UNIVERSITY OF
ILLINOIS LIBRARY
AT URBANA CHAMPAIGN
BOOKSTACKS

CENTRAL CIRCULATION BOOKSTACKS

The person charging this material is responsible for its renewal or its return to the library from which it was borrowed on or before the Latest Date stamped below. You may be charged a minimum fee of $\$ 75.00$ for each lost book.
Thoft, mufiletion, and underilning of books are reasons for disclplimary action and may resuls In dismissal from the University.
TO RENEW CALL. TELEPHONE CENTER, 333-8400
UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

Faculty Working Papers

Effect of Response Errors on Parameter Estimates of Hodels of Savings Behavior Robert Ferber and Lucy Chao Lee University of Illinols

College of Commerce and Business Administration

 University of lllinois at Urbana-Champaign

FACULTY WORKING PAPERS
 College of Commerce and Business Administration
 University of Illinois at Urbana- Champaign
 June 18, 1971

Effect of Response Errors on Parameter
 Estimates of Madels of Savings Behavior Robert Ferber and Lucy Chao Lee University of Illioois

No. 17

Effect of Response Errors on Parameter
Estimates of llodels of Savings Behavior

Robert Ferber and Lucy Chao Lee

A considerable body of evidence has accumulated indicating that substantial errors exist in the reporting of asset and debt holdings in consumer financial surveys. The cheracteristics of these errors vary from one asset or debt to another, being more pronounced for more sensitive holdings, such as savings accounts, common stock and personal debt, and being of lesser importance for holdings such as life irsurance, real estate and installment credit. ${ }^{1}$ Overall, however, the evidence indicates that nonreporting of ownership may be substantial, that very small holdings may be overstated and very large holdings understated, and that those who refuse information on their holdings are likely to hold more of that asset or debt than would be expected on the basis of the usual averaging process.

Although current research may lead to means of detecting and correcting such errors, the fact remeins that all of our past and current consumer financial survey deta are subject to these errors. In viev of the

[^0]-
widespread interest in ascertaining and measuring the determinants of consumer savings behavior, it would, therefore, seem of critical importance to evaluate the effects of these errors on analytical studies of this type.

These effects are explored in this paper. More specifically, its objective is to assess the effects of errors in asset and debt variables on the estimates of parameters of models of consumer portfolios. This is done in a two-stage process. First, estimates are made of the magnitudes of the bias in estimates of the parameters of consumer portfolio models, using data from a validation study permitting relatively accurate determinations of the magnitude of response and nonresponse errors in the variables.

This first stage involves initially the formulation of alternative hypotheses on the determinants of consumer portfolios. These hypotheses are transformed into structural relations as a basis for the estimation of parameters. The parameters of the models are then estimated in two ways, one way by using the data on consumer portfolios as reported in the surveys and the other way after adjusting these variables for response and nonresponse errors in the data, bascd on the validation information. The latter adjustment is a rather tricky one, because the validation data provide only partial information on the errors in the variables, so that additional inferences of the nature of the error in the nonvalidated component of the variables have to be made. To obtain some idea of the sensitivity of the estimates of the parameters to these inferences, these estimates are made under alternative assumptions of these errors.

This first, econometric, approach yields rather narrow results, providing estimates of the effect of these errors on a particular type of sample. To obtain a more general idea of the nature of these effects, a simulation approach is used next. This approach involves five distinct steps. First, as before, certain structural hypotheses and corresponding portfolio functions are formulated. Second, based on the results obtained with the prior econometric approach, assumptions are made of the true values of the parameters of the models. Third, error properties are attributed to the portfolio variables based on the validation information from the sample used in the prior econometric approach as well as from previous validation studies of consumer financial behavior. Fourth, the same validation sample used in the first stage is run through the error process, and sets of observations are generated making use of the error properties postulated at the prior stage. These sets of observations are generated by Monte Carlo methods 150 different times, to yield some idea of the range of variables obtained with these error properties.

Finally, estimates are obtained of the parameters in each of these simulations and compared with the true values postulated in the second stage. The distributions of the parameter estimates around the true values provide a fairly comprehensive picture of the effect of these response and nonresponse errors, at least for the types of models postulated in this study.

The theoretical aspects of the effect of errors in variables has been well covered in the literature, in addition to a few empirical studies

of this question. A brief summary of this literature is provided in the following section, which serves as a framework for the present pafer. Section 3 presents alternative formuiations of models of savings behavior and describes the data used in this scudy. The rasults of the econometric apnroach are preccated in Section 4 and that of the simiation approach in Section 5. The concluding section then sumarizes the results and discusses their implications both for the study of savings behavior and with regard to the methodological issue of the effect of eriors and variables on parameter estinates.

2. Review of Relevant Literature

The great majority of studies of consumer savings nave iosused on the flow aspects rather thar on the stock of savings, which is not surprising in view of the much greater availe'jility of data of the formar type. Nevertheless, an increcirg amount. of data has begun to be avalable in recent years on househid finencial assets, and these data hava served as a basis for a numer c studies on the determinants of rhara asset holdings. Althourh the cross-section studies of this questin ate of primary interest, it scens desizabio to refer briefly to some of the more recent time series studics becanse of their zelevance to oue of the principal aspects con model os sonstaer portfolios. This is the question whether income or nssets, or both, are most relevant to the detamination of holdings of a financial essct.

The bulk of the evidence appears to point rather strongly toward some measure of wealth (usually net worth) rather than inccme as a rure likely
primary determinant. Thus, in a study of factors influencing liquid asset holdings in England, Lydall found that new worth was far more important than the level of income. ${ }^{2}$ Similar results were obtained by Meltzer as well as by Bronfenbrenner and Mayer. ${ }^{3}$ In a still more recent study, Hamburger found that wealth was consistently more important than income in a number of single equacion models of the influence of various factors on the demand for four financial assets -- narketable bonds, time and savings deposits at commercial banks, life insurance reserves, and savings accourts at credit unions, savings and loan associations and mutual savings banks. ${ }^{4}$

A study by Feige might also be cited in which he found that demand deposits, as well as time deposits of commercial banks, and savings and loan associations, were strongly influenced by an estimate of "permanent personal income."5 However, the income variable reflected a weighted
${ }^{2}$ Harold Lydall, "The Life Cycle in Incom, Saving and Asset Ownership," Econcmotrica, Vol. 23, April 1955, Fages 131-50.
3^{3} A. H. Meltzer, "The Demand for Money: The Evidence from the Time Series," Journal of Political Economy, Vol. 61, June 1963, Pages 219-246; M. Bronfenbrenner and T. Tayer, "Liquidity Functions in the American Economy," Eccnometrica, Vol. 28, October, 1960, Pages 810-834.
411. J. Hamburger, "Household Demand for Financial Assets," Vol. 36, January, 1968, Pagos 97-118.

5E. L. Feige, The Demand for Liquid Assets: A Temporal-Cross Section Analysis, Englewood Clifís, New Jersey: Prentice Hall, 1964.

average of present and past values of personal incors and is, therefore, closer in concept to a net worth variable than to a current income variable. Partly for the latter reason, no measure of wealth was used in this study.

The cross-scction studies have teen relatively few and of a somewhat varied nature because they necessarily had to be moided to fit the particular set of datc. Thus, Watts and Tobin ran a series of multiple regressions on the 1950 BLS consuner expenditures data using as dependent various stock: variables (mortgage debt, installment debt, cash balances and insurance) and also corresponding flow variab?cs. They found a variety of socio-economic and domographic chancteristics 0 influence these dependent variables, among which was income. ${ }^{6}$ HoweveI, net worth was not available and therefore was not included in the study. It might be noted that housing level, a variable that was incluod and that might be considered as a proxy for permanent income and for net werith, was highly significan* ir almost c.ll cases.

