
G^uk SaaXLOU^

STATE OF ILLINOIS

WILLIAM G. STRATTON, Governor

DEPARTMENT OF REGISTRATION AND EDUCATION
VERA M. BINKS, Director

*****

Effects of Hydration Procedures

and Calcination in the Presence

of NaCI on the Properties

of Lime Hydrates

D. L. Deadmore

J. S. Machin

DIVISION OF THE

ILLINOIS STATE GEOLOGICAL SURVEY
JOHN C. FRYE, Chief URBANA

CIRCULAR 270 1959



Effects of Hydration Procedures and

Calcination in the Presence of NaCI on the

Properties of Lime Hydrates

jffJN°'S
STATE GEOLOGICAL SURVEY

3 3051 00003 8426



Effects of Hydration Procedures and

Calcination in the Presence of NaCI on th

Properties of Lime Hydrates
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ABSTRACT

This investigation is part of a study of factors that affect

the properties of lime putties. The influence of salt (Na CI) content

and calcining temperature on the surface area and on the reactivity

of the calcinates of 1) dolomite, 2) calcium carbonate (CaCOJ, and
3) basic magnesium carbonate was studied. It was found that both

the presence of NaCI and increased calcining temperatures acted

to decrease the surface area and reactivity of all three materials.

The influence of NaCI content and calcining temperature of

the calcinate on the plasticity of the dolomitic hydrate was inves-

tigated. Two hydration procedures were used to convert the calcin-

ates to the hydrated form - an atmospheric pressure and a high-

pressure method. The results indicate that neither the presence of

NaCI nor increased calcining temperatures had any beneficial influ-

ence on the plasticity of the low-pressure hydrate. However, NaCI
appears to improve slightly the plasticity of the high-pressure hy-
drate.

It was found that calcium hydroxide (Ca(OH) ) was consid-

erably coarser and of lower plasticity than magnesium hydroxide

(Mg(OH) ). Both are composed of thin hexagonal platelets.

INTRODUCTION

The addition of salt (NaCI) to CaCO-, before calcination, accelerates the

crystal growth of the CaO and decreases its reactivity toward water, according to

Noda and Kan (19 37). Noda and Oka (1938) noted that the growth of MgO crystals

was accelerated when NaCI was added to the carbonate before calcination.

Briscoe and Mathers (1927) reported that when dolomites naturally con-

tained more than 0.07 percent chloride ion, a plastic hydrate was produced, where-

as dolomites containing less than this amount yielded low plasticity hydrates.

Lamar and Shrode (1953) have shown that the liquid inclusions in dolomites

contain Na+ and Cl~ ions, among others.

These reported influences of sodium chloride on the properties of the com-
ponents of calcined dolomite, and the fact that dolomites often contain liquid in-

clusions rich in NaCI, suggested that it might be of interest to measure some of

the properties of the calcinates made from carbonate starting materials that con-
tained varied amounts of NaCI added before calcination. Because plasticity is

closely related to the workability of masonry mortars, the property of plasticity

and the basic factors that affect it are the focus of the present study of factors in-

fluencing the properties of hydrated limes.

[1]
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RAW MATERIAL SELECTION

Four hundred pounds of crushed Niagaran dolomite were kindly furnished

by the Marblehead Lime Company for this study. The material had been crushed
and sized at the plant,, The particle-size distribution of the dolomite was:

Weight
Screen

+0.371 inch
-0. 371 inch + 4 mesh per inch
-4 + 10 mesh
-10 + 14

-14 + 20

-20 + 28

-28

percent

10.,8

48.,2

35.,7

3.,0

1.,0

0..3

1.,0

No chemical analysis of this material was made, but it is considered to be

similar to samples from the same quarry analyzed previously at the Illinois Geologi-

cal Survey. The following chemical analysis is taken from Lamar (19 57):

Si0 2 0.11 Na
2 0.06

A1 2 3 0.30 C02 47.05
Fe 2 3 0.19 Ign. loss 47.87
CaO 31.20 so 3 0.10
MgO 20.45 MnO 0.015

The sum of CaC0 3 and MgC0
3

is 98.45 percent, which shows that this is

a rather pure stone from the industrial viewpoint. The stone was used as received
with no further treatment.

The raw material sources of CaO and MgO were CaC0 3 (precipitated) and
basic magnesium carbonate.respectively. Both were very fine powders. The mag-
nesium carbonate was labeled "U.S.P,, Heavy Powder, MgC0

3
Formulae Weight,

84.33, " but x-ray diffraction and ignition loss proved it to be the basic MgC0 3

(5MgO • 4C0 2
• 5H 2 0). The CaC0 3 was precipitated, U.S.P. (light). Its chem-

ical analysis was given by the supplier as

Si0 2 - 0.03
Ti0 2 - 0.09

A1 2 3 - 0.06
Fe 2 3 - 0.05
MgO - 0.38

CaO - 55.53
Na

2
- 0.06

K
2

- 0.09

The NaCl used was reagent grade crystals from Baker and Adamson.



PROPERTIES OF LIME HYDRATES 3

EXPERIMENTAL PROCEDURES

Sample Preparation for Calcination

The desired amount of carbonate starting material with the same particle-

size distribution as given above (1400 grams of dolomite, or 600 grams of CaC03
[powder] or basic MgC03 [powder]) was weighed into a 1500 milliliter beaker, to

which was added 450 ml of distilled water containing in solution the desired amount

of NaCl. This was placed on a steam bath and the water evaporated overnight.

Even the samples that contained no added salt received the same pretreatment.

The NaCl contents reported are in weight percent based on the uncalcined carbon-

ate starting material.

Calcination

The pretreated samples were placed in shallow refractory saggers (4 inches

high x 8 inches in diameter) to a depth of approximately three inches. Two such

samples, each with the same amount of NaCl, were calcined at the same time.

A muffle-type Globar-heated furnace was used. The two saggers occupied

most of the furnace's floor space, but there was 2 to 3 inches overhead clearance.

A tube was inserted through the rear of the furnace into the muffle at a level of

approximately one inch above the saggers. By means of this tube a slow current

of air was flushed through the furnace during the entire calcination cycle. A hole

in the furnace door and various other openings allowed the air to escape.

After the cold furnace had been loaded and the stream of air started, the

power to the furnace was turned on. The heating rate was controlled manually so

that the desired maximum temperature was reached in seven to eight hours. A
platinum-platinum +10 percent rhodium thermocouple inside a porcelain protection

tube was placed two inches above the saggers for temperature measurement. The
time at this maximum temperature was two hours, unless otherwise specified.

After this soaking period the power was shut off and the furnace and its contents,

with the air stream still on, was allowed to cool for 16 hours. The material, still

at 350° C, was removed from the furnace, immediately placed in two-quart Kerr

jars, and the self-sealing lids were tightened. As the contents of the jars cooled,

a vacuum was produced in the jars. These were stored until needed.

Reactivity of Calcined Carbonates with Water

To establish the reactivity of the calcined oxides with water an apparatus

similar to that described by Murray, Fischer, and Sabean (1950) was assembled.
Figure 1 is a schematic drawing of this apparatus.

