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INTRODUCTION

Due to recent economic developments such as the energy

crisis and persistent cost push inflation there has been consid-

erable interest or the structure of national economies, and how

crisis effects economic activities. One method that is used to

study economic systems is Input Output (10) analysis which is

particularly powerful in the study of interindustry activity.

The purpose of this paper is to discuss the solution of the 10

equation using several methods, the goal being to develop a

method to solve a nonlinear Input Output model which will partly

alleviate some of the restrictions of linear Input Output

analysis.

Input Output analysis is an econometric method which at-

tempts to explain all industrial activity by a simple cause ef-

fect relationship. The first critical assumption of 10 analysis

is that all goods in a product group are manufactured in an

identical manner. From this point on when the term good is men-

tioned, it is to be taken as some representative good in one of

the product groups. The amount of a good that society needs to

produce is the amount to be supplied for final demand plus the

By final demand we mean several things: goods
consumed by households and government, goods sold for
export, and also goods used for investment. Most logically
investment would be treated as an input to production, but
investment can be a very nonlinear function of output. Thus
in general economists find it easier to determine investment
demands exogeneously . It is possible that the
representation ot investment as a nonlinear function of
output could make the endogenous determination of investment
demands more realistic.





amount used in the production of other goods. The second criti-

cal assumption of 10 analysis is the following: when a good is

used in the production of another good, the amount used in this

activity is always in a fixed proportion to the total production

of the other good. These proportionality constants are termed

the technical coefficients, and since in general it is possible

that all goods can be used directly in the production of all oth-

er goods, if we have an n good economy then there are n* techni-

cal coefficients. Vvhen the technical coefficients are arranged

in a nxn matrix, this matrix is called the technical coefficients

matrix or A matrix, though this should not be confused with the A

matrix found in control systems literature. If our unit of value

is dollars then the element a. . represent the dollar value of the

i good required in the direct production of one dollar of the

j good. Thus the a^'s are positive fractions. The sum of the

t" h
j column of the A matrix represents the fraction of the total

cost of producing the good j that is embodied in the goods used

in direct production of the j good. Then

v, = 1 - I a-, (0.1)
J i=i *J

represents the unit cost of production not embodied in the goods

used in the direct production of the j good. V. is termed the

value added for good j and it consists of labor costs, interest,

(on the capital used in the direct production of the j
tn good,)

direct business taxes, and profits.





If y^ is the amount of the i good sold to final demand,

then the equation which represents the total production of the

i good, that is, x., is

*i
s y t

« 2 a..x, . (0.2)

The summation term in (0.2) is the amount of good i needed in

the direct production of all goods. Proceeding in the same way

for the other n-1 goods, the total demand for all goods is the

solution of the matrix equation

Ax + y = x or (I - A)x = y . (0.3)

We reiterate the basic assumptions of 10 analysis; 1) that all

goods in the same product class are assumed to be made in the

same way, 2) that the amount of an input good used in the direct

production of another good is always in a fixed proportion.

The first question that needs to be answered is whether

solutions to (0.3) do indeed exist. But since we also desire

that solutions must correspond to actual economic behavior, the

2solution vectors should be positive if the final demand vector

is positive. Bellman [1, pp.296, Theorem 6] has shown that if the

column sums of A are less that 1, then there is a unique positive

o
A vector is said to be positive if all of its

elements are positive.





solution vector for each positive right hand side. Furthermore,

the eigenvalues of A lie inside the unit circle, and

(I - A)" 1
= I + 2 A 1

, (0.4)
i = l

with lim A
m = 0, e.g. see Isaacson and Keller [15, pp.15, Theorem

nHro

5]. If k terms are used to approximate (I - A)" 1 then (k-l)n

multiplications must be performed.

In the past, eg. Chenary and Clark[17], (I-A) was crude-

ly approximated by this method. The objective of this paper is

to discuss a method by which the 10 equation can be solved with

far more efficiency and accuracy. By a factorization method

which will be discussed in Chapter 1, only J:n^ multiplications

are required to completely factorize the matrix into a product of

triangular matrices, which can then be solved for arbitrary right

2hand sides in n multiplications. The first section of Chapter 1

will also analyze the numerical stability properties of factori-

zation of Input Output matrices by elementary transformations,

(sometimes denoted as LU decomposition,) and will reexamine the

property of the A matrix so that (0.3) will admit only positive

solutions for arbitrary positive final demand vectors. The

second section in this chapter proposes a simple method which

3
It is standard practice in numerical analysis to only

count the number of multiplications or divisions in a
computation since they are more time consuming than addition
or subtraction operations.





will allow modifications of particular rows and columns of the A

matrix that will not require the complete refactor ization of the

matrix. This method has a very useful property that allows the

successive updating of the 10 matrix without any algorithmic com-

plexity. Procedures of this type are generally referred to as

factorization modification, and several papers have been written

on this subject, including Gill and Murray[13], Golub et al.[12],

Sameh and Bezdek[2], and Noh and Sameh[3]. But with the excep-

tion of Gill and Murray[13], these only deal with factorization

by orthogonal transformations, which will be more numerically

stable for general matrices, but require more storage and compu-

tation than factorization by elementary transformations thus mak-

ing them comparably more expensive. By examining the structure

of 10 matrices, we shall see that the use of elementary transfor-

mations in the factorization of 10 matrices is quite appropriate.

We do not mean to distract the reader away from orthogonal

transformation factorization methods. As Bierman[5] points out,

(this article is an excellent survey of numerical techniques in

control and other applications,) in general these methods lend to

many algorithmic advantages, and the numerical stability which

results is important in control problems which can be ill-

conditioned.

