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PREFACE TO SEVENTH EDITION.

THE rapid development which has characterized all

branches of engineering construction during the past

decade carries with it corresponding advances in experi-

mental and analytic work in that field of engineering

science known as the Elasticity and Resistance of Mate-

rials. In the present edition of this s

'book, prepared to

meet
'

the advancing requirements of the profession, it

will be observed that much of the older matter has been

canceled and displaced by many new topics now become

of practical importance, so that new material constitutes

probably not less than three-quarters of the volume. These

new parts will readily be discovered by a glance at the

contents. It may be well, however, to state that the

treatment of reinforced concrete, the general analysis of

which as a development of the common theory of flexure

was first given in a prior edition of this book, has been

extended to cover substantially all the principal features

of that special field. The analysis given is general,

but simple and free from the superfluous and labor-

increasing accretions which, for some not obvious reasons,

have found place in some of the commonly used formulae.

Results of the most recent experimental investigations

have been used for the requisite empirical data, so as to

make the book a real work on the Elasticity and Resist-

ance of the Materials of Engineering rather than a mere

matter of applied mechanics.
W. H. B.

COLUMBIA UNIVERSITY,
Oct. i, 1915.

333831
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2 ELASTICITY IN AMORPHOUS SOLID BODIES. [Ch. I.

These stresses and strains vary in character according to

the method of application of the external forces. Each

stress, however, is accompanied by its own characteristic

strain and no other. Thus there are shearing stresses and

shearing strains, tensile stresses and tensile strains, com-

pressive stresses and compressive strains. Usually a

number of different stresses with their corresponding

strains are coexistent at any point in a body subjected to

the action of external forces.

It is a matter of experience that strains always vary

continuously and in the same direction with the corre-

sponding stresses. Consequently the stresses are con-

tinuously increasing functions of the strains, and any
stress may be represented by a series composed of the

ascending powers "(commencing with the first) of the strains

multiplied by proper coefficients. When, as is usually

the case, the displacements are very small, the terms of

the series whose indices are greater than unity are ex-

ceedingly small compared with the first term, whose index

is unity. Those terms may consequently be omitted

without essentially changing the value of the expression.

Hence follows what is ordinarily termed Hooke's law:

The ratio between stresses and corresponding strains, fot

a given material, is constant.

This law is susceptible of very simple algebraic repre-

sentation. If a piece of material, whose normal cross'

section is -A, is subjected to either tensile or compressive

stress, its length L will be changed by the amount AL.

If P be the external force or loading which produces that

deformation or change of length, the amount of force or

stress, supposed to be uniformly distributed, acting on i

square inch of normal cross-section of the piece, will be

found by dividing the total force P by the area of cross-

section A. This amount of uniformly distributed stress
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is called the
' '

intensity of stress,
' '

and it is a most impor-

tant quantity. In dealing with the effects of forces or

stresses in all engineering work, the amount of such force

Or stress on a square unit of area, usually a square inch in

American practice, and called the intensity, is often the

main object sought, for it determines the question whether

material is carrying too much or too little load, as well as

many other related questions.

Again, the important consideration as to strain is the

fractional change in length of the entire piece, and not the

total change in length expressed in the unit adopted, ordi-

narily an inch. This fractional change of length is the same

as the amount of actual change of each linear unit of the

piece, as found by dividing JL by L. Inasmuch as that

fraction expresses the amount of change in length for each

unit, it is frequently called the rate of change of length or

rate of deformation. Hooke's law is to the effect that

the intensity of stress is proportional to the rate of strain,

and its analytic expression may readily be written.

Let p represent the intensity of any stress and / tbe

strain per unit of length, or, in other words, the rate of

strain. If E is a constant coefficient, Hooke's law will be

given by the following equation:

If the intensity of stress varies from point to point of a

body, Hooke's law may be expressed by the following
/-1-J-f-fo-rorrfi a 1 t>nnotion '

differential equation :

%-E. W
If p and I are rectangular coordinates, eqs. (i) and (2)

are evidently equations of a straight line passing through
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the origin of coordinates. It will hereafter be seen that

the line under consideration is essentially straight for

comparatively small strains in any case, and for some

materials it has no straight portions.

Art. 2. Coefficient or Modulus of Elasticity.

In general the coefficient E in eq. (i) of the preced-

ing article is called the coefficient of elasticity, or, more

usually, modulus of elasticity. The coefficient of elasticity

varies both with the kind of material and kind of stress.

It simply expresses the ratio between the rates of stress and

strain.

The characteristic strain of a tensile stress is evidently
an increase of the linear dimensions of the body in the

direction of action of the external forces.

Let this increase per unit of length be represented by
/, while p and E represent, respectively, the correspond-

ing intensity and coefficient. Eq. (i) of the preceding
article then becomes

p=El, or =| (i)

E is then the coefficient of elasticity for tension.

The characteristic strain for a compressive stress is

evidently a decrease in the linear dimensions of the body
in the direction of action of the external forces. Let Z

t

represent this decrease per unit of length, p l
the intensity

of compressive stress, and E
l
the corresponding coefficient.

Hence

A=A> or E, = ^ (2)
l
\

E
v consequently is the coefficient of elasticity for

compression.



Art. 2.] COEFFICIENTS OF ELASTICITY.

The characteristic strain for a shearing stress may be

determined by considering the effect which it produces
on the layers of the body parallel to its plane of action.

In Fig. i let ABCD represent one face of a cube, another

of whose faces is fixed along AD. If a shear acts in the

face EC, whose plane is normal to the plane
of the paper, all layers of the cube parallel

to the plane of the shearing stress, i.e., BC,
will slide over each other, so that the faces

AB and DC will take the positions AE and

DF. The amount of distortion or strain

per unit of length will be represented by
the angle EAB =

</>.
If the strain is small,

there may be written
<j>,

sin <, or tan <

indifferently.

Representing, therefore, the intensity of shear, coeffi-

cient, and strain by 5, G, and
</>, respectively, eq. (i) of

Art. i becomes

FIG.

S=G<f) t
or (3)

It will be seen hereafter that there are certain limits

of stress within which eqs. (i), (2), and (3) are essentially

true, but beyond which they do not hold; this limit is

called the limit of elasticity, and is not in general a well-

defined point.

The line Okghn exhibited in Fig. 2 represents the actual

strains in a piece of structural steel i inch in length with

i square inch of cross-section. is the origin of coordi-

nates, and the loads per square inch, i.e., intensities of

stresses, are shown by the vertical ordinates drawn parallel

to OC from OD to the strain curve, while the strains per
unit of length, that is, per inch, are laid off as horizontal

ordinates of the curve parallel to OD. If Op' is the in-
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tensity of stress, p
r

corresponding to the point k of the strain

curve, while 01' is the resulting strain per unit of length,
then p' =El

f

. Again, if g is at the upper limit of the straight

portion of the curve for which the intensity of stress and
rate of strain are p and / respectively, the relation between
those two quantities is shown by eq. (i). Since E, also as

o
b

FIG. 2.

shown by eq. (i), is equal to the quotient of p divided

by /, Fig. 2 shows that it is equal to the tangent of the

angle between OD and the straight portion Og of the strain

curve, it being supposed that the rates of strain are laid

down at their actual or natural sizes. If the strain line is

curved, the first term of eq. (2) of Art. i, the differential

ratio, will represent the tangent of the angle between the

curve and the horizontal axis OD in Fig. 2. The point g,

being at the upper limit of constant proportionality be-

tween intensity of stress and rate of strain, is called the

elastic limit, above which it is seen that the strains in-

crease far more rapidly than the stresses until the point n

is reached, where actual rupture takes place. The nearly

horizontal portion of the curve between g and h and a little
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above g indicates the
"
yield point," an intensity of

stress where the material is said first to "break down" or

stretch rapidly under tensile stress without much increase

of the latter.

Art. 3. Direct Stresses of Tension and Compression.

The direct stresses of tension and compression always

produce shearing stresses and strains on all planes in the

interior of a body except those perpendicular and parallel

to those direct stresses. If, in Fig. i, a straight piece of

material CD is subjected to the tensile stress induced by
the forces P equal and opposite to each other, there will be

pure tension only on all planes or sections of the piece at

right angles to the direction of the forces P, such as HK.
On all planes passing through the longitudinal axis of the

piece there will be no stress whatever, if, as is supposed,

the forces P are uniformly distributed over the sections

of application DF and BC.

H'

K K'

FIG. i.

On every oblique plane or section in all parts of the

piece as H'K 1

', supposed to be perpendicular to the plane
of the diagram, there will be shear as well as direct

stress of tension normal to it, the intensities of both the

shear and the normal stress being dependent upon the

angle a between HK and H'K'. The force P may be

resolved by the triangle of forces into two components,
one at right angles to H'K', represented by TV, and the

other along or tangential to H'K', represented by 5. If



8 ELASTICITY IN AMORPHOUS SOLID BODIES. [Ch. I.

A represents the area of the normal section HK, the area

of the oblique section H'K' will be A sec a. The value

of the normal stress N will be TV =P cos a, but 5 =P sin a.

The intensity of the normal tensile stress on H'K' will be,

therefore,

N P cos a

The intensity of shear on the same plane H'K' will be

S P sin a
s=-ji
- =-

A -=P sin a cos a. . . (2)A sec a A sec a

\Vnen the angle a is zero, 5 in eq. (2) becomes zero,

while n in eq. (i) becomes equal to /?, i.e., the intensity of

direct tensile stress on the normal section. On the other

hand, when the angle a has the value of 90, both n and s

become zero, i.e., there is no stress whatever on a longi-

tudinal, axial plane.

Inasmuch as the angle a: may have any value what-

ever from zero to 90 on either side of HK, it is clear that

both shearing and normal tensile stresses will be found

concurrently on every oblique plane in the piece. As has

been observed in the preceding article, these shearing
stresses induce the lateral strains under which the normal

cross-sections of a piece subjected to pure tension decrease

in area while they increase under the action of pure com-

pression.

Eqs. (i) and (2) have been written on the assump-
tion that the external forces P produce tension in the

material, but precisely the same equations apply to the

condition of pure compression, the only difference being
that in the latter case the external forces P would be di-

rected toward each other from the ends of the piece, in-

stead of away from each other.
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Art. 4. Lateral Strains.

If a body, as indicated in Fig. i
,
be subjected to ten-

sion, it has been shown in Art. 3 that all of its oblique cross-

sections, such as FE and GH, will sustain shearing stresses

in consequence of the component of the tension tangential
to those oblique sections. These tangential stresses will

cause the oblique sections, in both directions, to slide overAGE C

B F H D

FIG. i.

each other. Consequently the normal cross-sections of the

body will be decreased; and if the normal cross-sections of

the body are made less, its capacity to resist the external

forces acting on AB and CD will be correspondingly dimin-

ished.

If the body is subjected to compression, oblique sec-

tions of the body will be subjected to shears, but in direc-

tions opposite to those existing in the previous case. The
effect of such shears will be an increase of the lateral

dimensions of the body and a corresponding increase in

its capacity of resistance.

These changes in the lateral dimensions of the body are

termed "lateral strains"; they always accompany direct

strains of tension and compression.

It is to be observed that lateral strains decrease a body 's

resistance to tension, but increase its resistance to com-

pression. Also, that if they are prevented, both kinds of

resistance are increased.

Consider a cube, each of whose edges is a, in a body
subjected to tension. Let r represent the ratio between
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the lateral and direct strains,* and let it be supposed to

be the same in all directions. If /, as in Art. 2, represents
the direct unit strain, the edges of the cube will become, by
the tension, a(i+/), a(i Ir), and a(irl). Consequently
the volume of the resulting parallelepiped will be

a 3

(i+/)(i-r/)
2 =a 3

[i+/(i-2r)] . ... (i)

if powers of / higher than the first be omitted. With r be-

tween o and i, there will be an increase of vo!:une, but not

otherwise.

If the body is subjected to compression, the edges of

the cube become a(i /J, a(i-fr1
/
1), and a(i+r1

/
1); while

the volume of the parallelepiped takes the value

a 3

(i -/x)(i + r
1
/
1 )' -a[i +/,("!- 1)]. . . (2)

As before, the higher powers of ^ are omitted. If the

volume of the cube is decreased, r
l
must be found between

o and J.

If a be unity in eq. (i), it is then clear that the expres-

sion l(i 2r) is the change of volume of a unit cube, i.e.,

it is the rate of change of volume when the intensity of stress

is p=El. Hence if this rate of change of volume be mul-

tiplied by a definite volume V the result will be the total

change of that definite volume produced by the uniform

intensity of stress p.

If the intensity of stress varies from point to point the

total change of volume will become :

Evidently the volume V must be expressed in the same

independent variable, or variables, as p. The integral

must then be made to cover the desired limits.

*
Frequently called Poisson's ratio.
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Art. 5. Relation between the Coefficients of Elasticity for

Shearing and Direct Stress in a Homogeneous Body.

A body is said to be homogeneous when its elasticity,

of a given kind, is the same in all directions.

Let Fig. i represent a body subjected to tension parallel

to CD. That oblique section on which the shear has the

A E B greatest intensity will make
an angle of 45 with either of

those faces whose traces are

CD or BD
;
for if a is the angle

which any oblique section

makes with BD, P the total

tension on BD, and A' the

area of the latter surface, the total shear on any section

whose area is A' sec a will be P sin a. Hence the intensity
of shear is

P sin a P=
, sin a cos a (i)

G
FIG. i.

sec a A
The second member of eq. (i) evidently has its greatest
value for a =45. Hence if the tensile intensity on BD is

P
represented by r,

=
p, the greatest intensity of shear will be

Then by eq. (3) of Art. 2,

(2)

(3)

In Fig. i EK and KG are perpendicular to each other,

while they make angles of 45 with either AB or CD. After

stress, the cube EKGH is distorted to the oblique paral-

lelopiped E'KG'H'. Consequently EKGH and E'KG'H'

correspond to ABCD and AEFD, respectively, of Fig. i,



12 ELASTICITY IN AMORPHOUS SOLID BODIES. [Ch. I.

Art. 2. The angular difference EKG E'KG* is then equal

to 4> ;
and EKE' = GKG' = -. Also, E'KF' = 45

- ^.
2 2

Using, then, the notation of the preceding articles,

there will result, nearly,

. . (4)
4 / -"- ~T~ *

remembering that

F'K=FK(i+l), and E'F' = FK(i -rl).

From a trigonometrical formula there is obtained,

very nearly,

tan 45 tan i

(i\45-1=
tan45+tan-

From eqs. (4) and (5),

Substituting from eq. (3), as well as from eq. (i) of

Art. 2,

E

It has already been seen in the preceding article that r

must be found between o and \, consequently ike coefficient

of elasticity for shearing lies between the values of J and \ oj

that of the coefficient of elasticity for tension.

This result is approximately verified by experiment.
Since precisely the same form of result is obtained by

treating compressive stress, instead of terisile, there will be

found, by equating the two values of G,

E E E i+r
i+r

=
i+r/

r
~E

~
i+r *.'
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It is clear, from the conditions assumed and operations

involved, that the relations shown by eqs. (7) and (8) can

only be approximate.

Art. 6. Shearing Stresses and Strains.

In the preceding Arts, the more simple and ordinary
relations between stress and strain are shown, but in this

and following Arts, it is desirable to give a more extended

treatment.

Materials are rarely used in structures and machines

under conditions in which the stress is wholly shear. The
usual conditions are such as to produce shear concurrently
with stresses of tension and compression. Even in the use

of rivets, where shearing stress acts prominently, tension

and compression in the form of flexure and direct com-

pression are concurrent. Again in the case of flexure or

the bending of beams, the shearing stress is sufficiently

high in intensity in some cases to produce failure, but

concurrently with relatively high intensities of tension

and compression.

Figs, i and 2 show a rectangular parallelepiped of

material of depth b at right angles to the planeABCD
firmly held on the face AD, while the intensities of shear

s and 5' act on the faces AB, BC, CD, and AD. It is

supposed that no other stresses act upon the exterior

faces of the prism of material. Let the prism be imagined
to be divided into indefinitely thin vertical slices at right

angles to the face ABCD when in its original position
shown by AB'C'D. Similarly let the prism be imagined
to be divided into indefinitely thin horizontal slices at

right angles to the same face.

Before considering the distortion of the prism due to

the action of the shearing stresses an important but simple

principle must be established. As there are no stresses
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acting upon the prism except the opposite pairs of shearing

stresses whose intensities are 5 and s
r

as shown, it is clear

that the prism must be held in equilibrium by the two

couples acting in opposite directions whose lever arms

are AB' and AD. Let / represent the length AB' of the

FIG. i. FIG. 2.

prism, while AD=d, as shown in Fig. 2. Then since the

prism is in equilibrium there will result the equation,

s'bl.d=sbd.l

.'. s=s f

.

This equation shows that the intensities of two shears

acting on planes at right angles to each other and parallel

to a third plane at right angles to the other two must be

equal. Furthermore, it is clear from Fig. 2 that the shears

on the faces of the prism must act in pairs toward two of

the corners of the prism diagonally opposite each other

and away from the other diagonally opposite pair of corners.

The rectangular prism of Figs, i and 2 may be con-

sidered indefinitely small under ordinary conditions of
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stress in structural material in order to have the stress

uniformly distributed on the four faces. Whatever may
be the condition of stress at any point in the interior of a

piece of material, the stresses acting upon the four faces

of the rectangular prism, when all stress is parallel

to one plane, may be resolved into normal and tangential

components. The normal components will act opposite

to each other producing no moments about any point,

but the tangential components will produce precisely

the moments shown in Figs, i and 2. The equilibrium

of the indefinitely small prism invariably requires there-

fore the action of two pairs of shears of equal intensity,

as established above.

The complete distortion of the rectangular prism
ABCD may be considered as produced first by the sliding

over each other of the indefinitely thin vertical sections

parallel to BC, so as to produce the oblique prism AB"C^D t

Fig. i, then by the subsequent sliding over each other of

the indefinitely thin horizontal sections parallel to DC,
so as to produce the oblique prism AB"C"D' . This last

movement of the horizontal slices will bring the line AD
into the position of AD'

',
then swinging the latter line about

A to the original position AD, the completely distorted

prism will take the form ABCD.
B'B", Fig. i, is the characteristic shearing strain pro-

duced by the vertical shearing stress whose intensity is

s acting in the planes parallel to BC. DD' is the character-

istic shearing strain produced by the action of the hori-

zontal shearing intensity s' in sliding the thin horizontal

slices over each other. These detrusive movements are

so small that B'B" may be considered at right angles to

AB and DD' at right angles to AD. The total detrusive

strain B'B is the sum of B'B", due to the vertical shear,

and B"B due to the horizontal shear, and B'B" =B"B,
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if AB' =AD. The total shearing strain per unit of length
of AB will therefore be,

B'B _^B'B"+B"B
AB

=

AB (2)

This is the expression for the characteristic resultant

shearing strain and it is seen to be measured at right angles

to the original face AB', i.e., it is a small arc measurement

in radians. It is important to remember that this total

detrusive strain due to shear is the sum of two equal

effects, one of horizontal shear and the other of vertical

shear, i.e., of the two shears on planes at right angles to

each other.

If b = i and if AB'C'D, Fig. 2, now be considered square

so that AB=BC, then will the tension T acting perpen-
dicular to the plane BD be equal to the sum of the com-

ponents of the shear s=s'
y
on the planes BC and DC,

normal to the diagonal plane BD. Since the angle BCA

is 45 and its cosine 7=, the following equation at once
V 2

results :

7=25 COS 45=sV7. .... (3)

Similarly the compression on the diagonal plane AC is:

C=-sV2. (4)

As the area of each diagonal plane section AC and BD
is V7, the intensity of the tension T and compression C
on the planes AC and BD respectively will be:

1 - _ _o (t\
/ /

> . . . v^y
V2 V2



Art. 6.] SHEARING STRESSES AND STRAINS. 17

Hence it is seen that when the stress it any point is

wholly shear on two planes at right angles to each other

and perpendicular to the plane to which the shearing

stress is parallel, the stress on two planes at right angles

to each other and making angles of 45 with the two

planes on which the shears act, will be wholly tension on

one and compression on the other, and both will have the

same intensity as the two shears.

Inasmuch as the prism whose section is shown in Fig.

2 is subjected to a normal stress of tension in the direction

of AC and an equal normal stress of compression in the

direction BD, it is obvious that there will be no change
in volume due to those stresses, since the change in inten-

sity caused by one stress will be exactly neutralized by the

other. Again the sliding over each other of the thin

slices of the material will not change its density or volume,

although a change of shape is produced. Hence it is to

be carefully observed that shearing stresses produce no

change of volume, but change of shape only.

If is the angle B'AB=C'DC, then in general, the

resultant shearing strain B'B = C fC=AB f

(j>
=AB f

sin

=AB' tan 0, since the angle is exceedingly small. If

AB=BC =
i, B'B = <j>=sm 0=tan 0.

In Fig. 2 if the total detrusive strain CC' be projected
on the diagonal AC the change CC\ in length of that

diagonal will result. As the angle C'CC\ is 45, the

change of length CC\ will be -7=, and the strain per unit

of length of the diagonal will be,

0i0
It is clear that the diagonal BD will be shortened by

the same amount. Indeed Eq. 6 shows the tensile strain



i8 ELASTICITY IN AMORPHOUS SOLID BODIES. [Ch. I.

in the diagonal AC, while the same value with a minus

sign would show the compressive strain for the diagonal

BD. If the diagonal AC were subjected to the tensile

intensity 5 only the strain per unit of length would be .

h,

If G is the modulus of elasticity for shearing, the

intensity of shearing stress may be written,

s=s'=G$. .- (7)

Inasmuch as the total detrusive strain < per linear

unit is the sum of the equal effects of the shears on the

two faces of the prism, it would be more rational to call

- the detrusive strain per linear unit for the shear on one
2

face of the prism. This would make the modulus G
of elasticity for shearing double the value usually employed,
but it would represent accurately the rigidity of the material,

since one half of the total shearing strain </>, Fig. 2, is pro-

duced by a rotation of the prism as a whole. In other

words the total strain is the sum of two separate but equal
strains. This doubling of the value of G would obviously

change no results of computation for practical purposes
since the strain </> would be halved. It is interesting

to observe in connection with this feature of the matter

that the shearing rigidity of the material in this case, would

become the .same as the apparent rigidity in tension or

compression.

Art. 7. Relation between Moduli of Elasticity and Rate of

Change of Volume.

The preceding analyses yield some simple relations

between the moduli of elasticity for tension, compression
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and shearing and the rate of change of volume z;,* i.e., the

change of unit volume for unit intensity of stress.

In Fig. 2 of the preceding Art. CC f shows the total shear-

ing strain </>, and the elongation or strain CC\( =
/=

\ V 2

of the diagonal AC. It has also been shown that the inten-

sity of tension on BD or compression on AC is the same

as the -shear 5=5'. Remembering that the compression

5 on AC will produce a unit positive lateral strain r
k,

parallel to AC, the two equal values of the unit strain of

the diagonal AC may be written,

2 2G E E'
Hence,

C ~

If the modulus of elasticity for compression, Ei, should

be different from that for tension it-is evident that the third

member of Eq. i would be required.

If the value of r is J or J then will,

G = %E or E...... . (2)

The relation between v and E can readily be written

by considering a cube (indefinitely small if necessary)

subjected to uniformly distributed tensile stress of inten-

sity p normal to each of its six faces. Each edge of the

cube, assumed to be of unit length, will be lengthened by
P

the normal stress parallel to it to the extent fe and it

* The reciprocal of what is sometimes called the volume or bulk modulus.
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will be decreased in length r -p by each of the two normal
rL

stresses p acting at right angles to it.

The resultant change in length of each edge will then be,

Hence the change of unit volume in terms of the unit

rate v. will be,

(3)

If V be any volume, the total change of volume will

be pvV.
The equation preceding Eq. (3) shows that the unit

rate of change of volume v is simply the sum of the three

linear rates of change of the edges of the cube, since
h,

is the change of length of each edge of the cube for each

unit of p, i.e., pi
1 2r

)
is the change in length of each such

\ & I

edge under the action of the intensity of stress p. If the

intensity of stress parallel to each edge of the cube should

be different from the others the preceding analysis shows

that the rate of variation of volume would still be the sum
of the three coordinate linear rates of variation.

By the aid of Eq. (i),

Therefore :

~
6+ 2Gv
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Finally, placing r from Eq. (5) in
E^q. (3),

+Gv*

21

(6)

These simple relations will enable the various moduli

to be determined with the least possible amount of experi-

mental work.

Art. 8. All Stresses Parallel to One Plane Resultant Stress

on any Plane Normal to the Plane of Action of the Stresses.

In Fig. i let XOY be the plane parallel to which all

stresses act. Then OX and OY being any rectangular

coordinate directions, consider the two planes OA and OB

normal to each other and at right angles to the plane

XOY and let the width of each of those planes at right angles

to XOY be unity.

Again let it be supposed that the normal stress on the

plane AO has the intensity pv and that the intensity of

the tangential or shearing stress on the same plane is pvx-

Similarly let it be supposed that the intensity of the normal

stress on the plane OB is pxj the intensity of the tangential
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or shearing stress being pxy . It is known from the prin-

ciples already established in the preceding articles that the

two intensities of shear pvx and pxv are equal to each other.

The problem is to determine the intensity and direction

of the resultant stress on any plane AB, taken at right

angles to XOY. In general the resultant stress CD will

make the angle <f>
with the normal CF to the plane AB,

i.e., the resultant stress will have the obliquity </>.

The direction of the plane AB will be fixed by the angle
which its normal CF makes with the axis OX. In order

that the stresses on the three planes in question may be

taken as uniformly distributed let it be assumed that

OA =d% and OB =dy. Then will

AB =dy sec a. =dx cosec a. . . . . (i)

If p is the intensity of the uniformly distributed result-

ant stress on AB, then the equilibrium of the indefinitely

small triangular prism OAB requires that the two following

equations, representing the sums of all the forces acting

upon it in the two coordinate directions, shall be true.

pxdy+pxvdx=p cos (.+ </>). dy sec a . (2)

pydoc -\-pxydy
= p sin (a+ 0) . dy sec a . (3)

Fig. i shows that dytan.a=dx. Hence Eqs. (2) and

(3) become Eqs. (4) and (5), respectively:

px cot a.+pxv=p cos (<*+ </>) cosec a . . (4)

Pv+Pxv COt a = p sin ( + <) COS6C a. . . (5)

It is sometimes convenient to express the normal and

tangential components of the resultant intensity p in terms

of the known intensities px , pv and pxy . If in Fig. i the

stresses on the faces OA and OB be resolved into compo-
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nents normal and parallel to the plane AB the sum of the

normal components will be equal to the normal stress on

AB while the sum of the parallel components will be equal

to the tangential or shearing stress on AB. This pro-

cedure will give,

pydoo sin a+pyxdx cos a -\-pxdy cos a-\-pxydy sin a
= pdy sec a cos <.

pydoc cos apyxdoc sin apxdy sin a+pxydy cos a
= pdx cosec a. sin </>.

Using the values already given for dy and AB the fol-

lowing expressions for the normal and tangential compo-
nents of p (p cos and p sin

</>)
will result:

py sin2 a+px cos2 a -\-2pxV sin a cos a =p cos .

(pv px) sin a cos o;+^(cos
2 a sin2 a)

= sin 0. (5a)

These two equations will be used in establishing the

ellipse of stress in the next Art.

If the stress p is a principal stress its obliquity 0, i.e.,

the angle between its direction and the normal to the

plane on which it acts, will be zero. If = o Eqs. (4)

and (5) become,

p-px =pxv tana, .... (6)

p pv
= pxv cot a..... (7)

Subtracting Eq. 6 from Eq. 7,

"
cot-tan=

tan 2a pxv

taxi 2<x =-*-. (8)
P*-pv
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If the angle a\ satisfies this equation, then will 0:1+90
also satisfy it. Hence, -there will always be two prin-

cipal planes at right angles to each other on each of which
a normal stress only acts, i.e., there is no shearing stress

on either principal plane.

Eq. 8 will at once locate, by the two values of a, the

two principal planes, while the same two values of a intro-

duced into either Eq. 6 or Eq. 7 will give the two intensi-

ties of principal stresses to be called p\ and p2, it being

supposed that the normal and shearing stresses on the

planes OA and OB are completely known.

The two principal stresses can however readily be

found without computing the angle a. Multiplying Eq.

7 by Eq. 6,

The solution of this quadratic equation gives,

The two roots of this equation will give the two prin-

cipal intensities at any point in terms of the known inten-

sities pz, py and pxy.

The two stress intensities px and pv have been taken

of the same kind, tension or compression, and considered

positive. If one, as pv ,
be considered compression or

negative, its sign would be changed in the preceding

equations, but there would be no other change.

Sum of Normal Components.

If any other plane be taken at right angles to XOY,
Fig. i, and at right angles to the plane whose trace is AB,
the preceding equations are made applicable to it by writing



Art. 8.] ALL STRESSES PARALLEL TO ONE PLANE. 25

90 -J-QJ for a in Eqs. (40) and ($a), since the new plane
is at right angles to that whose trace is AB.

Then in Eqs. (40) and (5 a) there must be written,

For sin a, sin (90+0;) =cos a.

For cos a, cos (90+0:) = sin a.

Hence by Eq. (40), writing
' and </>' for p and 0;

COS2 a+px Sin2 a 2pxv sin a COS a = >' COS </>'.

Then by adding this- equation to Eq. (40) ;

P*+Pv=P cos </>+' cos 0'. ... (10)

This equation shows that on any two planes at right

angles to each other the sum of the normal intensities will

be constant and equal to px -\-p^. Furthermore, inasmuch

as there is no shear on the principal planes, i.e., the stress

is wholly normal, it is thus seen that the sum of the normal

intensities on any two planes at right angles to each

other is always equal to the sum of the two principal

intensities.

If the above values of sin a and cos a. are written in

Eq. (50), the following equation will result:

(pv px) sin a cos a -\-p:ry(cos
2

<* sin2 a) = p' sin </>'.

This equation is identical with Eq. (50), except that

the sign of the second member is changed. This result

simply shows what is already known that the intensities

of the shears on planes at right angles to each other are

equal. The change of sign indicates the direction only of

the shear.

In all the usual cases of stress arising in the subject of

Resistance of Materials- the internal stresses produced by
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external loading may be considered parallel to one plane.

The preceding investigation shows that without considering

the elastic properties of the material there are two equations
of condition (Eqs. 4 and 5) from which the two rectangular

components of the resultant stress p (or intensity p and

obliquity </>) may be found. If the general case of internal

stress be taken in wrhich stresses may act in three rectangu-

lar coordinate directions, there obviously will be three

equations of condition from which the three rectangular

components of the resultant stress on any plane may be

found.

The triangle OAB may be considered the side of a,

wedge whose edge is at 0. The two faces OB and OA are

acted upon by the stresses indicated and their resultant

holds in equilibrium the stress p on the head AB of the

wedge. The surface AB may be considered a part of the

exterior surface of a body acted upon by the stress whose

intensity is p, while the faces OA and OB are interior

surfaces of the body acted upon by the internal stresses

shown.

Art. 9. The Ellipse of Stress Greatest Intensity of Shearing

Stress Equivalence of Pure Shear to Two Principal Stresses

of Opposite Kinds but Equal Intensities Greatest Obliquity

of Resultant Stress on any Plane.

The analysis of the preceding article makes it compara-

tively easy to express the relation between the stress on

any plane whatever at right angles to the plane parallel

to which the principal stresses act and those principal

stresses, all stresses still acting parallel to one plane. In

Fig. i let OX and OY be taken in the direction of the

principal stresses, OA representing the intensity pi of the

principal stress at on the plane OD t
while OB represents
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the intensity of the principal stress p2, acting at O on the

plane OC. OCD represents an indefinitely small triangular

prism whose face CD normal to XOY makes the angle

with the principal plane OD. The intensity of the re-

sultant stress on any plane CD is represented by p, whose

obliquity is </>, the normal TV to the plane CD making the

angle /3 with the axis OX. The resultant intensity p may
at once be written by the aid of Eqs. 4 and 5 or ^a and

5a of the preceding article if the principal intensities pi

and p2 be written in the place of px and pv , respectively,

in those equations while pxv is made equal to zero. This

procedure with Eqs. (40) and (50) will give the following

Eqs. (i) and (2).

p2 sin2 0+i cos2
(3=p cos 0, . . . (i)

(p2-pi) sin ]8 cos )8
= inl s{n 2 /3 =p sin 0. . (2)

2

Squaring each of those equations and adding the results :

/3=
2

. . . . (3)*

This is the equation of an ellipse with the origin of

coordinates at the centre, the rectangular coordinates being

p2 sin |8 and pi cos 0. Fig. i shows the ellipse of stress,

the intensities of the principal stresses being represented

by the semi axes of the ellipse.

OB=p 2 and OA=pi.

In this Fig. pz represents the intensity of the principal

stress on the plane OC, while pi is the intensity on the

principal plane OD. The intensity p on any plane as CD

*
Precisely the same result will be obtained by making pzv=oineqs.

4 and 5 of the preceding Art. and then squaring and adding them.
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perpendicular to XOY and whose normal ON makes the

angle /3 with OX is represented in Fig. 2 by OH, the curve

AHB being an ellipse. Let the partial circles shown be

described by the radii OB and OA. Then if OCD be con-

sidered indefinitely small the normal ON, and the line

OH representing the intensity of the resultant stress on

the plane CD, will both pass through the origin O. Then
OG will represent p2 and OK=p2 sin 0. The same con-

struction shows that HKp\ cos (3 since OJ=p\. The

square of OH =p will then obviously be equal to the square
of HK added to the square of OK, an expression identical

with Eq. (3).

Any radius vector of the ellipse therefore represents

the intensity of a resultant stress on a plane whose normal

makes the angle with the axis of X. The obliquity of

the resultant stress in question is represented by the angle 0.

The two principal stresses have been taken of the same

kind in finding the ellipse of stress, but the results are es-

sentially the same if the principal stresses are of opposite

kind. If for example, p2 were negative while pi remains

positive p2 =OB would be laid off in Fig. i to the left

of instead of laying it off to the right of the same point.

Similarly if the sign of pi. should be considered negative

that intensity would be laid off downward from to A'

instead of upward to A.

If the two intensities of principal stresses p\ and p2

are equal to each other and of the same kind Eq. 3 becomes

pi = p2=p.
Under the same conditions Eq. (2) shows that the

shearing intensity is zero, whatever value the angle /3

may have, since in such a case pip2=o. Hence all

stresses are principal stresses and of equal intensity. This

condition of stress is the same as that which holds in a

perfect fluid.
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An examination of the ellipse of stress as given in

Fig. i shows that the intensity of one principal stress is

greater than that of any other stress at the point for which

the ellipse is drawn, while the intensity of the other prin-

cipal stress is the least of all the intensities at the same

point, since the semi-major and semi-minor axes of the

ellipse are the greatest and least, respectively, of all -the

semi-diameters. If therefore in the design or construc-

tion of any machine or structure the principal stress at

any point is provided for by the use of a proper working

stress, no further provision for the direct stresses of ten-

sion and compression will be needed. If there may be

either a reversal of stress or rapid repetition of stresses the

intensity of working stress must ^e prescribed under a

proper recognition of those conditions. Similarly provi-

sion must be made for the greatest shearing stress at the

point under consideration.

Greatest Intensity of Shearing Stress.

The intensity of shear on any plane CD at the point

0, Fig. i, is p sin as given by Eq. 2. Its greatest value
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and the plane on which it acts are readily determined by
differentiating that equation:

cos 2(3.

Hence,

cos/3=sinj3; or, 18=45. ..... (4)

As sin 45 =cos 45 =*
/=,

the greatest intensity of
V 2

shear at any point, as O, Fig. i, is found by substituting

/3=45 in the second member of Eq. (2):

The planes of greatest shear, therefore, are at the angle

f 45 from each of the two principal planes, and the greatest

intensity of shear is half the difference of the principal

intensities, both of the latter being of the same kind.

As j8=45 the resultant intensity of stress on the plane
of greatest shear will be, by Eq. (3),

If p2 = pi ; p = p2 = pi.

(so)

Equivalence of Pure Shear to Two Principal Stresses of

Opposite Kinds but Equal Intensities.

If the principal stresses are of opposite kinds, i.e., if

pi is negative while p2 is positive, then by Eq. (5) the

greatest shear becomes :

. . (6)
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The greatest intensity of shear is half the sum of the prin-

cipal intensities.

Obviously the planes of greatest shear remain as estab-

lished by Eq. (4).

If the principal stresses of opposite kinds have the same

intensities Eq. (6) shows that :

pt =p2=pi (7)

Hence the intensity of the greatest shear is the same

as that of the principal stresses of opposite kinds. It is

therefore sometimes stated that a pair of normal stresses

of opposite kinds and equal intensities on two planes at

right angles to each other are equivalent to two pure
shears of the same intensity as the normal stresses on

planes at right angles to, each other, but at 45 with the

planes on which the normal stresses act, all planes under

consideration being perpendicular to one plane. This

simple condition of stress exists in both flexure or bending
and torsion, and some important results are based on it.

Greatest Obliquity of Resultant Stress on any Plane.

If Eq. (2) be divided by Eq. i :

It is desired to find that value of /3 which will make <

(or tan 0) a maximum. By differentiating Eq. (8) and

placing
-^-a

7

n
=o, there will result,

d(3

(cos
2 -sin2

j8)(/?2 sin2 /3-fi cos2 0)
= 2 sin2 cos2

0(^2 -i). . . . (9)
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Remembering that cos2
/3 sin2 /3=cos 2/3 and that

2 sin /3 cos /3=sin 20, Eq. (9) will become Eq. (10);

cos 2p(p2 sin2 0+pi cos2 /?) =sin s/3 sin cos $(p2p\). (10)

Calling the normal component of the intensity p, i.e.,

p cos <f>=pn and the tangential or shearing component

p sin <f>=pt, those values taken from Eqs. (i) and (2)

placed in Eq. (10) will give,

cos 2(3pn =sin 2(3pt .

Hence, tan 2$= = cot </>= tan (90 -</>). . . (n)
Pt

And, j8=45-|.
...... (12)

Eq. (12) gives the relation between /5 and when the

obliquity is the greatest possible.

By the aid of Eq. (12),

sin /3 cos )8
=
| sin 2/3

= J cos 0.

Then as, sin2
(45

-
) =-(i sin 0),

\ 2/2

and cos2
/ 45 -) =-(i +sin 0),
V 2/2

Eq. (8) gives,

cos p2(i sin 0) -\-pi(i +sin

Hence,

Pi i sin-
i+sm

, and, sm0=^ ^. . . (12)v ^ ;
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The relation shown in the first of Eqs. (13) is used in

the theory of earth pressure. The second of Eqs. (13)

gives the value of the greatest obliquity </> in terms of the

known principal intensities pi and p2.

The angle locating the plane on which the obliquity

is greatest may also be expressed in terms of pi and p2.

Using Eqs. (12) and (13),

pi _i sin _i cos 20 _ sin2 ft

p2 i +sin i -f cos 2/3 cos2 ft'

The intensity, p
r

,
of this stress of greatest obliquity

is, by Eq. (3), since by Eq. (14) sin2 0= and
i

ds)

Art. 10. Ellipse of Stress and Resulting Formulae for the Special

Case of Zero Intensity of One of the Known Direct Stresses.

If in the second preceding article it be supposed that

the intensity of one of the direct stresses as px is zero

while the other intensity py and the two shearing inten-

sities pxy=pvx have known values, the formulae will be

correspondingly simplified. This is the condition of stress

in a bent beam as will be seen later on. The intensity

of direct stress pv is what is ordinarily called the fibre

stress at any point in the beam and this intensity varies

directly as the distance from an intermediate plane (before

flexure) in the beam called the neutral surface. The

plane OY of Fig. i, representing part of a beam, is su'p-
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posed to be a horizontal plane coincident with or parallel

to the neutral surface of the bent beam at any point, while

the plane whose trace is OX is the plane of vertical (normal)

transverse section of the beam at any point. Both the

direct intensity pv and the intensity of shear pxv are

readily determined from the known conditions of loading

and flexure. The analysis of this condition of stress

therefore is of much practical importance in connection

with the design or other treatment of beams subjected to

transverse bending.

FIG. i.

If the stress p in Eq. (40) of Art. 8 is a principal

stress and if the intensity px = o, the principal intensity

p will become,

p =pv sin2 a + 2pxy sin a cos a. ... (i)

Or, Eq. (9) of the same Art. will give for the two prin-

cipal intensities,

(2)

Also Eq. (8) of the same Art. will give,

tan 2a = -&S-. (3)
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If the point 0, Fig. i, is in the neutral surface of the

bent beam pv =o; and, hence,

tan 2a = oo
, or, 2^ = ^90. ... (4)

Therefore, a = =145.

If the stress pv is negative or compression, a = \ Q .

The direct fiber stresses in a bent beam are tensile on one

side of the neutral surface and compressive on the other.

As in this special case a =45, sin = cos a= --
^=
V2

and the intensity p of the principal stress becomes by the

aid of Eq. (i), since pv =o.

P=-p*v..... (5)

It has already been seen that a and 90 + will satisfy

Eq. (3); but 90 +a =90 45 =45. Hence placing

inEq. (i),

Therefore at 0, Fig. i, where there is no direct stress (but
shear only) on the two planes OX and OY the principal
stresses are of equal intensities, but of opposite kinds and

they act on planes making angles of 45 with the planes
OX and OY. This is the same condition shown by Eq.

(7) of the preceding Art.

Again at the exterior surface of the beam p has its

greatest value and the shearing intensity pvx
= o. Eq. (2)

then gives,

20. =o or 180.

Hence, =o -or 90 ...... (6)
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Eq. i gives p = o for the principal stress corresponding to

=o; and, for a =90,

(7)

There is therefore only one principal stress pv ,
the

fiber stress acting on the normal section of the beam for

which a =90.
For intermediate points of the beam between the

neutral surface and the exterior surface the principal

stresses will have varying values between pxy and pv as

shown by Eqs. (5) and (7) with planes of action located

by values of a between 45 and +90.
A graphical representation of this condition of stress

for a bent beam may be found in Art. 34-

Art. ii. General Condition of Stress Ellipsoid of Stress.

The conditions of stress in structural material as found

within the experience of engineers seldom include more

than the action of stresses parallel to one plane. There

may, however, be occasional cases in which an elementary

consideration of stresses acting in any direction whatever

becomes necessary or at least helpful. In this Article

therefore only the most elementary results of the action

of such stresses will be treated, including the ellipsoid

of stress.

In the preceding articles both the determination and

the application to a number of useful cases of the ellipse

of stress have been made. That ellipse is simply a special

case of the more general ellipsoid of stress. In other

words, if the action of stresses in space, i.e., on three

rectangular coordinate planes be considered it will be found

that there will be three such planes at any point on which

there will be no shear and which therefore are called prin-
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cipal planes, the resultant normal stresses being called

the principal stresses at that point. The semi-diameter

of the ellipsoid of stress drawn with its center at the point
under consideration will be the intensity of stress in that

direction, acting upon a plane whose position may be

determined. For this elementary treatment let the three

rectangular coordinate planes in Fig. i be drawn.

