammation is more severc than to terminate in symovial or serous cffusion, it ends in the secretion of coagulable \(1 \mathrm{ym} \mathrm{m}^{\text {h }}\), that produces more or less perfect anchylosis; which is the union of the cartilaginous surfaces entering into the formation of a joint, or the osseous texture itself, rendering the articulation stiff and immoveable. In such cases, the treatment requires to be still more active; four or five dozen of teeches should be applied, followed by anodyne fomentaions, alternate. blisters and moxas, perlect rest, with the limb placed in M'Iatyre's fracture-splint, gentle laxatives and low diet; and the puncturing of the joint to give exit to any effused lymph if necessary. The leeches may require to be repeated. A patient should be kept confined to bed until cvery restige of inflammation has either been subdued, or the joint quite locked by anchylosis, when a splint of some apparatus ought to be worn to prevent the joint shaking; and even then the slightest motion of it ought to be carefully a voided.

When the inflammation is so severe as to terminate in suppuration, with thickening of the cartiJages and ligaments; an effusion of viscid lymph into the cellular substance around the joint, rendering it thick and soft; a peculiar alteration of the adipose and tendinons substances constituting the chief part of the swelling; and the skin assuming a pale tense glistening colour with large veins;-the disease has been termed whiteswelling. The puralent matter is commonly of a shining coagulated nature. This disease, which occurs chiefly in carls life, is almost cxclusively confined to the scrofulous diathesis, which in so moist a climate pervades almost every constitution. The inflammation is sometimes slight, and recurs for several successive periods belore advancing to suppuration, and occasionally appears alternately acute and chronic. The matter either remains within the articulation, or ulceration of the capsudar ligament ensues, when it burrows in varions directions, occasionally adrancing to the skin in long fistulous tubes. Ulecration
of the cartilages and caries of the bones, accompanied with hectic fever, takes place, and carries off the patient. The treatment is the same as that recommended in the last, only it ought to be more rigidly enforced. A peculiar treatment has been lately recommended by Mr. Scott of Bromley, which can only be applied to the early and mild stages of this disease; and a similar treatment is extolled by Richerand. When ulceration of the cartilages and bones have taken place, amputation is too often the only remedy. The rheumatic species of white swelling appears to be nothing more than the inflamed rheumatic joint terminating in suppuration. White swelling altacks the elbow, wrist, and ankle joints, as well as the knee, but the last most frequently.

In wounds of the joints, particularly so large a one as the knee, violent inflammatory action should be apprehended and treated accordingly. No probing whatever should be employed, synovia being easily distinguished from pus. The stomach is peculiarly affected by wounds of this joint, and a blow on the knce produces fainting and vomiting, and also affects the brain.

The articular surfaces forming the joints, especially those of the elbow and the knee, have been excised in an ulcerated state; the operation of the latter consists in making a crucial incision of the integuments on the patellar aspect, so that the transverse one may extend between the os femoris and the tibia; and dissecting aside each angle of the flap extensively from the patella and capsular ligament. The patella is then removed, the lateral and crucial ligaments divided, by which the condyles of the os femoris can be made to project on bending the leg on the thigh, and then can be carefully and slightly cleaned and sawn off from above downwards, a picce of firm leather being interposed between the bone and the popliteal vessels. The head of the tibia is next to be divested of its soft coverings, and projected so as to be sawn off from within outwards. One or more of the articular arteries may require to be secured, the flaps approximated, and then the cut ends of the tibia and os femoris are to be retained in apposition by an ingenious apparatus. 'There are many cogent objections to excision of the joints, few recovering the least use of them.

The disease which attacks the hip-joint, and which is termed the hip-joint disease, morbus coxarius, scrofulous-hip, or scrofulous caries of hip, is evidertly a species of white-swelline, consisting first of inflammation, and suppuration of the synovial membrane and ligaments, and altorwards of ulceration of these and the cartilages and bones. This joint has been aflected with lungus homatodes, deceiving the surgeon for morlus coxarias. When anchylosis has supervened after this affection, a joint may be formed at the cervix of the thigh bone, which consists in making the erucial incision over the trochanter major, and sawing the cervix close to this process of the thigh bone, and preventing union by ossific matter during the cure. In old are, the interstitial absorption of the cervix of the os femoris takes place, which alters the angle formed
by it and the shaft, and so shortens the limb that it may be mistaken either for luxation or fracture. An affection, precisely resembling morbus coxarius, sometimes affects the sacroiliac synchondrosis.

Loose cartilaginous bodies are found in the joints, particularly the knee, and if they cannot be confined with a laced knee cap, so as not to impede the motions of the joint, they should be extirpated. The patient ought to be previously confined to bed for a day or two, and have a cathartic administered; the cartilaginous substance should then be pressed towards one side of the patella, and there held firmly by an assistant, while the operator drawing the skin downwards, or upwards, or to one side, makes a longitudinal incision over the substance, and extracts it either with the fingers, forceps, or a hook. The skin is instantly to be allowed to retract, the lips of the wound approximated with adhesive plaster, and the eighteen-tailed bandage applied, the limb gently extended, and perfect rest, with low diet, enjoined. Inflammation is to be apprehended after this operation, and treated accordingly.

The bones are subject to the same diseases as the soft parts of the body, the phenomena merely differing in consequence of the hardness of their structure; thus they are attacked with inflammation, suppuration, abscess, ulceration, mortification and carcinoma. Inflammation is termed ostitis, and is characterized by the same symptoms and appearances, as described under inflammation, the pain being more or less severe, according to the hardness or compactness of the bone, which, in consequence of its unyielding nature; prevents the expansion of the nerves and blood-vessels; the redness, tumefaction, and increased heat being more or less developed, according to the exposed nature of the bonc. The same mode of treatment is also to be followed, with this difference, that as the hones are deeply seated, incisions, the moxa, and other counter irritants are more necessary. The soft spongy bones of the carpus and tarsus, the epiphyses of the long ones, and vertebræ when inflamed, are, in consequence of the blood-vessels having sufficient latitude, capable of forming suppurative papillæ, and thus abscesses are formed, which are treated in the same way as formerly directed. Abscesses in the bones frequently accompany necrosis.

These bones, upon the same principle when inflamed become carious, or, in other words, the abscess bursts, or the supurative papillx are exposed, and the bone is found ulcerated for caries, (from xapo to abrade, ) is considered by modern surgeons, ulceration of the bones, and, consequently, is subject to the same varieties as ulcers of the solt parts; and caries not unfrequently follows ulceration of the contiguous soft parts. When caries attacks one of the carpal hones, a deposition of callus is occasionally generated, which forms a barrier to the progress of the disease; at other times a carious bone becomes soft and diseased throughout, having a fleshy or fatty appearance; on other occasions it becomes dry and liable, crumbling down under the probe: in some instances a separation takes place between the carious and healthy portions, the former being thrown off like a slough. Caries gene-
rally attacks the surface of a bone, and extends deeper and deeper, but occasionally it begins in the centre; when the bones of the carpus, tarsus, or vertebre are attacked, it very frequently spreads from one to another; the cartilaginous surfaces of these bones resist the disease longer than the osseous shells. When this disease attacks the sternum, or any other superficially seated bone, the malady is more easily cured, than when a deep seated one, such as the acctabulum of the os innominatum. Caries attacks the young constitution much oftener than the adult, and spreads with greater rapidity, but heals more quickly, and occurs chiefly in the scrofulous and syphilitic constitutions. From the preceding facts and observations, it appears that caries may be divided into as many species or varieties as ulcers; therefore there are, the simple, the inflamed, the indolent, the phagedenic, the gangrenous, the scrofulous, the syphilitic, and the scorbutic caries; and consequently on this account the carious ulcer, described by authors, evidently involves two or three specics of caries or carious ulcers. Some authors make other divisions of this disease, which are equally objectionable. The simple carits is clearly seen in the end ol a bone which protrudes after amputation, in compound fracture when the bone is freely exposed, and in caries which commonly attacks the sternum. In these there is no difference from that which occurs in the simple ulcer of the soft parts, and none in the treatment. If the carious portion is not freely exposed, the integuments and all sinuses of the bone should be freely laid open, there being as much or more necessity for bringing it into view than even the ulceration of the solt parts. The irritable or inflamed caries presents the same granulations and discharge as the inflamed ulcer does; it is this species only which tinges the silver probe yellow or black, and when it attacks one of the bones of the carpus, or tarsus, spreads and involves so many, that not unfrequently amputation of the hand or foot is necessary. The antiphlogistic treatment requires to be vigorous in such cases, and all abscesses or sinuses must be freely laid open. If the caries becomes phagedenic, the portion must be removed with the trephine or knife, or destroyed with the actual cautery, nitrates of silver or copper, and if these fail, amputation ought to be performed. The cautery requires to be applied with great caution. But if the caries assumes a simple or healthy aspect, it is to be treated accordingly; or if it becomes indolent, to be stimulated with solutions of the nitrates of silver and copper, sulphate of copper, muriate of mercury, and oxide of arsenic. Moxas applied in the neighbourhood of caries are powerful auxiliaries; thus when the astragalus, tibia and fibula have been carious, moxas around the ankle joint have cured them. The phagedenic caries is best exemplified in severe cases of noli me tangere. The fungous caries is best illustrated in caries of the sternum, where the granulations are occasionally very large and flabby. The scrofulous caries, or caries occurring in the scrofulous constitution, affects either the vertebre or the joints,
the latter of which have already been considered; and when the former are the seat of this disease, either distortion with or without paralysis of the lower cxtremities, or fumbar abscess, is the result. From the great weight which the spinal column las to support, and the delicate sponcy nature of its structure, it is very readily distorted even from continued awkward or awry attitude in the young and delicate scrofulous female. Whenever the muscles on the one side of the spine gain the least ascendency over their antagonists, they instanty lay the foundation for distortion, and in many cases, sooner or later, caries is the consequence: If early attended to, the common steel stays, as represented in Fig . 22. Plate DXVI. should be worn when the patient is erect, but the greates portion of the twenty-four hours should be passed in the recumbent or horizontal position. Open-air, sea-bathing, flesh-brush, attention to the diet and bowels are powerful auxiliaries. If the affection has been neglected, repeated cupping, and moxas, with acupuncturing, should be applied in succession from the occiput to the coccyx, together with the means just mentioned. The patient should remain in bed on a firm hair mattress, until all pain has been subdued, and even all tendency to a relapse has disappeared. In severe spinal affections, as they are termed, the spinal marrow is found sometimes quite disorganized, a complete mollescence, with more or less purulent matter exterior.

There is a peculiar affection of the cervical vertebre confined at first to the articulations of the occiput and atlas, and atlas and dentata, which consists in ulceration of the cartilages, ligaments. and bones, ultimately involving the periosteum, the theca vertebralis, the dura mater, the medulla oblongata and brain, and also the pharynx. There is a peculiar expression of pain in the countenance. with dread at moving the head, which inclines generally to one side, and that most frequently the left, and when moved a most acute pain darts to the larynx and scapula of the affected side. The patient experiences most insufferable pain when swallowing a large mouthful, or taking a deep inspiration. These symptoms increase, and excite others fully as distressing, under which the patient lingers for montis, when death puts a petiod to his sufferings. The treatment consists in repeated cuppings and moxas to the nape of the neck, confinement to bed, with the head and neck fixed with the chin-stay, see Fig. 22, Plate DXVI; low diet, and attention to the bowels.

When the long cylindrical bones are attacked with inflammation, their vessels laving no latitude to expand and form ulcerative papillx, become gan grenous, so that the bones are deprived of vitality. and either exfoliate or undergo necrosis. Exfoliation or necrosis seems to take place, according to the exposure or non-exposure of the bones; thus the bones of the cranium exfoliate, while the os femoris becomes necrosed: the tibia, however, either exfo liates or necroses. If the tibia be inflamed, and an abscess occurs superficially to it, the bone generally exfoliates; the inflammation being too violent for necrosis, according to the interpretation of the
term by surgical writers, who consider it the death of the old bone, with the formation of a new one exterior to it, whereas, etymologically, it means merely the destruction of the old bone, being derived from vexpoe, to destroy. In such a case, the abscess is to be freely laid open, and the condition of the bone examined; and if it appear divested of vitality, either the nitrate of silver or copper applied to accelerate the exfoliation of the sequestrum, or removed with cutting instruments, the latter of which is preferable. The tibia is sometimes cleprived of vitality in extensive ulcers of the leg, in consequence of the periosteum being removed by the ulcerative absorption; in which case granulations are oecasionally formed beneath the outer layer of bone, which thus becomes a sequestrum, so that both caries and necrosis exist at the same time. Caries and necrosis also sometimes exist together in ulceration of the spongy bones. When the cranial bones are exfoliating, they are to be gently shaken l'rom time to time, and not rudely removed. When the shaft of one of the long bones dies, a separation takes place between it and the epiphyses; the periosteum inflames, with an accumulation of blood vessels, and thickening of this membrane; and if the inflammation be moderate, these vessels, together with those of the epiphyses, begin to secrete callus, in order to replace the decayed portion; and after the secretion of the new bonc has extended from the one epiphysis to the other, the periosteum loses its injected appearance, and returus to its natural colour and density. The new shell now separates from the old bone, and the latter is either forced through the former, or is absorbed. A profusion of callus is at first poured into this new shell, rendering it solid for a time, but afterwards the absorbents make it nearly as bollow as the original. The new bone is at tirst merely a reddish fluid, uext Felatinous, then cartilaginous, fourthly ossific or the phosphate of lime is deposited.

Necrosis occurs chiefly in early life, except when the inferior maxillary bone is aflected, which is generally after thirty years of age: it attacks the tibia, os femoris, clavicle, os brachii, fibula, radius, and uha; and there is a case detailed by M'Donald, wherein nealy all the bones of the body were affected. This pectuliar disease of the bones is characterized by infammation, cither acute or chronic, tumefuction of the limb, diffused pain along the bone, ulcerous openings or abscesses, discharging purulent matter, which ultimately become listulous. There is more o! less fever throughout, which at first is inflammatory, and afterwards hectic. As long as the ferer is inhammatory, and the limb acutely infamed, the treatment should be antiphlogistic, with lomentations and poultices; and when these conditions have been subelued, il no ulcers have formed, moxas should be repeatedly applied; but it there are ulceroas or fistulous openings, simple dressings and !entle bandaging; the constitutional remedies being mild nutritious diet, exposure to the open air, and sea-bathing if practicable. The dead bone ought to be lelit alone as long as the healhh will permit, unless it has begun to lorce its way outwards, when it should be re-
moved; but whenever the health begins to sink, the bone must be removed, otherwise amputation will be the only alternative, which otherwise need not be considered, until hectic fever threatens to destroy the life of the patient. During the cure, the patient must be guarded against using the limb before the bone has become properly consolidated, as it is very liable to be fractured. Various absurd remedies are recommended for this disease, as madder, assafœtida, hemlock, \$c. Its causes are very obscure; the exanthematons fevers, syphilis, mercury, serofula, and scurvy, also cold and blows, are considered predisposing; while inflammation is the proximate cause in early life, and obliteration of the blood-vessels in advanced age.

Portions of the cranial bones occasionally die, apparently in consequence of too great a deposition of phosphate of lime obliterating their blood-vessels, the dead part becomes a neutral object, excites irritation, and causes a separation between it and the living portion. When the piece exfoliated is small, it is regenerated by the vessels of the pericranium, dura mater, and diploe; but when very large, is never regenerated.

If we are permitied to continue the analogy, with which we set out, between the bones and the soft parts, they should be subject to the same varieties of tumours, of the truth of which we have not the least shadow of doubt, particularly when affected symptomatically. At present they are confined to Exostosis (from \(\varepsilon_{5}^{\prime}\), out, and of Tecv, a bone), which is divided into various species by different authors, as true, false, periosteal, medullary, eartilaginous, and fungous exostoses, and sometimes acquire considerable magnitude. Exostosis chiefly attacks the donse bones, which are thinly covered, such as those of the cranium, inferior maxilla, sternum, clavicle, ulna, and tibia; although all the bones are occasionally affected. The periosteal exostosis is simply a diseased thickening of the periostenm, forming a tumour chiefly attacking the bones of the cranium and tibia, and occurring generally in the syphilitic constitution; but if not attended to, it commonly involves the bone. Sir A. Cooper considers this affection an osseous deposition between the bone and the periosteum, which admeres firmly to both. In its early stage, it may be removed by the application of the moxa, and the internal administration of the muriate of mercury. Medullary exostosis is when the modulla is primarily aflected, and the cancellated structure secondarily; this may be treated in the same manner, but generally requires the knile. The cartilaginous exostosis is when cartilage forms the nidus for ossific deposition, which sometimes grows to an enormous size, and liequently attack's the inferior maxillary bone, requiring the removal of more or less of the sound bone on each side. It also takes place on the stcrnum and ribs, from whence it may be removed. 'Ihe fungons exostosis is still softer, containing spiculce of bone, and being of a malignant nature, acquires occasionally a prodigious magnitude. This is evidently the cellular or laminated osteo-sarcoma of some authors, or osteo-sarcosis, or ostco-malakia, or spina ventosa. It attacks the
diploe of the cranial bones, the inferior maxillary bone, and the long cylindrical bones. I'his exostosis can be only cured by the knife, or amputation. Besides these, there is the exostosis eburnea of some authors, a small hard tumour generally situated on the os frontis, the exostosis petrosa, and the stalactitical exostosis. Hydatids are oceasionally found in exostosis. From the magnitude which some of these species of exostosis acquire, they impede the functions of the contiguous soft organs; thus when situated in the antrum, the eye; on the eranium, the brain; on the cervical vertebre, the spinal cord, and in some cases the subclavian artery; on the inferior maxillary bone, the pharyux and larynx; and on the symphysis pubis, the urethra. Various ridiculous remedics have been recommended for these tumours, and different instruments invented; for example, Jeffray's flexible s:aw, Machell's chain saw, Graele's orbicular saw, and Thal's rotation saw.

Mollities ossium, named also malacosteon, is that disease wherein the bones become so soft that they may be twisted or bent in any direction, and in which, being deprived of their earthy property, as if they had been macerated in diluted muriatic aeid, their animal constituent only remains. When analysed, the quantity of phosphate of lime amounts only to about an eighth. This disease oceurs more frequently in women than in men, and generally about the middle period of life. It is preceded by fever and acute pains in the bones, and the urine contains a quantity of phosphate of lime; it is of long duration, Madame Supiot having lived five years. Its treatment is by attention to the early febrile affection, and afterwards to diet and regimen, exposure to the open air in the horizontal attitude, cold-bathing, flesh-brush and stays.

Rachitis or rickets, which depends also on a defieiency of the earthy property of bones, is closely allied to mollities ossium, but generally attaeks the chidd, even the fotus in utero. In rickets, the spine and ribs are commonly first affected, and afterwards the long cylindrical bones; the abdomen is tumefied in consequence of the liver, spleen, and mesenteric glands being enlarged; the intestines are filled with flatus, the digestion impaired, the breath fetid and sour, and the stools fetid, acid, and liquid. The respiration is also more or less affected; the head is peculiarly large, with a precocity of intelligence. The singular peculiarity in this disease is, that those children who recover from it in early life and continue strong until adult age, become again affected with it. The bones, after death, are found lighter, flatter, of a red or brown colour, porous, spongy, soft, compressible, and vascular; the cranial are thicker, the long bones thinner, and the medulla is like reddish serum. For the treatment, and a fulfer account of this disease, the reader is relerred to the Article Medicine, Vol. Xlll. p. 29.

Fragilitas ossium may be considered the opposite of mollities, although, according to Boger, the two diseases are combined. In this, there is a superabundance of the phosphate of lime in the bones, and hence it occurs in advanced life, and in either the syphilitic, scorbutic, arthritic, cancerous, scro-

Vol. XVII. Part II.
fulous, or rachitic eonstitutions, and therefore symptomatic of some wher disease. It is only in the scorbutic and syphilitic cases that any hopes of cure, always very doubtful, can be held out. Saviard details a very remarkable case of this disease, where all the bones after death crumbled under the fingers. Anchylosis, the last remaining disease of the bones, has been already deseribed under allections of the joints, a lesult mueh to be desired on many occasions; but it has occurred without any marked increased action, as in the extraordinary case of Clark, detailed in the forty-first volume of the Phil. Trans. where all the bones, from the erown of the head to the sole of the foot, were completely soldered together, and whose slicleton is still preserver in the Museum ol the College of Surgeons of Dublin.

This species or variety of wounds has ever been considered an important branch of surgerg, tither in military, naval, or private practice. These wounds are considered by systematic writers to be essentially different from all other kinds of wounds, and to require a different kind of treatment, as mentioned by J. Bell and Mr. (iuthrie; but we content, that they in no degree differ from contused wounds, and demand precisely the same kind of treatment. If a round stone or bullet is thrown from a sling, as in the days of Celsus, with the same velocity with which a musket buflet is fired, it will inflict precisely the same kind of wound; besides, we know there is no difference between the wound inllieted with an air gun, and that exploded with powder. It would appear that the whimsical notions of the writers on surgery before Paré, who conceived that musket bullets were poisonous, still haunt us. it the above be correct, it is easy to apply the same reasoning with respect to all the variety of gunshot wounds, and it consequently follows, that these wounds differ in no degree from contused wounds caused by flones and other foreign bodies, but in the contusion which the rapidity of the projectile produces. When a person is wounded with a musket bullet within half or quarter musket shot, the missile will most probably pass through the body, and there are then two wounds with a long sinuous tube between them; the aperture made by the entrance of the bullet is of a livid ecchymosed colour, is depressed inwards or indented, and smaller and rounder than that made by its exit, which is rugged and Jacerated, having everted edges. These, however, sometimes vary, the exit appearing a mere slit, and in eases where the musket has been close to the wounded person, the entrance is as rugged and everted as the exit; much, therefore, depends on the velocity of the projectile, and the medium of the resisting body. Bullets run most circuitous routes in the body, if their course is diverted by a bone, and the position of the patient when wounded may throw light on this point. Bullets flying with great velocity and striking a part of the body which is clothed, seddom carry the clothes before them; the reverse, however, oceurs if they are nearly spent in their carcer. If, therefore, this projectile has passed through the calf of the leg, or any other fleshy part, there will be fittle or no pain in consequence of the parts
being chemosed, and little or no bleeding, because the blood-vessels are of small diameter and cauterized; but if the bullet is nearly spent, or has been rendered rugged, which is a very common occurrence, there will be some bleeding both from the arteries and veins. The treatment is to confine the patient to bed, and to apply poultices or fomentations to the leg, from the knee downwards, with the view of moderating or subJuing the consequent inflammation, and of restoring the contused part to a healthy condition. The chemosed tube must suppurate and granulate to a certain extent, consequently poultices correspond most with the theories, opinions, principles and practices of all writers, even of Mr. Guthrie, who condemns them. After all inflammation has been subdued and suppuration established, the wound should be syringed with cold water, and simple dressings, and gentle bandaging applied. For the after treatment the reader is referred to ulcers. The diet is to be regrulated according to circumstances. Sometimes only the part which is first struck with the bullet suppurates, being the most contused; while the rest of the tube unites by the first intention. If pieces of the clothes are carried into the wound, and far from either aperture, they should be left alone until suppuration is completely est blished; but if near either of its apertures, they should be extracted. In some cases they are carried before the bullet, so as to resemble a purse, and are then removed with facility along with the bullet. The course of the bulket should, if possible, be ascertained, in order to calculate whether any important artery is wounded, or bone fractured, in which case the patient, by endeavouring to recollect the attitude he was in when wounded, may faciintate our inquiry.

According to the velocity and ruggedness of the missile, will an artery bleed immediately, or at some more remote period; but in the majority of instances, the hemorrhage is primary, and if it be the principal artery of a limb, so mach is instantaneously lost as to produce syncope; if the surgeon is on the spot at the time, a toumiquet should be loosely applied, the artery cut down upon, and secured above and below the wound, but at a little distance from it, to avoid its being involved in the inllammatory action of the wound, which must follow. But if the surgeon is not at hand, and inflammation has begun, a tourniquet must be loosely applied, and an assistant appointed to watch until sloughing and suppuration have taken place; and if then secondary hemorhage consues, the artery must be secured; but secondary bemorrhage is so rare, that not above fone in the 1000 are attacked with it.

In musket-bullet wounds of the hand or foot, the bones of these are generilly fractured, and in the treatment, we must always keep in view, that granshot wounds are more contused than others. The other bones of the extremities when stack with musket-billets, are also very ofen fractured, and commonly splintered, and lequire the same treatmont as drocribed under fractures, bearing in mind that immediate amputation is more necessary in compound fractures lrom gurshot, than from any other eauses. When a musket-bullet runs close
beneath or centrad of the fascia of the arm or leg, it not unfrequently produces erysipelas phlegmonodes, which, besides the treatment already recommended for such, often requires the orifices of the wound to be enlarged. Wounds of the joints generally demand immediate amputation, for such a degree of inflammation and fever with suppuration follow, that the individual sinks under \(i t\), and there is no opportunity for secondary amputation.

When a musket-bullet is arrested in the body, and not situated in the contiguity of a vital or important organ, it ought to be abstracted wherever that is practicable, even if lodged in a bone, and as it generally prevents the wound healing, and produces infammation, suppuration, and sinuses, and may prove an annoyance to the patient in after life, sometimes causing lamencss if situated in the leg. All the bullet forceps and probes invented are of little or no avail, the finger in many cases being only admissible: the limb of the patient should be laid in the attitude in which it was wounded, and the left hand placed opposite the wound, iuto which the fore-finger of the right hand is to be inserted. If this fails, the patient should be requested to move gently the limb in various ways, and the seat of the bullet may by this means be ascertained, and removed, due attention being paid to important objects, for when situated near a large blood-vessel, it ought to be allowed to remain. If the bullet which continues in the body is lodged in cellular or muscular substance, and produces no immediate irritation, a membranous cyst is gradually formed around it, which adheres so close as to be with difficulty detached in a few months afterwards; and when situated close to a bone, the periosteum forms an osseous pouch. Sometimes they gravitate down a limb before becoming thus imbedded, and occasionally excite the formation of abscesses at a later period; at other times they excite so severe a pain that they compel the patient to have them extracted. From the carliest records of surgery there have existed much diversity of opinion and discussion, upon the propriety and manner of extracting bullets and other foreign bodies on the receipt of a wound. With respect to dilatation, it is now an axiom in British military surgery, never to dilate, unless necessity requires it.

Wounds innicted by large shot, named large round, double-headed or bar-shot, grape, camister, langrel, langrage, and shells, only differ from those caused by musket-shot, in the greater destruction of the part, and the more violent constitutional derangement; for in musket-bullet wounds, unless the head, knee-joint or some important organ be injured, there is tritling constitutional derangement on receipl of the wound. In severe wounds from cannon-shol, there is a dreadful concussion of the nervous and circulating systems, the patient has a pallid anxious countenance, a cold clammy skin, a fuble pulse, and most acute pain. In such a condition of the constitution, and supposing the knce-joint the seat of the iajary, amputation cannot be pertermed any more here than in compound fractures of the bones forming this joint; and if the patient has lost much blood, there will be probably
convulsive motions of the limb, and even of the whole body, together with irritability of the stomach, hiccup, wavering of the intellect, and extremely fecble voice, and a pulse scarcely perceptible. These constitutional symptoms, however, are stid by Dr. Quarricr not to be always present. When the patient rallies, which will be alter a longer or shorter time, aecording to the extent and nature of the injury, and the idiosyncracy of his constitution, for no precise period can be mentioned as described by authors on this subject, amputation should be performed. The rallying of the patient is characterized by pain, and a sensation of heat in the wound, a warmth ol the skin, a quickness of the pulse, and thirst. There is another reason against immediate amputation, when the patient has been exposed to external cold after the receipt of the wound, for he then becomes in a measure frost-bitten, and requires to be thawed. On the propriety of immediate amputation, according to the hitherto received idea ol this expression, there has existed much diversity of opinion from the early part of the sixteenth century. Dr. Quarrier and the other medical staff who were at the batte of \(N I_{\text {giers, }}\) consider the expression "inmediate" to apply to amputation performed as soon after the receipt of a wound as possible; while it had been formerly applied to the operation, whenever the system bad rallied from the shock received by the wound, and contradistinguished from amputation performed when suppuration had taken place. The adrocates for primary amputation, or when the constitution has rallied from the shock of the wound, are Du Chesne, Wiseman, Dionis, Le Dran, Ranby, Faure, De la Martiniere, Morand, Van Gescher, Pott, Schmucker, Boy, J. Bell, Dupuytren, Sanson, Begin, Larrey, Graefe, Guthric, Thomson and Hemnen. The advocates for secondary amputation, or when suppuration has taken place, are, Le Come, Boucher, Bagien, Bilguer, Percy, Sabatier, Mehee, and J. Hunter. Drs. Dewar and Quarrier, and Mr. C. Ilutchison, recommend amputation instantaneously after the receipt of the wound, and contend that constitutional symptoms do not take place immediately; indced the latter surgcon treats witt contempt nervous commotion occurring to British seamen or soldiers: so that the only way of reconciling the opposite sentiments of Drs. Dewar, Quarrier, and C. Hutchison, with those of Drs. Hennen and Guthrie, is, that in the navy a man is brought instantaneously after being wounded to the surgeon, before constitutional symptoms have had time to appear, which, says Dr. Hennen, is a much earlier opportunity than any army surgeon can possibly cnjoy; whereas a few minutes at least must elapse before the army surgeon can arrive at the wounded soldier, however flect or active his ambulance may be. It is to be feared this instantaneous amputation was performed indiscriminately in the reign of Louis the XIV., which from its fatality alarmed him and all France. There appears two conditions of the constitution after gronshot wounds, the one wherein no commotion follows, as in the seamen at the battle of Algiers; and the other whercin nervous
apgitation exists, as occurred to the duke of Montebello, narrated by Larrey: that in the former, amputation may be instantaneously performed; while in the latter, some time must be allowed to clapse; and even both Mr. Guthric and Mr. C. Hutchison recommend these methods ol practice. In amputation of the upper or proximal third of the thigh, the operation is allowed by all writers on this subject to be seltom cr ever successful; and many cases are on record of those wounded in this regiondying in a lew minutes, before amputation could be performed.

In gunshot wounds, the brain, the lungs, and the liver are olten injured when the wound is quite remote. Sce Larrey's Account of General Caffarelli, Duke of Monteliello, \&\&. The wind of a ball, as it is termed, is now completely established to depend on the projectile striking the body, but not producing any apparent injury of the skin; many interesting cases of which are related by Schmucker, Mennen, and Cuthric.

Tetanus, which has been already described in the article Menicine, Vol. XIII. p. 16, supervenes more frequently to wounds made by pieces of shell, langrage, and splinters of wood, than any other kind of missiles, and is then termed traumatic. See Larrey's Militery Memoirs, and Sir J. M'Gregor's Observations on the Peninsular War.

Barons lercy and Larrey invented flying ambulanee, that of the latter great surgeon being evidently the better; it consisted in an admirable arrangement of surgeons, assistants, soldiers, officers, instruments, and medicines, all at a moment's command, to afford immediate assistance to the wounded, even while under the fire of the enemy. They followed the advanced guard, and the instant a soldier was wounded, he was dressed, or had his limb amputated on the spot, and then put into a light covered wagon, which conducted him to the hospitals in advance. The number of people attached to each division of ambulance anounted to 113 , and consisted of one staff surgeon, two stafl assistants, twelve assistants, two of the latter of whom did the duty of apothecaries; a licutenant to command the cconomy of the division, but under the orders of the staff surgeon; a sub-lieutenant, who was inspector of the police of this division; a serjeant-major; two serjcants; a trumpeter, who also carried the instruments; twelve horse soldiers, among whom was a farrier, a shoemaker, and a coachmaker; an inferior or deputy commissary; two provision searchers; three corporals; a drummer, who also took charge of the surgery; twentyfive soldiers; twelve light cars or covered wagons capable of being driven on all kinds of ground, with the exception of a very steep hill; four heavier carriages. The light cars were mounted, some on two, and others on four wheels.

In the explosion of gunpowder, an individual is commonly scalded as if with boiling water, but occasionally so severely injured as to be instantly deprived of life. Burns differ in the extent of the surface injured, in the depths of the parts destroyed, and in the vitality of those parts; these three being equally destructive. In cases where
the injury is confined to the integuments, there is no difference between it and that inflicted with boiling water, oil, or lead, or that caused by sliding down a rope from a height, or being grazed by falling from a height along a stonc wall; one and all of these evidenty may be referred to contused wounds, and since they have no mysterious character, require the same kind or mode of treatment; for on no subject of surgery does there exist more contrariety in the treatment, from the high authority of Dr. Thomson to the whimsical doctrines of our worthy citizen Mr. Cleghorn the brewer. Burns or scalds should be treated like contused wounds; and when they become ulcers, like these affections, and if they adrance to mortification, the same as it; for according to the extent of injury do they inflame, suppurate and mortify, and involve the constitution. The practice long pursued in the Greek islands, in America, and now in this country, of enveloping the scalded or burned surface with raw cotton, or the wadding employed in ladies' dresses, is truly an invaluable and soothing remedy. It seems to act by excluding the external air, in the same way as when vesication takes place and left alone, no pain is felt, but whenever the resicle is frecly laid open, the pain is most severe: in vesication, therefore, a small puncture should be made to evacuate the serous fluid. Powdered chalk, and flour out of the cook's dredge box, so ably advocated at present, act on the same principle as the cotton. In extensive scalds or burns, there is generally great prostration of the vital powers, and if the patient rallies, violent reaction follows; occasionally wild delirium and coma; at other times an oppressive difficulty in breathing; in other instances inflammation of the mucous membrane of the alimentary canal, in others, hydrocephalus supervenes. When the grains of gunpowder are lodged in the skin ol the face, they may be removed by a needle. In the healing of extensive burns, great attention should be paid that no unnatural adbesions or contractions of the integuments occur, as the union of the fingers, or of the chin to the neck, or of the latter being twisted to one side. The eye-lids, particularly the lower, is occasionally allowed to adhere to the cheek so as to form ectropium.

Amputation, from amputo, to cul off , is one of the most common, simple, and, however paradoxical, one of the most difficult operations in surgery: for, to execute it scientifically and dexterously, requires a most intimate knowledge of the relation of the arteries to the veins, nerves, and muscles. This operation is performed, when a member of the body is so injured or useless, as to be of no service to the individual, and the :rregeon is placed in a most critical and perplexing situation, and requires a firm mind to decide, whether or not nature, if assisted by art, might not restore the use of the limb, a consideration of such importance to the individual, that amputation ought never to be performed withont the derpest reflection. In priwte practice, there are all the various comforts of lile; but in an hospital, there is extensive suppuration and gran-
grene staring the conscientious operator in the face; on board of ship, there are the inconvenience of the elements to contend with, and the distance from port; and on the field of battle, there is the exposure of the wounded to the inclemencies of the weather, the transportation to a house or hospital, the breaking \(u_{p}\) p of that hospital on the approach of the enemy, and a thousand incidents at once embarrassing and perplexing; so that, too often, the most fixed axioms in surgery are overturned by these fortuitous events. We have already stated under mortification, that gangrene resulting from mechanical causes, or traumatic gangrene, requires amputation: and it may be set down as a general law, to amputate whenever a joint is exposed together with fracture of one or more bones entering into the formation of that joint, or the main artery of a limb so injured as to cut off its circulation, or the limb extensively contused and lacerated: in short, in such a condition, that it is the surgeon's conscientious belief and conviction, that no other means than this will save the limb, or probably the patient's life. But such a variety of opinions exist on these points, that much must be left to the discretion of the surgeon. Compound and mutilated fractures afford other grounds for amputation, and when these injuries occur from musket-bullets or grapeshot, the bone is generally much shattered, and the fracture very oblique; hence in such cases there can be no precise rule. When a limb is torn off by machinery or cannon-shot, amputation is performed, in order to make a clean and neat stump. White swelling of a joint in the last stage, large exostosis of a bone impairing the health by is bulk and weight; ostco-sarcoma attacking the bones of the extremitics; carics and necrosis affecting these bones and injuring the health, or producing luxation of a joint, with anchylosis and deformity, require this operation. Fungus hæmatodes, or medullary sarcoma affecting the extremities, or even other species of sarcoma incapable of extirpation; old ulcers of the leg or arm, affecting the bones or articulations, or producing hectic fever; deformity of a limb itself may require amputation. From these cases it appears, that a limb should be amputated, when there is no prospect of saving it; and when the disease threatens to endanger the patient's life; when the limb is cumbrous and useless, and that its removal would be of essential service to the individual.

In extensively contused and lacerated wounds, in compound fractures, in compound luxations, in cases where the arterial trunk of the limb is destroyed, and where the limb is tom off, amputation should be performed whenever the system has rallied lrom the shock of the injury. lior, at first, the fationt is exhausted, cold and lifeless, and requires some minutes of even hours, before the nervous and circulating systems regain that degree of strength to bear such another shock; becanse in so sreat a dismemberment of the body as a thigh, the patient must be overcome, even mranting that not at drop of blood were spilt. If therelore amputation be performed too early, one shock is added to
another, and the individual is destroyed. When the patient has rallied from the shock of the injury, his skin becomes warmer, the pulse beats stronger, and he complains of thinst; and if this critical period be overlooked, or if the surgeon does not arrive until it is passed, inllammatory action has commenced, and then the operation must be deferred until all indammation is subdued. Afterwards, when suppuration is completely established, and if then there appears no prospect of saving the limb, it should be amputated: and should the inflammatory action run on even to mortification, this operation must also be performed. In cases of caries, necrosis, fungus hamatodes, and lamours of the bones, if the patient has just arrived from a journey, or has any degree of fever, some days of repose should be allowed him before operating. Prior to the use of the ligature, a limb was either cut off with a red hot knife, or the stump seared with a red hot iron or boiling oil; and before Petit's tourniquet was invented, a general circular compression was employed to compress the arteries. Objections are urged against the tourniquet, but if it is properly applied they are fallacious. This instrument, delineated in Fig. 3 of I'late 1) XVII, ought to be always used in amputation, when a large artery is to be divided. A bandage of calico four inches in breadth is firmly rolled up until it is about two inches in diameter, which is to be applied in the course of the artery on the proximal portion of the limb, sufficiently distant from the point where it is to be amputated, and the roller fixed to the limb with a bandage sufficient to surround it; the screw of the tourniquet is then placed on the roller, and the buckle on the outside of the limb. The screw is not to be tightened until the operator has the knife in his hand, in order that the artery and other textures may be compressed for as short a period as possible. The deviation of the superficial femoral artery, which occurred lately to Mr. C. Bell, when securing it for ancurisin, is a satisfactory evidence of the necessity of a tourniquet, and of not trusting to the compression of the artery by means of the fingers of an assistant, who may become agitated or seized with sickness, fainting, cramp, or epilepsy.

There are various ways of performing amputation. In the days of Celsus it was done by the skin being previously retracted, and a circular incision made at once to the bone, from which the solt parts were detached and drawn upwards, and the bone sawn, which in our opinion is the best mode of performing the circular amputation, and, if applicable any where, to the middle of the arm. Paré and Wiseman operated in the same way, but used stitches to the wound, as practised by some modern surgeons, and Wiseman laid aside the use of retractors, which are formed of linen, leather, or tin, to keep the soft parts out of the way of the saw. 'The flap operation below the knee-joint was next invented by Lowdham. J. L. Petit made the double circular incision of the soft parts, the first Lhrough the integuments, the second through the muscles of the bone, after the integoments had been drawn upwards; and this is the method com-
monly adopted when the circular operation is p: ferred. Ravaton mate a circular incision to th bone, then one on the fore part and another on thae back part of the limb upwards or proximad fo: four fingers becadtis detached these flaps from the bone, which he afterwards sawed. Vermale ope rated by transfixion, with a long bistoury, which is the mode followed by Desault, Lisfranc, and others. Various instruments and other invention' were contrived by Verduin and others, to super sede the necessity of ligatures to the divided arie ries, and, strange to tell, some of these are at the present day used in Germany by Dr. Kioch. Mar. quest de La Mothe seems to have been the firs who carefully drew out the arteries fiom the contiguous veins and nerves with the forceps, before securing them with the ligature, and Alanson with the tenaculum. 'Tlie forceps are best for large ar teries, or arteries sarrounded with loose cellula. substance; the tenaculum for small arteries imbed. ded in the muscles, and the curved needle wher the latter are indurated or converted into cartilage Louis invented the division of the loose muscles in the first incision, and in the second those adherent to the bone, a mode much used by those who re commend the circular incision. Allanson, af ter the circular division of the skin and its retraction, attempted to make a circular oblique incision of the muscles upwards or proximad, so that when the bone was sawn, the stump should present a concave cone, the apex being the trun cated bone; but in effecting such a form of stump, he must clearly have deceired himself, for in no other way than by two or three circular sweeps irs succession can a concave cone be accomplished, as is clearly proved by Marten, Richter, Mey, Graefe, and Langenbeck. Yet this mode of forming a concave cone is talked of by the majority of sys. tematic writers. Kirland cut off a piece of skin at each angle to prevent puckering.

Ilaving made these observations on the different modes of amputation hitherto in use, we shall describe that practised by ourselves, to illustrate which the thigh is selected, that being the extremity to which the preceding modes chiefly apply. The patient being placed as usual on a low firm table, with the leg held by an assistant, and the tourniquet applied as directed, the operator stands on the left side of the patient, and when all is prepared, the screw of the tourniquet is tightened, and the operator with the knife delineated in Fig. 2 of Plate DXVI. makes a lateral incision nearly transversely to the bone on the outer or fibular aspect of the thigh, its direction pointing a littie obliquely upwards or proximad, as represented in Fig. 3 of Plate DXVII. then with the same sweep of the knife he cuts upwards or proximad along the same side of the bone, to an extent equal to the diameter of the limb; then an assistant takes hold of this flap when cut, and a corresponding flap is then made, on the inner or tibial side of the thigh, which is also helt by the assistant, who now gently retracts them both, since, if any bleeding occurs, he can thus easily command it. The sur. geon then divests the bone of any muscular fibres at the root of these flaps, and saws it. The arte
ries are next secured and both ends of the ligatures cut off. Whenever the trunk of the femoral artery is secured, the tourniquet should be suddenly slackened, to enable the operator to find the smaller branches, and may be tightened againor not, as necessity requires. The instant all the arteries are secured, it should be completely loosened. The wound is then cleaned with warm water, and il the weather be sultry, and the patient flabby, it should be afterwards sponged with cold water. In summer, the wound should be stitched, and no bandage applied; while in winter, a roller is brought loosely down along the thigh from the loins until the near end of the bone, when the flaps are approximated by adhesive straps, the wound covered slightly with two picces of lint placed across, and the roller. continued down to the end of the stump, and afterwards a little upwards. With the tourniquet loose aromed the limb, the patient is carried to bed, the stump placed on a pillow, and left uncovered, and a draught containing 50 drops of laudanum given. A diagram, representative of this mode of operating, is given in Fig. 3, Plate DXVII. This mode of operating seldom requires more than thirty scconds, and is preferable to transfixion, on the following grounds:-The flaps are more easily made, are fuller and thicker, and can be lengthened, if they appear too short, after the same manner of incision, and a third fap can scarcely occur. When sawing a bone, the saw should be swept lightly from heel to point, and no weight or pressure whatever used. In all operations the patient should take a dose of physic the preceding day, and after amputation, he is to be kept quiet, on low diet, with an assistant at his bed side for at least thirty hours, in ease of primary hemorrhage. As for secondary hemorrhage, we have seen it vary from two to thirty days. When hemorrhage occurs, the bandage should be examined, and ill lound in the least degree tight, ought to be instantly loosened, as pressure is very liable to check the cutaneous venous circulation, and thus produce venous hemorrage; and this occasionally arises not from the bandage being applied too tight at first, but from the wound becoming tumefied. If the slackening of the bandage does not stem the bleeding, and the latter appears to be trifling, cold water, with a little vinegar in it, should be used; but if profuse, or not stopt by this means, the wound must be opened, and the bleeding arterics secured with ligatures, or sponge applied in the form of compression. If the bleeding takes place within the first two or three days after the operation, it is then from small arteries, but il afterwards, it is most probably from the trunk, in which latter case, the artery high up in the thigh must be secured, a plan superior to another or secondary amputation, as recommended by some authors. Spasmodic action of the muscles sometimes occurs to such a degree, as to require the stump to be fastened down to the mattress by a broad strap, and large opiates administered internally. Inflammatory fever occasionally supervenes, and requites active treatment, even in the emaciated constitution. As suppuration results in forty-eight hours, the wound
should be dressed on the third day after the operation in summer, and fourth in winter, and not deferred until the eighth, as recommended by some. The straps of adhesive plaster should be most carefully removed at both ends, and one substituted before another is detached, and the clean bandage rolled downwards to the end of the bone, before their reapplication. Unctuous dressings are to be applied. Warm water ought to be injected into the wound, if there are any cysts or abscesses, and should be gradually reduced to the ordinary cool temperature, at each daily dressing. The diet should be moderate, as long as there is any increased action, and ought to be carefully augmented, but if the suppuration be profuse, it may then be nourishing. In amputation of so large a member as that of the thigh, the patient should be kept in the borizontal position, for at least a fortnight, and even then be allowed very little exrertion. If bleeding has occurred after the operation, and so filled the wound that its lips are opened, and the bone has been deprived of its periosteum during the operation, there will not only be protrusion of it, but death of the bone. If the latter be the case, the protruded portion should at once be sawn off, and if the former, or simple protrusion, this step must be left to the discretion of the surgeon. We would recommend the same little operation to be at once adopted. After amputation, the patient should walk upon crutches for at least six months, before attempting to walk upon a wooden or cork leg, in order that the stump may be thoroughly consolidated and strong. Our limits will not permit us to give a description of the individual amputations; for them the reader is referred to Lizars's Anatomical Plates.

Incised wounds are made with a clean sharp instrument, although a very blunt one, by no means clean, when moved with velocity, may intict a very cleanly incised wound. Whatever be the extent of such wounds, they are to be gently approximated with adhesive straps, compress, and bandage; but so prone is the scalp to inflammation, which generally assumes the erysipelatous type, that even the adhesive strap is occasionally inadmissible. In such cases, either poultices alone or combined with the strap are to be applied. In every case, more or less internal excitement is to be dreaded, so that the patient should remain quiet, on moderate diet, and pay attention to his bowels, and il the leat degree of headach follows, venesection ought to be performed. In injuries of the head, blood-letting should be prescribed with as much freedom as a dose of salts.

In lacerated wounds, whatever may be their extent, and however insulated may be the scalp, the part, if passible, shonld be preserved. This plan was followed in the time of Celsus, but went into desuctude until Paré revived it, and again was laid aside until the day of La Motte, lor in the Hotel Dieu the lacerated sca!p was dissected off by Petit and others. Cases of prodigions portions of the scalp, which had been torn off and reunited, are to be found in the works ol' Paré, La Motte, Hill, Pott, J. Bell, and Abernethy. In all cases of lacerated
scalp, the whole hair of the head is to be shaved off, and the portion which is tom to be cleansed of blood and dirt, and carefully replaced, and retained in position by adbesive strups, gentle compression and bandage, or a handkerchiel. The latter, when folded triangular, is named ketchrf or couvrechef, when folded separe and applied, is termed grand courechef. Poulsices, although condemand by some writers, will be lound of much more service than cold lotions in those eases where inflammation of the scalp takes place. In lacerated womeds, there is always such a degree of injury done to the bone or its contents, that we must keep in view the most active antiphlogistic treatment. Wounds of the scalp are lully more dangerous than those of the brain, so that even after the wound is healed, the most rigid attention should be paid to diet and the bowels, and all exciting causes avoided for some time to come. Suppuration is very frequently consequent on this injury, and the matter requires to be most frecty evacuated. Occasionally portions of the scalp slough, and require removal, but never until the part has completely sphacelated.

The same treatment is to be adopted in contused wounds, accompanied with laceration of the scalp, or lacerated wounds attended with contusion. In the latter case, we must anticipate suppuration and sphacelation, and poultices are more necessary. Lacerated and contused wounds frequently lay the foundation ol suppuration of the membranes of the brain, and teven of the brain itself.

Punctured wounds of the integuments of the cranium are subdivided by Pott and the majority of surgical writers, into those of the cutis, of the subcutaneous cellular tissue, the tendon of the occipitoliontalis, and the pericranium, and they have attempted to assign symptoms characteristic of each, with an appropriate reatment, "opinion évidemment née des applications anatomiques," says Desault, "plutôt que de l'observation de la nature." And with equal truth, says J. Bell, "the integuments of the skull are essemtially comected as a whole, having one continuous circulation, and having their disease in common." In punctured wounds, therefore, the re is commonly erysipelatous inflammation, with more or less alfection of the brain and its membranes, accompanied with general fever, in which the hepatic and gasuic organs are affected. The treatment consists in general and local blood-letting, leeches being applied to the parts adjoining the wound, and the temporal artery, or external jugular vein should be opened ; fomentations and poultices afterwards to the scalp, brisk cathartics, warmath to the feet, blisters to the nape of the neck, low diet, and confinement to bed in a darkened ehamber. If there be moch tension around the wound, the expansive teudon of the occipitofrontalis muscle should be divided transversely; and it may be even advisable to take into consideration the propriety of making several incisions in the erysipelatous scalp, as mentioned under erysipelas phlegmonodes. When suppuration follows punctured wounds of the scalp, free incisions ought to be made to evacuate the matter, which, on some occasions descends to the eye-lids, and even beneath
the fascia of the temporal muscle down to the mouth.

The integuments of the cranium are frequently so bruised by a blow, that the blood is injected chiefly into the cellular tissuc, berween the cutis and occi-pito-frontalis muscle, communicating to the fingers ol the surgeon the leeling as il a portion of the bone was depressed; whereas 18 is mere ecelymosis, or, suggillation, according to J. Bell. 'rhere is a tumour commonly the size of a crown-piece, hard in its circumference, Irom the cellular tissuc injected with extravasated blood, which gradually declines towards the centre, where the bone is distinctly felt through the blood, which here renains fuid. In such cases, all that should be done, is either to leave this blood to be absorbed by the vessels, or to apply warm disentients. If a considerable quantity of blood is effused, it is liable to destroy the connection of the pericranium with the bone, and even the bone itsell; therefore, all such cases should be carefully watched, and if the effused lluid does not diminish in a few days, but commues to increase, or begins to excite bedacin, \&c. a puncture should be made to evacuate it, and the condition of the bone examined. Seecases detailed by Hill and J. Bell.

When a blow is inllicted on the head so as to stun the individual for a time, it frequenty lays the foundation for irreparable evil. In a short while, he recovers his faculties and pursues his ordinary occupations for a week or two, when he begins to complain of headach, listlessness, thirst, loathing of lood and nausea, passes restless nights, feels his face flushed, his eycs tender, swollen and watery, with contracted pupils, and which lieel pained on looking at the light of a candle or a fire. He is attacked with rigors, cannot articulate distinctly, his tongue quivers and will not obey the voluntary powers. A small tumour appears where the blow was inflicted, feels tender on pressute, which, if severe, produces a convulsive action. He now becomes despondent, peevisl, fretful, oppressed and sick during the day, muttering to himself in a lethargic state, and when roused, appears stupid, immediately relapsing into the same comatose condition. 'The pulse is quick, feeble and hard, the tongue foul, the skin dry with flushed countenance, and red gummy swollen watery eyes, the urine scanty and high-coloured, the hands and the tongue tremble, the bowels are constipated, and during the night he is delirious. He then becomes comatose, has a dilated pupil, occasionally stertorous breathing, delirium, and sometimes convulsions, when death closes the scene. On disscction, the puffy tumour contains a sanious fluid, the pericranium is separated from the bone, the latter of which is of a white colour, and has a dry appearance, no bloodvessels being present. Underneath the bone, matter is also deposited, and the dura mater separated from the bone is ulcerated, presenting a diriy yel. lowish green colour, while the brain itself is soft and also ulcerated. These fatal effects are all at tributable to the bone in the first instance baving been so contused, that its circulation is destroyed, the pericranium and dura mater separated from it , a slow degree of inflammation is excited,
which terminates in suppuration. The death of the jone sometimes follows lacerated, contused, and punctured wounds of the scalp, as proved in J. Bell's Principles of Surgery. It is only when the bone is contused that such fatal events occur, for otherwise it is very tenacious of life, being highly vascular, and having three sources of nourishment, the vessels of the pericranium, those of the diploe, and those of the duramater; and when cut and replaced, readily unites. The dura mater is a sero-fibrous membrane possessing little or no sensibility, for acids and cauteries have been applied without producing pain, and like bone enters slowly into inflammatory action, but then that action is with greater difficulty checked. These insidious symptoms are by no means regular in the period of their occurrence after an injury, varying from weeks to months; but whenever any of them do present themselves, we should instantly take alarm and apprehend the most dismal conseguences, for too often the patient is beyond the reach of help. The most diagnostic symptom is the rigors, which are occasionally very slight; we are therefore immediately to confue our patient to bed, and pursue the most active antiphlogistic treatment. And if the insidious inflammatory symptoms are not subdued by such means, but on the contrary becomes comatose with rigors, with or without a puffy tumour, the operation of trephining should be performed, in order to give exit to the matter: for a puffy tumour is not always present to guide us. See Abernethy's Surgical Iforks, vol. ii. p. 27.

The patient ourlit to be laid on a low firm table, \(\therefore\) ith the head on a thin pillow; a tripod or erucial incision is then to be made through the integuments forming this puffy tumour, the contents of which are foul and sanious, and the bone dry and of a yellowish white tinge; the crown of the trephine represented in Fig. 17 of Plate DXV. is then applied to this dead bone, with the central pin elongated, and cautiously and lightly worked with semicireular turns, first standing on the one side of the table and then on the other, until the teeth of the saw have made a distinct circular groove. The central pin is then to be retired and fixed, and the crown of the arphine cautiously turned in the same manner, examining very frequenty the depth to which the instrument has sawn, with a quill cut like a pen, and brushing away the dry and bloodless dust from the teeth of the instrument and the groove in the bone. If the groove be attentively examined, the ineguality of the bone may be observed, and whenever one point appears sawn through the outer table, diploe, and the least of the inner table, the elevator delinrated in Fig. 18 of Plate 1)XV, should be tried. The operator must then saw those points of bone which remain cotire with short tirns, and use the clevator from time to time. If the circular dise remains, it is to be remosed with the forecps. If any spiculx of bone remain so as to injure the dutit mater, they are to be bemoved with the elevator, but the surgeon should not be too lastidious about these spiculae. Some use a perforator before applying the crown of the trephine, but this is seldom necesary. As this operation is generally done on pa-
tients in an insensible state, and as it is attended with the greatest danger, there is no cause for expedition. It is one of the operations in surgery whose success depends more on cautious delay than celerity. After the removal of the circular disc, the dura mater will be found coated witt: matter green and ulcerated, and if the matter does not exude out at the trepan hole, it ought to be gently syringed with warm water; and if no relief whatever has been obtained, but the symptoms still continue, this membrane should be freely incised across with a bistoury; and even then, if the symptoms are not sensibly alleviated, an incision ought to be made into the brain itself. "Melius esse experir remedium anceps quam mullum;" or "can the surgeon be said to destroy by his operation, a patient who is declared past all hope?" For confurmation of this practice, the reader is referred to Hill's Cases in Surgery, and to the Lancet, No. 117; also to Wiseman's and J. Bell's works.

The repetition of the operation of trephining is now never adopted, as was proposed by Lassus, and perlormed on the Count of Nassau in King William's wars no less than twenty-seven times; but it may be done on any part of the cranium within reach; the superior longitudinal sinus and other objects forming no interdicted points, as in the days of the ancients, but only points of caution. On some rare occasions, blood and even pus have been found effused in the diploe. See J. Bell's Principles of Sursery, vol. ii. p. 431. After the operation of trepaning the patient should be bled and treated antiphlogistically, and for months afterwards he ought to avoid all exciting causes. The flaps of the integuments are to be put ciown and managed lightly with simple dressings. Suppuration of the dura mater occurs in caries of the frontal and parictal bones in corona veneris, and even sometimes spontaneously, as exemplified in the case detailed in Abernethy's Surgical Forks, vol. ii. p. 108. Blows or contusions of the eranium produce sometimes only an exfoliation of the bone, which, though slow in its progress, never is free from danger. It has been proposed to replace the circular dise, but this is perlectly inadmissible in disease.

After the operation of trepaning, phrenitis is a common occurrence, and hence the reason of directing bloodletting after this operation on all occasions; for the nature and treatment of this affection, the reader is relerred to the article Medicine, p. 720; and we have only to observe that we prefer arteriotomy to phlebotomy, apply cold cloths to the head and warmth to the leet, blisters to the nape of the neek, but never to the crown of the head, and that it is very difficult to produce syncope itl affections of the brain. Acute inflammation of the brain, if neglected, gencrally soon terminates fatally, either by general effiusion between the arachnoid membranc, and pia mater, and into the rentricles; or by effusion of coagulable lymph, or suppuration of the tunica arachnoides and pia mater. But cases are detaiked ol its terminating in bood and even gangrene.

After this operation, also, if the dura mater be
mjured, a fungous growth of the brain sometimes shoots forth, termed hernia, or liungus cerebri, which excrescence depends both upon a healthy and diseased condition of the brain; springing up with surprising rapitlity in the latter state of this organ. 'This fungous growth is also consequent on fracture of the cranium with depression, wounding the dura mater, or on ulceration of the dura mater, or on concussion of the brail. For an example of hernia cerebri arising in a healthy condition of the brain, the reader is referred to Hey's Pract. Observ. in Surgery, case ol Boy Topham; and for cases depending on a diseased condition of the organ, to Hill's Cases in Surgery, J. Bell's Principles of Surgery; Abernethy's Surgical Works, Hennen's Military Surgery, and 'Thomson's Report on Belgium. In the heathy condition, the pia mater is wounded, and the tumour has the natural appearance of the brain, merely more vascular, and is evidently analogous to fungous or exuberant granulations of other parts of the body; while in the diseased, it is generally of a grayish colour with coagulated blood, and a turbid serous fluid around, and strangulated at its root, and resembles fungus hxmatodes of other textures. In the latter, it is preceled and accompanicd by more or less stupor, slowness of pulse, dilatation of the pupils, slight strabismus, and paralytic affection of the mouth, the symptoms in many cases precisely resembling those of compressed brain; and in some instances, by symptoms of inflamed membranes of the brain, and particularly delirium. The treatment of this tumour by the authors referred to is very variable, but what we have lound most beneficial is the lree use of the lancet to remove the cause, and whenever the fungus appears above the level of the surface of the brain, to pare it off with the scalpel, and apply the most light and gentle dressings possible; to evacuate any matter lodged beneath the tumour; to remove all cause of strangulation at its root; to put the patient on low diet, in a darkened chamber, and to keep his bowels very open. If hemorrhage occur, exposure of the surface to the air generally checks it, otherwise the actual cautery should be applied: the blecding is generally more beneficial than injurious. In the fungus originating from a lealthy state of the brain, low diet, open bowels, perfect rest and cutting off the luxuriant growth, almost always succeed; but if it continues to sprout forth, bloodletting should be adopted.

Compression of the brain may be produced by the effusion of matter, blood and water, ol serum; by the congestion of blood in the vessels, and by depression of the bone. This state of the brain is indicated by loss of sense and voluntary motion, the individual being unable to move a limb, being blind, deaf, dumb, and without the faculty of smelling or tasting; a slow heavy pulse, stertorous breathing, and dilated pupils, because the fountain or centre of nervous energy is suspencled in its function. The depression of the bone is always the result of external injury, and is of a greater or less extent, according to the severity of the hlow. Simple fractures of the criaium are in themselves productive
of no evil, and occasionally take place on the opposite side of the bead to that where the blow was inficted, and sometimes produce a circular fracture of the cutire cranium, aurl are ofien the cause of hemorrhage and intlammation. When a fracture occurs in the base of the craniam, some of the bloodvessels are generally woundet, producing extravasation, that leads to latal events, and not unfrequently blood issues from both the mostrils and ears. When the lrontal sinuses are simply lractured, and the nose blown, the air escapes into the cellular substance of the forchead, rendering it emphysematous.

Depression of the bone is more or less serious, according to the depth of depression, and the spiculx into which the bone has been broken. Our guide in the treatment ol depressed bone should be the symptoms of compression of the brain, for there are numerous cases on record in the works of Wiseman, Platner, Turner, Desault, Llill, J. Bell, Abernethy, Hennen, and Thomson, where patients have recovered without the operation of trepan, especially among young people. As long, theretore, as there are no urgent symptoms of compressed brain, so long there can be no necessity for trephining, but merely strict and active amiphlogistic treatment, and by which mode of delag, the aggravation attendant on the operation is avoided.-"Si nulla mala indicia sunt, modioli usus supervacuus est." "It is remarked, that in times of war and trouble, when men are not allowed to take care of their wounds, those who are least cared for are soonest cured; and a man who is forced to wrapa clout about his head and ride for his life, is safer than one who is chambered up, dieted, and dressed, and perhaps trepanned by the surgeon." Cases have occurred where the trephine was about to be applied to a depressed hone, when the patient has awoke from the stun of the blow. The depression frequently extends only to the inner table of the skull. There are some exceptions, however, to this general rule of the nonemployment of the trephine; thus, for example, when the bone is injured with a sharp-pointed instrument, as a mason's chisel or a spike of an iron railing, the spiculx project in such a mauner inwards upon the brain, as to require a large crown of a trephine to encircle and remove the whole: this is termed the punctured fracture. Secondly, if the bone be so indented as to afford every reason to believe there are spiculæ projecting inwards, it is also proper. Thirclly, the application of the trephine is also considered by some indispensable in compound fracture, and in the camerated fracture of the ancients, but unless spicule are supposed to be formed, there are no just grounds for such an operation; since the antiphlogistic treatment is sufficient. When the trephine is used in depressed bone, the centre pin of the instrument must rest on the sound portion of the cranium, white a little less than the half of the circle includes the depressed portion: previously however to its application, a tripod incision of the scalp is made, and the scalp dissected back from the pericranium, the latter of which being easily cut with the teeth of the saw, forms no impediment to its operation. Having re-
moved a portion of the sound cranium with the trephine, the elevator is inserted beneath the depressed portion, and steadily elevated. From this it will at once appear evident, that the trephine should be applied to that portion of the sound cranium opposite to the most depressed and loose portion. Hey's saw, depicted in Fig. 19 of Plate DXV. is oftener employed to remove a sound part of the bone, so as to allow the elevator to be used, because a smaller portion can be taken away with it, and it can even be applied to the depressed portion; all spiculæ or fragments must be carefully picked away. The remaining steps of this operation have been already detailed. In some instances of depressed bone, even Hey's saw is not necessary, there being sufficient space to use the elevator. A case is related by Sir A. Cooper, of a man who remained comatose for thirteen months, in consequence of depressed bone, and who was then trephined and recovered.

When symptoms of compression of the brain are produced by extravasion of blood, there is generally an interval of sense between the receipt of the injury and the insensibility occasioned by the effusion of the blood, and commonly some degree of sweliing of the scalp; but in otlier cases, the individual lies in a state of stupor from the first, and there is no mark or trace where the effusion has taken place, or whether he be not in a state of concussion; white in others again, only one or more symptoms of compression present themselves. Sometimes the bloodvessels of the dura mater are ruptured, at other times those of the brain; hence, the effusion of the blood may either be between the cranium and dura mater; the dura mater and arachnoid membrane; the arachnoid membrane and pia mater; in the mec!ullary substance of the brain, or in the ventricles. The first of these is more or less circumscribed; and when it occurs at the basis of the cranium is generally fatal. When between the dura mater and arachnoid membrane, the blood is extensively diffused, so that unless the quantity be great, there is no marked degree of pressure. It is also widely extravasated when situated between the arachnoid membrane and pia mater, one of its most common seats, and does not produce much pressure, unless the quantity be considerable. When effused in the medullary substance of the ventricles, it is circumscribed, and resembles that effused in apoplexy. In some rare cases, blood has been extravasated at once in all of these places. In the treatment of this affection, when the blow has been severc, and the patient lies in a state of stupor from the begiming, we can only use the lancet, and watch the progress of the symptoms, and il these continue clearly indirating compression, apply the trephine. It the blow has not stunned the patient, bloodletting nevertheless should be had recourse to, as it may clacek the further effusion of blood, and prevent inllammation succeeding. If the patient recovers liom the insensibility which is occasioned by the blow, and again relapses into stupor, the trephine should be instantly applied. If there be no tumefaction of the scalp to denote the seat of the injury, the instrument must be applied in the region of one of the meningeal arteries, where it imprints the anterior
inferior angle of the parietal bone, being there commonly encased in a bony canal, and consequently very liable to be ruptured either from the unyielding nature of the bone, or from fracture of this delicate osseous channel. If no extravasated blood be found on the side we have trephined, there is no other alternative than the applying of the instrument to the opposite side; and even then the blood may be effused in the basis of the cranium. If no blood be found between the bone and dura mater. but the latter appears purplish, it is probable the fluid is effused between the arachnoid membrane and pia mater, and in such an event we appear justified in puncturing these membranes, in order to give exit to the blood, although it is commonly so extensively diffused, that it either proves fatal by compression, or by indueing inflammation. Cases are on record where both sides of the cranium required to be trephined, the first operation removing only one clot of extravasation, and symptoms of compression still continuing until the opposite was removed. No reliance should be placed on the condition of the bone, as inculcated by some writers; it is of no moment whether the bone be dry or bleed, for its circulation may be carried on for a time by the vessels of the diploe.

Concussion is that state of the brain which results from a fall or blow, wherein its particles are so agitated, and its minute vessels so injured, that symptoms of compression are more or less cridenced; for if the violence of the concussion produce lesion of the medullary fibres or globules, and extravasion of blood, as was observed in dissections by Sir A. Cooper, the same train of symptoms must take place in concussion as in compression. Port, Desault, and Bichat assert, that concussion and compression are lirequently evinced by the same symptoms. In the majority of cases, the patient lies comatose, but still feels when his skin is pinched; the pulse is slow and intermitting; the breathing laborious without stertor; the pupils in some degree dilated; and the extremities cold. If not attended to, he remains for some time in this state, and either falls a vicim, or becomes paralytic, or is attacked with inflammation of the brain, which may be said in such a case to be beyond the power of art. Inflammation is the most freguent consequence, and there often oceurs a longer or shorter interval between the state of oppression, and that of excitement, which have been divided by Mr. Abernethy into three stages, but such a division is seldom verified in nature, and has led to erroneous practice. The treatment of concussion is by active and strict antiphlogistic means from the very beginning; copious bloodletting at this early period is supported by Sir A. Cooper's dissections, and by his own scientific practice, and also by that of Pott, Boyer, J. Bell, Abernethy, and Hennen. Broomfield, B. Bell, and Allan recommend cordials. The most characteristic symptom of concussion, is that degree of sensibility even in a comatose state, and which resembles somnambulism, some extraordinary and diverting cases of which are related by Sir A. Cooper. Concussion occasionally co-exists with extravasion of blood, the former preceding tha latter; and so
also do compression and concussion. The symptoms set down as indicating either of these conditions of the brain, are far from being conclusive, as is candidly acknowledged by many experienced surgeons. Convulsions and paralysis are frequently consequent on these affections of the brain.

In injuries of the brain, there occasionally exist some remarkable peculiarities in the symptoms, "those in the pulse are related in Latta's Surgery and Hennen's Military Surgery; those of the memory in the latter work, and in Larrey's Memoirs of Military Surgery and Sir A. Cooper's Lectures; those of the stomach and liver, by Bertrandi, in Memoirs of the French Academy of Surgery, vol. iii. in Pouteau's Works, Desault's Works, J. Bell's I'rinciples of Surgery, Richerand's Nosographic Chirurgicale, IIennen's Military Surgery, and Rose's Observations upon Depositions of Pus and Lymph; but it is doubtful il these visceral sequences are not the result of confinement.- See Ldinburgh Anmual Regrister for 1822.

Acute inllammation of the brain generally soon ends fatally, either by general effusion between the arachnoid membrane and pia mater, and also into the ventricles; or by effusion of coagulable lympth; or by suppuration of the arachnoides and pia mater. Gangrene and blood are said by Bursarius, Riverius, J. Bell and others, to be also terminations. The first of these constitutes acute hydrocephalus, which prevails both in the child and in the adult, and originates Irom many causes; and when it is cvident that effusion has taken place, there is no hopes of relief but by an operation, however faint that hope may be; for no medicine as yet discovered can remove the effused Huid. The operation must be performed early if at all, and ought to be repeated on any appearance of re-accumulation of the fluid. In all cases where the symptoms have crept on gradually and insidiously, the water is found effused solely in the ventricles; while, where the symptoms have been rapid, the effusion has taken place, both within the cavitics and on the surface of the brain; because in the latter it produces compression more suddenly, for it is only when the whole brain is acted on by the general pressure of the fluid, that its functions are paralyzed or destroyed. Chronic hydrocephalus, from being generally congenital, and from the cavity in which the fluid is contained being invested with an epithelium, resembling coagulable lymph, there is less chance of success. In infancy the operation is performed with a small trocar and canula, which is carefully plunged into one of the lateral ventricles, at one of the lateral corners of the anterior fontanelle. After the closure of this fontanelle, especially when the bone has become ossified, a small trephine is required to remove a circular portion of the bone, before having recourse to the trocar and canula. In those cases however, where the fluid is effused between the arachnoid membrane and pia mater, and at the same time into the ventricles, the mere puncturing of the arachnoid membrane with a lancet will evacuate the fluid, in consequence of the frec communication inferior or basilad to the velum interpositum Halleri. For an account of hydro-
cephalus, the reader is referred to the article MeDicine, to Eilin. Med. and Surg. Journal, vols. xv. and xvi; and Medico-Chirur. Review, vol. vii. No. 21.

Chronic Hydrocephalus occurs also between the dura mater and arachnoid membranc, as lately proved by the dissection of a patient in Guy's Hospital. 'The fluid sometimes appears through a foramen of the cranium from a deficiency in the bone, and forms a cumour, whose sac consists of the dura mater and integuments. "This has been termed spina bilida; ahough spina bilida or hydro-rachitis literally applies to a discase of the spine, and consists of a mallormation of the osscous canal, the spinal cord and its membranes; the bone being deficient in few or more of its spinous processes and arches, the membrancs with the integuments forming a pouch, which contains either the corl itself or the nerves, together with serous effusion. The fluid only occasionally communicates with the ventrictes of the brailt, and is preciscly analogous to congenital hydrocephalus. Children seldom live for many years under this affection, but there is on record a person who survived until twenty years of age. This clisease generally occurs in the lumbar or sacral region, but has been observed also in the dorsal and cervical, and in one instance the spinous processes were deficient the whole length of the column. Sometimes there is a double cyst. In consequence of the effused lluid pressing upon the neryes, there is involuntary passage of the feces and urime, and this is instantancously produced, together with occasional convalsions, by external pressure on the tumour; and in the worst cazcs paralysis of the lower extremities is present. 'The treatuent is by puncturing the tumour with a fine needle, previoasly drawing upwards the skin that it may act as a valve; and whenever the water collects, removing the fluid, but never the whole quantity at once, as it is liable by producing a collapse to prove fatal. Between the intervals gentle pressure should be applied. Caustic and ligature have proved fatal. Apoplexy has been already treated of under Medicine, Vol. Xlli. p. 11 . 'l'he reader is also referred to Abernethy's Surgical Works, to J. Bell's Principles of Surgery, and to 1)r. Armstrong's Lcctures, for further information on this interesting disease. Paralysis or palsy has been also described under Medicine.

Besides the diseases of the brain already enumerated, there are several diseased secretions, such as calcareous depositions, scrofulous tumours and abscesses, and globular vascular lumours, sonc of which are evidently scirrhous, and all of which are described by Platerus, Bonetis, Baader, Anderson, J. Bell, Bateman, Iellowly, and Baillic. These tumours produce acute or obtuse pain of the head, either constant or intermitting; occasionally the pupils appear dilated with more or less strabismus; now and then convulsire or cpileptic fits, commonly transitory; and not unfrequently paralysis of one or more extremities: and in the last stage, symptoms of compression. In most cases the side opposite to the tumour is affected with paralysis, according to a principle generally prevalent in effusion of 4 B ~
blood or matter in the brain. When these tumours are situated in the region of the optic nerves, vision is impaired; when on the tuber annulare or medulla oblongata, convulsions manifest themselves. Such tumours are beyond the reach of surgery. Fungoid tumours occasionally grow from the dura mater, in consequence of the latter being injured in a general concussion of the brain, and of then healing apart from the cranium, which is absorbed by the pressure, and allows the fungus to protrude. These tumours are also generated when the cranium is rendered carious, and the dura mater separates slowly from the bone. They excite either epilepsy, or palsy, in which the bone remains firm, and forms a resistance to the tumour; and when pressed upon, pain, tremols, and convulsions are excited. Instances are detailed by Baader, Sivert, Le Grand, Chopart, Marignes, Hill, and J. Bell. These tumours when opened, immediately prove fatal, so that the patient's sufferings can only be palliated. In the Edin. Medico-Chir. Trans. vol. iii, an interesting case is described by Dr. Stewart, Physician to the Forces. These tumours seemed to originate in the diploe. The air of particular countries and hospitals has been considered to be more prejudicial to injuries of the head than other wounds, by Lusitani, Phioravanti, Donatus, Saviard, La Motte, Petit and Desault; but this is evidently to be ascribed to the importance of the organ injured. The rapid putrefaction of those who die of such affections is also taken notice of, which is to be accounted for, by the centre of the nervous energy being injured in its organization.

The ear is subject to many discases which are commonly left to the aurist. The auricle is affected in carly life particularly with a herpetic ulceration, which sometimes spreads over the scalp, prorlucing tinea capitis, and is to be treated in the same manner, preceding \(\mathbf{i t}\), howescr, with anodyne fomentations and poultices, until all inflammatory action is sublued. The cerumen of the auditory tube is sometimes too copious, and slightly impairs the hearing. and is readily chocked with the same astringent lotions and eintments, as mentioned under tinea capitis, together with a blister behind the auricle. When the secretion of the cerumen is scanty, dealiness is occasionally the result, and is to be womedied by clectricity gently administered, and an ointment of iodine applied at bed time, and washed away in the morning with soap and water. Chidren ofieninsert pease and other foreign bodies into the atuditory tubs, the removal of which, athough tedions, way be accomplished by a common prebe, having the eyedend bent. When cotton or wool has been inserted in the tube, and allowed to remain surrounded with corumen sometimes for reals, dealness is gradually produced, in which rase the cerumen becomes excecdingly hard, and should be soltened with oil of olives for six or eightsighes, belore attempting to remove it by syringing the car with wam water and soap. Various inseets sommimes get into the tube, and protuce a terifice noise rescmbling thumder, and occasionally convalsions. They are
easily killed by dropping oil of olives into the ear, or a decoction of tobacco, and afterwards, il small, syringed out, and if large, removed with the forceps or probe. These various objects are easily discovered by means of Buchanan, Le Roy or Segala's speculum, delineated in Fig. 25, Plate DXVI., or simply by placing the ear affected in the rays of the sun, and taking hold of the auricle with the thumb and forefinger, and gently raising or elongating it.

Polypus not unfrequently grows from either the sides of the tube or the membrane of the tympanum, impairing the hearing, and sometimes destroying the membrane, the tympanic cavity, and extending its irritation to the dura mater and proving fatal. It generally produces a copious discharge of fœtid matter from the tube; and is to be treated as Polypus in the nose, with fully more caution, as they are liable to excite inflammation and suppuration of the dura mater and prove fatal. Children are seldom born with a septum shutting up the auditory tube, but when such occurs, it ought first to be punctured with a very small trocar, for it might be the membrana tympani; and if found to be an adventitious septum, it ought to be cnlirely remored with forceps and knife or scissors. The membrana tympani is sometimes so relaxed that it cannot ruceive the aerial impulsions, and hence more or less deafness results; and is to be treated with electricity and the iodine ointment. It is sometimes ruptured from blowing the nose too forcibiy; and occasionally thickened after measles and other acute diseases, and likewise in syphilis; when it is consequent on measles, \&c. clectricity and iodine ointment are applied to the tube, with blisters or moxas around the root of the auricle. When it occurs in the syphilitic constitution, these are to be combined with mercury, \&c. The threads of the facial nerve supplying the ear and the chorda tympani are subject to neuralgia, which is here termed otalgia, and is to be treated in the same way. If dependent on a carious tooth, this should be extracted, and a decoction of tobacco dropped into the tube. The Eustachian tube becomes obstructed from many causes, some of which are mentioned under diseases ol the nose; it is easily distinguished by making the patient shut his mouth and compress his nostrils, while be attempts to breathe through the latter with a sentle force, when, if the qube be pervious, the air will rush along it, and cause a crackling sound of the membrana tympani, whereas, il the tube be shut up, no sound is heard; also, by putting a watch between his tecth, when its sound will be heard if the auditory nerve be healthy. It is extremely dificult to insert bougies along the nares into the tube to dilate it, unless by means of the speculum, lig. 25, Plate DXV1.; and therefore the membrana tympani should be punctured with the trocal by inserting it sheathed in the canula umtil the latter meets with resistance from the membrane, which is known by the yielding and springing vibration felt, and then the trocar is to be pushed along the canula, and the membrane punctured. In this little operation, the rays of
the sun should be directed along the tube, and the auricle held as in inspecting the ear. When the obstruction is recent, it is most probably from mucus, and may then be removed by injections of warm water. Inflammation of the internal organ named otitis has been already described in Medicine. Otorrhceaisadischarge of letid ichorous matter from the mucous membrane investing the tympanum, and occasionally even from the vestibule, corlitca, and semicircular canals, the bone being occasionally carious. Sometimes it begins in the car itself, on other occasions within the cranium, and suceceds various acute febrile alfections, particularly in scrolulons constitutions. Air rushes out from the pharynx at the ear, and water injected by the tube llows into the pharynx; and the ossicula auditus, especially the malleus and incus, are generally discharged. This affection should be treated as ophthalmia. An abscess sometimes takes place in the mastoid cells in children, the communacation with the ampanic cavity being shut up with coagulable lymph, in which case the application of a small trephine is necessary, otherwise the disease proves fatal. The labyrinth is subject to many affections, the greater number of which are beyond our comprehension, partly from our ignorance of the physiology of this most interesting and most important organ, and partly from the difficulties encountered in examining morbid cases, in consequence of the prejudices of the public. There are diseases of the auditory nerve, of the fenestra ovalis et rolunde, and of the secretion of the labyrinth. For further information on this interesting branch of pathology, the reader may consult hard, Traité des matudies des oreilles. Saunders On the Lar. Buchanan On the Ear, and M'Crae's interesting inaugural dissertation the Morbis Auris, 1828.

In consequence of the division of Medicine and Surgery into Physicians, Surgeons, Acconcheurs, Oculisis, Aurists, Dentists, \&ic., the diseases of the eye have multiplied to no less a number than one hundred and eighteen; a catalogue at once frivolous and arbitrary.

Ophthalmia, or inflammation of the eye, is most absurdly subelivided according to the part affected, thus there are ophthalmia conjunctiva palpebrarum, ophthalmia conjunctiva oculi, ophthatmia conjunctiva comex, and ophthalmia sclerutica. There is also idiopathic, symptomatic, erysipelatous, mucous, purulent, catarhal, orbital, and chronic ophthabmia.

In acute inllammation of the cye, there are pain, heat, redness, and swelling, with the feeling of sandy parlicles between the upper eye-lid and the ball of the eye, and an increased secretion of tears and mucus: which symptoms vary aecording to the severity of the injury, and the extent of the inflammation. As the disease adrances, it extends to the brain, atul the whole constitution, producing more or less phrenitis and inflammatory lever. Tine sensation of sand is caused by the blood-vessels of the eye-ball berominy turgid with blood, and being lelt as a neveral body between the globe of the ege and the ese-lid. The eye, when hlus affected, has its blood-vessels enlarged and increased, hose which
formerly carried serum, now conducting coloured blood, while the ciliary stands appear turgid and secrete yellom mucus resembling pus. The treatment depends on the violence of the inflammation: if the brain or constitution be not affected. lecehes, warm anodyne applications, catharties, low diet, rest and confmement in a darkened chamber will suffice: but if the brain or constitution be involved, geteral blood-leting from the temporal artery, external jugular vein, or one of the veins of the arm, will be required. The turgid vessels of the eyeball and eye-lids ought only to be scarilied when the affection is tards, or these blood-vessels theaten to shoot over the cornea. The rubbing in getuly of the extract of belladoma on the outer surface of the eye-lids and contiguity is of benclit. Whenever the sensation of sand leaves the eye, the warm applications are to be laid aside, and pure cold water used in their stead, bathing the eye whenever it leels weak and tender; at the end of twenty-four hours, rose-water is to be substituted, and after a few hours perseverance, as much suphate ol zinc is to be added as to produce the feeling ol heat in the eye. This solution is to be progressively and cautiously strengthened, and to be dropped into the eye whenever it feels lecble. Latudanum may he eally added to \(i\), and afterwards sulphuric ether. As soon as the sulphate of zinc can be employed, the margins of the eye-lids should be gently anointed at bed time with an ointment of the red oxide of mercury, in the proportion of three grains to the two drachms of lard. After blood-letting has been performed, blisters to the temples and nape of the neck will be fount advantagcous. '「here are other local astringents besides those mentioned. If the eye-ball feels very tense, it will be arlvantageous to evacuate the aqueous humour with a couching needle. Sec Fig. 22 of Plate DXV. 'Ihe causes of ophthatmia are exceedingly various; when it arises from sand, lime, pepper, snuff, insects, \&ce, they should be washed away with warm water and a syringe; when from a piece of a quill, iron, steel, gunpowder, small leaden shot, the couching needle, or cataract knife, depirted in Fig. 20 of Plate DXV., the forceps and camel's hair brush are the best to remove them. When ophthalmia becomes chronic, which is best distinguished by its duration, it ought to be treated with the same astringent applications rendered gradually stronger, together with mercurial ointment and opium to the eyc-brow, and blisters, moxas, and setons. For further information on ophthalmia, the reader is referred to the article Medicine.

Iritis or acute inflammation chiefy of the iris, although it affects at once the whole choroid coat, and rapidly extends to the other structures of the cye, is consequent either on an injury, or occurs in syphilis, gout or chronic rheumatism, and frequently after operations on the eye. The surface of the eye, or tunica conjunctiva, is slighty inflamed, the iris appears swollen, changes its colour, when naturally black or brown to red, and when grey or blue to green, and the pupillary is darker than the ciliary margin, with some degree of de.
sormity, not being so distinct and sharp, and gradually becoming more and more contracted. The iullammatory action extends most rapidly to the capsule of the lens, to which the iris is liable to adhere, and a deposition of lymph takes place early in the texture of the iris. There is a dull heary pain of the eye, with intolerance of light, violent headach, and symptomatic fever. This affection sequires very active antiphlogistic treatment; and alter the first bleeding, mercury ought to be administered so as to prevent the deposition of lymph, or to excite its absorption; and in order to prevent the adhesion between the iris and capsule of the lens, the extract of belladonna ought to be employed, also mercurial ointment, with opium. Coagulable lymph is not unfrequently effused into the posterior chamber of the aqueous humour, especially in the iritis consequent on syphilis, and forms a delicate semitransparent web, which shuts up the pupil. Closure of the pupil also occurs from adhesion of the irlis to the cornea, and is that in which an artificial pupil succeeds best. This operation, however, should never be attempted if the patient can see with the other eye, or when there is any complication of disease, and not until all inflammatory tendency has ceased for some time. In the majority of cases, there is more or less opacity of the cornea, so that the best point of the iris for making a pupil depends on the part where the cornea is transparent; it is therefore better to remore the opacity in the first instance. Various modes have been recommended for making an artificial pupil, from Chesselden downwards, and the most simple is that supported by Janin, Maunoir, Guerin, Scarpa, Richter and Beer, which consists either in making a puncture of the cornea with Daviel's scissurs, as represented in Fig. 11 of Plate DXVI. at the upper part, and then cutting the iris perpendicularly near the immer or nasal canthus, or in making an incision of the comea, first with the cataract knife, and next using the scissors.

Hydrophthalmia is dropsy of the eye, consequent on violent acute ophthalmia, and in this disease the eye is swollen, witly protusion of the cormea, which is tolerably clear, although the aqueous humour is lurbid. 'Tlae sclerotic coat around the cornea is of a blue colour, the iris dull and dark, the pupil neither contracted nor dilated, and the vitreous humour much increased in quantity. In the beginning of the discase, the patient sees objects at a greater distance than formerly, or is lar-sighted, but this soun changes to weakness of vision, the eye becomes horribly dishgured, its textures are disorganized, the bones of the orbit rendered carious, and the patient is soon cut onf. By some, it is stated that the tunics burst, while by others this is denied. In the commencement, the cornea should be punctured, or an issuc or a seton estahlisherl, as recommended for staphytoma; and if these lail, the cornea ought to be removed, as described under that disease. Hypopiam is an effusion ol coagulable lymph and purulent matter in the posterior, and afterwards into the anterior chamber of the aqueons humour, consequent on acute ophthalmia, and is to be treated by active antiphlogistic means,
and puncturing the cornea, also using astringent and stimulating ointments, with an alterative course of mercury. If not cured, adhesion of the iris 10 the capsule of the lens, and an opacity of the lens, together with ulcer of the cornea, are liable to follow.

Opacity of the cornea, named also albugo, leucoma, nebula, and speck, is one of the consequences of ophthalmia, whether acute or chronic. Nebula is said to be the result of chronic ophthalmy, and to consist of an effusion of milky serum in the tunica conjunctiva cornex, with thickening of this coat and varicose veins; albugo, to be an effusion of coagulable lymph between the laminx of the cornea, consequent on acute ophthalmy, and to have first a milky and then a pearly appearance; and leucoma to be also an effusion of lymph, but to uccupy the whole extent of the cornea, and to arise either from violent acute ophthalmy, or ulceration of the cornea, or a wound of this tunic; but these opacities indiscriminately arise from chronic as well as acute ophthalmia, and being evidently the same disease, require therefo:e the same line of treatment, which consists in applying daily, or every second day, the dry nitrate of silver for an instant to the opacity, and bathing the eye for a lew minutes afterwards with warm water or oil. In children it may be removed by blowing into the eye a finely levigated powder of equal parts of calomel and white sugar. In acute inflammation of the eye, a pustule occasionally appears on the cornea which requires to be frecly opened; otherwise the depression or pouch is filled with lymph, and forms an opacity or leucoma. This pustule sometimes appears larger and more formidable, and is then termed an abscess, which should be treated in the same way. When the abscess bursts, it becomes an ulcer which is characterized by high ragged edges, by the base being of an ash-colour, and the discharge acrid serum. An ulcer is also consequent on wounds from sharp-pointed instruments, glass and lime. The sympioms are the same, as in acute or chronic ophthalmy according to its duration; and the best diagnostic of an ulcer is the pain produced on looking at the light, for on general examination it very much resembles an opacity of the cornea. A chronic interstitial ulcer is described by some oculists. If an ulcer of the cornea be neglected, it either spreads superficially and destroys the transparency of this tunic, or penetrates deeply to the anterior chamber of the aqueous humour, producing a fistulous aperture, where prolapsus of the iris may take place, and even pro trusion of the crystaline and vitreous humours. A fungous exercecence sometimes protrudes, resembling a pterygium. As long as the pain is severe, and there is acute inflammation, it should be treated as the irritable ulcer of other parts; and whenever these are subdued, by the application of the nitrate of silver every two or three days; and when granulations are visible, by astringent collyria. Puncturing the cornea to evacuate the aqueous humour and thus relieve the tension and pain will be found bencficial, and prevent prolapsus iridis taking place. If a lungus shoots forth, it ought to
be excised with the knife or scissors, and the nitrate of copper or silver afterwards applied.
When the cornea ulcerates, and the aqueous humour escapes, the support of the iris is removed, and the latter protrudes, forming prolapsus iridis, named also staphyloma and procidentia iridis. This also ensues occasionally after the operation of extraction of the lens, likewise when the corncia is ruptured by a comusion, especially from glass, and in evacuating the matter in hypopium, and even sometimes from violent vomiting. The iris appears like a small dark brown or grey tumour, surrounded by an opaque circle of the cornea, with an oval-shaped pupil, and more or less inllammation of the conjunctiva. On some occasions, there is more than one protrusion, simply because there is more than one aperture. The symptoms are pain like a pin pricking the eye, an oppressive sensation of tightmess over the eye-ball consequent on the strangulation of the iris, a burning effasion of tears and intolerance of light. If the prolapsus be recent, an attempt should be made to reduce it with a probe, but il that fails, as it is very difficult, it may be removed with the knife, scissors, or nitrate of copper or silver, taking care not to continue the application of the escha:otic too long. Whenever the wound heals, the pupit tends to reoccupy its former simation, although the adhesion remains. The wound is recommended by some oculists to be enlarged, which is improper; by others, the iris to be stimulated to retire into the eye by cxposing the cye to a vivid light, a practice still more improper. Besides the iris being protruded, the investing layer of the cornea is occasionally forced out filled with the aqueous humour in the form of a transparent vesicle, and termed by Janin prolapsus of this tunic, in which formation of this disease he is joined by Pellier, Guerin, Descemet, Demours and Veitch; this is considered by Scarpa to be the hyloid membrane of the vitreous humour; while Beer and Travers conceive it to be the innermost lamella of the cornea, the former naming it ceratocele. We are disposed to consider Janin in the right. The symptoms and treatment of this protrusion are the same as in prolapsus iridis. The choroid coat has also been protruded through the sclerotic near its iunction with the cornea, in consequence of violent ophthalmia producing an abscess at that point. This is to be treated in the same manner as the last.

Staphyloma (from erapunt, a grape) consists of an opacity with distention of the cornea, according to Scarpa; while according to Richter, there must be also an adhesion of the iris to the cornca, but it may certainly be both. The eye has a disgusting appearance, from the variegated or mottled look of the cornea, which is alternately of a white, bottleblue, or purple colour. Sometimes only the one half of the cornea is affected, which is commonly the lower; sometimes the cornea forms one uniform convex projection, while at others there are two or more, giving it a nodulated appearance. The distended condition follows a superabundant secretion of the aqueous humour, for in many cases the individual has indistinct vision with remarkable
projection. Staphyloma is the result of acute, especially the purulent form of ophthalmia, and occurs frequently in children after small-pox From the projection of the cye-ball, it is exposed to the sun, air, and to particles of dust producing friction between it and the cye-lids, and rendering it a most distressing complaint; and it not unfrequently ends in ulceration of the cornca. This allection, il vision be totally gone, is to be treated by piercing the projected part of the cornea with at tenaculum, pulling the eye-ball sently forwards from the cye-lids, which ought to be kept out of the way by an assistant, and then cutting away the whole projection with a scalpel at once. The eyelids are then to be gently closed, and the eye bathed with hot water for the remainder of the day, and afterwards to be treated with mild collyria. On the second or third day, the wound is filled with coagulable lymph, which gradually cicatrizes with an opaque horny texture, not unlike the cornca. Some recommend the establishment of an ulcer a the lower margin of the cornea; while others the inscrting of a seton of fine thread, but unless the adhesive inflammation accompanies the ulcerative, it fails.

Cataract, (from xuragzeow, to confound, is cither an opacity of the crystaline lens, its capsule, or the Muid between these, or a combination of them al: The varieties of this disease, according to ophthal. mologists, are truly ludicrous, and would lorm a rhyme for Calel) Quotam. They may, with every propriety, be reduced from upwards of lifty to four. The capsular, the lenticular, and the milky. with a combination of these, and it is even very dificult to discriminate between these four in the living body When cxamining the diseased eye, the sound one should be closed or shut up, in order to prevent the motions of the one influencing the other. The capsular cataract presents a general white surface behind the pupil, producing nearly total blindness, with dilated pupil, which is not affected by any light; and when belladonua is rubbed on the eye lids, no ring is seen around this white spot. This species is generally consequent on local causes. The lenticular begins in the centre of the lens. producing opacity behind the pupil, with dilatation, so that although vision is no doubt impaired, yet the patient can see in an obscure light, as the iwilight, in consequence of the rays being admitted around the lens; and there is almost always a clear deep ring around, particularly if the pupil be dilated with belladonna. This species commonly arises from constitutional causes, rendering the disease idiopathic. The milky variety, termed al so cataracta morgagniana, begins in the liquor morgagni, and involves the lens, which degenerates into a thin milky fluid; it also generally affects the capsulc, so as to lorm a combination of these three textures. Cataract is sometimes complicated with adbesion of the iris, obliteration of the posterior chamber of the aqueous humour, the latter of which is termed false or spurious. This disease is either idiopathic or local, is very often hereditary. and also congenital; the hereditary disposition being very extensive, frequently affecting a whole
family. In the constitutional species, the individual begins to complain of weakness of sight, that he cannot see distant objects, has a mistincss or cloudiness over his eyes, and that when he turns his back to the light, or when the sun begins to set, he sees more distinctly; and he also occasionally sees more distinctly on the one sitle of the axis of vision than on the other. A candle appears to him to have a halo around it, and as he recedes from it, the halo becomes broader and the flame more indistinct. These defects gradually inerease until he can only distinguish between light and darkness, and then the opacity may be perceived behind the pupil, having eibher a gray, silvery, dead white, yellow, brown, or dirty black appearance. In some rare cases, the opacity begins with two or three white spots. Local or accidental cataract is consequent on inflammation from wounds, and is sometimes so gentle and insidious, that the patient has not been conscious of its formation. With the exception of the congenital, we never succeed in curing cataract but by an operation, and before it is performed, several circumstances are to be attended to. We must distinguish between this disease and amaurosis, and be careful that the two affections are not co-existent; also between cataract and glaucoma, and there must be no inflammatory tendency, the eye ought to be free from all other disease, and the patient to be in a healthy state. A number of other points are mentioned by ophthalmologists, which do not merit attention. The inflammatory tendency is characterized by flashes of light, fiery sparks, pain in the eye, orbit, or forehead. When both eyes are effected, the one should be operated on before the other.

There are various operations for this disease, as couching, depression, displacement, and extraction. Under the three first, there are operations posterior and anterior to the iris; under operations posterior to the iris, there are simple depression, the depression of Scarpa, and the reclination of Willberg and Beer. Under operations anterior to the iris, there are the reclination of Langenbeek and keratonyxis. Before any of these operations is performed, the patient should take a brisk cathartic the preceding day, and any other course of preparation, as recommended by some, is unnecessary. An hour or so before operating, the extract of belladonna should be rubbed on the eye-lids to dilate the pupil, when the operation of conchings is performed. The patient should sit on a low chair before a clear light, with an assistant behind, who is to raise with his fingers the upper eye-lid, while the operator depresses the lower; the surgeon then inserts Scarpa's needle, previously moistcned with the tears of the patient, about a line and a hall from the cornea, and half a line below its horizontal diancter, at the onter canthus of the eye, directing the needle towards its centre; the hand of the operator resting on the paticnt's chace. 'The needle is to be secn antrior to the capsule of the lens, with the one flat surlace upwards, and the other downwards, and the lens is then to be depressed to the bottom ol the vitreous humonr, keeping the instrument above the lens for a lew seconds. The
motions which are described by opthalmologists, to be performed in this simple process of depression, resemble the broad sword exercise. If the lens does not rise again, the needle is to be cautiously withdrawn; but if it ascends, the depression is to be repeated. The operation of reclination of Wilberg is almost the same. Langenbeck performs reclination through the cornea anterior to the iris, with a curved needle, the convexity of the instrument being towards the lens. Keratonyxis consists in entering a spear-pointed needle through the cornea, at its inferior margin, lacerating the capsule of the lens laterally, and either merely making a small aperture in the texture of the lens, or by breaking it up, and endeavouring to bing it into the anterior chamber of the aqueous humour, where it is ultimately dissolved and absorbed by its agency. Care must be taken to prevent the escape of the aqueous humour. This operation is the simplest and safest which can be performed for cataract, whether capsular, milky, or lenticular. It is advocated by Conradi, Beer, Saunders, Buckthorm, Langenbeck, and Walther, with a slight variation in some trifling points.

Extraction, whe most radical cure for hard or lenticular cataract, is probably the most difficult to perform. The patient should lie on a firm table, and an assistant hold up the upper eye-lit, when the operator, with a cataract-knife, (Fig. \({ }^{20}\), Plate DXV.) makes an incision of the lower half of the cornea, entering the instrument at the outer canthus, about a line from the sclerotic coat, and nearly the same distance above the horizontal plane, pushing the knife at once across the cornea, and transfixing the other sille, as delimeated in Fig. 5 of Plate DXVII., and then cutting downwards and outwards, care bemer taken not to wound the iris. If the operator cannot force the point of the knife through the opposite aspect of the cornea at once, before thie aqueous humour escapes, he should gently press the cornea in front of the knife, which causes the iris to retract, and then proceed with the knife; or he may withdraw the knile, and complete the incision with Daviel's scissors, which are to be used to enlarge the incision if too limited. After the incision of the cornea, great care is required to employ no degree of pressure, otherwise the vitreous humour will protrude; the capsule needle or cataract lance is then cantiously inserted onwards to the cataract, and the capsule lacerated by crucial incisions, the operator previously secing the pupil distinctly, which if not fully dilated, a curtain should be interposed between the patient and the light. The lens generally follows this capsule needle, but if not, the most gemle motion of the eye upwards, together with very delicate pressurc on the lower eye-lid, discharges it; but if this does not take place, Daviel's scuop should be inserted between the cornea and the iris, and the lens assisted by its pressure. The operator should carefully investigate if the section of the cornea be large cnongh, and the capsule of the lens sufficiently lacerated. Alt liagmants of lens should be carefally removed with the scoop, the patient put to bed, the cyes covered with a handkerchief,
and warm applications, and otherwise treated antiphlogistically, according to the state of the inflammation. When the right eye is the seat of the cataract, the section of the cornea should be upwards. Extraction is recommended in hard cataract, keratonyxis for soft and capsular cataract. Capsular cataract frequently follows extraction, and then keratonyxis is requisite. There are a number of circumstances mentioned by authors, interdicting extraction, which appear friyolous. Congenital cataract is almost always the capsular, and should be removed by keratonyxis, when the child is six montlis old.
Glaucoma, (from gazuxos, bluish green), consists, first, in an alteration of the texture of the vitreous humour and its membrane, ultimately involving the retina, choroid coat, and lens; the vessels of the choroid being varicose. The eye has an unhealthy appearance, and leels firm and hard, the cornea is turbid, the sclerotic of a bluish or ycllow tinge, with tortuous varicose vessels piercing this tunic at a distance from the cornea, leaving the latter surrounded with a white circle; the iris, if naturally blue, becomes gray, and if black, a dirty brown; the pupil is dilated, irregularly angular or oval, and immoveably fixed as it were to one canthus. The individual cannot distinguish light from darkness. As the disease advances, the green colout increases; the lans swells and presses the iris forwards into the anterior chamber of the aqueous humour, when it is termed glatucomatous cataract. The treatment consists in local blood-letting, blisters applied to the temples, moxas, issues and setons to the nape of the neck, laxatives, mild diet, and the avoiding of all exciting causes.

Amaurosis, or gutta serena (from apaveca, to obscure), is generally consequent on a diseased affection of the retina and optic nerre, since the function or structure is deranged. The pationt sees in the light gnats, or flies, or threads or spots flying before his eyes; while in the dark he perceives fiery sparks, or balls, and flashes of blue, yellow, or red; and often sees double and squints. The flame of a candle appears to change from white to yellow, red or green; the halo also appears of these colours; at last total blindness ensues. When the eye is cxamined, it is cither clear or cloudy, the cloudiness being deep in the cyc, the bottom of which is of a pale greenish colour resembling horn. The pupil is very variable, commonly irregular, angular and fixed. This disease is sometimes slow, at other times rapid, and is even congenital, being more hereditary than cataract; and its causes are exceedingly various, from which it is either temporary or permanent, depending either on a deranged function of the eye itself or the brain, or some more distant organ, or even on an organic affection of them all. When it originates from discased function it is sometimes capable of being cured, but when from diseased structure incurable; and nonc of the diseases of the eye so completely baffles the skill of the surgeon. When diseased function is the cause, it is generally from pressurc of the blood on the internal carotid or its branches, particularly the opthalmic artery

Vol. XVII. Part II.
on the optic nerve; also from the arteries distributed on the choroid coat when varicose pressing on the retina. In these cases, blood-letting, blisters, moxas and issues to the nape of the neck, pediluvium, shower-bath, powerlul cathartics, and low diet occasionally cure it. When suppressed discharges are the cause, they require to be restored, or others to be substituted; when it arises from over-excitcment, it is generally casily cured, and it is a peculiar circumstance in this case that the patient can see while under the influence of a glass of wine. When narcotics, it is curable; emeties are recommended, but they should never be administered, as romiting is a common cause of the disease, and as calomel with other cathartics removes the discased secretion of the stomach. and more effectually prevent regurgitation of the bile. When hydrocephalus, tumours in the course. ol' the optic nerve, exostosis at the basis of the cranium, thickening of the retina, shrinking or atrophy of the optic nerve cause the disease, the case is hopeless. It is often very difficult to ascertain from what this discase originates. In northern and tropical climates, from the glare of the sun or snow, a varicty of amaurosis occurs, which, if it produces blindness during the day, is named Nyctalopia; if during the night, Hemeralopia. A thirel variety exists, in which the individual is blinel all day until a certain hour, when he sees distinctly, or he sces and is blind every alternate day, or is only blind one day in the week, fortnight, or month. These varicties are treated by purgatives, by removal from the cffulgence of light, blisters to the temples, moxas to the nape of the neck, clectricity, and nourishing dict with tonics.

Cancer of the eye begins either in the lacrymal gland, the conjunctiva, or the eye-ball itself, attacks the constitution after the meridian of life. and is characterized by acute stinging pains like the pricking of needles or lancets, the eye presenting an irregular nodulated tumefied appearance, the cornca becoming opaque, varicose blood-vessels forming on the conjunctiva, which become ultimately like flesh, and even the whole eye resembles firm flesh. When the conjunctiva is first affected. it is a common ulcerated fungus, hard and cartilaginous, attended with darting lancinating pains, exquisite sensibility, icorous discharge, and varicose enlargement of the blood-vessels, and ultimately involves the eyc. If confined to the conjunctiva, we may then consider whether it ought to be removed together with the eye-ball, but if the eye-ball itsclf is affected, the whole ought to be extirpated. The eyc-ball is to be transfixed with a curved needle, armed with a broad ligature, and if the eyc-lids can be preserved, an incision is to oe made between them at the outer canthus, to enable the operator to use more frecdom; the conjunctiva at its angle of reflection between the cye-lids and eye-ball is then to be divided completely round: next the insertions of the superior and inferior oblique muscles; the kuife is then carried close around the bone, and deep into the orbit, pulling gently at the same time the ligature, and lastly dividing the origins of the recti muscles, and th* 4 C
optic and other nerves. Great eare should be taken to remove every portion of the disease, and if there be much bleeding, a piece of dry sponge should be inserted, or the actual cautery applied; but if not, the orbit ought to be gently filled with lint, with a small compress over the eye-lids, and a handage around all; the patient put to bed, and an opiate administered. Inflammation may be apprehended, and the patient ought to be treated accordingly.

Fungous hæmatodes also attacks the eye, commencing in the retina and optic nerve, the vessels of which secrete the peculiar medullary matter that fills up the whole cavity of the eye-ball, presenting an irregular nodulated appearance, with a muddy cornea, and a dark livid coloured conjunctiva. At first, the cornea is so transparent as to resemble a piece of polished steel, or a concave silver plate, and the bottom of the eye is greenisl, or of a dark amber colour, the pupil being dilated and immoveable. As the tumour advances to the iris, it can be seen to be a solid body of a yellow or brown colour and an irregular shape, with arteries ramified upon it. The aqueous, crystalline and vitreous humours are absorbed, together with the retina and choroid coats; the optic nerve becomes thickened, of a brownish colour, and divided by the tumour into threads. The nerve is sometimes involved even backwards to the thalamus and anterior lobe of the brain. The cornea or sclerotic coat ulcerates, and a fungus protrudes of an irregular, red colour, covered with coagulated blood, bleeding on the slightest touch, and discharging a fetid matter. The lymphatic glands in the region of the parotid and submaxillary glands become affected. On rare oceasions, the disease begins in the cellular tissuc. connecting the conjunctiva to the cornea. This affection also requires extirpation of the eye, but unless the operation be early performed, it rarely succeeds. It attacks chiefly children under twelve years of age.

Cancer of the lacrymal gland is a very rare disease, and is characterized by lancinating pains in the region of the organ, which from its irregular hardness and enlargement, presses the eye-ball downwards and outwards, which cannot be turned towards the external canthus without producing violent pain. This also requires removal by the knife, although it is objected to by Becr and ohers. An incision should be made over the tumour parallel with the superciliary ridge through the integuments, orbicularis palpebrarum. and ligament, which descends from the frontal bone until the tumour is exposed, which is then io be insulated from the bone and muscles of the eye. and removed. II hemorrbage follows. it must be stemmed with dry sponge and pressure. The lacrymal gland is oecasionally subject to inflammation and suppuration, and an encysted watery vesicle, for the concystod lacrymal swelling. and the watery vesicle of the lacrymal gland are the same disease. Durmg inllammation, there is a suspension of the secretion of the tears. The rocysted swelling arises from the obstraction of the
ducts of the gland, for the tears collect and form a pouch, which should be punctured, and a seton inserted from the conjunctiva to the skin at the external canthus, or a portion of the pouch removed with scissors, in order to obliterate the sac.

Tumours of the eye-lids are very common, from a simple stye to a cancerous watcry excrescence. Hordeolum or styc is a small phlegmon generally on the margin of the lower eye-lid, and is commonly one of the ciliary glands, which adrances slowly to suppuration and bursts; and it occurs most frequently in the scrolulous constitution, and may be treated as a common phlegmon.
If hordeolum does not suppurate, it is liable to degenerate into a hard tumour, named chalazion, grando, lythiasis, tophus, porosis, \&c. which are sometines small fleshy tumours containing calcareous matter. These require to be extirpated, for if allowed to remain, they ofton produce a malignant ulceration. Other small tumours of a fatty or chalky nature, or hydated vesicles, termed phlyctenulx, occur on the eyc lids, which require to be lanced, and their contents squeezed out. Warty excrescences should be exeised. Encysted tumours are very prevalent on the eye-lids, occurring sometimes between the tarsus and skin, on other occasions between the tarsus and conjunctiva, in which latter situation they ought to be extirpated, if possible, from the inside of the eye-lid, by making an incision parallel with its margin; and after its removal, the wound should be anointed with oil of olives to prevent adhesion. As inflammation is liable to follow this operation, the patient must remain in a darkened room on low dict.

Encanthis, (from sr, xavbos, the angle of the eye.) is an enfargement of the caruncula lacrymalis, which ultimately insolves the plica seminularis, and when inveterate extends along the eye-lids and surface of the cye-ball to the cornea, and even the whole eye, it being then purcly cancerous. It ought therefore to be excised as carly as possible; for, in its advanced stage, the whole eye may require to be extirpated.

Pterygium (fronn arqfus, a wing) is a triangular object or tumour situated on the conjunctiva, generally at the inner camhus of the eye, with its base towards the caruncula and apex towards the cornea.

There are two species of this, the membranous and the fleshy pterygium, both of which require to be removed with the forceps and knife or scissors, since they are liable to degenerate into a malignant or cancerous nature, although they often remain dormant lor years. When they become cancerous, the whole eye should be extirpated. A small deposition of matier sometimes takes place near the relge of the cornea, which should be remover. Small oral substances, of a dirty yellow colour, also form in advanced lile, in this place, which may be left alone so long as they remain inert. lileshy and cartilaginous tumonrs are not unfreguently formed beneath the conjunctiva, and require extirpation. A small pale red, hard and itching lumour ol the size ol a pin's head is found on the lower cye-lid, near the plica semilunaris, occurring in chlorotic young women, and likewise requires removal with the knife.

Lippitudo, or bear-eyedness, is a diseased secretion of the ciliary glands and conjunctiva palpeblarum, the eye-lids are red and excoriated, are glued firmly during sleep, and vision is in some degree weakened or impaired. The treatment consists of warm anotyne applications in the first instance, and afterwards of cold astringents and stimulant ointments as mentioned under ophthalmia. The preceding alfection olten gives rise to diseases of the lacrymal passages ; and on everting the eyelids, they present a villous granulated appearance, with swollen uleerated ciliary glands; and in scrofulous patients the lacrymal sac is frequently inflamed from this source. In which ease, there is a circumscribed hard tumour of the shape of a bean, in the situation of the sac, attended with lancinating pains when touched, and soon having a red extermal appearance, which is more or less erysipelatous. The lacrymal puncta or papillæ are shrunk and invisible; the tears flow over the cheeks, and the affected nostril is at first moist, but soon becomes dry. There is more or less headach and even symptomatic fever. The inflammation ultimately extends to the conjunctiva of the eye-lids, the caruncula lacrymalis and plina semilunaris, producing a copions secretion of tears, mucus, and purulent matter ; coagulable lymph is effused into the nasal duct, the sac entarges, the skin becomes of a deep red with a white point in the centre, and ultimately bursts, forming a listulous opening. The moment that the sac tumefies, and the tears are shed over the cheek, that instant it should be lieely lanced, and afterwards treated on the common principles laid down under inflammation and suppuration; attention being paid at the same time to the ciliary glands and conjunctiva, as recommended under ophthalmia; and likewise, to the nasal duct, which is more or less obstructed. At first a simple gum bougie should be inserted into the duct, and worn as long as it produces no painful feeling or inflammation. This should be repeated either daily or every second day, first washing out the sac and duct with warm water, and afterwards with a solution of the sulphate of zinc in rose water, gradually increasing its strength. The bougie is to be progressively enlarged, to the size of a large crow quill, and anointed with a weak ointment of the red oxide of mercury, which ought also to be gradually aug. meuted. If the lacrymal sac does not advance to ulceration and rupture, a discharge of puriform mucus takes place, named blenorrhœa, in which affection the tears flow over the cheek. This requires to be treated as the preceding, otherwise it gives rise to repeated attacks of erysipelatous inflammation of the integuments over the sac, which ultimately induces closure of the masal duct, or a communication with the sac named spurious fistula of the sac ; or ulceration ol the sac and integuments forming true fistula lacrymalis, in which latter case obstinate blenorrhea uccurs with stillicidimm lacrymarum. Dropsy of the sac or mucocele also occasionally results, and must be also treated in the same way. Sometimes the puncta lacrymalia, and canaliculi are obliterated, causing stillicidium lacrymarum for life, in which eqent the lacrymal bone
should be pierced from the inner canthus imrnedi ately inferior to the caruncula, and a bougie inserted daily until it forms a mucous tube. When the nasal or lacrymal duct becomes obstructed l'rom such diseases, or if it is congenital, the same treatment ought to be adopted as mentioned under inflammation with suppuration of the sac ; and if this is lound impracticable, a small trocar and canula, as that used for piercing the membrana tympani, is to be inserted along the duet to the naris, and followed by a bougie; and if even this is impracticable from the obliteration of the duct, the anterior fossa of the lacrymal bone must be pierced with a small style, and then a bougie inserted. The after treatment is the same as that mentioned above. Some recommend the dilatation of the nasal duct in these obstructions, by a probe inserted from the lower extremity in the naris, but this is with difficulty effected. Various other modes of treatment have been recommended from the time of Fabricius to the interesting work of M'Kenzic on Lacrymal Discases.

Entropeon, (from sv, and \(\tau_{p \varepsilon w}\), to turn, named also entropium, ptosis, phalangosis, trichiasis, trichosis, distichiasis and tristichiasis, is an inversion or irregular direction ol one or more of the eyelashes, either alone or accompanied with an alteration of the curvature of the eye lid, which produces great irritation, and even inflammation ending in opacity of the cornea, which sometimes resembles a macerated ligament. Occasionally the other eye also becomes alfected. When the eye-lashes merely are attacked, it has been proposed to pull them out, and also to burn their roots; but these seldom succeed, and therefore in such mild cases, a longitudinal portion of the integuments of the eye-lid shonld be removed with scissors, and the wound approximated with fine ligatures and adhesive plaster. In severe cases, besides the removal of this longitudinal portion of the integuments, it is necessary to make a transverse one on each side of the inverted hairs, through the tarsus, guarding against wounding the punctum lacrymale, and healing these lateral incisions slowly by gramuations. When the lower eye-lid is the seat ol the disease, a transverse incision at the outer canthus is generally all that is necessary.

Ectropium or Ectropeon is an eversion of the eye-lids, commonly the lower ; occasionally however both, and then the cye has an annular shape; and when confined to the upper eye lid, it is termed lagophthalmos. In mild cases, the nitrate of silver shaped like a pencil and passed along the conjunctiva longitudinally, the eye being bathed immediately after with warm water or oil, will effect a cure ; but in severe cases, if the preceding treatment fails, a longitudinal portion of the conjunctiva should be removed with the knife or scissors, and a corresponding incision in the integuments made, the eye-lid brouglat down, and fixed with adhesive plaster, compress and bandage; care being taken that no adhesion occurs between the conjunctiva palpebre and the eyc-ball. The nitrates of silver or copper may be still necessary to establish a cure. When the lower eye-lid is everted from a scald or
any cicatrix, the adhesion of the cicatrix is to be detached from the bone, and then a triangular portion of the eye-lid is to be removed, the margin of the eye-lid forming a base; and the limbs of the triangle are next approximated by suture. The edges of the eye-lids are sometimes united at birth, which is termed ancyloblepharon, and is cured by a simple division. The eye-lid occasionally adhercs to the ball of the eye, and is named symblepharon, which is cured by division and preventing re-union by anointing from time to time the surfaces with olive oil.

The cornea has been found ossified, and also so convex, that the individual has not been able to see at the distance of two inches, which condition, when originating from disease, is termed myopia, and is to be remedied by concave glasses; likewise in some instances both convex and irregular on its surlace, and requiring the same remedy. At other times, the cornea is flat and relaxed, which can only be remedied by convex glasses. See a most philosophical explanation of these by Dr. Brewster, in Wardrop os the Eve, Vol. I. p. 132. The eye has been transformed into a calcareous mass; the cornea, the capsule of the lens, the lens itself, the iris, the hyaloid membrane, and choroid coat have been ossified.

Under adhesion the Tagliacotian operation has been considered, and under fractures, injuries of this organ. In the article Medicine, Vol. XII. p. 815, inflammation with increased secretion of the mucous membrane is described, and we shall merely add, that renesection should be more frequently had recourse to, so as to prevent the baneful consequences of this discase. Inflammation of this membrane occasionally produces abscess of the frontal and superior maxillary sinuses. That of the frontal is characterized by violent pain in the region of the sinuses. darting along the forehead, and sometimes down the neck, with a profuse discharge of most offensive matter, intolcrable both to the patient and the bystander, and convulsions or cpilepsy on some occasions occur. The best treatment is the inhaling the rapour of water, the remaining in a moderately dry warm room, farinaceous diet, and preserving the bowels open. When the disease becomes chronic, the smoking of tobacco is beneficial ; but if it continues severe, the sinus should be trephined, and afterwards mild warm diluents, and ultimately cold astringents injected. Abscess of the antrum maxillare ako originates from carious teeth, and from injury occasioned by their extraction. It begins with acute pain in the fangs of the tecth, darting upwards to the nostril and cheek, and ultimately producing tumefaction of the latter, which then moderates the pain, while the cheek itself feels hard and painful when pressed upon, the pain often darts along the pharynx, and the patient imagines the secretion conies from them. When the patient inclines the head to the opposite side, a most offensive discharge flows out at the nostril. The external wall of the antum becomes extremely thin, ulcerates, and then involves the muscles and integuments of the cheek, forming listulous apertures ; at other times, the matter ex-
cites absorption and caries of the alveolar sockets by which the matter is discharged ; while at others the palate ulcerates and the discharge flows into the mouth. Whenever, therefore, the diagnosis clearly shows that matter has been deposited in the antrum, the second anterior molar tooth or bicuspis ought to be extracted, and the antrum perforated with a small style, but occasionally this tooth communicates with the cavity, and no perforation is required. This disease ought to be afterwards treated as recommended for abscess of the frontal sinus. If the osseous structure be carious, it becomes sometimes necessary to open the cavity freely by dissecting the lining membrane of the mouth upwards, and removing gently and carefully the diseased bone, taking care not to induce inflammation. Tincture of bark and myrrh form a good injection in such cases.