The function of the apparatus is to measure the temperature rise in a given
amount of water when a given amount of calcinate is added. A ratio of 7 parts of

distilled water to 1 part of calcinate by weight was used.
Operation is as follows: 200 grams of distilled water at 26° C is placed in

the Dewar flask, the stirrer is started, the recorder is calibrated against the poten-
tiometer, then the potentiometer is removed from the circuit and the recorder con-
nected directly to the thermocouple in the Dewar calorimeter. Now 28. 6 grams of

the calcinate, ground to a powder with a mortar and pestle, is added through the

powder funnel; the temperature rise of the water vs. time is recorded by the recorder.

The values reported, for comparative purposes, are the temperature rises after 1000

seconds or AT^QOO' tne average value of three runs is reported. The reproducibility
is ± 15 percent.
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_300rpm constant speed
f synchronous motor

Powder
funnel \ Cu leads

Water

Calorimeter

Fig. 1. - Reactivity apparatus.

Surface Area

Surface areas were determined by low temperature, low pressure adsorption
of nitrogen, after the method of Brunauer, Emmett, and Teller (19 38). The surface

measurements of those samples having areas in excess of one m /g (square meters
per gram) is reproducible to about ± 5 percent.

Hydration

Two means of hydrating the calcinates were used- an open-dish, atmospher-
ic pressure method, and a closed-vessel, high-pressure method.

The operation of the atmospheric pressure method involves weighing 700 to

800 grams of the calcined stone into a 12-inch diameter evaporating dish (this cal-

cinate has essentially the same size distribution as the uncalcined stone). Dis-
tilled water in an amount equal to 30 percent of the weight of the stone was placed
in a separatory funnel,which had been previously adjusted to deliver at the rate of

7.0 ml per minute. The stone and water were stirred with a steel rod during the

entire course of the hydration. The maximum temperature of the calcinate-water

mixture (the "bed" temperature) was observed by stirring at frequent intervals with

a thermometer. After all the water had been added, the moist mixture was placed

in an open, two-quart Kerr jar, which was set in an oven and dried for 16 hours at

105° C.
After the drying period, a self-sealing Kerr lid was tightened on the jar,

and after cooling to room temperature the hydrate was ball-milled in a two-gallon

porcelain mill for one hour. The milled material was returned to the Kerr jar for

storage.

After considerable experimentation with various setups in an attempt to

hydrate the calcined dolomite almost completely, the apparatus shown in figure 2

was finally used for all pressure hydrations unless otherwise specified.

The procedure used for the pressure hydration of the calcined dolomite was
as follows: 625 grams of calcined solids, having roughly the same particle size

as the original stone, were weighed into the inner can and the bomb was closed

and placed in a cold oven. A vacuum was drawn on the bomb through the release
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0-200 psi pressure gauge

Oven thermometer

Oven wall

Pressure

releose volve

2-quart steel can, perforated,

open at top and bottom
Screen-wire support

Fig. 2. - Pressure hydration apparatus

valve and 475 ml of water (2.8 times the theoretical amount necessary for complete

hydration) was drawn in on top of the calcined stone. The valve was closed and
the oven turned on. In about three hours the pressure in the bomb rose to 140 psi

gauge (the maximum pressure of all hydrations unless otherwise specified). This

pressure was maintained for 4 1/2 hours. The release valve was then opened and
the pressure became atmospheric. The bomb was then opened and its contents

dried in a two-quart jar at 105 °C for 16 hours. After drying, a self-sealing lid

was tightened on the jar. This material was then ball-milled for one hour.

In the hydration of CaO and MgO samples, the procedure described above
was followed, except that 200 grams of solids and four times the amount of water
necessary for complete hydration of the oxide were used.

Plasticity Determinations

The visco-plastic properties of the hydrate pastes or suspensions were ex-
plored by means of the conventional Emley plasticimeter. This apparatus was con-
structed at the Geological Survey after A. S.T.M. specifications (1949). Porcelain
base plates were used. The plates were made in the University of Illinois Ceramic
Engineering Department to conform to the prescribed absorption rates. The plastic-

ity determinations were made according to the standard procedures described by the

A. S.T.M. method C-l 10-49. The plasticity was determined immediately after tem-
pering with water and again after soaking for 24 hours. The water at standard con-
sistency, as given in the text, is the weight percent of water in the total water-
solid mixture necessary to produce a paste of standard penetration on the penetrom-
eter (standard consistency).

In most cases only one determination of plasticity was possible,due to the

lack of hydrate. Where duplicate runs were made, the reproducibility was within

± 15 percent of the average value.

Drying of Soaked Hydrates

In order to study the hydrates after they had been soaked, to see what alter-

ations had taken place during soaking, it was necessary to dry the samples in such
a way as to minimize any alteration caused by the drying itself. The method used
to dry the sample is similar to that given by Wells and Taylor (19 37).
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After the Emley value of the soaked paste was determined, a 75-gram sam-
ple of the wet putty was placed in 150 ml of absolute ethanol and shaken for several
minutes. The sample was then transferred to a Buchner vacuum filter, the liquid

removed by suction, and the cake washed with ethanol and ethyl ether. The nearly

dry cake was placed in a vacuum desiccator,which was continually pumped for 24

to 48 hours to remove the last ethanol and ether. The dried samples were studied

by various techniques, as will be described.

Carbon Dioxide Determinations

The method used to determine carbon dioxide depended on the acid evolution

of the CO2 with adsorption on ascarite. The procedure and apparatus are similar

to those given by Hillebrand and Lundell (1953).

Ignition Loss and Composition Estimation

The ignition loss was determined by heating weighed samples in platinum

crucibles to 975° C for two hours.

From the ignition loss of the dolomitic hydrate the composition of the hydrate

was calculated. The calculations were based on the assumptions that all the CaO
had been hydrated in the hydration process, that there was no carbonation of the

hydrate, and that the original dolomite had the theoretical dolomite composition.

The validity of these assumptions was checked.
The first assumption is widely accepted because CaO hydrates so readily.

A rough check of this assumption comes from an examination of the x-ray powder
patterns of the hydrates which never showed any CaO lines. The validity of the

second assumption was checked by determining the CO2 content of some hydrates.

It was found to be less than one percent (tables 6, 7). A theoretical dolomite,

CaMg(C03)2, contains 21.9 percent MgO and 30.4 percent CaO. The chemical

analysis given previously, which is assumed to represent the stone used here,

showed 20.45 percent MgO and 31.2 percent CaO. For our purposes this is a

rather close approach to the theoretical composition of dolomite.

It is evident that the compositions of the hydrates calculated from the ig-

nition loss are not highly accurate, and it is estimated that the amount of any
component reported may be in error by at least ±3 percent of the reported value.

X-Ray Identifications

All x-ray diffraction powder patterns were made on a G. E. XRD-3, Record-

ing Spectrometer, with Cu Ka radiation. A shallow Al sample holder was used.

The powdered samples were placed in the holder and smoothed off with a glass

slide.

Particle-Size Analysis

The particle-size distribution of some of the hydrates was determined by
dispersing the hydrate in anhydrous n-butanol in a thermostatted cylinder and with-

drawing portions at intervals. Anhydrous n-butanol was used on the recommenda-
tion of Bishop (19 39). The portions were evaporated to dryness and the weight of

the dry residue was determined. X-ray diffraction patterns of these residues were

made.
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Water Retention of the Hydrates

It was observed, in the Emley plasticity test, that those limes that appeared
moist for the longest time always had the highest plasticity values. It was therefore

thought desirable to make a measurement that would reflect the water-retention

ability of the lime putties and substantiate the visual observations of water reten-

tion in the Emley test.