FIG. i.

In that Fig. the normal stresses on the planes XOY,
YOZ, and ZOX have the intensities pz , px and py , respect-

ively. The intensities of the shearing stresses on the

planes XOY and XOZ, parallel to YOZ, are pzv =pvz',

and those on the planes XOY and YOZ, parallel to ZOX,
are pzx =pxg

',

and finally those on the planes YOZ, and

XOZ, parallel to XOY, are pya,=pxy . If these normal and

shearing or tangential stresses on the three faces, AOB,
BOC, and AOC of the elementary tetrahedron ABCO
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are given, it is required to find the resultant intensity of

stress on the plane surface ABC* the base of the tetra-

hedron, and its obliquity. It may be considered that

AO =dx, B0=dy, and C0=dz. It will simplify the result-

ing equations if there be written for the areas of the

faces of the elementary tetrahedron;

dxdy , dydz ,

a= -; b=
;

and _dxdz
C

Also if area ABC J, and if the angles which the normal

TV to the face ABC makes with axes of X, Y, and Z,

respectively, are a, (3, and 7-,
there may be written:

J a sec 7 = 6 sec a =c sec /3. . . . (i)

The tetrahedron is held in equilibrium by the normal

and shearing stresses on the faces a, b, and c and the

resultant stress whose intensity is q on ABC = A. The

components of that resultant parallel to the axes of X,

Y, and Z whose intensities are qx , qv ,
and qz are respect-

ively equal and opposite to the corresponding axial sums

of stresses as shown by the following equations :

..... (2)

..... (3)

..... (4)

As these are rectangular components, if their squares

are added the sum will be equal to q
2A2

. If both sides

of the resulting equation be divided by J2
, remembering

that

a2 b2 c2
- =cos2

r\
-fi

=cos2
a; =cos2

0;
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ab be
-,

ac= coscosr; -^
= coso:cos|8; and -- = cos cos r

and that

cos2 a+cos2
/3+cos

2
7-
= !; .... (5)

there will be found :

px
2 COS2 a+py2 COS2 /3+*2 COS2

?-+ 2 COS a COS

Pxypzy -\-pzpxz) +2 COS a COS $(pxpyx+pxzpvz+Pvpxy) +
2 COS ]8 COS r(P*Pvz+Pzxpxy+PvPzu) +P

2
xz(l "COS

2
|8) +

)=g2 ...... (6)

The square root of the first member of eq. (6) will

give the desired value of the intensity q on any given plane.

If both members of eqs. (2), (3), and (4) be divided by A:

px cosa+pzx cos r+pvxcos P=qx , , ,
. (7)

"

py cos P+pZy cos r+pxv cos a =qy ,
. . . (8)

pz cos r +Pxz cos a+pyg cos p=qx . . . . (9)

If p be the angle between the axis of X and the direc-

tion of q, then will

cos pi =2^....... ( I0 )

q

Eqs. (8) and (9) give similar values of the cosines of

the angles .between the direction of q and the axes of Y
and Z, thus fixing the direction of q.

Using the values of qx , qy ,
and qz as given in eqs. (7),

(8), and (9), the component of q normal to its plane of

action (ABC = J) will be:

qn =qx cos a+qv cos p+qg cos 7. . . . Cu)
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Hence the obliquity 4> of q can at once be determined

by the equation

(12)

The triangular face XYZ of the tetrahedron Fig. i

may be considered a part of the exterior surface of a body
on which acts the stress whose intensity is q. The three

rectangular coordinates faces XOY, YOZ, and ZOX are

then to be taken as interior surfaces of the body on which

act the internal stresses indicated. The stress on the

external face XYZ must be in equilibrium with the stresses

acting on the three interior rectangular coordinate faces

of the tetrahedron.

Principal Stresses and Ellipsoid of Stress.

The preceding equations are general anfL relate to

stresses on any planes whatever. If, however, the stress

q is normal to its plane of action it is a principal stress.

In that case the obliquity is zero and there is no shear.

Hence,

Substituting these values in the second members of

eqs. (7), (8), and (9), and then eliminating cos a, cos
/3,

and cos r from the three resulting equations, the follow-

ing equation of the third degree will be found:

-
(px +Pv +Pz)q

2 + (Pxp

2
xV
-
Pxpypz

~ 2pxvpzxpvz =0. . . (14)

Or, indicating the coefficients of q and the part of this
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equation independent of that quantity by A, B, and C,

respectively :

q*-Aq2 +Bq-C = o..... (15)*

The three roots of this cubic equation are the inten-

sities of the three principal stresses, and the equation
shows that at every point three such principal stresses

exist, each normal to its plane of action on which there is

no shear.

If in. eq. (6) the coordinate axes of X, Y, and Z be

taken as the principal axes so that the intensities px , pv ,

and pz become the principal intensities qi, q2 ,
and q3 ,

then will pxy =pyz
= pxll

= o
y
and q will be the intensity

of stress in any direction on a plane whose normal makes
the angles a, 0, and 7 with the coordinate axes, i.e., with

qi, q2, and qs . Hence

cos2
r . . (16)

Again, if qx , qv ,
and qz are the rectangular components

of q, Eqs. (7), (8), and (9), will, under the same conditions,

give :

<i cos =* 2cos= and

Then, squaring and adding:

* Rankine observed in his Applied Mechanics that if qit qz, and q3 are

the roots of a cubic equation, then :

(q
-

qi) (q 52) (q qs)=q
3 -q 2

(qi +52+53) +5(3132 +325* +5i5s) - qiQzqa
= o.

This equation shows that the quantities A, B, and C remain the same
whatever may be the directions of the three rectangular axes at a given

point. Hence, by using A it is seen that qi+q*+q>=px+py+pz, i.e., the

sum of the normal components of the intensities of stress on any three

rectangular coordinate planes is constant and equal to the sum of the

intensities of the three principal stresses.
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By dividing this equation through by q
2 it may be

written in terms of the angles between q and the coor-

dinate axes (eq. 18) and the reciprocal of q
2

.

Eq. (17) is the usual form of the equation of an ellip-

soid with the origin of coordinates at its center in which

qi, q2, and q$ are the semi axes and qx , qy and qz are the

coordinates of any point in the surface.

The intensity of stress q in any direction, represented

by the semi-diameter of the ellipsoid in that direction,

is given by eq. (16), and the angles between its direction

and the coordinate axes X, Y, and Z may, by the aid of

eq. (10), be written:

qx q i cos a qv q-z cos
cos pi = = -; cosp2 = =

q q q q

qz <? 3 cos r
3= - =~__

.

(18)

The component of q normal to its plane of action is

given by eq. (u) :

qn =q\ cos2 a+^2 cos2
fi+qz cos2

f. ( T 9)

The cosine of the obliquity of q is therefore:

cos <= ..... . . (20)
q

These elementary considerations are sufficient for the

purpose of outlining to some extent at least the general

subject of stress in any or all directions in solid bodies.

The results may easily be developed, so as to be applicable

to the solution of any required problem. The equations

(2), (3), and (4) are frequently applied to the discussion
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of the action of external forces qx , qy ,
and qz ,

in connection

with the internal stresses px , pu and pz , etc., as will be

indicated later.

It is obvious that if all the internal stresses act parallel

to one plane, eq. (14) and those which follow it will relate

to the ellipse of stress, showing that the latter is a special

case of the ellipsoid of stress.

Art. 12. Ellipse and Ellipsoid of Strain.

It has been shown that the intensity of stress at any

point in a solid homogeneous body may be represented

by the semi-diameter of an ellipsoid in the general case

or the semi-diameter of an ellipse in the special case of all

stress being parallel to a plane. Inasmuch as strains are

proportional to the corresponding stresses below the elastic

limit, the strain of a very short but constant length of a

solid element at any point would be represented by the

semi-diameter of an ellipsoid or ellipse having the same

direction as the corresponding intensity, which also might
be represented by the same semi-diameter at a proper
scale. It follows from these simple considerations that

strains in all directions may be represented by ellipsoids

and ellipses as well as stresses. While such ellipsoids and

ellipses possess analytic interest in connection with the

theory of elasticity in solid bodies, they are not of sufficient

importance in the structural operations of engineering to

require even elementary analytic treatment.

Art. 13. Orthogonal Stresses.

When stresses of tension or compression at right angles

to each other concur either in one plane or on three coor-

dinate planes making right angles with each other, as in
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the cases of the ellipse and ellipsoid of stress, they are

said to be orthogonal stresses. Such stresses produce

partially independent strains in the directions in which

they act, but the resultant stress on any one plane is a

single stress obviously accompanied by its character-

istic strain. This is true whether the stress is wholly

parallel to one plane or if it acts in all directions. The
fact that lateral and direct strains in the same directions

may concur has induced some engineers and writers to

attempt to provide rather arbitrarily for the supposed
effects of orthogonal stresses and strains.

If in the case of stress wholly parallel to one plane

px and py represent the intensities of the principal stresses,

as in Art. 7, the unit strain parallel to the axis of x

will be,

Similarly the unit strain in the direction of y will be,

In the preceding eqs. (i) and (2) the plus sign is to be

used if the intensities px and pv are of opposite kinds, but

the minus sign is to be written if the two stresses are of

the same kind, i.e., both tension or both compression.
Two intensities of stress p'x and p'v are then assumed,

each of which if acting separately would produce the

strains in the two coordinate directions, respectively,

shown by eqs. (i) and (2). These two intensities must
have the following values :

px rpv and pv rpx..... (3)
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These are called
"
equivalent

"
intensities of stress, and

it is postulated that the working intensity of stress pre-

scribed for any member of a structure must not exceed

the greatest of the two values given by eq. (3).

In the special case of two principal stresses being of

opposite kinds but of equal intensity, the greatest shear

will be of the same intensity as the principal stresses,

or by the aid of eq. (3)

or, combining eqs. (3) and (4),

(s)

hence,

P'*

t+r

In the latter case it is said that the greatest shear

must not exceed pt in eq. (6), p'x representing the pre-
scribed working intensity in tension or compression as

the case may be.

This arbitrary substitution of an intensity of stress

corresponding to the sum of two coordinate strains, in the

place of an actual greatest intensity of stress acting on its

proper plane, is not supported by any substantial analytical
or experimental basis. The maximum intensity of stress

at any point in a piece of material subjected to loading

may readily be determined and the position of the plane
on which it acts may be ascertained by the methods given
in the preceding articles, and it is difficult to imagine any
sufficient reason for not making that actual maximum
intensity of stress equal to the prescribed working stress

of the same kind. The maximum intensity of stress at

any point will of course be accompanied by the maximum
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unit strain and a proper limitation of that strain will be

coincident with a proper limitation of the stress pro-

ducing it. These observations are equally true whether

the kind of stress involved be tension, compression, or

shearing.

The substitution of an artificial
"
equivalent

"
stress,

therefore, in the place of the actual maximum stress at

any point remains to be justified and will not be employed
in this work. All the design work involving the employ-
ment of a prescribed working stress will be based upon the

greatest actual intensity of stress in the structural mem-
ber under consideration.

Again, the significance of lateral strains has been

expressed by stating that if a straight bar of structural

steel with square cross-section, for illustration, be sub-

jected to a tensile stress of intensity p, the lateral strains

will be negative, as they decrease the lateral dimensions

of the bar, and hence that if the ratio of lateral to direct

strains be taken as one-fourth, then those lateral strains

are each precisely the same as would be produced by an

intensity of compression equal to %p, acting at right angles

to the bar and on either pair of opposite sides. Hence,

it has been said that such a bar is not only subjected to

the axial tension, but also to a
"
true internal stress which

acts as a compression at right angles to the axis of the

bar." It is further stated that such a bar
"

suffers a

true internal compressive unit stress ... in all direc-

tions at right angles to its length ..."

It is still further stated that
" The injury done to

a body does not depend upon the 'actual stress or pres-

sure, but upon the actual deformations produced, and the

true stresses are those corresponding to these deforma-

tions."

It is difficult to imagine how the
"
actual

"
stress
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existing at any point in a body fails to be the
"
true

"

stress. If the
"
true

"
stresses are different from the

actual they must be imaginary or at least not actual or

real.

It cannot be admitted that the lateral strains accom-

panying the direct strains of a bar subjected to axial

tension are produced by
"
a true internal

"
compression,

for no such corresponding external compressive forces or

pressure at right angles to the axis of the bar exist. If

the lateral strains were due to such compressive stress,

the corresponding external compressive forces would per-

form work and would make the total resilience of the bar

two-ninths greater than the resilience due to direct tensile

stress only, if the ratio r be taken as one-third.

This species of confusion seems to arise at least partly
from a failure to distinguish between molecular conditions

below the elastic limit and those above that limit.

If a bar is subjected to axial tension producing corre-

sponding axial and lateral strains, in consequence of which

the lateral dimensions of the bar decrease, it by no means
follows that actual compression has produced that decrease.

In fact, since the molecules have been separated to a slight

.degree axially, the transverse movement of the molecules

may easily be conceived to take place without any com-

pression whatever, and the fact that the density of the

material is decreased by tensile stress makes that view

reasonable, and perhaps conclusively confirms it. It should

be remembered that all these analytic investigations re-

late only to stresses and strains existing below the elastic

limit.

While it is true that experimental investigation is

still lacking to give complete information regarding the

effects of orthogonal stresses and strains below the elastic

limit (as well as above it) there is lacking material evi-
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dence showing the existence of any such stress conditions

consequent upon the existence of lateral strains as those

to which allusions are made above, and they will not be

recognized in the analytic work which is to follow.

In discussing the stresses in the walls of thick cylin-

ders in Appendix II, the bearing of these considerations

on the formula of Clavarino will be fully set forth.

PROBLEMS FOR CHAPTER I.

Problem i. A wrought iron bar 4
//

x|
//

in section is

subjected to a tensile force of 28,000 pounds. The stretch

for a gaged length of 20 feet was 0.12 inch. Find the

intensity of tensile stress in the material, the modulus of

elasticity E, and the rate of strain, i.e., the strain per
linear inch.

Ans. Intensity of stress = 14,000 Ibs. per square inch.

= 28,000,000 pounds per square inch.

Rate of strain = 0.0005 inch per inch.

Problem 2. A steel eye-bar 8
// X2 //

in section carries

a total load of 128,000 pounds, under which there is a

stretch of 0.016" in a gaged length of 5 ft. Find the in-

tensity of stress, rate of strain, and modulus of elas-

ticity E.

Problem 3. Steel has a modulus of elasticity of

30,000,000 pounds per square inch, and a coefficient of

expansion of 0.0000065 per degree F. If a steel bar 2"X4"
in cross-section has a length of 30' o" at a temperature
of 40 F., find the length of the bar at 10 F. and at 110

F. Suppose the ends of this bar had been fastened rigidly

at the temperature of 40 F. Find the intensity of ten-

sile stress at 10 F. and intensity of compressive stress at
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110 F., supposing the bar to be firmly held against lateral

deflection.

Partial Ans. Length of bar at 10 F. =29'.99415.

Intensity of tensile stress in bar at a

temperature of 10 F.=585o pounds

per square inch.

Problem 4. A concrete pillar 24^X2^' in section and

8 ft. high carries a total (compressive) load of 115,200

pounds. If the modulus of elasticity for the concrete

is 2,500,000 pounds per square inch, what will be the

rate of compressive strain and the shortening, first, for

the total height 8 ft. of pillar, and, second, for 12", under

the preceding load?

Problem 5. In Problems i and 2, if Poisson's ratio

r (i.e., the ratio of lateral to direct strain) is 0.3, find the

new cross-dimension of the bars and also the change in

volume for a portion of each bar i foot long.

Ans. for Problem i.

^ = 3". 99916; b =0^.499895;

change in volume = 0.00908 cubic inch decrease.

Problem 6. In Problem 3, the cross-dimensions of

the bar, under the compressive stress, become 2".000114
and 4".0002 2 8. Find the ratio r between direct and
lateral unit strains, and also the increase of volume of 3

ft. length of the bar.

Problem 7. In Problems 5 and 6 find the modulus
of elasticity, G, for shearing in terms of^ the direct modulus
of elasticity E.

Problem 8. In Problem 2 find the total normal and

tangential stresses and their intensities on plane sections

making angles of 18, 35, and 53 with the axis of the

piece.

Problem 9. In Problem 3 find the total normal and

tangential stresses and their intensities on plane sections
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making angles of 31, 45, and 72 with the axis of the

piece.

Problem 10. A round steel bar 3 inches in diameter

is subjected to a tensile stress of 212,100 pounds. If the

diameter of the bar decreases 0.00105 inch, find the

ratio r between the direct and lateral strains, and also

the increase of volume in a 4-ft. length of bar. Assume
modulus of elasticity E as 30,000,000 pounds per square
inch.

Problem n. Given three planes, AO, OB, and BA,
Art. 8, so placed that AOB =90 and ABO = a = 6o.

The tensile stress on OB is 3=3500 pounds per square
inch and the tensile stress on OA, ^ = 5600 pounds per

square inch. The shearing stresses on OA and OB are

equal, i.e., pxv
= pvx

= 1750 pounds pen square inch.

Find the normal and tangential components of the

resultant intensity ,
when p makes an angle = io,

below the normal to the plane AB. Also find the inten-

sity of the principal stress on the plane AB,

Problem 12. In Fig. i, Art. 8, let the intensity of the

normal tensile stress on the plane OB be 8000 pounds per

square inch, while the intensity of normal compressive
stress on the plane OA is 12,000 pounds per square inch,

and let the intensities of shearing stresses on the same

planes OB and OA be 3500 and 6500 pounds per square
inch respectively. Find the principal stresses and the

principal planes on which they act. Then, by means of

the formula of Art. 9, find the greatest intensity of shear-

ing stress on any plane at 0, and the position of that plane.

Finally, determine the intensity of the stress of greatest

obliquity at the point 0, and the plane on which it acts,

together with the intensity of shearing stress on that

plane.



CHAPTER II.

FLEXURE.

Art. 14. The Common Theory of Flexure.

A STRAIGHT piece or bar of material is subjected to

flexure or bending when it is acted upon by loads or forces

at right angles to its axis, the loads and supporting forces

taken as a whole constituting a system in equilibrium.

49
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The beam shown in Fig. i may be taken to illustrate

the general condition of flexure or bending.

Each end of the beam is supported as shown at R and

R f

,
the reactions at those points constituting the support-

ing forces, while the weights W1
and VV

2 , etc., constitute

the loading. The reactions are in reality just as much
loads on the beam as the weights carried by it, but it is

convenient always to make the distinction between loads

and reactions or supporting forces.

6

FIG. 2.

An overhanging beam is shown in Fig. 2 carrying the

weights Wl
and W

2 , etc., one end being firmly fixed in a

wall or other similar supporting mass. In this case the

supporting effect of the material in which one end of the

beam is embedded is equivalent to the couple whose

moment is Fe. Obviously there may be many other

different cases of bending, according to the manner of

supporting and loading the bent piece or beam.

In all these analyses and in all that follow, except
when otherwise specially noted, the beams are supposed
to be horizontal with the loads and reactions vertical, all

external forces thus acting at right angles to the axis of

the beam, and they are further supposed to lie all in a

vertical plane passing through the same axis. When the

loading acts as shown in Fig. i
, it is evident that the beam
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will be bent so as to become convex downward and con-

cave upward, thus causing the upper portion of the beam
to be in compression while the lower portion is in tension.

Hence if any normal section of the beam as BD be con-

sidered, in passing from B where there is compression
to D where there is an opposite stress of tension it is clear

that at some point, as m, there will be a zero stress, or,

in other words, no stress at all. The horizontal line pass-

ing through that point m of no stress, and normal to the

vertical plane through the axis of the beam, is called the

neutral axis of the section and its locus HX throughout
the entire beam is called the neutral surface. On one side

of the neutral axis in any normal section there will be

direct stresses of compression and on the other direct

stresses of tension. There are two fundamental assump-
tions in the common theory of flexure:

First, that all plane normal sections of the beam remain

plane after flexure or bending.

Second, that the intensity (amount uniformly dis-

tributed on a square unit) of either the tensile or

compressive stress in any normal section acting

parallel to the axis of the beam varies directly as

the distance from the neutral axis of the section.

In Fig. i the shaded triangles\above and below m,

having the common vertex at that point, represent the

stresses of tension and compression induced in the normal

section BD by the bending.
The loads and supporting forces act normally to the

axis of the beam upon either portion of it, as HBD, while

the internal stresses of tension and compression in the

section BD act parallel to that axis. If the equilibrium
of the same portion HBD be considered, it will be seen

that the only horizontal forces acting upon it are the in-
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te-rnal stresses of tension and compression shown by the

two shaded triangles. Hence in ordr that there may
be equilibrium the sum of those stresses of tension and

compression must be equal to zero. This latter condition

will determine in a simple manner the position of the

neutral axis. If a is the intensity of either the tensile or

compressive stress at the distance unity from the neutral

axis, then by the second of the preceding fundamental

assumptions the intensity N, at any other distance z from

the same axis or line of no stress, will be N = az. Again,
if A is the area of the normal section of the beam, dA will

be the area of an indefinitely small portion of that section,

so that the amount of internal stress acting on it will be

az.dA. If this differential amount of stress be integrated
for the entire section, the preceding condition of equilibrium
for either portion of the beam requires that the sum repre-

sented by that total integration shall be equal to zero;

or if d
l
and d represent the distances of the most remote

fibres on either side of the neutral axis, the following

equations may be written:

/di
/V,

azdA =a I zdA =o,
d J-d

or

rdl

zdA =o (i)

Eq. (i) shows that the static moment of the entire

section about the neutral axis is equal to zero, and there-

fore that the neutral axis passes through the centre of

gravity or the centroid of the normal section.

It is next necessary to determine the expression for

the bending moment of the internal stresses of any sec-

tion, such as JF of Fig. i
,
which is induced by and must
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be equal to the moment of the external forces acting upon
cither one of the two portions into which the beam is

divided by that section.

In Fig. i, let mn represent a differential length, dl

of the neutral surface, and let p represent the radius of

curvature of dl after flexure, also as shown in Fig. i, C

being the centre of curvature. If u is the direct or longi-

tudinal strain of a unit length of fibre at the distance unity

from the neutral axis, when stressed with the intensity a,

the strain in dl under that intensity will be udl. BD is

drawn parallel to JF, and represents the position of BD
before flexure. The triangle D'mD k, therefore, similar

to Cmn. Consequently there may be written

. udl dl i

Or the rate of strain, i.e., the strain of a unit' length of

fibre at distance unity from the neutral axis, is equal to

the reciprocal of the radius of curvature.

By the fundamental law or assumption of the common

theory of flexure already given

z
Rate of strain at distance z = ~.

Then, by the fundamental law between stress and

strain, the intensity N of the direct stress at any distance

z is

(3)

If b is the variable breadth of section, the differential

of the total stress is

Nbdz=-.(bdz).z...... (4)



54 FLEXURE. [Ch. II.

The differential moment of the internal stresses about

the neutral axis will be

= -.(bdz).z
2

;
.... (5)

FT
fofe).*

2 =
;
.... (6)

P

in which I is the moment of inertia of the section of the

beam about the neutral axis.

If x is the horizontal coordinate of the neutral sur-

face, and w the deflection or sag of the beam at any point,

as indicated in Fig. i
,
when the curvature is small

and

Eq. (7) is the fundamental equation by which the de-

flection of a bent beam is found, whatever may be the

character or amount of the loading. As indicated, it is

strictly true only when the deflections are small
;
in other

words, when they are produced by strains within the elastic

limit of such beams as are ordinarily used in engineering

practice. That equation is easily integrated in all ordi-

nary cases, if the value of the external bending moment M
is expressed in terms of x, as will be abundantly illustrated

in succeeding articles.

Another equation of great practical value remains to

be established. Let it first be observed that the intensity

of stress a, at the distance of unity from the neutral sur-
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face of a bent beam is a =Eu, by Hooke 's law, and further

by eq. (2)

a =Eu= ....... (g)

If the value of from eq. (8) be substituted in eq. (6)

there will result

M=aL ....... (9)

If the greatest intensity of stress in a normal section

of a bent beam at the distance d
t
from the neutral axis be

k
represented by k, then a = r, and eq. (9) will take the form

do)

Eq. (10) is one of the most important equations in the

whole subject of the resistance of materials in consequence
of its frequent use in the practical operation of designing
beams or girders. Its employment is rendered exceed

ingly simple and convenient by tables in which may be

found computed the moments of inertia 7 for all the rolled

sections, as well as values of the quantity ^-,
called the

"
section modulus." These tables are found in the various

" Hand-books" published by steel-producing companies,

and they obviate essentially all numerical computations

for the determination of either moment of inertia or section

modulus. Other tables may also be found which give the

moments of inertia of a great variety of built sections,

i.e., composite sections formed of various commercial

rolled shapes such as plates, angles, channels, and I beams.

In all the preceding expressions where the quantity
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M appears it is to be taken to represent the bending mo-
ment of the external forces, including the reactions, applied
to a beam, the moment being taken about the neutral

axis of the section under consideration. This external

moment must necessarily be equal to. the moment of the

internal stresses represented by the last members of the

preceding moment equations involving the greatest in-

tensity of stress k of the section and the moment of inertia

/ of the latter.

There are one or two approximate features involved

in the preceding analysis, the character of which is not

discoverable when the fundamental laws of the theory of

flexure are assumed rather than demonstrated, but which

appear plainly evident in the true demonstration of the

theory of flexure in App. I. It is obvious that the com-

pression produced at the exterior surface of a bent beam
at the points of loading is neglected or ignored in the pre-

ceding demonstrations; but this does not sensibly affect

the accuracy of the formulas which have been reached.

There is, however, one result of the assumptions made
which materially affects the accuracy of the formulas of the

common theory of flexure for comparatively short beams.

If the accurate analysis be followed it will be found that

the formulae of that theory involve in reality the further

assumption that the depth of the beam, i.e., in the direc-

tion of the loading, is small in comparison with the length
of span. The limit of ratio of length of span to depth
above which the formulae may be applied with strict accu-

racy cannot be definitely assigned, but there are many
beams, especially of timber, employed in engineering

practice which are much too short in comparison with
their depths to permit an accurate application of the for-

mulae of the common theory of flexure. This observation

bears with special emphasis on computations for pins in
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pin-connected bridges which are treated as short beams.

As a matter of fact, the common theory of flexure cannot

be applied to such short thick beams with any degree of

accuracy whatever. It is, however, entirely permissible

to use these formulae as general expressions, even under

such loosely approximate conditions, into which empirical

quantities established under the actual conditions of use

are introduced, but they are not to be used in any other

way. By such a procedure the formulae of the common

theory of flexure have become of inestimable value to the

civil engineer, but it is imperative to realize under what

conditions they may be employed with strict accuracy
and under what conditions the introduction of quantities

established by practical tests is required.

Art. 15. The Distribution of Shearing Stress in the Normal
Section of a Bent Beam.

The longitudinal fibres of a beam under loading take

their stresses of tension and compression from the shearing
stresses which are induced on vertical and horizontal

planes in the interior of the beam. In order to realize

what takes place in the interior of a beam let it be sup-

posed to be divided into an indefinitely large number of

small rectangular portions like those shown in the up-

per part of Fig. i, and on a somewhat larger scale in the

lower part. The vertical loading and reactions induce

transverse shears, i.e., shearing stresses on vertical trans-

verse planes, which, as known from the general theory of

stresses in solid bodies, induce shears of equal intensity on
horizontal planes. The result is that which is shown in

the lower portion of Fig. i. On the faces of the indefi-

nitely small rectangular portions of the beam there are
induced shears in pairs having the same intensity and act-
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ing either toward or from a given edge. Each horizontal

layer of the beam is, therefore, made to slide a little over

the adjoining layers above and below it, as shown at A and
A' in the lower part of Fig. i.

FIG. i.

Carefully remembering these general conditions, let the

bending moment in the section ad of the beam in Fig. 2

be represented by M and let the total transverse shear at

FIG. 2.

the same section be represented by 5. Then if x measured

M
horizontally from the section ad be so taken that x=-^ t
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and if the intensity of the direct stress of tension or com-

pression at the distance z from the neutral axis be repre-

sented by k
t there may at once be written

TI/T o kl L $z
i \M=Sx= ;

.. k=-j-x..... (i)
z J.

k is thus seen to be a function of both z and x. If z be

unchanged while x varies, the small variation of k for an

indefinitely small variation of x will be

dk Sz ..... (2)

If 5 is the intensity of the transverse shear at the dis-

tance z from the neutral axis, the variation of that intensity

for the indefinitely short distance dz (x remaining unchanged)

will be ~rdz, and if the breadth or width of the beam is b,
dz

the variation of longitudinal shear on the small horizontal

area bdx for the small distance dz will be

(3)

The small shear given by expression (3) is equal to the

variation of k found by multiplying the members of eq. (2 )

by bdzt hence

ds Sz ..... (4)

ds Sz 5
&-y or ds =7zd*..... (s)

It is obvious that the intensity of the shear at the ex-

terior surface of the beam is zero; in other words, s = o,

when z = d the distance of the extreme fibre of the section
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from the neutral axis. Hence eq. (5) must be integrated
between the limits of z and d, and that integration wiD

give

* The intensity of shear s is sometimes found with a partial regard only
to the laws of the Common Theory of Flexure. In Fig. 3 the piece abed of

a beam subjected to flexure whose neutral surface is NN is held in equilib-

rium by the direct stresses on the faces be and ad in combination with the

longitudinal shear on the face dc. If ab is equal to dx and if y be the normal

distance of any fibre from NN, obviously the difference between the direct

stresses on the two sides be and ad will be I dk.bdy in which b is the vari-
Jy

able width of the section. By the common theory of flexure, however,
dM dM A/i .

dk
f-y-

Hence the above expression becomes =- ybdy. If s is the

intensity of shear on the face dc the following equation at once results:

a b

dM C=
~Y~
* Jy

FIG. 3.

v

i
ybdy, ........... (a)

This equation differs from eq. (6) in that b, considered as a variable,

appears in the second member. If the section is rectangular, b is constant

and eq. (6) at once results. In fact if yi and y be taken as consecutive in

eq. (a), which is the differential method of establishing s, that equation will be-

come

dsbdx =
~Y~ybdy.

The quantity b now disappears from the equation whether the width of the

section be considered constant or variable. Then dividing both sides of the
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The intensity s has its maximum value where z=o, i.e.,

at the neutral axis; hence

Sd 2

(max.) 5=^ (7)

Sbd3

If the section is rectangular / = -

and

In other words, the maximum intensity of shear found at

the neutral axis is -, the average shear of the entire section.

It is to be remembered that this intensity of shear s,

at all points in the entire beam, acts on both the vertical

and horizontal planes, i.e., this shear acts on longitudinal

or horizontal planes parallel to the neutral surface as well

as upon the vertical section of the beam.

Eq. (6) is the equation of a parabola with its vertex

in the neutral surface. Hence if Of be laid off, as shown

in Fig. 2, at any convenient scale to represent the maxi-

mum value of s, as given in eq. (7), and if from / as ver-

tices the two branches of parabolic curves fa and fd be

described as shown, any horizontal abscissa of the curves

drawn from the line ad will represent the intensity of shear

at that point. The origin of coordinates for eq. (6) is at

in Fig. 2.

equation by dx and integrating, eq. (6) of the text will be established. This

means that all fibres equidistant .from the neutral axis being stressed

uniformly and hence without longitudinal shear along their vertical sides,

the beam may be considered, so far as this analysis is concerned, as com-

posed of vertical rectangular strips of width_6, which may be of finite value

or indefinitely small.



62 FLEXURE. [Ch. II.

Distribution of Shear in Circular and Other Sections.

A number of special approximate investigations have

been made to determine the distribution of shear in the

circular cross-section of a bent beam, involving more or

less complicated consideration of stresses. While these

investigations recognize the straight line variation of the

intensities of normal stresses in the section under con-

sideration, they are based on other conditions which are

FIG. 4.

not closely consistent with the fundamental assumptions
of the Common Theory of Flexure.

If the intensity of normal stress is the same at a uni-

form distance from the neutral axis of the section, adjacent
fibres equidistant from that axis will stretch the same

amount, eliminating all shearing stresses between such

fibres. If therefore a circular section whose area is A
be divided into vertical strips each with the width dy
as shown in Fig. 4, and if the notation shown in that

figure be observed, eq. (6) may be adapted to the circular

section by placing in the second member of that equation,

5 . for 5 and dy for I, resulting as follows:

-riU-^ , (9)
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This equation gives the value of the intensity of shear

in all parts of the circular section. If z=d, i.e., at all points

of the surface, the intensity 5 is zero. The maximum

intensity is found by making z = o, giving s= 3, i- e -> the

maximum intensity of shear is | the mean, as was to be

expected. The same result will necessarily follow the

same mode of treatment of any form of section whatever^
as each such section is assumed to be made up of vertical

rectangular strips between which no shear exists. The
difference between this simple approximate method based

upon results for a rectangular section and one of the

special analyses for a circular section is shown by the

maximum intensity of shearing stress at the neutral sur-

face being found equal to f (instead of f) of the mean by
one of those special methods. If, however, the ordinary

assumptions of the Common Theory of Flexure are to be

made at all the advantage or increased accuracy of such

special or more complicated analyses is not obvious.

With such material as timber, in the case of beams,

the longitudinal shear represented by s in either eq. .(7)

or eq. (8) may be the governing quantity in design. The

capacity of timber to resist shear along its fibres is com-

paratively so small that where the spans are relatively

short failure will take place by shearing along the neutral

surface before the extreme fibres yield either in tension

or compression. In the design of timber beams, there-

fore, and in other similar cases, it is necessary to test by
computation, the maximum value of s as well as to deter-

mine the greatest intensity of tensile or compressive stress

in the extreme fibres, as will be completely shown in a

later article.
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Art. 16. External Bending Moments and Shears in General.

Beams subjected to pure bending only will be treated

here.

A beam is said to be non-continuous if its extremities

simply rest at each end of the span and suffer no constraint

whatever.

A beam is said to be continuous if its length is equal
to two or more spans, or if its ends, in case of one span (or

more) suffer constraint.

A cantilever is a beam which overhangs its span, one

end of which is in no manner supported. Each of the

overhanging portions of an open swing bridge is a canti-

lever truss.

K *IT -*!

2

- d C) o

'----.

FIG. i.

-------
f
1

Fig. i represents a beam simply supported at each end,

carrying the loads W
lt W^ Ws ,

etc. Let bending moments
be taken for any section, as JF, at the distance x' from

the right-hand abutment, at which location the reaction

R' acts. The load W^ is at the distance x
l from the sec-

tion, W2
a,t the distance x

2 ,
and W

3 at the distance x
s
from

the same section, the last distance not being shown in

the figure. The bending moment desired will be the

following :

. . . (i)
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This equation is typical of all external bending moments
for a beam simply supported at each end, whatever may
be the system of loading or its amount, or whatever may
be the location of the section. This equation is frequently

written in the following form :

(2)

The summation sign indicates that the sum is to be

taken of the products formed by multiplying each external

force, whether loading or reaction, by its lever-arm or

normal distance from the section in question. It is a

common and convenient mode of expressing the general

value of the bending moment in any case whatever.

In eq. (i) the differentials of x'
,
x

lt
x

2 ,
and x

3
are all

equal, so that if that equation be differentiated, the first

derivative of M will have the following form :

S. . . (3)

It will be at once evident that 5 in eq. (3) is the total

transverse shear in the section for which the bending
moment M is written, since the algebraic sum of R' and the

loads between the end of the beam and the section con-

stitutes that shear. Indeed, the usual manner of deter-

mining the total transverse shear is the simple operation

of summing up all the external forces acting on one of the

portions of the beam formed by the section in question;
the external forces, such as the reaction, acting in one

direction being given one sign, and those, like the loading,

acting in the other direction being given the opposite sign.

The shear, therefore, becomes the numerical difference

of the two sets of forces having opposite directions.

Eq. (3) thus establishes the following important prin-

ciple: The total transverse shear at any section is equal
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to the first differential coefficient of the bending moment con-

sidered a junction of x.

In Fig. i the force 5 is supposed to be the resultant of

the three loads Wv W2 ,
and W

B ,
and the reaction R', i.e.,

the force 5 is supposed to represent that resultant both
in line of action and magnitude. The bending moment M
is, therefore, equal to Se, e being the normal distance of

the line of action of 5 from the section, so that the actual

bending moment upon any section of a bent beam may
always be represented by the transverse shear, located

as the resultant of all the external forces producing the

bending moment, multiplied by its lever-arm. This is a

simple but important matter of observation.

In the section JF let the two equal and opposite
forces S and 5, numerically equal, act in opposite direc-

tions; they ,
will not, therefore, affect- the equilibrium of

the beam or any portion of it in any way whatever. As
far as the equilibrium of the portion of the beam-yF
is concerned, the loads and the reactions may be supposed
to be displaced by the couple 5, 5, with the lever-arm e,

and the shear 5 acting upward in the section JF. The

importance of this particular feature of the analysis con-

sists in showing that in every bent beam carrying loads

the action of the external forces (including the reaction)

producing the bending is equivalent to a couple whose

moment is Se acting about the neutral axis of the section

>and the total transverse shear 5 acting in the section.

The shear 5 evidently tends to move or slide one portion

of the beam past the other, and an essential part of the

operation of designing beams and trusses is its determina-

tion at various sections with correspondingly various

positions of loading.

As is well known, the analytical condition for a maxi-

mum or minimum bending moment in a beam is
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dM
dx (4)

From eqs. (3) and (4) is to be deduced the following

principle : The greatest or least bending moment in any beam

is to be found in that section for which the shear is zero.

The greatest bending moment obviously is the only
one of importance in the design of beams and trusses, and

eq. (4) shows that the section in which it will be found

can be located by simple inspection of the loading. It is

only necessary to sum up the reaction at one end and the

loads adjacent to it, until the point is reached where the

summation is zero. This point will usually be found

where a load is supported. In that case the single load

may arbitrarily be divided into two parts, supposed to act

indefinitely near to each other, so that one of the parts

may be just sufficient to make the zero summation desired.

A single practical operation will make this feature per-

fectly clear and simple.

If the loading is uniformly continuous and of the

intensity p, in each of the equations (i), (2), and (3)

pdx is to be used for each of the separate loads Wv Wv Wv
etc. The bending moment thus becomes

M - R'x' - IWx - R'y?-/** pdx = R'x' - \px\ (5)

The expression, for the shear then becomes

f -S-K-**. . (6)

A second differentiation gives
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Or, the second differential coefficient of the moment
considered a function of x is equal to the intensity of the

continuous load.

This method of passing from formulae for concentrated

loads to those for continuous loads is perfectly simple and

frequently employed.

Art. 17. Intermediate and End Shears.

The beam shown in Fig. i is supposed to carry any
loading whatever, and the figure is consequently intended

to exhibit a uniform load in addition to a load of con-

centrations. Inasmuch as all beams and other similar

pieces have considerable weight, and sometimes great

weight, ordinarily considered uniformly distributed over

the span, this condition of loading is that which exists in

all actual cases. The amount of uniform loading per
linear unit, usually a foot, is represented by p, while the

W

FIG. i.

concentrations, as heretofore, are represented by Wlt
W

2J

etc.

The determination of the transverse shear at any sec-

tion of a beam or truss is one of the most frequent as well

as one of the most important computations required in

the design of structures. As has already been indicated,

it is an extremely simple computation. It is first neces-

sary, after knowing the position of the loading, to find the

reactions at both ends of the span. In Fig. i the various
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weights or loads are separated by the distances shown, a'

being the distance from \\\ to the reaction R or end of the

span. irc is supposed to rest at the right end of the span
for a purpose that will presently appear. The reaction

R" at the left end of the span (not shown) resulting from

the concentrated loads only will have the following value:

. (x)

The reaction R" r
at t'ie other end of the span (not

shown) can be expressed by a similar equation, but it is

simpler and more direct to write it as follows :

Obviously the sum of the two reactions R" and R"'

must be equal to the total concentrated loading.

That part of the reaction due to the uniform load ex-

tending over the span / will clearly be one half of that

load or

(3)

The reaction R^ is supposed to be found at the left

end of the span and R,, at the right end. The total re-

actions then will be as follows. At left end of the span :

(4)

At right end of the span :

. . (5)
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The transverse shear at any intermediate section of

the beam whatever may now readily.be written. Let the

section AB at the distance x from the left end of the span
first be considered. The total loading between that sec-

tion and the end of the span is W
l
+W2 + px, and it acts

downward. As the reaction R acts upward the expression
for the shear will be

(6)

In this case the section considered has been taken

between two weights; let the section at the weight W
be considered, that weight being at the distance x' from

the end of the span. The amount of uniform load over

the length x' is simply px
f

,
but inasmuch as the weight W3

is located at the section under consideration, the portion

of that weight which may be taken as resting on the left

of the section considered is indeterminate. In such cases

it is proper and customary to take any portion or all of

the weight as resting on either side of the section, but

indefinitely near to it. If it is a case where the maximum
shear is desired, the single weight should be taken in such

a position as to make the transverse shear as great as

possible. If the case is one where it is desired to find the

section at which the total load from that section to the

end of the span is equal to the reaction, any portion may
be taken which is found necessary to make the equality.

If, for instance, px
f + W 1 +W2

is less than R while px' +
W

l +W2 +W3
is greater than R, then that portion of W

3

which would be considered on the left of the section but

indefinitely near to it would be R px
f W

1
VV

2
. The

remaining portion of W
3 would be considered as resting

at the right of the section but indefinitely near to it. In

such a case the transverse shear is zero at the weight W3
.
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Again, let it be desired to find the greatest upward
shear at W3 ,

it being supposed that R is greater than the

total load between W
3
and the left end of the span. In

this case no portion of W
3
would be considered as acting

to the left of the section, but the expression for the shear

would be

S^R-px'-Wt-W,.. .... (7)

It can be seen from the preceding statements that the

maximum transverse shear in the beam will occur at the

ends of the span where the value of the shear is the end

reaction. Inasmuch as the end reaction R or R' is thus

the greatest shear in the entire span, it is a most important

quantity to determine in the design of beams and trusses;

it is the most important single factor in the determina-

tion of the amount of material required at the end sections

of both beams and trusses. The value of this end shear

is given by the values for R and R' in eqs. (4) and (5).

Since the total transverse shear in any section of a

beam is simply the summation of all the external loads,

including the reactions from one end of the span up to the

section considered, it is evident, first, that that summation

may be made from either end of the span, and second,

that the amounts so found will be equal numerically but

affected by opposite signs. In determining the shear,

therefore, in any given case, it is usual to make the sum-

mation from that end of the span which can be used with

the greatest convenience in computation.

Fig. 2 exhibits a graphical representation of the pre-

ceding treatment of intermediate and end shears, MN
being the length of span shown in Fig. i. MF is the

reaction R laid off at a convenient scale. The weights or

loads Wv W2 ,
V7

3 , etc., are laid off vertically downward in

their proper locations at the same scale, as shown. The
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vertical distance of G below F is the amount of uniform

load pa' between R and W\ in Fig. i
,
also laid down by the

same scale. GG\ is, therefore, the shear in the beam of

-I-R

-R'

FIG. 2.

