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ABSTRACT

In our previous study, the empirical relationship between Sharpe's
performance measure and its risk proxy has been shown to be dependent on
the sample size, the investment horizon and the market conditions. This
paper generalizes this important result to include Treynor's and Jensen's
performance measures. In addition, it is shown that the relationship
between the estimated Sharpe's measure and its risk proxy is a special
case of the relationship between the estimated Treynor's measure and
its risk measure. Moreover, the conventional sample estimate of
ex-ante Treynor's measure is biased. The ranking of mutual fund
performance using the biased estimate is not an unbiased ranking as

implied by the ex-ante Treynor's measure. It is shown that a significant
relationship between the estimated Jensen's measure and its estimated risk
measure may produce a potential bias associated with the cumulative average
residual technique with which to be used for efficient market hypothesis
testing. Finally, the impact of the dependence between estimated risk and
average return in Friend and Blume's findings is also investigated.





THE EFFECTS OF THE SAMPLE SIZE, THE INVESTMENT HORIZON,

AND MARKET CONDITIONS ON THE

VALIDITY OF COMPOSITE PERFORMANCE MEASURES: A GENERALIZATION

I. Introduction

The capital asset pricing theory developed by Sharpe (1964), Lintner (1965)

and Mossin (1966) (SLM) has been extensively used in pricing risky assets. Using

the capital asset pricing theory, Sharpe (1966), Treynor (1965) and Jensen

(1968, 1969) provided three one-parameter measures of mutual fund performance.

These three risk-adjusted performance measures were later provided with the

theoretical rationale by Friend and Blume (1970). However, in their empirical

study, Friend and Blume (1970) documented evidence exhibiting a strong

relationship between the estimated performance measures and their corresponding

risk surrogates. Klemkosky (1973) and Kim (1978) subsequently found the

existence of this significant relationship. The possible biases associated

with the estimated performance measures and their possible implications were

not carefully investigated until Chen and Lee (1981) recently provided the

possible sources of the bias associated with the empirical relationship

between the estimated Sharpe's performance measure and its estimated risk proxy.

They showed that the sample size and the investment horizon are two important

factors in determining the degree of the empirical relationship between the

estimated Sharpe's measure and the estimated risk proxy. In addition, the

afore-mentioned empirical relationship is generally not independent of the

market conditions associated with the sample period selected for empirical studies

The term "bias" used in this study refers to the deviation of the empirical

relationship from the theoretical relationship. Theoretically, one parameter

performance measures are not expected to depend upon their risk proxies. How-

ever, it is empirically found thatthe estimated composite performance measures

are generally highly correlated with their estimated risk proxies. To test the

bias associated with the capital asset pricing theory, Black, Jensen and Scholes

(1972), Blume and Friend (1973), Fama and MacBeth (1973) and others have done

numerous empirical studies. Most recently, Roll (1977) has carefully re-examined

these empirical tests.



This paper attempts to show that the conclusions associated with the rela-

tionship between the estimated Sharpe's measure and its risk proxy can be generalized

to include Treynor's and Jensen's performance measures. The relationship

between the estimated Sharpe's measure and its risk proxy is shown to be a spe-

cial case of the realtionship between the estimated Treynor's measure and its

risk measure. Moreover, the conventional sample estimate of ex-ante Treynor's

measure is biased. The ranking of mutual fund performance using the biased esti-

mate of Treynor's measure is not an unbiased ranking as implied by the ex-ante

Treynor's measure. In addition, it is shown that a significant relationship

between the estimated Jensen's measure and its estimated risk measure may pro-

duce a potential bias associated with the cumulative average residual technique

with which to be used for efficient market hypothesis testing. Finally, the

implications of the ex-post relationships between the estimated composite per-

formance measures and their risk proxies on portfolio managements are also explored.

In section II, the empirical relationship between the estimated Treynor's

measure and its risk proxy is studied in detail. Section III examines the pos-

sible problems associated with the estimated Jensen's measure. The possible implica-

tions of Roll's (1977, 1978) critique on asset pricing theory tests are also discussed

Section IV examines Friend and Blume's (1970) empirical findings in terms

of the dependence assumptions. The results of this study are summarized

in Section V.