Inflammation of the mucous membrane of the nares somctimes ends in a malignant ulceration, which is characterized by pain, redness, and tumefaction, extending to the cartilages, bones, and integuments of the nose, the ulceration being first confined to the inside of the ala, and afterwards spreading both inwards and outwards, and then resembling noli me tangere. There is also an increased discharge of mucus, which soon becomes ichorous and fetid; the breathing is obstructed; the pain is increased by pressure, and on inserting the finger, which also produces slight bleeding. The cartilaginous septum is first destroyed, next the ethmoid bone and vomer, and ultimately all the bones entering into the formation of the nares, rendering the nose flat and disfigured. This affection, named ozæna, generally follows some syphilitic or scrofulous taint in the constitution, and prevails in the highlands, where yaws and sibbens are common. During the inflammation, it ought to be treated with the inhalation of steam, and warm anodyne injections into the nares, with fomentations and poultices externally, and with the insertion of small pieces of lint dipt in olive oil; and when the pain has been subdued, cold astringent injections and ointments should be applied, and the muriate of mercury and compound decoction of sarsaparilla administered internally. The patient should be instructed to suuff up into the nares the different injections used, and bring them round the velum, into and out at the mouth; and he should remain in a warm dry atmosphere.
Epistaxis or hemorrhage from the nares is a more serious disease than is generally supposed, proving fatal even in early life; therefore, in all cases where the bleeding is not arrested by styptics, the naris should be plugged up first at its posterior aperture into the pharynx, which is accomplished by introducing a long double canula, with a loop of silver wire along the floor of the naris, keeping close to the mesial septum, backwards to the pharyns, and downwards behind the velum palati, until the loop is felt or seen in the throat, when it is to be brought forwards by the forceps into the mouth, and then have attached to it a dossil of lint or piece of sponge, with a ligature, which is to be pulled upwards into the posterior aperture of the naris, so as to shut it
up. The canula should then be removed, but the ligature lelt hanging out at the anterior aperture, which must be also stuffed with lint.

Polypus is a delicate fleshy tumour, of the shape of a pear, which frequenty grows in the nose, either from the mucous membrane investing the bones of the nares being generally attached to the ethmoid bone, or in the antrum maxillare or in the frontal sinus. The mucous membranc appears to take on a diseased action lor secreting these bodies, since they grow like lungi, of the shoots from creeping plants. In some individuals, the mucous membrane throughout is flocculent and spongy. They are variously arranged and divided by Pott, J. Bell, Ritcher and others. The delicate pale gelatinous polypus and the fleshy one adhere commonly by a small pedicle; they appear visible in the anterior nares, and can sometimes be felt, and even seen, hanging down behind the velum; and they are not attended with pain, until they press on the contiguous parts, when they produce sncezing, watery eyes, headach, stupor, and difficulty of breathing, and deafness; they destroy the ethmoid bone, the vomer, the walls of the antrum, raise the nasal bones, project the cyes out of their sockets, cause amaurosis, and ultimately prove fatal. The fleshy polypus is the most numerous. The firm, hard, dark red polypus, with a broad base, is commonly solitary, and is usually, though not always, attended with pain lrom the begimuing, and is more frequently reproduced, than the others. Polypi are removed by excision, extraction, ligature, and caustic. The first is to be prefered whenever it can be accomplished, and should be done by seizing hold of the tumour with the forceps delineated, Fig. 9 of Plate DXVI. and gliding along them, the open limbs of curved bluntpointed scissors, Fig. 11 of Plate DXVI, until they reach the pedicle of the polypus, which is then to be cut. If any hemorrhage occur, it is easily stemmed with the nitrate of silver, but if not, the actual cautery can be uscd, or the nostril plugged up. The caustic should be applicd on the day lollowing, and every succeeding day, until the pedicle is completely stunted. But if the polypus has a broad base, or plugs up the anterior naris, the linife Fig. 8, or 12 of Plate DXVI. should be employed. When the polypus hangs back into the pharynx and cannot be pulled forwards, it should be noosed by silver wire and a double canula, which are passed as recommended for epistaxis, and the noose carried around the polypus, and clevated as near its root as possible, when the wire is to be tightened. Silver wire must not be twisted, as it readily breaks, but turned round one ol the rings of the canula daily. If neither scissors, knile, nor ligature can be employed for this polypus, it must be bruised with forceps, Fig. 10 of Plate DXV1; but it ought never to be extracted with the polypus forceps or any other instrument. No pulvis sabinx or any other errhines should be uscd.

Polypi or sarcomatous tumours in the antrum maxillare burst open the parietcs of this cell, and cither force their way into the nostril, or forwards towards the cheek, or upwards into the orbit, and even into the cranit!m, or downwards into the mouth, by ex-
citing absorption of the bone, or rendering it carious; and sometimes they force their way in all these directions at once, giving to the countenance a horribly distorted appearance. The alveolar processes become fungous, the teeth drop out, a letid dis. charge llows, the eyes weep, are amaurotic, and cven burst, and the patient is rendered wretched to himself, and loathsome to his friends. By thepresent mode of proceeding to remove this disease, with the exception of one or two cases, all have either died in a few weeks after this operation, or the disease has returned, so that we have proposed the entire removal of the superior maxillary bonc. Sce Lizars's Anatomical P'lates, l'art IX. Occasionally a lingus excrescence grows from the gums, which is liable to deceive us for that originating within the antrum; but it can be easily removed and prevented from regencrating by the nitrate of copper or the actual cautery. Other tumours of a firmer consistency originate from the gums, and commonly on the lower maxilla, and ultimately involve the bone. When early perceived, the tecth should be cxtracted in their vicinity, and the \(1 u\) mour, with cvery portion of the discased gum or bone, removed. The teeth being like the nails inert, inanimate objects, and in this resembling mincrals, are subject only to denudation or desquamation, decay or rottenness, and lastly fractures. The other diseases usually described as belonging to them properly attack the contiguous textures.

The inferior maxillary bone is affected with encysted tumour and osteo-sarcoma; the former being distinguished by crepitation and the absence of pain, and treated like encysted tumour of the soft parts; the latter or osteo-sarcoma by the lollowing operation: An incision ought to be made along the base of the bone, in order not to disfigure the face, when the facial artery will spring and require to be secured; the tumour and bone are then to be divested of their soft coverings, and the latter at its symphy. sis first sawn in a slight degree, and next broken across with Liston's forceps; having previously extracted any tooth which mayinterfere with the saw. The operator can then move this half of the bone outwards, divide the insertion of the pterygoideus internus from above downwards, cut across the coronoid process with the forceps, leaving the division of the insertion of the temporal muscle until the operation is nearly finished. The insertion of the external pterygoid muscle is next to be divided, keeping the back of the knife towards the internal maxillary artery, and by now depressing the symphysis, the capsular ligament may be easily but carefully cut round, and the one half of the bone remored. The coronoid process may then be detached. It is seldom necessary to remove either the condyloid or coronoid processes, but merely to saw and cut with the forceps the ramus immedi. ately behind the dens sapientix. If the whole bone be diseased, the same steps are to be pursued on the opposite side, if the tnmour will admit of being divided in its middle at the symphysis menti. After the removal of the bone, all arterics are to be carefully secured, the wound approximated with stitches.
adhesive plaster, compress and bandage. The patient should be fed on liquids for some time, and nature left undisturbed, will repair the deficiency of bone by an exudation of callus, which will nearly remove all deformity.

Calcareous depositions are found in the submaxillary duct, which are easily extracted by an incision through the mucous membranc of the mouth and the duct; and when either these or any other causes prevent the escape of the saliva from this duct, the latter enlarges, forms alarge pouch which occasionally becomes thickened in its coats, and constitutes the disease named ranula. This is to be treated by removing a portion of the sac and applying the potassa so as to obliterate it, or following the plan of Dupuytren, which is by making a puncture into the tumour, and inscrting a small hollow cylinder of the shape of the eye stilette, with a small ellipical plate convex externally attached to each extremity of the tube, in order to prevent it from slipping cither into the dilated duct, or out of it into the mouth.

The tongue is subject to tumours, to enlargement from mercury and small pox, to abscess, and to cancerous ulceration. Tumours are removed either with the knife or ligature, and if the fomer be preferred and the tumour very large, the lingual arteries ought to be first secured, or the actual cantery applied. In enlargement of the tongue, we make free longitudinal incisions, and if they do not bleed sufficiently, perform venesection at the bend of the arm, administer saline cathartics and glysters, cxpose the patient to a cool atmosphere, and discontinue the mercury if it be the cause. In abscess a frec opening should be made. In cancerotis ulceration, either the ulcerated surface or the whole tongue must be removed, with the ligature orknife; if the latter is used, the lingual arteries ought to be first secured. The ligature produces less irritation in this case than almost it any other disease. When the ulceration is trifling, a mixturc of honey and water, or a weak solution of arsenic often succecds; and il these fail, the nitrate of copper or silver, and even the actual cautery may be tried. If any of the teeth irritate the tongue, they should be extracted. Children are occasionally born with the fremum linguxe so short that they cannot suck, in which case it is to be divided with a pair of blunt pointed scissors, directing their points towards the symphysis of the inlerior maxillary bonc. 'lumours occasionally grow liom the mucous membrane of the mouth, investing the cheeks, lips, and palate, and require to be removed by the knife. The amysdalie or tonsils lerequently suppurate when attacked with inllammation. See Article Medictina, Vol. Xll. p. 807, and should be freely opened with a bistoury cutting towards the mesial line, to avoid any risk of wounding the important blood-vessels in the vicinity. They are also subject to such adegree of enlargement as to reguire extirpation. as they impais the woice, the breathing, and deglutition. "l'his operation is chected cither by the knife, the cautry, of the ligature. When the knife is adopted, the operator seizes hold of the tonsil with the forceps, l'ig. 9. I'late DXVL. and pulls it genty
forwards and mesiad, while he carries the scalpel from above downwards, or from below upwards, by which the greater portion of the mass may be extirpated. Any bleeding is easily suppressed by styptic solutions, but if not, by the actual cautery or sponge held on the part. When the uvula is so elongated as to irritate the tongue and epiglottis, exciting coughing and a disposition to swallow, and cven to interrupt respiration, it must be trimmed with forceps and scalpel or scissors.

Children are not unfrequently born with a cleft velum palati, which can only be remedied when they arrive at an age capable of appreciating the beneficial effects of the operation. The operation is termed velu-synthesis or staphyloraphy, and consists in rendering the edges raw, and approximating them by means of the interrupted suture. See Dr. Stephenson's Inaugural Dissertation, and Lizars' Anatomical Plates, Part IX. The partition occasionally extends between the two superior maxillary bones, and even the upper lip, exposing at once to view the nares and basis of the cranium. Children when thus malformed cannot suck, and are even with difficulty nourished on spoon meat. The cleft lip is named hare-lip, and should be operated on when the cliild is three or four months old, by rendering the edges raw, and approximating them with delicate sewing needles, and entwining a large flat ligature in the figure of 8 around each needle, being careful not to do it too tightly, as some degree of tumefaction must occur; a piece of lint is then to be put between the ends of the ncedles and the lip, and the whole gently covered with a compress and a roller. In transfixing the lip, the needle should pass as near as possible to the mucous membrane investing it, and the one near the villous part of the lip should be inserted first; the needles should be removed on the third day. When there is a double cleft, the middle portion is to be left or removed according to its magnitude; and if of such a size as is to be left, onc of the fissures is to be operated on before the other, allowing two or three mouths to intervenc. We thus perceive that in such cases of cxtensive malformation, all that can be done in very carly life, is to curc the cleft lip; and the two sides of the lace, or the superior maxillary bones might be slowly and gently approximated by an apparatus resembling the chin stay: and about maturity the clelt soft palate can be united, so that if any fissure remained in the hard, its edges might be rendered raw and approximated, or if impracticable, a piece of sponge and silver plate, or simply a silver plate with a groove round its margin might be inserted.

The lips, particularly the lower, are very sulject to cancerous excrescence and ulceration, which if not early removed, soon contaminate the contiguous lymphatic glands, rendering an operation hopeless. When the lower lip is the seat of disease, the cancerous portion, with some of the healthy structure on each side, requires removal, and is done by making two incisions of the ligure of the letter \(V\), the apex pointing towards the chin, and approximating the raw surlaces as described above.

The nerves of the lace, viz. the supra-orbitary,
infraorbitary, mental and facial, are all liable to be affected with neuralgia, or tic doulourenx, which is a peculiar excited state of the nerves, being either an inllamed condition ol the neurilema, or a spasmodic condition of the medullary structure, and often results from a deranged state ol the stomach, or rest of the alimentary canal or liver. The treatment therelore depends on the cause; if not constitutional, the best local application is the moxa, the next the knife. For an account of the various operations, see Lizars' Inat. 'lates, 1'art. II.

The face, from its glandular structure, is very subject to tumours, warty exerescences, and cancerous ulceration, all of which should be early excised; and in performing operations in this region, we must be carelul to avoid the parotid duct, and disfiguring the face. When the parotid duct is wounded, the saliva discharges itself over the cheek, constituting salivary listula, and is to be treated by establishing a fistulous aperture into the mouth by means of a seton, then closing the external wound towards the cheek by caustic, actual cautery, compress and bandage. The parotid gland, and particularly the lymphatic ones superficial to it, are frequently scirrhous, and require extirpation. Some we have known remain dormant for thirty years, while others have advanced to ulceration, and produced a most painful and loathsome existence. In removing the parotid gland with the knile, the common carotid of the affected side ought to be first compressed or secured, then an incision over the gland, from the zygoma downwards to the sternomastoid muscle, or two semi-elliptical ones, according to the magnitude of the tumour. The skin dissected, first forwards towards the face, and next backwards towards the ear; and the gland carefully insulated by lateralizing the knife with its cutting edge towards the chin, and preserving the nervas vagus and internal jugular vein, both of which may be so embedded in the tumour, as to require a portion of the disease to be left. It has been removed repeatedly with suecess.

The submaxillary gland, or its contiguous lymphatic glands, are subject to the same diseased condition as the parotid, and also require removal with the knife; but as there is only the facial embedded in the tumour, there is no necessity for securing the carotid. The lingual, however, may be wounded in the operation. The knile should be lateralized in the same manner as recommended for the parotid. The different lymphatic glands in the region of the carotid artery, are very subject to the various sarcomatous enlargements, particularly the carcinomatous, and require extirpation. Those at the angle of the inferior maxilla, are frequently so braced down by the sterno-mastoid, and the platysma myoides muscles, together with the cellular fascix, that they are in close contact with all the important blood-vessels and nerves in this region, while they appear to be immediately under the skin. In removing them, the knife is to be lateralized as mentioned above. In the lower region of the neck, and near the axillary plexus, tu-
mours are fromerally softer, oceasionally encysted and cartitasinous.

The enlargement of the thypoiel gland, which depends on the water drunk liy the indisidual, is now found curable by iodise, and armosal to a distance lirom the watre which prodnced it, avoiding, howercr, cuery danger of lalling into Charyb. dis. Wry-neck is a contraction of the stemomastoid mascle, which then requires to bo divided. Sometimes only the clavicular attachment ared be separated; but if the whole muscle, either its origin or insertion should lie selceted, and the latter is less dangerous: and if the operatop proced cautiously, he will injure no important objects. After the operation, the chin-stay, lig. 22 ol l'late DXV1. should be worn.

While in the act of cating various substances, especially linits, the stones are liable to be swallowed and enter the larynx, and unless removed, immediately produce sulfocation, ly entering the glottis, or sacculus laryngis; or they descend into the trachea, and produce dillicult respiration, inflammation, effusion, and occasionally empliysema. They even sometimes descend into the minute divisions of the bronchii, and produce abscess of the lungs, or phthysis pulmonalis. As suffocation may be produced by bodies arrested in the pharynx, a probang should be first inserted into it, but if the sulfocating symptoms continue, laryngotomy ought immediately to be performed, which consists in making a longitudinal incision over the thyro. cricoid membrane, and seeuring any small arteries, if necessary; then making arincision in this ligamentous membrane, and searching for the foreign body. If it be below the incision in the trachea, the efforts of coughing will bring it up; and if in the ventricles of the glottis, a probe scoop, or forceps will dislodge it. Any incision of the thyroid, or even cricoid cartilage, is to be as much as possible avoided, especially the former. Laryngotomy is also performed when foreign bodies have been arrested in the œsophagus, threatening instant suffocation, and the operator unable to dislodge them by the probang; it is also adopted to inflate the lungs in suspended animation, likewise in laryngitis. See Article Medicine, vol. XIl. p. 80\%. And when the glottis is ulcerated in syphilis, or too much mercury has been taken, and when tumours in the vicinity oppress the breathing. With the exception of the first of these cases, laryngotomy appears unnecessary: and when performed, a trocar and canula, as delineated in Fig. 18, Plate DNVI., should be plunged obliquely downwards into the trachea, after the oblong square space is brought into view, the canula left and the trocar withdrawn.

Tracheotomy is performed for supended anima. tion, foreign bodies in the trachea, and œesophagus, chronic laryngitis, and trachitis; but, with the exception of the three last of these affections, laryngotomy is to be preferred. This operation is done by making a longitudinal incision in the mesial line of the trachea, through the integuments, when the operator should feel that there be no artery
pulsating, as the innominata and right carotid may come in the way of the knife. He must then proceed cautiously, avoiding the isthmus of the thyroid gland, and plunge the trocar and canula through the rings of the trachea obliquely downwards, withdrawing immediately the trocar.

During mastication and deglutition, fish and other bones, pieces of flesh, \&c. are sometimes arrested in their progress to the stomach, either in the pharynx or esophagus. Fish bones are generally found sticking in the fauces or pharynx, so also are needles, pins, and fish-hooks; while bread, bone, flesh, gristle, cheese, coins, and other large bodies, are arrested where the pharynx becomes œsophagus; and when these objects are very large, they often produce instant suffocation; if not, they excite inflammation and suppuration, or gangrene, which ultimately prove fatal. But sometimes an abscess forms in the neck that bursts externally, from which they are discharged; at other times they are spit up, or fall into the stomach, and if insoluble, they are generally arrested in their course along the alimentary canal, and excite inflammation, ulceration, gangrene, and death; pins and needles, however, occasionally travel with impunity over the whole body, when some are expelled per anum, others per urethram, others again through the skin, and some have been known to produce fistula in ano. When they are soluble in the gastric juice, and not sharp-pointed, they should be pushed down by the probang into the stomach; but if otherwise, they ought to be pulled up into the mouth, either with the common polypus forceps, or with a hank of thread doubled; so as to form a number of loops, and fastened to the probang, or with the hook end of that instrument. If the object arrested in the pharynx cannot be dislodged, and if it threatens suffocation, the operation of pharyngotomy ought to be performed, which is done by making an incision through the integuments and platysma myoides, on that side of the neck where the body projects most, parallel with the tracheal margin of the sterno-mastoid muscle, avoiding the external and internal jugular veins, the common carotid artery, and the nervus vagus, which ought to be held aside towards the dorsal aspect by an assistant, when the prominent object will appear, which should then be liberated by an incision through the muscular and mucous tunics of the pharynx. The ktife should be lateralized with its edge towards the trachea. The external wound is afterwards approximated by adhesive plaster, the patient kept extremely quiet, nothing allowed but milk or water lor some days, which must be introduced into the stomach by an elastic tube, or the patient supported by injections of nourishing soups, per rectum.

The mammary gland is generally the seat of disease in the female, but rarely in the male. It is subject to phlegmonous and erysipelatons inflammation, to mammary abscess and sinuses, to excoriation and ulceration, to lacteal swelling, to the various species of sarcoma, to hydatid or encysted swelling, to cartilaginous and ossific tumour, to hypertrophy, and to simple chronic th-
mour of the mamma. Inflammation of this gland is to be treated in the same manner as formerly recommended under inflammation; and the reader is also referred to the Article Midwifery. The treatment ought to be active and prompt, as all glands are easily and rapidly ruined in their functions by an injury done their structure. Under inflammation it is stated that coagulable lymph was effused, which in glandular texture unites its conglomerate portions in such a manner as to suspend the functions in the first place, and in the second to obstruct too often the secretion ever afterwards. The coagulable lymph lays the foundation for future diseased organization, and forms the substratum of the diversified variety of tumours, and in those tumours where no acute inflammatory action is present, a chronic state exists, which converts the secretion ol the capillary vessels of the affected part from their natural to the diseased condition which they respectively assume, in precisely the same way as acute inflammation disposes these capillaries to secrete lymph or pus. This appears a simpler explanation, than Adams's multiplication of hydatids, or Dr. Baron's conversion of encysted hydatids into tubercles. For the phenomena and treatment of mammary abscesses and sinuses, see acute abscess, for in no respect do they differ from those occurring in any other part of the body, with this exception, that sinuses of the mamma should first be tried to be cured by injections of diluted acids. Exfoliation of a rib has supervened to deep abscess of this gland. Nammary inflammation and abscess occur most frequently within the first three months after parturition. A deepseated abscess is described by Hey, but this is simply a chronic species of it. The excoriation and nlceration which attack the nipple are to be treated like ring-worm, tinea capitis, or noli me tangere, according to their severity. Lacteal swelling of one or more of the lactiferous ducts requires to be punctured.

The mamma is peculiarly subject to the sarcomatous tumour, which is clivided by Mr. Abernethy into the common vascular or organized, the adipose, the pancreatic, the mastoid or mammary, the tuberculated, the pulpy or medullary, and the carcinomatous. Of these various sarcomatous tumours, the pancreatic, the medullary, and the carcinomatous chiefly affect this gland. The pancreatic attacks the portion situated between the nipple and the axilla, and ultimately involves the axillary glands. It is either quite indolent or very active; and when the latter is the case, there are severe lancinating pains with an inflamed state of the skin, which produce fever and undermine the health. The treatment is to reduce the cutaneous inflammation and constitutional febrile excitement, and then to extirpate the whole mammary gland, together with the axillary. The medullary sarcoma or fungus hæmatodes is characterized by its clastic feeling, nodulated appearance, some portions being inflamed, other's indolent, and some again natural. The clasticity of this tumour often deceives the practitioner for matter, hut it consists of a brain-like substance, cartilage, bone, flesh and
blood. This species also involves the axillary glands; occasionally it is as encysted as the common wen, and may then be removed by the scalpel with every chance ol success.

The earcinomatous sarcoma, or scirrhus, or occult cancer, attacks this more frequently than any other gland, and is characterized by an unequal knotted hardness, diminished bulk, and a puckering or depressed appearance of the nipple, while the skin remains in a natural state. These phenomena constitute the indolent state of the scirrhous mamma, but when it assumes the malignant disposition, there are most acute lancinating pains, the skin acquires a purple hue in some spots, and the veins of the skin become enlarged and more or less varicose, and is then termed occult cancer. Whenever ulceration takes place, it is denominated open cancer, which generally occurs before the mass has acquired any great magnitude, when it now lorms irregular sloughs, or ulcerates and sloughs in different places; has everted irregular hard edges, with a violaceous coloured inflammation around; and the discharge is thin, dirty green, and ichorous. The axillary glands are commonly aflected im. mediately after the disease becomes cccult cancer, and they soon afterwards contaminate those under the claviele and in the neck; and even all the subcutaneous, for it is a mistaken idea to suppose that ulceration must precede the contamination of the axillary glands. The affection now becomes constitutional, extending to the glandular system of the thorax and abdomen, and even to the pleura costalis and ribs; but by some authors these constitutional symptoms are supposed to take place at an earlier period. When the constitution is affected, the patient feels pains darting along the spine, and has cough with difficulty of breathing. This species commonly begins in a small spot at the nipple, and extends around in all directions like the radii of a circle, ultimately involving the whole mammary gland, the skin, the cellular substance, the muscles, the lymphatic glands, \&c., for there seems no disposition to this horrible disease in the surrounding parts prior to the actual carcinomatous action. In some rare instances this disease is sacculated. When the tumour after removal is bisected, it presents a hardened glistening appearance, with firm white bands intersecting it in all directions, either like radii or irregular bands, or in an arborescent manner; the whole very much resembles cartilage. This species generally attacks the female when the catamenia cease, between forty aud fifty years of age, but occurs occasionally at its first appearance, when the pains are aggravated at every period of menstruation. It may be produced at any period of life by a blow, or succeed mammary inflammation and abseess. This species of tumour may be attempted to be discussed by the repeated application of leeches, especially when the catamenia are expected to take place, and by anodyne fomentations, poultices, low diet, and gentle exercise; and when pain has been subdued, by local pressure. But the tediousness and anxiety are such, that most Vol. XVII. Part II.
patients demand an operation, which, without doubt, is the safest.

The patient should be laid on a table, and the arm of the affected side elevated towards the head with the hand supinated; two semi-elliptical incisions are to be made from the axilla to the sternum, so as to include all discased skin, and to leave if possible enough to cover the wound, and the lower or sacral made first. These incisions should extend through the skin and cellular substance to the lascia of the muscle, dissecting the lower from the gland first, and detining clearly both angles. A few sweeps of the scalpel from above downwards will remove the whole gland, all of which ought to be invariably extirpated. Sometimes the muscle itself is affected to a considerable extent and requires removal. During the removal of the tumour, an assistant should put his fingers on the bleeding arteries, which ought now to be secured. 'The edges of the wound are then approximated either with ligatures or adhesive straps, according to the deficiency of the integumeuts; compresses of lint, together with a roller around the trunk, supported by two shoulder straps or braces are lastly applied. If there have been many small arteries wounded, and not all secured, a second roller should be applied, and tighter than the first, and which must be removed in a few hours, for whenever re-action takes place, respiration becomes affected. The wound to be dressed on the third or lourth day. When the axillary glands are diseased, one of the external incisions should extend over them at the outset of the operction; but they ought not to be cut out till the removal of the mammary gland, and the knife should run parallel with the axillary vein, with its back to the vessel. Whenever an artery springs in this region it ought to be secured; and cren if a rein bleed freely, a ligature must be thrown around its mouth. There is a cutaneous variety of cancer which attacks both the male and female promiscuously.

Ascites has been already treated of in the Article Medicise; and when diuretics and cathartics fail to remove the effused fluid, paracentesis abdominis should be performed, and these remedies afterwards still persevered in. This operation consists in surrounding the abdomen with a belt of strong calico, which is to keep up an equable pressure during the flow of the fluid. The patient is to sit on the edge of a chair, when the operator pierees the abdomen with a trocar and canula, in the direct line of the linea alba, midway between the umbilicus and pubes, and removes the trocar. If the patient becomes faint during the flowing of the fluid, the bandage should be tightened, and the finger applied to the mouth of the canula for a few seconds. When all the fluid has been eracuated, the canula is withdrawn, a compress of lint applied to the wound, with a larger one of calico, and the ends of the bandage brought firmly round and pinned. The greatest care must be taken that the compression prevents any further flow of the fluid, for it collects with rapidity, and would soon exhaust life if the discharge continued. 'The best
canula is that made of steel, the size of a hen's quill in diameter, and the round is superior to the flat. After paracentesis abdominis, if any inflammation follows, leeches, with warm fomentations to the abdomen, and, if necessary, the lancet, castor oil, low diet, and the warm bath. Many of the acute diseascs affecting the abdominal cavity are detailed under Medicine. When knives or such foreign bodies are swallowed and lodged in the stomach, and appear to involve the life of the individual, they should be extirpated by cautiously making an incision in the line of the linea alba from the ensiform cartilage to the umbilicus, through the integuments and tendons of the muscles to the peritoneum, which is then to be carefully punctured, and one or two fingers inserted into the abdominal cavity, and this membrane divided to the same extent as the integuments. The stomach is next to be gently raised with the left hand, and opened with a transverse incision, and the foreign body taken out. The external wound is then to be stitched with broad ligatures, at the distance of an inch from each other, and the needle, Fig. 17 of Plate DXVI. passed immediately superficial or peripheral to the peritoneum, compresses of lint applied, and a large handkerchief rolled round like the binder after parturition. The patient should be nourished for three or four weeks, or even longer if his constitution can bear it, with animal jellies, soups and milk injected per anum. This operation is termed gastrotomy.

When laudanum or other narcotic poisons are swallowed, they should be discharged from the stomach by the stomach-pump delineated in Fig. 12 of Plate DXV. The surgeon puts the fore and middle fingers of his left hand into the mouth of the patient and presses gently on the tongue, while with his right hand, he glides the tube marked s over the tongue into the pharynx, œsophagus and stomach, and then procecds to pump out of the latter viscus its contents with the syringe \(b\). The gag of wood \(c\), ought to be in the mouth to prevent it from injuring the tube. If the contents of the stomach are scanty, or of a thick consistence, warm water should be first injected into it, by putting the end of the syringe into a basin full of warm water, and joining the two tubes \(a, d\), together. By alicrnately filling and emptying the stomach in this manner, it may be fully divested of every drop of the narcotic fluid; and when this has been accomplished, a tea-cupful of strong coffec ought to be injected, and allowed to remain; the patient kept walking about his room between two attendants; and his bowels afterwards freely opened. In some cases, it is necessary to apply a blister to the region of the stomach.

Ilcus, volvalus, or intususceptio, is alrcady described under Mebrense, and if the remedies mentioned there fail to effect a cure, we should first try large encmata of a weak infusion of tobacco, pressing the caput cecum coli at right angles in order to overcome the valve: and if these enemata likewise fail, we seem justified in opening the abdomen and discntangling the viscus. This operation ought only to be performed in the adult, as children in the
last stage of tabes mesenterica have occasionally from one to seven intususceptions.

Calcareous concretions are occasionally deposited in the colon, and if our diagnosis is clear, they ought to be removed by gastrotomy. The spleen is subject to prodigious enlargement, which sooner or later destroys the individual; and if iodine, mercury and other medicines fail to reduce it, gastrotomy may be considered. In this case, whenever the enlarged spleen is brought into view, its plexus of vessels should be secured by a ligature, both ends of which are to be cut off. Abscess of the liver is a frequent termination of hepatitis (see Medicine), and when clearly indicated, should be freely opened with a bistoury; and the nitro-muriatic acid pediluvium, or the alterative course of mercury continued. Biliary calculi have been proposed to bc extracted by an operation.

Nephrotomy, or the removal of calculi from the kidney was proposed in 1696 , but has never been performed until the calculus has produced inflammation and suppuration with a prominent tumour. Many die before such a result takes place, from the urine diffusing itself between the peritoneum and the parictes of the abdomen. Sometimes a communication is established between the pelvis of the kidney and the colon. When a calculus is arrested in its progress along the ureter, it generally soon proves fatal, by exciting inflammation, suppuration and ulceration; but occasionally it advances to the external parietes of the abdomen, and is discharged near the umbilicus, or pubes, or crista of os ilium. Various kinds of tumours grow in the abdominal cavity, as the fatty pendulous, and the medullary sarcoma; the latter of which affects the kidneys, and the mesenteric glands.

Hernia or rupture is commonly applied to a protrusion of one or more of the abdominal viscera, either at one of the natural apertures of the abdomen, or at some preternatural one; and in the majority of cases, there is a sac formed by the peritoneum. Hernia is applied also to a protusion of the thoracic viscera. It is estimated that one-eighth or one-sixteenth of mankind are affected with rupture, young and old, malc and female indiscriminately, and in every condition and mode of life. It is not immediately dangerous, but the least exertion is liable to render it fital, and it too often keeps up such a determination to the intestines, that they either become strictured, tuberculated or ulcerated, and then causc death. Hernia is divided first into the reducible and the irreducible; the former signifying the possibility of reducing the protruded viscera into the abdominal cavity; and the latter or the irrcducible, the reverse. The irreducible is subdivided into the simple irreducible, the irreducible with obstruction, and the irreducible with strangulation or incarceration. The viscera, which are protruded, are the omentum, then named omental hernia or epiplocele; the intestinc, named intestinal hernia or coterocele, and these two viscera conjointly entero-cpiplocele. When the stomach is the protruded viscus, gastrocele; the liver, hepatocele; the splecn, splenocele; the urinary bladder, cystocele or hernia vesicx; and besides these, the
uterus or ovarium, or both, in conjunction. The omentum and the intestincs are those most commonly protruded; the omentum the most frequent, next the ilium, then the jejunum, and lastly the colon. The apertures of protrusion are, the inguinal canal, the crural or femoral aperture, the umbilicus, the great sacro-ischiadic notch, and the foramen ovale. Fometimes one of the apertures of the diaphragm, and occasionally a gap in the muscular parietes of the abdominal cavity. When the viscera are forced out at the inguinal canal, either in the malc or female, it is named bubonocele, or incomplete hernia, and when into the labium pudendi or into the scrotum, complete hernia; that into the scrotum is termed also scrotal hernia or oscheocelc. When the viscera do not descend along the inguinal canal, but protrude opposite the external aperture, it is named ventro-inguinal or direct or internal hernia; and when they merely enter the inguinal canal, but do not appear externally, it is denominated internal hernia. Male children are occasionally born with inguinal hernia, which is then named hernia congenita, or hernia congenita infantilis; and this as they adrance in life, is liable to be complicated with common inguinal hernia. When the viscera protrude at the crural foramen, it is termed crural or femoral hernia, or merocele; the protrusion at the umbilicus, umbilical hernia, exomphalos or omphalocele; and when the visecra arc forced out at any muscular gap, ventral hernia, which protrusion generally occurs at the linea alba. Hernia may be said also to exist within the abdominal cavity, when a portion of the intestine is entangled by the omentum, the latter of which in such a case commonly adheres to the muscular parietes in the region of the inguinal or femoral aperture. Two or more hernia not unfrequently exist at the same time, generally double inguinal, i. c. an inguinal rupture on each side; and there are instances where three protrusions have existed in one inguinal region. The assigned causes of hernia are exccedingly numerous, but they may be reduced to violent muscular exertion, and a more than natural size of aperture, in consequence of a relaxation of the muscular fibre; and hence hernia is as hereditary as scrofula or phthysis pulmonalis. In scrotal hernia, the peritoneal sac has descended to the knee, in which case it becomes so remarkably thin, that the vermicular motion of the intestines has been seen through the integuments, and a blow inflicted on the tumour has ruptured it; the omentum, jejunum, ilium, colon, and even the pyloric orifice of the stomach, have been found in it; and if the sac adhere intimately to the ring, the fundus is occasionally lacerated, forming as it were small cysts or secondary cavities, and if the neck of the sac yields and descends, a new neck is formed, and thus two or more constrictions are produced. The sac very early forms adhesions to the contiguous cellular substance, and through this means to the neighbouring organs, uniting in a mass the integuments, eremaster muscle, sac, and even the intestines in the inguinal hemia. By some the sac is said to become thickened, but this only occurs in small old hernia; in large hernia, the cel-
lular substance is generally thickened, but not the sac. When the caput ccecum coli, the sigmoid flexure of the colon, or the urinary bladder is protruded, there is commonly moperitoneal sac.

The symptoms which distinguish reducible lernia from the numerons affections with which it is liable to be confounded, are a colourless tumour in the region of one of the abelominal apertures, o: cven at any part of the abdominal cavity capable of being returned with the fingers, varying in size before and after meals, and in the mornings and cvenings, influenced by coughing, and disappearing in the horizontal position; and the patient is frequently troubled with colic. Its treatment comsists in reducing the protruded viscera into the abdomen, which is termed the taxis, and is performed by placing the patient on his back, in the horizontal position, with his bead and shoulders and knees so clcvated, as to relax the abdominal museles and the fascia lata femoris; and by pressing with the fingers upwards and outwards in inguinal hernia, and centrad upwards and inwards in crural hernia. Pressure first near the neck of the sac, and then on the body ol the tumour, sometimes succeeds, but various other ways are recommended, which in our estimation appear fanciful and absurd. Then applying a rupture bandage, Fig. 24 of Plate DXVI. which ought to be worn day and night for lile, together with the application of oak bark decoction lor three or four months, (See Edin. Med. and Surs. Journal, vol. xviii.) These will in nine out of ten cases effect a radical cure.

By irreducible hernia is undersiood the impossibility of returning the protruded viscera into the abdominal cavity, in consequence of their having either remained so long down in the sac as to have become swollen, and hence too large, or contracted adhesions with the contiguous structures and the different viscera; the omentum is the most frequently so situated, next the caput cocum, then the sigmoid flexure of the colon, and lastly, the urinary bladder. In this speeies ol hernia, as the patient's life is constantly endangered, every attempt should be made to reduce it, and the bowels ought to be first unloaded by means of a cathartic; but we often fail, and if the mass protruded be very large, the patient cannot suffer it to be returned, in consequence of the abdominal cavity having become habituated to a smaller quantity of intestiue, and to persist may prove fatal. The patient must be exceedingly circumspect in his diet, his regimen, exercise, and all his conduct; and should support the mass with a \(T\) bandage or suspensary truss. Long confinement to bed, light spare diet, occasional bleeding, purgatives and glysters, have succeeded in returning the protruded viscera; so also has the employment of trusses with hollow pads gradually reduced in size, together with confinement to bed; likewise rest in the horizontal position, combined with suspensary bandages progressively diminished in size. The application of ice has also succeeded. An operation has been likewise performed, but from the peritoneal inflammation which followed, it ought not to be done unless absolutely necessary. The
great Zimmerman nearly fell a victim to this operation, and the illustrious Gibbon preferred carrying his load along with him to the grave. In some of these large irreducible hernia, so great a quantity of serous effusion takes place at the fundus of the sac as to require to be drawn off with a trocar and canula.

In this irreducible hernia, if the protruded intestine becomes overloaded with feces, and an impediment be produced, or a fresh portion of this viscus or omentum be forced out, strangulation may occur; again, in the reducible hernia, if a greater portion of viscus be protruded, and the bowels be loaded with feces, which may be only a portion of the diameter of the intestine; while again, in a recent hernia, if the aperture be too small to permit the return of the viscus, the same event may take place, strangulation may also ensuc. Inflammation is soon excited, which causes thickening of the coats of the protruded intestine, and interruption to the circulation of the protruded omentum, an effusion of bloody serum in the herniary sac, coagulable lymph on the intestine, with adhesion of the parts to each other, and ultimately mortification; while within the abdominal cavity, the inflammation extends to the intestines above the seat of the stricture, and to the peritoneum, both of which generally become coated with coagulable lymph, and more or less serous effusion is deposited. The strictured portion of intestine almost immediately assumes a dark purple colour, in consequence of its venous circulation being arrested, and soon becomes black and brown, and then ruptures; the portion of intestine above the seat of the stricture within the abdomen becomes also purple and black, approaching nearly to gangrene, while that below the seat of the protrusion retains its natural colour. When the omentum is the protruded viscus, its circulation becomes also strangulated, and produces inflammation, mortification, and death. If the patient has not previously fallen a victim to the derangement thus produced in his system, the strangulated portion of the intestine mortifies and ruptures, the feces are diffused in the neighbouring cellular tissue, which produce sloughing of the integuments, and are thus discharged, forming an artificial anus; or the integuments over the intestine inflame, mortily and ulcerate. In some cases the feces are so extensively diffused in the cellular tissue of the thigh, as to produce erysipelas phlegmonodes, and death. In those instances where a portion of the diameter of the intestine is merely strangulated, the feces not only escape by the mortified aperture, but also descend naturally along the intestine to the anus.

The symptoms of strangulated intestine are ob. stinate constipation, pain in the tumour extending from thence over the whole abdomen, aggravated on coughing, sneezing, pressure, or any movement, nausea, vomiting, small, quick, and hard pulse, anxiety, restlessness, thirst, and general itiflammatory fever. These are soon followed by hiccup, cold extremities, cessation of the pain, cadaverous countenance, imperceptible pulse, feelale respiration, cold clammy perspiration and death.

Strangulated hernia is as liable to be confounded and complicated with other diseases as reducible hernia, so that we require to be very circumspect in our diagnosis; and probably, of all such affections, a swollen inguinal gland, accompanied with obtinate constipation, is the most frequent, and at the same time the least dangerous, for even, provided an operation is performed in such a case, no evil would be produced.

Let us suppose it to be purely strangulated inguinal hernia, the taxis is to be first employed, and if there be not much pain, it may be persevered in for some minutes; but if the reverse occurs, venesection even to lainting should precede the taxis, and if a warm bath can be procured, it ought to precede blood-letting. He olght to be bled while immersed in the water, and the taxis tried while in it. If he does not faint when the ordinary quantity for producing this effect has been abstracted, he ought to be raised to the erect attitude, and the instant syncope takes place, to be seated in the bath and the taxis employed. The tobacco enema may be combined with blood-letting to produce fainting in this disease, but is objectionable as it retards an operation. Purgative enemata should be employed. The time which is to be allowed in the employment of the preceding measures must be regulated by circumstances; more patients, however, fall victims to delay, than to an operation. We should operate immediately if the pain increases after giving a fair trial to the taxis combined with blood-letting, for perseverance in the taxis may produce suppuration, gangrene, and rupture of the intestine, and we allow the opportunity to pass of saving our patient by an operation. Small hernix are more difficult of reduction than large, in consequence of the smallness of the aperture. We must be careful not to be deceived in reduction, for sometimes, only the contents of the intestine are returned; in other instances, only one of the viscera; at others, the intestine is still in the inguinal canal strangulated; in others, although the sac and intestine are returned, still the neck of the sac continues to incarcerate the intestine; in others the omentum bridles down the intestine and strangulates it; in some ileus may be combined; while sometimes there exist two distinct hernix, and the contents only of the one are reduced. The symptoms consequently ought to be our guide, but here also we may be deceived, for after reduction, although the patient is relieved from his immediate sufferings, inflammation may continue from the effect of the stricture. If therefore pain with vomiting still continues after reduction, strangulation must exist, and an operation is required, and if after that operation these symptoms are not abated, either the omentum must be bridling down the intestine or ileus cxist, and then the propricty of gastrotomy must be considered. When the mesentery within the ahdominal cavity is the cause of strangulation, the case is named mesenteric hernia, and when the mesocolon, mesocolic, and that formed by the omentum may be termed internal omental hernia.

The operation to relieve strangulated inguinal
hernia is performed by making an incision from a little ahove the tumour down to its lowest point, carefully through the skin and cellular substance; then pincing up with the tingers at the lowest portion any cellular tissue, and cutting it horizontally with the scalpel, until the sac or intestine appears, for in some cases we have said there is no herniary sac, but when present, it is of a whitish colour, while the intestine is purple. We must likewise be on our guard in case of the spermatic cord running superficially to the peritoneal sac. The sac is next to be divided in the same cautious manner, when a bloody serous fluid generally escapes, and afterwards cut up to the seat of the stricture, with a probe-pointed bistoury represented in Fig. 8 of Plate DXVI. The portion of the muscle forming the seat of the stricture, which in a receut small hernia is commonly the transversalis, while in an old large hernia the external oblique, is now to be divided directly upwards with the same bistoury, but in some cases only the sharp-pointed bistoury can be admitted. The viscera are now to be returned, reducing that first which protruded last; thus it both intestine and omentum are present, the former should be first replaced, and in doing so, considerable difficulty is generally experienced, in consequence of the action of the diaphragm and abdominal muscles forcing it out as soon as replaced. The edges of the wound are to be approximated with sutures passing the needle through the muscles, then applying adhesive plaster, lint, and bandage. The nates are to be elevated above the level of the body when the patient is put to bed, and as mild diarrhœa commonly follows, a gentle laxative, as castor oil, should be given; and since inflammation frequently supervenes, if the patient has not lost much blood, venesection ought to be performed. The other remedies adopted in this affection are to be kept in view, and the dict should be low for many days. When the individual has recovered the operation, he must wear a rupture truss for life.

There are many points to be attended to in this operation; thus the spermatic cord sometimes descends in front of the tumour running on the sac, but generally it separates into its constituent parts, the plexus of nerves and blood-vessels lying on the inner and anterior aspect, and the vas deferens on the posterior and outer aspect; while in other cases, this order has been reversed. In the ventroinguinal hernia, the epigastric artery runs on the outer or iliac aspect of the neck of the sac. At the period of reducing the protruded viscera, we should examine carcfully that two hernix do not exist, or that there is not a second protrusion near the same aperture. We must be also guarded against pushing the viscera between the abdominal muscles, or between the muscles and peritoneum, instead of into the abdomen, which is termed by the French reduction en bloc. We must be satisfied that the viscera are returned into the abdominal cavity; adhesions are occasionally formed between the portions of intestine, or the intestinc and omentum, or between these and the herniary sac, and if recent or of trifing extent, they should be carefully
separated by the scalpel, but if the intestinc adberes intimately and extensively to the sac, the stricture is to be licely relieved, and the intestine covered with the integuments, when nature will afterwards reduce it. On the contrary, sometiones an artificial anus is the result. The colour of the protruded intestinc ought to be no criterion with regard to reduction; unless it breaks down or ruptures under the fingers, it should be reduced: the colour of a gangrened intestinc is commonly brown. The omentum sometimes surrounds the intestine in such a manner as to require to be disentangled. The omentum is also occasionally so consoliclated, as to be incapable of being returned without making a prodigious aperture, and even when returned, it has excited inflammation, suppuration, and mortification. It should therefore be excised, and if the ressels bleed, which are here chicfly veins, they must be secured. A serous lluid is not invariably present in a berniary sac, neither is the herniary sac itscli, and in those latter cases, when the colon has been the viscus, it has becn proposed not to return it, which, in out opinion, appears injudicious. In a large hernia, the sac should not be opened, as the neck is large enough to allow the reduction of the viscera, and would expose too large a surface; all that is requisite, therefore, is to divide the stricture formed by the muscle on the outer side of the neck of the sac. Congenital inguinal hernia is of most importance when it occurs in the male, and consists in a protrusion of the visce:a, within the tunica vaginalis testis, cither with or without a peritoneal sac, and, consequently, in some instances, in contact with the latter body. In children, as the testis cannot be felt before the viscera are reduced, we require to be careful in the application of the truss; and as chiddren are subject to hydrocele, and these diseases frequently co-exist, equal caution is requisite. When this variety becomes strangulated, the sac should not be laid open from the bottom, but at the upper margin of the testis, in order that enough may be left to cover the gland: but if any adhesion exists, the sac must be cut open to the bottom. Sometimes a common inguinal and a congenital hernia exist together.

Crural hernia is said to be peculiar to the female, and inguinal to the male, athough our own observations do not corroborate this. The viscera are protruded either at the crural aperture, or in the sheath of the femoral vessels, but much more frequently at the former than the latter place. The stricture in this hernia is gencrally caused by Gimbernat's ligament, and reguires to be divided horizontally towards the pubes, inserting Weiss's probepointed bistoury, Fig. 12 of Plate DXVI. as short a distance as possible within the abdomen. There is seldom any serous lluid effused in the sac of femoral hernia, and intestine more frequently than omentum is protruded. The constriction produced on the intestinc by the crural aperturc, has sometimes caused cither permanent contraction of the part, or ulceration of the mucous and muscular tunics, followed by fatal extrarasion.

Umbilical is fully more frequently congenital than
inguinal, and great circumspection, therefore, is required in securing the umbilical cord at birth. The peritoneal sac in this species becomes exceedingly thin, and is often ruptured, forming cysts, and the viscera, not unfrequently, adhere to the integuments, and have been strangulated at these foramina of the sac. It is not very liable to be strangulated, but when this event does occur, the symptoms are more violent, and gangrene takes place more rapidly than in the preceding species, and hence an earlier operation must be had recourse to. The stricture is to be divided either directly upwards or downwards in the linea alba, but the latter should be preferred. Ventral hernia commonly occurs in the linea alba near the umbilicus and between it and the ensiform cartilage. Perineal hernia is when the viscera protrude between the urinary bladder and the rectum in man, and between the rectum and vagina in woman, rupturing the fibres of the levator ani muscle. Vaginal hernia is when the viscera descend either between the urimary bladder and uterus, or between the uterus and rectum. Pudendal hernia is when the viscera protrude betwecu the ramus of the ischium and vagina through the fibres of the levator ani muscle, the tumour appearing a little below the middle of the labium externum. Sacro-rectal hernia is a peculiar species arising from an incomplete ossification of the sacrum.

If the intestine which is protruded becomes gangrenous and ruptures, an artificial anus is formed, and if this portion be even so near the anus as the ileum, close to the caput cæcum, the pationt dies from inanition. If the intestine at either end admits the little finger, there is no necessity for dividing the stricture, if otherwise, there is. The palliative treatment consists in cleanliness, in stopping up the external aperture by sponge or linen plugs, and ultimately, when the apceture of the intestine is reduced to a small foramen, by applying the actual eautery, and nourishing the individual with nutritive soups and enemata; the radical cure, in destroying the septem with Dupuytren's forceps, delineated in Fig. 16 of Plate DXVI.; but this instrument ought not to be used too soon after the formation of an artificial anus, and if inflammation is induced, it must be suhdued by local blood-letting, fomentations, \&c. The external wound is to be afterwards healed by pressure, caustic, and the actual cautery, or paring the edges and cmploying a suture. Dupuytren uses an instrument consisting of two pads and a screw, to approximate the sides of this fistulous aperture.
Retention of urine, or ischuria vesicalis is, when the urine is collected in the bladder and camot be expelled; and is either partial or total, or complete and incompletc. Partial or incomplete retention is when the patient voids a little urine from time to time, but still his bladder is becoming more and more distended with water, a condition very deceilful and equally dangerous as the complete, and hence very improperly named. The complete or cotal state is, when no urine whatever is roiled. The causes of this malady are, inflammation of the neck of the bladder or urethra, stricture of the urethra, discased prostate gland, fistula in perineo,
blood, worms, calculi or other foreign substances in the neck of the bladder or urethra, pressure of the uterus in the advanced stage of gestation, and displacement of the viscera of the pelvis in the female, pressure of the rectum, tumours, and abscesses in the vicinity of the neck of the bladder, paralysis of the bladder, and, in some instances, from a false passage made by the surgeon. In all of these, there is acute pain in the hypogastric region, particularly when pressed upon, with a constant desire to make water, and aceompanied with some degree of a fever. On cxamining the hypogastric region, the urinary bladder is found distended, and more or less of a pyramidal figure ; and on inserting the finger in the rectum in the male, or ragina in the female, a bulbous projection is felt. If the urine is allowed to accumulate, the bladder loses its contractile power, inflames, sloughs, and ultimatcly ruptures, when the urine escapes into the pelvis, and is extravasated into the contiguous cellular tissue, oceasionally upwards to the loins, and downwards to the perineum, scrotum, penis, and upper region of the thighs, either exciting inflammation of the peritoneum and viscera, with a typhoid fever ending latally, or at once producing coma and death. The kiducys, in the advanced stages of retention are mechanically impeded in the further secretion of urine, by this fluid aecumulating in the ureters and pelvis of these organs.

In retention of urine, there is commonly no time to investigate the cause, since the urine must be immediately removed by inserting into the bladder a silver catheter delineated in Fig. 8 of Plate DXV, which is done, cither while the patient stands, or lies on his back, by the surgeon grasping the penis with his left hand, while with his right he enters the point of the instrument into the urethra, the handle being over the left groin of the patient ; the catheter is then slowly and cautiously conducted along the urethra, bringing its handle to the mesial line, while the penis is at the same time pulled upon it, until the operator considers the point of it in the membranous portion of the canal, when he is to relax the member, and bring forward the handle to a right angle with the hody, and ultimately depress it, pressing upwards the point of the catheter with the fore-finger of his left hand in the perineum. If he is foiled in its introduction, he should partially withdraw it, and insert the forefinger of his left hand in the rectum and press upwards its point as he glides the instrument onwards: this latter attention is especially requisite when diseased prostate gland is the cause, or he may try a smaller-sized instrument. If he is still foiled, be ought to try a fexible gum catheter after the manner of inserting a bougie, which is, to withdraw the stilet, make the patient stand before him, grasp the penis with the left hand, and gently elongate it, so as to make the urethra a straight canal ; then insert this catheter cautiously. If these trials fail, and the patient is not suffering severely, he should be bled to fainting, and the introduction of the catheter again attempted; or he may be put first into a warm bath before being bled; and if the catheter does not pass along, a tobacco glyster as di-
rected in hernia may be used: but no violence whatever should be employed in the attempts to insert the eatheter, for the surgeon may rest assured that whenever blood hows at the meatus urinarius, he has ruptured the mucous coat of the urethra, is in the corpus spongiosum, or cellular tissue in the vicinity of the membranous portion, and has begun to make a false passage, so that he ought to desist, and puncture the bladder. Male catheters are of different shapes, varying chiefly in their curves. Lieutaud employed a straight catheter, which is now used by Mr. Amussat and others in Paris; a surgeon should have them of different curves, and longer and shorter in the beak, and of smaller and larger diameters. The French, when foiled in the introduction ol the common catheter, oceasionally use a conically pointed one, which is termed a sonde conique, and which they force onwards from the point of resistance in the urethra into the bladder. If the operator succeeds in its introduction, the instrument should be kept in the bladder until all irritation is subdued by antiphlogistic means, when the cause ought to be investigated, and if possible removed. Mr. Amussat, in the Bulletin des Sciences Medicales for October 1825, describes a most ingenious apparatus for relieving retention of urine, by forcing an injection of warm water along the urethra.

The female catheter is delineated in Fig. 10 of Plate DXV. although a male one is equally serviceable, and is inserted while the patient is in bed with her limbs in a bent position, by the right hand of the surgeon holding the instrument, being conducted under the right thigh, when the clitoris is to be felt by the middle finger, and the point of the catheter glided downwards about an inch into the meatus urinarius, and then its handle gently depressed and pushed upwards and backwards around the symphysis pubis. The operator is nearly equally liable to injure the mucous coat of the female urethra, and hence ought to proceed with the same precaution as in the male.

The urinary bladder is punctured at the perineum and per rectum in the male, per vaginam in the female, and above the pubes in both. The operation per reetum is much the simplest and salest, and can be done even in cases of enlarged prostate gland. The patient's nates are brought to the edge of the bed, and his leet placed on chairs widely separated, so that the position nearly resembles that adopted for the lateral operation of lithotomy; the operator then inserts the fore and middle fingers of his left hand oiled into the rectum until he feels the prostate gland, when he conducts along them the trocar and canula delineated in Fig. 11 of plate DXV, sheathed to the space formed by this gland and the fold of the peritoneum named the cul de sac, and the vesiculœ seminales, and then plunges the trocar with the canula into the bladder, depressing at the same time its handle, so that the instrument may run parallel with the patient's body; the trocar is next removed, and when the urine has been evacuated, the canula is fixed by tapes run through the hole at its exterior aperture and around the loins and thighs of the patient, this aperture being
plugsed up with a piece of wood, and the patient atterwards laid in bed, with directions to remove this plues when the bladder feels distended.

After this operation, there may continue such a degree of inllammation or inllammatory fever, as to require active antiphogistic treatment, and in such an event the canala ought not to be plugged up. The surgeon ought next to investigate the cause, which he is to endeavour to remove; but whatever that may be, he should at the end of 48 hours, by which time suppuration will have ensued, substitute a flexible gum catheter for the sitver one, as the latter will excite ulceration of the bladder; a small papilla will direct him, and as the urinay bladter and rectum are intimately united in the healthy state in this space, he can scarcely introduce the instrument between them. When perlorming this operation on a stout fat man, the operator must expect to experience difficulty in feeling the prostate gland, and reaching the space beyond it. In the female, the bladder is easily punctured from the varina, the operator calculating the length of the urethra, and if the canula requires to be left, it should be fixed with a \(T\) bandage, and care taken that it does not slip into the bladder. The after treatment is the same as that directed in the male.

Stricture of the urethra frequently ensues from gonorrhœa, (described in the article Medicine under Syphilis, Vol. XIII. p. 30.) and every patient who has been once affected with this complaint, has more or less contraction of the urethra, in consequence of the injury done to the canal, but if left alone to nature the apparent stricture will be removed, while if bougies be used, it will be aggravated. Stricture also arises from stimulating medicines taken internally, from stimulating injections, ulcers in the urinary canal, injury of the urethra, calculus in the bladder, and excess of venery. It has likewise occurred in those who have resided in a warm climate, and in people of a naturally irritable urethra, and so early in life as eleven years of age. It is divided into the spasmodic and permanent, and a combination which is termed the mixed stricture; it occurs in every part of the urinary canal, but most frequently just behind the bulb, which is between six and seven inches from the meatus urinarius; next, anterior to the bulb, or about four and a half inches; thirdly, three and a half inches; fourthly, close to the meatus; occasionally in the prostatic portion; and on some rare occasions, at all these places in one individual. Spasmodic stricture consists in a tensporary contraction of the longitudinal fibres of the urethra; permanent stricture, in a greater or smaller contraction of the passage from thickening, which is consequent on an effusion of coagulable lymph, that becomes more and more organized, and ultimately hard and of a white colour. Sometimes this permanent stricture is so narrow or short, as to resemble the constriction made by tying a thread round the urethra, and is named the corded or ring stricture ; at other times, only one side of the canal is contracted; while occasionally, cases occur where the whole diameter is contracted for a considerable extent, and this has been termed by some
the ribbon stricture. There is always an enlargement of the urethra immediately behind the stricture, considerable thickening of the coats of the urinary bladder, enlargement of the ureters, with affection of the kidneys.

The symptoms of this disease are, inability to expel all the urine at once, there being always a few drops remaining between the stricture and the bladder, so that when the patient imagines he has finished, he finds his clothes wet, and on pressing the penis more urine is expelled; the stream soon becomes wiry, spiral, forked, or scattered, and there is straining with an uneasy feeling in the perineum and anus after voiding the urine; there is a greater desire to make water in the evening and during the night, being seldom able to lie longer than four hours, and occasionally making it involuntarily, with now and then a nocturnal emission. A gleety and even a purulent discharge is present from the beginning, so that it is liable to be mistaken for gonorrhœa. As the disease advances, the urine is voided in drops, great pain is experienced extending to the loins, the urinary bladder is thrown into violent action, and discharges mucus and pus, and the patient elongates the penis. These symptoms, with retention of urine from time to time, either gradually exhaust the patient, or the urethra behind the stricture bursts, and the urine is effused into the cellular substance in the vicinity, as described under retention, or the bladder ruptures, and the same event occurs, or lastly, the urine escapes, and forms fistula in perineo, and the patient survives. The slightest excess in drinking aggravates the symptoms, and often produces the spasmodic stricture, as well as retention of urine; and so also does the change from a warm to a cold atmosphere. These causes, rogether with the insertion of the bougie, often produce a febrile paroxysm resembling ague. The simple spasmodic stricture is rarely met with in consequence of the patient disregarding it until a permanent state has been induced by the inflammation excited from repeated attacks. When the violence of the spasm is present, the treatment is by bloodletting, a dose of nitrous ether and laudanum, the warm bath, an enema of warm water, or one combined with laudanum, and warm opiate fomentations.

The treatment of the permanent, is by catheters or bougies, the latter of which are made of wax, cat-gut, horsc-skin, clastic gum, silver and steel; but the wax, elastic gum, and steel, are those chiefly employed. One of elastic gum or steel, as large as the meatus will admit of, is to be conducted along the urethra down to the seat of the stricture, and the point marked with the nail of the finger, when various ones of smaller dimensions are to be inserted, until one enters the stricture, which if of short extent, or the ring stricture, may be treated with the caustic bougie, which is merely one of wax, having a small portion of the nitrate of silver inserted in the point, and which is to be conducted to the stricture, and kept there with a slight degree of pressure for a few scconds at first, but at each application longer and longer, previously however inserting a common bougie of the ordinary size of the canal for a few seconds, to remore any mucous or
spasmodic irritability of the urethra. If the caustic produces so large an eschar as to plug up the urethra, a small common bougie will remove it; and the application of the caustic ought only to be repeated every second day. When there is so great a degree of irritability of the urethra and bladder that the caustic produces a febrile paroxysm, the pure potassa should be used instead of the nitrate of silver, and the warm bath combined, together with the internal exhibition of the muriate of mercury and nitrous ether. The caustic occasionally produces hemorrhage, which may be easily suppressed by compression. The caustic is very liable to make a false passage, especially if the stricture be beyond the bulb of the urethra, and consequently ought never to be employed excepting in this ring stricture. A false passage is to be apprehended if the bougie makes progress towards the bladder, while the difficulty of voiding the urine continues as at first.

In the lengthened stricture, the common or metallic bougie is to be preferred, beginning with one the size of the stricture, and gradually increasing them in size, and retaining them each time for a longer period: indeed, even when a cure is established, the patient should be taught the insertion of an ordinary sized catheter, which he ought to use at least once a week. If irritability follows the employment of this bougic, the same mode of relief is to be adopted as recommended when using the caustic one. The metallic bougie acts by distention, absorption, ulceration, and again absorption. A more expeditious and safe way of curing either the short or long stricture, if the patient will confine himself to bed, is by the insertion into the bladder of a series of elastic gum or silver catheters, beginning with one the size of the stricture, and progressively increasing them. They can generally be enlarged every second day. This is also preferable to Mr. Arnot's method or Mr. Stafford's lancetted stilettes.

The stricture, if of some length, and so small that the bougie cannot overcome it, ought to be cut down upon, and a larger urethra made by the introduction of the flexible gum catheter. A sound is inserted in the urethra down the length of the stricture, and an incision made with a scalpel to its point, when the strictured portion is to be discovered with a probe and laid open, the sound withdrawn and a catheter inserted in the bladder. When the stricture is situated opposite the scrotum, a free incision should be made in the cellular tissue of the latter to prevent the urine from diffusing itself in it. The Frencl use a sonde conique and force the obstruction. Mr. Amussat, however, employs the injection of warm water as described under retention of urine. In many instances of strictured urethra, it is advisable to puncture the bladder, and afterwards restore the continuity of the canal.
When the canal ruptures bebind the stricture, a free incision shonld be made to allow the urine to flow by the wound, and the contiguous infiltrated cellular tissue ought to be freely punctured. When the surgeon makes a false passage by the bougie, which is known by the rough feeling communicated to the fingers, by a tearing sensation, and by the instrument being in a degrec grasped, he should
immediately withdraw it, and desire the patient to retain his urine if possible, that it may not irritate the wound, and diffuse itself in the contiguous cellular tissue, but allow a clot of blood to form, and a slight degree of inflammation to heal the wound. If he persists, either with the bougic or the catheter, he will only aggravate the evil, for the false passage being distended with blood, presses on the urethra, and prevents him from conducting it onwards to the bladder, the urine flows into this passage, is extravasated in the contiguous parts, and forms an abscess which commonly ends in fistula in perineo, or urinary fistula. This disease also ensues from ulceration of the urethra behind a stricture, which is sometimes involved in the ulceration. If there be ouly an abscess, it ought to be most freely cut open. In this affection, a sound should first be passed into the bladder, and then a fexible gum catheter, which must be worn and progressively enlarged until the fistula is healed. When a stricture has been the cause, either this should be destroyed with caustic or cut down upon, and the latter ought to be preferred. In some rare instances no trace of the original canal can be discovered, in consequence of the urine rendering the substance in the contiguity of the fistulx (for there is often more than one aperture) purely cartilaginous; and then the operator must make a urethra according to his anatomical knowledge. In the healing of such a wound considerable difficulty is experienced, and may be best accomplished by treating it, as recommended in hare-lip, or by the actual cautery. Stricture of the urethra rarely occurs in the female, and only in consequence of maltreatment in parturition, or in the insertion of the catheter; and when it is present, its treatment is the same as recommended in man.
The prostate gland is very liable to be affected with inflammation in gonorrhea, and in stricture, and to lay the foundation for more serious disease. In these affections, the symptoms indicative of the prostate gland being inflamed, are an irritable state of the urinary bladder, pain and straining at stool, with tenesmus. Anexamination per rectum confirms it. Sometimes retention of urine ensues with a throbbing pain in the region of the neck of the bladder, and when the catheter is inserted, great pain is experienced when the instrument arrives at the gland, and is with difficulty passed beyond it into the bladder. The treatment consists in the application of leeches to the perineum or in the anus, enemata of warm water followed by one of laudanum, warm fomentations externally, gentle laxatives, low diet, and rest. General bloodletting is sometimes requisite, and even puncturing the bladder. Abscesses occasionally succeed this inflammatory attack, and the matter is sometimes situated on the exterior aspect of the gland: in general their formation is indicated by rigors, which, however, are not always present, particularly when it takes place in advanced life, from irritability of the bladder. Sometimes the matter is discharged into the urinary bladder, sometimes into the urethra, rectum, and occasionally at the perimxum. Whenever it is ascertained that matter is formed, it should Vol. XVil. Partil.
be freely evacuated by an incision; and in those cases where there is not too much irritation it is advisible to insert an elactic gum catheter and retain it in the bladder. Calculi are sometimes secreted in its substance, and require to be removed by an operation similar to the lateral one of lithotomy. Varicose enlargement ol its blood-vessels occasionally take place, and are relieved by leeches applied through the medium of the rectum. Nedullary sarcoma, fleshy excrescences and scrofulous entargement, with suppuration, occur; but the chronic scirrhous state is the most common affection of this gland, attacking the male about forty years of age, like that disease in the female mammabout the same period of life. It has been seen in a few rare cases of early life.

The symptoms are, a frequent inclination to make water, which is voided very slowly, in small quantities and with difficulty, and has a strong flavour of ammonia; a dull heavy pain in the region of the gland, which, however, is occasionally sharp and lancinating along the urethra even to the glans, the latter of which, as well as the prepuce, sometimes feels benumbed. He has a difficulty in expelling his feces, which become small, wiry, or flattened; is affected with hemorrhoids and prolapsus ani. When riding in a carriage or on horseback, he passes blood per urethram, and as the disease advances, the urinary bladder becomes affected, and also the urethra and kidneys. On dissection, the gland is indurated, and resembles that described under scirrhus of the mamma; and when much enlarged there projects towards the bladder a portion which resembles a third lobe; sometimes, however, this projection takes place laterally; and in rare instances fungous polypi are attached to its base. The mucous tunic of the urinary bladder, immediately behind the prostate gland, is occasionally forced through the muscular, forming herniary sacs, an event that sometimes occurs in stricture of the urethra, in consequence of the violent straining efforts in expelling the urine. The treatment hitherto has been only considered palliative, which consists in local bloodletting, semicupium, domestic and opiate enemata, and teaching the patient to draw off the urine with the catheter whenever he has a desire to void it, or by his wearing a flexible gum or pewter catheter, which must be changed every ten or fourteen days. The radical treatment consists in removing the gland by an operation, for which the reader is referred to the late Dr. Bruce's Thesis De Murbis Glandulx Prostate 1827. In the fungoid condition of the gland, the blood flows into the urinary bladder, and requires to be removed by a silver catheter having a brass syringe adapied to it.

Calculus in the urinary bladder has been already described under lithiasis in the article Mi:Drcine, so that it remains only for us to detail the resources of surgery, which are the extraction of the stone along the urethra by means of a pair of forceps, with or without dilatation of the urethra; secondly, the breaking down of the calculus in the bladder by means of a lithontripter; and thirdly, by an operation to cut into the bladder and remore the stone. Whell the calculus is small, it may be extracted by 4 E
the forceps represented in Fig. 14 or 15 of Plate DXV., or by dilating the urethra by means of flexible gum catheters or metallic bougies, for small calculi are often voided with the urine; but if large, attempts may be made to seize and break it down with the lithontripter represented in Fig. 16 of Plate DXV. which was invented either by Meirieu, Leroy, or Civiale; but the pain attendant on this method is so harassing, and occasionally so severe, that a patient affected with calculus vesicæ will rather submit to the lateral operation. Besides the lateral, there are several other operations of lithotomy; the apparatus minor or cutting on the gripe; the apparatus major; the high or hypogastric; the recto-vesical; the bilateral or Celsian; and lastly, the quadrilateral method. The apparatus major, and the recto-vesical operations may be said to be now abandoned; and the high operation only performed when the calculus is so large that the outlet of the pelvis will not permit its exit. The bilateral is a revival of Celsus or rather Ammonius of Alexandria's method by Beclard and Dupuytren, and differs from the lateral in this, that a lunated incision is made from the tuberosity of the one os ischii to that of the other; and Beclard's differs from Celsus's that he keeps the sound in the urethra until the bladder is freety incised. This is evidently an advisable operation when the calculus is large, and is decidedly to be preferred to the hypogastric. We are confident that this mode, together with Le Cat's teeth lorceps or Mr. Earle's stone breaking or screw forceps, will extract the largest calculus that was ever removed in life. This bilateral appears to answer every purpose that the quadrilateral operation, invented the other day by Vidal, can possibly do, and is unquestionably safer and simpler.

The lateral operation is found to succeed best between sixty and sixty-fise years of age, next lrom four to twenty, and most seldom between twenty and sixty. A patient who is to undergo this operation should be free from any flakes ol purulent matter in his urine, lrom diseased prostate gland, from spasmodic action of the abdominal muscles, or any aftection ol the thorax; he should take a cathartic the day before, have a laxative glyster on the morning of the operation. aud the hair of the perineum shaved ofl. He is then to be secured with tapes on a firm table, with the nates projecting over the margin, and again sounded with a staff delineated in lig. 3 of गlate DXV1. In ordinary cases of somnding, the patient is not tied up, but is laid horizontally, and il no calculus be found, he should lee sounded with a catheter while stauding, and when the bladder is lull of urine, by which means the stone will strike the point of the instrument; and to ldacilitat: this, the liow of urine may be stopper from time to time. When using the sound, the fore and middte lingers ol the lelt hand of the operator shoubl be inserted in the rectum. A calculus being ascer ained to be in the bladder, the statl is to be beld firm by dil assistant at right angles to the petris clore under the symphysis pubis, who at the sembe time supports the scrotum, while two assistants hold the leet and kinces ol the patient. 'The ap"rater then makes nearly a perpendicular in-
cision with a scalpel two or three inches longer in its handle (see Fig. 14 of Plate DXVI.) on the left side of the raphe of the perineum, from the root of the scrotum to the fibres of the gluteus maximus muscle which cross the bottom of this wound, and some of which ought to be divided if the operator calculates the stone to be large; this incision is to sun midway between the anus and tuber ischii, and should divide the integuments and cellular substance. The operator next deepens this incision opposite the membranous portion of the urethra, carefully avoiding the bulb and the accelerator urinæ and erector penis muscles, but cutting freely the transversus perinxi and levator ani muscles. Having reached the staff, by dividing the membranous portion, he enters the point of the scalpel into its groove, and with his fore and middle fingers depressing the rectum, he runs the scalpel along the groove of the staff through the prostate gland into the bladder (when the urine flows, satislying him that he has entered the viscus) and cuts oblicquely downwards and outwards between the termination of the ulcer and vesicula seminalis, proportioning the incision in the bladder and that of the levator ani muscle to the size of the calculus. The moment he has finished the wound of the bladder and the levator ani muscle, he should insert the fore and middle fingers of his left hand into the bladder over the stone, to prevent its being grasped by the muscular contractility of the riscus; and then pass below his fingers a scoop represented in Fig. 4 of Plate DX゙VI, and if he cannot easily remove it with this instrument, he should seize it with a pair of forceps, Fig. 5 of Plate DXVI., below the scoop which is to remain in order to prevent the calculus from being remo:ed from its situation, and extract it. If either the bladder, the levator ani muscle, or the external wound is the barrier to its extraction, it should be more freely incised.

Whenever a calculus is extracted, its surface should be examined, and if any part be depressed, it is to be presumed that another calculus is present, which is to be extracted in the same way, but if grasped by the muscular contractility of the bladder, and it cannot be with facility removed, the patient should be unbound and put to bed, for, when suppuration is fully established, which is commonly the third day, it may be done without giving the patient the least pain. by simply inserting the fore and middle lingers of the lelt hand into the wound. But if not, the scoop may be again used, or the Porceps, if the operator prefer them, and even a soundmay be inserted along the urethra without exciting pain. This mode is termed operation en leute tems, and may even be employed with advantage, if any dilficulty exists in extracting the first, or even when only one calculus is present. 11 a calculus is solt, and breaks in extraction, the bladder should be carefully washed out with warm water injected by means of a syringe.

When the operation is finished, the patient should be umbound, and put to bed, with a piece of oiled lint applied to the wound, and a bottle of hot water to his leet; and, whenever reaction has taken place, he ought to be bled, il he has not lost much
blood during the operation, and in both cases, il there be the slightest appearance of peritoneal inflammation, which, il it follows, must be most promptly treated with antiphlogistic remedies. If hemorrhage supervenes, it is to be checked with a piece of dry sponge inserted in the wound, having a female catheter pushed through its centre to allow the urine to flow. If the blood flows into the bladder, it excites spasms, and must be washed out with tepid water. Low diet, with gentle laxatives for eight or ten days, ought to be prescribed. In general the wine begins to llow along the urethra about the twentietl day, and the patient is well in four or five wecks.

When calculi are encysted in the bladder, unless at its neck, they produce no irritation; and when situated there, they require to be removed by the same operation. Occasionally, calculi have been found in the bladder at death, in those who have never complaincel of them duing life; and individuals have passed the greater portion of their lives with a calculus in their bladder, until a certain excrtion has called into action all the horrible sufferingsattendant on this complaint. In this lateral operation, there have been a great many deviations, and a great number of instruments invented, from the time of Ammonius of Alexandria to the present day; indecd, it may be said, "that cvery surgeon performs this operation after his own fashion, the same manner as he signs his name."

Cutting on the gripe, invented by Fabricius Hildanus, and practised in the present day on boys, consists in inserting a staff or sound into the bladder, then the fore and middle fingers of the left hand in the rectum, and bringing forwards the calculus to the perincum, when an incision is made on the left side of the raphe in the perineum as in the lateral operation, at once upon the stone, which is extracted with the fingers of the right hand or a hook.

When calculus occurs in the femalc, it may be removed by dilating the urethra with Weiss's forceps; but unless the stone is small, this is a cruel method, and often causes the patient to be tormented with incontincuce of urine for life. An operation is, therefore, to be preferred, and that per vaginum, as done by Fabricius Hildanus, Ruysch, Tolet, Klein, and Vacca, appears superior to those of Messrs. Louis, Dubois, and Lisfranc.

When small calculi are arrested in the male urethra, they are stopt either at the perineum, opposite the scrotum, or opposite the fronum. When at the perineum, a large sound is cantionsly inscrted into the urethra, until it touches the calculus, the penis and sound arc then tied with a piece of tape, and the patient desired to drink licely of diluents; and when the urine has accumulated in the bladder, the tape and sound should be removed, that he may make water lorcibly. If this does not succeed, an incision should be made over the stone and extracted. When opposite the scrotum it is highly dangerous, and an attempt must be made to push the calculus gently backwards to the perineum, and treated as just recommended; but if this is impossible, a lree incision must be made through the
scrotum over the calculus and extracted. W'ben opposite the frenum, it may be removed by inserting a common silver probe, with its eyed-end bent for a short distance; but if this daes not succecd, it must be extracted by an incision.

There are a few surgical uperations appertaining to gonorrheca and syphilis, which require to be adverted to. In both of these discases, phymosis, which is a swollen condition of the prepuce, with inability to denude the glans penis, frequently occurs, and when it takes place in syphilis, and the surgeon suspects chancres bencath it, it ought in be cut up, by inserting the curved sharp-pointed bistoury, with a button of wax, between the prepuce and glans, until its point reach the angle of reflection between them, when the operator, retracting the skin, pushes the point of the bistoury though the prepuce in the mesial line, and opposite the fronum, or by the side of the frenum, and cuts at once outwards. 'The two sides should be stitched individually, to accelerate their healing. A contracted state of the free margin of the prepuce is a frequent congenital affection, and should ahways be divided, so that the individual may be able to denude the glans; for, as Mr. Roux observes, such a condition predisposes to cancer of the penis.

Paraphymosis is a contracted condition of the prepuce behind the glans, preventing the latter from being covered, and frequently happens to boys in their innocent gambols. In this affection, the glans becomes tumeficd, and both it and the prepuce are infiltrated with serum, sometimes giving a peculiar twisted shape and appearance to the organ. If recent, it may be reduced; and, in general, a lew punctures of the lancet, followed by fomentations or poultices, subdue the swelling, and allow the prepuce to be brought forward; but in some cases it is requisite to divide the strictured integuments and mucous membrane of the prepuce with a bistoury. Abscesses sometimes occur in the lacunz of the urethra, which require to be freely opened from without, otherwise they are liable to produce retention of urine, fistula in perinco et ano, and if into the scrotum, they prove fatal. When a chancre affects the frenum preputii, the latter should be divided with a bistoury.

The prepuce, glans, and even the body of the penis sometimes become indurated, and the glans ultimately cancerous or fungous, either spontaneously or in consequence of repcated attacks of syphilis, and sometimes from neglected warty excrescences. The discharge in such cases is extremely fetid and sanious. If the remedies recommended under syphilis fail to cure it, the diseased portion ought to be removed by laying hold of the penis, and cutting it off at once, at a healthy portion of the member; then instantly inserting a flexible catheter in the urethra, securing the arteries, approximating the edges of the wound, from above downwards with suture and adhesive plaster, but leaving the catheter frce. The wound to be dressed on the third or fourth day.

The testis is extremely liable to be affected in gonorrhœa, and whem inflamed, swollen, and painful, it is termed hernia humoralis: and is treated by
antiphlogistic remedies, with the injection of warm water into the urethra, to reproduce the discharge which is ordinarily checked, or to mitigate the irritation ol the camal, the source of the disease of the testis. If the patient cannot procure leeches, he should immerse the scrotum in warm water, or stand before a fire until the veins become turgid, when they should be lanced in several points, and the scrotum again immersed in warm water; the patient standing all the time, for whenever he sits the bleeding ceases. After the activity of the inflammation has been subdued, and if the swelling remains, the scrotum should be fumigated with mercury, or anointed with mercurial ointment, having ultimately camphor mixed with it. In some cases an alterative course of mercury, with sarsaparilla, is requisite, witl a succession of blisters, and the insertion of the bougic into the urethra, and the patient ought to be confined to the horizontal position for a considerable period. The testis sometimes suppurates, and should then be freely opened, as recommended under acute and mammary abscesses. Occasionally a fungus shoots forth, which requires to be removed either with the knife or the caustic. At other times wasting, or a total disappearance of one or even both testes occasionally takes place, and generally occurs between 14 and 20 years of age; and sometimes from the most simple accidental causes.

The different species of sarcomy, and the theory of their formation, have been described under diseases of the mamma; and the medullary, and carcinomatous of the testis, in no respect differ from these affections of the mamma, either in character or treatment. The medullary very soon contaminates the spermatic cord and lymphatic glands in the region of the kidney, the latter appearing in the form of a tumour in the short space of a few weeks, so that unless castration be performed very early in this species of sarcoma, it soon becomes incurable. It attacks the constitution so early as lour years of age, but more commonly between fifteen and thirtyfive.
If the antiphlogistic treatment, and other means mentioned under hernia humoralis fail in curing the carcinomatous, and the spermatic cord is free from pain, castration should be performed in the following manner:-An incision is made from the eaternal aperture of the inguinal canal along the cord to the inferior point of the scrotum, through the skin and cellular substance; the cord is then insulated, and grasped by the fingers of an assistant, and divided between the fingers and the testis, the latter of which is to be dissected out, cutting first on the mesial aspect, to preserve the mediastinum scroti. The arteries of the scrotum are next to be instantly secured, and then those of the spermatic cord; the sides of the wound approximated with sutures and athesive plaster, and a piece ol charpie and two silk handkerchiefs, or a T bandage applied. If there is any discased skin, two semi-clliptical incisions are to be made on each side of it, that it may be removed along with the testis; and since hemorrhage from the arteries of the scrotum is excecedingly liable to lollow, an assistant ought to
be appointed to observe their situation during the operation.

If hemorrhage ensues and fills the scrotum, the affection is termed hrematocele, and is to be treated by styptics; and if these fail, the wound must be exposcd, and the arteries secured, but they are commonly so small as to be scarcely visible, the wound therefore must be stuffed with dry lint or sponge, and afterwards stitched. The common vascular or organized sarcoma, or sarcocele also requires castration, and in this species the cold is commonly thicker, which however is no obstacle to the operation. In the advanced stage of sarcocele, cancer, and fungus hæmatodes, a fungus excrescence sometimes originates from the borly of the gland; and a similar growth, in some instances, arises from the tunica albuginea, or even the body of the testis, in consequence of hernia humoralis, or an enlargement from a bruise. A small abscess occasionally appears, which bursts, and a fungus is protruded, that is named lipoma. In all of these the excrescence should be removed with the knife, and nitrate of copper or potassa afterwards applied. A chronic enlargement of the testis sometimes occurs in gonorrhea, stricture, and syphilis, which is to be treated as recommended under hernia humoralis. At other times, this chronic enlargement is not dependent on these affections, but upon scrofula, and acquires, on some occasions, a prodigious magnitude, ultimately involving the other testis and the scrotum, and cured by no other remedy but castration.
A peculiar irritable condition of the gland not unfrequently presents itself, resembling neuralgia; which is to be treated with rest, warm bath, and the mecurial pill, combined with hyosciamus; and if these fail, by castration. A neuralgic affection of the external spermatic nerve occasionally occurs, which is to be treated as recommended under that disease of the face. Sarcocele is frequently accompanied with hydrocele, and then termed hydro. sarcocele, in which case it will become a matter of consideration, whether the hydrocele ought not first to becured, and then an attempt made to cure the aflection of the testis, by the means recommended for hernia humoralis. This will chielly depend on the magnitude of the gland; and hence, in al! complicated cases, a trocar and canula should be plunged into the tamonr, to ascertain whether fluid does not chielly constitute the bulk of it.

Hydrocele is also occasionally complicated with hernia and circolele. In simple hydrocele, the serous floid is effused between the tunica vaginatis, and tunica albuginea, and gradually as it collects, the testis ascends, and occupies the middle and back part of the tumour, while the lluid rises by the side of the gland and cord, upwards to the inguinal region, and hence is liable to be mistaken for hernia, discased testis, circocele, and anasarca of this part. Hydrocele is distinguished from these affections by its pyramidal figure, elasticity, transparency when examined by a candle. by the deficiency of swollen cutancous veins, and the bistory of the ease. 'The Huid is generally serous, of a pale straw colour, but sometimes greenish, at other times dark, turbid and bloody, while occasionally it is of a violet co-
lour. When the disease has existed long, cartilaginous bodies are lound in it, and the tunica vaginalis becomes thickened. In some instances, adhesions exists either between the middle, the sides, or the bottom of the testis and the tunica raginalis.
The treatment of hydrocele is palliative and radical; the former consists in simply drawing off the fluid with a trocar and canula of steel, as represented in Fig. 9 of Plate DXV, which are to be plunged into the tumour, a litule belowits middle, and where no vcins arc present, first at right angles until the operator fecls he has cotered the tunica vaginalis, and them sloped obliquely upwards nearly parallel with the integuments; the operator during this grasping gently the tumour and the testis with his left hand, in order to remove the latter lrom the trocar, which is then to be withdrawn; and after the removal of the fluid, the camula also. A piece of adhesive plaster, a compress of lint, and a 1 l bandage are to be applied. This palliative operation is performed to remove the fluid when the testis is diseased, in order that all pressure may be removed; and afterwards, an alterative course of mercury with sarsaparilla, a succession of blisters or mustard cataplasms, or friction with the ointment of iodine, and the insertion of the bougie if necessary. It is also performed to ascertain the condition of the gland.

The radical treatment consists in incision, excision, caustic, tent, seton, and injection, the last of which is now only employed. A kind of tent, however, made of a piece of elastic gum catheter is employed by Baron Larrey; the scton by Sir A. Cooper in children; and excision in a modified way by Mr. K. Wood. Injection is merely re-dis. tending the vaginal sac, after the evacuation of the serous fluid, with cold water, port wine, a solution of the muriate of mercury in lime water, spirit of wine, a solution of the sulphate of zinc in water, in order to excite such a degree of inflammation, as to canse adhesion between the tunica vaginalis and albuginea, which is accomplished with the greatest safety and equal certainty by the cold water; for if injected at the temperature of \(32^{\circ}\) ol Fahrenheit, it will produce, instead of the adhesive inflammation, mortification; and if diffused in the contiguous cellular tissue at a more moderate temperature, it will prove less stimulating than any of the other fluids. In this operation, therefore, whenever the scrous fluid has been evacuated, the canula is to be allowed to remain, and into it is to be inserted the pipe of a common brass stopcock having affixed to it an ox's bladder, filled with cold spring water, see Fig. 23 of Plate DXV. The coll water ought to excite pain in the testis, spermatic cord, and loins, which it commonly does in ten or fifteen minutes; but if not, a fresh quantity should be injected, or some at a lower degree of temperaturc. If the water by accident is diffused in the cellular tissue of the scrotnm, it should be evacuated by punctures with the lancet.

If hemorrhage takes place in the tunica vaginalis producing hæmatocele, this tunic is to be laid open, according to circumstances, the blood removed, and
its further effusion checked by the application of cold water, or some other styptic, or lint. Alier this operation, the patient is to be treated antiphlogistically, or allowed to walk about, according to the inflammationinduced; and when this action subsides, the scrotum should be annointed or fumigated. If this operation ldils, it ought to be repeated in the course of two or three months. Encysted dropsy ol the spermatic cord occasionally occurs, particularly in children, and is to be treated like hydrocele.

Circocele, or varicocele of the spermatic cord, is a varicose enlargement of the veins of the cord, occasionally extending to those of the testis and scrotum, and sometimes present on brath sides, which either presses on the gland, and removes it by absorption, or produces ulceration. It has a knotted or vermiform appearanee, and is easily distinguished from the preceding diseases. The mode of treatment is confining the patient as much as possible to the horizontal position, suspension of the parts with a suspensory truss, the application of cold water, or oak bark decoction twice or thrice a day, and keeping the bowels gently open.

Chimney sweeper's cancer, or soot-wart, is a peculiar cancerous ulceration of the scrotum, which spreads to the clefts between the latter and the thighs, and ultimately involves the testis, the lymphatic glands in the groins, the spermatic cords, and the viscera of the abdomen, and proves fatal. The ulceration is divided into rugre, is of a red colour, and the discharge extremely nauseous and fetid, even the perspiration of the whole body has a rank ammoniacal smell. This ulceration generally occurs between twenty and lorty years of age, although it has appeared so early in life as eight, and attacks chimney sweepers, shoemakers, and smelters of ores which contain arsenic, and all classes of workmen who are uncleanly in their persons. The treatment is the same as that recommended for noli me tangere, and the other herpetic ulcers; and if this lails, by the knife.

Some of the diseases of the female organs have been already described in the present article, and others under Medicine and Midwfeni. One or both of the external labia are sometimes so injured in parturition by a blow, that ecchymosis takes place to such an extent as to produce retention of urine by closing the meatus urinarius. This is to be treated by leeches, warm fomentations or poultices, and drawing off the urine by the catheter. Sometimes they suppurate and even mortify, the treatment of which is described under acate abscess and mortification. Laceration of the labium or perineum is sometimes to such an extent, and produces so much hemorrhage as to require compression with lint, or dry sponge and a bandage. The labia, particularly in children, are olten attacked with inflammation that runs on to phagedena gangrenosa; and in milder attacks, or even in excoriation, they sometimes adhere, and shut up the passage, which requires to be opened with the scalpel, that the urinc may be voided.

Children from one year old to puberty are fre-
quently the subject of a purulent discharge from the pudendum, that originates chiefly beneath the preputium clitordis, the nymphæ, the orifice of the vagina, and the meatus urinarius, all of which are inflamed: and this disease has been mistaken for the injury done to these parts in a rape, and men, says Sir A. Cooper, have been executed on the evidence of an ignorant surgeon. The treatment is the same as that recommended for acute inflammation of a mucous membrane.

Imperforated congenital vagina is far from being uncommon, and there is generally a mark or raphe indicative of its situation; sometimes it is deficient, at others the whole of the middle portion of the canal is filled up with solid matter; and in other instances again a firm septum is stretched across behind or deeper than the hymen. An incision should be made from above downwards, carefully guarding against wounding the meatus urinarius, and preserving enough to correspond with the perineum; and preventing a reunion by oiled lint. In some instances there is a small aperture superiorly into which a probe or bistoury can be inserted, and the part divided.

Imperforatel hymen is fully more common than that of the vagina, but is seldom discovered until the catamenia have been secreted, when great pain is produced by the distention of the uterus and vagina; and a tumour becomes perceptible above the pubes. A transverse division of it with the bistoury gives free exit to the catamenia and relieves the paticnt, butattention must be paid to the effects of their retention, for frequently considerable inflammation is excited, which requires active antiphlogistic treatment, with injections of warm water per vaginam. To prevent the membrane from reuniting, a rectum bougie should be inserted, either daily or every second day. In the division of the hymen the operator must guard against wounding the meatus urinarius. This membrane has been also found so rigid, as to require a similar incision. In some cases, there is great confusion of the genital parts, the vagina communicating with the urethra, the rectum terminating in the vagina, a double vagina, and even two uteri. There are also cases of the uterus being deficient.

Various species of tumours grow from the labia, nymphax and orifice of the uretha, requiring to be removed by the knife. The nympha become sometimes so pendulous as to require partial removal; and the clitoris so large, that when a congenital protrusion of the ovaria at the inguinal canals is combined, the scx is mistaken, or the individual is pronounced a hermaphrodite; it is also occasionally affected with cancer, and, in either casc, requires amputation. In these little operations, there is commonly so considerable a degree of hemorrhage as to reguire the ligature or actual cautery. The clitoris, likewise, requires to be removed in nymphomania. In ascitcs and dropsy of the ovarium, the fluid occasionally gravitates between the vagina and rectum.
The uterus is subject to acute inllammation from cold, which often hecomes chronic, although this latter stage sometimes begins à priori, and leads to
dropsy, ulceration, scirrhus, cancer, ossification, atheroma, steatoma, medullary sarcoma, tubercles, polypus, moles, and hydatids: calculi, vermes, and air have been generated in the uterus. The acute is easily distinguished, and is to be treated antiphlogistically; the chronic is peculiar in this, that the patient olten feels pain near the liver, and after it has continued for any time, a discharge of mucus which becomes occasionally purulent and mixed with blood, takes place: there is sometimes uterine hemorrhage, and the patient has an exsanguineous countenance. On examination, the os tincæ is larger than natural, soft, and tender; and, in the hypogastric region the uterus feels swollen, and is painful to the touch. The palliative treatment in this and the other diseases is by cupping or leeches, to the pubes and groins, anodyne enemata, and injections, per vaginam, extract of hemlock inserted in the vagina, gentle laxatives, low diet, and confinement to the horizontal position, and the administration of ergot internally. The radical, by extirpation of the organ, as lately done with success by that profound scientific accoucheur, Dr. Blundel of Guy's Hospital. The uterus has been extirpated by Carpus, Laumonier, Osiander, Langenbeck, Sauter, Siebold, Holscher, Wolff, Recamier, and Lizars.

There is a peculiar ulcer described by Dr. Clark, termed the corroding ulcer of the womb, and by Mr. Burns, phagedenic ulcer, which should also be treated by excision, as practiced by Lisfranc, or extirpation, by Dr. Blundel. There is another species of ulceration attacking the os and cervix uteri, described by systematic writers, which, however, is merely a modification of the preceding, and should be treated in the same manner. Firm and cauliflower excrescences frequently grow from the os uteri, which should be excised. Polypous excrescences from this region may be removed either with the ligature and double canula, or the knife.

The ovarium is subject to acute and chronic in. flammation, to dropsy where the fluid is contained in one or more cysts, to dropsy combined with various degenerations of texture, and morbid productions, viz. collections of hydatids, scirrhus, ossification, calculi, steatoma, sarcoma, atheroma, melliceris, hair, bones, and teeth. The ovaries, as also the fallopian tubes, are subject to congenital malformation. These tumours grow sometimes to an enormous size, and are then frequently complicated with ascites, or adhesions to the abdominal parietes and viscera, when hydatids also originate from the latter. In the first stage, their pedicles arc very small, and they can be removed from the one side of the abclomen to the other, and are then favorable for an operation, which is performed as recommended for ileus. When the abdomen is freely laid open (the temperature of the room being at \(80^{\circ}\) Fah.) the viscera are to be encircled in a towel that had been previously immersed in warm water at \(99^{\circ}\), the tumour held by an assistant, its pedicle secured with a ligature, both ends of which, as also the tumour, are to be cut off. If the discase be complicated with ascites, the case is still more favourable. If extensive adhesions are pre-
sent, an incision through the abdominal parictes should be made, and if these are found to exist between the tumour and the anterior parietes of the abdomen, a seton ought to be inserted across the abdomen and tumour, care being taken not to wound the epigastric arteries. For further information on this subject the reader is referred to Lizars on E.etraction of the Ocarium.

It is chiclly in the female constitution that violent or excessive hemorrhages occur exhausting life, which is reanimated by the process termed transfusion, for the revival of whieh the public is indebted to Dr. Blundell, who has now performed it repeatedly with sucecss. The best apparatus is that invented by Reid, which is delineated in Fig. 13 of Plate DXV. A vein of the arm of a healthy person should be opened, as in phlebotomy, and the blood received into the cup a, from which the tube \(b\) conducts it to the botom of the syringe \(c\), whence it is propelled along the tube \(d\), into the small pipe \(e\), inserted in the vein of the expiring patient.

The diseases of the rectum are piles, tubercles, sarcomatous tumours, and ulceration; stricture of the rectum, abscess near the anus, fistula in ano, prolapsus ani, and imperforate anus. Piles, or hemorrhoids, arise from constipated bowels, pressing and impeding the circulation of the hemorrhoidal veins, or from relaxation of the bowels, produced by diarrhea while these veins are not sufficiently supported, or from one or other of these causes, especially the first occurring in pregnancy; and hence pregnant women are most subject to them, for the pressure of the uterus becomes also a cause. They are small purple coloured tumours situated around the anus, consisting either in a distended thickened varicose state, or rupture of these veins, the blood, in the latter case, being most liequently diftused in the cellular tissue around them. Piles are divided into external, internal, blind, and open. The external are situated outside of the anus, the internal within the rectum; the blind are such as do not bleed, while the open bleed.

Piles are a most troublesome complaint, preventing the patient from either walking or even sitting with comfort, since he is only easy in a horizontal attitude; and not unfrequently the pain is most excruciating, particularly on going to stool, when they sometimes bleed to such an extent as to debilitate the individual, and give to his countenance the peculiar exsanguineous aspect. The great Copernicus bled to death from this disease. The treatment cousists in removing the cause, which, when constipation, by mild laxatives, and in laying them open with a lancet or bistoury, or applying leeches to them, and afterwards by fomentations or poultices. After the inflammation has been subdued, by the application of the ointment of gall nuts, or a decoction of oak bark. When piles are lanced, care should be taken that hemorrhage does not flow internally in the rectum, for paticnts have thus bled to death. Sponge is the best suppressor of bleeding in this part. When neither pregnancy nor diarrhea is the exciting cause, an alterative course of mercury is beneficial ; but the last mentioned disease must be checked by astringents. A
rectum bougie or tallow candle is an exceilent dis. cutient, which should be inserted at bed time, and allowed to remain during the night, care being taken that it is properly listened to a belt round the loins, and that the hemorrhoids are reduced within the anus. All kinds of constipating stimulant food ought to be abstained from, and the patient should avoid exercise, and sit on a hard chair. When piles are large and pendulous, they ought to be removed with the knile; ligatures shonld never be applied, as they have produced symptoms of strangulated hernia and tetanus.

Thuercles of the rectum frequently follow hemorrhoids or constipation, and consist of an indurated state of the solitary glands of this intestine; the mucous tunic being arranged into irregular hard folds, and the muscular subdivided by membranons septa, the whole wall of the gut being much thickened and hardened, and this condition of the rectum is seldom discovered betore it has assumed the carcinomatons action. The patient is troubled with irregularity of his stomach and bowels, with vomiting, cholic, diarrhea, and dysentery. The disease next forms a stricture, and often extends to the colon, when more than one of these constric. tions is present; in this case, there is greater irregularity of the bowels, for the patient oecasionally has no motion for days, which either passes in the form of an earth worm, or is liquid from medi. cine, and he experiences considerable pain and straining at stool. The tubercles next become malignant and ulcerate, when his sufferings are generally truly deplorable. There is a voracious appetite, a constant vomiting, and a buming pain in the stomach and over the whole abdomen, with lancinatiug burning pains of the rectum and anus: together with hectic lever, and an inctimation togo to stool every moment. This ulceration of the rectum oceasionally extends to the urinary bladder, forming a communication between them, when sometimes the fuces flow into the bladder, and at other periods the urine into the rectum, and on some occasions they flow promiscuously into each other; and towards the end of the flow of the urin". air gurgles along the urethra, producing a lou? and unpleasant sound: on rare occasions there is little or no pain. In some cases, a total obstruction to the passage of the feces along the colon takes place, when this intestine acquires so prodigious a magnitude as to deceive us lor ascites. In other cases, the ulceration is fungroid, bleeding and dis. charging a great quantity of pus at every evac. uation of the feces, with little or no pain.

In the first stage of the disease, the patient should be confined to bed, take gentle laxatives, apply leeches within the anus, have laxative and opiate enemata administered with the warm hip bath once or twice a-rlay; and his diet should be purely farinaceons. And if by this treatment no amelioration is produced, and the diseased part can be reached by the kuife, it should be extirpated, as lately done by Lisfranc. If the pain can be subdued, the rectum bougie ought to be used. and may be anointed with an ointment of opium, hyosciamus, or hembek: and where a short stricture
exists, it ought to be divided in the four diagonal directions with the bistoury. Generally all kinds of external applications produce pain, even warm oil. If the patient can be removed to a warm climate, he ought instantly to go, and if not, the same soothing means must be continued until the disease either subsides or proves fatal. The compound powder of ipecacuan in small doses is an excellent anodyne in this disease.

Abscesses very often occur near the anus, in consequence of the loose delicate cellutar and adipose tissues in this region, and when permitted to burst of their own accord, generally rupture with a small aperture, become fistulous, and occasionally burrow towards the rectum, and even form a communication with it. They arise from constipation and hemorrhoids; also from fish bones, \&c. which have been swallowed and arrested in the rectum; from bougies breaking, pieces of wood, and other foreign bodies slipping up the rectum, For the treatment of this, the reader is referred to acute abseess. When this becomes fistulous, the disease is termed a blind external fistula in ano, and should be freely laid open with the curved sharp-pointed bistoury, having a button of wax uponit, and afterwards treated as directed under acute abscess. All fistulous tubes are more or less callous. Sometimes this fistula burrows along the rectum for a considerable extent, having many digressions in its course in the natis, so that considerable difficulty is occasionally experienced m arriving at its source; and when the surgeon has inserted the bistoury into what he conccives the root of the fistula, and pushed the instrument through the walls of the rectum, and cut outwards so as to make them one tube, he has probably by no means reached the termination of the fistula. In such cases, the daily insertion of sponge tent, making it larger at each introduction, will so expand the sinus or fistula, as to enable the operator to explore all its circuitous routes. If the matter runs into the rectum, and there is no external aperture, the affection is named a blind internal fistula, a variety which seldom or ever exists, but when it does, ought to be laid freely open.
When the fistulous tube opens both externally and into the rectum, which is the most common varicty, it is styled complete fistula in ano, and is ascertained by inserting a probe into the fistula while the fore-finger of the left hand is in the rectum. It is treated by inserting a probe-pointed bistoury into the fistula onwards into the rectum, and cutting frecly downwards and outwards, so as to convert the fistula and rectum into one tube. The after treatment ought to be the same as described under acute abscess. The patient, after having motion in his bowels, should be careful to wash the surface clean with tepid water or a syringe. When fistuta in ano occurs in a phthysical constitution, it is a question whether or not it should be cured, becanse it acts as a counter-irritant, or on the principle of counter revulsion, accorcting to the doctrine of the ancients. Ligatures are used in France, but never in this country.

Prolapsus ani consists in an eversion of the rec-
tum, consequent either on relaxation or irritation, and occurs in children affected with ascarides or calculus in the urinary bladder, in adults from gestation, hemorrhoids, constipation, dysentery, diarrhœa, and drastic purges; and in old people more frequently than in those of the meridian of life. On some rare occasions, the prolapsed gut has become gangrenous and sloughed off. The prolapsus is to be returned by making the patient stand on his feet, with his head dependant or resting on a chair, and then taking a piece of fine soft linen, and pushing gently and gradually. When reduced, a recurrence is to be prevented by remaining in bed for some time, or wearing a steel spring, delineated in Fig. 7 of plate DXV. by removing the cause if possible, and by injecting a strong decoction of oak bark. Sometimes it is necessary to foment the gut with warm water, or even to scarify or leech it before attempting reduction. Sponge has been inserted in the anus to jrevent a recurrence, and pessaries have been worn; and the late Mr. Hey, Langenbeck, and Dupuytren, treat it hy raising with the forceps or a ligature the skin around the anus, and removing this with curved scissors. A circular portion of the mucous tunic of the intestine has been also removed.

Imperforate anus is a congenital malformation, and hence all children should be carefully examined when born. Sometimes the rectum is perfect onwards to the integuments which are entire, and have a raphe and every indication of a perfect anus; at other times, there is a distinct external aperture or anus, but the rectum is closed by a cul-de-sac a little within or centrad; at others again there is no external aperture, but a communication with the vagina in the female, and with the urethra or urinary bladder in the male. In the female, the aperture of communication is occasionally exceedingly small, white in others it is werably large ; in the male, the rectum commonly ceases at the promontory of the sacrum, where it forms a puckered purse-like ponch, which either communicates with the bladder by a valvular opening, or descends in a small tubular form, adhering to the bladder, and enters the membranous portion of the uretirain the same valvular manner. The last variety occurs where there is no communication with the bladder or urethra in the male, or with the uterus or vagina in the female, and no external aperture.

In the first of these cases, where the rectum is close to the integuments, a simple incision with a scalpel, will allow the meconium to be evacuated; but care should be taken that the bougie or wax candle is inserted daily until all tendency to contract is removed. Some authors recommend that this operation should be done between twenty-four and sixty hours after birth, but in our opinion the sooner mature is relieved the better, as respiration is mach impeded until the evacuation of the meconium takes place, and inflammation not unfrequently cusues from delay, which is to be subdued by a leech or two applied to the hypogasiric region and the warm bath, together with castor oil. Before making an incision in such cases, the skin should be titillated, which canses the child to make efforts
to evacuate the feces，and produces a protrusion where the anus is to be made．A trocar and canula is recommended to be used for perforating the in－ teguments and even the rectum in the other cases， butitis adangerous instrument．Instead of the bou－ gic or candle，sponge and sponge tent are used by some，but these，since they excite ulceration，ought not to be employed．

In the second variety，or where there is an anus， but the rectum has formed a cul－de－sac，the latter is to be opened with a narrow shaped scalpel．In that variety occurring in the female，where there is a communication with the vagina，characterized by the meconium discharged by this passage and in that ol the male where it takes place with the uri－ nary bladder or urethra，the meconium is dis－ charged mixed with the urine；and in the last va－ riety where none of these characters exist，the ope－ rator must divide the integuments with a narrow－ shaped scalpel perpendicularly to the extent of an inch or so，suflicient to admit his forefinger where an anus should be，and which is generally distin－ guished by some puckering or indentation of the skin．He must next dissect carefully along the con－ cave aspect of the os sacrum，leaving it sufficiently clothed with cellular substance，until he feels a small distended pouch，which he may rest assured is the rectum filled with feces，and forced down by the ac－ tion of the diaphragm and abdominal muscles；this he is to puncture with the same scalpel，and not with a trocar and canula，when the meconium will flow by the side of his finger．After this operation， a tea spoonful of castor oil should be given，and the child immersed in a warm bath，and il there appear the slightest enteritic or peritoneal inflammation， one or more leeches must be applied to the hypo－ gastric region．The after treatment is the same in this as in the first variety．Mr．Burns directs us， if no rectum can be found，to open the sigmoid flexure of the colon，and Mr．C．Hutchinson the ca－ put cxcum coli；but neither we apprehend will ever be required，and of the two we should prefer the former，which we may obscrve has been done．Cal－ lissen recommends the colon to be opened in the dorsal region near the lelt quadratus lumborum musele，while Mr．Burns more judiciously between the anterior and posterior superior spinous pro－ cesses of the left os ilium ；the gut to be opened where it is uncovered by the peritoneum，a direc－ tion difficult to be fulfilled，as it is loosely bound down by the mesocolon．In the Revue Medicale for December 1823，there is an extraordinary case de－ tailed ol a man who arrived at the age of seventy years and who was born with an imperlorate anus and urethra，and who vomited his excrements dur－ ing all that time．Ile was alive five years ago．

\section*{ERRATA．}

\footnotetext{
I＇age 536，frst column，for Plate CXII read Plate CXIM，
＂ 547 ，first column，for Plate CXV＇In，read Plate CXV．
＂ 555 ，scond column，for lig．2u read Fig． 21 ，in two places．
＂5ins，second colum，for Fig．es read Fig．24，in two daces．
« 579 ，second colum，for Fig． 22 read Fig． 21 ．
－ 583 ，sceond columu，for Fig． \(2+\) read Fig，in，
}

Vol NVII．Part II．

DESCRIPTION OF TIIE PLATES．

\section*{l＇LATE UXV゙。}

Fig．1．Scarificator，consisting of a brass box of twelve lan－ cets，six of which Howe on two rollers in opposite dircetions through we medium of a lever \(b\) ． When the lancels are moved round and hid，they are suid to lee set；and when applied to the skin， they are fired ofl by compressisig the spring ？ see page 527．
Fig．2．A comman bistoury five inches long in the blale，the point of which is double edged for a short distance Sce page 535.
Fig．3．A moma－holder or port－fur Sce page 531
rig．4．An eighteen－tailed baudage，which may consist eithes of ealien or flanne！；a，is a longitudinal picce th which the other cross uncs \(b\) ，are stitched see page 530.
Fig．5．An ancurismal ncedle．See page 5：16．
Fiy．6．I＇Intyre＇s incture－splint imptovell＇by Mr．James Fortune．\(u\) ，a joint between the thigh board \(h^{2}\) ， and the leg boand \(c\) ，moved by a screv，so as \(w\) alter the angle at pleaure．\(d\), a screw attached to the board \(t\) ，in order to lengthen it．\(f\) ，a fout－borard moved by the screw of．Sce page 550 ．
Fig．7．Bandage for prolapsus ani．\＆e．a，the belt which sur rounds the loins；\(b\) ，the pat which supports the protrusion．Sec page 596.
Fig．8．A male catheter，to draw off the urine．Sce pare 3 sh
Fig．9．A trocar and canula employed in dropsy．the the tro car，\(b\) ，the canula．see parge 581 ．
Fig．10．I female catheter．See page 587.
Fig．II．A trocar and canula for puncturing the urinary biuk－ der．a，the trocar，\(b\) ，the camula．See page 587
Fig．12．The stomach－pump．\(n\) ，the tube inserted in the stomach；\(b\) ，the syringe；\(c\) ，the gas；\(d\) ，a tube to cary the fluid into a basin．See page \(53_{2}^{2}\) ．
Fig．13．Transfusion apparatus．\(a\) ，a cup to receive the blood from a person in lacaldn；\(b\) ，a tube which conducts it to the syringe \(c ; d\) ，a tube which conlucts the blood from syringe \(\epsilon\) ，to silver pipe \(f\) ，that is in－ serted in rein of expring patient．See pase \(5^{2} 5\).
Fig．14．Foreeps to estract ealeuli frum the urinary bladler． \(a_{3}\) a silver canula；\(b b b\) ，three prongs capable us beins opened or shut by the spring \(c\) ，together with the landle of the instrument．See page 530
Fig．15．A two－pronged forceps for the same purpose as Fig．14．See page 590.
Fig．16．Civiale＇s lithontripter，that consists of a canulace a， which is concealch a three－pronged forceps \(b b l\) ， tugether witha drill \(c\) ．The drill and foreeps are represcnted in Tig．24，concealed as they are in－ rroducel along the urethra；while in F＇ig．16，they are expanded as if in the urimary bladder．The instrument is held firm by an assistant，and the operator，by means of the bandle \(d\) ，white the la： ter wor＇s the drill \(c\) ，by a common drill－bow having the eatgut string round the wheel \(e\) ．See page 590.
Fig．17．A trephine．\(a\) ，the crown or sarm．\(b\) ，the eente pin which is extended or retracted by means of the buiton c．See page 564.
Fig．13，An clevator used when trepanning the skull．see pase 564.
Fig．19．Hey＇s saw，employed in depressed eranium．Sco page 566.
Fig．20．Cataract knife．See page 572.
Fig．21．Dissecting forceps．See page 546 ．
Fig．22．Cataract nevelle．See page 569.
Fig．©？Blahler，with stop－cuck for bydronele．Sec pase 54.
Fig．24．Sec Fig．16．and page 550.
PL．iTE DE゙TI．
Fig．1．Liston＇s forceps．
Fig．2．Amputating knife，Sce page 561.

Fig. 3. Litlotomy staff. See page 590.
Fig. 4. ——_ scoop. See page 590
Fig. 5. __ forceps. See page 590.
Fig. 6. Tenaculum. See page 561.
Fig. 7. Double silver canula. Sec page 576
Fig. \& Polypusknife. See page \(5 i \pi\).
Fig. 9 ——— forceps. See page 537.
Fig. 16 _orceps. See page \(5 \pi\)
F17. 11. - scissors. See page 5.7.
Fig. 12 Weiss's hernia knife. Sce page \(588^{\circ}\)
Ficr, 13 Stwagtit sharp-pointed bistoury. See page 585.
Fg. 1. Lithotomy knife. Sce page 5.0
Fis. 15. Straight probe-pointed bistoury see page 505.
F'. 16. Dupuytren's crane bill forceps, for artificial anus. See page 5S6.
I. .e. 1\%. Needle to stitch wounds. See page 582.

I'e 1s. Trocar and canula for tracheotomy and laryngotomy. See page 579.
Hie 19. Mr. Earle's fracture bed.
Fig Nir. Tames Furtune's long splint for fracture of neck of thigh bone.
F.g. 21 Skeleton of spine-stays, with chan-stay, improved by Mr. James Forturie. Sce pace 55.5

Fig. 22. Laced knee-cap. See page 554.
Fig. 23. Rupture truss for the right side. See page 583.
Fig. 24. Mr. Buchanan's speculum auris. Sce page 568.

\section*{PLATE DSVII.}

Ficr. 1. Form of applying a bandage to the leg. Sce parge 536.
Fig. 2. Operation for securing superficial femoral artery. See page 547.
Fig. 3. Amputation abore knee joint. See page 561.
Fig. 4. Operation of bloodletting at bend of arm. See page 528.
Fig. 5. Section of cornea for extraction of lens. Sec page 572 .
Fig. 6. Arteriotomy. See page 528.
Fig. 7. Operation of bloodletting at the neck. See page 528.
Fig. 8. Bandage after arteriotomy. See page 528.
Fig. 9. Bandage for fracture of clavicle, \&c.
Fig. 10. Mode of reducing dislocated shoulder joint. See page 552.
Fig. 11. Mode of applying Dupuytren's apparatus.

Ab=cess, acute, \(5=1\)
—_ chronic, 3.11
-m lumbar or psoas. 542
Alhesion, 533.
Anmu:0sis, 5,3.
Ambulance. 5 .
Amputation, 56
Anchylosis, 553
Aneurism, 541
Anthras, 54!
Antrum maxillare, ibsease oh \(5,0^{\circ}\)
AnUE, artificial, 506.
——, imperforate, 525.
- prolapias of, 5.j.

Arteries, discases of. 511
Arteriotomy, 527
Ascites, 581

Hadler, urimary daenses 01. 5 W
Blood, appearance of j-5
Bloodletting, 5?6.
atnections crmserfuen: Uib, J~
```

luil. 549
Thunes, diseasc= of, 551
Buric. 588.
Buain, diseascs of, 5u:
(3)wmeliocelc. j-
1312mise. 539

```
( denas in uramory has ates.
____ urcthra. is
(ancet of cye. \(5^{\circ}\) )
- - hacrymat हो amb, 5T
——— lip, \(5_{0}^{-}\)
(1: mate. 514
(ar'er, 5)

(145tratime, 5il2
( utarmert, 5:1
( 1 14, 1 , 5,1
(1ullalains, 5 1"
(:himue\}-swecpoct's cencer. i.
( rerocele, 39 .

1-nnciassion of bean, 566
Cornest discases of in

Couching, operation of, 572 .
Cupping, 527.
D
Dislocations, 552.
E
Lar, diseases of, 568 .
Ecchymosis, 529.
Ectropeon, 575.
Emphysema, 551.
Empyema, 551.
Encanthis, 574.
Entropeon, 575.
Epilocele, 582.
Efistaxis, 576.
Erysipelas, 531. , phlegmonodes, \(53 \%\).
Exomphalos, 583.
Exostosis, 556.
Extraction of lens, 572.
Eye, discases of, 569 .
Eyelids, diseases of, 574.
\[
\overline{\boldsymbol{r}}
\]

Face, tumours of, 579.
False joints, 551.
Fascia of arm, inflammation of, 530 .
Female organs, diseases of, 593.
Femoral aneurism, 548.
Fistula lacrymalis, 545.
in ano, 596.
in perineo, \(5=2\).
Fomentation, 525.
Fractures, 550.
Fragilitas ossium, 537.
Frontal sinus, iliscess of, 576
Furunculus, 540.
l'ungus hamatodes of eye, 57 t. lip-joint, 551

(i
Ganglion, 553.
Gangrene, 543.
——— Jospital, 538.
Gastrotomy, 582.
inatacoma, 573.

Gonorrhce, 587.
Gums, tumours, \&cc. of, 577.
Gunshot wounds, 557.
II
Harc-lip, 578.
Hamatocele, 592.
Hxmaturia, 589.
I \(x\) morrhoids, 595.
Head, diseases of, 562.
Heart, diseases of, 544 .
, aneurism of, 544.
Hectic fever, 542.
Hemeralopia, 573.
Hemorthage, 5.49.
Hernia, 582.
——, cercbri, 565.
11:p-joint disease, 554.
Hospital gangrene, 538.
11 drocele, 592.
Hydrops articuli, 553.
-- pericardii, 54 .
Hydrocephalus, acute, 567 . , chronic, 507
Hydrophthahnia, 570 .
Hymen, imperforate, 594.
Hypopiun, 570.

Hiac passion, or ilcus, 582.
imperforate anus, 596.
auditory tube, \(\mathbf{3} 68\)
hymen, 594.
vagina, 594.
Inilammation, acute, 523.
chronic, 541
inguinal liernia, 585.
Iritis, 569.
J
Joints, diseases of, 553.
-_ excision of 554
false, 551.
foreign cartilaginous bodies in, 554.
hip, disease of, 554 .
- wounds of, 554.

\section*{K}

Keratonyxis, 573.

\section*{L.}

Lacrymal passages, diseases of, 575
Larynx, foreign bodies in, 579.
Laryngotomy, 579 .
Leeches, 525.
Ligatures, 547.
Lip, cancer of, 578.
Lippitudo, 575.
Lithotomy, 590.
Lumbar abscess, 541.
Luxations, 552.
Lymphatics, inflammation of, 530 .