Fig. i immediately to the left of Wv and H
1
G

l
is the shear

immediately to the right of the same load. Similarly,

H
L
H being drawn horizontally, HK is the amount of uniform

loading pa between W
l
and W

2
. The remainder of the

diagram is drawn in the same manner.

Any vertical ordinate drawn from MN either up or

down to the broken line FGH
t
K ... represents the shear

at the corresponding point in the span at the same scale

used in laying off the reactions and loads. QQ1
is the shear

at the point or section of beam at Qv while TT
L

is the

shear at the section T. The shear is zero at W
3 where it

changes its sign. At that point also will be found the

greatest bending moment in the beam.

As the diagram is drawn the shears on the left of W
3

and above MN are positive, those on the right of W
3 and

below MN being negative ;
but the diagram might have
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been drawn with equal propriety so as to have made R'

and the shears between it and Ws positive and those be-

tween that load and R negative.

A glance at the diagram shows that the end shears,

equal to the reactions, are the greatest in the span.

+ R

M
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sent completely the graphical treatment of shears in all

cases.

Art. 18. Maximum Reactions for Bridge Floor Beams.

Three transverse floor beams of a railroad bridge are

represented in Fig. i separated by the two spans /
t
and /

which, in a bridge, represent the panel lengths. The

members AB and BC supporting the weights Wlt
W

2 ,

etc., indicate the stringers which carry the railroad track

and the train. The two beams or stringers AB and BC
are considered simple non-continuous beams resting on

the floor beams, but not necessarily nor usually on their

tops. The problem is to determine the position of the

locomotive or other train loads on the adjacent two short

opans /
t
and /, so that the reaction R on the floor beam

between shall have its greatest value.

In Fig. i let a section of the beam be shown at R, and

let % and %\ be measured from the right ends of the two

spans as shown in Fig. i, while Wi, Wz, . . . W repre-
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Then if the moments of weights and reactions be taken

about C at the right-hand end of span 1% :

R'(h +/2 )
- (Wia+ (Wi +W2)%)

- (W,

(2)

Hence, since R'l \ is equal to the quantity within the

second parenthesis of the first member of eq. (2) :

LI -

h-irk

t)d-2 Wx+Rl2 =o...... (3)

In order that the reaction R may have its greatest

value it must remain unchanged when a small move-

ment of the train is made. If therefore x + dx and xi+dx
be written for x and %\, respectively, in eq. (3) and if eq. (3)

be subtracted from the result so obtained, the following

equations will be found :

= I W,

Eq. (4) shows the position of loading for the greatest

value of the reaction R. It means simply that the ratio

between the amount of loading on span h and the total

load on both spans shall be the same as the ratio between

the span l\ and the sum of the two spans (Ii+l2 ). Inas-

much as the load may move in either direction 12 may
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be written for l\ in the numerator of the first member
of eq. (4).

Clearly the two weights W\ and Wz in the preceding

equations represent all the loads resting on span l\ whether

there be two such weights or any number whatever. Sim-

ilarly the weights indicated by the summation sign in the

second member of eq. (4) represent the total load on both

spans. If /i =2, as is usually the case, the first member
of eq. (4) has the value of one-half.

As in all such cases there may be more than one posi-

tion of the loading which will satisfy the criterion eq. (4) ;

in that case it is necessary to determine which of those

conditions will give the maximum of the
"
greatest values

"

ofR.

Inasmuch as the sum of the weights on the span h

does not change for any value of %\ equal to or less than

b, it follows that a weight may be taken at the point of

support B in satisfying eq. (4). This will simplify the use

of eq. (3) in writing the expression for R. If x\ =b there

may at once be written from eq. (3) :

L fc+**

-(Wia+(Wi+W*Wf+(Wi+W*+ Wi)c+(Wi+ . . . +W,}d-\- 2 Wx
* -g- --(5)

This equation gives the value of R desired, and it is

so written that numerical values may readily be computed

by the use of tables. If /i=/2, as is usual, the ratio of

those two quantities becomes unity.

Art. 19. Greatest Bending Moment Produced by Two

Equal Weights.

Fig. i represents a non-continuous beam with the span /

supporting two equal weights P, P. These two weights or

loads are to be kept at a constant distance apart denoted

by a.
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It is required to find that position of the two loads

which will cause the greatest bending moment to exist

in the beam, and the value of that moment. The reac-

tion R is to be found by the simple principle of the lever.

Its value will therefore be

(i)

Since the reaction R can never be equal to 2P, IP,
or the shear, must be equal to zero at the point of applica-

tion of one of the loads P. In searching for the greatest

t~::::%.
jitm

FIG.

moment, then, it will only be necessary to find the moment
about the point of application of one of the forces P. It

will be most convenient to take that one nearest R.

The moment desired will be

x ax

dM_
dx

~ ~ 2

\

1 a
.'. x= .

2 4

This value in eq. (2) gives

' " "x>
. . ( )



78 FLEXURE. [Ch. II.

Since

d*M
_ _4P

dx 2
= "

I
'

it appears that M
1

is a maximum.
The shear 5 in the section RP of the span will be the

reaction R as given by eq. (i) :

Throughout the section a the shear S' will be

2Pi a
s

(5)

Finally, between the right abutment and the nearest

weight the shear 5
t

will be

oP/ n\ .... (6)

If the separating distance, a, between the two weights
be increased a value may be reached so great as to make
the bending moment of the pair of weights less than that

produced by placing one of them at the centre of the span.
This limiting value of a may easily be found. The moment
at the centre of span produced by placing a single weight
P there is

2*2 4
"

By using eq. (3)

M'=M,; / .^-IV/.E)'. (7)
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By solving this equation

(8)

Whenever, therefore, the separating distance a is equal

to or greater than .586 span length, the moment should

be found by placing a single weight P at the centre of the

span.

Art. 20. Position of Uniforc? Load for Greatest Shear and

Greatest Bending Moment at any Section of a Non-

Continuous Beam Bending Moments of Concentrated

Loads.

A continuous load of -uniform density is frequently

employed in structural operations both for beams and

trusses, and it is essential to place such a load so as to

produce the greatest effect both for shears and moments.

The position of loading for the greatest shear will first be

found.

A continuous train of any given uniform density ad-

vances along a simple beam of span I. It is required to

determine what position of loading will give the greatest shear

at any specified section.

In Fig. i, CD is the span /, and A is any section for

C A B
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reaction at D, and IP the load between A and . The
shear 5' at A will be

R-IP=Sf..... , . (i)

Let R f be that part of R which is due to IP, and R"
that part due to the load on CA

; evidently R' is less than

IP. Then

If AB carries no load, R' and IP disappear in the value

of 5. Hence

is the shear for the head of the train at A. S is

greater than 5' because IP is greater than R' . But no load

can be taken from AC without decreasing R''. Hence the

greatest shear at any section will exist when the load extends

from the end of the span to that section, whatever be the den-

sity of the load.

In general, the section will divide the span into two un-

equal segments. The load also may approach from either

direction. The greater or smaller segment, then, may be

covered, and, according to the principle just established,

either one of these conditions will give a maximum shear.

A consideration of these conditions of loading in connec-

tion with Fig. i
, however, will show that these greatest

shears will act in opposite directions.

When the load covers the greater segment the shear is

called a main shear
;
when it covers the smaller, it is called

a counter shear.

The determination of the greatest bending moment
at any section A of a beam or truss, exemplified by Fig. i,

traversed by a continuous train of uniform density is a

very simple matter. It is clear that every part of the
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uniform load resting on the beam will produce bending at

any section considered
;
and it is further obvious that every

part of that uniform loading will create a bending moment
at A of the same sign. It follows, therefore, that the

entire span should be covered by the uniform train in order

to produce a maximum bending moment at any section

of the beam or truss, and that this single position of the

train will give the maximum bending moment throughout

the entire span.

The preceding position of moving load is taken only for

a train of uniform density or for a series of uniform con-

centrations, each pair of which is separated by the same

distance as every other pair, i.e., for a uniformly distributed

system of uniform concentrations..

The general case of a simple beam loaded with any

system of weights may be represented by Fig. 2, in which

the beam carries three loads Wv W2 ,
and W

s , spaced as

shown. The reactions or supporting forces R and Rf
are

determined in the usual manner by the law of the lever.

Hence

A similar value may be written for Rf

,
but it is simpler

after having found one reaction to write

R f

=W, +W2 +W3
-R....... (3)

The beam itself being supposed to have no weight, the

bending moments at the points of application of the loads

will be

(4)
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After substituting the value of R from eq. (2) in

eqs. (4) the moments in the latter equations will be com-

pletely known.

S=R

S'=-R'

FIG. 2.

The bending moment produced by each weight will be

represented by the ordinates of the triangles shown in Fig. 2,

the resultant moments at the points of application of the

weights being given by eqs. (4). The ordinate CD repre-

sents Mj in eqs. (4) by any convenient scale. Similarly
FH represents M2

in eqs. (4), and KL, M 3
. The lines

AC, CF, FK, and KB are then drawn. Any vertical inter-

cept between AB and the polygon ACFKB, found in the

manner explained, will represent the bending moment
at the point where the intercept is drawn, and to the scale

at which Mv M2 , and M3
are laid down. This intercept is

simply the sum of the intercepts of the triangles, each

representing the partial bending moment due to a single

weight.
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Obviously the bending moments of any number of loads

of any magnitude or of a uniform load, even, may be treated

or represented in the same manner.

The lower portion of Fig. 2 is the shear diagram drawn

precisely as explained for Fig. 3 of Art. 17.

Art. 21. Greatest Bending Moment in a Non-Continuous
Beam Produced by Concentrated Loads.

The position of the moving load for the greatest bend-

ing moment at any section of a non-continuous beam may
be very simply determined. In Fig. i, let FG represent

any such beam of the span /, and let any moving load what-

ever, as V/i . . . W nr - - - Wn advance from F toward G.

Let C be the section at which it is desired to determine the

maximum bending moment, and let n' loads rest to the

left of C, while n is the total number of loads on the span.

Finally, let x' represent the distance of W'

n> from C and to

the left of that point, while x is the distance of Wn to the

left of F. If a is the distance between W
1
and W

2 ,
b the

distance between W., and W
3 ,

c the distance between W
3

and W4 , etc., the reaction R at G will be

W'i

W.-

The bending moment M about C will then take the

value
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W
l (a

W2 (

Or, after inserting the value of R from above,

M = [W,a + (W, +W2)b

- W,a - (W1 +W2)b
-
(W, +W2 +W3)c

If the moving load advances by the amount Ax, the

moment becomes, since Ax = Ax'
,

o O
-l'-

C.G.

FIG. i.

-(W,+W2 + ... +Wn*)4*. (3)

Hence, for a maximum, the following value must never

be negative :

M f

-M==Aoc\^(W, +
W

2 +Wz + . .. +Wn )

-(Wi +W2 + ... +W n.)\ =o. (4)

Or the desired condition for a maximum takes the form

. ... (5)
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It will seldom or never occur that this ratio will exactly

exist if W n' is supposed to be a whole weight; hence Wn >

will usually be that part of a whole weight at C which is

necessary to be taken in order that the equality (5) may
hold.

It is to be observed that if the moving load is very

irregular, so that there is a great and arbitrary diversity

among the weights W, there may be a number of positions

of the moving load which will fulfil eq. (5), some one of

which will give a value greater than any other; this is

the absolute maximum desired.

From what has preceded, it follows that Wnf may
always be taken at the point C in question; hence x' in

eq. (2) may always be taken equal to zero when that

equation expresses the greatest value of the moment. The

latter may then take either of the two following forms :

l
+W2 )b + . . . + (W1 + W,

x]
-W> -

(W,
- ... -(WL

(6a)

In these equations % corresponds to the position of

maximum bending, while the sign (?) represents the dis-

tance between the concentrations Wn>- v
and Wn >.

The preceding equations give the greatest bending
moments at any arbitrarily assigned points in the span.
There remains to be determined the point at which the

greatest moment in the entire span exists, and the mag-
nitude of that greatest moment.
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It has already been shown that for any given condition

of loading the greatest bending moment in the beam will

occur at that section for which the shear is zero. But if

the shear is zero, the reaction R must be equal to the sum
of the weights (Wi+W2+. . .+Wn>) between G and C,

the latter now being the section at which the greatest

moment in the span exists.

Hence for that section eq. (5) will take the form

r R
(

.

. .+Wn
Hence

R=j(Wi+W2 +. . .+Wn). /. (8)

The relations existing in eqs. (7) and (8) can obtain

only if the centre of gravity CG in Fig. i is at the dis-

tance I' from F, showing that the centre of gravity of the

load is at the same distance from one end of the beam
as the section or point of greatest bending is from the

other. In other words, the distance between the point of

greatest bending for any given system of loading and the

centre of gravity of the latter is bisected by the centre of span.

If the load is uniform, therefore, it must cover the whole

span.

It is to be observed that eq. (6) is composed of the sums
Wv Wj + Wjj, etc., multiplied by the distances a, b, c, etc.

Again, as in the equation immediately preceding eq. (2),

the expression for the moment, M, may be taken as corn-

posed of the positive products of each of the single weights

Wi, W2, etc., multiplied by its distance from any point
distant x to the right of Wn and of the negative products

similarly taken in reference to the section located by x
1

',

as shown by eq. (6a).
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The practical application of the preceding formulae

can therefore best be effected by means of a tabulation of

moments like that shown in Table I, taken from the stand-

ard specifications of the N. Y. C. R. R. Co. for 1915. The

wheel weights and train loads shown in the table are for

one rail only, i.e., they are half those for one track. By
comparing the weights and spacings with those in Fig. i

and eq. (6) it will be seen that W\ = 15,000 Ibs.; W^
30,000 Ibs.; W3 =3o,ooo Ibs., etc., and that a = 8 ft.; 6 =

5 ft.; c = s ft., etc.

The arrangement of Table I essentially as shown has

been used for a long time to expedite the computations of

moments and shears produced by wheel concentrations,

followed by a heavy uniform load. It will be noticed that

the first line at the top of the diagram shows the progress-

ive sums of the individual loads beginning at the left-

hand end, i.e., at Wi, in connection with the progressive

sums of the distances between the centres of each pair

of wheels. The second line (in the larger figures) is the

progressive sums of the moments of the wheel loads about

the centre of Wi, i.e., 1860 is the moment of W%, Wa,

W, and Ws about the centre of W\. Each of the hori-

zontal spaces below the heavy line on which the wheel

concentrations rest contains one line of small figures and
one line of large figures. The small figures are the pro-

gressive sums of the distances from the head of the uniform

moving load or from each successive wheel to each of the

wheel weights in the series. The larger figures give the

progressive sums of the moments of the wheel weights

beginning with Wig about the head of the uniform load,

i.e., 19.5X5 =97-5> and 19.5X10+97.5 =292.5. Each hori-

zontal space is seen to begin at the vertical heavy line

under each weight taken in succession and to contain the

progressive sums of the moments, weights, and distances
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about or from each such weight, as is clear on examining
the diagram. At the left of each horizontal line there is

found the number of the wheel load under which the right-

hand end of the line begins.

The diagrammatic exhibit of these various numerical

quantities will enable the reactions, shears, and greatest

moments at any point in the span to be readily deter-

mined.

When a uniform train load is a part of the system
of loading it is only necessary to consider any section

of it as acting through its centre of gravity, i.e., through
its mid-point. Taking that centre as its point of appli-

cation the separating space is the distance from that point
to the nearest concentration. If in Table II 20 ft. of

train load be used, that train weight will be 60,000 Ibs.

applied at the distance 10 + 5
= 15 ft. from load 18. This

simple operation is all that is needed for any uniform

load or for a series of sections of uniform load.

Table II is a table of maximum moments, end shears*

and floor-beam reactions for girders having spans up to 125

ft., and it is taken from the New York- Central Railroad

Specifications for 1915. The shears and floor-beam reactions,

like the results shown in Table I, are given in thousands

of pounds and are for one rail only. The moments are given
in thousands of foot-pounds, like the moments shown in

Table I. The loading is the same as that shown by the

diagram in Table I, except that the results for spans up
to a maximum of n ft. are found by using a special

loading of two 72,ooo-lb. axle loads 7 ft. apart, or 36,000

Ibs. for each rail. The maximum moments are found for

the conditions of loading given by the criterion, eq. (5),

of this article. The maximum floor-beam reactions are

found by eq. (5) of Art. 18, in accordance with the

criterion, eq. (4), of the same article.
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TABLE II.

TABLE OF MAXIMUM MOMENTS, END SHEARS AND FLOOR-

BEAM REACTIONS FOR GIRDERS.

Moments in Thousands of Foot-pounds.

Shears and Floor-beam Reactions in Thousands of Pounds.

Loading-Two E 60 Engines and Train Load of 6000 Ibs. per Foot or Special

Loading Two 72,ooo-lb. Axle Loads 7 Ft. C to C.

Results for One Rail. Results from Special Loading Marked *.

Span.
Ft.
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Span.
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and quarter-points of the span, the dead load or own

weight of the girder, floor system and track being taken

at 1800 Ibs. per linear foot.

Dead Load.

By eq. (6) of Art. 22 the bending moments at the

quarter-point and centre are, since the reaction R is

44 X 900 =39,600 Ibs.
;

Quarter-point. Centre.

X = \l
= 22 ft. X = %l

= 44 ft.

M=(lx-x2
) . . .654,000 ft.-lbs. 871,000 ft.-lbs.

2

By eq. (7) of Art. 22, the shears at end, quarter-

point, and centre are :

End. Quarter-point. Centre.

X=o # = 22 ft. #=44 ft.

Shear = 39,600 Ibs. 19,800 Ibs. zero

Moving Load.

If weight W4 be placed at the quarter-point of the

span, 14 wheel weights will rest on the girder with W\
I'

5 ft. from the right-hand end of the span. As y
=

ii
i

,, ., . / \ -,-u ^ 75>oo 105,000
the cntenon, eq. (5), gives either 7-=-^- -

or,
-

,

I 367,500 367,500
the first being too small and the second too large. Hence

W at the quarter-point is the proper position for the

maximum bending moment. W\ will be 84 ft. from the

right-hand end of the span. Taking moments of all the

wheels about that point, by the aid of Table I, the reac-

tion R at the left end of the span is :

,-, 14,830.000R = - - = 168,500 Ibs.
88
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Eq. (6) will then give the bending moment at Wi,
but having the reaction R and using Table I the bending
moment becomes:

M = 168,500 X22 720,000 = 2,987,000 ft.-lbs.

The end shear with the load placed so as to produce
the greatest bending moment at the quarter-point is ob-

viously the reaction R = 1 68, 500 Ibs. The shear immediately
at the left of the quarter-point will be 168,500 75,000
= 93,500 Ibs.

The greatest bending moment at the centre of span
is similarly found. If Wis be placed at the centre of the

span the wheel weights W& . . . Wis and 9 ft. in length

of the uniform train load will rest on the span. The ratio

representing the criterion, eq. (5), is y = 5-
or r. The

I 310 310
first of these values is too large and the latter is too small,

showing that Wis at the centre of the span is the correct

position for the greatest bending moment at that point.

The reaction R for this position of the load is at once

written by the aid of Table I as follows:

11,695 + 2619+ 121.5R = - X 1000 = 164,000 Ibs.
oo

The bending moment M for the centre of the span is as

follows, using the preceding value of R and Table I :

Af =(1X14,440.5 3370) X 1000 =3, 848,ooo ft.-lbs.

The end shear for this position of the loading is the

reaction R, i.e., 164,000 Ibs. The shear indefinitely near

to but at the left of the centre is 164,000 153,000 = 11,000

Ibs, This small shear shows that the moment at the cen-
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tre of the span is the greatest in the entire span for this

position of loading.

Assembling the preceding results, the total dead and

moving load moments and shears will be as follows:

Moments.

Quarter-point. Centre.

Dead Load 654,000 ft.-lbs. 871,000 ft.-lbs.

Moving Load. . . .2,987,000 ft.-lbs. 3,848,000 ft.-lbs.

3,641,000 ft.-lbs. 4,719,000 ft.-lbs.

Shears.

End. Quarter-point. Centre.

Dead Load 39,600 Ibs. 19,800 Ibs. zero

Moving Load. . . . 168,500 Ibs. 93,500 Ibs. 11,000 Ibs.

Total 208,100 Ibs. 113,300 Ibs. n,ooolbs.

The expression
"
equivalent uniform load," for moments

or shears, as the case may be, is sometimes used. It

simply means that the uniform load is such as to produce
the moments or shears equivalent to those found under

given conditions. A uniform load p per linear foot acting

on the entire span / will produce a centre-moment of .

8

pi
2

Hence if there be written -3-
=

3,848,000, then, if / = 88:
o

o

p= X3,848,000 = 3980 Ibs. per linear foot.

The equivalent uniform load therefore for the greatest

bending moment at the centre of the span is 3980 Ibs.

per linear foot. Similarly as the bending moment at any
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distance x from one end of the span is ^(loc-oc
2
), if oo be made

2

22 in the present case, I being 88 feet, there will be found

by placing this expression equal to 2,987,000 ft.-lbs:

2,987,000 ... ,.

i =4114 Ibs. per linear foot.
726

The end shear for a uniform load over the whole span
is equal to the load on half the span. Hence by placing

= 164,000 Ibs., there will result:

164,000
p=- -=3727 Ibs. per linear foot.

44

This is the equivalent uniform load for the end shear

with the load so placed as to give the greatest bending
moment at the centre of the span.

In the same way the equivalent uniform load for the

end shear 168,600 Ibs., with the load placed so as to give

the greatest bending moment at the quarter-point, will

be found to be 3830 Ibs. per linear foot.

These simple instances show that the equivalent uni-

form load varies from one case to another according to

the amount, distribution and position of the loading.

Art. 22. Moments and Shears in Special Cases.

Certain special cases of beams are of such common
occurrence, and consequently of such importance, that a

somewhat more detailed treatment than that already

given may be deemed desirable. The following cases are

of this character:
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Case I.

Let a non-continuous beam supporting a single weight
P at any point be con-

sidered, and let such a

beam be represented in

Fig. i. If the span RR'

is represented by

the reactions R and Rf
will be

R=jP, and R'=-jP. . . . . (i)

Consequently, if x represents the distance of any sec-

tion in RP from R, while xf

represents the distance of any
section of R'P from R', the general values of the bending
moments for the two segments a and b of the beam will be

M = Rx, and M'=R'x'. ..... (2)

These two moments become equal to each other and

represent the greatest bending moment in the beam when

x=a and x' = 6,

or when the section is taken at the point of application of- the

load P.

Eq. (2) shows that the moments vary directly as the

distances from the ends of the beam. Hence if AP (nor-

mal to RR') is taken by any convenient scale to represent

the greatest moment, -yP,
and if RARf

is drawn, any

intercept parallel to AP and lying between RAR' and RRf

will represent the bending moment for the section at its

foot by the same scale. In this manner CD is the bend-

ing moment at D.

The shear is uniform for each single segment; it is
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evidently equal to R for RP and R' for R'P. It becomes
zero at P, where is found the greatest bending moment.

Case II.

Again, let Fig. 2 represent the same beam shown in

Fig. i, but let the load be one of uniform intensity, p,

extending from end to end of the beam. Let C be placed
at the centre of the span,

and let R and R'
',
as before,

represent the two reactions.

Since the load is symmetri-
cal in reference to C,

R=R.
For the same reason the

moments and shears in one

half of the beam will be exactly like those in the other;

consequently reference will be made to one half of the

beam Only. Let oc and X
L

then be measured from R
toward C. The forces acting upon the beam are R and

p, the latter being uniformly continuous. Applying the

formulae for the bending moment at any section x, re-

membering that x
1
has all values less than x,

FIG. 2.

M=Rx-pf (x-xjdi
*/ o

i

/. M=Rx-

If / is the span, at C, M becomes

M -
2 8

(3)

(4)

But because the load is unif6rm
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Hence

M PP - WI MM
i
= ---^ W

if W is put for the total load. Placing

2
'

in eq. (3),

(6)

The moments M, therefore, are proportional to the

abscissae of a parabola whose vertex is over C, and which

passes through the origin of coordinates R. Let AC, then,

normal to RR', be taken equal to Mv and let the parabola
RAR' be drawn. Intercepts, as FH, parallel to AC, will

represent bending moments in the sections, as //, at their

feet.

The shear at any section is

S = =R-*x = 4>(--x}
dx f? P\2 /'

w
or it is equal to the load covering that portion of the beam

between the section in question and the centre.

Eq. (7) shows that the shear at the centre is zero; it

also shows that S =R at the ends of the beam. It further

demonstrates that the shear varies directly as the distance

from the centre. Hence, take RB to represent R and draw
EC. The shear at any section, as H

t
will then be repre-

sented by the vertical intercept, as HG, included between
EC and RC.

The shear being zero at the centre, the greatest bending
moment will also be found at that point. This is also

evident from inspection of the loading.
'

Eq. (2) of Case I shows that if a beam of span / carries a
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w
weight at its centre, the moment M at the same point

will be

(8)M - 1=
1
~

4
'

2 8
*

The third member of eq. (8) is identical with the third

member of eq. (5). It is shown, therefore, that a load

concentrated at the centre of a non-continuous beam will

cause the same moment, at that centre, as double the same

load uniformly distributed over the span.

Eqs. (5) and (8) are much used in connection with the

bending of ordinary non-continuous beams, whether solid

or flanged ;
and such beams are frequently found.

Case HI.

The third case to be taken is a cantilever uniformly
loaded; it is shown in Fig. 3. Let

x be measured from the free end A,
and let the uniform intensity of the

load be represented by p. The load |

px acts with its centre at the distance

%x from the section x. Hence the

desired moment will be

M=px.-= . . (9)

If AB =
/, the moment at B is

FIG. 3.

do)

The negative sign is used to indicate that the lower side

of the beam is subjected to compression. In the two pre-

ceding cases, evidently the upper side is in compression.
The shear at any section is
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Hence the shear at any section is the load between the free

end and that section.

Eq. (9) shows that the moments vary as the square

of the distance from the free end; consequently the

moment curve is a parabola with the vertex at A, and

with a vertical axis. Let EC, then, represent M1 by any
convenient scale and draw the parabola CDA. Any ver-

tical intercept, as DF, will represent the moment at the

section, as jp, at its foot.

Again, let EG represent the shear pi at B, then draw

the straight line AG. Any vertical intercept, as HF, will

then represent the shear at the corresponding section F.

Art. 23. Recapitulation of the General Formulae of the

Common Theory of Flexure.

It is convenient for many purposes to arrange the

formulse of the Common Theory of Flexure in the most

general and concise form. In this article the preceding

general formulse for shear, strains, resisting moments, and

deflections will be recapitulated and so arranged. In

order to complete the generalization, the summation sign 2
will be used instead of the sign of integration.

In Fig. i, let ABC represent the centre line of any bent

beam; AF, a vertical line through A ; CF,& horizontal line

through C, while A is the section of the beam at which the

deflection (vertical or horizontal) in reference to C, the

bending moment, the shearing stress, etc., are to be deter-

mined. As shown in figure, let x be the horizontal coor-

dinate measured from A, and y the vertical one measured

from the same point ;
then let xi be the horizontal distance

from the same point to the point of application of any
external vertical force P. To complete the notation, let D
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be the deflection desired; Mi, the moment of the external

forces about A\ S, the shear at A; u, the strain (exten-

"

F
~"

FIG. i.

sion or compression) per unit of length of a fibre parallel to

the neutral surface and situated at a normal distance of

unity from it; /, the general expression of the moment of

inertia of a normal cross-section of the beam, taken in

reference to the neutral axis of that section
; E, the coeffi-

cient of elasticity for the material of the beam
;
and M the

moment of the external forces for any section, as B.

Again, let A be an indefinitely small portion of any
normal cross-section of the beam, and let z be an ordinate

normal to the neutral axis of the same section. By the
11 common theory

"
of flexure, the intensity of stress at the

distance z from the neutral surface is (zP'E). Conse-

quently the stress developed in the portion 'A of the sec-

tion is EP'zA, and the resisting moment of that stress

is EP'z^.

The resisting moment of the whole section will there-

fore be found by taking the sum of all such moments for

its whole area.

Hence

Hence, also,
- M
M==

EI'
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If n represents an indefinitely short portion of the

neutral surface, the strain for such a length of fibre at unit's

distance from that surface will be nu.

If the beam were originally straight and horizontal, n

would be equal to dx.

u being supposed small, the effect of the strain nu at

any section, B, is to cause the end A of the chord BA to

move vertically through the distance nux.

If BK and BA (taken equal) are the positions of the

chords before and after flexure, nux will be the vertical

distance between K and A.

By precisely the same kinematical principle the ex-

pression nuy will be the horizontal movement of A in

reference to B.

Let Inux and Inuy represent summations extending

from A to C, then will those expressions be the vertical and

horizontal deflections respectively of A in reference to C.

It is evident that these operations are perfectly general,

and that x and- y may be taken in any direction whatever.

The following general but strictly approximate equa-

tions relating to the subject of flexure may now be written :

S=ZP d)

--2Pxi. ..... (2)

M

(4)

f ^

(5)
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Dh represents horizontal deflection.

The summation 2Pz must extend from A to a point of

no bending, or from A to a point at which the bending

moment is M/. In the latter case

. . (7)

Mi' may be positive or negative.

Art. 24. The Theorem of Three Moments.

The object of this theorem is the determination of the

relation existing between the bending moments which are

found in any continuous beam at any three adjacent points

of support. In the most general case to which the theorem

applies, the section of the beam is supposed to be variable,

the points of support are not supposed to be in the same

level, and at any point, or all points, of support there may
be constraint applied to the beam external to the load

which it is to carry ; or, what is equivalent to the last con-

dition, the beam may not be straight at any point of sup-

port before flexure takes place.

Before establishing the theorem itself, some prelimi-

nary matters must receive attention.

If a beam is simply supported at each end, the reactions

are found by dividing the applied loads according to the

simple principle of the lever. If, however, either or both
ends are not simply supported, the reaction in general is

greater at one end and less at the other than would be

found by the law of the lever; a portion of the reaction at

one end is, as it were, transferred to the other. The trans-
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ference can only be accomplished by the application of a

couple to the beam, the forces of the couple being applied
at the two adjacent points of support; the span, conse-

quently, will be the lever-arm of the couple. The existence

of equilibrium requires the application to the beam of an

equal and opposite couple. It is only necessary, however,
to consider, in connection with the span AB, the one shown
in Fig. i. Further, from what has immediately preceded,

FIG. i.

it appears that the force of this couple is equal to the

difference between the actual reaction at either point of

support and that found by the law of the lever. The

bending caused by this couple may evidently be of an

opposite kind to that existing in a beam simply supported
at each end.

These results are represented graphically in Fig. i. A
and B are points oi support, and AB is the beam; AR and
BRf

are the reactions according to the law of the lever;

RF =R'F is the force of the applied couple ; consequently

AF=AR +RF and BF =BRf - (R'F =RF)

are the reactions after the couple is applied. As is well

known, lines parallel to CK, drawn in the triangle ACB,
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represent the bending moments at the various sections of

the beam, when the reactions are AR and BR''. Finally,

vertical lines parallel to AG, in the triangle QHG, will

represent the bending moments caused by the force R'F.

In tfre general case there may also be applied to the

beam two equal and opposite couples having axes passing

through A and B respectively. The effect of such couples

will be nothing so far as the reactions are concerned, but

they will cause uniform bending between A and B. This

FIG. 2,

FIG. 3.

uniform or constant moment may be represented by ver-

tical lines drawn parallel to AH or LN (equal to each

other) between the lines AB and HQ. The resultant

moments to which the various sections of the beam are

subjected will then be represented by the algebraic sum
of the three vertical ordinates included between the lines

ACB and GQ. Let that resultant be called M. This

composition of the resultant moment M will be made
clearer by reference to Figs. 2 and 3. Fig. 2 shows the

component moment due to the single force F acting with



Art. 24.] THE THEOREM OF THREE MOMENTS. 105

the lever-arm / so that its moment increases directly as

the distance from B. Fig. 3, on the other hand, shows the

component moment due to the two equal and opposite

couples acting at the ends of the span. The resultant

moment M is the algebraic sum of the three component

moments, shown combined in Fig. i.

Let the moment GA be called Ma ,
and the moment

BQ=LN=HA=Mb .

Also designate the moment caused by the load P, shown

by lines parallel to CK in ACB, by Mr Then let x be any
horizontal distance measured from A toward B\ I the

horizontal distance AB
;
and z the distance of the point of

application, K, of the force P from A. With this nota-

tion there can be at once written

. (i)

Eq. (i) is simply the general form of eq. (2), Art. 23.

It is to be noticed that Fig. i does not show all the

moments M, M&, and M
l
to be the same sign, but for

convenience they are so written in eq. (i).

The formula which represents the theorem of three

moments can now be written without difficulty. The

method to be followed involves the improvements added

by Prof. H. T. Eddy, and is the same as that given by him
in the "American Journal of Mathematics," Vol. I., No. i.

Fig. 4 shows a portion of a continuous beam, including

two spans and three points of supports. The deflections

will be supposed 'measured from the horizontal line NQ.
The spans are represented by la and lc \

the vertical dis-

* This equation is used in the next Art. for a short demonstration of

the common form of the Theorem of Three Moments.
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tances of NQ from the points of support by ca ,
cb ,

and c
c \

the moments at the same points by M, Mb ,
and M

c ,
while

the letters 5 and R represent shears and reactions re-

spectively.

In order to make the case general, it will be supposed

that the beam is curved in a vertical plane, and has an

FIG. 4.

elbow at b, before flexure, and that, at that point of sup-

port, the tangent of its inclination to a horizontal line,

toward the span la ,
is t, while t' represents the tangent on

the other side of the same point of support ;
also let d and

d! be the vertical distances, before bending takes place, of

the points a and c, respectively, below the tangents at the

point b.

A portion of the difference between ca and cb is due to

the original inclination, whose tangent is t, and the original

lack of straightness, and is not caused by the bending;
that portion which is due to the bending, however, is,

remembering eq. (5), Art. 23,

Mxn

Fig. 5 will make clear the component parts of the value
of D in the preceding equation.

By the aid of eq. (i) this equation may be written:

E(ca -cb -lat-d)
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In this equation, it is to be remembered, both x and z

(involved in M
x) are measured from support a toward

FIG. 5.

support b. Now let a similar equation be written for the

span l
c>

in which the variables x and z will be measured

from c toward b. There will then result

E(cc
-cb -lct'-d')

When the general sign of summation is displaced by
the integral sign, n becomes the differential of the axis of

the beam, or ds. But ds may be represented by udx, u

being such a function of x as becomes unity if the axis of

the beam is originally straight and parallel to the axis of x.

The eqs. (2) and (3) may then be reduced to simpler forms

by the following methods:*

* These analytic transformations are of the nature of convenient but

arbitrary notation and are not to any degree whatever analytic demon-

strations.
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In eq. (2) put

a fl-x\xn f
a
u(la -x}xdx oc

2 ~~ ' -

Also

Xa fa
u(la -x)dx iaXa f

rjb ~r IT./*

Also

In the same manner

x 2dx %d Ca uxd%

Also

And

xa
f ruxdx ia'xa

'

y. r u r ..
"a -^a I 1 "a -"a ^a I j *a -*a ^a "a / v

-; / ^txdx=--,

-
/ xdx=- . . (o)

l J* l J*> 2a a 2

Again, in the same manner,

a
l\/T

aU^M.xJx..... (10)
b 1

Using eqs. (4) to (10), eq. (2) may be written:

ia
t
iallMl

xJx. (n)
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Proceeding in precisely the same manner with the span
l
c >

ec
l- (3) becomes

leSM\x,Ax. (12)
b

The quantities xa and x
c are to be determined by apply-

ing eq. (4) to the span indicated by the subscript; while

ua ,
ia >

u
c ,
and i

f
are to be determined by using eqs. (5) and

(6) in the same way. Similar observations apply to iia
'

t

id > Xa, u'
, ij, and ocj taken in connection with eqs. (7),

(8), and (9).

If / is not a continuous function of x, the various inte-

grations of eqs. (4), (5), (7), and (8) must give place to

summation: (I) taken between the proper limits.

Dividing eqs. (n) and (12) by la and l
c respectively,

and adding the results,

c
e
-cb d df

\

~T~
~

Ta ~~r)

M
+ J(Mauaiaxa

(13)

in which T =

Eq. (13) is the most general form of the theorem of

three moments if E, the coefficient of elasticity, is a con-
stant quantity. Indeed, that equation expresses, as it

stands, the
"
theorem

"
for a variabL coefficient of elas-

ticity if (ie) be written instead of i\ e representing a quan-
tity determined in a manner exactly similar to that used
in connection with the quantity i.
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In the ordinary case of an engineer's experience r=o,
d = df

=o, I = constant, u=ua
=u

c =etc.,=c'
= secant of the

inclination for which t = t' is the tangent; consequently

* =

From eq. (4)

From eq. (7)

6
'

The summation 2MjcAx can be readily made by refer-

ring to Fig. i.

The moment represented by CK in that figure is

consequently the moment at any point between A and K,
due to P, is

.

I

Between K and B

-z\ x
7-) .z.-
I J z

Using these quantities for the span /
a ,

2MjcAx= I M
1xdx+ /

a

M
t
'xdx =

b J /2
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For the span l
c the subscript a is to be changed to c.

Introducing all these quantities eq. (13) becomes, aftei

providing for any number of weights, P:

Eq. (14), with c' equal to unity, is the form in which the

theorem of three moments is usually given; with c' equal
to unity or not, it applies only to a beam which is straight

before flexure, since

If such a beam rests on the supports a, b, and c, before

bending takes place,

and the first member of eq. (14) becomes zero.

If, in the general case to which eq, (13) applies, the

deflections c
a ,

c
b ,
and c

c belong to the beam in a position

of no bending, the first member of that equation disappears,

since it is the sum of the deflections due to bending only

for the spans l
a and l

c ,
divided by those spans, and each

of those quantities is zero by the equation immediately

preceding, eq. (2). Also, if the beam or truss belonging

to each span is straight between the points of support

(such points being supposed in the same level or not) ,
u

a
=

'Ha
f =u

la
-= constant, and u

c
=u

r

f =u
lc
= another constant. If,

finally, 7 be again taken as constant, oc
a and x

c ,
as well as

Ax, will have the values found above.

From these considerations it at once follows that the
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second member of eq. (14), put equal to zero, expresses

the theorem of three moments for a beam or truss straight

between points of support, when those points are not in

the same level, but when they belong to a configuration

of no bending in the beam. Such an equation, however,

does not belong to a beam not. straight between points of

support.

The shear at either end of any span, as /a ,
is next

to be found, and it can be at once written by referring to

the observations made in connection with Fig. i. It was
there seen that the reaction found by the simple law o.f

the lever is to be increased or decreased for the continuous

beam, by an amount found by dividing the difference of

the moments at the extremities of any span by the span
itself. Referring, therefore, to Fig. 4, for the shears 5,

there may at once be written:*

The negative sign is put before the fraction

M -M t

in eq. (15) because in Fig. i the moments M
a and Mb are

represented opposite in sign to that caused by P, while in
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eq. (i) the three moments are given the same sign, as has

already been noticed.

Eqs. (15) to (18) are so written as to make an upward
reaction positive, and they may, perhaps, be more simply
found by taking moments about either end of a span. For

example, taking moments about the right end of la ,

From this, eq. (15) at once results. Again, moments
about the left end of the same span give

This equation gives eq. (16), and the same process will

give the others.

If the loading over the different spans is of uniform

intensity, then, in general, P = wdz, w being the intensity.

Consequently

/
;

Z
4

w(l
2 -z 2

)zdz=w .

4

In all equations, therefore, for

I
3

chere is to be placed the term ;
a ;

and for
4

1
5

the term w
c

. The letters a and c mean, of course, that
4

reference is made to the spans l
a and l

c
.
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From Fig. 4, there may at once be written:

R =SB'+5a . (19)

R' =S '+S& . ...... (20)

R"=S,'+Sc, . . . \ . '. (21)

etc. =etc. +etc.

Art. 25. Short Demonstration of the Common Form of the

Theorem of Three Moments.

The general demonstration of the Theorem of Three

Moments given in the preceding article has the great

advantage of showing the influence of all the elements

which enter the complete problem, including variability of

moment of inertia, lack of straightness of beam, and points
of support not at the same elevation. An adequate con-

ception of the influences of the assumptions made in estab-

lishing the common or approximate form of the theorem

can be obtained only by the employment of the general

analysis, but it is convenient to establish the usual or

approximate form of the theorem by a short direct method
like the following.

Eq. (i) of the preceding article gives the general value

of the bending moment in any span whatever of a con-

tinuous beam such as that shown in Fig. i. The notation

given in that figure explains itself and is essentially the same

as that already used. It should be remembered that each

reaction R, R', and R" is composed of two shears as indi-

cated, one acting at an indefinitely short distance to the

left of a point of support and the other at an indefinitely

short distance to the right of the same support. It is

supposed that one load acts in each span at the distance
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z from the left-hand end of the left-hand span, or from

the right-hand end of the right-hand span.

Using eq. (i) of the preceding article and representing

the deflection at any point in the span l\ by w, eq. (i) may
be at once written:

The quantity /i is the moment of inertia of the cross-

section of the beam about its neutral axis and E is the

j.--*.^
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must be taken as ---InMioc, as given by eq. (5) of Art.
hi i

23. The value of this expression for a single load PI is

shown in detail on the lower half of page 1 10 of the preceding

Art. as |Pi(/i
2 -,s2), which appears in eq. (3). By integra-

ting eq. (2) between the limits of l\ and o, remembering
that the points of support are supposed to be at the same

elevation and hence that w = o for % = l\ :

W= -=r^(Mall+2Mi>li H T (h
2 Z2)z] +6/1 =O. (3)

Eli\ LI i

An equation identical with eq. (3) may be written for

the right-hand span Z2 by simply changing the subscripts,

remembering, however, that the origin from which -z and x

are measured is the point of support C, Fig. i
,
and that the

tangent of the inclination of the neutral surface at the

left-hand end of the span h will be ti.

Hence :

If eqs. (3) and (4) be added the usual and approximate
form of the Theorem of Three Moments will at once result,

except that the moments of inertia I\ and 12 are different.

Assuming I\ =1% and writing the summation sign before

PI and P2 to indicate that any number of loads may act

on every span, the Theorem of Three Moments as usually

employed will at once result :

SP2(Pz-s?)z .... (5)
12
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It will be observed that eq. (5) is identical with the

second member of eq. (14) of the preceding article, and it

is the equation sought. The expressions for the shears com-

posing each of the reactions may now easily be written.

Taking moments about the right-hand end of the span h :

Sali-2P 1 (l l -z)+Ma =M. . . . . (6)

Hence :

LI

. .

(7)

Again taking moments about the left-hand end of the

same span:

S'J,i-2Piz+M*=Ma. . .
]

. . (8)

Hence :

9' y-p
z

i

Ma
-Mi

(
.

3l, = 2^ l--\----
. . . . . (9)

LI ll

Eqs. (7) and (g) give the shears at the two ends of the

span /i and they also give the shears at the two ends of

the span 1% by simply changing the notation so as to apply
to the span 1% as shown in eqs. (10) and (n) :

z . Mc-Mb , ,

--\----..... (lO)
/2 /2

/2

Each reaction will be the sum of the appropriate pair

of shears as shown by eqs. (19), (20), and (21) of the pre-

ceding article.