In another cross-section study, using data Erom the Consumer Savings Project, Claycamp found that wealth, in the form of total assets, dominated income as a deterairant of the proportion of assots held in liquid form as we:l as the proportion held in variable-dolla: form (meaning assets whose value fluctuates with changes in prices).

6H. W. Watts and James Tcbin, "Consumer Expenditures and the Capital Account," in Irwin Friend and Rcbert Jones, Editors, Proceedings of the Conference on Consumption and Saving, Vol. 2, Philadelphia: University of Pennsylvania Press, 1960, Pages 1-48.
$7_{\text {H. J. Claycamp, Jr. The Composition of Constmer Savirgs Portfolios. }}$ Urbana, Illinois: University of Illinois Bureau of Econcmic and Business Research, Studies in Consumer Savings, No. 3, 1963.
rn ${ }^{13}: \quad$:
130)
\cdots

* : !)
- ,"

In another study, Crockett and Friend found that regressions of different asset items on net worth gave about the same result as regressions of these holdings on disposable income, using data from the 1962 Federal Reserve Survey of Financial Characteristics of Constmers. ${ }^{8}$ Later in the same study, results from a University o Ifichigan Sincy Research Center panel of consumers for 1959-61 indicated that both income and net worth were significant in deterninirs the fiow into, and stocks of particular assets, varying with the asset. As in the Watis and Tobin study, however, the income term was invariably a masure of long run, or "normal," income, which again might be construed as a proxy for vat worti. Also, the bulk of this analysis focused on asset flows rather than on stocks.

Dorothy Projector found that cquity in an asset at the beginning of the period, and also occasionaily a net worth variabic, were more important than disposabie income in determining saving in the form of a publicly traded stock, checking accounts, savings accounts, and investment assets. 9 Invariably, equity in the particular assct at the beginning of the period was the doninett variable.

Also pertinent are various studies made by Kreinin with Survey Research Cenise Data on the factors influencing ownership of liquid assets,

[^1].
\square
\qquad
\qquad
$\because \because \quad \vdots!\cdot$
. 1

THM
4.ni :
life insurance and common stock. A variety of socio-economic factors were found relevant, and stock ownership was found also to be influenced by liquid assets. 10

3. Alternative liodels

Based on the previous review of the literature, three alternative models were formulated for use in this experiment. In all three cases, assets are subdivided into three categories in accordance with the validation information that is available. These categories are savings accounts and savings certificates (S), common stock (C), and all other assets and debt (L).

The three models represent alternative hypotheses on the determinants of these three forms of asset holdings. The models are as follows:

Model A

This model assumes that each of the three asset holdings is dependent on the other asset holdings in accordance with the following hypothesis. Savings accounts and common stock are jointly dependent on each other and on total assets (T), while other asset holdings are dependent on savings accounts and on common stock. In addition, all three categories of assets are influenced by a set of family characteristics (Z), which are treated as exogenous. The model is formulated