The next section discusses the updating of solutions of

linear equations when only a few elements of several columns or

rows are changed. We will denote this method by "solution per-

turbation" since the method depends on solutions to a nominal

system of equations. This is a bit of a misnomer, since pertur-





bation implies small changes. However here the changes in ele-

ments of the matrix need not be small in any way. In many cases

this method has a tremendous computational advantage over factor-

ization modification but it does have its drawbacks. This method

requires that columns of the nominal inverse, (that is of

(I - A) before any elements have changed,) to be computed. In

the case of modifying an entire column solution perturbation

would require that the entire nominal inverse be computed. Since

the computation of an inverse requires approximately three times

the computation required to factorize a matrix, this method is

not appropriate if many elements in a column are to be modified.

Also the method has a disadvantage in that several successive up-

dates of the solution due to new perturbations in the matrix ele-

ments are difficult to perform since there is no efficient way to

compute the updated inverses.

In Chapter 3 a nonlinear 10 model is proposed which can be

solved quite efficiently with the eclectic use the algorithms

described in the preceding chapters. This approach largely elim-

inates the linearity contraint of the standard 10 model while the

extra cost of solving the nonlinear model is quite small. Using

solution perturbation the nonlinear equation that must be solved

iteratively is reduced to smaller order. Once the residuals are

sufficiently small factorization modification will be utilized to

find the complete solution. These algorithms have been coded on

a minicomputer system, and the computation of solutions of

350 -order 10 equations is quite feasible on such a computer

system when these algorithms are used.





CHAPTER 1

FACTORIZATION MODIFICATIONS
SECTION 1.1

MATRIX DECOMPOSITION BY ELEMENTARY TRANSFORMATIONS, AND
SIMPLIFICATIONS THEREOF ON 10 MATRICES.

This section describes the LU decomposition algorithm.

The presentation will also include a discussion of properties of

10 matrices that will simplify the algorithms to be described in

the next section.

As with all decomposition algorithms, in the decomposition

of the matrix B, (in our case B= I- A, where I is the identity

matrix, and A is the technical coefficient matrix defined in the

introductory section, thus b^. < and b
ii

= 1 - a ii > 0,) a

transformation is determined such that

QB= U (1.1.1)

where U is a upper triangular matrix. To solve the system of

equations

Bx = y (1.1.2)

we premulitply both sides of (1.1.2) by Q, so that

QBx = Ux = Qy (1.1.3)

and the equation Ux = Qy can be solved by back substitution. In

the pure form of LU decomposition Q is the composition of only

elementary transformations. An elementary transformation has a
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simple matrix representation. Its diagonal elements are all one

and it has only one nonzero off diagonal element which we shall

call the multiplier element. If M
i

- is an elementary transforma-

tion then it looks like:

m
ID

(1.1-4)

To simplify the notation, the subscripts below a symbol

representing an elementary transformation will denote the posi-

tion of the multiplier element in the elementary transformation

matrix. Thus m. . is in the position (i,j) of the matrix. It is

easily verified the the inverse of an elementary transformation

is merely the elementary transformation with the nonzero off di-

agonal element of opposite sign. The direct multiplication of

elementary matrices,

N. = to .m_ t _: M^, -iM-,, • (1.1.5)





looks like:

j + 2,j

mno
(1.1.6)

The LU decomposition algorithm determines the transforma-

tion

Q = Nn-l Nn-2 N
2
N
1

(1.1.7)

If for each j we define

N
j
(E

j
)= N

j
(N

j
. 1

N
j
_ 2

...N
1
B) , (1.1.8)

then the algorithm determines N. such that it zeroes the elements

of the j column of B. below the diagonal element. Thus

m
13

13

33

for j +Ki<n (1.1.9)
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where the n^j's are elements of (1.1.6), B^ = (E^), and d".^ is

called a pivot element.

A reader familiar with decomposition by elementary

4transformations probably notes that row permutation has been om-

itted. The reason for this will be clear shortly.

Proposition ; If all the column sums of A are less than unity then

the pivot elements are nonzero.

Proof : Clearly if the column sums of A are less than unity then

the same must hold for the i leading principal minor of A.

Thus by Bellman [1, pp.296, theorem 6] the principal minors of

(I-A) are nonsingular. Stewart[10, pp.120, theorem 2.5] has

shown that if the principal minors of a matrix are nonzero then

if the matrix is decomposed by elementary transformations without

pivoting, the pivot elements will be nonzero.

There is a fundamental result in Input Output analysis

which describes the necessary and sufficient condition on A so

that the 10 equation admits only positive solutions vectors for

positive final demand vectors. This is called the Simon-Hawkins

condition [9] . The condition is that all the principal minors of

(I-A) must be positive. Let us examine the computation of the

solution of 10 equation by factorization so that we can see when

4 See Forsythe and Moler[16], or Isaacson and
Keller [15] on introductory material on decomposition
methods.
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it is impossible for a solution to be a nonpositive vector when

the final demand vector is positive. After applying the

transformation Q to the final demand vector, since all the multi-

plier elements of Q are nonnegative, each element of Qy must be

greater than or equal to the corresponding element of y. In the

solution of Ux=Qy, since the off diagonal elements are all nonpo-

sitive, (thus in the back substitution all sums are on numbers of

nonnegative sign,) the only way that a negative element can occur

in the solution is if a diagonal element of U is negative. Thus

if all the diagonal elements of U are positive, (which implies

that all of the multiplier elements of the elementary transforma-

tions must be positive,) then it is impossible for the factorized

equation to admit a nonpositive solution vector for a positive

final demand vector. This is exactly how the Simon-Hawkins con-

dition is checked: the determinant of the k principal minor of

(I - A) is merely the product of the k topmost elements of the

diagonal of U since det|Q|=l.