These equations are given in their most general forms;
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that is, for any disposition of loads of any magnitude. They

may be adapted to uniform loading either partial or entire,

as indicated on the lower half of page 113.

Art. 26. Reaction under Continuous Beam of any Number

of Spans.

The general value of the reactions at the points of

support under any continuous beam have been given in

eqs. (19), (20), (21), etc., of article 24. Before those

equations, however, can be applied to any particular case,

the values of the bending moments, which appear in the

expressions 5
, S&', S&, etc., for the shears, must be deter-

mined. In the application of the theorem of three mo-

ments, it is usually assumed that the continuous beam
before flexure is straight between the points of support,

and that the latter belong to a configuration of no bending.

The moment of inertia I is also assumed to be constant.

This is frequently not strictly true, yet it will be assumed

in what follows, since the method to be used in finding

the moments is independent of the assumption, and remains

precisely the same whatever form for the theorem of three

moments may be chosen.

Agreeably to the assumption made, eq. (5)* of the pre-

ceding article takes the following form :

+ lc) +Mclc
= -

* Or eq. (14) of Art. 24.
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Let Fig. i represent a continuous beam of n spans

equal or unequal in length. At the points of support,

FIG. i.

o, i, 2, 3, 4, 5, etc., let the bending moments be represented

byM ,
Mv Mv My etc. The moment M is always known ;

it is ordinarily zero, and that will".be considered its value.

An examination of Fig. i shows that, by repeated

applications of eq. (i), the number of resulting equations
of condition will be one less than the number of spans.

If the two end moments are known (here assumed to be

zero), the number of unknown moments will also be one

less than the number of spans. Hence the number of

equations will always be sufficient for the determination

of the unknown moments.

For the sake of brevity let the following notation be

adopted :

*1 "2

etc. = etc. - etc.

d
3
=l4 .

/4 =/5 .



120 FLEXURE. ]Ch. II.

i denoting any number of the series i, 2, 3, 4, , . . n. It is

thus seen that, in general,

also that a
2
=6

1 ,
c
2
= b

3 ,
d

3
= c4 ,

etc. These relations can be

used to simplify the final result.

By repeated applications of eq. (i) the following n

equations of condition, involving the notation given above,
will result:

a2Mi +b2M 2 +c2M3

+/5M

These simultaneous equations may be treated in various

ways in order to determine the values of the moments Mi,
M2 , Ms, etc. The preceding notation is adapted to the

method by determinants, which is probably as simple as

any. As these procedures are purely algebraic they will

not be further developed here.

In American engineering practice, as exemplified in the

theory of revolving-swing bridges, it is necessary to con-

sider at most, two simultaneous equations of condition

whose solution requires the simplest process of elimination

only.
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This last case may be simply illustrated by referring

to Fig. i, in which M =o. If there are three spans Ma =o
as one of the end spans. The first two of eq. (2) will be

needed :

ui...... (3)

U2...... (4)

Simple elimination will then give:

,. ,, , .

Mi= r
-r; and M^ = r

-r~. . (s)
0,1020,201 a\02

Reactions.

After the moments are found, either by the general or

special method, for any condition of loading, the reactions

will at once result from the substitution of the values thus

found in the eqs. (15) to (21) of Art. 24, which it is not neces-

sary to reproduce here.

Art. 27. Deflection by the Common Theory of Flexure.

The deflection or sag of a beam subjected to loading at

right angles to its axis is the displacement of the neutral

surface in the direction of the loading. Ordinarily the

beam is horizontal and the loading vertical, so that the

deflection is also vertical. The entire deflection is due both

to the lengthening and the shortening of the fibres on the

two sides of the netural surface and to the action of the

transverse shear throughout the beam. The equation

leading directly to the former portion is eq. (7) of Art 14,

but the equations of Art. 24 must be used to determine the

deflection due to shear.

Let XQ be the coordinate of some point at which the
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tangent of the inclination of the neutral surface to the axis

of x is known; then from eq. (7) of Art. 14

(i)

-T- will be at once recognized as the general value of the

tangent of the inclination just mentioned, or, in the case

of curved beams, as approximately the difference between

the tangent, before and after flexure.

Again, let x
l represent the coordinate of a point at which

the deflection w is known, then from eq. (i) :

The points of greatest or least deflection and greatest

or least inclination of neutral surface are easily found by
the aid of eqs. (i) and (2).

The point of greatest or least deflection is evidently

found by putting
dw

and solving for x. Since -y- is the value of the tangent of

the inclination of the neutral surface, it follows that a

point of greatest or least deflection is found where the beam

is horizontal.

Again, the point at which the inclination will be great-

est or least is found by the equation

,

a
dx
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But, approximately, -1-7 is the reciprocal of the radius

of curvature
;
hence the greatest inclination will be found

at that point at which the radius of curvature becomes infi-

nitely great, or, at that point at which the curvature changes

from positive to negative or vice versa. These points are

called points of "contra-flexure." Since:

there is no bending at a point of contra-fteocure.

The moment of the external forces, M, will always be

expressed in terms of x. After the insertion of such values,

eqs. (i) and (2) may at once be integrated and (3) and (4)

solved.

The coefficient of elasticity, E, is always considered a

constant quantity ;
hence it may always be taken outside the

integral signs. In all ordinary cases, also, / is constant

throughout the entire beam. In such- cases, then, there

will only need to be integrated the expressions:

/ Mdx and f* f*Md&.J x* y.ft Jx

It is sometimes convenient to express the tangent of

inclination of the neutral surface and the deflection in

terms of some known intensity & of fibre stress at the

distance d from the neutral surface and at a section of the
beam where the known external bending moment is M .

The desired expressions may readily be written by simply
transforming eqs. (i) and (2) to the proper shape. It

has been shown by eq. (10) of Art. 14 that &
=-y-,

and
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hence that 1 = ^-. By substitution of this value of /

^0

first in eq. (i) and then in eq. (2), there will result:

dw
dx EM d/ Xo

and

/'* 7, /r , t x

/ Mtffc ..... (5)JX

(6)

Eqs. (5) and (6) give the desired expressions in which

I and d are considered constant in accordance with all

ordinary practice. In the use of these last two equations

it is supposed that the conditions of any given problems
will enable k

Q and M to be computed as known quantities.

The general form of the integral in the second member
of eq. (6) is easily determined. The quantities M and

M are exactly similar expressions with the same number
of terms and of the same degree. The effect of the inte-

gration of M twice between the limits indicated is to raise

the degree of each term of which it is composed by two,

so that the double integration of Mdx 2
divided by M will

be a simple product a/
2

,
a being a numerical quantity

depending upon the manner of loading, the condition of

the ends of the beam, or other attendant circumstances of

the same general character. Inserting these results in

eq. (6), the expression for the deflection will become

Eq. (6a) is not often used, but there are some practical

applications of formulae in which it must be employed,
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Deflection Due to Shearing.

That portion of the deflection due to transverse shear-

ing may be determined as readily as that due to the length-

ening and shortening of the fibres of the bent beam. In

determining the requisite equations it is necessary to con-

sider only the intensity of shear in the neutral surface,

as it is the deflection of that surface which is sought.

Let w' be the deflection due to shearing and let
<j> repre-

sent the transverse shearing strain for a unit of length of

the beam. The transverse strain for an indefinitely short

portion dx of the neutral surface will then be dw' = (/>dx,

If G represents the coefficient of elasticity for shear, while

5 represents the intensity of shear, eq. (3) of Art. 2 shows

that <j>=7=;- There may then be written:

dwf =
<f>dx

= ~dx....... (7)

By using the value of 5 given in eq. (7) of Art. i$>

(8)

The general expressions for the shearing deflection

will, therefore, take the form:

The integration required in eq. (9) can be made with

ease in any given case, as it is necessary only to express

the value of the total transverse shear 5 in terms of x.

The application of that equation to special cases will be
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made in a later article. Obviously the total deflection in

any bent beam will be the sum :

w + u/.' . ...... (10)

Art. 28. The Neutral Curve for Special Cases.

The curved intersection of the neutral surface with a

vertical plane passing through the axis of a loaded, and

originally straight, beam may be called the "neutral

curve." The neutral curve is the locus of the extremities

of the ordinates w of Art. 27; it therefore gives the deflec-

tion at any point of the beam due to the direct stresses of

tension and compression in it, but not due to the effect of

transverse shear, which will be treated in a subsequent
article.

The method of finding the neutral curve for any par-

ticular case of beam or loading can be well illustrated by
the operations in the following three cases:

Case I.

This case is shown in the accompanying figure, which

represents a cantilever carrying a uniform load with a

---X-

I

FIG. T.

single weight W at its free end. As usual, the intensity

of the uniform loading will be represented by p.
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Measuring x and w from B, as shown, the general value

of the bending moment is

(I)

Integrating between x and /, remembering that :

dw

for x=l:

Hence

A i (W.

The greatest deflection, wx ,
occurs for x = l. Hence

This value of w
l

is the deflection of B below A. The

general value of w in eq. (3) is the vertical distance (de-

flection) of B below the point located by x
;
as an ordinate

it is measured upward from B as the origin of coordinates.

The greatest moment, Mlt
exists at A, and its value is:

(5)
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These equations are made applicable to a cantilever

with a uniform load by simply making W =o. They then

become

(6)

(7)

(10)

Again, for a cantilever with a single weight only at its

free end, p is to be made equal to zero in the first set of

equations. Those equations then become :

, ...... (n)

dw W
f = (*

2 -/ 2

), ...... (12)dx 2
^

W

(15)
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The general expressions for the shear and the intensity
of loading are :

(16)

(17)

Case II.

This case, shown in the figure, is that of a non -continu-

ous beam, supported at each end, and carrying both a

4 x

w
FIG. 2

uniform load (whose intensity is p) and a single weight W
at its middle point. The reaction R, at either end, will

then be

R _J* +W

The general value of the moment will then be

fi8)

The origin of x and w is taken at A.

Remembering that

dw I

~T~=O for x tdx 2
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and integrating between the limits x and -,

R( ,
1
2
\ pi ,-

Again integrating

T ( 7?/r 3 r/ 2\ -fr/r 4 r/ 3N
I \ i\ x %i \ pix %i . .

<w =-^ri-\~ r)~A (- Q-Jr- (2 )

The greatest deflection 7e;
t
occurs at the centre of the

span, for which

I

00 =

Hence

x=.
2

The greatest moment, also, is found by putting

#=-.
2

It has the value

These formulae are made applicable to a non-continuous

beam carrying a uniform load only, by putting W = o.

They then become

7?
PlK =
^'

tV-,). .... (23 )
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dw /xH X 3
Z
a

-*<-/%)..... (25)

5 Pi* , ,.

-8'48/'
' ' ' ' &6

.... (27)

The formulas for a beam of the same kind carrying a

single weight at the centre are obtained by putting p = o

in the first set of equations. Those for the greatest deflec-

tion and greatest moment, only, however, will be given.

They are

Wl 3

>f& xwi (28)

Wl........ (29)

The general values of the shear and intensity of loading

are

(30)"
dx

-

d 2M
dx2=

~ p

Case III.

The general treatment of continuous beams requires the

use of the theorem of three moments. The particular case

to be treated is shown in Fi. 3. The beam covers the
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three spans, DA, AB, and BC, and is continuous over the

two points of support, A and B.

Let DA
=1^

11 AB=1
2

Let/
a =/!='/,.

Let the intensity of the uniform load on AB be repre-

sented by p and let the two single forces P and P' only, act

.

mmmc
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and B, the conditions of the present problem produce the

following results:

and

Hence the equation itself will become

=o. . . (32)

*--

, , ,

' (33)

/. Reaction at D=R
l
=P- + . . . (34)

l
\

l
\

As the origin of z
l
is at D, x will be measured from the

same point.

Separate expressions for moments must be obtained for

the two portions, DE and EA of /p because the law of

loading in that span is not continuous.

Taking moments about any point of EA

(35)

Remembering that

dw
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for x = lv and integrating between the limits x and /
t

EI^^x'-W-^W-l^+Pz^-lJ. . (36)

Again, remembering that w = o for x lv and integrat-

ing between the limits x and Zp

J. (37)

Taking moments about any point in DE

- . (38)

Making x=z1
in eqs. (36) and (39), then subtracting

^-^- (40)

Remembering that w = o for A;=O, and integrating be-

tween the limits x and o,

^-lJx. (41)

Making x=z in eqs. (37) and (41), then subtracting
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Putting the value of M
2
from eq. (33) in eq. (34), then

inserting the value of Rv thus obtained, in eq. (42), after

making z^ =alv

2+3W

. p_

2 'J 4(2 + 3W)'

6a(i-a
2

) 6a(i-a
2

)'

This is the desired value of P, which will cause the

beam to be horizontal over the two points of support A
and B when the span AB carries a uniform load of the

intensity p.

By the aid of eq. (43), eq. (33) now gives

71 /[ _ >^7 2 ^ ' O f f 1 x 2 t \

(44), .

z a (9 + 3**) 12 12

It is to be noticed that M
2

is entirely independent of

t
or 1

3 . Eq. (43) also gives

Hence

Thus any of the preceding equations may be expressed
in terms of p or P.

R
l
also becomes

M
(47)

or

(48)
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It is clear that there cannot be a point of no bending in

DE. Hence the point of contra-flexure must lie between

E and A, Fig. 3. In order to locate this point, according

to the principles already established, the second member
of eq. (35) must be put equal to zero. Doing so and solving

for x

(49)

Since P is always greater than Rv there will always be

a point of contra-flexure.

All these equations will be made applicable to the span
BC by simply writing a' for a, 1

3
for lv and n' for n.

As an example, let

a=\ and n = i.

Eqs. (43), (44), and (47) then give

= _
12 1 6

'

after writing,

In general, the span /,
is called

" a beam fixed at one

end, simply supported at the other and loaded at any point
with the single weight, P."

Let it, again, be required to find an intensity,
"

//," of a

uniform load, resting on the span lv which will cause the

beam to be horizontal at the points A and B.
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Since the load is continuous, only one set of equations
will be required for the span. The equation of moments
will be

, .

o =R.x L ...... (co)dx 2
2

Integrating between the limits x and l
lt

^-^<*'-l,')-<*'-V>.. . . (si)

Integrating between the limits x and o,

But, also, w=o, when x--=lr Hence

^i

3_V
^7

= :

~Y~ ;

' R*~ 1
* (53)

This equation gives the value R
1
when p

f
is known.

Making x =
l^

in eq. (50), and using the value of R
l
from

eq- (53).

Adapting eq. (32) to the present case,

4(2
( }

Equating these two values of Mv

....... (56)
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Thus is found the desired value of p
f

. In this case the

span /
t

is called
"
a beam fixed at One end, simply sup-

ported at the other and uniformly loaded."

The points of contra-flexure are found by putting the

second member of eq. (50) equal to zero and solving for

x, after introducing the value of R
t
from eq. (53). Hence

or

oc = o and x = $lr

Between the simply supported end and point of contra-

flexure the beam is evidently convex downward, and convex

upward in the other portion of the spans /
x
and /

3 ,
whether

the load is single or continuous. Moments of different

signs will then be found in these two portions, and there

will be a maximum for each sign. The location of the

sections in which these greatest moments act may be made
in the ordinary manner by the use of the differential cal-

culus; but the negative maximum is evidently M2 , given

by eqs. (44) and (55). On the other hand, the positive

maximum is clearly found at the point of application of

P in the case of a single load, and at the point

x 3.7^
s^i

in the case of a continuous load. These conclusions will at

once be evident if it be remembered that the portion of the

beam between the supported end and point of contra -

flexure is, in reality, a beam simply supported at each end.

These moments will have the values

(57)

(58)
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In case of a single load if P is given, and not p, e"q. (45)

shows

The points of greatest deflection are found by putting

the second members of eqs. (36), (40), and (51) each equal
to zero, and then solving for x. They are not points of

great importance, and the solutions will not be made.

The following are the general values of the shears for a

single load on /
x

:

InAE, S=El-j^=Ri-P\ [from eq. (35)].

In ED S, =El~^ =R1 \ [from eq. (38)].

The shear in ^ for the uniform load p' is

R
l p

f

x', [fromeq. (50)].

Also

Intensity of load = El -7-;
=

//.

As has already been observed, all the equations relating

to the span /
t may be made applicable to the span /

3 by
changing a to a' and n to n''.

The span 1
2
remains to be considered.

Since the bending moments at A and B are equal to

each other, and since the loading is uniformly continuous,

half of it (the load pl2 )
will be supported at A and the other

half at B. In other words, the vertical shear at an in-

definitely short distance to the right of A, also to the left
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of B, will be equal to . Let x be measured to the right

and from A. The bending moment at any section x will be

d*w pl2 px
2

or

/y
/y Q,

\<DZ7/

Integrating between the limits x and o,

El -j-
= MJX + ( ) . (60)dx 2 \ 2 3 /

Again, integrating between the same limits,

Since

dw
dx

~

for x = lv eq. (60) wi.l give M2 independently of preceding

equations. Following this method, therefore,

12

This is the same value which has already been obtained.

Introducing the value of M
2 ,

w.dw ptlj? x* /
2

2
\

El -r --(-* --x}, . (67)dx 2\ 2 6 /
v 6J

=^---. (64)12 \
2

2 2
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The points of contra-flexure are found by putting the

second member of eq. (62) equal to zero. Hence

'

x*-lx--V>*** 6
'

0.789/2.

The moment at the centre of the span is found by

putting

ineq. (62):

24

This is the greatest positive moment
The general value of the shear is

,

TS=EI 3dx*

and the intensity of load

The span /, is generally called
" a beam fixed at both

ends and uniformly loaded."

It is sometimes convenient to consider a single load at

the centre of the span /
2 ,
while the beam remains horizontal

at A and B\ in other words, to consider
" a beam fixed at

each end and supporting a weight at the centre."

Let W represent this weight; then a half of it will be

the shear at an indefinitely short distance to the right of
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A and left of B. As before, let % be measured from A, and

positive to the right. The moment at any point will be

(65)
'dx2

Integrating between- # and o,

^=M2*-
2

(66)
dx 4

If x=
,
then will

2

dw _
dx

hence Mz = A
o

The general value of the moment then becomes

d 2w WL Wx

If x=- in this equation, the bending moment at the

centre (where W is applied) has the value

Wl
Centre moment = --r-1 .

o

Hence the bending moments at the centre and ends' are each

equal to the product of the load by one eighth the span, but

have opposite signs.

A second integration between x and o gives

Hence the deflection at the centre has the value

Wl 3

Centre deflection =
"

* The use of the signs in this and the following equations is changed
from the preceding to show that either procedure may be employed.
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By placing M =
o, the points of contra-flexure are found

at the distance from each end,

Addendum to Art. 28.

The formulae of this article furnish the solutions of many
practical questions of maxima deflections and moments.

The latter for several ordinary cases are given in the follow-

ing tabulation:

P is the weight in pounds at end of beam or centre of span.

p is the load in pounds per lin. ft. of beam.
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/ is the length of beam or of span in feet.

E is the coefficient of elasticity in pounds per sq. inch.

/ is the moment of inertia of the normal section of the

beam with all dimensions of section in inches.

The " Max. Moments" will be in foot pounds, and the
" Max. Deflections

"
will be in inches.

In the use of flexure formulae, in many practical appli-

cations, it is best to have the moment M in inch-pounds,

which will result from simply multiplying the
" Max.

Moments "
of the preceding table by 12.

Case I results from eqs. (14) and (15); Case II from

eqs. (9) and (10); Case III from eqs. (28) and (29);

Case IV from eqs. (26) and (27). In Case V the reaction

is found by putting a = J in eq. (48); the point of
" Max.

Deflection" is found by placing z
l

=
J/ in eq. (40), and the

resulting value of -7- equal to zero and solving for %, whichd%

latter value in eq. (41) will give
" Max. Deflection."

Case VI results from treating eqs. (53), (51), and (52) in

precisely the same manner. Case VII results directly

from the formulas on page 142. Case VIII results directly

from the equations on pages 140 and 141.

The preceding cases are those which commonly occur

with constant values of E and I. Other cases, such as a

single load at any point, or partial uniform load over any
part of span, are to be treated by the same general prin-

ciples.

Art. 29. Direct Demonstration for Beam Fixed at One End
and Simply Supported at the Other Under Uniform and

Single Loads.

A beam is said to be fixed at one end when it is under

such constraint that the neutral surface does not change
its direction at that end whatever may be the loading.
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This fixedness, as has been fully shown in Art. 28, is equiv-

alent to the application of a suitable constraining moment.

Beams with one or both ends under such constraint have

been fully treated in Art. 28, but it is desirable to establish

the formulae for such cases directly, i.e., without the employ-
ment of the theorem of three moments.

In Fig. i a beam is shown fixed at one end B and simply

supported at the other end A, while it carries a uniform

load py per linear unit and the single load P at the distance

al from A. The length of span is / and the coordinate %

FIG. i,

is measured horizontally to the right from A. The two

reactions are R and R' . E is the modulus of elasticity,

/ the moment of inertia of the normal section of the beam,
and w is the deflection at any point. The bending moment
for any point in the segment al of the beam is :

The bending moment for the section lalof. the beam is

Integrating eq. (i) and representing by C the constant

of integration:
^7 /i /y-2i /y*3

(3)
dx
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Integrating eq. (3) between % and o, remembering that

w = o, when x=o;

(4)
o 24

Integrating eq. (2) between x and /, remembering that

dw -
7= o when x = /,

dx

. (5)

If # = a/ in eqs. (3) and (5), the first members of those

equations will be equal, hence :

n2
l
2

-/7
3 /3U i> -a i

Taking the difference between (6) and (7) and solving
forC:

Placing this value of C in eq. (4) :

EIw=-(x* -3/2*) (**
-
4fe) 4.(a _ l)2^ ( )O 24 2

Integrating eq. (5) between the limits of x and /:

24

-0 a
)' do)
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Making oc = al in eqs. (9) and (10) and subtracting the

former from the latter, there will result :

(n)

This equation gives the reaction required to enable any
of the preceding formulae to be applied to actual compu-
tations. The loads P and p, as well as the quantity a are

obviously known for any particular case or problem. With
the value of the reaction now established by eq. (n) the

deflection or the tangent of inclination of the neutral sur-

face may be at once computed for any point in either

part of the beam. The fixing or constraining moment

required to keep the beam horizontal at B can be at once

determined by making % = l in eq. (2) and it has the value;

(12)

If the load is wholly uniform or P=o, eqs. (n) and (i)

give:

R=$pl andM= -2-
(13)

o

This value of M is the constraining moment required
at B when the load is wholly uniform and is identical with

eq. 54 of Art. 28. Indeed the preceding equations are the

same as those established for the continuous span, con-

ditioned similarly to the beam treated in this article.

In all the preceding equations if the load is wholly
uniform it is only necessary to make P =o. On the other

hand, if there is a single load with no uniform loading
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Inasmuch as the beam is convex downward over its

left-hand part and convex upward in the vicinity of B,

there must be a point of contraflexure either to the right

or to the left of P, according to its location. If that point
is between P and B, the second member of eq. (2) must
be placed equal to o, giving;

,

2 (P-R) Pal
*

,

Solving this quadratic equation;

Eq. (15) gives the location of the point of contra-

flexure by the value of % measured from A. There are

two roots of the equation, but evidently the positive value

of the radical only is required.

If the point of contraflexure is between P and L4, which

would be the case if the single load were near the right-

hand end of the span, the second member of eq. (i) must
be placed equal to o, giving;

In case the point of contraflexure is at the point of

application of P, x = al, hence,

2R 2R f N00= = aZanda= r..... (17)
P PL

If it is desired to find the point at which the deflection

is geratet, it is osnly necessary to place -^ = o in either
doc
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eqs. (3) or (5), as the case may be, and solve the resulting

eq. for oc.

The reaction R, i.e., the end shear at B, is;

R'=pl+P-R ...... ( X 8)

The sum of the two reactions must be equal to the

total load on the beam.

Special Case, a=J.

In this case eq. (n) will give the reaction R at A as

follows: .

. > , (19)

Hence, the reaction R r

at B will be:

P.. ... (20)

The fixing or constraining moment Mi at B is by
eq. (12):

Eq. (15) shows that the position of the point of contra-

flexure will depend upon the magnitude of P. If P=o
that equation shows that the point of contraflexure will

be {/ from A :

* = |/....... (22)

The part \l of the span will be in the condition of a

beam simply supported at each end and uniformly loaded.

Hence the greatest positive bending moment at the dis-

tance |/ from A is:

(23)
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The point of greatest deflection will be found by placing

the second member of eq. (5) =o and solving for x.

Art. 30. Direct Demonstration for Beams Fixed at Both Ends

under Uniform and Single Loads.

Fig. i shows a horizontal beam with both ends fixed,

so that whatever may be the magnitudes of the uniform

loading and the single load, or the position of the latter,

the neutral surface at each end of the beam remains hori-

zontal. The coordinate x is measured from the left-hand

end A of the beam as is also the distance al of the single

load P from the left end of the span. The length of the

span is / and the reactions or shears at the ends of the

span are indicated by R and R' . The fixing or constrain-

ing moment at A is indicated by MQ and the uniform load

per linear unit by p. If as before w represents the deflec-

tion at any point, the equation of moments for the part
al of the beam may at once be written :

(i)

Integrating eq. (i) between the limits x and o, and

remembering that = o for x = o
;

dw
~dx~

px3

6
' (2)
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Integrating eq. (2) between the limits x and o, eq. (3)

may be at once written as w = o for oc = o :

EIw=M<+Rj-p*..... (3)

Proceeding in the same manner for that part of the

beam between B and the load P the equation of moments is :

EI^=M +Rx-p--P(x-al). I ,. (4)
ax2 2

Integrating eq. (4) between the limits of x and /, since

dw c j-*- = o for x = I
;

ax

El^ =M (>
2 -/2

) +-(x2 -P) -(*3 _/3)ax 26
Again integrating between the limits x and /:

24

(6)
2\3

The two unknown quantities M and R are to be found.

By placing x al in eqs. (2) and (5), then subtracting the

former from the latter :

o=-M --/+^ +-(a-i) 2
. ... (7)202

Again making x=alm eqs. (3) and (4), then subtracting

the former from the latter;

Mox \ Rh v i P12
( \ , Ph / \o = --- (20

-
1) (30

-
2) +^ (4^-3) + (a

-
1)

3
. (8)

2 6 24 3
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If eq. (7) be multiplied by \(ia i) and then subtracted

from eq. (8), the following value of the reaction or end

shear will at once result :

(9)

By placing this value of R in eq. (7), the value of Mo
at once follows :

i)
2

. (10)
12

In order to determine the moment Mi at the end B
of the span, it is only necessary to substitute the preceding
values of Mo and R in eq. (4) :

i-a)..... . . (n)

These equations give all the quantities required for the

complete solution of the case. The reaction or end shear

at B is simply :

pl+P-R =
^+P(i-(a-i)

2
( 2a+ i)) . . (12)

The greatest negative bending moment will obviously
be found at either one end or the other of the span, depend-

ing upon the value of a c,nd the amount of the load P.

The greatest positive bending moment will be found where

the shear is zero.

There will be two points of contraflexure, one in each

segment of the span. That point located in the part al

will be determined in the usual manner by placing the

second member of eq. (i) equal to zero and solving the

quadratic equation. This simple operation will give eq.

da): _
R l2M &
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Proceeding in the same manner with eq. (4) there will

result :

(M+Pa

This last value of % will indicate the point of contra-

flexure for the right-hand part of the beam.

Special Case, a=|.

If P be placed at the center of the span, a = J and eqs.

(9), (10), and (n) will give eq. (15):

. . .22 12 8

The moment M 1 at the centre of the span will be given

by the aid of eq. (i):

24 o

The greatest deflection w\ is at the centre of the span

and it is given by placing % = in eq. (3).
2

Rl

The values of Mo and R are given by eq. (15).

Art. 31. Deflection Due to Shearing in Special Cases.

The deflection due to transverse shearing only in all

the ordinary cases of loaded beams can readily be com-

puted by aid of the general eq. (9) of Art. 27. If d is

the distance from the most remote fibre from the neu-
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tral axis of any normal section whose moment of inertia

about the same axis is /, and if G and 5 are the coefficient

of elasticity and total transverse shear respectively, the

deflection, w', sought is

-Jr^, / Sd*. (I)

The limits of the integration must be indicated for

each particular case.

FIG. i.

In Fig. i let the cantilever, whose length is /, carry the

single load P at its end, and the uniform load p per
linear unit. The shear at any section distant x from A is

S=P-\-px.
will give

The substitution of this value of 5 in eq. (i)

wf = f*J (2)

If the uniform load only acts, P =o
;
and if P only acts,

Fig. 2 shows the case of a simple beam supported at

each end, carrying a uniform load p per linear unit and
the single load P at the centre of the span. The reaction

R = %(P + pl), and the shear S=R px. Hence eq. (i)

gives the general value of the deflection

d 2 Cx d 2
( % p%* )

2lG Jn 2lG I 2 2 \

' ^
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And for the centre ot the span:

R
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The end shears in this table are the reactions taken

from the table of the preceding article, the "Beams" in

the two tables being the same.

The total deflection for any particular beam is to be

found by adding the "Max. Deflection" from the table

of the preceding article to the w' found in the above table.

In the notation of the preceding article, if w
1

is the

deflection due to the lengthening and shortening of the

fibres the total deflection in any case will be

w=w
1 +w'. ...... (5)

These formulae for shearing deflection, like all the

formulae relating to the distribution of transverse shearing

in a bent beam, are more accurately applicable to rectan-

gular or circular sections than to others.

Art. 32. The Common Theory of Flexure for a Beam Composed
of Two Materials.

The common theory of flexure as set forth in the pre-

ceding articles is applicable to a beam composed of two

or more materials with minor changes only in the formulas

established, but two different materials only will be con-

sidered here, as that number are frequently used in engi-

neering works.

Two such materials, concrete and steel, are widely used

in reinforced concrete beams. Let E be the modulus of

elasticity for steel and E\ for concrete, and let e represent

the ratio between the two moduli, i.e., e= . This ratio
EI

for concrete and steel is generally taken as 15, although
12 is sometimes used. Let A be the area of that part of

the section with the modulus E and A it the area of section
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having the modulus E\. Iiu=--- (the reciprocal of the radius
P

of curvature) be the strain of a unit length of fibre at unit

distance from the neutral axis, then will the intensities

of the direct stresses of tension or compression at the dis-

tance z from the neutral surface be :

Ni=Eiuz and N=Euz=eE\uz.

Inasmuch as the two materials are supposed to act together
as a unit, the rate of strain will be the same for both at a

given distance from the neutral axis.

The amounts of direct stress on the two differential

areas dA\ and dA will be as follows:

EiuzdAi+EuzdA=aizdAi+eaizdA. . . (i)

a\ and no\ are intensities of stsess at unit distance from the

nutral axis.

The sum of the direct stresses of tension and compression
in any normal section of the beam, if the beam is hori-

zontal and all loading vertical, will be zero. Hence:

fzdAi+fessdA-o (2)

The limits of the integrations indicated will depend upon
the form of cross-section and the distribution of the two
materials. Frequently the section of one material, such

as the steel in reinforced concrete work, is but a small per-

centage of the total cross-section, and it is sufficiently

accurate to consider it concentrated at the distance d2 from

the neutral axis on one side of the latter and at the dis-

tance d3 from the same axis on the opposite side. If d2

is considered positive, d% must be taken as negative.
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Finally, if A 2 and A 3 be taken as the small areas of section

of the material, eq. (2) will take the form of eq. (3) :

=o (3)

Invariably the small sections A 2 and A 3 belong to a

material with a far higher modulus than the other. In

reinforced concrete the sum of A 2 and AS is usually about

i per cent or less of the entire cross-sectional area of the

beam with E =30,000,000 and E\ =2,000,000.

When the form of cross-section of the beam, i.e., the

cross-section of both materials of which the beam is com-

posed, is known, the position of the neutral axis of the

section can at once be found by either eq. (2) or eq. (3).

It is obvious from these equations that the neutral axis

will not pass through the centre of gravity of the section.

Whether it will be at one side or the other of that point will

depend upon the amount and distribution of the materials

and the greater modulus of elasticity.

Frequently the steel is omitted on the compression side

of reinforced concrete beams and in such case either A 2 or

As will be zero.

The bending or resisting moment of the internal stresses

in any normal section of a beam can be written at once

by the aid of the second member of eq. (i). If that second

member be multiplied by z, the differential resisting moment
will at once result. Hence:

(4)

As indicated in eq. (i), a\ is the intensity of the direct

stress of either tension or compression in a fibre at unit

distance from the neutral axis for the material with the

modulus Ei. The integrals in eq. (4) will be recognized
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at once as the moments of inertia of the cross-section of

the two different materials about the neutral axis established

by eq. (2) or eq. (3). If the same assumptions made in

connection with eq. (3) are known in connection with eq.

4 this latter equation will take the following form :

M=aifz
2dA } +eai(A 2d2

2 +A 3d2
3). . . (5)

Again since a\ = = --
=-^ eq. (5) may take the follow-

di d2 dz

ing form :

It is to be observed that k, k 2 and kz are intensities of

stress at the distances from the neutral axis indicated by
d\, d2 ,

and d% in the material whose modulus of elasticity

is Ei.

These equations indicate completely the only modi-

fications to be made in the common theory of flexure as

applied to one material for a beam composed of two differ-

ent materials, and they indicate also the corresponding

changes necessary to adapt the common theory of flexure

to a beam composed of more than two different materials.

In eqs. (4), (5), and (6) the moment M is simply the

ordinary expression for the external bending moment to

which a beam is subjected in terms of the horizontal co-

ordinate x and given loads.

The formulae to be used to compute the deflection of

a beam composed of two materials are readily written by
means of the preceding equations. As

k k 2 7- EI ^ d2w
ai= = =etc. =Eiu= = 1-7-,

di d2 p

eq. (6) gives:
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M..... (7)

As already explained, M, the external bending moment,
is expressed in terms of the loads and the coordinate x.

Eq. (7) therefore can be integrated precisely as in the case

of a beam of a single material. Indeed there is no differ-

ence between the two cases except that istead of the

moment of inertia I for a single material, the term I +0/2 +
elz must take its place, the latter expression being the sum
of the three components of the resultant moment of inertia

of the combined normal section.

The first integration of eq. (7) will obviously give the

tangent of the inclination of the neutral surface at any
point, while the second will give the deflection.

Art. 33. Graphical Determination of the Resistance of a Beam.

The graphical method is well adapted to the treatment

of beams whose normal sections are limited either wholly
or in part by irregular curves. In Fig. i is represented

the normal section of such a beam, the centre of gravity

of the section being situated at C. The lines HL, AB,
and DF are parallel. As is known by the common theory
of flexure, the neutral axis will pass through C.

Let aa be any line on either side of AB, then draw the

lines aa' normal to AB, having made MN and HL equidis-

tant from AB. From the points a' thus determined draw

straight lines to C. These last lines will include intercepts,

bb, on the original lines aa. Let every linear element

parallel to AB, on each side of C, be similarly treated. All

the intercepts found in this manner will compose the shaded

figure.

This operation in reality, and only, determines an
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amount of stress with a uniform intensity identical with

that developed in the layer of fibres farthest from the

neutral axis, and equal to the total bending stress existing

in the section
;
this latter stress, of course, having a varia-

ble intensity. HL represents the layer of fibres farthest

from the neutral surface, consequently MN was taken at

the same distance from AB. Any other distance might
have been taken, but the intensity of the uniform stress

of N

FIG. i

would then have had a value equal to that which exists

at that distance from the neutral axis. Again, a different

intensity might have been chosen for the stress on each

side of AB. It is most convenient, however, to use the

greatest intensity in the section for the stress on both sides

of the neutral axis
;
this intensity, which is the modulus of

rupture by bending, will be represented, as heretofore, by K.

Let c and c
f be the centres of gravity of the two shaded

figures. These centres can readily and accurately be found

by cutting the figures out of stiff manilla paper and then

balancing on a knife-edge. Let 5 represent the area of the
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shaded surface below AB, and s' the area of that above

AB.
Because this is a case of pure bending, the stresses of

tension must be equal to those of compression. Hence

Ks=Ks r

,
or s=sf

()

The moment of the compression stresses about AB
will be

KsXc'C.

The moment of the tensile stresses about the same line

will be

KsXcC.

Consequently the resisting moment of the whole section

will bo

M=Ks(c'C+cC)=KsXcc' (2)

Thus the total resisting moment is completely deter-

mined. In some cases of irregular section the method

becomes absolutely necessary.

It is to be observed that the centre of gravity, c or c'
,

is at the same normal distance from AB as the centre of

the actual stress on the same side of AB with c or c'.

Art. 34. Greatest Stresses at any Point in a Beam.

Any beam under transverse loading is subjected to

!internal stresses determined by the Common Theory of

Flexure, the intensities of fibre stresses varying directly as

Ithe distance from the neutral axis while the transverse and

longitudinal shears are distributed as indicated in Art.
fyo.

The maximum intensities of. the direct stresses and shears

at any point, however, must be determined by the aid of

the procedures given in Arts. 8 and 9.
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The intensity of the direct tensile and compressive
stresses in any normal section may readily be determined

when the conditions of loading are known. The only
stresses acting on any two transverse planes at right angles

to each other, one horizontal and the other vertical, are

the direct fibre stress pv and the longitudinal and trans-

verse shear pxy . It is shown in Art. 8 that the two inten-

sities of principal stresses are given by the following equa-
tion for all points:

Again, if a is the angle which the axis of X (vertical)

makes with the direction of one of the principal stresses

it is shown in the same article that

Pv
(2)

By the use of these equations it is shown in Art. 10

that at the neutral surface of the bent beam where the

intensity of the transverse and longitudinal shear has its

maximum value, i.e., f the mean intensity on the entire

section, there will be two principal stresses of equal inten-

sity, and of the same intensity as the shear, but of opposite

kinds, one being tension and one compression, each making
an angle of 45 with the neutral surface. This determines

completely the state of stress at the neutral surface. In

the same article it is shown that there is but one principal

stress at the exterior surface and that is the ordinary fibre

stress of flexure whose intensity is determined by the bend-

ing moment at the normal section considered. This inten-

sity may be called k. The greatest intensity of shearing

stress at the surface of the beam where the intensity k

exists is given by eq. (5) of Art. 9. One of the principal
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stresses, i.e., that one normal to the exterior surface of the

beam will be zero. Hence the maximum shear will be

found on two planes at right angles to each other and each

at 45 to the surface of the beam, the intensity of the shear

being one-half of the principal stress k. These consider-

ations determine completely the greatest stresses at the

neutral surface and at the exterior surface, upper or lower,

of the beam. There remain to be found the intensity of

principal stress at all other points by means of eqs. (i)

and (2).

To illustrate the necessary procedures, let a steel beam
of rectangular normal section be taken with an effective

span of 20 feet, and with a depth of 16 inches. For the

purpose of these computations the beam may be consid-

ered to have a lateral thickness or width of i inch, making
the area of cross-section 16 square inches. The load per
linear foot may be taken at 1140 pounds, producing an

extreme fibre stress of k = 16,000 pounds per square inch.

If x be measured from one end of the span and if 2 be

measured upward and downward, respectively, from the

neutral surface, the greatest value in either direction being
8 inches, and if I be the moment of inertia of the normal

section of the beam about its neutral axis, there may be

written the following values for the bending moment and

intensity of fibre stress at any distance z from the neutral

axis, g being the load per unit of span :

i
'

The transverse shear at any section x from the end of

the span is
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HH-
It is found by eq. (6) of Art. 15 that the intensity of

transverse and longitudinal shear at any point in a section

of the beam is

The value of tan 2a giving the direction in which the

principal stresses act now becomes

tan 2a =-

. Fig. i shows a part of one-half of the beam under con-

sideration, the effective span being 20 feet =240 inches.

One end support is at B while CD is at the centre of the

span. AW is a trace of the neutral surface.

Normal sections of the beam were taken 2 feet apart
at F, G, H and C and the directions and intensity of the

principal stresses p were computed by means of eqs. (i)

and (2) at four points 2 inches apart vertically, including
the neutral surface and exterior surfaces at each of those

sections. The curved lines drawn in Fig. i are each laid

down in the direction of the principal stresses acting at

each point, the curves having the plus sign representing
the directions of principal tensile stresses, while those indi-

cated by the minus sign show the directions of the prin-

cipal compressive stresses at each point. Along the neutral

surface AW all lines are inclined at an angle of 45 to that

surface, while at each exterior surface one set of lines is
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parallel to that surface and the other at right angles to it.

Wherever the curved lines cross they are at right angles to

i

CD

each other. The plus stresses at the upper surface of the

beam and the minus stresses at the lower surface have

zero intensities at those surfaces. At the centre of span
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CD all lines are horizontal, as the shear at that point is

zero. They are horizontal whatever may be the character

of loading at the point where the bending moment is

greatest, i.e., where the shear is zero. These curved lines

representing the direction of the principal stresses at all

points are sometimes called stress trajectories.

Some important practical matters are based upon the

existence of the principal stresses of tension and compres-
sion at the neutral surface of a bent beam, those principal

stresses making angles of 45 with that surface. In Fig. 2

is shown a rolled I-beam, although this discussion is equally

applicable to the web of a plate girder.

Inasmuch as the inclined principal stresses of tension

and compression act at the neutral surface, let that dis-

tribution of principal stresses be supposed to exist through-
out the entire web of the rolled beam. This condition may
be represented by the sets of lines drawn in Fig. 2, each at

an angle of 45 with the vertical line (or with a horizontal

line). Let it be supposed that the entire web of the beam
is composed of the strips shown, those indicated by the

broken lines AB being subjected to tension in the left half

of the bearruand those represented by full lines, to compres-
sion. Inasmuch as the strips AC will be subjected to com-

pression they may approximately be considered columns

with the length h sec 45=/rv/2. The thickness of the

web of flanged beams such as plate girders is sometimes

determined by an empirical formula based upon this long-

column condition of stress. Any part AC of the web is

in fact not in a true long-column condition because the

parts parallel to AB are in tension and tend to hold the

parts AC in position.

Again, it is sometimes supposed that the web of a flanged
beam may be considered approximately to be composed
of a system of tension and compression web members like
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a truss represented by such sets of strips of metal as AB
and AC.

The condition of compression in which the web exists

in the direction AC tends to buckle a thin web into corru-

gations with their axes parallel to AB, and such girders

exhibit that result when tested to destruction if the web
is insufficiently stiffened. For this reason it has some-

times been proposed to place the stiffeners on the webs

of plate girders in the direction AC, Fig. 2, so as to

prevent any buckling of the kind described. Such a

method, however, is not satisfactory for a number of

reasons.

If the total transverse shear in any normal sections of

the beam such as a vertical section through A or C be called

5 then the average intensity of shear assumed uniformly
5

distributed over the section of the web would be s= .

th

Since such a vertical section would cut the same number
of inclined strips in tension and compression, the shear

-\/2 (sec. 45) would be carried by each of the sets of
2

inclined strips whose normal section would be

th cos 45=-^.