Pelaez and Murray (1956) devised a penetration test to measure water re-

tention. With a penetrometer they measured the thickness of nonpenetrable cake
built up on a vacuum filter as a function of time of evacuation. They found that the

tendency to retain water was in a linear relationship to the Emley plasticity. The
more tenaciously a lime clings to the water in the paste, the greater is its Emley
plasticity.

Rather than measure the penetration of a filter cake, the apparatus shown
in figure 3 was set up so that the volume of water removed from the lime putty as

a function of time could be measured directly.

The sample of hydrate

Rubber seal

Coors No. 0, Buchner funnel

\
Rubber vacuum tubing

\

Air leak,

glass capi

lube (to give

100 mm. Hg )

ary V. To
vacuum
pump £3

Mercury

manometer

was tempered with water to the

standard consistency used for

the Emley determination of plas-

ticity. With the system at at-

mospheric pressure, the paste

was placed in the Buchner fun-

nel that contained a moistened
No. 1 Whatman filter paper, and
the paste was struck off level

with the rim of the funnel. The

timer was started when the first

paste was placed in the funnel. After the funnel was filled, the vacuum pump was
turned on at one minute after the first paste was placed on the funnel. In less than

0.2 minute a vacuum of 100 mm of Hg was attained. The volume of water removed
was recorded as a function of time. The test was discontinued when the manometer
indicated the vacuum had been lost. The loss of vacuum due to cracking of the

cake or the cake pulling away from the funnel wall occurred rather abruptly (in less

than one minute). The results are reported as the empirical ratio R, where:

-Rubber support

Fig. 3. - Apparatus for measuring water retention.

R = Total volume of water removed until the vacuum is lost _ ml
Total time until vacuum is lost min

This term gives a rate of drying out or removal of water from the paste and
will be referred to later as " the water removal factor. "

Electron Micrographs

All electron micrographs were made in the Chemistry Department of the Uni-
versity of Illinois by A. E. Vatter. The carbon replica technique, as first described
by Bradley (1954), was used. In brief, the method is as follows: a glass slide is

coated with a film of collodion, then the sample is spread on the collodion film,

and a film of carbon is shadowed over the specimen. Now the composite layer is

floated away from the glass slide in water, then transferred to acetone where the

collodion is removed. Next the sample is removed from the carbon replica by
floating in dilute acid solution. The clean carbon replica is then mounted on a

grid for observation. The shadowing angle was 20°.
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EXPERIMENTAL RESULTS

Some Properties of the Calcined Materials

Calcined Dolomite

The treatment of the Thornton, Illinois, dolomite and the reactivity and sur-

face area of the resulting products are shown in table 1.

It will be noted in table 1 that the samples calcined at 825° C were held at

the maximum temperature for seven hours, but that at all other temperatures the re-

tention time at the maximum temperature was fixed at two hours. The longer reten-

tion time at 825° C was necessary to complete the decarbonation of the sample, as
explained below.

The results of calcining samples of Thornton dolomite containing 0.0, 1/2,

and 1 percent NaCl at 825 °C for two hours are interesting. X-ray diffraction pat-

terns of these calcined samples showed lines due to CaO, MgO, and CaC03 but

no lines due to dolomite. The intensity of the CaC03 lines decreased as the NaCl
content increased. The ignition loss was determined on these calcinates. The

sample that contained no NaCl lost

21.05 percent, the one containing

1/2 percent NaCl lost 10.17 per-

cent, and the sample containing 1

percent NaCl lost only 5.01 per-

cent. This indicates that under the

conditions used here the NaCl
greatly aided in the decarbonation

of the dolomite. However, even in

the presence of 1 percent NaCl not

all the carbonate had been decom-
posed. However, after seven hours

of retention at 825°C no carbonate

lines could be observed in the x-ray

pattern. So all samples prepared at

825° C were held for this period of

time to insure complete decarbona-
tion.

X-ray diffraction patterns of

the samples calcined at 875 °C and
higher for a period of two hours,

under conditions used here, showed
no lines due to carbonate materials.

Therefore, this retention period was
used for all samples prepared at

temperatures of 875 °C and higher.

In figure 4 it will be noted

that the surface area decreases with

both increasing temperature of cal-

cination and with increasing salt

content. The influence of tempera-

ture on the surface area, especially

in the region of 900° to 1000 °C, is

800 900

Maximum

1100 1200

Temperature

3001000

Calcining

Fig. 4. - Influence of NaCl on the surface area

of calcined dolomite from Thornton, Illinois

Time at maximum temperature was two hours
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Table 1. - Properties of Calcined Dolomite from Thornton, Illinois

Maximum Total time NaCl added Reactivity Surface
calcining at (wt. percent

1000
area

temp. max. temp. based on un-
(m /gram)No. (°c) (hrs.) burned stone) (°C)

8 825 7 16.4 3.55
9 • It 0.1 15.1 -

10 H H 0.4 9.7 3.10
11 i II 0.60 7.2 -

12 M tl 0.90 6.2 -

13 1 It 1.25 4.9 2.71
14 H ll 1.75 4.4 -

15 I It 2.50 4.2 2.53
16 n It 3.50 4.1 2.45
17 I M 5.00 4.1 -

18 875 2 17.8 5.15
19 It It 0.50 9.7 3.60
20 It tt 1.00 7.0 3.24

21 925 2 17.1 3.12
22 It II 0.50 8.8 2.43
23 It It 1.00 6.8 2.35

24 1025 2 13.0 1.62
25 •t •• 0.50 8.0 1.37
26 •• 1.00 4.0 1.17
27 ii n 2.00 3.2 -

28 H M 3.00 2.3 -

29 ii II 4.00 2.2 1.01

30 1140 2 12.3 1.14
31 I It 0.50 7.6 0.93
32 N II 1.00 2.8 0.68

33 1250 2 10.5 0.69
34 n It 0.50 7.0 0.60
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45

200 400 600 800

Time - Seconds

1000 1200

Fig. 5. - Temperature rise in calorimeter vs. time for

dolomite calcined at various temperatures and
containing percent NaCl.

greater than that of salt. In the region of 1000° to 1200°C, 1 percent salt has ap-
proximately the same effect on the surface area as an increase in temperature of

about 100°C.
Figure 5 shows some tracings of the calorimeter curves of dolomite calcined

at various temperatures. At time zero, when the solids were added, the temperature

instantaneously jumped 3° to 8°C, depending on the calcining temperature. In the

case of those calcined at 925°C and higher, there was then a period of 100 to 150

seconds of very little activity, after which the temperature began to rise more rap-

idly with time. The shapes of these curves are very similar to those given by
Knibbs (19 37). When the calcined dolomite comes in contact with liquid water,

under the conditions used here, there is an initial, very steep rise in temperature

amounting to as much as 50 percent of the total rise. Knibbs calls this the initial

liquid adsorption rise; the next period, of little activity, he calls the period of

quiescence. Then the main reaction of the calcined dolomite and water proceeds

for a considerable period of time.