[^2]```
 !:-7, ,
```

- 21


i.
in linear arithmetic terms as follows:

1. $S_{i}=a_{0}+a_{1} C_{1}+a_{2} T_{i}+a_{3} Z_{i}+u_{i}$
2. $\mathrm{C}_{\mathrm{i}}=\mathrm{b}_{\mathrm{o}}+\mathrm{b}_{1} \mathrm{~S}_{1}+\mathrm{b}_{2} \mathrm{~T}_{\mathrm{i}}+\mathrm{b}_{3} \mathrm{z}_{\mathrm{i}}+\mathrm{v}_{\mathrm{i}}$
3. $\mathrm{L}_{\mathrm{i}}=\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{~S}_{\mathrm{i}}+\mathrm{c}_{2} \mathrm{C}_{\mathrm{i}}+\mathrm{c}_{3} \mathrm{Z}_{\mathrm{i}}+\mathrm{w}_{\mathrm{i}}$
4. $S_{i}+C_{i}+L_{i} \equiv T_{i}$

## Model B

The second model is partially recursive in that it assumes savings accounts are determined first as a function of total asset holdings and of family characteristics. Holdings of common stock and of other assets are then assumed to be determined by savings accounts holdings and by total assets as well as by family characteristics. The common stock function is hence the same as in Model A. This hypothesis is in line with the general advice given by personal finance and money management people, that families just starting out should try to build up assets in the form of savings accounts (as well as life insurance) for reserves before accumulating other assets.

The exact form of the model is as follows:

1. $S_{i}=a_{0}+a_{2} T_{i}+a_{3} Z_{i}+u_{i}$
2. $\mathrm{c}_{\mathrm{i}}=\mathrm{b}_{\mathrm{o}}+\mathrm{b}_{1} \mathrm{~S}_{\mathrm{i}}+\mathrm{b}_{2} \mathrm{~T}_{\mathrm{i}}+\mathrm{b}_{3} \mathrm{z}_{\mathrm{i}}+\mathrm{v}_{\mathrm{i}}$
3. $L_{i}=c_{o}+c_{1} S_{i}+c_{2} T_{i}+c_{3} Z_{i}+w_{i}$
4. $S_{i}+C_{i}+L_{i} \equiv T_{i}$

$$
\begin{aligned}
& i \therefore \text {, } \\
& \therefore \quad \div \quad 1 \\
& \therefore \quad \text {; } \\
& \text {;is! } \\
& \text { ( } 4 \text { ! 1.J: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. } \quad \text {, , ij, } 10 \text { 亿 } \because \\
& \text { ? : fitu: } \\
& \text { : : iffi } \\
& , \ddots_{i}+i= \\
& \text {-romai } \\
& \text { ! ! } \\
& !! \\
& \leq \\
& \text {, } \\
& r^{i+i} \quad i
\end{aligned}
$$

## Mode1 C

This model differs primarily from the preceding models in treating as dependent the proportion of assets in a particular form rather than the absolute amount. In other words, the endogenous variables are the proportion of total assets in savings accounts ( $\mathrm{S} / \mathrm{T}$ ), the proportion of total assets in common stock ( $C / T$ ) and the proportion of total assets in other forms ( $\mathrm{L} / \mathrm{T}$ ).

The basic hypothesis is similar to the preceding model, namely, that a family initially determines what proportion of its total assets should be in savings accounts, based on its total assets and its socioeconomic characteristics. It then determines what proportion of its total assets should be in the form of common stock as a function of the prior determined proportion of its assets in the form of savings accounts, its total assets and its socioeconomic characteristics. The proportion of assets in other forms is obtained as a residual.

The exact form of the model is:

1. $(S / T)_{i}=a_{0}+a_{2} T_{i}+a_{3} z_{i}+u_{i}$
2. $(C / T)_{i}=b_{o}+b_{1}(S / T)_{i}+b_{2} T_{i}+b_{3} Z_{i}+v_{i}$
3. $(L / T)_{i}=1-(S / T)_{i}-(C / T)_{i}$

## The Data

The empirical part of this study is based on a combination of two surveys carried out to validate reports of savings accounts and of common stock holdings in the Federal Reserve 1963 Survey of Financial


Characteristics (SFC). The SFC itself was a nationwide probability survey designed to obtain information on the complete financial position of families in this country, with over-representation from the highincome groups. The two validation studies were carried out toward the end of the SFC, using identical questionnaires and interview procedures and with the same interviewing organization (the U. S. Bureau of the Census). Unlike the SFC , however, the validation surveys were restricted geographically and, by their nature, contained only owners of that particular asset. ${ }^{11}$

It is clear, therefore, that the data used in this study do not represent a cross section of the U.S. population. Rather, these data constitute a very special sample for part of which savings account holdings are known and for the other part, stockholdings are known. In each case, however, the nature of the validation process precludes complete knowledge of either savings accounts or common stock for a particular family, so that adjustments have to be made for that part of the asset holding which was not validated and possibly not reported correctly. These adjustments, to be described shortly, introduce an additional source of error in the data. However, judging from the validation results presented in previous studies, there is little doubt that the resulting
$\qquad$
${ }^{11}$ For a more complete description of these studies and for summaries of the results, see Robert Ferbe:, John Forsythe, Harold Guthrie, E. Scott Naynes, "Validation of a National Survey of Consumer Financial Characteristics: Common Stock," Journal of the American Statistical Association, June, 1969, Pages 415-32; -------, "Validation of a National Survey of Consumer Financial Characteristics: Savings Accounts," The Review of Economics and Statistics, November, 1969, Pages 436-444.

$$
\therefore \text { ín in }
$$

A汸:

data are far more accurate with regard to family holdings of savings accounts and of common stock than of any other set of data that might be used for this purpose.

The types of adjustments made in these data and the manner in which they were made may be summarized as follows:

1. To adjust for errors in reported savings account balances or of stockholdings in the appropriate validation sample, the following rule was applied:
a. If $\mathrm{V}_{\mathrm{R}}>0$, and $\mathrm{T}_{\mathrm{R}}>\mathrm{V}_{\mathrm{R}}$ :

$$
T_{A}=\frac{V_{I}}{V_{R}} \times\left(T_{R}-V_{R}\right)+V_{I}
$$

b. If $V_{R}>\sigma$, and $T_{R}=V_{R}$ :

$$
T_{A}=\left|\frac{V_{I}-V_{R}}{N_{V}} \times\left(N_{T}-N_{V}\right)\right|+V_{I}
$$

c. If $V_{R}=0$, and $T_{R}>0$ :

$$
T_{A}=\left(T_{R}+V_{I}\right)+V_{I}
$$

where $T_{A}=$ adjusted total stocks or savings accounts
$T_{R}=$ reported total stocks or savings accounts
$V_{I}=$ institution record (amount) of validated stocks or savings accounts
$V_{R}=$ reported part of stocks or savings accounts for validation (amount)
$N_{T}=$ reported total number of batches of all stocks or all savings accounts
$N_{V}=$ reported number of batches of stocks or savings accounts for validation
i
$\because 1+i \ln \%$

2. To adjust for nonreporting of the particular holding in each of the validation samples, regressions were run using the adjusted total holding as the dependent variable (after adjusting the data from the preceding step) with a number of socioeconomic characteristics as independent. Separate regressions were obtained for common stock and for savings accounts. One of the independent variables in each case was the validated part of that holding. In both cases the fit was quite good, $\mathrm{R}^{2}$ being . 43 for the common stock regression and .37 for the savings account regression, with a large number of independent variables significant (particularly occupation, race, family size, income, and the validated part of that asset):

For each of the sample members, its characteristics were substituted into the regression and an estimate obtained of the adjusted total holdings of that asset. The equation estimate was accepted except if the estimate was less than the validated figure for that sample member, in which case the validated figure was used as the total.
3. A further adjustment was made to spot nonreporting owners of savings accounts in the common stock sample, and nonreporting owners of common stock in the savings account sample. This was done by estimating the relative frequency of nonreporting of each asset by each income class. The same frequency of nonreporting was attributed to the comparable income class in the other
sample, which produced an estimate of the number of nonreporters in each income class in that validation sample. There were 28 estimated nonreporters for common stock and 13 estimated nonreporters of savings accounts.

To identify the specific sample members considered to be nonreporting owners in each validation sample, discriminant functions were derived for reporting of savings accounts and of stock for each sample, in each case the dependent variable being a 1-0 (reporter-nonreporter) variable. The independent variables were a variety of family characteristics including income, occupation, marital status, education, size of city, race and family size. A number of these variables were statistically significant at the .05 level, as was the coefficient of determination, but the overall goodness of fit was not high, namely, an $\mathrm{R}^{2}$ of .10 for the stockholding function and . 05 for the savings account function. Nevertheless, these functions were used on the nonvalidation sample to pinpoint nonreporters, namely, as those people with the highest estimated values of the function in each case on the presumption that these people were owners and should have reported their ownership. 12

12It might be argued that the nonreporters should have been selected from the opposite end of the distribution, on the basis that low values of the dependent variables denoted nonreporters (but note that these people are also more likely to be nonomers). In any event, this approach was tested empirically and led to imputed ownership amounts for the nonvalidation sample which, when aggregated, yielded average amounts not reported $f_{a r}$ below the amounts indicated by the validation sample.
$\qquad$


Once these nonreporting owners were pinpointed, estimates had to be made of the amounts the presumed nonowners owned in those particular assets. This was done by obtaining two additional least squares regressions, one regressing for the stock validation sample of the total savings accounts balances reported by the reporters as a function of socioeconomic characteristics; and the other for the savings account sample, the amount of stock holdings reported by the reporters as a function also of socioeconomic characteristics. In these instances, the goodness of fit was much better, namely, $\mathrm{R}^{2}$ of .19 for savings accounts and .31 for stock holdings. A number of independent variables were significant at the . 05 level, particularly income class, age of head, race and family size. Estimated amounts were accordingly obtained by substituting the characteristics of the presumed nonreporting owners into the appropriate function one at a time. It should be noted, however, that no adjustment could be made for reporting errors in this sample.
4. No adjustments were made for reporting or nonreporting in other assets, as there was no basis for doing so.

## Effect of the Adjustments

A general idea of the effect of the adjustments in the asset variables is provided in Table 1. Not surprisingly, the table indicates that the average holdings per sample household were increased

```
3..ata
```

```
 ##
 .. `% % 113,.
 *i!!:!ranam
i, Y:
```




1
:r3.f:

- ", ! ! ! ;
$\because ; \quad \because r, \quad f$
$\because 9$
$\therefore=$ •L:
I:


```
 \(\because \quad \because \quad\) ritarn
```


substantially, by roughly 50 percent for savings accounts, by 22 percent for common stock holdings and hardly at all for other assets. As a result the average total asset holdings per sample household increased by 12 percent. Correspondingly, the proportion of total assets held in the form of savings accounts rises from 8.4 percent to 11.1 percent, while the proportion of total assets held in the form of common and preferred stock rises from 31.5 percent to 34.2 percent.

These increases are to be expected in view of the fact that the validation findings had indicated substantial nonreporting as well as reporting errors in the direction of underestimation for savings accounts, somervhat lesser reporting errors for common stocks, while the other validation studies had indicated low reporting errors for other assets. Since the adjustment procedures were designed to correct the data for these errors, as described in the previous section, substantial increases in asset holdings were only to be expected.

More or less paralleling these increases in average holding are the increases in the variances of these holdings. Because of the highly skewed nature of these holdings, the standard deviations exceed the means substantially for each type of asset. Not surprisingly, the adjustments serve to increase the standard deviations somerhat more though the coefficient of variation goes down for every variable but other assets.

## 4. Results of the Econometric Approach

The parameters of the three models shown on pages 8-9 were estimated both by ordinary least squares and by three-stage least squares. The


 $\because$




Table 1

Effect of Adjustments in Asset Variables on Their lleans and Standard Deviation

| Variable | Mean |  | Standard Deviation |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Unadj. | Adj. | Unadj. | Adj. |
| Savings accounts | \$ 11,298 | \$ 16,917 | \$ 18,991 | \$ 24,107 |
| Stocks | 42,699 | 51,808 | 145,271 | 153,661 |
| Other Assets | 83,271 | 83,485 | 299,268 | 304,956 |
| Total Assets | 137,268 | 152,210 | 395,476 | 407,315 |
| Savings accounts/total assets | 8.4\% | 11.1\% | 4.8\% | 5.9\% |
| Stocks/total assets | 31.5\% | 34. $2 \%$ | 36.6\% | 38.6\% |
| Number of observations | 1,182 | 1,135 | 1,182 | 1,135 |

latter estimation procedure is much more efficient than ordinary least squares but may be more sensitive to specification error. The two sets of results taken together should provide some idea, however, of the extent to which differences in estimates of the parameters caused by errors in the data may be affected further by the estimation procedures.

The ordinary least squares estimates of the beta coefficients of the equations of Model $A$ before and after adjustment for errors in the asset variables are presented in Table 2. The socioeconomic characteristics, the vector 2 , used in all three equations are the same, namely, the variables listed in the table following the three asset variables at the top. The selection of these variables was governed partly by data availability and partly by the findings of previous studies regarding what characteristics appear to be related to household savings in one form or another.

As is evident from this table, differences between the two sets of estimates are more of degree than of anything else. For the savings function, the goodness of fit declines after the asset variables have been adjusted, ${ }^{13}$ although five variables are significant at the .05 level after the adjustment as compared to three prior to the adjustment. liost significant perhaps is the chenge in the sign of the coefficient of the common

[^3]$$
U=\frac{\sqrt{\Sigma_{i}\left(y_{i}-\hat{y}_{i}\right)^{2} / N}}{\sqrt{\Sigma_{i} y_{i}^{2} / N}+\Sigma_{i} \hat{y}_{i}^{2} / \mathrm{N}}
$$
where $\hat{y}_{i}$ is the function estimate for the ith observation and $\hat{y}$ is the corresponding observed value.


- : ! : "
$\therefore$ i $\square$
:rin!:
$\square$
(15.
... !..
$\vdots \quad-\quad \vdots$

$\qquad$
. .
.
Table 2
OLS Estimates of Beta Coefficients of Equations of Model A Before and After Adjustment for Errors in Asset Variables

$5$
stock variable from a significant positive value to a nonsignificant negative value almost of the same magnitude (and which would have been judged significant at the .09 level). At the same time, the adjusted data indicate significance for marital status and for service workers and assign appreciably greater importance to the effect of the presence of a male head and of older people on increasing savings account balances. The effect of the adjusted data seems to be more pronounced on the estimates of the parameters of the common stock function, but less so on the estimates of the parameters of the function for other assets. In the case of the common stock function, the adjustments serve to increase the number of coefficients significant at the .05 level from four to seven. In particular, the adjustments highlight the significance of nonwhites as a factor reducing common stock ownership, and of the presence of a male head and an older head for increasing stock ornership. The function also ascribes much greater importance to education in affecting positively) the amount of stock owned.

The effects of the adjustment seem least pronounced on the estimates of the parameters of the function for other assets. In the case of this function, the goodness of fit is increased hardly at all while the number of variables significant at the .05 level declines from six to five.

The results for Model $B$ are very similar to those obtained for
Model A, as can be seen from Table 3. This is not especially surprising since the models are similar to each other (the common stock equation is in fact the same). Elimination of the common stock variable from the savings account function seem to have virtually no effect, as would be
expected from the relatively little importance attached to the coefficient of this variable in Model A. Nevertheless, the adjusted data do seem to have brought about much larger differences in the estimates of the parameters of the savings functions of hodel B than of Model A. Thus, the effect of total assets is reduced substantially. On the other hand, the effects of the other significant variables are much more pronounced, particularly the now significant effect of marital status and of service occupations.

Highlighting the changed effect of the total assets variable is that the elasticity of savings account balances relative to total assets declines from 3.1 before the data adjustments to 1.4 after the adjustments. Though still elastic, the effect of total assets on savings accounts has been reduced by more than half. ${ }^{14}$

In the case of the function for other assets, the estimates of the parameters seem to have been affected dramatically not only by the adjustments in the data but also by the addition of the variable for total assets. The latter variable clearly dominates the relationship, as is evidenced by the increase in the goodness of fit of this function from an $\mathrm{R}^{2}$ of approximately .30 before the inclusion of this variable to an $R^{2}$ of about .90 with its inclusion. The error adjustments in the asset variables increase the goodness of fit only slightly but increase substantially the number of variables significant at the .05 level--from 5 to 3. Presence of a male head and older age of head now have significant negative effect on holdings of other assets while nonwhite race has a negative effect.

[^4]
## Table 3

Estimated Beta Coefficients of Equations of liodel B Before and After Adjustment for Errors in Asset Variables

| Variable | Savings accounts |  | Other assets |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Before | After | Before | After |
| Total Assets | . 258** | . $016 \%$ \% | . $973 \% *$ | . $968 \%$ \% |
| Savings accounts | ----- | ---- | -.082** | -.062** |
| Married, spouse present | -. 071 | -.103* | . 023 | . 028 |
| Separated or widowed | . 009 | -. 025 | -. 003 | -. 021 |
| Self employed | . 045 | . 030 | .044* | .042* |
| Salaried professional | -. 064 | -. 100 | . 040 | . 041 |
| Clerical or sales | -. 034 | -. 055 | . 022 | . 023 |
| Craftsmen, kindred worker | -. 057 | -. 065 | . 025 | . 027 |
| Service worker | -. 067 | -.085* | -. 007 | -. 004 |
| Laborer | -. 013 | -. 013 | . 011 | . 004 |
| Retired | -. 067 | -. 058 | -. 004 | -. 022 |
| City size ${ }^{1}$ | . 028 | . 030 | -. 007 | -. 019 |
| City size ${ }^{2}$ | . 055 | -. 005 | . 005 | -. 005 |
| City size ${ }^{3}$ | . 011 | . 051 | -. 019 | -. 030 |
