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Abstract

:

While most models of auctions and competitive bidding assume that

each bidder's utility for an outcome depends only on his own profit,

we allow the utility to also depend on any regret that a bidder suffers

after the fact, for example over "money left on the table" in Federal

offshore oil lease sales. Typically, for risk neutral bidders who,

after the fact, know the winner's price for the object, a bidder's

optimal bidding strategy will not depend on the relative weight given

to profit versus regret. However, if losers do not learn the winner's

price, then the bidders' reactions to regret hurts the bid-taker at

equilibrium. Thus, the existing models' exclusion of regret from risk

neutral bidders' utility functions affects the applicability of the

resulting theory only under certain, now clearly delineated, con-

ditions .
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Introduction:

Developments in the theory of auctions and competitive bidding

derive from three sources—observations of the real world, experiments

in the laboratory, and analyses of mathematical models. Each con-

tributes in its own way. Each also has its own limitations. But,

together they result in a richer theory than could result from any one

source by itself.

Specifically, observing actual auctions carefully enough reveals

real situations and phenomena to be studied, modelled, or explained.

So, observations provide a necessary link to the real world. However,

at best, we can only accurately observe what actually happens in

actual situations as we perceive them. This affords little opportunity

for repeated observations of what happens in a specific situations for

defining the specific situation, or for modifying the specific

situation.

On the other hand, laboratory experiments replace the real world

with a model of the auction and its environment. This flexibility in

defining the auction rules and environment allows for the observation

of how the surrogates react to many different, not necessarily real

world, situations. This flexibility also carries a cost— the respon-

sibility to think, about how the laboratory situation relates to the

real world. In addition, experiments substitute surrogates for the

real world bidders. This also carries a cost— the experiences, motiva-

tion, and expertise of the surrogates may differ from those of real

bidders, and, therefore, so too might their reaction to any specific

situation.



-2-

Finally, mathematical models go even one step further from the

real world; they model not only the auction rules and the environment

within which the auction occurs, but may model the bidders. If

analytically tractable, such models suggest hypotheses to be tested

experimentally, hypotheses that might otherwise not have been thought

of. However, the increased flexibility in defining situations also

carries an increased responsibility; by modelling the bidders in addi-

tion to the auction itself, the chances to misrepresent the real world

increase.

In particular, the usefulness of a model depends on the extent to

which it captures or represents something of practical interest. A.

model might give rise to certain phenomena observed in the real world,

and thereby be useful In suggesting how and why such phenomena arise

in the real world. Alternatively, a model might focus on one par-

ticular aspect of actual auctions, and thereby be useful in under-

standing how this aspect affects what happens in the real world and

why. In either case, though, what practical insights can be gained

from the model and its analysis depends on how sensitive the results

are to exactly how the model approximates the real world.

This paper examines the sensitivity—or lack thereof—of the

theory to a particular change in modelling the bidders themselves. By

definition, each bidder bids as if he were maximizing his expected

utility from the auction as he sees it; while this describes what bid

a bidder will make, it does not prescribe, or even necessarily

describe, how the bidder comes up with the bid. Of course, the bid-

der's utility depends on the outcome. The outcome, in turn, depends
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on how everyone bids. Thus, a particular bidder's expected utility

depends not only on his own bid, but also on how he believes others

would bid in response to any possible view that they may have of the

actual situation, as well as on our particular bidder's beliefs about

the relative probability of others' views of the situation given his

own view of the situation.

In some models, a bidder's expected utility maximizing bid remains

the same regardless of how others bid; the expected utility may

change, but not necessarily what bid maximizes the expected utility.

However, in the absence of such "dominant bidding strategies," how a

bidder bids depends on his perceptions about how others will bid.

Still, if a bidder's perceptions about others changes very little from

one auction to another, then the Nash equilibrium provides a possible

characterization of everyone's behavior; an equilibrium exists if no

one bidder could do better than to continue bidding as he has in the

past so long as others continue to bid as they have in the past.