With samples calcined at 875 °C there is no period of quiescence, and after

the initial sharp rise in temperature the reaction proceeds quite rapidly.
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40

36 -

32 -

O 28-

24

u
o
O)

rr

CaO

0%NaCI
a D "\

.. 5%NaCI \

Thornton, Dolomite

\0%NaCI (run in

salt soln.)

500 600 700 800 900 1000 1100 1200 1300

Maximum Calcining Temperature °C

Fig. 6. - Influence of NaCl on the reactivity of CaO,
MgO, and dolomite from Thornton, Illinois.

Time at maximum temperature, two hours. All

run in distilled water except where noted.

Figure 6 shows the influence of salt content and calcining temperature on
the reactivity of CaO, MgO, and dolomite so that these materials may be compared
directly. The properties of MgO and CaO are discussed later in the text. The re-

activity of the MgO decreases rapidly with increasing temperature of preparation

from the basic carbonate, and by 9 25°C its reactivity is immeasurably small on our

apparatus. The addition of 1/2 percent salt decreases the reactivity at low temper-

atures, but its influence is very slight at the higher calcination temperatures.

The reactivity of CaO without salt is influenced only slightly by tempera-
ture of calcination up to approximately 1100°C; it then falls rather rapidly as the

temperature rises. The presence of salt seems to decrease the reactivity some-
what at temperatures of less than 1100° C.

For dolomite the decrease in reactivity is continuous as the temperature of

calcination increases. Salt has a very large effect on the reactivity; 1/2 percent

of salt is approximately equivalent in its effect on reactivity to a 400° C increase

in temperature of calcination.
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Table 2. - Properties of CaO

Maximum Total time NaCl added Reactivity Surface
calcining at (wt. percent AT

1000
area

temp. max. temp. based on un-

(m /gram)No. (°c ) (hrs • ) fa urned CaCO ) (°C )

33.835 825 7 4.42
36 It n 0.50 29.7 0.66
37 II ii 1.0 29.3 _

38 II •i 2.0 28.4 -

39 II M 3.0 25.9 0.51
40 •I II 4.0 27.2 _

41 If If 5.0 - -

42 925 2 33.5 3.70
43 " M 0.50 32.0 1.04

44 1025 2 33.8 1.29
45 •1 n 0.50 30.4 0.62

46 1080 2 33.8 1.31
47 II n 0.50 31.0 0.82

48 1140 2 27.4 _

49 II •i 0.50 30.4 0.58

50 1250 2 23.6 0.42

To determine the influence of the salt present in the calcined stone on the

measured reactivity of the calcined dolomite, some samples containing zero NaCl
were run in water containing 0.55 gram NaCl per 200 grams of water rather than
in distilled water. Figure 6 shows that in the salt solution the measured reactivity

was slightly higher than in distilled water.

In comparing the reactivity of calcined dolomite with that of its component
oxides, it can be seen that MgO decreases in reactivity very rapidly as the temper-
ature of preparation rises and by 9 25°C it is very unreactive, while CaO is still

very reactive even at the highest temperature employed. Since dolomite is approx-
imately half MgO and half CaO on a molar basis, and the reactivity of the MgO is

nearly zero at the temperatures used to decarbonate the dolomite, then it follows

that the MgO is acting as a more or less inert diluent and the reactivity is due
mainly to the CaO content. One would consequently expect the reactivity of the

dolomite to be approximately half that of the CaO. The data confirm this expecta-
tion.

Properties of CaO

The properties of CaO prepared by decomposition of CaC03 containing var-

ious amounts of NaCl are given in table 2.

Figure 7 shows that at the lower temperatures NaCl decreases the surface

area to a marked extent. However, at the higher temperatures the influence of salt

on the surface area is much less. For comparison purposes the surface areas of

calcined Missouri limestone, as determined by Staley and Greenfeld (1949), are

included. Above 1050° C there is some agreement; at less than 1050° C the agree-

ment is not as good.
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The reactivity values are

shown in figures 6 and 8. In

figure 8 the surface area was
plotted vs. the reactivity, with-

out regard to either the salt con-
ey

tent or calcining temperature. It ^
appears as though the surface

,

area of the CaO must be reduced g

to less than about 1 mvgram be- <
fore there is any appreciable de- £}

crease in the reactivity. How- *j

ever, beginning at about 1 mVg Jj

the rate of decrease in reactivity

becomes very rapid. The reac-

tivity seems to be independent of

how the surface area decrease is

produced, whether by increase in

temperature of preparation or by
addition of NaCl.

4.0

3.0

2.0

1.0

0%NaCI

x Values of Staley ft Greenfield

(1949) for 2 hrs. calcination

of | — l" Mo. limestone

pebbles, 0%NaCI.

•• Present data, for 2 hr. calcina-

tion of precipitated CaCOy

i%NaCI

x _i_ _i_

800 900 1000 1100 1200 1300

Maxfmum Calcinatfon Temperature °C

Fig. 7. - Influence of NaCl on the surface area of

CaO. Time at maximum temperature was two
hours.

Properties of MgO

Some properties of MgO
produced by decomposition of the

basic magnesium carbonate are

given in table 3.

Figure 9 shows that the sur-

face area decreases rapidly as the

calcination temperature increases,

and that salt decreases the surface

area considerably at the lower tem-
peratures, but has a smaller effect

at the higher temperatures. Some
data of Livey, Wanklyn, Hewitt and
Murray (1957) on the surface area of

MgO produced by decomposition of

Mg(OH)2 containing no salt are

given for comparison. Considering

the different starting materials and
preparation methods, the agreement
is not bad, especially at the higher

temperatures.

Figures 6 and 10 show the

reactivity of MgO. From figure 10

it appears that the reactivity falls

Surface Area- m/g.
Fig. 8. - Reactivity of CaO with various

surface areas.
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Table 3. - Properties of Mg<D

Maximum Total time NaCl added Reactivity Surface
calcining at (wt. % based

1000
area

temp. max. temp. on unburned

(m /gram)No. (°c ) (hrs.) basic MgC0
3

) (°C )

51 500 2 14.8 104.3
52 M H 0.5 6.9 78.2

53 625 2 1.5 _

54 it H 0.5 1.1 -

55 720 2 0.9 32.85
56 • II 0.5 0.7 28.08

57 925 2 0.3 8.00
58 ft • 0.5 0.3 6.46

59 1250 0.0 1.44

rather rapidly with a decrease in surface area down to approximately 60 mVgram,
then the reactivity falls off slowly with further decrease in surface area. This re-

lationship between surface area and reactivity for MgO is in contrast with that for

CaO.

Some Properties of Laboratory Prepared Hydrates

Dolomitic Hydrates

Table 4 includes, in addition to the Emley plasticity values, the amount of

water necessary to produce a hydrate putty of standard consistency and the maxi-
mum bed temperature (see section on hydration) attained during the atmospheric

pressure hydrations. The water content at standard consistency for both high and
low pressure hydrates decreases slightly as the salt content increases at a particu-

lar temperature. The high-pressure hydrates required 3 to 5 percent more water to

form a paste of standard consistency than the low-pressure hydrates.