In the definition of the transformation Q one order of ap-

plying the elementary transformations was given. Since elementa-

ry transformations are nearly identity matrices one would expect

that these transformations will commute in certain cases, (clear-

ly any permutation of the elementary transformations in N. will

yield the same transformation.) The elementary transformations

can be commuted just as long as no element becomes nonzero that

was intentionally zeroed by the application of a previous elemen-

tary transformation. Thus:
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Q * *1
nn-l--- Mn2"- M

32
Mnl--- M 21 (1.1.10)

= Mnn-1"- M 43^42 K 41 M 32 M31 M 21 (1.1.11)

If we apply Q by (1.1.10) then after the first n-1 elementary

transformations are applied, the partially decomposed matrix has

the structure:

X X X X X X X

X X X X X X

X X X X X X

u

(1.1.12)

After the application of the next n-2 elementary transformations

the matrix has the structure:

XXX
X X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

(1.1.13)

If we apply Q by (1.1.11) then after the application of the first
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elementary transformation the partially decomposed matrix has the

structure :

x x x x x x x

X X X X X X

(1.1.14)

Then after the application of the next two elementary transforma-

tions the matrix has the structure:

X X X X X X X

X X X X X X

X X X X X

(1.1.15)

Another ordering which will reduce page faults in virtual

computers or 10 requests in successively reading in and writing

out parts of the matrix on machines with little main memory in-

volves storing the matrix in blocks of rows. The topmost par-

tially decomposed block is completely decomposed. Then using this

completely decomposed block the remaining blocks are partially
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decomposed using this block, that is, all the transformations

that need this completely decomposed block will be applied to the

lower blocks. Thus this block will no longer be needed. This

will reduce page faults or 10 requests by a factor equal to the

number of rows that are stored in each block. All these methods

are equivalent not only mathematically but numerically, that is,

if one is careful about the ordering of the computations, all of

the methods will achieve identical matrices in terms of the bit

patterns.

The name of the method, LU decomposition, refers to the

definition

LU = B (1.1.16)

where L is lower triangular. By inspection

L = Q" 1
. (1.1.17)

This is easily shown by the direct multiplication of the inverses

of the elementary transformations.

3The algorithm performs approximately n /3 multiplications

and requires only the original matrix as work space. The algo-

rithm is the fastest and most compact of all decomposition algo-

rithms, Moler [ 11]

.
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SECTION 1.2
MULTIPLE ROW AND COLUMN MODIFICATIONS

In this section an algorithm will pp discussed which will

allow the modification of the factorization of a matrix when cer-

tain preselected rows and columns of the matrix are changed. A

significant advantage of this algorithm is that each modification

of the factorization adds no complexity to solving the new system

of equations, since the modified factorization is solved in the

same manner as the original system. Also the modified factoriza-

tion is identical to the factorization resulting from completely

factorizing the modified matrix. As we shall see the computation

of the modified factorization and the computation of solutions to

the modified system of equations can be performed simultaneously.

This is useful when the computations are performed on a minicom-

puter. Experience has shown that the cost of reading in the ma-

trices is the most significant cost in the solution of a large

factorized system of equations. Thus streamlining the algorithms

with respect to the number of times that the matrices must be

read in from secondary storage is worthwhile. In Aoki[4] and

Householder [5] , LU decomposition is introduced in a manner that

would lend itself to factorization modification methods, though

there was no intention to discuss the subject.

The algorithm for factorization modification greatly sim-

plifies if the rows to be modified are at the bottom of the ma-

trix, and the columns are on the right hand border. Thus before

performing the factorization we exchange the rows to be modified

with the bottom rows of the matrix, and exchange the columns to
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be modified with the columns on the right hand border. Let P,

P~ «P , be the transformation that exchanges the rows and

columns. Clearly the matrix representation of P has n^-n zero

elements, the other n elements being unity. Rows of the

transformation corresponding to coordinates that are not permuted

have 1 on the diagonal. If coordinate i is to be exchanged with

the j coordinate, then the elements in positions (i,j) and

(j,i) would be one. Therefore for all i,j p. .«p.. or P*Pt . Also

it is easily verified that PP=I.

For example let there be two industries for which we

desire column or row modifications, their positions being say 1

and 3. We wish to construct a transformation with the properties

above which permutes these industries so that their rows are at

the bottom and the columns are on the right hand border. P would

then look like:

1

1

1

1

1

1

(1.2.1)

The above example verifies that P is syntpetric. The permuted

form of B will be denoted by

B P BP - PBP . (1.2.2)
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Let Q be the composition of M.,'s for l<j<n-k, j+l<i<n.

Q will partially decompose the matrix B. The elementary

transformations are to applied as not to destroy zeros previously

introduced. The partial decomposition will be denoted by

Q
p
B * . (1.2.3)

In our 6x6 example above, pre- and post-multiplying the original

matrix A by P will permute the rows and columns 1 and 3 to the

bottom and right border of the matrix. Note that P(I - A) P

(I - PAP) . After Q is applied to our permuted (I-A) matrix, the

resultant matrix has the structure:

X X X X

X X X

X X

X X

(1.2.4)

At this point any of the last k columns of B can be modi-

fied. Let us assume that we want to replace a column of B which

corresponds to one of the last k columns of B by a column vector

g. is updated merely by replacing the corresponding column of

u* by QpPg. Changing more such columns requires the identical pro-

cedure for each column. The transformation of g and the right
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hand side vector by Q p can be performed simultaneously. This

feature in very useful when the computation is performed on a

minicomputer system.

Also any of the last k rows of B can be modified. If a

row of B which corresponds to one of the last k rows of B is to

be replaced by the row vector h , then the corresponding elemen-

tary transformations in Q which zeroed out the first n-k ele-

ments of corresponding row of are recomputed. Suppose that in

our 6x6 example we desire to replace the first row of B by h .

This would correspond to replacing the 5 row of B by (Ph) .

Thus we recompute the elementary transformations M_, through Mc d .

Before these elementary transformations are applied, the modified

has the structure:

r
X X X X X X

X X X X X

X X X X

X X X

X X X X X X

X X

(1.2.5)

Note that this procedure does not really violate the rule that no

element that has been intentionally zeroed be set nonzero by a

elementary transformation applied later. Since we are recomputing

all the elementary transformations that zeroed out the elements

in the row that is to be modified, it is as though these elemen-

tary transformations were never applied before the modification
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was made.