11
Mamma, diseases of, 580.
Maxillary bone superior, excision of, 577
Maxillary bone inferior, excision of, 577
Mollities ossium, 557.
Morbus cosarius, 554.
Mortification, 542.
Mnutli, tumours of, 578 .
Mosa, 551.
N
N゙xrus Xaternus, 548

Neck, tumours of, 579.
Necrosis, 555.
Nerve, wound of, 530 .
Neuralgia, 578.
Nodes, 556.
Noli me tangere, 537.
Nose, diseases of, 576 .
Nyctalopia, 573.
()

Osophagus, foreign bodies in, 580 .
Ophthalmia, 569.
Ostitis, 554.
Otalgia, 568.
Otitis, 569.
Dtorrhon, 569.
Clvarium, cliseases of, 59.1.
ozana, 576 .
\[
\Gamma^{\prime}
\]

Palate, cleft, \(5 \% 8\).
J'ancreatic sarcoma of mamma, 530 .
latricentesis abdominis, \(\mathbf{5} 8 \mathbf{1}\).
-... thol'acis, 551.
l’arajumosis, 501.
1"aronrchi., 532.
"enicirdium, dropsy of, 5:4.
Perincts, fistulat in, 589 .
Peritoneum, dropsy of, 581
Plaryne, forcign bodies in 580
Phary ngutomy, 500 .
Phlebotomy, 528.
Phlegmon, 525.
Phlegmonous inflammation, 525
Phrenitis, \(56 \%\)
Phymosis, 591.
Piles, 595.
Polypus of the nose, 577 ,
- in antrum maxillare, 577
in ear, 568.
———in vagina, 594.
-_ of the uterus, \(59 \%\).
Popliteal aneurism, 5.55.
Poultices, 52J.
Prolapsus ani, 596. iriclis, \(5 \pi\) I.
Prostate glancl, diseases of, 589 .
Pterygium, 574.
Punctured wounds, 532.
Pupil, artificial, 570.
- closure of, 570.

Pus, 535 .

Rectum, diseases of, 595.
Rickets, \(55 \%\).
Rose, 531.

Sarcoccle, 592.
Sarcoma of mamma, 580.
___ ovarium, 594,
- testicle, 592.
- uterus, 59.
\(\ldots\) __......... alipose, 580 .
—_ carcinomatous, \(5 \leq 1\). common vascular, 580.
—— mammary, \(5=0\).
——medullary, 580.
——— pancreatic, 580.
Sarcomatous tumour in antrum maxillare, s, \(^{\text {a }}\)
scalp, wounds of, 562 .
Scirrhus of mamma, 581.
———prostate gland, 584
rectum, 595.

Scirrhus testis, 592
Sinuses, 535.
Spina bifida, 567.
Splains, 553.
Staphiloma, 571.
Stomach-pump, 582
Etrictura of urethra, 587.
——rectum, 595.
Submaxillary duct, diseases of, 578
Suppuration, 534.
Surgery, histo:y of, \(51=\).

\section*{T}

Tacliacotian operation, 534 .
Testicle, diseases of 591
Tetanus, 559.
Tic douloureux, 579
Tinea capitis, 538 .
Tongue, diseases of, 578.
Tonsils, diseases of, 5TS,
Tracheotomy, 579.
Transfusion, 595.
Trephine, operation of, 564.
Truss, rupture, 583.
Tumours, in abdomen, 592 .
_ in antrum maxillare, 577
of bones, 556 brain, 567 .
cyc-lids, 5-4. face, 5\%9. female organs, 5 S 4 gums, 577. mamma, \(5=0\). mouth, 578.
——— neck, 579
rectum, 595.
- sarcomatous, \(5=0\).
\(\longrightarrow\) puffy, of scalp, 503 .
た
Clcer, callous, 536.
- fungotis, 537.
—— irvitable, 536.
-- mercurial, 540.
- phagedenic, 533
——— scorbutic, 539
Urethra, nbscess in, 591.
——. rliseases of, 587 .
stricture ot. 58
Grinary hlalder, diseases of, \(5=C\) operation of puncuring, 587 calculus in, 5-n.
Urine. retention of, 456 .
Utemes, discases of, 50.1.
Trula, diseases of, 578
\(\checkmark\) agina, imperiorate, 50.
Varicocele, 503.
Iuricose ancurism, 547.
———reins, 548.
Veins, discases of, 548 .
-_ inflammation of, 529 .
Yencsection, 524.

\section*{11}

White swelling, 553 .
Whitlow, 532.
W"ousds, gumslont, 557.
Wounds punctured, 530

SURINAM, one of the provinces of Dutch Guiana, which derives its name from a river of the same name in which the capital Paramaribo stands, at the distance of 18 miles from its mouth. It is bounded on the north by the Atlantic, on the east by the Marawina or Maroni, on the south by an Indian territory, and part of French Guiana, and on the west by the river Corentyn. Its extent is about 150 miles from west to east, and 60 from north to south. The chief rivers are the Surinam, the Corentyn, the Copename, the Seramica and the Marawina. These rivers are generally from two to four miles broad, and are very shallow and rocky, with numerous waterfalls. The water rises and falls about 60 miles from the mouth of the river.

The climate of Surinam is now greatly improved in consequence of the clearing of the ground and the diminution of the swamp. The thermometer ranges between \(70^{\circ}\) and \(84^{\circ}\), and the year is divided into two dry and two wet seasons. The first wet season is from the middle of April to August, the long dry season continues from August to November. The second wet season occurs in December and January, and the second dry season in February and March. The great rains fall in the middle of June.

The banks of the creeks or riwulets, which are both large and numerous, are cultivated by Europeans, with coffee, sugar, cocoa, and indigo plantations, which present a delightful pieture to those travelling by water. In the time of Capt. Stedman there were about 700 plantations producing anmually more than a million sterling. He computed the number of slaves at 75,000 , and the annual supply at 2500 . Paramaribo, the eapital, contains about 5000 souls, of whom about 1800 were whites. A full account of the Natural History of Surinam will be found in our article Guiana, Vol. X. p. 144.

SURRET, one of the inland counties of Eng. land, is bounded on the south by Sussex, on the east by Kent, on the west by Berkshire and Hampshire, and on the north by Middleses and part of luckinghamshire, from which it is separated by the Thames. It is about 57 miles long from east to west, and its breadth from north to south is 25 miles. It is divided into 13 hundreds (with the boroughs of Southwark and Guildford) which contain 14 market towns and 146 parishes, in the diocese of Winchester. It eontains 758 square statute miles, or about 485, 120 statute acres. The annual rental is L. 369,901 , and the amount of tithe L. 47,320 . In 1806 it paid L. \(.5,646,783\) of property tax, and in 1803, L.179,005 of poors rate, at the average of 5 s . 8d. in the pound. The county pays is parts of the land tax, and returns 14 members to Parliament, viz., 2 from Southwark, 2 from Bletchingley, 2 from Gatton, 2 from Reygate, 2 from Guildford, 2 from Haslemere, and 2 from the county. The elections are held at Guildford and the assizes oncc a year. The other assizes are at

Kingston and Croydon alternately. The gaol is in Southwark.

The principal river in Surrey is the Thames. The Wey is the only other navigable river, barges going above Guildford into the Basingstoke Canal, which was finished in 1796. The Mole disappears in dry weather by absorption at Boxhill, and rises again in a strong spring at the bridge of Thorncroft, where the current continues constant. Its banks are beautiful all the way to Lsher. It flows into the Thames opposite to IIampton Court. The Wandle, which runs into the Thames a little below Wandsworth, though it has only a course of 10 miles, yct it turns nearly 40 mills, and employs about 40,000 people. The Medway only has its origin in Surrey. The Loddon supplies the Basingstoke Canal, and there is a mameless stream rising in the town of Ewell, which supplies several gunpowder mills at Ewell and Maldon, and a large cornmill at Kingston, where it joins the Thames. The canals are the Basingstoke, the Croydon, and the Surrey Canal, already fully described in our article Napigation Jsland, Vol. XIV. p. 280.

The surface of this county is generally undulating, and presents a great diversity of scenery. The northern part of the county is most beautiful, and covered with villas. The central part is a rauge of chalk hills, interspersed with dry arable fields. The southern part is a flat clayey country, containing the finest oaks in Britain. The northwest district is covered with black and barren heath, and on the south-west near Faruham, we mect with the most productive land in England.
The soils of Surrey may be divided into clay, loam and chalk. The Weold of Surrey in the south, about 30 miles by 4 , is a pale, cold, retentive clay. Farther north it is chicfly loam across the whole county, and near Godalming, it has great depth reposing on an iron-veined sandstonc. The chalky downs now begin, and have a breadth of" about seven miles. Besides the crops common to other counties, there is a great deal of clover and sainfoin cultivated on the hills, and wood is also raised in the same districts to a great extent. Plants for druggists and perfumers are extensively cultivated near London ou about 350 acres, and superior hops are raised near Farnhan. The waste lands occupy 73,000 acres.

The principal useful minerals are fullers' earth, which has been dug for 60 or 70 years; there are two kinds, the blue and the yellow, the last of which is the finest. Excellent freestone is extensively wrought near Godstone. When first taken from the quarry it can scarcely bear damp, but when kept for a few months under cover, it resists the heat of a common fire, and is in great demand in London and elsewhere for fire-places. Limestone is abundant, especially near Dorking, and it and chalk are made into lime on a great scale for the metropolis. The sand of Dorking and Ryegate is in great request for hour-glasses and for the manufacture of glass. Iron ore was formerly wrought at Haslemere, Dunsfold and Cranley, in
the south-west of the county, and about Lingficld and Horne in the south-east; but from the high price of fuel the works have been abandoned as inprofitable.

Surrey has no particular breed of catte. It supports about 600 cows tor the supply of Londor. with milk, which arechielly of the short-hortied or Holderness breed. Cows of the Stafordshire breed are common and highly estecmed. The catte on the heights are poor looking, but have a fine bone. They resemble the ordinary long-horned. The horses generally employed are usually large, hear. and black. Great numbers of sheep are bred i:s the central and western districis. The most conmon are the South Downs, Wilthire and Dorsetshire. Great numbers of hogs are fattened at the distilleries and starch manulactorics. Itouse lambsuckling is a great object with the farmers. \(1 \%\) the Weold, gecse are reared in sreat numbers on the commons. The Dorking fowls, which are large, handsome, and perlectly white, with five claws on each foot, are well known. There is a rabbit warren ol about 50 acres near Bansted! Downs, where 200 pair are kept. It is surrounded with a brick wall ten feet high, with openings an regular distances, within which are wire gratings or hinges. These give way to the hares when they enter, but prevent their cgress. In summer they are fed on clover, rye, sec. and in winter on has.
The manufactures of Surrey are numerotis and extensive, but the most important belong to London. (See our article Loxdon, Vol. XII. p. 203.) On the banks of the Wandle are large establishments for bleaching and calico printing. At Beddington there are large flour mills, skiming mills, calico-printing works and bleaching greens. It Carshalton the same business is carried on, with the addition of a large cotton factory, paper mil!s, and several suuff and oil mills: and Mitcham and Morton are celebrated for their extensive calico and bleaching establishments. The principal objects of manufacture are starch, tobacco, snofs, gunpowder, paper, vinegar. leather, carthenware. wax, and hats.

Among the antiquities in this county are the Ermine Street, a Roman road passing though Clapham, Epson, Dorking, and larnham. Stane Strect Causeway, a branch of Ermine Strect, begins at Dorking, and may be traced through Ockley to Sussex. Another military way has been traced through Stretham, Croydon, and Godstone, to Sussex. Vestiges of Roman camps oecur at Bottlehill and Waltonhill, on the Thames. The remains of a Roman temple, surrounded with embankments, occur on Blackheath. in the parish of Oldbury. There appear to have been Roman stations at Kingston and at Woodeote, near Croydon, the last of which, Camden and Horsley consider to be the Noviomagus of Ptolemy.
The following was the population of the county in 1821.
\begin{tabular}{|c|c|}
\hline Num & 6 1,790 \\
\hline Number of families, & 88, 8 \\
\hline Number in trade, & 46,511 \\
\hline Total population, & 393,658 \\
\hline
\end{tabular}

The population of the principal towns is as follows:
\begin{tabular}{|c|c|}
\hline & 85,905 \\
\hline Croydon town and paris & 9,254 \\
\hline Richmond town and parish, & 5,994 \\
\hline Kingston town and part of parish, & 4,900 \\
\hline Chertsey town and parish, & 4,279 \\
\hline Godalming town and paish, & 4,095 \\
\hline Dorking town and parish, & 3,512 \\
\hline Guildford, borough of, & 3,161 \\
\hline Farnham town and parish, & 132 \\
\hline Ryegate borough, & , 323 \\
\hline Bletchingley, borough of, & 1,257 \\
\hline
\end{tabular}

See the Beauties of England and Wales, vol. siv. Stevenson's Tiew of the Agriculture of Surrey, Manning and Bray's History of Surrey, and Salmon's Antiquities of Surrey. See article Loxdos, Vol. XII. p. 208.

SURRRY, county of, Virginia, bounded E. and SE. by Isle of Wight county; by Southampton S.; Blackwater river separating it from Sussex SWV.; Prince George's county W.; and James river separating it from Charles City county NiTV, and James City county NE. and E. Surry county of Virginia is nearly a square of 18 miles each way, with an area of 324 square miles. Extending in lat. from \(36^{\circ} 50^{\prime}\) to \(37^{\circ} 11^{\prime}\), and in long. from \(0^{\circ} 19^{\prime} \mathrm{E}\). to \(0^{\circ}\) O8' XV. from the meridian of Washington City.

The height of ground between the Chowan and James river basins, passes through and divides this county into two not very unegual portions. The northern declivity falls towards and is drained into James river, whilst the southern gives source to many creeks of Black water branch of Nottaway river, which water is finally discharged into Chowan river.

There are no villages or towns of consequence in this county; the court-house is situated rather to the eastward of the centre; and beside one there, in 1831 post-offices existed at Bacon Castle, Baileysburg and Cabin Point.

Surry Court-house and Post-ofice, Surry county, Virginia, is situated by postroad 60 miles SL. by E. from Richmond, and 183 miles a very little E. of S. from Washington City. Iat. \(37^{\circ} 09^{\prime}\) \(\therefore\)., and long. \(0^{\circ} 10^{\prime}\) E. from the meridian of Wasinington City.

SURRS, county of, North Carolina, bounded by the northern part of Stokes county of the same state NE:.; by ladkin river separating it from the southern part of Stokes SE.; by Rowan S.; Pedell SW.; Wilkes W.; the Blue Ridge separating it from Ashe NTV., and by Giayson and Patrick counties of Virginia N. Circatest length from S. to N. 33 , mean witth 22, and area 726 sfuare miles. Extenting from \(36^{\circ} 04^{\prime}\) to \(36^{\circ} 33^{\prime}\) N.: and in long. from \(3^{2} 26^{\prime}\) to \(0^{\circ} 59^{\prime \prime} \mathrm{W}\). from the meridian of Washington City. By a lucal curve in its general direction, the llue lidge forms a boundary for Surry county, Norll Carolina, on the northwestern and northern borders, giving cource to Toms, Ararat, and Fisher's creeks, which pour their line mountain currents southwardly into Farlkin river. The latter, a navigable stream when issuing from the valley of Wilkes into Surry,
crossts the latter in a direction a little north of east, dividing the county into two not very unequal portions, and again by a rapid bend turns to a little V. of S., and lorming the southeastern limit, leaves Surry, and continues its southern course between Stokes and Rowan.

From the remarkable curve of Xadkin the southern section of Surry is enclosed on two sides by that stream, and the creeks flow like radii lrom a common centre, though all have the Yadkin as a recipient. Taken as a whole, the general declivity of Surry is eastward.

Beside at Rock Ford, the county seat, by the post office list of 1831 , there were post offices at Hamptonville, IInntsville, Jonesville, Judsville, Kincannon Ironworks, Mount Airy, Panther Creek, and Scull Camp.

Rock Ford, the seat of justice, is situated near the centre of the county, on the left bank of Yadkin river, by the past road 151 miles NW. by W. from Raleigh, and 379 W. from Washington City.

The northern and northwestern sections of Surry are mountainous, but the features soften advancins to the southeastward down the beautiful valley of Tadkin. The soil is generally productive, and comprising air, water, and variety ol surface, few if any other counties of the United States exceed Surry as affording a delightful residence to human society. The population of this county was 12,320 in 1820.

Darby.

SURVEYING is the art of measuring land, or of laying down or delineating the surlace of a kingdom or any portion of the globe. In our article Mensuratiox, Yol. XIII. p. 57. Sect. 1, the principles of land-surveying are laid down with sufficient clearness to enable any person to apply them in practice. The more important subject of measuring a base, and of carrying on large trigonometrical surveys, and of measuring a degree of the meridian, has been treated pretty fully in our article on Physical. Geography. Vol. XV. p. 556. Our limits will not permit us to enter more fully upon any of these subjects.

SUSA and Susiana. See Kusistan, Vol. XI. p. 637 .

SUSQUEHANNA, river of New York, Pennsylvania, and Maryland, having the basin of the Delaware E.; the valley of Potomac SVV.; the valley of Ohio W.; the valley of Lake Ontario NTV. and N.; and that of the Mohawk branch of Hudson NE.

If the correct principles of physical geography had been pursued in the nomenclature of the rivers ol the United States, the name ol Susquehanna would have been continued to the Abantic Ocean, but custom has restricted the name to that part of the river above tide water, and confirmed the name ol' Chesapeake Bay to the common recipient of P'atapsco, Patuxant, Potomac, Rappahannoc, York, and James rivers on the west; and locomoke, Nantikoke, Choptank, Chester, and other smaller streams on the east.

The great physical se tion, however, comprised in the real valley of Susquehanna, as the name is
restricted, extends in lat. from \(39^{\circ} 33^{\prime}\) to \(42^{\circ} 55^{\prime} \mathrm{N}\). ; and in long. from \(2^{\circ} 25^{\prime} \mathrm{E}\). to \(1^{\circ} 50^{\prime} \mathrm{W}\). from W. C., and embraces an area of 28,600 square miles. A small fraction of the extreme lower part of the val. ley, 350 square miles, is in Naryland; above N. lat. \(42^{\circ}\) the state of New York comprises of this valley 7600 square miles, drained by the two northern branches and their numbrous confluents. But the main part of the valley, 20,650 square miles, lies within, and forms the central and upwards of fonmtenths of the whole state of lennsylvania.
The Susquchana is formed by two main branches, catled with some inconsistency the northern and western branches. The northern and principal branch rises in Otsego county of New Tork, by two confluents, the Unadilla and Chemango. As delineated on Tamer's United States, the creck which falls into the head of Otsego Lake has its remote source within five direct miles from the Mohawk, at the Little Falls, and is the lighest northern fountain of Susquehanma. Other sources pour their tribute into the Unadilla or Susquehanna from the Catsbergs. Westward from the sourees of Unadilla rise those of Chenango in Madison county. Both streams assume a southwestern course, and flow nearly parallel about 50 miles, where the Unadilla, now known as the Susquehanna, sweeps an cxtensive curve to the southward into and again out of Schuylkill county, Pennsylvania. Returned into Broome county, New York, this already navigable river is augmented by the reception of the Chenango at Binghampton. Thence first pursuing a western course of 20 miles to Oswego, inflects to SWV. separating Broome from 'Tioga, re-enters Pennsylvania, and at the town of Athens on Trioga Point, receives another considerable branch of the Chemung or Tioga from the NW.

Before receiving the Tioga, the eastern branch of Susquehama has drained an elliptic valley of 110 miles in its greatest length; 65 miles where widest, but having a mean width of 45 miles, or, area 4950 square miles, embracing in New lork all the comnties of Otsego and Chenango, with a large part of Delaware, liroome, Tioga, Courtlandt, and Madison; and in Pennsylvania the northern part of Schuylkill, and the northeastern of Bradford counties.

The Tioga or Chemung, the northwestern confluent of the north branch of Susquehanua, is composed of three minor branches, Tioga proper, Canisteo, and Conhocton.

The Tioga rises by numerous erceks in Tioga county, Pennsylvania, draining the northeastern half of that county, and after a general course northeastward unite on the boundary between Pennsylvania and New York. Entering Steuben county New York, and flowing N. abont 10 miles. The Tioga joins the Canisteo from the west.

The Canisteo has its remote sources in Alleghany, but assumes the magintude of a river in Steuben, near the village of Canisteo. Flowing over Steuben 35 miles to the SE. and uniting with Tioga as already stated, the united water turns to a little N. of E. and reccives the Conhocton at Painted Post.

The Conhocton rises in the northeastern part of Livingston county, and alfords the extreme northwestern fountains of Sisfuchanna. Similar to most other beanches of that greal river, the Conhocton becomes navigable within a lew miles from its source, and at Arkport in Steubenturns to SE., and continuing in that direction 35 miles unites with Tioga, and known by the latter name continues on nearly the course of Conhocton 35 miles, to its final exit into the Suscuchanma a 'loga looint.
l'he Tioga drains a valley o! about gis miles by is mean width, or 2 out square miles; comprising in New York all Steuben, and a part of Alleghany, Livingston, Yates, and liogra counties; and in l'enosylrania a prot ol Potter, Tioga, and Bradford counties.

Cumbining the two sections of this nortnern section of the valley of Susfuehama, we have a physical section extending from the eastern sources of Unadilla to the western of Tioga, 180 miles, with a mean width of about 48 , and area 3640 siuare miles, of which 1040 are in Pennsytrania.
'The features of this region, and its lines of connection with the adjacent vallies, present some very interesting phenomena to the gcographer and statesman. On the sides towards the Schoharic and Mohawk, where the Catsbergs and other elongations of the Apalachian chains form the dividing ground between the Susquehanna and Hudson vallies, therc exists no intermediate gaps except at great comparative clevation. On the contrary, between the sources of Chenango and those which now nothwards into the Ontario basin, deep vales extend from the respective sources through the interrening ridges. It is very difficult in many places 10 determine the point where the waters separate. The face of the country is hilly to an extent which gives a mountainous appearance, and yet the intermediate valleys are many of them broad and marshy. Very striking examples exist in Courtlandt and Madison countics. These deep traverse vallies are not, however, peculiar to the head sources of Chenango; one of the most remarkable amongst them extends from the Tioga at Elmira, to the head of Seneca Lake.

The mean water level at Tioga Point is 723 feet above the Atlantic Ocean; and from the Point to Newtown or Elmira on Tiogariver the rise is 103 feet, giving to the water level at Newtown a comparative water level of 826 feet clevation. Though the hills are rery high in the vicinity of Newtorn, the natural valley stretching from the Tiogariver northwards to the head of Seneca Lake, has a rise of only 59 feet above the former, though the declivity on the northern side towards the Seneca has a descent of \(4+4\) feet in 10 or 11 miles. The intermediate summit level is 885 feet above the surface of the ocean, and is the lowest gap through which a canal could be formed to connect the Atlantic and interior waters of the United States, from the valley of the Mohawk to Lower Gcorgia. A single glance on a map of this plysical region, will serve to exhibit the singular natural facilitics afforded to navigation, or to the creation of artificial water char.
nels of intercommunication, by the depression of the vallies between them, and the approximation of the St. Lawrence lakes to the northern streams of the Susquehanna.

Though so far advanced towards as to be at the extrome eastern sources within 40 miles from tide water in Hudson river, the entire northern section of the Susquehanna valley is on the interior floetz or secondary formation, and has a discharge from this formation not from but directly into the Appalachian system.

A very erroneous opinion may be here noticed and corrected. The Appalachian system of mountrins is commonly regarded as a dividing barricr between river source. This is so far from being the real state of nature, that the mountain chains have in no one place in the United States distinctly influenced the general course and recipient of any river: the bends, or the intlections of the streams if viewed on a large scale, appear to be either at right aagles or parallel to the chains, and give to river physiognomy a family similarity which must greatly intercst the attentive observer; but the system of mountans traverses the Atlantic and Ilississippi plains obliquely. It is from such a physical structure of the continent that the Susquenanna is seen pouring down from an elevation above that of the base of the motintains, against which its various banches impinge; and that these iaranches have in the course of time torn passages through the river rocks, and their waters gradually uniting, at length reach the level of the Athantic tides, and gradually miugle with the waters of the Atlantic Ocean. This contest between the apparently stable mountains, and the equally apparently noeting rivers, which bergan, it is most probable, with the creation, is far from being terminated. It is a feature in physical gcography ina high degree, not simply lavorable to their actual construction, l.1t to cxcite origimal conceptions of canals. The fovers have, during accumulated centuries, done that which man would without their aid neve: dared even the conception. The rivers rising beyond have lallen with steady and irresistible weight on the mountain sides, and torn them to their bases, und giten to liuman beirgs, and the fruits of their labour, a frece passage:-but we must return to our sumject.

Below their junction at Tioga Point, the united vater of Susfuchama and Tioga. flow a little S. of E. 15 miles, to the northwestera base of the Appalachian system below lowanda, the seat of justice for bradlord county Pemnsylvania. The now largestream guits the secondary and enters on the transition or inclined rocks, and to an eye abore the mountains seems to sink into their recesses: Lut without even a cataract the volume lurns to southeast, and following that feneral course filty mites, breaks through several chains, and finally at the month of Lackawannock river, nine miles above Wilkesbarre, emters the beautiful valley (i) Wyoming. Indecting at right angles it now turns to the southwest and passing the villages or pows of Jittstown, Wyoming, Wilkesbarre, Berwick, Miflinsburg, Caltawissa, and Danville, con-
tinues the latter course by comparative distance about seventy miles down the mountain vallies to the borough of Northumberland, and to the influx of the West Branch.

The West Branch is entirely a river of Pennsylvania, having its most remote southwestern fountains, and indeed the most western fountains of the whole valley of Susquchanna proper, in Cambria and Indiana counties. These fountains rise within thirty-five mites from the Alleghany river, at Kittanning, and produce streams which unite in Clearfield, and after a comparative course of seventy-five miles to the northeastward, enter Lycoming, and receiving a large accession by the influx of the Sinnamahoning, from the northwestward, and from Clearhed, MicKean, and Potter counties. Now a navigable river, the West Branch continues N. E. 20, and thence turns to S. E. 25 miles, to the influs of Bald Eagle river from the southwestward and from Centre county. Below the mouth of Bald Eagle, the course is a little north of east thirty-five miles to Pennsborough, having passed Dunnstown and Williamsport, and having received in the intermediate distance, and from the northward, Pine, Lycoming, Loyalsock and Nuncy creeks. Below Pennsborough, with partial winding and an elliptic course to the westward, the general coturse is nearly due \(S\). twenty-five miles to the junction of the two main branches at Northumberland, passing the villages of Watsonburg, Milton and Lewisburg.

The valley of the West Branch lies between lato \(40^{\circ} 30^{\prime}\) and \(41^{\circ} 45^{\prime} \mathrm{N}\). and between longitudes \(0^{\circ}\) \(33^{\prime}\) and \(1^{5} 50^{\prime} \mathrm{W}\). from Washington City; and if the extent is taken from the eastern sonrce of Loyalsock, to the extreme west fountains in Indiana, the length is 1.10 milcs. The mean width at least 50 miles, and area 7000 square miles, comprising all the counties of Lycoming, Clearfield and Centre, with very little exception on the borders of the two latter ; and part of Tioga, Potter, McKean, Indiana and Cambria.

The now large and wide volume of the Susquehanna assumes a course of a little W. of S. forty miles to the great bend at the northwestern base of Kittatimy, laving passed the towns of Sunbury, Sclinsgrove, Georgetown, Millerstown, Halifax, and Petersburs; and received from the castward, Shamokin, Mahanoy, Mahantango, Vicomisco, and other small rivers or crecks; and from the westward, Penn's creek, Middle creek, Shareman's creek, and the Juniata river.

Juniata, which deserres the title of the Sonthwest Branch of Susquehanna, rises by its most remote southwestern source on the border of Somerset, but entering and traversing Bedford county in an easterly direction, passing the borough of bedford and the village of Bloodyrun, and rapiclly augmented by numerous mountain streams, it thence abruptly bends to the northward inclining a little eastwarl, forty miles to the inllux of Frankstown branch, a small distance below the borough of Iluntingdon, in lluntingdon county. The general course of Frankstown branch is from the northwest to southeast; and below their junction the united stream follows that course fifteen miles, breaking
through Jack's mountain. Again inffceted to the northeast, the Juniata leaves IIuntingolon and enters Miflin county, and pursuing that direction ncar thirty miles, passes the borough of Lewistown, and again winding to southeast, breaks through Shade mountain into Tuscarora valley; crossing that valley in a course of ten miles reaches the northwest base of Tuscarora mountain, down which it flows northeast ten miles, where, near Millerstown, it passes the latter mountain, and once more turning to the southeast, enters on Perry county, over which it flows fifteen, to its final inllux into the Susquehanna above the village of Petersburg.
In all its parts, Juniata is a real mountain stream. The current rapid, though the channels have no direct falls of any great consequence; the beds are deep, embosomed in the mountain vales, and rocky. The whole valley comprises an area of about 2750 square miles. The sources of both branches are in the slopes of the Alleghany mountain, at an elevation of upwards of two thousand feet above the ocean tides. The descent near the sources is very rapid. The general level of the farms of Bedford and Huntingdon may vary from nine to twelve hundred feet above the ocean; and that of Frankstown branch at Frankstown 910 feet. In lat. this minor valley extends from \(39^{\circ} 50^{\prime}\) to \(40^{\circ} 50^{\prime}\), and the channel of the main stream has gained great importance amongst the commercial channels of the United States, by affording a passage for the Pennsylvania canal through five considerable chains of mountains.

Augmented by the last of its large tributaries, the Susquehanna pierces Kittatinny mountain, inflects to the southeastward, and maintains that course eighty miles, receiving from the right Conedogwinet, Yellow Breeches, Conewago, Codorus, and Deer creeks; and from the left Swatara, Conestoga, Pequea, and Octoraro, with numerous smaller streams, is finally itself mingled with the water of Chesapeake bay, after falling over the lower primitive ledge of the Apalachian system; having in the latter courses passed Harrisburg, Middletown, Columbia, and Havre de Grace.

Including all its higher branches the Susquehanna is peculiar in the structure of its vallies. Wide and often highly productive bottoms of two, and sometimes three stages of relative elevation, spread along the convex side of its bends, whilst hills, or more frequently mountains, of more or less elevation, rise along both sides of these spreading vales. Exuberant fertility is, at a single step, followed by rocky and sterile steeps. The natural timber of the bottoms in most species different from that of the hills and mountains. On the former, sugar maple, black walnut, elm, beech, leucodendron tulipifera, white walnut, and other trees indicative of a fertile soil abound; on the slopes of the mountains pine, oals, and chesnut, and above Wyoming valley inclusive, hemlock, are the prevalent trees. As a navigable stream, or streams, if all the confluents are taken into view, independent of artificial improvement, the Susquehanna is much less interrupted by rapids, or dangerous shoals, than could be expected from the tortuous channels through an

Vol. XVII. Part II.
extensive mountain system. It is also perhaps peculiarly remarkable, that in the reaches where the various branches of this river traverse the respective chains, rapids but seldom, and direct falls no where exist.

Until recently the advantages of Susquehanna valley, as affording canal improvements, was theory, but the people of Pennsylvania, on their own resources, and by the authority of the legislature of the state, have commenced and considerably advanced in the exccution of a system of canal, lock, and rail-road improvement. The Pennsylvania Canal has three divisions in whole or in part within the valley of Susquehanna.
Transverse division of the Pennsylvania canal has its commencement at Columbia, on the east bank of the Susquehanna and in Lancaster county. It thence ascends that great river along the east bank, intersects the Union Canal at Middletown, near the mouth of Swatara, and continuing along the same side to Duncan's Island, at the mouth of Juniata river. There crossing the Susquehanna, and following the valley of Juniata to the junction of the two main branches below the borough of IIuntingdon, and thence along Frankstown branch to its termination at Frankstown.

Besides many places of lesser note, this canal passes through Middletown, Harrisburg, Lewistown, and Huntingdon.

Another section of the same system of canals is to ascend the Susquehanna, from Duncan's Island, opposite the mouth of Juniata, to the New-York line above Tioga Point; length, 204 miles; rising, 423 feet.

The West Branch section commences at the borough of Northumberland, and following the left or northern side of the West Branch river, romiles by a rise of 109 feet, to Dunnstown, passing by, or through Milton, Pennsborough, Williamsport and Jersey Shore.

It may be doubted whether the execution of any other line of canal of equal extent in the United States, would produce so great and permanent revolution on inland trade as would a line of navigable canals from the mineral districts on Susquehanna, into the western part of the state of New-York.

If the valley of the Susquehanna offered no other resource but the vast strata of anthracite coal in the valley of Wyoming, a line of canals in both directions would be fully sustained; but it may be questioned, whether the value of the strata of iron ore, on the waters of Juniata, do not exceed that of mineral coal, and both combined present a fund to reward enterprize, which seems to have surface without a discoverable base. In brief, whether we regard it as a physical section of the earth, or as a political and commercial link in the chain of connexion between different portions of the United States, the valley of Susquehanna deserves profound attention from the philosopher, gcographer, and statesman. Daray.

SUSQUEHANNA, county of Pennsylvania, bounded on the E. by Wayne county, of the same state, S. by Luzerne, W. by Bradford, and N. by Broome county of the state of New York. Great4 G
est length from east to west, 35 , width, 26 , and area, 875 square miles. This eounty extends in lat. from \(41^{\circ} 40^{\prime}\) to \(42^{\prime} \mathrm{N}\). and in long. from \(0^{\circ} 50^{\prime}\) to \(1^{\circ} 32^{\prime} \mathrm{E}\). from the meridian of Washington City.

This county oceupies a curious physical section. The main volume of the Unadilla, or eastern constituent of Susquehanna, curving with the Coquaso branch of Delaware, sweeps to the east of south from Broome county, of New-York, into Susquehanna county, of Pennsylvania. In the latter, the stream is turned by one of the low ridges of the Appalachian system, and bending at more than a right angle, follows northward by comparative courses about ten miles, and again enters Broome county, but gradually winding iu an elliptic curve, the Susquehanna, after a comparative course of upwards of eighty miles in Broome and Otsego counties, of New York, and Bradford of Pennsylvania, approaches the SW. angle of the Schuylkill to within one mile.

It is evident from such relative position that Schuylkill county occupies a plateau, or table land. The surface is very broken by hills, and towards the eastern and southeastern sides by mountains. The central part is elevated, and the watercourses having their sources on these high vallies, flow rapidly in deep channels, and diverge like radii from a common centre.

The southeastern angle is in the valley between the Lackawannoe and Tunkhannoe mountains, and gives source to the Lackawaxen branch of Delaware, and the Lackawannoc of Luzerne county, entering the Susquehanna in the valley of Wyoming. The sources of the two latter streams are separated from those of the Tunkhannoc by Tunkhannoc mountain.

Tunkhannoc rises in Schuylkill, and within four miles from the Susquehamna at the Great Bend in the northern part of the county, but flows SW. over Schuylkill county, and entering Luzerne falls into the main volume of the Susquehanna, if the general curve is only regarded, about one hundred miles below the Great Bend. Westward again from the Tunkhannoc, rise and flow southwestwardly into Susquehanna, the Misshopper and some smaller ereeks. The western part of the county is chiefly drained by the higher creeks of the IV yabyssing. The latter rises near Montrose, and near the centre of the county, and flowing to the westward enters Bradford and there bends to the south of SW. and falls into the Susquehanna nearly opposite the Wyabissing hills.

To the water courses already noticed as having their origin in Schuylkill county and flowing to the south and west, are opposed another scries of creeks flowing northward also into Susquehanna, but into the castern brameh. Advancing from east to west, the latter erecks are in order, Starucoa, Conewanta, Salt Lick, Snake, Choconut, and Apollocan.

Taken as a whole this really fine county and physical section is divided by nature into two unequal declivities, the larger falling southward towards the main colume of Susquehama, and the other in an opposite direction towards the eastern branch.

The soil of this county is generally good. Sugar maple abounds in the vallies and on the slopes of the hills. If any particular species of timber prevails in quantity, it is the hemlock, which here grows in abundance and to an enormous size. Oak, hickory, beach, ash, \&e. are plentiful.

The rapid increase of population shows the value of the soil of Sehuylkill county. In 1820 the inhabitants amounted to 9960 , and in 1830, to 16,677 , or at a rate exceeding 67 per cent increase.

By the post list of 1831 , beside at Montrose, the seat of justice, there were in this eounty twentytwo post offices, namely at Birchardsville, BrookIyn, Choconut, Dimocksville, Dundoff, Ellerslice, Fairdale, Friendsrille, Gibson, Great Bend, Harewood, Harford, Jackson, Lanesborough, Lawsville, Lawsville Centre, Lenox, New Milford, Rushville, Silver Lake, Springville and Springville Four Corners.

Montrose, the county town, is situated near the centre of the county, and on one of the higher sources of Wyabussing ereek, by post road, 49 miles N. from Wilkesbarré; 163 NNE. from Harrisburg, and by the route of Wilkesbarré, 150 iniles NNW. from Philadelphia. It is a very neat village, situated on an elevated and pleasant site, and, with several handsome private buildings, contains the usual edifices belonging to a county seat.

Darny.

SUSSEX, a southern and maritime county of England, bounded on the north by Kent and Surrey, on the east by Kent, on the south by the British Channel, and on the west by Hampshire. Its figure is that of an oblong, about 70 miles in length from east to west, and its utmost breadth from north to south 26 miles. It contains 1463 square miles. Its rental is L.549,950, and the amount of tithe L. 100,498 , the annual value of a square mile being L.445. In 1806 it paid L.l, 436,563 of property tax, and in 1803, L.206,591 poor's rates, at the average of \(8 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}\). in the pound. It pays sixteen parts of the land-tax. It is divided into six portions or rapes, in nearly equal parts from north to south, which are subdivided into 65 hundreds, and contain 313 parishes. The county is within the diocese of Chichester, and the province of Canterbury. It is now included in the Home Circuit.

The general appearance of the country is rich and lectile. It is thickly clothed with the finest wood, which is computed to occupy an extent of not less than 170,000 acres. Formerly the whole northern part of the county was one continued Torest, and it still contains some of the finest oaks in the kinglom, which are in great demand for the use of the navy. The soil in most places consists of a stiff deep clay, with the usual variations of sand, loam, gravel, and chalk; of the latter substance, there is a whole range of hills called the South Downs, which run in a direction parallel to the coast, and on which immense flocks of sheep are pastured. In the small vallics that intersect
these hills, large crops of grain are raised. Near the coast there is some very fine pasture land, on which a considerable number of the valuable oxen of the county are fed, to supply the London market.
Sussex is by no means deficient in mineral productions, the principal of which is limestone, which is found in the eastern part of the district called the Weolds, in the greatest abundance and variety. It has been found to excel both that of Maidstone and Plymouth. There is also a very beautiful marble dug up in this country, called the Sussex and Petworth marble, which is capable of receiving a high polish, and is in great request for ornamental chimney-pieces. The stratum of this marble lies from ten to twenty feet beneath the surface, and is about nine or ten inches thick. The other minerals are ironstone, fuller's earth, red ochre, chalk, and marl.

The agriculture of the county, and the rotation of the crops varics with the difference of the soil. Fallowing is much resorted to in the stiff clay of the Weold, but is rarely to be met with in the district south of the Downs. The crops usually raised in Sussex, are wheat, oats, barley, clover, pease, and tares, turnips, potatoes and beans; and hops are also grown in considerable quantities. The cultivation of the hop is chiefly confined to the eastern part of the county, where it is practised on such an extensive scale as to require almost all the manure of the farm, the necessary consequence of which is, that the crops of wheat and other grain are comparatively small. In the western part of Sussex, there are some large and valuable orchards, which, when the soil is adapted to the fruit, yield a considerable produce. The best cider in the county is made near Petworth.

Sussex has been long celebrated for the excellence of its breed of cattle, which is universally acknowledged to be inferior to none in the kingdom. The distinguishing marks of a thoroughbred Sussex cow, are a decp red colour, fine hair, a small head, and clear and transparent horns, running out horizontally, and turning up at the point. However superior the quality of their flesh may be, the quantity of milk yielded by the cows, is by no means equal to that of many other breeds; in consequence of which there are few dairies to be met with, and the cattle are reared chiefly for the sake of the meat, which is of the very best quality. The oxen are much used in ploughing, in which employment they generally continue for three or four years before they are fed for the butcher. They are, however, worked very moderately, in order that their growth may not be affected, the usual number attached to a plough on ordinary soils being eight, but on a stiff soil ten and sometimes twelve. The sheep are of the well known SouthDown breed, (so called from the hills of that name on which they are pastured,) which, as well as the cattle, peculiarly belongs to Sussex. They have now, however, in a greater or less degree extended themselves over most parts of the kingdom. They have black faces and legs, and no horns. Their flesh is excellent; and their wool is in every re-
spect equal to that of Hereford. They are likewise a liardy breed, able to bear the severest storms, and requiring but a small quantity of food for their sustenance.

At present there is nothing in Sussex that deserves the name of a manufacture. There were formerly several establishments in the Weold for making iron into bars, which gave employment to a considerable number of persons. But they have been long disused, and removed to those districts where pit coal abounds, such as Scotland and Wales, where it is made at a much cheaper rate. The only other employment in which the population are engaged, besides agriculture, is that of fishing, which, in the summer season, and especially when the mackerel appear, is very productive.

The rivers of Sussex are few, and of no great importance when compared with those of most other districts in the kingdom. But their origin and courses are confined within the limits of the county. The principal are the Arun, Adur, Ouse, Lavant, and Rother, the two first of which are navigable a few miles from their mouth. The Rother forms Rye harbour, and separates the county from Kent. There is only one canal in Sussex, which joins the towns of Petworth and Midhurst with the Arun.

Sussex contains many Roman and Saxon antiquities. There are still some remains of the Stane Street road, which ran from east to west of the county, and there are several ancient camps to be seen in the vicinity of the Downs. The most remarkable of the Saxon remains are Pevensey Castle, Arundel Castle, and Battle Abbey. The others of less note are Eridge Castle, Bodcham Castle, and Bayham Abbey. In 1717 a tesselated pavement and bath were discovered near Eastbourne.

Sussex sends twenty members to parliament, iwo for the county, and two for cach of the under-mentioned places, Chicheste:, Arundel, Horsham, Bramber, East Grinstead, Lewes, Shoreham, Midhurst, aud Steyning.

The following was the population of the county in 1821.
\begin{tabular}{lllll} 
Number of Houses & \(\cdot\) &. & 36,283 \\
Families & \(\cdot\) & \(\cdot\) & \(\cdot\) & 43,568 \\
Ditto in trade & \(\cdot\) & \(\cdot\) & 15,463 \\
\hline
\end{tabular}

The population of the principal towns in 1821, was as follows:
\begin{tabular}{llr} 
Brighton \\
Chichester, city of . \(\quad\). & 24,429 \\
Lewes, borough & 7,362 \\
7,003
\end{tabular}

Lewes, borough . . . 7,003
* Hastings, cinque port, and parishes 6,085

Horsham, borough and parish 4,575
Rye, cinque port, and parish 3,599
East Grinstead, borough and parish 3,153
Battle, town and parish 2,851
Arundel . . . . 2,511
Steyning, borough and parish 4,324
Seaford, cinque port, and parish 1,047
See the Beauties of England and Wales, vol. xiv. Young's Agricultural Survey of Sussex, and Russel's Description of Kent and Sussex.

SUSSEX, extreme northern county of New Jersey, bounded by Orange county of New York NE; Bergen of New Jersey E. SE. and S; Warren SW; and Delaware river separating it from Pike county, Penusylrania, W. and NW. Length 25, mean width 18 , and area, 450 square miles. Extending in lat. from \(40^{\circ} 54^{\prime}\) to \(41^{\circ} 22^{\prime}\), and in long. from \(2^{\circ} 3^{\prime}\) to \(2^{\circ} 40^{\prime} \mathrm{E}\). from the meridian of Washington City.

The features of Sussex county of New Jersey are in some respects not only curious, but peculiar. The county embraces a part of the valley between the Kittatinny and Blue Ridge chains, and in no part falls below an elevation of 800 feet above the surface of the Atlantic tides. On the side towards the Delaware river it is traversed by the continuation of the Kittatinny, and on the opposite side, is separated from Bergen and Morris counties by the Blue Ridge. The intermediate valley about 15 miles wide is a real table land, discharging southwestwardly towards the Delaware, Pequest and Pawlings creeks, and to the northwestward the sources of the Wallkill.

On the heads of the Wallkill, though elevated above eight hundred feet above tide water, spread marshy plains, having the aspect of the alluvial flats along the border of the Atlantic Ocean. The southeastern section on the heads of Pequest and Pawlings creeks, the country rises into hill and dale; and the transition from a comparative monotonous to a broken and diversified surface, is in no other part of the Appalachian system so rapid and striking.

The western borders between the Kittatinny and Delaware river, is a narrow slope or valley, from two to four miles wide, and extending the entire length of the county. Along this confined declivity flows the Flatkill, 17 or 18 miles between the mountains on the SE. and Delaware river NW. and seldom two miles from either.

The Morris canal touches, but only merely touches, the southeastern angle of Sussex. The summit level of this canal is at the place where it passes the Blue Ridge, 915 feet above the surface of the Atlantic Ocean.
The author of this article traversed Sussex in the latter part of September, and proceeded from Newburg on Hudson river, by Goshen, Newton, and by Somerville to the Delaware at New Hope, and had a fair opportunity of seeing the difference in the advance of the season at the different points. In Sussex early frost had destroyed tender vegetables on the high plains and vallies of Sussex, whilst no similar effect was perceptible on the Hudson, nor had frost yetoccurred on the Delaware.

By the Post-Office list of 1831, there were postoffices in Sussex, at Andover, Augusta, Benville, Bevins, Branchville, Coursenville, Deckertown, Flat Broukville, Fredon, Gratitude, Greenville, Hamburgh, Lafayette, Lockwood, Monroe, Montague, Newton, Sandyston, Sparta, Stanhope, Stillwater, Vernon, Walpack, and Wartage.
Newton, the seat of justice, is situated on an cle-
vated site and on the waters of Pawlings Kill or creek, 40 miles NE. from Easton, 60 miles NW. by W. from the city of New York, about a similar distance SW. from Newburg, and by post road, 70 miles very nearly due N. from Trenton, and 228 miles NE. from W. C. N. lat. \(41^{\circ} 3^{\prime}\), long. \(2^{\circ} 9^{\prime}\) E. from the meridian of Washington City.
The village is small, with the ordinary buildings for public use at a county seat. The adjacent country is diversified and pleasant to the eye.

When the census of 1820 was taken, Sussez county embraced the area now included in Warren, and of course, the aggregate population 32,752, was that of the superficies now constituting both counties.

Darby.
SUSSEX, the most southern county of the state of Delaware, in the United States, bounded on the N. by Kent county, Delaware; NE. by Delaware Bay; E. by the Atlantic Ocean ; S. by Worcester county, Maryland; SW. by Somerset county, Maryland; W. by Dorchester county, Maryland, and NW. by Carolina county, Maryland. Greatest length from the Maryland line to the northern bend of Mispillion creek, 36 miles. The utmost breadth from west to east very nearly equals the length, but the area being about 910 square miles, the mean breadth will be 26 miles. This county lies between lat. \(38^{\circ} 27^{\prime}\), and \(38^{\circ} 58^{\prime} \mathrm{N}\). ; and between long. \(1^{\circ} 14^{\prime}\) and \(1^{\circ} 58^{\prime}\) E. from W.C.
Though the surface of this county is level, and in part marshy, it is nevertheless a table land, from which flow southwardly the extreme sources of Pocomoke river; southwestwardly, those of Nantikoke river; eastwardly, Indian river, and other confluents of Rehoboth bay; and Broad Hill, Cedar, Mispillion, and some other creeks flowing northeastwardly into Delaware bay.
The surface being so nearly a plain admits of little variety. The soil, if taken generally, is of midding quality. Population in 1820, 24,057.
By the post nffice hist of 1831, beside Georgetown, the county seat, there were post offices at Bridgeville, Cannon's Ferry, Concord, Dagsborough, Laurel, Lewis, Millsborough, Milton, and Seaford.

Georgetown, the seat of justice, is situated near the centre of the county, 40 miles a little \(E\). of S . from Dover, the seat of government of the state of Delaware, and by post road, 122 miles a little S. of E. from Washington City. N. lat. \(38^{\circ} 40^{\prime}\), long. E. from W. C. \(1^{\circ}\) s \(9^{\prime}\).

Dagsborough is on Pepper Creek branch of Rehoboth bay, 14 miles SE. from Georgetown. Bridgetown is situated on a small branch of Nantikoke river, and in the northwestern part of the county.

Lewistown, or Lewis, is situated on the extreme southern arch of Delaware bay, W. from Cape Henlopen. The Delaware break-water has given additional importance to Sussex county as a part of the maritime coast of the United States.

SUSSEX, county of Virginia, bounded by Southampton, SE.; Greensville, SW.; Dinwiddie, W.; Irince George, NW.; Black Water river separating it from a part of Surry, N.; and by the southernmost angle of Surry, NE. The greatest length is a diagonal extending from west to cast 37 miles;
mean breadth 16, and area 592 square miles. Lying between lat. \(36^{\circ} 42^{\prime}\), and \(37^{\circ} 7^{\prime} \mathrm{N}\)., and in long. from \(0^{\circ} 2^{\prime} \mathrm{E}\). to \(0^{\circ} 46^{\prime} \mathrm{W}\). from the meridian ol W.C.

This county has a southeastern declivity, down or rather over which the Nottaway river winds by a wide sweeping curve, first east, thence northeast, east, and finally southeast, into Southampton county. The eastern part is drained by black Water river, but here again the descent of the plain is to the southeastward. Sussex is an undulating surface, within the climate in the United States where cotton can be cultivated as a staple commodity.

Besides at Hunting Quarter or Sussex Court House, there are by the post list of 1831 , post-ofluces at Conan's Well, Littleton, Parham's Store, and Rowanty.

Hunting Quarter, the seat of justice, is situated near the centre of the county, and though not actually on the Nottaway river, that strean semicircles it by a bend from the west, thence round by north to southeastward, as noticed in the description of the county. This place by post road is 172 miles a little west of south from Washington City, and 50 miles SSE. from Richmond. N. lat. \(36^{\circ} 50^{\prime}\), long. \(0^{\circ} 22^{\prime} \mathrm{W}\). from the meridian of Washington City.

Sussex county of Virginia contained, in 1820, a population of 11,884 .

Darby.

SUTHERLAND, one of the most northerly counties of Scotland, extending across the island from the Atlantic to the German Ocean. It is bounded on all sides by the sea, except on the north-east by Caithness, and on the south by Ross-shire. The length, from east to west, varies between 45 and 50 miles, and its breadth, from north to south, between 35 and 50. It contains 1865 square miles of land, and 38 square miles of salt water lakes, or \(1,193,940\) English acres* of land, and 24,230 of lakes. It is divided into 15 parishes, which belong to the synod of Sutherland and Caithness.

The western coast of Sutherland is a succession of inlets of the sea, variegated with bold promontoties, and numerous rocks and islets. The interior, which is almost universally wild, rocky and mountainous, may be divided into three districts. The eastin is a level piece of land on the east coast, about a quarter of a mile broad, and is sheltered from the north by a ridge of mountains, from 500 to 800 feet high. The middle district is occupied by the four straths of the rivers of Helmsdale, Brora, Fleet, and Oickel. Black cattle and sheep form here the wealth of the farmer. The western district, which borders on the Atlantic, is wild and mountainous. The mountains of Ben-mor, Assyant, Glass-bhein, Ben-canap, Benchoinag, or the sugar loaf mountains, Ben-evie, Craig-rou, Benmore, and Stackben are of great altitudes, and though entirely barren, yet at their base they display many extensive and well managed farms.

There is little more than one acre in a hundred cultivated in this county; the whole extent ol cultivated land, grass pastures, und woods not exceeding 60,000 acres. Wheat grows well in the eastern district, and sometimes ripens as carly as in Eng. land. Since 1818, extensive fields ol wheat, drilled on the Norfolk system, have been sown; several hundred acres of turnip have been sown upon the ridge, and excellent crops of barley and clover have been raised. Oats, bear, and potatoes are raised by the small tenants in the infand straths. The number of sheep is calculated at about 140,000 , yielding, about 18,000 stone of wool, 24 lbs. per stone. The small tenants, on the south-cast coast, pay a rent according to the quantity of grain that may be sown, which is from 15 s . to 20s. per boll, which is paid partly in money and partly in oatmeal and bear. In other parts the teltants pay in proportion to the number of black cattle they can support.

The county of Sutheriand has derived immense advantages from the admirable establishments of the Marquis of Stafford. Formerly the only manufacture was that of kelp, to the extent of 250 tons annually. Very important fisherics are carried on in the west, north and east coasts. At Helmsdale, on the east coast, the Marquis of Stafford has expended large sums in erccting buildiugs nccessary for this purpose, and the tenants who had been removed from their farms have embarked with much success in this new profession. A considerable number of boats are occupied in the cod, ling, haddock, and herring fisheries, on the north and west coasts, where lobsters and mussels are also obtained in abundance. In 1814, there were caught at the village of Helmsdale 2400 barrels of herrings. This quantity increased annually, and in \(1827^{\circ}\) it amounted to 20,600 barrels. In 1814 not a single boat entered this creek, whereas in 1819 no less than 5246 ton of shipping entered there. A regular trade has been established with Leith, and other branches of iudustry have begun to flourish.

In this county both coal and limestone have been recently discovered. The coal is now wrought to a cousiderable extent on the little rivalet of Brora, and it is conveyed by a railway to the harbour at its mouth. The small coal is consumed at the salt-works there. It is employed also in burning lime and making bricks; it is not so good for domestic purposes. A general account of this coal field is given in our Article Scotland, Vol. XVI. p. 694. and in Mine, Vol. XIII. p. 340. The west coast is in a great measure formed of this mineral; but as it is in many cases combined with magnesia, its utility as a manure is diminished. It is also found in some parts of the interior. The marble quarries of Lechmore and Leadbeg, yielding a pure white marble, like alabastar, were for some years wrought by Mr. Jopling from Newcastle, but we understand they were abandoncd on account of the magnesia. A fine black marble, streaked with yellow veins, is found at Edderachillis. Near the coast the limestone is sometimes found in the state of marble. Traces of ancient iron mines are said
to have been found on the west coast. Gold is found near Helmsdale, garnets on the coast, in the parish of Tongue, and it is said that lead ore rich in silver, and a vein of black manganese, have been found near the Dornoch Frith. Purple fluor spar is found in the gneiss and granite. White actynolite, approaching to tremolite, is found near Standa, and schistose actynolite is also found in the county.

In the limestone rock, on the north coast, there are some remarkable caves, one of these at Smoro, to the east of Balnaheel and Durness, is 96 feet wide and 60 feet high; another at Fraisgill is 50 feet high and twenty feet wide at its mouth, gradually contracting till it terminates at the end of half a mile.

The principal streams are the Oickel or Firth of Dornoch, Fleet or Strathflcet, Broro, and Helmsdale. The Oickel is navigable for 12 miles for ships of 50 tons, and about eight miles farther for boats. These streams rising in the interior fall into the Dornoch Firth; but others, such as the Strathy, the Naver, and the Dinart, the Hallidale, the Kenloch, the Hope, and the Eribol, flow towards the northern and western shores.

The principal lake in this county is Loch Shin, cxtending 20 miles from NW. to SE. and about a mile broad. It abounds with salmon and trout. Loch Assynt is six miles long and one and a half broad. The others are Loch Naver, Loch Hope, Loch Lyal, Loch More, Loch Brora, and Baden Loch, all abounding with trout.

The valued rental of the county is L. 26,193 9s. 7 d . which is divided among seventeen proprietors, the Marquis of Stafford having L. 16,951, Lord Reay L. 3720 , Skibo L. 1975 , Bighouse L. 900 , and the rest between L. 200 and L.500. The real rent has been estimated at L. 40,000 sterling. A superiority of \(L .200\) Scots gives a vote for the member of Parliament, when L. 400 is necessary in the other Scotch counties. The number of freeholders was 22 in 1828. Dornoch, the country town, is a royal burgh, which, along with Dingwall, Tain, Wick, and Kirkwall, sends a member to Parliament. The town is small. A part of the old cathedral, said to have been buitt in the 1lth century, is kept in repair as the parish church. The ruins of the bishop's castle, which seems to have been a stately building, still remains. Dornoch contains only 132 houses, 140 families, 58 of whom are in trade, and 9630 inhabitants.

Among the antiquities of Sutherlandshire are two circular buildings, Dun-Dornadil and Castle Coll. Dun-Dornadil, in the parish of Durness, is in a ruinous state. Only a portion of the wall is standing, which does not exceed 18 fect in height. The area seems to have bcen enclosed by two concentric walls, and a large triangular stone serves as a lintel to the doorway. Castle Coll, on the east side of the county, has a circuit of 162 fect, with walls \(13 \frac{1}{2}\) feet thick at the base, inclining inwards nine inclies for every three fect of altitudc. On cach side of the doorway are two small apartments. Both of these buildings consist of large stone nicely joined together without cement. Cairns and tumuliare very numerous. In the iste of Oldney is a considerable cairn with a hollowed stone, having a cover likewise of stone. The first of these stones is said
to have contained a rounded one of various colours. On the east coast is a rocky precipice called Craigbar, fortified with a ditch of circumvallation.
The population of Sutherland in 1821, was as fol-lows:-
\begin{tabular}{|c|c|c|c|}
\hline Parishes. & Inhabited Houses. & Families. & Population. \\
\hline Assynt, & 547 & 547 & 2803 \\
\hline Clyne, & 399 & 432 & 1874 \\
\hline Creech, & 389 & 389 & 2364 \\
\hline Dornoch, & 651 & 660 & 3100 \\
\hline Durness, & 178 & 178 & 1004 \\
\hline Edderachillis, & 239 & 239 & 1229 \\
\hline Farr, & 374 & 376 & 1994 \\
\hline Golspie, & 230 & 292 & 1036 \\
\hline Kildonan, & 97 & 97 & 565 \\
\hline Lairg, & 219 & 227 & 1094 \\
\hline Loth, (with Helm & sdale,)400 & 417 & 2008 \\
\hline Reay, part of, & - 192 & 198 & 1057 \\
\hline Rogart, & 420 & 420 & 1986 \\
\hline Tongue, & 318 & 350 & 1736 \\
\hline Total & 4654 & 4822 & 23,8 \\
\hline
\end{tabular}

See Forsyth's Beauties of Scotland. Henderson's General View of the County of Sutherland, and An Account of the Improvements of the Marquis of Stafford in Sunderland, by James Loch, Esq. M.P. See also our Article Scotland, passim.
SUTTON, Coldfield, a market town of England, in Warwickshire, which is on the high road from Birmingham to Litchfield. It is a small town, consisting of a spacious street, with several smaller ones. The church is a large bandsome structure, with a new channel and two side aisles. There is a grammar school founded by Bishop Vesey. A few manufactures connected with Birmingham have been advantageously introduced. The bleak district called the Coldfield, to the west of the town, contains 13,000 acres. To the north-west of the town is Sutton Park, containing 300 acres, belonging to the poor of the town. They receive from it peat, and obtain pasturage for their cows. The Roman street of Icknield passes through it.

Population of the parish in 1821. Number of houses 677 , families 706 , ditto in trade, 227. Total population, 3466. Sce Beauties of England, vol. xv. p. 295.

SUUARof, Rymnisski Alexander Count, a celebrated Russian general, descended of a Swedish family, was born in 1730, and died on the 18th May 1800, at the age of 70 . An account of his military career will be found in our articles Bhitain, Franoe and Russia.
SWABIA, one of the ten circles into which Germany was divided by Maximilian I. It now forms part of Baden, Bavaria, and Wirtemberg, and is cousequently described under these articles. Sce our article Germany, Vol. 1X. p. 704-709.
SWAFFHAM, a market town of Eugland, in the county of Norfolk. It is situated on high ground, and consists of a principal strect, on the high road from Lymn Regis to Norwich, with several smaller ones branching off to the north and south. Most of the houses, particularly those in the market place, are handsomc. In the centre is
a large open area, with a pool of water. The principal public building is the church, which is a handsome edifice with a nave, two aisles, two transepts, and a well proportioned and lofty tower, surmounted with enriched embrasures and purfled pinnacles. The nave is lofty, and has twenty-six cleristory windows, with a highly ornamental inner roof. The other public edifices are a Quakers' meeting house, and a new assembly room on the west side of the market house. Races are held annually ahout the end of September, on an extensive heath near the town. A great cattle market is held here. Population in 1821:-The town and parish contained 553 houses, 587 families, 263 familics in trade, and 2836 inhabitants. See the Beauties of England, vol. xi. p. 272.

SWANSEA, a town of South Wales, in the county of Glamorgan, " which, from its population and commercial importance, is entitled to be ranked as the metropolis of the comnty, if not of the principality of Wales." It is situated on the west bank of the Taw, on a point of land near the junction of that river with the sea. It is nearly two miles long, including the suburb of Greenhill, and half a mile broad. There are many streets, with a great proportion of well built houses. The church is a handsome building, with a suitable aisle, two side aisles and a large quadrangular tower at one end. It is 72 feet long, and 54 wide. The town hall, erected on a part of the castle inclosure, in the middle of the town, is a spacious and clegant modern building. A commodious theatre, and some public rooms have been lately erected. The latter form a mis-shapen pile of buildings. The castle is situated on an elevated spot in the middle of the town, and would have a grand appearance, were it not buried among houses. A lofty circular tower is the principal portion that remains. On the eastern side of the tower a large part of the original building is standing, surmounted by an elegant parapet with arched openings. The habitable apartments form a poors' house and a debtors' goal.

Swansea is the resort of numerous bathers, and warm and cold salt water baths have been made in the burrows, and near the pottery by the river side. Handsome lodging houses, the chief of which are at Mount Pleasant, and the Burrows, have been erected for the same purpose. There are at Swansea, places of worship for various dissenters, and the Presbyterian meeting house is one of the oldest in South Wales. There is here a public library, a free school, and several Lancasterian and other schools for the poor. A weekly newspaper has been long established here.

There are in Swansea various important manufactures, arising from the abundance of coal and iron in the neighbourhood. There are two pottery establishments, on a large scale, furnishing almost every article of the Staffordshire ware, of the first quality. There are also two large copper houses, to which ships of 200 tons can sail, an iron foundry, two roperics, several tan yards, a soap manufactory, an extensive brewery, and a dry dock. Swansea carries on an extensive commerce, which is greatly
aided by the Swansea canal, and the Oystermouth railway, both of which we have already described in our article Navigation, Inland.
The number of vessels which cleared out in the following years, are as below:-
\begin{tabular}{ccr} 
& Vessels. & Tons. \\
1788 & 694 & 30,631 \\
1790 & 1697 & 74,926 \\
1800 & 2590 & 154,264 \\
1810 & 2717 & 171,672
\end{tabular}

Swansea is a corporate town, and shares the privileges of Cardiff as a contributory burgh, in returning the member for that place. It is governed by a portrieve, twelve aldermen, two common attornies, a town-clerk, and two sergeants at mace. The population, in 1821, of the town and franchise, with the laamet of St. Thomas, which has only 248 inhabitants, was as follows:-
\begin{tabular}{crr} 
No. of IIouses, & 2,049 \\
Families, & 2,124 \\
Families in Trade, & 739 \\
Total population, & 10,355
\end{tabular}

The increase of population since 1811, in the town and franchise of Swansea, which is 2082 , is attributed to the improved state of trade and commerce in that town and port, and to the public spirit of the inhabitants of its vicinity. See the Beauties of England and Wales, vol. xviii. p. 720; Navigation, Inland, Vol. XIV. p. 285; and Glamorganshire, Vol. IX. p. 741.
SWARTZ Olof, See Botany, Vol. IV. p. 26.

SWATARA, river of Pennsylvania, rises by numerous branches in the deep mountain vallies in the southern part of Schuylkill county. It thence flows in a south-western direction over the western part of Lebanon and the southern part of Dauphir county, falling into Susquehanna river immediately below Middletown, after a comparative course of 40 miles.

The valley of this fine small river, for nearly one half of its course, is now made a navigable route by means of the Union Canal. By its numerous branches, it drains a section of Schuylkill county, the extreme western angle of Berks, all Lebanon, except a very confined angle in the extreme south. and the southern and finest part of Dauphin county: The valley of Swatara is about 40 miles long, with a mean width of 15 , and embraces an area of about oon square miles.

The western side of this valley is mountainous and all parts are hilly. With the exception of the higher north western sources, the Swatara valley is in the mountain valley between the Blue Ridge and Kittatinny mountains. Along the former ridge and spreading from 5 to 8 miles wide, extends a zone of limestone, on which the soil is in a high degree productive. The limestone tract is followed by slate land towards the Kittatinny range. On the latter zone the surface becomes more broken and soil less fertile; but even in the mountain vales above the Kittatinny, some belts of fine meadow and arable lands skirt the streams.

Darby.

\section*{SWEDEN.}

SWEDEN. Respecting the origin of this word, there have been several conjectures. The inhabitants of the country which it denotes are supposed to have been the Sitones mentioned by Tacitus, an appellation probably derived from the chief town Sictuna. (De Mor. German. cap. 44-5.) This hypothesis is not fanciful; but the more probable opinion is, that the term in question is derived from Suitheod or Sweireke according to the more modern orthography, a Scandinavian word signifying a country whose woods have been burned or destroyed. From this term, softened by its conversion into the Latin speech, the Sitones of Tacitus may without any impropriety be supposed to have been derived.

The country of Sweden has at various times been of very different extent. And even within the present century, it has undergone great changes in this respect. In 1809, it lost Finland, a province which has since belonged to Russia, and which in superficial extent is cqual to England, and contains a population of upwards of a million; and in 1814 it added Norway to its territories in return for ceding to Prussia the island of Rugen, and the province of Swedish Pomerania. This exchange, so favourable to the country under review, was guaranteed and confirmed by the Congress of Vienna in 1815. Sweden, exclusive of Norivay and Finland, but including Swedish Lapland, extends from south to north 1150 miles, namely, from \(55^{\circ}\) \(20^{\prime}\) to \(71^{\circ} 10^{\prime}\) north latitude; and from east to west, it averages nearly 300 miles. From its sloping situation, its breadth cannot be known from the degrees of longitude within which it lies; at its extreme diagonal points it measures from \(11^{\circ} 10^{\prime}\) to \(23^{\circ} 30^{\prime}\) east longitude. The area which it embraces has been calculated at 168,802 square miles. It is bounded on the cast by the Baltic, gulf of Finland, and Russia; on the north by Norwegian Lapland; west by Norway; south by the Sound and the Baltic.

This country has been divided into three provinces, namely, Gothland on the south, Sweden Proper in the middle, and on the north Norrland, including Swedish Lapland.* These provinces have been recently subdivided into districts called Latns or Stadholderships, of which the following is a list, together with the ancient division:-

Gothland.
Divisions, ealled Laens or Stadholderships.
\begin{tabular}{|c|c|c|c|}
\hline New Divason. & Ond Division. & Eq. mines. & Capitals. \\
\hline Gotienburg. & West Gothland. & 1835 & Gottenburg. \\
\hline Halmstadt. & Hatland. & 1963 & 1talmstadt. \\
\hline Christianstadt, and ) & Schonen, or Scani & . 2174 & Claristianstadt. \\
\hline Atalmoc. & & 1750 & Malmoc. \\
\hline Carlskrona. & Hekingon. & 1088 & Carlskrona. \\
\hline Calmar. & Smaland, and Island of ()cland. & \[
\}+181
\] & Calmar. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Kronsberg, or Wexio. & \}Smaland 3495 & Merioe. \\
\hline Jonkoping. & Smaland. 4267 & Jonkoping. \\
\hline Linkoping. & East Gothland. 4305 & Linkoping. \\
\hline Skaraburg. & West Gothland. 3207 & Mariestadt. \\
\hline Elfsburg. & West Gothland,
and Dallen. 3008 & Wenersburg. \\
\hline Wiseby. & Island of Gothland. 1045 & Wiseby. \\
\hline \multicolumn{3}{|c|}{Sweden Proper.} \\
\hline \multicolumn{3}{|l|}{City and district of \({ }^{\text {City of Stoekholm }}\)} \\
\hline Stockholm, & Upland, and 2624 & Stockholm. \\
\hline Drottingsholm. & S Sudermanland. & \\
\hline Upsal. & Upsal. 2261 & Upsal. \\
\hline Westeras. & Westmanland. 2793 & Westeras. \\
\hline Nykoping. & Sudermanland. 2880 & Nykoping. \\
\hline Orebro. & Westmanland, \& \(\} 3670\) & Orebro. \\
\hline Carlstadt. & Wermeland. 6550 & ad \\
\hline
\end{tabular}

\section*{Norrland, including Swedish Lapland.}


\section*{Total square miles, \(168,802\).}

The climate of this extensive country varies much in different places. The southern provinces may be compared to Scotland, which lies under the same parallel. In the middle and northern districts it becomes proportionally rigid and severe; so that in Swedish Lapland, which extends beyond the \(71^{\circ}\) of latitude, the cold is as intense as in the northern parts of Russia. The Gulf of Bothnia is frozen during several months in winter, and affords a communication by ice between the people on the opposite shores. In the southern latitudes, flowers and fruits are produced in great variety and abundance; but these productions become extremely rare beyond Gefle, a town a hundred miles beyond Stockholm. Oats are not to be found beyond that town; but forests of pine and fir extend to the 66th degree. In more distant latitudes the beech disappears: in Swedish Lapland, the oak draws out a dwarfish and sickly existence, and is at length succceded by the birch; a tree which seems the most capable of cnduring cold, and which, even under the Polar circle, is known to grow at an elevation of 1483 feet. Barley and oats are cultivated in Sweden at the 7oth degrce, while in North America they are not yet known beyond the 52 d . Some plants, indeed, the lichen for example, though not unknown in central Europe, are regarded as indigenous in Lapland. Other particulars connected

\footnotetext{
- In this sketcla we shall confinc ourselves solely to Sweden, as it now stands, referring our readers to Nonway for an account of that country; to Resara, for an account of Finland; to t'refsia, for a description of Pomerania.
}
with the climate of this country, cannot be better given than in the words of Voltaire. "Winter reigns here nine months in the year. There is neither spring nor autumn: the heats of summer succeed all at once to an excessive cold; and it freezes from the month of October, without any of those insensible gradations which elsewhere bring on the seasons, and which render the change more agrecable. Nature, in recompence, has given to this rude climate a serene sky, and a pure air. A very short interval elapses between the disappearance of the snow and frost of winter, and the rich verdure and luxuriant vegetation of summer: a circumstance owing to the rapidly increasing length of the day, and the strength of the heat of summer. In the extreme north, indeed, the sun is visible for several weeks in succession. The long nights of winter, in like manner, are rendered comparatively mild, by the curora borealis, by the extreme length of twilight, and by the light of the moon, which is there obscured by no cloud, augmented still by the reflection of the snow which covers the earth; insomuch that traveling in winter takes place in Sweden by night as well as by day. (Histoire de Charles NII. liv. 1.)

Of this great extent of country the population is not great. The number of inhabitants, in November 1823, was ascertained to be \(2,860,000\), or so small as only to average about 17 to a square mile. There is, as may be conjectured, great difference in this respect, in different provinces. Gothland contains about 42 to a square mile; Sweden Proper about 24; while Norrland, including Swedish Lapland, not much above 2. The relative density, when compared to other countries, may be understood, when it is mentioned, that the average population of the Netherlands is 212 to a square mile; of England and Wales 207; of the Lowlands of ScotIand 127. But the population of \(\mathrm{S}_{\text {weden }}\) is advancing at a considerably rapid ratio; the best mark of the prosperity and increase of the capital of the country. Between the year 1820 and 1825 , it advanced at the rate of \(7_{10}^{3}\). per cent.; an increase greater than at any former period; though it must, at the same time, be confessed, that between 1825 and 1828, the progress has been comparatively small, being only 37,000 per annum, or about 4 per cent, * Longevity, however, is extending: a fact that is found always to result from the improved condition of the people with regard to food, clothing, and cleanliness. During the five years previousty to 1821 , the annual average of mortality was 62,329 ; while, during the succeeding five years, it was only 58,919 , making an annual reduction of 3410 . Previous to the age of ten, the mortality of boys was ascertained to be greater than that of girls; between that age and that of twenty, it was nearly equal between the sexes; from that till sixty, it was greater among the males; beyond sixty, it became more prevalent among the females: and with regard to both sexes,
it was found to be greatest between the ages of sixty and seventy-five. During the five years last specificd, 26 imdividuals, namely, nine males, and fifteen lemales, exceeded a hundred years of age: of whom six men and eleven women reached 101; two men 102 years; two women 103; one woman 104; one man and two women 105; white one woman attained the age of nearly 107; a proof that the female life, in this instance, considerably exceeds that of the opposite sex. During the same lustrum, the annual number of marriages was 23,772 , -of which, 18,764 were of persons belore in a state of celibacy; 2,628 were of widowers who united themselves to maiden femates; 1611 of widows who married bachelors; while 768 widowers married widows. In the same five years, there were 101,941 marriages for the first time; 16,092 for the second; 774 for the third; 48 for the fourth; 5 for the fifth; and only a single instance of one that married for the sixth time. During the same time also, there were 7148 instances of twins: 100 instances of three at a birth; 3 instances of four. The average number of births was 95,706 , while that of deaths, as before stated, was 58,919. The greatest number of births was found to be in the month of September; the smallest in that of June. The proportion of illegitimate children was as 1 to \(13 \frac{3}{10} . \dagger\)

The condition of the people may be thusclassified. The number of the clergymen is 3476 ; that of publie teachers, paid by government, is 968 . The army extends to 31,000 , exclusive of the national militia; marines, of every kind, amount to 10,000 . Manufacturers and miners exceed 28,000 . None of these calculations include children or servants. The number of poor, including mendicants, is 21,216; that of prisoners, 1833. The peasantry, including their children, amount to no fewer than \(1,594,703\), more than the half of the whole population.

As the population and the climate of Sweden are so various, its physical appearance must evidently partake of a similar character. Rivers, lakes, mountains, forests, vales, so abound and so succeed each other, as to impart a character equally pieturesque, magnificent, and interesting to this northern region. Rich pastures. or cultivated fields, barren rocks, rugged mountains, or foaming cataracts, and scenery of the most opposite description, are so peculiarly blended, that there is, probably, no country in Europe where such contrasts, and such a variety of surface may be seen. Sweden has, of late years, been much denuded of its forests, though these still extend over immense tracts, being calculated to cover about a third of the whole country. Towards the north and west, it exhibits chains of lofty and almost inaccessible mountains, an account of which may be found under the article Norway. Sweden, however, is not remarkable for any thing so much as for the number and extent of its lakes and rivers. The former have been computed to

\footnotetext{
* Conjectures to account for this decrease may be found under the head Commerce.
\(\dagger\) The government of Swedeo, so tar back as 1749, appointed a commission, to give quintennial reports on the population of the kingdom; a measure which did great honour to that government, and which has not cven yet been adequately imitated in other countries. This commission has been ever since kept up: and to the returns made by it, we are indebted for the above important and curious abstract, which, had our himits admitted, we would have gladly extended. (Revue Encyclopedique, for February 1829, Coxe's Travels, iv. 134.)

Vol. XVII. Paht II.
}
occupy 9200 square miles, or about an eighteenth part of the whole surface; while the number of the latter, none of which are very large, though many of them are navigable, is greater than that of any other country in Europe.

No country in the old world can rival Sweden in the extent and number of its lakes. Wener, lying between Skaraberg and Carlstadt, is the largest, being about 100 British miles in length, and 60 in breadth. It is remarkable, however, for little except its great extent. "Its shores," says Mr. Coxe, " are low and level, so that the view over the surface of the water appears boundless like a sea." "The slores of the lakes," says Mr. Derwent Conway, " are not particularly interesting; nor was there any thing to see but a vast expanse of water, enlivened by so few sails, that a feeling of sadness, rather than any other emotion, was produced in viewing so vast an arena of water contributing so little to the utility of life." (Pcrsonal Narrative of a Journcy through Vorway, Part of Swaden, foc. Part III. Chap. I. Coxe's Tracels through Sueden, s•c. vol. i. p. 302). Wener receives the water of 24 rivers, while it is connected with the Cattegat by one only, the Gotha. It is studded with many romantic islands. The Weter is next in importance after the one now described, and lies about 40 miles to the south-east ol it. It is of equal length, namely 100 miles, but its breadth, which is irregular, no where exceeds 20. It is of a different character from the Wener, being surrounded by mountains, so that it is peculiarly liable to stoms and hurricanes. Its surface is also variegated by numerous islands: and though its communication with the Cattegat is by a single river, the Motala, it forms the reservoir of no lewer than 40 streams. The Maeler, the only other lake that requires to be minutely described, is like Weter, of irregular form, its greatest leugth being about 80 miles, its mean breadth about 18 . Its islands are numerous and picturesque; on scren of which, on its east coast, is situated Stockholm, the capital of the kingdom. The waters of the Maeler discharge themselves at this place into an inlet of the Baltic. The only other lake in Gothland or Sweden Proper, is Hiemar, sonth-west from that of Macler, a sheet of water chiefly remarkable lor its utility in the line of canals which connects the Catlegat with the capital. Manyother lakes in the northern portion of the kingdom, some of them of considerable extent, might be mentioned; but as none of them is very large, or of much practical use, such an enumeration is unnecessary. The largest is Enara in Swedish Lapland, 70 British miles in length, and 30 in breadth. All the lakes which we have described, or to which we have referred, abound with fish of almost every variety; and their banks are skirted with woods or forests, even to the margin of the water.

Sweden is as remarkable for the number of its rivers as of its lakes; though of the former, none deserve notice on account of its size or extent of course. They are indeed in this respect comparatively uninteresting. Not a few of themexhibit the form of creeks, or, like the Motala already men-
tioned, form outlets to the lakes. The most important is the Gotha, which, as already stated, serves as the outlet of Lake Wener, and which falls into the Cattegat by two branches, the one passing through the town of Gottenburg, the other a few miles north. This river, soon after leaving its parent lake, being impeded by rocks, forms at Trolhetta one of the finest cataracts in Europe. The width of the river between the falls and the lake varies between 300 yards and a mile; but at Trolhetta, two opposite ridges of mountains approach its banks so closely that the stream is confined within a channel of 400 feet. There are four successive falls, the perpendicular height of the whole, considered as one, is about 100 feet. The falls are separated by whitlpools and eddies, "forming," as Coxe remarks, "during the whole way, the most awful scenery, ever varying, and too sublime to be accuritely described." "The roar of waters," says Mr. Conway, "was greater than that of any fall I had ever before visited; and now that several years have elapsed during which I have travelled in other countries, I may say greater than that of any waterflall I have ever since seen." The river Dahl, next in importance to the Gotha, is also celebrated for a cataract, described as scarcely inferior to that of the Rhine at Schaffhausen. This river. which rises in the Norwcgian alps, and which, after a course of 260 British miles. falls into the Gulf of Bothnia, presents the cataract in question, not far from its mouth. The breadth of the stream is about 400 leet, and the perpendicular height of the fall is between 50 and 40. A ridge ol rocks and a high islet about a quarter of a mile in circumference, divides the stream into threc parts, making as many falls. The basin below is scarcely 100 feet wide, so that the white spray rising in dense clouds, and the struggling of the waters for vent, constitute one of the most striking features of the scene. (I'raxall's Northern Tour, p. 158). The Tornea forms the boundary between Sweden and Russia on the north, and after flowing about 300 miles. enters the northern extremity of the Gulf of Bothnia. In addition to the rivers previously given, we may mention the Angermam, the Umea, the Skelleftea, the Pitea, the Lulea, the Calix, all flowing into the Gulf of Bothnia. Their course varies respectively from 200 to 300 miles; and though in winter their chamels are comparatively empty. owing to the frost-bound mountains from which they flow, in summer, when the snow melts, they not unfrequently overnow their banks, and inundate large tracts of the adjacent districts.

As connected with the rivers and lakes of Sweden. reflections on its internal communication immediately obtrude themselves on our attention. There is no country either in the old or new world on the same parallel of latitude. in which such communication is under more favourable circumstances. Where the river Gotha is rendered innavigable by the intervention of the cataracts of Trolhetta, a canal has been cut through a solicl rock ol granite of two miles in length, and 150 feet in height. This stupendous work had becn long contemplated; and
during the last century many plans were successively adopted, all of which proved abortive; and it was not till the ycar 1800 that it was completed. The execution of it was reserved for a private company; and it gives us pleasure to state that during the year after it was opened, there passed through it no fewer than 1380 ships of various sizes, laden with iron, steel, timber, herrings, grain, and four; and that it pays 12 per cent. on the capital invested on it. A canal uniting the lakes in the province ol Darlecarlia with the Macler has becu completed. Other similar works are contemplated, or have been begun, or are finished. The canal of Gothland, extending from Gottenberg to Norkioping on the Baltic, thus connecting the two opposite seas, is either finished or nearly so. It passes through the most fertile portion of Sweden, and promises to be of incalculable advantage. Its length is 240 miles, including the lakes through which it flows. Lake Hielmar communicates with the capital by means of a canal; and two others of smaller extent are forming. The government is very liberal in spending money on such works; indeed, considering the scanty means of the nation, the present sovereign is entitled to the greatest praise for what in this department he has achieved. Several of the largest of the rivers are navigable, as well as many estudries and inlets of the sea.*
Sweden is not more celebrated for any thing than for the state of its roads. "The high roads," says Mr. Coxe, (Travels, vol. iv. p. 35), "wind agreeably through the country, are made with stone or gravel, and are as good as our turnpikes in England; and yet not a single toll is exacted from the traveller. Each landlord is obliged to keep in repair a certain part of the road in proportion to his property; and for the purpose ol ascertaining their respective portions, small pieces of wood or stone marked with numbers and capital letters are placed at diflerent distances on each side of the way." "Such indeed are their goodness throughout the whole country, that during several thousand miles which I travelled in this and my lormer tour in 1779 , I scarcely met with fifty miles that deserved the appellation of indifferent. They are also as pleasant as they are good, and in many places look like gravel walks carried through gentlemen's grounds and plantations, as they wind through the fields and extensive forests, the lofty trees casting a gloomy shade with their overhanging foliage." (Coxe, vol. v. p. 65). These observations have been confirmed by more recent travellers. Sweden, in truth, has been gradually making improvements in the departments in question, especially in the eastern and southern divisions of the kingdom, and she already is incomparably superior to Norway, Denmark, and Russia, and is not much inferior to the most civilized countries of Europe.

When treating of internal communication, and of the state of roads, the transition is easy to the consideration of the modes of travelling that obtain. For is less praise due here than on the former head.
'There is no regular supply of post horses kept, except in those places where the thoroughfare is very great: but they may at once be had by a traveller sending lorward a peasant to bespeak them. 'Ithe nsual mode of supplying such horses may be explained in a few words. IIorses are supplied by the country people in proportion to the quantity of land they rent; most persons generally send one or more horses to the nearest post-house, where they remain twenty-four hours; during which time, if employed, compensation is of course obtained, but, il otherwise, no remuneration is received. Travelling is unusually cheap, because one-half only of the charge is paid by the hirer, the other being defrayed in the shape ol' a lax, by the landholders. "I found," says Coxe, "travelling so exceedingly cheap in Sweden, that during a course of 500 miles, my whole expenses, including the prime cost ol my cart, the hire of post-horses, the gratuities to the drivers, and the accommodations on the road, did not amount to \(20 /\). , the drivers being the peasants themselves, who usualty attend with their own horses, and are contented with a small acknowledgmen ol about \(2 d\). or 3d. for each post. The horses are small, but lively and active, and they generally went at the rate of six or seven miles in an hour." (vol. iv. p. 349-50). "To Sweden," says Mr. Conway, " 1 give the travelling premium over every other country. I may still larther state that the traveller is in no danger of being imposed upon; and he will ceverywhere find clean ims, passably good fare, cheap bills, and civil people." (p. 286).

A country that can boast of such advantuges in regard to internal communication possesses great facilities for general amelioration. At least without such advantages few steps can be taken in the career of improvement. Nor can it be denied that Sweden has availed herself in an eminent degree of the lacilities she enjoys. The soil, in general, is not propitious; not more than a 20th part is arable, and not more than the half of that portion has actually been cultivated. But agriculture has done what could be effected under such circumstances. Husbandry in Sweden has been pronounced superior to what prevails in Denmark and even in Germany, and it is daily making rapid progress. as the quantity of corn raised is still not equal to the demand. A considerable guantity ol corn, however, is made use of in the distillation of malt spirits: Hence they not only import from other countries, but it is not unusual with the poorer classes, in order to supply the deficiency, to mix with their flour or meal the inner rhind of the fir tree or the roots of certain bog plants. But the alternative will not long be necessary; for the southern and middle provinces, where agriculture has been very assiduously attended to, and where it has been brought to great perfection, produce wheat, rye, oats, hops, beans and pease, hemp, flax, in considerable luxuriance. The cultivation of potatoes having of late beenintroduced, that root is rapidly supplying the deficiency
* A full account of the inland navigation of Swedeu is given in our article Navigation Inland.
occasioned by the limited quantity of corn. It has been stated that during the space of ten successive years, one harvest fails, two are scanty, five are moderate, and two are abundant; a proportion not much inferior to that of more southern countries, and of milder climates. The wheat and rye are sown in the middle of August, and are reaped in the same month of the following year. Barley and oats are consigned to the ground in spring, immediately an the melting of the snow : the former is cut down towards the end of August; the latter about the middle of September.

Among the various vegetable productions of Sweden, those of its forestare by far the most prominent and important. No less than one-third of the superficial extent of the whole country is covered with wood. These lorests contain birch, poplar, mountain-ash, alder, pine, and fir. Dalecarlia, now called Falun, abounds more with such forests than any other province; and the numerous lakes are skirted with wood even to the margin of the water. Timber, as may be inferred, is one of the chief exports of Sweden; though by far the greater part of the houses, of the middle and lower classes, are composed wholly or chielly of wood, and the same article is almost used throughout the whole kingdom for fuel. The wood and plants of Sweden differ in truth very little from those used in Britain, except some trees, as mentioned under the head climate, do not succeed in the former country beyond a certain degree of latitude; a remark which is applicable also to some plants, such as broom, firs, the walnut-tree, \&c. Some indeed of the plants found in Sweden are not unknown in central Europe: the lichen of Lapland is frequently found on the plains at the 54 th degree. The lichen rangiferinus, or rein-leer lichen or white moss abounds throughout the whole extent of Lapland, the chief support of the animal whose name it bears. The sagacious animal discovers it when covered with snow by the peculiar acuteness of its smell.

A remark, similar to that just made respecting the vegetable productions of Sweden, is applicable to the animals of that country; namely, that they differ extremely little from those of Britain. Horses, oxen, cows, sheep, differ only in this, that in Sweden they are of consitlerably inferior size; the consequence, it is likely, of poorer pastures, and of the comparative want of skill, and deficiency of capital on the part of the agriculturists. Goats and pigs are not very abundant. Hares and foxes seem equally common in the two countries referred to. There are, however, various animals, such as the lyns, the wolf, the beaver, the glutton, that are unknown in Britain. Ol these the rein-deer is the most remarkable and celclorated. This animal resembles a stag, but is stronger; its anters are stronger and more branched than those of the latter animal, and they also decorate the brows of the female. It is the camel of the north, the deep division of its hoofs being calculated for travelling over a snowy surface. The sledge, drawn by this atimal, is extremely light, and covered underneath with deer-skin, in order to
slide easily on the frozen snow. They easily accomplish 30 miles without halting, at the rate of 4 miles an hour; they can travel this distance without food; but they oceasionally moisten their mouth in the snow as they proceed. This mode of conveyance, it is evident, can be performed only in winter when the snow is glazed over with ice. In the birds of Sweden there is little or nothing peculiar; nearly the same species abounds here that obtains in our own island. A similar observation is applicable to fish, which is very abundant, both along the seacoast, and in the rivers and lakes. Leeches are peculiarly abundant, and lorm an article of export to this country. On the coast of the Baltic the strmming is found, a species of herring peculiar to that sea.

In nothing is Swaten more celebrated than for its mines and mineral productions, including gold, silver, copper, iron, leal, marble, cobalt, zinc, coal, alum, and several precious stones. The average produce of the principal metals has been estimated as follows: 64 oz . of gold, \(13,000 \mathrm{oz}\). of silver, 24, 800 quintals of copper, 100,000 tons of iron, 431 quintals of lead, 22,000 quintals of alum, 35,000 tons of coal.* There are only two inconsiderable gold mines, of which the most important is at Adelfors, in the province of Smaland, discovered in 1737; but it seems to be nearly exhausted. With the exception of some silver veins discovered in Swedish Lapland, a mine of that metal at Salberg, thirty miles west of Upsal, is the only one known in Sweden. It contains about a hundred veins. Copper is fount in various places, but the chief mines of this metal, which are in the province of Dalccarlia, have been wrought from time immemorial. "The metal is not found in veins, but in great masses, and does not extend more than an English mile in circumference. The matrix of the ore is the saxum of Linnaeus, or rock and pyrites of iron. The richest partiof the ore has been supposed to yield 20 per cent of copper; but as the poor and rich are blended, they average only 2 per cent. when brought from the mine, and 12 when smelted. The mine is private property, and is divided into shares. 1200 workmen are employed, namely 600 miners, and the same number in roasting and smelting the ore above ground. The mouth or opening of the mine, says Mr. Coxe, is extremely large, perhaps the largest in the world, being 1200 feet in diameter, or nearly threc-guarte:s of an English mile in circumference; an immense chasm gradually enlarged to its present size by the excavations and frequent downlialls of the rock. The perpendicular depth is 1020 feet. But Sweden is most distinguished for its mines of iron. Those ol Danemora, discovered in 1488, are particularly celebrated both for the abundance and for the superiority of that metal, called in England Oregrund iron, being exported thither from at part of that name where the Gulf of Bothnia joins the Atlantic. The pits are deep excavations, like gravel pits, and form so many abysses or gulls. They, therefore, have no galle:ies, but, are wrought in the open air. The richest ore yields

70 per cent of iron, the ponrest 30 ; the collective mass averages one third ol purc mineral. The number of miners in Sweden in 1825 amolmted to no fewer than 28,256, including manulacturers, of which last the number is onty about 6000 .

Of the vast quantity of iron produced from the mines, abont a fourth part is made use of at home, the rest being exported chictly in the form of bar-iron and steel. There are large foundries for cannon and other pieces of artillery, as also works for making muskets and other small arms. The manufactures of copper and brass occupy very few hands. The manulactures, indeed, of Sweden are neither numerous nor important. From the superabundance of excellent timber, ship-buidding forms a most extensive and lucrative employment; and vessels ol every species are sent from Swedish ports to many countries, particularly to those of South America. The otler manulactures of the country are comparatively inconsiderable, and are carricd on, not lor exportation, but for family use. The true nature of division of labour is not well understood, or rather such division camot in a poor and thinly inhabited country, such as Sweden, be carried very fully into effect; the Swedish pcasantry make at home the clothing and utensils required lor domestic purposes.

The loreign trade of Sweden has not of late been in so favourable a condition as it was twenty years ago, and previously to that time. Exports of iron and timber, which were her two most flourishing branches, have decreased to a great degree. The mines of Danemora have not of late been so productive; and the recent great extension of the iron mines of England has lessened the demand, as in England the inexhaustible stores of coal, and the ready command of inland navigation, are gradually rendering it independent of supplies from Sweden. With regurd to the timber trade, the arbitrary restrictions which we have imposed on it, in order to give an advantage in this trade to Canada, have diminished, or almost annihilated our imports from the Baltic. Iron and timber, however, still form the staple exports of Sweden; the export consists of copper, pitch, tar, hemp, tallow, hides, saltpetre and alum. The chief imports are corn, wine, brandy, cotton, both raw and manufactured, silk, drugs, sugar, coffee, and other tropical products. In 1781, Mr. Coxe found the value of exports from Sweden to be L. 1,368,830 13s. 5d. and the imports to be L. 1,008,392 12s. \(4 \frac{1}{2} \mathrm{~d}\). In 1825, the tounage of vessels trading between Great Britain and Sweden, entered inward and outward, was 104,968 . Chronol. Records of the Drilish Royal and Commer. Nary, by Cesar. Moreau, p. 81.) Such tonnage was much less for the preceding nine years; but in 1814, it amounted to 180,755 , and in the succeeding year to 167,112. Since 1825, we presume it has fallen considerably, owing to our diminished imports of iron and timber. This diminution of foreign demand for the products of Sweden is sufficient to account for the less rapid increase of population which has taken place there within the last four years.

The doctrines and ecclesiastical opinions, pron mulgated and enfored by luther, were introduced into Sweden in the beginning of the 16 th century. The Bible was soon after transtated inta the lan. guage of the country by laumentias l'etri, the first protestantarch-bishop of Upsat, who died at an advanced age in the year 1570. Several of the Swedish kings, particularly Gustavus Adolphus, who has been honoured with the appellation of Bulwark of the Protestant laith, have made must signal exertions for the maintenance ol the reformed doctrines; and the Roman Catholic religion, which the Swedes regard with great abhorrence, has long been banished from the kingdom. 'Till the end of last century, when all religious intulerance wan abolished by law, it would not have been sate lor a Catholic priest to have made his appearance openly in the provincial districts of Sweden. The established church resembles that of Eingland; and though some particular sectaries are to be found, they are far from being numerous or important.* It consists of one archbishop, whose see is that of Upsal, and eleven hishops, with several archdeacons. The whole number of clergy amounted in 1825, to 3,476. They are supported by the usual tithes; and their condition is very respectable. The parishes amounted to 2537, of which some, like the thinly inhabited parishes in the highlands ol Scotland, are very large. 'There is one 150 miles in length by 48 in width. In Lapland some of the inhabitants are a journey of three miles distant from any place of worship. A convocation of the clergy virtually elects the prelates, by presenting the names of threc to the king, of whom he must nominate one. Some of the parishes are under royal patronage; others are in the gift of private individuals, while some are consistorial, the clergyman being appointed by the votes of his brethren.

Of the literature of Sweden, though it was not brought to much perlection till about the middle of the 17 th century, we can speak in terms of high commendation; indeed, in few countries in Europe has this important subject been more assiduously attended to. It is a rare occurrence to meet with a Swede, however low in rank, unable to read, education being there as generatly diffused as in Scotland or Switzerland. A law, in truth, exists, declaring that every person, whether mate or female, in the kingdom should be taught this necessary accomplishment. The number of public instructors paid by government in 1825, was 963, in addition to at least an equal number whose remuneration is obtained solely from their employers. Orders have recently been given by the king to establish schools on the Lancasterian system. Government, indeed, is doing all in its power to introduce improvements in teaching; and pays no less than L. 60,000 annually, in the shape of salaries, allowances to the poorer students. \&c. The clergy take all seminaries of learning, particularly schools, under their particular jurisdiction, and labour by liberal attention to promote the object which such institutions have in view.

Sweden can boast of two universities, those of Upsal and Lund. Of 1426 students who were attending the former in 1827-8, 126 are of noble rank; 332 are sons of clergymen; 227 sons of burghers; 226 of civil officers, not noble; 87 of military offieers, not noble; and 207 of other persons of rank. The university of Lund is attended by 631 students in nearly the same proportions. In addition to these more dignified seminarics, there are twelve gymnasia, which latter are meant as intermediate beiween schools and colleges. The number of academies for the promotion of sciences amounts to tweive, all of which publish transactions, and of which those of Stockholm, Gottenburg, and Upsal are the most celebrated. A society of antiquaries was founded so lar back as the year 1668 ; a medical society twenty years afterwards; the royal society of Upsal in 1720; and the royal academy of sciences in 1739. In 1753, an academy was instituted Cor the investigation of the language, history, and poetry of Sweden. Sweden can boast of some names that have obtained an eminent place in the literary, but particularly the scientific history of Europe. Queen Christina, in the 17 th century, encouraged Grotius, Descartes, and other celebrated writers, to reside in her dominions. And though some of these distinguished persons did not remain long in Sweden; yet continued so long as to sow the seeds of science and literature, and to diffuse a taste for intellectual pursuits. The impulse thus given to the cause of letters, has since, though with some exceptions, been steadily promoted by government. In natural history, Sweden can exhiblt the names of Linuaeus, Scheele, Tilas, Wallering, Quist, Cronstedt, Bergman. In history, Dalin and Laderbring have highly distinguished themselves. In remote times, John and Olaus Magnus rose to eminence as writers in the same department; but their works are too fabulous to be deserving of much attention. In lexicography, the name of Oehrling is well known. Baron Sivedenborg, though eminent both in science and general literature, is better known as a theological writer, and as the founder of a sect that bears his name. The study of the Belles-Lettres has not been neglected, particularly in recent times, and it promises ere long to be very successtully cultivated. New publications amount to between 300 and 400 anually, of which one fourth are translations.

The native language of Sweden, which superseded that of the Fins, the original inhabitants, is a a diatect of the Gothic. "The Danes, Swedes, and Norwegians," says Dr. Murray, "are the posterity of the 'Teutonic or German tribes. They all speak varieties of one original dialect, of which the purest specimen is lound in the Edda, a collection of mythologieal puems made in leeland about the year 1120. The general character of this dialect is great purity of terms as to signification, certain peculiarities of inflection, which have arisen from the operation of time on a language long separated from the cognate dialects of Germany, and a curtailed or abbreviated form of many words. As to the figure of the words and their inflections, it is much more corrupted
than the Saxon, the Alamannic, or even the modern German. The Scandinavian appears to have been a distinct dialect long separated from the German, so far back as the time of Jornandes, in the year 540." -(Hist. of European Language, ii. 479.) Thislanguage is spoken in its greatest purity in Dalcearlia. In the southern parts of the kingdom, several German and French words and expressions have been incorporated with the vernacular tongue; while in Lapland, the Finnist, or the language of the original inhabitants, still predominates.

The national character of the Swedes is highly respectable and interesting. They are remarkable for great simplicity both in manner, in dress, and in feeling. They are eminently hospitable, honest, contented, industrious, brave. The population being thinly scattered, and communication with strangers not being very frequent, they, like the Scottish Highlanders and the Welch, are attached to ancient usages, and traditionary legends; and their tendency in this respect is found to be considerably inveterate, not being easily removed or modified by recent improvement. The weakest point in their character, however, is an immoderate indulgence in the use of ardent spirits. This indulgence is confined chiefly to the lower orders: a considerable quantity of corn is made use of every year for the puppose of distillation. But with this trifling exception the character of the Swedes is entitled to the highest commendation. The following extracts contain much interesting matter respecting both the character and condition of this people, and though long, would lose much of their value by being ahridged or changed. "Upon entering a cottage," says Mr. Coxe, "1 usually found all the family employed in carding fax, spinning thread, and in weaving coarse linen, and sometimes cloth. The peasants are excellent contrivers, and apply the coarsest materials to some useful purpose, They twist ropes from swine's bristles, horses' manes, and bark of trees, and use eel skins for bridles. Their lood principally consists of salted flesh and fish, eggs, milk, and hard bread. At Michaelmas they usually kill then eatlle, and salt them for the ensuing winter and spring. Twice in the year they bake their bread in large round cakes, which are strung upon files of sticks, and suspended close to the ceilings of the cottage. They are so hard as to be occasionally broken with a hatehet, but are not unpleasant. The peasants use beer for their common drink, and are much addicted to malt spirits. In the districts towards the western coast, and at no great distance inland, tea and coffee are not unusually lound, which are procured in great plenty, and at a cheap rate, from Gottenburg.

The peasants are well clad, in strong cloth of their own weaving. Their cottages, though built of wood, and only of one story, are comlortable and commodious. The room in which the family sleep is provided with ranges of beds in tiers, one above the other: upon the wooden testers of the beds in which the women lie, are placed others for the reception of the men, to which they ascend by means of ladders. To a person who has just quitted Ger-
many and been accustomed to tolerable inns, the Swedish cottages may perhaps appear miserable hovels: 10 me , who had been long used to places of far inferior accommodation, they seemed almost palaces. The traveller is able to procurc many conveniences, and particularly a separate room from that inhabited by the family, which could seldom be obtained in the Polish and Ruscian villages. During my course through those two countries, a bed was a phenomenon which seldom occurred, excepting in the large towns, and even then not always completely equipped: but the poorest huts of Sweden were never deficient in this article of comfort, -an evident proof that the Swedish peasants are more civilized than those of Poland and Russia." (Travels, iv. 333-5.)
". My journey lirom Undevalla," says Mr. Conway, "was made on a Sunday; and judging from the concourse of people who thronged the road, and particularly from the multitude assembled in a churchyard, which lay close to it, I had every reason to conclude that the Swedes are a church-going people. * * * I was exceedingly pleased with the respectable appearance of the peasantry. 1 know they are poor, wretchedly poor, but they had neither lorgotten the way to the house of God, nor omitted in their poverty to provide decent apparel lar their appearance there. * * * From a height over which the road passed in the course of this day's journey, I counted no fewer than eleven churches in sight at the same time. From other specimens than that which I have mentioned, I have no reason to doubt of their being all well filled." (Personal Narrative, 286-7.)

The following extract, which shall be the last, is still more interesting. "In passing along the Swedish roads," continues the same sensible writer, "the traveller frequently sees a charity-box fixed at the way side; and it is a beautiful trait in the character of that nation, worth all their records of glory and deeds of arms, that there is no instance of oue of these boxes being plundered. The poor in Sweden are well provided for, both by these receptacles for casual alms-offerings, and by a regular parish provision; but to recur to the honesty of the Swedes. I think it may safely be averred that Sweden is the most remarkable of any of the European nations. On account of this viriue, doors are constantly left upon the latch. Horse stealing and sheep stealing are utterly unknown. Of sacrilege there is no example upon record; and indeed, excepting at Stockholm and Gottenburg, where a taint of foreign manners may he expected to obtain, every description of property may be considered as safe from dishonesty. (lb.ib.)

With regard to the condition of the Laplanders Mr. Coxe observes, " the people are parlly settled, and in part wild and roving; the latter live in tents made with coarse cloth; the former are lixed in small villages near the lakes, and chiefly follow fishing.* They build their cottages somewhat in the shape of a cone; and they are all constructed of wood. In summer their clothes are made of coarse
cloth; in winter of the skins of rein-deer. In spring their lood consists principally of the eggs of waterfowl, which are extremely plentiful in those parts; in summer and autumn, of the birds themselves, and ol various others of the partridge tribe; and in winter, of the milk and hesh of the rein-deer and dried fish. Bread, which till lately was totally unknown to them, now makes a part of their usual diet. The laplanders belore their conversion to Christianity, passessed no buoks or MSS. though they knew many traditional histories and songs ol ancient heroes and princes who once ruled over them, involved, however, in great uncertainty, and mixed with the most fabulous accounts." (iv. 61-4.)

The revenue of Sweden, though comparatively small in regard to that of other countries, is equal to the expenditure. It is little more than one million sterling. In England every individual is calculated to contribute to the revenue of the country L. \(3,13 \mathrm{~s}\). 4d.; whereas in Sweden so small a sum as 9 s . is the average individual contribution. The national debt, some years ago, a mounted to L. 6,000,000 , due chicfly to bankers and merchants in Hamburg; it has since been gradually reduced to L. 1,380,000, owing entirely to Swedish subjects, and, it is thought, may be paid off by the operation of a sinking find in lourteen years.

With an income and expenditure so small, the military and naval force camot be supposed to be great. The military force, thoug! never very great. has been extremely variable. The troops which crossed the Baltic along with Gustavus Adolphus, did not exceed 10,000 men, of whom the greater part were mercenaries. It has since that time amounted to 50,000 , with 50,000 of reserve. At prosent, in a time ol' peace, it is very much reduced, consisting of 31,000 , including both infantry and cavalry. Tinere is, in addition to the regular army, a national force or militia, which is always maintained in an efficient state, and which is composed of ahout 20,000 men. The naval force has of late been much neglected. In 1799, there wert twenty sail of the line; in 1806, thirty; and at present there are only six, and eight or ten frigates. There is, however, a considerable number of gunboats, and other flotilla calculated to convey land forces. The number of marines of all kinds is 10,000.

The government of Sweden, like that of Britain, is a limited monarchy, declared hereditary in the male line of the reigning family, but in case of a failure ol male heirs in that line, a successor is to be nominated by the king, with the consent of the people. The civil list for the maintenance of the king and his household is about L.50,000; that of the crown prince, or king's elclest son, a third of that sum. The legislature consists of four classes. those of the nobles and landholders, of the clergy. of the deputies of towns, and of the peasants. Each of these classes has a speaker; the archbishop of Upsal being officially the speaker of the class to which he belongs, while the others are nominated by the crown. The king has a reto on the enact-
" Swedish Lapland contains 1,921 inhabitants, of whom 931 have flocks of rein-deer; 379 lead 2 wandering life. (Revuc Encyclopedique, for February 1829, p. 374.)
ments of the legislature, but no bill can pass till it has reccired the sanction of three out of the four classes. The introduction of a bill, or a motion for a new law, as in Britain, may be made by any member, as well as by a minister of the crown. The diet which these classes form must meet by law every fifth year, but oftener, if conrened by the king. Their power and privileges are similar to those of the British Parliament. The executive administration also resembles very much that of England; each department having its own board or head; in this department of government, division of labour has been carricd to a very laudable extent.

Sweden possesses only one small colony, viz. that of St. Bartholomew, an island in the West Indies, about fifteen miles in circumference, ceded to Sweden by France in 1783.

On the history of this country we do not intend to enter minutely, as it has already been given collaterally under the articles Britaln, Demmari, Poland, Russin; to which we refer the reader. Of its ancient state little is known with certainty. The original inhabitants were a colony of Finns from the banks of the Volga, and the vicinity of Mount Cancasus. And about three hundred years before the Christian era, they were driven from their northern settlements by the Teutones, a people who came thither from Germany, and who either expelled the original inhabitants, or became incorporated with them. Except in the northern extremity of Lapland, however, every trace of the Finns has long been obliterated. The present \(S\) wedes, therefore, as well as the Danes and Norwegians, are of Teutonic or Gothic origin; and the term Scandinavia, or Land of Caves, was conferred on the extensive regions which now form these three nations, from the practice of the inhabitants dwelling in rocky caverns. (Jornandes de rebus Geticis, c. 3. Murray's European Languages, i. 12, 153; ii. 478).

This country was not converted to Christianity till the end of the eleventh century, when this happy event took place by means of missionaries trom Euglancl. It renounced the errors of popery, and adopted the reformed doctrines, five centuries afterwards. Sweden, though meanwhile it had various forms of government at different periods, remained free till the year 1392, when Margaret, queen of Denmark, styled the Semiramis of the north, conquered it by policy and by force of arms, and made one kingdom of these three vast states. This conquest was not destined to be permanent. Sweden was the victim of wars and insurrections; and was alternately free and cnslaved for upwards of a century; at the cad of which time appeared Gustavus Vaza, a young man, descended from the ancient kings of the country; and, abandoning the forests of Delecarlia, where he had conceated himself, he aspired to become the deliverer of Sweden. IIis attempt was successlinl; the Danes were expelled, and Gustavus was himself elected king of the country of
which he had been the liberator. He introduced the reformation into Sweden; and ws in many respects a man superior to his age. He had the influence to get the crown declared heredita \({ }^{\prime}\) y in his family, who, with various degrees of eminence and merit, have continued till within these few years to enjoy it. He died in 1560, after a glorious reign of thirly-seven years. Anxious to strengthen the throne by an alliance with the family of some of the neighbouring powers, he endeavoured to accomplish that object by the marriage of his son Eric, who succecded him, to Elizabeth queen of Eugland. The offer, as is well known, was rejected.
The successors of this enlightened restorer of Swedish liberty were, with lew exceptions, not worthy of him. They were all indeed endued with a chivalry and heroism not common even in ages when such attributes were regarded as the perfection of character; but they were devoid of sober judgment, of nice discrimination, and of sound policy. Their romantic spirit and enterprizes, as in the case of Charles X1I. not unfrequently approached to the verge of infatuation or insanity; and tended directly to retard the progress of knowledge and civilization in the territories over which they ruled.
Of the descendants of Vaza, Gustavus Adolphus, on whom has been conferred the title of Great, was the most distinguished, and to whom we have already alluded in this article as the bulwark of the Protestant faith. He defended the Lutherans against the Emperor with equal bravery and good fortune. He made war, with success and with consummate skill, against Russia, Denmark, Poland, and Germany, and these great achievements be performed before he had completed his thirty-seventh year; at which age he fell in the arms of victory at Lutzen; carrying " to the tomb," says Voltaire, " the name of Great, the regrets of the north, and the esteem of his enemies."*
He was succeeded by his daughter, Christina, to whom we have before referred as a great patroness of learning and learned men. She became a Catholic; and relinguishing her crown, retired at the age of thirty-seven to Rome, where she passed the remainder of her life in the centre of the arts which she loved, and for which she had renounced sovereignty.

The history of Charles XII., who has not inaptly bcen called "an illustrious madman,"一his successive victorics over the Danes, the Poles, the Russians, his ultimate defeat at Pultowa, his confinement in Turkey, his escape, and his death at the siege of Frederickshall, are well known to every reader, and need not to be told here. Nor is it necessary to enter on the history of any of his successors. The extensive concquests which Sweden had made beyond the Baltic were gradually taken from her during the course of the last century. The late Gustavus IV., on the French revolution, entered into an alliance with Great Britain against

\footnotetext{
- Gustavus Alolphus had the discrimination to commit tho :nabagement of the government to the illustions Axel Oxerstiern, one of the great statesmen of Europe, ant who enjoyed the confutence of thee suecescive Swedish monatha. 1 Ie Wied in list. His nephew, Benedict Oxerstiern, was scarcely less celebrated. He held offices of dignity and responsibility under four successive roonarelis, and died Chatacelior in 1702.
}

France; and when, in 1808, Russia joined her forces to those of the latter kingdom, he broke off an alliance with that power; and on the invasion of his territorics by the Russians, lost Finland, which has since (1809), continued dissevered from Sweden. The result of this war was not merely this loss, but the dislike of his people, and reseatment of the nobles. The Duke of Sundermania, who was at the head of the discontented party, conceived and executed the plan of dethroning Gustavus, and of investing himself with his honours. Ihis was easily effected: not the least disturbance took place on account of it ; and the Duke assumed the crown under the title of Charles XllI.

Charles changed the government from a cespotic to a limited monarchy. Ite made peace with Rus. sia. He joined himself to the allies against France. By a treaty made in 1814, and confirmed in the subsequent year at the congress of Vienna, Norway was added to his dominions, on condition of his ceding to Prussia Pomerania and the island of Rugen: Finland was finally guaranteed to Russia; and Sweden was confined within the bounds which we have already described. It may here be mentioned, that when Norway was united to the country which we are describing, her independence, as to government, laws, and institutions, was solemnly stipulated: a full account of which may be found under the article Norway. Meanwhile, in 1810, Gencral Bernadotte, a Frenchman, had the influence to get himself declared Crown-prince of Sweden; a choice which, though at first it excited general surprise, has proved very judicious, from the prudent and liberal character of that celebrated person. In 1818 Charles XIII. died, and Bernadotte quietly ascended the throne, under the title of Charles XIV. This monarch has indeed shown himself worthy of the dignity conferred on him. He has patronized and promoted, as proviously stated, every species of internal improvement. He has constructed canals, erected schools, and done all in his power to promote the cause ol' education. A new civil and penal code is in progress. The public hospitals have not been overlooked; six useless ones have been suppressed; every modern improvement or discovery is immediately introduced. And, under his enlightened sway, Sweden, though, from inherent physical causes, she can never rise higher than a power of the second order, is rapidly advancing in real prosperity and influence, and is affording an example of improvement and of enlightened policy, which many nations more highly favoured in point of climate and physical advantages, would do well to imitate.

See Travels by Coxe, Wraxall, Thomson, Conway, Brooke, Rae Wilson; Revue Eneyclopedique for Feb. 1829. Cantzler. Mem. sur les Affaires Polit. et Econ. de Swede; also the works of Puffentorf, Vertot, and Voltaire, respecting Sweden. Élin. Annual Register for 1815.

SIVEDENBORG, Emanuel. This eminent and most remarkable man was born at Stockholm, in Vo‥ XVII. Paht II.

Sweden, Jan. 29, 1689, and died in the city of London, March \(29,1772\). Ilis father, Jesper Swedherg was Bishop of Skara, in West Gothland. and superintendent of the Swedish mission in England and America, a man of extensive learning and great piety. In the year'1719, Emanuel Swedberg, on account of his learning and usefulness, was elevated to the order of nobles, and his name was then changed to that of Swedenborg. He was educated at the University of Upsal, and was even in his youth remarkable for his application and assiduity in the study of philosophy, mathematics, natural history, chemistry and anatomy, 10 gether with the ancient and modern languages. Although even in youth he was seriously disposed, and thought much on religious subjects, yet he says he was by Divine Providence kept from reading dogmatic and systematic theology ; and it was not until the latter part of his life that he learned the Hebrew language, in order to study the scriptures. He was thus, he says, prevented from imbibing the unfounded opinions and inventions of men. In 1716, at the age of 28 , Swedenborg was appointed by Charles Xll. Assessor Extraordinary of his Board of Mlines. The diploma appointing him to the office states "that the king had a particular regard to the knowledge of mechanics possessed by Swedenborg :" and in Dr. Norberg's history of that monarch, many interesting conversations are related between Swedenborg and Charles.

From 1716 to 1720 , Swedenborg's time was principally spent in travelling. He visited the Universities of England, Holland, France and Germany. In 1721 he undertook a scientific journey for the purpose of visiting the mines and smelting works of Europe. During this journey he became acguainted with the Duke of Brunswick, who published, at his own expense, Swedenborg's Opera Philosophica et Mineralia, in three volumes. The first volume is entitled "Principles of Natural Things, or New Attempts at a Philosophical Explanation of the Phenomena of the Elementary World." This volume is divided into three parts: the first treats of creation in general ; the second treats on magnetism and the variations of the magnetic needle; the third treats of the sun and its vortex, of the creation of the planetary earths from the sun, of Paradise and the first man. He here mentions seven primary plancts; this discovery being more than 40 years before Dr. Herschel. The 2d volume of this work is entitled, "The Subterranean or Mineral Kinglom, or a Treatise on Iron, and the methods which are adopted in various parts of Europe for the liquefaction of iron and converting it into steel, \&c." The \(3 d\) is entitled "The Subterranean or Mineral Kingdom, or a treatise on copper, and brass, \&c."

In 1740 he published "Ceconomia Regni Animalis ; the Economy of the Animal Kingdom." The first part treats of the Blood, the Arteries, the Veins, and the Heart ; with an Iniroduction to Rational Psychology. The 2d part treats of the motion of the brain, of the cortical substance, and of the human soul.

In 1744-5, he published "Regnum Auimale." The first part of this work treats of the viscera of the abdomen, or the organs of the lower regions. The 2 d part, of the viscera of the breast, or of the organs of the superior region. The 3 d part treats of the skin, the toucl, and the taste, and of organical forms in general. In these works, Economia and Regnum Animale, he made many important discoveries in anatomy and in the circulation of the blood, and which have been attributed to more modern authors. It was Swedenborg who first discovered the existence of a passage of communication between the two lateral ventricles of the cerebrum. The above works are the principal philosophical writings of Swedenborg. There are minor ones, of which it is not necessary to take notice.