II. The Empirical Relationship Between the Estimated Treynor's Measure and Its

Risk Proxy

Following Friend and Blume (1970), the theoretical relationship of the cap-

ital asset pricing model [CAPM] developed by SLM can be defined as:

E(R.) - R
f

- S.[E(R
rt

) - R
f

] (1)

where R is the risk-free rate for borrowing or lending, R is the rate of

return on portfolio or asset i, and R^ is the market rate of return. Equation



(1) can be rewritten in an ex post model [see Jensen (1968)]:

R.
t

- R
f

- . + B [^ - R ] + « (2)

where R. is the rate of return on portfolio or asset i in period t, R is the
it Nt

rate of return in period t and e. is a random disturbance with mean zero and
it

2
variance o and is independent of R. . If n observations are used to estimate

the parameters by ordinary least squares (OLS) , equation (2) can be summed over

n and averaged to obtain:

R
±

" R
f

"
«i

+ B.tRj, - R
f

] (3)

A. A*

where the bar indicates an average and a. and 6. are least-squares estimates of

a. and £. respectively. The estimated intercept a. is the Jensen's measure.11 r
l

The estimated Treynor's measure is defined as (R. - R
f
)/6.. In the following

paragraphs, it is demonstrated that the conclusions associated with the relation-

ship between estimated Snarpe's measure and its risk proxy obtained by Chen and

Lee(1981) can be generalized to include Treynor's performance measure. The

covariance between the estimated Treynor's measure and its estimated risk measure

is first explored.

We assume that the holding period rate of return on security i (R* ) is

loenormally distributed. Then the rate of return (R. In R* ) is normally

2
distributed. Under the normality of security return, theory of least squares

has indicated that the estimated beta coefficient, 6, and the sample average

excess rate of return, R - R , are independently, normally distributed. This

implies that the estimated Treynor's measure, (R - R )/6, is a ratio of two

independent normal variables. Fieller (1932) and others have shown that the

ratio of two normal variables does not have finite moments. To find the covari-

2
In case of finite and long holding period horizon, it might be better to

use the lognormal instead of the normal assumption. In addition, under the

lognormality assumption the multiperiod return [^ R* ] is also lognormally

t-1
distributed. We are grateful to two refees' suggestion to use the lognormality
instead of the normality assumption for holding period returns.



ance between (R - R
f
)/6 and 8, it is assumed that 8 takes values in some positive

3
range. This assumption eliminates the existence of infinite moments. Then,

the truncated distribution of the estimated risk measure, 8, can be written as

1 1«»•($
/2tt

o

exp[- •=(—-;—) ]

,

6

(A)

<

for a<8<b, a>0

V. elsewhere

where,

a
B

= VarCB) = ,

t = l

8 = E(8), the expecteJ value of non-truncated 8,

and

k = r
2r o"

16—62
exp[- —

(

;— ) ]d6 a constant > 0.

Since 6 and (R - R
f
) are independently distributed, the truncated distri-

bution of 8 will also be independent of the distribution of (R - R
f
). With

this independence property, the covariance between the estimated Treynor's

4
measure and its estimated risk measure can be easily obtained as follows:

R - R, R - R,

Cov(- -, 6) = E(R - R
f
) - E(8)E(- -)

= E(R - R ) - 6
+

' E(R - R )E(4),

6

For example, 6 may be assumed to take values between 0.0001 and 10. This

will guarantee the existence of finite moments. This assumption is realistic

since a large percentage of securities have positive betas.

The distribution function of the estimated Treynor's aeasure can be easily
obtained from Fieller's (1932) results. See Appendix (A) for the derivation.



by using independence property

= (B
+
C - l)[E(R

f
- R)]

= (3
+
C - l)(R

f
- y),

5
(5)

where, V = E(R) , the population (market) mean rate of return,

C = E(—) is a constant defined in equation (B-5) of Appendix (B)

,

8

+ 6
3 = the expected value of the truncated 3 = 3 + £,

k
°3 °3

Z(—-7—) = exp [
5 J.

p

Equation (5) is similar to Chen and Lee's equation (8) except the scalar term.