The bed temperature, in general, decreases with an increase in both cal-

cining temperature and salt content of the raw stone. This agrees with the decrease
in reactivity measured in the calorimeter as these two factors increased.

From table 4 it can be seen that on soaking, the plasticity of the high-

pressure hydrates changes very little. They develop nearly their maximum plastic-

ity almost immediately on tempering with water. However, the low-pressure hy-
drates, in most cases, show a marked increase in plasticity on soaking in water.

The plasticity of the high-pressure hydrates reported in table 4 were all

produced by hydrating the calcined dolomite at 140 psi (gauge) for4| hours

with sufficient excess water1

so that some liquid water was present in the vessel

during this period. Before it was realized that the presence of liquid water was
necessary to get a high degree of hydration of the MgO in pressure hydration, some
work was carried out using essentially dry steam. In one such experiment a steam

generator was set up and essentially dry steam at 60 psi (gauge) was delivered

to another container holding the calcined dolomite, which was at a temperature
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Fig. 9. - Surface area of MgO vs. temperature
of preparation.

sufficient to maintain a pressure of 60 psi (guage) . After three hours of this
treatment the unsoaked plasticity was only 14 6 and the soaked value was 200.
X-ray diffraction patterns showed that very little of the MgO had been hydrated.

Knibbs and Gee (1952), among others, have pointed out the necessity of
having liquid water present during pressure hydration in order to effect a high
degree of hydration in a short time.

It is evident from table 4, and the above discussion, that the plasticity is
strongly dependent upon the method and procedure of hydration, as well as calcin-
ing temperature, salt content, soaking, etc.

Table 5 gives surface area values for some of the dolomitic hydrates. The
most interesting feature of table 5 is the large increase in the surface area of the
low-pressure hydrates upon soaking, and the rather small increase in the area of
the high-pressure hydrates. It appears that a more or less extensive interaction
of the low-pressure hydrates with water takes place, but that the interaction with
the high-pressure hydrates is less extensive. The presence of salt in the raw
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Table 4. - Emley Plasticity Values of Laboratory Prepared Dolomitic Hydrates
8

High-pressure hydration Low-pressure hydration
Water at

Emley plasticity, standard
No. Unsoaked SoakecP consistency

Emley plasticity,
Unsoaked Soaked

Water'at
standard
consistency

Maximum
bed temperature

(°c)

242
238
198
190
190

296
309
274
232
238

41.3
39.8
37.1

38.2
37.4

90
85
75
62
55

189 217 38.1 67

193 245 37.6 62

226
132
126

335
246
229

40.3
38.5
38.5

88
79
75

8 326 320 45.3
9 388 392 42.8

10 416 455 42.3
11 434 423 43.1
12 435 455 42:2
13 - - -

14 395 424 44.0
15 - - -

16 432 430 43.4
17 - - -

18 _ _ _

19 - - -

20 - - -

21 326 388 44.7
22 351 424 41.2
23 403 408 42.7

24 320 353 43.0
25 304 355 42.2
26 284 334 41.2
27 278 277 40.0
28 346 396 40.5
29 321 360 39.2

30 232 261 42.8
31 255 262 41.2
32 259 278 41.0

33 208 203 36.9
34 208 206 40.6

178 250 41.1 81

75
77
78
74
69
68

150 206 39.0
148 189 35.7
147 173 36.4
131 147 34.9
144 176 34.2
141 199 34.4

128 160 38.9
122 163 36.5
124 152 35.5

a For compositions, calcination temperatures, etc., see table 1,

£ -b- Percent water by weight in standard consistency paste.

g -c- Soaking period 24 hours.

73
68
64
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Table 5. - Surface Area of Laboratory Prepared Dolomitic Hydrates (meters /gram)'

High-Pressure Hydration Low-Pressure Hydration

No. Unsoaked Soaked Unsoaked Soaked

8 12.37 - 14.04
9 _

10 - -

11 12.88 - 11.09
12 - - - •

13 - - - -

14 - -

15 - - - -

16 - - - -

17 - - -

18 - - 14.46 24.47
19 11.25 27.55
20 - - 10.95

21 13.04 14.65 12.96 23.55
22 11.90
23 14.90 - - -

24 10.81 11.90
25 10.05 12.30
26 9.67 11.32
27
28
29

30 9.52 11.53
31 9.12 10.84
32 9.18 10.28

33 11.44
34 9.54

10.68 26.71
9.48 22.35
8.20 19.47

9.61 22.69
9.28 17.66
9.40 16.53

a For compositions, calcination temperatures, etc., see table 1.
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100

Fig.

Surface Area-m/g.

10. - Reactivity of MgO vs. surface areas,

stone or the increase in calcining

temperature, in general, results in

decreased surface area of both the

high- and low-pressure hydrates.

Another interesting result is that

the surface areas of the unsoaked,
high- and low-pressure hydrates

are very nearly identical for the

same temperature of preparation

and the same salt content.

Figures 11, 12 and 13 show
the relationships between the sur-

face area and the Emley plasticity

for unsoaked and for soaked dolo-

mitic hydrates produced by high-

and low-pressure hydration.

Figure 11 shows that for

the high-pressure hydrates there is

an increase in plasticity as the

surface area of the hydrates in-

creases. The same relationship holds for both soaked and unsoaked values.

In figure 12, for the low-pressure hydrates, there is considerable scatter,

but there appears to be a relationship between surface area and plasticity, and
the plasticity increases with the surface area. It will be noticed that the soaked
specimens have higher surface areas than the unsoaked.

In figure 13 the plasticity-surface area relationship for high- and low-
pressure hydrates in the unsoaked condition is compared directly. It appears that

the rate of increase of plasticity with increasing surface area is greater for high-

pressure hydrates than for low-pressure hydrates. Even though both the high- and
low-pressure hydrates have nearly the same surfaces, the high-pressure hydrates

are usually more plastic.

Bishop (19 39) calculated the surface area from particle size distribution

curves for a number of commercial hydrates and compared them with the Emley
plasticity values. He stated that no relationship existed between plasticity and
surface area or particle size distribution of hydrates. This is at variance with the

present data shown in figures 11, 12, and 13, which strongly suggest that a rela-

tionship does exist between surface area and plasticity. Bishop further stated

that the lack of correlation may have been due to the fact that he could not deter-

mine the size distribution of particles of less than 2 microns and that these parti-

cles may have a large influence on plasticity. He showed that the plasticity of

fractions finer than 2 microns from highly plastic hydrates was very great but sim-

ilar fractions from low plasticity hydrates were not very plastic. The method of

surface area determination used here measured the surface area of the entire sample
and not just a fraction of it, as was the case in Bishop's method.

Also, an examination of figures 11, 12, and 13 shows that the relationship

between surface area and plasticity depends on the method of hydration and the

subsequent treatment of the hydrates. The relationship would probably break down
if one tried to relate various hydrates with no knowledge of their preparation and

pretreatment. This is what Bishop did and may be a part of the reason for his find-

ings.
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Tables 6 and 7 give the compositions of the

hydrates as determined from the ignition loss and
also some CO2 contents. 400

During soaking the hydrates pick up some
CO2, but the total amount in the samples is less than

1 percent. For the samples on which the CO2 content

was determined, the compositions calculated from the

ignition losses were corrected for the CO2 picked up. ^
The correction was very small. This fact gives us .2

confidence that the compositions calculated from the g 300

ignition loss data are roughly correct. ^
Table 6 indicates that the high-pressure hy-

drates are all very nearly completely hydrated regard-

less of the calcining temperature or salt content of the £
raw stone. Furthermore, on soaking there is no sig-

nificant increase in Mg(OH)2 content.