Not everyone accepts the Nash equilibrium as an appropriate model

of bidder's behavior. Yet, despite any reservations, the Nash equilib-

rium remains a commonly used model. In fact, we know of no better

model; in this sense at least, the Nash equilibrium is the natural

model. Moreover, we suspect that most reservations with Nash equilibria

actually stem more from an inappropriate choice of utility function or

from an inappropriate model of how each bidder perceives others and the

real world than from any flaw in Che equilibrium concept itself. There-

fore, we question the form of utility function typically used, or more

precisely, we will examine the effects from modifying the usual utility

function form.
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Most existing models of auctions and competitive bidding assume

one specific form of utility function. (For examples, see the work of

Vickrey (1961), Myerson (1981), Milgrom and Weber (1982), or the sur-

vey of Engelbrecht-Wiggans (1980).) While the bidders—as modelled by

the utility function—might be risk neutral or risk averse, the util-

ity of any outcome depends only on the bidder's profit from that out-

come. Although this captures what may be the most important component

of bidders' utility functions, it ignores other potentially important

components. We therefore look to the real world in asking what might

we want to put into the utility function in addition to, or possibly in

place of, profit.

In this spirit, reacting to comments from bidders on Federal

offshore oil lenses that they bid to maximize the quantity of mineral

reserves won rather than to maximize expected profit— the profit on an

oil lease being so affected by others' decisions once the lease has

been won that the bidder might be unable to even define what is meant

by "profit"—Engelbrecht-Wiggans (1987) defines a Principal-Agent

model of competitive bidding. In the model, bidders act as agents

for their respective oil firms, but bid to maximize how much they win

gross of what they must pay for it. Of course, without any constraint

on how bidders bid, such an objective would drive up the price of leases

without limit. So, the oil firm, acting as the principal, places some

constraint on how its agent may bid. For an appropriately set limit

on bidder's expected expenditures, the bidder's bidding will be indis-

tinguishable from how he would have bid were he maximizing expected

profit. (Operationally, an oil firm may encourage its bidder to win as
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many mineral reserves as possible subject to some longer term feedback

on whether the bidder is on average spending too much or too little per

sale.) On the other hand, any constraint on a bidder's total exposure

in an auction typically results in distinctly different bidding. Thus,

any theory for expected profit maximizing bidders applies equally well

if bidders maximize expected gross winnings subject to an appropriate

constraint on expected expenditures, but not if the constraint is on

total exposure in a sale. This helps broaden and define the limits of

the existing theory.

In the same spirit, the current paper reacts to the concern over

"money left on the table"— the amount of money the winner could have

saved himself in a first-price sealed-bid auction had he known, when he

bid, what his nearest competitor would bid. This suggests letting the

utility function depend on regret as well as on profit. Including the

regret suffered by the loser who has a value for the object in excess

of the price paid by the winner seems logical. Thus, keeping things

as simple as possible, we consider defining a bidder's utility as a

linear combination of profit and regret.

Roughly speaking, we shall show that if, at the end of the auction,

a bidder learns the winner's price, then the relative weight given to

profit versus regret in the utility function does not affect that bid-

der's optimum bidding strategy. Thus, all the theory for expected pro-

fit maximizing bidders applies equally well in many practical situations

with bidders who are risk neutral but consider regret in addition to

profit. However, a simple example illustrates the importance of bid-

ders, after the fact, knowing the winner's price.
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Bell's (1982) work in utility theory supports our choice of the

utility function form. In particular, he suggests utility functions of

the form u(s,t) = v(s) + f (v(s )-v( t ) ) . Extending his definitions of s

and t to our, more general, setting suggests indentifying s as a bid-

der's actual profit, and t as the profit that the bidder could have had

from bidding different than he actually did had he known when he bid

what he knows after the fact. Then for risk neutral bidders, the ex-

pression becomes u(s,t) = as + f(as-at), where a is a constant between

zero and one. Note that, since for almost all bids, the regret varies

continuously with the bid, for our problem t must be no less than s.

So defining f(z) = (l-a)z/a for non-positive z, and f(z) = for non-

negative z gives u(s,t) = as - (1-a) max {0, (t-s)}; the utility is a

linear combination of profit and regret, with the constant a parameter-

izing the weighting, just as we already suggested.

We close with a brief outline of what follows. The next section

defines our notation, defines regret in terras of this notation, derives

an expression for a bidder's ex-ante expected utility, and establishes

conditions under which a bidder's optimal strategy is independent of

the parameter a< • roughly speaking, if, after the fact, each bidder

knows the winner's price, then the necessary condition will typically

be satisfied, and so the optimal strategy will be independent of the

parameter a. The following section provides two illustrative examples.