Similarly, the correlation coefficient between the estimated Treynor's measure

and its estimated risk measure can be expressed as

R - R
f

. (3
+
C - 1) • (R

f
- y)

(6)
P(

~l '

B) =

V^0

where o denotes the standard deviation of the estimated Treynor's measure with

the truncated value of 3. Equation (6) is also similar to Chen and Lee's

equation (13) except the scalars, (8 C - 1), o_ and o . Furthermore, following
T p

following Friend and Blume (1970), R is the average rate of return of a

random sample portfolio drawn from a population containing all securities with

mean y and variance o . In other words, y represents the population (market)

mean return and o^ denotes the population variance associated with market

rates of return. Thus, E(R) = y.

See Johnson and Kotz (1970) for the derivation of the expected value
of a truncated normal distribution.

The explicit form of o is not necessary for the analysis.



Chen and Lee's analysis of the impact of the investment horizon on the degree

of the association between the estimated Sharpe's measure and its estimated risk

proxy, the m-period covariance and correlation coefficient between the esti-

mated Treynor's measure and the estimated risk measure can be easily written

respectively as

R* - R* .

C0V(—5 , 6*) = (P
+
C - 1)[(1 + R. )

m
- (1 + y)

m
] (7 )

8" r

and

** " Rf -* _ (6
+
C - l)[(l + r )

m
- (i + y)

m
]P(_

bT~'
6) " 5rh (8)

T 6

where the asterisks denote the m-period sample estimates (or the m-period para-
* *

meters, o
T

and cj. Thus, equations (7) and (8) are similar to Chen and Lee's
8

equations (20) and (21) except scalar constants. Applying the similar

analysis as employed by Chen and Lee (1981) to equations (5) through (8), we

conclude that the sample size, the investment horizon and market conditions

determine the degree of association between the estimated Treynor's measure

and its estimated risk measure (8). Specifically, the conclusions are as follows:

(1) The estimated Treynor's measure is uncorrelated with the estimated

risk measure only either when the risk-free rate is equal to the mean rate (u)

g Under the assumption of stationary returns over time and all investors
having the same investment horizon, one has u. = u and a. * = <y- for all i = 1, 2,

2
J J

..., m where y and o. are the expected rate of return and the return variance
J J

2
associated with j-period observations (the p and o have the same definitions as

indicated in footnote 6). In additon, following Tobin (1965), distribution sta-

tionarity over time and return independence are assumed. It can be shown that

E - (1 + y)
m

- 1 and o
2

= [o
2
+ (1 + u)

2 ]™ - (1 + u)
2m

, m>0 where, for the m-per-
-2

iod case, E and o are the expected rate of return and the return variance of

the market portfolio, respectively.



of the return on the market portfolio or when the sample size n is infinite.

The risk-free rate of interest is generally not equal to the mean rate of return

on the market portfolio and the sample size associated with empirical work is

generally finite. Therefore, the estimated Treynor's measure is in general

correlated with the estimated risk measure (the beta coefficient).

(2) If the risk-free rate is less than the mean rate of return on the mar-

ket portfolio, the estimated Treynor's measure is negatively correlated with the

estimated risk measure [ (B C-l) > 0] . This result explains an unusual

relationship found by Friend and Blume (1970). Their empirical study

showed that the estimated Treynor measure was negatively related to its estimated

risk proxy (8.) during the period from January 1960 to June 1968 and the subperiod

from January 1960 to March 1964 over which the riskless rate of interest was

9
less than the market rate of return. The explanation of a positive relation-

ship found by Friend and Blume (1970) in the second subperiod [April 1964 -

June 1968 over which R = .0034 < u= .0088] will be examined in Section IV.