Hence, the intensity of stress in each of the two sets of

strips would be

S ,- th S_ "%/ r\ _!__ -
n
___

'

2
' '

This is the same intensity as the mean transverse shear on
the section of the web. According to this mode of treat-
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ment, therefore, it is seen that the intensities of stress

throughout the assumed 45 strips is the same as the inten-

sity of the average transverse shear. This again is simply

the condition which exists at the neutral surface of the

solid beam as already found, except in that case the inten-

sity of transverse shear at the neutral surface is one and

one-half times the average intensity.

Art. 35. The Flexure of Long Columns.

A "long column" is a piece of material whose length

is a number of times its breadth or width, and which is

subjected to a compressive force exerted in the direction of

its length. Such a piece of material will not be strained

or compressed directly back into itself, but will yield

laterally as a whole, thus causing flexure. If the length

of a long column is many times the width or breadth, the

failure in consequence of flexure will take place while the

pure compression is very small and neglected.

As with beams, so with columns, the ends may be

"fixed," so that the end surfaces do not change their

position however great the compression or flexure. Such

a column is frequently, perhaps usually, said to have

fixed ends. If the ends of the column are free to turn

in any direction, being simply supported, as flexure takes

place, the column is said to have "round" ends. It is

clear that if the column has freedom in one or several

directions only, it will be a " round" end column in that

one direction, or those several directions, only. It is

also evident that a column may have one end round and

one end flat or fixed.

In Fig. i let there be represented a column with flat ends,

vertical and originally straight. After external pressure is
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imposed at A, the column will take a shape similar

to that represented. Consequently the load P, at

A, will act with a lever-arm at any section equal
to the deflection of that section from its original

position. Let y be the general value of that de-

flection, and at B let y=yr Let x be measured

from A, as an origin, along the original axis of

the column. In accordance with principles already

established, the condition of fixedness at each of

the ends A and C is secured by the application of

a negative moment, M. It is known from the

general condition of the column that the curve

of its axis will be convex toward the axis of x at
FlG ' ** and near A, while it will be concave at and -near

B (the middle point of the column). Hence, since y is

positive toward the left, and since the ordinate and its

second derivative must have the same sign when the

curve is convex toward the axis of the abscissas, the general

equation of moments must be written as follows :

:-:

i

-- - El^M-Py....... (i)

Multiplying by zdy,

Py* + (c=o); . . . (2)

c=o, because the column has fiat ends, and

dy_
dx~

whenj'=o. Also
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dy

when y=yl ;

' M =~~
(3)

Eq. (2) now becomes

~

vyy-y*

IE .
1
2V- -- " ^4/

(5,

In this equation I is the length of the column. From

eq. (5) there may be deduced

^EIr p . ...... (oj

It is to be observed that P is wholly independent of the

deflection, i.e., it remains the same, whatever may be the

amount of deflection, after the column begins to bend.

Consequently, if the elasticity of the material were per-

fect, the weight P would hold the column in any posi-

tion in which it might be placed after bending begins.

This result is for pure flexure, direct compression being

neglected.

Eq. (6) forms the basis of some old long column

formulae now out of use. It was first established by
Euler.
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Some very important results follow from the conside-

ration of Fig. i in connection with the preceding equa-
tions.

The bending moment at the centre, B, of the column

is obtained by placing y=yl
in eq. (i); its value is, con-

sequently,

M...... (7)

Hence the bending at the centre of the column is exactly

the same (but of opposite sign) as that at either end. Between

A and B, then, there must be a point of contra-flexure.

Putting the second member of eq. (i) equal to zero,

and introducing the value of M from eq. (3),

Introducing this value of y in eq. (4), and bearing in

mind eq. (5),

TT \~E~I I-V-
The points of contra-flexure, then, are at H and D,

JZand |/ from A.

Hence the middle half of the column (HD) is actually a

column with round ends, and. it is equal in resistance to a

fixed-end column of double its length.

Hence writing /' for - and putting 2/' for / in eq. (6),

(9)

Eq. (9) gives the value of P for a round-end column.

Again, either the upper three quarters (AD) or the

lower three quarters (CH) of the column is very nearly
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equivalent to a column with one end flat and one end round,

and its resistance is equal to that of a fixed-end column

whose length is - its own. Putting, therefore,

and introducing

in eq. (6),

n*EI

The last case is not quite accurate, because the ends of

the columns HC and AD are not exactly in a vertical line.

In reality, the column under compression may be com-

posed of any number of such parts as HD, with the por-

tions HA and CD at the ends, thus taking a serpentine

shape, so far as pure equilibrium is concerned. In such

a condition the column would be subjected to considerably

less bending than in that shown in the figure. In ordinary

experience, however, the serpentine shape is impossible,

because the slightest jar or tremor would cause the column

to take the shape shown in Fig. i. Hence the latter case

only has been considered.

If r is the radius of gyration and 5 the area of normal

section of the column, eqs. (6) and (9) will take the forms

P 47T
2 r2 P _7r

2
r
2

"5
~
~P~ "5

=

~W'

Eq. (10) will, of course, take a corresponding form.

P
These equations evidently become inapplicable when ~-
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approaches C, the ultimate compressive resistance of the

material in short blocks. The corresponding values of f-j

at the limit are

M! -

;

(".

for fixed and round ends respectively ;
other conditions of

ends will be included between those two.

If for structural steel

=30,000,000 and C = 6o,ooo,

the above values become 140 and 70, nearly.

Euler's formula, therefore, is strictly applicable only to

structural steel columns, with ends fixed or rounded, fox

which l + r greatly exceeds 140 and 70, respectively.

If for cast iron

= 14,000,000 and C = 100,000,

eqs. (n) give

I I- = 74 and -=37, nearly.

Euler's formula evidently becomes inapplicable con-

siderably above the limits indicated, since columns in which

has those values will not nearly sustain the intensity C.

The analytical basis of
" Gordon's Formula" for the

resistance of long columns is so closely associated with the

empirical that both will be treated together hereafter.
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Art. 36. Special Cases of Flexure of Long Columns.

There are a few cases of flexure of columns which,

while not frequently found in engineering experience, may
be of some practical importance. The two or three which

follow involve the integration of linear differential equations

treated in advanced works on the integral calculus; con-

sequently the operations of integration will not be given

here, but the general integrals will be assumed.

Flexure by Oblique Forces.

In Fig. i let OA represent a column acted upon by the

oblique force P, which makes the angle a with the axis of

X. The column is supposed to be

fixed in the direction of OX at 0, but

the coordinates oo and y are measured

from the point of application A of the

load P as shown in the figure. If

right-hand moments are positive, and

left-hand negative, the component
P sin a will have the negative moment
P sin ax about any point 0''. The

lever arm of P cos a, if the deflection

y is positive, is -\-y, and its moment
P cos ay is also negative. Hence

the resultant moment of any force, P,
in reference to the point 0' is

ax2

00 P COS ay

d)

FIG. i.

For any number of forces or loads P there will obviously
be a corresponding number of pairs of terms in the third
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member of eq. (i). It will therefore be sufficient to treat

one force P only.

Eq. (i) may be put in the form,

P sin / x

In this equation n2 =

El

P COS a -, P sin a ^ / Nand m= . Eq. (2)

may readily be integrated so as to give the following

equation, Ci and 2 being constants of integration :

m
n3

sn noc z cos n% (3)

Using the values of m and n given above y may take

the following form, observing that = tan a:

The coefficients C and C' have the values

~EI

and

and they may be treated as arbitrary constants to be

determined by the conditions of each problem
As x and the deflection y are measured from the point

of application of the load P, if x =o then must y=o. Hence

by eq. (4), C'=o. Consequently
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If a is greater than 90, cos a will be negative and
the exponential value of the sine may be used as follows:

Placing b = */
cT"""'

anc^ e being the base of the Naperian
\ tLL

logarithms :

(6)
2 I

When cos is negative bV i is the square root of a

positive quantity, and - will be rational.
V i

Column Free at Upper End and Fixed Vertically at Lower

End with either Inclined or Vertical Loading at Upper End.

In this case the axis of x, Fig. i, is to be considered

vertical with the column fixed at its base 0. In accord-

ance with the latter condition -~- =o at 0, i.e., when x -I =
ax

length of column.

From eq, (5),

(7)
dx

" v El
'

\ El

It is to be observed that P is not yet determined and
/ p

that cos\f ^-^ x may vary largely (and periodically)

while -f- remains unchanged.
doc

If the column carries a vertical load at its upper end

a = o = tan a, and when x = l,-=o. Eq. (7) then gives :

Cofi%/i=
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If / is any whole odd number from i to infinity, then

there may be placed by the aid of eq. (8) :

~P firJ ( \

EI
=

7l
:

. . . (9)

If this value be substituted in eq. (7) after making
a = tan a = o :

Eq. (10) shows that when #= (/ being any whole odd

number) -r =o, for cos - =cos 90 =o.
dx 2

Obviously P must have the smallest value which will

satisfy eq. (9) ;
but / cannot be smaller than i. Therefore

P=EI^. riii

The carrying capacity of the column is thus seen to be

independent of the deflection as was the case in Art. 35,

but it must be observed that the effect of direct compression
is neglected, i.e., it is a case of pure bending of excessively

long columns. The end of the column considered here

which carries the vertical load is free to deflect laterally,

whereas in Art. 35 both ends are supposed to be held

against lateral movement. In the latter case the resist-

ance is seen to be nine times as great as in the present.

Eq. (n) can be found in a direct and simple manner

by making M =o in eq. (i) of Art. 34 and integrating the

resulting equation.

/ P /~P~
Since by eq. (8), cos^|

/=o, sin^
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If therefore a=o and x=l in eq. (5), and if y is the

deflection of the free end of the column in reference to

the base, Fig. i, that equation will give:

C=yi (12)

Then

(13)

For a given value of x, therefore, y varies directly as

yi and the relative deflections at the base and any point

may be computed by the equation:

-WA (i4)

Or in the ordinary case:

J-rinJ'. ;.'. . - - (IS)

It should be remembered that deflection is initiated by
the load P determined by eq. (n) and that the deflection

may take any subsequent value without increase of load.

PROBLEMS FOR CHAPTER II.

Problem i. A beam simply supported at each end

carries a load of 850 pounds per linear foot over a span of

26 feet. Find the bending moment and transverse shears

at the end and centre of span and at 2 points 3 feet and 1 1

feet 6 inches respectively from the end.

Ans. Moment at end is o; at 3 feet, 29,325 ft.-lbs.;

at 11.5 feet, 70,868.75 ft.-lbs.; at centre, 71,825

ft.-lbs. Shear at end is 11,050 Ibs.; at 3 feet,

8500 Ibs.; at 11.5 feet, 1275 Ibs.
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Problem 2. A beam or girder having a span length of

41 feet carries a uniform load of 1200 pounds per linear foot

and a single weight of 1800 pounds at the centre. Find

the bending moments and the shears due to the uniform

load and the single load separately at the ends and at the

centre and at points 6 and 14 feet from the end.

Problem 3. In Problem 2 find the single weight which

placed at the centre of the span will produce the same

centre bending moment as the uniform load.

Ans. 24,600 pounds.

Again, find two weights placed 6 feet apart, i.e., one

3 feet either way from the centre, which will produce the

same centre bending moment as the uniform load.

Ans. Each of the two weights is 14,406 pounds.
Problem 4. A beam or girder with a span length of

31 feet carries a uniform load of 300 pounds per linear foot

in addition to five loads, the first weighing 7000 pounds
at a distance of 3 feet from the end

;
the second weighing

10,000 pounds 7 feet from the end; the third weighing

11,000 pounds 14 feet from the end; the fourth weighing

17,000 pounds 21 feet from the end, and the fifth weighing

6400 pounds 27 feet from the end.

Construct the shear and moment diagrams for this case,

Fig. 2 of Art. 15 and Fig. 2 of Art. 12.

Problem 5. Find a uniform load for the same beam
considered in Problem 4 which will have a centre bending
moment equal to the greatest bending moment of that

problem; also another uniform load whose end shear

shall equal the greatest of the two end shears of Prob-

lem 4. Such uniform loads are called
"
equivalent uniform

loads."

Problem 6. In Problem 2 the moment of inertia /
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is '3570 (the unit being the inch), while E = 30,000,000,

the beam being of steel. Find the tangent of inclination

of the neutral surface at the end and at 10 feet from the

end. Also find the deflection at the centre of span and

at 10 feet from the end. Use eqs. (19), (20), and (21)

of Art. 22.

Partial Ans. Tangent 10 feet from end is .00344.

The deflection at the same point is .53 inch.

Problem 7. In Problem 6 let it be required to ascer-

tain how much additional deflection is produced by the

transverse shear at the centre of the span and at 10 feet

from the end. Let the coefficient of elasticity for shear

(G) be. taken at 12,000,000 pounds, while / = 357o and
d = i4 inches.

Ans. Deflection at 10 feet is .0054 inch, and at the

centre of span .0075 inch.



CHAPTER III.

TORSION.

Art. 37. Torsion in Equilibrium.

THE state of stress called torsion is produced when a

straight bar of material, like a piece of round shafting, is

twisted. Such a bar is represented in Fig. i, the axis of

the piece being AB, and its normal cross-section having

any shape whatever. In engineering practice the outline

of that normal section is usually circular, although it is

occasionally square.

FIG. i.

The twisting of the bar is done by the action of two

equal and opposite couples acting in two planes, each nor-

mal to the axis, but at any desired distance apart. The

two couples are represented in Fig. i at each end of the

piece in the two normal sections A and B. The forces

and lever-arm of one couple are respectively P and
,
and

Pf and e
r
of the other. The moment of the first couple

182
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will be Pe and that of the second couple PV, and if pure
torsion is to be produced these two moments must be equal,

but opposite to each other. Inasmuch as the moment of a

couple is the product of the force by the lever-arm, the

forces and lever-arms of the two twisting couples may vary
to any extent as long as the moments remain unchanged.

Although the system of forces to which a bar in torsion

is subjected is such as to be in equilibrium, any portion
of the piece will tend to have its normal sections like those

at CD rotated over each other, the result being a small

sliding motion around the axis of the piece. Hence a

torsive stress is wholly a shearing stress on normal sections

of the piece subjected to torsion. It is further important
to observe that inasmuch as a couple produces the same

effect wherever it may act in its own plane, the actual

twisting moment need not be applied with its forces sym-

metrically disposed in reference to the axis of the piece;

indeed, both of those forces may be anywhere on one side

of the piece without varying the conditions of torsion or

torsive stress to any extent whatever.

It is known from the general theory of stress in a solid

body that although there can be no stresses of tension and

compression parallel to the axis of a bar under torsion, or

at right angles to it, there will be such stresses of varying
intensities on oblique planes. Inasmuch as the result of

torsion is to slide normal sections each past its neighbor,

the elastic torsive shear like any other shear will not change
the volume of the body. The principal shearing strains

will produce deformation without changing the dimensions

whose product gives the volume.

The exact and complete mathematical theory of tor-

sion deduced from the general equations of equilibrium of

stresses in an elastic solid, without extraneous assump-

tions, will be found in App. I. Those formulas show accu-
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rately the state of torsive stress in bars of any elastic

material and of various shapes of cross-section. For the

general purposes of engineering practice that general demon-

stration is rather complicated. Hence it is often avoided

by making certain approximate assumptions based to. some

extent on experimental observations which lead to an

approximate and simpler theory, yielding formulae accurate

only for the circular normal section, but which are not

materially in error for the square section. These formulas

are, however, far from accurate for certain other sections.

In this article only the formulas of the simpler, theory,

called the common theory of torsion,

will be given.

Fig. 2 is supposed to represent the

normal section of a bar of material of

any shape, subjected to torsion by the

application of couples as shown in

Fig. i. The fundamental assump-
tions of the common theory of tor- FIG. 2.

sion are that the intensity of shearing stress varies directly as

the distance from a central point at which that intensity is

zero, and that that central point is located at the centre of

gravity or the centroid of the section. It is also implicitly

assumed that the normal sections which are plane before

torsion remain plane during torsion. In Fig. 2, A is sup-

posed to be the centre of gravity of the section at which the

intensity of shear, i.e., the shear per square unit of section,

is zero. The distance from the centre A to any point of

the section is represented by r, and to the most remote

point in the perimeter of the section by r . In accord-

ance with the assumed law, the greatest intensity of shear

T m in the section will be found at the distance r
Q
from its

centre. While this is accurately true for the circular sec-

tion, it is quite erroneous for a number of other sections.
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Hence the intensity at the distance unity from the centre

A will be -
,
and at the distance r from the centre it

r o

will have the value

The element of the section at the distance r from A will be

rdco.dr........ (2)

Hence the shear on that element is

T"*

dS=~T m .rdw.dr = r*dr.da>. ... (3)r
o

r
o

The direction of action of this torsive shear is around

the circumference of a "circle whose radius is r; hence if

moments of all these small shears, dS, be taken about the

centre or point of no shear, A, the lever-arm of each small

force, dS, will be r, and the differential moment will be

dM=rdS = r
3
dr.daj. . . . . (4)r

o

The total moment of torsion therefore will be

/27r

rr -T T /2r /V 7-

/ rtdr.dto^^ / r*drdco=^I,. (5)Jo r
Q

r
Q Jo Jo r * VD/

The quantity I
p
is the polar moment of inertia of the section.

For a circular section

7rr
4 nd 4 Ad 2

lp=-=(d = diameter) =--. . . (6)
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For a square section (b
= side of square)

Ab

For a rectangular section (6= one side and c = the other

side)
'

.... (8)J2 I2

For an elliptical section (a, and b
l being semi-axes)

(9)

Using the notation of Fig. i, the following equation of

moments may be written, Pe being the moment of the

external twisting couple and M the moment of the internal

torsive shearing stresses in any normal section:

(10)

It is clear from Art. 2, if <p is the shearing strain at the

distance r from the centre, that Tm =G</> ,
G being the

coefficient of elasticity for shearing. Also, since the inten-

sity of shearing varies directly as the distance from the

centre A, it is equally clear that the shearing strain
</>

varies directly as the distance from the centre, so that

if a represents the shearing strain at unit's distance from A

(j)=ra and*
</> Q
=r

Q
a..... (n)

Hence in general

T=Gra, ....... (12)

and as a maximum
Tm =Gr a....... (13)
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a is evidently the angle through which one end of a fibre

of unit 's length and at unit 's distance from the centre or axis

is turned. It is called the angle* of torsion.

If / is the length of the piece twisted, the total angle

through which the end of the fibre at unit's distance from

the axis will be turned is

Total angle of torsion =a<,. . . . (14)

If the fibre is at the distance r from the axis one end

willbe twisted around beyond the other by an amount

equal to

Total strain of torsion = r
Q
al. . . . (15)

By the aid of eq. (13) eq. (5) may be written

I,. . . .

'

. (16)
o

If < is observed experimentally

*

The angle through which a shaft will be twisted by the

moment Pe, if the length is /, is

Pel lT m

If G is in pounds per square inch, as is usual, the pre-

ceding formulae require all dimensions to be in inches,

while a will be arc distance at radius of one inch.

If i2l is written for / the unit for the latter quantity
must be the foot.

By inserting the value of 1P from eq. (6) in eq. (5),

* This small angle is measured in radians. Strictly speaking it is an

indefinitely short arc with unit radians,
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.

d 32 16

?
~. ...... (19)w

Eq. (19) will give the diameter of a shaft capable of

resisting the twisting moment represented by Pe with the

maximum torsive shear in the extreme fibres of T m .

The main cross dimensions of other sections may be

found similarly by the use of eqs. (7), (8), and (9).

It is frequently convenient to compute the greatest

intensity T m from the twisting moment M. For this pur-

pose the equation preceding eq. (19) gives

M
^m = 5- 1

^?
....... (20)

These equations complete all that are required for the

practical use of the common theory of torsion. In some

cases it may be necessary to use accurate formulae for

other shapes of section than the circular. In those cases

the exact formulas of App. I should be employed. The

practical applications of the preceding formulae to such

Twisting Moment in Terms of Horse-power H.

It is sometimes convenient to express the twisting

moment M in terms of horse-power transmitted by the

snafting. If H is the number of horse-powers transmitted

by a shaft making n revolutions per minute, the inch-pounds
of work will be 12 X33,oooX#, since each horse-power repre-
sents 33,000 foot-pounds of work performed per minute.

Again if e is the lever arm of the twisting couple, the path
of the force P per minute will be 2wen and the work per-

formed by the couple must therefore be PX2Tren=M2wn.

Equating these two expressions for the work or energy
transmitted

;
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, H ,, , x
=63,025 =M. . . . (21)

2-n-n n

If this value of M be placed in eqs. (19) and (20), the

values of d, the diameter of the shaft and Tm ,
the greatest

intensity of shear will take the following forms in terms

of the horse-power and the number of revolutions per

minute :

31

-. . ..... (22)n

TT

(23)

Hollow Circular Cylinders.

If the exterior diameter of a hollow cylinder is d and the

interior diameter d\ =jd, j being simply the ratio between

the two diameters, the equation preceding eq. (19) may be

written :

M =
^(d

3
di

3
) (24)

Hence

Eq. (25) shows that any of the preceding equations

may be made applicable to a hollow cylinder by writing

Tm (i -j
3
) in the place of 7W .

Eqs. (19) and (22) therefore take the following forms

for a hollow cylinder :

Pe , a H , <.\

(26)

The resistance of the hollow cylinder is obviously the

difference between the resistances of two solid cylinders,
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one having the exterior diameter and the other the interior

diameter of the hollow cylinder.
*

Art. 38. Practical Applications of Formulae for Torsion.

There has been comparatively little experimental inves-

tigation in the resistance of structural materials to torsion

and practically none of that has been done in connection

with pieces of considerable size. Such results as have been

obtained appear to justify the following data.

Steel.

Some of the older tests, as those of Kirkaldy, indicate

that the ultimate intensity of torsional shear, Tm , may be

taken as high as 75,000 pounds to 90,000 pounds per

square inch for special grades of steel like those used for

tires, rails, and crucible steel, but lower values must be

employed for mild structural steel and for the ordinary

grades of shafting.

Torsion tests on circular pieces of spring and cold-drawn

steel about f inch and ij inches in diameter made in the

testing laboratory of the Dept. of Civil Engineering at

Columbia University by Mr. J. S. Macgregor gave the

following results, which are shown rather fully in order to

exhibit clearly their main features. There were either four

or six tests in each group from which the
"
max.,"

" mean "

and "-min." were taken. All these test specimens except

those of mild steel were heat treated. Part of these were

heated to 1350 F. and then plunged in oil at 70 until cold.

They were then temper drawn in hot oil at 575 F. and

part were again heated to 1350 F. and immersed in oil at

575 F, They were then allowed to cool in air at normal

temperature.
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the ultimate tensile resistance, and approximately the same

ratio between the elastic limits, it is reasonable to take the

elastic limit in torsion at 25,000 pounds to 28,000 pounds

per square inch for that grade of material having an ulti-

mate tensile resistance of 60,000 pounds to 68,000 pounds

per square inch.

Nickel steel has a higher ratio of the elastic limit divided

by the ultimate, and a mean value of 33,000 pounds per

square inch for the elastic limit is reasonable.

If the greatest intensity of torsive shear Tm allowed in

the design of a shaft of diameter d is fTe in which Te is

the elastic limit and/ a suitable fraction, perhaps .5 in some

cases, then eq. (19) of the preceding article will take the

form:

Pe

Similarly eq. (22) of the same Art. will become:

3~fi

Wrought Iron.

Wrought iron is now seldom used for shafting or similar

purposes, but such tests as have been made show that the

torsive elastic limit of wrought iron may be taken from

20,000 pounds to 25,000 pounds per square inch and used

as indicated in eqs. (i) and (2). From 10 per cent -to 20

per cent higher values may be taken for cold-rolled shafting.

Cast Iron.

Cast iron is ill adapted to resist torsion and is not

commonly used for that purpose, yet it has been tested
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in torsion, although generally in special grades such as were

formerly employed in making cannon or car wheels. Such

grades of cast iron gave ultimate values of Tm from 24,000

pounds to 45,000 pounds per square inch or even more,
but they are far too high for ordinary castings used in

engineering practice. Probably half the preceding values

would be large enough for the best quality of ordinary

castings, although the highly variable and erratic qualities

of cast iron make it exceedingly difficult to assign exact

data for purposes of design. The modulus of elasticity, G,

may be taken at 7,000,000 for ordinary grades of cast iron,

or at 6,000,000 for the lower grades.

Alloys of Copper, Tin, Zinc and Aluminum.

The torsional resistance of this class of alloys varies

greatly with the relative proportions of their constituent

elements in a manner quite similar to that exhibited by
the corresponding resistance to tension.

Professor R. H. Thurston was probably the earliest

thorough investigator of the torsional resistances of many
of these alloys. He found the ultimate intensity of torsive

stress Tm to vary from a few hundred pounds per square
inch to nearly 48,000 pounds per square inch for alloys of

copper and tin running by gradual variation from pure cop-

per to 10% of that metal alloy to 90% of tin. The alloy

80-90% Cu with 20-10% vSn gave Tm varying from about

47,700 pounds to 43,900 pounds per square inch with a maxi-

mum twist of 114.5 degrees. Similarly he found the ulti-

mate Tm for pure copper to range from 28,400 to 35,900

pounds per square inch with a total twist of over 150 de-

grees. On the other hand, pure tin gave the ultimate

TTO =32oo pounds (nearly), the total angle of twist running
as high as 691 degrees. The elastic limit of the more due-
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tile of these alloys was found, to vary from about 35% to

60% of the ultimate Tm . The alloys running from 70%
Cu with 30% Sn to 29% Cu with 71% Sn were brittle,

giving low values of Tm from about 700 pounds per square

inch to less than 6000 pounds per square inch
;
those alloys

failed at the elastic limit with a total angle of twist of only

i to 2 degrees.

Similar results with like erratic variations were found by
Professor Thurston for alloys of copper and zinc. The

greatest values of Tm ran from about 35,000 to 52,000

pounds per sq. in. for 90,58% Cu with 9.42% Zn to 49.66%
Cu with 50.14% Zn.

It should be observed that the test specimens used by
Prof. Thurston were .625 inch in diameter with a torsion

length of i inch only and they were tested in his torsion

machine.

TABLE I.

ALUMINUM ALLOYS TORSIONAL RESISTANCE.

Composition Per Cent.
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Table I contains experimental values of the elastic

limit and ultimate torsion shearing resistance of the alloys
of aluminum, tin, and copper shown in the table. They
were determined by Messrs. Gebhardt and Ward in the

mechanical laboratory of Sibley College at Cornell Uni-

versity and reported to the Am. Soc. Mech. Engrs. in

1898.

The results of the table show that the alloys yielding
other 'resistances of considerable value will also exhibit

proportionate torsion resistances, as might be anticipated.
The Eighth Report to the Alloys Research Committee

of the Institution of Mechanical Engineers of Great Britain

by Prof. H. C. H. Carpenter, M.A., Ph.D., and Mr. C. A.

Edwards in 1907 contains some interesting torsion tests on

specimens of copper-aluminum, the pieces being .624 inch

in diameter and 3 inches in length with the exception of

No. 3, which was 2.8 inches in length. Table II gives the

results of these tests. It will be observed that alloys with

a comparatively small percentage of aluminum give much
higher torsional ductility than pure copper. This is proba-

bly due to the fact that rolled copper generally contains

TABLE II.
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some dissolved oxygen which diminishes its ductility. The
addition of a small amount of aluminum removes the oxy-

gen and enhances the ductility. -The authors of the report

express the conclusion that "Alloys containing aluminum

up to 71 per cent behave extremely well under the torsion

test but beyond this percentage there is a rapid deteriora-

tion of properties." The ratio between the ultimate resist-

ance Tm to torsional shear and the ultimate tensile resist-

ance is shown in the last column of the table.

Other Sections than Circular.

The common theory of torsion is correct only for cir-

cular sections. The general demonstration for other sec-

tions than circular shows that for square, rectangular,

triangular and elliptical sections, the maximum intensity

of^torsive stress Tm will be found at the middle point of a

side of a square section or of the longest side of a rectangular

section, or at the middle point of the side of an equilateral

triangular section and at the extremities of the minor axis

of an elliptical section. If, however, for approximate pur-

poses the formulae of the common theory of torsion should

be used for the sections indicated above the polar . moments
of inertia I9 would be taken from eqs. (6), (7), (8) and (9)

of Art. 37. The maximum torsive shear Tm ,
in this pro-

cedure, should be taken as existing at the extreme points
of the section. The results by this approximate method
will be sufficiently near for most ordinary purposes, at least

with the square section, but the exact theory should be

used for oblong sections or where the highest degree of

accuracy is desired for non-circular sections.



CHAPTER IV.

HOLLOW CYLINDERS AND SPHERES

Art. 39. Thin Hollow Cylinders and Spheres in Tension.

If a straight closed hollow cylinder be subjected to an

interior pressure having the intensity q' sufficiently greater

than that of the exterior pressure q it there will be a ten-

dency to split the cylinder longitudinally.

Fig. i represents such a cylinder with sides so thin that

the stress to which they are subjected may be considered

uniformly distributed throughout

any diametral section. If a cy-

lindrical shell has much thickness

relatively to its interior radius

the tensile annular stress due to

inner pressure will not be uni-

formly distributed throughout
the shell. The excess of inner

pressure over the outer, if the FIG. i.

latter exists, will cause the inside

part of the annular section of metal to be stressed to a

higher intensity than the outside and that difference will be

greater as the thickness of the shell increases relatively to

the radius. It becomes necessary therefore to distinguish

between these two classes of cylindrical shells in their ana-

lytic treatment.

AB represents the diametral plane through the axis of

the cylinder, the thickness i of the shell being supposed in

this case to be so small that the cylindrical shell may be

considered
"
thin."

197
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As the notation shows r' is the interior radius and r\

the exterior radius. If C, the centre of the cylindrical

section, be taken as the origin of the circular coordinates

r' and a, and if a unit length of cylinder be considered,

the indefinitely small amount of pressure on a differential

of the interior surface r'a will be q'r'da and it will have a

component at right angles to the diametral plane AB
expressed by q'r'da sin a. The integral of this expres-

sion between 180 and o will be the total normal pressure

acting on the two longitudinal sections of metal at A and

B, as shown by the following equation:

( q'r' sin ada = 2q'r'.

One-half of the second member of this equation, qY,
represents the tendency to split the cylinder at either A
or B and it must be resisted by the sections of metal at

those two points, or at any other two points at the extrem-

ities of a diameter.

Precisely the same integration made for the exterior

pressure will obviously give the quantity q\r\ representing
the tendency to give the metal compression at the extremi-

ties of any diameter.

The resultant tendency to split the cylinder per unit of

length will then be q
f

r
f

q\r\, it being supposed that the

interior pressure is so much greater than the exterior that

tension only will be induced in the material. Obviously
if the exterior pressure were much larger than the interior,

compression would exist instead of tension. The intensity
of tensile stress t in the sides of the cylinder will therefore be
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This value of t expresses the tendency of the cylinder
to split along a diametral plane under the action of the

interior pressure q''.

If the ends of the cylinder are closed, the internal

pressure against them will tend to force them off or to pull

the cylinder apart around a section normal to the axis.

The force F tending to produce this result will be

F-KteV'-^O...... (2)

The area of normal section of the cylinder will be

n(r^ r'
2

). Hence the intensity of stress developed by
this force will be

r,
2-/ 2

If the exterior pressure is so small that it may be con-

sidered zero, eqs. (i) and (3) give

t = ^f, (4)

When the thickness of the shell is small / may be

ced ec

will give

r
' + r

placed equal to -, and this value introduced in eq. (5)

f in eq. (6) is seen to be but half as much as t in eq. (4).

In this case, therefore, if the material has the same ulti-

mate resistance in both directions, the cylinder will fail

longitudinally when- the interior intensity is only half

great enough to produce transverse rupture.

In designing thin cylinders it. will usually be necessary

to determine the thickness i, so that the tensile stress t in
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the metal shall not exceed the prescribed value h. After

writing h for t in eq. (i), also r^ r' for i, then dividing

both sides of the equation by r'
t
there will result

This equation readily gives

If the exterior pressure ql
is so small that it may be

considered zero, the thickness given by eq. (7) takes the

following form :

This is the same value that will be found by solving

eq. (4) for *.

The expression for the thickness of the material of the

cylinder to -resist the longitudinal tension having the in-

tensity / can be found with equal ease. If fi
be written

for / in eq. (3), as the greatest permissible longitudinal

tension, then if both numerator and denominator of the

second member of that equation be divided by r'
2

,
there

will result

*" A

The solution of this equation at once gives the desired

thickness :

/i _1_ nf \ 4

-r' (9)
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If q is so small that it may be neglected, it is simply to

be made zero in eq. (9).

If the exterior pressure q^ were considerably larger than

q', the resulting stresses in the sides of the cylinder would

be compression, but the formulae for the resulting intensi-

ties would be precisely the same as the preceding, as long
as the cylinder retained its circular shape.

The' case of stresses in a thin hollow sphere or thin

spherical shell may be treated in the same general manner.

The hemispherical ends of a metallic cylindrical tank or

reservoir may be illustrated by the skeleton section in

Fig. 2.
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In this last equation i=n r'
,
and the interior radius

is placed equal to one-half the sum of the interior and ex-

terior radii, as may be done without sensible error. The
interior radius being given, the thickness of metal required

to withstand a given internal pressure q
r

without stressing

the metal above a given working value t may be written

as follows from eq. (n) :

If the value of the thickness i should be desired in

terms of both the interior and exterior pressures, it can

easily be written by the aid of eq. (10) ;
if both numerator

and denominator of the second member of that equation
be divided by r'

2
, there.may at once be found

ri_t+g'\*

After multiplying this equation through by r
f

,
then sub-

tracting that quantity from each side of the resulting

equation, the desired value of the thickness will be

By giving a proper working value to the tensile in-

tensity t and inserting the values of the pressures, the thick-

ness i will at once result.

In all these equations no allowance is made for the

metal taken out by the rivet holes in riveted work. This

does not, however, affect in any way the equations found.

It is only necessary to remember that the cross-section of

metal required by the preceding equations is to be regarded
as the net section, i.e., the section remaining after the rivet
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holes have been made. This is equivalent to making the

thickness i great enough to give the required section as

net section.

Art. 40. Thick Hollow Cylinders.

If the thickness of sides or walls of hollow cylinders

and spheres subjected to high internal pressures is great

in comparison with the internal radius, the tensile stress

in the metal may not be assumed to be uniformly distrib-

uted, and it is necessary to deter-

mine entirely different formulae

from those established in the pre-

ceding article.

The normal section of a thick

hollow cylinder is shown in Fig.

i
,
r

r

being the internal radius and

r\ the external, with the intens-

ities of internal and external

pressures p' and p\ respectively.

It is supposed that the internal

pressure so greatly exceeds the

external that the metal sustains

tensile stress only. If the

cylinder be supposed to be

divided into a great number of thin concentric portions,

the elastic stretching of the metal will cause a much higher

tension to exist in the interior portions than in the exterior.

If any diametral section, such as AB, Fig. i, be assumed,
it is clear that the sum of all the tensile stresses developed
in that section must be equal to the excess of the internal

pressure over the external. A unit length of cylinder will

be considered in the following formula.

The tensile stress in the sides of the cylinder, whose

intensity will be represented by h, and which is developed
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in any diametral section, as AB, has a circumferential

direction, and for that reason it is sometimes called
"
hoop

tension."

The variation of this tensile intensity h carries with it

a corresponding variation in intensity of the radial pres-

sure whose intensity is p, having the values p
f

in the in-

terior of the cylinder and pi at the external surface.

The amount of tension on a radial section of thickness

dr will be hdr, and if that differential expression be inte-

grated so as to extend over the entire thickness of one wall

or side of the cylinder, it must be equal to the effort of the

internal pressure in excess of the external to split the

cylinder along one of its sides. The following equation
is the analytical expression of this condition :

p'r' -piri= dr...... (i)

If p', pi, r
f

,
and r\ be considered variable so as to refer

to any interior points in the wall of the cylinder, and if r'

and r\ become so nearly equal to each other that r\r'
may be considered as dr, then will p'r' p\r\ =d(pr) and

eq. (i) will become:

d(pr)=pdr+rdp=hdr. '. . . (2)

Eqs. (i) and (2) will be in no way changed if the ends

of the cylinder are closed, it being assumed in that case

that the longitudinal stress is uniformly distributed over a

normal section like that shown in Fig. i.

Eq. (2) is a differential equation expressing a relation

between the two intensities p and h. Another equation of

condition is required in order to determine the two unknown

quantities. This second equation can be written by ex-

pressing the relation existing between the direct and lateral
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strains due to the stresses p and h, so as to leave the radial

longitudinal sections of the walls of the cylinder plane under

the conditions of stress due to the assumed internal and

external pressures. The establishment of such an equation,

however, will lead to, or express, precisely the same con-

ditions involved in the analysis of Art. 5 of Appendix I,

which therefore need not be repeated here. Those con-

ditions may be expressed by stating that the sum of the two
intensities p and h, i.e., (p+h), is a constant for given
intensities of pressure. If therefore, a be such a constant

there will be assumed the equation:
\

P+h=a (3)

dp = dh, and p = a h.

By the aid of these expressions eq. (2) will take the

form:

2hdr-\-rdh=adr.

By multiplying both sides of this equation by r there

will result :

Jf 97 \ a j 9 / \

d(r
2
h) =-dr2

(4)
2

If 6 is a constant the integration of eq. (4) will give

/
a

,

b
*

I"
1^ (5)

Also

p= a -h = 2-b.. (6)

The interior and exterior pressures p
1 and pi are known,

and eq. (6) will give the two equations :

- L
a b

>i=--* (7)
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By subtracting pi from p
f

(8)

Then by the second of eqs. (7) :

a b p'r'
2 -pin2

- ... (9)

The substitution of these values of b and - in eqs. (5)

and (6) will give the following values of the intensities p
and h. Inasmuch as the preceding equations involving h

and p have been written without giving distinctive signs

to either tension or compression and as the constants b

and may be regarded either as positive or negative, the
2

sign of each one will be changed by writing ri
2

r'
2 for

r'
2 n2

,
which will make the tensile stress h positive and

the compressive stress p negative after substituting the

values of the constants b and - in eqs. (5) and (6).
2

h=<"
2

^ x +^
2 V I

1

. . . . (n)n2_ f '2
fl
2_ f '2 f2

Eqs. (10) and (u) can be put in more convenient form

for use in numerical computations by dividing both numer-

ator and denominator of all the terms in the second mem-
bers of those equations by n2

. This simple operation will

give eqs. (12) and (13):
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'2

Eqs. (12) and (13) are the general values of the inten-

sities of the internal stresses in the walls of the cylinder,

p acting in a radial direction and h in a circumferential

direction. The greatest tensile intensity h' will exist at

the interior surface of the cylinder and it will be found

by making r = r' in eq. (13) as shown by eq. (14) :

'2

Similarly the intensity of tensile stress at the outer

surface of the cylinder (the least intensity of tensile stress)

will be given by making r = r\.

'2 r'2 \y..... ds)

The thickness t of the wall of the cylinder which must
be provided if the greatest intensity of tensile stress h f

is not

to be exceeded by a given intensity p' of interior pressure,
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can readily be found by solving eq. (14) for the quantity
r'

2
'

5,
which will give eq. (16).

rr

h'

Then by adding (-1) to each side of eq. (16) and

multiplying both members by r' eq. (17) will at once

result :

'. - - <

As the internal radius r' will always be known, eq. (17)

gives the thickness t desired in terms of the known pres-

sures and the intensity of working stress h f

.

Eq. (17) shows that if 2pi+h'=p
f

,
t will be infinity.

This shows that when the intensity of the internal pressure

is equal to or greater than twice the intensity of the exter-

nal pressure added to the greatest allowed tensile stress in

the metal, it is impossible to make the wall of the cylin-

der thick enough to resist that internal pressure.

If the external pressure is so small that it may be

neglected, it is necessary only to place pi=o in the pre-

ceding equations.

If pi exceeds p' it is obvious that the internal stress h

will be compression, i.e., there will be hoop compression
as the circumferential stress in the cylinder wall instead

of hoop tension.

The complete solution of the problem of the thick

cylinder including expressions for the distortions or strains

of the material at all points will be found in Art. 5 of

Appendix I.

The application of the preceding formulae can be ex-

pedited by the use of the following tabular values which
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explain themselves. A curve more useful than the table

can readily be constructed from the numerical values in

the latter, so that any value whatever for the ratio of the

radii indicated can be read at sight.

r'

r



210 HOLLOW CYLINDERS AND SPHERES. [Ch. IV.

h = 5000 + 15,ooo .

Taking the varying values of given in the above

table the following values of p and h will result :
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is a straight line laid off tangent at the point B on any radius

CB of the exterior surface of the cylinder, the distance AB
being equal to 5.81 inches. AF is then laid off by scale

equal to h' = 20,000 pounds, while AG is similarly laid off to

represent p'
= 10,000 pounds per square inch, but it must be

remembered that it acts in a radial direction, i.e., along
AB. BD and BH are the corresponding quantities for the

exterior surface of the cylinder, equal respectively to 11,000

pounds and 1000 pounds. Curves DF and HG are then

constructed by laying off the ordinates p and h at right

angles to AB as shown.

Case of Exterior Pressure Greater than Interior Pressure.

If the exterior pressure pi is greater than the interior

pressure p'', it is evident that the preceding equations will

need no change whatever, but the difference p' pi will

r'
2

now be negative. As p'
- is less than p' , p will still be

negative and represent compression. On the other hand,

h will now be negative and represent circumferential or

hoop compression as shown by eq. (13). Eqs. (12) and

(13) are used in connection with this case in designing

modern heavy guns where thick cylinders are raised to a

high temperature and slipped over a close-fitting interior

thick cylinder at ordinary temperature, so that when the

outside hot cylinder cools it contracts and puts the interior

cylinder under a high compression. In fact, the lining of

the gun may be enclosed by two or more such cylinders

successively shrunk into place. One interior cylinder with

slightly conical interior surface may be forced by a high

pressure at ordinary temperature into the interior of a

corresponding exterior cylinder with similar results. These

matters will be treated more extendedly in the next article.
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Art. 41. Radial Strain or Displacement in Thick Hollow Cylin-

ders. Stresses Due to Shrinkage of One Hollow Cylinder

on Another.

Radial Strain or Displacement.

Inasmuch as all diametral sections of thick hollow

cylinders remain plane for all conditions of stress due to

internal or external pressure, the only strain or displace-

ment in such a cylinder is that in a radial direction due to

either increase or decrease of the diameter of any elementary
thin cylinder or shell with radius r. This radial displace-

ment will be indicated by p and the expression for it can

only be established by the analysis shown in Art. 5 of

Appendix I, or by some equivalent analysis. By referring

to eq. (10) and the two equations preceding eq. (15) of that

article it will be seen that the desired displacement is given

by the following equation:

"2

In this equation G is the modulus of elasticity for shear-

ing, while pi and r\ represent the intensity of exterior

pressure and the exterior radius, respectively, and p' and
r' similar quantities for the interior of the cylinder. The

quantity r represents the ratio of the lateral strain divided

by the direct strain, i.e., Poisson's ratio. Obviously if

r=r'
', the increase or decrease of the interior radius will be

given by p and a similar observation applies to the increase

or decrease of the exterior radius when r = r\.