For any number ot row and/or column modifications, the

modified factorization will be identical to the factorized matrix

which would result from partially decomposing B, where B is the

matrix with the row and/or column modifications. In fact when

the original rows and columns are replaced in the factorization,

the new file is exactly bit comparable to the original. To

achieve this the reader is warned that care must be taken in the

ordering of operations in the original decomposition and the rows

and columns modification algorithms.

To solve the original or a modified system of equations,

the rest of the elementary transformations are applied that will

reduce to a triangular matrix. This second composition of ele-

mentary transformations, (the M^s' where n-k+l<i<n-l and

i+l<j<n,) are applied in an order that will not make any element

nonzero which was intentionally set to zero by a previously ap-

plied elementary transformation. Denoting this transformation by

Q and letting TJ be the completely decomposed matrix, the system

is solved as follows.

Bx = y (1.2.6)

PBPPx = BPx y (1.2.7)

QcQp
BPx = QcUPy = UPx = OcQp

Px (1.2.8)

Px = «- 1QcQpPy (1.2.9)
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x « PU" 1
QcOp

Py (1.2.10)

Here we have used the fact that PP = I and that P fc * P.

The transformation U" 1 is performed by backsubstitution on U.

Note that if row and column modifications as above have been per-

formed, the algorithm to solve the system does not change. The

relevant multiplier elements in the elementary transformations of

Qp are changed only if row modifications were performed, while

for column modifications only the relevant columns of have dif-

ferent elements. If the decomposition is terminated so that the

lower right hand kxk submatrix remains unfactorized, the modifi-

1 2cation of i rows and j columns requires no more than ^(i+j)n

multiplications, while the solution of the new system requires

2 11
n + 4k . If the factorization of the kxk submatrix is stored,

the subsequent solutions require n multiplications.

To give the reader a sense on how large k can be such that

the completion of the factorization for each new solution becomes

comparatively expensive let us set the number of multiplications

required to solve the system equal to the number required to com-

3

plete the factorization, that is n = ik or k=(3n) For n=100,

k=45, and for n=400, k=113, and for n=1000, k=208.
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CHAPTER 2

A SENSITIVITY TRANSFORMATION FOR STUDYING THE PERTURBATIONS OF
SOLUTIONS DUE TO THE PERTURBATION OF THE SYSTEM

SECTION 2.1
PERTURBATION OF A SINGLE ELEMENT

The first example to be investigated is the change of the

solution due to the change of one element in the system of equa-

tions. This result was first deduced by Shermam and Morrison[8].

Though the result here is the same, the procedure and representa-

tion are different. At the end of this section we will point out

how this is so.

Let B be a nxn matrix that is identical to the matrix B

except for the element (i,j) which is represented as:

B
ij b

ij
+ 6b

ij • (2.1.1)

Let B be decomposed by a decomposition technique. Then the n

columns of the inverse of B can be found by solving the decom-

posed system for the appropriate unit vector as a right hand

side. Suppose that x is the solution of

Bx = y (2.1.2)

and x is the solution of

Bx = (B+6B)x = y . (2.1.3)
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Premultiplying the above equation by B we have

(I-fB"
16B)x « B

-1
y * x (2.1.4)

where 6b is a square matrix of order n in which only one element

is nonzero, that is, 6b i-i» Written out explicitly (I + B
-1

6B) ,

is of the form:

B
ii*b ij

Bj-i.i6b ij

l4»ji*ij

b
j*i.i6b ij

B
ni 6b ij

(2.1.5)
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where (B. ,) « B . It follows directly that
kl

x. * 13 , (2.1.6)
1 1+ 5. .6b.

ji 13

and for Mj

x. » x k
- b ki 6b, -x, » x k

- —*i—iiJ- . (2.1.7)
K K K1 1D 3 K

1 Bj^bij

This result can also be found by representing the per-

turbed system by

(B 6b)x * (I 6BB
-1

)Bx = y . (2.1.8)

If we denote Bx*y as the perturbed system, then solving

(I + 6BB~ 1 )z=y (2.1.9)

and then

Bx = z (2.1.10)

yields the solution to the perturbed system. The transforming

matrix (I + 6BB~ ' is of the form:
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Csl

to

JO

\o

w

la

a

in
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-1
Solving (I 6BB~ x )z « y, for Mi

z
k y k , (2.1.12)

while for the i
fc element,

+ (1 *>
lj
Bji)i

1
+ 6b

i;j
B
ji + 1yi+1

+ ...

... + <4b
i;(
Bjnyn , (2.1.13)

or

y
i " 6b

ij
Bjiyi + 6b

ij
B
j 2y2

+ ••• + 6b
ijBji-iyi-i +

+ (1 + ft^BJDii + »b
i;j
Bji+1yi+1 + ...

... + «b
i3
Bjnyn . (2.1.14)

Since

n

*
1

*,

ij
b
jlt»*

= 6b
ij

x
j '

(2 ' la5)

(2.1.14) reduces to
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y
i " 6b

ij\i * (1 * 6b
ij

bji )z
i " 6b

ij5jiyi • (2.1.16)

or

(1 + 6b
iiBii )y i

- ^ ii x i
z. U_2i—

i

iJLJ. (2.1.17)
1 6bijBji

6b
ii x i

y, - iJ-2 . (2.1.18)
1 + 6b. .5.

Therefore z can be written as

6b
ii

x
i

z » y - (
i-i-J )e. (2.1.19)

1 6b
ij
5ji

where e. is the unit vector of the i component. Since

x * B~ 1 z,

* - x - U-l B 1 e
i

. (2.1.20)
1 + 6b. .5

Explicitly for Mj

th.46b4.1X
x k * x. - —!Si—LL_1_ (2.1.21)

1 6bij5
D]
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X
j

*
b
ii

6b
Ji

X
3

1 + 6b
ij
5
j

. 1 + 6b
i
-Bji

(2.1.22)

which corresponds to (2.1.6) and (2.1.7).