One illustrates the independence of the optimal bidding strategy from

the parameter a when, after the fact, losers know how much the winner

paid. In the second example, non-winners do not know what the winner
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paid, and then including regret in the utility function hurts the bid-

taker's expected revenue at equilibrium. We conclude with a brief sum-

mary and overview.

The Model:

This section defines our model and establishes our main result.

In particular, we consider an independent, but not necessarily pri-

vately known, values model with risk neutral bidders. Roughly

speaking, in such a model, if losers learn the winners price, then

bidders' optimal strategies do not depend on the relative weight given

to expected profit versus expected regret.

Specifically, consider a sealed bid auction for a single object.

The bid-taker has a known reservation price of r; hereafter, we treat

this reservation price as if it were simply a bid by the bid-taker. A.

known number, possibly random, of risk neutral bidders submit sealed

bids for the object. The highest bidder wins the object, and pays an

amount equal to his bid.

Bidders obtain private information—information beyond that which

all bidders know—by observing the outcome of random variables with a

known joint distribution. Specifically, look at the problem from the

viewpoint of a particular bidder i. Let x denote the outcome of X

observed by i, and let _y denote the vector of outcomes of Y_ observed by

other bidders. For later convenience, let y. denote the jth component

of _y, and let y* (respectively Y*) denote the largest component of _y

(respectively Y_) . Assume that the random variable Y*|X = x has a prob-

ability density function for each possible x.
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Bidder i can estimate his value from the object conditional on

having observed x. However, this estimated value need not be inde-

pendent of others' observations _y. Therefore, let v(x,_v) denote the

expected value of the object to i conditional on x and y_, where the

expectation is over any components of the true state of nature that

would still be uncertain even if i were to have observed both x and y_.

Assume that v(x,_y) is bounded.

After observing their respective component of (x,y), each bidder

bids. Assume that for some reason—perhaps the auction has a symmetric

Nash equilibrium—each of the other bidders bids as if he were simply

substituting the outcome he observed into some function b( •); this b( •)

may, but need not, correspond to a Nash equilibrium. (Although we do

not require the model to be symmetric, the existence of a symmetric

equilibrium arises most naturally from symmetric models.) We assume

that the function b(«) increases montonically and is continuously dif-

ferentiable; Milgrom and Weber (1982) establish appropriate conditions

so that Nash equilibrium strategies satisfy our assumptions.

Eventually, at some time after he submitted his bid, i learns

something additional about the auction. In particular, i learns

whether or not he won the object. We presume that i learns the win-

ner's price. In addition, i might learn something about how others

bid. Since we assume that each of the other bidders follows the mono-

tonic bidding strategy b(«), any information about others' bids re-

veals specific information about _y. Thus, without loss of generality,

let w(_y,x) denote what i learns about _y after the fact given that he

observed x; w(») may be vector valued. For example, if when i loses,
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he still eventually learns how much the winner paid for the object,

but nothing else about how others bid, then w(_y,x) is inf orraationless

—

for example, w(y,x) equals some constant. Alternatively, if i always

learns how its strongest competitor bid, then we might define w(y_,x) =

y*.

Although i does not know _y, or even w, at the time of bidding, he

does know something about how they are related to the x that he observed.

Specifically, let F(y*|x), G(w|x,y*), and H(^|x,y*,w) denote the condi-

tional cumulative probability distribution functions of y* , w, and y_.

Assume that i knows these functions, or more precisely, that he acts as

if he were maximizing his expected utility with y*, w, and y_ distributed

according to these functions.

If i had known w before he bid, then he might have preferred to bid

differently. For example, if i knew how much the highest other bidder

would bid, then if i had thought of bidding more than this, he would

probably want to reduce his bid to just a hair above the highest other

bid; this would result in essentially zero money being left on the table.