In the year 1743 , at the age of 54 years, Swedenborg declared that he was gifted with spiritual illumination, and was called by the Lord to open to men the spiritual sense of the Holy Word; and thus be the means of instituting a New Church, signified by the New Jerusalem in Revelation.
In a letter from Swedenborg to the Duke of Hesse, he says, "in your gracious letter you ask how I attained to be in society with angels and spitits, and whether that privilege can be communicated from one person to another. Deign then to receive favorably this answer. The Lord, our Saviour, had foretold that he would come into the world: and that he would establish there a New Church. But as he cannot come again into the world in person, it was necessary he should do it by means of a man, who should not only receive the doctrine of this New Church in his understanding, but publish it by printing; and as the Lord had prepared me for this office from my infancy, he has manifested himself before me, his servant, and sent me to fill it. This took place in the year 1743. He afterwards opened the sight of my spirit, and thus introduced me into the spiritua! world, and granted me to see the heavens and many of their wonders, and also the hells, and to speak with angels and spirits, and this continually for 27 years. I declare in all truth that such is the fact. This lavour of the Lord in regard to me has only taken place for the sake of the New Church, the doctrine of which is contained in my writings. The gilt of conversing with spirits camot be transmitted from one person to another, unless the Lord open the spiritual sight of that person."

From the time he was thus called of the Lord he devoted all his time and substance to writing and printing his theological works. In order to have his works printed he travelled to Iholland, france, and lingland. In this latter country he died on the 29th March 1772. The principal theological works of Swedenborg are the Arcana Colestia, in 12 vols. 8vo. Truc Coristian Religion, ? vols, 8 vo. Heaven and Hell, one vol. 8 vo. Conjugal Love, 1 vol. svo. Divine Providence, 1 vol. 8vo. Apocalypse Revealed, 2 vols. 8 ro. Apocalypse lixplaimed, 6 vols. 8vo. The Last Jufgment, 1 vol. 8vo. Divinc Love and Wisdom, I vol. 8vo. Besides these there are many smaller wolls; but they ap-
pear only intended as introductions to the others, or as abridgments of their contents. In these works the following doctrines are developed. 1. That there is but one God, one in essence and one in person, in whom there is a Divine Trinity like soul, body, and operation in man, and that the Lord and Saviour Jesus Christ is that one God. 2. That the humanity derived from the virgin was successively put off, and a Divine humanity put on in its stead : and this was the glorification of the son of man. 3. That redemption consisted in the subjugation of the powers of hell, whereby man was delivered from the bondage of evils and falses, and that it was thus an actual work on the part of the Lord, for the sake and happiness of man. 4. That faith alone does not justify and save man: but he must have faith, charity and good works, and thus, by the actual union of will and understanding, knowing, loving and doing the commandments, become regenerated. 5. That the sacred scripture or Word of God is divinely inspired in every particular, and contains a natural, spiritual, and celestial sense, and is thus applicable to angels in heaven, as well as to men on earth: and that the letter of the Word is in every part purely correspondential: and therefore the science of correspondence, or the analogy between natural and spiritual things, is the key whereby the Word is opened in its genuine spiritual sense. 6. That man enters immediately after death into the spiritual world, leaving his body, which will never be reassumed: and continues to all cternity a man in a human form, with the possession of all his faculties. Death is therefore a continuation of life: and according to man's prevailing love, such is his state hereafter. The love of the Lord and the neighbour constitutes heaven; and the love of sell and the world constitutes hell: for heaven and hell are not places, but states. 7. That the last judgment spoken of in the New Testament, was effected by the Lord in the spiritual world in the year 1757; it being a judgment upon those in the world of spirits who had been of the former church: the goot were then elevated to heaven, and the evil cast down into hell. Thus the way was prepared for the second adrent of the Lord, which was a coming not in person but in the power and glory of his Holy Word, and a new spiritual inllux being communicated, a New Church would thereby be establishet. 'Th is is signified by the old heaven and the olll earth passing away, and the new hearen and the new earth being formed These are the leading doctrines contaned in Swedenborg's Theological Works. But three of his principal works are chielly designed to explain the scriptures in the spiritual sense, and in these, together with several of his large works, there are interspersed, Atemorable relations of things seen and heard in the heaven of angels and in the world ol spirits. Swedenborg on all occasions unhesitatingly declared that he had intercourse with the spiritual word: and many facts are related by those personally actuainted with him to poove the truth of his assertion: but he himself always refers alone to the nature of his writings and the things con-
tained in them as sufficient to prove to any one that he was so favoured of the Lord. A short time previous to his deccase, he was asked by the Rev. Thomas Hartley, Rector of Wynwick, if all he had written was strictly true, he replied 'II have written nothing but the truth as you will have it more and more confirmed hereafter all the days of your life; provided you always keep close to the Lord, and faithfully serve him alone, in shonning evils of all kinds as sins against him, and diligently searching his Word, which from beginning to end bears testimony to the truth of the doctrines I have delivered to the world." In a letter to the king of Sweden, Swedenborg says, "I have already informed your majesty, and beseech you to recal it to mind, that the Lord our Saviour manifested himself to me in a sensible personal appearance; that he has commanded me to write what has been already done and what I have still to do: that he was alterwards graciously pleased to endow me with the privilege of conversing with angels and spirits, and to be in lellowship with them. I have already declared this more than once to your majesty, in the presence of all the royal family, when they were graciously pleased to invite me to their table with five senzors and several other persons; this was the only subject discoursed of during the repast. Of this I also spoke afterwards to several other scnators; and more openly to Count de Tessin, Count Bonde and Count Hopken, who are still alive and were satisfied of the truth of it." During the life time of Swedenborg there were many eminent men in Europe, who gave credit to his mission and were the warm advocates of his doctrines. Among these may be mentioned Dr. Gabriel Andrew Beyer, Professor of Greck Literature and member of the Consistory at Gottenburg; Dr. Rosen, an eminent Clergyman of the same city; Mr. Robsam, Director of the Bank of Stockholm; Christopher Springer, Swedish Consul at the Port of London; Dr. Messiter, an eminent Physician in London; General Christian Tuxen of Elsincur, in Denmark; John Andrew Van Hopken, prime minister to the king and sccretary to the Swedish Royal Academy of Sciences; Mr. OEttinger, Superintendent of the royal mincs in Sweden; and the Rev. 'Thomas Heartly, Rector ol Wynwick in Northamptonshire, England. All these gentlemen were personally and intimately acquainted with Swedenborg, and their letters \(\$ c\). show their undoubting confidence in Swedenborg's spiritual communications. The receivers of his writings are considerable in Europe and. America. All his theological works have been translated into English, and many of them into German and French. We will conclude this notice with an extract from a letter of Count IIopken to General Tuxen. "I have known Swedenborg lor two and forty years, and sometime since daily frequented his company. A man who like me has lived long in the world, and even in an extensive career of his life, may have numerous opportunities of knowing men as to their virtues or vices, their weakness or strength; and in consequence thereof, I do not recollect to have ever known any man of more uniformly virsuous character than Swedenborg; always con-
tented, never fretful or morose, although throughout his life his soul was occupied with sublime thoughts and speculations. Ite was a true philosopher and lived like one: he laboured diligently, lived frugally without sordidness; he travelled continually, and his travels cost lim no more than if he had lived at home. He was gifted with a most happy genius and a finess for every science, which made him shinc in all those he embraced. Ile possessed a sound judgment uponall occasions; he saw every thing clearly, and expressed himself well on every subject."

Rocue.
SWEET SPRINGS, post village and watering place, situated in the northeastern part of Monroe county, Virginia, and on a mountain clevation of at least 2400 leet above the Atlantic tides; 84 miles NW. by W. from Lynchburg; 204 miles W. from Richmond; and 263 miles SW. by W. from W. C. These fountains are on the extreme higher southwestern sources of James river.

Darby.

SWIFT, Jonatian, D. D. the illustrious Dean of St. Patrick's, was born in Dublin on the 30th of November 1667. The house, (No. 7, Hoey's Court) in which he first saw the light, is still pointed out with revercace. He was a posthumous child, his father, of the same name, who, among other employments, held the office of steward to the society of the King's Arms, having died eight months before the birth of his son. His mother was Abigail Erickc, of Leicestershire, a lady whose ancient genealogy was her principal dowry. On the death of her husband, our author's mother found herself left utterly destitute. She and her son were supported by the charity of their relations, some of whom were sufficiently wealthy. Under such circumstances, the subject of this sketch " early adopted," says Sir W. Scott, "the custom of observing his binth-day as a term, not of joy, but of sorrow, and of reading, when it annually occurred, the striking passage of Scripture, in which Job laments and exccrates the day upon which it was said in his father's house "that a man child was born.'"

In his infancy he resided for thrce years at Whitehaven with a nurse, who, out of fondness for the child, had taken him with her, when called to the town by the commands of a dying relation. This circumstance constitutes the foundation of the erroneous opinion that he was a native, not of Ireland, but of England. At the age of six, he was sent to the school of Kilkenny, where his name, cut in school-boy fashion upon the desk or form, is still shown to strangers. From Kilkenny he was removed to Trinity Collegc, Dublin, in the ycar 1682, at the age of fourteen. At this seminary he was remarkable ncither for studious habits, nor attention to the college discipline, nor for correctness of moral conduct. The troth is, he soon became notorious for great lasity of behaviour, and incurred the open displeasure, and had to submit to the censure of the heads of the college. He read and studied rather for amusement and to divert reflection, than with the zeal of acquiring knowledge His reading, however, though desultory, must have
been varied and extensive, since he is said to have already drawn a rough sketch of the Tale of a Tub; which yet did not appear till the year 1704. Oving to his want of taste for logic, he was so ignorant of that science, reckoned at that time indispensable for an academical degree, that on examination he was found ignorant even of the necessary syllogistic forms, and obtained the degree of A. B. by special favour; a term used in the university to denote want of merit. He continued at college three years after procuring this title, and during that time he applied himself more assiduously to study, regularly devoting to it eight hours a day.

Meanwhile the death of Godwin Swift, his uncle, and principal supporter, caused him to leave college, after a residence there of seven years: when he paid a visit to his mother, who then lived at Leicester, to consult her about the future course of his life. Sir William Temple having married a relation of Mrs. Swift's, and having been long intimately acquainted with some members of Swift's family, he was recommended by his mother to that celebrated person for advice. Sir William received him with kindness; and, being pleased with his conversation and intelligence, detained him two years in his house, not as a dependent companion but as a coufidential friend. Here he was introduced to the acquaintance of King William, whose friendship and confidence he gained. In the meantime he obtained the degree of A. M. from Oxford; and having had some misunderstanding with his patron, he forsook his house; and, going to Ireland, obtained orders and a curacy, through the secret influence, it is supposed, of the friend from whom the had parted. The curacy he soon after resigned, and returned to the roof of Sir Villiam Temple, where he continued to reside till the death of this illustrious man: an event which Swift mentions in his Journal in the following terms: " Ile died at one o'clock this morning, (27h January 1693-9), and with him all that was good and amiable among men." Sir William bequeathed to him a small legacy in money, and entrusted him with the charge of his MSS., and, during his last illness, had warmIf recommended him to the notice of the king. The MSS. were published under the superintendence of Swift, with a dedication to William. As our author was not immediately promoted by the court, or rather was overlooked, he relinquished the Revolution or Whig principles, which he had before entertained, and began to connect himself with the opposite party, to which be afterwards remained faithfully attached, and whose views be so powerfully promoted by his pen. IIe, ere long, though from a different quarter, obtained two livings in Ireland; and, in 1713, he was elcvated to the deanery of St. Patrick's, Dublin, the highest preferment he :ver gained. This situation he owed to his abilitics, and to those talents for satire which he had enlisted so eagerly in the service of the administration, and which !ed him to those numerous political compositions, in prose and verse, which form such a - onsiderable portion of his works.
- In the death of Queen Anue, in 1714, and the triampla of that pary from which he had withdrawn,
he lived in retirement till the year 1720, when he gave to the world a political pamphlet, relative to Ireland, entited, "A Proposal for the universal use of Irish Linen." This work, white it gained him the enmity of the ministiy, rendered him extremely popular in the eyes of his countrymen; and this popularity was further increased by his celebrated Letters, under the title of \(M . B\). Drapier, published in 1724, and written with a view of opposing the introduction of Wood's copper coinage, the metal being so debased as to be worth only a third of its nominal value. "From this important era," says Johnson, "he was the oracle of the traders, and the idol of the rabble. The Drapier was a sign; the Drapier was a health; and which way soever the eye or the ear was turned, some tokens, were found of the nation's gratitude to the Drepier."

His political reputation and his political influence were now very high. But he had not meanwhile neglected other studies of an elegant or miscellaneous nature; and, not to mention other publications, it 1727, appeared "Gulliver's Travels;" a production that was universally read and admired; and which does not seem to have lost any of the popularity which it so early obtained.

But amid his studies and his publications, another subject never ceased to engross a large share of his attention, and his name is connected in a most extraordinary manner with the tender passion. The story of Stella and Vanessa is known to every reader, and needs not to be repeated here. In this part of his life there is the same obstinacy and disregard to the proprieties of society that marked his character in every other respect. Both these ladies predeceased him: events which successively made a deep impression on his mind, and had a tendency to bring about that awfial malady to which he had long been verging, and to which he at last fell a prey. The first stage of his disease was that of violent and furious lunacy. From this stage, aggravated by severe bodily suffering, he passed to that of perlect idiotey. During the course ol three years he is known to have spoken only once or twice. At length be died without a struggle, on the 19th ol October 1745, in the 78 th year of his age.

Swift was a man of original genius, of varied but not profound learning, of fine taste, of great talents for wit and satire, capricious in his friendship, charitable to the poor, not mindful of favours, whimsical, obstinate, misanthropic, avaricious. The best edition of his worts is that recently published by Sir W. Scott, with an excellent Life prefixed.
(r. м.)

SWIMMING is the art of suspending and sustaining the body in water, and of making motion either forward or in any direction, by means of the arms. legs, Sce. This art, which is common to savage with civilized nations, and which must be nearly cocval with the formation of man, is understood only by a very few of those who practice it. Though with the Greek and Romans it was not unusuat to characterize the uneducated by saying, neque literas neque natare didicit, yet swimming has very seldom beeu a regular branch in the education
of youth.* All persons who practice this art, ceen those who excel in it the most, have been selftaught, and their eminence in it has been the result sot of fixed rules, but of trial and perseverance.

Swimming, however, though the nature of it, and the principles on which it depends, have seldom been much attended to, is by no means a recondite or difficult art. The very contrary indeed may almost be said to be the case. The human body has been ascertaned by experiment to be lighter than the same bulk of water; that is, the human body when inmersed in water, displaces a quantity of that Guid heavier than itself. The body, therefore, when put in water, would necessarily loat, if allowed to remain inactive. Mr. Joln Robertson, (Philosophical Transaclions, vol. i, p. 30,) performed a variety of experiments on the gravity of the human body. He weighed ten different individuals, comparing their weight with the quantity of water displaced by their bodics, and the result was as fol-lows:-"Excepting wo, every man was lighter than his equal bulk of fresh water, and mueh more so than his equal bulk of salt water; consequently," he concludes, "could persons who fall into water have presence of mind enough to avoid the fright usual on such accidents, many might be preserved from drowning." Mr. Robertson, in illustration of his theory-and many similar illustrations might be given-mentions the case of a young man of thirteen, little acquainted with swimming, who, having fallen overboard from a vessel in a stormy sea, had presence of mind to turn immediately on his back, and thus remained a full half hour quietly floating on the surface of the water, when he was picked up.

Dr. Franklin's opinion on the gravity of the human body, when compared with water, is well known, and is most sound. He thinks that the solid parts of the human body, such as the legs, arms, head, are specifically somewhat heavier than fresh water, but lighter than salt; but that the trunk, particularly the upper part, from its hollowness, is so much lighter even than fresh water, that the whole of the body taken together is too light to sink wholly either in fresh or salt water. He says, that a body immersed in water would sink up to the eyes, \(t\) but 'that, if the head be leaned back, so that the face looks upwards, all the back part of the face beiug then under water, and its weight consequently in a great measure supported by it, the face will remain above water quite free for breathing, will rise an inch higher every inspiration, and sink as much every expiration, but never so low as that the water may cover over the mouth." He states, besides, that clothes give little additional weight in the water, though when out of it, and drenched, the case is quite otherwise. The reason why a body sinks when drowning is, that the hollow part of the trunk, \&xc. being filled with water, the specific gravity of the body is so considerably increased,
that it is weightier than the quantity of water it displaces.

Under such circumstances, if the equilibrium be not destroyed, the weightier parts of the human body would sink deepest in the water, while the contrary parts would contiaue on the surlace, or not sink lar below it. Owing t, the buogancy of the trunk, the upper part of the body is the light. est; lor though the head is heary, yet not so heary as to counterbalance the trunk. The natural position, therefore, which, if the equilibriuen be not interfered with, a body would assume in water, is that ercct one which it obtains on land.

But the great difficulty is to maintain the equilib. rium in question; to accomplish which nothing is so necessary as absence of liear, and the most complete self-command. A person should have a firm and sufficient conviction that the body, if left to itself, naturally floats, and that violent and irregular motion and struggling have a direct tendency to destroy this natural position. Indeed, the same struggling and throwing of the limbs which we see persons have recourse to in dangerous cases in the water, would, if practised on land, deprive the body of the faculty of locomotion, or ol retaining its erect posture. Every swimmer knows that by keeping his body perfectly quiescent and upright, and by throwing his head back, so as to rest on the surface, his face will remain entirely above the water, and respiration will be as casy and free as it he were on land. It is mentioned, that when a sailor was thrown overboard, the captain, with great presence of mind, called out to him, "keep your hands down in the water." He obeyed the call; the head kept above the surface, and the due balance of the body was thus obtained. To acquire and to preserve this due balance of the body, the arms should indeed be extended laterally under the surface of the water, with the legs separated, the one stretched forward, the other backward. This position being obtained, motion backward or forward, or swimming, is to be learnel gradually; indecd, it almost follows as a necessary consequence; and a very little practice will make a person a considerable adept in the art. In swimming forward, the body must be kept a little oblique, though the less so the better. The truth is, that the best swimmers maintain in water an attitude almost as erect as when they walk or run on lancl. The motion is produced by the motion of the arms and legs, which are extended and drawn in alternately. In swimming back ward, the face requires to be uppermost, and while the motion forwards is made by the action of the arms and legs, the latter only is emploged in backward motion, the hands being generally folded across the breast. There is yet another mode of swimming cither backwards or forwards; and that is by treading as it is called, or by moving the feet ouly; by which a person seems to walk as on land.

\footnotetext{
- Oronzio di Lernard, to whom we owe onc of the best systematic works on swimming, was appointed to teach this art in the Royal Naval Academy of Naples.
\(t\) This opinion is corroborated by that of a very able writer in The Quarterly Revico, who states, that "when the human 3ody is immersed, onc-tenth of its weight will remain above the water in salt, and one-eleventh in fresh." (So. 67, p. 38)
}

In this mode, the body is nearly perpendicular, and the arms are generally folded, or the hands are clasped and held above water. "I know by experience," says Dr. Franklin, "that it is a great comfort to a swimmer, who has a considerable distance to go, to turn himself sometimes on his back, and to vary in other respects the means of procuring a progressive motion." Swimming on the back is also useful in cases of cramp in the leg, 一an affection to which a person is often exposed, and which not unfrequently proves fatal. A good swimmer can easily resist the fatal effects of cramp, by turning immediately on his back and jerking the affected limb for a little in the air. But before recourse can be had to this remedy, one must be thoroughly devoid of fear, and be fully convinced that the natural tendency of the body is to float, it being lighter than the quantity of water it displaces. We may here observe, that in addition to the swimming backward or forward, there are many other fanciful positions and motions adopted by persons who are masters of the art and completely devoid of fear. In learning to swim , it may also be observed, recourse is often had to corks, bladers, planks, \&c. But it is perfectly evident that such expedients are unnecessary: they are only used for the purpose of giving confidence in the power of the water to support the body; and the confidence, as shown above, can be more easily and more cffectually obtained otherwise. Practice, without any of the auxiliaries referred to, will have more cffect in teaching to swim than any other expedient whatever.

To a novice in the art, it is almost incredible to what perfection swimming can be brought. A good swimmer can urge himsell forward by each stroke a distance cqual to the length of his body. There are various ways of recruiting the strength in water by changing the position; and thirst and bunger are less severcly felt than on land, owing it is probable to the quantity of the bracing liquid imbibed by the pores of the body. Under such circumstances a good swimmer can advance at the rate of three miles an hour, and continue for two or three hours in water. This, however, it is cvident, must depend much on the temperature of water and on the climate. Persons have been known to perform the extraordinary distance of thirty miles at a stretch; and it is recorded that Nicolo Pesce. the famous Neapolitan diver, performed the incredible distance oll lifty miles on the coast of Calabria. Nay, water had bccome so much like his native element that he is stated to bave spent five successive days and nights in it with perfect impunity. Bernardi's pupils, on the eleventh day of their instruction, were able to accomplish an uninterrupted circuit of six miles.

Diving, or the power of descending either perpendicularly or obliquely under water, is a species of swimming to which we have not yet adverted. It is astonishing to what perfection it can be brought by practice. The inhabitants of Otaheite excel so much in this art, that when a nail is thrown into the sea, they can teap after it and eatch it ere it gain the bottom. Pearls and shell fish.
\&c. are brought from the bottom of the sea by divers; and in ancient times divers were not unfrequently employed to destroy the ships of the enemy under water. Nor is it found to be a difficult feat. All good swimmers can dive less or more; but great correctness and eminence in it can be obtained only by daily practice. In springing from a beight into the water, great precaution is required so to dispose the body as to avoid any unfavourable concussion from the water. To prevent the body from receiving injury from this concussion, the limbs should be kept firm together, the head protected by the hands clasped over it, so as to present a sharp edge, the body presenting the shape of an arrow, the bands and head entering first, the feet last. The eyes should always be kept open under water, by which every object can be discerned, and rocks and other interruptions avoided. For a very full account of this subject, we refer to the article Diving.

Many speculations have been entered into with regard to the relative natural aptitude of man for swimming compared to other animals. Man, we readily confess, labours under considerable inferiority in this respect, though by experience he can at length attain to much greater perfection in the art than many of the lower animals. Fish of all kinds possess natural facilities for swimming, such as the air-bladder, or bodies flat and thin, or long and flexible, assisted in every case by the fins, which latter are peculiar to them. Water indeed is the element natural to fish; and their form and structure are wisely adapted by providence for answering this purpose. The brute creation, though incomparably inferior to fish in this respect, are yet superior, at least during the first years of their existence, to the human race. They are, in the first place, incapable of fear, and in the second place, their head is exceedingly light in proportion to the rest of their body. It contains little brain, and it abounds in sinuses, so that its relative weight is so inconsiderable that they can easily keep their mouth and nose above water and respire frcely. In man, on the contrary, the head, which is full of brains, and contains no cavities, is exceedingly heavy compared with the rest of the body: and the great difficulty which be experiences in swimming is to counteract this specific gravity and keep the organs of respiration ahove water. To attain this object is the perfection of swimming; and when it has been attained, man, though possessed of natural disadvantages, is superior to all animals, except fish, in this nice and useful art.

See the treatise of Bernardi, which has not yet appeared in an English form, but of which an excellent abstract, combined with much new matter, may be found in the Quarterly Review, No. 67. See also the Philosophical Trunsactions for 1757, No. 50; Dr. Franklin's Essay on Suimming, and Thevenot I'art de Nager.
(r. м.)

SWINDEN, Van, J. II. a celebrated natural philosopher, was born at the llague, on the 3th June 17.16. His father, an eminent barrister, inteuded to bring up his son to the same profession,
and with this view he watched his early education with the tenderest care. The young Van Swinden, however, soon showed a disposition to studies of a different kind; and he took peculiar delight in calculating, drawing, watch-making, and mechanical pursuits. At an early age he was sent to the university of Leyden, where he had the good fortune of meeting with Mr. Hennert, then private lecturer in Leyden, and a staunch Eulerian analyst, who initiated his friend into all the intricacies of the modern calculus.

At the early age of twenty (1767), when he was called to the chair of natural philosophy in the university of Franeker, he opened his lectures with a discourse, De causis errorum in rebus philosophicis.

At Francher, the tranquillity of a small town gave full scope to his ardotur for study. He would often not stir from home for weeks logether, and all his time was divided between his closet, his pupils, and his observations. This overstraining of his faculties had its usual effecto; his health was impaired, and the mineral waters of Spa, Aix-laChapelle, Pyrmont, were frequently resorted to, in order to restore his strength, and above all, to drive him from his studies.

The subjects of meteorology, electricity, and magnetism, then particularly eugaged his attertion; and he applied himself with unremitting zeal to such observations as were likely to throw some new light on these interesting subjects. Amongst his earliest writings, is his Tentamen de Magnete, published in 1772 , in which he exposes his mathematical theory of what he calls the punctum culminans.

During the long space of ten years, the magnetic variation was actually observed every hour of the day by M. Van Swiaden or his pupils. With equal care, during thirteen years, he kept an exact register of the barometer, thermometer, and hygrometer. No circumstance relating to atmospheric phenomena escaped his attention; no aurora borealis appeared during his residence in Franeker but what was accurately observed. Parts of his house and garden were arranged as an observatory. His friends, his pupils, even his servants, sustained the parts of observers during such ado. sences as he was compelled to make. Even in other parts of the country he procured observers, to whom he gave directions and encouragement. By these means, he collected an immense number of facts relating to the subjects of his investigation, whilst by unremitting study, and an excellent memory, he acquired a degree of learning which may almost be said to be unrivalled.

His Recherches sur les aiguilles aimanties, to which the Academy of Sciences of Paris adjudged the prize, \((1777\), ) contain such a vast number of observations, and such a variety of curious facts relating to magnetical phenomena, as are seldom found in any writer on natural philosophy. When the Academy of Bavaria (1776) proposed as a prize qucstion the investigation of the analogy between maguetism and electricity, Van Swinden received the program so late as to leave him only a lew days
to prepare an answer to the questlon. But he had thoroughly considered the sulject. 'Tlie experiments reguired had been made long before; and the first medal was awarded to him. This paper, together with some others on the same subject, he translated afterwards from Latin into French; and they are well known to phitosophers under the title of Memoirs sur l'. Analogie de l'Electricitéet du Magnétisme, 1784.

The Juurnal de Plysique, the Journal des Savans, the Memoirs of the Academies of Berlin, Paris, of the Royal Society, of the Academies of Turin, Brussels, IIaarlem, Petersburg, contain many of his papers. When Charles Bonnet's Contempla. tions de la Nature were translated into Dutch, M. Van Swinden made many additions and notes, which Bonnet judged so important as to have them inserted in subsequent French editions of his work.

Among all these various occupations which took up Van Swinden's time at I'raneker, he applied himself with assiduity to various branches of mathematics, as political arithmetic, the doctrine of chances, mortality, tontincs, Ecc. In the works of the Haarlem Society, lie gave a new demonstration of Newton's formula of the binomial theorem.

In 1785, he accepted the situation ol prolessor of philosophy at Amsterdam. Amongst the new duties imposed upon him were mathematical lectures. Ile explaised the elements of geometry, and indeed of mathematics in gencral, in an excellent work, which would have established his fame as a geometer, if it had been written in a language more generally known. In this book, the strictness of demonstration of the ancients is united with practical illustrations, the use of mathematical instruments, and the history of the science. In the last edition of his work, published in 1816 , it is striking to find how the vencrable author, then far advanced in years, knew and had studied even the most recent publications.

Another work, which he began to publish after he was removed to Amsterdam, is more gencrally known. The Posifioaes I'hysicae, as far as they are published, are allowed to rank amongst the best elements of natural philosophy.

Some time after he canc to Amsterdam, he was elected one of the directors of the school for the education of seamen. With equal ardour he managed the concerns of the school for the blind; and the interests of the Walloon Church, to which he belonged, found in him a ready and zealous promoter.

As early as 1787, the present minister of marine of the Netherlands had instituted a commission for correcting charts, introducing improvements in navigation, and publishing useful books on nautical subjects. Van Swiaden was its chairman. In that capacity he caused the first accurate natical almanack published in Holland to be printed. He wrote an excellent and extensive work on the thcory and practice of finding the longitude by lunar observations, and another on the use of nautical instruments.

In 1798, Van Swiud:n wis one of the two depu-
lies sent from Holland to the Scientific Congress at Paris respecing the new system of weights and measures.

After his return from that capital, he published an elaborate and learned work on the subject of weights and measures, and he greatly contributed to make the new system adopted in the Netherlands.

It was about that period that he was called from lis studies to the most eminent functions. Van Swinden himself was soon consinced that politics were not for him, nor he for politics. In that period he had the satisfaction of making govermment resolve to order a general accurate trigonometrical and astronomical survey of the country; which has since been ably executed by General Krayenhoff. In less than a year, one of those political discussions then so frequent on the continent, drove our author from office, and he checrfully returned to his studies and resumed his wonted occupations. But when Napoleon gave the management of our affairs to his brother Louis, the new king treated Van Swinden with particular favour, and pressed him eagerly to enter again into political life. This, however, he constantly and firmly declined. At Louis's desire, he framed the plan of the present Royal Institute of the Netherlands. He was at first president, and look a most active part in all its proceedings.

When Holland became a part of Napoleon's immense empire, Van Swinden retired as much from the public eye as was practicable. The king of the Netherlands honoured him with his confidence on many occasions, and, as a Councillor of State, he faithfully discharged his duty. Respected and beloved by his countrymen, full of activity and life, he was suddenly seized with an illness, which be soon felt to be fatal. With that strength of mind which sustained him through life, he foretold and awaited its close; and in his last moments be displayed the calmmess, screnity, and resignation, which become a man and a Christian. Ne expired on the 9th March 182 s.

The following is a list of the principal works of this philosopher:-Dissertatio de Attractione, 1766. -Cogitationes de V'ariis Philosophiae Capitibus, 1767.-De Philosophia Newtoniana, 1779.-Dc Hypothesibus Physicis, quomoda sint c mente Neutoni intcligendae, 1785.-Tentamen Theoriae Mathematicae de I'haenomenis Magneticis. Lugd. Bat. 1772, 4to.-Obserrations sur le froid rigoureux de Jamviero, 1776. Amst. 1777, 8vo.-Recherchcs sur les aiguilles aimantics et leur variations. Memoires Presentis à l'.Academie des Sciences de Paris, t. 8.Dissertation sur la Comparaison des Thermometres, 1778, 8vo.-Observations Metcorologiques faites à Francker pendant l'année 1779. Amst. 1780, 8vo.Description of the Orrery made by Eise Eisinga in Friesland. Franeker, 1780, 8vo. (Dutch.) A new edition of this work is in the press. -Recueil de Memoires sur l'. Anologie de l'electricité et du Magnetismé. La Haye, 3 vols. 8vo. 1784.-Description du Plenetaire de M. Alams, 1786. Plano.-Positiones Physicae, vol. i. and vol. ii. part 1. Harderovic, 1786, 8vo.- \(A\) Treatise on Finding the Longitude by Lumar Obscrvations. (In Dutch.) - A Treatise on the Use of Madley's Octant and Sextant, 1788, 8 vo. (In Dutch.)-Explanation of the Nautical Almanach, 1788, 8\%o. Dutch.-Elements of Geometry, 1790, 8vo. The last edition appeared in 1816.-Reporl on the Census of Amsterdam, folio, 1795.-On Ifights and Measures. Amsterd. 1802, 2 vols. 8vo.-Leclures on I'an Laun's Planelarium, Tellurium, and Lunarium. Amsterd. 1803, 8vo.

Besides these works, many papers by Van Swinden are printed in the Transactions of learned Socicties. In those of the Royal Institute of the Netherlands, there is one in the first volume, on the laws of atmospherical pressure. In the third volume of the same collection, there is a paper in which our author maintains the rights of Huygens, as inventor of the pendulum: of this a translation has been given in Dr. Brewster's Journal. See Professor Moll's Lifc of Van Swinden in the Edinburgh Journal of Science, vol. i. p. 197.

\section*{SWITVERLAND.}

SWITZERLAND, the ancient Helvetia, an inland country towards the south of Europe, is bounded on the west by France; on the north by Germany, or, to speak more correctly, by the grand duchy of Baden and the kingdom of Wirtemberg; on the east by the Austrian province of Tyrol; and on the south by Italy or the Sardinian and \(\Lambda\) ustrian ltalian territories. It is situated betwern \(45^{\circ} 50^{\prime}\) north latitude, and between \(6^{\circ} 5^{\prime}\) and \(10^{\circ} 35^{\prime}\) west longitude. Its length from east to west, from Mount Jura to the Tyrol, is 205 miles; from the Lake of Como on the south, to the Rhine on the north, its breadth is 125 miles. Its form is nearly oral. lta superficial extent, which is nearly equal to two-thirds of Scotland, amounts to 18,000 square miles.

The country is divided into cantons, of which the number has been various at different times, but which at present amount to twenty-two. The following is a list, with their respective capitals and population.
\begin{tabular}{|c|c|c|}
\hline Cant & Capitals. & Pop. in 1826. \\
\hline Geneva. & Geneva, & 52,500 \\
\hline Pays de Vaud. & Leausanne, & 170,000 \\
\hline Ncufchatel. & Neufchatel, & 51,500 \\
\hline Basil or Bale. & Basil or Bate, & 54.000 \\
\hline Argovia or Argau. & Arau, & 150,000 \\
\hline Zurich. & Zurich, & 218,000 \\
\hline Schaffhausen. & Schaffhausen, & 30,000 \\
\hline Thurgovia or Thurgau. & Fraunfeld, & 81,000 \\
\hline St. Gall. & St. Gall, & 144,000 \\
\hline Appenzell. & Appenzell, & 52,500 \\
\hline
\end{tabular}


Total Population, 1,978,000
Switzerland, however, originally comprehended only fifteen cantons; of which cight were formed in the 14 th century; the remaining five in the 18 th. The names of these are Schwitz,* Uri, Underwalden, Berne, Zurich, Lucerne, Glaris, Kug, Appenzell, Schaffhausen, Fribourg, Soleure, and Bale. This union gave tise to the Ilelvetic republic, so well known in history. 'Those territories, now joined to it under the name of cantons, were originally subject or allied to it. The French, in 1798, having taken possession of the country, and wishing to increase the number of their partizans, added six new cantons; viz. the Pays de Vaud, Argau, Ticino, Thurgau, the Grisons, and St. Gall. This number, augmented to nineteen, continued til! the downfall of Bonaparte, when, in 1815, by the Congress of Vienna, three new cantons were added, viz. Geneva, the Vallais, and Neufchatel, making altogether 22, their present number.

There is no country in Europe whose physical appearance is more magnificent, sublime, and diversified, than that of Switzerland. Mountain ridges covered with eternal snow, beautiful and romantic lakes, and verdant vallies, traversed by romantic rivers, silent forests and roaring cataracts, blended with all the varied pictures of gigantic nature, are the characteristics of this interesting country, and render minute description almost impossible.

It is particularly distinguished by its mountains. Even those cantons that are regarded as the most level, viz. Thurgau, Basil, Berne, Zurich, Schaffhausen, Soleure, and Fribourg, present mountains that rise between 2000 and 3000 feet above the level of the sea. The \(\mathrm{Alps}_{\mathrm{s}}\) form the most striking and elevated range, not only in Switzerland, but in Europe. This celcbrated range, which traverses Switzerland in almost every direction, especially in the south and east districts, extends nearly 600 miles in the form of a crescent, with various inequalities, from the river Var, which separates France from ltaly, to the Hadiritic, presenting gencratly an abrupt face towards Italy, and sloping more gradually on the opposite side. Their principal
peaks are Mont Blanc, the loftiest mountain in liurope, 15,646 feet; Mount Rosa, supposed to be only 100 feet lower; Cervin, 13,800; Jungfrauhorn, 13,730 ; Schrekhorn, 13.812; St. Bernard; St. Gothard ; Simplon, ovel which is the great military road formed by Bonaparte. Though Mont Blanc is the highest, St. Gothard may be regarded as the nucleus, lor, though not remarkable in height, it merits this distinction, that the rivers which rise in it and the surrounding group, llow towards every point ol the compass. The summit of all these mountains. is covered with eternal suow, the suow line in Sivitzerland at the 46 th degree ol latitude having been discovered to vary between seven and eight thousand feet above the level of the sea. The sides of many of these stupendous eminences are clothed with glaciers, large masses of ice, formed by the consolidation and partial melting of the snow. These glaciers occupy the plains or hollows of the mountains; their formation takes place about the snow line, or line of perpetual congelation; though, in a winter of unusual severity, they extend considerably lower. "The glaciers," says Mr. Coxe, (Travels in Switzerland, i. 41-2.) may be divided into two sorts; the first occupying the deep valleys, situated in the bosom of the Alps; the second clothing the sides and summits of the mountains. As to the first, when the plane on which they rest is horizontal, or only gently inclined, the chasms are but few and narrow ; the traveller crosses on foot without much difficulty." Their lower extremities, where they approacl the valleys, are in a constant state of solution, giving rise to brooks and rivers, and are maintained, without any apparent diminution of size, by the gradual descent of the masses at the rate of several inches daily in summer. The channels of all the rivers, therefore, that have this origin, are fullest in summer, when ice and snow are melting in great abundance. In their external character, the glaciers present the most varied and fantastic forms, sometimes exhibiting the appearance of a city of crystal, with glistering spires, columns and turrets. Their number is immense, it having been reckoned that there are no fewer than 400 of them in the range along the south of Switzerland. Some of them are known to extend from twenty to thirty miles in length, by one or two in breadth: their depth cannot be so easily ascertained. but is supposed to vary from 100 to 600 feet \(; \dagger\) while their total superficial extent has been calculated at 1200 square miles, their formation, it may be added, requires the action of cold to such intensity, that they are peculiar to the Alps, with the exception of a small hut elevated tract of the \(P_{y}\) rences, and a few spots of the mountains of Norway and Lapland. None are found in any other part of Europe.

The action of the sun on these glaciers in summer, so dissolve them, that not unfrequently huge masses, called avalanches, are disunited, and roll

\footnotetext{
- From this country, distinguished in the struggle for independence in the beginning of the t4th century, the whole country obtained its present name.
\(\dagger\) "This depth," which is that calculated by M. Ehel, and has gained the support of M. de Saussure, "must," say" \$1. Simond, "in some places, exceed very much six hundred feet. the minister of G:indelwald assuredProfessor Wyss, that, having thrown stones into some of the fissures of the ice, he counted twelve or fourteen seconds before they reached the water at the bottom, indieating a depth of 3000 feet, to match the horizontal dimension of 200 square miles, the superficial ex-tem."-(Travels in Siwtzerland, vol. i. 21t; see also Coxe's 'Travels, i. 38 , for some curions conjectures on the formation and state of the glaciers).

Vol. XVII. Palit 11.
}
down the declivities to the valleys below, with aw ful and destructive rapidity, destroying the plains, and overwhelming habitations, villages and forests. These avalanches have sometimes been known to roll down inclined planes of more than twenty miles in length. Avalanches, in the shape of loose dust, or snow frozen but not congealed inio one continuous mass, are the most dangerous, on account of the great space they involve, and the whirlwinds accompanying them, which are often so very violent as to tear up trees by the roots, and demolish houses; while an avalanche ol compact snow or ice, only strikes a narrow field; the latter sort takes place in spring and summer only; the former in winter.*

From the melting of the snow which covers the mountains, and from the descent of the avalanches, no country in Europe is better provided with rivers than Switzerland. And, from the same circumstance, as previously mentioned, these rivers in summer swell a third or a fourth above the usual size in winter. If we estimate their relative length of course, the Rhone is the most considerable river in Switzerland; and is, besides, the greatest river in Europe, after the Danube and the Volga. It rises on the north-east side of Mount St. Gothard, and, after receiving the waters of a surprising number of streams, it passes through the lake of Constance. It flows thence in a western direction to Basil, before arriving at which place it is augmented by the waters of the Aar, the Reuss, the Limmat, the Thur, the Glatt, the Birs, on the side of Switzerland, not to speak of those on that of Germany. From Basil its course is nearly northward, and it at length loses itself in the German ocean, after a course of 700 miles. The Rhone is next in importance. It rises within five miles of the Rhine, and after flowing through the canton of Vallais, it passes through the lake of Geneva, and, after a course of 500 miles, falls into the Gulf of Lyons. These two majestic rivers either take their rise from glaciers, or are essentially fed by them. In addition to the streams that are tributary to the Rhine, and some of which are large and important, we may mention the Ticino, which takes its rise in St. Gothard, but, unlike the Rhine and Rhone, flows southward, and, after receiving the waters ol several streams, and passing through the lake Maggiore, falls into the Po; the \(\ln\) which, after flowing through the Grisons, the 'Tyrol, and separating Austria and Bavaria, joins the Danube; the Adda, which, passing through the Grisons, and directing its course into Italy, loses its waters in the Po.

As connected with the rivers, the lakes require next to be mentioned. Many of them, not confined to the plains, or the mountains, are situated on high table-land, or among mountains of considerable altitude. The following enumeration will show their relative height. The lake of Como stands 592 feet above the level of the sea; the lake of Constance, 1151; Gencva, 1225; \%urich, 1364; \%ug, 1406; Neufchatel, 1428; Lucerne, or lake of Four Cantons, 1438; while that of Thun is elevated no less than 1897 feet, being fully a third higher than chose of Geneva and Constance, and two-thirds
above that of Como. There are many other lakes, such as those of Lugano, Wallenstadt, Brientz, Sarnen, Sempach, Joux, Morat, Bienne. The three last, like Neufchatel, discharge their superfluous waters into the Aar by the Thiele. All these lakes form a superficial cxtent of 314 square miles. They contain fish, such as pike, trout, salmon, lota, and umber, the last being a very delicate fish, occasionally exported to Paris, and sometimes sold for so high a price as \(12 l\).

The climate of Switzerland, as may be inferred from our previous statements, is extremely varied. The extreme cold of the mountains we have already mentioned. Many ravines aud portions of valleys are inaccessible, even in summer, to the direct action of the sun; and the immense masses of ice or snow which fall from the mountains on the plains, and remain on them, occasion great variation in the temperature, even in places that otherwise would be genial. The lakes have somewhat of a similar effect. In winter, too, the cold in the valleys is more severe than in most parts of France or Germany; a circumstance which undoubtedly results from the vast accumulation of snow and ice on the mountains. But this is the most unfavourable view of the subject. The valleys and the bases of the mountains exposed to the south, enjoy all the warmth of an Italian sun, and display all the heat and luxuriance of vegetation that characterize moresouthern climates. Such places produce grapes and the finer fruits in great abundance, and are often resorted to on account of their peculiar sweetness and salubrity. But in this country heat and cold, vegetation and sterility, border on each other, and form the most striking contrast. While, in the plain, the peasantry are engaged in the labour of harvest, the grain is slowly advancing towards maturity, or probably may not be in the ear, on the higher grounds. Nay, so much is this the case, that it has not been inaptly said, snow may be lifted in one liand, while flowers are plucked with the other. Various, however, as the climate is, the mean temperature may be known, when it is stated that at Berne it is about \(40^{\circ}\) of Fahrenheit, at Zurich about \(39^{\circ}\), and at Geneva \(40^{\circ}\).

The laborious character of the Swiss has done much for the agriculture of the country. Lofty and most unpromising spots have been cultivated, though they are so inaccessible that manure has to be carried to them, not in the usual way by means of mules or horses, but on the shoulders of the cultivators. Vines and rich pasturages are to be found in places of very narrow dimensions, surrounded by naked rocks or sterile precipices. Cultivation is carried almost to the very verge of the ice and snow lines. The country produces wheat, rye, barley, oats, maize, flax, hemp, tobacco. The stock of com produced, owing chiclly to the variable nature of the climate, is not sufficient to supply the inhabitants; and by consequeuce, a considerable quantity requires to be imported. In some rugged districis indeed, the produce is so scanty that the inhabitants are almost strangers to the use of bread, but subsist chiefly on the produce of their dairies. "In Switzeland, as in France," says an intelligent
traveller, "arable land lics fallow every third, fourth, or fifth year. The courses are, first, ploughing for wheat, three or four times in one year, without a crop: sccond, a crop of wheat the next year, which returus generally five and a half for one: third, barley: four, esparsel, (sainfoin) or some other artificial grass; then ploughing again for wheat without a crop. The turnip and sheep system is said not to answer here."-(Simond's Travels, i. 35.)

The rearing of cattle forms one of the greatest sources of national subsistence in \(\mathrm{Switzerland}\). In spring the herds are driven to the mountains, for good pasturage is obtained as high as the snow and ice lines; and after remaining there till the beginning of winter, they are gradually brought back into the plains, and more sheltered districts. A cow, according to M. Simond, yields in the summer, on an average, six measures of milk daily, each weighing three pounds of scventeen ounces. Cheese, butter, tallow, hides, form some of the chief articles of export from Switzerland.

Of fruits, vines, chesnuts, prunes, peaches, walnuts, cherries, are the most common. In colder situations apples and pears grow; while in the southern valleys the almond and fig are to be found. "The general appearance of the country," says M. Simond, "is very woody, owing to the great number of walnut trees, which grow to an immense size. Every village, farm-house, and gentleman's residence, is surrounded with them. You travel under their shade; and woods, or rather groves, of ancient or very picturesque forest trees are not uncommon."-(Travels, i. 35-6.) The vine, it may here be mentioned, grows in the valleys, or on the banks of the rivers or lakes, and terminates at the height of 1700 feet above the level of the sea. The oak succeeds it, and rises to the height of 2800; the beech comes next in order, and flourishes 1200 feet higher than the oak. The firs are found 5500 feet above the level of the sea.
The mineral productions of this country it is not difficult to describe. The Alps are composed chiefly of granite, of a grayish ash or bluish colour, and in some places mixed with marble. Calcareous strata, alternate with layers of fine sand, are common. These mountains also disclose porphyry, marble, and alabaster. Iron, lead, zinc, cobalt, bismuth, arsenic, and antimony, are found in various places, both in veins and in masses, but are not much cultivated. Rock-crystal is very common, and forms an article of export. Sulphur is found in many places; as also coal; and several rivers, the Rhine, the Aar, the Adda, and the Reuss, carry down gold. Strata of lignites or bituminous wood are wronght in several valleys, and the inhabitants use it for fuel. Mineral springs, of which the principal are those of St. Maurice, in the Grisons; Gurnigel, in Berne; Pfeffers, in Thurgau, abound in Switzerland more than in any other European country.
- "And even those hills that round his mansion rise Enhance the bliss his scanty fund supplies;
Dear is the shed to which his soul conforms, And dear that hill which lifts him to the storms.

We have spoken of the fish, and the large catte* with which Switzerland abounds. Horses, mules, and oxen are used for the purposes of husbandry. Goats, shecp, and hogs are reared in great abundance. The weasel, pole-cat, ferret, badger, and squirrel are common. Ol game, the white hare, the same sort as that in Siberia, the chamois, and the marmot, which last is considered a great delicacy, are the most important. The other animals are the fox, the hamster, a species of rat prized for its skin, different kinds of martens, the wild boar and the bear, the last being lound chiefly in the mountains of the Vallais. Crows, cagles, vultures, are also common.

The manufactures of Switzerland cannot be expected to be either very numerous or very extensive. Yet they are not inconsiderable. The cotton manufactures of St. Gall have heen noticed by every traveller, and are the most extensive in the whole country. If the circumstance stated by M. Ebel be correct, that in the canton of St. Ciall alone, from thirty to forty thousand women were enployed in embroidering muslin, the whole manufacturing population in that canton must be extremely great. There are also cotton works in the cantons of Zurich, Berne, and Appenzell. Linens of every kind of fabric, as also silks and woollens, are manufactured in Switzerland. Clocks and watches have long formed a staple produce of their industry and skill.

Switzerland possesses considerable facilities for commerce, though she has not very eminently gained the character of a commercial nation. Not only are the Rhine and the Rhone, but some of their Swiss tributaries, navigable, thus connecting the country with Germany, the Netherlands, and the German ocean, on the one hand; and on the other, with France and the Mediterranean. Cattle, hides, and the producc of the dairy, are the chief exports from the pastoral districts; while the exports arising from manufactures are watches and clocks, linen, cotton, and woollen cloths, and in a small degree silks. Pharmaceutical plants form a considerable branch of exportation.
The national character of the Swiss has deservedly been the subject of praise on the part of writers of every kind. Though the country consists of a variety of states, some of them formerly independent, and each varying in institutions and manners somewhat from the rest, yet the character of the people is almost unvaried, being amiable and simple. They are eminently remarkable for their love of country, a fecling certainly common to them with others, but which they seem to possess to a degree altogether unrivalled. This may arise in no small measure from the romantic features of their native land; for it seems to be an invariable principle, that patriotism is strong in proportion as the country to which it refers is distinguished by such features.* "This unconquerable passion," says Mr. Pinkerton, "seems to arise in part from

Even the loud torrent, and the whirlwind's roar, But bind him to liss native mountains more."

Goldmith.
a moral sensibility to the enchanting ease and frankness of the native manners; and in part, from the picturesque features of the country, the verdant hills contrasted with Alpine snows, and delicious vales watered by transparent streams, scenes nowhere else to be discerned in such perfection, and which must powerfully affect the imagination, - the parent of the passions." The Swiss, indeed, possess this passion in so remarkable a degree, that, though no people emigrate more, there are few who do not return to their native land to lay down their bones beside those of their fathers. This love of country is liable to be excited and called into action by circumstances apparently trilling. Hence, in the French armies, composed of Swiss mercenarics, the tune called the Rance des Vaches, which in their youth they had heard so often sung by the Swiss milkmaids when they went to the pastures, was carefully interdicted, because it melted the rough Swiss soldierinto tears, and not unlrequently led to desertion. The Swiss have long been as much distinguished for bravery as for patriotism. This virtue has been often eminently and successfully displayed in maintaining the independence of their country; and as mercenaries, they are regarded as forming the best soldiers in Europe. Like other people in a comparatively rude state of society, they are fond of traditions and of ancestry, and feel great reverence for ancient customs and institutions. Their love of freedom is extraordinary; and they are always ready to risk or sacrifice their life in defence of it. "The human mind, however," says a modern writer on Switzerland, " is made up of so many contradictions, that in this country, where liberty has been established for several ages, some remains of the worst of governments are suffered to remain; justice is privately administered, and the torture is still in use." They are fond of labour, by which they have surmounted every disadvantage of soil and climate, and have spread fertility and beauty over spots which nature seems to have meant for everlasting barrenness. They are farther characterized by great simplicity of manners, by an open and unaffected frankness, by hospitality, honesty, and all the virtues of private life. Crime is rare; and instances of eapital punishment seldom occur. The Swiss in general are not given inordinately to dress; \(y\) et in some cantons sumptuary laws have been framed to prevent idle ornament. Different costumes, the origin of some of which is very ancient, prevail in different districts. The dress of the women, however, generally consists of a short ample petticoat of dark brown; red sash; blue stockings seen as high as the knce; large flat hat without a crown, tied under the chin. Games of chance are prohibited; but gymnastic exercises form the daily amusements of the young; they engage in the race, in wrestling, in throwing the dart, or shooting at the target. Although the Swiss cannot he regarded as a very poetical people, they are devotedly fond of music; and ol all the arts, it is most carefully cultivated. The observations which we have made under this head are chicfiy ap-
plicable to the rural and pastoral class of the people. The manners that obtain in the large towns are considerably different, and are rapidly becoming similar to that state of society, which, under similar circumstances, prevails in general Europe. The men are tall, robust, and well made; the women are handsome, modest, frank, and agreeable in conversation.

We cannot conclude this portion of our subject without referring to the goitres, weus, or excrescences on the neck, to which in certain districts the Swiss are so liable. These excrescences are of incredible size, varying, as Mr. Coxe assures us, from the size of a walnut to almost the bigness of a peck loaf. They are not hereditary, as has been alleged, because many persons whose parents were free of them, have either been born or have become goitrous. Of the causes of goitres there have been various conjectures. The notion that suow-water occasions them is totally devoid of foundation; for on that supposition they would be most common in the interior and southern portions of the kingdom; which is not the case. They are as common in the north as elsewhere; and, besides, goitres are found to obtain, not merely in the champaign districts in the north of Italy, and in the neighbourhood of Naples, but in several parts of the East Indies, where snow is unknown. Nor is the opinion, that they owe their origia to the concentrated heat of the climate, and to the stagnation of the air, better founded. The truth is, it seems now to be universally believed, that the excrescences in question are to be attributed to the carbonate of lime, or tuf, as it is called in Switzerland, with which the spriugs are impregnated. The following illustration of this opinion, in the correctness of which subsequent writers most fully agree, we owe to an intelligent traveller, to whose work we have so often referred. "A surgeon, whom I met at the baths of Leuk," says Mr. Coxe, "informed me that he had not unfrequently extracted concretions of tuf-stone from several goitres; and that from one in particular, which suppurated, he had taken several flat pieces, each about half an inch long. He added, that the same substance is found in the stomach of cows, and in the goitrous humour to which even the dogs of the country are subject. The same gentleman assured me that in the course of his cxtensive practice, he had diminished and cured the goitres of many young persons by emollient liquors and external applications; that his prineipal method, in order to prevent them in future, consisted in removing the patients from the places where the springs are impregnated with tuf or calcarcous matter; and, if that could not be eontrived, by forbidding the use of water which was not purified. lie confirmed the report that infants are occasionally bern with guttural swellings; particularly those whose parents are goitrous; and remarked that one of his own children had at its birth a goitre as large as an egg, although neither he nor his wife, who were both foreigners,* were aflicted with that malady. He had dissipated it by external reme-
dies,* and, since that period, had invariably prohibited his family from taking the spring waters, unless they were distilled, or mixed with wine or vinegar, by which means he was able to preserve them from those humours in the throat that were extremely common among the natives of the town which he inhabited."-(Travels, i. 401-2). Coitres, we may conclude by mentioning, are most common in the cantons of Berne, Lucerne, Friburg, and Vallais, but particularly in the last; and in all of them the carbonate of lime is found in solution in almost all the springs.

Goitres have been described as checking respiration, and rendering those aflicted with them indolent and tanguid. But this, it is feared, is not their only effects. They are regarded as producing idiocy, or, it is supposed that the same causes that produce the one, occasion the other, thus affecting both the mind and the body. This fact is certain, not only that idiocy prevails most where goitres abound, but that idiots are most frequently both goitrous themselves, and are descended of parents so afflicted. The truth, in fine, is that idiocy, whatever is the cause, and the one assigned is the most likely, obtains more in Switzerland, particularly in the Vallais, than in any other known country or district in the world.

Switzerland is remarkable for nothing more than for the means of education it possesses, and the consequent intelligence of its inhabitants. In this respect it is not inferior to the best educated countries in Europe. When the means of education are sufficiently ample in a country, from one-ninth to one-tenth of the population are attending school. In Scotland, where our parochial schools afford us such facilities, the proportion undergoing education is below that average. In England, the deficiency is still more apparent. In France not more than the 28th part of the people are enjoying the blessings of education; while in the Pays de Vaud the proportion is one-eighth, being more than the average; so that the inhabitants of this district have been pronounced the best educated in Europe. The state of schools, however, is different in the different callons. In none of them, however, is this important subject neglected; but education is more generally diffused among the catholic than the protestant states. The most improved plans of instruction, such as that of Bell and Lancaster, have been introduced; and every means have been used to promote the great object in view, -the education of the people. Nor has Switzerland merely introduced the plans of others; she has, with great success, tried methods of her own, and has thus
lent her aid to the great cause of education. The celebrated school of Pestalozzi, at Yverdun, in the Pays de Vaud, has been visited and celebrated by every traveller. This was the first seminary in which the intellectual system, as it has not inapily been called, or that system which consists, not in mechanical routine, as is still too common in schools, but in illustrating the rationale of every subject taught, and of cultivating the mental laculties, had its origin, and was brought to great perfection. It embraces also the plan of mutual instruction on the past of the pupils, as recommended by Bell and Lancaster. Of the old and new systems, as ascertained in this catton, the compara. tive result is most clearly favourable.
\begin{tabular}{l|l}
\multicolumn{1}{c}{ By the Old System. } & By the New System. \\
40 out of too read well. & 50 out of 100. \\
37 do. wrote well. & 59 do. \\
21 do. understood orthography. & 80 do. \\
15 do. arithmetic. & 31 do. \\
38 do. catechism. & 49 do.
\end{tabular}

Nor is the establishment termed the School of Industry, of Mr. Fellenberg, at Hofwyl, in the canton of Berne, less celcbrated than that of Pestalozzi. The object of this seminary is to combine scholastic education with industry; which at Hofwyl is agricultural, but which might, in towns for example, be manufacturing, or of any kind whatever. We have not time to examine into the real merits of this scheme, for an account of which we refer to Simoud's Travels, (vol. i. 407-20, ) and to an excellent article in No. 64 of the Edinburgh Review; but we may mention that, like that of Pestalozzi, it has given a great impulse to education throughout the country, and has produced some very eminent scholars. Pupits of the highest rank come to it from Germany, France, England, \&c.-Of the other seminaries in Switzerland the character stands high. In most of the cantons education is a matter of state, and is under the immediate protection of government. Not to speak of the schools in the country districts, most of the large towns cnjoy similar most efficient institutions; and in Zurich, Berne, and Lausanne, there are academies or colleges of great reputation. The universities of Basil and Geneva have long been celebrated, and can exhibit in the list of their pupils and professors some of the greatest names in Europe. Since the revival of learning, Switzerland can boast Zuinglius, and Oecolampadius, Bullinger, and Beza, the reformers; Hans Holbein, the celebrated painter; \(\dagger\) Ischudi, who died in 1592 , and who has been characterised by M. Simond, as "the first and greatest historian in Switzerland;" Paracelsus, the physician and alchy-
- We may here mention that Dr. Coindet of Geneva has recommended the use of iodine as a specific for the cure of goitre. The truth is, burnt sponge was long applied with considerable success to remove the excrescence in question before the cause of its efficacy was known; and it is only of late that iodine has been discovered to exist in it. The same substance has been detected in various mineral springs, the waters of which have been found efficacious in that discase. The form in which it is used are the tincture, and the hydriodate of potassa, the dose of each being about ten drops. It is also appliedby friction as an ointment, mixed with lard, in the proportion of one drachm of iodine to threc of the latter substance.
\(\dagger\) Though a native of Basle, Holbein may be regarded as more an English than a \(\mathrm{S}_{\text {wiss }}\) artist. Neglected by his native country, he eame to England in the 30 th year of his age, under the patronage of Itenry VIII. where he continued the remainder of his days. He died in London of the plague in 1554, aged 58. He may be said to have been the founder of the art, in which he excelled, in Britain.
mist; Turretine; Ostervald; Conrad Gesner, and his descendant John Gesner, both naturalists; Solomon Gesner, styled the Theocrates of Germany: also Bodmer, " justly denominated," says Mr Coxe, " the father of German literature;" Hottinger, the historian; Senebier, the literary historian; Bonnet, the naturalist and metaphysician; Mallet, the historian and antiquary; Leonard Meister, the historian; Albert Haller; the two Bernoullis, mathematicians; Saussure and de Luc; Zimmerman; Rousseau: Lavater; Euler; Necker. Physical philosophy and natural history, profane history and antiquities, biography and bibliography, are the branches in science and literature most cultivated in this country.

The public libraries of Switzerland are such as become the literary character of the country. Those of Berne, Geneva, Basil, Zurich, Lucerne, are the most extensive and the most valuable. Their collections vary from 30,000 to 60,000 volumes, of which many are rare, some are unique. They contain many important manuscripts, literary, historical, and classical;* many medals and curiosities; and some of the best editions of the classics, particularly the early impressions of the 15 th century. These manuseripts embrace a great number of the letters of Zuinglius and the early reformers. There are many other libraries belonging to colleges and public bodies, some of them of great extent and importance. Libraries belonging to private individuals are very common, and not inferior to those of any other country, one individual being mentioned by Mr. Coxe as possessing a collection of no fewer than 15,000 volumes, all valuable, many of them rare, no fewer than 700 having been printed in the 15 th century. Botanical gardens, museums, and scientific collections are namerous. There are many literary, philosophical, and scientific associations in Swizerland, as well as others, whose object it is to promote agriculture and internal improvement. Berne, Geneva, Lausanne, Zurich, Basle, Lucerne, and many other places can boast of suclz societies. "The Swiss," says M. Simond, "have just revived a custom dropped during the last anxious period of a revolution, that of an annual mecting of their learned men, principally naturalists, in each of the cantons successively. The object, moral and political, as well as seientific, is to bring together, during three days, distinguished men of the different parts of the union, who otherwise would have remained personally unknown to each other.'-(Travels, i. 319.) Communications are received, and memoirs and papers are read, and discussions of every kind take place, as in other scientific associations. Such meetings,
while they show that physical investigations are of national importance, are calculated to promote emulation, il not in one sense, to reward it.

In Switzerland there are 130 printing presses scattered throughout the cantons, of which Geneva has the greatest proportion. These presses, however, are not always fully employed. There are several scientific and philosophical journals published. The number of newspapers amounted in 1826 to 28, of which 22 were written in German, four in French, and two in Italian. A considerable proportion of these papers appeared twice weekly; but only one, (The New Gazette, a Zurich publication,) thrice a week. In some cantons a rigorous censorship exists over the periodical press.

It is evident from the foregoing head, that the three languages there mentioned must be spoken and understood in Switzerland. But the German is more commonly used than any other; and the greater number of the eminent authors of the country have written in that language. In the southern districts Italian is in use. French obtains in the west, namely, in the cantons of Geneva, Pays de Vaud, Neufchatel, and in part of those of Berne, Fribourg, Soleure, and Vallais. German is spoken throughout the remainder of the cantons. But in several of these cantons, the lower orders make use of another language, consisting of several dialects, slightly different from each other. It is regarded as the ancient language of the country, and is held in high estimation by thóse among whom it prevails. It is a branch of the Celtic, with the admixture of several words of Greek and Latin derivation.

The reformed doctrines, as we have already hinted, were carly introduced into Switzerland, and some of the earliest and most eminent reformers were natives of that country. It was from Geneva, where Calvin and Beza taught, that Knox, the Scottish reformer, introduced the presbyterian polity into this country. The different cantons, howcver, are very different in regard to religious character and dicipline, the catholic faith being yet retained by about one-third of the whole population. The cantons of Solcure, Fribourg, Lucerne, Zug, Schwitz, Underwalden, Uri, Ticino, and Vallais, still continue popish. Those of Argau. Glaris, Thurgau, St. Gall, Appenzell, and the Grisons, are partly catholic and partly protestant. The other cantons are protestant. Though illiberality and persecution have been, even of late, displayed in this country, toleration seems to be now permanently established. The following table gives a relative view of the different religious sects in 1821. The protestants, we may remark, gencrally entertain the doctrines of Calvin.

\footnotetext{
- In the library of Zarich are three satin letters from Sady Jane Grey to Bullinger. They are written with her own hand: they breathe a spirit of the most unaffected piety; and prove the extroordinary progress which that unfortunate and accomplished princesa, though only in the 1 th year of lier age, had made in various branches of literature. The Greek and Hebrew quotations show that she was well acquainted with these languges. These letterg, though given in several publications, are not printed with any regard to accuracy. (Cose, i. 96.)
}
\begin{tabular}{|c|c|c|c|c|}
\hline Cantons. & Protestints. & Cathatice & Smabiptusts. & Jews. \\
\hline Curich, & 191,700 & 1,350 & & \\
\hline Berne, & 300,500 & 41,700 & 900 & \\
\hline lucerine, & & 103,900 & & \\
\hline Uri, & & 12,000 & & \\
\hline Schwitx, & & 34,000 & & \\
\hline Underwaldes, & & 21,800 & & \\
\hline Glaris, & 25,815 & 3,285 & & \\
\hline Zug, & & 15,000 & & \\
\hline Fribuurg, & 5,100 & 67,400 & & \\
\hline Soleure, & 4,200 & 49,200 & & \\
\hline Basil, & 45,900 & 5,900 & & \\
\hline Schatrhausen, & 26,900 & 200 & & \\
\hline Appenzell, & \$1,200 & 13,800 & & \\
\hline St. Gall, & 81,529 & 61,371 & & \\
\hline Grisons, & 49,000 & 34,000 & & \\
\hline Avgata, & 76,500 & 68,300 & & 1,700 \\
\hline Thurgau, & 63,900 & 19,000 & & \\
\hline Ticino, & & 95,000 & & \\
\hline Puys de Vaud, & 155,000 & 3,200 & & \\
\hline Vallais, & & 67,400 & & \\
\hline Neufchatel, & 50,000 & 2,200 & & \\
\hline Geneva, & 27,430 & 14,400 & & 270 \\
\hline & 1,14.4,974 & 739,406 & 900 & 1,970 \\
\hline
\end{tabular}

Switzerland, though a republic, does not form one great community like Greece or Rome; but, like the United States of America, it is a confederacy, or combination of sereral petty states, cach being distinct and different from the rest. All the swiss cantons, however, are independent, possessing, by an inherent right, the privilege of managing, respectively, their internal and private affairs; but their several constitutions are so different that they may, in this respect, be classed in the following manner: I. Neufchatel, which, till the year 1815, belonged to Prussia, is the only one in which monarchial forms of government are modified by republican institutions. II. Schaffhausen, Zurich, Basil, Soleure, Berne, Lucerne, and Fribourg, form aristocratical goveruments; in which several privileged families possess the direction and management of public altairs. Ill. Thurgau, Argau, St. Gall, Pays de Vaud, Genera, Vallais, and Ticino, are representative republics. And IV. the people of Appenzell, Zug, Schwitz, Uri, Glaris, and Underwalden, live under a democratic government: the citizens form general absemblies, nominate their magistrates, and deliberate on the interests of the republic. The general interests of the Ifelvetic republic, such as the conclusion of foreign alliances, the defence of the country, \&xc. are managed by a general assembly or diet, composed of deputies from each of the cantons, and which holds its mectings successively at Berne, Zurich, and Lucernc. At these diets all matters are decided, by a plurality of votes, excepting declarations of war and treaties of peace, which require three-fourths. The diet assembles at least annually, but oftener when necessary.

The Swiss are quite a military people. Every artizan is a soldier, or must be enrolled in the na-
tional militia, at the age of twenty, and be clothee! according io the mititary unitorm of his canton. Jiach catuton, in the event ol a wate, lurnishes a rontingent: and all the comberemts amount to 33,753 men. The Swiss, in military affials, have for cem. turics been remarkabic lop a vory pecular practice, namely, letting out troops lior hire to lorejen pow. ers, on the condition ol their forming separate regiments, and not intemingling will the thoops of any other conntry. Thais practice was acted upor so recenty as during the late war, and in Span till 1820. Swiss mercenarics have ganed a hame for valuur and skill inferior to that of no sher country. To provide tor the maintenance ol the army, and for other expenses, the cantons impose on themselves a tax in proportion to their relative population and renources. The wemue of the conledera. tion, cannot, on this account, be great; indeed it was so small in 1825 as \(\mathrm{I} .500,000\); but the debt was only the fourth of that sum, or \(1.125,000\).

Of the towns of Switzerland we mean not to give any account, as of the mose important of them such an account has already been given under the proper articles. None of them are large. Geneva, the largest, contains only 25,000 souls; Berne, the next in size, 17,\(600 ;\) Basil, 16,300 ; Zurich, 10,490 ; Lausanne, 10,290 ; the rest contain fewer, varying from 9,000 down to 1,700, the population of Altorf.

The history of Switzerland, previously to the time of Casar, may be regarded as unknown or uncertaib. It may, as has been believed by one class of writers, have been visited and colonized by the Greeks, who founded Alarseilles several centuries before the time to which we refer: This opinion has been supposed to gain countenance from statements made by Herodotus and Appolonius Rhodius; and an expression made use of by Cosar seems farther to corroborate it. In castis Helvetiortim tabulae repertae sunt, litteris Graccis eonfeclue, (Comment. de Bell. Gall. lib. i. cap. xxix.) But whether the opinion be correct or otherwise, cannot now be ascertained. Nor do we stop to inquire. At the dawn of authentic history, we find the country inhabited by the Helvetii and the Rhaetii; the latter inhabiting, in addition to Swabia and the Tyrol, what afterwards formed the Swiss cantons of Appenzell, Glaris, Uri, and the Grisons; the Helsetii occupying the remaining cantons. These people were of Celtic origin; and remains of the Celtic tanguage, which was long their native speech. still exist. Their defeat by Ciesar is well known. They were afterwards ranked among the people subject to Romc. and were exposed to all the hardships which such a connexion always imposed on concuered nations. * On the downtall of the Roman power, the Helvetians, like the other people ol Europe, were overrun by hordes of barbarians; they were successively conquered, and nearly extirpated by various tribes, the Alemanni, the Firanks, the fiuns, the Burgundians. From the begiming of the cleventh

\footnotetext{
- Aventicum was the capital of the country in the time of the Romans. It is now ealled Avenches, and is situated in the Pays de Faud. Its walls can still be traced, inclosing a space about five miles in cidcumference, part of which are occupied by the present town. It can boast of many magnificent remains.
}
century, the provinces which now constitute Switzerland, began to be regarded as an appendage of Germany; and are mentioned in history as receiving at different times certain privileges and immunities from the head of that empire. These, howcuer, did not proceed from the spontancous policy of the emperors: they were wrested from them in consequence of the repeated applications and urgent remonstrances of the Swiss themselves, who seem from the earliest periods to have abhorred dependence, and to have been animated with principles of liberty. In truth, the inhabitants of Uri, Schwitz, and Underwalden, (three territories known by the name of the Waldstetten) possessed from time immemorial the right ol being governed by their own magistrates, and of enacting their own laws; they had always declared themselves averse to the authority of the emperor's representative among them; and when, like the rest of the country, they did consent to acknowledge this officer, it was on the condition that he would govern according to law, and make no encroachments on their rights and privileges. Usurpation, however, followed after usurpation, till at length the whole country was reduced under the power of the house of Austria. Tyranny in truth was carried to the utmost extent, and freedom seemed to be for ever extinguished in Helvetia. But it was checked, not destroyed; its spirit still continued to linger among them; and at length it burst forth with a greater energy than ever. A confederacy to shake off the yoke of their oppressors, and to achieve the independence of their country, was formed in 1307 by three individuals, natives respectively of the three cantons that composed the Waldstetten. The conspiracy was embraced with delight by all to whom it was communicated; the names of the heroes who organized it have ever since been revered throughout Switzerland; and the spot where it was first formed is regarded as sacred. The revolution which was contemplated, was accelerated, or rather secured, by the insults shown on the part of Gessler, the representative of the Emperor, to William 'Jell, one of the early conspirators, and the greatest of Swiss patriots, and by the intrepid spirit he showed in return. Tell was taken prisoner by his oppressor; but while being conveyed on the lake Lucerne to Kussnacht, the residence of the latter, he made his escapc, and hastening by land, surprised the tyrant near his castle, and shot him on the spot with an arrow. This brought matters to a crisis. The Waldstetten at once availed themselves of the advantuge they had gained; the intestine troubles of Austria prevented that power from taking effective retaliatory measures; the authority of the empire was thrown off; and the independence of the oppressed country established. On the 7th of January 1308, the people of the Waldstetten assembled, aud took an oath of perpetual alliance.

Every thing connected with the history of VVilliam Tell is interesting. Ile was born of humble parents, at Burglen, in the neighbourhood of Altorf, the capital of Uri; and was married to a daughter of Wiltiam Furst, one of the three orig-
inal conspirators. On the spot on which Tell landed when he escaped from Gessler, a chapel was erected, thirty-one years after his death, to commemorate the event. In the interior of the building, the most celebrated actions of the patriot's life are coarsely painted. He fought at the famous battle of Morgarten, of which we shall immediately speak. Instead of courting places of emolument or distinction, he refused them when offered to him. The highest official dignity he accepted was that of first magistrate of Burglen. His death, which happened in 1368, when he had attained to advanced years, was accidental, and took place in connexion with an event not unworthy of his patriotic life. He was drowned in attempting to rescue a boy who had fallen into a stream which passes by his native place. He left behind him a name the most illustrious in the Swiss annals.

But Austria, though, as previously mentioned, she could not effectually oppose or prevent this revolution, adopted measures for this purpose, so soon as her intestine commotions would permit. In the year 1315, Leopold, Duke of Austria, marched against the indepenclent cantons with an army of 20,000 men. Nor were the patriot band, which, though few, were undismayed, unprepared to receive them. The latter amounting only to 1400, seeing that their invaders were intending to force their way into their liberated territory at Morgarten, a narrow pass formed by the lake Algeri, and a neighbouring mountain, resolved to make a stand at this formidable strait: and, after imploring the divine assistance, they took up an advantageous position on the mountain. The result, which, in some measure, recals to our minds the battle of Thermopylae, was as glorious to the patriots, as it was worthy of their cause. The whole Austrian army was either killed or dispersed; while the loss of the Swiss is not estimated at more than fourtcen. This defeat settled the question between the two countries. In the same year the three cantons of the Waldstetten confirmed at Brunnen the alliance recently formed: and the Helvetic confederacy dates its foundation from this period, namely, the ycar 1315 . It consisted at first of the three cantons already mentioned: during the course of the same century, Berne, Zurich, Lucerne, Glaris, and Zug, joined the confederacy; and other five, namely, Appenzell, Schaffhausen, Fribourg, Soleure, and Basil, in the beginning of the 16 th, thus forming the thirteen cantons so well known in history.

Meanwhile, indeed so early as the eighth century, christianity was introduced into this country, by two Scotsmen, educated at the farnous monastery of Jona, founded by St. Columbus. The reformed doctrines were also early introduced; and the name of Switzerland is intimately connected with the history of the Reformation.

The history of the Swiss confedcracy ceases to be interesting for many centuries subsequent to the union of the thirteen states. These states, notwithstanding intestine quarrels about religion, continued to fourish, to cultivate and enjoy the friendship of each other, and to be at peace with
the other states of Europe. It is not till the year 1798, that the history of the Helvetic confederacy began again to be connected with that of the surrounding countries. Contrary to the express treaty concluded between France and the country under review in 1792, the French Directory made a hostile descent on the canton of Basil in the year 1797. The Directory, without any other motive than the hope of plunder, excited, says M. Schoell, a revolution in Switzerland, and under pretence of being invited by one of the parties, they sent troops into that country; overturned the existing order ol things; and uader the title of the IIelvetic Republic, established a government entirely subject to their authority.

Such was the downfall of the ancient constitution. The Swiss, cnslaved by the Directory, made several bold efforts to regrain their former independence, but in vain. Nor were they firmly united, else success might have crowned their exertions. Two parties, which had long existed, though they had not openly arowed themselves, now appeared, and Switzerland experienced a series of revolutions in which the unionists, or aristocratical par\(t y\), and the federalist or democratic alternately had the ascendency. A civil war now tore this country, so long peacefuland happy. A French army, under the command of Ney, againentered it, and establibhed (1803,) a constitution, not of a kind wished for by the majority of the people, but recommended by Bonaparte, now consul of France. This constitution is known in history by the name of the Act of Mediation; and Bonaparte, putting himself at the head of it, commanded the able cooperation of the Swiss in his future wars. Swizelland, as belore mentioned, now included nineteen cantons; the constitution of cach of which was more or less democratic; while the equality of the citizens formed the basis of them all. Under such circumstances, with the exception of some partial commotions, did this combtry continue till the success of the allied forces emancipated her from the grasp of her conqueror. Immediately on this event, the cantons were far from being agreed as to the future constitution of the country. A civil war, indeed, was likely to be the consequence. But the Congress of Vienna, which met in 1815, and fixed the boundaries of the different countries of Europe as they now stand, prevented this calamity, by taking the case ol' Switzerland into their consideration. They did for her more than her best friends could have expected. They restored her independence. They made, as stated in the beginning of this article, an addition of three new cantons to her territory. They granted to her that constitution of which we have already given an account.Under all these advantages, however, the Swiss cantons cannot be looked upon as greater than a third rate power; but in other respects, particularly with regard to literature, education, and civil privileges, she is not inferior to almost any of the first powers in Europe.

Sec the Articles Austria and France: Muller's Ifistory of Sucitzerland: Koch's Rerolutions de l'E'urope, with Schoull's Continution; Trarels in Suit-

Vo:. XVII. Part 11.
zerland, by Ebcl, Coxe, and Simond: Saussure's Voyages dans les Alpes; Annual Register for 1815. (r. m .

SYDENIIAM, Tnomas, a celebrated physician, was born at Winford Eagle in Dorsetshire about the year 1624, and was the son ol' a gentleman of independent fortune. He was sent to Oxford in 1642, and after taking degrees there and also at Cambridge, he practised in Westminster. He died, December 1689 , in the 65 th year of his age. A very full account of him as a medical writer has already been given in our Article Mrameane, Vol. XII. p. 730 .

SY'DNEY, a town of New Holland, and capital of New South Wales. It is situated on the two necks of land which form Sydney cove. The town, which has now considerable regularity, covers a great extent of ground. The public buildings are handsome, and there are many excellent houses, though the greater number are of a mean aspect. The govermment house is athandsome buidling. A bank was established here in 1817, and there are two excellent public schools for the education of children of both sexes. The expense of it is defrayed by a tract of land of 15,000 acres, stocked with horses, catle, and sheep, a part of which, both land and stock, is given in dower to every femate that marries with the consent of the committe. There is here an auxiliary Bible Society and a Sunday School institution, which were instituted in 1817. Besides the public schools there are various private seminaries for boarding and educating the children of the wealthier inhabitants. Population about 8000. East Long. \(151^{\circ}\) \(25^{\prime}\). South Lat. \(33^{\circ} 15^{\prime}\).

SYENE, Sienna, or Assuan, a celcbrated town in Upper Egypt. The principal antiquities here are a small temple, supposed to be the remains of Eratosthenes's observatory, the remains of a Roman bridge, and the ruins of the Saracen town. The latter include the city wall, built of unburned bricks, and defended b; square towers, several mosques with lofty minarets, and many large houses in a state of wonderlul preservation. There is a castle at Syene, commanded by an aga, but it is poorly defended. There is also a handsome stone quay. East Long. \(32^{\circ} 54^{\prime} 34^{\prime \prime}\). North Lat. \(24^{\circ} 5^{\prime} 23^{\prime \prime}\). See Istronosv. Vol. II.

SYLLA, See Roman Empire, Vol. X̌VI. p. 401.
SY MPIESOMETER, from ountus? to compress, and ustgov, a measture, is a barometrical instrument invented by Mr. Adie of Edinburgh, for measuring the weight of the atmosphere by the compression of a column of hydrogen gas enclosed with a column of almond oil. A drawing and description of it have been already given in our Article Meteorology, Vol. XIII. p. 166. See the same Artiele, page 178.

SYRACUSE, an ancient city and republic in Sicily, celebrated for its splendour, its wealth, and its military prowess; but now most illustrious as having been the birth place and residence of Archimedes, whose genius and labours have survived the memory of all its other greatness.

The ancient city of Syracuse was surrounded by 4 L
a treble and almost impregnable wall 18 miles long, and contained four considerable cities, Acradina, Tyche, Neapolis, and the Island of Ortygia.

Acradina, (See Acradina, Vol. I.) situated on the shore, was separated from Neapolis and Tyche by a wall of extraordinary thickness and altitude. Tyche was built between Acradina and the steep and rugged hill called Epipolx, and contained the great gymnasium and several beautiful temples, particularly that of Fortune. Ortygia was united to the other cities by a bridge, and contained the palace of Hiero and the masnificent temple of Diana and Minerva. Neapolis, or the New City, formed the western extremity of Syracuse, and was defended by high ground. The principal ornaments were the temples of Ceres and Proserpine, a theatre and amphitheatre, and the statue of Apollo Temmites, alterwards carried to Rome.

Syracuse had also four fine harbours, separated by the island; the greatest, which was 5000 paces in circuit, and about iwo miles long and one wide, was formed by a point of the island Orlygia on one side, and on the other by the little Island and Cape Plemmyrium. Its entrance was 590 paces wide. It ran into the very beart of the city, and was called Marmoreo from its being encompassed with marble edifices. The lesser harbour is on the North East of Ortygia, and near it is still shown the site of Archimedes's house, and the tower from which he burned the Roman galleys.

Modern Syracuse occupies the south-east corner of the ancient city, and contains Ortygia, and part of Acradina. It is surrounded by a wall, and is defended by draw-bridges. Though the strcets are narrow, yet they are tolerably regular, and the houses are upon the whole pretty well built. The ancient temple of Minerva has been converted into the cathedral of the city, and is dedicated to the Virgin Mary. The ancient amphitheatre still cxists and attests its former grandeur. It is 300 feet long by 200 wide, and the arena, the sides and passages, were all cut out of the solid rock. A part of the long wall built on the north side of the city by Dionysius still remains. It is seven feet high, and 10 fect thick. The catacombs of Acradina still exist. They are about a mile long and eight feet high, containing many iombs and sepulchral caverns. The Ear of Dionysius is a gulf or cave 170 feet long by 60 high, and from 20 to 35 wide, possessing a powerful echo. The fountain of Arethusa still discharges the contents of a river, and that of Cyane, a few mites from the town, sends out a copious stream. In the ycar 1810, a beautiful statue of Venus, withont the hearl, was dug out of a heap of ruins under a tree, and by a little expense other objects of antiquity might easily be obtained. An hospital, with a number of churches and conbents are the only other objects in the city. The exports from the town are wax, wheat, oil, hemp, and slates. Population 14,000. East long. \(15^{\circ}\) 27-9'. N. lat. \(37^{\circ} 3^{\prime}\). See our articles Aremmedes, Vol. II. p. 307. Athens, Vol. 1II. p. 27. Burning Instrummats, Vol. V.p. 51.

SYRACUSt, a line Rourishing post village and
seat of justice, Onondago county, New York, situa ted on the Erie canal at the point where the Salina side canal leaves the main trunk, 25 minutes north of west from Albany; 47 miles W. from Utica, and by post road 342 miles a litule E. of N from Washington city.

The village of Syracuse stands at the foot of a range of hills, out of which and flowing to the north issues Onondago creek, which about two miles below enters the lake of the same name at the village of Salina. In a state of nature the space between the hills of Syracuse and the Onondago lake was an alluvial flat, liable to annual inundation, but the side canal which connects the Erie trunk with Lake Ontario by way of the Oswego river, has been extended from Syracuse and into Lake Onondago by a serics of locks at Salina.

The side canal assists to drain the flats which are also desiccated by other drains, and by an operation at its outlet, which has lowered the level of Onondago lake. The salines or salt flats are at the village of the same name. When the writer of this article visited these places in 1823, the operations of draining the flats, those on the Onondago canal, and the erection of extensive pans to make salt by solar heat, were all in a state of forwardness.

SYRIA, a province in the Turkish empire, consists of five pachaliks; viz those of Aleppo, Tripoli, Damascus, Acre, and Palcstine. It is 150 leagues long and 35 broad, and contains about 5256 square leagues, and the population is reckoned at two and a half millions. See Alepro, Palestine, Damascus, Palmyra, and Turiey. See also Volney's Travels in Syria, and Clarke's Travels, vol. ii.

SYROS or Syra, an island in the Grecian archipelago, about 36 miles in circuit, and 14 long. The town of Syra is built on the summit of a lolty bill, so conical that it resembles a vast sugar-loaf covered with honses. The quay, with several warehouses, is at the base of this cone. Near the harbour, which is tolerably good, there are some ruins, and it is said that many ancient marbles are buried behind the magazines. The modern town probably occupies the site of the ancient Acropolis. The streets of Syra are dirty and narrow; and the old fountain still exists near the town, discharging its limpid water from the solid rock. The productions of the island are wines, figs, cattle, barley and wheat. The inhabitants, who are all Greeks, profess the Catholic religion. Population 4000. East Long. \(24^{\circ} 34^{\prime}\). North Lat. \(37^{\circ} 22^{\prime}\). See Clarke's Travel's, vol. iii. p. 424-433.

SZEGEDIN, a large town of Hungary, in Csongrad, opposite to the contlux of the Theyss and Maros. The principal public buildings are a theatre, a work-house, several hospitals, a monastery of Minorites, a school of the Piarist monks, a gymmasium, and a small academy for philosophy. The principal manulactures are woollen goods, leather and toys. The trade is carried on by a number of barges, some of 250 tons . The exports are corn, cattle, wool, tobacco, and timber. Cattle are imported from Turkey, and salt from Transylvania. The town is surrounded by a mound and moat and is defended by a brick wall. l'opulation, 26,000.

TABASCO, river of Mexico in the state of Tabasco. This stream, as delineated on 'Tanner's Map of Mexico, rises in the mountainous chain between Guatemala and Chiapas, and flowing thence 150 miles, curves to the northeastward, enters Tabasco, and falls into the southern part of the Gulf of Mexico, after an entire comparative course of 300 miles, between latitudes \(16^{\circ}\) and \(18^{\circ} 30^{\prime} \mathrm{N}\).

TABASCO, state of the Republic of Mexico, bounded on the east by Sumasinta river, separating it from Merida or Yucatan; on the south it has the state of Chiapas; west the eastern extremity of Vera Cruz; and on the north the Gull of Mexico. As laid down on Tanner's Map of Mexico, it is about 150 miles long from cast to west, with a mean breadth inland of 60 , area 9,000 square miles.

The declivity of Tabasco is to the northward, and drained in that direction by Tabasco, St. Pedro, and Sumasinta rivers. Lying between latitudes \(17^{\circ} 20^{\prime}\), and \(18^{\circ} 30^{\prime} \mathrm{N}\). and longitudes \(14^{\circ}\) and \(16^{\circ}\) \(30^{\prime} \mathrm{W}\). from the meridian of Washington city. Population 80,000.

Hermosa, the capital, stands on Tabasco river about 40 miles inland from the Gulf of Mexico, N . Lat. \(17^{\circ} 46^{\prime}\); Long. \(16^{\circ} \mathrm{S7}\) 'V. from W. C. Population 5,000.

TABASHEER, the name given to a siliceous substance of vegetable origin, which possesses very remarkable properties, both optical and physical. In the Philosophical Transactions, p. 1819, and in the Edinburgh Journal of Science for April 1828, No. xvi. p. 285 , Dr. Brewster has given a full account of these properties, so that we shall content ourselves with giving a general abstract of them.
"Bamboo-manna" (says Dr. Wilson* the learned secretary of the Asiatic Society of Calculta,) " is known in the Materia Medica of the Hindus by a variety of appellations, implying simply its being the produce of the bamboo, or denominating it from some of its sensible properties, the milk, sugur, or camphor of bamboos. The name in ordinary use is Bansa-rochamu, the ornament of the bamboo, corrupted in the vernacular dialect to Bunslochan. The name in use amongst the Mahommedans of India is Tabasheer, an Arabic word, explained by Meninski, liquor, specie sacchari concrctus in arundine Indica majore, et quasi potrefactus; in India, saccar Bambu (sugar of the Bamboo, dicitur, pro quo cineres nodorum aut radicum vulgo distrahi solent.

According to the Sanscrit works on medicine, such as the Bhava Prakas and Raja Nighant, the bunslochun is slightly austere, astringent, and sweetish to the taste. It possesses cooling and
demulcent properties, allays thirst and fever, and relieves cough and difficult breathing. It swectens the humours, and is serviceable in jaundice and leprosy. Its chicf virtues, however, and those for which it is mostly estemed, are supposed to be of a restorative nature, and it is highly apprized as an aphrodisiac.

In the markets of Calcutta it is found in three states. The best is termed Patnui, being brought from Patna, and is in small compact pieces of a milky-white colour, having the lustre of emanel, and being semitransparent. It is termed Nillounthi, from its bluish tinge, and Paharika, from its being brought from the Pahar, or hills to the westward of Behar. The second sort is of a dead white colour, without lustre or transparency, and much more friable than the preceding. It is termed Chheluta, the Bengali corruption of Sylhet apparenty, whence it is well known that this substance is procured. The third and worst kind is termed Desi or country; it is white; with a yellowish tinge, less friable than the second sort, but without lustre or transparency. The last is said to be soluble in water; the two first are not. An artificial bunslochun is also manufactured from chalk.

The following information respecting the Pha. rica or hill tabasheer, has been received from Captain Playfair, residing at Ilazareebagh.

Bunslochun is found at Zelda, Boondoo, sixty miles from Huzareebagh, at Luka Kole, 100 miles from thence, at Palamow and at Nagpore.

It is found in the small hill bamboo. In a clump of fifty or sixty, only five or six contain the sutstance.
From each bamboo one or two rutties (four or five grains) are usually obtainable. It very rarely happens that four anas (from forty to fifty grailis are procured.
It is found in the same bamboo of different quatities. The best sort is of a bluish white colour and glossy surface. An inferior kind is of a chalky white without lustre, and the worst sort is brown and even black.
The raw material is sold at ten rupees a secr: buat it is prepared for use, and in that state sells from forty to fifty rupees per seer.
The only preparation, however, is its imperfect calcination.
A quantity is placed in an open ressel of baked clay upon a fire of charcoal, which is urged with bellows till the vessel and its contents become of a red heat. The manna first becomes black, but when raised to a red heat, emits a fine diffusible aroma.

It is kept red hot for some time, occasionally stirred with an iron spoon, and sometimes another vessel is inverted over that in which it is contained.

\footnotetext{
- In a MS. communication sent to Dr. Brewster, by George Swinten, Esq who has, at great trouble, scnt him the fines: collection of specimens of Tabasheers in existence.
}

The fire is then allowed to subside, and as it cools, the bunslochun resumes its white colour.

An ounce and a half, treated in this manner, was reduced to an ounce. The process lasted three quarters of an hour.
"The substance is sent to market in this state, and is taken in powder as a tonic, or chewed with betel, with a view to renovate the constitution."

As tabasheer, says Dr. Brewster, is found only in a small number of bamboos, (arundo bambos,) we cannot regard it as a secretion from the plant in a healthy state. An intelligent native of Vizagapatam, who had inspected several hundred bamboos, observed, that in every joint which contained the tabasbeer there was a small perforation evidently made by an insect; and he conceives that the exterior juices of the plant find their way through this opening, and drying up form tabasheer. This observation, however, is by no means correct. I have found tabasheer in many joints where there was no perforation; and as the perforations are never lined with the siliceous matter, and have no accumulation of tabasheer at either end, they can have performed no part either in secreting or conveying the juices of the reed.

An examination of the joint or internode of the bamboo will probably lead us to a more satisfactory explanation. The culm or stalk of the bamboo
 represented by MN, Fig. 1, consists of a number of concentric rings. The outer rings, \(\mathrm{AC}, \mathrm{BH}\), shown in section, are continued through the length of the reed, notwithstanding the little anmular protuberance Which marks cxternally the place of the internode \(A B\). The inner rings, DE, GF, however, the innermost ol which is a delicate membrane, do not pass onwards, but are interrupted by the internode, and turning round at El, they form the roof of the cavity DEFG, joining the similar membrane on the side FG. Between AE and FB, where the concentric rings diverge, the space left
11 between them is filled up with a soft spongy mass, which forms the substance ol the internode AB. As the sap asecnds between \(A C\) and \(E D\), it must be sopped partially at the intemode between \(A\) and E, part of it passing \(A\), and part of it being either absurbed by the spongy mass between AE, and remaning there, or passing through it to the opposite side of the stem.
But, however this may be, the juices of the plant are collected at the intermode, and could not possibey penetrate into the imer tube while the intar ting and membrane are somm, as in the localthy plant. When this membrane, however, is destroyrd or rent by disease, or when the whole internode is in a state of mal-conformation, as I have found it, the juire or milk at the joints is immediately extravasated, limes the rool lif, or the bottom D) (i) of the
inner tube, and forms tabasheer by its subsequent induration.

The quantity of tabasheer, therefore, does not depend on the size of the reed, but upon the diseased state of its joints; and the greatest quantity was found in one where the internode is completely disorganized. Captain Playfair has mentioned four or fire grains as the usual quantity. In the bamboo now alluded to the quantity is fully twenty grains.

By the cutting down and transporting of the bamboo, the tabasheer encrusted wion the roof or bottom of the cavity is cetached, and is always found in separate picces of different sizes. Its existence in any individual bamboo may therefore be known by the rattling noise which takes place by shaking the reed. A portion of it, howerer, often adheres to the place of its formation, and we may sometimes detect it in the pores of the spongy mass from which it has exuded. The largest piece of tabashecr are generally impressed with the inner membrane of the reed upon which it has been formed.

In opening different bamboos, the included tabashecr presents various appearanecs. When the tube has been perforated with holes, it has a brown dirty aspect, arising no doubt from the admission of dust; and the perforating insects are often found among the fragments. When there are no perforations, the tabasheer is clean and pure, presenting a great varicty of aspects, depending probably on the nature of the juices, on the manner in which they have been extravasated, and on the time in which their induration has been effected. The different varietics of tabashecr may be thus enumerated.
1. The fonest rariety, which is also the rarest, is of a delicate azure bluc colour by reflected light, and of a faint yellowish hue by transmitted light. It is easily crushed between the fingers, and it has an aerial and unsubstantial texture, which we look for in rain in any other solid. It has its counterpart in the mincral kingdom in some of the finer semiopals, which approach to the precious varieties.
2. Another varicty of tabasheer reflects a yellow tint like that of molybdate of lead, and transmits a light of a reddish yellow tinge. It resembles greatly some of the yellow semiopals.
3. A third variety is nearly white, with a slight tinge of blue, and is translucent at the edge like cacholong.
4. A fourth varicty resembles chalk, and is perfectly opaque.

Although these are the forms in which tabasheer generally oecurs, yet several peculiatities ol structure present themserves in the examinatian ol numerous specimens. In some 1 have observed a layer exactly like jasper, and in one specimen the surface is envered with a brilliant cnamel possessing all the lustre of pure quartz.

The chemical composition of tabasher is still involved in some uncertainty. That which Dr. Russell brought from India in 1790, and which is similar to that sent by Mr. Swinton, consisted according to Mr. Smithson, of pure silex; but lourcroy
and Vauquelin* having examined a portion of what Baron Humboldt brought from South America in 1804, found it to consist of seventy parts of silex and thirty of potash. Dr. Turner, \(\dagger\) who at Dr. Brewster's request, made a new analysis of the Indian tabasheer, found it to consist entirely of silica, with a minute quantity of lime and vegetable matter.
Its specific gravity varies from 2.060 to 2.190 . The translucent variety of tabashecr loses 3.84 per cent, and the transparent variety 4.58 by a red heat, losses which it does not recover by exposure to the air.

It feels gritty in the mouth like magnesia, with a slightly nauseous taste. It dissolves readily in a solution of pure potash, even after being heated to redness.

When we plunge any of the varieties of tabasheer in water, an effervescence takes place, owing to the rapid escape of air from its pores; and when this has ceased, the transparent and translucent varieties have their transparency and translucency greatly increased, but the chalky kind retains its opacity. The quantity of water imbibed by the tahasheer exceeds in weight the tabasheer itsell, and the space occupied by the pores is to that occupied by the solid particles nearly as \(2 \frac{1}{2}\) to 1 .

The chalky tabarheer, which does not become transparent by the absorption either of oil of cassia or water, readily imbibes the fat oils, and with oil of beech-nut it becomes as transparent as glass, but it requires a considerable time to displace the air from its pores. These results are perfectly analogous to those which we obtain with hydrophanous opal, and I have also succeeded in giving transparency to the chalky silex from the Giants Causeway, by long immersion in oil of beech nut.
lf, instead of immersing the tabasheer in water, we place a small drop upon the most transparent variety, the drop is instanty absorbed, but the spot which it occupies becomes as white and opaque as if it had been covered with white lad. This extraordinary property, which is not possessed by any of the siliceous minerals, will be explained when we have treated of the optical properties of this substance.

The opaque tabasheer, which has become transparent by absorbing oil, exhibits a very curious phenomenon by change of temperature. If it is laid upon a piece ol cold lead, it becomes suddenly opaque, and il it is restored to a warmer situation, its transparcney as suddenly returns. These effects obviously arise from the great expansion and contraction of oil by heat. When the oil retreats from the surface of the specimen, the mutual attraction of its own particles accumulates them in one place, instead of permitting them to remain in a state of contraction in separate pores, as might have been expected. When the greater part of the oil has been expelled from these specimens by heat, the tabasheer exhibits a beautiful reined structure, the veins being sometimes parallel, as in the onyx, and

\footnotetext{
- Mem. de L'lnsitut, tom. ii. p. 382, an. 1506.
}
sometimes curved, as in the agatc. This effect arises from the different degrees ol porosity in the different veins, in virtue of which some of them absorb more oil than others. The limits of each vein are thus rendered visible in the very same manner as the veins of burned chalcedony, which has absorbed oil from the lapidary's wheel, may be displayed in all their beautiful inflexions, although in its natural and transparent state it did not exhibit the slightest trace of such a structure. It is from the same property of some of the amorphous siliccous minerals that the lapidary is able to develope, and to colour, the veins of particular agates, and that the artist can excecute the finest drawings, which actually lie beneath the surface of certain porous specimens of chatcedony.

The absorptive power of tabasheer is not confined to fluids. It draws into its pores solith bodies in a minute state of subdivision. If we wrap a piece of it in a bit of paper, and burn the paper, the tabasheer will come out ol it of a glossy black colour. transmitting only red light, like a piece of smoked glass. By repeating this operation twice or thrice, it becomes so deeply black as not to admit a ray of the meridian sun. By exposing the specimen to a white heat the black matter is discharged, and the tabasheer is restored to its lormer appearance and properties. When the blackened tabasheer is plunged in water it disengages the included air, but with less rapidity than belore, because there is less air to disengage; and when it is broken and pounded, its fracture and its powder are black. If the black matter has not insinuated itsell copiously into the beart of the specimen, this portion is of a bluish slate-colour. When slightly wetted in this place it becomes white, and when saturated with water it becomes jet black. This, however, is an illusion; for though it does appear absolutely black, yet it is, in reality, made translucent by the absorption of the water. This translucency allows the white light, which the nucleus formerly refected, to pass on to the black coating, where it is absorbed, -an effect analogous to what takes place in a black inkstand, in which it is impossible to distinguish ink from water by looking at the surface of the fluid.

One of the most remarkable properties of the tabasheer is its low refractive power, which is lower than that of any other body, whether solid or nuid, as will be seen from the following table:-
\begin{tabular}{lccc} 
& \multicolumn{2}{c}{ Indes of Refraction. } & \multicolumn{2}{c}{ Inder of Refraction. } \\
Air, & 1.000 & Flint glass, & 1.600 \\
Tabasheer, & 1.111 & Oil of cassia, & 1.641 \\
Water, & 1.336 & Diamond, & 2.470
\end{tabular}

Hence it appears, that the refractive power of ta. basheer is actually nearer that of air than that of water. The index of refraction given above is the lowest that I have obtained; but specimens of greater specific grarity have higher refractive powers, as will be seen from the following mea-sures:-

\footnotetext{
+ Dr. Brewster's Journal of Science, No. xvi. p. 335, 1823.
}
\begin{tabular}{cccc} 
Tabasheer, & 1.1114 & Tabasheer, & 1.1503 \\
do. & 1.1145 & do. & 1.1535 \\
do. & 1.1292 & do. & 1.1825 \\
do. & 1.1454 & &
\end{tabular}

The specimen of tabasheer which I have described as covered with a brilliant enamel, possesses great hardness; and from the measure which I have taken of its angle of maximum polarization, I have no doubt that its refractive power approaches to that of the semiopals.

The determination of the low refractive power of tahasheer enables us to give a satisfactory explanation of the curious fact already mentioned, that a sinall drop of water produces white opacity, while a greater quantity renders it perfectly transparent.

If ABC is a
 prism or piece of tabasheer, we maysupposeone of its pores, highly magnified, to be represented by abcd. This space is filled with air, and when a ray of light MN, enters the separating surface \(A B\) at \(e\), and quits it at \(h\), it suffers so little refraction, that the tabasheer allows us to see objects distinctly through it. Let us now suppose that a small quantity of water is introduced into the pore \(a b c d\), so as not to fill it, but merely to line its circumference with a film which terminates at a \(\beta \gamma \delta\). Then the light which passes from water into air at \(f\), and again from air into water at \(g\), will suffer a comparatively great refraction, and will be considerably scattered \(i_{1}\) all directions. Hence the tabasheer must appear opaque. If we now saturate it with water, so as to fill the pore \(a b c d\), the refractions at \(f\) and \(g\) are removed, and the ray \(e f\) will pass on to \(h\) unobstructed, so as to experience no change of direction, except the small one which
takes place at \(e\) and \(h\), where it enters and quits the fluid.

It may now be asked, whence comes the silex which circulates so abundantly in the juices of the bamboo? If we consult our best writers on chemistry and botany, we shall find it ranked as a " foreign ingredient," which the plant had derived from the peculiar soilin which it vegetated. Those who examined the drawings and descriptions of the distribution of silex in the Equiselum hiemale, which I submitted to the Society some years ago, will concur with me in the opposite opinion, that the silex is an integral portion of the plant itself, and probably performs some important function in the processes of vegetable life."

For farcher information on this subject, see the Phil. Trans. 1790, p. 2739 ; 1791, p. 368; 1819, p. 283, Humboldt's General Narrative, vol. i. Introd. p. xiii. note, and Dr. Brewster's Journal of Science, vol. xvi. p. 285 and 335.

TABreez, or Tauris. See Persia, Vol. XV. p. 455 , and Kinneir's Geog. Mem. of Persia, p. 250.

TACITUS, Calus Cornelius, a celebrated Roman historian, was born about A.D. 57, at Interamna, now Terni. His father was procurator of Belgium, and so high was the reputation of his son, that in the twentieth year of his age, Julius Agrjcola gave him his daughter in marriage. He was successively Prator and Consul; but history has not preserved either the circumstances or the time of his death. He lived on terms of the most intimate friendship with Pliny. His principal works are his "Annals," containing the History of Rome from the death of Augustus to that of Nero;-his History embracing a period of twenty-eight years, from A. D. 69 to 96; his Life of his Father-in-law, Cn. Julius Agricola; and his Treatise on the Manners of the Germans. The style of Tacitus is remarkable for its precision, its energy, and its dignity, and he is peculiarly entitled to the name of a philosophical historian. Among the best editions of Tacitus, are those of Rome, 1515, folio; of Gro. novius, 2 vols. 410.1721 ; of Ernest, 2 vols. 8 vo. Lip. 1752 and 1771 ; of Brotier, 7 vols. 12 mo .1776.

\section*{TACTICS, NAVAL.}

We regret that our limits will not permit us to do justice to this very important subject, associated as it is with all that is glorious in our beloved sountry, -with the most illustrious names of modern times; and calling up in glowing colours the victories of St. Vincent, of the Nile and Trafalgar. Our continental rivals have long denominated us the giant of the seas. Our flects have covered every ocean-the thunder of our hoating bulwarks has resounded from cuery quarter of the splaere;our gallant admirals have exemplified by a brilliant and contmued practice, all that the most enlightenend theories can teach; and there is hardly a page
of our Naval History but is filled with achievements which have crowned our naval heroes with immortal honor and renown.

Naval tactics consist of such evolutions of a fleet, as shall at once insure its own safety, and under crery possible coudition, annoy and conquer the enemy. The writers on Naval Tactics have commonly laid down five orders of sailing, one order of battle, and one order of retreat. Of the fiveorders of sailing it may be remarked, that that is the best in which the course of the fleet is least impeded, and from which the desired order of battle can be the most readily and quickly formed, and as experience
has proved the fifth to be the best, we shall introduce it to the reader's notice in lig. I, in which the fleet is divided into three columns, each of which is ranged in a line parallel to the close-hauled line upon which they are to lorm the order of battle. Generally the van-guard forms the weather rolumn, commanded by the vice-admiral; the centre division commanded by the admiral, forms the centre column; and the rear guard commanded by the rear admiral constitutes the lee column. This arrangement, however, is sometimes altered for particular purposes. The genius of a Nelson cammot be cramped by arbitrary rules.

\section*{Order of Sailing.}

It is obrious, that whatever order of sailing be determined on, in any case, the most rigid attention to its execution should be observed. The columms and the vessels, for this purpose, should preserve their proper distances. "We commanders of each division, and each succeeding ship should keep themselves reciprocally abreast of each other; every vessel occupying, with respect to its immediate leader, the distance originally laid down by the admital. It may be remalked, that the distance between the columns will be correct, if the lirst of any column, and the last ship of the next column form an angle of two points with the line on which they are moving. This order of sailing is preferred, because it unites all the advantages of the others, without their defects. The whole flect is rendered more compact by \(i t\), signals can be better obscrved, and the order of battle can be more readily accomplished from it. It may be added, that in case of a very numerous fleet, the separate divisions may be formed into two or three columns, each chief being placed a little in advance of the middle of his own proper division. This arrangement is represented in Fig. 2.

It is an important object in this order of sailing, to regulate the distance ol its columns. To determine this distance indeed, their length must be previously known. In Fig. 3, let the perpendicular CG be raised to the column CF, and equal to it in length. Join FG, and make FH cqual to FC. Then will GH be the proper distance of the columns. This will be apparent, when we consider the van \(C\), and the rear \(E\) to be equally to windward, and that EC is at right angles to the direc. tion of the wind. The angle BFC being also \(22^{\circ}\) SO', is the half of CFG; and, therefore, the triangles BHF and BCF are equal and similar; and BC equal to the intervals of the columns, is equal to BH or GH, according to the construction.

The same result may also be obtained by a numerical computation, by the following rule: From the square root of double the square of the length of the column, substract the length of the same column, and the remainder will be the interval between the columns. Or, as an approximate rule, the following is sometimes applied: Take \(\frac{5}{1}\) ths of the length of the column. and the result will be ncarly the dis. tance of the columns. These rules are illustrated in the following example.

Suppose a fleet to consist ,f three columns, and six ships in each column, to determine the proper interval of the columns, the distances between the ships being 100 fathons, and the length of earh ship from the jib-boom ent, to the fly of the ensign 46 fathoms.

The length of the column in the present case will be 776 fathoms. Applying the first rule, its square will be 602176 , and the square root of the double of this amounts to 1097. Subtracting from this last result the given length of the column, and there will remain 321 fathoms for the interval between the columns. By taking in \(_{2}^{5}\) ths of the length of the column, according to the second rule, there results 323 lathoms for the distance of the columns, which is sufficiently near lor practice.
If the distances between the columns should at any time be given, the converse of the last rule will afford a ready method of determining the necessary lengths of the columns, vi\%. by multiplying the given distance by 12 , and dividing the result by 5 .

It may, however, happen that the columns have been already tormed independently of the preceding rules, and that it is necessary to determine their interval. Suppose, by way of example, that a fleet consists of 12 ships in a column, and therefore of 11 intervals between the ships. Then we shall have,
\begin{tabular}{|c|c|}
\hline & Fathom. \\
\hline 12 ships at 46 fathoms each & 558 \\
\hline And 11 intervals at 100 fathoms each & 1100 \\
\hline The length of the column being therefore & 1652 \\
\hline
\end{tabular}

And to find the distance between the columns, let the bearings of the leading slip of one column, with the sternmost ship of another column be taken, and which may be denominated the angle of position. This may amount to thirty degrees, and hence we shall have, by the ordinary rules of trigonometry,
\begin{tabular}{|c|c|}
\hline As the rosine of the angle of position, \(30^{\circ}\) & 9.9375306 \\
\hline - the sine of the same angle & 96959700 \\
\hline : - the length of the column 1652 & 3.2180106 \\
\hline & 129169800 \\
\hline & 99375306 \\
\hline : the distance between the columns 954 f.thoms & 2.9794991 \\
\hline
\end{tabular}

Our nautical friends will readily perceive that the same might have been worked by a traverse table, employing the length of the column as a difference of latitude, and the distance of the columns as a de. parture.

\section*{Order of Battle.}

There is no method of preserving order in battles at sea, but by keeping upon a line, not quite close hauled, a-hcad of each other, and under very moderate sail. The distance between each ship varies according to circumstances, from one third of a cable's length to about 100 fathoms. Thus, in Pig. 4, let \(A B\), \(A^{\prime} B^{\prime}\) represent wo hostile fleets drawn up in order of batte; CD, C'D' their frigates and fire ships, the later being distributed a-breast of the van, the centre and the rear, and protected a-head and a-stern by some figates. These latter lines, it
will be observed, are so arranged as to be to windward, when the enemy is to leeward, and vice versa. Beyond these are the two parallel lines EF, E'F', composed of hospital ships, transports, \&c. and protected by frigates both a-head and a-stern.

\section*{The order of Retreat.}

The order of retreat is seldom if ever rendered necessary to our gallant sailors, although the splendid retreat of Cornwallis affords a proof, that we have admirals who can conduct one with honour and success. Of course it can only be rendered necessary in the presence of a very superior enemy. The general principle is illustrated in Fig. 5, in which the flect is arranged in two lines, AB, BC forming an obtuse angle, the admiral forming the angular point to windward, in the centre of his fleet. The frigates, fire-ships, trausports, \&c. are placed EF, FG, between the two lines to leeward. The course of a retreat is generally before the wind; but the flect may go more or less large, according to the cxigency of the moment.

\section*{To form and menœuvre the differcnt orders withoul changing from or into another order.}

It is a most important principle in naval tactics to become perfectly acquainted with the different methods of forming and mancurring the several orders ol sailing, without changing into another order; and many important adrantages would resuln to the British navy by forming miniature fleets and squadrons of boats, and training the youthful aspirant for naval honours, to just perceptions of the nature of every evolution.

Our limits will only permit us to name the principal manœurres connected with the filth order of sailing with the ligures which respectively illustrate them.

Figs. 6 and 7. Tacking the columns in succes. sion either by day or by night.

Fig. 8. Vecring the columns in succession.
Fig. 9. Plying to windward in column.
Fig. 10. To interchange the centre and weather columns.

Fig. 11. To interchange the weather and lee cobumns.

Fig. 12. To interchange the centre and lee cohumns.

Fig. 13. To permit the weather column to pass 10 leeward.

Fig. 14. To permit the lee column to pass to leeward.

For a complete explanation of these refer to Steel's Natal 'ractics.

\section*{Of ketping ships in their respective stations.}

When an admiral, by signal, orders a particular mancuvie to be performed, it is the luty of every captain and inferior officer to see it carried into perfect execution, and to preserve his ship in the station that may be alloted to her, whatever may be the order of sailing determined on. For this purpose the naval-square has been contrived to assist one gallant seamen in their splendid duty. Suppose Fig. 15 to represent a horizontal section
of a ship, and EF to represent a portion of the longitudinal axis running through the keel, and ABCD a square, formed so that EF may run through the intersection of its diagonals. Now the angles DGE and CGE are each twelve points or \(135^{\circ}\), which is equal to the two courses close hauled on a wind. Let therefore these angles be bisected by the lines GH and GI, which will represent the direction of the wind, when close hauled, upon either tack. Hence, if a ship is running in the direction EF upon the starboard tack, her close hauled course upon the larboard tack will be in the direction of the semidiagonal GC. And if she be running in the direction of FE upon the larboard tack, her close hauled course upon the starboard tack will be in the direction of the semi-diagonal GD.

To apply this to the case of a flect in three columns, close-bauled, the columns coinciding in the direction of the wind, in order to beat to windward with greater facility, let Fig. 16 be referrad to, in which the naval-square is connected with the middle ship of the centre column. Then must the coinciding ships in the columns be kept in the directions GH or GI according to the tack and the wind; while the ships of each column must be in the direction of EF or parallel to it.

\section*{To form the line of battle.}

Ships, from a varicty of causes, are sometimes scattered, and therefore to form readily the line of battle is an operation of the first importance in naval tactics. The general principle is, for the ship which is destined to take the lead, to run to leeward of the whole, then to haul the wind, upon the tack directed, carrying an easy sail. Each of the other ships then makes sail, according to her distance, and chases the ship which is to be immediately a-head of her, and hauls in her wake, in the line on which the van ship is moving. Fig. 17 represents the case of a line of batte alrcady existing, and in which it is required to form the line on the other tack without tacking in succession. This is performed by all the ships of the line vcering together; the rear ship hauling her wind on the other tack, and standing on, white all the others go two points free on the other tack, and haul up, as they successively gain the wake of the leading ship. The rear ship thus gets into the van. For the line to veer in succession, the ran ship veers round, and steers four points frce upon the other tack, and when clear ol the rear ship, she springs her luff, and gets close-hauled. The rest dollow, and haul in succession.
It is also an important evolution in naval tactics to be able to interchange the different squadrons of a fleet with each other. Steel has given some interesting examples illustrating the interchange of the centre and van squadrons, the centre and rear squadrons, and the ran and rear squadrons; how also the ran may pass and form the rear, and how the rear may pass and form the van.

The most beautiful system of evolutions is developed, when an attempt is mate to change from one order of sailing to another. We regret that our brief limits will only allow us to select two cases.

And first, to change from the fifthorder to the line of batte on the same tack, the weather column passing to the rear. This is represented in Plate DXVIII,* Fig. 18, and to accomplish which, the lee column brings to, or keeps only steerage way, as close to the wind as possible. The centre columu bears away together two points, and forms on the line a-head of the new centre squadron. The weather column veering logether, and going seven points frec on the other tack, will gain its station in the rear under an easy sail. Another case may be selected to change from the fifith order to the line of battle on the other tack. This is illustrated in Plate DXIX, Fig. 1, wherein the weather column begins the evolution by tacking in succession. The centre and lee columns stand on till their respective leaders can tack in the wake of the line, when they tack in succession. The two columns to lecward must carry an easy sail, lest they draw too near the rear of the weather columm. Should that, however, be the case, the leader of the centre column must be careful and kcep somewhat to leeward of the sternmost ship of the weather columm, and the leader of the lee column must act in the same manner by the centre columns; or they may stand on beyond the wake of the column immediately to windward of them respectively, and tack to windward. They may then take their stations and form the line with facility.

\section*{Of mancuuring in the fifth order of sailing in six or nine columns.}

On this important branch of the subject we can only briefly remark, that when fleets are numerous, their order of sailing is usually in six or nine columns, instead of three; that is, the van is divided into two or three columns, and so are the centre and rear. If the fleet be in six columns, the admirals place themselves abreast of each other, somewhat a-head and in the middle of the interval of their respective columns; or, if the fleet be in nine columns, they place themselves at the head of their respective centre columns. In either case, each squadron must mancurre itself in the same manner as il it were in three columns. With a numerons fleet, many advantages result from increasing the number of columns, since the signals can be better seen, and every evolution can be performed in a less time, particularly in that important case of reducing it to the order of battle.

We select two examples by way of illustration. Let it be required to change from the line of battle to the fifth order of sailing on the other tack, the van squadron forming to leeward, the centre to windward, and the rear in the centre. This beantiful evolution is represented in Fig. 2, wherein the van makes sail, and tacks in succession; the column brings to, or carries a very easy sail. The leader of the centre column, which is now to form to windward, tacks as soon as the last of his column passes astern of the new lee column, and is followed in succession by his division. The leader of the rear, which is to form the centre column, tacks,
either when abreast of the leader of the windward columm, or when his centre ship passes astern of the lee column, or when lie has the centre ship of the lee column in a line at right angles with the wind. When the rear has tacked, the lee column fills, and all the columus make the necessary sail, for regulating the order.

Secondly, let it be required to change from the line of batte to the filth order of sailing on the other tack, the rear squadron forming to windward, the van squadron as centre column, and the centre squadron to leeward. This evolution is denoted by Fig. 3, in which the van and centre tack in succession, and pass on under easy sail. The rear, which is to be to windward, carries sail, and tacks in succession, when its leader has the headmost ship of the lee column in a line at right angles with the wind, or when its centre ship passes a-stern of the centre columa. 'The columns then make suitable sail to regulate their distances.