Table 7 shows that the low-pressure hydrates

are far from being completely hydrated. However,
lower calcining temperatures and salt contents seem
to favor a slightly greater degree of hydration. In

most cases soaking of these hydrates appears to in-

crease the degree of hydration, especially at lower

salt contents. The proportion of Ca(OH)2 in the low-
pressure hydrates appears to be larger than in the high- iqo
pressure hydrates.

From compositions given in tables 6 and 7, the

percentage of the total possible Mg(OH)2 was cal- p^g

culated. This was then plotted vs. the unsoaked

200

o Soaked Values

• Unsoaked Values

_L

6 8 10 12 14 16

Surface Area-m/g.

11. - Surface area of high-

pressure dolomitic hydrates

vs. Emley plasticity.

Surface Area- m/g.

Fig. 12. - Surface area of low-pressure dolomitic

hydrates vs. Emley plasticity.

Emley plasticity values, as shown
in figure 14. It will be noted

that the plasticity increases with

increases in the amount of

Mg(OH)2. As the calcining tem-
perature rises, the plasticity de-
creases, even when very nearly

all the possible Mg(OH)
2

is pres-

ent.

This indicates that in-

creased amounts of Mg(OH)2
produce better plasticity, and
that any way of producing Mg(OH)2
from the MgO in the calcined

Thornton, Illinois, dolomite will

improve the plasticity.

All indications are that the

presence of MgCOHK improves the

plasticity. In the hope of throw-

ing more light on the reasons for
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Table 6. - Composition of Laboratory Prepared High-Pressure Hydrated Dolomitic
Limes (Calculated from Ignition Loss)

Ignition Loss Composi"t;ion (S C0o Content
2

(%)Un soaked Soaked
No. Unsoaked Soaked Ca(0H)

2
Mg(0H)

2
MgO Ca(OH)

2
Mg(0H)

2
MgO Unsoaked Soaked

8

9

25.7 - 57.0 38.2 4.8 - - - -

10

11

12
13
14

15
16

17

18

19
20

21

27.0

-

56.0 43.0 1.0

_

-

-

i
i

i

i

i

i

i

i

i

i

i

i

i

i

i

26.5 26.6 56.4 41.2 2.4 56.3 41.5 2.2

-

22 25.4 - 57.3 36.7 6.0 - - - -

23 27.1 - 56.0 43.4 0.6 - - - -

24 26.0 26.4 56.8 39.2 4.0 56.6 40.0 3.4 0.218 0.772

25 25.7 25.9 57.0 38.1 4.9 56.8 38.8 4.4 -

26 26.1 26.2 56.7 39.6 3.7 56.6 40.0 3.4 -

27 - - - - - - - - -

28 - - - - - - - - -

29 - - - - - - - - -

30 25.7 26.2 57.0 37.8 5.2 56.8 39.3 3.9 0.216 0.761

31 25.7 26.1 57.0 37.8 5.2 56.7 39.6 3.7 -

32 26.0 26.1 56.8 39.2 4.0 56.7 39.7 3.6 — ™

a For compositions, calcination temperatures, etc., see table 1,

b See "Experimental Procedure."
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Table 7.- Composition of Laboratory Prepared Low-Pressure Hydrated Dolomitic
Limes (Calculated from Ignition Loss) b

Ignition Loss Compos it ion (%) C0_ Con
2

(%)

tent
Un soaked Soaked

No. Unsoaked Soaked Ca(0H)
2

Mg(0H)
2

MgO Ca(0H)
2

Mg(0H)
2

MgO Unsoaked Soaked

8

9

16.2 - 64.1 1.9 34.0 - - - - -

10

11

12
13
14
15
16
17

18

19
20

17.8
-

62.9 8.1 29.0

- - -

- -

16.4
16.7
16.9

19.2
19.5

64.0
63.7
63.6

2.6
3.9
4.5

33.4
32.4
31.9

61.9
61.6

13.6
14.6

24.5
23.8

- -

21

22
23

24
25
26
27
28

16.3 19.1 64.0 2.4 33.6 61.9 13.0 25.1 - -

16.2
15.8
15.9

19.4
16.7
16.3

64.2
64.4
64.3

1.5
0.4
0.9

34.3
35.2
34.8

61.8
63.8
64.0

13.4
3.4
2.3

24.8
32.8
33.7

0.262 0.765
0.712

29

30
31

32

15.5
15.8
15.6

19.0
18.1

16.9

64.6
64.6
64.6

35.4
35.4
35.4

62.4
62.8
63.7

11.8
8.4
4.4

25.8
28.8
31.9

0.304
0.331

0.811
0.861

a For compositions, calcination temperatures, etc. see table 1.

b See "Experimental Procedure."
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this, particle size distributions were determined

on three samples containing different amounts of

Mg(OH)2 produced by different methods of hydration

and soaking.

The three samples investigated were all de-
rived from the calcinate from run No. 24 by the fol-

lowing treatments:

A) Low-pressure hydrated, unsoaked.

B) Low-pressure hydrated, soaked.

C) High-pressure hydrated, unsoaked.

Figure 15 shows the particle size distribu-

tion of these three samples. If we consider the re-

gion of less than one micron, it appears that C has

the greatest amount of fine material, followed next

by B, and that A has the least amount. On compar-
ing their plasticity values, C has the highest plas-

ticity (320), followed by B (206), and then A (150).

It appears that the samples with the greatest amount
of fine material had the highest plasticities.

400

g 300

200

400

T3
a>

o
o
</)

c

o
Q_

E
UJ

300

200 -

100

Fig. 14.

total

mum

High

Pressure

Low
Pressure

100 L /

80

Mg (0H) 2

100

- Emley plasticity vs. percentage of

possible Mg(OH)2 for various maxi-

temperatures of calcination.

8 12 16

2
Surface Area-m/g.

Fig. 13. - Comparison of highl-

and low-pressure dolomitic

hydrates, both unsoaked.

Now if one considers the

Mg(OH)2 content (tables 6 and 7) it

is seen that it increases as the

plasticity increases, or C contains

the most and A the least Mg(OH)2>
with B intermediate.