It is clear that if r be made equal to either r' or r\ in

eq. (i) either p' or pi may be written from that equation
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in terms of the corresponding radial displacement p' or pi.

It is sometimes desirable to express the intensities of

interior or exterior pressures in this manner, after having
determined the radial displacement corresponding to a

known change of temperature or in some other manner.

In the operation of shrinking one cylinder on another the

difference in diameters required for the operation may be

prescribed by some empirical rule.

Stresses Due to Shrinkage.

It has been shown in the preceding article that when a

thick hollow cylinder is subjected to a high internal pressure

the intensity of circumferential or hoop tension is much

greater at and near the interior surface of the cylinder than

at the exterior surface and that if the thickness is great

the intensity of the interior tension may be high, while

that of the exterior surface will be extremely low, show-

ing the use of the metal to be uneconomical. In heavy

gun making this undesirable condition is overcome by
dividing the body of the gun into a number of concentric

thick cylinders, each being shrunk over those inside of it,

after making the interior diameter at ordinary temperature
less than the exterior diameter of that over which it is

shrunk into place. Each tube is heated so as to enlarge

its diameter until it can be slipped over the tube, or tubes,

inside of it, so that when it cools it will itself be subjected

to high internal pressure with correspondingly high cir-

cumferential or hoop tension, while the tube, or tubes,

inside of it will be correspondingly compressed at ordinary

temperature. The body of the gun thus composed of a

series of concentric tubes shrunk in place in series will form

a combination in the interior of which there will be rela-

tively high circumferential or hoop compression, decreasing
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outwardly though not regularly or continuously, with cir-

cumferential or hoop tension in the outer part or parts.

When the intensely high pressures of modern explosives

are produced in firing the gun the metal will be more nearly

uniformly stressed in circumferential tension and thus act

more effectively throughout the entire thickness of the

.wall of the gun. It will not be attempted here to give

FIG. i.

the details required to secure the best effects by shrinking
into place a series of thick hollow cylinders in the manu-
facture of ordnance, but the general analytic procedure
in deducing the proper results for the shrinkage of one

cylinder on another either in gun making or in the making
of other compound cylinders for high internal pressures

will be illustrated by a single computation only.

Fig. i represents a thick hollow steel cylinder with
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internal diameter of 12 inches and total thickness of wall

of 12 inches composed of an outer cylinder 6 inches thick

shrunk on an interior hollow steel cylinder with wall also

6 inches thick. It will be supposed that the coefficient

of expansion of steel per degree Fahr. is 6 = .0000065. The

increase in diameter due to a change of 225 Fahr. of the

interior 24-inch cylinder will be 225X24X5 =
.03 51 inch.

The change in radius will be one-half of this amount. The
interior diameter of the exterior thick cylinder at ordinary

temperature must be 24 .0351 =23.9649 inches.

If r" be the interior radius of the exterior cylinder

before being heated and rH the exterior radius also before

being heated, while r' and r\ represent the interior and

exterior radii of the interior cylinder at ordinary tempera-
ture and before shrinkage, as shown in Fig. i, the data

required will be as follows :

r'=6"; fi=i2
A/

;
r" = 11.98245 ;

r/y
= 17.98245.

The interior pressure of the inner cylinder will be simply

that due to atmosphere. Similarly the exterior pressure

on the exterior cylinder will also be that due to the atmos-

phere. Hence, both these pressures will be considered

zero. There will then be acting the shrinkage pressure on

the exterior surface of the inner cylinder and the same

pressure on the interior surface of the outer cylinder. The

intensity of this common shrinkage pressure will be indi-

cated by pi.

As indicated in Fig. i, after the properly heated outer

cylinder has been slipped over the inner cylinder at ordi-

nary temperature and the two allowed to cool, the radius

r\ will be decreased by the radial displacement pi, while

the radius r" will be increased by the amount p". In-
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asmuch as pi will be intrinsically negative, eqs. (2) will at

once result.

i // i // // // / \
ri + pi=r + p .'. p p\=r\ r ... (2)

By making p
f =o in eq. (i) and r=r\ there will result

eq. (3):

Pi (3)

Similarly by making pi=o in eq. (i), r'=r", r\=r lt ,

r=r" and remembering that p'
= p" =p\, eq. (4) will repre-

sent the increase of the radius of the exterior cylinder after

the operation of shrinkage is complete:

((*-*
// V r//

2

P / //o . . . (4)

By substituting the second members of eqs. (3) and (4)

for the first member of eq. (2) an equation will result

giving the value of p\ as shown by the following equation
and eq. (5) :

2G
= ri-r

Or

Hence

(5)
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The quantity represented by Z is clear.

It should be observed that the relation between the

changes of the radii at the cylindrical surface of shrinkage
contact and the original radii (eq. (2)) is general and holds

for all conditions of shrinkage stresses whatever may be
the thicknesses of the two cylindrical walls.

In computing the value of pi by eq. (5) there will be

taken :

= 12,000,000 and r = .25.

If the values already given for the four radii of the cylinders
be inserted in the equation immediately following eq. (4),

there will result :

Z=- 3 8.4 .

Hence

035 1 X-5 X24,ooo,ooo 1U
pi = ^ - = 10,970 Ibs. per square inch.

In computing the value of Z it is essentially accurate

to use the inner and outer radii of the outer cylinder as

they exist before it is heated for the shrinkage process.

This will save much labor and simplify the application of

the formulae, but the difference r\ r" must of course be

expressed as accurately as possible.

The stresses in the walls of the two cylinders due to

shrinkage may now be readily computed, since the outer

cylinder is subjected to an inner pressure of 10,970 Ibs. per

square inch and the inner cylinder to an exterior pressure
of the same intensity. The resulting values of p and h

for the two cylinders are as follows :

Inner Cylinder in Compression.

1
= 10,970 Ibs. per square inch; p'

= o; r
f =6 inches;

r\ = 12 inches.



2l8 HOLLOW CYLINDERS AND SPHERES. ich. iv.

Eqs. (12) and (13) of the preceding article will give at

once eqs. (6) and (7) for this case:

,'2

I

(6)

I

r\'

.'2 (7)

I

If the intensities p and h are computed at six equidistant

points at the two surfaces and at intermediate points one-

fifth of the thickness of the wall of the cylinder apart, the

results given in the following tabulation will be found and

they are shown graphically in Fig. 2.
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,'2

.'2

I

I

(8)

(9)

The two intensities p and /z- will be computed for six

equidistant points, including those on the two cylindrical

surfaces, by taking corresponding values of r. The results

of these computations are given in the following tabulation

and they are shown graphically in Fig. 2, as will be explained
further on.

r
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produced by a modern high explosive may reach 50,000
or 60,000 Ibs. per square inch, but as an illustration in this

case the internal pressure will be taken as 40,000 Ibs. per

square inch. Hence the foUcr.Ting data are required:

^'=40,000 Ibs. per square inch; pi=o\ r' =6 inches;

r\ = 1 8 inches.

As this case is similar to that expressed by eqs. (8) and

(9), those equations will yield the results shown in the

following tabulation when the above data are substituted

in them.

r
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Tensile stresses indicated by the plus sign are laid off to

the left of AD and compressive stresses to the right of BD
as indicated by the minus sign.

Referring to the tabulated results for the inner cylinder
in compression, DQ represents 29,250 and BP 18,283, both

pounds per square inch. Intermediate ordinates of the

curved line PQ are laid off by the same scale to represent

the other intensities h given in the table.

The ordinate AL represents by the same scale the

intensity 17,552 Ibs. per square inch and MB the intensity

28,054 Ibs. per square inch, both shown in the tabulation

for the outer cylinder in tension. The other intensities

laid off as ordinates give the curved line LM.
The tensile intensities h for the combined cylinder under

the internal pressure of 40,000 Ibs. per square inch are

shown by the ordinates to the curved line EF, FD repre-

senting 50,000 Ibs. per square inch and EA 10,000 Ibs. per

square inch.

The resultant intensities at various points in the wall

of th*e combined cylinder are found by taking the algebraic

sum at each point of the three results shown. The result-

ant hoop stress at D is found by laying off KF=DQ,
the resultant intensity being ^ = 50,000 29,250 = 20,750

Ibs. per square inch. Similarly BH=MB-BP = 16,248 -

18,283 = 2035 Ibs. per square inch, showing that the tensile

stress developed by the high internal pressure was not

quite enough to overcome the shrinkage compression. The
intensities of hoop stress in the wall of the inner cylinder
are therefore the intercepts of ordinates at right angles
to BD between FM and KH.

All stress in the outer cylinder is tension equal in

intensity at any point to the sum of the ordinates between

AB and ME added to those between AB and LS repre-

sented by the ordinates drawn from AB to ON. Thus it
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is seen that the shaded parts of the diagram represent at

each point the intensity of stress existing at that point.

o

The highest tension exists in the outer cylinder at B and is

equal to. 28,054+ 16,248 =44,302 Ibs. per square inch. At
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the outer point A the tensile intensity of hoop stress is seen

to be 27,552 Ibs. The intensity of hoop stress at the

interior surface of the cylinder has been -found to be 20,750

Ibs. per square inch, materially less than at the outer sur-

face, which is desirable, as the radial normal pressure at

the inner point is 40,000 Ibs. per square inch.

The high tensile intensity 44,302 Ibs. per square inch,

found at the inner surface of the outer cylinder and the

compression of about 2000 Ibs. per square inch at the

adjacent point on the inner cylinder show the desirability

of a redesign for the assumed internal pressure with adjust-
ment of the amount of shrinkage and with the wall com-

posed perhaps of three cylinders instead of two. In this

manner the undesired extremes of stress in the vicinity of

the middle of the wall can be avoided. The results, how-

ever, exhibit completely the procedures to be followed

where it is desired to make a combined cylinder with a

number of concentric shells with shrinkage so employed as

to produce a more nearly uniform, though not continuous,
stress condition than can be attained in a single wall with-

out shrinkage. In a single wall of 12 -inch thickness in

this case the hoop tension would have varied from 50,000
Ibs. per square inch at the interior surface to only 10,000

Ibs. per square inch at the exterior surface.

The radial compressive intensities p have not been

plotted in Fig. 2, as the resultant intensity in every case is

found by adding the intensities due to each condition as

given in the tabulations. At the interior surface the maxi-

mum intensity of pressure is 40,000 Ibs. per square inch.

At 3 inches from the interior surface the maximum inten-

sity will be about 20,000 Ibs. per square inch and at the

common surface of the two shells that intensity will be

about 17,000 Ibs. per square inch, thus decreasing outward
until the value o is found at the outer surface.
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Art. 42. Thick Hollow Spheres.

When the thickness of wall of a hollow sphere is so

great that the stresses may not be considered uniformly
distributed over a diametral section of the shell the approxi-
mate formulae of Art. 39 cannot be used; it becomes neces-

sary to make an investigation similar to that required for

thick hollow cylinders.

It will be supposed that the interior of the spherical

shell is subjected to an intensity of pressure p' greater than

the exterior normal pressure pi as shown in Fig. i. As
the intensity of the interior pressure, produced possibly

by a fluid, is greater than that of the exterior pressure the

material of the shell will be subjected to an internal stress

of tension as well as the radial compression, but the formulae

as demonstrated will be equally applicable to the case of

the exterior pressure being greater than the interior with-

out any modification whatever. In the latter case, however,
the internal stress acting around a great circle will be com-

pression instead of tension. The formulae will be so written

that a tensile stress is positive and a compressive stress

negative.

If a diametral section of the spherical shell be taken as

in Fig. i, it is clear that for a given radius r there will be

a uniform intensity of tension normal to that section and
no other stress, i.e., this tension at every point will be in

the direction of the circumference of a great circle. Fur-

thermore, since that observation is true of all possible

diametral sections of the shell it is equally obvious that at

any point in the shell there will be two circumferential

or hoop stresses at right angles to each other and a third

radial stress of compression with no other stress on its

surface of action, the three stresses being principal stresses

at the assumed point. The three principal planes on which
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these principal stresses act are two of them diametral and

at right angles to each other, while the third is tangent
to the spherical surface with radius r, and it is at right

angles to the other two planes. The state of stress in the

interior of the shell is also obvious from the fact that the

interior and exterior fluid or normal pressures are each the

same in intensity at all points making the resulting con-

FlG. I.

dition of stress completely symmetrical. As every diam-

etral plane section of the shell is a principal plane of stress

there will be no shear on any such plane and for the same
reason there will be no shear on any of the concentric

spherical surfaces within the limits of the shell.

Remembering that the interior radius of the shell is r'

and the exterior radius r\ and that the tendency to tear the

shell apart in any diametral annular section is due to the

excess of the interior pressure over the exterior the follow-

ing equation may be at once written, if h represents the
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intensity of the internal tensile stress developed at any
point in the annular section:

(i)

If in eq. (i), r' and r\ be considered variable and of

so nearly the same value that they differ from each other

only by dr, the quantity p'r'
2

piri
2 becomes equal to d(pr

2
).

Hence, eq. (i) for that supposition may take the following
form:

d(pr
2
) =2hrdr = 2prdr +r2

dp..... (2)

This is a differential equation between h and p.

Another equation of condition is required to determine

those two variable quantities. Such an equation may be

written by so expressing the relation between the internal

distortions or strains accompanying the stresses h and p
as to make the diametral sections of the shell plane what-

ever may be the intensities of the internal stresses h and p.

The consideration of such relations between the strains

produced would be precisely the same as given in Art. 8

of Appendix I, and hence it is repeated here. If it be

remembered that the intensities of the two circumferential

stresses at any interior point of the shell are equal to each

other and indicated by h, as in eqs. (i) and (2), while p

represents the intensity of the internal radial stress at the

same point, the relation between the internal strains or

distortions necessary to make all diametral sections of the

shell plane for all intensities of stress is equivalent to the

condition that the sum of the three principal stresses must

be constant at all points as expressed by eq. (3), a being

constant :
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From eq. (3):

p=a 2h and dp = 2dh. .... (4)

Substituting from eq. (4) in the second and third

members of eq. (2) :

2hrdr = 2ardr hrdr 2r2dh.

By arranging terms the preceding equation takes in-

tegrate form as given by eq. (5) :

$hrdr+r
2dh=ardr...... (5)

If b is a constant of integration, eq. (5) may be integrated
so as to take the form of eq. (6) :

r3h=-ar3 +b- h=-+^..... (6)
3 3 r3

By using the first of eqs. (4) and eq. (6), eq. (7) at once

follows :

a 2b x

At the inner and outer surface of the spherical shell

p =p' and p = pi, respectively. Eq. (7) will then give:

, a 2b - a 2b /ox=--- '

(8)

Hence :

ri

The preceding equation will at once give the following
value of b, which in turn substituted in the second of eqs.

8 will give the value of -, following that of b:
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These values of b and substituted in eqs. (6) and (7)
o

will give the following values of radial intensity p and cir-

cumferential intensity h at any point in the shell distant

r from the centre. In writing these final expressions it is

to be remembered that the constants a and b may be either

positive or negative and their signs are changed so as to

make all positive stress tension and all negative stress com-

pression, as was done in the case of thick cylinders.

'

(r'
3 -n3

)

, . ,

'*" To Q ' / /Q o\ o \*- *- J
r'

3 n 3
2(r

3
ri

3
) r3

These equations can be put in more convenient shape
for computation by dividing all terms in the second mem-
bers by ri

3
,
which will give eqs. (ioa) and (na) :

'3

,r
/3

^- T̂3 (^,^3,
r '3 /3 ^3'

' ' ' ^ I]

r-I T-I
n3

fi
3

It is necessary to determine a thickness / of shell which

will resist a given intensity of internal pressure. Eq. (n)
shows that the circumferential tension h will be greatest

when r=r f

in eq. (n). Making this substitution
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Dividing by r'
3 and solving:

n3
2(h+p')

Hence there may be at once written :

This value of t will give the thickness of material re-

quired so that the maximum intensity of circumferential

tensile stress shall not exceed a prescribed value h at the

interior surface of the sphere when the interior pressure is

p' and the exterior pressure pi, the latter being smaller

than the former.

A similar treatment may be given to eq. (n) after

making rr\ in order to determine a thickness t such that

the circumferential compressive stress .shall not exceed a

given prescribed value when the exterior pressure pi exceeds

the interior pressure p''.

In eq. (12) if p'
= 2h-\-$pi, the value of t becomes

infinitely great, showing that if the interior pressure reaches

or exceeds the value indicated no thickness of shell what-

ever will prevent the circumferential or hoop tension ex-

ceeding the prescribed limit h.

If either internal or external pressure become zero,

while the other has any assigned value, it is only necessary
to make either p' or pi equal zero in all the preceding

equations. Furthermore, it is a matter of indifference

whether p
1

or pi is numerically greater in the application

of any of the preceding equations except eq. (12).
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Radial Displacement at any Point in the Spherical Shell

The general analysis of Art. 8 of Appendix I, gives an

expression for the radial strain or displacement of the

material at any point within the spherical shell. It has

already been seen that no other displacement occurs, as

all diametral sections of the shell remain plane for any

degree of stress whatever. If this radial displacement or

strain at any point be indicated by p, the analysis indi-

cated shows that the value of this displacement will be

given by eq. (13) :

r '3

Pl
~ P'^

, (^-pya/aj
"

~~ ~
'

I

Knowing the internal and external pressures to which

the shell is subjected eq. (13) will give the value of the

radial displacement of any indefinitely small piece of

material at the distance r from the center. If r = r\ the

corresponding value of p given by eq. (13) will indicate

the increase or decrease, as the case may be, of the external

radius r\\ and if r = r
r

the increase or decrease in length
of the interior radius r' will result. In eq. (13) G is ob-

viously the modulus of elasticity of the material for shear,

while r is the ratio of lateral over direct strains.



CHAPTER V.

RESILIENCE.

Art. 43. General Considerations.

THE term resilience is applied to the quantity of work

required to be expended in order to produce a given state

of strain in a body. If a piece of material is subjected

to tension, that state of strain will be simply the stretching

of the piece or the amount of compression, if the piece is

subjected to compressive stress. In precisely the same

manner the resilience of a bent beam is the amount of work

performed upon it by its load in producing deflection.

There may also be the resilience of shearing or of torsion.

In the ordinary use of the expression, resilience refers

to the amount of work expended within the elastic limit,

whether of torsion, compression, or tension, but it may
properly be extended in its meaning to include the total

amount of work required to rupture the material under

any one of the preceding conditions of stress. Elastic

resilience may easily be computed by means of exact

formulae, but if the total work required to cause rupture
in any case is desired, a graphical record of the total strains

produced between the elastic limit and failure must be

obtained by actual tests. In these articles the formulae

for elastic resilience only will be given; in other subse-

quent articles the method of computing the total resilience

231
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of failure will be illustrated by computations from actual

strain records.

Art. 44. The Elastic Resilience of Tension and Compression
and of Flexure.

Let it be supposed that a piece of material whose length
is L and the area of whose cross-section is A is either

stretched or compressed by the weight or load W applied
so as to increase gradually from zero to its full -value. If

E is the coefficient of elasticity, the elastic change of length
WL

will be ~A~' The average force acting will be %W, hence

the work performed in producing the strain will be

W 2L
Resilience =

j- ....... (i)

W
If -j-, the intensity of stress in the metal, be represented

by t, eq. (i) may be written

Resilience =%At
2

-^ (2)

Again, eq. (2) may take the following form:

t
2

Resilience = ^AE-^-2L = %AE1
2
L. . ... (3)

t
2

In eq. (3) the quantity l
2

=^r-2
is obviously the square

of the strain (stretch or compression) per unit of length.

If a bar of material i inch in length and i square inch



Art. 44.] RESILIENCE OF BENDING OR FLEXURE. 233

in cross-section be considered, -A = i and L = i must be

inserted in the preceding equations, and there will result

t
2

Unit resilience =%p=%El
2

. ..... (4)

t
2

The quantity =EP is called the
"
Modulus of Resil-

ience." The expression is ordinarily employed when t

is the greatest intensity of stress allowed in the bar.

The preceding equations are applicable whether the

bar or piece of material is in tension or compression, the

coefficient of elasticity E being used for either stress, while

/ represents the intensity of either tension or compression,
as the case may be.

Inasmuch as the values of t and E are usually taken

in reference to the square inch as the unit of area, it is

generally convenient to take L in inches, although any
other unit of length may be taken when multiplied by the

proper numerical coefficient.

The Resilience of Bending or Flexure.

It has already been shown, in considering the common

theory of flexure, as applied to the flexure, or bending of

beams, that the intensities of the stresses of tension and

compression vary from point to point throughout the

entire beam. In determining the elastic resilience of

flexure, therefore, it is necessary to find the work per-

formed in producing the varying strains corresponding
to the stresses in the interior of the beam. The resilience

due to the direct stresses of tension and compression will

first be considered and then that due to the shearing

stresses.
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In order to obtain the expression for the work per-

formed by the direct stresses of tension and compression
in a beam bent by loads acting at right angles to its axis,

a differential of the length, dL
t

is to be considered at any
normal section in which the bending moment is-M, the

total length of span or beam being L. Let / be the moment
of inertia of the normal section, A, about its neutral axis,

and let k be the intensity of stress (usually the stress per

square inch) at any point distant d from the axis about

which / is taken. The elastic change produced in the

indefinitely short length dL when the intensity k exists

k
is

-pdL.
If dA is an indefinitely small portion of the normal

section, the average force or stress, either of tension or

compression, acting through the small elastic change of

length just given, can be written by the aid of a familiar

equation of flexure as

A....... (5)

Hence the work performed in any normal section of the

member, for which M remains unchanged, will be, since

fk.dA.d=M,

M M 2

(6)

The work performed throughout the entire piece will then

be

The integration indicated in eq. (7) is readily made
in all ordinary cases by substituting the value of the bend-
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ing moment M in terms of the variable horizontal ordinate

or abscissa x and the load, it being remembered that dL
is precisely the same as doc. If, for example, the beam
is non-continuous, simply supported at each end and
carries uniformly distributed load p per unit of length

P
throughout the whole span, M=-(Lx x 2

). By the in-

sertion of this value of M in eq. (7), there will result

j
rL

p2x
z

p-ijj W 2L 3

Resilience = ^ I (L x)
2dx = r. T

=-F^, (8)2EIJo 4 24oEI 24oEP

W representing pL, the entire load on the beam.

This equation gives the value of the total work per-

formed by the direct stresses of tension and compression
in the interior of a simple . beam uniformly loaded and

supported at each end, under the assumption that the

moment of inertia 7 of the cross-section is constant through-
out the entire span.

If a single load W rests at the centre of the span, the

W
reaction at each end being ,

the value of the bending

W
moment at any point will be x. By inserting this value

of M in eq. (7), there will result

i n W 2

2 ; W 2L*
Resilience = ^.2 / x*dx = . . (9)2EI Jo 4 g6EI

Similarly equations of the elastic resilience of the direct

stress of tension and compression in beams loaded in any
manner whatever may easily be written. In some cases

like the last the deflection at the point of application of a

single load may easily be determined. Let that deflec-
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tion be represented by w\ when a single load W rests at

the centre of the span the work performed by this load in

producing the deflection is %Ww. Hence that amount of

work must be equal to the resilience given by eq. (9), and

WL 3

do)

The Resilience Due to the Vertical or Transverse Shearing
Stresses in a Bent Beam.

The work performed by the vertical shearing stresses

in a bent beam of any shape of cross-section may readily

be found. Let 5,be the total transverse shear in a normal

section, / being the moment of. inertia of the latter about

its neutral axis, b the width or. breadth (constant or variable)

of the section, <f>
the unit shearing strain denned in Art. 2,

d and d
l
the distances of the extreme fibres from the neu-

tral axis, and G the coefficient of elasticity for shearing.

By eq. (6) of Art. 15 the intensity 5 of the shear at any

point in the section at the distance z from the neutral axis

will be

s=~(d*-z*)....... (u)

Again, by eq. (3) of Art. 2,

The amount of shearing stress on the indefinitely small

portion of the section b.dz will be sb.dz, and its path in

performing the work will be <>dx, x being the horizontal

ordinate of the section of the beam from any convenient

origin, as the end or the centre of the span, i.e., in this case
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the end of the span. The differential work performed in

the section will be, by the aid of eqs. (n) and (12),

. . (13)

In this equation it is easy to express the breadth b of

the section in terms of z, whatever may be its shape, by
the aid of the equation of the perimeter of the section.

In all the ordinary and important cases of engineering

practice involving this resilience of shearing the shape of

the section is rectangular for which b is constant, and it

will be so regarded in the following equations. Remem-

bering that x and z are independent variables, and that

the first integration will be made in reference to z, that

integration will give

As the section is taken to be rectangular in outline, with

the breadth b and depth h, d=d1
=- and / = . Eq. (14)

will then become

3 /

Resilience =-j-j-^ I S 2
dx. . . . . (15)

The total transverse shear 5 will have varying values

depending upon the amount of loading on the beam and
its distribution, i.e., in general it will vary with .x, and
when not constant it must be expressed in terms of that

variable before the remaining integration can be made.
If a single weight W rests on the beam at the distance

of /' from one end where the reaction is R', and at the
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distance /
t
from the other end where the reaction is Rv

the shear 5 will be constant for each of the segments into

which the point of loading divides the span ;
in one of

those segments S = R', and in the other S = Rr The com-

plete integration of eq. (15) will be, therefore,

Resilience --(Rr2
l
f +R

l

2
l
l ).

If there be substituted in the parentheses of the second

member of the preceding equation the values Rf = Wj
l
r

and Ri = Wj, there will result

3 IV
Resilience = r.--^ ^j-W

2
. . . ; . (16)

$bhG I

If the weight W rest at the centre of the span /
t
= V = -

and

Resilience=~jWH (17)2oGbh

Eq. (17) affords a simple method of finding the deflec-

tion w
1
of the point of loading due to the transverse shear.

As the weight W is supposed to be gradually applied the

expended work ^Wwl
must be equal to the shearing re-

silience given in eq. (17). Hence

Wi=^~ -rr. . . . (18)loG oh

When a non-continuous beam simply supported at each

end carries a uniform load over the entire span, it has been

shown in Art. 22, eq. (7), that the transverse shear at any
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section is equal to the load between the centre of span and

that section. If, therefore, the origin of x be taken at

the centre of span and if p represents the load per unit of

length of the beam, S=px. By substituting this value of

5 in eq. (15), and remembering that twice the integral

must be taken for the whole beam,
i

Resilience = -^rr . 2 I pVdx = ^ = 7^7 . (19)$Gbk Jo 2oGbh 2oGbh

The shearing resilience, therefore, in a non-continuous

beam carrying a uniform load is only one third as much
as that due to the same load concentrated at the centre of

the span.

If, as is usual, G is expressed in pounds per square inch

the unit for I, b, and h will be the linear inch.

Other modes of loading than those taken can be treated

in precisely the same general manner.

As the intensity of the longitudinal shear at any point
of a beam is the same as that of the transverse shear,

the total work of the longitudinal shear throughout
the beam is the same as the work of the transverse

shear. The total work of the shearing stresses in a beam
is therefore composed of those two equal parts.

The Total Resilience Due to Both Direct and Shearing
Stresses.

The general expression for the total resilience of a bent

beam due to both shearing and direct stresses will be the

sum of the second members of eqs. (7) and (13), expressed

by the following equation:

/M
2 C C S 2

b

^jdL +J J
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Or, by eqs. (7) and (15), since dL=dx y

/M
2

* C
-^jdx + -TT-F. / S 2

dx. . (20)

By the aid of eqs. (8) and (19) the total resilience for

a simple non-continuous beam may be as follows:

If the uniform load pi
= W,

Total resilience W*[ --~H 7^7 ) . . (21)
\ 24oEI 2oGbh/

For the same beam carrying a single load W at the centre,

by eqs. (9) and (17)

Total resilience =W 2

\ .^ T +
*

) . . . (22)
\()6EI 2oGbh/

As has been explained, the last two equations are appli-

cable to beams with rectangular sections only.

In a similar manner the total deflection of a beam

supported at each end and loaded with a single weight W
at the centre of the span, due to bending and flexure, will

be found by the sum of the two expressions given in eqs.

(10) and (18):

Art. 45. Resilience of Torsion.

The work expended in producing elastic strains of

torsion constitutes the resilience of torsion and is a special

case of shearing resilience. The twisting moment which

produces the angle of torsion a is given by eq. (16) of
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Art. 37 and isM = GaIp . When the piece twisted has the

length / the total angle of torsion is al and the differential

amount of work performed by the moment M in producing
the indefinitely small twist d(al) =l.da is Ml. da. Hence

Resilience - fMlda = GIIP f^a . da = Gllp
^-

. ( i )
/ / 2

If P and e are the force and lever-arm of the twisting

couple, eq. (18) of Art. 37 shows that

Pe

Substituting this value of a
l
in eq. (i),

P 2
e

2
L

Resilience = -
. . . . . . . (2)

nr 4

If the normal section of the piece is circular Ip = ---

Hence, for a shaft with circular section,

P z
e*l

Resilience

6 4

If the section of the shaft is a square, IP =, b being

the side of the square. Hence, for a square section,

Resilience = -^rr (4)Go*

In some cases shafts are subjected to combined torsion

and bending. In such cases, if it is desired to compute
the total elastic resilience it is only necessary to take the
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stun of the two resiliences, each found as if existing in-

dependently of the other.

The resilience of torsion beyond the elastic limit or

between the elastic limit and the ultimate resistance must
be determined, as in all cases of distortion beyond the

elastic limit, from an actual strain record, as given by
the testing machine when the piece is strained up to any
given degree of permanent stretch or to rupture .

Art. 46. Suddenly Applied Loads.

A load is considered suddenly applied when its full

amount acts instantly upon any piece of material loaded

by it. In the preceding articles relating to resilience the

loads are treated as being gradually increased from zero

to their full values. In such cases the amount of external

loading at any instant is supposed to be equal only to the

internal stress or stresses opposing it, so that the work

performed is equivalent to one half the total load multi-

plied by the total resulting strain. When the loads are

suddenly applied, on the other hand, the internal stresses

produced are exactly equal to the external forces only
when the strains corresponding to the latter are reached,

and the work performed up to that point is just double

the work expended when the loads are gradually applied.

It follows from this last consideration that the strains

produced by the suddenly applied loads will be double

those found under gradual application. Inasmuch as

the elastic strains are proportional to the corresponding

stresses, it further follows that the stresses produced by
suddenly applied loads will be double in intensity those

which are produced by the same loads gradually applied.

The work expended by a suddenly applied load up to

the point of strain corresponding to its amount being
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double the work performed by the internal stresses, the

total stress induced in the material at the limit of the final

strain produced by such a load will be double the amount
of the latter. The internal stresses in the piece will, there-

fore, cause it to recover from its strained condition and
vibrations will result, the treatment of which constitutes

an important branch of the theory of elasticity in solid

bodies. Some general features of that treatment will be

given in Art. 12, App. I, but as they are seldom used in

engineering practice they will not be considered here.

It is only important at this point to note carefully
the distinction between the effects of a given load grad-

ually applied and suddenly applied, the strains and
stresses in the latter condition being double those in

the former.

Again, it is also important to distinguish between
loads suddenly applied, and shocks, as they are called in

engineering practice. A shock is produced when the

load falls freely before acting upon a piece of material

sustaining it. The cause of shock, therefore, is a suddenly
applied load with the effect of a free fall of the latter super-

imposed. These matters must be carefully taken into

account and allowed for in such structures as bridges

carrying rapidly moving trains,, and those allowances are

incorporated in the provisions of specifications covering

bridge construction.

PROBLEMS FOR CHAPTER V.

Problem i. A 6-inch by i. 75-inch steel eye-bar 48 feet

long is subjected to a stress of 117,500 pounds. If that

load is gradually applied what is the work performed in

the total length of the bar, if E = 30,000,000 pounds? Also
what is the unit resilience?
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t = -=11,190. L = 48 X 12 =576 inches. Eq. (2)
10.5

of Art. 44 then gives

Resilience =work performed =
2X30,000,000

= 12,621 in.-lbs.

Eq. (4) of Art. 44 gives

.,. . .

Unit resilience = - =2.09 m.-lbs.
2 X 30,000,000

Problem 2. A cast-iron column 18 feet long having
an area of cross-section of 40.8 sq. in. carries a load of

245,000 pounds. If the coefficient of elasticity E is 14,-

000,000 pounds, how much work is performed in com-

pressing the column if the load is gradually applied.

Problem 3. A 3o-pound lo-inch rolled steel I beam
carries a uniform load of 1000 pounds per linear foot in

addition to its own weight with a span of 16 feet. What
will be the resilience or work performed in the material

of the beam under the gradual application of that total

load of 1030 pounds per linear foot, the moment of inertia

/ of the beam being 134.2 and = 30,000,000 pounds?

Eq. (8) of Art. 44 is to be used, in which L is 192 inches.

Incidentally, what will be the greatest intensity of stress,

k, in the extreme fibres?

Ans. Resilience = 1987 in.-lbs
;
k = 15,000 Ibs. per square

inch.

Problem 4. In Problem 3 if the thickness of the web
of the lo-inch rolled beam is .5 inch, find the resilience of

the vertical or transverse shearing stresses in the beam,
the coefficient of shearing elasticity, G, being taken at

12,000,000 pounds. The remaining data are 1 = 192 inches;

h = io inches; 6=0.5 inch, and 1/^ = 16,480 pounds, and

they are to be used in eq. (19) of Art. 44.
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Problem 5. A round bar of steel 2f inches in diameter

is twisted by a force of 2100 pounds acting with a lever-

arm of 17 inches. Two sections 25 ft. apart are turned

0.185 inch in reference to each other, i.e., the total strain

of torsion for a length of bar of 25 feet has that value.

Find the total angle of torsion, the angle of torsion and the

coefficient of elasticity, G, for shearing (i.e., for torsion).

Ans. 01=0.00043; a/=o.i2g; and G = 13,000,000 Ibs.

Problem 6. The greatest permitted working intensity

of torsive shearing is 8000 pounds per square inch. Design
a steel shaft to carry a twisting moment produced by a

force of 1900 pounds, acting with a lever-arm of 84 inches.

If the coefficient of elasticity for shearing is 12,000,000

pounds, what will be the angle of torsion? Also what will

be the total angle of torsion and total strain of torsion for

a length of shaft of 13 feet?

Problem 7. In Problems 5 and 6 find the work per-

formed in twisting the two steel shafts, i.e., the resilience

for 25 feet length in the one case and 13 feet in the other.

Use equations of Art. 45.

Problem 8. In Problem 5 suppose the load suddenly

applied, what will be the resulting resilience and greatest

intensity of extreme fibre stress?



CHAPTER VI.

COMBINED STRESS CONDITIONS.

Art. 47. Combined Bending and Torsion.

PROBABLY the most important case of combined bend-

ing or flexure and torsion is that of the ordinary crank-

shaft represented in Fig. i.

The centre of the thrust of a connecting-rod is at A,

on the crank-pin journal against which the connecting-rod

bears. The centre of the shaft-bearing is at B. If the

thrust at A is represented by P, then the actual resultant

moment about the centre of the bearing B will be PxAB.
The problem is to determine the maximum stresses de-

veloped by this resultant moment in the section of the

shaft at B. Two methods may be employed in both of

which the resultant moment of P multiplied by the lever

arm AB is resolved into its two components, one of which

is the ordinary bending moment represented by M =P X CB,
and the other is the twisting moment M' =PxAC. The

la.tter produces torsion in the journal at B and the former

produces pure flexure or bending at the same section.

Let CB be represented by / while e represents AC.
The moment of pure bending at B will be

M=Pl. (i)

246
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The twisting moment producing pure torsion will be

M'=Pe. ,\, (2)

If d represents the distance of the most remote fibre

in the section B from the neutral axis of the latter, and if

FIG. i.

k is the greatest intensity of bending stress at the dis-

tance d from the neutral axis, while / is the moment of

inertia of the normal section of the shaft at B about the

same neutral axis, the following will be the value ot k :

Md Pld
(3)

Again, if T is the greatest intensity of torsional shear

in the normal section of the shaft at B, at the greatest

distance r, in the perimeter, from the centre of gravity or

the centroid of the same section, the value of the maximum

intensity T will be

Mf

r_Per
(4)

In eq. (4) I p is the polar moment of inertia of the nor-

mal section at B.
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First Method.

In this method it is only necessary to consider the

intensities k given by eq. (3) and T given by eq. (4), the

greatest allowed working stresses of direct tension and of

shearing respectively, k would have the value of the

greatest tensile working stress of the material of the shaft

for the reason that if tested to failure the shaft would

yield first on the tension side.

It being understood, therefore, that k and T represent

the greatest allowed working intensities of stress, usually

expressed in pounds per square inch, eq. (3) will give

I M PI

5=T=T (5)

Under the same conditions eq. (4) will give

PeI, M' Pe

For the circular section

7~ < and 4=^-. .... (7)

For a square section

/- and /,-, (8)

b being the side of the square. In eq. (5) for a circular

section d = r and for a square section d = -=. In eq. (6),V 2

r = r for the circular section, but for the square section
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r-7=. Making those substitutions in eqs. (5) and (6) for
V 2

the circular section, there will result, D being the diameter

of the shaft,

, ,. D ,I4W s P/]tor bending . . . r = =-v nr =
i.oo-v^-r-2 il /;./? * A?

(9)

For torsion . . . . r = r=\j-*-T=r
=

.po\i-~*
2 ^ 7T7 ^ J!

In the practical use of eqs. (9) that one of the two

values of r should be taken which is the greatest. This

will insure that both the direct stress of tension and the

shearing stress shall not exceed the prescribed values of

k and T.

The substitution of the values of / and IP for the square
section in eqs. (5) and (6) will give, remembering that d

and r are each one half the diagonal of the square,

t* t; ^ L Pl
For bending . . . b =\

3
For torsion . . . . b = z.6?\s;

. do)

In eq. (10), also, the greatest value of b given by the

application of the two formulae is to be taken, so that, as

in the case of the circular section, neither of the two in-

tensities k and T shall exceed the values prescribed for

them.

This method involves only the consideration of the

simple formulae of the common theories of flexure and
torsion.
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Second Method.

The second method of treatment of this case of the

crank-shaft consists in determining the greatest intensity

of the direct stress of tension in the section B of the shaft

at the journal-bearing. This resultant maximum intensity

is produced by the combination of the same component
moments, M =Pl and Mf

=Pe, as in the preceding method.

With the sections of shafting always employed the maxi-

mum intensity of bending stress k and the maximum
intensity of torsional shear T exist at the same point and
on the same plane, i.e., the plane of normal section of the

shaft. The existence of the shear T on the normal section

at the distance r from its centre of gravity carries with it

the same intensity of shear at the same point on a longi-

tudinal plane passing through the axis of the shafting.

At the . point considered, therefore, on two indefinitely

small planes at right angles to each other, one normal to

the axis of the shaft and the other parallel to it, there exist

the direct intensity of tension k on the first, and the

intensity of shear T on the second. The problem is to

determine at the same point the greatest intensity of

the direct stress of tension on any plane whatever, and

the angle ft between the direction of that stress and the

axis of the shaft. Reference may best be made to the

general formulae of internal stresses in a solid body for its

solution, and those are eqs. (8) and (9) of Art. 8. Those

equations are adapted to this case by making px =k,

pXy T, tan =tan /3, and p = t, the latter quantity being
the greatest intensity of tension desired. These substi-

tutions give the following two equations :

k*
()

2
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T
tan 2|8=--r

-
(12)

K

Eq. (n) gives the greatest intensity of direct tension

in the shaft in terms of known stresses.

By eq. (12) the position of the plane or section of the

shaft on which the maximum intensity t exists may at

once be found. Inasmuch as /3 is the angle between the

direction of the stress t and the axis. of the shaft, the angle

between the plane on which t acts and the axis of the shaft

will be 90 +0.
Under this method of treatment it would be necessary

to design the shaft so that t should not exceed the greatest

prescribed tensile working stress for the material em-

ployed.
The greatest intensity of oompressive stress in the shaft

would be found by giving the negative sign to the radical

in the second member of eq. (n).

The preceding formulae have been established in a

manner to make them applicable to any form of shaft

section or any values of k and T. It is only necessary to

insert in those formulae any intensities of those stresses

that may exist. If, for example, it were considered desir-

P
able to add the shear -

2 due to the thrust P to the tor-

p
sional shear it would only be necessary to take 7-f 2

for T wherever the latter quantity occurs.

If a shaft is circular in section, as is almost universally
the case, so that Ip =? 2/, and if the shearing effect of P in

the section at B, Fig. i, be omitted, useful and extremely

simple relations may be deduced. In that case D =
2r,

being the diameter of the shaft, and / the angle ABC
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of Fig. i, M as before being the resultant moment, or

M=PXAB:

rM cos / j -r rM sin / , \=
-~Y~

and T =
-^J-.

. . (13)

By the substitution of these values in eq. (n),

i=^(I+COS/)=^(l+COS/).
. . (14)

Hence

*\i\/r

) ds)

Eq. (14) gives, by the aid of the first of eqs. (13),

(16)

The second of eqs. (13) gives, after substituting the

1
r 16

value of r=-,-2! irD3

S.iMsin/ , x

V /;

The substitution of the values of T and k from eqs. (13)

in eq. (12) gives
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2 T
tan 2|8=-r-=tan /; /. y. . . . (18) .

This last set of results relating to circular shafts will,

in all ordinary cases, supply everything required for the

operations of design or of investigations regarding con-

ditions of stress in existing shafts.

Eqs. (13), first of (14), (16), and (18) apply as they

stand to square shafts.

The first method involves simpler considerations than

the second, not only analytically, but also in respect to

FIG. 2.

empirical quantities required to be used. The test pieces

from which the ultimate resistance of the material is de-

termined are always taken parallel to the axis of the shaft,

but the greatest intensity of stress / found in the second

method has a direction inclined to that axis by the angle /?.

In general, therefore, it will probably be found more

practicable to use the first method rather than the

second.

In the case of the double crank-shaft shown in Fig. 2,

it is only necessary to treat each half precisely as if it were

the single crank-arm in Fig. i.
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Art. 48. Combined Bending and Direct Stress.

There are a considerable number of practical problems
of combined flexure and direct stress of .sufficient impor-
tance to merit careful examination, and among them is the

flexure of long columns treated in Art. 24. In this place

the particular cases to be considered are those in which the

bending is produced by a uniform load at right angles to

the axis of the member, or by eccentricity of longitudinal

loading, the direct stress (or external force) being applied
in a direction parallel to the same axis. Lower chord

eye-bars and other horizontal or inclined chord members
of pin bridges belong to this class.

Let Mj represent the bending moment in the member
at that section where the deflection is greatest, produced

by loading at right angles to the member's axis or by

eccentricity in the application of the longitudinal loading;

let M/ represent the greatest deflection resulting from the

total bending moment and direct stress
; also, let P be the

total direct stress acting upon the member whose length

is /, while k represents the greatest intensity of stress due

to bending alone and at the distance d of the most remote

fibre from the neutral axis of the section at which the

deflection w' is found. Finally, let A be the area of cross-

section of the member which, together with the moment of

inertia 7, is supposed to be constant throughout the entire

p
length; and let g=-j, the intensity of uniform stress in

the member due to the direct stress or force P.