\section*{To change and re-form upon changes of wind.}

In the preceding inquiries, we have supposed the wind to remain constant, both in its intensity and direction; but we know that the best conceived plan of naval tactics may be rendered ahortive by a change of condition in one of these causes. A sudden calm may render every ship motionless, or an alteration in the direction of the wind may require a new system of evolutions to be performed.

We must here limit our inquiries to the single but most disadvantageous change of wind that can happen to a fleet in a line of battle, and that is when it comes forward, the order being in such a case with difficulty reformed, particularly if the enemy be in sight. If the wind comes forward from one to six points, and it is intended to keep the fleet on the same tack, each ship having fallen ofl, the whole line brings to, excepting the headmost ship, which immediately bears away a certain number of points. This number of points is known by deducting from eight points one half of the points which the wind has changed; thus, if the wind has come forward five points, deduct hall that number from eight, and the remainder five and a half points will remain, as the number the ships are to run large. The headmost ship then, having fallen off, and bore away, the ship which follows her fills and bears away as soon as she brings her leader to bear on the close bauled line. Lach ship proceeds successively in the same manner, and in the end they altogether haul their wind in the wake of their leader, when they get upon the close hauled line with the sternmost ship, which then fills and stands on close hauled, not being under the necessity of bearing away. This is illustrated in Fig. 4. Steel gives some other methods of accomplishing the same object, some of which are advantageous, and others not, and to which we must refer our readers.

If the wind comes a-head more than six points, and less than twelve, the flect, changing the tack, will manœuvre in the same way as if it had come a-head not more than six points. If two fleets are

\footnotetext{
- The number of this Plate (DXVIII) should have been placed immediately before "Fig. 1 ," in the second line of page 643, as sll the figures menliooed in pages 643 and 644 (from Fig. 1 to 17 inclusive) have reference to it.
}
in sight in this case, that advantage of the weathergage will be gained by the fleet that was before to leeward.

We must close this part of our subject with the interesting inquiry, how to change from the line of battle to the order of retreat, the wind coming forward. This may be done whether the wind come forward or aft, by first re-forming the line of battle, and then changing from that to the order of retreat. This is the most certain, but not the shortest method. It has, however, this advantage, that it does not so quickly communicate the intention to the enemy.

This double manœuvre requiring, however, considerable time, and as circumstances are not always favourable, it may be performed in the manner represented in Plate DXXIX, Fig. 5, and which may be described as follows. The fleet having fallen off, the leader of the van goes four points free, while the rest of the ships stand on together close hauled, in order to gain the wake of the leader and each other respectively. When the centre ship has arrived at the angular point, that is, in the wake of his second-a-head, that wing is formed. The other wing will be easily formed, if (the first wing continuing to sail four points free) the ships of the other wing bear away frur points free together, running on parallel courses with the first wing. The ships of the wing now forming must adapt their sail to place themselves on the proper line of bearing, which will be effected when each first, second, and third, \&c. ship of one wing bears, from the corresponding ship of the other wing, in a line perpendicular to the direction of the wind.

\section*{Of cutting the enemy's line.}

The splendid consequences that resulted from Lord Rodney's cutting the French line on the 12 th of April 1782, afforded the most ample and satisfactory proofs of the advantages of the theory which Mr. Clerk of Eldin was the first to demonstrate as possible, and of which Paul Hoste seemed to have had some indistinct glimpses. We shall therefore conclude our paper by an account of the series of mancurres which has rendered this batthe so illustrious in the history of naval tactics.

On Monday the sth of April 1782, signal was made from the British cruisers of Fort Royal Bay, Martinico, that the French flect, attended by a namber of transports, were then under way. The British fleet immediately weighed from Crosse Islet Bay, St. Lucia, and stood after them to the northward, under the west end of Martinico, and soon got sight of part of their men of war. The pursuit was continued, cluring the night, with all the sail that could be made, dieected by the enemy's night signats, the wind blowing a fresh gale at N.E. by E. At two in the moruing the Valiant, being to windward, discovered the enemy under the north encl of the Island of Dominica. At three o'clock the ficet brought to by sigual, the enemy at that time bearing nearly north.
ln lig. 6, A represents the British feet at two in the morning of the 9 th of April, discovering part of the French fleet, under the morth end of Dominica at F . At three oclock, brought to by signal; at half past five, the signal was thrown out
to prepare for battle, the line to be formed at two cables length asunder, and the fleet to fill and stand on. G, the position of the French fleet at five in the morning, on the starboard tack, working to windward in the channel, between Dominica and Guadaloupe, where they had a steady breeze. H, one of the enemy's ships, at this time so far to leeward, that she must have been taken, had not the wind failed us, while she had it so fresh as enabled her soon to recover her station.

In Fig. 7, A represents the van of the British having at length gained the breeze, fetched up with the centre of the enemy, still upon the starboard tack, when they were fired upon about nine o'clock, and for an hour sustained a distant cannonade from as many of the eneny's ships as could be brought to bear upon them. The centre and rear of the British fleet was at this time becalmed under the island of Dominica, as B. F represents the French, not all in order of battle, some of their ships endeavouring to work to windward.

In Fig. 8, it will be perceived, that A, the centre of the British, having afterwards gained the breeze, joined the van about noon. The rear, which had been becalmed at \(C\), at length got into line as \(D\); and a cannonade continued for an hour and three quarters. F , the position of the enemy, who during all the time kept at such a distance as showed that they meant to disable, -a species of tactics which our opponents the French have too often showed for their own honour a determined disposition to persist in, -as soon as they saw the junction of the whole British fleet. Hauled off to windward, tacking from the van, as indicated by the course HIH. At \(G\) will be perceived the enemy's fleet of transports, stretching away to windward of the Saints. The enemy did not at first appear to have suffered much; but soon after, one of them seemed to be crippled; and afterwards two of them were found to have received so much hurt, they were obliged to bear away for Guadaloupe to refit, and hence were not in the action of the 12 th .

Fig. 9, denotes the British lleet on the morning of the lith, having in view two disabled ships at G., under the island of Saints, and which were chased into Basse Terre, Guadaloupe. Soon after, two others were discovered far to windward, and disabled at \(H\), near the north end of Dominica. A general chase was then ordered, four of the enemy's ships being at this time visible at I, from the Formidable's mast head, Lord Rodney's ship. On the Agamemnon and others, at B, coming near the ships at H, the French admiral, Count de Grasse, though far to windward, bore down as at F , to protect his two disabled ship.. The Agamemnon and her consorts advanced in the pursuit; but upon the signal for all cruisers to return, they took up their proper positions in the line.

We now come to the splendid and eventful day of the 12th. At two in the morning, the British fleet being at A, Plate DXX, Fig. 1, after haring run to the southward from I3, their position the evening before, having taken advantage of the wind as at V , which generally hauls to the northward in the West Indies in the evening. At the last mentioned hour, having tacked to the northward, the French were discovered broad under their lec-bow, in some
confusion at F . One of their ships was directly to leeward at G, with her bow-sprit gone, and ber fore-mast across her fore-castle, towed by a frigate, the wind being E..S.l.., as at \(/ \%\).

At C, is represented the Monarch and Valiant going down from the rear to engage the disabled ship with her consort, which competled Count de Grasse to edge down as at II, to their protection. The van ol the British, about four or live o'clock, was at D, leading on the starboard tack; and the admiral, judging Count de Grasse might now have got so far to leeward, by the last mentioned movement, that it could not be possible for him to avoid an action, the Valiant and Monarch, the ships in chase, were ordered into their stations.

The French, aware of their situation, formed on a larboard tack; and the wind afterwarels coming about from E.S.E. to nearly east, as at \(Y\), they conceived hopes of gatining their usual fighting distance, more especially as their van at this time began to point to windward of the British.

The lines 1 and F , in Fig. 2 , denote respectively the positions of the British and French fleets, at hall-past seven in the morning, the Marlborough, the leading ship of the British van, having fetched the filth* ship of the enemy's line. In this situation she was fired on, and the signals for close action and to close the line, were thrown ont.

The consequence of the preceding manouvre was a disposition resembling Fig. 3, wherein the van of the British flect danged slowly and closely along the enemy's line, each ship giving and receiving a heavy fire. The enemy's fleet at \(F\), it will be perceived, had gained the wind, and were ranging in an opposite direction to our own. The Britishadmiral's ship, the Formidable, having reached the enemy's fourth ship from their van, began a close action within half musket shot, continuing it close along the enemy's line, under an easy sail, till an opening appeared at the third ship astern of the Freach admiral, which afforded the opportunity of cutting their line in twain, completely separating the van from the rear, and forcing the headmost ship of their rear division, then coming up to leeward, as at \(G\), thus affording a complete and triumphant proof of the accuracy of the principles that Clerk had so ably advanced. This is represented in Fig. 4, in which A is the Formidable, the British Admiral's ship; F the Ville de Paris, bearing the flag of the Count de Grasse; \(B\) the van of the British still ranging along the remaining part of the enemy's rear; C the rear of the British line following up after the admiral; H the last ship of the French van stretching past the rear of the British line.

In Fig. 5, the Formidable, Namur and Duke are shown at \(A, B, C\), after having cut the line, and keeping up a powerful raking fire on the ships of the rear division of the enemy before forced to letward, and which are now making the best of their
situation by going off before the wind at (i. Firepresents the van of the enemy, stretched past the rear of the British line, and preparing to break into two divisions. II denotes the middle division making to the west.

The subsequent positions ol' the two fleets become now of the preatest interest. Su soon as the van division of the encmy had stretched past the rear of the British line, in bearing away, ic broke inte two divisions; one, consisting of seven ships, stecring west as at II, Fig. 6, and which we may now call the middle division; the other taking a S.S. W. course, consisting ol about 12 or 13 ships, and where Count de Grasse was himself, making the southem division of llight, as at \(1 \therefore\). A denotes Lord Rodney's ship, with part of the centre, putting about in pursuit ol the enemy's vanf and \(B\), the rear of the British line, performing the same evoJution. The sirnal for the rear to close with the centre being soon after made, both these divisions followed in pursuit of the southern division [".

The object now with the Count de Gasse, in the division last relerred to, was to obtain a junction with the other divisions of the flect at \(G\) and \(J\). This was apparent by his abandoning his S.S.W. course, which he first pursued at Fig. 7, and turning his ship's heads to the northward as at F , and to form a new line of battle. A natural effect of this change, of course, was an alteration in the course of the centre and rear of the British fleet to the position AB, thereby causing the two divisions to approximate. The Count soon perceived this, and accordingly, at about two in the afternoon, he resumed his original direction as at 1 . The two fleets, therefore, at this moment occupied the following positions: A and \(B\), the centre and rear of the Britisin fleet, were in pursuit of the southern division of the enemy. The van of the British neet continued in the same course as at \(C\). The rear division of the enemy continued to advance to the westward, as at \(G\); and the middle division of the enemy, not being pursued, repaired their damages under an easy sail.
Fig. 8 represents the two flets again under the most interesting circumstances. The southern division at six o'clock, having been outsailed by their pursuers, turned their heads again to the morthward, and the result was, that the centre and rear of the British fleet formed on each side of it. Five ships were taken from the enemy, the Ville de Paris striking at sunset to the Barfleur and Canada. \(\dagger\) At this time Count de Grasse had got above five leagues to the westward and leeward of the field of battle; and night coming on. Admiral Rodney thought proper to give over further pursuit.

It may be necessary to add, that the rear division at \(G\) had, at this time, advanced above ten leagues to the westward and to the leeward of the field of battle; and that \(I\), the middle division of the enemy, consisting of seven ships, having wated

\footnotetext{
* There is some little doubt whether it was between the third and fourth ship the line was cut, or between the fourth and fifth ships. It is however of little moment.
\(\dagger\) Lord Rodncy observes that the Count de Grasse in the Ville de Paris, behaved most bravely. IIs ship was entirely erippled, and three British Admirals were very near lim, when he struck his flag. The French Admiral did all that so singular: and unlooked for a circumstance as the cutting of his line in twain would permit.
}
for, rejoined the ships of the southern division, which afterwards effected an escape.

Such was the result of this new and splendid evolution. It may be asked, however, why did not the British admiral follow up his able attack, and make the signal for a night battle? He did so; but on looking about him-prudence in a conqueror being even much more necessary than in ordinary men, he observed that his fleet was greatly dispersed; that two of his 90 gun ships were greatly disabled; his own, the Formidable, greatly damaged; that his van and centre were also much hurt; that none of the prisoners from the captured ships were taken out;-that a very dark night of twelve hours was coming on-weighing all these-and the science of naval tactics is made up of contingencies-he thought it most prudent to make sure of the victory, and not run the risk of a reverse of fortune, or the danger of a night battle, wherein bis own Hect might receive more damage from one another than from the ships of the enemy; that by running to leeward in the night, the enemy might deceive him, by ordering some of their frigates to hoist the lights of their admirals, and steer a course to lead the British admiral from them; and as the night was extremely dark, being the first day of a new moon, they might have hauled their wind to the north or to the south without being seen; at the same time they most carcfully concealed all lights whatever. The British fleet, moreover, by pursuing, might have found themselves far to lecward in the morning, without the possibility of their getting to windward, by the crippled condition they were in. These reasons, and his experience of a night battle, induced the admiral to secure his splendid victory, and not to hazard a reverse of fortune. Rodney, therefore, made the signal for the British fleet to bring to, on the starboard tack, then so dark that one ship could not see another. Day light the next morning proved the wisdom of that signal; for, notwithstanding it was the luty of every ship to obey it, thirteen made sail, yet not one of them fired a shot, or came up with an enemy. This was a convincing proof of what might have happened had the whole fleet gone to leeward, and the enemy have hauled their wind; not only the captured ships might have been retaken, but some of the British crippled ships captured. Every sailor and man of science will acknowledge the wisdom of this decision.

Some of Mr. Clerk's observations on this splendid victory are deserving of much attention, and we shall therefore, introduce them to our readers. First, the difficulty will be remarked of an enemy's flect makiug an escape to windward. Secondly, that the erippling of some of his ships will be a necessary consequence of the efforts made to effect this escape. Thirdly, that the protection given to ships crippled in consequenee of these efforts, as it was the cause of bringing on the actions of both the 911 and 12th, and had nearly produced an action on the loth, will also be a cause of bringing on an action on all future occasions of the like nature.

The attack made by the British in the action of the gth, may be considered as an example of the
simple attack, and shows how little may be ex. pected from any rencounter between two fleets on the same tack, when an attempt shall be made from the leeward.

The judicious movement made by the British fleet, from a northerly course to a southerly one, on the night between the 1 th and \(12 t h\), as it shows the advantage that may be made by a change of wind, at the same time shows the necessity of attention to such periodical changes. Indecd it was by this means only that the British fleet got within reach of the enemy on the morning of the 12 th of April.

From the facility also with which Admiral Rodney's ship kept her wind, and forced her passage through the line of the enemy, and the necessary consequence that the headmost ships of the rear division must thereby be forced and driven to leeward, should with certainty establish, that breaking an enemy's line, by an attack from the leeward, is not only a practicable measure, but a measure attended with little additional danger or risk of shipping; and that with the same facility, and with equal probability of success, it might have been attempted, in former rencounters. And although Admiral Rodney, in either of his former rencounters of the 15th or 19th of May 1780, had not been convinced of the importance of this mancurrestill, having been the first to put it in execution on the 12th of April, he has acquired a name renowned over the whole world.

The consequences resulting from cutting the enemy's line on this occasion, as they may be regarded as affording complete illustrations of the importance of Mr. Clerk's principles, may also be admitted as a proof of what ought to be expected in future on every similar occasion.

The burry and precipitation with which the rear division of the enemy made their escape through the gap in the British line, as it showed their apprenension, should also be a proof of the danger of their situation.

The effort to escape, made by the van division of the enemy, as it confirms the general position, their desire of evading a conflict, confirms also the superiority of British seamen, which seems, indeed, to have been incontestible from the beginning of the whole affair to the end.

It must, however, be added, that the manner by which the van of the British was rendered almost without effect, shows that the rear division of the enerny, and not the van, ought to have been the object of pursuit. This is demonstrated by Clerk in his Attack with the Centre, part II. pages 180-183.

The proximity of the rear of the British to the rear division of the enemy, should sufficiently point out the object of pursuit they also should have chosen.

The British van and rear not having therefore been prepared to take advantage of their necessary mutual proximity to the rear division of the enemy, was a loss.

The rear division of the British also, by having been obliged to put about ship, in pursuit of the van of the enemy, already got some miles distant,
is a full confirmation of the hypothesis laid down, that the pursuit of a rear division, cut off from the van of an enemy's fleet passing on contrary tacks, ought in general to be prelerred.

Finally, the lacility with which the rear of the British came up with the flying van of the enemy, shows that there was no inleriority in the sailing of the British ships.*

With this we most reluetantly close a subject which has much to recommend it to the attention of the young sailor; much to the higher oflicers of the navy, and much to the board of admiralty which presides over the naval destinies of the country. We might have added that there is much to recommend it ceven to the attention of the man of science, and to the historian, who may review the brilliant pages of our maritime exploits. To the young sailor, in particular, it will afford the most useful and salutary lessons, and prepare him for all the difficult and ever varying circumstances of his splendid prolession. Nelson, amidst the fatigues ol his arduous duties, found an agreeable relaxion in the important pages of Clerk, \(\dagger\) and was perpetually forming schemes how he might successfully accomplish the conquest of an enemy, in every varicty of position. The bright example of the immortal eonqueror of the Nile and Trafalgar, ought ever to be present to the young officer's view. By making the subject of tactics a frequent object of contemplation, Nelson's energies were ever in action to meet the vieissitudes of bis perilous duties. In whatever position he found the enemy, his ready and comprehensive mind scized all the great points of action, and having communicated his brilliant purposes to the captains of his fleet, stimulated the lowest sailor by the immortal signal, "England expeots every man to do his duty."

TADCASTER, supposed to be the Calcaria of the Romans, a town of England, in the West Riding of Yorkshire, situated principally on the south side of the river Wharf, which is crossed by one of the best stone bridges in the country. The town is neat and well built, the streets being arranged in the form of a cross, and formed by the roads to York, Wetherby, Leeds, and Pontefract. The public buildings are an ancient church, an hospital for twelve persons, and a free school, both founded by Dr. Oglethorpe, and a respectable building for Sunday schools. There are some traces of a trench round great part of the town. The river Wharf is navigable to the bridge for sailing vessels, which supply the town with necessary commodities. Population of the township in 1821:- 390 houses, and 1651 inhabitants. See the Beauties of England \&- Wales, vol. xvi. p. 62!-629.

TAFILELT. See Monocco, Vol. XIII, p. 782, and Bahbarp, Vol. 111. p. 250.

TAGANROCK, a town of European Russia, on the N. W. coast of the Sea of Azof. It stands on
the cliff of a lofty promontory; all the best houses are in the suburbs. It possesses a fortress, a harbour, a naval hospital, a lazaretto, and naval and commercial courts. It carries on an extensive trade. Its exports are caviare, butter, leather, tallow, corn, Siberian iron, fish, tar, and canvass. Its imports are fruits, Greck wine, shawls, tobacco, coffec, silk and precious stoncs. About 387 vessels, besides coasting ones, were employed in 1817. In 1817 the importation of loreign gold was 5, 582,247 rubles, and merchandise to the value of 2 , 658,645 . The value of the exports was 11,979 , 700, and of the imports 9,321,053 rubles. The town once contained 70,000 inhabitants, but now the population is only 6000. Dr. Clarke saw here people of 15 nations. Last Long. \(38^{\circ} 39^{\prime}\). West Lat. \(47^{\circ} 12^{\prime} 40^{\prime \prime}\). See Russia; also Clarke's Travels, vol. i. p. 327, and Rordanz's European Commerce, pp. 660 and 670.

TAIN, a royal burgh and county town of the shire of Ross, is situated on the south side ol the firth of Tain or Dornoch, which separates Ross from Sutherland. It is conjectured that the name is derived from the term Thane, as the Thanes of Ross are said to have occupied the adjacent tands. As the town is situated in a Gaelic clistrict, it has also a particular name in that ancient language. Some derive its appellation in Gaelic, Baldhuich or Baile Dhuthuich, from baile, a town with a combination of letters resembling the names of Duthas or Duthac annexed, and literally signifies the town of Duthas. This derivation is rendered probable from the ruins of a small chapel in the immediate neighbourhood, called St. Duthas Chapel. 'To this chapel it is said "king James IV., in way of penance, travelled on foot from Falkland, with uncommon expedition, resting only a short while at the monastery of Pluscardine, near Elgin." Others spell the name of the town Ball'n 'dhuic, which literally signifies the county town. But the Gaelic tongue seems so flexible, that derivatives from it cannot be much depended on. The oldest charter extant, confirming the rights of Tain, and dated 1587, was given by king James VII, and it is there stated that the ancient charters of the burgh were burnt by some Irish rebels. From an inquest dated 20th April 1439, held for the special purpose of ascertaining the antiquity and liberties of the burgh of Tain, it "was found that all the inhabitants within the aforesaid liberty of Tain, and all their goods whatsoever, are under the special protection of the Apostolical See, and that the said immunity was first founded by the deceased most illustrious king of Scots, Malcolm Canmoir of blessed memory." The town is small, and, like most old towns, is built without much regard to regularity. The population is at present somewhat less than 2000, but is gradually increasing. There are no manufactures of any consequence carried on in the town, and the trade consists chiefly in

\footnotetext{
- Much has been said on the inferior construction of British men-of-war. How comes it that we have conquered so many of our opponents, under circumstances so exceedingly diversified?
\(\dagger\) We recommend Admiral Ekins's Naval Batles to the attention of our readers, excepting some of his remarks relating to Clerk.
}
supplying the country with goods brought from a distance. 'This want of manufactures may, in some measure, be accounted for, from the want of a proper pier where goods might be landed with safety. Notwithstanding this want of trade, the state of the town and country is such as to support two thriving branches of the British Linen Co. and Commercial banks. There is a good jail here, and an excellent building for debtor's rooms and courts of justice have lately been annexed to it. There is a large and commodious church here, sufficient to accommodate all the regular hearers in the parish. The people are very much attached to the established church; and what is very singular, there is scarcely a dissenter in the whole parish. In the old church, which is still a fine old building, there is a rery curious carved pulpit which was presented by the regent Murray to the town of Tain.

By the exertions ol a few public spirited gentlemen connected with the county, an excellent academy was, in 1813, established by royal charter at Tain, in which the fundamental branches of classical literature and science are laught by a rector and three teachers. It is impossible to observe the numerous and great improvements which have taken place in Tain within the last sixteen years, without connecting them with the establishment of this institution, which will prove one of the greatest blessings conferred on this part of the country, and will transmit to posterity the names of its founders as the greatest benefactors of the county of Ross.
(w. R.)

TALAVERA, an ancient town of Spain, in New Castile. It stands on the Tagus, which is crossed by a bridge of 36 arches, and 1200 feet long. It contains some good churches, four hospitals, and a classical and theological academy. The manufactures are silk, soap, hats and earthenware. Population about 800 .

TALAVERA, Battle of. See Britain, Vol. IV. p. 684.

TALBOT, county of Maryland, bounded S. and SE. by Choptank river, separating it from Dorchester county, Margland; E. by Choptank and Tuckahoe rivers, separating it from Caroline county; N. by Queen Ame county; and W. and SW. by Chesapeake bay. Greatest length almost exactly on one degree E. of the meridian of Washington city, and from the southern angle on Choptank river 25 miles, to the northern angle on Queen Anne. The western part is so much indented by small bays extending inland from Chesapeake bay as to render the mean width difficult to determine, but the aggregate land area being 250 square miles, the mean breadt! will be about 10 miles. It lies between Lat. \(38^{\circ} 34^{\prime}\), and \(38^{\circ} 56^{\prime} \mathrm{N}\). and between Jong. \(0^{\circ} 42^{\prime}\) and \(1^{\circ} 10^{\prime}\) E. from W. C.

The whole county is a peninsula between Choptank river and Chesapeakebay, but is again cut into three minor peninsular sections by Choptank, Tread Haven, and St. Michacl's bays. Surface generally flat, but with a slight southerndeclivity. So much
is it indented by small creeks or inlets, that it is probable not a single point within its boundaries is three direct miles from a navigable water.

By the post list of 1831, Talbot county hat post offices at Easton the seat ol justice, and at St. Michaels, Trop, and Wye Mills.

Easton, the county seat, stands near the head of Treadhaven bay, about 50 miles SE. from Baltimore, by post road; 47 miles SE. by E. from Annapolis, and 84 a little S. of E. from Washington City. N. Lat. \(38^{\circ} 46^{\prime}\), and Long. \(1^{\circ}\) E. of the meridian ol Washington City. Easton is a seaport and considerably the largest town of the eastern shore of either Virginia or Maryland. Population, 1830, 12.947.

Whether the discrepancy arises from a defective mode of taking the census, or from a real diminution, the population ol 'Tabbot county of Maryland appears to have decreased in the decennial period from 1820 to 1830; as at the former epoch the aggregate was 14,389, but at the latter, only 12,947 , showing a difference of 1442 .

TALBOT, county of Georgia, bounded by Marion county S.; Muscogee SW.; Harris W.; Merriwether NW.; and by Flint river separating it from Upson, NE. and Crawford E. The greatest lengtls from the extreme eastern angle on Flint river, to the northwestern between Harris and Merriwether 47 miles; and the superficial area being 600 square miles the mean width is about 13 miles.

This county extends l'rom Lat. \(32^{\circ} 35^{\prime}\) to \(32^{\circ} 54^{\prime}\), and in Long. from \(7^{\circ} 10^{\prime}\) to \(7^{\circ} 54^{\prime} \mathrm{W}\). from the meridian of Washington City.

The western and southwestern parts reach over the summit level between Flint and Chattahooehe, and give source to briel streams flowing westward into the latter river; the body of the county, however, has an eastern declivity towards the Flint.

It is a county of recent formation, and by the post list of 1831 , had only two post offices; one at a place called Liberty, and the other at Talbotton, the seat of justice. As laid down on Tanner's United States, Tabotton, the seat of justice in this county, is situated on a small creek of Flint river, and stated in the post office list of 1831 as 112 miles distant lrom Milledgeville. On ranner's Map the distance is about 90 miles in a direction SW. by W. from Milledgeville to Talbotton.

TALLAFERRO, county of Georgia, bounded N. by Oglethorpe county; NE. and E. by Wilkes; SE. and S. by Hancock, and V. by Greene. Length from south to north 17 miles; mean width 8, and area 136 square miles. Lying between latitudes \(33^{\circ} 23^{\prime}\), and \(33^{\circ} 43^{\prime} \mathrm{N}\). In Long. the 6th degree west from the meridian of Washington traverses it and divides it into two not very unequal portions.

Declivity to the southeastward and drained in that direction by the higher conflucnts of Little river and Great Ogechee river. According to Tanner's United States, this is the least extensive county of Georgia, and by the post office list of 1851 , had only one post office, that ol Crawfordville, the county seat, which, as laid down by 'ranner, is situ-
ated between Little river and Great Ogeechee river, and by the post road, 47 miles NNE. from Milledgeville, and 52 miles a little N. of W. from Augusta. N. Lat. \(33^{\circ} 32^{\prime}\). Long. \(5^{\circ} 58^{\prime} \mathrm{W}\). from Washington City.

TALLAHASSE, post town, seat of justice for Leon county, and seat of government for the territory of Florida, is situated abont 30 miles inland and north of St. Mark's Bay of the Gulf of Mexieo; about 50 a little E. of N. from Ocklockome Bay, 200 miles NW. by W. from St. Augustine, a similar distance a little N. of E. Irom Pensacola, and by calculation on Mercator's principles, S. \(36^{\circ} 10^{\prime}\) W.; 725 statute miles, but by post road 896 miles from Washington City. N. Lat. \(30^{\circ} 27^{\prime}\); Long. west from W. C. \(7^{\circ} 30^{\prime}\).

Tallalasse is recent in its foundation, the first buildings were erected there during the summer ol 1824. The first legislature which sat in this new born city held its session in the winter of 1824-5. In 1825 it was incorporated a city. So rapid was the augmentation of its population, that when John Lee Williams published his "View of Hest Florida" in 1827, he estimated the inhabitants at 800 .

Mr. Williams concludes his notice of 'Tallabassee by observing, -"Few towns in America have increased more rapidly; and population and improvement continue without any abatement. It might in a few years become a charming place of residence, though it will probably never become a place of great eommercial importance."

Judge H. M. Brackenridge, from personal observation, thus describes the valley of 'Tallahasse.
"Instead of being a plain of unvaried surface, it resembles the high lands above the falls of the rivers in the Adantic states, and is beautifully diversified by hill and dale, and rendered picturesque by the number of lakes, whose pure waters reflect the forests of oak which frequently clothe the sides of the hills, down to their very margins. These lakes receive a number of streams, which flow from the higher grounds and loose themselves in their placid bosoms. The largest of them are called the Iamony, Jackson, and Mickasukcy, but there are many others of a smaller size, affording many beautiful situations for country residences, where the naturally open groves of oak, hickory, becch, and magnolia grandiflora, surpass in magnificence the proudest parks of the English nobility. The soil of the uplands bears a strong resemblance to the best part of Prince George's county, Maryland; and the face of the country is not unlike the south side of the Potomac near Washington City. In the vallies there is a much heavier growth of timber, and frequently deep cane-brakes. There are also frequently to be met with, grassy ponds, surrounded by glades, which afford excellent pasturage.
"The only regret which 1 feel in contemplating this beautiful region. is its very limited extent-an Oasis, which appears to have been formed by nature in one of her most sportive and fantastic humours. The general substratum, perhaps a few feet above the level of the sea, is a soft limestone of
recent formation. In the pine wood plain, which stretches towards the high lands of Tallahasse, the stone is olten found in masses on the surface.
"By the last census (1826), Tallahasse contained abrot eight hundred imblitants, and five or six mercantile establishments, which do an extensive business. The country begins to wear the appearance of cultivation; food roads are made in all directions, and carts, wagons, ind carriages are constantly travelling them."

With due allowance for a natural warmth of description in the accounts given by emigrants into a new country, we may regard Tallabasse and the immediate vicinity as a delightul section of the southern part of the United States, but as Judge Brackenridge acknowledges, it is an Oasis.

TALLAPOOSA, river of the United States in Georgia and Alabama, rises by two branches in the Cherokee territory of the former state, and fowing thence southwestward, traverses Carroll county, and entering Alabama, bends to SSWV, the two forks uniting, and the latter course continued about one hundred miles over the Creck territory, to near the eastern border of Montgomery county. At the latter point the stream abruptly bends to the west, and pursues that general course 25 miles to its junction with the Consa at or near Consauga, to form the Alabama. The entire length of Tallapoosa, by comparative courses, is about 150 miles, but the mean width of its valley does not exceed 25 ; area abont 3750 square miles, and lying between \(32^{\circ}\) and \(34^{\circ}\) of N. lat., and between the valleys of Coosa and Chattahooche rivers.

TAMBOURING. A full account of this manufacture, and of Duncan's Patent Tambouring Machine, was given by the inventor of the latter, in the Article Chanwork, Vol. V. p. 588, 597.

TAMIVORTH, a borough and market town of England, in Staffordshire, situated at the conflux of the Thame and Anker, the lormer of which divides the town nearly into two equal parts. The town is large and well built, and its principal buildings are two stone bridges, a fine church, several meetinghouses, an bospital, a grammar school, and an old castle. Its manulactures are superfine narrow woollen cloths. Calico printing, tanning, and brewing are carried on to a considerable extent. It sends to parliament two members, who are chosen by about 250 voters. The population of the borough and parish in 1821 was \(\mathbf{6} 185\).

TANGENCY. See Fiuxions, Vol. IX. and Trigonometry.

TANGIERS, anciently Tingls or Tinja, is a seaport town of Fez in Morocco, situated at the western entrance to the Straits of Gibraltar. The bay, which is defended by five old batteries, is encumbered by the ruins of the moat and fortifications which were destroyed by the English in 1686. The town subsists chiefly by supplying Gibraltar with cattle and vegetables. W. Long. \(5^{\circ} 50^{\prime}\). N. Lat. \(35^{\circ} 42^{\prime}\).

TANGIPAO, or as nsually pronounced, Tanzipalo, river of the United States in the states of Mississippi and Louisiana, lias the most remote northern sources in Amite and Pike counties of the former, from whence it flows SSE., and entering Louisiana, separates the parish of St. Helena from that of Washington and St. Tammany, finally falls into the northern side of Lake Pontchartrain, after a comparative course of between 70 and 80 miles.

In the higher part of its course within the state of Mississippi, the valley of Tangipas lies between those of Amite and Bogue Chitto; but in the lower section within Louisiana, between the Chifuncte and Tickfolah vallies.

TANNIN. See Chemistry, Vol. V. chap. VI. sect. III. p. 702, 703. See also p. 756.

TANNING is the art of converting into leather the gelatinous parts of the skins of animals by impregnating them with tannin. The skins chiefly employed are those of bulls, oxen, cows, \&c. which are converted into leather for the soles of shoes, and those of calves, seals, \&c, which are converted into leather for the upper leathers of boots and shoes, saddles and harness. The method of manufacturing these different kinds of leather is as follows:
1. Method of manufacturing butts or barks.-The heaviest and stoutest of the hull and ox hides being selected for the purpose, they are allowed to lie in a heap for two or three days, and are then hung up on poles in the smoke house, kept, by means of a mouldering fire, at a temperature somewhat above that of the atmospliere. A slight putrefaction takes place, loosens the epidermis, and renders it easy to separate the hair and other extraneous matter from the true skin, by the fleshing knife, with which it is scraped on a convex board, called a horse. The hides thus cleaned are then raised or steeped in water containing a little sulphuric acid. The effect of the acid is to distend the pores of the skin, and prepare it for the reception of the tanning.

The hides are now removed to a pit, and laid one above another, with a stratum of powdered oak bark below each, and the pit is filled with the tannin lixivium or ooze prepared from oak bark and water. Here they remain for a month or six weeks, at the end of which they are taken out and replaced with fresh bark and ooze. After remaining three months, the operation is repeated three times or oftener at the same intervals. When they have thus sufficiently imbibed the tannin, they are suspended in a shed to dry, and when compressed with a steel instrument, and rendered firm and clean by beating, they are ready for sale, and are used for the thickest sole leather.
2. Method of manufacturing crop hides.-The hides are immersed for three or four days in pits containing a mixture of lime and water, being occasionally stirred up and down. When the extraneous matters have been removed by the flesh knife as above described, they are worked in water. They are now immersed into a weak voze, and
gradually removed to other pits with stronger ooze, being moved up and down, or handled, as it is called, once every day. At the end of a month or six weeks they are put into pits with a stronger ooze and a little powdered bark, and the process is repeated with fresh ooze and bark for two or three months. They are then put intolarger vats, called layers, in which they are laid one above another in an ooze of still greater strength, and with a large quantity of good bark interposed. They remain here for six weeks, and they are then taken up and relaid with strong ooze of fresh bark for two months. This process may be repeated once, twice or thrice, according to circumstances, and when it is completed, the skins are taken out, dried, and smoothed as before. The sole leather used in England consists of the crop hides.
3. Method of manufacturing the skins of calves and scals, \(\wp\) c.-Hides of this description are kept in the lime pits for ten or fifteen days: the hair, \&c. is then removed, and they are steeped in an infusion of pigeon's dung, called a grainer. Here they are frequently tumbled about and taken out and scraped, and at the end of a week or ten days they are removed into pits containing a weak solution of bark, where they go through the same process of handling, \&c. nearly as crop hides, though they are seldom put down in layers. This operation lasts from two to four months. The skins are then dried, and the currier dresses and bleaches them for the different purposes to which they are to be applied. For farther information on this subject see " Dr . Macbride's paper, Philosophical Transactions, vol. ix. p. 111," vol, L.XVIII, and that for 1803. See also Newton's Journal of the Arts, Jan. 1829, p. 219, for an account of a powerful tanning lixivium used in America, by J . Giles. It is announced in the Journals that M. Rapedius has discovered that \(3 \frac{1}{2} \mathrm{lbs}\). of the bilberry or whortleberry plant, (raccinium myrtillus) will tan a pound of leather which requires 6 lbs . of oak bark. This important experiment has been successfully tried at Treves.

TAPESTRY. See our article France, Vol. IX. p. 427. See also Phil. Trans. 1731, vol. xxxvii. p. 181, and Duhamel, Art de Fair de Tapis.

TAPPAHANOC, post village, and seat of justice, Essex county, Virginia, situated on the right bank of Rappahannoc river, by post road 109 miles a little E. of S. from Washington City, and 50 miles NE. from Richmond. N. Iat. \(37^{\circ} 58^{\prime}\), lons. \(0^{\circ} 10^{\prime}\) E. from the meridian of W. C. The site is low and flat, and in summer the inhabitants are liable to agues and fevers. It is, however, a place of considerable trade, as even large merchant vessels can ascend far above. The harbour at Tappahanoc is about 50 miles above the open Chesapeake bay.

TAR, a dark brown resinous juice, distilled from the pine. The Balic tar, with which Great Britain is supplied, is thus made. Pine branches cut into billets are built up on the slope of a hill, in
large stooks, and covered with turf; they are then set on fire, and while they burn with a smouldering flame, the tar formed by the decomposition of the resinous juice, which rums to the bottom, flows through a small channel, by which it is collected and put into barrels.

The Switzerland tar is formed by heating billets formed from the trunk of the tree freed liom its bark. The ovens, which are about ten fect high, and six in diameter, are made of stone or brick like an egr placed on its small end, and a gun-barrel is fixed at its lower cod, to carry off the tar. The oven is charged by bundles of billets, the interstices being filled up with chips, and a layer of chips being laid uppermost. It is then covered in with flat stones, forming a kind of vaulted chimney. The dry chips at the top are set on fire, and the chimney being cutirely closed up with a large stone, wet earth is heaped on the stones at top, and constantly applied wherever the smoke is observed to issue. The general product is about 10 or 12 per cent. of tar, of the weight of the whole charge. The red wood and knots are found to furnish about one fourth of their weight in tar.

An account ol the quantity of tar obtained by the destructive distillation ol coal, will be found in our article Gas Lights, Vol. IX. p. 581.

TAPAJOS, or as pronounced according to English orthography, 'Tapahos, great river of South America, interlocking sources about Lat. \(12^{\circ} 30^{\prime} \mathrm{S}\). with those of the Guapare branch of Madeira, and with the extreme northern sources of Paraguay river. Assuming thence a course of N. N. E. upwards of nine hundred miles, lalls into the \(\Lambda\) mazon, at Santerem, S. lat. \(2^{\circ} 20^{\prime}\).

The valley of the Tapajos lies between those of the Madeira and Xingu, and in an imperfectly explored region.

TAR, or as named in the lower part of its course, Pamlico, river of the United States, in North Carolina, has its most remote north-western source in Parson county, interlocking sources with those of Hycootee branch of Dan river, and with those of Neuse river. Flowing thence south-eastward over Granville, Franklin, Nash and Edgecombe counties, it receives a large northern branch, Fishing creek, from Warren and Halifax counties. At its reception of the water of Fishing creek, Tar river has flown by comparative courses about ninety miles, and thence with an extensive sweep to the southward, the original general course is maintained forty miles to the head of Pamlico bay, at Washington, in Beaufort county.

The Tar river valley, including that of Pamlico bay, is about one hundred and sixty miles in length, with a mean width of thirty miles, and lying between those of Neuse and Roanoke. Extending in Lat. from \(35^{\circ} 15^{\prime}\) to \(36^{\circ} 25^{\prime} \mathrm{N}\). and in Long. from \(0^{\circ}\) \(25^{\prime}\) E. to \(2^{\circ} 15^{\prime} \mathrm{V}\). of the metidian of Vashington city. It is navigable for vessels of nine feet draught to Washington, and for river boats to Tarborough, at or near the confluence ol the two main branches.

TARBOROUGH, post village and seat of justice, Edgecombe commty, North Carolina, situated on the right bank of 'Tar river, below the influx of FishYol. XVil. Pakt 11.
ing creck, by post road, 72 miles a little N. of E: from lialeigh, and 252 il litte W. of S. from W. C. N. lat. \(35^{\circ} 53^{\prime}\), loong. \(0^{\circ} 36^{\prime} \mathrm{WV}\).

Darby.

TARASCON, a town of lrance, in the department of the Bouches du Rhone, situated on the Rhone opposite Beaucaire, with which it has a communication by a bridge of wood. It possesses several handsome churches; but the castle, a large building ol hewn stone, and fortified in the (iothic manner, is the principal edifice. Woollen and cotton goods are manulactured, and a trade is carricd on in winc, olive oil, and brandy. It is the chief place of the Isle de la Camarque. Population about 18,300.

TARBES, anciently Bicorme, a town of Irance, and the capital of the department of the Upper Pyrences. It consists chielly of a single street, in a beautiful meadow on the left bank of the Adour. The streets are tolerably broad, and the houses, which are of brick or gray marble, and slated, are not ill built. The cathedral, the churches, the episcopal palace, the theatre, and the hospital, are the principal edifices. The town is defended by a wall and an old castlc. Paper and linen articles are manufactured here. Population about 8000 .

TARES. Sec Agriculture, Index.
TARN, a department in the south of France, bounded by those of the Avignon, Lot, the Herault, \&c. Its surface is a gently undulating plain, crossed by several chains of small hills. It derives its name from the Tarn, which rising in the department of Lozere, and traversing that of the Avignon, flows through the department into the Garonne. It is well watered by the A grout, which passes Castres, and falls into the 'Tarn below Lavaur. Its chief towns are,
\begin{tabular}{lll} 
& & Population. \\
Alby, the capital, & & 9,649 \\
Castres, & - & 15,386 \\
Gaillac, & - & - \\
Laveur, & 6,465 \\
- & & 6,237
\end{tabular}

There are here some mines of iron and coal, and a little silk is raised. Wheat, barley, maize, hemp, flax, and wines, are its chief productions. The forests occupy about 90 thousand acres. The contributions in 1803 , were \(2,693,820\). The superficial extent of the department is 576,821 hectares. The population in 1822 was 313,713 , and in 1827, 327,665 , and the number of imhabitants for erery 1000 hectares, was then 560 . It contains about 50,000 protestants.

TARN and Garonne, a new department in the south of France, formed in 1808 out of part of the departments of Lower and Upper Garonne. The surface is a plain traversed by three chains of hills, the highest of which does not exceed 1200 feet. The productions are wheat, barley, maize, hemp, flax, wines, chesnuts, almonds and figs. Montauban is the capital. The superficial extent is 354.591 hectares. The population in 1822 was 238,143 , and in 1827, 241,586, and the number of inbabitants to every 1000 hectares was 670 .

TARQUIN. See Romax Empire.
TARPAGONA, a seaport town of Spain in Catalonia. It is situated near the mouth of the river Francoli upor a hill, and is defended by turreted 4 N
walls. It has a large and elegant Gothic cathedral, with a magnificent chapel built with rich marble and jasper in honour of St. Thecla. Population about 7500 .

An account of Sir J. Murray's descent upon Tarragona will be found in our article Spain in this volume. See also Britain, Vol. IV. p. 706.

TARTAGLIO, Nicholas, an eminent Italian mathematician, was born at Brescia about the beginning of the 16 th century, and died at Venice in 1557. An account of his labours and writings will be found in our articles Geometry, Vol. IX. p. 653, and Mathematics, Vol. XII. p. 439.

TARTARY, a name given to a very extensive tract of country in Central Asia, bounded by Arabia and Russia on the north, and the confines of China, India, and Persia on the south. It is divided into two great portions, Independent Tartary and Chinese Tartary.

Independent Tartary is bounded on the south by Balk and Khorasan in Persia, on the west by the Caspian, and on the north by the provinces of Oufa, Orenburg and Tobolsk in Asiatic Russia. The principal kingdom of Independent Tartary is Great Bucharia, which we have already described. The Khirghises occupy a great extent of territory on the north, and are divided into the Great, the Middle, and the Lesser hordes. The Great horde is estimated at 60,000 families, and the other two at 30,000 each, so as to give a population of above half a million. They live in huts and lead a wandering life, each horde being governed by a Khan. They occupy the whole country from the north end of the Caspian to the Talkan Lake. The Uzbeck and Turcomans occupy the vast sandy desert between the Aral and the Caspian, and the country on the upper Oxus. On the Taxartes, there is a fertile and thickly pcopled territory belonging to the bey of Koukan, but very little is known of it. For farther information respecting this part of Tartary, see Afghans, Aral, balk, Bucharia, Cabul, Caspian Sea, Samarcaid. See also Persia and Russia.

Chinese Tartary cmbraces an immense extent of country of about 70 degrees of longitude, and 20 of latitude. It includes, on the north, Mongolia and Mandschuria; on the west, Casligar; on the south, Thibet; and in the centre the territories of the Calmucks or Eluths. As almost nothing is known of the present state of these hordes, we must refer our readers to the articles Buchamia Littie, Vol IV. p. 773 ; Calmucks, Vol. V.p. 174; China, Persia, and Tminet. See also Asia, Vol. V.p. 513; Physical Geogizarit, Vol. XVI. and Russta, Vol. XVI, p. 519.

TASSO, 'Torquato, a celebrated Italian poct, was born at Sorreno on the 11th March 1544. At a school of the Jesuits at Naples, to which he went at the age of five, he made such rapid progress, that in the 7 th year of his age he recited compositions of his own, both in prose and verse. At the age of 12 , he entered the University of Padua, and so premature was the development of his intellectual faculties, that in his 17 th year he received degrees in canon and civil law, philosophy, and divinity. Invited to llologna by the eclebrated Cesi, his
talents became very conspicuous; but having composed a defamatory poem, he was deprived of his books, and thought it prudent to retire to Castelvetro, under the patronage of Count Rangoni. In 1562, at the age of 18 , he published at Venice his poem of Il Rinaldo, a work on the plan of the Odyssey, which he dedicated to Cardinal D'Este, in consequence of which he was invited to the Court of Ferrara, where he is said to have carried on his great work of the Gerusalemme Liberata, six cantos of which were composed in his 17 th year. In the year 1571 , he accompanied the cardinal to the Court of Charles IX. of France, where he was well received; and, on his return in 1572 , he caused his dramatic pastoral of Aminta to be represented. About this time scren cantos of his Jerusalem Delivered, which had been lent to his friends in MSS., were copied and disseminated through Italy; and in 1577 , the 4 th canto was printed at Genoa in a poetical collection. In 1580, portions of 16 cantos were printed at Venice; but in 1581 there appeared three editions of this great work, the last of which, published at Ferrara, is regarded as the most genuine.

The circumstances which led to this carelessness respecting his works sprung out of a mental disease under which he doubtless laboured. This state of mind has been ascribed to a rash affair of love which touched the honour of the family of Alphonso, Duke of Ferrara, and which terminated in the confinement of Tasso in a lunatic hospital by the order of that prince. After his liberation, he lived at Rome with Cardinal Cinzio Aldrobrandini, who obtained a pension for him from Pope Clement VIII. In this retreat, in 1593 , he published his Gerusalemme Conquisita, which is a sort of recomposition of his former work. This zealous patron had arranged a solemn poetical coronation of the poet in the capitol, but his own illness interfered with the immediate execution of the plan, and an attack pregnant with danger disabled Tasso from receiving so high an honour. He was removed to the convent of St. Onofrio, where the consolations of religion were administered to him by his affectionate friend, and where be died full of piety and hope in April 1595, in the 51st year of his age. A monument was erected to his memory in the Church of St. Onofrio, by Cardinal Bonifacio Bevilacque.

Tasso was in person tall, active, and well proportioned. In society he was silent, grave, and polite, and kind and affectionate in all his social relations.

Besides his Jerusulem Delivered, and the other works alrcady mentioned, he wrote his Sella Giornate, or works of the seven days, which relates to sacred subjects, the tragedy of Torremond, and a great number of treatises, dialogues, and letters on various topics.

Lord Byron has done hononr to the memory of this great poet by his "Lament of Tasso." published in 1817, and to which he has prefixed the follow. ing notice:-"At Ferrara (in the library) are preserved the original MSS. of 'Tasso's Gerusalemme, and of Guarini's Pastor IVido, with Letters of Tasso, one from Titian to Ariosto; and the ink-stand and chair, the tomb and the house of the latter. But as misfortunc has a greater interest for posterity, and
little or none for the cotemporary, the cell where Tasso was confined in the hospital of St. Anna attracts a more fixed attention than the residence or the monument of Ariosto; at least it had this effect on me.
"Thereare two inscriptions, one on the outer gate, the second over the cell itself, inviting, unnecessarily, the wonder and the indignation of the spectator. Ferrara is much decayed and depopulated; the castle still exists entire; and I saw the court where Parisina and Cluzo were beheaded, according to the annal of Gibbon."

TASTE. This subject has been discussed so amply under our articles Beauty, Vol. III. p. 363-371, and under the Principles of Civil Architecture, Vol. VI. p. 414-423, that there is no occasion to resume it under the present head.

TAVISTOCK, a borough of England, in Devonshire, situated on the Tavy, over which there are two bridges. The church is spacious, and consists of four aisles, a chancel, and a tower raised on arches. It contains some boncs of gigantic size that were found among the ruins of the abbey. The chief manufacture is that of serges. It is one of the Stannary towns. It sends to Parliament two members, who are chosen by about 110 votes. Population of the borough and parish in 1821,5483.
TAUNTON, a borough ol' England, in Somersetshire. It is situated on the banks of the Tone, and consists of four spacious streets containing many good houses. In the market place, which is large and handsome, there is an appropriate market house and town hall. It contains two parish churches, and five dissenting meeting houses. The church of St. Mary Magdalen is a beautiful building, with a lofty dome 183 feet high, remarkable for its magnificence and elegance. The church of St. James is a plain but ancient building. There is here a free grammar school, two large alms houses, and an excellent hospital, built in \(1772-1779\). It sends to Parliament two members, who are clected by about 500 votes. Its manufactures consist of coarse woollen goods, silk, and ale. The ale is in high esteem. The Tone is navigable for barges to Bridgewater. There is here a theatre, and races are held near the town. A newspaper is published at Taunton. Population of the borough in 1821: Inhabited houses, 1503; families, 1706. Total population, 8534.
Taunton, Vale of. See England, Vol. Vili. p. 502.

TAUNTON. Capital of Bristol county, Massachusetts, on the west side of Taunton river, 21 miles east of Providence and 36 south of Boston. It is a pleasant town. Population in 1830, 5798. In 1652, the first extensive iron works in North America were erected in this town. The nail factories, when in full operation, can now turn out from eight to ten tons of cut nails per day. The first shovels that were made in this country were made here. Most of the bricks for this section of the country have long been manufactured in this town -between eight and nine million are now made anpually. There are in the place seven cotton facto-
ries; two breweries; two printing offices, from which are issued two weekly newspapers and two juvenile papers; one rolling and slitting mill; one forge; one shovel manufactory; one copper and lead rolling mill; one paper mill; one carding and fulling mill. The calico establishment furnishes from 4000 to 5000 pieces per week, in a style equal to any manufactured in the country. There is also a manufactory of Britannia ware. Wc belicve it is the only establishment of the kind in the country. It is about three years since it was commenced on a small scale. It is now grown into an extensive business. The ware is now pronounced, by competent judges, to be far superior to the imported article. It has already made its way into public favour; and the "'Taunton silver"' is now to be seen in most of our large cities, rivalling, in beauty and brightness, the standard metal. We ought not to close this article, without mentioning the court house, the stone church, and the Episcopal church, as being ornaments to the village; the last we believe to be unrivalled in this country lor neatness and picturesque beauty. Damby.

TAURIDA. See Crimea, Vol. VII. p. 172.
TAXES. Sec England, Vol. Vill. p. 610.
TAY. See Pentisimire and Scotlaxi.
TAYLOR, Broor, an eminent English mathematician, was born at Edmonton near London in 1685. In 1701 he was entered a fellow commoner at \(S\). John's college, Cambridge; and in 1708, in the 23d year of his age, he wrote a paper on the Centre of Oscillations, which is published in the Phil. Transactions for 1713 . In 1709 he became LL. D., and in 1712 he was elected a fellow of the Royal Society, and in the same year communicated to them his curious experiment on the hyperbolic figure of water ascending between two glass planes. In 1714, when he had taken his degree of LL.D. at Cambridge, he was elected secretary to the Royal Society; and in the Transactions from vol. xxvii. to vol. Exxii. he published several excellent papers, principally on mathematical subjects. His principal works, however, are his Methodus Inerementorum, and his treatise On the Prineiples of Linear Perspective, both of which appeared in 1715 . The first of these contains a curious theorem for expressing a variable quantity by all the orders of its differentials, and also a paper on the vibrations of a tensc cord, in which he first established the isochronism of a vibrating string.* His Treatise on Perspective, which was reprinted with improvements in 1717, was the first in which this art was established on infallible principles.

In his intense application to study he lost his health, and was obliged to repair to Aix-la-Chapelle. On the death of his father in 1729, he succeeded to the family estate of Bifrons, in Kent; and in the year following he lost his wife in childbed. About this time he composed his Contemplatio Philosophica, the work of a Christian and a scholar, which was published by Sir. W. Young in 1773. He died of consumption in October 1731, in the 46th year of his age. His grandson, Sir IV. Young, published his posthumous works, with a life of the author prefixed.

TAZEVVELL, one of the south-castern counties of Virginia, bounded on the north by the Tug Fork of Saudy river, separating it from Logan county ; north-east by Giles; east and south-east by Walk. er's mountain, separating it from Wythe ; south by Clinch mountain, separating it from Washington; south-west by Russell, and west by Floyd county of Kentucky. Length from west to east 80 miles; mean width 20 , and area 1600 square miles. Extending in Lat. from \(36^{\circ} 54^{\prime}\) to \(37^{\circ} 32^{\prime} \mathrm{N}\). and in Long. from \(4^{\circ}\) to \(5^{\circ} 12^{\prime} \mathrm{W}\). from W. C.

The central part of this county is a very elevated mountain table-land. The eastern part declining northeastward, and drained by confluents of Great Kanawha; the southern section gives source to Clinch and Holston rivers, the extreme northern constituents of Tennessee river. The western and much the most extensive section declines northwestwardly and discharges in that direction the extreme highest sources and branches of Sandy river.

Compared with the ascertained clevation of the water in Great Kanawha at the influx of the Greenbrier river, which is 1333 feet above the ocean level, the lowest elevation than can be given to the central mountain vallies of Tazewell must be 1500 feet, and the mean relative height of the arable soil of the county must be, at the lowest estimate, 1200 feet of similar relative height. This comparative height is equivalent to four degrees of latitude, therefore if we allow \(37^{\circ} 1.3^{\prime}\) as the central latitude of Tazewell we have \(41^{\circ} 13^{\prime} \mathrm{N}\). as about the mean of its winter climate, when compared with the Atlantic coast.

By the post office list of 1831, there were but three post offices in this large connty. These were, Tazewell court-house, the seat of justice, Bluestone and Burkesgarden.

Tazewcll court-house, or as named and laid down on Tanner's United States, Jeffersonville, is situated at the foot of Rich mountain, on the height of ground between the extreme source of Clinch river and that of Bluestone branch of Great Kanawha, about 150 miles northeast by east from Knoxville in Tennessec; and by post road 352 miles southwest by west from W. C., and 290 a little south of west from Richmond. N. lat. \(37^{\circ} 5^{\prime}\), Long. \(4^{\circ} 30^{\prime}\) west from W. C. In 1820, the space since laid ont and formed into Logan county was included in Tazewell, and jointly contained 3919 inhabitants. Darbr.

TEA is the name given to the leaves of the Tea tree, an infusion of which in boiling water is now a favourite beverage among all civilized nations. The natural history of this valuable substance has heen so fully detailed in our article Cmina, Vol. VI. p. 166--167, that it is unnecessary to resume the subject.

Nothing is more remarkable than the rapid progress of the tea trade, as appears from the following tables:
\begin{tabular}{cccc} 
& Tea imported. & & Tea imported. \\
1700 & \(91,183 \mathrm{lbs}\). & 1706 & \(137,748 \mathrm{lbs}\). \\
1701 & 66,738 & 1707 & 32,209 \\
1702 & 57,061 & 1708 & 138,712 \\
1703 & 77,974 & 1709 & 98,715 \\
1704 & 63,141 & 1710 & 127,299 \\
1705 & 6,739 & &
\end{tabular}

During 100 years from 1710 to 1810 inclusive, there were sold at the East India Company's sales \(750,219,016 \mathrm{lbs} .\), the value of which was \(£ 129,804,-\) 595 ; of the above quantity \(116,470,675\) lbs. were exported, and the remainder \(635,748,341\) retained for home consumption.

The following table, which has just been published, brings down the state of the tea trade in Britain to the present year.
\begin{tabular}{|c|c|c|}
\hline Years. & Quantities retained for Home consumption. Lbs. & \begin{tabular}{l}
Net revenue of Custon and Excise. \\
£ s. d.
\end{tabular} \\
\hline 1789 & 14,534,601 & 562,038 145 \\
\hline 1790 & 14,693,299 & 547,230 4 \\
\hline 1791 & 15,096,840 & 607,430 8 \\
\hline 1792 & 15,822,045 & 616,775 6 \\
\hline 1793 & 15,24.4,931 & 609,846 \\
\hline 1794 & 16,647,963 & 628,081 \\
\hline 1795 & 18,394,232 & 695,108 \\
\hline 1796 & 18,009,992 & 877,042 13 \\
\hline 1797 & 16,368,041 & 1,028,060 \\
\hline 1798 & 19,566,934 & 1,111,898 \\
\hline 1799 & 19,906,510 & 1,176,861 \\
\hline 1800 & 20,358,702 & 1,152,262 \\
\hline 1801 & 20,237,753 & 1,287,808 26 \\
\hline 1802 & 21,54S,245 & 1,450,252 79 \\
\hline 1803 & 21,647,922 & 1,757,257 184 \\
\hline 1804 & 18,501,904 & 2,348,004 48 \\
\hline 1805 & 21,025,380 & 2,925,298 174 \\
\hline 1806 & 20,355,038 & 3,098,428 132 \\
\hline 1807 & 19,239,312 & 3,043,224 113 \\
\hline 1808 & 20,859,925 & 3,370,610 0 10 \\
\hline 1809 & 19,869,134 & 3,130,616 149 \\
\hline 1810 & 19,093,244 & 3,212,450 1 \\
\hline 1811 & 20,702,809 & 3,249,294 0 \\
\hline 1812 & 20,018,251 & 3,258,793 29 \\
\hline 1813 & 20,443,226 & \(\{\) Custom House \\
\hline 1814 & 19,224,154 & 3,428,236 \(8{ }^{4}\) \\
\hline 1815 & 22,378,345 & 3,526,590 18 3 \\
\hline 1816 & 20,246,144 & 3,956,719 0 \\
\hline 1817 & 20,822,936 & 3,003,650 18 \\
\hline 1818 & 22,660,177 & 3,362,588 101 \\
\hline 1819 & 22,631,467 & 3,256,433 1210 \\
\hline 1820 & 22,452,050 & 3,128,449 17 \\
\hline 1821 & 22,892,913 & 3,275,642 176 \\
\hline 1822 & 23,911,884 & 3,454,292 1910 \\
\hline 1823 & 23,762,470 & 3,407,983 18 \\
\hline 1824 & 23,784,838 & 3,420,205 1111 \\
\hline 1825 & 24,830,015 & 3,527,944 411 \\
\hline 1826 & 25,238,067 & 3,291,813 195 \\
\hline 1827 & 26,043, 223 & 3,263,206 19 \\
\hline 1828 & *26,790,481 & 3,177,179 \\
\hline
\end{tabular}

Those who wish for farther information on this subject, will find an excellent account of the rise, progress, and present state of the tea trade in Milburn's Oriental Commerce, vol. ii. p. 520-542. See also Staunton's Embassy to China. Appendix to Dr. Latham's Natural History of the Tea Trec, 1772. Sec also Aliments.

TECIIE, river of Louisiana, rising in the northern prairies of Opelousas, N. I.at. \(30^{\circ} 40^{\prime}\). The

\footnotetext{
- "lhis amount includes all tea shipped to ireland for consumption in that country subsequently to the passing of the act 94 Cico. IV. cap. 44.
}
drains of these savannahs, after towing \(\%\) or \(\begin{aligned} \text { males, }\end{aligned}\) divides into two channcls; one flows northwardly into the Courtableau river, whilst the other pursues a southeastern course. 'This remarkable separation of currents is about half a mile below the upper Opelousas landing; and from thence the southeastern branch takes the name of Teche. Flowing between waters of the Courtableau and Vermilion rivers 10 miles, it receives an inlet from the later under the name of Bayou l'usillier. The peculiar structure of the country, and the very near approach of the surface to a plain, is seen in these interlocking water-courses.

Below the influx of Bayou Fusillier the Teche leaves Opelousas and enters Attacapas; and in the residue of its course presents a stream with great specilic resemblance to the Mississippi in the Delta. Though on a very reduced scale, the 'Teche, similar to its immense prototype, flows in long sweeping bends, with its banks above any other part of the achjacent country, the channel being the deepest valley. The adjacent water-courses rise from the very margin, and in a distance, following the channel, of 180 miles, the Teche receives no tributary stream.

With slight selvedges of woodland immediately on the stream, prairies extend along the entire right bank of Teche, and for more than one half of the bigher part of its course, also along the left bank of this interesting river. The border sloping very gently from the high bank, from a quarter to a mile in width, is composed of the very first rate land, between latitudes \(29^{\circ} 44^{\prime}\) and \(30^{\circ} 40^{\prime} \mathrm{N}\). Below Lat. \(30^{\circ}\), the climate admits sugar cane, and near the mouth a few orange trees begin to appear.

It is impossible to carefully examine the Teche without a conviction, that the time was when a much more extensive mass of water must have passed down a channel so very deep and wide as to appear out of all proportion to the quantity of fluid it now contains at any season of the year. The high margin of Teche may be regarded as the western boundary of the overflow of Atchafalaya and Mississippi combined; but from the colour of the alluvial banks of Teche it is more than evident that the waters
of Red iiver, or at least a part, once passed down its channel-a phenomenon which has now entirely ceased.

Thus distinguished by peculiar features, the 'Teche, alter a comparative course of 120 , but if the actual course is pursued, falling little short of 200 miles, lalls into Atchafalaya. Any vessel which can enter the latter over its outer bar, can ascend the former to New Iberia at the head of tide water. It may be noticed as a very characteristic feature of this part of Louisiana, that though the tides of the Gull of Mexico do not exceed a mean of \(2 \frac{1}{2}\) feet, yet that they ascend so deep into the country. Pursuing the channels of the two rivers, New Iberia is not much if any less than one hundred and fifty miles from the open Guli. To New lberia, which is a port of entry, vessels of 7 feet water can be navigated in perfect safety.

Articles of export from this river are chiefly cotton and sugar. Neat cattle are reared in great numbers in the adjacent prairies, but are in most part driven alive to the New Orleans market.
D.arbr.

TEHERAN. See Persia, Vol. XV1. p. 459-466.
TEIGNAIOUTY, a seaport town of England in Devonshive, is a celebrated watering place situated at the mouth of the river Teign. It stands on a gentle eminence, and is divided by a rivulet into E . and W. Teignmouth, which form two parishes. The public assembly and billiard rooms form a handsome building in E. Teignmouth; and the theatre, which is in W. Teignmouth, is a neat structure. The church of E. Teignmouth is an old and respectable building situated near the sea. That of W. Teignmouth is a handsome octagonal building finished in 1821. A commodious market-place has been lately erected. The principal trade of the place consists in the exportation of pipe clay and the importation of coals, and in a commercial intercourse with Newfoundland. The ships employed are chiefly built here. The population of the two parishes in 1821 was 769 houses, 855 families, and 3980 inhabitants.

\section*{TELEGRAPI.}

TELEGRAPH from \(\tau n \lambda \varepsilon\) at a distance, and reapo to write, is the name given to a piece of mechanism for the rapid communication of intelligence by signals.

When we find that some of the most savage nations of modern times are acquainted with the use of signals, it would be absurd to suppose that the civilized nations of antiquity had not devised and put in practice regular methods of communicating intelligence both by fires during the night, and by movable objects during the day. The Prophet Jeremiah vi. 1. directs the children of Benjamin "to set up a sign of fire at Beth-haccerem, as evil appeared out of the north and great destruction;"
and Eschylus, who lived about two centuries later, makes one of the soldiers in his Ag amemnon descend from a watch tower at the top of the palace and announce from the fire signals the fall of Troy long before the return of the Greeks.

Polybius gives a full account of the tugreax or fire signals of the ancients, and describes his own improvements on the method of telegraphic communication invented by Cleoxenus. Kircher in his "Ars magna," \&c. distinctly describes a telegraphic experiment, and Schottus in his Technica curiosa proposes the application of the telescope to view posts erected upon an eminence. The Marquis of Worcester in Nos. 6 and 7 of his Century of In=
ventions enumerates a day and night tclegraph among his contrivances : and Kessler in his Concealed Arts proposes to cut out characters in the hottom of a cask having a light placed within it, the characters being changed in succession in order to express single words, and whole sentences.

The earliest telegraph for general purposes appears to be that of our celebrated countryman Dr. Hooke, who has described it in the Philosophical Transactions for 1694. This contrivance consisted of more than thirty different bodies, each of which formed a distinct telegraphic sign or symbol, which were exhibited in succession upon an elevated apparatus. This apparatus, shown in Plate DXXI, Fig. 1. consists of three long masts or poles, two of which carry a screen A, behind which the thirty bodies hang upon rods or lines. These bodies, consisting of squares, centres, triangles, and made of deal, may, by the help of small lines connected with them, be exhibited at \(B\), where a square is shown. In the night time torches, or other lights, wcre arranged in a particular order, and were substituted in place of the wooden figures. The characters, which thus represent the alphabet, may be varied, as Dr. Hooke observes, in ten thousand ways, whilst none but the two extreme correspondents shall discover the information conveyed.
Long after the publication of Hooke's contrivance, M. Amontons, an ingenious natural philosopher and member of the Academy of Sciences, brought forward, and submitted to trial, a plan of a telegraph which seems to differ in no respects from that of Dr. Hooke. He proposed to place the stations at such a distance that a telescope could command them. The signals to be seen through the telescope were either to be large letters of the alphabet, or figures to represent them, and he appears to have tried the plan before several persons of distinction in the court of France.

In the year 1767 R. L. Edgeworth, Esq. made trial of a new method of carrying intelligence. Hc made use of a common windmill for the purpose, and he arranged a system of signals produced from the different positions of the arms carrying the sails, the canvass being removed from one or more sails as the circumstances might require. In 1784 the same ingenious author brought forward his plan of a numerical telegraph, the signals denoting numbers, and each party having vocabularies in which all the worls were indicated by the number which the signals represented.

Notwithstanding these various attempts to contrive and construct telegraphs, yet the practicability of these machines does not seem to have been distinctly recognised till the year 1794, when the activity of the National Convention called into play all the talents of the kingdom. M. Chappe* had the merit of introducing, on this occasion, under the name of the Semaphore, \(t\) what has been called in England the T telegraph, from its resemblance to that letter. It is represented in Fig. 2, where CD is a strong wooden mast carrying a beam AB,
called the long indicator, which can be placed in any position round C as a centre of motion, by means of cords and pulleys. This indicator, which is about twelve feet long, and nine inches broad, carries at each extremity two lesser indicators AE, BF , which are likewise movable round A and B as centres, so that they can be placed in any position with respect to the long indicator AB. Each of the lesser indicators can obviously take five distinct positions with respect to the great one considered as fixed, viz. two at right angles to AC , two inclined \(45^{\circ}\) to AC , and one where it falls back upon AC and appears, so that we have thus \(5 \times 5=25\) signals. But as AD may distinctly take four positions, one horizontal, one vertical, and one inclined \(45^{\circ}\) to the horizon, we have \(4 \times 25=100\), for the number of distinct signals given by the semaphore.
In the semaphore constructed at Paris the first station was on the Lourre. The distance of the stations was three or four leagues, and an observatory was erected near the committee of public safety, to observe the indications on the Louvre. Although the semaphore of M. Chappe possesses great power, yet it is said to have been liable to mistakes, unless when wrought by experienced operators.

In 1794, Mr. R. L. Edgeworth proposed the telegraph shown in Fig. 3, which consists of four separate pointers, having the form of an isosceles triangle, with their base rather less than laalf the perpendicular, and movable round centres at the top of the vertical posts A, B, C, D. The four pointers are placed in a row, and the right hand one D represents units, the next C tens, the third B hundreds, and the fourth A thousands. Now each pointer can take eight distinct positions; seven of these denote figures, and the upright position of the pointer represents \(o\), or zero. With the figures, as thus indicated by the telegraphs, are contained a vocabulary, with numbers opposite the words.

The Rev. Mr. Gamble produced, in 1795, plans of two telegraphs which are represented in Figs. 4 and 5. The first of them consists of five boards, one above the other, which, by opening and shuting, afforded a certain number of distinct signals. His second plan consisted of five beams of wood, each ten feet long. All the five moved round a common centre of motion, and as those motions were independent of each other, one, two, three, or four, could be exhibited at different degrees of elevation, in reference to a horizontal line, or with respect to each other, so as to furnish a great number of signals. One of these was erected in 1803, on onc of the towers of Westminster Abbey, but has been long ago taken down.
In 1808 Major C. Le Hardy described a telegraph consisting of four pointers, or long arms, each carrying at its extremity a square wooden board. One of these represents units; another tens, another hundreds, and the fourth thousands. The indices move on a common centre, and each index board is placed at a different distance from the centre of motion, so
- M. Dupuis is said to have invented a telegraph in 1781.
f From ompa, a sign, and arge, to bear.
that in turning round, these boards deseribe four circles of different radii. The inclination of the arm to the horizon indicates the number, and each has ten different positions. In order to identify these positions, a large frame, with ten radical bars, is fixed behind the pointers, and these are crossed by five circles, corresponding to the bulk of each index board.

Among other contrivances, similar to this in principle, may be numbered that of Dr. Garnet, who proposed to read oft the inclination of the pointers to the borizon by a wire in the focus of a telescope, which, by turning the end of the tube brings the wire in a line with the pointer, (see Fig. 6 ,) and indicates its inclination upon a scale.
In 1795, Lord George Murray laid belore the Admiralty his plan of a six shutter telegraph, which is shown in Fig. 6. This plan was in use during the whole of the late war, but in 1816 was replaced by a simplified semaphore.

The first French semaphoric telegraph which is said to have been erected on the palace of the Thuilleries in 1796, is shown in Fig. 8.

In the year 1796, Mr. Edgeworth proposed to simplify this telcgraph, by using only one of the masts and one of the isoscetes triangles, shown in Fig. 3, and at the same time proposed a two-armed telegraph, one of the arms having the form of a cross, and the other, that of a wood-cutter's sign, as shown in Fig. 9.

In the year 1798, MM. Breguet and Betancourt presented to the National Institute a new telegraph on a simple construction. It consisted only of a single piece, called the arrow, and one of whose extremities was terminated in a T , in order to dislinguish it from the other end.

At the beginning of the war in 1803, there were erected a series of telegraphs along the coast upon the same principle as the radiated telegraph of Mr. Gamble. Each telegraph consists of an upright post, as shown in Fig. 10, carrying thrce arms exactly similar to each other, and each moving round an axis ol its own. The distance between the centre of motion of two contiguous arms is a little less than double the length of one arm. The uppermost arm exhibits seven distinct positions, and the others have only six each.

One of the most ingenious and ardent improvers of the telegraph, is our countryman Colonel Pasley, who published in 1810 an account of the polygrammatie telegraph for day signals, which he had invented in 1803 . He proposed to erect foul posts, with arms complete, at every signal station, as shown in Fig. 11. In 1810, he described another on a new construction, shown in Fig. 12. This is precisely similar to the first, excepting that the pairs of arms used are placed upon one lofty post, instead of several short ones.

Considering the shutter principles inferior to that of the Semaphoric arms, Colonel Macdonald proposed in 1808, the machine shown in Fig. 13, the construction of which, and the reason for adopting it, are thus given by himself. "As three shutters give only seven mutations, it was found necessary to have recourse to four, which furnish fifteen
changes. The four shutters wete placed in a frame over each other, and worked in the usual manner. Shutters \(1,2,3\), and 4 shut in succession, for the highest gave numerals \(1,2,3\), and 4. To have the remaining numerals, it was requisite to combine or to exhibit two shutters closed together, or at the same time. Thus shutters 1 and 4 gave numeral 5. Shutters 2 and 4 closed, expressed numeral 6. Shutters 3 and 4 closed, yielded figure 7. The two upper shutters closed, represented numeral 8. Shutter's 1 and 3 closed, denoted figure 9 , and the two middle shutters closed, represented the o or cypher. As four shutters, acting as above, in a frame, would lurnish a tetegraph capable of giving only one figure at a time, it was requisite to have three conjoincd frames, with four shutters in each frame, in order to be enabled to have the places of umits, tens, and hundreds; or in other words, to be able to express any three figures simtiltancously. On this simple principle I constracted my twelve shutter telegraph for fixed stations. Four of the five of the remaining combinations in each of the three sets of co-operating sets of frames, are given by exhibiting three shutters closed, as shutters 1,2, and 3; 1, 2 and 44 1, 3 and \(4 ; 2,3\) and 4; the last or fifteenth mutation bcing furnished by closing all the four shutters. * * There is a circular board over the middles or tens-set of shutters, and the application of it doubles power in particular instances, and is otherwise essentially beneficial."

In the year 1816, Sir Home Popham, who had distinghished himself by his improvements on nary signals, introduced a new semaphore, which was adopted by the Admiralty and substituted in place of the shutter telegraph. It is shown in Fig. 14, and is nothing more than two arms moving round separate centres upon the same post.

In 1818 Lieut. Colonel Macdonald invented and described a ball and six shutter telegraphs calculated to express any threc figures simultaneously. It has an auxiliary ball above the middle row of shutters, and is surmounted by a semaphore for expressing the classes of words. The same ingenious althor invented in 1817 a six ball and three figure telegraph, which gives 4095 combinations, and when conjoined with two of the semaphoric powers, not less than 1,048,575 combinations. See Fig. 16.

The most recent, and probably the lest of all the telegraphs that have yet been proposed, is the Universal Telegraph, invented in 1822 by Colonel Pasley, who has given the following description of it:-

For the day signals the telegraph consists of an upright post of moderate height, of two movable arms fixed on the same pivot, near the top of it. and of a mark called the indicator on one side of it. See Fig. 17.

Each armi can exhibit the seven positions \(1,2, \therefore\). 4, 5, 6, and 7, exclusive of its quiescent position, called "the stop," in which it points vertically downwards, and is obscured by the post. Fig. 17 represents the telegraph exhibiting the sign 17 , the other positions, of which the arms are capable being dotted. The indicator merely serves to distin.
guish the low numbers 1,2 , and 3 , from the high numbers 7,6 , and 5 , so that this telegraph is not, like most others that have been proposed, liable to ambiguity or error, when viewed from different points in contrary directions*.
The use of the indicator will appear more evident on considering the resemblance between the small Roman letters b and d, or \(p\) and \(q\), which if viewed in contrary directions, like telegraphic signs, could never be distinguished, one from the other, without some additional mark.
Fig. 18 represents the telegraph fitted up for making nocturnal signals. One lantern C , called the eentral light, is fixed to the same pivot, upon which the arms move. Two other lanterns are attached to the extremities of the arms. A fourth lantern I, used as an indicator, is fixed on the same horizontal level, with the central light, at a distance from it equal to twice the length of one arm, and in the same plane nearly in which the arms revolve. Hence the whole apparatus consists of two fixed and of two movable lights, four in all.

The number of telegraphic signs, combinations, or changes, which this telegraph is capable of exhibiting, are only 28 , but these are amply sufficient for every purpose of telegraphic communication, whether by the alphabetical method, or in reference to a telegraphic dictionary of words and sentences. These signs are represented in Fig. 21, showing the appearance of the same combinations both by day and night.
In some few of the nocturnal signs, it will be observed, that one of the lights is marked black. This only happens when one of the movable lanterns is supposed to be in its quiescent position, hanging vertically down below the centre light. In this case, as the lantern may be exhibited on either side of the post, in may sometimes be seen, and sometimes not, by the distant observer. At first I proposed to interpose a couple of screens, one on each side of the post, to hide the lanterns altogether when in this position. Afterwards that idea was abandoned, it having been found, in practice, that it made no difficence in regard to the clearness of the signs alluded to, whether the movable lanterns were scen or olscured, when in the position denoted by the black circles.

The indicator, both by day and night, being merely a mark and nothing more, which, when once seen, requires no farther attention to be paid to it; and the central light by night, and the post by day, being also merely guides to the eyc; the signs of this telegraph are, in reality, composed of the combinations of two movable bodies only by day, and of two movable lights only by night, being the smallest number of parts, with which an efficient telegraph can possibly be formed: and in this diminution of the number of combinable parts, as well as in the unity of plan, consists the superior simplicity of this telegraph, as compared with other efficient telegraphs that have been proposed.

The arms and the indicator for the day signals are made of wood, framed and pannelled, for the sake of lightness. The indicator plays in a mortise, cut in the upper part of the post, and is let down into its horizontal, and raised into its vertical position, by means of a small rope, and a small puld ley. The arms must be fixed externally, one on each side of the post, and must be exactly counterpoised, by means of tight frames of open iron work, which become invisible by day, at a little distance, and which, even when viewed closely, do not impair the clearness of the telegraphic signs. This precaution is absolutely necessary, otherwise the arms will not remain in any given position, without being held by the hand, or stopped by some mechanical contrivance, which would be a very great inconvenience in the practice of signal making.

Motion may be communicated to the telegraphic arms, by means of an endless chain, passing round, and acting upon a couple of pulleys; one of which is fixed to the arm itself, and turns upon the same pivot, whilst the other moves upon a pivot, fixed to the lower part of the post. The chain consists alternately of single and double plates of an oblong form, and rivetted together at the ends, on the principle of a watch chain. The two pullies at the top and bottom being finished with great care, perfectly equal, and having projecting teeth, or studs, fixed in a groove in each, to engage the double or open parts of the chain, the telegraphic arm above will always follow to a hair's breadth, the movements of an index, or lever, below, attached to the lower pulley, which has a dial plate opposite to it, marked on the post, for the guidance of the operative signal man.
In the field, or on board ship, a leathern strap or a rope may be substituted in lieu of the chain, for the sake of economy; but as these expedients are incapable of the same accuracy as the former, the signal men, in working by them, must not trust to the indices, but must regulate the positions of the arms chiefly by the eye. The surface of the pulleys, when intended for a strap, must be moderately convex, those for the rope moderately concave, and both should be broader than when a chain is to be used. The leathern strap requires an extra pulley of a smaller size, for pressing in one side, and tightening it, when the telegraph is to be used. This pulley is fixed to a small lever attached to the middle of the post, and is thrown into action by a string.

When a rope is used, three turus of it are taken round each pulley, hauling it tight at the same time, alter which the two cuds, being previously preparpared with thimbles, or eyesplices, are brought towards cach other, and made last, by a lamiard, or smaller rope, passing through the eyes.

When the strap or rope is used, the lower pulley instead of having one short lever only, serving as an index, may have lour such levers, so as to resemble a small windlass.

At the end of cach arm, two light pieces of iron,

\footnotetext{
- The idea of the indicator, which was not a part of my original plan, but without which, I am now of opinion, that no telegraph is perfect, suggested itselfin consequence of a remark made by my friend Captain John Tailour of the royal navy, who informed me that he had experienced the greatest inconvenience in using Sir Itome f'opham's ship Semaphores, from the signal men confounding the prositions of the arms when seen in ecterse.
}
meet in an angle of 45 degrees, forming an open triangle, to the vertex of which the movable lantern L is attached, by means of a pin. A cylindrical weight w must be fixed at the same time to the end of the iron counterpoise, to restore the proper equilibrium of the arms, which is, of course, deranged by the addition of the lantern. As the lanterns and weights, and in short, every addition necessary for exhibiting the nocturnal signals, are fixed at dusk, and removed by daylight, it becomes necessary, at permanent stations, that the roof of the signal house, over which the telegraph stands, shall be formed with a small flat terrace, accessible by means of a ladder or staircase.
In the intermediate stations of a permanent telegraphie line on shore, two lanterns are required to do the duty of the centre light, one on each side of the telegraphic post, because one lantern can, of course, be seen in one direction only, owing to an intervention of the post. These two, as well as the two movable lanterns, are fixed externally, at a sufficient distance from the plane of the arms, to prevent them from striking, as in Fig. 20, in which c c are the central lanterus, f . the movable lanterns, and \(w\) w the weights, added to counterpoise them.

The indicator light I may cither be fixed to a separate post, as represented in Fig. 18, or it may be attached to a rod \(r\), strengthened by a brace \(b\), and guy ropes \(\mathrm{g} g\), as in Fig. 19, which is an elevation of the universal telegraph, fitted up for night signals, on a scale larger than that of the former explanatory figures. The apparatus now alluded to, having only one lantern to support, may be made extremely light. The end of the rod drops into a small open mortise at the head of the post, and has a semicircular groove on its lower surface, which is engaged by a horizontal bolt, driven through the sides of the post. A small rope fixed to the end of the rod, but omitted in Fig. 19, for the sake of clearness, is made fast to a cleat upon the post below, to prevent the rod from moving. The foot of the brace is secured to the post by a plate and stud.

This apparatus, which entirely depends upon the telegraphic post, and turns with it, may be fixed, or disengaged, in a moment, and is peculiarly adapted for ships, and for field service, in which the length of the telegraphic arm does not exceed from five to six feet. Butat permanent stations on shore, where larger telegraphs would probably be used, the apparatus for supporting the indicator lamp should be a permanent fixture, to save the trouble of continually shipping and unshipping it. At such stations, if the signals were required to be made in various lines or directions, the pole for supporting the indicator lamp should be fixed to the post at bottom, so as to stand out from it obliquely, like a ship's bowsprit, with lifts, or ropes, to support it, leading to the top of the post, and a couple of guys to secure it from lateral motion. Hence one oblique spar only would be used, instead of the two pieces (namely, the rod and brace) before described. But as there may be many stations in a telegraphic establishment on shore, in which the

Vol. XViI. Part II.
signals require to be exhibited in one invariable line only, at all such stations, the indicator lantern should be fixed to its own separate post, which may either be placed vertically (as in Fig. 18), or obliquely, as may be considered most expedient.

Lamps for burning oil have recently been brought to such perfection, that a light of sufficient intensity, for any distance suitable for telegraphic purposes, may easily be obtained. In regard to form, if night telegraphs be adopted on shore, square lamps like those of mall coaches, but having the two glass sides opposite to cach other, so as to show light in two directions only, would be the most proper. But for sea service the pattern called the "globe lamp," which has ol late been generally adopted to the Royal Navy, in lieu of their former signal lanterns, appears to be decidedly the best. In this, the light is exhibited in every direction through a very strong globular glass, to which are fitted a copper top and botton, pierced with air holes.

In respect to the dimensions proper lor the parts of the Universal Telegraph, we ascertained by experiment, that the arms lor the day signals should be about one foot in length per mile, in ouder to be distinguished by a common portable telescope of moderate power. This length is computed from the centre of motion to the end of the arm, not in. cluding the small part beyond the centre, called the head. By the above rule, a telegraphic arm, of six feet in length, may suffice for stations six miles apart; but generally speaking, in telegraphs intended for permanent stations, where the saving of the weight is less an object, it may be considered best to add a little to the dimension thus found.

The width of the arm need not exceed \(1_{1}^{2}\) ths of its length, and should not be less than \(\frac{1}{8}\) th or \(\frac{1}{8} \mathrm{~h}\) of the same dimension. The indicator for the day signals should be of the same width, but only \({ }_{5}^{4}\) the of the arm in length.

The height of the post should be such, that men, or other movable objects, passing near it, should not obscure the indicator, or arms, when the telegraph is erected on the deck of a ship, or in the ficld. But when placed on the roof a permanent signal-house, the projecting part of the post need not excecd the telegraphic arm, by more than \(\frac{2}{3}\) rds of the length of the latter.

It is desirable in all cases, that the telegraphic post should be capable of turning, so as to cxhibit the arms in various directions. On board ship it must also be occasionally lowered. Hence it becomes nccessary to step it upon a simple open circular joint of iron, fixed to the ship's side near the deck, and to secure it by an iron clamp, also of a circular form, attached to the rail, nearly in the same manner as the ensign staff of a man-of-war is usually fitted.

The telegraphs hitherto constructed upon this principle, are of two sizes. Onc having arms of \(5 \frac{1}{2}\) feet in length, with the lantern pivots placed \(6 \frac{1}{2}\) feet from the centre of motion. The other having arms of \(2 \frac{1}{2}\) feet in length only, with the lantern pi;ots three fect two inches from the centre of motion. The former are of a size suited to the largest class
of men-of-war. The latter are perfectly portable, as the whole apparatus, including the night indicator, lanterns, \&c. does not weigh more than 34 lbs . In clear weather, these small telegraphs make signals distinctly at the distance of three miles.

Supposing that telegraphic signals should be required on a sudden emergency, in some situation where there may not be time and mcans for making well finished telegraphs, in the manner that has been described, I have ascertained by experiment, that the most expeditious and satislactory arrangement will always be to copy the regular construclion, as closely as circumstances will permit. A post, with two planks for the amms, each worked merely by a couple of strings wihout pulleys, will constitute a day telegraph, and the addition of lanterns \&e. will convert the same simple apparatus into a nocturnal telegraph. In both cases, the arms must be counterpoised by wood or iron, and also by weights, but in a ruder manner than was before described. To adopt balls or flags lor day signals, or an immovable rectangular frame, with ropes and pulleys, for supporting the lanterns for night signals, which are the only other expedients that suggest themselves as a temporary arrangement, will, on trial, be found much less satislactory than the rudest attempt at the counterpoised telegraphic arm.

It is well known, that telegraphs should generally be painted black, and that for permanent stations, they should always be erected, if possible, upon heights having no back ground.

Several telegraphic dictionaries have been composed by different authors, but of these, the one now used in the Royal Nayy, which was compiled by the tate Rear Admiral Sir Home Popham. appears, upon the whole, to be the most judicious. The number of words and sentences contained in it does not exceed 13,000 ; and yet there is seldom a deficiency of any useful word. Another author has composed a dictionary of a similar nature, containing upward of 31,000 words and phrases: and a thind has composed a work containing more than 149,000 words, phrases and sentences. It may be observed, in regard to this subject, that the extension of a telegraphic dictionary beyond a certain limit is an evil, because in proportion to the number and leugth oi the sentences contained in it, it becomes so much the more difficult to find any of them, without a vast loss of time.

Hence the advantages held out by the author of any very roluminous telegraphic dictionary, must always be in a great measure nugatory, unless the place of every phrase or sentence contained in it, could be known by intuition, which is impossible.

11 is to be observed, however, that the comparative compendiousness, of Sir Home Popham's Telegraphic Dictionary, is partly owing to a practice, which he has carried to the greatest possible extent, but of which the other authors alluded to have availed themselves more sparingly, or not at all. I mean the system of classing under the same article of his dictionary, and thercby representing by one common signal, all the forms of the same verb, as well as every noun, adjective, or adverb, that happen nearly to coincide in sound, or are connected in
signification. Thus the words, "agree," "agrees," "agreed," "agrecing," "agreeable," "agreeably," "agreement," "agrecments," would all be denoted by one and the same signal, and comprehended under one article, in Sir Home Popham's Telegraphic Dictionary.

It is remarkable how very few ambiguities this sweeping method of classing the words of our language will be found to occasion in practice, as may be ascertained by taking any sentences, at random, out of a book, and applying Sir Home Popham's Telegraphic phraseology to them. And yet it cannot be denied, but that serious mistakes may arise at times lrom this system.

For example, the following phrases, "they are robbing," "they are robbed," and "they are robbers," although different in sense, would all be expressed by the same signal in Sir Ilome Popham's Dictionary. The phrases, " \(A\) robber has been executed," and "a robbery has been executed," would also be expressed by the same signal, and the pirases "they are going," and "they are gone," would likewise be confounded.

It is further to be remarked, that Sir Home Popham's Telegraphic Dictionary, being necessarily confined to the use of the Royal Navy, is not available for general service: and even if this restriction did not exist, it is evident, that if telegraphs were introduced into British India, or into any other of our foreign possessions, a number of military phrases and sentences, and a great number of local words and phrases would require to be introduced, which are not to be found it Sir Home Popham's book: and at the same time it might be desirable to obviate the degree of ambiguity, before mentioned in that work. This would require every verb to be expressed in two forms instead of one, and some of the nouns, adjectives, and adverbs, now classed under the same head with a verb, or with each other, to be expressed separately. For example, the word Rob, and others comected with it, which are at present all denoted by the same signal, might be divided into three distinct signals, in the lollowing manner.
ist. Rob, robs, robbing, robbery, robberies, and to follow the same rule in regard to other verbs, including the present tense, the infinitive, and active participle, under the same head, and also any noun of the same somed, or evell of kindred meaning, provided, in the latter case, that it be an action, passion, or any thing inanimate.

2d. Robbed, including always the past tense of the verb, and the passive participle, under one head, whether they be the same in sound or not.

3d. Robber, robbers, and to follow the same rule in regard to personal nouns, keeping them always distinct from the verbs.

It appears also advisable, that the adjective and adverb, when different in sonnd, although of kindred meaning, should likewise be separated from the verb. Hence it would be proper to separate the various words classed under the head agree, in Sir Home l'ophan's Telegraphic Dictionary as follows.

1st. Agree, agrecs, agrecing, agreement, agreements.

2d. Agrecd.
3d. Agrecable, agrecab/y.
If a select dictionary on Sir Home Popham's principle, were thus dilated, it would, in all probability, increase the contents of the work liom 13,000 , to about 25,000 words and sentences, and il the military and local plarases before alluded to, were likewise added, it probably might swell the amount to near 30,000 . Upon the whole, I conclude, that a judicious 'lelegraphic Dictionary, composed on the most comprehensive plan, so as to embrace every contingency of the public service, both at home and abroad, ought not to comtain so many as 40,000 articles. This inference may be considered the result of experience, inasmuch as it has been drawn liom a careful comparison of the most elaborate works of that nature, that I have been able to procure.

Supposing a dictionary of this description to be composed, I would adapt it to the key of the Universal Telegraph, in tha following manner.

The dictionary should be divided into five parts or classes, cach containing one-lifth part of the total number of articles inserted. Thus, for example, il 30,000 articles, and 1000 blanks for unforeseen purposes, appeared necessay, let each division of the book contain 6000 articles, and 200 blanks.

Ol the 28 signs, which the Universal Telegraph is capable of exhibiting, I would reject one, namely, position de of the day signals, in which one arm points vertically upwards, in the direction of the post prolonged; because it has beenurged, that unless when viewed by a very cxperienced cye, it is liable to be confounded with the post, so as to be mistaken for the position called "the stop," in which neither of the arms is shown.

Of the remaining 27 signs, one should be used as an Alphabetical Preptrative, one as a Nemeral Pieparative, and fuec as Dictionary Preparatives, each of the latter relerring to its own distinct part, or class of the dictionary.

Thus there would be 7 preparatives, and 20 signs for general purposes. Each preparative would of course denote, not only the beginning of that word or sentence which is immediately to follow it, but also the cnd of the preceding one.

In representing the letters ol the alphabet by 20 signs, the letters \(I\) and \(J\), the letters \(K\) and \(Q\), the letters \(S\) and \(Z\), and the letters \(U\) and \(V\), would be coupled together: but the letter F would reguire to be denoted by the two successive letters \(\mathrm{P} H\), and the letter \(X\), by the two successive Ictters, C S or K S.

The number of signals, which may be made by three successive changes on the Telegraph, using the 20 disposable signs only, is equal to 8000 , being the third power of 20 ; but as the begimning of each sigual must be denoted by a preparative, without which the signal is imperfect, if the above 8000 articles be combined with the five dictionary preparatives before mentioned, it will be evident, that by never using more than four changes on the Telegraph, for any article of the dictionary, no less than 40,000 words and sentences may thereby be exhibited; but, as I remarked before, this number is greater than appears to be absolutely necessary, in
a judicious and well composed " Celegraphic Dictionary."

For farther information on the subject of telegraphs, sce Polybius, lib. x. cap. 40. Vegetius De Re Militari. Kircher's Ars Magna Lueis et VmbrieSchottus 'Technica C'uriosu. Marquis of Worcester's Century of Imentions, No. 6, 7. Hook's Mhslosophical Aaporiments and Ohsercations, by Derham. Lond. 1726, or Phil. Megrezine, vol. i. p. 312. Houk's Phil. Trans. 1684. P. L'Iloste L'Art des arme Navales. Lyons, 1697. K. I. Vilgworth's Irish 'I'rensuctions, vol. vi. p. 125, and Bibliothrque Britcmique, 1796, vol. i. No. 2. Journal des Invor tions et decomertes, 1793, tom. ii. p. 12, 14, and Ni. cholson's Journal vol. ii. p. 319. M. Chappe in Hutton's Hictionury, art. 'lelegraph, and loourcroy's Report on the System of 'Ielegraphic commmacation in France will be lound in the Moniteur, 1795 , No. \(109, \mathrm{p} .449, \mathrm{~cd} .2\). Breguct and Betancourt in the Bulletin de la Soeicté Phitomathique. No. 16, p. 125. M. Macarthur Nerrel Chromiche, 1797. Rev. J. (iamble's Observations ant Telegraphic Experiments. Colonel Jasley, Phil. Mostazine, 180-. vol. xxix. p. 292, I/. 1810, vol. xxv. p. 339, and his Deseription of the Univorsal Telegraph. Lond. 1823. Boaz's Nocturnal Telegraph in the Repertory of Arts, :se serics, vol. xvi. p. 233, or Phil. Alegr. vol. xii. p. 84. Edelcrantz On Telegraphs in Nicholson's Jour. nal, vol. v. p. 193, and Journal de Physique, vol. Ivi. 1). 468. Telegraph by the Iluman Figure in the Memoires sur les Avengles, and in Nicholson's Journul, vol. vi. p. 16\%. Nuch important information on telegraplis, with an account of Colonel Macdonald's own inventions will be found in his Treatise on Tclegraphie Communication, 1808 ; his Exposé of the mesent state of T'elegraphie Commumication, Lond. 1819, and his General T'elegraphic System and Dict.

TELESCOPE. See Achromitic Telesoope, Vol. 1. p. 96, and Optics, Vol XIV. p. 594-602, and p. 769-789.

TELLFAR, county of Georgia, bounded NE. by Montgomery county; ESE. and S. by Appling: SWV. by Ocmulgee river, separating it from Irwin: W. by Dooley; and NW. by Pulaski. Length from S. to N. 38 miles, mean breadth 22, and area 836 scuare miles. Extending in lat. lrom \(31^{\circ} 39^{\prime}\) to \(32^{\circ} 12^{\prime} \mathrm{N}\). and in long. from \(5^{\circ} 46^{\prime}\) to \(6^{\circ} 20 \mathrm{~W}\). from W. C. The southern part of this county slopes to the southeastward giving source to many of the higher branches of Santilla river, which rise very near the margin of Ockmulgee river. The latter considerable stream forming the southeastert. border of the county, thence cnters and traverses it in a northeastern dircction, serving as a common recipient for the confluents which drain the northern section towards Pulaski.

By the post office list of 1851, Telfair contained threc post offices: Jacksonville, the county seat, Ashley's Mills and Copeland.

Jacksonville is situated in the southern part of the county, by post road 111 miles a little W. of S . from Milledgeville, N. lat. \(31^{\circ} 55^{\prime}\), long. \(6^{\circ} 4^{\prime} \mathrm{W}\). from W.C.

Darby.

TELL, Willam. Sce Switzerland, p. 628. TeLluriunl. Sce Chemistry, Vol. V. p. 665 \(-735\).

TEMPERAMENT. See Music.
TEMPERATURE of the Earth. See Meteorologr, Physical Geggraphy, Polar Regions, and Thermometer.

TEMPERING. See Steel, p. 461.
TENBY, a market and borough town of Pembrokeshire in Wales, situated at the mouth of the Bristol Channel. It consists chiefly of two streets, containing neat houses, built with stone and slated. The church, which is 140 feet long, has a large square tower, which with its spire is about 150 feet high. The harbour is commodious; the exports are coal, culm, and fish, the imports grocerics, \&c. This place has lately become a fashionable bathing place; and a neat theatre, assembly room, billiard table, and bowling green, cold baths, and warm and yapour baths, have been provided for the convenience of the visitors. In 1821 Tenby contained 302 houses, 373 families, 628 malcs, 926 females! and 1554 inhabitants.

TENEDOS, a rocky island of the Grecian Archipelago belonging to the 'lurks, who call it BogtchaAdassi. The finest wine is produced here. It is said to lose its colour but not its strength after fourteen or sixtcen years. Muscadel wines, not inferior to those of Samos, are made in considerable quantitics; about 600,000 okes of wine, valued at 30,000 piasters, are annually exported to Constantinople, Smyrna, and Russia. The town is situated on the slope of a hill, and the harbour is enclosed by a molc, and surrounded by a mountainous ridge. Olivier says that there are as many Turks as Greeks at Tenedos; but others reckon the Turks at 600 families and the Greeks only at 300. Sce Olivier's Voyage dans I'Empire Othoman, vol. i. chap. 24. p. 260, and Sonnini's Travels in Greece and Turkcy, p. 505.

TENERIFFE, the name of one of the Canary Islands, situated on the west coast of Africa. In a long article on the Caxary Islanos in Vol. V.p. 259-265 we have already treated most of the gerecral topics which relate to this island, and it remains only to notice some particulars which may be expected under the present article.

Teneriffe is of a triangular form, each side being about thirty-six miles in length, and chicfly consists of the Great Peak sloping down into the sca. It contains about 1540 square miles or 985,600 acres. It is divided in the middle by a ridge of mountains which have been likened to the roof a church, the peak forming the spire in its centrc. Five-sixths of the island has been computed to consist of rocks, woods, and inaccessible mountains. According to Humboldt, the height of the peak is 1909 toises, or about 12,090 feet. The size of the crater on the summit is only 300 lect by 200 , and its depth does not exceed too feet. The island is almost wholly volcanic, resting on a submarine volcano. The range of basaltic rocks which surround the island do not rise to a greater height than 500 or 600 toises, and through the midst of this formation the rocks which constitute the principal mass of the
volcano, have been protruded from below. According to Dr. Daubeny, the modern lavas may be divided into two classes; 1st, Those which compose the nucleus of the mountain, and are of a trachytic character, have been forced up through the older basalt; and, 2 dly , The products of the volcanic action to which this central mass furnished a vent. The last class are various. Those which have a stony aspect are low in position, and seem to have come from the flanks of the volcano, while the vitreous ones occur only near the summit at heights exceeding 8900 feet. They seem to have come from the adjoining mountain Chahorra, which is to the peak what Monte Rossi is to Mount 厌tna, having been produced by a lateral eruption.

Von Buch is of opinion, that the great chimney in the peak preserves the island from those destructive eruptions which convulse some of the neighbouring ones; but though it may act as a safety valve, yet, as Dr. Daubeny observes, it is a dangerous neighbour to the towns at its base. In 1704 and 1706 lateral eruptions took place, which destroyed the harbour of Garachico, the best frequented harbour in the island. In 1798 Chahorra ejected lavas and scorire for three months, and as some of the fragments took from twelve to fifteen seconds to descend, they must have risen to the height of 3000 feet. Smoke constantly issues from the summit of the peak, and though it is never known to emit flames, yet sulphurous acid vapours are constantly exhaled from it, from several apertures near the lowest part of the crater. The interior of the crater is covered with yellow and white clay, and fragments of decomposed lava, under which are found beautiful octohedral crystals of sulphur.

T'cneriffe is remarkable for the excellence of its climate, varying from the heat of the equinoxial regions to the colder climates of Europe. The scenery of the island is remarkable for its beauty. The date tree, the plantain, the sugar cane, the Indian fig, and the olive tree are cultivated. Wheat is reaped from the cad ol March to the beginning of May, and the bread fruit tree, and the cinnamon, cocoa, and coffee plants have been successfully cultivated. Above this productive region rises the region of the laurels, then the chestnut plantations, then the vast forests of pines, then the vast plain, like a sea of sand adorned with the odoriferous retama, and lastly the Malpays, covered with loose fragments of lava. At the extremity of the Malpays is the plain of Rambleta, with the crevices which discharge watery and heated vapours. Population about 100,000 . For farther information respecting this island, see Captain Cook's Third Ioyage, vol. i. p. 22; and En bassy to China, vol. i. La Perousc's Voyage, vol. ii. p. 226 ; Mr. Grey Bennet in the Geological Transactions, vol. ii. ; Humboldt's Personal Narrative; Daubeny's Description of Active and Extinct Volcanos, p. 251; but particularly Baron Lcopold Von Buch's Physicalischc Beschrcibung der Canarischen Juselm, Berlin, 1825, I vol. \(4 t 0\), and a folio volume of Charts and Plates. See also the article Canary Isles, and the works there referred to.

TENIERS, David, a celcbrated painter, and the son of David Teniers, who was also distinguished in the same profession. He was born at Antwerp in 1610, and died at Brussels in 1694. Sec our article Pasnting, Vol. XV. p. 266.

TENNANT, Smirnson, a celebrated English chemist, was born at Selby in Yorkshire, on the 30th November 1761, and was the son of the Reverend Calvert Temmant, vicar of Selby. After receiving the elements of his education at Scerton, Tadcaster, and Bromley, he went to Edinburgh in 1781 to study medicine, and attend the chemical lectures of Dr. Black. In October 1782 he went to Cambridge, where he devoted himself principally to chemistry and botany. In the summer of 1784 he made a journey to Denmark and Sweden, when be paid a visit to the celebrated Scheele, with whose simple apparatus he was peculiarly pleased. In 1785 he was elected F. R. S., and in 1788 he took his degree of Bachelor of Plysic. His mind was then oceupied with chemical pursuits, and in 1791 he communicated to the Royal Saciety his discovery of a method of obtaining carbon from the carbonic acid. Being fond of travelling, he went to the continent, quitted Paris on the 9 th of August, visited Gibbon at Lausanne, and after visiting Rome and Florence, he returned through Germany to Paris, which he found enveloped in all the horrors of the revolution. M. Delametherie, to whom he paid a visit, had the integrity to preserve for him some valuable property, which lie found it necessary to put under. his charge.

In the year 1796 Mr . Tennant took his degree of M. D., and in the same year he submitted to the Royal Society his paper on the quantity of carbonic acid in the diamoncl.

About this time he took a passion for farming, and for that purpose he purehased some uninelosed land in Lincolnshire. In 1797 he bought a property on the Mendip hills, near Chidder, where he built a house, in which he resided during part of every summer. In 1802 he discovered that emery was the powder of corundum, and in 1804 he discovered the two new metals of iridium and osmium, for which he received from the Royal Socicty the Copleymedal of that year.

In May 1813 Mr. Tennant was elected Professor of Chemistry in the university of Cambridge, and in the spring of the preceding year he delivered his first and last course of lectures.

In September 1814 Mr . Tennant paid his last visit to the continent. From Lyons, Nismes, Avignon, Marseilles, and Montpellier he returned in November to Paris, where he remained till February 1815. On the 15 th of February he arrived at Calais, and on the 20 th he set out with Baron Bulow to embark at Boulogne. They went on board a packet on the 22 d , but were driven back by adverse winds, and intended to make a second attempt in the evening. In order to spend the day they took horses to pay a visit to Bonaparte's pillar, about threc miles distant, and having on their return gone to look at a small fort, on which the drawbridge over a fosse, 20 feet deep, wanted a bolt, they had no sooner got upon it than it gave way, and both of them, with
their horses, were precipitated into the diteh. Baron Bulow, though stumed, escaped without any serious injury, but Mr. 'lennant was found lying under his horse apparently lifeless. Ilis skull and one of his arms were dreadlully fractured, and though when brought to the hospital he scemed to recover his senses, yet he died within an hour. His remains were interved in the public cemetery at Boulogne.
The following is a List of his Principal Papers in the Philosophical T'ransuctions.
1. On the Decompositon of fixerl Air, 1791, p. 182.
2. On the Nature of the Diamond, 1797, p. 122.
3. On the Aetion of Nitre upon Gold and Platina, id. p. 217.
4. On the different sorts of Lime used in Agriculture, 1799, p. 305.
5. On the Composition of Emery, 1802, p. 398.
6. On two Metals found in the Black Powder remaining after the Solution of Platina, 1804 , p. 411.
7. On an easy mode of producing Potassium, 1814, p. 578.
8. On the Means of producing a double Distillation by the same heat, id. p. \(58 \%\).
9. In the Geological Transactions, vol. i. 18:1, he published an Analysis of a Volcanic Substance containing the Boracic acid.
For a full and minute account of the life of this eminent chemist, and accomplished individual, see Mr. Whishaw's Biographical account of him in Dr. Thomson's Annals of Philosophy, vol. vi. pp. 3 and 80.

TENNESSEE, river of the United States, draining the much larger portion of the state of the same name, and also a part of Kentucky, Virginia, North Carolina, Georgia, Alabama, and Mississippi. Speaking generally, Tennessee river is composed of Powell's, Clinch, Holston, French Broad, Tennessee proper, Miwassee, Duck, and innumerable minor streams.

Powell's river, the extreme northern confluent of the basin, rises between Powell's and Cumberland mountains in Russeli county, Virginia, flowing thence southwestward over Lee county of Virginia, and Claiborne and Campbell counties, Tennessee; joins Clinch river at Girantsborough, after a comparative course of one hundred miles. Powell's river draws its sources on the western side of the valley, from Cumberland mountain opposite to those of Cumberland river.

Clinch river has its remote sources in Tazewell county, Virginia, interlocking sources with those of Powell's, Sandy, Blue Stone, and North Holston rivers, and flowing thence southwestwardly over Russell and Scott counties, Virginia, enters Tennessee, wherein, after separating Hawkins, Granger, and Anderson from Claiborne, it enters Campbell and receives Powell's river as noticed above. Below their junction, the united water continues southwest wardly over Anderson and Roane counties to their union with the Tennessee at Kingston. The entire comparative course of the Clinch is 190
miles: 150 above and 40 below the mouth of Powell's river.

Directly opposite Kingston, Clinch receives from the northwestward, Emery's river, a comparatively small but important stream from Morgan, White, and Bledsoe counties. Including the minor valley of the latter, the entire valley of Clinch a little exceeds two hundred miles in length; but with all its constituents the valley is very narrow, as it in no place exceeds thirty, and scarcely admits an allowance oi twenty miles mean width : area 4000 square miles.

Holston river rises in Tazewell and Wythe counties, Virginia, by two branches called relatively North and South Holston. North Holston, the most remote northeastem sou:ce of ' 「ennessee, rises between Walker's and Clinch mountains, and fowing thence southwestwardly over Washington and Scott counties, Virginia, turns abruptly southward into Tennessee, and joins the South Branch at Kingsport, between Hawkins and Sullivan countics. The South Fork of Holston, issuing from Wythe, traverses Washington county, Virginia, and Sullivan county, Temnessee, unites with the North Fork as stated. The South IIolston is augmented in Sullivan by a considerable branch of the Watauga. The latter rises in Ashe county, North Carolina, by several branches which pierce the Bald or Iron mountain in a northwestern direction. These streams unite in Carter county, and join the South Holston in Sullivan.

Below the union of its two main branches, the now navigable Holston maintains a sonthwestern course over Hawkins, Granger, and Knox counties to its junction with French Broad river above Knoxville. Still continuing the original course, over the lower part of Knox and between Blount and Roane, receives Tennessee proper from the southeastward, and turning thence to the northwest joins Holston at Kingston.

French Broad is a stream of considerable magnitude, deriving its highest sources from the western spurs of Blue Ridge, near the border of Greenville district, South Carolina, and opposite to the sources of Saluda and Savannah rivers. Pursuing thence a northern course over Buncombe county, it inflects to northwestward, traverses the Bald mountain, enters Temessee, where, after separating Greene from Cocke county, it receives its main northern branch the Nolachacky on the border of Jefferson county. The Nolachucky issues also from the Bluc Ridge, opposite to the sources of Catawba river, and flowing thence northwestward, drains the northern part ol Buncombe county, pierces the liald or Iron mountain, cuters Tennessee, and traversing Washington and Grecne counties, falls into lrench Broad between Cocke and Jefferson counties. Below the mion of the two confluent branches, the general course of freuch Broad is to the westward, but with a sweeping curve to the south to the mouth above Knoxville. The entire length of the French Broad by comparative courses is about 140 miles: 100 above, and 40 below the mouth of the Nolachucky.

The valley of French Broad, including that of

Nolachucky, occupies a triangle of 90 miles base, with 70 miles perpendicular ; traversed nearly centrically by N. Lat. \(36^{\circ}\) and Long. \(6^{\circ}\) W. from Washington City.

Tennessee proper, though a minor constituent even when compared with the French Broad, has by the course of original discovery given a generic name to the valley. The extreme source of Tennessee is in Rabun county, Georgia. Issuing thence, from the northern spurs of Blue Ridge, by the name of Estato creek, it enters North Carolina between Haywood and Macon counties, and gradually winding from a northern to a northwestern course, receiving tributary creeks from both counties, but particularly the Tuckaseege from Haywood, trarerses the gap between the Unika and Iron mountains, enters Tennessee, and, separating Monroe from Blount, falls into Holston opposite the southern part of Roane county. The entire comparative length of Temessce is about 85 miles; of which 5 are in Georgia, and 40 in each of the other two states.

Hiwassee is the lowest stream deserving the name of a river which enters Tennessee from the lelit. This confluent has its extreme sources in Rabun county, Georgia, but yet small creeks, they enter Macon county of North Carolina, where they unite, and assuming a course of northwest by west, traverse the Unika or Iron mountain, enter Tennessec, and separating the Amoi district of the Cherokec serritory from M'Minn county, falls into the main volume of Tennessee river, about 50 miles comparative course below Kingston.

The distinctive name of Tennessee is applied to the volume below the junction of Holston and French Broad. Already a large stream, it is, however, greatly augmented at Kingston by the influx of the Clinch. The general course of Clinch is maintained below Kingston, and continuing southwestward, by comparative courses, 160 miles, receiving the Hiwassee from the lelt and the Sequatchee from the right, Tennessee abruptly turns to northwest by west, and piercing Cumberland mountain, merges into its lower valley, after a comparative course, following either the Clinch or Holston, of 350, or by the Freach Broad, 300 miles. Including all the minor valleys, Upper Tennessee drains an clongated ellipse of 350 miles larger axis, and with a shorter ax is of 120 miles. The larger axis extends in a direction a little E . of N . from the great bend at the passage through Cumberland mountain to the sources of Holston ; and the shorter axis stretching from the sources of French Broad in the Blue Ridge to those of the extreme northwestern branches of Powell's river in Cumberland mountain. The area of the whole elliptical valley is about 24,000 square milcs.

It would be very satisfactory to have been able to give the relative height ol the extremes of this interesting physical section, but this result can be only stated by approximation. Without estimating the mountain ridges, the mean arable surface of Tazewell county of Virginia, has been estimated at 1200 fect; we may therefore assume at least 1500 feet as the relative clevation of the fountains of

Tennessee. The surface of the water passing through Cumberland mountain is at the utmost not more than 750 feet elevated above the Gulf of Mexico ; but with that allowance, Upper'Tennessee valley will have, on a plain of 350 miles, 750 feet fall, or something above two feet per mile. The real descent is probably rather greater than shown by this estimate.
Deseending from the extreme fountains in Virginia, the valley widens as the mountains recede from each other, and again contract as the same chains again reapproach gradually towards each other at the northwestern angle of Cicorgia, and the northeastern of Alabama. At the latter point below the influx of Sequatchee, well known under the name of Nickijack, all the large confluents have united, and the Blue Ridge and Cumberland mountaius have inclined to within less than forty miles of each other. Below Nickajack, in a distance of 60 miles, the valley becomes more and more confined in width, and without receiving a single creek of twenty miles course, the large volume pours down its mountain channel, the two chains still approaching each other until their actual contact forces the stream through a gorge of Cumberland.
If we suppose a traveller arrived on the bank of Tennessec, immediately below its passage through Cumberland mountain, and who had no knowledge of the geography of the higher valley, he would be far from suspecting himself on a stream draining 24,000 square miles, and formed by such constituents as Clinch, Holston, and French Broad. If such an observer had previously and completely explored the lower valley, he would in the supposed situation regard the main Tennessee as a mere branch.
The importance of this physical section has been fully developed, and may be sately compared with any other of equal extent on the earth in richness, grandeur, and variety of scenery; in fertility of soil, and salubrity of air, and purity of water.
Politically, Upper Tennessee valley contains, in Virginia, part of Russell, Tazewcll, and Wythe counties, and all Washington, Scott, and Lee connties : in North Carolina part of Ashe, and all Buncombe and Macon, with the far greater part of Haywood county: in Georgia, with a section of the Cherokec territory, about one half of Rabun county: in Tennessee, with a section of the Cherokee territory, all the counties of Hamilton, Marion, M'Minn, Monroe, Rhea, Bledsoe, Roane, Knox, Sevier, Cooke, Greene, Jefferson, Granger, Hawkins, Washington, Carter, Sullivan, and Claiborne counties, with part of Campbell and Anderson counties; and in Alabama, with a triangular section of the Cherokce territory on the left, and about one half of Jackson county on the right bank of Tennessec river.
Advancing from S. to \(N\). Tennessec is the first and far most important of a series of rivers which have corresponding curves. It is difficult to make the force of this observation clear to the mind by verbal description, but a single view on a map of the United States, will exhibit Tennessee, Cumberland, Greene, Salt, Kentucky, and Licking rivers
flowing in channels which sweep in semicircles round cach other; and, in fact, that part of Ohio river above the influx of Great Miami conforms to this remarkable system.

The volume of Tennessee has gained its extreme southern curve where it passes Cumberland monntain, and a small creck which enters above the pass is at its source the most southern fountain of the valley. It is here, at the heat ol' Black Warrion river, that the two mountain chains of Cumberland and Blue Ridge merge into each other ; and alony the northern sources of Mobile the Appalachian system changes its distinctive character, and the confused masses of hilfs follow each other westwardly towards the Mississippi river over the states ol Alabama and Mississippi. Below the Cumberland pass, the deflection of the river exceeds that of the mountains. The lormer flows NW. by W. 150 miles by comparative course, traverses under the name of Muscle Shoals, az minor chain, and at the northwestern angle of Alabama, and the northeastern of the Mississippi state, re-enters Tennessee, and curves to a northern course : which latter direction it maintains across a fittle more than two degrees of latitude to its entrance into Ohio, after an entire comparative course of 680 miles.

In a comparative channel exceeding 300 miles, Lower Tennessee does not receive from the left a single confluent above the size of a large creek; but on the opposite side, it is aumented in descending, by Pigeon-Rock, Elk, and Duck rivers, with numerous erceks.

Elk river rises in Franklin county, state of Tennessee, and in the northwestern spurs of Cumberland mountain; and llowing thence something IV. of SW. over Franklin, Liscoln, and (iiles counties, Tennessee, enters Alabama, where alter passing obliquely over Limestonc county, fall into Tennessee river in the SE. angle of Landerdale county, and below the head of the Muscle Shoals, after a comparative course of upwards of 100 miles. It may be remarked, that the extreme sources of Elk river are within little more than 20 miles from the main channel of Tennessee, at a place called "The Suck," 25 miles above Nickajack, and following the latter. stream 140 miles above their junction.
Duck river heads in the same region with the sources of Elk, but the former assumes a conrse a little W. of NW. and very nearly parallel to the opposing courses of Tennessee and Cumberland rivers. Rising in Warren county, Duck river traverses Bedford, Maury, Hickman, the northeastern angle of Perry, and falls into Tennessce in the southern side of Humphries county, after a comparative course of 125 miles entirely in Tennessec.