(3) An improper observation horizon will have a significant impact on the

covariance between the estimated Treynor's measure and the estimated risk measure,

An observation horizon shorter than the true investment horizon will reduce the

dependence of the estimated Treynor's performance measure on its estimated risk

measure. An observation horizon longer than the true investment horizon will

10

9
During the whole period (1960-1968), R = .0028 < u = .0104 (the average

monthly return). During the first subperiod (January 1960 - March 1964), R = .002
< u « -0119. The R and u are, respectively, the average monthly returns on Treasury
bills and the NYSE stock prices index.

The observation horizon refers to either one day, one week, one month, one
quarter or one year. The concept or the "true" investment horizon implies that
investors will all share the same horizon. The justification and the implication
of this assumption can be found in either Lee (1976) or Levy (1972). Merton
(1978) has argued that there exist three kinds of true horizons, i.e., trading
horizon, decision horizon and planning horizon. The true horizon discussed
in this paper is the decision horizon.

An "improper" observation horizon refers to that the time horizon used in
empirical research does not coincide with the true investment horizon.



magnify the dependence. This ex-post relationship does not coincide with

the ex-ante relationship derived by Levy (1972) and Levihari and Levy (1977).

The ex-post relationship examined in the present study is based on the sampling

distributions of the estimators of performance measures and their risk proxies

while Levy (1972) and Levihari and Levy (1977) investigate the relationship in

terms of ex-ante parameters without specifically considering the sample variation

in the estimators. Moreover, their results determines the relationship

between m-period Treynor (or Sharpe) measure and its one-period risk measure

as the length of the investment horizon varies. In contrast, we examine

the m-period correlation between the estimated m-period performance measure

and its m-period estimated risk proxy. This m-period correlation can be

explained by means of one-period market conditions (R
f
and u ) and varying

investment horizon. Thus, their studies and our analysis examine two

12
different relationships. Nevertheless, the result of our analysis has

strengthened the understanding of this important relationship in ex-post

terms. .

This conclusion is shown as follows:

d(C°v)
= (B

+
C-l) [(l+R,)

1" ln(l+R.) - (1+pf ln(l+u)].
dm it

Then d(Cov)/dm > if R > p. And d(Cov)/dm < if Rf < u. In addition

Cov(0 > for all m if R
£

> u, and Cov(«) < for all m if Rf < p. Thus, when

R
f

> u, Cov(') decreases (increases) with decreasing (increasing) m. For a shorter

horizon, Cov(«) gets smaller when R
f

> u. Similarly, for a longer horizon, Cov(«)

increases when R
f

< u. See Chen and Lee (1981, p. 616, Figure 2) for a similar,

detailed graphic analysis of this result.
12

Levy (1972) and Levihari and Levy's (1977) results are determined by

dTm/dB and dSm/do where Tm and Sm are, respectively, m-period Treynor and

Sharpe measures, and p and o are one-period risk measures. In addition,

they examined the direction of the ex-ante relationship between m-period

Sharpe (or Treynor) measure and its one-period risk measure, while our

analysis investigated the degree of m-period association between the estimated
m-period performance measure and the estimated m-period risk proxy. Thus, our

analysis should be regarded as a complementary instead of substitutional result
to their analysis in understanding the impacts of the investment horizon on the

relationship between performance measures and their risk proxies.



In sum, a shorter observation horizon and a large sample size should be

used in empirical research to test the relationship between estimated Treynor

measure and estimated systematic risk.

It is important to note that the estimated Treynor 's measure is a

biased estimator of ex-ante Treynor's measure, as indicated by equation(9)

:

13

R - R y - R
E(—r-±) = (

f
~) . e

3 8
S

(9)

where

e„ =

k/2ri"(m--c: + B) i=0
p

m* = (a' + b'),

-o

'm*ol + £

6
)
i

.

a' = a - 6 k' - b - §-» b ——

,

E
(i)(-

m*)Ci-J> 2 <J+1 >/ 2 r(^)m
j=o J 2 '"J

(10)

and (j+l)

m.
J

K' 2 2

/
b
,2

X

a

- 1 -x/2
e

r(
J+l

)2 (J+D/2
dx

- a chi-square probability (integral)

13
See Appendix (B) for the derivation.
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The bias factor, e , associated with the expected value of the estimated Treynor's

measure depends on the value of a mutual fund's (or portfolio's) systematic risk.