| City size ${ }^{5}$ | . 005 | -. 018 | -. 004 | -. 003 |
| Male head | . 146 ** | . 158 ** | -. 017 | -.036* |
| Race white | . 010 | . 017 | .054** | .068** |
| Race nonwhite | -. 016 | -. 018 | . 019 | .026* |
| Education of head | . 051 | . 004 | -.033** | -.051** |
| Age of head | . $166 \%$ * | . $179 \% *$ | -. 020 | -.033* |
| Family size | -. 060 | -. 059 | . 022 | . 038 |
| No. of children under 18 | -. 040 | -. 030 | -. 011 | -. 025 |
| $\mathrm{R}^{2}$ (adj.) | . 137 | . 106 | . 900 | . 900 |
| A | 10.64 | 13.77 | 39.34 | 43.81 |
| U | . 491 | . 467 | . 155 | . 154 |

\#Common stock function is the same as in Model A (Table 2).

[^5]

Perhaps the most important changes brought about by the adjustment for the errors in the asset variables are apparent in the estimates of the parameters of the two equations of Model $C$, as shown in Table 4. In both cases, the goodness of fit is increased substantially, $\mathrm{R}^{2}$ rising from . 17 to .22 for the savings account function and from .24 to .39 for the common stock function. The number of variables significant at the . 05 level, however, is hardly changed. The effect of total assets on the savings account ratio is substantially more negative, as is also true for marital status and education of family head.

In the case of the common stock function, the error adjustments produce nonsignificance of the coefficient of the total assets variable while increasing substantially the negative importance of the savings account ratio variable, of race and of family size. The adjustment also serves to remove the significance of the service and laboring occupations of heads of families, while at the same time highlighting strong positive effects due to age of head and to the number of children under 18. In this case it seems clear that any inferences regarding the effects of the other assets variable as well as of socioeconomic characteristic on the proportion of a famfly's total holdings in the form of common stock would be substantially different depending on which set of data were used.

It might be noted that the substitution of income for total assets, which was tested in a couple of cases, yielded much poorer goodness of fit. Thus, in the case of the common stock function of Model A , substitution of income for assets yielded an overall value of . 251 for $R^{2}$ as compared to .575 when total assets was used.
Table 4
Estimated Beta Coefficients of Equations of Model C
Before and After Adjustment for Errors in Asset Variables
$\frac{\text { Common stock／total assets }}{\text { Before }}$

nio M $.120 * *$
$-.273 * *$
$-.099 *$
.024
$-.175 * *$
$-.183 * *$  i
 .012
.238
.165
.416 $-24-$
$\frac{\text { Savings accts．／total assets }}{\text { Before }}$
$-.131 * *$
$-.209 * *$
$-.104 *$
-.039 $\infty$
0
0
0
0
$i$

$i$ $\stackrel{*}{*}$ 029 ＊ | .094 |
| :--- |
| -.006 |
| $.200 * *$ |
| .003 |
| .094 |
| . .027 |
| .053 |
| .012 |
| . .049 |
| $.197 * *$ |
| .074 |
| $.168 * *$ |
| .053 |
|  |
| .220 |
| .188 |
|  |
| 374 | ． 374

－．090＊＊ $\qquad$ -.102
.015 .027
永へ商 228\％\％ 062 .166 .429
$\mathrm{R}^{2}$（adj．）
A
$\dot{\mathrm{U}}$
Total assets
Savings accts．／total assets Married，spouse present Separated or widowed elf employed Clerical or sales
Craftsman，kindred worker Service worker Laborer
Retired
City size ${ }^{1}$ City size 2 City size 3 City size Male head Race nonwhite Education of head Age of head Family size No．of children under 18
$\rightarrow$


To summarize, the principal effects of the adjustment for the errors in the asset variables would seem to be some improvement in the goodness of fit and, more important, realignment of the importance of the asset variables in relation to each other and increased importance of a number of socioeconomic variables previously not judged significant. In view of these adjustments, the question naturally arises of the extent to which the particular adjustment process employed has predetermined these results.

There is little question that such predetermination is inherent in the adjustment process. At the same time, there is also little question that nonreporting of the financial data as well as reporting errors are related to socioeconomic characteristics. Thus, nonreporting of savings accounts tends to be higher anong older people and among those with higher incomes. ${ }^{15}$ Under the circumstances, adjustments to correct for these errors serve in effect to eliminate part of the noise in the data and to restore regularities which should have been there in the first place.

To be sure, there is always the possibility that the adjustments may have gone too far and have introduced irregularities which are not really present. Such a possibility cannot be eliminated simply from these results alone. It is worth noting, however, that the principal effect of these adjustments seems to have been on the common stock and the otherassets functions, both assets for which the amount and nature of the

[^6]adjustments were less than for savings accounts. More information about the effect of these adjustments is provided in the following section, which describes the simulation undertaken to explore in further detail the effects of such errors on the estimates of the parameters of these models.

In broad outline the results of the three-stage least squares estimates are the same as those just reported for the ordinary least squares estimates although appreciable differences are apparent in some of the individual functions. Thus, as is evident from the 3SLS of Nodel A in Table 5, the goodness of fit is improved primarily for the common stock function after adjustment for errors in the asset variables. The number of coefficients significant after adjustment is the same as the number before adjustment for two of the functions and is slightly higher for the savings account function. Also, the adjustment process serves to highlight the importance of common stock as a determining variable both in the savings accout function and in the function for other assets and, more generally, seems to accentuate the influence of the variables that are significant even before adjustment.

Rather surprisingly, however, total assets does not seen to be important at all in the common stock function in the 2SIS estimates whereas it is by far the most important variable in the Ols functions.

In the case of Model $B$, all three functions exhibit improvement in goodness of fit at least in terms of $U$, after adjustment for errors in the asset variables. At the same time, the common stoc': and other assets functions of this model show a very substantial improvement in goodness of


Table 5

Estimated 3SLS Beta Coefficients of Equations of Model A Before and After Adjustment for Errors in Asset Variables

| Variable | Savings accounts |  | Common stock |  | Other assets |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Before | After | Before | After | Before | After |
| Total Assets | . $500 \% *$ | . 373 ** | -. 024 | . 468 | --- |  |
| Savings accounts |  |  | 2.859 | 1.591 | 3.106** | 3.142** |
| Common stock | -. $306 \%$ * | -. $276 \%$ * |  | ---- | . 169 | . 557 ** |
| llarried | -. 087 | -.115* | . 152 | . 108 | .254* | . $398{ }^{*}$ |
| Separated or widowed | ---- | ---- | . 003 | . 073 |  |  |
| Self-employed | .086** | .087** | -. 316* | -. 170 | -.231* | -.311* |
| Salaried professional | -. 001 | -. 033 | -. 039 | . 039 | -. 047 | . 098 |
| Clerical or sales | --- | ---- | -. 028 | . 008 | . 024 | -. 014 |
| Draftsman, kindred worker | --- | --- | -. 016 | . 009 | . 045 | -. 007 |
| Service worker | -. 037 | -. 042 | . 169 | . 126 | . 156 | . 110 |
| Laborer | -. 009 | . 009 | ---- | ---- | . 046 | -. 039 |
| Retired | -. 012 | -. 015 | . 115 | . 115 | . 088 | -. 066 |
| City sizel | ---- |  | ---- | ---- | . 170 ** | * .133** |
| City size ${ }^{2}$ | ---- | --- | ---- | ---- | . 265 ** | - .016 |
| City size ${ }^{3}$ | ---- | ---- | ---- | ---- | .124** | . 220 \%* |
| City size ${ }^{5}$ | ---- | ---- |  |  | .039** | *-.065** |
| Male head | . $142 \%$ \% | . 174 ** | -. 355 | -. 193 | -.446** | -.577** |
| Race white | ---- | ---- | -. 150\%* | * -. 176** | ---- | ---- |
| Race nonwhite | ---- | ---- | -. 036 | -. 035 | ---- | ---- |
| Education of head | - | -- | . 019 | . 100 ** | ---- | ---- |
| Age of head | . $174 \div$ \% | .200** | -. 436 | -. 251 | -. 532 \%* | * -.657** |
| Family size | -. 105** | -.096** | . 240 | . 102 | . 329 ** | * .322* |
| A | 10.88 | 13.89 | 234.9 I | 154.1 | 541.05 | 576.2 |
| U | . 503 | . 468 | . 706 | . 593 | . 733 | . 742 |

[^7]
$\frac{5 i}{-7}$ ?
-ilt


I:

```
\prime\because%品
!s
! %.".
```

fit in terms of both $U$ and $A$ compared to the corresponding functions of Model A. ${ }^{16}$ Besides the fact that the total assets variable is highly significant in all three functions, both before and after error adjustment, more variables are significant after adjustment in both the common stock and other assets functions.

As compared to the OLS estimates, the main differences are that now many different variables are significant. In the far majority of cases, however, the direction of the relationship is the same.

The effect of the adjustment for errors on Model $C$ appears mixed (Table 7) because on one basis, the statistic A, the goodness of fit worsens, whereas on another basis, Theil's $U$, the goodness of fit improves. However, since lodel $C$ entails a pronounced change in the unit of the dependent variable as compared to the previous models, it would not seem unreasonable to select $U$ as the better basis for comparison, especially with the other models. On this basis, the goodness of fit for the savings account function after adjustment seems to be the lowest of any of the savings accounts functions in any of the models and about the same as by the OLS method of fit. The goodness of fit of the common stock function is also appreciably lower after adjustment than before, and in this sense presents a very similar result to those obtained for the common stock function of Model B.

[^8]

Table 6
Estimated 3SLS Beta Coefficients of Equations of Iodel B Before and After Adjustment for Errors in Asset Variables

## Variable

Total assets
Savings accounts
Common stock
larried
Separated or divorced Self-employed
Salaried professional
Clerical or sales
Craftsman or kindred Service worker
Laborer
Retired
City size ${ }^{1}$
City size ${ }^{2}$
City size ${ }^{3}$
City size ${ }^{5}$
Male head
Race white
Race nonwhite
Education of head
Age of head
Family size
A
U
$\frac{\text { Savings accounts }}{\text { Before After }} \frac{\text { Common stock }}{\text { Before After }}$

| . $259 \% *$ | . $155 \%$ \% | . $891 \% *$ | . $788 \%$ \% | 1.069** | 1.014\%\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ---- | ---- | -. 611 | -. 403 | -. 445 | -. 369 |
|  |  |  |  |  |  |
| -. 065 | -. 101 | -. 093 | -. 100 | ---- | ---- |
| . 011 | . 018 | . 003 | . 021 | ---- |  |
| . $102 \% *$ | . $107 \% \%$ | . 013 | -. 026 | . $101 \%$ \% | . $104 \%$ \% |
| ---- | ---- | -. 046 | -. 062 | . $062 \% *$ | . $085 \%$ \% |
| ---- | ---- | -. 024 | -. 037 | . 032 | . 047 \%* |
|  |  | -. 020 | -. 043 | .044* | . $057 \%$ \% |
| -. 048 | -. 047 | ---- | ---- | -. 018 | -. 004 |
| . 005 | . 012 | ---- | ---- | . 010 | . 019 |
| ---- | ---- | . 050 | . 058 | . 021 | . 004 |
| ---- | ---- | ---- | ---- | ---- | ---- |
|  | -- | -- | ------ | -- |  |
| ---- | ---- | ---- | ---- | -- | ---- |
| . $139 * *$ | . $178 \% *$ | . 114 | . 118 | . 030 | . 02.4 |
|  | ---- | -. 109\%\% | -. $136 \%$ \% | . $050 \% *$ | . $057 \%$ |
|  | ---- | -. 034 | -.045* | .026* | . $033 \%$ \% |
| ---- | ---- | . $050 \%$ | . $101 * *$ | -. 056\%* | -. $0533^{*} \%$ |
| . $149 \% *$ | . $194 * *$ | . 126 | . 132 | . 025 | . 034 |
| -. $096 \%$ | -. $087 \%$ | -. 091 | -. 070 | -. 021 | -. 003 |

Other assets
Before After
$1.069 \% * 1.014 \% \%$
-. 445 -. 369
---- ----
.101\%* .104\%
$.032 \quad .047 * *$
. 044\% . 057\% \%
-. 018 -. 004
.004
---- ----
_---
$.030 \quad .024$
.050** . 057
$-.056 \% *-.053 \% \%$
$-.021-.003$
$77.79 \quad 74.38$
.219 .205
67.3
.434 . 359
*Significant at . 05 level **Significant at . 01 level


The number of significant coefficients is appreciably higher for both functions of liodel C after error adjustment. Indeed, for both equations in this model the large majority of coefficients vere statistically significant after adjustment, the only model or method of fit for which this was true.

All things considered, therefore, the results of the 3SLS estimation procedure supports that of the OLS estimates in inprovement in the goodness of fit and in highlighting relationships previously judged not significant.

## Results of the Simulation Study

The simulation study was carried out using only a fifth of the original sample because of the larger size of that sample $(1,135)$ and because it was felt more important to obtain more simulations on a smaller sample than fever simulations on a larger sample. Accordingly, after arranging the observations in numerical order every fifth observation was selected, yielding a sample of 226 observations. With this sample, 150 simulations were planned ( 50 simulations for each of the three models), a figure that could be accomodated with the available computer resources and which was felt to be large enough to yield reasonably stable results.

Using the adjusted data for this smaller sample, as explained in the section on methodology, estimates were obtained of the parameters of the equations of each of the three models using alternately single equation least squares and three-stage least squares. For the purposes of the simulation, these estimates serve as the "true"population values.
-31-

Table 7

Estimated 3SLS Beta Coefficients of Equations of Model C Before and After Adjustment for Errors in Asset Variables

| Savings assets/total assets |  |  | Common stocks/total assets |  |
| :---: | :---: | :---: | :---: | :---: |
| Variable | Before | After | Before | After |
| Total assets | -. $094 \% *$ | -. 132** | -. 137** | -. $078 \%$ |
| Savings accts/total assets |  |  | -. 089 | -. 182 |
| Harried | -. 179\%* | -. 211** | -. 086 | -.127* |
| Separation or divorced | -. 096** | -.103** | ---- | ---- |
| Self employed | -. 077 | -. $082 \% *$ | -. 172** | -. 145** |
| Salaried professional | -. 066 | -. 094** | -. 182** | -. 183** |
| Clerical or sales | -. 057 | -. $086 \%$ * | -.111* | -. 127** |
| Craftsman or kindred | ---- | ---- | -. 189** | -. 201** |
| Service worker | ---- | ---- | -. $105 \% *$ | -. 100\% |
| Laborer | . 022 | .077** | -. 100** | -. 050 |
| Retired | -. 010 | -. 045 | -. 067 | -. 009 |
| City size $\frac{1}{2}$ | .142** | . 204\%* | ---- |  |
| City size ${ }^{2}$ | ---- | ---- | -.066* | -. 065 * |
| City size 3 | -. 003 | .091** | ---- | ---- |
| City size 5 | ----- | ---- | . 009 | -. 029 |
| liale head | . 029 | . 057 | . 020 | . 033 |
| Race white | ---- | -- | -. 040 | -. 132** |
| Race nonwhite | -. 024 | -. 052 | -. 023 | . $070 \%$ |
| Education of head | -. 133** | -. 097** | . $195 \%$ * | . 234 ** |
| Age of head | . 032 | . 059 | . $214 \%$ \% | .221** |
| Family size | -. $178 \%$ * | -. 123** | -. 094 | -. $128 \% *$ |
| A | . 158 | . 189 | . 168 | . 171 |
| U | . 431 | . 375 | . 431 | . 369 |

[^9]Next, the simulation itself was carried out on the unadjusted data for the same 226 observations. The procedure for simulating the unadjusted asset information for each sample was as follows:

1. An estimate had already been obtained of the proportion of nonreporting owners of common stock, and of savings accounts, as described in steps two and three of the section on data adjustment. This yielded point estimates of 31.3 percent of the families not reporting common stock and 38.5 percent of the families not reporting savings accounts.
2. Adjustments for nonreporting of assets other than savings accounts and common stock were made on the basis of what is known about nonreporting errors of these other assets. 17 Based on thooe resilts, the average number of norieporters of these other assets was taken as half of the number of nonreporters of coumon stock.
3. These estimated proportions were assumed to be normally distributed with the mean being the point estimate and with the variance that computed using that point estimate. Using this

17The main source for such information is the summary results of the validation studies conducted as part of the Consumer Savings Project of the Inter-University Committee for Research on Consumer Behavior. These results pertain to demand deposits, personal loans, auto loans, and farm assets. The results are summarized in Robert Ferber, The Reliability of Consumer Reports of Financial Assets and Debts, University of Illinois Bureau of Economic and Business Research, Studies in Consumer Savings, No. 6, 1966.
assumption, the numbers of nonreporters of each of these three assets for each of the 150 samples were generated with the aid of standardized random normal variants.
4. The specific nonreporters of each asset in each of the 150 samples was generated according to a uniform distribution, in the absence of any other information. 18