Thus, we define the regret suffered by i if he wins with a bid of 3 to

be B~b(y*). Similarly, i might suffer regret when he loses if his ex-

pected value for the object exceeds his estimate of what the winner paid

for it. Thus, we define the regret Chat i suffers when he loses to be

/v(x,^_)dH(y_|x,y*,w)-b(y*) if this difference is positive, and zero other-

wise. Then at the time of bidding, i has an expected total regret of

R(x,B) = / _, (3-b(y*))dF(y*|x) + / , /max {0
,
/v(x ,y)dH(y |x,y*,w)

y*<b (3) y*>b (B) w
y_

- b(y*) }dG(w |x ,y*)dF(y* |x) from bidding 3 after having observed x. In
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addition, at the time of bidding, i has an expected profit of n(x,8) =

/ _! (J7v(x,y)dH(y|x,y*,w)dG(w|x,y*)-6)dF(y*|x).
y*<b (8) wy

Of course, by definition, i chooses to bid that value of 6 which

maximizes his expected utility from the auction. We have already

assumed that the expected utility to i would be a weighted combination

of expected profit and expected regret. Thus, the expected utility to

i from bidding 8 after observing x, knowing that others will follow

the strategy b( • ) , and that he will eventually see w( •) evaluated at

whatever y_ others observed in addition to learning whether or not he

won the object and the winner's price may be written as follows:

U(x,S) = aH(x,B) + (l-ct)R(x,8)

Note that i suffers regret on losing the object only if his

expected value for the object (given whatever information he now has)

exceeds his estimate (also given whatever information he now has) of

the price that the object went for. The case of i just barely losing

the object will be of crucial importance. So, define the following con-

dition: For any given x, a, and optimal bid 8 by i given x and a,

Jv(x,y)dH(y |x,Y*=b
-1

(8)) > 8 Vw: dG(w |x , Y*=b
_1

( 8) ) >0 (*)

y

In words, if i just barely misses winning the object, then he always

expects the object to have been worth at least as much as he bid for it,

This condition will hold in many, if not most real world auctions.

Theorem: If 1) at the end of the auction, a risk neutral bidder i

learns both whether or not he won the single object being sold, and the
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winner's price; 2) when i just barely misses winning the object, he

always expects the object to have been worth at least as much as he bid

for it; and 3) all other bidders bid as if they were following the same

monotonically increasing, continuously dif f erentiable bidding strategy;

then i's optimal bid is independent of the relative weights given to

profit and regret in his utility function.

Proof: For a bid B > r to be optimal, it must satisfy the first order

dU ( x 8)
condition . -

* — = 0. But, for our model, this condition becomes
a 8

a[ -— (//v(x,y)dH(y|x,Y*=b"
1
(S),w)dG(w|x,Y*=b"

1
(8))-B)dF(b"

1
(B) |x)-F(b"

1
(3)

b'(b (8)) wy

= (l-a)[0 + F(b
_1

(6)|x)

~ fmaxfO, fv(x,y)dH(y |x,Y^-b"
1
(8),w)-8}dG(w|x,Y^=b"

1
(;3))dF(b"

1
(8) |x).

b'(b (3)) w y

Now, using condition (*) and then combining like terras reduces the first

order condition to

J/v(x,y)dH(y |x,YA=b~
1
(S),w)dG(w|x,Y*=b~

1
(8))dF(b~

1
(8) |x)

wv

= 6dF(b
1
(B)|x) + b'(b

1
(6))F(b

l
U)\x)

In addition, bidding 8 < r results in zero profit and positive expected

regret of i's expected value for the object exceeds the reservation

price r. Thus i should bid less than r if and only if his expected

value for the object conditional on winning with a bid &=r is less than

r. Thus both the condition for when i should bid at least r, and the

condition for what i should bid if he bids at least r are independent

of the relative weight given profit versus regret.
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Thus , roughly speaking, if losers learn what price the winner paid,

then the optimal bidding strategies are independent of a, and any theory

for expected profit maximizing bidders applies just as well if bidders

actually maximize some weighted average of expected profit and expected

regret as we have defined it.

Examples

:

This section provides two examples illustrating the above theorem.

In the first example, the stated conditions for the theorem hold, and

the optimal bid for i to make having seen x is independent of a. How-

ever, in the second example, if i loses, he does not learn the winner's

price; this violates the conditions assumed by the theorem. In this

example, i's optimal bid does depend on a. In fact, giving equal weight-

ing to profit and regret results in a strictly lower expected equilib-

rium price than if bidders simply maximized expected profit without

regard to regret.