The bias factor will vary from one mutual fund (or portfolio) to another because

of different systematic risks associated with different mutual funds (or

portfolios). Therefore, the ranking of mutual fund performance using the biased

estimate, (R - R
f
)/8, of Treynor's measure will not be an unbiased ranking of

ex-ante Treynor's measure, (u - R )/B. In addition, the absolute difference

between two estimated Treynor ' s measures will also be affected by the bias factor,

e . Note that [ (R - R r )/B]/e cannot be used as an unbiased estimate of ex-ante
P IP

Treynor's measure since the e Q involves unknown parameters.
p

The above analysis is applicable to any individual securities and portfolios

with positive beta coefficients. Therefore, it is also applicable to efficient

portfolios. In other words, for efficient portfolios, the relationship between

the estimated Treynor's measure and the 6 provides a direct generalization for

the relationship between the estimated Sharpe's measure and its estimated risk

measure. This result is next explored. For an efficient portfolio, the

2
total risk (S ) is equal to the square of beta coefficient times the variance

2
of the market return (Sw ) . This is because non-systematic risk is diversified

M

away. That is,

s
2

= p^s
2

, 6 > 0. (11)

Based on the relation described by (11) for efficient portfolios, it is easy to

show that equations (5) and (6) become Chen and Lee's (CL) equations (8) and (13),

14
respectively. That is, following (5) and (6), we have

14
This analysis is conditional on the market return,



11

(a) 6
+
C - 1 = E(S)E(i) - 1

6

= E(S/S ) • EC^TT-) - 1 using (11)
m S/Swh

= E(S)E(—) - 1 = d which is defined in footnote 7.

T Var(—s
) = Var(-r-7r— ) = S„ o

g
S/S

M
Tl sp

(c) o\ = Var(B) = Var (S/S>r ) = o^/S
2

Substituting (a), (b) , and (c) into (5) and (6) gives

R - R
f

* R -R
Cov(—;

, 6) = Cov (—-— , S) , which is CL's equation (8) (12)
6

and

R - R
f

„ R - R

P(—s
, 8) = p(—

=

, S) , which is CL's equation (13). (13)
B

b

Similarly, it can be shown that for efficient portfolios equations (7) and (8)

are equal to CL's equations (20) and (21), respectively. Therefore,

the relationship between the estimated Sharpe's measure and its estimated risk

proxy is a special case of the relationship between the estimated Treynor's

measure and the estimated systematic risk, 8.

The empirical relationship between the estimated Jensen's measure and its

estimated risk proxy is next examined.

III. The Empirical Relationship Between The Estimated Jensen's Measure And Its
Estimated Risk Proxy

Follwoing Heinen (1969) and the definitions defined in this paper, the

covariance between the estimated Jensen's measure and its estimated risk proxy

can be defined as

Cov(a., B.) =- **—£ (U)

1
<*Mt

- xM )

2

t = l
lX

where

,

**<r
= K. -R;, X„ = JL - R, (ISWIHWMM
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2

c is the residual variance associated with equation (2). Equation (14) indi-

cates that the estimated Jensen's performance measure is correlated with its esti-

mated risk proxv unless R,. = R,. This relationship has been found bv both Friend

and Blume (1970) and Klemkosky (1973). It is clear from (14) and (15) that the

relationship can also be affected by the sample size, the market conditions and

the investment horizon. The results from observing (14) and (15) are given as

follows

:

(i) The larger the sample size (n) , the greater the sum of the squared
n

2
. „

deviations, I (x^ - x ) , and hence the smaller the Cov (a., 8.). Moreover,

when the sample size (n) approaches infinity, the Cov(a., 8.) goes to zero.

(ii) The estimated Jensen's measure (a.) is uncorrelated with its estimated

risk proxy (6.) only when R. = R r (i . e . x v
= 0) . The a. is negativelv cor-

-

1 M I M i

related with the 8. when R is less than R, ,as found by Friend and Blume

(1970) in the whole period and the first subperiod. The explanation for

their positive relationship in the second subperiod is discussed in Section IV.