5. To simulate errors in the asset holdings that were reported, three $\log$ normal distributions were used -- one for the ratio of reported total savings account balances to adjusted total balances in savings accounts, one for the ratio of reported holdings of common stock to adjusted total holdings of comon stock, and one for the ratio of reported other assets to adjusted other assets (assuming a mean of 1.0 and a variance of .3 , based on findings of other studies noted elsewhere in this paper). A log normal distribution was used because this was felt to be typical of most economic variables. The holdings of all the sample members were adjusted for each of the 150 samples by adjusting this ratio with the aid of standardized log normal random variables.
6. Using the 150 samples generated in this manner, estimates of the parameters of the equations of each of the three models were
${ }^{18}$ Contrary to what might be anticipated, the limited work that has been done provides no support for hypothesizing that nonreporters of one asset are more likely than reporters to be nonreporters of another asset.
$\square$
$\cdot i$
generated by three-stage least squares. These estimates were compared with the "true" values of the same parameters by computing for each parameter estimate the mean of the estimates, the variance of the estimates and the mean square error. In addition, for each fitted equation two measures of the adequacy of the fit were computed, namely, $A$, and Theil's measure of forecast accuracy, $U$, as noted previously.

The results of the simulation are quite surprising and are exemplified to a large extent by the summary statistics in Table 8 pertaining to the OLS estimate for Model A . The summary statistics shown in this table for each parameter estimate of each of the three equations are the value of the true parameter (Column 2), the average of the 50 estimates obtained from the simulation (Column 3), the ratio of the latter to the former (Column 4), the proportion of times the $95 \%$ symmetrical confidence interval of the estimate contains the true parameter (Column 5), the averaje width (range) of this confidence interval (Column 6), the average lower bound (Column 7) and the average upper bound (Column 8) of this interval, and the coefficient of variation of the parameter estimate (Column 9).

The surprising nature of the results is perhaps best highlighted by the following capsule overview:

1. The average of the parameter estimates, even after 50 replications, does not come very close to the parameter, with some exceptions (Column 4). Only one quarter of these average of the estimates were within 10 percent, while nearly half of the
2. 

'1
averages (21 of 47) deviated from the parameter by more than 20 percent; 9 of these 47 averages were in error by over 50 percent.
2. Nevertheless, the 95 percent confidence interval contained the true parameter almost invariably, with a few notable exceptions (Column 5). Thus this interval contained the parameter value more than 90 percent of the time for 40 of the 47 parameters in the model. (Note, however, that most of the key financial variables are among the exceptions -- the confidence intervals for five of the six financial variables excluded the true parameter value anywhere from 36 percent to 64 percent of the time.)
3. Thy could the parameter estimates differ so appreciably from the parameter estimates and still invariably encompass the true values in their 95 percent confidence intervals? The answer is in Columns 6-8, where we see that with rare exceptions the width of the confidence interval is so large as to be virtually meaningless. Not only is the range as a rule many times the size of the parameter estimate but it tends to cover both negative and pesitive values. Hence, not only is there hardly any indication of the magnitude of the parameter but the significance of the variable, and the direction of any such effect, is in considerable doubt; this is true of 41 of the 47 variables.
4. In other words, the variances of the parameter estimates tend to be tremendous relative to the estimates themselves.

a $\quad$ ke


\begin{tabular}{|c|c|c|c|c|c|}
\hline \& $$
\mathscr{\infty}
$$ \& $\left\lvert\, \begin{array}{llll}0 & 4 & 0 \\ \substack{0 \\ 3 \\ 0 \\ 4 \\ 0 \\ 0 \\ 3} & 0 \\ & \end{array}\right.$ \&  \&  \& M மゥ <br>
\hline $$
\begin{aligned}
& 4 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
$$ \&  \&  \&  \&  \& $\begin{array}{cc}-1 \\ 8 & n \\ i & \\ 1\end{array}$ <br>
\hline  \&  \&  \&  \&  \& ¢

$\sim$ <br>
\hline
\end{tabular}

-37-
$9 \quad\left|\begin{array}{ll}1 & 0 \\ 1<0\end{array}\right|$
(8)

OLS Simulation Estimates of Parameters and of Their Reliability, Model A
Nin ion Nion Nois

$\begin{array}{ll}\infty & -1 \\ \infty & 0 \\ \infty & 0\end{array}$


$\therefore$

## Table 8 (Cont.)

Simulation Estimates of Parameters and of Their Reliability, Model A

| (5) | (6) | (7) | (8) |
| :--- | :--- | :--- | :--- |
|  | $95 \%$ | confidence | interval |$]$




®

ลิ $\quad 0^{-n}$
 $\stackrel{N}{1}$

콩․
Constant
Savings accts
Common stock
Ifarried
Self-Enployed
Salaried Clerical Kindred Services Laborer Retired Loc 1
Loc 2
Loc 3
Loc 5 Male head
Age of head
Family size

This is reflected in the very high coefficients of variation of these estimates (Column 9). Only one of the 47 coefficients of variation is less than 10 percent, only four more are less than 50 percent, while 29 of 47 exceed 100 percent. Note that four of the six financial variables have coefficients of variation of only about 50 percent or less, and for these variables the 95 percent confidence intervals are as likely as not to miss the true parameter.
5. Highly unstable estimates are most likely to characterize the "other assets" equation and least likely the savings accounts equation. Thus, though the bases are small, the proportion of coefficients of variation exceeding 100 percent is 78 percent for the former equation, 59 percent for the common stock equation, and only 24 percent for the savings accounts equation.
6. By specific variables no clear pattern is apparent in the reliability of the estimates except the scale phenomenon that coefficients with higher absolute values tend to have lower coefficients of variation. In other words, a variable estimate with a very large confidence interval in one equation may or may not have a very large confidence interval in another equation, but it is difficult to generalize on the basis of such a small sample.

All things considered, then, the picture is one of extreme instability of the parameter estimates brought about by the errors introduced into the data. As a result, the 95 percent symmetrical confidence
$\therefore!$
ji.
, $\cdot$,
, : $\cdot j ;$
. :

Intervals have the rather odd property of high reliability in the sense of including the true parameter and at the same time of being meaningless because the intervals are too large to have any substantive value.

The extent to which the same results are borne out by the other models and by the 3SLS estimates is shorm in Table 9. On the whole, the results are much the same as before. The parameter estimates for Model $C$ by three stage least squares appear to be somewhat closer to the true values than the estimates obtained from the other models, but the gain in accuracy is not substantial. Even for this model, nearly one-third of the average values of the estimates after 50 simulations deviate from the true figure by 20 percent or more.

Also, as before, for more than 80 percent of the parameters and for each of the models, the 95 percent symmetrical confidence interval includes the parameter 90 percent of the time or more. At the same time, between 70 and 90 percent of the confidence intervals cover both plus and minus values (the exact percentage verying with the model and the method of fit) so that there is as a rule no reliability as to either the significance or the direction of the effect of a particular variable.

$$
\begin{aligned}
& \because \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

## Table 9

## Sumnary Statistics on Reliability of Simulation Model Estimates

| Statistic | Value | OLS estimates |  |  | 3 SLS estimates |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Model A Model B Mode1 |  |  | Odel A Mode1 B Mode1 |  |  |
| Frequency $\overline{\hat{p}}_{i}$ within | Within 10\% | 12 | 6 | 9 | 11 | 10 | 13 |
| given percent | 10-19\% | 14 | 12 | 10 | 9 | 6 | 11 |