We consider two examples with independent private values. Each of

the n risk neutral bidders knows his own value for the object. The

values are independent samples from the uniform distribution on the

unit interval. In both examples, the reservation price equals zero,

and the statistic w(Y_) is inf ormat ionless

.

In the first example, each of the other bidders bids (n-l)/n of his

actual value. At the end of the auction, i knows the winner's price,

and therefore can infer the winner's value for the object. We show that

i can do no better than to always bid (n-l)/n of his own value for the

object. (Thus, we have found a Nash equilibrium. The fact that this

Nash equilibrium is independent of a illustrates the theorem.)
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To determine i's optimal bid, start with three observations. First,

the other bidders will never bid greater than (n-l)/n. If i bids at

least (n-l)/n then he always wins. Bidding greater than (n-l)/n in-

creases the price without increasing the probability of winning. Thus,

i should never bid greater than (n-l)/n. Second, i should never bid

greater than his own value x; bidding greater than his own value may

result in i winning the object at a price greater than his own value,

an outcome to be avoided, and which can be avoided by bidding no more

than x. (Note that therefore, condition (*) will hold in any private

values example.) Third, a negative bid has essentially the same effect

as a bid of zero. Thus we need only consider nonnegative bids 8 '

min {x, (n-1) /n }.

Now, calculate the expected utility U(x,8) to i from bidding 3 when

his value is x. For < 8 <_ min {x, (n-l)/n 1, this expected utility equals

n8 n8 nx
n-1 „ n-1 . n-1
r / x , , \ n-z

, , , . , t . ny w , . n— Z , f , nv . , , . n— z

,

a/ (x-S)(n-l)y dy-(l-a)[/ ( 8" -rr)(n-l)y dy + / (x- -^-) (n-l)y dy
y=0 y=0

n X y=E
Tf

n

where y denotes the largest of the other bidders' values. Differen-

tiating this expression with respect to 8, setting the result equal to

zero, and solving for 8 yields 8 - (n-l)x/n independent of a. Thus,

i's optimal bid is independent of a. Furthermore, since i's optimal

strategy is to follow the same strategy as followed by the other bid-

ders, we have a symmetric Nash equilibrium, and the equilibrium strategy

is independent of a.

On the other hand, to illustrate the crucial role played by the

assumption that i learns the winner's price, now consider a second
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example. In this second example, losers only learn that they lost.

If a = 1, then we get the same Nash equilibrium as before—whether or

not losers know the winner's price does not effect the Nash equil-

ibrium (or any other optimal strategy for that matter) if i bids

solely to maximize expected profit.

However, in contrast to the case a = 1, now consider the case

a 1/2 and n = 2. Then, for i to have no better alternative than to

follow the strategy b( • ) when the other bidder follows the strategy

b(0, we need the following first order condition to hold:

, b
_1

(6) b
_1

(6) 1— [/ (x-B)dy - / (6-b(y))dy]| = when / (x-b(y))dy <
ats y=0 y=0 B=b(x) y=x

and

, b
_1

(6) b
_1

(8) 1

-± [/ (x-S)dy - [/ (6-b(y))dy + / (x-b(y))dy]

]

P y=0 y=0 y=b (8) 8=b(x)

1

when / (x-b(y))dy 2 0.

y=x

In addition, b(x) must be continuous x, and, if i bids r, then his

value x for the object must have been zero; specifically, b(0) = 0,

Consider the following candidate for the equilibrium strategy:

-n- for x _< x*

b(x) =
{

J
2

— - -— for x > xA ,

2 ox —

1

where
J (x*-b(y))dy =

y=x*

and so x* equals approximately 0.3148.
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To verify that this satisfies the necessary first order condition,

observe that

1 *2

/ <«-<f - Tb-))dy
y=x

is nonnegative for x* _< x <_ 1, and for this range of x, b(x) = x/2 -

C /x satisfies the appropriate first order condition. In addition,

-- -k

! cx-f)dy + / (X-(f -|--))dy
y=x y=x*

is nonpositive for < x <_ x* , and for this range of x, b(x) = x/3 +

C_ satisfies the appropriate first order condition. Finally, b(0) =

2
and b(x) is continuous at x = x* if C = x* /6 and C~ = 0. In fact,

the stated strategy is unique (symmetric) equilibrium strategy for

this example.