The next two sections will consider multiple row and

column perturbations. We will see that the analysis of such per-

turbations will be quite straight forward. For column perturba-

tions the perturbed system of equations will be represented as in

(2.1.4), while for row peturbations the representation (2.1.8) is

appropriate. In Sherman and Morrison [8] it is only shown that

(2.1.6), and (2.1.7) are correct, though they do not show how

they arrive at the results. The purpose of this presentation is

to demonstrate a procedure which can be used to derive the solu-

tion for an arbitrary perturbation, rather than propose a solu-

tion and demonstrate its validity.
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SECTION 2.2
COLUMN PERTURBATIONS

In this section the method just described is extended to

columnwise perturbations. The first case is for perturbations in

a single column with the scaling of the column, while the second

is the extension to two columns.

Without loss of generality let us suppose that the first k

elements of the j column are to be perturbed and that a con-

stant multiple of the column is to be added to the entire column,

that is, 6b is an nxn matrix which has all zeroes for its ele-

ments except for the j column, where the j column is:

J6b lj +cb ij
6b

2j
+cb

2j
... *b

kj
+cb kj cbk+lj ... cb^l*.

(2.2.1)

Again the matrix (I + B~ 16B) has the form of (2.1.5) except the

j column is replaced by:

where

J**! * 2 '•• *j-l <
1+*j +c > *j+l ## ' ^nT (2.2.2)

' =
piiV^pj < 2 - 2 - 3 >

and (B..)* B~ . The solution is found oy inspection as in
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Chapter 2.1:

and for i;*j #

*i " x
i

" *i k
j

(2.2.5)

where x is the solution of (B + 6B)x=y, and x is the solution of

the unperturbed system Bx*y.

Now suppose that two columns are to be perturbed , say

columns j. and j 2
. For the simplicity of demonstration let us

suppose that only the first k
1

and k
2
elements of each respective

columns are perturbed. So 6b has only 2 nonzero columns, and the

j 1

tn is of the form

|6b 1H 6b 9 _i
... 6b k • ... |

fc (2.2.6)
I

1J 1 ^1 K lJl
I

and the j 2
column is:

K ! t
|6b,. 6b 9

. ... 6b k . ... r . (2.2.7)

Now two columns of (I + B~ 16B) are not unit vectors, namely

columns j. and j 2
. The ji

tn column will be denoted by





!*1 *2 J1-1 D
l

j,-n # " *n|
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(2.2.8)

where

*i
pl^9

6b
Ph ' (2.2.9)

thand the j 2
column as,

\#1 2 ••* ^
jr l

(1+V 'j^l— nj
(2.2.10)

where

0. * 2 5. 6b
1

p-1 1P P3 2
(2.2.11)

Again by inspection the j* and J 2
th elements of x are

found by solving

*| 1+0-i
(2.2.12)

Then for Mj 1# j 2
:
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*k * x
k

" V^ " *k
8
j 2

• (2.2.13)

If all the elements of a column are to be perturbed then

it is necessary to have the entire inverse computed. In such a

case it would be wiser to use the factorization modification al-

gorithm. In many cases thouqh, especially in Input Output

analysis, only a few elements are modified, and the rest are just

scaled. In such cases the above method becomes very appealing

since the simpler closed form equations provide greater insight

into the system.
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SECTION 2.3
JKOW PERTURBATIONS

This section nearly duplicates the presentation of the

previous section except that the perturbation vectors are rows

instead of columns.

Without loss of qenerality let us suppose that the first k

elements of the j row are to be perturbed and that a constant

multiple of the row is to be added to the entire row. Then 6b is

an nxn matrix which has all zeroes for its elements except for

the j row. The j row is:

6b
jl*cbji 6b

j2
+cb

j2 ••' 6b
jk+cb jk cbjk+l ••• cbjn

(2.3.1)

i-l. ,Again the matrix (I 6BB ) is of the same form as (2.1.11) of

Chapter 2.1 , but the j row is replaced by:

where

I*!
* 2

•"• *j-l (1+*j +c) *j+l" - *ni ' (2.3.2)

'"
=

pli
6b3PV ' (2 - 3 ' 3)

and (15^)* B" 1
. By inspection the solution of ( I +6BB~ 1 )z= y

is, for ij*j:
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z
i Yi (2.3.4)

while

^V. + <* + *) + c » z
j

Vj < 2 -3-5)

^.-•A + ^Vj - ry, + (1 + ^ + c)z
j

(2.3.6)

pi^jp"? " Vj + (1 +
»*j

+ c,2
j

,2 - 3 - 7)

and therefore

( J + >V y
J •

D?/
b
3P

X
P

z
j

" (1 *TC H) ,2 ' 3 - 8)

where x is the solution of the unperturbed system Bx=y. If we

denote z . - y^ as t then

z = y + te. (2.3.9)

where e. is the unit vector of the j component. Denoting the

solution of the perturbed system as x , as in Chapter 2.1,
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x « B" 1
z * B

-1
(y te.) * x + tB

-1
e. . (2.3.10)

Now suppose that two rows are to be perturbed, say rows j,

and j 2
. Again purely for the simplicity of demonstration suppose

that only the first k. and k
2
elements ot each respective rows

are perturbed. So 6b has only 2 nonzero rows, the ji of which

is of the form:

|6b. , 6b. ... 6b. . ... (2.3.11)
I *l

l 3 1
Z D 1

K
1 I

and the j 2
row is:

|6b. , 6b, ... 6b, „ ... (2.3.12)
3 2

l J2 Z 3 2
K
2 I

Now two rows of ( I + 6BB ' are not unit vectors, namely rows j,

and j 2# The ji row will be denoted by

I I

1 ^2 r l
(1+>V ^j 1+ l-'- *n

(2.3.13)

where

k
i

*•»
=
pii'

b
i ,p

Bpi ' ,2 - 3 - 14)





thand the j 2
row as »

where

Sol'
,-1ving ( I +6bb ) z y, for i^j , j

while for i= Ji»Jo :

where

and
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*1 *2 •'• ^jr l Cl^j )

jl+1
• • • n

(2.3.15)

0, - 2 6b. T5 . .
1 p=l D 2p pi (2.3.16)

z . y .