|  | 20-49\% | 12 | 16 | 10 | 8 | 15 | 6 |
|  | $50 \%$ or more Total | $\frac{9}{47}$ | $\frac{8}{42}$ | $\frac{6}{35}$ | $\frac{19}{47}$ | $\frac{11}{42}$ | $\frac{5}{35}$ |
| Pct. of parameters for which 95\% confidence interval inclu parameter 90\% the time |  | 85\% | 79\% | 100\% | 75\% | 81\% | 100\% |
| Pct. of averag 95\% confidence intervals cove both plus and minus values |  | 87\% | 86\% | 72\% | 85\% | 90\% | 74\% |


| Size distribu- <br> tion of average <br> coefficients of | Under $10 \%$ | 1 | 2 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| variation | $50-49 \%$ | 4 | 5 | 11 | 6 | 4 | 8 |
|  | $100 \%$ or more <br> Total | $\frac{29}{47}$ | $\frac{26}{42}$ | $\frac{10}{35}$ | $\frac{32}{47}$ | $\frac{29}{42}$ | $\frac{13}{35}$ |

The reason is again brought out when we consider the size distribution of the average coefficients of variation, shown at the bottom of Table 9. For liodels $A$ and $B$, regardless of the method of fit, the far majority of the standard deviations of the regression coefficients exceed the estimates of the coefficients themselves. Here too, Model C turns in a better performance, by either method of fit, with most of the standard deviations of the regression coefficients being less than their standard errors. Indeed, in the case of the least squares estimates for this model nearly one-third of the standard deviations of the coefficients are less than half the size of the coefficients themselves, the best showing of all the models in the methods of fit.*

The fact remains, however, that even with Ilodel C one would hesitate to impute much reliability to the results. The inescapable conclusion is that the effect of the noise (reporting errors) in the financial variables are such as to render highly questionable any estimates of parameters that might be obtained with such data.

[^10]
## Conclusions

The results of this study might appear at first to be contradictory. Thus, the first part of the study, the econometric approach, suggests that adjustment for reporting errors in the financial variables, at least in so far as possible, brings about sone improvement in the goodness of fit of different equations of a model and the highlights the significance of variables not othervise significant.

At the same time, the results of the simulation approach suggest that introduction of errors into what are taken to be a relatively error-free set of data leads to parameter estimates that differ substantially from the "true" parameters, and to confidence intervals that are meaningless for all practical purposes. In other words, the data produce a very high degree of instability in the parameter estimates.

Are these two sets of results inconsistent? Not at all. This becomes apparent if we compare the percentage deviation of the parameter estimates from the conometric approach after adjustment for errors in the variables with the "before" estimates, taking the "after" estimates as the supposedly true values. Dividing the "before" estexate= by the." "efter" estinctes y"eld a set of ratios comparable to those shown in Column 4 of Tabie 8 for the simulation estimates. As ar example, reproduced here are the ratios of the "before" to the "after" oLS estimates of Model A (Table 2) in conjunction with the ratios for the same variables from the simulation for the same equation from Table 8.

| Variable | Econometric model estimates: <br> "Before"/"After" | Simulation estimates: <br>  <br> Constant |
| :--- | :---: | :---: |
| Total assets | 11.29 | 1.12 |
| Common stock | .95 | 1.68 |
| liarried | 1.00 | 4.30 |
| Self-employed | .63 | .94 |
| Salaried | 2.16 | 1.33 |
| Services | .54 | .97 |
| Laborer | .81 | .83 |
| Retired | .79 | .79 |
| Male head | 1.24 | 1.68 |
| Age of head | .88 | .97 |
| Family size | .88 | .83 |

It is rather striking that the two sets of ratios are of the same order of general magnitude, except that the ratios of the parameter estimates from the econometric approach appear to be much more volatile than those from the simulation approach. This is only to be expected because it should be recalled that the parameter estimates from the econometric approach are single estimates, while from the : simulation approach they represent ratios of an average over 50 simulations. Even so, aany of the ratios are very similar and, with only one exception, are also in the same direction.

This tabulation, plus others prepared from the other equations and other models, indicate strongly that the results of the two approaches tend to complement rather than conflict with each other.

It therefore seems clear that response errors of the magnitudes that appear to exist in financial data can distort seriously not only the means and variances of the corresponding univariate distributions but in addition estimates of the parameters of econometric models not only of these variables but of many other variables included in the model. The problem is clearly a most serious one. Where response errors of these magnitudes exist, parameters estimates have to be treated with a great deal of caution. Indeed, there may be no substitute to putting a great deal of additional effort into getting better data, partly through better data collection methods and partly through the use of such supplementary methods as validation techniques. Fortunately, most types of economic data do not seem to contain the
large response errors characteristic of consumer saving data, so possibly parameter estimates for models of other types of consumer behavior are less subject to distortion from this source. This is a question which remains to be investigated.

-


[^0]:    $1_{\text {For }}$ evample, soe Lansirg, J. B., Ginsburg, G. P., and Breaten, K., An Investigation of Resugnce Ergor, University of Illinois, Bureau of Economic and Er:siness Rescarch, Studies in Concumer Savings, No. 2, 1961; Ferber, R., The Reitability of Conomer Reports of rinancial Assets and Debts, University of I, lincir, Bureau of Eccremic and Buriness Research, Studies in Consumer Savinge, No. $5, .566 ;$ Feiber, R., Forcythe, J., Guthrie, H. W., Iaynos, E. S., "Vaiida:ion of Consumer Financial Characteristics: Common Stocks", Jcumnal of the American Statistical Association, June 1969, pp. 415-22; $\qquad$ , "Validaticn of a Naticnal Survey of Consumer Financial Charasteris*ics: Savings Accounts, "Reviev of Economics and Statistics, November 1969, pp. 436-44.

[^1]:    8Jean Crockett and Irwin Frisnd, "Consuner investment Behavior," in Robert Ferber, Editor, Deterrinants of Investment Behavior. New York: National Bureau of Research, 1967, rages 15-523.
    ${ }^{9}$ Dorothy S. Projector, Survey of Changes in Family Finnances, Washington, D. C.: Board of Governors of the Federal Peserve System, 1968.

[^2]:    10 M. E. Kreinin, J. B. Lansing and J. N. Morgan, "Analysis of Life Insurance Premiums," Vol. 39, Feb., 1957, Pages 46-54; "Factors Associated with Stock Ownership," Review of Economics and Statistics, February, 1961, Vol. 43, Pages 76-80.

[^3]:    13For comparability with the 3SLS cstimates, $A \& U$ statistics are
     $A$ is defined as the average absolute valuc of the residuals while $U$, Theil's measure of forecast accuracy is:

[^4]:    ${ }^{14}$ The corresponding elasticities for the savings function of Model A are 2.5 before adjustment of the data and 1.9 after the adjustments.

[^5]:    *Significant at . 05 level
    **Significant at . 01 level

[^6]:    15Robert Ferber, op. cit., Chapter 4.

[^7]:    *Significant at . 05 level
    **Significant at . 01 level

[^8]:    16It will be recalled that the same improvement was evident for the other assets function by OLS but not for the common stock function which, by definition, is the same in the two models. This would seem to be a very good example of the greater efficiency of the 3SLS estimating procedure.

[^9]:    *Significant at . 05 leve1
    **Significant at . Ol level

[^10]:    *It might be noted also that iodel $C$ also contains the best acting equations both in terms of stability of the coefficients of variation and in terms of closeness of approximation of the parameter estimates to the parameters themselves. In the latter sense, 15 of the 35 average parameter estimates are ifthin 20 percent of the true value by the 3SLS method of fit and 13 by the OLS method. The standard deviations of the parameter estimates of this equation were less than the estimates themselves 16 of 19 times for the OLS method of fit and 14 of 19 times for the 3SLS method of fit.