(iii) The Cov(a., 8.) is influenced by the length (m) of the observation

horizon. This can be observed by deriving the expected value of the m-period

covariance, E[cov*(a
.

, 8.)], between the estimated Jensen's measure and its esti-

mated risk proxy:

For the one-period case,

2 ~ XM 2
n

- 2
E[Cov(a., 8J] = c

£
E[—j], where S~ = I (x^ - x^) /n

2

nS
M

t=1

°c ., - , „.l
= — E(-x^) • E(—y), using the normality assumption and the

'M independence property of x^, and S~ see

Hogg and Craig (1970).

s.

2
r

= c (R - u ) , where c = — E(—r-).

S
M

Similarlv for the m-period case,

°*
2

1

E[Cov*(a 6.)] = C*(R * - u*> , C* » -~ E(-^)
i l f n* 2

b
M

= C*[(l + R
f

)

m
- (1 + u)

m
]> using the result in footnote 11
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E[Cov*(a., 6.)] = c*[(l + R
f

)

m
- (1 + U ) ] , (16)

where "*" indicates m-period parameters or estimates. The m-period Cov*(ct 6 )
i i

in (16) has an expression similar to Cov[(R* - R*)/8*, 3*] in equation (7).

Therefore, the analysis and conclusions for the relationships associated with the

estimated Treynor's and Sharpe's measures can be generalized to include the

association between the estimated Jensen's measure and its estimated risk proxy.

If the estimated Jensen's measure, a., and the estimated systemaric risk,

8., are significantly correlated, the estimate of the residual return (e.
t

)

used in testing the efficient market hypothesis will be biased. The residual

return is estimated by

;.
t

- (R.
t

- R
£

) - 'a. - ifyx - R
f
) d«

Following the above conslusions, the a. is negatively correlated with the fi^

during the time period over which R
f

is smaller than the expected market

return (u ) . Then, a negative correlation between a. and 8. means that

securities having low beta coefficients are favorably evaluated to have high

non-market returns (or intercept terms), a . . As a result, the use of equation

(17) leads to under-estimate the residual returns. This result can be easily

shown as follows: let a! be the estimate of non-market return when ft. and a .

l
M i l

are negatively correlated. Then a. being favorably evaluated implies that a-

is greater than the true estimate of a . , say a*. One may then write

a! = a* + 6., 6. > 0. (18)
l i 11

Using equations (17) and (18) leads to the equation

e! = e* - 6., 6. > 0. (19)
it it i l

where e! »(R. - R.) - a.'. - 6 4 (R,, -RJ and e* = (R. .
- Rj - a* - 3. (R. - R.) . Equation (1Q)

at it f i i .It f it it f l l ;4t f



14

*
indicates that e' is less than e. . In other words, the residual return is

it it

under-estimated if the non-market return is favorably assessed. This implies

that the estimated average residual return and the estimated cumulative

average residual return will be downward biased. On the other hand, high

beta securities are unfavorably evaluated to have low non-market returns.

The unfavorable assessment of non-market returns, in turn, results in

over-estimating the estimated average residual return and the estimated

cumulative average residual return. However, during the time period

the a being positively correlated with the 6. [see Section IV] implies that

high (low) beta securities are assessed to have high (low) non-market returns.

As a result, the estimated average residual return and the estimated cumulative

average residual return are downward biased for high beta securities whose

non-market returns are assessed to be favorably high, and upward biased for

low beta securities whose non-market returns are evaluated to be unfavorably

low. Thus the result from the efficient market hypothesis testing may produce

a potential bias associated with the cumulative average residual technique

if the estimated Jensen's measure and its risk proxy are significantly

correlated.

The present study has shown that the estimated composite performance

measures can be highly correlated with their estimated risk proxies. In

general, the sample size, the investment horizon and the market conditions

are major factors in determining the above-mentioned relationships.