3
Y
3

(2.3.17)

I 14*, >*, I |z.

I

2 II
J l|

0^ 1+0^ !z
D 2 M 3?

I I

2

(2.3.18)

y+ - (l A* )y, + r*, y-i
- 2 6b. x

3i '3i 3o'31 J l
J 2 J 2 p=l J

lJiP P
(2.3.19)
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3 2

Ya - (1 + *a )yi
+ 0t Vt - 2 <*b. xD . (2.3.20)

J 2 J 2 D 2 D l 3 1 p=l 3 2p p

Redefining t to be z. - y. and defininq u to be z^ - y+ , then
3
1

3 1 D 2 D 2

the perturbed solution is:

x = B" 1
z = B" 1

y + tB" 1
e. + uB* 1 e. . (2.3.21)
D l J 2

If an entire row is perturbed then only its associated

column of the inverse is needed in the computation of the per-

turbed solution vector. The computation requires 2n+l multipli-

cations, (column perturbation would require about n .)

The above presentation lends particular insight into the

perturbation of row elements in linear equations. When several

rows are perturbed then the perturbation of the solution is a

linear combination of the associated columns of the nominal in-

verse. Therefore we can make a rough quess on whether solutions

are sensitive to perturbations of several rows of the 10 matrix

by inspecting the associated columns of the n^ninal inverse.
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CHAPTER 3

A NONLINEAR INPUT OUTPUT MODEL

As we have seen both factorization modification and solu-

tion perturbation have comparative advantages in the solution of

modified linear equations. Factorization modification has the ad-

vantage of simplicity of data storage, that is, when a row or

column is changed, then only that row or column of the modified

factorization is changed. Also the repetitive modification of

the linear equations is very stable numerically since the refac-

5torized matrix is machine identical to the factorized matrix

when the modified system of linear equations is completely decom-

posed from scratch. The disadvantage of factorization modifica-

2 2
tion is that n multiplications must be performed, and n matrix

elements must be read in from secondary storage. In some cases

solution perturbation requires much less computation than factor-

ization modification to achieve the same result. The disadvan-

tage of solution perturbation is that if many elements in dif-

ferent rows are to be changed, as in the case of modifying all

the elements in a single column, then much or all of the nominal

inverse must be computed. Also repetitively computing new solu-

tions due to changes in the elements of the matrix is difficult

by this method. In this section we will utilize the comparative

advantages of both methods in solving a nonlinear Input Output

model

.

5 "Machine identical" means that the bit patterns of
the two matrices are identical.





38

There has been very little work presented in the litera-

ture about nonlinear 10 models, most of it only in the way of ex-

istence proofs, Sandberq[6) and Lahiri[?J, and V3ry little empir-

ical application. This may be due to the difficulty of obtaining

data on the nonlinear ity of the transactions, for just obtaining

the transactions matrix data is a difficult task in itself. But

the nonlinear ity of the transaction elements may not be due so

much to the nonlinearity of the input requirements per unit out-

put for each firm. Rather the nonlinearity may be due to the

average input requirements per unit output, that is the a^'s,

shift from the production techniques of firms that cannot in-

crease output towards the production techniques of those firms

that can. A good example of this type of nonlinearity is the

transactions to the oil industry if oil demand would change. If

the demand for oil by consumers and industry would drop drasti-

cally then the transactions for drilling equipment and real

estate would drop disporportionally to the drop in total oil out-

put since oil wells would last for a longer period of time.

Given more time there would be fewer chances that wells that are

drilled end up to be dry, etc. It is likely that at lower oil

demand more oil drilling would be internally financed, and thus

the amount of interest charges would be proportionally less.

The transactions matrix is AX where X is a
diagonalization of the total demand vector. The
transactions matrix is the interindustry data that
governments actually collect, the A matrix is then derived
from the transactions matrix after the total demand vector
is computed by summing the rows of the transaction matrix
and adding the final demand vector to the resultant vector.
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Without scarcity driving up prices firms are less willing to take

chances, they may curtail research and development activity.

Thus the composition of value added changes. As we shall see in

the example below, if the demand for oil would rise the a. .

# s for

the oil industry would shift toward the production techniques of

the exploratory firms. New production techniques such as extrac-

tion of oil from shale would become more profitable, and average

production shifts towards this technique. By classification of

firms into two groups, those that can and cannot increase output,

we have an elementary procedure by which we can represent the

nonlinearity of transactions.

Let j be the index corresponding to the oil industry.

Suppose that oil total output is represented by

X
j

* Xn
j

+ X°j ' (4.1.1)

where x
.

, x
n

• , x°^ are total demand for oil, total demand for oil

supplied by new oil, and total demand for oil supplied by old oil

respectively. We assume that only the producers of new oil can

expand the output of oil to a level greater than x .. The tran-

saction from the i industry to the oil industry is

t
tj

= a ijXj = a°
ij x° j

+ a
n
ij(Xj - x^) . (4.1.2)

Therefore
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/ o .n , vo
t ii <

a ii ii ,x ii n
13* r x^

x j
r

ij H.i.JJ

for x.^x ^ . (4.1.3) exemplifies the shift in the technical coef-

ficients mentioned in the preceding discussion.

Though oversimplified, (but the linear 10 model is even

more simplified,) this example does illustrate that empirical

work in this area may be more practical than was previously

thought. It can also open up the possibility of treating invest-

ment as a direct input to production instead of treating it as

final demand. Investment cannot be realistically treated as a

linear function of total output since if existing capital is used

at full capacity the only way output can increase is by invest-

ment. Thus investment would make up an considerable portion of

costs. Alternatively if capital is not being used at full capa-

city then there will be little investment till excess capacity

has depreciated away. Observation of plant capacity levels, and

the catagor ization of firms in a industry may give us the essen-

tial information needed to produce a viable nonlinear 10 model.