Inasmuch as larger amounts

of fine material are associated with

higher Mg(OH)
2
contents, then the

Mg(OH) 2
should tend to be a fine

material. To check this, x-ray dif-

fraction patterns of various size

fractions were made. The results

are summarized in table 8, from

which it appears that the proportion

of Mg(OH)2 steadily increases in

the finest fractions of B and C.
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Fig. 15. - Particle size distribution of

laboratory-prepared dolomitic

hydrate No. 24.
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Table 8. - X-Ray Identification and Intensity of Certain Lines for
Laboratory-Prepared Dolomitic Hydrates

Intensity of X-ray Lines
Size (cm above bac kground) Ratio

fraction (D* (2) (3) (4) Int. Mg(0H) o (18.5°)

Int. Ca(0H)
2

(18.0°)Hydrate (microns) Ca(0H)
2

Mg(0H)
2

Mg(GH)
2

MgO

No. 24 Low-pressure 4 4.6 7.5

hydration 2.2 4.7 9.3
(unsoaked) 1.2 5.1 11.0
(Sample A) 0.86 4.6 10.7

0.70 4.6 9.7
0.62 4.6 8.5

No. 24 Low-pressure 20 7.5 2.1 1.6 7.0 0.28
hydration 4 7.5 2.0 1.6 8.3 0.27
(soaked) 2.2 7.6 2.6 1.6 7.3 0.34

(Sample B) 1.2 6.7 2.4 1.9 8.6 0.36
0.86 6.6 2.9 2.1 9.0 0.44
0.70 5.7 3.0 2.9 10.3 0.53
0.62 5.3 3.1 2.1 8.6 0.58
0.46 5.2 2.7 1.6 7.4 0.52

No. 24 High-pressure 60 8.4 4.7 4.5 1.0 0.56

hydration 20 8.7 5.6 4.7 0.9 0.64
(unsoaked) 4 9.3 5.8 5.9 0.6 0.62
(Sample C) 2.2 9.8 7.2 7.0 1.2 0.74

1.2 9.6 9.3 8.3 1.0 0.95
0.86 9.6 10.9 10.3 1.3 1.14
0.70 7.3 9.8 10.1 0.8 1.34
0.62 5.2 9.3 8.8 0.5 1.79
0.46 4.5 8.5 8.7 0.3 1.89

*(1) Ca(0H)
2

line at 18.0° in 2 9

(2) Mg(0H)
2

line at 18.5° in 2 9

(3) Mg(0H)
2

line at 37.8° in 2 9

(4) MgO line at 42.8° in 2 9

From this discussion It seems likely that the reason for the increase in

plasticity as the Mg(OH)2 increases is that the Mg(OH)2 forms as very fine

particles.

Bishop (19 39) observed that the fractions less than 2 microns from highly

plastic limes were very plastic, but that the same fractions from low plasticity

limes were not plastic. This can now be explained from the above data; that is,

the high plasticity limes have greater amounts of very fine material which is richer

in Mg(OH)2 than the nonplastic hydrates.

Mg(OH)
2
and Ca(OH)

2

Some of the MgO samples previously discussed (table 3) were pressure hy-
drated by the usual procedure (140 psi for 4^ hours), then the surface area and
plasticity was measured. The results are given in table 9.
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Table 9. - Some Properties of Mg(OH) 9
a

Water at Surface area

Eml ey standard
2

plastici ty consistency

(X)

(m /gram)

No. Unsoaked Soaked Unsoaked Soaked

55 645 625 63.8 36.65 -

57 468 480 50.0 12.85 17.52

58 400 410 50.2 - -

59 468 468 43.5 7.78 -

a For compositions, calcination temperatures, etc., see table 3.

Table 10. - Some Properties of Ca(0H)
2
a

Water at Surface area

Emley standard
, 2 ,

plastici ty consistency

(%)

(m /qramj

No. Unsoaked Soaked Unsoaked Soaked

42 101 93 54.5 7.37 7.84

44 172 102 47.9 7.04 -

45 173 71 46.2 - -

50 202 246 44.0 11.84 -

a For compositions, calcination temperatures, etc., see table 2.

The plasticity, surface area, and water content at standard consistency for

No. 55, prepared from MgO formed at 720° C, are very high. As the temperature of

preparation of the MgO rises to 925°C, the plasticity, surface area, and water

necessary to form a paste of standard consistency decrease. The presence of salt

seems to decrease the plasticity somewhat. The MgO formed at 1250° C produced
a hydrate of approximately the same plasticity as that produced from MgO prepared

at 9 25°C, both without salt.

Some of the CaO samples given in table 2 were pressure -hydrated by the

usual procedure, then the surface area and plasticity were measured. The results

are given in table 10.

The unsoaked and soaked plasticities are all rather low. The increase in

both the soaked and unsoaked plasticities as the temperature of preparation of the

CaO increases is unexpected, and no explanation is apparent at present.

The particle size distribution of pressure-hydrated Ca(OH)
2
and Mg(OH)

2 ,

prepared from their respective oxides, which were formed at 9 25°C, are given in

figure 16. It will be noticed that the Mg(OH)
2
has a much larger proportion of fine

material (less then 2\±) than the Ca(OH)
2 . If we compare the plasticities (tables

9 and 10), it is apparent that Mg(OH) 2 is much more plastic than Ca(OH)2.
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Electron micrographs of the same samples that were used for the particle

size distribution are shown in plate 1.

It is evident once again that the Mg(OH)2 contains more fine crystals than

the Ca(OH)2. In both cases, however, many of the particles are rather thin hex-
agonal platelets.

The water removal factor, R (see fig. 3 and section on water retention of

hydrates), in relation to the plasticity is shown in figure 17. It will be noted that

the fine particle sized samples (as Mg(OH)9) show a low rate of water removal and
high plasticities, but that the larger particle sized Ca(OH)2 shows a lower plastic-

ity and relatively high water removal rates. The dolomitic hydrates lie between
these two extremes and their position probably depends mainly on the proportion

of Mg(OH)2 present in the hydrate.



28 ILLINOIS STATE GEOLOGICAL SURVEY

DISCUSSION

It has been demonstrated by experimental data that the presence of NaCl
decreases the reactivity and surface area of calcined dolomite, CaO and MgO.
Noda (19 38, 19 39) has shown that the presence of NaCl in limestone or magnesite
caused increased grain growth and decreased reactivity of the CaO and MgO formed

on calcination of the carbonates. Atlas (1957) has shown that the lithium halides

also catalyze the sintering or grain growth of MgO.
Staley and Greenfeld (1947) observed that limes prepared from limestones

to which 0.5 percent NaCl had been added had low surface areas and that the

sodium chloride apparently acted as a fluxing material, increasing the mobility of

the calcium and oxygen ions sufficiently to permit them to pack more rapidly than

in its absence. Noda and Kan (19 37) also found that the addition of NaCl acceler-

ated crystal growth of CaO.
Tacvorian (1952, 1954) has suggested a mechanism by which the surfaces

of refractory oxide grains may be activated and thus cause an acceleration of the

sintering process. He believed that if the refractory oxide is mixed and heated

with a compound which is a weakened model, a relatively concentrated solid solu-

tion may be formed in the surface of the refractory grain. The surface solid solu-

tion will have lower activation energies and therefore higher ionic diffusion rates

than the pure refractory oxide. This increase in the ionic diffusion rate causes
crystal growth to occur at a greater rate, since at the point of contact of two small

crystals the atoms of the two crystals interdiffuse more readily and the net result

is the production of a larger crystal.

The application of Tacvorian' s ideas to the systems NaCl-CaO and NaCl-
MgO would require NaCl to be a weakened model of CaO and MgO. Especially for

the MgO, due to the large difference in size of the Mg++ and Na+ ions, it is not

easy to think of NaCl as such a model. However, Atlas (1957) showed that al-

though LiCl and LiBr were not truly weakened models of MgO (due to the discrep-

ancy between the radii of CI" and Br~ and O ions), they were nevertheless as

effective in catalyzing the sintering of MgO as was the true weakened model, LiF.