Below the influx of Duck, the channel of Tennessee rapidly approaches that of Cumberland on the right, whilst on the left the sources of Obion river flowing into the Mississippi, rise within 12 or 15 miles from the bank of Teanessec, confining upwards of 80 miles of the lower part of the valley to a width in no place 45 miles, and not averaging above ten or twelve miles mean breadth.

Taken as a whole, Lower Tennessee valley approaches the form of a trapezium: the western
side, from the sources of Bear Crcek in Alabama to the influx of Tennessee into Ohio, two hundred miles; and an equal distance along the northeastern side from the Ohio to Cumberland mountains at the source of Elk river. The southeastern and southern sides are also very nearly equal, or one hundred miles each; the whole figure comprising very nearly 17,600 square miles; of which the far largest proportion spreads above the mouth of Duck river.

If we except a small extent below the entrance of Tennessee river into the state of Kentucky, no part of Lower Tennessee valley is a tame level, though much less broken than the higher valley above Cumberland mountains. The soil of Lower Tennessee is also generally superior to that of the upper part. Limestone abounds more below the mountain chains.

Politically, Lower Tennessee ralley comprises in Alabama, south of Tennessee river, a small section of Cherokee territory, on the east; the counties of Morgan, Lawrence, and Franklin, with a section of Chickasaw territory on the west; and north of Tennessee river all the counties of Lauderdale, Limestone, and Madison, with the western aud larger portion of Jackson: in the state of Tennessee this section embraces all the counties of Franklin, Lincoln, Bedford, Giles, Maury. Hickmau, Lawrence, IVayne, Hardin, Perry, and Humphries, with part of Stewart, Henry, Carroll, Henderson, M'Nair, Williamson, and Dickson: in Kentucky, part of Callowas and \(M\) 'Cracken west, and of Li vingston, Caldwell and Trigg, east of Tennessce river.

The entire ralley of Tennessee comprises an extent of 41,000 square miles. If the valley of Tennessee is compared with the whole valley of Ohio. the former spreads over very nearly a fifth part of the latter. and gives to Tennessee the first rank amongst the confluent streams of the general recipient.

Amongst the peculiar features of Tennessee, the most remarkable is, that rising as far north as Lat. \(37^{2} 10^{\prime}\), and curving thence southwardly to Lat. \(34^{2}\) 93', the channel again recurres back to its original latitude. and falls into Ohio river almost exactly due W. from the primitive fountains in Tazewell county: thus embosoming nearly the whole large valley of Cumberland, and part of that of Green river.

Geographically, Tennessee ralley lies beiween N. lat. \(34^{\circ} 10^{\prime}\) and \(35^{-3} 10\), and in long. between \(4^{\circ} 15^{\prime}\) and \(11^{\circ} 40^{\prime} W\). from \(W\). C. It is the first and largest, adrancing from south to north, of those streams which gush from the elevated vales of the Appalachian system, and which flow westward into the great basin ol the Mississippi.

In relative height above the ocean, if the mountains are included, there is a difference of from 1700 to 2000 fect between the cxtremes of Tennessee valley. The arable surface of Tazewell and Wythe counties in Virginia we saw estimated at 120 feet: that of high water at the confluence of Tennessee and Ohio but little, if any, excceds 300 feet, giving a difference of 900 feet to the cultivated
surfice. This comparison may be regarded as a nearly just mean, and is fully equal to two degrees of latitude, and in part accounts for the great difference of climate on the same curve of latitade near the Ohio and on the sources of Clinch and Holston rivers.

The current of every branch of Tennessee is very rapid, shoals are common, but direct falls rare. Of shoals, the most remarkable are those which have become so well known under the name Muscle Shoals, between the counties of Lauderdale and Lawrence in Alabama. These shoals are, at all seasons, difficult to navigate, though from the infrequency of accident, must be far less dangerous than usually represented. With all its impediments from shoals and rapid descent of the general plain, Tennessee valley is navigated downwards from very near the sources of most of its streams.

TENNESSEE, one of the United States of America, bounded by North Carolina E.; GeorgiaSE.; Alabama S.: state of Mississippi SiV.; river Mississippi separating it from Arkansas W. and state of Missouri NW゙: state of Kentucky N., and Virginia N. E.

If we commence the outline of this state on the southern boundary of Virginia, it will thence bave a boundary:
In Miles.
In common with North Carolina, along the main spine of the Appalachian mountains, to the nortbwestern angle of Macon countr,
Due S. along the western boundary of Macon countr to the northern boundary of Georgia,
Due W. along the northern boundary of Georgia, and N. Lat \(35^{\circ}\) to the portheastern angle of Alabama.
Continuing the last noted line along the northern boundary of Alabama, to Teunessee river. and to the northeastern angle of the state of Mississippi.
Still continuing due \(W\). along the northern boundary of the state of Mississippi, to the left bank of the Mississippi river,
Thence up the latter stream by comparative courses, opposite the territory of Arkansas and the southeastern angle of the state of Sissouri,
Continuing up the Mississippi river to the northwestern angle of Tennessee, and the southwestern of Kentucky,
Thence due E. along the southern boundary of Kentucky, to the Tennessee river, 80
Thence up Tennessee river,12

Thence by a line a little S. of E. along the southern boundary of Kentucky to Cumberland mountains and to the southwest angle of Virginia,
Along the southern boundary of Virginia to place of beginning,

Having an entire outline of 1171 Extendiag in Lat. from \(35^{\circ}\) to \(36^{\circ} 37^{\prime} \mathrm{N}\); ; and in Long. from \(4^{\circ} 59^{\prime}\) to \(13^{\circ} 14^{\prime} W^{\circ}\). from W. C.

The longest line that can be drawn in one direction on any state of the United States, is a diagonal
over Tennessee from the northeastern to the southwestern angle. This line is by actual calculation within a trilling fraction of 500 miles, and declines from the meridians by an angle oll 77 degrees. The mean length of this state is about 400 miles, and the mean vidth being 114 the area is 45,600 miles; equal to \(29,184,000\) statute acres. This area excceds the extent usually given to Temmessee, but following the most recent, and we may suppose, most accurate delineation on Tanner's Map of the United States, the estimate here given is very near the real superficies of this state.

By relerence to our notice of Tennessec river valley, it will be obvious how gratly the physiognomy of the state is modified by its rivers. Dividing Tenuessee into physical sections, and taking the monntains as lines of demarcation, it presents two unequal parts; one the smallest above, and another, the second and largest, below the Cumberland monntain chain.

The higher, and in point ol extent relatively, the inferior section, is chtirely comprised in the upper valley of Temesser, and is in length diagonally from southwest io northeast, 280 miles, with a mean breadth of 57 miles; area 15,960 square miles, or very wear the one-third of the state. This comparatively edevated and diversilied region is amongst the most delightul portions ol the Americath continent. Under the head ol Tennessee river we have abrealy remaked, that higher Temessee had a winter climate modified by its superior elevation over the Attantic coast and banks of the Mississippiriver, or similar latithdes On lower Tennessec, cotton is a staple prodaction, whilst the climate oll the upper section is more congenial to cereal gramiat and the grasses. The declivity of upper Temessee is to the southwestward, and by a very rapid general desectut. The declination of lower Temessee is more gentle, and to the west of northwest.
L.ower or westem Tennessee is subdivided by its rivers into two sections. That part comprised in the valley of Tomessec river has been already moticed under the heat ol that stream ; but to the northward of "Comessce valley, the state embraces a large and vers important tract in that of Cumberland river. The later tract is about 250 miles in length along the line between the states of Tennessec and kentucky, with a mean breadth of 40 miles, and contains 10,000 square miles. That part of the state comprised in lower Temessee valley is about 170 miles long, with a mean breadth of \%o, embracing an area ol 11,900 square miles.

Including both upper and midde Temessee, or the sections contained in the valleys of Tennesse and Cumberland rivers, we have an aggregate area of 37,860 square miles, o! which 21,900 are comprised in the middle region.

The general declivity of lower or middle Tennessee is westward towards Temnessee river, as that great stream flows here in a chanmel near the base of the central plain. But passing, not only the chamel, but the entire valley of Tennessee, we find a slope lalling westward towards the Mississippi river, and drained by Obion, Forked Deer, Big

Vol. XVII. Partil.

Hatche and Wolf rivers. These small rivers have corresponding curves, lirst nowing northwestwardly, thence west, and limally southwest into their great recipient the Mississipioi. This western inelined plane may be considered, both physically and politically, as West Tennesser, and comprises 7,740 stuare miles.

In its hatural state the whole surface now included in Tennessee, was conered with a dense forest. The great leatures along its very clongated declivity ol five hundred miles, are varied and strongly contrasted. liast Tennesser, monntanous of very hilly, with excellent river soil, presents a most sedactive picture to the eye. Siddle, or central Temessec, less bold in its physiognomy, but with a much larger proportion ol productive soil, is firl. lowed by the western section. The features ol nature, from the Cumberland chain, imperceptibly soltening, until finally sunk into the anmally inundated banks of the Mississippi. The state lits, on all its parts, a sufficiency of soil to admit a dense and mot very uncqually distributed population. Agrecable to the return of the recent census of 18.30, middle and western Tennesse, containing a surlace of 29,640 spuare miles, had an aggregate population of 488,448 . In 1820, the same surface had only 287,501 inhabitants, having increased almost 70 per cent in ten years.
The mean density, however, in 1830, was still only about 16 to the square mile, on a soil and surface where ton times the umber would be far from rearhing the natural capacity of support.

For the political subdivisions, or counties ol Tennessee, with their respective population in 1830, sec Art. U. S., Section Texnessem.

History. - The temitory now forming the state of Tennessee, was, with a small exception on the northern border, included in the second charter of North Carolina, granted to Clarendon and others by Charles II. in 1664 , but no white settlement was mate so lar westwad until 1754, when a lew families fied themselves on Cumberland river, but were soon alter diven away by the savages. The first permanent settement in Temessee was made by the Coundiner ol Fort London in 1757 . Accordings to lilint's Cicography and IIstory ol the Western States, Jort Joudon stood on Litle Tennessce, one mile above the mouth of Tellico. This place is now included in Blonnt county. On Pownall's map, Pounded on that of livans, the latter published in 1755, it is noted, that the larthest scttlements of Virginia westward, in 1755, were on the heads of Bluestone, branch of New river or Great Kanawla, and on the heads ol Clituch and Holston. Tennessee was then ote wide widerness. As noticed under the Article Tennessee river, the course of original settement was lrom North Carolina into the valley of Tremessee proper, above its junction with Holston. Fort Loudlon was then the cradle of Tennessee. This fortuess was attacked in 1760 by the Indians, taken, and upwards of two buadred men, women and children massacred.

In 1761, the important campaign under Col. Grant broke the power of the savages. A treaty was made, which encouraged emigrants, and about 4 P

1765, settlements began to be made on Holston which gradually increased. Though harassed by savage warfare, the hardy frontier men penetrated deeper and deeper into the forest, and at the opening of the revolutionary war, were sufficiently strong to meet their savage enemies. Col. John Sevier was the hero ol Tennessee at that period. In June 1776 , the inhabitants, aided by a few Virginians, defeated the Indians. Hostilities continued nevertheless, between the parties, through the revolutionary war.

When in 1776 , the first republican constitution of North Carolina went into operation, deputies from the western counties, now in Tennessee, appeared in the first state assembly.

The carly settlements were entirely above the chain of Cumberland, and a party of hunters in 1779, found the country on Cumberland river in the fine region where Nashville now stands, a wilderness. Merged in the great border of fronties from Canada to Florida, the inhabitants on Tennessee river, first gained political importance, Oct. 7th, 1780, by their share in defeating the British and tories at King's mountain. In 1782, courts of justice were established and in the ensuing year a land office; and finally Temessee obtained individual existence in 1584, by a cession ol its territory to the United States. This act was legally repealed, but the historical effect remained in force. The people unwilling to remain under North Carolina, formed an independent government under the name of the state of Frankland. Anarrhy surceeded. North Carolina claimed jurisdiction, and was resisted by the constituted authorities of Frankland. Power prevailed in the struggle, and the state of Frankland disappeared. The contest was marked by many acts ol violence which were not terminated until after 1790, when North Carolina definitively ceded the territory to the United States. By a law of Congress, passed May 1790, the country of Tennessee was made a territory by the name ol" The Territory South of the river Ohio." "The first printing press was established at Hagersvilie, Nov. 1791, and on the 5th of that month, was issucd the Knoxville Gazette, the first newspaper of Tennessee.

The country adranced in population, and on the first of Jume 1796, Temessee was formally admitted into the Union, as a state of the confederacy. Since her introduction into the family of republics, the progress of Tennessce in power and wealth, has been constant and peaceable. The late war beiween the United States and Great Britain, exhibited the troops of Tennessee as the worthy representatives of the heroes at the slopes of King's Mountain.

Government.-The legistative power is vested in a general assembly composed of two branches, denominated the senate and house ol representatives, elected biennially. No person is eligible to a seat in eithor house, untess lie shall have resided three years in the state and one year in the county, immediately preceding the election, and shall possess in his own right in the county which he represents not less than 200 acres of lated.

The executive power is vested in a governor, chosen by citizens qualified to vote for members of
the general assembly. The governor must be at least thirty-five years of age and possess a freehold estate of 500 acres of land, and have been a citizen or inhabitant of the state four years next before his election, unless he shall have been absent on the public business of the state or of the United States. His term of office is two years and until his successor shall be elected and qualified, but he is not eligible more than six in any term of eight years.

The judicial power is vested "in such superior and inferior courts of law and equity as the legislature shall from time to time direct and establish."

The general assembly by joint ballot of both houses, appoint the judges of the several courts, also an attorney or attorneys for the state, who hold their respective offices during good behaviour.

Article \(3 d\), section 1st, of the constitution, thus defines the right of suffrage, "every freeman of the age of twenty-one years and upwards, possessing a freehold in the county wherein he may vote and being an inbabitant of this state, and cvery freeman, being an inhabitant of any one county in the state, six monthsimmediately preceding the day of election, shall be entitled to vote for members of the general assembly lor the county in which he shall reside."

Education.-For the advancement of classical education, the principal seminaries in Tennessee, are the Nashville University, at Nashville; East Tennessee College, at Knoxville; Greenville College, at Greenville, Green county; and the Western 'I'heological Seminary, at Marysville, the seat of justice of lilount county.

Manufacturcs.-The principal manufactures are iron, cotton, hemp, cordage, paper, gunpowder, and maple sugar. In East I'ennessee, there are many iron manulactories. In 1810, the value of the manufactorics was reckoned \(3,708,000\) dollars. In 1813, 700 workmen were emploged in manufacturing saltpetre in Bigbone cove, to the amount of 500 lb . daily. In 1820 , the manufacturing population was 7860.

Tennessee carries on a considerable trade to the other states. Ihe chief exports are cotton and tobacco, hemp, flax, horses, live cattle, Indian corn, saltpetre, ginseng, and iron. The imports are chiefly dry goods and grocerics, brought in wagons to East Temnessee from Philadelphia and Baltimore, and from Pittsburg and New Orleans by the rivers. The number of persons engaged in commerce in 1820, was 882.

Chiof Touns.-The principal towns are Murfreesborough, Nashville, and Knoxville. Nashville, the seat of govermment, about thirty-t wo miles N.W. of Murfreesborough, is agrecably situat. ed on Cumberland river, which is navigated to the town by steam boats and vessels of 130 and 140 tons. Knoxville, the capital of East Temessee, is situated on llolston river. The State bank is established here, with a branch at Nashville. The capital is 400,000 dollars. There is also a branch of the United States bank recently established at Nashville, with a capital of \(1,000,000\) clollars.

TENSAW, river ol Louisiana, has its extreme source in Grand lake, and in the southeastera
angle of Chicot county, Arkansas. Grand lake is evidently a remains of an ancient bend of the Mississippi, and Tensaw river is as evidently a former outlet of that great stream, and conseguently has a similar origin with Atehabalaya, lberville, Plaquemine, and La Fourche. lssuing therefore from Grand lake, the Tensaw immediately below its ctflux enters Louisiana, in the parish of Ouachita, and flowing thence a little S. of SW. and nearly parallel to the general course of the Mississippi, by comparative courses about 110 miles to its junction with Ouachita to form Black river. The Tensaw is the drain of the inundated tract, west from the Mississippi river and in the parishes of Ouachita and Concordia.
TEQUENDAMA, Cataract in the river Bogata, about 8 or 10 English miles to the N. W. of the city of Bogata, department of Cundinamarca, Colombia, South America. This very remarkable series of falls forming one vast cataract, vecurs in a mountain stream issuing from the Paramo del Chigasa, and lalling into the Rio de la Marglalena. A plan of Tequendama and admeasurement of its deseent in feet, was sent, in 1790, to the king of Spain, by the Col. Commandant Don Domingo Esquiaqui. The results reduced to English leet were
\begin{tabular}{llll} 
First Fall, & - & - & - \\
Sal \\
Scond Fall, & - & - & - \\
Third Fall, & \(253 \frac{1}{3}\) \\
Entire Fall, & - & - & \(\overline{867 \frac{3}{4}}\)
\end{tabular}

Compared with similar phenomena, in height, Tequendama is only cxceeded by the Stanblach near Lauterbrun in the Canton of Berne in Switzerland, which falls 900 fect; or, in quantity of water by Niagara, falling direct 162 leet. But combining actual elevation with comparative body of water, the Tequendama has no equal amongst the cataracts known to exist on his planet.
It is not a very unfrequent error to consider Niagara as having the greatest direct fall of any known cataract. The entire fall from the surface of Eric to Ontario, is only 333 feet. Catskill fall in New York, has a descent of soo feet, and those of Montmorenci, near Quebec, of 246 feet.
D)aby.

Terence, Publius Teremtius, a Roman writer of Comedies, was born at Carthage in B. C. 197. He came to Rome as the slave of one Terenlius, whose name he took. His first comedy, the Andrio, was exhibited B.C.166. His Eunuch was acted twice on the same day, and brought him 3000 sesterces, or about L.64. Six of his comedies are extant. When he had presented them to the public, he left Rome for Greece, and never returned. Some affirm that he perished by shipwreck. Among the best editions of this author, are those of Bentley, Cantab. 4to. 1726, Zcunier, Lips. 8 vo. 1774, and Brunckius, Basil, 4to. 1779. See our Article Drama, Vol. VII. p. 705.

TERNATE, one of the Molucca isles, is about 21 miles in circuit, having a lofty volcanic mountain in its centre, which sometimes emits smoke and flame. It suffered greatly from earthquakes in

August 1770 . Kast long. \(127^{\circ} 10^{\prime}\), N. lat. \(8^{\circ} 50^{\prime}\). See Moneceas, Vol. Xill. p. 693.
TERRA Dma Fugo. Sec Fubgo, Vol. IX. p. 492.
Tertullian, quamus shimilus Flobens, the most ancient of the Latin fathers, was born at Carthage about the middle of the second, and died a little before the middle of the third eentury. He is the author of many works, of which his . Ipolowy for the Christiuns is the principal onc. Its object is to show the injustice of the persecutions to which they were exposed, and the execllence of the Christian religion. The best clitions of his whole works are those ol Rigaltius, Paris, Feld. 1641; and ol Semler, Hal. Magd. 6 vols. \(1770-76\).
TETBURY, a market town of England in Gloucestershire. it is pleasantly situated on an eminence near the source of the Aron, and consists of four well built streets with a large market house at their place of divergence. The church is handsome, consisting of an ancient tower with a spire and a modern body, which cost L.5000. There is also here a free school, an alms house, and a manufacture of woollen cloths. Races are held near the town. To the north of the town there is a petrifying spring. The population of the parish in 1821, was 527 houses, 580 families, and 2734 inhabitants.
TETUAN, Sce Morocco, Vol. Xlll. p. 682.
TEVVKESBURY, a market and borough town ol England in Gloucestershire, is situated in the vale of Eresham, on the east bank of the Avoa. The town consists of three spacious streets composed chiefly of brick houses. The high street is long, spacious, and elegant. The houses which are good, are chiclly modern, though some specimens of the ancient style remain. The principal building is the abbey chureh, a fine specimen of early Norman architecture, which contains many rich monumentserected to its patrons, or to the nobility who lell at the battle of Tewkesbury. It is 300 feet long, and the tower is 152 feet higlh. The other religions buildings are meeting houses for Independents, Quakerc, Baptists, and Methodists. The town hall is a handsome edifice, the ground floor being appropriated for the quarter sessions, and the principal story for a banqueting or ball-room. The new jail is a neat building, and there is au elegant school house on Dr. Bell's plan. The house of industry is spacious. There are also here a free grammar school, an endowed charity school, several almshouses, a dispensary, a lying-in-establishment, and schools on the plans of Bell and Lancaster. The principal manufacture here is that of stocking frame work kuitting, chiefly in cotton. Nails are likewise made, and a considerable malting business is carried on. There are several commodious bridges near the town, and that over the Avon is of great length. The town sends two members to parliament, who are elected by about 500 votes. The population of the borough in 1821 was 1044 houses, 1172 families. 865 families in trade, 122 ditto in agriculture, total population, 4962. An account of the battle of Tewkesbury will be found in our article England, Vol. VIII. p. 467. See the Beauties of England and Wales, Vol. V. p. 683, Scc.

\section*{TEXAS.}

TEXAS. Previously to the revolution which secured the independence of Mexico, Texas formed one of the internal provinces (Provincias Internas) of New-Spain, which, with the adjoining province of Coalsuila, constituted an important part of the intendancy of San Luis Potosi. This sub-division of New-Spain, then so called, comprehended the provinces of New-Santander, San Luis Potosi, New-Leon, Coahuila, and a large portion of NewMexico. Thus stood the territorial limits of this part of Mexico when the government of that republic was organized. In 1822, this vast territory was, by a special act of the Mexican congress, divided into thres distinct states, whose governments, respectively, were modelled in strict conformity to the federal constitution, then recently adopted. The states thus erected, were severally denominated, New-Leon, San Luis Potosi, and the Interior of the East. The two former retained their provincial names and limits unchanged,-the other embraced the provinces of New-Santander, Coahuila, and Texas. The great extent of the latter state, and the consequent difficulty of administering its internal affairs, soon rendered fresh changes necessary, and in 1824, the province of New-Santander was detached from this unwieldy member of the confederacy, and formed into an independent state, under the title of "Tamaulipas." The remaining provinces were at the same time united and erected into the state of "Coahtila and Texas." By the law which fixed the limits of these states, a considerable portion of Coahuila was anmexed to the territory of Santa Fe , or New-Mexico.

No important change in the civil divisions of these states has since been made.

Having thus briely traced the boundaries of this part of Mexico, as they existed at different periods, we shall proceed to define the limits of 'lexas proper, as they are at present known and recognised, by the Mexican govermment on the one hand, and that of the United States on the other.

Texas, the eastermmost province of the state of Coabuila and Texas, is situated between the \(27^{\circ}\) and \(35^{\circ}\) of north latitude, and \(16^{\circ}\) and \(26^{\circ}\) of west longitude from Washington city, or \(93^{\circ}\) and \(103^{\circ}\) west of Creenwich. Bounded on the north by the United Statesteritory of Arkansas and district of Orark, from which it is sepurated by Red river; east by the state of louisiana: south by the Gulf of Mexico and state of Tamaulipas, and west by the state of Chiluahua, the province of Coabuila, and territory of Santa Fe, formerly New-Mexico. The general outline of 'Texas may' be thus describedlength on the gulf coast, from the mouth of the Sabine to that of the Nueces, the south west limit of the province, 260 mites-up the Nueces to its source, 550 -along the ridge which separates the waters of Rio Bravo from those of the Brazos, Co-
lorado, Sc. to its termination on Red river, 430down Red river to a point due north of the western boundary of Louisiana, 560 -thence due south, and along with that boundary to the Sibine, where it is intersected by the \(32^{\circ}\) of north latitude, 60-and down the Sabine to the place of beginning, 220 miles, making an entire outline of 1620 miles. The area of Texas, within the above described limits, as deduced from careful computation by reticulated lines, is 179,200 square miles, and is equal in extent to the states of Louisiana, Mississippi, Alabama, and South Carolina.

If we regard Texas as extending to the Rio Bravo, as erroneously represented by some of the old maps, its entire area would be inereased to about 530,000 square miles, and would present an aggregate supurficies, equal to the states of Georgia, Tennessee, and North Carolina, in addition to those above enumerated. Such an extension, however, is not warranted by any act either of the goverument of Mexico or that of the mother country. It would embrace two-thirds of Coahuila, which forms a distinct province of the state; nearly one-balf of Tamaulipas; about one-third of the state of Chibuahua, and a large portion of the territory of Santa Fe .

Gulf Coast, Bays, \&.c.-Commencing at the outlet of Sabine lake, the coast of Texas assumes a direction towards the southwest, which it follows to Galreston bay, a distance of filty miles. Galveston bay is formed by Point Bolivar, Pelican and Galveston islands, and is the most extensive opening in this part of the Ginlf of Mexico. It affords a good harbour and safe entrance, having always twelve, and sometimes fifteen feet water on the bars. This bay extends about 35 miles in a northwest direction from Galveston island, by which and Point Bolivar it is completely land-locked; its mean breadth is fifteen miles, and corers an area of 525 square miles. From the eastern point of Galveston island, the coast extends in the same direction towards the southwest, for so miles, to the west pass or entrance of Galveston island sound. From the west pass the same course is maintained for nearly 85 miles, without any material variation, to Passo Cavallo, or entrance of Matagorda bay. About 20 miles southwest of Galveston inlet, the great river Brazos enters the Gulf of Mesico, and at a further distance of 12 mites, that of St. Bernard discharges itsell into the same gulf. Matagorda bay is nearly equal in dimensions to Galveston bay, but is of an irregular form. The observations respecting the latter apply with equal lorce to Natagorda bay.

From I'asso Cavallo, the coast still continues its direction towards the southwest, to Aransaso inlet, a distance of 60 miles. Midway between Passo Cavallo and Aransaso inlet, the Bay of Espiritu Santo approaches within two miles of the gulf,
with which it often communicates during the prevalence of high easterly winds. This bay, with Aransaso, and a small bayon, which connects the former with Matarorda bay, detach a considerable portion of the soil from the main land, and form the Island of Espiritu Santo. The bay ol the same name lies nearly parallel with the coast, and is distinguished only as the recipient of the rivers San Antonio and Guadalupe, which unite ten miles above the bay.

Due west of Espiritu Santo bay, and northwest of the island, lies the Bay of Aransaso, extencling westward 50 miles, and of the mean breadth of about five miles. At Aransaso inlet the coast turns, and pursues a course due south 25 miles, to Copano, the outlet of Nueces river, and termination on the southwest, of the coast ol 'Jexas. About 30 miles from its outlet, the Nucces expands into a spacious bay, which is joined by another liom the north, of nearly equal extent, and similar in lorm ; the latter is catled l'apelote bay, from a small stream ol that name which enters its westem margin. 'Texas has a front on the Gull of Mexico, ol two hunded and sixty miles in extent, which, like most other parts ol the gulf, is almost entirely destitute of good harbours. Its bays, with some exceptions, are generally shallow, and their navigation much impeded by saudbars and shoals, which are suddenly formed and as suddenly disappear. The burs at the river mouths are equally variable, and seldom afford more than from four to twelve feet water.

Rivers and Lakes.-Red River, which forms the entire northern boundary of the province, as well as that between Mexico and the United States, agreeably to the treaty of 1819 , rises in the plains at the eastern base of the mountains of Anahuac, and after intersecting the western boundary ol' Jexas in north Lat. \(35^{\circ}\) and west Long. \(25^{\circ}\), pursues a course nearly east, until it is joined by the Kiameche; at its junction with the Kiameche, the Red river curves towards the southeast, and passes into and through the southwest quarter of Arkansas erritory, thence into the state of Louisiana, and joins the Mississippi, wear the \(31^{\circ}\) of north Lat. Very litte is known respecting the sources of Red river, beyond Cantonment Yowson, and indeed the section occupied by that estiblishment, is represented by all published maps several minutes further south than recent observations for latitude bave placed it. The Baron Humboldt, in his account of New Spain, describes the rivers Rajo and Mora, the former rising 25 miles northeast of 'Tous in New Mexico, and the latter about the same distance east of the town ol Santa Fc, as the sources of Red river. 'The hypothesis of Major Long, that the rivers in question are the head branches of the Ca nadian fork of Arkansas river, is more plausible, and will no doubt be verined when the country through which those streams flow shal! have been subjected to an actual survey. 'The length of Red river, from its intersection with the western boundary of Texas, to that of Arkansas territory, is 560 miles, and its general course eastsoutheast. It drains an area in Texas of 18,000 square miles.

Subine river, which forms a part of the eastern

Loundary of the province, emerges from a dense forest, in N. Lat. \(32^{\circ} 45^{\prime}\), and W. Long. \(18^{\circ} 30^{\prime}\), pursues a southeast course one hnodred miles to the point where it is joined by Cherokee creck from the right. At a distance of 30 miles from the mouth of Cherokee creek, the Sahine is intersected by the boundary line between Texas and Lonisiana, in N. Lat. \(32^{\circ}\) and W. Long. \(17^{\circ}\). lirom this promt the Sabine curves towards the rast, and forms a section of an ellipse, again cuts the merielian of 17 . west from Washington, and atter a further course of 220 miles, enters the Gult of Hexico through Se bine lake, in north Lat. \(29^{\circ} 30^{\prime}\). Sabine lake, at more expansion of the Sabine river, is not more than five: or six feet in depth, about twenty miles in langth from north to south, and ol the encan breath of four or five miles. Its chamel is lound with difficulty among the innumerable sand-bars that presen themselves, and scrve to embarrass ant perplex the navigator. A lew mites from the diseharge of Sabine lake, it becomes contracted, and ebters the Gulf of Mexico by a pass scarcely half a mite in width. "This river," says Darby, "affords no navigable facilities worthy of notice. In ordinary tides, it has not more than three fect water on its bar, nor has the lake above five lect, and near its shore still less." Entire length ol Sabine river, from its source to the Gulf of Mexico, 350 miles. General course south-southeast. Area of that part ol Texas which is drained by the Sabine and its branches, 18,750 square miles.

Neches river has its sources in the salt springs, abont N. Lat. \(32^{\circ}\), and W. Long. \(19^{\circ} 26^{\circ}\), pursties a sontheast course for 140 miles, when it is joined by the Angelina, from the north. At the junction, the Neches assumes a south consce, bows so miles, and enters Sabine lake in N. Latt. \(30^{\circ}\). "The navigation of Neches riven," says Colonel Austin, " is grood as lar up as the Opelousas road." 25 miles above its entrance into Subine lake. It is 600 yards wide 30 miles from its mouth. Tis entire leugth is 220 miles, and general course southeast.

Trimidad river has its source in the Cross Timbers, in N. Lat. \(33^{\circ} 45^{\prime}\), and W . Lons. \(21^{\circ}\), and Hows in a southeast direction, 160 miles, to the junction with its eastern branch, thence southeast. 60 miles, to another considerable branch, coming in from the east. Continuing the latter course a further distance of 170 miles, it enters the mortheast angle of Galveston bay. The entire length of the Trinidad is 390 miles. General collrse, south-southeast, and it drains an area of 15,500 square miles.

San Jacinto river rises in N. Lat. \(30^{\circ}\) 45', and W. Long. \(18^{\circ} 50^{\prime}\), pursues a southeast course for 100 miles, and falls into Galveston bay about 20 miles southwest from the mouth of Trinidad river. The Buffalo bayou, the largest branch of the San Jacinto, flows towards the east, and enters that river about 23 miles above its mouth. It is about 90 or 100 yards wide ; "and affords," says Colonel Austin, "good schooner navigation to the head of tide at the forks, eight miles above Harrisburg." Area drained by the San Jacinto and its branches, 3,450 square miles.

Brazos river, the Tanpisarahco or main branct:
of the Brazos, rises in the great prairies, near the western confines of the province, in N. Lat. \(33^{\circ}\), and W. Long. \(25^{\circ} 30^{\prime}\), and flows eastward, 130 miles, into the Great Saline Iake of the Comanches. Saline lake is an expansion of the Brazos, and is formed by the innumerable salt springs which abound in its vicinity. The lake is about 20 miles in length from west to east, and of a mean breadth of four miles; it presents to the traveller a cheering contrast to the monotonous and dreary aspect of the surrounding prairies, whose lengthened and unbroken surface seems to defy the utmost power of vision. Two large streams, the Tosohunova and Keriachehunova, the former coming from the northwest, and the latter from the southwest, enter and serve to augment the volume of Saline lake. Contracting again, at the eastern extremity of the lake, the Brazos resumes its eastern course, which it pursues about thirty miles, to the junction of the Incoqua river, which enters the former from the north. At the mouth of the Incoqua, the Brazos curves towards the northeast, and is joined by the Taray, from the suuth-west, 45 miles below the Incoqua. Here the river assumes and maintains a general direction towards the southeast, until it falls into the Gulf of Mexico, in N. Lat. \(28^{\circ} 53^{\prime}\), and W. Long. \(18^{\circ} 22^{\prime}\). Many streams successively enter the Brazos, between its source and final discharge into the Gull of Mexico.

The length of Brazos river is 700 miles. General course southeast. Area drained, 50,000 square miles. The Brazos averages 300 yards in width to Brazoria, and 200 yards from thence to the Waco village, It is navigable at all times to the head of tide, a short distance above Brazoria. In high stages of the water, which frequently oceur, small steamboats may ascend the river as far as San Felipe de Austin, 118 miles, and keel boats may reach the Waco village, 268 miles from the Gulf of Mexico. 'There is a bar at the entrance of Brazos river, thirty yards wide, on which six leet water only can be calculated on with certainty, although it often affords cight and sometimes nine feet. The banks of the Brazos, as well as those of its northern branches, are highly picturesque; and in ascending the mountain region, where the streams precipitate themselves down the rocky cliffs of San Saha, the scenery becomes peculianty romantic and imposing.

Liftle Ibrazos rises a few miles to the east of, and flows nearly parallel with, its recipient. It presents a remarkable feature in the hydrography of this part of the country; its distance from the Brazos does not exceed tive miles at any place, some. times approaching within one mile of that river, and then receding as if unwilling to unite its waters with those of its great rival. Pursuing, thus, its southeastern course of 45 miles, it ultimately cnters the left side of the Brazos, 206 miles from its discharge into the Gulf of Mexico.

San Andres Branch, heads in a hilly and sterile region, in north lat. \(32^{\circ}\), and west long. \(21^{\circ} 15^{\prime}\), pursues a southeastern course, 100 miles, io the junction with its principal branch, the San Gabricl. At the junction, the San Andres assumes and main-
tains a direction nearly due east, to its entrance into the Brazos, a distance of forty miles below the forks.

Med Fork of Brazos river rises about 10 miles south east of the Towiash village, situated on the Wishetaw branch of Red river, in worth lat. \(33^{\circ} 30^{\prime}\), and west long. \(22^{\circ} 40^{\prime}\), flows nearly east ninety miles, then assuming a south course, and passing through one of those immense prairies which stretch themselves in every direction, a further distance of 100 miles, enters the left bank of the Brazos.

Incoqua, the largest branch ol the Brazos, has its numerous sources in the great ridge which divides the waters of the Colorado, Brazos, Sxc. from those of the Rio Bravo del Norte, about north lat. \(34^{\circ}\), and west Ion. \(25^{\circ}\). Its general course is southeast, and entire length about 200 miles. It intersects the left bank of the Brazos 45 miles above the Taray, and 520 from the mouth of the former.

Tosohunova Branch, heads near the source of the Tempisaraco, and rumning an eastern course 110 miles, falls into Saline lake on the north side, 555 miles from the Gulf of Mexico.

Keriachehunove, the only remaining branch of the Brazos deserving notice, rises in common with the two streans last mentioned, at the foot of the great ridge, and flowing eastnortheast about 100 miles, unites with Saline lake, a few miles above the Tosohunova.

Very little is yet known of these streams-indeed, the same remark will apply to the entire region in which they take their rise. The delineation of the head waters of the Incoqua, 'Tosohunova, Keriachehunova, and other water courses in this quarter, can scarcely be regarded in any other light than as a mere sketch ol the fancy-the whole of the northwestern portion of the province constitutes, with little exception, a Terra incognita, that may stimulate the enterprising inquirer to future discorery.

S\%. Bernard river, about 150 miles in length, has its source in north latitude \(30^{\circ}\), and west longitude \(19^{\circ} 30^{\prime}\), about 35 miles west of San Felipe De Austin. Flowing in a southeastern direction 45 miles, it approaches within three miles of the Brazos; then curving towards the south, again inclines to the eastward, and passes about two miles west of Brazoria. After leaving the vicinity of that village, the St. Bernard turus abruptly, and pursues a south course until it enters the Gulf of Mexico. The St. Bernard is 100 yards wide to the head of tide, abont 40 miles lrom its mouth. Its general course is southeast, and it drains an area ol nearly 1500 square miles.

Colorado river has its principal sources among the western mountains; one of these heads in a large spring, north latitude \(30^{\circ}\), and west longitude \(23^{\circ}\) \(40^{\prime}\), and pursues a general northeast course, about 180 miles, to its intersection with the north branch, called Pasigano river. From its junction with the Pasigano, in north latitude \(31^{\circ} 30^{\prime}\), and west longitude \(22^{\circ} 10^{\prime}\), the Colorado flows in a southeastern direction, with occasional variations, to its discharge into Matagorda bay, which it enters a little to the southwest of old fort Matagorda, the
landing place of the unfortunate La Salle, who was murdcred in 1687 by one of his own men, and his colony at Matagorda broken up by a Spanish military force sent from New Leon. The Colorado, although somewhat less in size than the Brazos, is navigable to the hills above the upper roald. Its banks are generally low, except among the hills, where, like those of the Brazos, they partake largely of the sublime and romantic character which marks the sides of that stream, and present to the eye of the traveller every variety of picturespue scenery, common to mountainous countries. Entire length of the Colorado, 569 miles; general course, southeast; arca drained, 40,400 square miles.

Illano river, about 90 miles in Icugth, rises in the vicinity of the silver mines of San Saba, flows northcast, and joins the Colorado at the base of the Great Peak, 255 miles above Matagorda.

San Saba river, one of the principal branches of the Colorado, rises in the mountains of Piedra Pinta, in morth latitude \(30^{\circ}\), and west longitude \(23^{\circ}\), pursuing a northeast course above 120 miles: it enters the Colorado on the right, 272 miles above its outlet.

Pasiguno river is the most extensive branch of the Colorado, being nearly equal in length to the main stream above its intersection with the former. The Pasigano rises in the Great Prairie, near the western boundary of the province, and interlocks its head branches with those of the Brazos. Passing through the lands of the Comanche Indians, it joins the left side of the Colorado 80 miles above Pecan river, and 854 from Matagorda bay. Entire length 190 miles; general course, southeast.
Aguile river rises in the mountains which form the boundary between Texas and the state of Chihuahua, and flowing through a broken and hilly region, which renders its course exceedingly precipitous, cuters the Colorado 444 miles from Matagorda bay.

Frio river is the western branch of the Colorado; that from the south, although of less extent, is regarded as the main source of this important river; it heads in a large spring, which issucs from the mountains, and forms a stream of considerable magnitude. The distance from the mouth of the Aguila to that of Frio, is 80 , and thence to the great spring, 45 miles.

La Buea river, although of limited extent, derives importance from the circumstance of its forming a great part of the western boundary of Austin's colony, and the eastern limit of De Witt's lands. It rises in north latitude \(30^{\circ}\), west longitude \(20^{\circ} 20^{\prime}\), and pursues an almost undeviating southeast course, to its discharge into the north arm of Matagorda bay. Entire length 130 miles; general course, south-southeast; area drained, 3100 square miles.

Guadalupe river has its source in the hills of San Saba, and is here called "Rio Verde," which name it retains until it is intersected by a branch flowing in from the northwest, called "Piedras;" thence it passes nearly due east, 70 miles, to the outlet of the great spring, 8 or 10 miles west of the upper road,
where, curving gradually towards the southeast, a farther course of several miles, it cuters the Bay of lispiritu Santo, due south of, and about 16 miles from the mouth of La Baca. The Giuadalupe is navigable for small boats to the lower road at Goliad, alhove which it is very precipitous in its course, affording mill-seats, and abundance of water for irrigation and other purposes. It drains an area of \(13,500 \mathrm{sq}\) uare miles, and has an entire length of 287 miles; its general course is southeast.

San Antonio river is a branch of the Guadalupe, but little inferior in magnitude to that river, rises a few miles to the south of the Rio Verde, and pursues a rapid course towards the southeast, under the name of Medina river, to its confluence with the San Antonio proper, 20 miles southeast of the town of Bexar. Continuing its southeastern course, the San Antonio unites with the Guadalupe about 10 miles from its mouth. It is navigable tor boats of small draft to the lower road, but above that point it becomes rapid, and its course much obstructed by falls and cascades, which, while they serve to enrich the landscape, render the stream entirely unfit for navigation. Entire length 275 miles; general course, eastsoutheast.

Aransaso river is a small stream, about 60 miles in length; it is formed by several branches, which rise north of the road leading from Laredo to Coliad, pursues an eastern course, and passing the missionary station of Refugio, enters Aransaso bay.

Nueces river, the boundary between the province of Texas and state of Tamaulipas, has its sources interlocking with those of the Colorado, the first fountain of that river being but a few miles north of the springs from which the Nueces issues, in north latitude \(29^{\circ} 45^{\prime}\), and west longitude \(23^{\circ} 30^{\prime}\). From its principal source ia the mountains of San Saba, the Nueces flows nearly south-southeast 60 miles, and then gradually turns towards the southeast, which course it continues to flow until it enters the Gulf of Mexico, in north latitude \(27^{\circ} 30^{\prime}\). Its entire length is 300 miles, and it drains an area of 12,200 square miles.

Rio Frio, the principal branch of the Nueces, heads near the source of that river, and ruming a southeastern course, enters the left side of the Nucecs, 110 miles from the Gulf. Ascending the Rio Frio, the following streams successively present themselves: Puenta de la Piedra 3, Saparita 8, and San Miguel 18 miles above the mouth of Rio Frio. It was near the source of the Saparita, and a few miles south of the town of Bexar, that general Toledo was defeated in 1815. In Texas, although its geological structure, so far as it is known, would naturally lead us to expect interior lakes; yet, with the exception of Saline lake, none of any magnitude have yet been discovered within the borders of the province. Between the Nueces and Rio Bravo. in the state of Tamaulipas, a succession of salt lakes have been discovered. These lakes, although not belonging strictly to the country immediately under review, deserve particular notice, as they have since their discovery yielded, and will, no doubt, long continue to afford an ample supply of salt, not only for the country in their vicinity, but also for the
consumption of the southwestern quarter of Texas. The salt lakes of Tamaulipas are situated about 30 miles northeast from Mier, a town of Tamaulipas on the Bravo. "The salt in these lakes," says Col. Austin, "crystallizes at the bottom in strata from four to six inches in thickness." Large quantities of salt are annually taken from them without producing any serious diminution. There are three large and several small lakes, altogether covering an area of 100 square miles.

Face of the country.-Although the southwestern quarter of Texas presents a broken and irregular appearance, no clevations deserving the name of mountain, in its enlarged sense, exist within its limits. In the adjoining province of Coahuila, mountains of great elevation extend in ridges, nearly parallel with, and at a mean distance ol 70 miles southwest from, the Rio Bravo. The great peak near Monterey, is called "curra de la Silla," (saddle mountain, from its resemblance at the top to a Spanish saddle, when viewed from the Salinas road.

The same chain acquires increased clevation near Candela, and can be seen at a distance ol 80 or 100 miles, cnveloped in clouds, and its high peaks covered with show during a great part of the year. The entire country, lor many leagues southwest of Monclova, is exceedingly mountainous, and generally destitute of timber. The mountain ranges of Texas, in which the Colorado, Guadalupe, and Nueces have their sources, are of the third and fourth magnitude. Those exterding along the right side of San Saba river, are probably the highest; their elerations, however, are matter of mere conjecture, as no scientific means have yet been employed to obtain accuracy in this particular. A considerable elevation will no doubt be found on a carcful measurement, at the sources of the Nueces, Guadalupe, Colorado, \&c.; for while the streams above draw their waters l'rom springs quite remote from each other, we find those rivers, together with the Puerco and several other branches of the Rio Bravo, rising within a circle of less than 50 miles in diameter; thus indicating an elevation far above the surrounding table land. From this nucleus, chains of mountains, or rather high hills, extend in every direction. The one most deserving notice, is that chain which divides the waters of San Saba, from those of the Llano, and is unquestionably a prolongation of the Ozark mountains of Najor Long. Belore it intersects the Colorado, it attains to an immense height, and forms what is called the "Great Deak." a lew miles to the sonth of the mouth of San Saba, and near the right bank of the former river. Thence it ranges towards the north, separates the waters of Pecan and San Andres rivers, and turniag castward, terminates in a peak on the right bank of the Brazos, nearly opposite to the oullet of Noland river. A spur from this chain extends towards the east, and forms the dividing ridge between the Nedina and the upper branches of the (iuadatupe.

The great spring of Guadalupe, issucs from the eastern end of this chain, which also gives rise to the fountains in the vicinity of Bex.m. Another spur leaves the principal chain near the sources of
the Guadalupe and Llano rivers, and becoming gradually more depressed, in its course towards the east, is finally lost near the great spring ol San Marcas. A succession of sand hills extend from the latter, commencing at the source of the Piedernales, a branch of the Colorado, and passing towards the northeast, subside before they reach the bank of the latter. The fountain of San Lucia is situated in this chain, near the source of the Piedernales. The nest chain in point of elevation, leaves the one just mentioned, at the first fountain of the Colorado, pursues a northwest direction, and joins the Guadalupe mountain of Humboldt, about 500 miles from its point of outset. This chain forms the boundary between Texas and the territory of Santa Fe or New-Mexico, and state of Chiluahua, and divides the waters of Rio Bravo from those of the Brazos and Colorado. Its mean elevation must be considerable, and will no doubt be found, on a careful examination, to exceed in height the mountains of San Saba, which are generally regarded as the most elevated. The third chain in the order, extends towards the northeast, divides the waters of Piedra Pinta from the San Saba and Conchas rivers, and is pierced by the Colorado, below its junction with the Pasigon. Thence it continues its northeastern direction, between the Piaroya and Ontcjunova, joins the chain first deseribed, near the source of Pecan river, where a spur leaves it, and passing between the Pecan and Wisshonca, forms a high peak, and theu rapidly subsiding, terminates near the Colorado.

The fout th and last chain worthy of notice, extends southeastward, and separates the waters of the Medina and Rio Frio, a large branch of the Nueces. Near the source of the Rio Frio, a broken ridge leaves the main chain, passes towards the southeast, and divides the upper waters of Rio Frio from the Nueces. At the foot of this chain, and over the plain which extends on both sides of the Nueces towards the Gull of Mexico, are found those countless droves of wild horses, which give animation to a region otherwise desolate and dreary. Most of the rivers which have their sources in the northeastern part of the province, flow through open plains ol grass, into the marshes which line the southeastern coast of Texas, in common with the southern portion of the adjoining state of Louisiana. The whole of the northeastern part of the province is undulating, with hills of moderate elevation. These, however, entirely subside on leaving the forests, and near the gulf coast nothing is to be seen but a monotonous level of praitic and sea marsh. Advancing westward, a rapid improvement in the soil and general appect of the country is perceptible. The lands near the coast become more elevated and dry; marshes, which abound to such an milmited extent in the sotheastern quarter, almost wholly disappear on approaching the valley of the Brazos.

West of the Brazos, and southeast of the mountain resion, il it can be so called, extends a vast plain, whose inclination, as indicated by the water courses, is very considerable. As this plain approaches the alluvial border, its inclination sensibly
diminishes, and a comparatively level surface is presented along the whole extent of this formation. Although the country between the coast and the lower road is very level, it is nearly free from marsh, and west of Galveston bay it is entirely so.

Northwest of the mountain region, which, as has been stated, lies in the central and southwestern parts of the province, immense prairies, covered with grass, and affording inexhaustible pasturage for cattle and horses, occupy the entire space between the "Cross Timbers" and the northeru and western confines of the province. The Cross Timbers, so called, constitute a singular feature in the northern part of the province; they consist of a dense growth of forest trees, some of them of a prodigious height, and extend in a strip about 300 miles in length, and not exceeding 20 miles in mean width, nearly due north from the Waco village, on the Brazos, to the Arkansas river. This forest, which may be justly ranked among the natural curiosities of the country, forms, by its peculiar appearance, a striking contrast to the dull and monotonous prairies on either side. The lines which mark its limits are so completely defined, as almost to induce a belief, that art had been employed in giving form to this extraordinary work of nature.

Climate, soil, and produce.-In the central and northern parts of Texas, the climate is highly salubrious, and may, when its geographical position and southern exposure are taken into view, be regarded as a comparatively cold region. The wiuters, in those parts, as in the corresponding portions of Coahuila, are generally cold, and sometimes severe. Near the coast, and especially in the southwestern quarter of the province, the climate is greatly affected by the long droughts which prevail, and, in connexion with its relative depression, serve to increase its mean temperature far beyond what the difference of latitude between its northern and southern sections would lead us to expect. Rains in this quarter rarely fall, but when they do occur, they fall in torrents. The excessive rains that sometimes deluge, and the protracted droughts which occasionally parch, the southwestern parts of Texas and the northern portions of Tamaulipas, are among the most remarkable phenomena of physical geography. From these, and more local causes, the climate of 'Texas generally presents less uniformity of temperature than most other countries in similar latitudes. A great portion of the country is entirely exempt from those stagmant swamps and pools which constitute a fruitful source of disease in most of the southern states, where the periodical pestilence, and almost infinite variety of febrile affections, commen to the maritime sections of those states, may be ascribed to the malignant efluvia of extensive swamps and marshes, which abound to an extent so frightful. This exemption from such receptacles of disease, gives to the province a decided advantage over its eastern neighbour the state of Louisiana, whose southern border consists almost entirely of sea marsh, intersected by stagnant ponds of all dimensions, which serve no other purpose than to engender disease. The entire structure of this province appears to be es-
Vor. XVII. Part II,
sentially different from that of Louisiana. In the latter, especially within a hundred miles of the gulf coast, the lands decline from the banks of the rivers, and fall into swamps, which uniformly maintain a lower level than the river banks. On the contrary, in Texas, the lands gradually ascend on leaving the streams, and are backed by rolling prairies, which aflord in many places plantations of considerable extent. Beyond the alluvial border, which extends alout 60 miles from the gulf coast, the prairies commence, and reach to the timbered uplands. The alluvial lands, particularly the borders of the large streans, are thickly covered with the different varieties of oak, elm, cedir-wood, alder, dog-wood, walnut ; and every other species of timber, common to such regions, is found in great abundance east of the San Autonio; but west of that river it becomes scarce, many extensive tracts being completely destitute of this important article. These lands are interspersed \(v i\) ith extensive cane brakes, and are considered by planters as well adapted to the cultivation of sugar, cotton, indigo, Scc., and for grazing to an unlimited extent. Wheat, com, and the various kinds of provisions, can be successfully cultivated throughout the whole of the northern parts of the province. 'The luxuriant growth of the cane in the southern part, justifies the belief that sugar will become one of its most important productions. Already has this valuatble commodity been produced as an experiment in the vicinity of San Felipe de Austin, with the most llattering prospects of success.

Population and setllements.-The entire popul:tion of Texas, including the Indians, does not exceed 12,000 souls; and a considerable portion of this number is included within the limits of Austin's colony. The remaining part of the civilized population is confined chiefly to the towns of Bexar, Goliad, Nacogdoches, \&e. In 1821, when the enterprising Austin commenced the settlement of the lands acquired by him, Texas was with few exceptions an entire wilderness, from the Sabine to the San Antonio. Its white inhabitants were few in number, and consisted of Spaniards and their descendants, together with some emigrants from the United States. The whole country was filled with hostile Indians, who, having no fised residence, roamed unrestrained over the plains, committing with perfect impunity all kinds of excesses. Nacogdoches had been destroyed and abandoned; it has since however recovered, and the town and surrounding country are now in a flourishing condition.

Austin's colony was founded in 1820, by Moses Austin, the father of the present proprietor, under a grant obtained from the commandant-general of the eastern internal provinces. By the terms of this agreement, Mr. Austin was required to establish, within a specified time, 300 American families in the newly acquired territory; but, aithough many families from the United States had previousIy fixed themselves in Texas, the actual settlement of the colony was not begun until the year 1823, when Col. S. F. Austin, in consequence of the decease of his father, assumed the fulfiment of Mr. Austin's contract; and, under the sanction of the
political authorities of Mexico, commenced the location of the emigrants. Such is, briefly, the history of this interesting community.

This colony, including the grant to Col. Austin, of \(182 \pi\), embraces an area of 19,000 square miles; it is situated between the \(28^{\circ}\) and \(31^{\circ}\) of north latitude, and \(18^{\circ}\) and \(21^{\circ}\) of west longitude from Washington city, and is watered by the San Jacinto, Brazos, Colorado, La Baca, and some other streams of minor importance. San Felipe de Austin, the principal town, is built on the right bank of the Brazos, about 118 miles from its discharge into the Gulf of Mexico. The great road leading from New Orleans to Rio Grande, Monclova, \&c. passes through, and divides the town into two nearly equal parts. The town and surrounding settlements, which are rapidly increasing in numbers, present a scene of active industry rarely met with in other parts of the province. Several good elementary schools have been established in the colony, and in those of San Felipe some of the higher branches of an English education are taught.

Brazoria, also a thriving town, is situated on the west bank of the Brazos, 24 miles above its mouth.
The town of Harrisburg, on the Buffalo bayou, a branch of the San Jacinto, promises to become a place of some consequence, and will no doubt figure in the future history of the province. Both Brazoria and Harrisburg are accessible from the Gulf of Mexico, by vessels of considerable burthen.

The colony has now a population of about 4000 , consisting almost exclusively of Americans ;-one steam saw-mill, and a considerable number of cotton gins. Its produce is sugar, cotton, wheat, rye, Indian corn, \&c., with an abundance of timber of various kinds. The produce of the last season consisted of 1000 bales of cotton, 150,000 bushels of corn, and 140 hogsheads of sugar. The cotton raised in the colony is mostly shipped to New Orleans for a market, and the surplus corn and other produce are sent to Matamores, Tampico, and Vera Cruz. The greater part of the inhabitants are agriculturalists. Grazing receives a due share of attention, as it affords a handsome profit with very little labour, and no other expense than is attended by occasional herding. The local goverment of the colony is administered by officers elected by the setters; these officers consist of an alcalde, who has civil and judicial jurisdiction, two regidores (aldermen), aud one syndic, forming a municipal body, styled ayuntamiento, of which the alcalde is president. The alcalde and one of the aldermen are elected ammally, and camot be re-elected until \(t\) wo years alter their retirement from office.

De Witt's colony lies immediately west of, and adjoining, that of Colonel Austin, the La Baca being the line of separation between those two colonies. It embraces an area of 3500 square miles, and is watered by the Guadalupe, which, with some of its mumerous branches, serve to irrigate its soil. No settements of importance have yet been mate in this colony.

Ectar's'irant, so called. Much has been said in the puldic prints respecting a grant alleged to have beeu made by the Mexican govermment, com-
prising an area of nearly 63,000 square miles ( \(40,000,000\) acres). Where this immense tract is, or where it can be located, it is difficult to conceive, unless all the previous grants, which are numerous, shall be abrogated: should such a grant have been made in addition to those already located, there will remain but a small portion of Texas for future purchasers. Although it is well known that the Mexican government pursues a liberal policy towards actual settlers, in granting them lands on the most favourable terms, it can scarcely be credited, that a cession nearly co-extensive with the unappropriated parts of the province should have been sanctioned by that government, by which no title has recently been given, except to the class of purchasers just mentioned. Land can be obtained by emigrants with great facility from the empresario, (founder of the colony, and from the commissioners of the government, under the colonization law, which authorizes the grant to families, who are actual settlers, of one Mexican league, equal to 4446 acres. Unmarried men can obtain the fourth part of that quantity, the expenses of which will not amount to four cents the acre.

Nacogdoches, Bexar, Victoria, and Goliad, formerly called Bahia, are the only towns remaining to be noticed. Nacogdoches is situated on the head waters of Neches river, in the eastern part of the province, and about 160 miles. in a direct line, from the gulf coast. It is on the great road leading from New Orleans and Natchitoches, in Louisiana, to the city of Leona Vicario, the capital of the state of Coahuila and Texas, and is 728 miles northeast from that city. Fort Nacogdoches, the germe whence the town of that name sprung, was erected shortly after the first settlement of the country, and was for a long period the only settlement in this part of Texas. The town itself never attained to any importance in point of population, and its commerce was chiefly confined to the supply of the garrison, and a small trade with the surrounding Indian tribes. Since its destruction in 1821, the town has been rebuilt, and the number of its inhabitants considerably augmented by emigrants from the United States.

Bexar, or San Antonio de Bejar, the former capital of the province, is situated on the western prong of Salado creek, an inconsiderable branch of the San Antonio river, 393 miles southwest from Nacogrloches, 153 west from San Felipe de Austin, and 335 miles north-northeast from Leona Vicario.

Goliad is situated on the right bank of San Antonio river, about 40 miles above its entrance into Espiritu Sauto bay, and 115 southwest from San Felipe de Austin. Goliad, like Bexar, is a place of but little importance, atthongh built more than half a century. Neither Bexar nor Goliad can be regarded in any other light than as mere villages. The latter possesses some advantages over the other trom its proximity to the gulf, the San \(A n-\) tonio being navigable for vessels of small draft as far up as Goliad.

Victoria, on the left bank of Gnadalupe, is a village of the smallest class, but is said to be improving.

The "Upper road," or that leading from New Orleans by Natchitoches, \&c. to the city of Mexico, intersects the Sabine about 45 miles west from Natchitoches. After crossing the Sabine, it pursues a little south ol west, until it reaches Nacogdoches; thence turning towards the southwest, it proeceds to Bexar, where it assumes a more southern direction, and intersects the Nucees about 150 miles from the Gulf ol Mexico. In its course from Nacogdoches to the Nucces, this road successively crosses the Trinidad, Brazos, Colorado, Cuadalupe, and San Antonio rivers. It is 98 miles liom Natchitoches to Nacogeloches, thence to the Trinidad 78 , thence to the Brazos 59 , to the Colorado 60, Guadalupe 58, town of Bexar 40, Nueces 105, and thence to Leona Vicario 230 miles.

The Lower road, so called, leads lirom New Orleans, via Opelousas, to the town of Goliad. It crosses the Sabine 30 miles above its discharge into Sabine lake, and follows a south-west course, at a mean distance from the gulf coast ol filiy miles, passes through San Felipe de Austin, and intersects the Nueces 469 miles from Opelousas.

Other roads have been opened. Among these are the following: from San Felipe de Austin to Brazoria 70, and thence to the mouth of the Brazos 25 miles, to the Old Fort on the 13 razos 38 miles, to IIarrisburg 45 miles, to Victoria 110 , and thence to Goliad 22 miles, - 10 Matagorda 95 miles. Many improvements of this kind have been made, and some others are contemplated.

From the geograplical position, and the character of its soil and elimate, 'Texas will probably become the great vineyard of America. Every variety of grape, of the most delicious havour, is found growing spontaneously throughout the entire province. On the table lands between the Cross Trinbers and the sources of the Sabinc, immense tracts of country are literally covered with the various species of grape, which attain to an uncommon size. The orange and other fruits, such as the fig and the different kinds of the raisin grape, will also find a genial soil in the southwestern parts of the province, where the elimate and general nature of the atmospliere are admitably adapted to the exiccation of those fruits, especially that of the com-
mon fig. The latter is produced in great abundance in most of the southern states and Florida, bu: owing to the humidity of the atmosphere of chose states, it rarely becumes sufficiently dry, for want of that peculiar warmela which is necessary to its preservation for commercial purposes; hence this valuable fruit, which constitutes an inportant araiele of cornmerce of Turkey, Italy, and some other countries, is cultivated in America merely for table use. The causes which have operated itn the southern states to prevent the successful preparation of the raisin, do not exist to the same extent in Cexas; we may, therefore, expect to find, some yearshence, this useful artiele also among its most lucrative staples. See American Quarterly Revicto, vol. vii. 1830. 1I. S. Toncere.

THALAES, the lounder of the Ionic sehool, was born at Miletos about 600 years before Christ. In quest of wisdom he travelled to Crete and to Egypt, and he is said to have acquired his mathematical and philosophical knowledge from the priests at Memphis. An account ol his labours have already been given in our article Aspronomy, Vol. II. p. 551.

THAMES. Sec Englani, Vol. VIII. p. 512.
THANET, Isle of. See Kevt.
TILEBES. A very full account, with descriptions and drawings of the remarkable antiquities of this eity, have already been given in our artiche Cival Arcimtecture, Vol. VI. p. 371 and p. 52 t. \(^{2}\) \&e. See also Egypt, Vol. VIII.p. 222, fec.

THENHSTOCLES. Sce ATHENs, Vol. III. p. 19-22, \&c. Greece, Vol. X. p. 66.

THEODOLITE is the name of an instrument for measuring horizontal and vertical angles in landsurveying. We have entered so fully into the details of the construction and adjustment of eircular instruments under the article Circle, that it is unnecessary to give any account of the Theodolite, which differs from them only in name and application. See Circre, Vol, VI. p. 332. A description of Ramsden's Great Theodolite used in the trigonometrical survey, will be found in the Philosophical Transuctions, vol. Ixxx. 1790, with all the parts of it deseribed in four large plates.

\section*{THEOLOGY.}

THEOLOGY is the science which treats of the nature and character ol God, and of the religious duties and hopes of man.

All mankind are interested in knowiog something of the God whom they profess to worship. From the power which they ascribe to him, they must necessarily conclude that their fate is in his hands, and that their lappiness or misery depend on his pleasure. It cannot, then, but be deeply interesting to inquire into the character of the supreme liuler, that we may know how to secure his favour, and how to avoid such actions as may be
displeasing to him. These considerations have always operated, and induced an anxious desire to become acquainted with the nature of God, as lying at the foundation of the dutics and hopes of men.

In rude states, theology, in the form ol superstition, is the only species ol study which engages the attention. The priests, augurs, and divines, are thought to be the only persons possessed of useful knowledge; and they have, in general, great influence in the state, either by swaying the public counsels, or by lending the sanction of religion to 4 Q2
the measures adopted. Of all the nations of antiquity, the Romans had the highest character as a religious people; and they were well entitled to their pre-eminence, in so far as regards the formalities of worship. As they arrived at vast power, without going through a previous process of refincment, their history exhibits the curious phenomenon of a most splendid system of external worship, connected with the most absurd and irrational creed.

The Greeks thought more decply on the subject, though not to much better purpose. Many of their sages were substantially; if not professedly, atheists: for they denied the providence of God, and questioned the wisdom of his arrangements in the system of nature: others of them were pantheists, believing the universe to be God, and conceiving that all things were ultimately absorbed into his essence; an opinion which differs not widely from atheism, in its practical consequences; and the greater part of even the most orthodox among them, were latalists, conceiving that the gods were only instruments in the hands of Fate, and that Jupiter himself had only the power of ascertaining, not of altering its determinations.

Almost the whole literature of Hindostan is theological. The national poctryturns on the incarnations and exploits of the gods; and the order of the priesthood enjoys a pre-eminence superior to royalty itself, having managed to retain the chief honour and consideration in the state, whilst it has transferred to another class all the trouble and odium ol' government.

These facts show the importance which has always been attached to the study of theology; and considering how intimately the subject is connected with the best interests and hopes of men, we cannot but perceive that the importance of the study has not been overrated. In fact, socicty cannot exist without some religious influence. The principles of rectitude have never been found, nor indeed have they ever been supposed to be sufficiently strong to resist temptation, when separated from considerations of religion; and imperfect as its influence is, the security of society arises more from the influence of religious belief, and the conscientious scruples which it produces, than from prohibitory statutes and penal enactments.

A subject of such deep and universal interest, must maturally have engaged the highest faculties of the human mind: but it is melancholy to observe to how little purpose they have been exerted. They who have left the most indubitable monuments of genius, and specimens of taste and eloquence which must serve as models; so long as elegant literature has any value in the world, have betrayed the most incredible ignorance on the subject of religion; and the value of revelation is manifest in this, that a school boy in a Christian country, and educated in Christian principles, has more accurate and more philosophical information respecting the nature and government of God, than is to be found in all the writings of the wise men of Grecee and Rome put together.

The necessity of a divine revelation was virtually
acknowledged by the beathens themselves. They considered the nature and will of the gods, as things necessary to be known, but as too vast for the human intellect to discover. Hence all their legislators who established their civil and religious polities, were regarded as Theodidacti, or taught of God. They would have reckoned it impiety to suppose that the knowledge of God could be acquired by the natural resources of human reason; and had they been sufficiently sensible of their ignorance and their misery, they might have concluded that a more perfect revelation than they had yet received, would, in due time, be communicated. For, if man is placed in the world for the purpose of happiness, as they very generally supposed, it was reasonable for them to expect that a specific rule would be given to conduct them to the end proposed, and that they should not be left entirely at the mercy of the varying and contradictory opinions of men. On a view of the whole case, indeed, it appears not so wonderful, that a general revelation should have been given, as that it should have been so long withbeld.

Very satisfactory reasons, however, may be assigned why the gospel was so long withheld; at least, we can discover many important advantages to the cause of truth, resulting from this circumstance. There could have bcen no fulfilment of prophecy, had Christ been completely manifested immediately on the fall of our first parents; and Christianity would thus have been depriverl of one of the strongest evidences of its divine origin and authority. Our Saviour and his disciples always laid particular stress on this species of proof, and dwelt on the completion of the prophecies, in the person of Jesus of Nazareth, as furnishing the most satisfactory evidence, that he was the Messiah whom the Jews expected. We have found him, says onc of the first disciples, of whom Moses in the law and the prophets did write, Jesus of Nazareth, the son of Joseph. By the length of time, which clapsed between the fall of man, and the manifestation of the Son of God ; and by a great variety of intervening prophecies and remarkable events, we are enabled to view the gospel, not as a detached and anomalous dispensation, but as connected with all the measures of the divine government since the begimning of the world. There were obstacles cnough to the reception of the gospel, in the passions and prejudices of the human heart; these obstacles would have been increased in a tenfold degree, had the world been taken by surprise, without any previous intimation of the stupendous plan which was afterwards revealed. It would have been a strong objection to it, had men been able to say, "We never heard any thing of this before," and had its advocates not been able to show from prophecies, and a long train of preceding events, that the wortd had been prepared for the complete development of it in the person of Jesus of Nazareth.

Another advantage was gained by the length of lime which intervened between the fall and the recovery of mankind. They had an opportunity of estimating the character and resources of human nature. Ifad the important information, afterwards
communicated by the gospel, been imparted immediately after the fall, hat it been diffused among the fitst race of men, and by them thansmitted to their desceudants, we should not have been able at this day to decide, whether we had derived it from a divine revelation, or lirom our own resources. But the iguorance, misery, and sin which overspread the world during the reign of heathen darkness, contrasted with the light, the purity, and the consolations of the gospel, show us how much we owe to the mercy and goodness of God, and give us the most humiliating view of our natural helplessness and \(\sin\). But though, lor wise reasons, a general revelation was long withheld, a partial revelation was no less wisely given to a particular people, that the will and the gracious intentions of the Almighty might stand recorded; and that mankind might see that he had never forgoten their interests, but was steadily carrying forward the pians of his mercy, even when the world was lost in trespasses and sins.

Religion is usually divided into matural and revealed; but it is easier to make the division, than to fix the boundaries of cach. The distinction, indeed, does not appear to be at all necessary ; for it is obvious that the religion of nature, as it has been called, has no doctrines peculiar to itsell, and none that it can challenge as its own undisputed property. The existence of a God and a future state, providence, prayer, and public worship, are supposed to belong to the province ol natural religion, because they can be established by reason, and because they have found a place where no revelation was known to exist. But all these articles of laith and of practice lie at the very foundation of revealed religion; whose object is to explain them in all their bearings and tendencies on the characters and hopes of men; whilst, in the course of this process, it brings to light many important facts and doctrines, which had eluded all the serutinies of human reason.

Revealed religion, then, embraces all that is claimed for natural religion, and a great deal more; and, whilst we are at no loss to point out doctrines peculiar to revelation, we cannot point out a single doctrine which we can pronounce to be peculiar to natural religion. We cannot be sure that even any part of the religrious knowledge contained in the popular creed, or in the philosophical speculations of the heathen, is the produce of unassisted reason. It is not enough to say that they had no revelation, and therefore their religious knowledge must have arisen out of their own resources. In the early ages of the world direct revelation was imparted to few; but traditional information prevailed among all; in consequence of which, much knowledge, originally derived from revelation, might be diffused among mankind. This, at least, we may be certain of, that man, on his first creation, possessed the knowledge of God, either by revelation or intuition: it was not acquired by the usual processes of discipline and experience. Adam, on his creation, must have been endowed with knowledge, otherwise he would never have lived to acquire it, but would have fallen the victim of his own igno-
rance, before he obtained the knowledge useful to direct him. IIis chithret, hovever, were placed in very different circumstances; reared from an infancy of helplessness and ignorance, they gradually rose to the knowledge of Gorl, in consequence of parental instruction. The information which they had thus reccived they tramsmited to their descendants, who carried it with them into their various settlements, and thas dillused the knowledge of God over the lace of the carth. 'The corruptions which speedily took phace in religion, and the varieties ol worship which prevailed among nations widely different from each other in sithation and eircumstances, are cxactly such as might lave beon expected; whilst, at the same time, we may expect among all the varieties of religious forms and opinions, some features of resemblance to connect them all with primeval tradition.

W'e do not, however, afinm that the mind, enlightened by general knowledge, would not arrive, cren without the aid ol revelation or tradition, at some idea of a lirst cause, or presiding principle. It seems next to impossible for a mind which has formed a notion of power and catusation, (and these surely are among the tirst and strongest impressions which the mind receives, and are perfectly plain to all but those who attempt to account lor them, not to conceive of a power superior to that of man, as necessary for the production and arrangement of the visible phenomena of nature. The mind, indeed, is marveltoushy backward to form right conceptions on this subject; lor though the iavisible things of God are elearly scen, being understood by the things that are made, yet men changed the glor 3 of the incormptille God into an image made like to corruptiblc man, and to birds and to four-footed beasts and creeping thinss. Rom. i. 20. But the question is not whether men could acquire right conceptions of God, but whether they could acquire, by unaid. ed reason, any conception ol him at all: and we cannot but think that a mind, hough ever so little improved in general kiowledge, must entertain some idea of a first cause, on contemplating the visible universe.

It is natural for a child when he looks on the visible heavens to ask, who made these things? He never supposes that they exist there without a cause: the first impression of unsophisticated nature is, that they have been produced; and the next step in the process of reasoning is, that they have been produced by some being possessed of power infinitely superior to that of man. Such, we think, would be the first impressions of the mind of man with regard to visible phenomena. But we are not sure but, if he carried his reasoning the Iength of philosophizing, he might reason himself out of these obvious impressions, and ascribe the whole to fate or clance ; or might suppose that they have existed, and will continue for ever to exist, as we now see them. We apprehend, then, that all the religious knowledge which the unenlightened mind could receive would never rise above superstition; and they who affected a more liberal creed, or attempted to establish a more liberal system, found no other way of emancipating themselves from what
they saw to be prejudicial, than by setting aside the idea of an intelligent first cause, and thus abolishing all religious obligation.

Although, then, we do not deny that the natural reason of man affords some light, yet it is evidently insufficient either for direction or consolation. It presents objects through an obscure medium, which so completely distorts and atters their real proportions, that, in many instances, it is little better than absolute darkness. Besides, whaterer we may advance or admit as to the capacity of human reason for religious discoverjes, rests entirely on theory and assumption ; for in no one instance can we affirm, that it has made a single discovery of this natuae. All the religious systems in the heathen world were evidently traditional : they are all connected with each other by some striking features of superstition, which are inventions and not discoveries, the figments of human fancy, and not the offspring of reason; and whenever the heathens make any approach towards a rational creed, it will probably be nearer the truth to ascribe their knowledge to some borrowed light derived from tradition or revelation, than to regard it as the result of their own investigation. Believing that all mankind are descended from a common stock, we may naturally expect some vestiges of a common creed, in consequence of traditional information. These resemblances and coincidences we observe in the sacribices and rites of expiation, which were adopted by all nations. And farthei, if we believe that the Bible gives the most ancient and the most accurate account of the primeval religion of men, and of the peopling of the earth, we may naturally expect to find a strong resemblance to the Scripture creed, among the various tribes of mankind, particularly in the earlier periods of the world. This resemblance can, in many instances, be distinctly traced. The bistory of the creation, for instance, as recorded by Moses, was adopted by all the mations of antiquity. Megasthenes, who lived in the time of Seleucus Nicator, affirms that all the doctrines of the Greeks, respecting the creation of the world and the constitution of nature, were curent among the Bramins in ludia, and the Jews in Syria. We are inclined to think that Ovid must have had the sacred volume before him, (the Septuagint translahon, no doubt.) when he wrote his account of the creation. The coincidence is too striking to be accidental. lle first describes the chaotic state of matter, before the Creator arranged it in its various forms; the next step was to divide the heavens from the earth, and the earth lrom the waters: he then mentions fishes as the first living things of this world, and goes on to state the formation in the other creatures, till the work was crowned with man. In this account it is evident that the heathen poet has not only adopted the facts, but the order of the creation as given by the sacred historian ; and when we consider what follows about the war of the giants, the general corruption of makind. the universal delage, the preservation ol Deacation and l'yrtha, \&c. \&e. it is impossible \({ }^{(0}\) doubt that Ovid has borrowed directly from Bloses. In this case the plagiarism seems fairly detected. At the
same time, Ovid gives the general account which was current among both Greeks and Romans; and therefore we have reason to conclude that they all borrowed from the same source. The imagination of the Greeks soon disguised the traditional accounts which they had received of the eally history of mankind, with the most extravagant fables, and converted the early history of religion into a system of the most absurd mythology. They have done irreparable injury to ancient history by the mere circumstance of translating proper names, and then inventing a history to correspond with the translated meaning; whilst the Egyptians rendered any religious knowledge which they possessed perfectly inaccessible by the veil of symbols and allegories under which they concealed it. The only inventions of human reason in matters of religion have been to obscure what was plain, to mystify what was simple, and to degrade what was sublime, by unavailing attempts at explanation and refinement.

It is not an easy matter, then, to define the limits of reason in religion. What it can do we can only conjecture; having no certainty that there is one article of the religious creeds which have been current among men, that can be set down as the result of unassisted reason. Were we inclined to preserve the distinction between natural and revealed religion, we would not limit the former by attempting to draw a strict line of demarcation between it and the doctrines of revelation; but we would consider as within its province all those doctrines which, whether they have becn the result of reason or not, are at least cognizable by it, and capable of being established by its deductions, though they may not have been discovered by its researches. This is extending the boundaries of natural religion, without encroaching on revelation: it is only giving reason the advantage of all the light which revelation has imparted, and considering as within its legitimate province those matured results which correspond with its dictates, though they may have originated in revelation. Of this kind are the doctrines respecting God, providence, a future state, sic. which have been set in the clearest light by revelation; yet our improved krowledge on these subjects is so perfectly conformable to the dictates of natural reason, that we can scarcely persuade ourselves but that reason, by its own efforts, might have reached them.

The doctrines peculiar to revelation are of a different description, and easily distinguishable from those mentioned above. The trinity, incarnation, atonement by Christ, resurrection of the body, \&c. are doctrines not discoverable by reason. But we are not on this account to suppose that they are not proper subjects ol reasoning. They may be established by argumeat, by ascertaming the genuineness and iththenticity of the records in which they are contained, and the value of the testimony on which they rest; and by considering, at the same time, the reflex ligint which they cast on the government of God, and on the character and condition of men. We are farther to consider, that though the doctrines peculiar to revelation could
not be discovered by luman reason, nor, even after they are known, can they be comprehended by the human faculties, yet in no instance do they contritdiet the dictates of enlightenced reason: they are above it, but not contrary to it . It would be absolutely impossible to believe a revelation which contradicts any ascertained principle of pure reason. This may be considered as an axiom in theology; for a revelation must come from the same being who has formed the mind of man and the constitution of nature; and we cannot conceive that the word of God can ever contradict his works, or that he should command us to believe any doctrine which the reason he has given us compels us to reject. But in admitting this axiom we must be extremely careful to free reason from the influence of the passions, and from the power of those prejudices which tend to biasits decisions, otherwise we will measure doctrines and facts, not by the standard of reason, but by the strength of our inclinations and leclings. Revclation has certainly nothing to fear from the strictest scrutiny, provided it be fairly conducted; but it has no chance before a prejudiced judge, against perjured witnesses, and a corrupted jury.

But from the influence whic! we have ascribed to revelation and tradition, in forming the religious creed of mankind, a greater unilormity of opinion may perhaps be expected; and it may probably be thought that some traces of all the doctrincs of revaled religion ought to be found even amidst the mythology and fables of the heathens. Many contend that this is actually the case; but we think they carry their arguments too far. We hold that no traces of many of the important doctrines of revelation are to be found in the religious creed of the heathen; and for this reason, that these doctrines were withheld from the world, except in the obscure imitations of figure and prophecy, till the period of the Christian revelation; and therefore they could only be known where that revelation was announced and received. It has been said, lor example, that the doctrine of atonement for sin was no new doctrine, since it has a place in the creed of all nations, inasmuch as they have all trusted in expiatory sacrifices. This, in a certain sense, is true: the practice of sacrificing has been almost universal, and its object has always been the remission of sit:s, or the procuring of blessings. It is difficult to account for this practice, as the offspring of reason: it is not dificule to trace it to the Scripture history; for we read that Cain and Abel, the first-born of the human race, offered sacrifices to God. It is not said, however, on what authority they did so. We are inclined to ascribe it to a disine injunction which is not recorded; the more particularly, as God afierwards saw it expedient solemuly to enjoin the practice to the Jews. If it is the offspring of reason, Cain must have the honour of the invention, as he is mentioned as the first who sacrificed to God.

But whether the general practice of sacrificing arose from this primeval source, or whether it is an invention within the ordinary reach of human reason, this at least is certain, that the Scripture doctrine of atonement throngh Christ was altogether a new doctrine, except in so lar as it was
announced in the predicions of the prophets. It is altogether beyond the reach of human reason; and appeared so strange, that, with all the aid of previous education, it was a stone of stumbling and a rock of offence, both to the Jews and Centiles. We need not be surprisud then, that the doctrine in this shape should have no place in the creed of the ancicht heathen, since it was concealed even from the people of God, till the fuhess of time, when cvery thing in the plans of providence was ripe for its dis. closure.

We do not mean to attent any farther to the distinction between natural and revealed religion There are, no doubt, some grounds for the distinction, if not in reality, at least in our conceptions. and in our mamer of viewing the subject. But we know not where the line is to be drawn; we are inclined to think, that il it is not an imaginary, it is at least a movable boundary, which will gradually disappear as we advance in knowledge; and when, at last, "we shall know even as we are known," the most mysterious pats of the Christian revelation will be found to be as essentially comected with the nature and government of Ciod, as his providence, or any of his most obvious attributes. It is no mark of reason to affect to despise the resources of human reason; and still less to slight the light of revelation, which alone can conduct oul reason to just and profitable conclusions. Reason is the compass by which we stecr our course; revelation is the polar star by which we correct its variations.

We are to look to the word of God, then, as containcd in the Scriptures of the Old and New Testaments, for the only sure rule of faith and practice. But there is this simgularity in the saced Scriptures, that we do not find in them a set treatise on any one of the interesting subjects which engage our attention as moral and religious beings. No attempt is made to prove the existence of a God; such an attempt would have been entirely useless. because the fact is universally admitted. The error of men consisted not in denying a God, but in admitting too many; and one great object of Scripture is to demonstrate, that there is but one. No metaphysical arguments however are employed for this purpose. The proof rests on facts recorded in the history of the Jews, from which it appears that they were always victorious and prospered so long as they served Jehovah, the name by which the Almighty made bimself known to them; and uniformly unsuccessful, when they revolted from him to serve other gods. What argument could be so effectual to convince them that there was no gorl in all the earth but the God of Israel: The sovereignty and universal providence of the Lord Jehovah, are proved by predictions delivered by the Jewish prophets, pointing out the fate of nations and of empires, specifying distinctly the cause ol their rise, the duration of their power, and the reason of their decline; thus demonstrating that one God ruled among the nations, and made them the unconscious instruments of promoting the purposes of his will. In the same manner, none of the attribates of God are demonstrated in Scriptare by reasoning: they are simply affirmed, and illustrated
by facts; and instead of a regular deduction of doctrines and conclusions from a few admitted principles, we are left to gather them from the recorded feelings and devotional expressions of persons whose hearts were influenced by the fear of God.

These circumstances point out a marked singularity in the Scriptures, considered as a repository of religious doctrines. The writers, generally speaking, do not reason, but exhort and remonstrate; they do not attempt to fetter the judgment by the subileties of argument, but to rouse the feelings by an appeal to palpable facts. This is exactly what might have been expected from teachers acting under a divine commission, and armed with undeniable facts to enforce their admonitions.

But though there is no regular treatise in the Scriptures on any one branch of religious doctrine, yet all the materials of a regular system are there. The word of God contains the doctrines of religion in the same way as the system of nature contains the elements of physical science. In buth cases, the doctrines are deducci from facts, which are not presented to us in any regular order; and which must be separated and classified before we can arrive at first principles, or attain to the certainty of knowledge; and in both cases, a consistent system can only be made out by induction and investigation. The very circumstance of no detailed system being given, renders it necessary to form one; for although a portion of religious and physical knowledge sufficient for the common purposes of life, may be obtained by traditional information, and men may work conveniently enough by rules without possessing much general kuowledge; yet they who would teach with profit, must generalize, and they who would explain the ways of God must arrange the materials whichare so anply furnished, but which are presented apparently without order or plan.

We would therefore consider all oljections to systems of Divinity to be about as umreasonable as it would be to object to the philosophy of Newton, for having elucidated the laws of mature, and arranged the phenomena of the heavens. A man totally unacquainted with natural philosophy may get comfortably enough through life, for he can work by rule, though ignorant of the principles on which the rule depends. But when a change of circumstances requires a varicty of practice, his want of science will appear, and his attempts at renovation will lead to misapplied labour, injudicions expense, and ultimately to disappointment. Ignorance of the principles of religion may be attended with still worse consequences. The ways of God are very complicated; the manifestations of his will are infinitely diversified, and sometimes appear as il they were opposed to each other; and it is only by an enlarged view of his dispensations, and a careful comparison of the procedure of his providence, that we can see the beauties and estimate the value of that revelation which he has given. It is the greatest of all mistakes to suppose that a revelation has been given to save us the trouble of thinking; its object is to teach us to think aright, to prevent the waste and misapplication of our lacultics, but not
to supercede their exercise. And though we are fully persuaded that no degree of study would ever have cnabled men to arrive at accurate conceptions of God and of his government, without the aid of revelation, we are no less certain that revelation itself will not endow men with religious knowledse without study, meditation, and reflection. We do not mean to say that very profound study is necessary to make a good practical Christian: they who are imbued with the spirit of Christianity are led, as it were instinctively, to a conscientious discharge of its various duties; though they may, at the same time, be quite unable to give a connected view of its doctrines. But it is necessary that some should be able to do this; and we know no subject that requires a greater variety of talent, extent of information, and application of judgment, than the successful illustration of the doctrines and duties of Christianity:

In contemplating anyperplexing dispensation, the mind of the uninstructed can only go the length of saying, such is the will of heaven: this is sufficient to produce acquiescence, and to silence any rising scruples in a mind not addicted to investigation. But in order to produce satislaction and delight, the point in question must be reduced to some general principle, and shown to be perfectly consistent with the wisdom and goodness of God as recognised in other instances. The history of Job tends to illustrate these observations. He submitted, at first, because he knew that his sufferings were appointed by God; and even when he contended that they were unmerited on his part, he insisted no less on the prerogative of the Almighty to do what he pleased. But when God condescended to reason with him, he saw a different or rather an additional ground of submission, and acknowledged not only the sovereignty of God, but the wisdom and goodncss which governed all his dispensations.

But even those who exclaim most against creeds and systems must form to themselves a system of some kind or other, out of the Sacred Scriptures; for the mind must endeavour to obtain a connected riew of the doctrinal and practical information contained in then, and this is all that a system of divinity attempts; this is what every preacher of Christianity endeavours to exhibit in his discourses, and it would be just as reasonable to object to his oral instructions, as to a written record of his opimions, respecting the doctrines and duties enforced or inferred in the Gospel.

Were it not for the ignorance which obscures the reason, and the prejudices which pervert the judgment, and the doubts and anxieties which must be connected with a subjectof such immense importance as the religious hopes of men, the perusal of the Scriptures would be sufficient both for instruction and consolation. But where there are so many sources of crror originating in the passions which agitate the human mind, and when the subject is of such vast importance that the heart is afraid to trust its own surmises, it must at least appear a friendly office to point out the leading doctrines of Scripture, and to show their bearings on the duties
and the hopes of men. The great head of the church saw it necessary to appoint apostles, evangelists and teachers for this purpose, and this is the object which every one ought to have in view in illustrating the word of God. There is also another point of view in which creeds, confessions, or systems, (or by whatever other name they may be called), are rendered necessary, viz. to obviate the misrepresentations of enemies, and to rescue the Gospel from the opprobrium hrought upon it by the misconduct or absurdities of sects or individuals professing Christianity. This is the origin ol the apologies of the early fathers, which ate neither more nor less than expositions of the Christian creed, as it alfects the opinions and practice of those who receive it. The grossest falschoods respecting their tenets were propagated by their heathen adversaries, and, what was worse, the greatest discredit was brought on Christianity by numerous heretics who professed to adopt it. In these circumstances, the genuine followers of Christ found it necessary to grive a detailed account of their faith and of the duties which resulted from it: and the same thing will be necessary so long as the enemies of Christianity shall seek 10 misrepresent it, or wicked men endeavour to make its sacred name a cloak for hicentiousness.

Such being the character, and such the contents of the sacred volume, we are naturally led to inquire into its origin and authority. On this point the declaration of the apostle is perfectly explicit; he tells us expressly that all Scripture is given by inspiration of God; and it is absolutely necessary that it should be so from the circumstances of the case. We have seen that a revelation from heaven was necessary; and we have ample prool that such a revelation has actually been given. Assuming at present that this is the case, we would observe that it was absolutely necessary that this revelation should be recorded, and that the record containing it should be preserved from corruption by the superintending influence of the Spirit of God. What would it avail us to know that God had revealed his will to men, and unlolded prospects most interesting to our nature, had we not the assurance that we possess an authentic record of this communication, and an accurate account of its meaning and import? Had it been left to float down the uncertain channe! of tradition, or to receive such colouring as the imagination or caprice of men might think proper to bestow upon it, it would soon have been perverted in its meaning, or abused in its application.

But it may be asked, were not ordinary means sufficient for this purpase? Were not men ot honest and upright minds able to record the facts which they had scen, and the doctrines which they had heard? In answer to this, we must observe that the facts recorded in Scripture resemble the facts contained in any other history, except in regard to the explanation which is given of their cause, their tendency, and the end they are designed to accomplish in the economy of divine providence. This is what no man without the gift of inspiration can unfold.

Vol. XVil. Part II.

In ordinary histories we must rest satisfied with such information as we can find: and generally speaking, the facts are accuratcly reported, whilst the whole train of reasoning on their causes and consequences (which constitutes the beauty and utility of history) is often entirely fallacious: and the most interesting and best written histories are often the least authentic; becanse the writers, in order to conceal their ignorance of the primary and final causes of events, substitute in the place of knowledge ingenious conjectures, or the romantic dreams of their own imagimations. In eases of this kind, however, error is, comparatively speaking, of little importance. The reasons and motives of actions, assigned by ordinary writers may, or may not be true, without materially alfecting the comlort of society; and even a fictitions narrative, if drawn from the general storehouse of human nature, may be both amusing and instructive. But we cannot endure the idea of fiction or uncertainty, where our eternal interests are concerned; and as the reasonings and inferences deduced from the facts recorded in Scripture form the very essence of our religion, being the virtual emmetiations of the doctrines on which we build our faich and our hopes, we never can be satishied till we are assured that these reasonings and inferences rest on the basis of infallible truth. More than human wistom, then, is necessary to give the right interpretation of Scripture facts, and to deduce from them their legitimate consequences; lor we never could build our hopes with confidence, on doctrines which derive their authority merely from the opinions and interpretations of fallible men. It is as necessary to know that the record contaming a divine revelation is uncorrupted and infallible in its formation, as it is to know that a revelation came originally from God; and we might as well be without a revelation altogether, as have one embodied in a record, on whose accuracy we camot depend. In sloort, none but hose who were inspired to announce divine truths were qualified to record them; and if we are satisfied that the prophets, evangelists and hagiographers, had communications from heaven, we may be certain that their writings, whose genuineness and authenticity are most fully established, convey an accurate representation of their heaveninspired impressions to mankind.

These writings comain strong internal evidence that they proceed from no ordinary source. We see what distortion is given to Scripture facts, and what havoc is made of Scripture doctrines by thase, in modern times, who interpret the Woril of God according to their own fancy. And why does not the same variety of opinion prevail among the writers in the sacred volume: They were men of like passions with us; in matters of inferior importance. they did not always agree in opinion; nay, they sometimes represent the facts of Scripture in very different aspects; yet, with all this, there is not the slightest variation as to Scripture doctrine. Now this is exactly the reverse of what occurs in the case of ordinary writers, when several ol them are recording the same event. They in general agree as to the statement of facts, whilst there is searcely
any such thing as agreement, with respect to their causes, or the inferences which are to be deduced from them.

We are not to suppose that the sacred writers did not exercise their own judgment in commenting on the events which they record, though there is such a striking agreement in their sentiments. But we have reason to conclude, that their understandings were enlightened, their imaginations chastened, and their minds purified by a superintending influence, when we see them always led to the same in. terpretation and the same conclusion, though the facts were presented to their senses, and are recorded in their writings in very different points of view. These facts, indeed, sometimes appear so inconsistent with each other, that, to save the credit of Scripture, in general, some have chosen to abandon the idea of its complete inspiration. This would be both a dangerous and unnecessary concession. For, first of all, this apparent discrepancy in the statement of facts, is the clearest proof that there was no collusion among the writers. Had they formed a design to impose on the world, nothing could have beell more easy than to have preserved a perfect consistency as to the detail of facts. They were not cross-examined in a court ol justice, and betrayed into contradictory statements: they wrote down deliberate accounts of what they had heard and seen, which they could easily have made to agree with each other, but which were evidently sent into the world withont any commanication, and without any concern, whether they confirmed or contradicted preceding statements. And, in the next place, the inconsistency is not real, but apparent; and in every case, where it has been supposed to exist, it will be found to originate only in our own ignorance. Particulars different, but not inconsistent; varied, but not contradictory, are presented to our view; and we are thus furnished with an addition of knowledge, not with an opposition of facts.

If we descend from general reasoning, and consider the particular parts of Scripture, we shall find the most decided evidence of their inspiration. Take, for instance, the books of Moses, and consider the nature of their contents. He established laws and ordinances of a most singular nature, totally different, in many respects, from any thing that had ever been seen in the world. That the whole nation should rest from lahour every seventh day: that the whole land should lic uncultivated every seventh ycar, were regulations so contrary to common practice, and to general interest, that no man in his senses would have thought of enjoining them, without the certainty of being supported by divine authority. He does not recommend them by powerful eloquence, nor attempt to defend them as measures of policy: the only argument that he condesconds to use, is, thus suith the Lord; and he appeals not to the reason, but to the senses of the Israclites, for the confirmation of his statements;
directing them to the miraculous displays of power, by which God seconded all the institutions enjoined by his servant.

But we have the most decided evidence, that Moses not only acted but wrote by inspiration, or by the immediate direction of heaven. Where, for instance, did he find those sublime doctrines respecting the unity of God, and the purity of his worship, which we every where perccive in his writings? Not in Egypt where he was brought up; for though he was learned in all the wisdom of the Epyptians, they had no snbstantial knowledge on these subjects which they could impart. They had made some progress in physical science; and from their knowledge of the properties of matter, they were enabled to exhibit a number of tricks which astonished the multitude. But of all people on the face of the earth, they were the most absurd and preposterous in their religious creed; and Egypt, which has been called the cradle of the arts and sciences, may with equal propriety be styled the nursery of superstition and idolatry. Nor was there any other country from which the Jewish legislator could borrow his doctrines concerning the divine nature and government. His writings on these subjects stand unique amidst all the monuments of antiquity; and the very existence of such a system of doctrine and worship among the Jews at such an early period, is a proof that it must have been from heaven; for nothing like it had ever befrere been seen on earth; nor did the human mind, amidst its multifarious speculations, ever afterwards stumble on the same doctrines. They were so foreign to its views and prejudices, that it could not adopt them by imitation; and in attempting to describe them, uniformly misrepresented and debased them.*

After the books of Moses come the historical books, and no part of Seripture has more decided claims to inspiration, nor is there any part with regard to which that claim is more decidedly asserted. The writers announce, without the slightest hesitation, the mind of God in regard to the transactions which they record; and they unfold, without the smallest scruple, or doubt, the motives which actuated the minds of the principal actors. They do not seek the praise of ingenuity for shrewd or profound speculations as to the great moving causes of events; they never reason in order to show what is the most probable view of the subject, nor do they labour to win assent to their statements: they profess to record nothing but what God has communicated, and having given such information, their commission ends. Nothing has ever been found to contradict, but every thing to confirm their statements, which may be regarded as commentaries on the law of God to prevent its misinterpretation and misapplication by the ignorance and prejudices of men.

Next in order come the books which authors have called Hagiographa, or holy writings. These

\footnotetext{
- Witness the misrepresentation of Strabo, (lib. 16.) who, having informed us truly that Moses forbade to make images of the Deity, tells us farther, that he taught that the heavens, the word, and the nature of things, were themselves the only true God,
 Juvenal falls into the same mistake, when he says of the Jews, "Nil prater nubes et cali numen adorant." Sat. xiv. 97.
}
are Job, Psalms, Proverlas, Ecclesiastes, and the Song of Solomon. In the book of Job, much light is cast upon the dispensations of heaven, and many doubts and objections which might naturally rise in the mind are obviated. We are taught patience and resignation, from the consideration that we know not the end which God has in view by the visitations which affect us; but we are assured that all things are guided by unerring wisdom, and unchangeable goodness. These are the lessons inculcated in the book of Job, and they are the most important that can be learned by man.
The Psalms are a collection of sacred songs and hymns by a variety of authors, but by far the greater part by David, insomuch that the collection generally bears his name. They form a valuable record of devotional feeling; all the workings of the human heart are here displayed; the doubts and the fears, the joys and the transports which successively agitate the mind are here pourtrayed, and it will always find something here, to suit its varied shades of fecling, from the first aspirations after holiness, checked by ignorance, and inherent unbelief, to the complete triumph of faith, and assurance of hope. In short, the Psalins are the safest manual of devotion, and the most authentic, perhaps the only authentic journal of the thoughts and emotions which are excited in the mind under the varied dispensations of heaven.
The Proverbs contain a great variety of most excellent maxims of moral wisdom; and such a collection forming part of the canon of sacred Scripture, conveys to us this important truth, that the service of God ought to be combined with the soundest wisclom and discretion. The Proverbs of Solomon correspund so exactly with the maxims which enlargedexperience sanctions, that some have said there was no need for inspiration to produce a collection of practical rules, so consistent with utility and common sense. But surely it is useful to know that such rules have the sanction of the Spirit of God; and that the headlong folly which cloaks its extravagances under the garb of religion is altogether alien from the Spirit of truth.

The book of Ecclesiastes contains a history of the experiments made by a man of great power and wisdom to secure happiness, by bringing into operation all the resources which wealth, power, and wisdom could supply. The result of his experience was, that "All is vanity and vexation of spirit," and that "To fear God and keep his commandments is the whole duty of man!" The first conclusion has been reached by many who had no pretensions to the wisdom of Solomon, whilst they have missed the latter and most profitable result of his experience.

The Song of Solomon has been more the subject of cavil, than any other part of sacred Scripture. From the absence of the name of God in it, and from the style of the imagery, which is luxurions and amatory, some have argued that it cannot be an inspired composition. This is a hasty, and we are persuaded an unfounded conclusion. It has, from the earliest ages, been considered as forming a part of the canon of Scripture. The Jews always
regarded it in this light, and it never would have descended to our times, had it not been protected by its sacred character. Solomon was a very voluminous writer; "Hlis songs were a thousand and five; and he spake of trees from the cedar tree that is in Lebanon, even unto the hyssop that springeth out of the wall; he spake also of beasts, and of fowl, and of crecping things, and of fishes." Kings iv. 32. But nonc of his productions are preserved, but such as were of a sacred character. The style and imagery of the composition in question, however opposite to European taste, and to the notions of propriety adopted in modern times, form no objection, if they can be shown to be applied in Scripture to subjects confessedly spiritual and religious. This may be easily done: the fortyfifth Psalm presents the same imagery applied in a religious sense, and may be regarded as a pretty accurate abridgment of the Song of Solomon. And this composition seems to be referred to in the New Testament, when the apostle says, "I am jealous over you with a godly jealousy; for I have espoused you to onc husband, that I may present you as a chaste rirgin unto Christ." 2 Cor. xi. 2.
The writings of the prophets carry in their face the evidence of divinc inspiration. We have only to show that prophocies predicting future events existed, and that the events foretold actually came to pass, to satisly any rational mind that the information of the prophet must have been from heaven. Such facts as these occur not merely in a few instances, so as to induce a suspicion of conjecture, and of casual fulfilment. All the great events which have influenced the affairs of men are written beforehand in the records of prophecy; and the historian who cones afterwards, has only to fill up the great outline whieh had been previously drawn by the inspired prophet.

The writers of the New Testament Scriptures have no less decided claims to inspiration. Their Master assured them that the Spirit should be given to bring all things to their remembrance, and they did not write till this promise was fulfilled by the visible descent of the Holy Ghost on the day of pentecost. Friends and enemies have received the books of the New Testament as the undoubted writings of the authors whose names they bear; and when we consider the circumstances in which these authors were placed, without education or the usual opportunities of knowledge; and when, notwithstanding these disadvantages, we see them inculcating doctrines and precepts which leave far behind them all the instructions of human wisdom, it is impossible not to conclude that they wrote under the inspiration of heaven.

The Scriptures being the word of God, must na. turally be regarded as the grand depositorics of all religious knowledge: they teach us the doctrines which we are called upon to believe, the duties which we are to practise, and the hopes which we are warranted to entertain: they explain the nature and character of God, but they contain no laboured arguments to prove his existence. It would have been a mockery and misapplication of reason to have adduced metaphysical arguments to prove 4 R 2
what was demonstrated to the senses. They who believe the facts of Scripture, which are so many records of the being and power of God, cannot possibly doubt his existencc; much less could those who were the eye and ear witnesses of those extraordinary transactions. Did we find a single argument in the writings of Moses to prove the existence of God, beyond those drawn from the miracles which the Israelites saw, it would justly bring suspicion on the whole record; for what could be the use of reasoning where conviction was applied immediately to the senses, and palpable demonstrations daily afforded of the presence and power of God? In these circumstances, the absence of inductive reasoning is exactly what might have been expected, and strongly confirms the authenticity of the record, aud the genuineness of the lacts which it contains.

Though we are now placed in different circumstances, yet it camnot be necessary to spend much time in proving the existence of God: we are almost as sure of it as we are of our own; at least we may be as sure of it as we are of the existence of a rational soul in our fellow men. All that we see of man is a corporeal structure and material organs, composed of the same clements as external nature. Consciousncss and feeling may give an individual a conviction that there is something in his constitution of a higher order and character. He can reason and plan, and manifest his feclings in a great yariety of ways: hence he infers the existence of a principle within him, different from the matter of which his body is composed; and when he sees the same manifestations in the case of others, he concludes that there is the same power of fecling, reasoning, and executing. But the soul, which is the grand agent in all these transactions, he canot see: he infers its existence only from the cffects which it produces. Now, as we cannot possibly mistake the visible universe for the work ol man, we are compelled, from the appearances of design, and the wise adaptation of means to ends, to ascribe it to a being possessed of power, intelligence, and goodness, inconceivably exalted above the lacultics and resources of mar. Thus, we see God as visibly in his works, as we discover the existence ol an intelligent spirit in man from its various manilestations.

We pass over the various arguments, metaphysical and inductional, which have becn adduced to prove the existence of God, and proceed to consider the inlormation which the Scriptures have given us respecting his nature, character, and attributes. They unitormly, aud in opposition to all the ancient nations, assert the existence ol one (iod: and this unity of the divine nature is demonstrated by the universality of divine providence, as manifested in the late of the different nations whose destinies are pronotnecd in Seripture, long before the prediction was verilied by the event. This proves that one mind had the knowledge and disposal of the fortunes of the kingdoms of this world. Philosophy proclaims the same important truth, and shows such a unity of design and harmony of purpose, reigning throughout all the arrangements of the material world, as proclaim them all to be un-
der the direction of One superintending mind. The same laws which regulate the motions of the heavenly bodies, operate on the surface of this cath, and show the heavens and the earth to be under one and the same governor.

The perfections of God in which we may share, or as they have been called his communicable perfections, are wisdom, power, holiness, justice, goodness and truth. His incommunicable, or his esseutial atuributes, are his eternity, selfexistence, immutability, ommiprescnce, \&c. These may be called the attributes, or characters of his perfections, to which we can conceive no limits or bounds. In these attributes we camot participate: they constitute the essential nature ol Deity, and without them God would not be an object of religious homage and adoration. It might be highly interesting to contemplate a being just, and good, and wise, and holy; but no religious homage could be due lo such a being, did his perfections admit of any limitations, or were he not infinitely removed above all chance, and above all change, and not affectable by any of the vicissitudes which attach to all created things.

The providence of God, or his care over the world which he has made, is proved by the existing state of the visible universe. To suppose that the world and its inhabitants can exist without the immediate care and superintendence ol God, would be to suppose them independent of his power: but if we may venture to assign limits to the power of God, we would say that it is limited by this, that he cannot do any thing that is unworthy of himself, nor make any thing independent of his power. To create any being, or any thing absolutely independent, would be to impart his own incommunicable perlections; and this we may safely pronounce to be impossible: it exceeds even the power of ommipotence to make any thing as great as the uncreated Deity. In every thing, then, that lives or grows, or exists, we see not a natural efficiency, but a divine energy; even in the rudest mass of inanimate matter, we see a divine power; because it is held together, and retains its form and qualities, only in consequence of those laws which (aod has established, and which preserve their force, only because his will keeps them in operation.
Thus lar, all that is talught in Scripture respecting the unity of God, and his universal providence, is confirmed by every argument of eulightened reason. In the government of the world, we see none of that discordance which marks divided empire; cren those things which, at first sight, might appear as irregularities in the plan, are lound, on closer inspection, to be essential parts of it, and to bear unequivocal testimony to the unity and overruling providence of God. But the Scriptures give us some information respecting the mode in which the divinc nature subsists, which it does not appear that reason could ever have suggested. We allade to the doctrine of the 'Trinity, of which, we are inclined to think, no vestige can be found, except among those who have received it, directly or indirectly from the sacred Scriptures.

It is true that something rescmbling this doctrine
is to be found in the mythology of some of the gentile nations. It seems to be acknowledged in the theology of Hindostan, in the characters ol Brama, Vishnu, and Seva, whose image, in the most ancient representations, appears as a human body with three heads. A species of Trinity also was taught in the schools both of Pythagoras and Plato, and is largely insisted on by the followers of the latter. The doctrine of Plato on this subject is, that there are thre principles in the Deity, goodness, intelligence, and viality; and that these three, though distinct, are more one than any thing in nature of which unity may be predicated; as no one of them can be supposed without the other two. When Christianity began to prevail in the workd, many Platonists embraced it; and when the doctrine of the Trinity began to be impugned, they attempted to defend it as a docrine ol reason, by alfirming that it was taught in the philosophy of Plato: whilst the unconverted Platonists maintained that the Chistians had borrowed the doctrine from the Grecian philosopher. Had the language ol' Plato on this subject been as clear as that of his followers, we should have concluded that he had derived his knowledge from the traditions current among the Jews, and which had passed from them to other nations of the cast. But, after all the labours of Cudworth, we cannot perceive that Plato teaches any thing resembling the Christian Trinity. Something more like to it appears in the doctrines of the Pythagoreans, as represented by Simplicius, who tells us that one of their authors describes the First One as being above every existing substance; the Second One as represented by Ideas, or Intelligible Species; and the Third One, as Vital or Psychical ( \(40 \chi\) x.0. \()\) and partaking of the mature of both the former.*

But it is evident that this is a philosoplaical conceit, founded on opinions which had long been prevalent. In the esoteric doctrines of several of the ancient philosophers, the divine nature was considered as one and indivisible, immovable and unaffectable: at the same time they considered God as diffused through all things, and all things as partaking of the nature of God: hence they conceived his nature to exist both in the intelligible species, by which they supposed all things to be apprehended by the understanding, and also in the visible system of things which are the objects of our external senses. This gave a kind of triplicity of modification to the divine nature, which was nevertheless considered to be, in itself, simple and one.

This doctrine, or some notions of a similar kind, tended strongly to produce a perversion of the Cluristian doctrine of the Trinity, when the Platonizing philosophers began to embrace the Christian faith, and the errors arising from this source have continued to infect the faith of many professing Cbristians down to the present day. To give an enumeration of the heresies and conceits which have been entertained on this subject would only
he to exlibit the weakness or the presumption of the human mind. All that is proposed is to give the history of the doctrine of the Chistian 'Trinity; and to state the arguments foom Scripture by which it is supported.
There is one thing connected with this subject which camot but strike every person ats remarkable. The Trinity is no where annonencel in the New Testament as a new doctione, neither is it any where formally taught: it is taken lior granterl, or stated as a matter of course. and referred to rather as a thing that was well known, than ats a doctrine which had been unhead of before.

Was this doctrine, then, known to the Jews under the Old Testament dispansation: It revtanty is not expressly taught in the sacred mritings, anterior to the Christian revelation; but it is pretty evident that the Jews must have inad some nation of plurality as connected with the Disine nature. This is implied in the phaseology of Scripture, as when the Creator says. "Let \(u . s\) make man," and "the man is become as one of ers." It onght also to be observed that the word Ilteim or R:lohim, which is translated Cod, is a plural moun, but is nevertheless generally joined by Moses, in his account of the creation, with a verb ist the singular, to indicate, as is supposed, his knowledge of the mysterions nature of the Godhead.
The influence of the Spirit of God is often mentioned in the Old Testament Scriptures, and personal qualities are ascribed to it. The Spirit of God rested on the seventy clders and they prophesied, Num. xi. 26. Isaiah says, "The Lord God and his Spirit hath sent me." xlviii. 16. Numberless passages might be quoted to the same purpose, in which qualities and operations are distinctly ascribed to the Spirit of Gind as a person, and not as an energy ol the Divine nature. And, in whatever way they eame by their belief, it is mo less certain that the Jews, previously to the time of our Saviour, ascribed a distinct personality to the Word of God. Thus in the apocryphal book of W'isdom, which is unquestionably ancient, and supposed to be the production of some Hellenistic Jew, who lived before the time of our Saviour, we find the following passage: "Thine Almishty Word leaped down from heaven, out of the royal throne, as a fierce man of war into the midst of a land of destruction." xviii. 15.
But the most decided evidence on this subject is to be found in the Targums of Jonathan and Onkelos; the one being a commentary on the prophets; the other on the books of Moses. They are both writen in Chaldee; that of Jonathan was written, according to Calmet, about thirty years before Christ: that of Onkelos not long after it, and they are both, till this day, held in the highest estimation among the Jews. From these commentaries, then, on the Old Testament Scriptures, we learn in what sense particular passages were understood by the Jews. Onkelos says on Exodus xix. 3, that Moses "went

\footnotetext{

 IV.
}
up to meet the Word of the Lord," and again, in the 17 th verse, he says, "Moses brought the people out of the camp to meet the Ford of the Lord."* The Targum of Jonathan is equally explicit: on Deut. v . 5 , he says, "Moses stood between them and the Ford of the Lord:" and in the 23d verse, he says, "After ye had beard the voice of the Worl out of the midst of the darkness," Sc. which shows that the Word is to be understood in a personal sense, as distinguished from the voice of God. \(\dagger\)
The same plraseology prevails throughout the work of Philo Judxus, De Mundi Opificio, in which he almost everywhere speaks of the Word of God as a person, and ascribes to him the creation of the world.

From these facts, then, we may reasonably conclude that St . John was stating nothing but the received doctrine among his countrymen, when he said, "In the begiming was the Word, and the Word was with God, and the Word was God; the same was in the beginning with God: all things were made by him, and without him was not any thing made that was made." No Jew of those times could possibly object to this doctrine. Nay more, the Jews positively expected the visible manifestation of this Word in the person of their Messiah. They would not have been offended at the doctrine that "the Word was made flesh and dwelt among us," had not Jesus of Nazareth, of whom this was predicted, appeared in a character, and in circumstances so very different from what they expected. This is apparent from the gospel history. When our Lord was accused before the Jewish council, the high priest said to him, "I adjure thee by the living God, that thou tell us, whether thou be the Christ, the Son of God." From this it is crident, that they expected the manifestation of "the Christ the Son of God." Our Lord answered the question indirectly by saying, "hereafter shall ye see the Son of Man sitting on the right hand of power, and coming in the clouds of heaven." This is an evident allusion to Dan. vii. 13, 14, where it is said, "And, behold, one like the Son of Man, came with the clouds of heaven, and came to the Ancient of Days, and there was given him dominion and glory and a kingdom," \&sc. On hearing our Lord apply these words to himself, "the high priest rent his clothes, saying, he hath spoken blasphemy, what farther need have we of witnesses?" Matt. xxvi. 64, 65. This incident proves two things; first, that the Jews considered the passage in Daniel, which our Lord applied to himself, as applicable to the Messiali; and, second-
ly, that though he is there called the "Son of Man," they nevertheless admitted that he was to be, in reality, "the Son of God," and to have a kingdom which should never be destroyed. This was the character which they reeognised as belonging to the Messiah; and our Lord was judged guilty of blasphemy because he asserted that the words of the prophet were fulfilled in him.
A curious commentary on the vision of Daniel has recently been furnished us from the book of Enoch, \(\ddagger\) lately translated from the Ethiopic, by Bishop Lawrence. The work is evidently apocryphal, and was considered as such by the early Fathers; it is, however, unquestionably ancient: and there seems not the smallest doubt that it is a fair translation of the work quoted by Jucle. We refer to it , as we have done to the other apocryphal writings, and to the writings of Philo Judæus, merely to illustrate the opinion of the Jews respecting a plurality of subsistences in the divine nature. That such an opinion prevailed among them is very clear from the commentary which the author of this book makes on the vision of Daniel. He has availed himself of the prominent facts and prophesies of the Old Testament Scriptures, and has represented them as seen in vision by Enoch, and related by him to his son Methuselah. The vision of Daniel, of course, was not to be overlooked, as it is evidently prophetic of great and remarkable events: and this author shows the interpretation which he, and, we may conclude, the thinking part of the Jews, (among whom, it is evident, his book was received as a work of authority,) assigned to the most remarkable circumstances in this prophetic vision. "There 1 bcheld the Ancient of Days, whose head was like white wool, and with him another whose countenance resembled that of man. His countenance was full of grace like one of the holy angels. Then I inquired of one of the angels, who went with me, and who showed me every secret thing concerning this Son of Man-who he was-whence he was-and why he accompanied the Ancient of Days." Ch. xlvi. 1. In the remainder of this chapter, and the whole of the next, he continues to celebrate the praises, and proclaim the exploits of the Son of Man. In the 48th chapter the subject is continucd, and in the \(2 d\) and \(3 d\) verses we find these remarkable words. "In that hour was this Son of Man invoked before the Lord of Spirits, and his name in the presence of the Ancient of Days; before the sun and the signs were created, before the stars of heaven were formed, his name was invoked in the presence of the Lord of Spi-

\footnotetext{
* Sce the Targum of Onkelos in Waton's Polyglot. Tom. i. p. 37.
t See particularly Allix's Judg. of the Jewish Chureh, for all the passages iodicating plurality in the Godhead.
\(\ddagger\) Threc eopies of this work were brought from Abyssinia, by Bruce. Ine retained one to himself, and deposited one in the library of the King of Franee, and the other in the Dodleian Library at Oxford. No translation of the work into any modern European language has appeared till Bishop Lawrenee published his English translation in 1821. A large fragment in Greek fiom the chronographia of Georgins Syncellus, was published by Scaliger. The work from which St. Jude quoted was extant in the second century. For Ireneus, who wrote in that century, distinctly alludes to events recorded in it and no where else, and Tertultian translates a long quotation from it. The Greck copy of the work, a translation probably from the Hebrew or Chaldee, seems irretrievably lost. Aa idea, however, prevailed in the beginning of the seventecnth, rentury, that a translation of it existed in Ethiopia. But all attempts to procure a copy we:e unsuccessful, till the three above mentioned were brought into Europe by our conntryman Bruce, the prince of modern travellers, whether we consider his courage, his prodence, or the intelligenco with which he conducted his researclies. His copies contain the passages quoted by Syncellus and the Fathers, as well as that quoted by Jude; and there can be little doubt of their being fair transtations of the original.
}
rits:" and at the 5 th verse, he says, "therefore the elect and the concealed one existed in his presence before the world was created, and for ever." 'These passages are valuable as recorded testimonies of the belief of the Jews in the pre-existence and Deity of the person desiguated by Daniel, the Son of Man.

Nor is this all, in the both chapter a distinct allusion is made to a Trinity of persons in the Godhead. "He (the Lord of Spirits) shall call to every power of the heavens, and to all the holy above, and to the power of' God. 'The Cherubim, the Seraphim, and the Ophanim, all the angels of power, and all the angels of the Lord, namely of the elect onc, and of the other power, who upon earth were over the water on that day, shall raise their united voice," \&c.

We see not the slightest reason for questioning the antiquity of this book, or the integrity of the text, on account of these obvious allusions to the Son and the Spirit. On the contrary, whatever may be thought ol the genuineness and authenticity of the text in 1 John \(v .7\). we are persuaded that it states nothing but the common creed of the Jews at the time it was written, and that the most intelligent among them would have subscribed to the doctrine that "there are three that bear record in heaven, the Father, the Word, and the Spirit, and these three arc one."

We can easily conceive that this text is an interpolation, since it is not found in some of the most ancient copies of the New Testament, and is not quoted by the ancicnt Fathers in their disputes with those who denied the doctrine of the Trinity.* But if it is an interpolation, (which, after all that has been written, we do not think sufficiently proved,) it is never(heless an accurate statement of the generally received doctrine among the Jews. How they arrived at the knowledge of a doctrine not clearly taught in the law and the prophets, cannot be a question of much difficulty, when we consider that they had so many inspired teachers among them, who might deliver much in their instructions which they did not commit to writing, and who in illustrating the word of God, might explain the meaning of those passages in which the doctrine was implied, though it might be overlooked by an ordinary reader. It was, no doubt, in this way that the resurrection of the body, which is nowhere clearly taught in the Old Testament, was nevertheless universally received among the Jews, except by the sect of the Sadducees, long before it was so clearly revealed and demonstrated in the New Testament.