The resultant maximum bending moment in the

member will then be

M=MiPix/ (i)
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If P is tension it will tend to pull the member straight,

thus producing a moment opposite to Mr In the second

member of eq. (i), therefore, the negative sign is to be used

for a member in tension and the positive sign for a member
in compression.

The greatest resultant intensity of stress, t, in the

member will then take the value

.....

The quantity r is the radius of gyration, so that

I=Ar2
.

When the intensity / is prescribed, the required area

of section A is

These equations are perfectly general and may be

applied to all cases of combined bending and direct stress.

Art. 49. The Eye-bar Subjected to Bending by Its Own Weight
or Other Vertical Loading.

Let Fig. i represent a lower chord eye-bar of a pin-
connected bridge with the length / and carrying the total

tension P. The depth of the bar is h and the thickness 6,

so that the area of the normal section is bh. The bar acts

as a beam carrying its own weight as a uniform load over

the span /. That load deflects the bar as a beam while the

direct stress of tension (P) decreases that deflection by
tending to pull the bar straight. The problem is to deter-
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mine the greatest stress in the bar and incidentally its centre

deflection.

There are several methods of procedure. The first and

simplest method is approximate in its results, although

sufficiently close for some purposes. It consists in treating

FIG. i.

the bending and direct stresses as existing independently,

so that results are obtained by simply adding the bending

to the direct intensities. This method will be treated

first.

The more exact method consists in recognizing the bend-

ing moment as the resultant of those due to the transverse

load acting on the bar as a simply supported beam, and to

tne direct stress P acting with the greatest deflection as

its lever-arm.

Approximate Method.

Although reference will be made to Fig. i, the formulae

as written will be equally applicable to compression mem-
bers in which P would be the total force of compression.

If the total weight of the bar or compression member
is W, and if / is the moment of inertia of its cross-section

about the neutral axis, while k is the greatest intensity of

bending stress at the distance d from the same axis, the

theory of flexure gives

Wl kl Wld
SI

' (I)
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If the area of cross-section is represented by A, while

the radius of gyration is r, I=Ar 2
. Again, the quantity

I+d is called the "section modulus," and tabulated

values of it for rolled sections may be found in hand-books.

Let m be that modulus, then eq. (i) may take the form

The intensity of direct tension is

(3)

Obviously k will be tension on the lower side of the bar

or other member and compression on the upper side. The

greatest intensity of stress in the piece will be the sum of

q and k. Eqs. (2) and (3) will, therefore, give the value

of that greatest intensity, t, of stress as follows:

W
(4)

When the greatest value of t is prescribed, the required

area of section, 'A, can be at once written from eq. (4)

In the case of an eye-bar with the cross-section bh,

, h . d 6
d=- and -~ =T. Hence

2 r
2 h

and

bh = *-
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If the bar carries any other uniform load than its own,
it is only necessary to make W represent the total uniform

load, including the weight of the bar itself.

Finally the direct force P may act with the eccentricity e.

In this case the moment Pe produces uniform bending

throughout the length of the bar, and it is only needful to

write
(

-- Pe
)

for in the preceding formulas, the

double sign showing that Pe may act either with or against
the moment of the uniform load.

The formulas of this article are not sufficiently exact

for the usual cases of engineering practice.

Art. 50. The Approximate Method Ordinarily Employed.

The method commonly employed in practical work for

the treatment of compound bending and direct stress is

a much closer approximation than the preceding method,

although not exact.
:

Its chief feature is the introduction

of the bending moment produced by the direct or longi-

tudinal force multiplied by the actual maximum deflection.

In the same manner the moment due to the eccentricity
of the line of action of that force is introduced wherever

necessary.

Eq. (6a) of Art. 27 gives the following expression for

the deflection w' due to pure bending and in terms of the

greatest intensity of bending stress k, a being a constant

depending, among other things, upon the distribution of

loading :

d)

If the deflection as given in eq. (i) be placed equal to

each of the two parts of the deflection given in eq. (21)
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of Art. 28, it will be found for a beam simply supported
at each end and loaded uniformly, that a = fg, and for

the same beam loaded by a single weight only at the centre

of the span, a = 5. The cases which occur in practice

conform nearly to that of a load uniformly distributed

over the length /. Hence for such a beam there is ordi-

narily tak^n

The moment produced by the direct force or stress P
acting with the lever arm w' will have the opposite sign

to that of M
l (the moment due to transverse loading or

to eccentricity), if the member is in tension, but if the

member is in compression those two moments will have

the same sign. The resultant equation of moments may,
therefore, be written

(3)

As stated, the plus sign is to be used for a compression
member and the negative sign for a tension member.

If the value of w', given by eq. (2), be substituted in

eq. (3), the following value of k will result:

(4)

In eq. (4) the plus sign is to be used for tension mem-
bers and the minus sign for compression members. This

equation is general and adapted to all forms of cross-

section under the conditions virtually 'assumed. Although
not explicitly stated, it is essentially assumed that the ends



260 COMBINED STRESS CONDITIONS. [Ch. VI.

of the member remain absolutely fixed in distance apart.

This is frequently not the case, especially in the lower

chord eye-bar of a pin-connected bridge subjected to direct

tension and to bending due to its own weight, the bar

usually being horizontal.

If the ends of the beam or member, uniformly loaded,

are fixed, a =3^* when k is the greatest intensity of bending
stress at the mid-point of the member, or ^ if k is the

intensity of the bending stress at the fixed ends. One of

those values (usually ^) is to be substituted therefore

for -fa in the formulae which follow when the fixed-end

condition exists.

The resultant maximum intensity of stress t in the

member will obviously be

t=k + q, (5)

in which equation q is the uniform intensity P + A.

Eq. (4) will be immediately applicable to any particu-

lar case by substituting in it the values of 7 and M
l
for

that special case.

If the case of the lower chord eye-bar mentioned in a

preceding paragraph be considered, the total weight of the

bar being W, while b and h represent its thickness and

bh 3 Wl
depth respectively, /= and Af

1 =-g-.
These values

substituted in eq. (5) will give the desired value of the

resultant intensity, as follows:

Eq. (6) gives the value of the maximum intensity of

tension in the extreme lower fibres of the eye-bar when
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subjected to the total direct tension P and to the bending
due to its own weight.

The greatest intensity of bending stress in the bar is

evidently the second term of the second member of eq. (6),

and it has the following value if the weight of the bar per
W

unit of length is
-j-

=
g, or if the weight of a cubic unit of

the metal is i:

P

It is frequently important to observe what depth of

bar with a constant area of cross-section, subjected to a

prescribed working stress, will give the maximum bending
stress due to its own weight when the length is fixed.

That depth can readily be determined by taking the first

derivative of k, as given by eq. (7), with h as the variable.

dk
By performing that operation and placing JL =O * there

will at once result

The value of h resulting from an application of eq. (8)

gives the depth of bar which, with a given value of /, will

under the conditions of the case yield the greatest in-

tensity of bending stress k\ it indicates, therefore, a limit

of depth to be avoided as far as practicable.

Steel is the usual structural material for eye-bars for

which E may be taken at 29,000,000. For this value of

E, h will become, by eq. (8),

h =
4900
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P m

In this equation q = -A is the intensity of uniform stress
/I

in the bar, or the
' '

working stress.

By placing the value of h, as given by eq. (8), in the

value of k, eq. (7), there will result the maximum possible

bending stress in a bar of given length / and given area of

cross-section A :

\/q
(9)

If E =
29,ooo,ooo and ^'

= .286 Ib. per cubic inch for

steel, eq. (9) will take the value, for the corresponding
values of h in the equation preceding eq. (9),

5io/
(10)

The following table shows at a glance the greatest

possible fibre stresses in eye-bars of different lengths and

depths when the working tensile stresses in pounds per

square inch are those given in the extreme left-hand column

of the table :

Length of Eye -bars in Feet.

Working
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cross-section, is the linear inch, and that the weight i of a

cubic unit will then be the weight of a cubic inch. This

investigation will yield results sufficiently accurate for all

the usual cases of engineering practice, although it does

not provide for the straightening effect of the pull P,

except as producing a bending moment opposite to that

of the uniformly distributed load W.
Allowance for any other distributed loading than the

weight of the bar itself, and for any eccentricity of the line

of action of P that may exist, are made precisely as ex-

plained in the two paragraphs following eq. (7) of Art. 49.

Art. 51. Exact Method of Treating Combined Bending and

Direct Stress.

In this method of finding the results of direct stress

combined with bending it is necessary to determine an

expression for the centre deflection of the bar, or com-

pression member, considered as simply supported at each

end. As the line of action of the direct stress P is sup-

posed to coincide with the original centre line or axis of

the bar, if g is the weight per linear unit of the latter, the

bending moment M
t

in. the second member of eq. (i),

Art. 48, becomes

As . this case is one in which P is tension the general

eq. (i) of Art. 48 will take the following form by the aid

of eq. (7) of Art. 14:

W
In this equation g = -r- is the weight per linear inch,
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or other unit, of the bar or member producing a bending
moment opposite to that induced by the direct stress P
acting with the lever-arm w' . The integration indicated in

eq. (i) may be completed, but as it is not a simple integra-

tion it will not be made here. As the greatest bending
stress is found at the centre of span the centre deflection

.only is needed and a different procedure may. be followed.

Let w
l represent the centre deflection of the member

considered, a beam simply supported at each end and

carrying its own weight only, or any other total weight W
uniformly distributed. It is necessary to use the expres-

sion for the work performed, or resilience of the beam in

being deflected at the centre by the amount wr Eq. (8)

of Art. 44 gives that resilience as

W*l*
Resilience = ^7.-.'' ( 2 )

In producing the centre deflection w
l
the centre of gravity

of the weight W will descend through the distance w found

by placing WwQ equal to the resilience given in eq. (2).

Hence

M 3

(3)

>

Also, since by eq. (26) of Art. 28 w
i
= ~

w 8
-=-; w.-Awx..... (4)

Hence the resilience becomes

Resilience =W^wr . . . . . (5)
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If the value of W in terms of w
l
be taken from eq. (26)

of Art. 28 and substituted in eq. (5),

Resilience = 3 '12'

w^...... (6)
I 2 ^l

Hence the resilience of a bent beam varies as the square

of the centre deflection.

If the actual centre deflection of the bar or member
considered be w', the resilience of the beam when deflected

to that extent will be

Resilience =
(

- -_ .... (7)

The curvature of the bar or member being slight, the

lengths (equal to each other) of the neutral surface with

the deflections w' and w
1
will be, if I' and /

x
are the corre-

sponding lengths of span or horizontal projections of the

neutral surface,

Hence

The difference /' /
t represents the movement toward

or from each other of the two ends of the bar or member
under the action of the direct stress or force P.

In the case of the eye-bar, the pull of the force P re-

moves a part of the deflection wv and in so doing performs
work in aiding to lift the weight W of the bar, the remainder

of the work of lifting W being performed by the elastic

efforts of the bar to straighten itself from the deflection



266 COMBINED STRESS CONDITIONS. [Ch. VI.

Wj to w'
,
the latter portion of the work being represented

W 2
l
3

I w' 2

\
by the quantity

-

gj(
T --if- Hence the following

equation of work may be written,

p Sw-w' W 2
l
3 H/\ 8

J -- =^ -T
,+-rr J --2) =^ WV-Ttt/i. (10)'

2 3 24o jy 25

The conditions under which the work represented by
eq. (10) is performed are such that either (wi w^) or

(!>! + w') may be written in the second member. The

resulting numerical value of w' will be the same in both

cases but affected by different signs. As the equation is

written the numerical value of w' will be negative.

In eq. (10) there is taken I' =/
x =/, the length of panel,

which may be done with essential accuracy.

Dividing both sides of eq. (10) by (wl
wf

) and solving

for wf

,

f
25 P w,

>

The deflection w
t
=

g ^ ,. appearing in eq. (n) is a

known quantity.

After w' is determined, the resultant bending moment
at the centre of the bar will be

(12)

If the area of cross-section of the bar is A, the maxi-

mum intensity of stress / in it will be, by eq. (2) of Art. 48,

* S+T* d3)
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Or if the maximum value of / is specified

If the section is rectangular, so that A = bh and d = ~
2

l

~bh

and

6M ;

When the depth of the bar is small in comparison with

the length /, it may happen that the resultant or final de-

flection w' will be such as to make the bending moment
M' equal to zero. Or

Wl Wl
M'=^-P/=o; .-.'=~p. . . (17)

When w' found by eq. (17) is less than wr

given by
eq. (n), eq. (17) is to be employed. This result shows

that the bar will be subject to no bending, but that it will

hang like a flexible cable. The conditions thus developed
are those, which indicate when a horizontal or inclined bar

stressed in tension ceases to act partially as a beam and
becomes purely or wholly a tie.

These formulae are perfectly general for all cases of

bars or members in tension, even for such small sections

as wire. Their application to individual cases will show
that excessive intensities will not exist where simple ten-

sion members are held under stress in a nearly horizontal

position.
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Art. 52. Combined Bending and Direct Stress in Compression
Members.

If the ordinary approximate method of Art. 50 be em-

ployed, eq. (4) of that article is immediately applicable,

using the minus sign in the denominator, P being the total

direct stress of compression and M
x
the bending moment

due to the uniform transverse load and to eccentricity of

the line of action of P, if there be any. The greatest in-

tensity of bending stress as represented by that formula

would then be

kK

In this equation, d is the distance from the neutra/ axis

of the section to the extreme fibre in which the intensity k

exists.

If e be the eccentricity of the line of action of P, and if

W be the weight of the compression member whose length

is/,

(2)

When the moment of P produces bending of the same

sign with the transverse load W, the plus sign is to be used

in eq. (2), and the minus sign when those moments are

opposite. If the line of action of P coincides with the

axis of the member, the moment Pe disappears from eq. (2).

Again, if the member is vertical, so that there is no trans-

verse bending due to the load W, when the line of action

of P has the eccentricity e,

M,=Pe....... (3)
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This latter case exists very frequently in the columns
of buildings.

Eq. (i) is thus seen to represent the greatest intensity
of bending stress with M

l
taken from either eq. (2) or

eq, (3) for the cases of transverse loading, no transverse

loading, eccentric longitudinal loading, or any combina-
tion of those cases.

The resultant intensity of stress, i.e., the greatest

intensity of compressive stress in the entire compression
member, will be

P
,

M.d
i -I- / \

ioE

As A is the area of cross-section, I=Ar 2
,
r being the

radius of gyration of the cross-section of the compression
p

member. If q=-j >
ecl- (4) wn"l take ^e form

t =
P M,d M,d , .

Ar 2
F Ar 2

^
i oh, ioE

In the use of this equation, the intensity q must ob-

viously never exceed the working value given by the column
formula employed. Indeed, if there is suitable eccentricity

q may be much less than that working long column value.

In practical operation the principal use of eq. (5)

may be the determination of the area of cross-section A
with some prescribed value of t. It is usually feasible to

assign general outside dimensions of the proposed column

section and that will enable a close approximate value of

r to be assigned. If, at the same time, an approximate
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value of q may also be taken, the resolution of the first and
third members of eq. (5) will at once give

P P M, d-~* + ^*' ' ' '

If, on the other hand, such an assignment of q may not

be made, it will be necessary to solve the first and second

members of eq. (5), as a quadratic equation, for A. Bring-

ing both terms of the second member of eq. (5) over a

common denominator and solving the resulting equation
of the second degree in the usual manner, the following

general value of A will be found :

t r
f

P__
P M,d\

2 P~P
bx ' k "^

t~*~ tr
2

] ~ioEtr 2

Frequently there may be written d=- and r = .^h,

Hence

-
2 =| (nearly).

h
If, again, d=- and r = .s$h,

-
2 =| (nearly).

The preceding values of the radius of gyration r repre-

sented in terms of the depth h of the compression member
are closely approximate for practical design work.

Eqs. (6) and (7) will give the desired area of section of

the compression member carrying "both direct stress and
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bending produced by transverse loading under the assump-
tions of the method ordinarily employed. Those formulae

are sufficiently accurate for their purposes, but it may be

desirable to use the more exact formulas given in the next

section.

Exact Method for Combined Compression and Bending.

The exact procedure for combined compression and

bending is identical with that used in Art. 51, the formulas

determined there simply being adapted to a compressive

longitudinal force instead of a force of tension. It is to be

observed, as in the case of the tension member, that the

compression member may be horizontal or inclined, so as

to be subjected to bending either from its own weight or

from some other form of loading in addition to that weight.
The member may also be subjected to uniform bending

throughout its length by the eccentric application of the

longitudinal force P concurrently with the preceding cross

bending, or, as in the case of a vertical column carrying
eccentric loading, by that force P alone.

It is essential to recognize in this connection that while

the columns may occasionally be in the pin-end condi-

tion, usually their ends are essentially in a condition of

at least partial fixedness, although the degree of fixed-

ness is indeterminate. It will conduce to simplicity of

treatment if the transverse bending, either from distributed

loading or by the eccentricity of application of the column

load, be treated as if the ends of columns are hinged. It

has been shown in Art. 28 that the centre deflection of a

beam of given length and cross-section with ends simply

supported and with the loading uniformly distributed is

five times as great as when the ends of the same beam
are fixed. In the following analysis, therefore, the bend-



272 COMBINED STRESS CONDITIONS. [Ch. VI.

ing from both the sources named may be considered as

produced in a column with hinged ends by a total uni-

formly distributed load W, sufficient in amount to cause

one fifth of the actual bending moment acting on the col-

umn with ends fixed. In this manner the fixed or con-

strained end condition of the actual column is provided

for, while the simplicity of the hinged end computations
is retained. The bending moment produced by P, acting

with the lever-arm of the greatest deflection, will concur

with the bending moment produced by the own weight
of the member or other vertical uniform loading, instead

of being opposed to it, as was the case with the tension

member of Art. 51. The work performed, therefore, by
P and the uniform loading W will be equal to the resilience

or elastic work performed in the member in changing the

deflection from w
1
to w'

,
it being remembered, in this case,

that w' may be less than wr Under these conditions,

then, eq. (10) of Art. 51, expressing the work done on the

beam in changing the deflection from the w
1
to w' will

become the following, the second member representing the

resilience or the work done by the elastic stresses through-
out its volume:

8 P fu/*-w*\ 8
T

W 2
l
5 /w' 2

\
( j^ )+ W(v/-w 1)= Ev( -i). (8)

3 2 \ / / 25 24oEI\w i

2

]

Dividing both members of this equation by (w' w^),

then solving for w', the following value of the latter will

immediately result:

25 P M/J

in which

,
(9a)
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Having found the deflection w/, the general equation
for the resultant maximum bending moment, eq. (i) of

Art. 48, will take the following form, in which the coeffi-

cient c is introduced to provide for fixedness of ends in

the manner shown in Prob. 4, at the end of this chapter.

If the ends are hinged, corresponding to the end condition

of a beam simply supported, c = i, but if the ends are fixed,

c may be taken as .5 :

(10)

In this equation care must be exercised in using the

double signs, observing that both plus signs are to be taken

together as are both minus signs; also, that the eccen-

tricity e in a vertical column is taken in a direction opposite

to the deflection w', in which case e is to be considered

positive and the lever-arm of P is (e + w'). In the upper
chord of bridges e may be given such value that

M -=^-PO-w')=o (nearly). . . . (n)

In the case of vertical columns, like those in buildings,
Wl

ordinarily the term
-^~ disappears, leaving the bending

moment in the column:

M=P(e + u/)...... (12)

In the great majority of cases w' is so small in com-

parison with e as to make it negligible, so that

(13)

These various values of the bending moment M cover

all that usually occur in practical operations.
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If, in accordance with the preceding notation, t is the

maximum resultant intensity of stress in the member,
there will result

P Md i/ M

Evidently the uniform intensity of compressive stress

p
-* must not exceed the intensity of working stress given
j\

by a suitable long column formula. When the greatest

working intensity t is prescribed, the desired area of cross-

section of the compression member will be

The closely approximate values of
2
-

given immedi-

ately following eq. (7) may be used in a precisely similar

manner in eq. (15), so as to simplify the practical use of

that equation.

PROBLEMS FOR CHAPTER VI.

Problem i. A steel eye-bar 8 ins. by ij ins. in section

and 32 feet long sustains, in a horizontal position, a tensile

stress of 144,000 pounds, i.e., 12,000 pounds per square inch.

Find the greatest bending tensile intensity of stress and

the resultant intensity of tensile stress at its centre sec-

tion by the ordinary approximate method of Art. 50, and

by the exact method of Art. 51. In this problem, E =

30,000,000; / = 32X12 =384 ins.; P = 144,000 and W =

_ 1.5X8X8X8
40.8X32=1306 pounds. Also/=-- -=64.
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By eq. (6) of Art. 50 the resultant intensity of tensi!e

stress required is

1^06X48
=12,000+ - = 12,000+ 1860 = 13,860 Ibs. per sq. in.

The centre deflection w
{

, due to own weight only, used

in the exact method, is ^ =
.5 inch. Hence, by eq. (n)

of Art. 51, the centre defection under tensile stress is

w1
' = r- = .iti inch.

1 + 1.67

The resultant intensity of tensile stress at the centre

section of the eye-bar, is therefore,

/ = 12,000 -\

'^ '

g-
= i2,oco +2208 = 14,208 Ibs. per sq. in.

1.5 X oX o

The approximate method, therefore, gives an intensity

2208^1860 = 348 pounds per sq. in. too small.

Problem 2. A horizontal square 2 in. by 2 in. steel

bar 30 ft. long is subjected to a tensile stress of 48,000

pounds, i.e., 12,000 pounds per square inch. Find the

same quantities as in Prob. i. = 30,000,000; =360
inches; own weight, W = 4o8 pounds, and P= 48,000

pounds.

By eq. (6) of Art. 35

= 12,000 + 835 = 12,835 Ibs. per sq. in.

In the exact method the centre deflection due to own

weight is

w
i
=6.2 inches.

Eq. (n) of Art. 51 gives

wf =
5 . 5 5 inches.
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On the other hand, the criterion, eq. (17) of Art. 51,

gives

408X360 .

it/ = JT- -5-^
= 3^25 inch.

8X48,000

The bar, therefore, will be subject to no bending and

its stress will be simply that of tension, the centre deflection

being .3825 inch. If the deflection were sufficient to give

the bar sensible inclination, it would be necessary to mul-

tiply the horizontal force P = 48,000 by the secant of that

inclination to obtain the actual tensile stress in the bar.

The results given by the ordinary approximate method

are thus seen to be quite erroneous.

Problem 3 . A i .5-inch round steel bar 48 ft. long, carry-

ing a tensile stress of 10,000 pounds per square inch, is

inclined at an angle of 51 to the horizontal. Will it be

subjected to any bending, and what will be its centre de-

flection at right angles to its axis if a = 5 1? The component
of the bar's weight producing the deflection named is

W cos a, in which W= 288 pounds is the bar's weight;

W cos a = 224 pounds; = 48 ft. = 576 ins. By the usual

formula, w
l
= 74 ins. Eq. (n) of Art. 51 then gives w'

=
72 ins.; but eq. (17) of Art. 51 gives

, 224X576w' =-z = .oiinch.
8X17,700

Hence this latter deflection is the true value and the

bar is subjected to no bending in its stressed condition.

Problem 4. A steel column 18 ft. long sustains a load

of 240,000 pounds and carries a transverse load (i.e., per-

pendicular to its axis) of 300 pounds per linear foot, the

latter total being 5400 pounds. The column has a section

like that shown as
' '

top chord latticed,
' '

Page 476, Art. 81,
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and it is composed of two i5-in. by J-in. web plates, two

3-in. by 3-in. y-lb. angles, two 3-in. by 4-in. i4-lb. angles,

and one i8-in. by j\-m. top plate. The sectional area is 35

sq. ins. The moment of inertia / is 1255, and the radius of

gyration r is 6. The loading is applied to the latticed

side of the column, so that the eccentricity of application

is 8.5 inches. It is required to find the deflection at the

centre of the column length, the bending moment and

greatest intensity of stress at the same section. Also,

if the area of section were not given, find that area if the

greatest allowed intensity of compression is 12,000 pounds

per square inch. The details of the column at top and

bottom are first to be assumed such as to make those ends

essentially fixed and then hinged.

If the ends of the column were hinged, the centre bend-

ing moment would be

+ 240,000 X 8 . 5
=

2, 185,800 in.-lbs.

As the ends of the column are first to be taken as fixed,

and as the deflection in that condition will be but one fifth

of that existing with ends hinged, it will be necessary to

take one fifth of the preceding bending moment and place

it equal to the expression for the centre bending moment

produced by a uniformly distributed load acting on a

column supposed to be with hinged ends. If W represents

that uniformly distributed load,

Wl
-g- =437,160 in.-lbs.

Hence
W = 1 6

,
2oo pounds.

Byeq. (pa) of Art. 52, E being 30,000,000 and/ = 216 ins.,

w
l
= .0565 in.
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Remembering that P = 240,000, eq. (9) then gives

w' = .00093 in.

These deflections are so small in comparison with

2 = 8.5 inches, that they will have no sensible effect upon
the result and they may be neglected.

In consequence g
of the elastic motions of the members

of a steel structure it is difficult to estimate accurately the

effect of such degree of fixedness of the ends of a column

as may be attained in an actual structure, but it is probable
that the resulting bending moment at the centre of the

column due to eccentricity and lateral loading is not less

than one half that existing with hinged ends, and that

ratio will be employed. In eq. (10) of Art. 52, therefore,

c = .5, and the bending moment will be

... 1/5400X216 \M = (- ~ - + 240,000 X 8.5 1
= 1,092,900 in. -Ibs.

Hence by eq. (14) of the same Article the greatest inten-

sity of compression will be

240,000 1,092,900 X (d = 8.5)

35 1255
= 6857 + 7402 =14,259 Ibs. per sq. in.

This computation shows the serious effect of eccentric

application of loading.

If the greatest allowed intensity of compression is

12,000 pounds per square inch, eq. (15) of Art. 52 shows

that the area of cross section required is

1,092,900 X8.5\
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The moment of inertia / will now become 1481 instead

of 1255.

These results may be compared with those of the ordi-

nary approximate method by finding the greatest intensity

of compression, t, by eq. (4) of Art. 52, as follows, after

displacing TV by ^ on account of the fixed end condition:

= 12,135 Ibs. per sq. in.

There is, therefore, no material discrepancy.

Results corresponding to the preceding, but under the

supposition that the ends of the column are hinged, may
readily be found as follows:

Wl
-5- = 2,185,800; .'. l/7 = 8i,ooo pounds.o

Hence

w^
==

. 2825 in.

and
w f = .0047 in.

While these deflections are five times as large as before,

w' is still too small to affect sensibly the results and it will

be neglected. The bending moment at the centre of the

column will then be

^400 X 2 1 6M =
g

- + 240,000X8.5 =2,185,800 in.-lbs.

and the greatest intensity of compression

240,000 2,185,800X8.5

35 1255"
= 6857 + 14,800 = 21,657 Ibs. per sq. in.
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If the greatest allowed intensity of compression is

12,000 pounds per square inch, the area of cross-section

becomes

2,i85,8ooX8.5

The moment of inertia / will now become 2259 instead

of 1255.

Comparing these results with those of the ordinary

approximate method by finding the" greatest intensity of

compression, t, by eq. (4) of Art. 52,

240,000 2,185,800X8.5t= 7 \-
- = 12,170 Ibs. per sq. in.

63 2259-37

This result is a close agreement with the other.

Problem 5. The pin of a crank-shaft like that shown
in Fig. i of Art. 47 sustains a maximum thrust, P, of

32,000 pounds, the length of crank, e, being 20 inches,

and the axial distance, /, between the centre of the thrust

and shaft bearings being 18 inches. Find the diameter

of the steel shaft at the bearing B if the greatest allowed

bending tension, k, is 10,000 Ibs. per sq. in. and the greatest

allowed torsional shear, T, is 7000 Ibs*. per sq. in.

In using the formulae of Art. 47 the data will be as

follows :

e = 20 ins.
;

/ = 18 ins.
;
AB =

26.9 ins.
;
tan j

= fJ = i.m
7=48; cos ^=.669; sin ;=.743; ^ = 32,000 Ibs.

& = 10,000 Ibs. per sq. in.; T = 7000 Ibs. per sq. in.

bending moment M = 576,000 in. -Ibs.
; twisting mo-

ment Mf

=640,000 in. -Ibs.

The first method of Art. 47 gives for bending, by using

the first of eqs. (9),

Xi8 =
8.34 ins.

10,000



PART II. TECHNICAL.

CHAPTER VII.'

TENSION.

Art. 53. General Observations. Limit of Elasticity. Yield

Point.

HITHERTO certain conditions affecting the nature of

elastic bodies and the mode of applying external forces

to them, have been assumed as the basis of mathematical

operations, and from these last have been deduced the

formulae to be adapted to the use of the engineer. These

conditions are never realized in nature, but they are

approached so closely that, by the introduction of empiri-

cal quantities, the formulas give results of sufficient accu-

racy for all engineering purposes; at any rate, they are

the only ones available in the study of the resistance of

materials.

In determining the quantity called the
"
coefficient or

modulus of elasticity," it is supposed that the body is per-

fectly elastic, i.e., that it will return to its original form and

volume when relieved of the action of the external forces,

also that this
"
modulus "

is constant. There is reason

to believe that no body known to the engineer is either

perfectly elastic or possesses a perfectly constant modulus

of elasticity. Yet within certain limits, the deviations

from these assumptions are not sufficiently great to vitiate

their great practical usefulness.

281
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These limits for any given material are in the vicinity

of the
"
limit of elasticity

"
or

"
elastic limit." The limit

of elasticity or elastic limit of a material may be defined as

that point of stress below which the intensity of stress

divided by the rate of strain, i.e., strain per unit of length,

is essentially constant. This point or limit is fairly well

defined for most grades of structural steel and for some

other ductile metals, but in other materials like stone or

timber it is difficult to assign any degree of stress as the

limit of elasticity. In such material the intensity of stress

divided by the rate of strain sometimes fails to hje constant

at all. If the intensities of stress and rates of strain for

such materials be plotted so as to exhibit the relation'

between those quantities the resulting line will be found

to be a curve without any point which can properly be con-

sidered the limit of elasticity. Frequently when such

materials are relieved cf loads, the dimensions, of the

piece subjected to stress will not return to their original

values.

Between the extreme limits of these materials exhibiting

such a range of elastic or physical qualities, all degrees of

imperfect elastic characteristics may be found. Fortu-

nately, however, the structural materials commonly em-

ployed in engineering operations may be treated as if

possessing at least approximately elastic characteristics

sufficient to make applicable useful formulae based upon
Hooke's Law.

It should be stated that some authorities have given

arbitrary definitions of the elastic limit, and that these

definitions have been much used. Wertheim and others

have considered the elastic limit to be that force which

produces a permanent elongation of 0.00005 of the length

of bar. Again, Styffe defines, as the limit of elasticity,

a much more complicated quantity. He considers the
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external load to be gradually increased by increments,

which may be constant, and that each load, thus attained,

is allowed to act during a number of minutes given by

taking 100 times the quotient of the increment divided

by the load. Then the
"
limit of elasticity

"
is

"
that load by

which, when it has been operating by successive small incre-

ments as above described, there is produced an increase in

the permanent elongation which bears a ratio to the length

of the bar equal to o.oi (or approximates most nearly to

o.o i ) of the ratio which the increment of weight bears to

the total load." (Iron and Steel, p. 30.)

These rather artificial expressions for limit of elasticity,

however, have now been abandoned in favor of what seems

to be the most natural value, i.e., the point where the ratio

between intensity of stress and rate of strain ceases to be

essentially constant.

The preceding observations relate to the limit of elas-

ticity as determined by tests of materials under direct

tension or compression. Obviously, however, the coeffi-

cient or modulus of elasticity and elastic limit as well as

other physical qualities may be determined by subjecting

beams to flexure. Observed deflections under known loads,

which do not bend the tested beam beyond the elastic

limit, will enable the coefficient of elasticity to be com-

puted by using formulae of the common theory of flexure.

Similarly the observed increments of transverse loading

will yield data from which the limit of elasticity may be

determined.

By precisely similar procedures the coefficient of elas-

ticity and elastic limit of material subjected to torsion

may be found. All such results will be well defined in

proportion to the elastic properties of the materials. If

those elastic properties are nearly perfect the results will

be well defined. On the other hand, they will be obscure
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and ill defined if the material possesses only a low degree
of elastic properties.

Yield Point.

In the ordinary testing of materials for engineering pur-

poses the true elastic limit is not determined. The true

elastic limit of any test piece is found by carefully com-

puting the ratio between intensity of stress and rate of

strain for a loading continually increasing by comparatively
small increments. Such a procedure is too slow for what

may be termed the commercial purposes of engineering.

A much more rapid and convenient procedure consists in

carefully observing the scale beam of the testing machine.

As the load is gradually increased the scale beam may
easily be kept in a horizontal position by moving the scale

weights until a point of stress in the specimen is reached

at which the beam drops in consequence of the relatively

sudden stretching of the material. This stretching con-

tinues with such a material as structural steel with a slight

addition of loading, or none at all, to a remarkable extent.

Finally, after much stretching of the test piece, the strained

material appears to take on renewed resistance, requiring

additional loading to produce much elongation. The inten-

sity of stress in the specimen when this sudden stretching

begins is called the
"
yield point" or sometimes the "stretch

limit." It is but little above the elastic limit. In soft or

mild steels, or in high structural steel the yield point may
not be more than two or three thousand pounds above the

elastic limit. The elastic limit itself is from one-half to

six-tenths the ultimate resistance for small specimens or

about one-half the ultimate resistance for
^large

members

like eye-bars, or a little less than that after annealing.

The ease with which the yield point may be determined

has led to its wide use under the name of elastic limit in
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much engineering literature, but the distinction should

always be observed.

In the case of some structural materials with erratic or

defective elastic properties, like some grades of cast iron,

it is practically impossible to find any well-defined elastic

limit or even yield point.

Art. 54. Ultimate Resistance.

After a piece of material, subjected to stress, has passed
its elastic limit, the strains increase until failure takes

place. If the piece is subjected to tensile stress, there

will be some degree of strain, either at the instant of rup-

ture or somewhat before, accompanied by an intensity of

stress greater than that existing in the piece in any other

condition. This greatest intensity of internal resistance

is called the
"
Ultimate Resistance."

In ductile materials this point of greatest resistance is

found considerably before rupture; the strains beyond it

increasing rapidly while the resistance decreases until

separation takes place.

These phenomena are highly marked in ductile mate-

rials like wrought iron and structural steel, particularly

in the latter. In such cases if the application of stress to

the test piece is carefully controlled a considerable stretch-

ing of the piece may be produced beyond the point of

ultimate resistance without actually separating the metal,
the load per square inch of original section of the piece

decreasing rapidly. It is not difficult to obtain such re-

sults with soft or mild steel.

The ultimate resistances of different materials
'

used in

engineering constructions can only be determined by
actual tests, and they have been the objects of many ex-

periments.
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It has been observed in these experiments that many
influences affect the ultimate resistance of any given

material, such as mode of manufacture, condition (an-

nealed or unannealed, etc.), size of normal cross-section,

form of normal cross-section, relative dimensions of test

piece, shape of test piece, etc. In making new experiments
or drawing deductions from those already made, these and

similar circumstances should all be carefully considered.

Art. 55. Ductility. Permanent Set.

One of the most important and valuable characteristics

of any material is its
"
ductility," or that property by

which it is enabled to change its form, beyond the limit

of elasticity, before failure takes place. It is .measured

by the permanent
"

set," or stretch, in the case of a tensile

stress, which the test piece possesses after fracture
; also,

by the decrease of cross-section which the piece suffers at

the place of fracture.

In general terms, i.e., for any degree of strain at which

it occurs,
"
permanent set" is the strain which remains in

the piece when the external forces cease their action. It

will be seen hereafter that in many cases, and perhaps all,

permanent set decreases during a period of time imme-

diately subsequent to the removal of stress. Indeed, in

some cases of small strains it is observed to disappear

entirely.

Art. 56. Cast Iron.

Modulus of Elasticity and Elastic Limit.

Cast iron is a metal produced by fusion without sub-

sequent working such as forging or rolling. Except when
made for special purposes under conditions of careful control
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of the elements entering it, the quality of the product is

irregular and variable. Bubbles of gases not escaping from
the molten mass will leave voids or

"
blow-holes

"
in the

final product and carbon exists both in the graphitic and

combined condition, but in varying proportions. The mode
of production and the practically unavoidable irregularities

in cooling induce both variable conditions of crystallization

and internal stresses which are sometimes high enough to

fracture the completed casting.

There are some grades of cast iron like those formerly
used for car .wheels and ordnance which give high ultimate

resistance and comparatively high moduli of elasticity and

which exhibit an approximation at least to an elastic limit,

although the latter point is never well defined as in wrought
iron and steel. The ordinary soft castings used in engi-

neering practice for water pipes, machine frames and other

similar purposes disclose under test such erratic properties

that they cannot be said to have either a well-defined

modulus of elasticity or any real elastic limit. The irregular

behavior of cast iron under stress is well shown for different

grades of the material by the stress-strain diagrams shown

in Fig. i, in which the vertical ordinates are intensities of

stress, while the horizontal ordinates or abscissas are the

strains or elongations per linear inch. These curves are.

typical of what may be considered good grades of cast

iron for their purpose. The line oq represents a fair grade

of ordinary soft cast iron, while on and oe belong to a higher

grade and od a still stronger metal for special purposes.

The amounts written at the extreme upper ends of the

curves indicate the loads or stresses per square inch at

which the test specimens failed. The two curves Of and

Oe were constructed from data given on pages 597 and 605

of the
"
U. S. Report of Tests of Metals and Other Materi-

als
"
for 1899. These two cast-iron test specimens were of
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metal of .superior or special grades, proposed to be used

for ordnance purposes, as is indicated by the high ultimate

resistances, 22,300 and 35,280 pounds per square inch.

There is seen to be the greatest diversity in the incli-

nation and general character of the four -strain curves

35280 Ibs. ,

-' r

32000

16000 Ibs.

.001 .003" .004" PER INCH

FIG. i.

The curve Oe has a fairly straight portion ha, the point a

representing an intensity of stress of 7000 pounds, while

the point h represents an intensity of 2000 pounds per

square inch. The cross-sectional area of this test speci-

men was i square inch. The difference in strains at the

two points a and h, or for a range in intensity of 5000 pounds,



Art. 56]. CAST IRON-COEFFICIENTS OF ELASTICITY. 289

was .0003 inch. Hence the coefficient of elasticity for

these data would be

E- -16,667,000 pounds.
.0003

In the same manner the increase of strain per linear

inch of test specimen resulting from increasing the stress

of 2000 pounds per square inch at k to 8000 pounds per

square inch at b was .00032. Hence with these data the

coefficient of elasticity would be

_ 6000= _ ==I 8,y 50,000 pounds.
.00032

The strain curve On is an extraordinary one for cast iron,

as it is straight for nearly its entire length. For the in-

tensity of stress of 16,200 pounds the strain or stretch is

seen to be .002 inch;* hence the coefficient of elasticity

would be

16,200E= - =
8, TOO,ooo pounds.

.002

The metal represented by the strain curve Oq cannot be

said to have any coefficient of elasticity at all, as no part of

the curve is straight. These instances selected from a

large number of tests are representative of what may be

expected in elastic behavior of cast iron. As a rule, the

grades possessing the higher ultimate resistances exhibit

a more nearly normal elastic character and possess what

may be termed not very wTell-defmed coefficients of elas-

ticity running from about 14,000,000 to perhaps 18,000,000

pounds per square inch, while the usual grades or quanti-
ties employed in engineering castings may have no coeffi-

cient of elasticity at all or as low as 8,000,000 or 10,000,000

pounds per square inch. In view of all experimental data

available at the present time it is probably about as neax
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correct as practicable to take the tensile coefficient of cast

iron for ordinary engineering purposes, as

= 12,000,000 to 14,000,000 pounds,

or one half that of wrought iron. For the" special grades

of stronger cast iron, such as are used for ordnance and

car-wheel purposes, a coefficient or modulus of 16,000,000

pounds to 18,000,000 pounds per square inch may be used.

As is usually the case in cast iron, the elastic limits of

the curves in Fig. i are so ill-defined that they cannot be

placed with certainty even on the curves Of and Oe, or

scarcely on On, and not at all on curve Oq. If the points

are approximately located on the first three of these curves

they may perhaps be placed at b (8000 pounds per square

inch), at a (7000 pounds per square inch), and at m (19,000

pounds per square inch) . In none .of these cases, however,

can the metal be said to have either a well-defined limit of

elasticity or a true yield point, and that observation is in

general true of all cast iron.

Resilience, or Work Performed in Straining Cast Iron.

As the scale of the original of Fig. i was 8000 pounds
to each inch of vertical ordinate and .001 inch to each inch

or horizontal ordinate or abscissa, and as the strains shown

in Fig. i belong to a test piece i inch square in section and

i inch long, each square inch of area on the original dia-

gram between any one of the strain curves and the axis

of abscissae drawn through will represent SoooX.ooi =8

inch-pounds of work performed in stretching that test

piece. The strain at the point b on the curve Of is .00036

inch, as shown in the figure, while the mean intensity of

stress in producing that strain is 4400 pounds. Hence if
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b represents the elastic limit the resilience or work per-

formed in stretching the metal up to the elastic limit of

8000 pounds per square inch is

4400 X .00036 = 1.58 inch-pounds per cubic inch.

Similarly, if a is the elastic limit in the strain curve Oc,

the total strain for each inch in length of the test specimen
is .00038 inch and the mean intensity of stress is 3750

pounds, all as shown in Fig. i. Hence the resilience or

work performed was

3 7 50 X.00038 = 1.43 inch-pounds per cubic inch.

A similar computation may be made for the straight por-
tion of the strain curve On, but the preceding operations

sufficiently illustrate the procedure.
The total work performed in breaking each specimen

may readily be found in precisely the same manner. In

the case of the curve Of the strains or elongations of the

specimen were actually observed only up to the point d,

although failure actually took place at / or at the intensity,

35,280 pounds per square inch. The part df of the curve
is drawn approximately as a continuation of the observed
curve and therefore is shown as a broken line. The area

included between the curve Of and the horizontal ordinate

Os, i.e. the area of the figure Ofs, is 11.97 square inches.

Hence the work performed in rupturing the test piece was

11.97 X8ooo X.ooi =95.76 inch-pounds per cubic inch.

Again, in the case of the strain curve Oe the area of the

figure Oet is 4.69 square inches. The total work expended,
therefore, in rupturing the specimen was

4 . 69 X 8000 X ooi = 3 7. 5 inch-pounds per cubic inch.

In the latter case the short portion ce of the strain curve is
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drawn approximately, as the strain observations ceased

at c. It is to be remembered, as is indicated in each of

these cases, that when the data apply to each linear inch

of test piece and each square inch of sectional area, the

work computed will be for i cubic inch of material. It

is only necessary to multiply by the number of cubic inches

in the test piece in order to obtain the work performed in

the entire piece.