To him this suggested the importance of the cation, since in the three halides the

cation was the same. He suggests that the Li+ ion from the chloride and bromide

can be incorporated into the surface layer of MgO and that this solution may be

aided by partial thermal decomposition of the halide to Li20. Since Li20 does not

have the same cation to anion ratio as MgO, solution of Li20 in MgO must be ac-
companied by the formation of defects, as either O vacant sites or interstitial

Li+ ions. Such defects will increase the rate of diffusion or material transport and
thereby the sintering or grain growth rate.

If one applies these ideas, then in the case of CaO, the Ca"1
"4" and Na+ ions

are nearly the same size, and if some of the NaCl is partially thermally decomposed,
then the Na20 could go into solution in the surface of the CaO crystals and cause
defects, which will increase the rate of diffusion and promote sintering of the CaO.
However, in the case of MgO there is such a large difference in the radii of Mg++
and Na+ ions that if the above conceptions of the mechanism of promotion of sinter-

ing are valid, then Na+ should not be an effective aid in the promotion of sintering

of MgO. If one uses the surface area as a measure of grain growth, then from

figures 7 and 9 it can be seen that NaCl causes a greater decrease in the surface

area of CaO than in the surface area of MgO when compared on a percentage basis.

So in dolomite the influence of NaCl on grain growth should be the greatest for the

CaO.
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The over-all effect of NaCl
on the oxides appears to be the same as

the effect of thermal treatment. That is,

it promotes sintering. A small amount of

NaCl will affect sintering to about the

same degree as a small increase in tem-
perature .

Next one must consider what in-

fluence the NaCl enhanced growth of the

oxide crystallites has on the properties

of the hydrates, particularly the plastic-

ity. Because the plasticity depends
strongly on the method of hydration, the

results given are relative and may not

apply to methods other than those used
here. To this end consider the data in

figures 18, 19, and 20, which show cor-

relations between the oxide properties

and plasticity of the hydrates.

In the case of low-pressure hy-
dration, figure 18 shows that at any
given temperature the plasticity de-
creases as the salt content rises. So the

decrease in the reactivity of the oxide, Fig.

produced by NaCl-enhanced sintering,

results in a less plastic hydrate when
low-pressure hydration is used.

Figure 19 shows that as the surface area of the oxides, derived from cal-

cining dolomite, decreases (no distinction being made between the effect of salt

and temperature of calcination), the plasticity of the low-pressure hydrates also

decreases.

Figure 20 shows that for the high-pressure hydrates the plasticity of the

hydrate is increased by the addition of salt to the raw stone at all surface areas,

especially at the higher surface areas.

In the low-pressure hydrates, the presence of salt during calcination does
not increase the plasticity. Salt appears to help produce a more plastic lime in

high-pressure hydrates, but even the least plastic pressure-hydrated lime is of

such a high plasticity that increasing it further by adding salt seems to be of ques-
tionable value.

The results of Briscoe and Mathers (1927) seem to be somewhat at odds
with the present results. This may be due to different stones, different hydration

methods, different calcining procedures, etc., none of which they described.

They stated that pressure hydration produces low plasticity hydrates and that the

addition of salt to their dolomite produced a highly plastic hydrate by low-pressure

hydration. In their conclusions they stated that "the plastic properties of hydrated

limes seem to be determined by the extent to which hydration progresses during the

soaking of the lime to form putty. If the lime is completely hydrated at the time

of formation of the dry product, it will be a non-plastic lime. The quicklime must
be produced so that during hydration the CaO hydrates slowly, but yet the MgO is

reactive and on soaking the MgO will hydrate extensively and produce a highly

20. - Emley plasticity of high-pressure

hydrated calcined dolomite from Thornton,

Illinois, vs. the surface area of the

calcinate.
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plastic lime. " They believed that salt decreases the activity of the CaO and not

that of the MgO so that on low-pressure hydration the CaO hydrates slowly, leav-

ing the MgO unhydrated but yet reactive, and on soaking the hydrate a high plas-

ticity results due to the hydration of the MgO.
The present information seems to confirm Briscoe and Mathers' (19 27) con-

clusion that the influence of salt on the sintering of CaO is greater than it is on
MgO. There seems to be agreement that the plasticity is greatly increased in dol-

omitic hydrates if most of the MgO is converted to Mg(OH)
2

. However, the pres-

ent data indicate that the method of conversion has little influence.

Webb and Sampson (1957) and a number of patents by Corson (Corson, 1946)

show the great increase in plasticity produced by pressure hydration in which a

high proportion of the MgO is converted to Mg(OH)2»
This brings us to a consideration of plasticity itself. As already shown,

the presence of increased amounts of MgfOHjo in dolomitic hydrates increases the

plasticity, whether the Mg(OH)2 is formed by pressure hydration of the oxides or

by soaking a low-pressure hydrate. It was further demonstrated that Mg(OH)2 is

very finely divided compared to Ca(OH)2 and that it has, in the pure state, a much
higher plasticity than Ca(OH)2. Electron micrographs indicate that both pure

Mg(OH)2 and Ca(OH)2, pressure-hydrated, are thin hexagonal platelets. Also the

Mg(OH)
2
tends to retain its water with greater tenacity than Ca(OH)

2
or a mixture

of Ca(OH)2 and MgO such as exists in partly hydrated dolomitic limes.

The greater ability of the lime putty to retain its tempering water is impor-

tant, since in the Emley plasticimeter, water is being removed by the porous base
plate and the more slowly this water is removed the greater will be the plasticity

figure

.

Since Ca(OH)2 and Mg(OH)2 have the same particle shape (pi. 1), one is

led to believe that the large difference in their plasticity is, to a considerable ex-
tent, due to the smaller crystal size of Mg(OH)2 as compared to Ca(OH)2-

The rate of withdrawal of water from the putty on the Emley apparatus is a

capillary phenomenon in which the capillaries in the putty tend to resist the with-

drawal. Small particles make for small capillaries and therefore greater resistance

to water removal.

It appears that any situation which will promote the conversion of the free

MgO in calcined dolomites to Mg(OH)2 will increase the plasticity of the lime pro-

duced. This is believed to be due to the fine particle size of the Mg(OH)2 which
tends to increase the ability of the putty to retain water.

CONCLUSIONS

1) The addition of salt to dolomite before calcining in the manner described,

and then hydrating this calcined dolomite at low pressures by the method described,

does not increase the plasticity of the lime produced. NaCl appears to increase

slightly the plasticity of the pressure-hydrated dolomitic limes.

2) Mg(OH)
2

is considerably finer than Ca(OH)2 produced under the same
conditions. Both show thin, hexagonal platelets at high magnification. The

Mg(OH)2 retains water much better than Ca(OH)2 and shows a higher Emley plastic-

ity.

3) Any method used in this investigation (such as soaking at atmospheric

pressure or pressure hydration of the calcined dolomite) that increased the amount
of Mg(OH)2 also resulted in increased plasticity of the lime.
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4) The results of this work indicate that, in general, the method of manu-
facture of the hydrate is more important than the presence of NaCl, as far as the
production of high plasticity is concerned.
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