Notice that this equilibrium differs from that when a = 1 (where

b(x) = (n-l)x/n = x/2 for n = 2 was the unique equilibrium strategy).

Thus, the result of the theorem depends critically on the loser knowing

the winner's price. Furthermore, at least in this example, if the loser

does not learn the winner's price, then the bid-taker's expected reve-

nue suffers; the b(x) defined above is strictly less than x/2 for all x

greater than zero, and therefore the two bidders bid less when a = 1/2

than when a = 1.

Summary:

We consider a model of auctions and competitive bidding for a single

object in which the bidders, although risk neutral, consider regret in
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addition to profit when deciding how to bid. As we defined it, regret

comes from two sources—the winner paying more for the object than the

second highest bidder bid, and a loser possibly having a value for the

object in excess of what the winner paid for it. Then, if losers learn

what the winner's price, a bidder's expected utility maximizing bidding

strategy is independent of the relative weight given to regret versus

profit; the first example illustrates this theorem.

A. second example illustrates the importance of losers learning the

winner's price. In the second example, losers do not learn the winner's

price and the Nash equilibrium bidding strategy depends on the relative

weight given regrets versus profits. In fact, the bid-taker's expected

equilibrium drops as the relative weight on regret increases.

Throughout the paper, we gave the regret suffered by a loser equal

weight to that suffered by a winner. In practice, however, the regret

suffered by a winner— the money left on the table—may have a larger

weight than the opportunity losses of a loser. But, if we start with

equal weightings on both types of regret, and then move toward more

weight on winner's regret, a bidder's optimal bid decreases—he becomes

relatively more concerned about overbidding than before and therefore

should decrease the expected amount of overbid somewhat at the expense

of somewhat increased, but less heavily weighted, regret from under-

bidding and losing when his value exceeds the winner's price. Of course,

the amount by which the bidder's optimal bid decreases depends not only

on the relative weight on the two types of regret, but also on the rela-

tive weight on regret versus profit. In short, the heavier the weight

on regret from money left on the table compared to loser's regret or
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compared to expected profit when winner's regret has a higher weight

than losers' regret, the lower the bidder's optimal bid.

This effect on a bidder's expected utility maximizing bid of the

relative weights on the two types of regret provides the intuition

behind the second example. In particular, by giving losers less infor-

mation about the winner's price, losers must calculate their regret

based on the expected winner's price. However, even if the expected

winner's price exceeds a loser's value, the winner's price might have

some positive probability of exceeding the loser's value. Thus, with-

out specific information about the winner's price, the loser may have

no regret even though in the same situation, if he were told the winner's

price, the loser would have positive regret with positive probability

—

therefore a positive expected regret. As a result, the less information

a loser has about the winner's price, the less regret he suffers on

average when losing. So, in effect, not knowing the winner's price

reduces the relative weight on loser's regret from the weight given

loser's regret when losers know the winner's price. Thus, losers not

knowing the winner's price decreases the optimum bid, as illustrated

in the second example.

In summary, for sealed-bid, first-price auctions of a single object

to risk neutral bidders, a bidder's expected utility maximizing bidding

strategy does not depend on the relative weight given to regret versus

profit so long as losers learn the winner's price and both types of

regret have equal weight in the bidder's utility function. Making the

winner's regret over money left on the table more important than loser's

regret over lost opportunities decreases the optimal bids. Not telling
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losers the winner's price in effect puts less weight on loser's regrets

relative to winner's regret and therefore also decreases the optimal

bid. In either case, the amount of decrease in the optimal bid depends

on the relative weight given regret versus profit.

Thus, this establishes the importance of losers knowing the winner's

price and of both types of regret having equal importance if the theory

derived from models with expected profit maximizing bidders is to be

applied to cases where regret enters into bidders' utility functions

in the way modelled in this paper. Roughly speaking, the theory for

expected profit maximizing bidders applies just as well to bidders con-

cerned about regret if and only if losers learn what price the winner

paid and if bidders place equal weight on both types of regret. There-

fore, the previous models' exclusion of regret from the utility functions

affects the applicability of the theory for risk neutral bidders in

first-price sealed-bid auctions only in certain, now clearly delineated,

cases

.
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