Johnson and Burgess (1975) and Burgess (1975) and Johnson (1976) examined

the effects of sample sizes and sampling fluctuation on the accuracy

of both portfolio and security analyses. They concluded that the number

of historical observation is important to produce efficient portfolio

This analysis holds true for the market model if the estimated
related with the estimated beta coefficient
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performance characteristics. Their conclusion is similar to the results

associated with the impact of the sample size on the relationship between

the estimated composite measures and the risk proxies derived in this study.

The problems found in the present study associated with the empirical

relationships of composite performance measures remain existent even if

we assume away the problems as indicated by Roll (1977, 1978). In his

well-known studies, Professor Roll has found two major problems in performing

the asset pricing theory tests: (i) the index measurement and (or) the

specification problem, and (ii) the theoretical tautology problem. The

impacts of the index measurement problem on the estimated Jensen's performance

measure have been investigated by Chen and Lee (1984; and Roll (1978).

Their results have indicated that the bias of the estimated Jensen's

measure generally increases the covariance as indicated in equation (14).

The possible effects of the theoretical tautology problem of asset

pricing tests on the issues investigated in this paper still remains an

open question.

VI. Explanation of Friend and Blume's Positive Empirical Relationships

In this section, we attempt to explain what causes the positive ex-post

relationship in the second subperiod found in Friend and Blume's study. In

our previous derivation, the sampling distribution of (R - R
f ) is independent

of the distributions of S and 0, where S is the sample standard deviation of

return. However, in the ex-post sample study, some circumstance may arise

- A
that (R - R ) is not independent of S and 8. Then, Chen and Lee's (1981)

equation (5) can be easily shown to be

R - R
Gov (— )= d(R -u ) - E(S) • Cov (R - R h (20)r s-

where d = E(S) E(~) - 1,
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Similarly, equations (5) and (14) in this paper can be rewritten, respectively,

as follows:

(Ui. .). ,,, 1) (R
f

- y) - 6
+

• Cov(R - R
f

, h (5')

and
2

Cov ( a, 6) = Cov (R - R , 6) - " £
3—- . (14')

tEi
(^ " V

By observing equations (20), (5'), and (14'), it is obvious that the signs

of Friend and Blume's empirical relationship in the whole period and the first

subperiod are negative if the distribution of (R - R
f

) is independent of S and

8 [as indicated in Section II and III]. However, in the ex-post sample study,

the covariance terms on the right-hand side of (20), (5'), and (14'), [Cov

(R - R f ,
—), Cov (R - R ,

—
) , and Cov (R - R.., B)]> might not be trivial in

r b t g t

the second subperiod. Thus, the second-subperiod relationship can be positive

as a result of these non-zero convariance terms.

V. Conclusions

The empirical relationships between the one-parameter composite

performance measures and their risk proxies have been derived and analyzed

in detail in accordance with statistical distribution theory. These empirical

relationships are generally affected by the sample size, the investment hor-

izon and the market conditions associated with the sample period selected

for empirical studies. Moreover, the conventional sample estimate of Treynor's

measure is not an unbiased estimate of the ex-ante measure. The ranking based

on the estimated Treynor's measure does not represent an unbiased ranking as

implies by the ex-ante Treynor's measure. However, a large sample of histori-

cal observations and an appropriate investment horizon can generally be used
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to improve the usefulness of composite performance measures for both

portfolio and mutual fund managements.

Finally, using the cumulative average residual technique may lead to

a potential bias in testing the efficient market hypothesis if the

estimated Jensen's measure is significantly correlated with its risk

measure, the estimated beta coefficient.
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APPENDIX

(A) Fieller (1932) has obtained a marginal density function of a ratib

of two normal random variables. The distribution function ^(v) of the estimated

Treynor's measure can be obtained from Fieller' s equation (24) by letting

the correlation coefficient be zero:

1 6
2 Cu " V 2

1 °1
a
2 ' 2 [ 2

+
2 ]

n j
k 111* a

i °2
a
2

+ v
°i

•

1 Ku - R
f
) - *e]

2

" 2 ""aTTTol -6a2
2
" va

l
2c* " R

f

>

+ e 2 1 x ..