The nonlinear 10 model in the following exposition has an

restriction in the form of the nonlinear ities. It is not the most

general model that could be presented, though the formulation

does encompass the situations that we would most likely encounter

in the real world. We assume that the nonlinearities of the

tranasctions are only a tunction of the buying industries, that

is
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t
ij * t

iJ
(X

J
) " (4.1.4)

This is a crucial assumption in this algorithm for it tremendous-

ly reduces the order of the computation. Though this is a res-

triction to the analysis, it is difficult to visualize an example

where a transaction element is a direct function of total demand

other than the buying industry. Even in the literature though

this assumption is seldom made or utilized, the examples present-

ed usually are of this form. Also we have assumed a functional

form for the nonlinear it ies. Though this assumption is not cru-

cial to the exposition, and it can easily be relaxed, we shall

see that this representation is computationally advantageous.

A truncated power series will be used as the functional

form of the nonlinearities. The use of only three terms is only

for the simplicity of demonstration.

x. x.

(4.1.5)

where

i «ij + Pij +
'ij (4.1.6)

Note that
3i-j

=a
i-i

(x^) . We denote the matrix A" and vectors x and

7 as the nominal technical coefficients matrix, »nd nominal total

and final demand vectors respectively. If c<. .=1, and Pi-\~Yi-h
s^
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for some a j-i(x.i)» then the function is constant, as in the linear

10 model. Varying the values of p i
- and Yi

- from zero introduces

nonlinear ity in the technical coefficient. But as long as con-

straint (4.1.6) holds then the nominal output vector x is still

the solution of the nonlinear 10 model when the final demand vec-

tor is y.

To introduce the concept of the model, let us assume that

only the j industry has nonconstant technical coefficients.

These technical coefficients are only a function of the total

output of the j industry, that is, x.. Let y be a vector dif-

ferent from y and let x
1 be the solution of

(I - T^x 1 = y . (4.1.7)

Clearly there is little chance that x 1 is the solution of

the nonlinear equation

(I - A(x))x = y . (4.1.8)

Let

AMx) = A(x) - A . (4.1.9)

Note that AA(x) is nonzero only for the j column. By solution

perturbation

(I - A(x))x = (I - A)(I - (I - AJ^AAfx))* = y (4.1.10)
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or

(I - (I - A)
_1^(x))x = x

1
(4.1.11)

where x is the solution of (4.1.7)

The j
th row of 4.1.11 is

n
[1 - I 5,-6 a.-fx,)]*, = x* (4.1.12)

i = l J x a j J J J

where

-1
(5^) = (I - A)" 1

, (4.1.13)

and

(^a
ij

(x
j
)) =AA(x) . (4.1.14)

Since the x. is the only unknown in (4.1.12) we need only solve

this scalar nonlinear equation for x.. If the nonlinearities are

represented as a truncated power series as in (4.1.5) , then

(4.1.12) reduces to





X • X •

[1 - en-*) - 1) - a((-J-) 2 - l)]x = x*
x. I
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(4.1.15)

where

n
* s 2 ^iiaiiPii r and (4.1.16)

e = 2 B.x. y.. . (4.1.17)
i=l D1 13 J

Then (4.1.15) can be solved by a numerical method such as

Newton's method.

The advantaqe of the functional representation (4.1.5) is

that the effects of the nonlinear ities of all the elements of the

j column of A(x) are expressed in cr and 0. If more terms are

added to (4.1.5) then only similar terms are then added to

(4.1.15). Note that only the j row of the inverse needs to be

computed to solve for x
.

, but once we have solved for x . we now

know all the values of the technical coefficients in the j

column. Using factorization modification we can compute the en-

tire solution without the computing the inverse, as ve would have

had to do if we use solution perturbation only. During the fac-

torization modification we can simultaneously compute the solu-

tion x, thus saving an extra pass through the matrix.

^

3 This is only important of course if the computer
installation does not have enough main memory to hold the
entire matrix.
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The extension to case of nonlinearities in more than one

column of A is quite straightforward. If k columns of A have non-

linearities, then the k corresponding rows of (I - "R)~ must be

computed and a k order nonlinear matrix equation corresponding

to (4.1.15) is solved.

This algorithm is a tremendous savings over the usual

Newton's method solution of this problem, which would be

x
k+1 = x

k
- (I - ^_T)" 1

[x
k - A(x k

)x
k - y] (4.1.18)

k t" h
where x is the approximate solution at the k iteration, and T

is a vector valued function whose j element is

t
i
« 2 a..(x.)x. . (4.1.19)

For each iteration (4.1.18) requires approximately

3 2
n /3 + 2n + ikn multiplications where n is the order, i+1 is the

number of terms in the truncated power series, and k is the

number of nonlinear columns. The method proposed here requires

only about k /3 + (i+l)k multiplications. If n=100, k=5, and

i=3, then an iteration of (4.1.18) requires about 353,000 multi-

plications, while the method presented here requires about 162

multiplications. Thus the proposed method has a computational

savings by a factor of 2,180!

Most importantly this method gives us a very simple means

to compute the "marginal inverse", that is compute the incremen-
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tal total output due to an increment in final demand. The margi-

nal inverse is the inverse of the Jacobian matrix evaluated at a

solution. Sandberq [6, Theorem 1] has shown that the inverse of

the Jacobian evaluated at a solution will approximate the pertur-

bation of solutions around the solution due to perturbations of

final demand. If the vector c is the perturbation in final

demand, and the vector x^ is the actual perturbation of total

demand then

xp = J" 1c + A»(c) (4.1.20)

where

1 |Aj£j ! ! -> as ||c|| -> . (4.1.21)

The norm operator is the Euclidean. In our example in which only

column j is nonlinear, if (J ik ) = J, then:

j ik
= -a

ik , for k*i,j (4.1.22)

j Rk
= 1 - a

Rk ^

for Mj (4.1.23)

and

Jij = " a
ij " ( x j)^5T7a(x j

) for i^' (4.1.24)
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j
jj

=
* ~ *jj " (X

j
) ^T7a(X j

) ' (4.1.25)

Since the Jacobian matrix is identical to the 10 matrix

except tor the j column we can use factorization modification

to replace the j column of the nominal 10 matrix by the the as-

sociated column of the Jacobian matrix. In doing so we have ef-

fectively computed the factorization of the Jacobian.