And it will not be denied that there was an obe vious propricty in preparing the minds of men by previous instruction lor the reception of a doctrine so highly mysterious and important as that of the Trinity. In consequence of the prevailing opinions on this subject, the \(A\) postle l'eter, when he witnessed the power and wisdom of his Master, had no hesitation in declaring, "we belicve and are sure that thou art the Christ, the Son of the living God;" bence, too, our Lord had no occasion to enter into any explanation when he enjoined his disciples to "go and teach all nations, baptising them in the name of the l'ather, and the Son, and the Holy Ghost;" and from the same circumstance, Mary expressed no surprise when she was told that the Holy Ghost should come upon her. She was immediately satisfied, having heard belore of the cxistence ol such an agent. \(\dagger\)
llaving attempted to give a short history of the doctrine of the 'Trinity, it now only remans to adduce some texts from the New Testament in which the doctrine is either clearly stated, or obviously implied.

And surcly nothing can be more caplicit than the passage just quoted respecting the institution of baptism. This rite, as a token of regeneration, and as a sign of our being arlmitted to spiritual privileges and blessings, can only loc administered in the name of God; lor he alone can offer and ensure these blessings to mankind. But it is here expressly ortained to be administered in the name of the Father, ol the Son, and of the Holy Ghost, to cach of whom personal qualities are ascribed throughout the New Testament; when, herefore. we see all the three associated in a work that can belong only to God, the unavoidable inference is, that there are three persons in one Godhead. Indeed it seems to be as impossible to mistake the meaning, as it is to explain away the force of this plain text. The words ol the Apostle, at the conclusion of the Second Epistle to the Corinthians are equally clear, and the inderence deducible from them equally incontrovertible,-" the grace of the Lord Jesus Christ, the love of God, and the communion of the Holy Gbost be with you all." As if it had been to obviate the opinion which afterwards sprung up, that the Son and Holy Ghost are only particular manifestations or energies of the same person; the Son is here mentioned first, to show his imherent Godhead, and claim to religious adoration; and that there might be no possibility of confounding the three subsistonces or hypostases of the Godhead as mere modifications of the same divine person, all the threc are, on one occasion, repre-

\footnotetext{
*Without entering at all into the controversy respecting this test, it may be sufficient to give the following general statement of the grouods on which it rests. The verse has not, as yet, been found in any very aneient Greek manuscript of the New Testament; it is said only to be found in one copy of eomparatively modern date, being supposed to be of the fifteenth century:. Hence it is infered that the verse is wanting in the copies from which the most ancient Greek MISS. have been transcribed, up to the autograph of St. John On the other hand, the verse is found in the most ancient copies of the Latio Vulgate, which the suppopters of the text maintain to be a correct translation from a genuine Greek origibal. But the strongest evidence in favour of the text occurs in the writingz of Cyptian, who died in 258, who scems directly to quote it; for he says in his treatise De unitate ecclesia, "Disn Dominus, Ego et Pater unum sumus; et iterum, de Patre et Filio et Spiritu Sancto scriptom est, Et hi tres unum sunt." This seems to imply that the text was found in Scipture, (for he says, scriptum est,) in the time of this father.
\(\dagger\) Those who wish to prosecnte this view of the suhject farther, will find ample information in Bishop Bulls work on the Triaity, Cudvorth's Intell. Syst. Book I. Ch. 4. Horsley's Letters to Priestley, Maurice's Indian Antiquities, vol. iv. passim, and Alix's Judgauent of the Jewish church against the Unitarians.
}
sented at once, under sensible manifestations, and in very distinct characters and circumstances. "It came to pass that Jesus being baptized and praying, the heaven was opened, and the Holy Ghost descended in a bocily shape like a dove upon him, and a voice came from heaven which said, "Thou art my beloved Son, in thee I am well pleased." Luke iii. 21. Here the voice of God was heard from heaven, the Holy Ghost was seen descending, and lighting on him, who was pronounced to be the beloved Son of God. Again the Son and the Spirit are mentioned as distinct from the Father; and as distiuct, too, from each other in their persons, and in their operations in bringing men to God. "Such were some of you; but ye are washed, but ye are sanctified, but ye are justified in the name of our Lord Jesus, and by the Spirit of our God." 1 Cor. vi. 11.

Wreshall have occasion afterwards, to notice particularly the divinity of the Son ; and, therefore, we shall close this discussion on the Trinity with a few texts, tending to prove the divinity and distinct personality of the Holy Spirit. His Divinity is proved by the reproof of the Apostle Peter to Ananias, Acts v. 3, 4. "Why hath Satan filled thy heart to lie to the Holy Ghost? Thou hast not lied unto men. but unto Grod." And his distinct personality is proved by our Lord's words, Matt. xii. 31, 32 . "All matner of \(\sin\) and blasphemy shall be forgiven unto men; and whosoever speaketh against the Holy Ghost, it shall not be forgiven him, neither in this world, neither in the world to come."

Il' language has a meaning, and if the satred atcords can be depended on for settling a point of faith. we must consider this passage as perfectly conclusive, as to the divinity and distinct personality of the Holy Spirit. Ite is God because men may be guilty of blasphemy against him, which cannot be said of any created being, -blasphemy can only be committed against God; and he is distinct from the Fither and the Son, inasmuch as blasphemy against him is unpardonable, which is not the case when committed against the Father or the Son.

We do not reckon it necessary to proceed farther in adducing Scripture proot's of this doctrine. A vast number of texts equally applicable might be quoted, and the whole tenor of the New 'lestament Scriptures is in exact conformity with the obvious meaning of those passages which have been aflduced. The opponents of this doctrine make a very unreasonable demand apon us, and require us to bring it down to the level of their understanding. They who make such a demand should torero all discussion respecting the nature of God, the principles of human conduct, and the ordinary phenomena of nature: for on all these subjects they must soon be involved in inextricable mystery. What, for instance, can we know of that God whose being and attributcs we can demonstrate? IIe is sellexistent, eternal, without begiming and without end, omniscient, omuipresent, illimitable. Can we comprehend the nature of a being possessed ol such attributes? No: his nature is unsearchable, his ways are past finding out. But it may be said that
this subjeet only transcends the power of our reason, while the doctrine of the Trinity contradicts its intimations. This is not the case. We are compclled to believe things as extraordinary and as incomprehensible by our faculties. The soul and the body make one person, yet we believe them to be totally different from each other in substance, nature, and qualities. Various faculties, how many we cannot tell, compose one mind, though they are very opposite to each other in their operations. Indeed, we are probably not acquainted with a single simple substance in nature. The air which we breathe is a triple compound ; the water which gives fertility to the earth is composed of, at least, two ingredients; and the light, which used to be considered as the purest of all elements, is found to be a very complex substance.

These things are adduced not as proofs, but as illustrations; and they are brought forward in this riew, to obviate objections, rather than to produce belicf. The doctrine of the Trinity depends on testimony, rather than on reasoning; except in so far as reasoning is employed to establish the testimony by which it is supported: it rests on the same foundation with the general plan of revelation, and they must stand or lall together. But as all the objections to the doctrine are professedly founded on reasou, these objections are done away when reason can point out analogous facts to meet ibe arguments which have been supposed to invalidate the doctrine. The eternal generation of the Son, for instance, has been objected to as not only incomprelicusible, but impossible. To this Jortin (who is not over orthodox on the subject of the Trinity,) replies, that to deny the possibility of this would be to deny that God had the power of working from all eternity. Again it is said, how can the Son and Spirit proceed from the Father and yet be equally eternal with him? This has been answered by Pearson long. ago, by an illustration drawn from the visible sun: for werc we to suppose this luminary to be eternal, (which is, at least, a possible supposition,) then the rays which proceed from it must be eternal also.

All the attributes and perfections of the Deity are manifested in the works of creation, providence, and redemption. The curiosity of men has led them to inquire what has moved the divine mind to thesc manilestations of wisdom, power, and goodness. As alt the actions of men arise out of certain purposes which they have formed, and certain objects and ends which they hare in view, we are naturally led to conclude that the same must be the case with the ways of God; they must have an origin, and they must be designed to accomplish cortain ends. In other respects there must be a wide difference between the ways of God and the ways of men. We are influenced by motives, suggested by circumstances over which we have no control ; the actings of the Almighty arise out of hus own free will, uninflucnced by cxternal circumstances, inasmuch as his purposes were lormed before the foundation of the world, regulating, and not following the course of nature and of providence.

It is needless to attempt to conceal that no subject has excited more controversy that this: it forms
the grand point of debate between the Arminians and Calvinists. Though we do not entertain any hopes of being able to put an end to the dispute, we nevertheless think it necessary to state the question; and we shall not be disposed to make any apology, though we should be discovered to bear more to one side than to the other.

The doctrine of predestination, which arises out of this subject, is unguestionably taught in Scripture (vide Rom. viii. 29. F.ph. i. passim. 2 Thes. ii. 15. 1 Pet. i. 2.) It is also held as a fundamental doctrine by the Church of England, the Church of Scotland, and many other churches, and is necessarily connected with the fore-knowledge of God. "Whom he did foreknow, he also did predestinate." It will be proper, however, to remark that we may fall into great mistakes in talking of the fore-know. ledge of God: for with him there is neither fore nor ofter; all things are etermally present to him; and by him, and in him, all things subsist. The language and the conceptions of men are formed on entirely different principles. We employ three principal tenses to mark the light of time, and the course of our ideas, viz. the past, the present, and the future. But the grammars of men cannot limit the conceptions of the Almighty, whose existence is commensurate with eternity; "with whom a thousand years are as one day, and one day as a thousand years."

We can with difficulty form a conception of this, yet it is demonstrable that it must be so. It flows necessarily from the eternity and self-existence of God. All things being ordained by him; all the parts of the present dispensation being connected with, and adapted to each oiher; and no power being able to alter or withstand what he has decreed in his wisdom, and in his might, the whole system of things must necessarily be present to his mind. He sees those things, to which we would ascribe only a possible existence, as actually existing: and as the architect sees all the parts and proportions of the future palace, in the plan which he has formed in his own mind, before a single stone of the building has been laid, so the eternal arehitect saw, before the foundation of the world, the proportion, order, and use of every part of the visible system of things, which appear to us only in succession, and at distant intervals, and perplex us greatly in all our attempts to account for them.

In conformity with the ideas which have now been thrown out, we would rather say that predestination flows from the omniscience, than lrom the fore-knouledge of God. Nobody can doubt that he knows every thing that is come to pass. We see how intimately he was acquainted with the fate of nations when he announced beforehand the events which were to befal them. No one of these predictions ever failed. Now, whether wa say that he merely foreknew these events, but decreed nothing concerning them; or affirm that they were fixed by his absolute decree, on cither supposition, the result must be the same; they could not but happen as God had foreknown and loretold.

For God to predestinate, then, or to foreknow, seems to amount to one and the same thing; unless

Vol. XVII. Part. II.
we run into the impiety of supposing that God foreknows things over which he has no control, which he did not plan, and which he cannot prevent. Such a supposition is altogether inconsistent with the sovercignty of God, as the ruler of the universe, and the disposer of all events. It is true, indeed, that foreknowledge, among men has no influence on the events which are loreseen. We may be so well acquainted with the character and disposition of individuals, that we may know, almost with absolute certainty, what they will do in given circumstances. We may be sure that pricle will mislead one man, avarice another, and ambition a third; that one will be enslaved and led astray by vanity, and another by the lure of sensual indalgence. But though we may know all this with absolute eertainty, yet our knowledge has no influence on the fate of the parties. The same would be true in regard to God, had he as little to do with the government of the world as we have; and did he come by his knowledge in the same way that we do. But his knowledge is the result of his own free will, which ours is not: we come to the knowledge of things by accident, or by application; but (iod knows all thiugs from the beginning, because in him all things subsist; he knows every event before it is unlolded in the course of his providence, tecause it forms part of his eternal plans: in short, he knows all things, because he has ordained them.

The opposite scheme, or what has been called the Arminian view of this subject, does not remove a single difficulty, whilst it is attended with some inconsistencies which do not encumber the Calvinistic plan. It goes on the supposition that the decrees ol God are fixed in consequence of the known characters of men, good or evil; that those, for instance, whom God foresees that they will be virtuous and obedient, he decrees to eternal life; whilst those who are foreseen to be contentious and disobedient are decreed to everlasting punishment. Thus, both on the Calvinistic and the Arminian hypothesis, decrees are admitted; for it is impossible to read the Scriptures and not perceive it to be a fundamental doctrine, that every thing which comes to pass is fixed and determined in the eternal counsels of Crod. The parties differ only in the way in which his decrees are to be explained. The Arminian scheme seems to make the counsels of God depend on the will ol feeble man ; and to countenance the idea that he may have done so much for the human race, and yet that it may be all in vain ; that men may not choose to believe, and that. therefore, the intention of the Almighty may be defeated: all which notions seem directly contrary to the language of Scripture, which says, "whom he did predestinate them he also called," (Rom. viii. 20.) and as many as were ordained to eternal lite belicved." (Acts. xiii, 43.)

The great argument against the Calvinistic views on this subject is drawn from certain conceptions which men have formed respecting the divine character. It is argued, for instance, that it is inconsistent with the benevolence of the Deity to decree any one to eternal misery. The apostle (Rom. ix.) answers this objection by resolving the fate of men
into the absolute sovereignty of God; and turn which way you will, or adopt what view of the subject we please, we shall find that we must land in the same conclusion at last. If misery is to be the portion of any in the future world (and this has never been denied by any) it may just as well be affirmed that it is inconsistent with the goodness of God to make creatures who he knew would be miserable, as to maintain that it is inconsistent with his benevolence to doom them to misery by his absolute decree.

They, then, do not remove a single difficulty who say with the church of England, and some other churches, that God does not predestinate any man to misery, because predestination does not condemn but save men, inasmuch as all men were under a curse, and liable to punishment, to which they must have been subjected, had not God, in his eternal counsels, resolved to save a certain number, whilst the rest werc passed over, and left to the fate which sin had brought upon them. This is merely disguising the difficulty; to pass over any in the decree of election is the same as to doom them to hopeless reprobation; it is attended with all the same consequences, and can be explained only on the same principle, viz. the sovereign will of God.

It is farther argued that the doctrine of absolute decrees is calculated, on the one hand, to drive men to despair, or, on the other, to encourage arrogance and presumption; that those who conceive themselies doomed to misery, must be driven to desperation; whilst those who conceive themselves ordained to life will be careless and presumptuous. It is easy to get rid of this objection. The decrees of God can bave no influence on human conduct, whilst they are unknown; and in so far as they are made known, the tendency is salutary, calculated to encourage virtue and repress vice and Emmorality, for this is his fixed and irre versible decree, that the man wholives humble and holy, and dies in faith and hope, shall inherit eternal life, whilst "the unbelieving and disobedient shall not see life, but the wrath of God abideth on them." (John iii. 36.) So far every man may know, and ought to know, the decrees of God; and he should not seek to know more. Were every man permitted to read his fate, as written in the unalterable records of heaven, there would be an end at once both to the restraints on vice and to the encouragements to virtuc.

But, in concluding this subject, we would observe that the difficulties which encompass it do not arise out of the Scriptures; they arise out of some of the most obrious doctrines of natural religion; and they are greatly lessened, and some of them almost entirely removed by the light of revelation. It may be observed, for instance, that it is decreed concerning every man that lives, that he shall be happy or miserable in the future world. This is a doctrine which ncver has been doubtcd; all men, in all ages, have admitted a state of rewards and a state of punishments beyond the grave, in the one or the other of which, every human being must have his future portion. This is a setthed point, in which all are agreed. Supposing, then, that we had know nnothing more than this,
and had never heard of predestination and election, would our anxieties have been less than they are, and would we have been perfectly at ease with regard to our future prospectsì No, the heathen who knew nothing about God's eternal purpose to save those who believe on his Son, were deeply anxious and perplexed about their condition in the future world. "Shall I give my first born for my transgression, the fruit of my body for the sin of my soul," is the inquiry of a heathen, and of one deeply anxious to secure his soul's salvation, and willing to make great sacrifices in order to accomplish it. This inquirer was more rational in his views than many professed Christians; for he conclucied that something was to be done that he might enter into life, whilst many who profess the faith of Christ seek to ascertain their future condition by prying into the hidden counsels of God, and instead of acting as be has commanded, sit moping and disconsolate, waiting till he shall be pleased to reveal to them his secret purposes. This is altogether unreasonable; God has made no secret of his purposes in regard to any man liviug. " He hath showed thee, O man, what is good." "If thou wouldst enter into life, keep the commandments." "Do these things, and thou shat never fail."

God having determined in his eternal counsels to manifest his attributes and perfections, be gave birth to the visible creation; and having stored the earth with abundance, and replenished it with living things, he, at last, crowned his work by creating man, and constituting him lord over this lower world. He was made in the image of God, which implies that he was free from natural infirmity and moral imperlection. His body was then immortal; he was to be subjected to death only in case of disobedience. His fall was accomplished through the temptation of the devil, and he instantly became liable to death, and the subject of moral corruption. The punishment was not confined to himsclf. "In Adam all died," both naturally and morally. The fountain head being polluted could not be expected to send forth a pure and limpid stream; it would have been contrary to every thing which we olserve in the analogy of nature to sup. pose that man, the prey of death and sin, should produce a pure and immortal offispring; and there is no more difficulty in concciving how we should derive sin, disease, and death from Adam, than there is in conceiving how the various tribes of animals have the tempers, defects, and vices which belong to their species. On these points we cannot dwell, as we must hasten to consider the nature of the remedy which God, in his wisdom, had provided, and which was rendered necessary by the helplessness and desperate depravity of men.

Some of the wiser among the heathens had expressed their belief that a divinely inspired teacher was necessary to instruct mankind in their duty. The Jews had a firm persuasion that such an instructor would be sent; they viewed him, however, in a higher light than that of a mere teacher, and considered him as commissioned by God to redeem
them from the power of all their enemies. This belief was fostered by the particular circumstances in which they were placed. It is probable that had they preserved their power and importance among the nations, they would have paid too little attention to the prophetic declarations respecting the great deliverer who was promised to them. But they had been for several hundred years a humbled and depressed people. This made them scan, with the nicest attention, all the intimations of the prophets respecting this remarkable personage; and they were so completely versant in all the records concerning him, that they liad ascertained the very time when, in conformity with predictions whose inspiration was universally acknowledged, he ought to be expected.

This deliverer was known by the name of the Messiah, or the Christ, (both ol which words signify anointed) long before the appearance of Jesus of Nazareth. He had been designated by this title by the prophet Daniel, who pointed out, in very intelligible terms, both the time of his appearing and the end for which he lived and died. Dan. ix. 24, \&c. Accordingly the Jews were living in anxious expectation of the advent of the promised Messiah. Nor were they the only people who entertained such hopes; the Samaritans also had the same expectations, as appears from the words of the Samaritan woman in her eonversation with our Lord. She does not appear to have been remarkably distinguished either by knowledge or virtue, yet she was perfectly acquainted with the expectations which generally prevailed respecting the Messiah. "I know," says she, "that Messias cometh, who is called Christ; when he is come he will teach us all things." Johniv. 25. Suetonius farther informs us, that an opinion was prevalent over all the cast, that a person was to come out of Judea who should obtain the government of the world. This expectation he supposes to have been fulfilled in the case of Vespasian, who went from Judea to mount the throne of the Cæsars.* Tacitus mentions the same circumstance. \(\dagger\)

This prevailing opinion accounts for the circumstance of the wise men coming from the east to Jerusalem, to inquire for him who was born King of the Jews. They had seen some extraordinary meteor, or luminous appearance in the heavens, perhaps the same which shone round the shepherds in the plains of Bethlehem on the night of the Saviour's birth; and they concluded that it was a signal to announce the birth of the expected Messiah. When they reached Jerusalem, the same luminous appearance directed them to the house where Jesus was, and they offered him the gifts and homage which were due to a king.

We can be at no loss to ascertain the origin of these opinions and expectations. A continued chain of prophecies and supernatural communications, extending from the time of Adam to the last of the prophets, had prepared the minds of the

Jews for the manifestation of the Messiah. The time marked out for the completion of these predictions falling in with the period of our Lord's birth, we read in Scripture of two impostors who availed themselves of the prevailing expectation, and collected a number of partizans to support their pretensions to the character and hoaours of the Messiah. Acts v. When John the Baptist appeared, he publicly assumed the character of a prophet; and his pretensions were instantly and universally acknowledged. No prophethad appeared in Israel since the days of Matachi, till the appearance of John the Baptist; a dreary interval of about four hundred years. Jolin was therefore joyfully hailed as a prophet, and "all men mused in their hearts of John, whether he were the Christ or not." Luke iii. 15 .

In these circumstances, and in the midst of these expectations, Jesus was born at Betlilehem, in conformity with the intimations of prophecy, though to appearance he was born the re from the accidental circumstance of Joseph and Mary being called up to be enrolled at Bethlehem, the principal city ol their tribe.

Though descended from the family of David, he was born in humble circumstances, and had no attractions of wealth or dignity to recommend him in the eyes of his countrymen. This proved a great obstacle to the reception of his doctrine among the Jews; and, indeed, more than they have been inclined to think, that it would have been more consistent with the character of a heavencommissioned teacher, to have had more weight and authority, in order to give more extensive influence to his doctrine. But if the plan is from God, we may rest assured that the circumstances in which it was developed were the most proper, and most conducive to promote the end in view. This, indeed, seems to be a point that may easily be demonstrated. For, in the first place, his humble condition gave mankind the most favourable opportunity of examining his pretensions. 'Tleir imaginations were not seduced by the imposing circumstances of high reputation, of high rank, and of powerful family connexions. The prejudices of his countrymen were all on the other side; they received his doctrines with distrust, and fortified their unbelief by such observations as these, "Is not this the carpenter's son? Is not his mother called Mary? and his brethren James, and Joses, and Simon, and Judas? and his sisters, are they not with us? Whence then hath this man all these things?"

Is it not obvious that all these circumstances, which excited, at first, such strong prejndices against the person and the doctrines of our Lord, contribute most powerfully to strengthen that evidence by which his religion was ultimately established? Had he been received with immediate acclamations as the promised Messiah, his success would have been ascribed to popular delusion, and

\footnotetext{
- Percrebuerat Oriente toto vetus et constans opinio, esse in fatis, ut eo tempore Judea profecti rerum potirentur. Vita Vesp. c. 4.
\(\dagger\) Pluribus persuasio inerat antiquis sacerdotum literis contineri eo ipso tempore fore ut valesceret Orieds profectique Judea rerum pocirentur. Hist b. 5.
}
to the want of a cool and dispassionate scrutiny of his pretensions. But it is clear that every inch of ground was disputed, and the world did not yield till it was absolutely subdued by evidence which it could no longer resist.

But farther, the humble condition of Christ was peculiarly appropriate to his character as a teacher; and had he been differently circumstanced, he could not have fulfilled some of the important objects of his mission. Viewing him as a teacher, what would have been the consequence had he been surrounded with outward pomp and splendour? It would have defeated all his instructions, and he could not have "left us an example that we should follow his steps." Had he been in the circumstances supposed, he could not have said, "Learn of me, for I am meek and lowly;" "I come not to be ministered unto, but to minister." He could not have commanded his disciples to deny themselves, and take up their cross and follow him. Such an injunction would have been quite inappropriate had he been placed in circumstances where self-denial was never exercised, or where patience and fortitude were never required. He was placed in circumstances which afforded an ample display of all those virtues which we ought to imitate. Had he appeared as a temporal prince, his followers would have been intosicated with vanity and ambition: had he appeared in the radiance which usually accompanied the manifestation of angles, men would have been deterred from approaching him, and would have deemed it presumption to attempt to imitate him; but he exhibited an exemplification of all the virtues which he recommended, and being surronnd. ed by the wants and all the external crils which accompany our nature, he has left the most perfect pattern of meekness, resignation, patience, and fortitude.
If a teacher, then, was to be sent from heaven for the instruction of mankind, which even Socrates conceived to be necessary, it is impossible to conceive him placed in more favourable circumstances for discharging this important part of his office than those which marked the whole life and ministry of Jesus of Nazareth.

But we must look a little more minutely into his character before we proceed to consider the great work which he came to accomplish. In this investigation we must be guided by the intimations of Scripture, subjecting them to the rules of somal criticism, and not forgetting the most essential of alt rules, vi\%. to make Scripture its own interpreter, and to explain the passages which appear obscure, by reference to those whose meaning is incontrovertible. A very different plan, however, is adopted by one Christian denomination. For they who call in qucstion the divinity of Jesus are forced to take their stand on texts of doubtful meaning, which they interpret according to their prejudices and preconceived opinions, and then endeavour to reduce the plainest texts of Scripture to a standard which has no existence but in their own fancies.

The first intimation of the personal dignity of Jesus is conveyed in the annunciation of the angel to his mother, "The IIoly Ghost shall come upon
thee, and the power of the holiest shall overshadow thee; therefore, also, that holy thing which shall be born of thee shall be called the Son of God." Luke i. Sj. There is here a style and formality entirely novel; nothing like it was ever said of any of the ordinary children of men. Our translation does not conver the full force of the original, which is literally "the born holy" ( 76 gevapevar \(\alpha\) gor ) shall be called the Son of God. This marks his filiation to God, by a character not applicable to any of the sons of imen. He was born holy; and this cannot be predicated of any ordinary mortal, who is conceived in sin, and shapen in iniquity. Ps. li. 5. This inboru holiness of Clarist was necessary to the efficacy of his atonement; for it would be in the highest degree absurd to suppose that a creature, possessing the siaful infirmities and imperfections of human nature, should be able to make an expiation for the sins of men.

But the text which has bcen quoted only leads us to conclude, by legitimate inference, that Jesus could not be the Son of Man by ordinary generation. The Evangelist John goes a great deal farther, and commences his history of the life of Christ with these remarkable words, "In the beginning was the word, and the word was with God, and the word was God: the same was in the beginning with God; all things were made by him, and without him was not any thing made that was made." I have already endeavoured to show that St. John uses this language in conformity with the received notions among the Jews, who always spoke of the Word as a divine persoll. It would be sufficient, then, to show that the sacred writer applies the designation of the Word to Jesus of Nazareth, to satisfy us of the view which be entertained of his character. On this point he leaves us in no doubt; for in the course of a few verses, he says, "the Word was made flesh, and dwelt among us, and we beheld bis glory, the glory as of the only begotten Son of God, full of grace and truth." Thus, then, St. John describes Jesus of Nazareth by the appellation of the Word; and the Word he identifies in every respect with God; he was with God, and he was God. This text is important in more views than one; for it not only asserts the divinity of Jesus Christ, but points out most distinctly a plurality of persons in the Godhead; it affirms, in the first place, that the Word was with God, to indicate a diversity of persons; and, in the second place, that the Word was God, to point out an identity of essence.
This is one of those clear and decisive texts which one would think it impossible for ignorance to misunderstand, or sophistry to pervert. But this does not hinder the determined prejudices of the Socinians from attempting to explain away the pre-existence and deity of Christ, as indicated in this text. To accomplish this hopeless object, they explain the words"in the beginning" as applying not to the beginning of creation, but to the beginning of the Christian dispensation; it was not till then, they say, that the word was with God; and thus they affirm that Christ had no existence till he appeared in the flesh to instruct mankind. This is
a fair specimen of Socinian criticism, and we may judge what degree of delerence is due to it, when we see the patrons of this system affroming that he, of whom the evangelist declares that he made the world and all that is therein, had no existence till he was born in Bethlchem. That a deist should hold such an opinion is natural and intelligible; but it exceeds all reasonable indulgence that persons should pretend to form their creed on the Scriptures, and yet should go directly in the face of their most obvious meaning.* They will say, indeed, that they lound their arguments on criticism: they do so, but it is such criticism as Socinian interpreters only can admit; it is contradicted by the whole authority of the learned of all ages and nations; and before their system can prevail, they must have influence not only to supercede all the existing versions of the New Testancnt in the different languages of the world, bat they must set aside all the received lexicons and glossaries, and get the world to adopt a new system of Socinian Greek. In fact, according to the mode of interprcting employed by these theologians, the New Testament, instead of being a revelation of divine truth, is an enigma, concealing under its most obvious meaning a series of puzzles which would require more than an Edipus to unriddle them. And if this record of our faith was not written under the influence of inspiration, as Socinians contend, all inspiration would, at least, be necessary for every one who interprets it according to their method; for he must leave the obvious meaning, and torture every obnoxious text till it can be reduced to the standard of Socinian orthodoxy.

We shall adduce a few plain passages declaratory of the divine nature of Jesus Christ, and then we shall consider the collateral evidence by which these declarations are confirmed.
It is admitted by all, that Jesus called himself, and allowed himsclf to be called the Son of God. "We believe, and are sure, says St. Peter, that thou art that Christ the Son of the living God." But it will naturally enough be inquired, what is implied in the title of the Son of God. Its full import no mortal can explain: but that our Lord meant it to imply his equality with God, is suffciently clear, if language has any meaning; and it is no less clear that both his disciples and his enemies understood it in this sense. Thus when the Jews murmured because our Lord had healed a man on the Sabbath day, John w., he thus address. ed them, "My father worketh hitherto and I work." Upon this we are told "the Jews sought the more to kill him, because he not only had broken the Sabbath, but said also that God was his father, making himself equal with God." Such was the meaning which the Jews attached to his assertion that God was his father. Is be at any pains to correct these impressions? Does he tell them that
they had affixed a wrong meaning to his words: Quite the reverse; for he immediately addresses them in language more explicit than belore; and confirms the inference which they had drawn respecting the high dignity which be had assumed. "As the Father raiseth up the dead and quickeneth them, even so the Son quickeneth whom he witl. For the Father judgeth no man, but hath committed all judgment to the Son, that all men shonld honour the Son even as they honour the Fither."

Again, in the tenth chapter of John, our Lord says, "I and my F'ather are one." The Jews considered this blasphomy, and immediately took up stones to stone him. Upon this he said to them, " Many good works have I showed you from my Father; for which ol those works do ye stone me: The Jews answered him saying, for a good work we stone thee not, but for blasphemy, and becaus: that thou, being a man, makest thyself God." It would have been an easy matter lor our Lord to have vindicated himself from the heavy charge of blasphemy, by disclaiming the inference which the Jews drew from his words; but instead of this, he only states additional arguments to confirm them in the conclusion which they had formed, for he says, verse 37, "If I do not the works of my Father, believe me not; but if I do, though ye belicve not me, bclieve the works, that ye may know and believe that the Father is in me, and \(I\) in him." The works to which he alludes were the miracle. which he publicly performed. It is impossible to admit the reality of these miracles without admitting at the same time his pretensions to a divine character in their full extent; and the reality of these miracles was never doubted by those who had the best opportunities of judging. The Jews and all the first adversaries of Christianity never at. tempt to deny them; on the contrary, they endeavour to account for them on the supposition that they were wrought by magic, or by the power of the devil, a mode of explanation which a modern infidel would be ashamed to adopt. \(\dagger\)

Admiting, then, that our Lord actually perform. ed these wonderful works, we must likewise admit that they afford complete confirmation of his extraordinary pretensions. For he must have performed them either by a power inherent in himself, or derived from God. If he possessed power in himself, his divine character is, by that very circumstance, completely established; for God alone is possessed of proper and inherent power; or if he derived his power from God, in that case the Father is bearing attestation to the doctrines of his Son, and declaring that his pretensions to a divine character, and to divine honours, are well founded; for the Almighty would never lend his power to establish a falsehood, or to countenance pretensions which interfered with his own glory.
It is impossible for any one who reads the gos-

\footnotetext{
- Besides the first verses of the Gospel by John, we refer the reader to the following passages, all of them expressing the pre-existence, and many of them the deity of Jesus. John i. \(15-30\), iii. \(13-31\), vi. 62 , viii. 5 , svi. 28,1 Cor. xv. 47,2 Cor. viii. 9 . Those who wish to see the Socinian imterpretation of these passages, and the refutation of it, may consult Dr. Hill's (of st. Andrews) Lectures on Divinity, vol. ii. p. 23; a work deserving the attention of every student of Divinity.
\(\dagger\) Jortin observes that the Christians wete called Malefici, Magicians, by Suetovius, which is a rirtual acknowledgmeat of the miracles which they performed.
}
pels with attention, to entertain the smallest doubt that Jesus Christ decidedly and unequivocally asserts his elaim to a divine nature. It is true, indeed, that he very frequently calls himself the "Son of Man;" and we are taught, by the general strain of Scripture, to consider it as essential to his mediatorial character that he should assume the nature of man. "In all things it hehoved him to be made like unto his brethren, that he might be a merciful and faithful high priest in things pertaining to God, to make reconciliation for the sins of the people." Heb. ii. 17. But as has been well observed, * there is a manifest peculiarity in the frequency with which our Lord assumes the designation of the "Son of Man;" he was guarding against the error of denying his humanity, which was not long of creeping into the church; be therefore assumes an appellation which none of the ordinary sons of men ever think of applying to themselves, because in their case it would be ridiculous to announce as a truth, what, in fact, is a truism, and never was denied by any human being. But there might have been room for doubting it in the case of our Lord, who exhibited such unequivocal proofs of divine power and omniscience. He therefore assumes an appellation peculiarly honourable to our nature, and implying a truth essential to our comfort; and by the frequency with which he repeats it, he shows that he was more anxious to be considered man, than afraid of being denied to be God.

It is very singular that almost all those who have questioned or denied our Lord's divinity, have bestowed high praise upon him as a wise and virtuous man, and as an enlightened teacher of morality. But they who do not allow him to be more than man, ought, like the Jews, to consider him as a blasphemer, for he publicly and repeatedly taught, and indeed it seemed to be the point on which all his doctrine hinged, that he and his Father were one; and he declined not the homage of religious adoration, when Thomas addressed him, after his doubts were removed, in language appropriate only to the Deity, "My Lord, and my God." Does our Lord rebuke Thomas for using language which was positively impious if applied to any mere man? If there is any rebuke implied in our Lord's reply, it is because Thomas had been too tardy in recognising the truth which he at last avowed. "Thomas, because thon hast seen me, thou hast believed; blessed are they who have not scen and yet have believed." John xx. 29.

This part of the argument might be carried to muchigreater length, and might be strengthened by a great number of quotations from the gospels, all equally decisive as to our Lord's divinity. But it camot be necessary to multiply texts on this subject; neither ingenuity nor sophistry can explain away the plain import of the passages already adduced; it is not in the power of language to express more clearly these important truths, that Jesus in his lifetime advanced claims to a divine nature;
that his apostles recognised these claims; that his enemies publicly charged him with blasphemy for advancing them; and that on such occasions he not only did not withdraw them, but supported them by additional arguments.

The testimony of Pliny is not unimportant to show how early divine horours were paid to Christ. In a letter to the Emperor Trajan, giving an account of the transactions in his province, where the Christians had become numerous, he states the manner in which he had proceeded with them; he mentions that he had inquired into their particular opinions, and that his information on this point amounted only to this, that " they were accustomed to meet on a stated day, before it was light, and to sing a hymn to Christ, as 10 God." \(\dagger\) Dr. Priestley engaged in the desperate undertaking of attempting to prove that the early opinions concerning Christ were unfavourable to his divinity. He has been answered by Dr. Horsley, and has been absolutely overwhelmed and crushed by the force of his arguments and the extent of his learning. \(\ddagger\)

But in maintaining the divine nature of Christ we are not to forget his humanity. It is an essential article in the orthodox creed that he is both God and man. And so intimately are the two natures connected, and yet so distinct are they in their properties, that he is sometimes spoken of in Scripture, as possessing only the attributes of God; and at other times as endowed exclusively with the feelings and faculties of man. He is "God over all blessed for ever;" and he is also the "man of sorrows and acquainted with grief." Sometimes he manifests his divine power, and multiplies a few loaves and fishes, so as to be sufficient for the supply of five thousand pcople. At other times we read of his being faint and hungry, and destitute of the ordinary comforts of life. Sometimes, when speaking of himself as man, he seems to state limitations both to his power and his knowledge; at other times he asserts all the prerogatives of divinity, and lays claim to the same honours which are due to the great Father of all. But all these passages are easily understood, if we bear in mind that Jesus had a proper divinity as well as a proper humanity: and that the same thing cannot be predicated of these two natures. Each of them has a distinct character not applicable to the other.

There is also a third character in which be appears, viz. that of a mediator, which has a distinct and appropriate office, and of which certain cireumstances may be predicated which are not applicable to Christ either in his divine or in his human nature, when separately considered. Thus when he says that he can do nothing of himself but as he is commanded by the Father, he speaks of his mediatorial office, in which a definite work was given him to perform, and from which he could not possibly deviate without frustrating the work of God, and deserting the enterprise which he had undertaken. In this respect, a limitation was laid even on his own omni-

\footnotetext{
- Sec Magee on the Doctrine of Atoncment and Sacrifice.
\(\dagger\) Affirmabant bane fuisse summam vel culpex sux, vel erroris, quod essent soliti stato die antc lucem convenire; carmenque Christo. quasi Deo, dicere secum invicem. Plin. Epist. 1,ib. 10.
I See llorsley's Letters to Priestley.
}
potence; and he was bound to fulfil every article stipulated in the eternal covenant between him and the Father. Yet, in all this, his power was restricted only by his own will; and he submitted to a voluntary humiliation, and a voluntary relinguishment of power, that he might accomplish a work which could not by any other means have been effected.

Though we ought carefully to abstain from all attempts to explain the manner of the Incarnation, yet it is neither improper nor unprolitable to consider the conseguences which have resulted from it, and even to illustrate them by analogies drawn from sources of knowledge more immediately within the reach of our faculties: and I have no hesitation in saying that the lncarnation of the Son of God, instead of appearing an objectionable doctrine, presents to us the most intercsting, perhaps the only intelligible view of the Almighty, and of the duties which we owe to him. When men take what they are pleased to call a philosophical view of the nalure of God, they are soon lost and overwhelmed in the immensity of the subject ; for what conception ean we form of a being without beginning and without end; without appetites, without passions, without bodily form ; incapable of being injured by our sins, or benefited by our services? Such a being as this (and it is only as such that the light of reason call recognise God,) must appear rather as an abstiact conception of the mind, something resembling the fate of the heathens, than as an object of love, gratitude, and adoration. On this account, the most philosophical inquirers, who have not had the light of the gospel for their guide, have been bewildered in the vast generality of the subject; and have regarded the supreme being rather as an object of speculative contemplation, than as entitled to the affections and the worship of his creatures. The ignorant and uninformed fell into an opposite error. They could form no conception of God, but as of a being resembling themselves; and hence they represented him by forms and images adapted to their prejudices and feelings. All these inconveniences and sources of crror are removed by the Incarnation of the Son of God, which was manifested in condescension to our weakness, to show the tender care, the paternal love, the constant providence of our heavenly Father.
We have now a definite object of worship, in the person of the Son of God, in whom "dwelt all the fulness of the Gothead bodily," who was once a visible and tangible object of affection; who still retains, at the right hand of God, the human nature along with the divine, and who is still establishing additional claims to our gratitude and love, by making continual intercession for us. We have now, as it were, a palpable object of worship, accommodated, as far as possible, to the circumstances of our nature and of our feelings, exhibiting, in our form and likeness, all those splendid and divine qualities which are calculated to excite religious homage, and all those feelings of brotherly kindness and charity, which ensure our love and our imitation.

In short, the incarnation of Jesus Christ, though
it involves a mystery far excceding our comprehension, is nevertheless in perfect conformity to the preceding dispensations of God. Under the law, God was pleased to establish certain visible representations of himself to aid the conceptions of the Jews, and to remind them of his presence: the ark, and the cherubim, and the cloud, were viewed with the most profound veneration, as emblems of the divine presence: and besides this, God often condescended to converse with men in a visible form, and to give to them immediate intimations of his will. But certainly a much more lively and interesting, and impressive representation of the divine majesty was given in the Incarnation of Christ, by which "The Word became flesh and dwelt among us and we beheld his glory, the glory as of the only begotten ol the Father, full of grace and truth."
Instead, then, of having any doubt whether we ought to yield religious homage to the "Son of Man," we ought to conclude that there is no other way of worshipping God, with acceptance, but through him. There is a vast emphasis of meaning in our Lord's words, when he says, "I am the way, the truth, and the life, no man cometh unto the Father but by me." These words not only imply that Christ is the way by which men come to the enjoyment of God in his heavenly kingdom, but that there is no other way in which we call form any accurate conception of him, or yield to him a rational service. "No man hath seen God at any time; the only begotion Son which is in the bosom of the Father, he hath declared him." This is the nearest approach to an open rision of the Almighty that ever has been, or can be made by mankind in the present world. We camot behold him in his glory, for no man can sce his face and live. But we see his glory shining with a mild radiance, and a qualified lustre, in the person of his Son, not so intensc as to prevent us from approaching him, or deter us from imitating him; but drawing us to God by the most powerfulattractions, and teaching us to aspire to the imitation and the enjoyment of the Father of ourspirits. We are thus brought near to God by the incarnation of his Son, who assumed our nature that we might rise to the resemblance of his; and, by imitating his example and imbibing his spirit, might at last vindicate our claim to the glorious title of sons of God.

The prophecies which Christian authors have interpreted as fulfilled in Christ, are admitted on all hands to have existed long before he appeared on earth. They are publicly cited by his apostles, in their discourses to their countrymen, and appeated to as affording the most unexceptionable evidence to the truth of the Gospel.

To the Jews such evidence ought to have been decisive. They knew the history of the prophecies: they themselves had the keeping of them; and they had embraced them as forming the foundation of their hopes: they could therefore entertain no suspicion that they had been fabricated for any particular purpose. The prophetic writings were suffciently clear to warrant certain conclusions, such as the appearance of the Messiah, the time of his advent, the universality and perpetuity of his king.
dom. On these points there was not the slightest ambiguity; they are stated in the most unequivocal language, and they formed a part of the creed of the Jews several centuries before the time of Jesus of Nazareth.

But whilst the leading features of the prophecies respecting the Messiah were so clear, the details or the filling up of the scheme were involved in intentional obscurity, that men being left to their own rolitions, and unconstrained and uninfluenced by the foreknowledge of events, might become the unconscious instruments of accomplishing the designs of heaven. Had the Jews distinctly understood the predictions respecting the death of Christ, and known that it was to be an essential circumstance in the character of the Messiah that he should be crucified by those whom he came to save, it would have been impossible for such an event to have been accomplished. They would not have put to death one whom they received as the Messiah: their reception of him would have been altogether inconsistent with such an act of violence, and they would not have insisted on the erucifixion of one whom they deemed an impostor, lest by this very act they should strengthen his pretensions. This, therefore, was "The wisdom of God in a mystery, which none of the princes of this world knew, for had they known it, they would not have crucified the Lard of Clory." 1 Cor. ii. 8.

This obscurity in the prophecies of Scripture must not be supposed to bear the most distant resemblance to the studied ambiguity ol the heathen oracles. These were only consulted with regard to events immediately future; men take hittle interest in what is very remote in its date and consequences: there was, therefore, the intmost need for caution, lest, by a rash response, the credit of the oracle should be weakened or destroyed. The answers were, accordingly, so contrived as to flatter the hopes of the inquirer, and, at the same time, to save the credit of the oracle in case of failure. There is a most remarkable difference between such responses and the oracles of God. The latter are never ambiguous with regard to events immediately future, whose occurrence is determined by circumstances which have already happened, though their result and issue may be entirely unknown to men. Thus, Jeremiah made no mystery of the captivity ol the Jews which was to take place in his own time; whilst to comfort them, he anounced its termination, after a lapse of seventy years. In the same manner our Lord declares that Jerusalem should be utterly destroyed, before the generation which heard the denunciation should pass away. The same observation applies to all the prophetic announcements in Scripture, which apply to events immediately future. The intimations of Joseph to Pharaoh, ol Danicl to Nebuchadnezzar, of Samuel to Eli; are delivered without the slightest ambiguity, or attempt at concealment. No provision is made for evasion in case of failure ; the credit and the safety ol the person who announces the will of
heaven are fairly staked on the issue; and in all these cases, the result has been such as to produce implicit faith in the predictions respecting distant and darkly intimated events.

But there is not the same clearness of meaning when the prophecy relates to events of remote date, and of momentous importance in the history of the world, or of the church of God. It is then veiled in figure, in allegory, and in mystery; though we may discern a dark outline we cannot complete the picture ; and we must wait with patience till it stands revealed by the evolution of events, which completely interpret the previously intimated counsels of heaven. The use of such prophecies is rather to convince mankind of the constant universal providence of God, than to lift the veil from futurity; and whenever an event occurs which, by the circumstances attending it, can be proved to have been foretold, that event bears the signature of heaven to its truth, and its importance in the economy of providence.* In short, it seems to have been the intention of the Almighty that events should explain the prophecy, rather than that the prophecy shoukd make mankind fully acquainted with future events. It is evident that the prophet, in foretelling distant events, had no inducement to affect mystery where there was no danger of being detected, and where he had so many opportunities, had he been an imposter, of advancing his interest, by flattering the prejudices of his countrymen, or of indulging his malignity by terrifying them by unequivocal denunciations of judgment.

Indeed, there is every reason to think that the prophets themselves were unacquainted with the meaning of many of the most important predictions which they delivered. They had visions and dreams in which certain representations seemed to pass before their view, and certain words seemed to reach their ears. They knew they were under a prophetic influence, and that they were bound to record faithfully what they had heard and seen. But they gave themselves no concern about the interpretation; nor do their countrymen ever press them for an explanation of their dark and mysterious intimations. 'Ihey related all that God had been pleased to reveal, and they would have deemed it presumption to have pryed farther into the secrets of heavell. God reserved to himself the interpretation of his own counsels; and, by the events of his providence, demonstrated that he ruled in the armies of hearen, and regulated the affairs of the children of men.

The first prophetic intimation of the Messiah is supposed to be contained in the promise that the seed of the woman shall bruise the head of the serpent. The promise is alterwards renewed to Abraham, for it is said that in hin all the families of the earth should be blessed. This promise has never received a literal falfiment, by any temporal blessings conferred on the human race, by the natural secd of Abraham; but it has been completely fulfilled, or is in the progress of being lulfilled, by the
- Gibbon calle prophecy an argumentum ad hominem, applicable only to the Jews who believed in ite truth. We, on the contrary, contend that it is an evidence equally applicable to all who admit that the prophecy existed belore the event which explains it.
blessings which Christ, his lincal descendant, according to the Besh, has conferred, and is still conferring on the human race. The prophecy ol Jacob on his deathbed, has been universally understond by Jews and Christians to apply to the Nessiah. "The sceptre shall not depart lirom Judah, nor a lawgiver from between his feet, till Shitoh come, and unto him shall the gathering of the people be." This prophecy delines with considerable precision the time ol his appearing. Moses, shortly before his death, said to the lsraelites, "The Lord thy God will raise up unto thee a proplact, from the midst of thee, of thy brethren, like unto me; unto him ye shall hearken." This prophecy is applied by the Aprostes (Acts iii. 22) directly to Jesus of Nazaretl.

The prophet Isaiah (ch. liii.) points out more particularly the peculiarities in the character and history of the Messiah, his innocence, his sullioings, and the object which was to be accomplished by them. The sixty-nine weeks of Daniel, which were to elapse between the rebuilding of Jerusalem and the cutting ofl" Messiah the prince," mark still more definitively the time of his suffering. In the interpretation of this prophecy, all divines consider a day as representing a year; and, according to the most accurate chronology, by calculating on this plan, the time of the Messiah's death will be found to be exactly defined.

We step not to point out how completely these prophecies have been fulfilled. Almost all the prophecies, too, spak distinctly of the rejection of the Jews, for a scason, at least, and the calling in of the Gentiles. How was the latter event ever to take place under the narrow and exclusive system of Judaism? 'The ordinances and ceremonies appointed to the Jews, were rather intended to keep them separate from the rest of the world, than to induce other nations to adopt their ritual. But the prophets announced a more liberal dispensation, by which all men were to be brought to the knowledge of the truth.

As an evidence of Christianity, prophecy has several adrantages over miracles. A miracle is not generally presented more than once to the senses; a prophecy can, at any time, be steadily examined by the eye of the understanding. The evidence arising from the fulfilment of prophecy gathers strength by the lapse of time; and the great events which are successively evolved, in the course of providence, have all the effects of a miracle to strengthen our faith in a divine revelation. The Apostle Peter states, as the ground of his own conviction, the miracles which he had seen, and the voice which he had heard on the mount. So far as he himself was concerned this was quite sufficient; he states, however, another species of evidence more accessible to all mankind. "YVe have also a more sure word of prophecy; wheremnto ye do well that ye take heed, as unto a light that shineth in a dark place, until the day dawn, and the day star arise in your hearts." (2 Peter i. 19.)

Modern infidels pay the highest compliment to the prophecies when they affirm them to be fabrications written after the events which they pretend Vol. XVII. Part II.
to predict. This amounts to a confession that the events and the prophecies correspond with each other; and when this is admitted, it is the casiest thing in the world to prove the antiquity of the predictions. Onthis point the Jews and the Christians are as one; and though the lormer have suffered so much on account of their rejection of the true Messiah, whose pretensions are lounded on the Law and the l'rophets, yet nothing has been able to make them justily their unlaticl, as modern seeptics affect to do, by denyine the antiguity or authenticity of the Scriptures which testily of him.

It is a simgular and striking feature in the evidences of Christianity that it founds its pretensions on the very records which the Jews had, lon so many ages, been accustomed to respect: and it shows their reverence for the sacred volume, that though it contains so many distinct prophecies to convict them of obstinacy and wilful ignorance, they hare yet never attempted to corrupt the sacred text, and make it more conlormable to their prejudices. 'The vigilance of the Christians, indecel, would have rendered it impossible to execute such a design; for they instantly adopted the Jewish scriptures as their own, and guarded them with the most jealous carc, as displaying the gradual development of that wonderful scheme which was perfected by the mission and sufferings of Jesus of Nazareth. The Jews felt themselves pressed by the authority of their own seriptures; but they dit not dare to alter the original record. There was a translation, howerer, of the IIebrew scriptures in Greek, now commonly known by the name of the septuagint, which was in very gencral use among the Jews in the time of our Lord. This translation had been used by the Jews residing in the Gentile cities, for upwards of two hundred years before the birth of Christ. It is chiefly from this version that the heathen authors derived their knowledge of the Jewish law, and of the doctrines of scripture; and we may judge of the accuracy with which it is executed from the circumstance of its being quoted by the writers of the New Testament. The Jews, finding this version as hostite to their notions as their own original scriptures, encouraged a new translation into Greck; but no effort has ever been able to subvert the clear evidence which stands against them in their own scriptures.

But the evidence restilting from prophecy is not to be confined to the predictions contained in the Old Testament scriptures. The prophecies delivered by our Lord and his apostles are equally conclusive to the same purpose. Weallude merely to the uncquirocal predictions which he delivered respecting the destruction of Jerusalem, and the rapid progress of his religion. 'The former event was not improbable from the character of the Jews; the latter was in the face of all human probability.

Yet, notwithstanding the low and suffering condition of Jesus, and the opposition and animosity which his doctrine excited, he uniformly expressed the most perfect confidence in the ultimate success of his religion. He compared it to a grain of mustard sced, which, though very minute at first, increases rapidly till it becomes a tree, and the fowls
of heaven take shelter under its branches. The illustration is beautiful and appropriate, and has been verified by the event. He might have compared it to the oak which springs from the acorn, and, in process of time, becomes the ornament of the forest. Such an illustration would have pointed out the small beginning and ultimate stability of the gospel. But the mustard seed was a more appropriate emblem of the rapid grow th and advancement of Cliristianity in the world. This certainly was an event little to be expected on any calculation of human policy. The religion of the Jews, with which Christianity was at first confounded, and from which it is not altogether distinct, was an object of contempt among the heathennations, on account of its peculiaritics and exclusive spirit, and the Jews themselves were riewed with a dislike bordering on abhorrence. How unlikely was it then that a religion, founded, as the heathens believed, on the peculiar institutions of the Jews, (though these, in reality, had been appointed with a reference to it,) should so speedily triumph over all the forms of religion which then existed in the world, which had been consecrated by the strains of the poet, mixed up with the civil institutions of the state, associated with the feelings and prejudices of the people, and protected alike by the arms and the eloquence of their votarics? Yet all these forms of religion vanished almost as rapidly as enchantments are supposed to do when dissolved by the counter-spell of some more powerful magician.

As Jesus Christ publicly claimed a divine character, and divine honours, he would have been destitute of the strongest evidence of his pretensions, had he not had the power of working miracles. When the evangelist declares that "by him all things were made," it would have amounted to a falsification of such pretensions, had he never demonstrated his power over the works of his hands. In consistency with this idea we find that whilst the prophets, under the Old Testament dispensation, referred all the miracles they wrought to the immediate power of God, the Apostles no less uniformly refer all their miracles to the power of Jesus of Nazareth; which is itself a demonstration that they conceived him possessed of divine power, and that they thought it not derogatory to God to perform miracles in the nane of him whom he had sent.

It is farther to be obscrved that Christianity, (including under this name the religion of the Bible at large, ) is the only system of religious worship professedly founded on miracles. Our Lord publicly appeals to them in confirmation of his doctrine, and as proofs of his divine mission. "I have greater witness than that of John," says he, "for the works which the Father hath given me to finish, the same works that I do bear witness of me that the Father hath sent me." John v. 36. All religions, indeed, have pretended to miracles; but with them they are continucd; they are not referred to the infancy of the system which they are brought to support: they gain credence only after it has reached its full maturity, when superstition or political jugglery can give easy currency to pretended miracles which fall in with the national taste, humour and established prejudices.

Now consider the circumstances under which the Christian miracles are said to have been wrought, and observe how striking is the contrast. They are ascribed to the author of Christianity, and to his immediate disciples, to whom he delegated the task of converting the world. But with them they stopped: at least we have no sufficient evidence of a well-attested miracle, performed by their immediate successors: and none but the charlatans of the church of Rome, have ever pretended that they extended beyond their times. In the worst ages of this corrupted church its members began to revive pretensions to miracles, and obtained easy credit on account of the besotted ignorance of the people. Christianity rejects such miserable shifts; and being "built on the foundation of the prophets and apostles, Jesus Christ himself being the chief corner stone," it cuts off all attempts at quackery and imposition in after times, by with-holding from all the exercise of miraculous gifts.

We may safely affirm that it was absolutely impossible for such an extraordinary religion to be established in the world without miracles; and therefore God did not make such an unreasonable demand on our belief as to require our assent to it, without the most extraordinary and satisfactory proofs: he did not require us to receive on light grounds, and imperfect evidence, a religion which was to be " the savour of life unto life, or the savour of death unto death," but be exhibited demonstrations of power sufficient to convince even the senses of the generation to which the gospel was first addressed, and to satisfy the reason of all succeeding generations of the world.

But it is inconsistent with the plans of divine providence that miracles should be long continued; and it would be foreign to the constitution, and adverse to the interests of the human mind, were miracles interposed where the object can be obtained by the judicious exercise of the powers which God has given us, aided, as he has promised they shall be, by the influences of his Spirit: which influcnces, however, are given only to assist, not to supersede our excrtions. Whilst, therefore, miracles werc absolutely necessary to demonstrate the important truth that Christ "had power to forgive sin," for nothing less could have produced this conviction; it was not necessary after this point was established, that miracles should be continued; but a religion being fairly introduced, consistent with reason, and adapted to the wants, and to the best interests of men, we are left to form our opinion concerning \(i t\), from anattentive examination of the evidence on which it was originally founded, from its conformity to the general plans of divine providence, and from its adaptation to the circumstances of human nature. And if we examine the authentic documents in which the facts and doctrines are recorded; and attend at the same time to the evidence which an unprejudiced conscience must bear to the utility and intrinsic excellence of the doctrines and precepts of Christianity, we will be persuaded that no higher evidence of its truth can reasonably be demanded, or can, in the nature of things, he afforded. If a miracle were required to solve every doubt, the remedy would
soon lose its efficacy; for the more frequently it was repeated, the weaker it would become, as was illustrated in the case of the Israelites in the wilderness, who, though fed and conducted every day by miracles, seem to have been no more affected by them than by the ordinary phenomena of nature.
In the establishment of a religion of such high pretensions as Christianity, which offers eternal life to those who receive it, and denounces the most awful judgments against those who reject it, we have a riglit to expect the strongest evidence that can possilsly be afforded, consistently with the plans of God's government: and if we had our option as to the nature and extent of the necessary proofs, the mind can conccive nothing more decisive than the miracles performed by our Lord and his Apostles. But we cannot be so unreasonable as to expect that those signs and wonders are to be repeated to evcry successive generation: if any man will still reguire a sign from heaven to confirm his faith, he can only he gratified through the medium of candid and diligent inquiry into the nature and evidence of the miracles recorded in Scripture.

With regard to our Lord's miracles, the first thing deserving notice is that they were publicly performed; and that the account of them, in the very form in which it has come down to us, was circulated among the men of that generation which had witnessed them.

It ought to be observed also, that our Lord's miracles were not disputed by the early opponents of Christianity. Their attempts to account for them amount to an admission of their reality. Julian, the apostate, does not deny the fact of the five thousand being fed, apparently, by five loaves and \(t\) wo fishes, but he accounts for it by ascribing it to the power of magic, or to some illusion wrought on their imagination. They who can swallow this need not bogle at any miracle, for we can conceive nothing more miraculous than that five thousand hungry men should be satisfied with an imaginary feast.
It was reserved for modern unbelievers to dispute facts which remained uncontroverted by the only persons who had it in their power to give an effectual refutation, by an unequivocal denial of the statements, had they known them to be false. Yet this was never done: unreasonable as the first adversaries of Christianity were, they did not dare to show the extent of their prejudice and animosity, by denying what thousands could attest on the evidence of their own senses. And on the same principle the evangelists boldly state, and publish to the world what they knew the most inveterate of their enemies would not dare to contradict. They make no parade in the statement of these miracles: to them they were not wonderful; for they knew that nothing was impossible to him who performed them: they show no anxiety to conciliate belief; it never entered into their mind to suppose that there could be any doubt on the subject: they therefore state them as simple historical facts, for the information of those who were not eye-witnesses of them; and the time and circumstances in which they were published may be considered as equivalent to a chal-
lenge to the whole nation of the Jews, to contradict, if they could, any one of their statements.

Take any one of the miracles which our lord is said to have perlormed, and hink how impossible were the meats of imposition. Would any persons, in possession of their senses, have affirmed in the face of thousands who could have refuted them, had they deviated from the truth, that Christ fed live thousand persons in the wilderness with five loaves and swo fishes, and that twelve baskets of fragments remained after the feast; that he raised Lazarus from the dead, alter he had been four days in the grave, in the presence of a great number of persons who had gone from Jerusatem to condole with his sisters; that great multitudes went out to meet Jesus on his approach to Jerusalem, and that one great motive was that they might sec lazarus who had been raised from the dead? Would any one have ventured to affirm that the sun was covered with darkness during the space of three hours, when our Lord was on the eross, had not this been a fact notorious to the whole land of Judea? The most barefaced impostors that ever lived never dared to vent such falsehoods as these, in the face of thousands, who had the evidence of their own senses, o: the testimony of numberless eyc-witnesses to contradict their assertions. And had the evangelists been guilty of such extravagance, they must not have been impostors but madmen; and the history of their phrcuzy never would have survived to excite the astonishment of the world: or if it should be affirmed that they were really mad, then the world must be concluded to have been as mad as they, to have believed their account, or to have allowed their extravagant assertions to pass uncontradicted, when the impression which they made became obvious. and in considerably less than forty years, undermined the foundations of all the religious systems in the world. We shall soon see that the Apostles were possessed of sound and candid minds, and that they only who resisted the conclusions resulting from their statements deserved the name of madmen.

We only propose to examine minutely the evidence for one of the miracles recorded in Scripture; but it is one of principal importance; for if it be false, none of the rest can be true; or if they be true, they are of no avail. We allude to the miracle of our Lord's resurrection, on which he stakes the credit of his pretensious and the truth of his religion. The Scribes and Pharisees said to him, "Master, we would see a sign from thee." But he answered and said unto them, "an evil and adutterous generation seeketh after a sign; and there slaall no sign be given to it, but the sign of the prophet Jonas; for as Jonas was three days and threc nights in the whale's belly, so shalt the Son of man be three days and three nights in the heart of the earth." Mat. vii. 38, 39. On another occasion, the Jews said to him, "What sign showest thou unto us, seeing that thou dost these things?" Jesus answered and said unto them, "destroy this temple, and in three days I will raise it up." Jolm ii. 18, 19. And to show what importance the apostle assigns to this miracle, he says, "If Christ be not risen. then is our preaching vain, and your faith is alsn
vain." 1 Cor. xr. 14. If this miracle, then, be well ascertained, it renders all the rest credible, and may, indeed, be considered as the crowning evidence by which the truth of the gospel miracles and the gospel doctrines is attested.

There is reason to doubt if the best accreated facts in the history ol the world be attested by such full and satisfactory evidence as the miracle of Christ's resurrection. It is seldom that we have the concurring testimony ol four contemporary historians respecting any one event, of which they declare themselves eye-witnesses. The history of the world is not written in general by eye-witnesses, but by persons who have derived their information from rarious and uncertain sources; sometimes taken up from common report, or liom documents which camot be authenticated, and generally tincrured in its course by the imagination or prejudices of the writers and reporters. On these accounts a great degrec of scepticism is allowable with regard to the commonly received history of the world. But should we meet with four ancient historians who declare that they had all been present during a war or a campaisn, and who write accounts of the transactions agreeing in all essential particulars, and not positively contradicting each other in any, we would not hesitate for a moment to yield implicit credit to the general facts which they have recorded. But, if we except the account of the resurrection, and of the other oceurrences in the life of our Lord, there is no event ol ancient history which comes down to us thus attested.

We receive, with implicit confdence, Sallust's account of Cataline's conspirace, because he was a contemporary, though not particularly engaged either on the one side or the other: we never entertain a cloubt as to the events which oceurred in the expedition of Cyrus, and the retreat of the ten thousand, because they are recorded by Xenophon who tas present, and who conducted the retreat. We have no doubt whaterer as to the exploits of Cesar, Lecanse he himself recorded them; we scarcely allow ourselves to entertain the very natural suspicion that his statements may be distorted a little by self-patiality. We believe the short account which Lutropius gives of Julian's expedition against the Jorthians and Persians, because he tells us that he himself served in that campaign. But in all these cases there is only one competent witness, on whose csidence we depend ; and, generally speaking, we are sufliciently liberal in allowing its due weipht to human testimony. We only ask the same catudour to be extended to the history of the resmrection. This event is recorded by the forn erangelists who saw and conversed with lesus alter his resurrection. Some lave supposed that lake ought to be excepted. lat this is not certain; and his own words seem to imply the contrary: for he says he "hat perfect molerstanding of all things from the very Iirsto" Here, then, are lour authors writing separate and independent accounts of a wondwlil crent, ol which they dectare thenselves to have been egewituesses ; their statements as to time and cireumSHuces agtee in all material points; with such shaches of difference, howerel, as prevent all suspi-
cion of collusion or preconcerted design. Nobody can doubt that they were amply qualified as witnesses, from the opportunities of observation which they cnjoyed ; and there can be no possible reason for rejecting their evidence, unless some suspicion can be cast on their motives.

There are only two grounds on which suspicion can rest ; it may be said either that they wished to deccive others, or that they themselves were deceived. Belore we fix upon them a charge of desiring to impose upon the world, it will be but fair to show some reason for their entertaining such a design. 'That they had no such design must be apparent to every one who candidly examines their account. 'They all agree in declaring that Christ's resurrection was an event which they did not expect, and that they all doubted its reality after it was first anounced to them. This is very unlike the language of impostors; it shows that they did not believe, or did not understand, the repeated intimations which their master had given respecting his resurvection. Had they been impostors and fabricated the accounts, the best way would certamly have been to set a bold face to the business at once, and to have declared that the resurrection of their master was an event which they had, from the first, confdently expected. But their declaration that they did not expect it corresponds exactly with the idea which they hat formed of Christ's character and kinglom. They never allowed themselves to belicve that he was to die, and, of course, they could not possibly understand the hints which he had given respecting his resurrection.

But it may be said that the disciples had motives of self-interest which induced them to frame and propagate the doctrine of Christ's resurrection. If this can be shown it must excite suspicion, if it does not amount to a valid objection. For it is not uncommon to see men adrancing and obstinately maintaining the greatest absurdities and falsehoods, when they hase an interest in doing so. Truth is then sacrificed to some supposed advantage. But amidst all the incousistencies of human conduct we doubt if any man ever continued for any length of time to assert a lialsehood, when it not only brought him no adrantage but every possible inconvenience. A man who has told a lie once may persist in it for a while, for the sake of consistency, and to avoid the humiliation of confessing himself a liar. But let his interest lie on the other side; let his falsehood bring misery and contempt along with it, and he will soon be brought to his senses, and renounce an imposition so injurious to his own comfort.

Let us see whethe: this reasoning does not apply in its full force to the circumstances of the apostles and all the first witnesses of Christ's resurrection. What possible object could they have in persisting in an account so very improbable, had they not known that it was a trith of the most momentous importance which they were bound to promulgate 10 the world? 'lhey soon found that it had no tendency to promote their reputation, but rather to make them be laughed at as fools, as happened in the ease of the apostle Paul when he preached the doctrine of Christ's resurrection to the philosophers
at Athens. People, however, can bear to be laughed at when they gain any thing by it. But what were the disciples to gain by proclaiming the resurrection of their master? Not wealth and pleasures, surely; for they preached up abstinence and mortification: nor get power and honours, lor they knew, to use an expression employed by the most eminent among them. that they were comed "the oft-scolleinc of all things.". Here, then, we may justly say, is a marrellous thing, that so many men should persist in propagating a known falsehood without object or cud-without iaterest or motive, and that Whey should daily expose themselves to insult, to persecution, and to death, solely tor the purpose of propasating an unprofitable lic. (ould we suppase all this possible, no parallel could be lound of it in the anmals of human folly, which are sufficiently pregnant with absurd matcrials. Yet scarcely will we find one man, much less great numbers of men, who will choose to be gratuitonsly wieked, and persist in a known falschood, when it not only brines fisem no profit, but, on the contrary, subjects them to every conceivable disadvantage.

But we must be prepared for the other alternative, siz. that the first disciples were weak and enthusiastic men, and that they were themselves deceived, and became the dupes of their own delusions. And here, we will readily grant, tat when once the mind is anlected by any false doctrine or erroneous opinion, it is not casy to say to what lengths it may go in extmagance and folly. Hence we have seen men suftering for opinions which all the wortel but themselves knew to be false or permicious. This is conceding as much as the adversarics of Christianity can require. But it will be of no arail to them. For it must be olmenved that all the great points on which our religion rests, and particularly the doctrinc of Christ's resurrection, are not matters ol opinion: they are fucts, with regard to which even an cuthu-iast could not be mistaken. No stretch of imagimation could make twelve men, nay, five hundred men (for by this mumber was our Lord sect alter his resurrection), no stretch of imafination could make such a mumber believe that thes saw Jesus alive, alter he : d been crucified, that he conversed with them forliarly for lorty days, ant then ascended into bei 1 in presence of them all. That there might be no toom to suspect even the possibility of a mistake, he appeared to them on rarious occasions, and for a length of time, so as completely to satisly the most scrupulous and incredulous among them, of the reality of an event so pleasing, but so unexpected. They do not disguise the pleasure and surprise which they lelt on recoiving the first ambentic intelligence of the resurrection. "They beliered not, for joy;" an expression struck from the mint of truth, and incapable of coming from the lips of a decciver. 'They thought it wats too good news to be true; and they felt that mixed sensation of joy, wonder, and incredulity, which overwhelms a depressed or wounded spirit, on the announcement of great and unexpected good fortunc.

The apostle Panl enumerates several, though not all, of the cccasions on which Cluist appeared
after his resurrection. He says that he was fiest " seen of Cephas, then of the twelve; alter that he was seen of above live hondred brethen at once, of whom the groater part remain unto this present; but some are follen aslecp; alter that he was seen of James, then of all the apostes; and last of all he was seen of me also, as of one bom out of due time." I Cor. xv. 5-s. Now, were we eren to admit the supposition ol the indidel, that the lirst witnesses of the resmbection wre embusiasts, this admission would only tend in strengthen the evidence lor the extraodmary lact: for an momsiast is always an lonest man; he may be deceived in a matter ol opinion. but he has mo wish to deceive others; and therelore when be attes:s, not the rereries of his fancy, but the nbjects which have come under the cognizance of his senses, he may be implicitly believed.

The amount of the arçument, then, in so far as regards the motives of the first wituesses of Christ's resturection, may be thus stated: if they had been impostors they would have had more sense, and more regard to their own interest, than to publish and persisi in such an improbable and unproftable doctrine: and il they had been enthusiasts, they would have hat more honesty than to affirm as iruth what they knew to be false; Jor a man cannot be an enthusiast, and at the same time a wilfal decciver.

But let us look for a moment to the features of the fact. as stated by the sacred historians, and not denied by the encmies of Christianity. The Jewish rulers were fully a ware that our Lord had declared that he would rise again on the third day alter his dicath.

We have already shown that the disciples could not understand this, becanse they could not allow themselves to think that the Messiah was to dic. But the Jews, who had all along been bent on his death, had no such prejudices to obscure their conceptions. Judes, too, who had become theil agent. and who had none of the views and fcelings of the other apostles to prevent him from understanding the distinct intimations which our Lord gave of his resurrection, would doubtless put his employers in full possession of all these particulars: and they were not lost upon them; for they took the most judicious precantions to prevent an event which, il accomplished, they foresaw would render abortive all that they had done. The chicf priests and Pharisees, therefore, went to Pilate, and said, : Sir, we remember that this deceiver said while he was yet alive, after three days I will rise again: command therefore that the sepulchre be made sure until the thired day, lest his disciples come by night and steal him away, and say unto the people he is risen from the dead: so the last error shall be worse than the first." Pilate readily asscuted to their proposal; "so ther went and made the sepulchre sure, sealing the sione and setting a watch."

Yet notwithstanding of all these prectutions, the body of Christ did disappear on the thind day, as the Jews themselves confess, and no infidel has been hardy enough to deny it. And haw do they account for the circumstance. The only account
they have ever attempted to give is, that the disciples came and stole away the body whilst the guard was asleep. If they could possibly have invented any other leasible story, or il falsehood could ever find a secure asylum, they never would have published an account so full of improbabilities and contradictions. For, in the first place, it is in the highest degree improbable that so many men as composed the guard (the number we do not exactly know, but we may be sure it was such as was deemed sufficient to defeat all attempts on the part of the disciples to carry off the body either by stratagem or force) should have all been so fast asleep as not to be awakened by the noise of persons rolling a large stone from the mouth of the sepulchre, and carrying a dead body through the midst of them. Aud, in the next place, consider who they are who give the account? The soldiers themselves were the only persons qualified to give any account of the business; but had the report which they circulated been true, they would have heen the last persons in the world to confess a delinquency which they must have expiated by their lives. Besides, their account, like most falsehoods, contains in its bosom its own refutation; for if they were actually asleep, how could they know whether the disciples carried off the body or not? This could only be an inference; and, in the circumstances of the case, a very improbable one. For they who had universally forsaken their master when they foresaw his destruction, were not likely to risk much for him after he was actually dead. The evidence, then, stands thus, even on the admission of Jews and unbelievers; the resurrection of Christ is attested by hundreds who declare that they saw him frequently after that event, and with their eyes open, and all their senses in exercise; whilst the contrary statement, that the disciples stole away his body, is only attested by slceping witnesses, who, in such circumstances, were certainly incapable of bearing testimony to any thing but their own dreams.

It may indeed be said, that the statement we have given rests on the authority of the apostles and evangelists. It does so; but it has never been contradicted, and it carries with it internal evidence of its truth. The Evangelist Matthew gives a most natural account of the whole transaction. He tells us that some of the guard ran instantly to the chief pricsts and told them all they had scen; upon this a council was held, and it was thought best not to make a show of punishing the soldiers for their supposed neglect, because they knew they would die declaring the truth. The council therefore agreed to bribe the soldiers; and they gave them, we are told, a large sum to induce them to propagate the unlikely story which we have been examining; and as they knew that the soldiers must do this at the peril of their lives, they said to them, "If this come to the governor's ears, we will persuade him and securc you," which they knew it would not be difficult to do, as Pilate could not be supposed to have any partiality lor Christianity, though he was perfectly convinced of the innocence of its author. "So," the evangelist adds, "they took the money and did as they were taught; and this saying is commonly reported among the Jews
till this day." That is, it was commonly said among the Jews at the time when Matthew's account was published, that our Lord's disciples took away his body when the guard was asleep. Thus the author, at the time he publishes his history, which was within thirty years of the time when the event happened, appeals to the whole country of Judea where his work was circulated, for the truth of what he stated as to the Jewish account of the resurrection. No author in his senses would have made such an appeal, had not this been the current edition of the story among the Jews; for every man living could have contradicted him, and such a palpable mis-statement would have offended the friends, and given every possible advantage to the enemies of Christianity. But the statement is not denied; it is the common account among unbelievers down to the present day; and we have endeavoured to show that it carries in its face falsehood and contradiction.

The grounds, then, on which we are authorized, or we may almost say compelled, to believe the doctrine of Christ's resurrection are these: it is attested by persons who had every opportunity of knowing the truth, and who had no inducement to tell a falsehood; and it is attested even by the enemies of Christianity, who, from the account which they have given of this transaction, show to the perfect satisfaction of every one capaple of distinguishing between truth and falschood, that their account is fabulous, and that Christ is indeed "risen from the dead according to the Scriptures."

This doctrine, thus satisfactorily established, accounts completely for the zeal and for the success of the apostles and first preachers of Christianity, which, on any other view, must appear altogether inexplicable. Wc need not be surprised to see them devoting their whole lives, and sacrificing every consideration of ease and temporal conveuience, in propagating the religion of him who was so visibly demonstrated to them to be the Lord's life, and the only hope of salvation; nor need we wonder that the doctrines of the cross, so different from any thing that had hitherto been known among men, should increase and flourish in the immediate hands of him who had preached it, for "healing to the nations." A candid examination of the success which attended the labours of the apostles cannot fail to make us recognise more clearly the power and wisdom of God in rendering such feeble instruments effectual in promoting such momentous consequences.

They tell us that they wrought miracles in the name of Christ, and that it was in consequence of the signs and wonders which God wrought by their hands that the Gentiles were turned to the knowledge of the truth. These were high pretensions; and it would have required more infatuation or effrontery than ever falls to the lot of any person of sound mind, to advance such claims in the very face of persons capaple of producing instant refutation, had they been unfounded. In the second epistle to the Corinthians, xii. 12, St. Paul says, "Truly the signs of an apostle were wrought among you in all patience, in signs and wonders, and mighty decds." It is not in the power of hu-
man credulity to suppose that such a declaration would have been made, had it not been supported by truth. We can casily conceive that a man may boast, in one place, of fictitious exploits alleged to have been done in another. But was ever any braggart so senseless as to make the very people whom he wished to deceive, the judges of his impudence and lying vanity? No; such a supposition is belied by every feature of human nature; and therefore we may rest assured that the apostle appeals to events which no man could contradict.

But we dwell not any longer on a detail of evidence for the authenticity of the apostolic miractes; generally speaking, they rest on the same foundation with those performed by our Lord. We would only request attention to a lew lacts in the history of the Apostles which never have been, and never can be, disputed, viz. to the fact ol unlearned fishermen converting the world, subduing the pride of philosophy, and resisting the efforts of power, till the princes of the earth were compelled to bend the knee before the cross of Christ; to the fact of such persons publishing doctrines which the ingenuity of learning never had been able to discover, and inculcating precepts for the regulation of life, far exceeding any thing that the wisest moralists or politicians had ever devised; to the facts of their blameless lives, of their disinterested labours, of their unwearied benevolence: grant but these facts, and you need no higher miracle, and no strongelconfirmation that they were commissioned and taught of God; and these are facts which infidels themselves will not venture to dispute.

Such were the persons employed, and such the extraordinary result of their labours. Let us see whether we can discover the secret of their success in the nature of the means which they used. Did they owe their success to a more approved method of teaching than had usually been practised, to superior cloquence or more elaborate reasoning? Quite the reverse; they themselves boast that they did not attempt to inveigle converts by the enticing words of man's wisdom, 1 Cor.i. 17. Their doctrine was indeed pre-eminently distiuguished by its importance, and its majestic simplicity: but these are not qualities with which the world is readily captivated, when separated from the accessaries of high birth, or eloquence, or fashionable opinion. The apostles had none of these advantages to recommend their doctrincs. They derived no influence from their rank in society; none from the reputation of their learning; none from the obsequiousness and pliancy of their manners. They were stern moralists, inflexible advocates of truth, justice, and purity; intrepid reprovers of every deviation from integrity and virtue. Though in things indifferent they had sufficient liberality to "become all things to all men;" yet they were entirely unaccommodating and unbending with regard to every thing that had even the appearance of evil.

In all these respects the apostles were as opposite as can possibly be conceived to the character and conduct of those who seek pleasure or private advantage from the doctrine which they teach; for the doctrines of the gospel are not accommodated
to a single failing, to a single prejudice, or to a single sinful propensity in human nature. They are addressed to the highest feelings, the sublimest conceptions, and the loficse and purest hopes which the mind can entertain; and they never can be relished but by a heart emancipated from vulgar prejudices, and purified from mean and grovelling affections. They had to contend with the prepossessions of the Jews, which were the more invetcrate from their being founded on mistaken interpretataions of the word of God; and with the learned pride ol the Circeks, who had imposed their literature on the masters of the world, and scorned, of course, to be tutored by the despised aation of the Jews. In short, the general prejudices of human nature, and the local and natural prepossessions of cyery tribe and district, were all up in arms against the new and unwelcome doctrine, and against its unlearned and uncourtly teachers. Yet with all these disadvantages, the doctrine of the cross prevailed more and more, till the heathen temples were deserted, and the heathen rulers began to fear that the Christians might form a combination to overturn their power.

Now, although we had never heard of the aposthes having wrought a single miracle, yet the plain facts which have been stated, and which batve never been controverted, sufficiently demonstrate that the gospel was miraculously propagated, or that it stood by the power of God, which is all the miracle that we require.

Unbelicvers have attempted to assign various secondary causes to account for the rapid progress of Christianity, without the necessity of a divine interference. Among other things, it has been alleged that the doctrine of the soul's immortality was taught so clearly by the first preachers, and is in itself so soothing and consolatory, that it excited immediate attention, and secured a ready recep. tion to a religion in which it formed such a prominent feature. 'Ihis very concession on the part of unbelievers furnishes an unanswerable argument against their system; for it admits that this important doctrine, which ought to form the basis of all religion, was very imperfectly understood before. How then did the uneducated teachers of the gospel obtain such clear views on a subject so important, and so remote from the ordinary conceptions of men? 'The most that the learned heathens could say on the subject was, that it was a comfortable creed, and that even though it were false, yet the belief of it was pleasant in the meantime, and could be attended with no disagreeable after consequences. Certainly our Lord and his disciples took up a very different ground. They made the doctrine of a future state the primum mobile of life, and taught mankind to consider every thing as subscrvient to this great end. But before this doctrine can be regarded as an attractive one, we must consider what is implied in it, as enforced by the preaching Cbrist and his apostles. According to their statement, it is a doctrine that can be consolatory only to the righteous; that is, to those who receive the faith of the gospel and exhibit its fruits in their lives; but it is the most terrible doe.
trine that ever was preached to the wicked and disobedient; for it declares that they "shall be punished with everlasting destruction from the presence of the Lord, and the glory of his power." Unless it could be shown that the gospel holds out the blessings of eternal life indiscriminately to all, it could have no attractions to the wicked, who always form the majority: and could it be shown to hare such a tendency, the righteous would have reason to reject it as derogatory to the nature of God and subversive of his government.

It is indeed said in our translation that "Jesus Christ brought life and immortality to light." The word here translated immortality (ep9xpaxy) should be translated "incorruption," as is clone 1 Cor. xv. 53 , and elsewhere; and then it must be understood as relating to that spiritual incorruptible life which can be enjoyed only by "the purc in spirit" in the kingdom of hearen. In fact, the doctrine of" "etermal lile," taught in the gospel applies solely to the principles of the spiritual and divine life, which are planted in the soul in the present world, and which being perfected by the varied discipline of life and dispensations of providence, is at last ripened into complete holiness and bliss in the kingdom of God.

This was a doctrine which formed no article in the creed of the heathens. Theiridea of immortality merely implied the continuance of existence, and the enjoyment of the same pleasures and pursuits in which they had been engaged in the present world. Their Elysium was much the same as the Mahometan paradisc. But the "eternal life" of Scripture is entircly the reverse of all this, so far as regards sensual enjoyments. In the Christian heaven there is no hunger nor thirst, no marrying nor giving in marriage, none of those relative ties which constitute the duties and happiness of society in the present world, and no feeling can be admitted there except those spiritual and divine habits which have been engralted in the soul from the admiration and imitation of the divine perfections.

Another misrepresentation has been advanced with a view to exclude divine influence from the propagation of the gospel, and to account for its success from common aud secondary causes. It is alleged that it takes responsibility from man; and relieres him of much trouble, by teaching him to depend on the merits of another; and that a reli§ion characterized by such leatures, could not but be acceptable to the indolence of human nature.

This is either ignorant or malicious misrepresentation. All that the gospel inculcates respecting the necessity of divine inllucnce, and the aids of the Iloly Spirit, is intended to stimulate, not to relax our cerertions. "Work out your salvation with fear and trembling; for it is God which worketh in you both to will and to do of his good pleasure." Philip. ii. 12, 13. Nere the operation of the Spirit of God, who works in us to will and to do of his good pleasure, is stated as an inducement to work out our salvation with fear and trembling: and it certainly is a powerful argument for exertion when we reflect that every virtuous cmotion proceeds from the Spirit of God, who promises his
assistance, and calls us to be labourers together with him in the great work of salvation. At the same time this consideration may well inspire us with fear, lest we should have received so much of the grace of God in vain, and lest we be lound wanting in the due improvement of the ample means and assistance with which he has furnished us. All the exhortations of the gospel correspond with this representation; hence we are called on to watch and to pray, and to be active and diligent in the use of those means which God has appointed and promised to bless for our edification.

And with regard to the other objection that the gospel found a ready reception, because it pointed out an easy method of salvation by teaching men to rely on the merits of another, we may safely say that human nature mast be greatly changed from what it was, if this view of Christianity proved a recomrnendation to it. It is not commonly found that any thing which tends to sink human merit will meet with a ready reception among men; and we believe that the greatest object to the gospel has always arisen from the low estimate which it forms of human virtue; and from its representing the best services of men as unprofitable in the sight of God. There is nothing that men will not do sooner than believe this. They will give their bodies to be burnt, or to be torn in picces by every conceivable torment, if any person can persuade them that heaven may be won by such sacrifices. And it is not difficult to produce such a conviction: it is a deep rooted prejudice of the human heart: it is a wrong conclusion drawn from just and natural premises; it is lounded on the fecling of responsibility, on the consciousness of guilt, and on the persuasion that some extraordinary sacrifice is necessary to procure expiation. But along with these feelings and couvictions, which might naturally enough lead to humiliation, there is a principle of pride no less firmly rooted in the mind of man, which teaches him to belicve that the expiation may be made by his own efforts, and that his personal sufferings and privations will have merit to atone for any sin.

This notion lies at the foundation of all the superstitions of polytheism; and the bodily sufferings and voluntary inflictions which were so profusely exhibited, were the result of price rather than of humility. The infatuated visionary was attempting to take heaven by force, and to establish his claim to salvation, as a debt and not as a favour. The doctrines of Christianity are the reverse of all this in every point of riew, and, therefore, it must have been an objection to them that they opposed such invetcrate prejudices of the human mind. So much was the Church of Rome aware of this, that to remove all objections to its external sovereignty, the only object which, as a church, it ever had in view, it laid hold of those very prejudices which Christianity had exploded, and revived the claims of human merit by prescribing certain penances and bodily services as available to salvation.

From these facts, any one may judge how far the gospel owes its success to the conlormity of its doctrines with the common notions and prevailing
feelings of the human mind. It is, indeed, one of the singularities attending its dissemination, that it forced its way in the world, in spite of the most formidable obstacles arising from the sins which custom had licensed, and from the prejudices which superstition had consecrated in the human mind. This is in itself' sufficient evidence that "God gave visible testimony to the word of his grace" when he enabled the hirst preachers of the gospel to triumph over obstacles, which, in modern times, resist all the powers of learning, of eloquence, and of argument. And should any one leel disposed to regret that the same signal suceess does not attend the labours of modern missionaries, who are much better qualified, in point of literary attanments, than the apostles were, we would remind them that this very circumstance is one of the most decided proofs of the divine origin of our religion. Were it immediately received, we might be apt to suspect that there was nothing pecutiar in it; and were the labours of modern missimaries, who do not pretend to miracles, as successliul as those of the apostles, there could be no reason for bringing in the visible power of God in behall of the lirst preachers of Christianity. The many remarkable failures which we have witnessed, are proofs that the rapid success of the apostles was chiefly owing to visible interpositions of divine power; and that the want of this extraordinary aid is the cause of the slow progress of Christianity in modern times. But these failures, instead of discouraging, should animate our efforts; as they afford a demonstration that God himsell originally established that religion whici he commanded his servants to carry to the remotest corners of the carth; and we need never despair of a blessing on a work which God himself has countenanced, and which he has hitherto distinguished by his special support against all the attacks of unbelicvers.
But there is another species of evidence adduced in favour of Christianity, which, as contra-distingished from the evidence of testimony and facts, has been denominated internch, and is founded chiefly on the adaptation of the gospel to the wants and circumstances of men; on its excellence as a rule of practice, as a source of knowledge, and as a ground of hope and of consolation; and it is argued that a religion which has so many marked characteristics of bencvolence and wisdom can have no other than a divine origin. We are disposed to consider the arguments connected with this view of the subject, as, of all others, the most conclusive. Indeed there is, properly speaking, no Christianity, till those convictions of its power and efficacy are produced in the mind; they constitute the sum and substance of practical Christianity, and therefore they are to be considered as results, rather than as cvidences: as consummations of Christian faith, rather than as steps in the arguments which lead to it. A man's conviction is already complete by the time he feels that the gospel has enlightened his mind, reformed his practice, confirmed his hopes, and removed his fears. He has then, as it is expressed in Scripture, "the witness in himself," 1 John, r. 10, his conscience, feelings, and all

Vol. XVII. Part. II.
his faculties yielding a ready assent to the value and importance of the Christian revelation.
But it would be needless for a Christian to tell an unbeliever what he feels on these subjects. One man's lielings can be no argument to another: and the unbeliever will take his stand exactly on the same ground, and wilt say, that he rejects the gospel, because it is revolting to his fectings, and because he is persmaded that the adoption of it would mar his happiness. Here then, we shall suppose, is the point with regard to which the two parties are at issue, the one maintaining that the gospel promotes human happiness, the other that it destroys it. Are there no dutu, then, by which this controversy can be decided? Is there no standard to which we can refer on a point so deeply interesting to human nature? To maintain that there is not, would be to confound reason with prejudice, to renounce as fallacious every intimation of conscience, and to dismiss as insufficient every principle which enables us to judge of the consequences ol actions.
Is the gospel, then, or is it not, friendly to human happiness? If a verdict shall be returned in its favour, it will be entilled to the support of all who hold that happiness is "our being's end and aim." At the first vicw, its aspect is not alluring: but it will be an argument in its favour, if it can be shown to be friendly in its intentions. Its doc. trines and its precepts stand as antagonists to all those propensitics which are nourished by excess, and by inordinate love of the world: but this will not operate to its distdrantage, if it can be shown that nothing less than the self-lenial which it enjoins can prevent us from being suicides of our own happincss; and that unrestrained indulgere is the sure road to disgrace and misery. It is quite common to hear it said, how can a religion which professes to cone from heaven, be so opposite to the propensities of human nature? Can the same ford give opposite intimations, and, at the same instant, impel to gratification and forlid it? This apparent anomaly does not originate in the gospel: it has its foundation in the nature of man, which supplies, at the same time, both a stimulus and a check to gratification. On the one hand, we leel a decided love of pleasure, whilst on the other, conscience interferes to prevent the unlawful indulgence of it; and the ardour of gratification is checked by the failing powers of nature, and loy the languor or discase which excess produces.
It is obvious, then, that there are very contradictory principles in our nature; we are prone to excess, and reluctant of restraint, yet we are compelled to attend to the voice of conscience which points ont the boundarics which we ought to respect, and warus us of the danger which attends transgression. It is farther obrious, even without the light of Christianity, that man rises in the scalc of moral excellence, of public useluluess and private happiness, in proportion as he resists the undue indulgence of the mere animal propensities, and obeys the morat feelings of his nature: whilst the man who degrades himself by brute enjoyments, necessarily forfeits rational happiness, the esteen of his
fellow creatures, and the hopes of a better world. These are axioms recognised by all nations whose names have not sunk into oblivion, by neglecting the conduct which results from them. Is it not, then, highly in favour of Christianity, that it takes a decided part with these better priaciples of our nature, that it labours to strengthen conscience, to promote justice, to banish selfishness, to increase universal benevolence? And if it can be shown that the gospel promotes all these objects infinitely better than any other system, and supplies motives and inducements far beyond what any man, or set of men, ever devised, we shall have, in that case, a strong presumptive evidence of its divine origin; and this presumption must amount to certaimy, when we consider the men by whom it was first announced, and the circumstances in which it was hest propagated.

But let us view the subject a little more narrowly in its general complexion and structure, and see whether we cannot discern the symptoms of an origin infinitely more exalted than any other system of morals or religion can justly claim. And here let it be observed, that all the ancient systems of morality and religion laid claim to a divine origin, and we have the names recorded of the gods, or inspired legislators, who estabiisherl them. It is long since the world has been satisfied of the futility of these pretensions, and the systems founded upon them have been abandoned as inconsistent with the light of reason and with some of the best interests of man. They either permitted what was hurfful, or forbade what was innocent; and the consequence was, that they exhibited the contradictory extremes of profligacy and licentiousness on the one hand, and of the most revolting violations of :ature, and of nature's feelings on the other.

All religions, but that of Christ, are chargeable with these defects and improprieties. It prescribes no self-denial, except with regard to sinful husts; no mortification except of evil affections; it gives full scope to every feeling that contributes to the reai enjoyment of life, whilst it guards, by the most awful sanctions, every duty, the observance of which is necessary for our present and future happiness. It extends our views far beyond the limits of this world; it confirms those anxious anticipations and eager desires of immortality which the mind has, at all times, so fondly cherished; and these being established, and the luture life of man being shown to depend on his present conduct, as mankind have always believed, the gospel, in conCormity to this leading doctrine, tells us, that cevery action of our lives shonld have a reference to immortality, and that it will profit a man nothing to gain the whole world and lose his soul. This is the necessary conclusion arising from a universally received doctrine: and it is here that the excellence of the gospel is particularly manifest, for it does not tell us that earth and heaven are absolutely opposed to each other, or that we cannot discharge a conscientious duty to both, or that we must le miserable here in order to be happy hereafter. It warns us, indeed, of the danger of undue attachment to the world, as tending to check every spi-
ritual aspiration, and to make us unmindful of our best hopes; but whilst it preseribes rules which have for their ultimate, and apparently their only object, the eterral interests of the human soul, it is found that the observance of these rules promotes our presem happiness more effectually than if we had nothing else in view; and we learn from experience, that "godiness is profitable unto all things, having the promise both of the life that now is and of that which is to come."

An unbeliever will perhaps be inclined to dispute this statement, and in particular to deny the influence of Christianity in promoting present happiness. We appeal to the bar of reason and conscience, and promise to abide by their decision, even with regard to the most obnoxious precepts of the gospel. Take humility, that characteristic feature of Christianity, for an example. The author of our religion says, "Learn ol" me, for I am meek and lowly, and ye shall find rest to your souls." With regard to this iujunction, which the unchristian mind must necessarily dislike, the question simply is, whether a man is most likely to find rest to his soul, by humbling himself, or by endeavouring to humble others; in the latter attempt he will never be completely successful; he will always find some to resist his claims, or dispute his pretensions: and he will always suffer under the feelings of wounded prite and disappointed ambition. It will be alleged that humility is only the property of a low, unmanly spirit, and that it must destroy the dignity and energy of the human character. No one will think so who remembers that this humility arises solely out of the relation in which the Christian feels himself to stand with regard to God, and not from any fear or great reverence which he cntertains for man. He who thinks humbly of himsell from a consideration of the divine majesty, will be in ino danger of thinking too highly of others; he will form a just estimate of them, and will perceive that he ought to regard them with feelings of charity and brotherly love, rather than with fear or idolatrous veneration.

We have seen low nobly this quality was exemplified in the conduct of the apostles. They were distinguished by patience, meekness, and humility; but they were distinguished no less by undaunted fortitude and unparalteled intrepidity. Though born and brought up in the humblest stations of life, they were not confounded when they were called before princes and rulers. Paul had the boldness to arraign the very vices for which Felix was notorious, and the profligate governor trembled in the presence ol the man who was brought as a prisoner before his tribunal.
Here, then, is one singular quality enjoined by Christianity, to which the natural mind licels a repugnance, but which reason can demonstrate to be perfectly consistent with the dignity and happiness of man, and to be, in fact the best means of promoting both. And it is one of those moral qualities, more, perhaps, than any other peculiar to the gospel. There is no word in the classical languages of Grecce and Rome to denote the virtue of humility. It is a quality, however, which results so
naturally out of the relation in which man stands to his Maker, that the religion which so forcibly enjoins it may be said to have a sign from heaven, that it proceeds from God; whilst those which encourage opposite qualitics betray themselves to be ol carthly origin and of human invention.

Take another quality, the lorgiveness of injuries, which, il not absolutely peculiar to the gospel, is at least enforced by it with a clearness, and with a strength of motive not to be found in any other system of religion or morals. "Forgive thine enemics," says a heathen, "lor by returning their injuries thou art only equal with them, by forgiving them thou art superior." This is very fair reasoning; but we may justly doubt whether it would produce any very decided effect. The precept of the gospel, however, goes much farther, and is enforced by much more powerful motives. "Love your enemies, bless them that curse you, do good to them that hate you, and pray for them that despitefully use you and persecute you." 'This is stretching the precept, it may be thought, to the very verge of human endurance; yet it is nothing more than the fair result and legitimate conclusion of the principle by which our Lord recommends it, which is, "That ye may be the children of your father who is in heaven, for he maketh his sun to rise on the evil and on the good, and sendeth rain on the just and on the unjust." Mat. r. 44, 45. Was any such motive ever suggested by any other teacher? Was man ever authorized to contemplate such an exalted origin, or called upon to imitate such a spotless pattern? Nothing like it is to be found in the records of human wisdom. We see ourselves placed in the most intimate union with God, and, as his children, we are called upon to imitate his perfections, the most conspicuous of which are mercy and forgiveness.

Let us now see, then, whether we discover in the gospel such marks and characters as must necessarily belong to a religion which comes from heaven. Such a religion must explain and exalt the divine perfections; must make us better acquainted with the nature and government of Cod, whose being is universally admitted, but whose character is, in general, very imperfectly understood; must be distinguished by wisdom and benevolence; must tend to promote the best interests of man for time and for eternity; and all these marks are to be found in the gospel of Christ, or they are to be found nowhere. It has, at least, annihilated the claims of every other religion, and if any one should entertain a suspicion that it may still mis. lead us, we can only say, that if it does, there can henceforth be no confidence in buman reason, no dependence on human testimony, and no trust even in miraculous appearances: for in all these respects every thing that the mind can require to satisfy its doubts has been most amply supplied; and we do not think it possible for the present faculties of man to receive any fuller demonstration of the truth of Christianity than is set before us in the au-
thentic facts on which it restg, and the intrinsic excellence by which it is distinguislaed.

It may appear matter of astomishment that a religion so attested, am so obvionsly calculated ir, promote the best intorsts of man, should nevertheless be so obstimutdy resisted. 'This, which might appear sinsular, is resolved into a prominent leatare of human nature by our Lord's words, "Whoso doeth evil Hateth the light, neithes cometh to the light, lest his deeds be reproved." If the view which has been given of human nature be correct, if it be earthly and sensual in its original tendencies, averse to restraim, and prone to ex. cessive gratification, in these circumstances opposition to the gospel is exactly what we may expert. and is an additional internal evidence of its divine origin. A religion perfectly acerommotated to the natural feelings, or lalling in with the prevailing propensities of human nature. would need no other evidence to prove that it could not be divine. For who can doubt that the prominent features of the luman character, before it is refined and cxalted by moral culture and relisious principle, are pride and ambition, selfishness and sensuality. qualities which can never be countenanced by a divine religion, and which must be subducd belore such a religion can be relished by the human mind.

It is common enough to hear it said by professed friends of Christianity, that it is congenial to human nature: and so it is when once the heart adopts its precepts; its yoke is then felt to be easy and its burden light. But there must be many a struggle and many a sacrifice before this surronder of the heart is made; and whilst we would recommend the gospel as in the highest clegrececalculated to promote the happiness of man, we would wish it, at the same time, to be rememberecl, that it is only accommodated to our real wants, but not to our misjudging wishes; that it promotes our real dignity, whilst it lays postrate in the dust our imazjnay consequence; and that it advances our best interests fu: lime and for cternity, by opposing many of our decided inclinations.

It is a proof, then, that the gospel is heasenly. when we sce it so obstinately resisted by the sinful feelings of men; and in every instance where it has ultimately been rejected, the reason may be found in some depraved affection, or some sinful bias of the human heart. It is the intimate and indissoluble union between the doctrines and the practical precepts of the gospel-the inseparable connexion between faith and holiness, that appears so formidable to the indolence and inveterate prejudices of men. It is not the abstract creed of Christianity that gives offence. Men are by no means nice as to their creed; there is no absurdity too monstrous for them to swallow; and Christianity, when degraded to the rank of a superstition, and disjoined from its influence on life and morals, is as popular as any other, and will as readily obtain proselytes. This was proved by the success of the Romish missionaries, one of whom tells us that his arms were completely tired with baptizing the immense
mulitudes of heathens who flocked to conversion in one day. If the gospel were satisfied with such converts, we do not belicve there would be any difficulty of christianizing in a short time the whole world. For no religion can come forward with such pretensions as Christianity; and were it not so intimately connected with the hearl and the conduct, it would soon become the dommant religion throughout the world.

It is not the fault of Christianity, then, that it is not more readily and more extensively reccived. It has a work to accomplish on the mind of every individual, which is in clirect opposition to confirmed habits and preconceived opinions; and the transformation of character which it effects cannot be brought about withont resistance on the part of our natural feelings. One great design of the gospel is to "bring the whole man into subjection to the obedience of Chyist," that is, to cmancipate the mind from the dominion of ignorance, prejudice, and sin, and to substitute in its phace the sovereignty of reason, knowledge, and rirtue, as embodied in the law of God. Who can donbt that such a change is desirable, and that it should be the object of a divine religion to attempt to accomplish it? And who is so ignorant of human nature as to suppose that this change can be effected without a struges? ? The gospel, then, bears in its face onc distinct feature of divinity, in being opposed to all the sinlul, and degrading, and mischied-working propensities of human nature.

It will probably be alleged that, according to this reasoning, tirere are insuperable obstacles to the seneral reception of the gospel, in the very principles of haman mature. To this we would atswer, that the observations which have been made apply chielly to ripened sinners, to those whose natural propensities have wot been checked by carly culture, and who have been allowed to grow up in antichristian habits and feclings. Even with regard to these, though their consersion be difficult, it is not impossible. They are in the situation in wheh all heatlen nation- have been when the gospel was first announced to them. and their prejudices, however strong, are not invincible. But we can easily conceive a situation in which these unfurourable symptoms may, in a great measure, disappear : and that siluation will oceur, when Christian discipline, judicious educatiom, and good example, are all bronght io operate on the youthfial mind. and are employed to train it from the rery first cuolution of its feelings, to Christian habits and somad knowledge. The visiho opposition to the gospel will then amish, because the principles on which that opposition is tounded, have bern crushed before they acquired ungovernabe trenerth, and becanse the mind has been made femiliar with the enlightened dootrines and useful rendency of Christanty.

The internal pridence for the divine origin of Charistianity which bas hitherto been adduced, is founded on the wisdom and utility ol its instuctions as connected with the history and the bopes of man. And, infact, cerey arsument produced to show the reasonableness of any of the doctrines of Christianty, is to be considered in the light of an
internal evidence in its behalf. But there is an extensive class of arguments of this description arising neither from the doctrines nor from the precepts of Christianity, but from circumstances connected with its history. The low and suffering condition of Christ, for instance, is in perfect consistency with what is stated to be the great end of his mission, viz. to lay down his life a ransom for many. Had he appeared in the splendour of regal dignity, and maintained throughout a state corresponding to it, the great consummation of his death could not have happened. The same circumstances would have disqualified him for a teacher, and for an example to suffering mortals. As nothing is of so much consequence to us as to be taught to endure the ills of life with patience, fortitude, and hope, so we find that he who is set forth as the hope of Israel, and of all nations, was placed in exactly such circumstances as best qualified him for giving us useful lessons of faith, fortitude, and resigmation. Had he lived respected, and died renowned, be could not have shown us the efficacy of Christian faith, in supporting the heart amidst the severest uials, and in realizing to us the hope of a better world. His doctrine was, "fear not them who can kill the body;" or in other words, hold fast integrity and a good conscience, though at the expense of life itscli: and he illustrated the precept by his example. No degree of suffering could make him swerre from his purpose, or relinquish his feelings of benevolence and love to the human race. Since, then, man is born to sorrow, is it not a prool of wisdom and goodness on the part of God that " the Captain of our salvation was made perfect through suffering:" It was this condition alone that perleeted him as a teacher, as an exam. ple, and as a propitiation.

Here, then, all the parts of this extraordinary scheme bang rightly together; and we may add its perfect consistency as a larther recommendation to our acceptance of it, as a plan devised by God.

Some have alleged that we know so little of the nature of God, that it is presumptuous in us to say what kind of revelation he might be expected to give, and of course all arguments lounded on internol ecidence, which go, in effect, to measure the ways of God by ond conceptions of fitness, must be precarious or lallacious. Wie do not assent to this conclusion. We do not say what kind of revelation Giod might have given; we only presume to judge ol that which he has given. It appears that some of the wiser heathens were led to expect, or, at least, to desire a revelation. Thes judged it necessary on account ol the hopeless ignorance ol men. liad they speculated on the nature of that revelation, we may be perlectly certain that they never would have anticipated that which was actually given. It rested on deeper principles than the light of nature could discoser. But this does not prevent us from passing a judgment respecting it, now that it is known; and the beanty and excellence of the Christian revelation is this, that it has not fettered but improved our faculties, and made them capable of passing a decision on its adaptation to the wants and eircumstances of men.

There is not one precept, and scarcely one doctrine of the gospel, that does not rest on other grounds than mere authority. As the Almighty requires of us a reasomable service, he suggests reasonable motives lor the performance of it, and has made us capable of discerning that his demands are not founded in wanton despotism, but in the tenderest regard to the happiness and improvement of his creatures. Admit but this, and who call doubt the competency of human reason to pronounce on the nature and tendency of a scheme professing to come from God? It may be said that the miracles performed are sufficient to command our assent to the doctrines which they were wrought to inculcate, although we shonld le totally unable to understand them. But how few doctrines are there of this kind in the Claristian revelation? We believe there are none but the divinity of Christ, and his appointment to redeem mankind. These points could not be established by reasoning; they lie locyond the sphere of its natuabl operations. But these points being established by the power which the Saviour possessed, they become proper subjects of reasoning; and we are entitled to inquire whether there is any thing in them contradictory to the general analogy of nature, to the known character of Gol, as manifested in his works, or to the ordinary course of his providence. And ip we shall find that there is here no contradiction, but, on the contrary, a beautiful harmony and additional illustrations of the divine nature and government, extending, connecting, and methodizing our knowledge, we lave then internal prools that the doctrine is from God. Here, as in every other instance, the revelation itself supplies the means of judging of its nature and character; and we have so much the greater reason to conclude it to be from God, when it furnishes the most important information in a way that the mind of man would not have devised.

We are far from presuming to say that the mysteries of heaven must be made obvions to our apprehension. These mysteries we are bound to believe when established by unequivocal miracles. But a miracle never was displayed to establish a mestery unconaected with the life and hopes of a Christian. The most mysterious parts of the Christian creed have a dinct bearing on faith and practice. The Trinity, for instance, lorms an essentios article of belief; for without it we conld have no idea of the Father who sends, of the Son who saves, and of the Holy Ghost who sanctifies. In short, no mystery is revealed in Seripture but what is intended to have an influence on the faith, and consequently on the duties and the hopes of men. On these latter points we can judge; and if a doctrine were announced, as enjointed by heaven, but which is found to contradict the lirst principles of reason, and to militate directly against human happiness, we might justly hesitate about admitting its truth, even though miracles were wrought to support it. What we mean to affirn is this; that even a miracle could not establish a general principle at open variance with those clear intimations arising from the light of conscience and reason,
and from the visible ordinations of providence. The evidence could not be stronger on the one side than on the other; and the result could only be an entire suspension ol our laith on the point in question; as the means of determining would be utterly destroyed by the contradictory intimatious of our senses and our reason.

It is clear, then, that we are compelled to judge of every doctrine by its general tendency, as much as by the authority with which it is chlorced. A miracle shows the power of the legislator; bat we judge of his wisdom or his goodness by the nature ol his enactments: and the beauty and excellence of the Christian dispensation consist in this, that its most peculiar doctrines are such as our reason is compelted to approve, though it would never have bech able to discover then. We have thus is double security for our faith; for on the one hand we see it enforced by a power which no man can with safety resist: whilst on the other it is recommended by such distinct features ol benelicence and wisdom as must secure both the love and approbation of every reasonable mind. Were mirackes wrought to enforee maxims hurtful to haman happiness, it would be a mere tyramical display ol power, at which the heart would revolt. But when we sce that power is manifested to secure obedience to laws framed for our own good, we admire both the wisdom and condesecnsion of the lawgiver, and we then love and revere a power which is exercised only to sceare our own happiness.

Some of the friends ol Chastianity seem to have conceived a prejudice asrainst the internal evidence lor its divine origin, chicfly, we belicre, because this is the point which infidels have principally contested, and on which they proless to buide their opposition. The evidence of mirarles remained almost unquestioned till it was assailed by the Jlimsy sophism of Ilume, which would long ere now have been forgotten, had it not been preserved from ollivion, by being embodied in the benutiful refutation of Camplell. The evidence of prophecy: tou, has been in a great measure unmolested; the only relerant objection that mbelievers have urged being, that the prophecies were written after the events which they pretend to predict; an objection so shallow and mutenable, that to mention it is a sufficient refutation. But ubbelievers have adopted a mode of warfare which has often been successfully practised by a skilhal enemy; they have left the strong holds unmolester, and have directed all their efforts against the troops who keep the feeld, being well assured that when these are completely routed, and unable to appear, the strong places must quickly fall. In other words, they have attacked the substatial doctrines and distinguishing precepts of Christianty, under the impression, which we believe to be well founded, that if they can get the better of these, the external evideace will soon go for notbing.

And shall we decline to meet them on this field? Shall we post ourselves behind our bulwarks, contenting ourselves with bidding defiance to our enemics, whilst they are allowed to ravage the country, and harass its population? Such conduct would be
cowardly, and unworthy of the high cause which we profess to advocate. Whilst, then, we should avoid the presumption of demanding that the mysteries of God should be brought down to the level of our understanding, a demand which reason itself must pronounce to be unreasonable, and impossible to be complied with; yet we may confidently affirm, that no doctrine is revealed in Scripture inconsistent with the dictates of enlightened reason: on the contrary, they are all recommended by their obvious congruity with some principles which reason recognises as ultimate and incontrovertible.

Hitherto we have applied this mode of illustration only to the precepts and moral instructions of the gospel, and have endeavoured to show that even when they oppose our feelings, they promote our happiness, and are approved by our reason. These precepts are not so much distinguished by the novelty of the qualities which they enjoin, (for they are, in gencral, founded on the broad basis of human nature, as by the novelty of the sanctions by which they are enforced, and by the strong unqualified terms in which they are delivered.

This is a striking peculiarity in our Lord's manner as a moral teacher. He does not attempt to win assent by slow and cautious advances on our prejudices; he assails them at once, and rouses their utmost opposition by the decided and unqualified nature of his attack. When he wishes to discourage vindictive feelings, and prevent men from taking into their own hands the adjustment of their own wrongs, he does not proceed on the principles of political morality, to show that such practices would be injurious to the state; but be says in language alikc calculated to astonish and offend, "Whocver shall smite thec on thy right cheek turn to him the other also." Mat. v. 30. His object was to arouse the attention to a momentous truth; and he clogs the precept with no deduction or qualification, knowing that men would soon be ingenious enough to discover these for themselves. To show the dangerous tendency of riches, he does not stop to point out the temptations to which they leatl, or to warn mankind against their gradual influence in deteriorating the character, but he says in language, which no man, whether rich or poor, can ever forget, "It is easier for a camel to go through the eye of a needle, than for a rich man to enter the kingdom of heaven." Such a declaration, proceeding from an authoritative teacher, must have roused the most languid attention: even his disciples, we are told, "were exccedingly amazed;" this was what was intended; it would excite discussion among those who heard it; and, on due examination, it would be found to be the converse of that salutary proposition, that none but the "poor in spirit," shall inherit the king-
dom of God; and that they who are only rich as to this world, shall never taste the blessedness of heaven.

This peculiarity is not to be found in other moral teachers, who are compelled to employ every artifice to seduce men into their conclusions. But Christ "taught with authority," inasmuch as he laid down the rule, without stating the reasons on which it was founded, which no other teacher had ventured to dispense with; and which even he would not have neglected had he not possessed other means of securing attention; and had he not seen that the reasonableness of his precepts would ultimately sustain them.

The want, then, of the usual processes of reasoning in bringing out moral deductions, is a proof that our Lord had other means of giving them efficacy; whilst the excellence of the maxims, which must be obvious when they are subjected to candid examination, shows how little despotism there is in divine enactments, and that they are addressed to our reason, our conscience, and our best interests.

In this article we have endcaroured to give a comprehensive view of the foundation on which true theology rests; and we have gone so far beyond the outworks, as to adduce many of the peculiar doctrines and precepts contained in the Scriptures, as illustrative of the divine origin of the record in which they are contained, and proclaiming, at the same time, their own high authority and the reverence which is due to them. We had intended to give a view of polemical Theology, and a catalogue of the books most useful for the Theological student; but the limits prescribed to this article prevent us from entcring on the wide and thorny field of polemical Divinity; and it would have been necessary to append so many qualifications to every book that we recommended, that this undertaking would itself have formed a volume. We, therefore, only recommend, as of unquestionable utility, the earnest study of the sacred Scriptures, in the original languages; and perbaps the best commentaries on them will be found in the various translations which different Christian churches and communities have given of the original Scriptures.

THEOPHRASTUS, a celebrated Greek philosopher, and the pupil of Aristotle, was bown at Eresium in Lesbos B.C. 371. He died B.C. 276, at the age of 85 . His principal works are his Characters, and his Mistory of Plants. Among the best editions of the first are those of Isaac Casaubon, of Needham, with the notes of Duport, Cantab. 1712, and of Fischer, Coburg, 1763. The most complete edition of his History of Plants, is that of Budæus, in Greek and Latin, Amstelod. fol. 1644. The last edition of his whole works is that of Heinsius, Greek and Latin, folio, Lugd. Bat. 1613.

\section*{TIIERMO-ELECTRICITY.}

THERMO-ELECTRICI'SY is a term introduced a few ycars ago into natural philosophy, to signify the electrical current, excited in a circuit of conductors, when the equilibrium of its heat is disturbed in such a manner as to cause thercin a circulation of caloric.

Thermo-electricity being a parlicular branch of Electromagnetism, which has been discovered since the publication of the volume of this work in which it ought to have been treated, it will be necessary to comprehend the whole doctrine of electromagnetism in the present article.

\section*{IISTORY.}

In the earliest period of the history of magnetism and electricity, the minds of philosophers were more struck by the resemblances of these two agencies than by their disparitics. The first philosopher who undertook a regular series of comparaive experiments upon magnetism and electricity, was the celebrated \(\mathrm{D}_{\mathrm{r}}\). William Gilbert, who first published his inquiries in the year 1600 . He was aware of so many disparities between then, that he declared their rescmblance to be mercly accidental. He had indeed strong reasons to think so at that time, for the magnetical polarity was well known to him, and principally by his own experiments, but the discovery of the clectrical polarity was reserved for a philosopher of the following century (du Fay). This discovery, and particularly the fundamental law of electrical polarity, brought forward by Franklin, again countenanced the opinion of the resemblance of electrical and magnetical powers; and the sagacity of Epinus gave great credit to it. But immediately after this acknowledgment of their resemblance, another excellent philosopher, I Fan Swinden, was struck with the disparities which remained still unexplained, and his ingenious inquiries obtained much approbation. The discoveries of Galvani and Vollo, by which the electrical powers were exhibited in forms very different from those formerly known, gave the opinions upon this subject a new turn. The German philosopher, Joh. Will. Ritter, was thought during some time to have produced magnetical effects by the Voltaic pilc, but his experiment having been repeated without success, the subject remained as it was. Thus the balance inclined alternately sometimes to the one, and sometimes to the other side; but at no time bave cither of these opinions met with general reception. A certain turn of mind has here, as in most other controversial doctrines, exercised a considerable influence. One class of natural philosophers have always a tendency to combine the phenomena and to discover their analogies; another class, on the contrary, cmploy all their efforts in showing the disparities of things. Both tendencies are necessary for the perfection of science, the one for its
progress, the other for its correctness. The philosophers of the first ol these classes are guided by the sense of unity throughout nature; the philosophers of the second have their minds more directed towards the certainty of our knowledge. The one are absorbed in search of principles, atad neglect often the peculiarities, and not seldom the strictness of demonstrations; the olher considers the science only as the investigation of facts, but in their laudable zeal they often lose sight of the harmony of the whole, which is the character of truth. Those who look for the stamp of divinity on every thing around them, consider the opposite pursuits as ignoble and even as irreligious; whilo those who are engaged in the search afier truth, look upon the other as unphilosophical enthusiasts, and perhaps as phantastical contemners of tuth. Happily these two tendencies are in most natural philosophers so well tempered with good sense, that their controversies seldom exhibit any of the exaggerations which have disgraced so many theological and metaphysical controversies; but they always exercise their influence, which is generally a salutary one, in forming an opposition of sentiment in the republic of letters by which stagnation is prevented. This conflict of opinions kceps science alive, and promotes it by an oscillatory progress, though it seems to the common eye a mere fluctuation, without any definite purpose.

The reasons for and against an essential resemblance between magnetism and electricity might, before the discovery of electromagnetism seem to be nearly balanced. The most striking analogies were, that each of them consists of two powers, or directions of powers, of an opposite nature, submitted to the same laws of attraction and repulsion; that the magnetical action on bodies, lit to receive it, has much analogy with the electrical action; that the distribution of the powers in a body, which has an electrical charge, and still more a series of bodics charged by cascade, differs very little from the distribution of the powers in a masnet; if we imagine a Voltaic pile, and principally the modification denominated after Zamboni, composed of minute and molecular elements, it would have the most perfect analogy with a magnet; and lastly, that the tourmaline differs but little from such an electrical magnet.