12 * x

h
" IU

x /o e dy , -• < v < •,

R - R
f

where v » ,

8

2 -
a
e

o
x

z
- Var(0) - — £

2

»

Z CRMt " R ^
t-1 ^C M

2 .. TT-_/^" » N Oand o
2

- Var(R - R
f
) - ±- (a - Var(R. )).

R - R.
(B) The derivation of E(—x—-)

:

6

By independent property of (R - R.) and truncated 8,

IT ~ R
E ( ,

f
) - E(R- R

f
)E(4) - (y - R

f
)-E(4). (B-l)

6 8 6

The last equality is obtained using the following lemma: if x, and x_

are independent, then E[g
1
(x

1
) .g

2
(x

2
) ]

= Elg^x^ ] .E[g
2
(x

2
) ] where g^x^

and g
2
(x

2
) are real-valued (measurable) functions of x. and x

?
. In our case,

we identify R and 1/6 as g^x^ and g
2
(x

2
), respectively. See Roussas [1973,
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Thus, E(l/B) is determined as follows.

e<4) - I
bA- —=— • «pt- k^A) 2w (b-2)

Let y - (8 - 8)/o*. The Jacobian of the transformation is |d8/dy| o*.
p d

Thus, equation (B-2) becomes

where a' - (a - 8)/c* and b* - (b - B)/a*. (Here, a < 8.) To integrate
P P

the integrand in (B-3) it is necessary to express the function,

g(y) l/(yo* + B) , in terms of an infinite series. Since l/(ya* + B) is
P P

defined for all values of y in the interval (a f

, b
r
). Note that the point,

y S/c2* at which the function g(y) is undefined is not in (a
f

, b'). The
p

Taylor's series expansion of g(y) at a positive point, say m* - (a'+b'), is

i i
- gg(y-m*)

i
8(y) " ya- + B

"
<m*oJ + B) \lQ

[~ (m*o- + B)
]

"
(B"4)

where a' ^< y <_ b' *

-Og(y-m*)
It can be shown that Itttt-StI < 1 as follows:

1 (m*o
g
+ B)

'

-qgCy-n*) -ojy + m*Og (m*0* + 6) - 6

m*o- + B " m*o: fl rn^oTTl »
since ^7 » 6 - 6 < 1,

p p

< 1
A A A

since B > and -6 < 0. (It is the truncated B.)

Also,

-o:(y-m*) -ajy -

»*o: + B
>
m*q; + B

" (a+bi - B '
8inCe "^ + 6 - (a*b) - 6 >

p p

A A

(a+b) - 6 (a+b)
L *

**b is chosen such that m* > 0, i.e., (a + b) > 2£.



23

A

since p* is assumed Co be positive in the truncated case and 8<(a+b)

This Implies that

-o;<y - **>

Since every term of the infinite series in (8-4) has an absolute magnitude

less than one, the series converges uniformly and absolutely by advanced

calculus. Then, equation (B-3) can be rewritten as

vth 1
r
b ' l « r

°l
i7 ' m*\ i -y

2
/2 ,

6 k/27 a (m °6 + S) i-0 m °6 + S

k/27(m*o- + 0) i-0
m*°6 + 6 a

J-0
J

P

since the series converges uniformly.

2 1 —1/2
Let x - y . Then y - ±/x and dy/dx - ± ^- x . Thus,

E(4) --—-^ 2 [ fags 1 J 1
2 Ac-m*)

1^.
6 k/5w(m*o; + 6) i-0

m °6 B j-0 J

p

2 U±il _ ! .l/2

/ , x c dx
a'

2

k^(m*o: + 6) i-0 " 8
+ 8

j-0 J 2 j

t2
XJJLL.! .x/2

uhere
°J ' £» r(if) 2"+» /2 **
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Hence, substituting equation (B-5) into equation (B-l) leads to

R - R y - R
E ( ;

r
) - ( s-^) • e

ft
(B-6)

8
8 6

— a*" i

where e
g

- ——-S ? [ ( | r)
1

I cjx-a*)
1"*.

2
<J+D/a rc^j. (b-7)
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