At this point it is worthwhile to digress to a fundamental

result of 10 analysis. In the linear 10 model price is computed

by the identity

(I - A
fc

)p = v or p = A fc

p + v . (4.1.26)

The j row of (4.1.26) reads: the price of good j, that

is, p. equals the average unit costs of inputs, that is, (A p)

.

plus the cost of value added, that is, v.. In this equation pro-

fit rates must be assumed, and the costs are average, not margi-

ns

nal. Assuming nonincreasing returns suppose that we are given a

final demand vector y and the corresponding total demand vector x

which is the solution of the nonlinear 10 model. Then we can

find a price vector p such that it is profit maximizing for each

industry to produce the total demand vector x when the final

o
Concavity of the technical coefficients functions and

value added functions would imply nonincreasing returns.
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aemand vector is y. Tne equation wnich computes tnis price level

is

:

J P - v (4.1.27)

wnere cue i element ot v" is

v(x.) 4,x
i

) 5
H-v(x

1
) .

1

(4.1.2b)

we have allowed tor nonlinear ities in value added, and as tor the

transaction elements, the nonlinear ities are only a runction ot

that particular industry. ol course tnis definition ot value

added excludes profits. we can easily verity that the price

vector which is the solution ot (4.1.27) is the price vector that

makes x the profit maximizing output vector. tor the j

industry tne per unit profit is

n

2 a. (x • )
- v (x-

i=l J J 3
4.1. 2b)

'iherelore total profits are:

n

"
3 " V P

J "
i
!
1

a
iJ

(X 3> -
V(X

D
)]

•

(4.1.3k,)





xaKinq the derivative with respect to x we have

j

n

cJx-
77

j
s ^ Pj * .2

1
P i

a ij (x
j

) + v(x

J l-l 3 1

) J (4.1.31)

or

'j ' J 1
P i

[a ij (x
j

) +
< x j>c£r*ij<*j>] V(Xj) 4 (Xj)^-V(Xj) .

(4.1.32)

Notice that (4.1.24) and (4.1.2b) are the general form ot the

elements ot the Jacobian matrix J. Also the right hand side of

(4.1.32) corresponds to (4.1.2b). by differentiating each of the

industry's profits function with respect to that industry's total

output we see that (4.1.26) is tne first order condition tor

profit maximization.
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DISCUSSION AND CONCLUSIONS

A summary ot the relative advantages and disadvantages of

solving modified systems of equations by factorization modifca-

tion using elementary transformations and by solution perturba-

tion was presented in the beginning ot Chapter 3. The conclusion

of the discussion was that neither method had a clearcut advan-

tage over the other. When the two methods are used in conjunc-

tion with each other, as in the nonlinear 10 model, the resulting

algorithm can be very efficient.

The efficient solution of 10 equations has been largely

ignored by economists. This is evident by the fact that up to

now only large batch computer systems were used to solve 10 equa-

tions. Using the algorithms discussed in this paper a 368 ord-

Q
er 10 matrix was factor ized on a minicomputer installation. The

solution computation of the solution for an arbitrary final

demand vector required 8 seconds user time and 12 seconds system

n ma 10time

.

9 The computer was a Digital Electronics Corporation
PDP11/50. The computer was operating un^er the UNIX
operating system developed by Bell Laboratories. The
algorithms were coded in C, the principle language in which
much of the UNIX system was coded.

10 The Unix operating system indicates two types of
program timinqs, one for user time, which is the time
required to perform the actual computation in the user's
program area. The other is denoted as system time which is
the computation required by the operating system to perform
principly the input output functions. Since a 368 tn order
matrix requires approximately 1 megabyte of storage, the
computation of physical block addresses of the data consumed
the largest portion of the total computation. System time
would be significantly reduced by performing raw, ie., pure
direct memory access (DMA) input output.
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Double precision arithmetic was used by both the decompo-

sition and solution programs. As a test of the numerical stabil-

ity of the algorithms on actual data, the Bureau of Economic

Analysis (BEA) 368 th order 10 matrix was decomposed, and then a

system of equations utilizing this matrix was solved. The resi-

-14 . .

duals were of the order of 10 when double precision arithmetic

was used. Thus the use of elementary transformations has not

been detrimental to numerical stability.

As a test of the nonlinear 10 model, nonconstant technical

coefficients were introduced into five columns of the 1967 368

order BEA 10 matrix. The iterative solution perturbation algo-

rithm required 3.3 seconds user and 6.1 seconds system time,

while the factorization algorithm which computes the entire solu-

tion vector required 31 seconds user and 27 seconds system.

Since the solution perturbation algorithm computes the total out-

put for the industries which have nonlinear input technical

coef f f icients , we can check the computation of the factorization

algorithm by comDaring the elements in the solution vector to

those computed by the solution perturbation algorithm. The

-14
residuals were of the order ot 10

For a small set of nonlinear industries, the computation

involved in the solution of a nonlinear 10 model is about two or

three times the computation involved in solving a factorized sys-

tem of equations. In terms of computation, there is little that

bars the incorporation of the algorithms in empirical 10
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research. It may be futile to consider the construction of a em-

pirical nonlinear 10 model with all ot the columns being non-

linear, at least this is so tor the present. Many times

researchers who utilize 10 models tocus most of their attention

upon one or two, or a small qroup of industries. The effects of

alternative technical coefficients ot a small group of industries

are often analyzed. ihe framework presented could easily be

molded to such applications. Finally it is suggested that inter-

industry data collection should gear some ot its efforts toward

the determination ot capacity levels of the individual firms.

Doing so will allow the construction of the nonlinear investment

functions needed to make the endogenous determination of invest-

ment levels in 10 models possible.
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