We shall not here consider that most of these analogies are overturned by the discovery of elec. tromagnetism; but still confining ourselves to the period before this discovery, it may be objected that the magnetical and electrical powers do not act on each other, which should be the case, if they were of the same nature; that all bodies transmit with ease the magnetical action, but not the clectrical; that neither the tourmaline nor any system of charged glass-plates, or of galvanical arrangements,
has the effects of the magnet. Although it might be answered that the galvanical circuit, in its first period, seemed no less different from any electrical apparatus than the Voltaic pile from a magnet, these objections did not cease to have considerable weight, but we have hitherto deliberately omitted one of the arguments, viz. the observation of magnetism in bodies struck by lightning, and the experiments made to imitate this effect. It had often been observed, that the magnetical needles in a ship struck by lightning have suffered a change in their polarity.

A very remarkable case of this kind, mentioned in the Philosophical Transactions, Vol. xi. No. 127, p. 647, seems to be the earliest on record. It is there related that a vesscl, whose mast was struck by lightning, had the poles of the needles in all its compasses inverted, yet the compasses themselves were not struck. Some other obscrvations of a similar nature are recorded in Domsdorph's Treatise upon Electricity, Mugnetism, Fire, and Ether, (uber Electricitat, Magnetismns, Fener und Ether, 1783.) An accident of this kind, which happened in the year 1751 , caused Franklin to try the effect of artificial electricity upon needles of steel. The result was, that when the needles were in a position in which the carth could produce in them some magnetism, this effect was much increased by any electrical stroke; but when the position gave no such advantage, he lound that the extremity of the needle, in which the electricity entered (which received the positive electricity) was directed towards the north, when the needle was conveniently suspended. Wilcke, who repeated thesc experiments, obtained the same results, only with the difference, that in the case when the direction of the electrical stroke secmed to decide the polarity, this was the inverse of that observed by Franklin. (Transactions of the Royal Academy at Stockholm, 1766.) The experiments made in the year 1785, upon the same subject by van Marum and ran Swinden have been considered as decisive. against the magnetical effects of electrieity, nevertheless the ninth of their experiments was precisely an electromagnetical one, for they led the electrical discharge transverscly through a steel needle, and obtained a strong magnetical polarity in a dircetion perpeudicular to the magnetical meridian; but they considered this as a singularity not to be explained, and hence it has been out of the sight of philosophers trom the year 1785 until 1820, when electromagnetism was discovered. (See I'an llamm, description d'une très grente machine électrigue.)

One of the carlier experiments, which probably belongs to electromagnetism, is that of Cavallo, by which he proved that iron has more efficacy on the magnetical needle, when an acid, particularly diluted sulphuric acid, acts upon it.

Joh. Will. Ritter, already mentioned, pursued a great number of researches upon the analogy of magnetism and clectricity. Ite had in the year 1801 made a series of very delicate experiments upon the gralvanical difference between the two magnetical poles ol a steel needte. The result dedueed from his experiments was, that the southern
extremity of the needle was more oxidable than the northern, and that the galvanical effect of two magnetical needles upon a frog was such, that the south pole acted as the more oxidable, the north pole as the less oxidable metal. It is now acknowledged, that he has been led into error by the difference which a small disparity in the polish of the metal can produce, and which he employed insuffcient means to avoid. The same philosopher stated likewise croneously, that a platina wire, which has been employed to make a liquid communicate with a powerful galvanic circuit, assumes some magnetical direction, and that a needle, of which one half is zinc and the other silver, takes, when conveniently suspended, the same direction as the magnetical needle. The precipitation with which Ritter published these and some other erroneous statements, has thrown a shade over the name of this unhappy but ingenious philosopher, who has enriched science with several discoveries of great importance, and whose profound yet obscure ideas in many cases have anticipated the discoveries of future times. We are far from patronizing a vain exhibition of new ideas, by which it is possible for a very ordinary mind to make pretensions to every new discovery; but when works are marked with the true stamp of genius, it is but justice to acknowledge the merits of their speculations. Some writers have thought that this act of justice would deprive experimental philosophers of a part of the honour duc to their exertions; but this honour is quite unimpaired, if the author, who has anticipated their discoveries, has only had a vaguc and obscure notion of them; while it must be avowed, that when the author has clearly announced the discorery, has derived it from good data and conceived its connections with other truths, the merit of the experimental philosopher is only that of having confirmed it by experiment, which still in many cases can be a work of no smaller claim to glory than the primitive conception itself.

Among the electromagnetical experiments which preceded the discorery of clectromagnetism, ought to be mentioned an experiment ol Professor Mojon at Genoa, who found that a steel needle having been 22 days in communication with a galvanical apparatus of 100 elements, had become magnetical, -an experiment which would have been of no historical interest, if its author had not founded upon it, 18 fears later, a pretension to the discovery of electromagnetism. He seems not to have been aware that his pretended discovery, were it true, should be considered as new even now; for the magnetical effect, hitherto proved by experiments, is not in the direction of the electrical current, but perpendicular to it. The experiment of Mojon is described in Aldini's Essai Thèorique et Axpérimental sur le Gutvanisme. Paris, 1804, tom. i. pag. 339 and 340 . . Aldini mentions, at the same place, that a certain Mr. Romanesi at Trent had confirmed the experiment of hojon, and at the same time observed that galvanism makes the magnetical needle deviate. Professor Aldini, whose work upon Galvanism comprehends two volumes, docs not say a word more upon this subject.

It is, therefore, not surprising, that neither the French institute, nor the other learned societies, nor the numerous natural philosophers, to which the work was presented in the year 1804, took any notice of this observation, which would have accelerated the discovery of electromagnetism by sixteen years. Romanesi seems likewise to have forgot his observation, until electromagnetism was discovered.
'Two or three years before the discovery ol electromagnetism, lrofessor Maschmann at Christiania, in Norway, observed that the silver tree, formed in a solution ol nitrate ol silver, when put in contact with mercury, (the arbor Diune, takes a dircction towards the north; and the celebrated Professor Mansteen found that this direction can likewise be determined by a great magnet. As the metallic precipitation is also of galvanical nature, this observation may be considered as one of the precursors ol electromagnetism.

Electromagnetism itself was discovered in the year 1820, by Professor Litus Christion Oersted, of the university of Copenhagen. Throughout his literary carcer, he adhered to the opinion, that the magnetical effects are produced by the same powers as the electrical. He was not so much led to this, by the reasons commonly alleged for this opinion, as by the philosophical principle, that all phenomena are produced by the same original power. In a treatise upon the chemical law of nature, published in Germany in 1812, under the title Ansichten der ehemisehen Neturgesetze, and translated into French, under the title of liecherches sur lidentite des forees èlectriques et chymiques, 1813, he endeavoured to establish a general chemical theory, in harmony with this principle. In this work, he proved that not only chemical affinities, but also heat and light are produced by the same two powers, which probably might be only two different forms of one primordial power. He stated also, that the magnetical effects were produced by the same powers; but he was well aware, that nothing in the whole work was less satisfactory, than the reasons he alleged for this. His rescarches upon this subject were still fruitless, until the year 1820. In the winter of 1819-20, he delivered a course of lectures upon clectricity, galvanism, and magnetism, before an audience that had been previously acquainted with the principles of natural philosophy. In composing the lecture, in which he was to treat of the analogy betwcen magnetism and electricity, he conjectured, that if it were possible to produce any magnctical effect by electricity, this could not be in the direction of the current, since this had been so often tried in vain, but that it must be produced by a lateral action. This was strictly connected with his other ideas; for he did not consider the transmission of electricity through a conductor as an uniform stream, but as a succession of interruptions and re-establishments of equilibrium, in such a manner that the electrical powers in the current were not in quiet equilibrium, but in a state of continual conflict. As the luminous and heating effect of the electrical current goes out in all directions from a conductor, which transmits a great quantity of electricity; Vol. XVII. Part II.
so he thought it possible that the magnetical effect could likewise cradiate. The observations above recorded, of magnetical effects produced by lightning, in steel-needles not immediately struck, confirmed him in his opinion. He was nevertheless far from expecting a great magnetical eflect of the galvanical pile; and still be supposed that a power, sufficient to make the conducting wire glowing, might be required. The plan of the first experimont was, to make the current of a little galvanic trough apparatus, commonly used in his lectures, pass through a very thin platina wire, which was placed over a compass covered with glass. The preparations for the experiments were made, but some aecident having hindered him from trying it before the lecure, he intended to deler it to another opportunity; yet during the lecture, the probability of its success appeared stronger, so that he made the first experiment in the presence of the audience. The magnetical needle, though included in a box, was disturbed; but as the effect was very feeble, and must, belore its law was discovered, secm very irregular, the experiment made no strong impression on the audience. It may appear strange, that the discoverer made no further experiments upon the subject during three months; he himself finds it difficuit enough to conceive it; but the extreme feebleness and sceming confusion of the phenomena in the first experiment, the remembrance of the numerous errors committed upon this subject by earlier philosophers, and particularly by his liriend Ritter, the claim such a matter has to be treated with carnest attention, may have determined him to delay his rescarches to a more convenient time. In the month of July 1829, he again resumed the cxperiment, making use of a much more considerable galvanical apparatus. The succes; was now evident, yet the cffects were still fecble in the first repetitions of the experiment, bccause he employed only very thin wires, supposing that the magnetical effect would not take place, when heat and light were not produced by the galvanical current; but be soon found that conductors of a greater diameter give much more effect; and he then discovered, by continued experiments during a few days, the fundamental law of electromagnetism, viz. that the magnetical effect of the electrical current has a circular motion round it.

When he had discovered this fundamental law, he thought it proper to publish the discovery, in order that it might be as soon as possible perfected by the co-operation of other philosophers. Apprehending that others might lay claim to this discovery, he sent a short Latin description of his experiments to the most distinguished philosophers and learned bodies; and though, by this means, he has not avoided the pretensions which have been made to his discovery by others, still he has rendered them ineffectual. It deserves, perhaps, to be noticed, that the above-mentioned Latin descrintion, consisting of four pages in 4to., of which the first gives the introduction and the description of the apparatus, the last the conclusions, contains upon the two intermediate pages, the results of more than 60 distinct experiments. From this brevity,
it has happened, that some philosophers have thought that he had treated his subject in a superficial manner.

As the details of this discovery, and of all those which have originated from it, will be exhibited in this article, we shall in the remainder of this historical sketch, in order to avoid repetitions, confine ourselves to the most striking and leading facts, and insert the other historical notices in the doctrinal part.
The first discovery to which that of Professor Oersted gave occasion, was that of Mr. Ampere, member of the French institute. He found that a conductor, conveniently suspended, is attracted by another, when both are transmitting an electrical current in the same direction; but that they repel each other, when the two currents have opposite directions. Professor Schweigger at Halle, invented at the same time, an clectromagnetical multiplicator, which is of very extensive use. Mr. Arago found that steel can be magnetized by the electrical current. Mr. Gay Lussac at Paris, and Professor Ermann at Berlin, discovered, that when the current has passed perpendicularly through the plane of a steel ring, or through a steel plate, it shows no magnetical effect, before the circumference was interrupted.

The most remarkable of all the discoveries, to which that of Oersted has given occasion, is no doubt the thermo-electricity, discovered in 1822 by Dr. Seebeck, member of the Royal Academy at Berlin.

In the same year, the rotation of a magnetical needle around an electrical current, and of a body, which transmits an electrical current around a magnet, first imagined by Dr. Wollaston, was exbibited in a series of ingenious experiments by Mr. Faraday.

\section*{Effect of the Electrical Current upon the Magnetic Necdle.}

The galvanic battery was the first apparatus, by which the magnetic effects of electricity were demonstrated. In order to make it give its magnctic action, its two poles must be joined by a conductor, commonly a metallic wire, which, for brevity's sake, we shall call the uniting conductor, or the uniting wire.

When not closed, the galvanic circle produces no effect upon the needle of a compass.

When the uniting wire is approached, and placed parallel, or nearly so, to a properly suspended magnetical needle, it is caused to deviate from its ordinary direction.

The magnetical effect of the electrical current is not interrapted by the interposition of other bodies. Already the first experiment showed that it passes like the magnctism of a loadstone through metals, glass, resin, wood, stoneware, water, \&c.; cven when the magnetical needle was placed in water, it was affected by the electrical current.

When the conducting wire is placed parallel to a conveniently suspended magnetical needle, the direction of the needle is changed.
1. If the needle is above the wire, and the positive electricity passes from the right to the left
hand of the observer, the north end of the needle will go from the observer.
2. When the needle is below the wire, the direction of the needle is changed in the opposite way; its north end approaches to the observer. It is not necessary, in this and the preceding experiment, that the needle is in the same perpendicular plane as the conducting wire; it is only required that the needle shall be sufficiently near the wire, and in the first experiment, in a plane above, in the last in a plane below it.
3. When the needle is in the same horizontal plane as the wire, and is placed between the observer and the wire, the north end is elevated.
4. If the needle is upon the opposite side, the north end is forced down. In these two experiments, the needle must be very near to the wire.

From these facts, Professor Oersted concludes, that the magnetical action of the electrical current describes circles round the conductor. It will perhaps not be out of place to quote here his own words, which have been overlooked by several authors, who have written the history of this discovery.
In the original publication he says, "ex observatis colligere licet, hunc conflictum (the electrical current,) gyros peragere; nam hoc esse videtur conditio, sine qua fieri nequit, ut eadem pars fili conjungentis (conducting wire,) quæ infra polum magneticum posita cum orientem versus ferat, supra posita candem occidentum versus agat." For the sake of brevity we shall, in the following pages, denominate the direction of the current after the system of Franklin; or, to speak according to the system of two electricities, after the direction of the positive electricity in the current. If we now suppose that the electricity of the current enters the conductor at the right hand of the observer, the austral magnetism (the same which predominates in the north-end of the needle, will, upon the superior surface of the conductor go off from the observer; on the side most distant lrom the observer, the austral magnetism goes downward; on the inferior surface it goes towards the observer; on the side nearest the observer it goes upwards. This is represented in Plate DXXII. Fig. 1. where BA is the conductor in which the direction of the current is A B, the circle \(c d\) ef represents a plane perpendicular to the conductor, in which the magnetical circulation takes place. This plane is here and in the other figures represented as if it were material and opaque. The little arrows show the direction of the austral magnetism. We can make the application of this law to experiments, in a very commodious manner. For this purpose take a piecc ol' paper (Fig. 2,) upon which the arrows and letters, there represented, are drawn. This piece of paper is to be wrapt around a cylindrical body, for instance a pencil, in such a way that the arrows lie in a plane perpendicular to the axis of the cylinder. We have thus an electromagnetical index, which, put in the place of any part of the conductor, shows the direction of the magnetical powers in it. The sharp ends of the arrows indicate the direction in which the austral magnetism (and consequently the north-end of the needle,) is repelled, and the contrary attracted; the opposite
ends of the arrows indicate also the direction in which the boreal magnetism (and consequently the south end of the needle) is repelled, and the contrary attracted. The reader may understand without trouble the most complex lacts we are here to explain, if he has at hand two such cylinders, during the experiment. The same thing may be expressed in different ways. Mr. Hill, lecturer ol mathematics at the University of Lund, in Sweden, has proposed one of the best. Let us imagine, says he, that the observer swims upon the electrical current, with his face turned outwards, (with his back turued towards the axis of the current,) and his head towards the origin of the current, the direction of the austral magnetism of the current will always proceed from his left to his right hand.

Ihis law was confirmed by several other experiments.

When the uniting wire is placed in the same horizontal plane as the needle, but perpendicular to its direction, and near one of its poles, this pole will be elevated, if the current comes from the east, but depressed if it comes from the west. This will easily be understood by the inspection of Plate DXXII. Fig. 3. B A represents here the conductor, \(N \mathrm{~S}\) and \(\mathrm{N}^{\prime} \mathrm{S}^{\prime}\) two needles. All the parts of the drawing have the same signification as in Fig. 1, only that the dotted lines denote the inferior parts of the magnetical circles, but the uninterrupted lines the superior parts. It is evident that \(\mathbf{N}\) (the north end of one of the needles) is here driven upwards by the repelling action from below and the attracting one above it. In the same manner, \(\mathrm{S}^{\prime}\) (the south end of the other needle) is both drawn and pushed upwards.

The effect is on both sides the same, because not only the magnetical poles, but likewise the opposite sides have contrary effects. If one of the needles were turned by means of a magnet, so that each side of the wire could act upon a pole of the same kind, one of them would be elevated, when the other was depressed.

When the uniting wire is perpendicular, and the current enters its superior part, a needle, of which one of the poles is very near to the wire, will be thrown westwards; but if the wire is placed over against a point of the needle, situated between one of the poles and the middle, the needle will be turned castwards. By opposite currents the results are likewise opposite. Fig. 4 will make this easier understood. A B is the uniting wire, the notations the same as in the former figures. It is evident, by the inspection of the figure, that the north end of the needle \(a\), having predominant austral magnetism, must be repelled by the similar magnetism of the conductor; and be turned towards the west. The attraction of the opposite magetism in the conductor tends to give the needle the same direction; but as this coincidence of motions, produced by opposite powers, is constant in electromagnetism, we shall always confine ourselves to mention but one of them. The south end of \(\varepsilon\), having predominant boreal magnetism, is also repelled by the similar magnetism of the current, which here has the same direction as the austral on the opposite
side of the conductor. Thus the north end of the needle is on one side of the conductor turned the same way as the south end on the other side. The north end of \(c\) receives the strongest impulses from the west, and must, therelore, be pushed eastward; while the south end of \(d\) reccives the strongest impulses from the east, and must move towards the west, and in consequence of this its north end must also turn eastward like that of \(e\). Were the wire placed exactly over against the middle of the neealle, this would be solicited equally in opposite directions, and therefore rest at its place.

When the uniting wire is bent in such a manner, that the parts on each site of the flexture are parallel, the exterior surfaces of the two branches are similar, and also the interior ones. In Fig. 5, A C D D represents such a wire. As the current enters the superior branch at C , and in the inferior at \(B\), it is obvious that the directions of the powers in the magnetical circles are the same at \(\varepsilon\) and \(f\), at \(g\) and \(h\). Suppose that the two branches are in one perpendicular plane, and the north end of the needle is placed in a plane, below the superior and above the inferior hranch, the north end will be repelled, when placed on the west side, and attracted, when placed on the north side of the wire. Above the superior branch, or below the inferior branch the effects are in the opposite direction. All the other cases, helonging to the effects of bent connecting wires upon magnetical needles, may be easily explained in a similar manner.

These are the principal experiments, by which Professor Oersted endeavonred to establish the fundamental law of electromagnetism. As they all belong to one class, it has been practicable for us bere to maintain in our account the historical order, without impairing the systematical one. In order to have a short term, we shall call the magnetical action of the electrical current, the revolving magnetism.

The discoverer remarks, in his Latin publication, that the magnetical action of the current being necessarily propagated and not instantaneous, the association of a progressive and revolving motion must give origin to a spiral motion; still, he adds, this seems not to be required for the explanation of the electromagnetical facts hitherto discovered. His words are, "Præterea motus per gyros cum motu progressivo, juxta longitudinem conductoris conjunctus, cochleam vel lineanı spiralem formare vidctur, quod tamen, nisi fallor, ad phænomena hucusque observata explicanda nihil confert." Several writers upon the continent have considered it as an essential point in Oersted's theory, that the magnetical motions in the current should be of a spiral form; but it is evident that he has well distinguished this theoretical but still necessary consequence from the fundamental law, deduced from the facts. Supposing here spirals in the place ol parallel circles, their windings must be so near to parallelism, that the deviations from it must be imperceptible. Thus the question belonging to the spirals may be left for farther research, in which, perhaps, the whole doctrine of vibrations might be considered.

In an appendix published two months later, (in Schweigger's Journal, ) Professor Oersted explained the apparent difference observed between the effect of the galvanical battery, and that of a simple galvanical circuit. In the battery, which is a compound galvanical circuit, as well as in the simple one, the electrical current goes from the more oxidable metal (zinc), through the liquid conductor, to the less oxidable (copper): and when the water is taken away in one of the clements of the battery, and a wire put in its place, the direction of the current remains of course the same; but when we make use of a simple circuit, the water remains at its place, and the uniting wire connects the two pieces of metal in a place, where the direction of the current is the opposite to that of the water. Fig. 6 will make this more perspicuous; \(Z\) represents here the zinc, \(C\) the copper, W the water, \(U\) the uniting wire; the arrows marked with \(+e\) and - \(e\) indicate the direction of the electrical current. It is visible that when in W the current goes from zinc through the water to the copper, it must in U go from the copper to the zinc.

In this appendix it is remarked that the magnetical efficacy of the electrical current depends not on its intensity, but on its quantity of electricity, and that the simple galvanical circuit is preferable for electromagnetical experiments. Some time after the discovery of electromagnetism, the great Swedish chemical philosopher Berzelius was of opinion that all the effects of the uniting wire could be explained in assuming four magnetical poles in its circumference. Plate DXXII. Fig. 7, where A indicates the austral, \(B\) the boreal poles, represents such a distribution. As the appearances in the first electromagnetical experiments may, until a certain degree, be represented by this scheme, it had many adherents, even since Berzelius had abandoncd it. In order to decide the question upon this subject, Professor Oersted made a direct experiment which will be understood by Fig. 8. AB is a wooden pillar more than twelve feet high; \(C\) is a magnetical needle, protected with glass against motions in the air; DE a wire of brass; \(K\) a galvanical apparatus; HGF and OJL brass wire; M and N small cups with mercury. The whole movable part of this arrangement was supported by a wooden frame, not here represented. It appears that the apparatus \(K\) with its conductors, whose extremities are plunged in the mercury, can turn arolud nearly through the whole circle, without an interruption of the continuity of the concluctors; thus the same point of the perpendicular wire, though immovable itself, changes every moment its relative place in the circuit, when the movable part FGill is turned round. The experiment shows that the deviation remains the same, whatever the position of the movable part may be, and that of consequence the polarity must he the same in all points of the circumference of the condactor. The great distance of the other parts of the circuit is the reason that DE is the only one which can have a sensible effect upon the direction of the needle.
\(\Lambda\) most useful application of electromagnetism is the electrmagnetic multiplier, invented by Professor

Schweigger at Halie, and improved by several other philosophers. We have already seen that when the uniting wire is bent so as to form two parallel branches, each of them acts in the same direction upon one of the poles of a magnetical needle placed between them ( Fi g. 5.). On proceeding upon this principle it is clearly shown that when the uniting wire is bent several times, as ABCDE, Fig. 9, and a magnetic needle is suspended in the space, inclosed by the windings of the wire, each of its horizontal parts must producc upon the needle an equal effect; thus in the figure the effect is quadrupled. It is to be remarked, that the windings should be as near each other as possible, in order to keep them all very near to the needle. At the same time the windings must be isolated from each other, which is effected by covering the wire with silk. As the windings can be repeated a great number of times, the multiplication of the effect may go very far. It should be nearly without limits, were it not that the conducting power decreases when the length of the wire increases. In order to give the instrument the solidity necessary, the wire is wound upon a frame. As it is required that the needle should be as movable as possible, it is suspended by a fibre of silk, such as is found in the cod of the silk-worm. The instrument may be made much more sensible by meaus of another magnet placed so as to diminish the directive power of the needle. Mr. Nobili has made a new improvement in this apparatus. In the place of one needle be introduces a compound index, consisting of two needles, NS and \(\mathrm{S}^{\prime} \mathrm{N}^{\prime}\), Fig. 10 , in opposite directions, and joined by a piece of wood or of stout wire, GII. When these \(t\) wo needles are of equal strength, the directive power of the index is reduced to nothing; so that the most feeble impulse will move it. But even when one of them has some preponderance, the force required for making the index deviate is still inconsiderable. At the same time this arrangement has the advantage, that both needles receive an impulsion, the needle NS from the inferior side of the conductor, and \(S^{\prime} N^{\prime}\) from the superior. The needles being in opposite situations, one will receive the same direction by the superior, as the other by the inferior side of the wire. When the needles approach as much to equality as is required for some nice experiments, the index is too easily moved in some others. In order to make the instrument proper for experiments with various degrees of force, though all of the feebler kincl. Professor Oersted added a bent magnet, IKL, which can be placed so as to repel the nearest end of the index, or so as to attrace it. The first of these positions is represented in Plate CXXII. Fig. 10. The magnet can also be approached to the index or removed from it. Fig. 11 represents the whole instrument of half its dimensions. AB is a stand of wood, having a screw on each corner for levelling it. CCC, CCC are two supporters likewise of wood, bearing the frame defg, ujon which the multiplying wire is wound. This wire may be conveniently 50 to 60 fect long, and make 100 or more windings. From the windings each end of the wire passes through a
little ring \(h\), (the other is not to be seen in the figure, ) at \(i i\) the ends of the wire passes also through rings, which are here covered by the other parts of the figure; \(K K, K K K\), are two small pillars of ivory or wood, supporting the transverse piece \(l l\), through which passes the cylindrical piece \(m p\), having a head at \(m\), and being movable upwards and downwards. At the centre \(r\) of the inferior extremity, \(p\) is a little hole, communicating with a transverse hole, which here is represented as shot with a pin, seen immediately under the ring 0 . Throngh the hole at \(r\) is introduced one end of the silk \(r x\), which is drawn out through one of the openings of the transverse hole, and fastened by means of the pin abovementioned. By the silk \(r x\) is suspended the index, consisting of the superior magnetic needle \(n s\), and the inferior one, of which the extremity \(n\) is here visible, the other being covered by other parts of the figure. The boreal pole of one of these needles is turned in the same way as the austral of the other, and both connected with a piece of wire. The circle at whose divisions the index points, is made of glass, preferable to brass, which often is magnetic. At \(q\) is a slit to receive the needle and keep it; when the instrument shall be transported, a similar one is on the other side of the instrument. The index is cleared from the slits when the instrument is to be employed. Having been thus cleared, it is still at rest until the piece \(m p\) is drawn upwards, the ring \(o\) stops it, so that it shall not he elevated too much. The index is sheltered from the air by means of a case of glass which covers the whole frame including the index, and has in the upper part a hole through which the head \(n\) of the piece \(m p\) passes; \(t t\) is a pile movable in the slit \(y y\), which has a scale, showing the distance from a point in the same plane, perpendicular below the centre of the index; \(u v\) is a bent magnet, which has two points, one of which is visible at \(u\), the other is placed in a hole in the pile \(t t\). This magnet can be taken out, and the point \(w\) introduced in the pillar, in order to augment or diminish the directive power of the index, as the purpose may require. When this instrument is to be used, the index must, as already mentioned, be taken out of the slits, and the piece \(m p\) be clevated, so that the index can move freely.

When it is made to oscillate too much it may be bronght to rest by lowering the piece \(m p\) a moment. If' the two needles of the index have exactly the same power, it will have the highest mobility; but if this is not obtained, the bent magnet \(u v\) is to be so placed upon the pillar \(t t\) that the two nearest poles ol the index are repelled. By approaching or retiring the pillar, the magnet may be brought into such a position that the directive power of the index is searecly sensible. When the instrument is in this state it can make scusible the difference between two picces of metal, of which one differs ouly from the other by \(1 \frac{1}{00}\) alloys, when a powerful liquid is applied. When a more considerable effect is to be tried, the bent maguet is put in such a position that it attracts the nearest poles of the index. When the magnet is near the
index, and the current makes the index deviate very little, the deviation increases as the magnet is removed. The distance of the magnet being measured by the seale, this arrangement may contribate much to the determination of the powers. As the needles submitted to the effect of the current can never rest at an angle greater than \(90^{\circ}\). the necdle is prevented from going larther by means of two small pins here marked with the Greck letter \(\varphi\).
The use of the electromagnetical multiplier is very extensive. Before the invention of this instrument, a prepared fror was considered as the nicest test for galvanism; the multiplier surpasses it by far. Mr. Poggendorff has made at very extensive trial upon the galvanic series of metals and other conductors, by means of this instrument. Professor Oersted has made use of it, for conlirming the discovery carlier made by Kamboni, upon electrical currents which two pieces of one metal makes with a liquid. He has also discovered, by means of this instrument, that two equal pieces of metal give galvanical effects, when one of the pieces is earlier introduced in the fluid than the other, a fact which Sir Humphry Davy has confirmed, as it appears, without knowing Oersted's experiments. Professor Oersted has also made use of this instrument for trying silver. With a powerful liquid conductor, solution of potash and muriatic acid for instance, silver pieces, whose alloy differs less than a hundredth, give a deviation of scveral degrees. As silver containing brass gives more effect than silver containing an equal quantity of copper, when muriatic acid is employed, but less when solution of potash is the liquid conductor, the presence of brass in silver is easily discovered by this instrument. It need scarcely be mentioned that gold and other metals may be iried in the same manncr. Dr. Seebeck, at Berlin, has investigated, with much care, all the circumstances belonging to the construction of the multiplier. These researches are given in an excellent paper, read at the Royal Academy of Berlin, on the 14th December 1820, and the sth February 1821, containing a valualle detail of experiments upon several points of electromagnetism. Dr. Seebeck has proved, by experiment, what might be presumed in theory, that the increase of the effects of the multiplier, with the number of the turns, is limited by the resistance against the transmission increasing with the length. The effects of the multiplier increase also with the breadth of the conductor, which he made of a long and thin lamina, in the place of a wire; still the advantage of broad conductors is only confined to experiments with considerable powers: in feeble currents the effects of broad and narrow conductors are equal.
Several philosophers have given themselves much trouble to produce upon the needic, by means of common electricity, the same effects as those produeed by galvanism. A simple electric spark transmitted through a conductor passes too speedily to move the needle. A current produced by the clectrical machine does not seem to contain a sufficient quantity of electricity for actiug upon the needle
without the aid of the multiplier. Even by this instrument it was tried often, without decided success, until of late Mr. Colladon, at Geneva, repeated the experiment with a multiplier, in which the wire was covered with three folds of silk, and thus well isolated. When he approached the two ends of the wirc of this instrument to the two conductors of an electric battery of 4000 square inches, so as to make the discharge go a little distance through the air, belore it enters in the wire. In this manner a current sufficiently strong, and of some duration, is produced, whereby a considerable deviation is effected. The current produced by an electric machine caused also a deviation of several degrees in this instrument.

Professor Oersted proposed, in a paper printed in Schweigger's Chemical Journal, 1821, to make use of magnetical needles, suspended in various directions for investigating the electrical currents in the atmosphere; but he has published nothing since that time. Mr. Colladon has, with fult success, employed the multiplier, to prove the presence of electromagnetism in a thunder storm.

The idea of magnetical revolutions around the uniting wire experienced much opposition at its first publication. Professor Schweigger objected to it, that when such revolutions did exist, it would be possible to make a magnet circulate round the uniting wire. Dr. Wollaston drew the same conclusion, but with the contrary meaning; finding this result probable, he invented an instrument to prove it. The experiment having been stopped by an accident, Mr. Faraday took it up, and made an extensive series of experiments on the subject, conducted with the same skill which he has displayed in so many other investigations. He found that not only the magnet may be made to turn round the conductor, but that likewise a movable conductor, may be made to turn round the magnet. We shall have an opportunity to return to this subject; here we can only give an account of the experiments by which the motion was communicated to the magnet. Plate DXXII. Fig. 12, represcuts an apparatus proper for the experiment; CCCC represents a cup of glass, or some other non-conductor, through the bottom of which passes the conductor EFG. The cup is filled with mercury, in which a small magnet AB floats, being kept in a vertical position by a piece of platinum, fixed at its inferior extremity. It can also be kept in this position by fixing the inferior extremity to the bottom by means of a short thread of silk. \(\quad D\) is a conductor whose lower end dips in the mercury. When a strong electrical current is now caused to pass through this arrangement, the magnet revolves about the conductor D. The directions of the rotations are in all cases such as the fundamental law of electromagnetism indicates that they should be. \(\Lambda\) magnet can also be made to turn round its own axis by an electrical current. Let CCCC, Fig. 13, be a cup of glass or wood, nearly filled with mercury; AB a magnet, having at its lower extremity a steel point, introduced into the agate II. JK is a slip ol brass or ivory, having a hole through which the magnet passes freely, and by means of which it is kept per-
pendicular at the superior extremity; \(A\), is a cavity for receiving mercury; EF is a wire, at whose extremity is also a cup for mercury; and at D is placed a similar one, from which proceeds a wire amalgamated on its lower extremity, in order to favour the clectrical communication. When the electricalcurrent is established by conductors plunged in the mercury at \(D\) and \(F\), the magnet will turn with great rapidity.

\section*{On the power of the Electrical Current in developing Magnetism in other Bodies.}

In a paper read before the French Institute, the 25 th September 1820, Mr. Arago showed that the clectrical current possesses, in a very bigh degree, the power of developing magnetism in iron and steel. Sir Humphry Davy stated the same facts in a letter to Dr. Wollaston on the \(12 t h\) November 1820. Dl. Seebeck communicated to the Royal Academy at Berlin, the 14 th December, an excellent series of experiments upon the same subject. Thus treated in the space of three months by three so highly distinguished philosophers, the subject was nearly cxhausted in the same year that the discovery was made. The uniting wire of a powerful galvanic apparatus attracts iron-filings often with such a power as to form a coating around the wire ten or twelve times bigger than itself. Mr. Arago found that this attraction did not take its origin from any previous magnetism in the iron-filings, which could touch iron without adhering to it; nor was the attraction to be considered as a common electrical one, since brass and copper filings were not attracted. He found also that the ironfilings began to move before thcy came in contact with the uniting wire. Hence it must be admitted that this attraction is operated by converting each little piece of iron into a temporary magnet. Greater pieces of soft iron were also converted into temporary magnets, and small steel-needles into permanent magnets. Sir Humphry Davy had, in his researches, obtained the same results, before he had got notice of the experiments of the French philosopher. Dr. Seebeck seems to have bcen in the same case, when he made his experiments; but he had received notice of Arago's experiments when he published his own. The direction of the magnetism produced is always according to the fundamental law. Let the circle in Fig. 14 represent a horizontal section of a perpendicular conductor, in which the current comes from above; let the little arrows indicate the direction ol the revolving magnetism, and BA, BA, BA, BA, some steed needles; then these needles will obtain austral magnetism at \(\Lambda\), and boreal magnetism at \(B\).

Dr. Serbeck found that a steel needle was strongly magnetized when it was drawn around the conductor. The direction of the magnetism was the same as it should be, if the necdle had been laid closely around the conductor, and afterwards removed. He laid also an armour of soft iron on both sides of the conductor, which hereby was made able to bear a considerable weight of iron.

Mr. Arago and Mr. Ampére, employed in the
development of magnetism the principle of the multiplier, without having notice of the discovery of Schweigger. A stecl needle AB covered with paper, was surrounded by a winding of the uniting wire EE, as represented in Plate CXXII. Fig. 15. The steel-ncedle may also be included in a glass tube. The great galvanic apparatus of the London Institution is now lound to develope magnetism in such an eminently high de.sree, that a little steel bar, by falling througl a glass tube, around which the windings of the uniting wire passed, was magnetized to saturation.
The electricity produced by friction, when employed in sufficient quantity, developes likewise magnetism in steel. The discharge of an electric battery, and even of a single bottle, magnetiscs a steel needle. All these magnetical effects are submitted to the same law as those of the galvanoelectrical current, and hence they are also increased upon the principle of the multiplier. When the discharge passes through the air across the steelneedle, the magnetism devcloped is leebler than it is when the electricity passes across it through a metallic conductor.
Mr. Savary, at Paris, has of late discovered that steel-needles placed at different, yet small distances from a wire, through which passes an electric discharge, do not all obtain magnetism in the same direction. In one of his experiments he caused to pass the discharge of a battery having twenty-two feet surface through a platina-wire of about three feet in length and one-hundredth of an inch in diameter. The needles in contact with the wire became magnetised in the direction commonly observed, which he calls the positive direction, but a needle placed at the distance of 1.1 millimetre, about \({ }_{2}^{1}{ }_{4}\) inch, hecomes magnetic in the opposite direction, which he calls the negative. At the distance of 2 millimetres a needle was not made magnetic by the discharge. At the distance of 3 to 8 millimetres the needles become magnetic in the positive direction, but most at the distance of 5.5 millimetres. From 8.6, to 21.4 millimetres, the magnetic direction was negative, with increasing intensity from 8.6, to 14.6 , and with decreasing from this point until 21.4, where it was nearly at zero. From 23 millimetres distance the magnetic direction became again positive. As for different conducting wires, he found, that within certain limits the maximum of effect is the more distant from the wire, and the numbers of alternating directions the greater, in the same degree that the wire is shorter in comparison to its length. In a helix of narrow windings, needles placed parallel to its axis obtain all the same kind of magnetism, but by varying the electrical power, from that of one bottle of Leyden, to that of a battery of twenty-two feet surface, he obtained, in one experiment, six alternations, viz. three positive and three negative. When the needles are included in a metal coating, for instance, wrapt in a lamina of tin, the effect is changed. If the coating is thick, the effect is nothing, but by a coat sufficiently thin the effect may be increased. When the conducting wire is straight, a plate interposed between the wire and
the needle, if thin, augments the effect, if thick, diminishes it; a certain thickness may also be found by which the plate is without effect. The needle is in all these experiments in contact with the plate. When the plate is not interposed, but the wire placed upon the plate, the ellect of a very feeble discharge is increased by the plate, and still more the thicker it is. At a certain degrese of disclarge a thin plate diminishes the effect, at thick plate augments it. The effect of very considerable discharges is always retuced to nothing, or inverted by thick plates. By the galvanic arrangement the same effect is not produced, when the current is uninterrupted, but analogous effects to chose mentioned may be produced by an apparatus which has intensity enough to give sparks at the moment of closing the circuit. The current must, for this purpose, only be established for a moment; a constant current destroys the alternations.

The analogy of thesc effects, with those alternations, which may be produced in bad conductors by common electric experiments, is obvious.

Mr Hill, at Lund in Sweden, has found that when the discharge passes along a magnetical needle, exactly through its axis, all its magnetism is destroyed. He cven considers this as the best means to take away the magnetism of a needle. At the same time he remarks that when the electric charge does not go through the axis, a feeble magnetism is developed on both sides of the line of passage, which probably has led preceding philosophers into an error respecting the magnetical effects of electricity. (Schwcigger's Journal for the year 1822, No. 3.)

Professor Ermann at Berlin found that when the electrical discharge passes perpendicularly through the centre of a round plate of steel, it reveals no magnetism, but when a split is afterwards made in the plate, or a sector cut out of it, the opposite side of the gap shows the opposite magnetism. The celebrated Gay Lussac and Mr. Welther, without knowing the experiment of the Prussian philosopher, discovered the same fact in a steel ring. This experiment is very illustrative; it shows that the steel disc or steel ring, whose circumference has been in the same state as that of the uniting conductor, preserves after the cessation of the current a latent magnetism, resembling that of a magnetic circle, composed of small magnets, connected by their opposite poles. Such a circle is ineffectual when the circumference is closed, but becomes a magnet when opencd. This magnetism was, however, effectual during the time that the ring or disc was comprehended in the current, wherein its magnetism at every moment received a new impulse. Hence we may conclude that the circumference of the uniting conductor is not to be compared with a magnetic circle, wherein the powers are at rest, which is the theory brought forwards by Mr. Prechfel, director of the polytechnic school at Vienna; but our experiment confirms the original idea of the magnetical effect of the current as produced by a revolving magnetism.

This view of the subject, that the magnetism of the electrical current is a magnetism in motion, has been overlooked by a great number of authors who
have written upon electromagnetism: while it has been adopted by two highly distinguished philosophers, Dr. Vollaston and Mr. Biot. The difference between magnetism in motion and at rest being until our time unexemplified, this view appeared to many philosophers as a mere postulate, which they tried to avoid, by adopting some other theory, particularly the elaborate theory of Ampere, of which we shall afterwards speak. Now the theory of revolving maguctism has obtained a considerable support by the discovery of Mr. Arago, who, in his researches on the effect of metals upon the oscillations of the magnetic needle, found that it was much affected by a metallic plate, for instance a copperplate, when either the needle or the plate was put in motion. There is certainly but few philosophers who have not repeated Arago's remarkable experiment by which a rotatory plate of copper or some other metal puts a magnetic needle conveniently suspended, into a revolving motion. We must pass in silence the numerous and skilfully conducted experiments of Mr. Barlow and Dr. Seebeck, and only quote for our purpose those of Messrs. Herschel and Babbage, by which it is proved that a rotating magnet causes a conveniently suspended metallic plate to turn round. Mr. Poisson has read before the French Institute an elaborate mathematical treatise upon the theory of moved magnetism. Thus the theory of revolving magnetism has obtaince the only confirmation which could still be desired.

\section*{Effets of the Magnet upon the Uniting Fire.}

Professor Oersted, in the prosecution of his experiments, was well aware that a movable part of the electric circuit must be attracted and repelled by a magnct after the same laws by which the uniting wire acts upon the magnet. He published, two months after his first electromagnetical paper, another paper, in which he gives an account ol an experiment be made; he found that a little galvanical circuit, suspended by a thin metallic wire, was put in motion by a magnet. He complains himself in this paper, that he had not succeeded hitherto in getting an apparatus sufficiently movable to be directed by the magnetism of the earth (Schweigger's Journal.) Professor Schweigger at Halle, and professor Erman at Berlin, both invented, without knowing Oersted's experiment, apparatuses fit for the same purpose. It would be tedious to give an account ol all the experiments made upon this subject; a short description of those which are considered as the best will be sufficient. Plate DXXII. Fig. 16 represents, with some slight modifications, an apparatus invented by Mr. Ampere. A B C D E F GIl is a bent wire, of which the two ascending parts at 13 and (: are isolated from each other by some non-conductor and tied together. At \(\Lambda\), and also at 11 , is soldered a steel point, which reposes on the bottom of a small iron cup filled with mercury, at K and M . J K and L . M are brass wires, \(N\) O a piece of wood, in which they are inserted, and by means of which they can be fixed at a convenient place. It appears that when the current
enters at the end of one of these wires, for instance at J , it is obliged to pass through the whole movable conductor A B CDEF G H, and go out at the other end L. This conductor is put in motion with much promptitude hy means of the magnet. In comparing this arrangement with Fig. 5, it is obvious that the part D E F G of the movable conductor, in which the current enters at \(D\), is quite analogous with B D C A, Fig. 5, and that therefore the austral magnetism on the interior side of both is turned toward a spectator placed over against the place represented by the figure. It is also evident that the magnetical direction is the same in the part B C D, which turns the same side to the space included by the movable conductor. Thus a magnet whose anstral pole is directed against this space will repel the conductor, but placed near to a point of the exterior side it will attract it. On the opposite side of the plane B C D E F G, all the effects arc opposite to those here mentioned.

The magnetism of the earth is likewise able to give a direction to the suspended wire. This direction must, in the northern hemisphere, be the same which is produced by a magnet placed below the wire with its austral pole above, and its magnetical axis put in the direction of the dipping needle; which clirection is the same as that which a magnetical needle should tend to give the wire if it were fixed below it, in the same position which the current gives it. Thus the plane C D E F must be directed perpendicularly to the magnetical direction; when the current enters at \(A\), the perpendicular part F E will be placed towards the west, but towards the east, if the current enters at \(H\).

The same reasoning may be employed in all other cases where a movable uniting wire is exposed to the influence of terrestrial magnetism; for instance, when the wire is suspended in such a way as to permit the particles to move only in vertical planes. Plate DXXII. Fig. 17, represents an arrangement of this kind. A B C D is a wire, whose two extremities are wrapt round the ends of a thin axis of some non-conductor, and are terminated by two steel points, \(a\) and \(d\), destined to be placed in two stecl cups filled with mercury, and communicating with a galvanic apparatus. In order to give it the mobility necessary, it is nearly balanced by a counterweight at E. When the axis is placed perpendicularly to the direction of the magnetic needle, and the current enters at \(\alpha\), that is in the west, the plane A BCD will be driven out of its perpendicular position, and deviate towards north: but if the current enters at \(d\), the deviation will be austral. If the axis A D is placed in the direction of the magnetic necdle, the cleviation will, in the first case, be towards the west, in the last towards the east. The boreal pole of a magnet, placed below B C produces the same phenomena; the deviation goes always to the left of the current.

The principle of the multiplier has also been applied to the movable uniting wire. Fig. 18 represents one of these contrivances invented by Mr. Ampere, and somewhat modified by Professor Van de Ross. On the extremity \(A\) of the wire is a steel
point, resting in a cup with mercury: \(\mathbf{B}\) is a part of the wire, which forms spirals, fixed on a circular piece of pasteboard, through whose centre it passes at the last, and is prolonged to \(\mathbf{C}\), which dips in a cup of mercury. Another apparatus, likewise invented by Mr. Ampère, is represented in plate DXXIII. Fig. 1. The wire passes through a glass tube, from A to \(B\), it is then wrapt around it , and being returned to the extremity A, passes also around C D, and being arrived at D is drawn through the tube, and descends finally to the inferior cup.

Auother apparatus of Mr. Ampère, improved hy Mr. Marsh, destined to show the magnetical effect of the earth upon the uniting wire, is represented Fig. 2; A B is a cup of glass nearly filled with a convenient liquid, containing a galvanical arrangement, and kept swimming upou a liquid by a piece of cork; the uniting wire is like that of Fig. 1.

In the same manner as a magnet can be made to revolve round the uniting wire, so can a movable uniting wire be made to revolve round a magnet. Fig. 3 shows the principal parts of an apparatus for this experiment; C C C C is a glass cup having a hole through its foot, into which is inserted a copper tube, soldered to a copper disc, cemented to the foot of the glass. The wire E F is also soldered to another copper disc upon which the glass rests; \(n s\) is a magnet inserted in the copper tube. The cup is filled with mercury. At \(a\) there is a sort of ball and socket joint, by means of which a wire \(a b\) is put in communication with the arm D H of a brass pillar: both the socket and the ball are amalgamated, and a piece of silk fixed to the ball or head of the wire, passes through a hole drilled in the arm D H , and by which the wire \(a b\) is suspended, thereby preserving the contact, and leaving to the latter a perfect freedom of motion. When the current is established, the wire \(a b\) will revolve about the magnet. The directions of the rotations are such as the theory indicates.

We have seen that a magnet can be made to turn round its axis. An apparatus has likewise been contrived for producing the same phenomena in a movable uniting wire. For shortness sake we shall here omit the description of it, while we give the description of a very simple turnirg apparatus invented by Mr. Ampere, and whereof a perpendicular section is exhibited in Fig. 4. A B C D and \(a b c d\) are two cylinders of copper, soldered to a bottom of copper, in such a manner that the space between the two cylinders is able to contain a liquid, but the interior cylinder is left open at both its ends. To \(a\) and \(b\) is soldered a bent copper wire, having a cavity at \(F . \approx \approx\) is a light cylinder of zinc, to which is also soldered a bent wire, in the middle E of which is a steel point resting in the cavity \(F\), and consequently the cylinder \(\approx \approx\) will move upon its point of suspension. When the space between the two cylinders is filled with a convenient fluid conductor, an electrical current is established. Now, if a magnet N S is introduced into the cylindrical space of \(a b c d\), the cylinder \(z z\) will begin to turn. When the north end (the austral pole) is Vol. XVII. Part II.
upwards, the motion is from left to right of the observer, and the contrary with the magnet reversed; all as it could be predicted from the fundamental law of electromagnetism.

Another ingenious contrivance, invented by Mr. Barlow, is represented in Fig. 5, where A B is a rectangular piece of hard wood, C D a wooden pillar, D EF a piece of stout brass or copper wire, \(a b\) a somewhat smaller bent wirc, soldered to it at F , through the legs of which passes the axis of a whee! W, of thin copper, \(h f\) is a small reservoir for mercury, and \(g\) i a narrow channel running into it. II is a strong horse shoe magnet. Mercury being now poured into the reservoir \(h f\) till the tips of the wheel are slightly immersed in it, and the surface covered with weak dilute nitric acid, let the connexion with the battery be made at \(i\) and \(D\), and the wheel will immediately hegin to rotate. If the current or the magnet be inverted, the motion of the wheel will also be reversed. In order to understand this experiment, it must be remarked, that each radius of the wheel which touches the mercury, is a part of the uniting conductor, of which one side is repelled by the austral, the other by the boreal pole of the magnet; thus it must either tend to raise or depress cach of these radii.

Sir H. Davy has exhibited the rotation of a conductor by means of mercury. When in a shallow non-conducting vessel containing mercury, the conductors of a powerful galvanical arrangement are plunged at some distance from the sides, and one of the poles of a strong magnet is brought from below to the bottom of the vessel, near one of the conductors, the mercury round this conductor will form a vortex about it. The directions of the motions are always according to the poles and conductors in action, such as the fundamental law indicates.

When a movable part of the uniting wire is placed in the direction of the dipping needle, it cannot be put in motion by the magnetism of the earth: but when it is placed in another plane, though uncler the same inclination, it is put in motion. Professor Pohl at Berlin, has invented an apparatus, represented in Plate DXXIII. Fig. 6, exhibiting this phenomenon. \(A B\) is a piece of board, supported by screws, by means of which it can be levelled. \(C D\) is a wooden pillar, whose superior part is immovable, and has on its top an agate, which serves to support a steel-point, whereupon rests a wire EF, balanced by a counter-weight \(G\). At \(E\) is a cavity containing a drop of mercury, by means of which one of the conductors, whereof only a part, \(H\), here is represented, may be made to communicate with the movable wire. JKL is a circular channel containing mercury, which can be put in communication with the galvanic apparatus through a conductor at M. When a powerful electric current is transmitted through the apparatus, EF can only rest in the position of the dipping needle; in all others, it moves until it arrives at that position, which it nevertheless will leave by the motion al. ready obtained. Hence it must still continue to turn, when it is not stopped, to the position in which it is possible for it to rest.

\section*{Mutual Action of Electrical Currents.}

Mr. Ampère found, soon after the discovery of electro-magnetism, that two conductors attract each other, when they are transmitting eleetrical currents of the same direction, but thet thcy repel each other when the currents have opposite directions.

The movable conductor, represented in Plate DXXIL. Fig. 16, and already described, may be employed to prove this by experiment. As the current which passes through the movable wire ABCDEFGH, has in CD the opposite direction of that in FE, the same uniting wire, which attracts one of these, will repel the other. This experiment may be exhibited in various shapes; but it does not appear that any experiment which could not be made by this simple apparatus is necessary for conhirming the law above mentionce.

This law may easily be deduced from the fundamental law of electro-magnetism, as may be seen by Plate CXXill. Fig. T, which represents two parallel currents of egual direction, and expressed by the same signs of which we have made use in the preceding pages of this article. It is here evident, that the boreal magnetism at \(b\) meets with the austral at \(\alpha\), and that the austral at a meets with the boreal at \(\beta\), thus the effect must be attraction. In Fig. 8, two currents of opposite directions are represented, where the boreal magnetism at \(b\) meets with that at \(\beta\), and the austral magnetism at \(\alpha\) with the similar at \(a\) : which must produce repulsion.

When the currents are not parallel, but form an angle, they attract each other when both are directed either towards the apex or in the contrary way, but they repel each other when one of the two currents is directed towards the apex at the same time that the other goes off from it. Fig. 9.represents two currents which go from the apex. The boreal magnetism being in one of these directed from a to \(b\); the austral magnctism in the other from \(\beta\) to \(\alpha\), the result must be an attraction by which the conductors, if one of them is movable, are brought to parallelism. The figure represents only one side of the conductors; but the opposite sides, having both their magnetical directions reversed, will likewise be attractive. It is also easily uaterstood, that the opposite magnetical poles are directed against each other, and produce attraction when the current in both conductors goes towards the apex of the angle. Fig. 1o. represents two currents having opposite directions with respeet to the apex of the angle. Here the similar poles in the magnetical rotations are directed against each other, and therelore produce repulsion, such as to place both conductors in the opposite ends of one straight line, if one of them is movable.

This may be confirmed by means of the apparatus represcuted in Plate CXXIII. Fig. 11, consisting of two parts, viz. a movable conductor, \(\Lambda\) C 3 , and a multiplying wire D EF (i. The movable wire is terminated by two steel points at A and B, which are to be placed in two small steel cups filled with mercury, and communicating with a galvanic apparatus. The multiplying wire is preferred to a straight one, in order to inerease the effect. The
upper part D E, of the multiplying wire is placed at the same height as the branch B C of the movable conductor; but in such a position that both conductors prolonged would form an angle. The extremities F and G of the multiplying wire are to be put in communication with a galvanic apparatus.

Mr. Ampère, to whom we are indebted for the discovery of the mutual attractions and repulsions of the electrical currents, considers the law of this action as a fundamental one, at least so far as our present knowledge extends. He thus admits no rotative action in the electrical current, but he transports it to the magnet, in which he supposes electrical currents, revolving in planes perpendicular or nearly perpendicular to the axis of the magnet. At first he supposed that all the currents had their centres in the axis, and were situated in planes perpendicular to this axis, but as he soon found that this would not represent the phenomena, he supposed that each atom of the magnet was surrounded by electrical currents, still revolving in planes perpendicular to the axis of the magnet. When Mr. Poisson, however, showed, that in consequence of this view the greatest effect of a magnetical bar would be placed in its extremity, contrary to experiment, he changed this supposition, and at present he is of opinion that the currents are situated in a plane somewhat inclined to the axis of the magnet.

By these suppositions, and a considerable exertion of mathematical skill, he is enabled to make this view represent well enough the phenomena, though his theory is very complicated. It is not necessary here to enter into a discussion on all the points of this theory, as simple consideration of the fact upon which it is founded will be sufficient to decide the question.

Let us suppose that electromagnetism had not been discovered before the discovery of the mutual action of electrical currents, the application of the common philosophical rules should enable us to discover therein the rotative character of the action. The fact is, as above mentioned, that paralled currents attract each other when they have the same direction, and repel cach other when they have opposite directions. Now it is to be remarked, that two parallel things of the same direction have their opposite sides placed against each other: the left of the one is nearest the right of the other: but two parallel things of contrary directions have their similar sides turned against each other: right against right, or left against left. Thus the fact reduced to the simplest philosophical expression is that two points of electrical eurrents repel each othcr by their similar sides, and attract each other by their opposite sides. The most direct enunciation of the experimental result cannot here be considered as at the same time the expression of the philosophical one; for it is evident that two parallel things cannot aet upon each other immediately, but only by some transverse action, which here shows itself as consisting of attractions and repulsions in opposite directions, or in other terms, as having polarity. But such contrary powers forming a circle, should keep
themsclves in equilibrium, and produce no effect without their limits, were they not in motion. Thus the very experiment of Mr. Ampere should, in the absence of all other cvidence, be sulficient to prove, that the electric current contains a revolving action, exhibiting every appearance of polarity. We do not mean to ascertain the nature of these attractions and repulsions; but it has been our object only to point out the more immediate consequences of the facts.

\section*{Elcetromagnetical Currents produccd by Ilcat.}

Dr. Secbeck, in his researches upon electromagnetism, extended at the same time his investigations to the laws of galvanic action, and among these to the influcnce of heat in galvanic arrangements. Some phenomena here occurred to him which led him to think that two metals, forming a circuit, might produce magnetism when the equilibrium of heat in it was disturbed. Experiment confirmed this opinion. Plate DXXIII. Fig. 12. represents such a circuit; let ABC be a picce of bismuth, and ADC a picce of copper, and let one of the junctions, \(A\) for instance, be heated, an clectrical current will be established, which here can only betray its existence by the magnetical needle; this indicates all the magnetical properties of an electrical current, and, in the instance here mentioned, the current goes into the heated junction from the bismuth to the copper. Dr. Scebeck is not inclined to consider the cflect thus produced as a true electrical current, but an effect sui generis: and indeed we have not hitherto been able to discover in this circuit either any chemical effect, nor heat or light; still we can represent all the phenomena of Dr. Seebeck's circuit by the same terms as those of the common electrical current: and in the explanation of all the facts, it will appear highly probable that this current is truly a particular kind of electrical one. Professor Oersted has proposed to call the current discovered by Dr. Secbeck the thermo-electrical current, and in consequence of this to distinguish the action hitherto called Galvanism by the name of the Hydro-eleetrical current. Hence we have now the names thermo-clectricity and hydro-electricity, to which we could add the name tribo-clectricity for the electricity produced by friction. Dr. Seebeck has made a very eonsiderable number of experiments upon the thermo-electricity produced by the metals and other perfect conductors. In a circuit containing bismuth, together with one of the other metals, he finds that, in the heated junction, the current goes always from the bismuth to the other metal; of course the bismuth loses, at that point, positive clectricity. This we shall, for shortness sake, express thus: bismuth becomes negative with all other metals in the thermo-electrical circuit. In the same sense tellurium may be said to become positive with all other metals. It appears already by these two examples, that the thermoelectrical order of the metals is not the same as the hydro-electrical; and indeed the experiments of Dr. Seebeck have proved that these two orders are dis. crepant throughout.

The order of the inctals, beginning with that which becomes negative with all others, is,
1. Bismulh.
2. Niekel.
3. Cobalt.
4. Pollertium.
5. Plutinum. Several picces of this metal gave very different resuls, even those which came from the same workshop. Three pieces from Jeannetty's platina manufacture were placed in the order of their effects very far from each other. The pieces which kept this place here between palladium and uranium were prepared by 1)r. Wollaston, Mr. Bergemann, chemist at Berlin, Mr. Trick, chemist, appointed to the manulacture of china at Berlin, and Mr. Jeametty at Paris. As onc of these pieces was prepared by Dr. Wollaston, and the two Berlin chemists being men of much chemical skill, we may consider this place as that of the pure platinum, if Mr. Becquerel had not found that two parts of the same platinum wise give a considerable thermo-electric action, when one of them was drawn out so as to become much thinner. Hence it appears that the density of the platinum has a considerable influence upon its thermo-electrical effect. This might perhaps also be the case with other metals.
6. Uranium.
7. Copper, reduced from the exide by means of black flux, Comp. No. 12.
8. Manganum.
9. Titanium.
10. Brass, some specimens. (Comp. No. 13.)
11. Gold, of Hungarian ducat containing \(0_{0}^{\frac{1}{0}}\) alloy of silver and copper.
12. Copper, occurring in the trade, and containing no silver, iron, lead, or sulphur. (Comp. 21.)
13. Rrass, some specimens. (Comp. No. 10.) 14. Platinum, a piece of unknownorigin. (Comp. No. 5, 18, 29.)
15. Mercury, the purest occurring in trade.
16. Lead, specimens occurring in trade, and pure lead.
17. Tin, English and Dohemian.
18. Platinum, A bar from Jeannetty's manufacture.
19. Chromium.
20. Molybdæuum.
21. Copper, occurring in trade, and containing neither silver, iron, lead or sul. phur. (Comp. 12.)
22. Rhodium.
23. Iridium.
24. Gold,
\(a\), purified by antimonium, \(b\), re duced from the oxide.
25. Silver,
26. Zinc, 27. Copper,
\(a\), purified by cupellation, \(b\), reduced from the chloride of silver. \(a\), occurring in trade, \(b\), pure zinc. reduced from sulphate of copper, \(a\), by iron, \(b\), by zinc. (Comp. 12. and 21.)
28. Wolfram.
29. Platina, some specimens, (Comp. 5, 14, 18.)
30. Cadmium.
31. Steel.
32. Ilon, \(a\), occurring in trade, \(b\), pure iron.
33. Arsenic.
34. Antimony, \(a\), occurring in trade, \(b\), pure.
35. Tellurium.

In this series, Dr. Seebeck found that though most of the metals placed here near each other give only a feeble effect, and the more distant a stronger effect, this rule is not constant; tellurium, for instance, gives with bismuth less effect than antimony. With most of the metals in the series tellurium produces a feebler effect than antimony; with silver it produces more effect than with most of the metals placed above it. Antimony produces more effect with cadmium than with mercury. Iron produces only a feeble effect with most of the other metals, and particularly with nickel and cobalt. Of such exceptions Dr. Seebeck has found a great many.

Dr. Seebeck also examined the thermo-electrical powers of several other bodies. Sulphuret of lead becomes negative even in contact with bismuth. Some other sulphurets, as sulphuret of iron, of arsenic, of cobalt and arsenic, of copper, all with a maximum of sulphur, stand in the thermo-electrical scries very near to the bismuth. On the contrary, the sulphurets with a minimum of sulphur stand very near to antimony; that of copper stands even under antimony.

Dr. Seebeck found also that concentrated nitric and sulphuric acids are to be placed above the bismuth, but that a concentrated solution of potash or of soda, obtains a place below antimony and tellurium.

Dr. Seebcck constructed also circuits of two picces of one metal; heating or melting one of the pieces, and putting one extremity of the other piece, which must be bent, in durable contact, while the opposite extremity was in temporary contact with the heated piece. A bent silver wire was, for instance, plunged first with one of its extremities and afterwards with the other in melted silver; the magnetic needle indicated that the current was directed from the melted metal to that extremity which had been the longest time in contact. The same effect, though feebler, was observed when the silver had ceased to be liquid. When a platina wire is tried with a heated piece of platina the direction of the current is opposite. The general result of Seebeck's experiments is, that in the metals of the superior part of the thermo-electric series the direction of the current is as in the platina going from the heated metal to that extremity of the bent picce, which is latest put in contact with it; but in the inferior part of this series the current goes, as in the silver, from the heated metal to that extre-
mity of the other metal, which has been longer in contact with it.

As soon as the thermo-electrical current was discovered, it was obvious that a compound thermoelectrical circuit might be formed in analogy with Volta's complex hydro-electrical circuit. This consequence did not escape Dr. Seebeck, but discovering some opposing circumstances, which we shall soon mention, he bestowed little labour upon this subject, to which he perhaps proposed to return another time. Baron Fourier and Professor Oersted undertook, without knowing this observation of Dr. Seebeck's, a similar research. Their first complex thermo-electrical circuit was a hexagon formed of three pieces of bismuth and three of antimony soldered together. One of the sides was put in the magnetic direction, and a compass placed below it, when first one of the junctions was heated, then two, not adjacent junctions, were heated, at last three, still leaving between two heated junctions one which was not heated. The compass needle changed its direction some degrees by the heating of one of the junctions, still more by the heating of two, and most when all the three junctions were heated. By cooling the three junctions by means of ice, and leaving the three others to the temperature of the atmosphere, similar and even more comparable effects were produced. By heating threc alternating junctions, and cooling the other with ice, the effect rose to \(60^{\circ}\) of the compass used in the expcriment. In another scries of experiments a rectangular circuit of 22 bars of antimony and 22 of bismuth soldered together was employed. Here likewise as in the preceding experiment, the combined effect of heating and cooling was employed. Now the circuit was opened by dissolving one of the junctions, and, in order to establish the circuit, when required, a little cup of brass destined to contain mercury, was soldered to each of the two bars, whose conjunction was interrupted. A copper wire of about 4 inches in length, and \(2^{1}{ }_{5}\) inch in diameter re-established nearly the current; and by two parallel pieces of this wire the current was brought to the full effect. A wire of the same diameter, but a little more than three feet long, was found a tolcrably good conductor, while a platina wire of \({ }_{5}^{1}{ }^{1}\) th inch and about 16 inches long scarcely transmitted a fortieth of the effect. Liquid acids and solutions of alkalies or other metallic oxides, which prove excellent conductors in the hydroelectrical current, were found quite isolating in the thermo-electrical circuit. Two discs of silver, separated only by a lamina of the thinnest blotting paper, moistened with sulphate of copper, isolated likewise the whole effect of the thermoelectrical current.

The thermo-electrical current, even the most intense that was tried, produeed no visible chemical effect; nor was it capable of producing heat in thin metallic wires, probably because they are too feeble conductors of thermo-electricity.

The thermo-electrical circuit also produces no effect upon the electrical condensation.

It is very remarkable that, notwithstanding all that has been mentioned, the thermo-electric cir-
cuit makes a prepared frog palpitate, like the hy-dro-electrical circuit. The communication between the extremities of the circuit and the nerves of the frog were made by means of platina wire, in order to guard against the influence of unequally oxidated surfaces.
Among circuits differing ouly by their length, the shortest has the greatest effect. A circuit of double length has not much more than half the effect. Complex circuits do not seem, therefore, at first sight, more efficacious than simple ones; the length being as much increased by the increased number of elements, as the effect should be heightened by the greater number of acting junctions; but comparing circuits of cqual length whereof one has only two junctions, the other more, we see the true influence of the increase of acting junctions. Plate DXXIII. Fig. 13 represents a simple circuit of antimony \(a a\), and bismuth \(b b\), where only one of the junctions is to be heated or cooled. Fig. 14 represents a complex circuit of the same length, formed of two pieces \(a a\) of antimony, and two pieces \(b b\) of bismuth. Two of the junctions of the latter arrangement, situated on the extremities of one diagonal are here heated or cooled. Under the same changes of temperature, where the circuit, Fig. 13, made the needle to deviate about 22 degrees, that of Fig. 14, made it to deviate about 50 degrees. Fig. 15 and 16 represent two circuits of double the extent of the former, one simple, one having three alternations. By the same differences of temperature, by which the arrangement, Fig. 15, gave from 15 to 15 degrees, that of Fig. 16 gave nearly 32 degrees.

In several complex circuits, it is found that the heating or cooling of one junction only produces twice the angular deviations of that added by the addition of each active junction more. The effect of one active junction, when the others are at rest, is by experiment found to be twice the effect of all the arrangements, divided by the sum of the elements + one. The effect of each addition of a new active junction is only half this quantity, and seems even to be in a decreasing ratio, when the number of junctions is great.

The effect of thermo-electricity upon the multiplier is very instructive. Fig. 17 represents an arrangement formed by two pieces \(b, b\), of bismuth, and one piece \(a\) of antimony. When the two free extremities of \(b, b\), are put in communication with the extremities of the wire of the multiplier, and one of the junctions between \(a\) and \(b\) is heated or cooled, the needle of the multiplier is deviated, but very little; when one of the junctions is only cooled with ice, the effect is not so great as that of a disc of eopper with one of silver, having common water as the liquid conductor. But when the extremities of \(b, b\), are put in communication by means of a short piece of metal, the effect on the compass needle is considerable, whereas the effect of the hydro-electrical current of silver and copper, and even of silver and zinc, with common water as the liquid conductor, is scarcely sensible upon the same compass needle. This is a strong additional proof of the difficult transmission of thermo-electricity.

From all these observations we must conclude that the thermo-electric current produces an enormous quantity of clectricity, but in a state of exceedingly small intensity. In order to conceive this well, it is to be remarked that the intensity of electricity is measured by the attractions and repulsions, whose force is in the inverse ratio of the squares of the distances, and that the quantity of electricity is measured by the number of equal surfaces which can be clectrified by it to a certain degree of attraction and repulsion indicated by the electrometer. In the voltaic pile the intensity increases with the number of dics, the quantity with the surface of each of the discs. The greater the intensity the greater is the power of surmounting olstacles, or of penetrating through imperfect conductors; on the contrary, the greater the quantity the more perfect conductor is required to transmit it. The electricity produced by some thousand pairs of discs is able to penetrate a little lamina of air; that of some hundred pairs can at least penetrate through a considerable length of water; that of two pairs cannot casily be transmitted but by the solid conductors and some of the powerful liquid conductors.

The thermo-clectrical current has a prodigious quantity of electricity in comparison with the hy-dro-electrical of silver, zinc, and water, but the intensity of the electricity is much greater in the latter; the electricity of the former is impaired by the resistance of the long multiplying wire, the electricity of the latter surmounting this resistance is on the contrary increased by the mukiplying wire.

The complex thermo-electric circuit produces much more effect upon the multiplier, not only when the increased number of elements heightens the effect upon the compass needle, but still also when this increase does not augment the direet effect upon the needle. We must therefore conclude that the intensity increases with the number of the elements in the thermo-electrical as well as in the hydro-electrical current. It must therefore be possible to attain an intensity of the thermo-elec. trical current great enough for penetrating the liquid conductors, and producing the most considerable chemical effects. Still the construction of a thermo-electrical circuit of a great number o! elements is very difficult, because the elements must be as short as possible in order to preserve the conducting faculty; but even the smallness of the distance between the heated and cooled parts must give way to a very speedy re-establishment of equilibrium. The best way seems to be, to produce the heating and cooling of the junctions by some continual current of hot and cold liquids.

A very easy manner of constructing thermo-electric batteries deserves to be mentioned. Fig. 18 represents it. The parts indicated by the odd numbers \(1,3,5\), represent copper slips, and those indicated by the even numbers \(2,4,6\), small bars of bismuth. All the junctions situated on one side of the dotted line \(c d\), are to be heated, those on the other side are to be cooled. The extremities \(a\) and \(b\) are to be connected by a conductor. The nomber of elements may here be tolerably great.

That the intensity of the electro-magnetic cur-
rent must increase with the temperature was to be presumed; but this is not a general law. Dr. Seebeck had already found some exceptions, and also Professor Cumming at Cambridge, who made his experiments without knowing those of Dr. Seebeck upon this subject. We shall not stop here to detail these experiments, as another philosopher, Mr. Becquerel, availing himsell of the imposed instruments of research, and making a very ingenious application of them, has given us exact measures of the quantities here occurring.

It was supposed that the declination of the needle, produced by the electrical current is in the ratio of the siue of the angle of deviation. Though this is a consequence of the resolution of powers, he thought that, in a matter so little known as the magnetical effects of the electrical current, it might be advisable to examinc the law of this measure by experiment, particularly with regard to the multiplier, where the current makes so many windings round the needle. In order to execute this plan, he formed his multiplier with lour parallel and equal wires, corered with silk, and each making an equally great number of windings. Thus he had four multiplying windings about one frame. To the ends of each multiplying wire he soldered the ends of an iron wire, so that four thermo-electrical circuits, consisting of the copper wires of the multiplier and the iron wires were formed. When he wished to put one of these currents in activity, he cooled one of the junctions with ice, and heated the other in mercury. The junction was included in a thin bent glass tube, in order to guard it against the dissolving power of mercury. The mercury was heated by means of a lamp, somewhat above the temperature required, and when heated the lamp was taken away: thus the temperature remains for a short time stacionary. In this manner he tried first the effect of one, then of two, three, or four of the multiplying circuits, and noted down the deviations produced, one of the junctions still being kept at the freezing point. Thus he found that one of the circuits gave, by \(5^{\circ}\) Centigrade or \(9^{\circ}\) Fahr. above the frcezing point ( \(41^{\circ}\) Гahr.) a magnetic deviation of \(0.65^{\circ}\) Jrench division, or \(0,585^{\circ}\) of common division of the arc. Two circuits gave by the same temperature twice \(0.585^{\circ}\); three gave thrice, and four gave four times this quantity; whence he concluded, that when one circuit produces 40.585 it has fout times the power of that producing only (1) 0.585 . It is easily understood that the greater angles of deviation conld not be in the same ratio as the action: but this does not hinder us from drawing analogous conclusions. Thus by a difference of \(180^{\circ}\) lah. One circuit gave the deviation \(10,71^{\circ}\) of the circle; but two circuits gave nearly the same \(\left(10^{2} .575\right)\) by a difference of \(90^{\circ}\) Fah. But it is not in all temperatures that this proportion of the effect and temperature takes place; in very high degrees of heat the lound that the effect of circuits of copper and iron did not increase so fast as the temperature. From the freezing point ( \(32^{2} \mathrm{l}\) ah.) up to \(284^{\circ}\) Fah. the magnetical effect increases with the temperature. From this degrec to \(572^{\circ}\) the magnetic power, though increasing with the tem-
perature, still proceeds in a decreasing progression; and exposed to the immediate action of a lamp, the current is inverted. When none of the junctions is at the freezing point, the effect of the circuit is equal to the difference of the effect, which each of the two temperatures applied to one of the junctions, the other being at the freezing point, should give; thus, for instance, a circuit of iron and copper, when one junction is heated to \(392^{\circ} \mathrm{F}\)., the other being at \(32^{\circ} \mathrm{F}\). has an intensity expressed by 37; but when the heat is only at \(212^{\circ}\), the intensity is expressed by 22. The difference of these two nambers is 15 , which is found by experiment to be the effect of the circuit, in which one junction is heated to \(392^{\circ}\) and the other to \(212^{\circ}\). He found that a complex circuit of copper and iron produced an effect proportional to the number of elements, which is not the case, when the whole power of the circuit can be exerted, but is only so, when a very small part of the whole effect can be transmitted through a conductor, of such a length or feeble conducting faculty; that it requires much intensity of electricity, for being penetrated. Thus the observation of \(\mathbf{M r}\). Becquerel proves, what had already been shown by less perfect experiments, that the intensity of thermo-electricity increascs as the number of the clements.

Circuits of iron, with gold or silver, have likewise, as well as those which it forms with copper, a minimum of effect, by a certain elevated temperature, and in a still higher one their current changes its direction. In circuits of platina with gold, silver, lead, zinc, copper, and palladium, the differences of the intensities form an increasing arithmetical series.

Mr. Becquerel found that two pieces of platina form an active thermo-electrical current, when they are not of a perlectly equal nature. He cut through a piece of platina wire, and had one of the pieces drawn thinner; these two formed a thermoelectrical circuit. He maintains that the circuit is not efficacious unless a piece of some other metal is soldered to the one end of the wire, upon which statement we cannot but entertain some doubt, though Mr. Becquerel's authority is of no little weight. As Mr. Becquerel had found that the increments of the magnetic effect preserve the more their proportion to the increments of temperature, the more difficult the metal is in being melted, he considers a circuit of two uncqual pieces of platina as a pyrometer. By means of this, he has tried the temperature of the different parts of a spiritflame, and estimated the temperature of the blue flame bordering the white, at \(1350^{\circ}\) Centigr., or \(2162^{\circ}\) Fahr.; in the white part he estimated it to be \(1080^{\circ}\) Cent. or \(1976^{\circ}\) Fahr., and in the darker part of the flame to be \(780^{\circ}\) Cent. or \(1426^{\circ}\) Falir. The last he considers as too high, because the other parts of the flame contributed to heat the junction.

\section*{Terrestrial Elcetro-Magnctism.}

We cannot pass by this subject entirely, though we must treat it very briefly. Mr. Ampère, who
thinks that magnetism consists only in transverse electrical currents, must, in consequence of his hypothesis, suppose an electrical current round the earth, from east to west. He thinks that the numerous strata, of which our globe is composed, may form considerable galvanic arrangements; still he supposes that the rotation of the earth cannot but have an effect on the electric currents around it. Mr. Ampere, in consequence of his system, admits no other magnetism of the earth than these currents. The opinion, that the carth is surrounded by electrical currents, though not strictly proved, is very probable. As for the galvanic arrangements which the earth is supposed to contain, there can be no doubt that the strata of the carth may form such combinations; but it is not at all proved that they produce a current lirom east to west. As far as the different currents formed by the strata, do not destroy the effect of each other, it is probable that their resultant effeet lies nearly in the perpendicular; for the most general situation of the strata, is that one is placed above the other, generally with some inclination; but as this inclination may have all possible directions, the effects of the galvanic arrangements, (in so far as their action should have a horizontal direction, and thus be founded upon the inclinations,) must destroy each other, even if the inclination towards one side should be somewhat predominant; for galvanic arrangements combined in variable directions of their currents, produce a total effect much feehler than the difference of their positive and negative effects. The most efficacious excitation of electricity upon the earth appears to be produced by the sun. Its light passes round the globe from sunrise to sunrise, and produces evaporation, deoxidation and heat. Evaporation in contact with oxidable matters, produces electricity, as has already been asserted, but first exactly clucidated by the ingenious experiments of Mr. Pouillet. That the deoxidation which the sun produces during the day not only of the surface of plants, but also upon the surface of many other bodies, particularly when moistened, excites electric currents, is a well known galvanic fact. That the heat produced by the sunbcams, and also circulating from cast to west, must produce an electrical current can scarcely be doubted; for though the surface of the earth be not composed of perfect conductors, and this resistance should make a common current insensible, the celerity of the circulation may, on the other hand, augment the effect to a degree sufficient for producing some effect upon the magnetic needle. Now, if it be admitted that the sun produces an electric curfent round the earth, this current must form a zone of considerable breadth, whose most intense part is situated in the plane of the circle, in which the sun scems to make its daily motion. Thus the situation of the most intense part of the zone varies with every day of the year. If we suppose that the earth had no other magnetism than that of this zone, a steel needle made magnetic by an artificial cureent, and then freely suspended, should take a direction towards the north and the south. Even a steel needle laid across the great natural current
should be made magnetic, and suspended, take its direction accordingly. But the great current must also produce magnctism in the body of the earth itself; and as the magnetic effects of the inferior side of the current are opposite to those of the superior one, the magnetic poles of the carth become the opposite to those of the needle directed by the current, and should, therefore, il we lor a moment suppose the electric zone destroyed, still give it the same direction. Thus the carth secms to have a constant magnetic polarity, produced, in the course of time, by the electrical currents which surround it, and a variable magnetism produced immediately by the same current. As the sun does not produce an equal effect upon water as upon solid bodies, the intensity of the current cannot be equal in all parts of a parallel circle, and therefore the direction ol the needle cannot be perpendicular to the equator, nor can it form everywhere the same angle with the equator, for the lines of equal electromagnetic intensity mast be twice bent by the influence of the two great masses of continent. The ycarly and daily change of the electromagnetic zone, must occasion yearly and daily variations. As to the variations comprehended in greater periods, we might perhaps attribute them to a motion of the coolest points in each continent, which it appears cannot remain the same for ever, because the currents of warmer air must principally be directed towards such points; but we shall leave this research to future times, which may discover causes concealed from us, for explaining the great and seeret revolution, which is continually performing in our globe.

It would be to offend against a love of truth, if we proposed these views as ascertained facts. Our researches upon the magnetism of the earth have been, during too short a (ime, directed by the clectromagnetic discoveries, to enable us to give a complete theory of this subject. The great scrics of profound mathematical and philosophical investigations by which Professor Hansteen, at Christiana, has confirmed and improved the theory established by Dr. Halley, shows how many difficulties are to be surmouted. The accordance of this theory with observation, seems even to cxelude the possibility of a new theory; but it must be remarked that this theory is only a mathematical representation of the phenomena, and does not pretend to be a physical one. In the same way as the mathematical laws of the celestial motions were discorered by Kepler, long time before their physical laws were superficially guessed by Hookc, or profoundly recognised and demonstrated by Newton, so the physical laws of the magnetism of the earth may now, perhaps, be fairly conjectured, and in a future age be brought to the requisite degree of perfection. Still we hope that these views will recommend themselves to farther investigation, as they would, if proved, have the great advantage of showing an intimate connexion between an extensive series of phenomena upon the earth and those of the universe.

\section*{Some Theoretical Considerations.}

The question has during late years been often proposed, whether or not magnetism and electricity
are itentical. There has been a good deal of misunderstanding in the discussions on this subject. Mr. Ampere pretends that the discoverer of electromagnetism, though he had earlier admitted the identity of these effects, has, in his first paper upon electromagnetism, denied it. We must here remark, that the words have two acceptations; in one of these Professor Oersted is perhaps the most earnest supporter of this identity, in the other he is a no less decided opponent of it. His opinion is, that all effects are produced by one fundamental power, operating in different forms of action. These different forms constitute all the dissimilarities. Thus, for instance, pressure upon the mercury of the barometer, wind and sound, are only different forms of action of the same powers. It is easy to see that this fundamental identity extends to all mechanical effects. All pressures are produced by the same powers as that of air; all communications of motion, and likewise all vibrations, owe their origin to the same expansive and attractive powers, by which each body fills its space, and has its parts confined within this space. This fundamental and universal identity of mechanical powers has for a long time been more or less clearly acknowledged; but the effects which have hitherto not been reduced to mechanical principles, seemed to be derived from powers so different, that the one could scarcely be deduced from the other. The discoveries which began with galvauism, and which have principally illustrated our century, led us to see the common principles in all these actions. Two or three years before the beginning of the century, Ritter laad, by means of the simple galranic arrangement, pointed out and distinctly stated the principle of the electro-chemical theory; still his ideas were not generally admitted before the discovery of the Voltaic pile had struck the mind of the experimental philosophers with more palpable facts. That heat and light are produced by the union of the opposite electrical powers, had been acknowledged by the Swedish philosopher Wilcke, a cotemporary of Black, but this view was far from being generally admitted. Winterl brought it forward in 1800, and was supported by Ritter and Oersted. The last investigated the subject farther, and developed some of the principal laws of the generation of heat by the electrical and chemical powers.* He proved that the clectrical powers are present in all cases where heat and light are generated. That magnctical effects can be produced by the same powers need not here be mentioncel. As the chemical powers give rise to expansion and contraction, it appears that their na-
ture is not different. Thus acknowledging the fundamental and universal identity of powers, effects must be considered as different, when their form of action differs, and therefore magnetism, in this acceptation of the term, is far from being identical with electricity. It would likewise be erroneous to pretend that all chemical effects are produced by electricity; but the truth seems to be, that the chemical effects are produced by the same powers which, in another form of action, produce electricity. The name of electro-chemical theory, given to the modern chemical system, seems, therefore, less admissible than the denomination of \(d y\) -namico-chemical theory, proposed by Oersted so early as 1805 . It is still true, that the common electro-chemical theory deserves its name, as it does not go out of the limits of an electrical view of the subject. This theory stops throughout in generalities, and gives no account of the disparities of the effects. We will not pretend that a sufficient dynamico-chemical theory has hitherto been pointed out; we must even admit that our knowledge is not ripe enough for this purpose; but we think that some laws, accounting for the disparities, have been pointed out in the work above quoted, upon the identity of electrical and chemical powers (viz. fundameutal powers), and that the ideas therein explained deserved attentive examination. The dynamico-chemical theory must still remain very imperfect, until it is decided if the powers acting in magnetism, electricity, heat, light, and chemical affinitics are to be ascribed to vibratory, circulating, and other internal motions or not. That these effects do not pass without the most remarkable internal motions, appears from the experiments upon light and npon electro-magnetism. The electrical current is a system of rotative motions, upon whose directions, perhaps, all the disparity of positive and negative electricity depends. It is not improbable that even magnetism involves some rotations, and thus the opinion of Mr. Ampère comes to agree with ours, at least in this point. When the transmission of the electrical current through liquid bodies is accompanied with a chemical deconuposition, it seems necessary to admit that the substances styled electro-positives and electro-negatives, must rotate in opposite directions, and we may suppose that their neutralizing powers are connected with the propensitics to those opposite rotations. The new discoreries, in short, reveal to us the world of secret motions, whose laws are probably analogous to those of the universe, and which deserve to be the subject of our most earnest meditations.

\title{
APPENDIX.
}

\section*{AMERICAN SILK.}

IT is now well ascertained that the white mulberry, considered as the best food lor silk worms, will grow and thrive in every part of the United States, and it is even believed by many, that the red mulbery (morus rebra) indigenous to this country, might supply its place. Experiments, however, have not sufficiently shown to what extent this is to be admitted. It appears that the worm feeds with equal avidity on the one as on the other, and that he does not show any preference to either when both are presented to him at the same time. But some say that there is a difference in the silk produced by that insect when fed on the leaves of the red mulberry; that it contains more gum, and consequently is harder and more difficult to reel than the cocoons of worms led on the leaves ol the white mulberry. We must lave it to time and experience to decide this question. In the meantime, we are happy to state, that the plantation of the white Italian mulberry is rapidly extending itself through almost every state in this Union, and that, from its abundance, it will prolably before long supersede every other tree for the feeding of silk worms.
It is also an admitted fact, that the climate of this country, from north to south, is favourable to the raising of silk worms. Experiments have been made even in Vermont and Maine, and they have succeeded. It is well known, that for the space of seventy years, silk worms have been raised in great quantities in the state of Connecticut, particularly in the counties of Vindham and Tolland, which abound in white mulberry trees. The farmers of those parts extract the silk from the cocoons, and manufacture it into sewing silk, which they dispose of in the circumjacent country by way of barter, and it even serves them as a circulating medium, the legislature of that state having provided wise regulations to prevent fraud and imposition. That silk, however, is not merchantable in our sea port towns, as it is neither equal to imported silk, nor can it be afforded at the same price. Such as it is, however, it serves the purposes of the country people, which is truly astonishing, when we consider that it is made without any other machinery than the common spinning wheel, and by persons un-

Vol. XVII. Part II.
skilled in the arts of reeling and throwing or twisting the material, which in Europe constitute diflerent prolessions, requiring long practice and a regular apprenticeship. Too much praise cannot be given to the inclustry and ingenuity ol the Connecticut women, by whom this labour is exclusively performed. That state is destined to become rich by the silk culture and manulacture, when better methods and the properinstruments shall have been introduced among them. At present it camot be said that this branch of industry is to them a source of riches; it has been remarked, on the contrary, that the silk districts are comparatively poor.

The culture of sith was in the vicw of the British government from the earliest period of the colonization of this country. King James I. who hated tobacco, the staple commodity of Virginia, gave orders to the governor of that colony to take measures to introduce the culture of silk, in hopes that it might supersede what he called the nauseous weed. Silk worms' eggs, white mulberry trees, and printed instructions were sent over and distributed. In 1623, the Colonial Assembly directed the planting of mulberry trees, and a fine was afterwards imposed on every planter who should not plant, at least, ten such trees for every hundred acres of land that he possessed, while a premium was offered of ten thousand pounds of tobacco to those who should export two hundred pounds worth of raw silk. It does not appear that any was ever exported, or even that any measures were taken to instruct the people in the art of spiming or reeling the silk from the cocoons, so as to make it merchantable; nevertheless, mulberry trees were generally planted, and it is said that they now abound in the eastern part of that state.

South Carolina, in early times, made some efforts to introduce the culture of silk, but those efforts were partial, and were not attended with much success. Some patriotic ladies sent raw silk of their own raising to England, where it was manufactured into stuffs. But the quantity was small, 251 lbs. of it only having been entered at the custom house in the course of six years. The thing did not proceed farther. The silk being of course very imperfectly reeled, its waste must have been 4 X
considerable, and the proceeds of it not being equal to the labour and expense that it occasioned, discouragement necessarily followed.

The colony of Georgia procceded in a more calltious manner, and their success was proportionate. Uponits first settiement in 1732, the culture of silk was contemplated as a principal object of attention, and lands were granted to settlers upon condition that they planted one hundred white muiberry trees upon every ten acres when cleared, and ten years were allowed for their cuttivation. All this was excellent; but what was better still, is that a native of Piedmont was engaged to instruct the people in the art of rearing the worms and uinding the sill. The colonial trustees undertook the management of the business, and they succceded so well that before the year 1750, large quantities of raw silk had been exported from Georgia into England. In that year a public filature was erected by order of these trustees, and the exports of silk from the year 1750 to 1754 inclusive amounted to \(\$ 8,880\). In the ycar, 1050 lbs . of raw silk were produced at the filature, which supposes the recling of at least 8000 lbs . of unstifled cocoons. In the year 1758, that building was consumed by fire with a quantity of silk, and 7040 lbs . of cocoons. N'Call, the historian of Georgia, relates, that in the year 1759, this colony exported upwards of 10.000 lbs . of raw silk, which sold for two or three shillings per pound higher than that of any other country. But this fact may well be doubted, as it is in direct contradiction to authentic records which will be presentiy mentioned.

One wotld naturally suppose that the production of ras silk as an article of exportation had been established in Georgia on a solid and lasting foundation. Vet it began to decline, for what reason we know not, many years previous to our revolution. We are informed by an official statement of TVilliam Brown, comptroller of the customs at Savamal, that between the years 1755 and 1772 , a period of seventeen years, including the year 1759 , no more than 8829 ! bs. of raw silk were exported from that port, something less than had been before exported in five years. This branch of indus. try, however, lingered until some time after the peace with Great Britain. The last we hear of silk in Georgia is in the year 1790, when upwards of 200 lbs. weight of the raw article were purchased for exportation at 188 . and \(26 s\). per pound, we presume of the currency of the comntry, (4s. 8d. to a dollar), which makes those prices equal to about S4 and \(\$ 5,50\) per pound, a very high price even at this day, when it is known that the current prices of Thalian raw silks in the London matket are from 98. 10 22s. sterling.

We ure at a loss to conceive how a branch of industry which appeared then to be in so llourishing a state, can have suddenly disappeared from a state where it had been introduced in a manner so well ralculated to ensure its permanency. We have been whd that it was owing to the rage for the culture of cotton, which began about that time to take possession of the minds of the iuhabitants of the southern states. 'Jhis is the most rational way of accounting for an event which Georgia may long
have reason to lament. We must add, also, that before the revolution, the business was monopolized by the trustees who had the management of the colony, in which there was but one filature of silk, whicb probably, after the war, fell into the hands of those who had neither the means nor the capacity to turn it to advantage. If the art of reeling silk had been generally disseminated through the state, it would, no doubr, have been preserved, whereas it appears to be contirely lost.

In the year 1770, on the recommendation of Dr. Franklin, who was then in England, the American Philosophical Society undertook to promote the culture of silk in Pemnsytrania. Money was raised by subscription and a filature established at Philadelphia, to which an end was put by the revolutionary contest. Unfortunately, we have no details respecting this filature, its establishment, its progress, or its end. It is said by some that a person skilled in the art of reeling silk from the cocoons, was obtained from France and placed at the bead of it, as director. But this fact is not sufficiently ascertained. It does not appear that any raw silk was exported from the port of Philadelphia.

During the revolutionary war, of course, (except, perhaps in Connecticut and for a while in Georgia, no attention was paid to the culture of silk. After the peace, other objects engrossed the attention of the public. About the year 1790, Mr. Aspinwall of Connecticut, made fruitless efforts to introdace this branch of industry in Pennsylvania and New Jersey; he succeded no farther than the planting in those states some thousand of mulbery trees. It does not appear that he was aware of the importance of the art of reeling; indced, few persons, if any, in the comntry, seem at that time and long afterwards to have carried their views farther than the converting the raw material into sewing silk, as was done in Connecticut. 'The variety of arts, whose concurrence is required for the manufacture of silk stuff, was far from being generally or correctly understood.
From time to time, however, some patriotic writers endeavoured, through the newspapers, to draw the attention of the public towards the culture of silk; but those publications produced little effect. It was recommended to the citizers to plant mulbury trees and ratise silk worms: but nobody told them what they should do with the cocoons that those silk worms should produce. The example of Connecticut was sometimes set belore them; but that was not rery encouraging. A few pounds of domestic sewing silk were hardly worth the labour which the cultivation of the raw material would require, and indect, it might have been observed that the counties of Tolland and Windham, where the greatest quantity of silk was raised, instead of being the richest in the state, were, as we have said, comparatively poor.

Still, there were reflecting minerls, who, casting their eyes over the southern parts ol the continent of Europe, particularly Italy and the south of France, and paying attention to the immense riches which they derived from the silk culture and manufactures, and the great prolits which England ob-
tained from the later alone, felt an ardent desire that the United States should participate in these blessings, for which they were so well fitted by their climate, and the industry and activity of their citizens. But the difficulty was how to go to work to produce the desired effect.

At last an enlightened and patriotic citizen of Pennsylvania, Charles Miner, Esq. of West Chester, who for several years had been actively engaged in promoting the culture ol silk in his immediate district, and who was then a menber of the llouse of Representatives of the United States, had the happy idea of submitting the subjece to the consideration of the national legislature, who he thought might devise effectual measures to attain the obsject he had in view. On the \(29 t h\) of December 1825, the bouse on his motion resolved: "that their commituce on agriculture be instructed to inquire whether the cultivation of the mulbery tree and the brecding of silk worms, for the purpose of producing silk, be a subject worthy of legislative attention, and should they think it to be so, that they obtain such information as may be in their power respecting the kind of mulberry tree most preferred, the best soil, climate and mode ol cultivation, the probable value of the culture, taking into view the capital employed, the labour and the product; together with such facts and opinions as they might think useful and proper-and further, that the same committee inquire whether any legislative provisions are neccssary or proper to promote the production of silk."

We have already observed that at that time the people were not generally aware of the difficulty of the art of spinning or reeling the silk from the cocoons, as is practised in Europe; the most that was thought requisite by the best informed, was the importation of a few machines to lacilitate the habour; as to the skill, it was thought that it would be as easily acquired as was done in the article of cotton, which our people had easily learned to prepare for exportation and to employ in manufactures. Indeed, many believed that the women of Connecticut, who could make sewing silk, were sufficiently possessed of that art, and that instruction from abroad was not required, or if it were, it could easily be obtained from the books that had been written on the subject in France and elsewhere.

Under these impressions, the committee met and acted. On the \(2 d\) of May 1826, they made a full report, in which they gave a luminous view of the importance of the culture of silk to the United States. They showed that in five years, 18211825, we imported upwards of 35 millions of dollars worth of silk goods, of which we exported not quite 8 millions, leaving 27 millions to be paid by our citizens, and that in the last of those years we had imported teu millions worth of silks and exported only five millions of bread stuffs. After this strong exposition, and stating a variety of facts relative to the then existing state of the culture of silk in the United States, they recommended the following resolution, which the house adopted without debate: "Resolved, That the secretary of
the treasury cause to be prepared a well digested manual, contaning the best pracieal information that can be collected on the growth and manufachure of silk, adapted to the differme parts of the Union, containing such facts and observations in relation to the growth and manulacture of silk in other countries as may be useful, and that the same be laid belore congress at their hexi session."

The secretary of the treasury at that time was the llon. Richard Rush, of Pennsylvania. It is to be regretted that he was not instructed personally to inquire and obtain indormation from those parts of liorope where the culture of silk most hourishes, and where the manulactures from that material have attained their highest perfection; be Would have been told that the spinning of the raw silk, whether it was intended to be expmed abroad or manulactured at home, was the first thing to be attended to, as it would promote the silk culture, by openiner a market low the cocoons; he would have been told also, that it was a difficult art, that required instruction and experience, and he would no doubt have proposed to congress the best means to introduce that art among as; but as he was only ordered to cause a manual to be propared, he perlormed that daty by committing the work to Dr. James Mease of Philadelphia, a member of the American Philosophical Society, who was known to have paid much attention to the gencral subjeet.

The manual was in consequence compiled by that gentleman, and on the lth of February 1828, it was reported by the Secretary to the House of Representatives, who ordered 6000 copies of it to be printed for the use of the members. The Senate also ordered a number of copies to be printed, so that the work was disseminated far and wide. It contained full mstructions for the planting of mulbery trees and the raising of silk worms, the latter chiefly extracted lirom the great work of Count Dandolo, whose methor, though perhaps well suited to the meridian of Italy and France, is much too troublesome lor that of this country. Experience indeed has shown, that silk worms may be raised among us without the aid of arificial heat, which Count Dandolo, and after him the author of the manual, recommends as indispensable. Our farmers would nerer submit to the numerous minute observances which that work requires to bring the cocoons to perlection.

All these proccedings, emanating from the highest authority in the nation, gave a strong impulse to the silk culture in the United States. Mulbery trees were planted in various places, nurseries were formed in the neighbourhood of our large towns; foreign works were translated, extracted lrom and abridged; in short, a considerable zeal was excited throughout the Union. A society was formed in the city of Philadelphia, in the year 1828, "for promoting the culture of the mulberry tre and the raising of silk worms." Although there were among them many rich individuals, their joint funds were not considerable; they therelore very properly confined themselves at first to the granting of premiums.

Their views, however, soon extended beyond
what appears to have been their original plan, and desirous of adding example to precept, and to introduce into Pennsylvania the making of sewing silk, as practiscd in Connecticut, they endeavoured to obtain from that state a woman qualified to instruct other females in that branch of industry, in which having failed, they turned their thoughts to Europe, and wrote to a correspondent at Marseilles to procure for them and send over a person sufficiently qualified to reel the silk from the cocoons and convert it into sewing silk. This order was not easy to be executed, as the reeling of silk is performed by women, under the elirection of an overscer, called a director of a filature, and the making of sewing silk from the raw material after it is reeled, belongs to a class of mechanics called silk-throwsters, who employ a great deal of expensive machinery. Of course a person competent to both could not easily be obtained. Alter, however, many fruitless inquiries, the agent found a young man, who, on examination, proved to be adeguate to the task required. This young man, named John D'Homergue, was the son of an eminent silk manufacturer at Nismes, who had brought him up to the various branches of his prolession, in hopes that he should succeed him in his establishment. The young man, however, when he came to the age of manhood, chose to lullow the profession of a lawyer, and at the time that we speak of, was the celitor of a newspaper in the city of Marseilles. The agent engaged him to come over to this country, telling him, as was really the truth. that the company which had sent for him consisted of some of the richest and most respectable men in the city of Philadelphia. He had, indeed, no instructions to make a specific bargain with him, but there was no doubt that on his arrival every thing would be done to his satisfaction. Mr. D'Homergue in consequence embarked, and arrived in the city of Philadelphia in the month of Nlay 1829.

It is very clear that Mr. D'Llomergue had mo idea of our momerous associations for the promolion of various things comected with the general welfare of the country. Ite thought of a mercantile company, associated for the purpose of carrying on together some lucrative branch of industry, and provided with means adeguate to their object. He found, on the contrary, excellent patriots, but poor manufacturers. He found no preparation made for a silk establishment, no place provided for carrying on the operations, no machinery, except one single Piedmont reel, which had been imported by one of the members. In short, be met with the most complete disappointment.

This socicty, however, by being the means of inducing Mr. D'llomergue to come to the United States, rendered an important service to their coun-
try, the happy consequences of which will be long felt, whatever may become of the individual hereafter. He has contributed much to enlighten the public mind on the subject of the culture and manufacture of silk, which he published in the year 1829 , and which have drawn the attention of the national legislature. There is now a bill before the House of Representatives of the United States, reported by their committee on agriculture on the 12th of March 1830, the object of which is to establish, at Philadelphia, a normal school, in which Mr. D'Homergue is to be employed in instructing sixty young men, from the different states of the Union, in the art of reeling silk from the cocoons, an art which requires practical instruction and experience, and without which the culture and manufacture of silk can never be effectually carried on in this country. The pressure of other business has hitherto prevented that bill from being taken into consideration; but its plan seems to be generally approved, and there is great reason to hope that it will finally receive the legislative sanction. This is the more probable, that Mr. D'Homergue, during the two years that have elapsed, has been unceasing in his exertions to promote his favourite object. A filature las been established under his direction in the city of Philadelphia, in which more than twenty women have been more or less instructed in the art of recling silk from the cocoons. Several parcels of raw silk from that filature have already been exported to Europe, where they have been pronounced to be a fair beginning, and to give great hopes for the future. Of that silk, Mr. D'Homergue has wove two liags, hearing the colours of the United States, each twelve feet long and six leet broad, one of which has been presented to the House of Representatives of the United States, and the other to the Legisfature of Pennsytrania, who have both condescended to give to those specimens of American industry, a conspicuous place in the halls of their sittiugs.

In the meantime, correct information on the subject of the various arts connected with the culture and manufacture of silk, has been widely disseminated by a great number of writings throughout the United States, and artists ol various descriptions (but no reelers or spinners of silk from the cocoons) have migrated from Europe to our shores. There are now several throwsting mills in operation in various parts of our country, that work on foreign raw silk, which is now imported in great abundance. It is hoped that, if the plan before congress shall be adopted, it will not be long before our manufacturers shall be supplied with the domestic material, and that silk will thus become one of the principal sources of our national riches and prosperity.

DUPONCEAU.

\title{
PLATES BELONGING TO VOLUME SEVENTEENTH
}

\section*{OF THE}

\section*{AMERICAN EDITION}

OF THE

\section*{NEW EDINBURGH ENCYCLOP EDIA.}

\section*{PLATE CCCCLXXXVII. No.I.}

Fig. 1, 2. Represents Dr. Wollaston's Dip Sector.
Fig. 3, 4, 6. Are Diagrams explanatory of the principle ol Hadley's Sextant.
Fig. 5. Is a representation of this Sextant.
Fig. 8. Is a Diagram explanatory of the principle of Amici's Sextant. See Fig. 10, Plate cccclxxxvil, No. II.
Fig. 9. Is a drawing of this Sextant.

PLATE CCCCLXXXVII. No. II.
Fig. 7. Shows the method of nsing Hadley's Sextant.
Fig. 10. Is a Diagram illustrative of Amici's Sextant.
Fig. 11. Represents Troughton's artificial Horizon.
Fig. 12. Represents Dollond's artificial Horizon.
Fig. 13. Shows the method of using the artificial Horizon.
Fig. 14. Is the cover of the artificial Horizon.
Fig. 15. Represents Serson's Nautical Top.
Fig. 16, 17. Represents Troughton's Level Sextant.
Fig. 18, 19. Represent Mr. Adam's Nautical Eye Top.
Fig. 20, 21. Represent Dr. Brewster'simprovement uponit.
Vol. XVII. Part. II.

\section*{PLATES CCCCLXXXVII to CCCCXCV}

Are Diagrams illustrative of the principles of Ship. building.

\section*{PLATE CCCCXCVI.}

Fig. 1-4. Contain a comparative view of the construction of square and circular stcres.

\section*{PLATE CCCCXCVII.}

Fig. 1-9. Show the advantage of circular ove! square sterns.

\section*{PLATE CCCCXCVIII.}

The principal figure is the disposition of the frame of an 84 Gun ship, according to the improved construction of Sir R. Seppings.
Fig. 1-7. Are a perspective view, plan, \&c. of a longitudinal section of a 74 Gun ship.

PLATE CCCCXCIX.
Fig. 1, 2. Is a Draught for Building a Ship of 84 Guns.

PLATE D.
Fig. 1-5. Represent Sir R. Seppings's improvements on Ships in the Mercantile Navy.

\section*{PLATE DI.}

Fig. 1, 2. Show the old principle of framing the stern with transoms.
Fig. S-6. Are Diagrams illustrative of the theory of the paddle wheels of Steam Boats.

\section*{PLATE DII.}

Fig. 1. Represents Mr. Morton's Portable Slip, or apparatus for hauling ressels out of water to be repaired.

\section*{PLATE DIII.}

Fig. 1--96. Are Representations of the particles of Snow seen through a Microscope aceording to the Observations of \(M_{1}\). Scoresby.

\section*{PLATE DIV.}

Fig. 1--3. Show Dr. Une's apparatus for measuring the elasticity of Steam.
Fig. 4, 5, 6. Represent the first Steam Engine invented by the Marquis of Worcester, according to the idea of Mr. Scott of Ormiston.
Fig. r. Represents Dr. Papin's first Stcam Engine.
Fig. 8, 9, 10. Contain a representation of Savery's Steam Engine.
Fig. 11. Represents Dr. Papin's seeond Steam Enginc.

PLATE DV.
Fig. 1, 2. Represent Dr. Desagulier's improvement on Savery's Engine.
Fig. 3. Shows Mr. Kier of Birmingham's improvement on Savery's Steam Enginc.
Jig. 4, 5. Contain a view of Newcomen's Atmospheric Eogine.

\section*{PLATE DVI.}
l'ig. 1, 2. (marked Fig. 6, 7 of Plate DV). Represent Beighton's Steam Enginc.
Fig. 3. (marked Fig. 1 in text). Is a view of Leupold's High Pressure Engine.
Fig. 4. (marked Fig. 2 in text) Shows Blakey's improvement on the Steam Boiler.
Fig. 5. (marked Fig. 3 in text) Shows Mr. Watt's mechanism for opening and shutting the Nozle Valves.

PLATE DVII.
Represents Mr. Watt's Reciprocating Engine of 1788. In p. 368 margin, read Plate DVII, in place of DVIII.

\section*{PLATE DVIII.}

Fig. 1. Represents the Albion Mill Steam Engine erected by Messrs. Boulton and Watt.
Fig. 2. Shows the Regulator Box.
Fig. 3. Is a Diagram explaining the prineiple of the parallel motion.
Fig. 4. Shows the construction of the Throttle Valve.

\section*{PLATE DIX.}

Fig. 1. Represents Mr. Hornblower's Double Cylinder Engine.
Fig. 2, 3. Show Hornblower's Skeleton Valve.
Fig. 4. Represents Trevithick's High Pressure Engine.
Fig. 5. Shows Trevithiek's Boiler.
Fig. 6, 7. Show the principle of the Steam Engine proposed by Mr. Perkins.
Fig. 8-13. Represent a Steam Engine without a Boiler, the invention of Mr. Scott of Ormiston.
Fig. 14-18. Show Mr. Gurney's Tube Boiler.
Fig. 19, 20. Show Mr. Gurney's Condenser.
Fig. 21. Represents Mr. Murray's Sliding Valve.
Fig. 22. Represents Mr. Sim's Valve.
Fig. 23. Represents Cartwright's Piston.
Fig. 24. Represents Jessop's Piston.

\section*{PLATE DX.}

Fig. 1, 2. Are drawings of Jonathan Hull's Steam Boat, invented in 1735.
Fig. 3. Is an enlarged view of the mechanism of Hull's reciprocating motion.
Fig. 4. Is an external view ol' a Steam Vessel.
Fig. 5. Represents the Engine erected by Mr. Gutzmer for the Royal George Steam Boat.
Fig. 6, 7. Are an Isometrical view and section of the Steam Boat Engine.
Fig. 8. Represents Gurney's Steam Boat Engine. Fig. 9, 10. Show the revolving Paddles of Mr. Oldham, compared with the common Paddles.

\section*{PLATE DX. No. II.}

Fig. 1. Represents the Steam Boat invented by John Fitch.
Fig. 2. Represents the Bridge over the Delaware River near Trenton.

Fig. 3. Represents Oliver Evans's Columbia Steam Enginc.

\section*{PLATE DXI.}

Fig. 1-4. Represent Messrs. Losh and Stephenson's Rail Road and Steam Carriage.
Fig. 5, 6. Are drawings of a Steam Carriage Engine.
Fig. 7-10. Represent Mr. James Watt's original apparatus for Drying by Steam.

PLATES DXII, DXIII, DXIII, No. Il.
Are illustrative of the principles of Stenography.

\section*{PLATE DXIV.}

Fig. 1-5. Represent Professor Barlow's apparatus for measuring the Strength of Materials.

PLATES DXV, DXVI, DXVII.
Are illustrative of the article Surgery, and are minutely described in pages 597,598 of this volume.

\section*{PLATES DXVIII, DXIX, DXX.}

Are illustrative of the article Tactics, Nuval, in this volume.

\section*{PLATE DXXI.}

Fig. 1. Shows Dr. Hooke's Telegraph.
Fig. 2. Represents M. Chappe's Semaphore.
Fig. 3. Mr. Edgeworth's second Telegraph.
Fig. 4. Rev. Mr. Gamble's Shutter Telegraph.
Fig. 5. Rev. Mr. Gamble's radiated 'Tclegraph.
Pig. 6. Dr. Garnet's Telegraph.
Fig. 7. Lord George Murray's Telegraph.
Fig. 8. French Semaphore Telegraph.
Fig. 9. Mr. Edgeworth's one-armed Telegraph.
Fig. 10. French Coast Telegraph.
Fig. 11. Colonel Pasley's polygrammatic Telegraph.
Fig. 12. Colonel Pasley's improved Telegraph.
Fig. 13. Colonel Macdonald's Shutter Telegraph.
Fig. 14. Sir Home Popham's Semaphore.
Fig. 15. Colonel Macdonald's Ball and Shutter Telegraph.
Fig. 16. Colonel Macdonald's 6 ball and 3 figure Telegraph.
Fig. 17. Colonel Pasley's Universal Telegraph.
Fig. 18. Do. Do. for nocturnal sig-

Fig. 19, 20. Show the construction of the above 'Telegraph.
Fig. 21. Shows the Telegraphic signs for this Telegraph.

\section*{PLATE DXXII.}

Fig. 1-6. Illustrate the Electro-magnetic discoreries of Professor Oersted.
Fig. 7. Shows Berzelius's idea of four magnetic Poles in the uniting wire.
Fig. 8. Shows Prolessor Oersted's apparatus for deciding this question.
Fig. 9. Professor Schweigger's Multiplier.
Fig. 10. M. Nobili's improved Multiplier.
Fig. 11. Professor Oersted's Nultiplier.
Fig. 12. Is Mr. Faraday's apparatus for causing a Magnet to revolve round an electrical Conductor.
Fig. 13. Is Mr. Faraday's apparatus for causing a Magnet to revolve round its own axis by means of an electrical current.
Fig. 14. Illustrates the development of magnetism in other bodies by the electrical current.
Fig. 15. Method used by MIM. Arago and Ampere.
Fig. 16. Shows the apparatus used in M. Ampere's experiments on the effects of the magnet on the uniting wire.
Fig. 17. Is an apparatus in which the earth's magnetism gives a direction to the uniting wire.
Fig. 18. Shows M. Ampere's application of the principle of the multiplier to move the uniting wire, as somewhat modified by Professor Van de Roos.

\section*{PLATE DXXIII.}

Fig. 1. Is another apparatus invented by M. Ampere for the same purpose.
Fig. 2. Is M. Ampere's apparatus improved by Mr. Marsh for showing the magnetical effect of the earth on the uniting wire.
Fig. s. Is an apparatus for causing a movable uniting wire to revolve round a magnet.
Fig. 4. Is Ampere's revolving apparatus.
Fig. 5. Is Professor Barlow's revolving apparatus.
Fig. 6. Is Professor Pohl's revolving apparatus.
Fig. 7-lo. Illustrate M. Ampere's discoveries respecting the mutual action of electrical currents.
Fig. 11. Is an apparatus for illustrating M. Ampere's doctrines.
Fig. 12-17. Are illustrative of Dr. Seebeck's discovery of electro-magnetic currents produced by heat.
Fig. 18. Shows the method of constructing Ther-mo-electric batteries.

\section*{ERRATA.}

Page 670, first column, 23 d line from bottom, for Hagersvillc read Rogersville.
Page 671, first column, 24 line, lor remains read remain.
Same column, 5th line, for Alchabalaya read .Atchufalaya.
Same colmm, article Tequendama, for Stanblack read Stauback.
Same article, for Catskill read Caterkill.





Fis． \(11 \%\)


4

R




Fi，\(\%\)


Fu：\(\because 1\)
：
c

\[
F!,: 4
\]



位






PLATE rercNaI







Doxum the Hurnel






i*


Fir: Rinchlione


















 \(1-1\)


\author{
\(-1\)
}

5 \(\Gamma_{1} \leq 1\) 17 \(1-=\)
\(\pi\)
-
PLATE COCCNCLE.

DIMENSHONS


E
x

-

-









－



-

\[
0
\]
\[
4
\]






\[
\begin{aligned}
& \text { R M, MMER }
\end{aligned}
\]
\[
\begin{aligned}
& \text { ) }
\end{aligned}
\]
\[
\begin{aligned}
& 7.10 \times 0
\end{aligned}
\]




\author{


}
\(\qquad\)
\(\qquad\)













(s)

3

ノ！！／N：＂
／ \(1 /\) ：

\[
2
\]



bever buvu
\(\therefore=\omega<\omega<\omega\)



\[
\infty \omega=
\]

Fi! /i


Fi., /
F\% R \(\because\)
.
\[
\begin{aligned}
& \infty= \\
& \cdots \infty=
\end{aligned}
\]
\[
\left.\right|_{i=1} ^{F i!}=-
\]

\[
\begin{aligned}
& \text { I lio, } 1 \\
& \text { r. } \omega \omega \omega \Leftarrow \omega \in \omega \\
& r \Leftarrow \omega \omega \Leftarrow \omega
\end{aligned}
\]
\[
0
\]
for. \(/\)
\(\qquad\) 4.
\[
\underbrace{\infty}_{\infty=\infty}
\]

1/"
ii
餄"
\[
\begin{gathered}
0000000 \\
0000 \\
0000 \\
0000 \\
000000000
\end{gathered}
\]

\(\cdots\)
110


53 sumes \(\underbrace{15}_{0}-\infty\)

\[
8
\]

M, MNT

ractics
(2)


5
817


IIN / Ninn


\(1 \quad 1 \%\)

( F!, /


B


lin /


1in :


Fジ!
11.1
\(\qquad\) 11
\(\frac{\mathrm{t}}{\frac{1}{4}}\)

lini

Hi, |/


Fil \(B\)


Fi, \(1:\)


Fir 10


Fl, \(1 /\)


Fin 17


Fill \(1, i\)

lior 1:
, \(\int_{i}^{n}=\int_{i}^{n}\)


```


[^0]:
 a langlage which, fom its elegane and hamony, has been styled "the dalian of the East."

[^1]:
 Ashes which make it holice-dust whech is

 -- leare repose,
 Angelo's Alfieme bomes, and ha
 The stary dallileo with hin wos.
 ———" "Heata he in but teriguio accolte
 =erbi le Italis gloric-ulime lotoc.

[^2]:

[^3]: - Thirls yars afterwards, Commodore Anson said that the first goat which was shot, had a slit in its cerr, and was, therefore onc of sultitres.

[^4]: tho:

[^5]: -Finst know in dymire, where it is called vinkiak, and on the cheriwt, where it is called fining, from the slow and sure ather of the amimal.
 thithe meantime, quater has bern eramed to the moles. Several who had made agrecments with the mole catchers continue 1. pay then, but refise to let the work; and one on two famers have begun patially to pomadate their bogg dand.

 - These are serata of granite gucis, and are obseryed in Pricsthepe, a deep glen on the sonth site of the Windeatrataw.

[^6]: * The following are the principal plants that contribute to support the sheep after the failure of their winter pasture. They ave stated in succession. Festurnorina, which contimes to spring through winter in open weather. Aardus stricta, the ronts if t palustris, Ductylis glomerutu, E'rinizhorum ruginutum, a variety of J. agrestis, J. articulntus, . Inthoxanthum odonatum and Poatricielis, below the dams on the mosy bogs, and in sme high grounds large tracts entirely filled with icirpus connitna, which are set on fire ammally: This is done ifhen the sun shmes :and the withered plants are dry and brittle, and the flane streams along the ground in a rapid and beantiful mancr. The puints of the young sprouts rise through the black surface like the braind of cora, and during or after a shower, are cropt with great avidity by the spreading flocks.

 Itu cally times Ettrick Forest was celcbrated for its red deer, and were accounted the largest and fnest in the kingdom.
 \ddagger 'robably the same as the deer of Somme of Cuvice.
 Vol. XVli. Part I.

[^7]: SENECA, river of the United States, in New York, is lormed by the outlets of Canandaigua, Crooked, Sencea, Cayuga, Owasco, and Skencatelas lakes. The western and remote sotree of the Senceat river is Mud creek, rising in the western part of Ontario county, and llowing first north, thence northeast, and fually east, receives the ontlet of Canandaigua lake at lyons, in Wayne county, alter a comparative course of 40 miles. At Lyons the stream takes the name of the Clyde, which llowing south-east by east 18 miles joins a much more considerable strean, the outlet of Crooked, Seneca, and Cayuga lakes, and assumes below the junction the name of Seneea river. Turning to a course nearly north one mile, we Seneca is crossed by the Erie canal, and one mile still lower passes the flourishing village of Montezuma, and continuing north four miles winds to the east eleven miles, receiving in the latter course the ontlets ol Owasco and Skeneatalas lakes. Now a considerable stream, the Seneca, turns NE. by E., and with a very winding bed joins the Oneida, and loses its name after a comparative course ol abott 100 miles l'rom the sotrece of Mud Creek.

 The Seneca river gains importance from its valley

[^8]: SENEGi. See Materia Medica.
 SENEG. 1 L , the name of a large river of Africa

[^9]: * Sce Oprica.
 Neral Chronicle, 1805, vol. siv. P. 21.

 Voi. XVII. Pabt I.

[^10]: * Pese Pardies, and the Chewacr Renaud, phbished some partial observations on the theory of naval arehitecture prior to 1695, but the tratise of Panl hoste was the first work in which the subject was considered in a systematic manner.
 flarvey on Nabal Architecture, Anmals of philosophy, vol. viii. p, 445, new serics.

[^11]: - It is mach to be desired that these admirable dissertations were reprinted in a separate form, and cnriched by appropriate notes, for the use of our students in Naval Arehitecture.