Ultimate Resistance.

The ultimate tensile resistance of cast iron is an ex-

ceedingly variable quantity; it may range from not more
than 8000 or 10,000 pounds in castings of indifferent quality
to values of nearly 50,000 pounds per square inch in such,

special grades of metal as those which have been used for

car wheels and ordnance. Cast iron has passed com-

pletely out of use for the manufacture of heavy guns, but

there are other ordnance purposes for which it is still

used. The castings usually employed by civil engineers

are generally of soft-grade iron; they are such as water

pipes, frames, beds of machines, and other similar purposes
which do not require special grades produced by special

mixtures of raw material or special processes of manu-
facture. The ultimate resistances will, therefore, be con-

siderably less than those belonging to ordnance and car-

wheel irons, or for specially strong grades of metal. As
with all material, the character of cast iron affects to a

great extent its resistance, i.e., whether it is fine or coarse

grained, as does also the character of the ore from which

it is produced.
Three specimens turned down to a diameter of about

.625 inch taken from iron used in the Boston water pipes

and broken at the Warren Foundry, Phillipsburg, New
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Jersey, gave the following ultimate resistances in pounds
per square inch:

18,300, 13,070.

These results represent fairly the ultimate resistance of

ordinary cast-iron pipe and other castings commonly used

in civil engineering practice. It has sometimes been stated

that the outer surface or
"
skin

"
of iron castings has a

greater capacity of resistance to stress than the interior

parts. Investigations carefully conducted, however, by the

late Professor J. B. Johnson and others do not show that

to be the case. Indeed it is practically certain that there

is no essential difference between the resistances of the

exterior and interior parts of a casting unless it has been

subjected to some special treatment. It is not unlikely
that this erroneous impression may have arisen from the

results of irregular cooling of castings producing internal

stresses sometimes sufficient to produce fracture.

The ' '

Report of the Tests of Metals and Other Mate-
rials" at the United States Arsenal, Watertown, Mass.,

for 1900, contains a mass of tensile tests of pig irons and
ordnance castings of a great variety of grades and quali-

ties, from which the following tabular statement of greatest

and least values have been taken. There are also given
the results of two tests of gear teeth taken from the same

source.
TENSILE TESTS OF CAST IRON.

Iron.
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As a recapitulation there may be written:

For ordinary castings:

( 12,000,000 Ibs. per sq. in.

Modulus of elasticity < to

( 14,000,000 Ibs. per sq. in.

Ultimate tensile resistance, 15,000 to 18,000 Ibs. per sq. in.

For specially excellent grades:

i 16,000,000 Ibs. per sq. in.

Modulus of elasticity < . to

( 18,000,000 Ibs. per sq. in.

Ultimate tensile resistance, 20,000 to 35,000 Ibs. per. sq. in.

Tensile working resistances in pounds per square inch

may be taken as follows :

For water pipes and other similar purposes :

3000 to 3500 Ibs. per sq. in.

With higher grades of cast iron for special purposes:

4000 to 7000 Ibs. per sq. in.

Effects of Remelting, Continued Fusion, Repetition of Stress,

and High Temperatures.

The physical qualities of cast iron may be much im-

proved by remelting and continued fusion. The product
of the blast furnace is commercial pig iron. These pigs

remelted, as in a cupola furnace, form the ordinary cast-

ings of engineering work. If this remelting should be con-

tinued so as to secure third or fourth fusion metal the

resisting properties of the iron would be enhanced, but the

cost would at the same time be materially increased, and

hence second fusion metal only is ordinarily used.

Again, experience has shown that if molten metal be

held in .fusion, even for a period of three hours or more,
its physical quality continues to improve, but the cost of
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such a procedure renders it prohibitive for ordinary pur-

poses.

Many investigations have been made to determine the

resisting power of structural materials to frequent and con-

tinued repetition of stresses, not only below, but above the

elastic limit, the relief from stress between two applications
sometimes being partial and sometimes complete. It has

been found that such repeated stresses, when as high as

one-half to three-quarters of the ultimate resistance, pro-
duce material fatigue in cast iron and final failure much
below the ordinary ultimate resistance as determined by a

gradual application of load. Such tests have shown that

cast iron is somewhat more sensitive to fatigue than the

ductile structural materials of higher ultimate resistance.

The effect of high temperatures upon the resisting

capacity of cast iron is not in general different from that

found for steel and wrought iron. Little, if any, softening
is observed until a temperature of 500 F. is approached,
but beyond that limit it is liable to begin to lose capacity
of resistance to a material extent if not rapidly.

Art. 57. Wrought Iron. Modulus of Elasticity. Limit of Elas-

ticity and Yield Point. Resilience. Ultimate Resistance and

Ductility.

Wrought iron as a structural material has been com-

pletely displaced by the* various grades of structural steel,

although it is still used in relatively small quantities for

special purposes. Again, many bridge and other struc-

tures built of wrought iron are still standing, and it is

essential to retain a record of its physical qualities.

Wrought iron differs fundamentally from steel in its

manner of production, as it is a product of the puddling
furnace. A white-hot spongy mass was brought out of a

bath of molten slag and passed between rolls, resulting in
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what were known as puddle bars. These were cut in suit-

able lengths, and placed in rectangular packages or piles

of proper size to produce the finished bar or beam by sub-

sequent heating and rolling.

This process of production gave to wrought iron a

fibrous internal structure of much greater ultimate resist-

ance in the direction of the fibre than at right angles to

the fibre or direction of rolling, and this was true whatever

shape was produced, such as plates, beams, bars, etc.

Modulus of Elasticity.

The coefficient or modulus of elasticity of wrought iron

was determined by many tests of both small and full-size

bars when it was the principal structural material in bridges

and other similar structures. The adjoining table gives

the results of tests of four bars only. The two i-inch square
bars were of fine quality of wrought iron and were tested

many years ago by Eaton Hodgkinson. The results of

tests of the 5 -inch and 3 -inch bars are taken from the
"
Report of Tests of Metals for 1881

" made on the large

testing machine at the U. S. Arsenal, Watertown, Mass.
The table below gives full information as to the total strain,

gage length and stress per square inch for the various bars.

If p is the stress per square inch and / the strain per linear

inch of gaged length, the coefficient of elasticity E will have

the value,

Size of Bar,
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It will be observed that the four values shown are more

nearly the same than will be found in a long series of deter-

minations in the early tests of engineering materials when

wrought iron was in general use. As a result of such

determinations, the value of

E = 26,000,000

may be taken as a fair average value for wrought iron

members of structures. For small specimens, or for some

special grades of wrought iron, 27,000,000 or possibly

28,000,000 may be used.

Obviously all values of E must be computed for inten-

sities of stress less than the elastic limit.

Limit of Elasticity and Yield Point Resilience.

The limit of elasticity for wrought iron is not nearly so

well denned as for structural steel. The diagram Fig. i has

been constructed from the test of the one-inch square

wrought iron bar with a gaged length of 10 feet and with a

load increasing by small increments. The horizontal ordi-

nates represent the total strains in inches, while the ver-

tical ordinates represent intensities of stress per square
inch.

That part of the curve from the origin o to a is straight

and its equation is,

p=EL

Above a the line begins to curve and at e the curvature

becomes about as sharp as at any point. The point a,

elastic limit, may be taken at 26,000 pounds per square

inch, while e, the yield point, may be considered as 29,000

pounds per square inch, although this latter, point is not

well denned. Above e the curve becomes much less inclined
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to a horizontal line, showing that for small increments of

load the stretch of the specimen is relatively great.

While these results belong to one specimen only of

wrought iron they are characteristic of the metal. Approxi-

mately the elastic limit may be considered half the ultimate
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Ductility and Resilience.

In Fig. i the horizontal coordinates of the stress-strain

curve are the strains for 120 inches in length of a wrought-
iron test bar, corresponding at each point to the intensities

of stress per square inch shown on the vertical line through
o. This curve exhibits fully the physical characteristics of

the material under test. The straight part oa of the curve

belongs to that part of the loading below the elastic limit

a, i.e., below 26,000 pounds per square inch. The point e

indicates the stretch limit at about 29,000 pounds per

square inch. There is no constant proportionality be-

tween stress and strain above a nor is there any great
increase in the strain for a given small increment of load-

ing until the point e is passed, but above that point the

stretch for each constant increment of loading becomes

relatively large. Beyond the point b, the inclination of

the stress-strain curve to horizontal is relatively small. At
or near c the curve becomes horizontal, showing the maxi-

mum intensity of resistance, i.e., the ultimate resistance,

and the broken line cf indicates a rapidly decreasing load

if the testing machine is properly manipulated prior to the

actual parting of the material at /. Usually the actual

failure of the material will take place at the highest point
of the curve unless special pains be taken to operate the

decrease of loading and even under such conditions the

material must be highly ductile to produce the part of

the curve shown by the broken line.

The resilience of work expended below the elastic limit

a can readily be computed by the aid of Fig. i, as it is

represented by the triangular area between the straight

part of the stress-strain curve and a vertical line through
its upper limit. The strain at the elastic limit of 26,000

pounds per square inch is .11744 inch. The average force



300 TENSION. [Ch. VII.

acting upon the specimen up to the elastic limit would be

half the value of the latter. Hence the elastic resilience

or the work performed on the specimen up to the elastic

limit is

26,000
.U744X = 1527.6 inch-pounds.

Inasmuch as the test specimen was 120 inches long, the

elastic resilience of the bar would be 12.73 inch-pounds

per cubic inch of its volume. Similarly, the area of the

irregular figure oebch is 4.97 square inches, and as the

scale of force is 20,000 pounds per linear inch, that figure

represents 4.97X20,000 pounds =99,360 inch-pounds of

work; or - =828 inch-pounds of work per cubic inch

of volume of the test specimen. If this test-bar, therefore,

were to be broken by a falling weight of 100 pounds, that

weight would be required to fall through a height of

09,360 , .

- =993.6 inches.
100

It is clear from the figure that if the metal possessed

little ductility so that its strain curve extended no further

than the point 6, the work ^required to be expended in

breaking it would be very small compared with that needed

for rupturing the actual wrought-iron piece. The effect

of a falling weight may represent a shock or blow, or be

taken as the equivalent of what is usually called a suddenly

applied load. These considerations show why a ductile

material requiring so much more work to be performed
to break it is much better adapted to sustain shock than

a non-ductile or brittle material. The latter class of

materials can be strained so little before failure that little

work is required to be expended to break them.
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Ultimate Resistance.

The ultimate resistance of wrought iron depends to

some extent, like structural steel, on the size of the test

specimen or bar, its treatment during manufacture, and

whether the piece is tested in the direction in which it was
rolled or at right angles to that direction. Wrought iron

being a fibrous material, its ultimate resistance is materially

greater in the direction of the fiber than at right angles to

that direction or in inclined directions. Structural speci-

fications usually prescribed that when used in tension,

wrought iron should take its load parallel to the direction

of rolling, particularly for wrought-iron plates.

Round and rectangular bars of wrought iron of ordinary
structural sizes showed under tests ultimate resistances,

generally varying from about 45,000 to 50,000 pounds per

square inch, the smaller values applying to large bars and

the large values to bars of small section.

A series of tests of round bars found in the
"
Report of

the Committee of the U. S. Board Appointed to Test Iron,

Steel, and other Metals, etc.," showed that the ultimate

resistances ran from about 60,000 per square inch for f-inch

rounds down to about 46,000 to 47,000 pounds -per square
inch for bars 4 inches in diameter.

The ultimate resistance of such wrought-iron shapes as

angles, eye bars, channels, tees, and others were shown by
many tests to be about the same as bars and flats of the

same quality and size, i.e., many test specimens showed

ultimate resistances running from about 45,000 to 50,000

pounds per square inch. If the shapes or 'plates were

small, so that the temperature was relatively low during
final passes between the rolls, the hardening effect of such

treatment would raise the ultimate resistance to some

extent, resulting in higher values than for similar shapes
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of large section which suffered less reduction of temperatures

during the process of rolling. Thin plates showed markedly

higher ultimate resistances than thick plates for this reason.

Ductility.

From what has been stated it is evident that wrought
iron would show the greatest final contraction of fractured

area and final stretch when tested in the direction of rolling

than in any other direction. Again it is equally clear

that the percentage of final stretch would be materially

greater for short specimens than for long ones, because the

necking-down at the section of fracture would add a much

greater percentage to the length of a short specimen than

to a long one. While both final contraction and final

stretch varied greatly in different test pieces, it may be

stated that for gage lengths ranging from about 5 feet

to 20 feet, full-size wrought-iron bars gave a final con-

traction of 20 per cent to 30 per cent and a final stretch

of about half these values.

Test specimens of plates, angles and other shapes, the

final stretch being measured over a gage length of 8 inches,

would generally yield about 20 per cent to 30 per cent of

final contraction and about 10 per cent to 20 per cent of

final stretch.

The preceding may be considered fairly representative

values of ductility of the best quality of wrought iron used

in bridge and other structures. They show that the metal

was highly ductile arid well adapted to structural purposes,

although possessing these desirable qualities to a less degree
than structural steel.

Fracture of Wrought Iron.

The characteristic fracture of wrought iron broken in

tension either directly or transversely is rather coarsely
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fibrous, not infrequently exhibiting a few bright granular

spots, which, in rare cases, may possibly be crystalline.

This characteristic fibrous fracture is produced by the

steady application of load, but a piece of wrought iron

will exhibit a granular fracture if broken suddenly. Many
statements have been made that wrought iron may become

crystalline and lose both ultimate resistance and ductility

under certain conditions of use, but bright granular fracture

has probably been mistaken in such cases for crystalline.

Art. 58. Steel.

Modulus of Elasticity.

The great number of varieties and grades of steel brings

into existence a correspondingly great number of physical

quantities and coefficients or moduli used in its consider-

ation in connection with the
"
Resistance of Materials."

Notwithstanding the number of varieties of steel used

at the present time for engineering purposes, it is fortunate

in the interests of simplified computations to find their

moduli of elasticity varying so little that they may be

taken as practically the same. Again, it is further fortunate

that the moduli for tension and compression also appear
to be the same, and they are so taken.

That class of steel generally to be considered here

is included under the term "Structural Steel," which

may be divided into low, medium, and high steel. These

three grades of structural steel are mainly based upon the

amounts of carbon which they contain. While each class

shades insensibly into another without well-defined limits,

it may be approximately stated at least that low or soft

steel will have carbon ranging from about .1 to .2 per cent.,

and that the carbon in medium steel will run from about

.2 to .3 per cent., while high steel will show about .3 to .45
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per cent, of carbon. The ultimate resistance of low steel

may run from 52,000 to 60,000 pounds per square inch,

medium steel from 60,000 to 68,000 pounds per square

inch, and high steel from 68,000 to about 76,000 pounds

per square inch, or possibly higher. Experimental inves-

tigations have shown that the coefficient of elasticity is

essentially the same for all grades of steel used in construc-

tion. This observation holds true also for nickel steel,

which has within the past few years come into use for

special structural purposes. -A considerable number of

tests of nickel-steel specimens, in some cases containing

3.375 per cent, of nickel with .3 per cent, of carbon and .73

per cent, of manganese, given in the U. S. Report of Tests

of Metals for 1898 and 1899, show that the coefficient of

elasticity for this metal may be taken at values ranging
from 28,700,000 pounds to 30,385,000 pounds per square
inch. In other words, the coefficient of elasticity of this

nickel steel may be taken between the usual limits for

ordinary structural steel of 28,000,000 and 30,000,000

pounds per square inch.

Table I gives a condensed statement of the results of

an extended investigation made to determine the
"
con-

stants
"

of structural steel by Prof, (now President) P. C.

Ricketts, at the mechanical laboratory of the Rens. Pol.

Inst. in 1886. Although these tests were made before as

many varieties and grades of steel had been developed as

at present, the values given in the table are accurately

characteristic of the same grades of structural steel pro-

duced at the present time, 1915. As no corresponding

determinations have been made of such wide range nor with

such a wide scope of purpose since that early date, the

table has unique value and is worthy of careful study.

Although this table contains other values than those im-

mediately desired, the opportunity of directly comparing
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different physical constants from the same quality of steel

is a sufficient reason for inserting the entire table at this

place. All the test- pieces were uniformly about three-

quarters of an inch in diameter, and the stretch was in all

cases measured on 8 inches. The elongations given are per
cents of the original length of 8 inches.

The reductions of area are the per cents of original

sections of the test pieces which indicate the differences

between the original and fractured areas.

As indicated, the first half of the table belongs to speci-
mens of open-hearth rivet steel from Steelton, Pa., while

the second half contains results drawn from tests on a com-

paratively wide range of metal from the Bessemer process
of the Troy Steel and Iron Co., of Troy, N. Y. The open-
hearth rivet steel is all seen to contain only .09 per cent,

of carbon, while the Bessemer metal had carbon varying
from o.i i per cent, to 0.39 per cent., with a wide gap
between 0.17 and 0.36 per cent.

The specimens i
1?

i
2 ,
and i

3 were cut from the two ends

and centre of bar i, and those subjected to tension were

located adjacent to specimens of the same name subjected
to compression. Similar observations apply to other sets

of specimens affected by the same figure or same letter.

Hence there is shown in this table the relation of different

physical quantities belonging to as nearly identically the

same material as the possibilities of the case admit.

The coefficients of tensile elasticity exhibit unusual

uniformity. Those for the open-hearth steel show no

variation with the small variation in carbon. Although
the tensile coefficients for the Bessemer steel are slightly

lower for the lowest per cents of carbon than for the highest,

yet some of the lowest coefficients are found for the highest

carbons, and it is difficult to determine any essential varia-

tion with varying proportions of that element.
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While the average of the tensile coefficients is a very
little more for the open hearth than for the Bessemer steel,

there is really no sensible difference between them. The

average tensile coefficient may be taken at 30,000,000

pounds per square inch.

Too much importance should not be attached to the

percentage of carbon alone in these specimens, as the

presence of other elements not given, such as manganese,

phosphorus, etc., exert marked influences on the physical
characteristics of steel.

The modulus of elasticity of the steel wire used in

the cables of long span, stiffened suspension bridges also

has the value of about 30,000,000 pounds, the ultimate

tensile resistance of such wire varying from -about 200,000

to 220,000 pounds per square inch. The resisting capacity

of this material is largely affected by the process of cold

drawing in its manufacture, but the modulus of elasticity

seems to experience little or no effect of the cold working.

Variation of Ultimate Resistance with Area of Cross-section.

The ultimate resistance of a ductile material like steel

depends to some extent upon the area of cross-section for

a number of reasons.

Generally the work put upon a bar of small cross-section

in reducing between the rolls from the ingot or bloom to

the finished bar will be greater for a bar of small section

than for a similar bar of large section. Other things being

equal, the greater amount of such work put upon the mate-

rial the higher will be its physical qualities, including the

ultimate resistance. Again, the temperature of a small bar

or thin plate during its last passes between the rolls will

generally be lower than for a bar of larger cross-section

or for a thicker plate. In other words, the slight tendency
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toward cold rolling tends to enhanced ultimate resistance

and elastic limit.

Finally at the section of ultimate failure there is a
"
necking down "

to the final reduction of area of fracture

within a short length of bar. This means a rather violent

movement or flow of molecules of the material toward the

axis of the bar, distinctly greater in distance for a larger

bar than one of smaller section for the same percentage of

final reduction. This corresponds to a greater longitudinal

separation of the molecules near the axis of the specimen
for a large bar than for a small one, which induces a little

earlier rupture in the former bar than in the latte'r.

For all these reasons the somewhat smaller ultimate

resistance per square inch of cross-section is to be antici-

pated for bars of large section, or plates of greater thickness

than for bars of smaller sectional area, or for thin plates.

This difference, however, is much less for steel bars and

plates at the present time than in the case of wrought iron

when that material was widely or even exclusively used for

structural purposes.

Influence of Shortness of Specimen.

If the dimensions of a test specimen are such as to make

exceedingly short that part within which failure will occur

if a test is carried to rupture, there is less opportunity for

the molecules of the material to move in toward the axis

of the piece as failure is approached, thus preventing an
unrestrained final reduction of fractured area. The result

is an abnormal enhancement of the ultimate resistance.

If the specimen is exceedingly short, as in the case of its

being made by a groove, as shown in Fig. i, it is readily
seen that the planes of shear indicated lie mostly in the

enlarged part of the test piece. This condition prevents
the free movement of the molecules along the oblique
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planes, required to produce the necking down or final

reduction of area of section. In other words, the material

at and in the vicinity of the section of failure is substan-

tially supported by that in the enlarged part of the piece,

thus enabling the ultimate section of fracture to retain an

abnormally large area, which correspondingly raises the

ultimate resistance. Many tests have been made with

wrought-iron specimens to determine the limits of this

influence of shortness. These tests show that the length

of the reduced part of a test piece in which the section of

FIG. i.

fracture will be found should not be less than about four

times the diameter in any case and that with ductile

material five or six times would be preferable. As a matter

of actual engineering practice, the length of the reduced

part of a test piece is never less than about eight to ten

times the diameter. In the case of a test piece of rect-

angular section, the length should not be less than five

or six times the greatest dimension of the cross-section,

or preferably six to eight times that dimension.

This matter of influence of shortness in test specimens
is of the utmost importance in determining the true ultimate

.

resistance of materials. If the test piece be too short the

ultimate resistance will be unusually high.

Elastic Limit, Resilience, and Ultimate Resistance.

In scrutinizing the results of tests of specimens and

full-size members of this section, it is to be observed that
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the elastic limit is almost invariably the
"
stretch-limit,"

or, as it is commonly called,
' '

the yield-point,
' ' and not the

true
' '

elastic limit,
' '

below which the ratio between in-

tensity of stress and rate of strain is essentially constant.

It has already been shown and stated that the true elastic

limit is from 2000 to 3000 or 4000 pounds per square inch

below the stretch-limit or yield-point. The stretch-limit is

so readily observed without delaying the ordinary routine

of testing that it has come to be called, although erro-

neously, the elastic limit, in spite of the fact that it is a little

above the intensity of stress to which that term should be

applied.

0.44$C. 72770

BRIDGE STEEL

FlG. 2.

The elastic properties of three grades of steel are ex-

hibited graphically in Fig. 2. The curved lines represent
the tensile strains of the steel specimens at the intensities

of stresses shown. The vertical ordinates are intensities

of stress and the horizontal ordinates the rates of stretch,

i.e., the stretches per unit of length, the latter being drawn
20 times their actual amounts. The Rock Island Steel
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belongs to a specimen of steel used for the combined rail-

road and highway structure across the Mississippi River

at Rock Island, 111., the data being taken from the U. S.

Report of Tests of Metals for 1896. The lines for axle

steel and nickel steel are the graphical representations of

data taken from the
"
U. S. Report of Tests of Metals'

'

for

1899. As in the previous case, the horizontal ordinates

are the stretches per lineal inch shown at 20 times their

actual values. The figures at the right-hand extremities

of the curves are the ultimate resistances per square inch.

The elastic limits and stretch-limits or yield-points are

shown with clear definition. The remarkably high elastic

limit of the nickel steel is well indicated.

By taking areas first between the horizontal axis OB
and the inclined straight portion of each line, and then

between the same horizontal axis -and the entire line in

each case, the following values of the elastic and ultimate

resilience per cubic inch of each specimen will be found:
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tests of specimens by Prof. P. C. Ricketts. This table has

already been explained on page 305. The tension tests

show remarkably uniform results in elastic limit and ulti-

mate resistance, and characterize a most excellent mate-

rial. With the exception of the two Bessemer specimens

containing 0.36 and 0.39 per cent carbon, all specimens

were of mild steel.

Table II exhibits results of tests of a number of un-

usually large eye-bars 12 inches wide with other 8-inch

and 7 -inch bars used in the Pennsylvania Railroad bridge

across the Delaware River a short, distance above Phila-

delphia and completed in 1896. There will also be found

in the table tests of specimens taken from the same bars,

together with the chemical composition. This table is

interesting as disclosing the ultimate tensile resistance of

large bars of mild steel having the chemical composition

shown. The decrease in ultimate tensile resistance and

elastic limit between the original bar and the finished eye-

bar, due to the process of manufacture of the latter, is also

evident at a glance. Although the steel in the original

bars shows ultimate resistances revealed by the tests of

specimens running from 58,300 pounds to 69,500 pounds

per square inch, no ultimate resistance of the completed
bars exceeds 59,500 pounds per square inch, while as small

a value as 52,300 pounds per square inch is found. This

table is taken from the description of the Delaware River

bridge by Mr. F. C. Kunz, Assistant to Vice-President

of the American Bridge Company, Engineering Depart-

ment, published at Vienna, 1901.

Table III gives the results of testing a remarkable

series of large steel eye-bars. The table exhibits not

only the physical results of the tests but the chemical

composition of the metal and the relative results for

annealed and unannealed bars. The table was supplied
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TABLE II.*

RESULTS OF TESTS OF EYE-BARS AND OF TEST SPECIMENS

Full-size Eye-bars.
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TABLE II. Continued.

TAKEN FROM THE SAME EYE-BARS, DELAWARE RIVER BRIDGE.

Percentage of
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TABLE III.

RESULTS OF FULL-SIZE EYE-BAR TESTS ON TRIAL STEEL,

MONONGAHELA RIVER CANTILEVER. BOLLER & HODGE,
CONSULTING ENGINEERS.

The steel was basic open-hearth metal manufactured and rolled by the

Carnegie Steel Company, 1902. All bars were about 30 feet long.

"A" means annealed and "N" not annealed.



15x2

PHCENIX IRON CO.

A 15 X 2-in. steel eye-bar forged at the shops of the Phoenix Bridge Co., Phoenixville, Pa.

The bar developed an ultimate resistance of 50,160 Ibs. per sq. in. and 28,000 Ibs. per

sq. in. at elastic limit. The elongation in 8 ins. of the bar, including the section of

failure, was 25.6 per cent, and the elongation of the pin-hole was 5. 2 inches. The
reduction of area at the section of fracture was 52.9 per cent.
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of the wide range of sections covered by it, as well as for

the chemical data which it contains, showing the percent-

ages of carbon, manganese, phosphorus, and sulphur
contained by the steel. Both the chemical analyses
and the physical results indicate that many of the shapes
are of mild steel, while the remaining portion is of low

steel.

The quality of metal either in steel shapes or plates

depends largely upon the amount of reduction reached

in the passage of the blooms through the rolls before the

final area of section is attained. In the early days of

rolling steel sufficient work between the rolls was not

always done, and the quality of the metal suffered corre-

spondingly. This defect is seldom or never found at the

present time and the corresponding variations in certain

physical qualities are avoided. In the case of wide and

thin plates, in which the temperature of the metal may
be lower than in thicker plates at the last pass through
the rolls, increased hardness may sometimes be found,

but as a rule there will be little, if any, difference, as the

preceding tables show, in the physical results for the thick

and thin sections ordinarily used in engineering construction.

Tests of specimens from a large variety of shapes,

plates, and bars used in the towers and stiffening trusses

of the Manhattan Suspension Bridge across the East River

at New York City, as given in the Report of Mr. Ralph

Modjeski, consulting engineer, 1909, show the following

results :

Carbon Steel for Towers.

Metal from plates, bars, channels, bulb angles,

and rivet rounds gave average elastic limits for

different sets of tests varying from a maximum of

43,040 pounds per square inch down to 31,137
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pounds per square inch. The average ultimate

resistances of the same sets of tests gave a maxi-

mum of 65,880 pounds per square inch with inter-

mediate values running down to 51,380 pounds

per square inch. The smaller of each of these sets

of results belongs to the low steel used for rivets
;

the higher values belong to shapes, plates and bars.

Carbon Steel for Suspended Structures.

Tests of specimens cut from shapes, plates, bars

and rivet rounds gave average elastic limits run-

ning from a maximum of 44,505 pounds per square
inch down to 33,907 pounds per square inch. The

corresponding ultimate resistances varied from

68,652 pounds per square inch down "to 52,411

pounds per square inch. Again, the smaller values

are found for the low-carbon rivet steel.

Nickel Steel for Stiffening Trusses.

Tests of specimens cut from nickel-steel shapes,
bars and rivet rounds used in the suspended
structure gave average elastic limits for different

sets of tests varying from a maximum of 61,355

pounds per square inch down to a minimum of

55,400 pounds. The corresponding ultimate resist-

ances varied from a maximum of 90,760 pounds
per square inch down to 77,268 pounds per square
inch.

The preceding results for the Manhattan Suspension
Bridge show values which may reasonably be expected for

such carbon and nickel steels as are now in. use for the best

types of large bridge structures. The carbon steel for the

plates, shapes and bars belongs to the grade of medium
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the 1 45th Street bridge across the Harlem River in New
York City. The tests were made in 1901. The left-

hand column of the table shows the- particular (cast)

members of the turntable from which the specimens
were taken. They also show that, in -'steel castings, a

sensibly higher grade (in the sense of containing more
carbon and manganese) of steel is used than in rolled

shapes. As indicated in the heading of the table, the

material was acid open-hearth steel. The ultimate tensile

resistance runs from about 67,000 pounds to nearly 76,000

pounds per square inch. The elastic limit is also observed

to be high, in consequence of the rather large percentage
of manganese. The quality of metal exhibited by the

physical results of the table is fairly representative of that

ordinarily used in steel castings. Obviously the ductility

exhibited is less than that found in connection with rolled

shapes.

TABLE V.

TENSILE TESTS OF ACID OPEN-HEARTH STEEL CASTINGS, 1901.
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Rail Steel.

The grade of steel adapted to railroad rails is much

higher in the hardeners carbon and manganese, and corre-

spondingly higher in physical quantities than structural

steel, at the same time it is a quite different metal from

that adapted to the finer purposes of tools
;

it is manufac-

tured by the Bessemer process. The great increase in

the immediate past in the weight and speed of railroad

locomotives and trains has subjected rails to intensely

severe duties which can be performed- without deteriora-

tion of metal only by steel of the highest powers of en-

durance, which means a steel of high ultimate resistance,

elastic limit, and corresponding ductility. The grades
of steel used for rail purposes at the present time are

well illustrated by the following tabular statement, which

shows the chemical composition of the rails of various

weights and sizes used by the N. Y. C. & H. R. R. R. Co.,

the pounds at the head of the columns indicating the weight

NEW YORK CENTRAL & HUDSON RIVER R. R. SPECIFICATIONS.
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of rail per yard. The metal of the lightest or 6 5-pound
rail corresponds to an ultimate resistance of 85,000 to 90,000

pounds per square inch, with an elastic limit of .5 to .7 of

that value. The highest or zoo-pound rail corresponds to

metal having an ultimate tensile resistance of probably

110,000 to 120,000 pounds per square inch, with an elas-

tic limit of .6 to .7 of those amounts. In these chemical

compositions it is pertinent to observe the high carbon

and manganese, and the low phosphorus and sulphur.

After several years' experience in the effort to secure

a most enduring steel for a railroad rail weighing 135

pounds per yard, Mr. James O. Osgood, Chief Engineer
of the Central Railroad of New Jersey, states in a paper

published in the Official proceedings of the New York Rail-

road Club for May 21, 1915, that the following chemical

composition has yielded the most satisfactory results within

the experience of that road, on which, where these heavy
rails are laid, the traffic is of excessive intensity.

Carbon .85 to i.oo per cent or carbon .8 to .95 per cent.

The rails having the latter carbon content also contain

chromium 0.2 to 0.4 per cent and nickel 0.2 to 0.4 per cent.

It will be observed that this rail section, i.e., 135 pounds

per yard, is the heaviest yet rolled and used in the United

States up to the date of Mr. Osgood's paper.

Rivet Steel.

The grade of steel ordinarily used for rivets is the

softest, or lowest in hardeners, employed in engineering

construction; it should thus be correspondingly low in

phosphorus and carbon. In Table I of this article

there will be found the measures of ductility and other

physical properties of a number of specimens of rivet

steel, which are fairly representative of that metal, except
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that the ultimate resistance is frequently much lower

than is shown there. In much of the rivet metal used

at the present time the ultimate tensile resistance may
run from 52,000 to 60,000 pounds per square inch. In

such steel the carbon may run down to .06 or .08 per cent.

with sulphur between .02 and .03 per cent., and phos-

phorus even lower. The treatment to which rivet metal

must be subjected in the heading of rivets makes it

imperative that the metal possess qualities of ductility

and toughness to an unusual degree and that the vari-

ations of temperature in the rivet shall not reduce its

resisting capacity. In other words, rivet steel must pos-

sess physical properties enabling it to resist torturing

treatment to the highest practicable degree.

Nickel Steel.

The alloy, nickel steel, to which the allusion has already
been made in connection with the subject of the modulus

of elasticity of steel, possesses marked characteristics of

high ultimate resistance and elastic limit, the latter usually

running from T
6
7 to f of the former. The amount of nickel

in the alloy is usually about 3.25 per cent, while the carbon

content may frequently be .25 to .30 per cent, although

higher values of the nickel content will be found in the table

following, which shows the results of tests of both full-size

eye-bars and specimens cut from those bars. That table*

vshows the high ultimate resistance and elastic limit yielded

by this material, with but little if any decrease in ductility.

The effects of annealing may be observed to be practically
the same as for carbon steel.

* The results in this table were courteously given to the author by Mr.

HcnryW. Hodge, C. E., of the firm of consulting engineers, who designed and
built the St. Louis Municipal Bridge, at St. Louis, Mo.
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The following tabular statements give the physical

qualities of nickel steel adapted to the various purposes
indicated. They are taken from results published in the

Railroad Gazette for August 8th, 1902.

NICKEL-STEEL FORCINGS.
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ordinary structural steel alloyed with chromium and vana-

dium. The addition of these latter materials gives to the

resulting product great toughness with high ultimate resist-

ance and an elastic limit remarkably high in proportion
to the ultimate resistance. It is used largely for such

special purposes as locomotive parts, both as castings and
in the forged condition. In either case, however, it requires

heat treatment. It is largely used for locomotive frames,

axles, piston rods, crank pins, tires, as well as for many
parts of automobiles.

Many physical tests of small specimens have been made

giving elastic limits of about 40,000 pounds per square inch

(for castings) up to about 100,000 pounds per square inch,

the corresponding ultimate tensile resistance being about

70,000 pounds per square inch up to about 150,000 pounds
per square inch. These variations in physical qualities

depend upon chemical contents of the alloy and upon the

condition of the material as cast or rolled, and finally upon
the heat treatment of the material.

In a paper on " Vanadium Steel in Locomotive Con-
struction

"
by George L. Norris, Engineer of Tests of the

American Vanadium Co., published in the Official Proceed-

ings of the New York Railroad Club, 1915, he gives the

following chemical contents as meeting the requirements
for the locomotive parts indicated.

Chemical Contents of Chrome Vanadium Steel.
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The elastic limit, ultimate resistance, final stretch and

final reduction of area corresponding to the grades of mate-

rial indicated by the chemical contents are shown in the

next table.

PHYSICAL REQUIREMENTS (After Heat Treatment) .
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rods, and crank pins are submitted is the same as that

given above for driving axles.

In the manufacture of locomotive tires, the heat treat-

ment is somewhat different from that set forth above, as

it consists of :

"
(i) In reheating the tires after rolling, and then

quenching in oil, (2) then reheating slowly and uniformly

to a temperature sufficiently high to obtain the desired

physical properties. The tire must be held at this final

temperature at least two hours, which is considered the

minimum time required for the changes to be effected

throughout the tire section. The tire should then be with-

drawn from the furnace and allowed to cool in still air.

1 ' The recommended temperature for quenching is about

1600 F. The final heating for obtaining the physical

properties specified should be approximately noo to

1200 F."

It is obvious that material with such physical properties

possesses unusual toughness and resilience. For that reason

it is specially adapted to locomotive springs and other

similar uses. For such a purpose the carbon contained is

relatively high. Mr. Norris in the paper already indi-

cated gives the following as a suitable chemical composition :

Chemical Composition.
Per cent.

Carbon 0.52 to 0.60

Manganese 0.70 to 0.90

Chromium 0.80 to i i.o

Vanadium Over o. 16

Phosphorus Not over 0.04

Sulphur Not over 0.04

This material requires heat treatment consisting of :

"
(i) Heating and quenching in oil, (2) then reheating
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or drawing back, preferably in a lead bath, and cooling

slowly. The time in the lead bath should be 10 to 15

minutes.

"The recommended temperature for quenching is from

1575 to 1650 F. The drawback or annealing temperature

should be approximately from 900 to 1100 F."

When such material is tempered for railway springs it

has the following physical properties :

Elastic limit, Ibs. per sq.in 160,000-180,000

Tensile strength, Ibs. per sq.in.. .. 190,000-230,000

Elongation in 2 inches 10-15%
Reduction of area 30-45%

"

This material possesses the highest physical properties

of the steels yet used for commercial purposes.

Some recent tests, June, 1915, reported by the American

Vanadium Company, show excellent results for carbon-

vanadium steel both in the natural condition of the speci-

mens and after simple annealing as well as after heat treat-

ment, the latter yielding highest results generally, but not

for ultimate resistance, the ductility, however, being dis-

tinctly lower in the natural condition. The following table

gives the results of the tests as well as the chemical analysis

and treatment. The first six sets of values belong to test

specimens taken from 7-inch and u-inch axles, while the

last three belong to specimens from connecting rods.

TESTS OF CARBON-VANADIUM STEEL
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the effects of the prejudicial hardeners phosphorus and

sulphur have been well recognized and they have been kept
so low as to have no material effect upon the finished

products.

Again, frozen ground in the winter adds somewhat to

the rigidity of a roadbed, enhancing to some extent the

effects of shocks or blows to which rails are subjected under

rapidly moving heavy train loads. Some of the increased

breakages in the winter are probably due to this cause and

it is possible that a great majority of them may be ac-

counted for in this way.
On the whole the latest experiences do not seem to

indicate that with the excellent quality of steel now pro-

duced for engineering purposes the effects of low tempera-
tures are at all serious, but that they may be ignored when
suitable precautions are taken in the processes of manu-

facture.

The effect of high temperature, on the other hand, is a

matter of some concern in connection with building con-

struction, since the ultimate carrying capacity of iron or

steel may be seriously affected or even destroyed by the

high temperatures of conflagrations unless the supporting

members are protected against the effects of intense

heat.

Figs. 3 and 4 represent the results of investigations by
Prof. R. C. Carpenter, formerly of Cornell University, who
made tensile tests on wrought iron and steel circular speci-

mens .5 inch in diameter. Fig. 3 is self-explanatory. It

shows the graphical relation between the temperatures of

the specimens and the ultimate tensile resistance per square

inch.

The ductility represented by the final elongations

or stretches in 8 inches at the corresponding temperatures

of rupture are exhibited in Fig. 4.
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Prof. Carpenter observes "that all the curves have

a point of contraflexure at about 70 F., and another

at a temperature not far from 500. The maximum

strength is found at temperatures of 400 to 550. At

LBS.
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temperatures higher than this all the materials show a

rapidly decreasing strength."
As a general result or consensus of all results, includ-

ing the older and the later, it may be stated that iron

and steel lose no sensible portion of their resisting capac-

ity under about 500 Fahr., but that softening is liable

to begin when the temperature rises much above that

limit. At a temperature of about 800 Fahr. these metals

may lose as much as 20 per cent, of ultimate resistance.
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Hardening and Tempering.

The processes of hardening and tempering are not

usually applied to structural steel, but to those higher

grades of metal used for such special purposes as tools
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or wire. The hardening process consists in heating the

steel to vSuch temperature as may be desired to accomplish
a given purpose and then quenching in water, brine,

oil, molten lead, or other proper bath. The temperature
from .which the quenching is done may be that indicated
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by an orange color; it depends upon the size or character

of grain of metal desired. In general terms, the higher

the content of carbon, the more marked will be the re-

sults of the hardening processes. Quenching has a com-

paratively small effect upon low or medium structural

steel.

The process of tempering is, in reality, supplementary
to the process of hardening in the manner just described.

After a piece of steel has been hardened by quenching
so that its temperature is that of the air, if it be again

heated it will exhibit different colors as the temperature
is increased. The first noticeable color will be a light

delicate straw, then deep straw, light brown, dark brown,

brownish blue, called
"
pigeon wing," light bluish, light

brilliant blue, dark blue, and black, after which the temper
is completely removed. The preceding colors are due

to thin films of oxide that form on the exterior surfaces

of the pieces as the temperature increases. When this

heating is stopped at any color and 'the steel allowed to

cool, the metal is said to be drawn to the temper shown

by the corresponding color.

The tempers at different colors for different processes

are sometimes stated as follows:

Light straw For lathe-tools, files, etc.

Straw
" "

.

" " "

Light brown "
taps, reamers, drills, etc.

Darker brown

Pigeon wing
"

axes, hatchets, and some tools.

Light blue
"

springs.

Dark blue
" some springs, occasionally.

Tempering or hardening increases both the elastic

limit and ultimate resistance, but decreases the ductility.



338 TENSION, [Ch. VII.

Annealing.

The processes of annealing, like those of hardening
and tempering, produce more marked results in the higher

steels than in the lower. Steel has a sensibly varying

density at different temperatures; in other words, a

given weight of metal will occupy sensibly different volumes

at different temperatures. Hence if a piece of steel be

subjected to any operation, such as forging, which gives

to different portions concurrently widely varying tem-

peratures, those portions will necessarily be subjected
to considerable intensities of internal stresses, and if

those stresses are not removed they may reduce greatly

both the ultimate resistance and ductility. In the higher

grades of steel and in special steels it is, therefore, impera-
tive to anneal members which have been subjected to

such operations. These observations are specially perti-

nent to such high steels as those adapted to the manufacture

of tools or other similar purposes. In general it is neces-

sary in structural engineering practice to resort to anneal-

ing only in the case of eye-bars, or other members which

have been subjected to the operations of forging. The

process consists simply in heating the member to be

annealed to about a cherry-red temperature until the

piece is heated through, and then allowing it to cool grad-

ually to a normal temperature. At the cherry-red heat

the metal is sufficiently softened to allow the molecules

to readjust their relative positions so as to remove the

internal stresses. After the operation of cooling is com-

pleted the metal will be at least approximately, if not

entirely, in a condition of no internal stresses, i.e., if the

annealing has been properly done. The more gradually
and uniformly the cooling is accomplished the more ex-

cellent will be the results. Sometimes resort is made to
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such special means to accomplish these ends as covering

the members, after bringing them to a proper temperature,
with sand, ashes, or other similar material, to insure a

slow and uniform cooling.

The preceding tables show what is always found in

a comparison of results for the natural and the an-

nealed metal. The process of annealing will diminish

the ultimate resistance of structural steel in general from

about 4,000 to 6,000 or 8,000 pounds per square inch,

and the elastic limit will be reduced correspondingly.
These effects will be found more marked as the metal is

finished between the rolls at lower temperatures. In

general, steel which is hardened by the conditions of

manufacture, like that of comparatively low temperature
in rolling, will exhibit greater decreases of ultimate resist-

ance and elastic limit under annealing.

The process of annealing increases the ductility of

the steel, since it softens the metal. In spite of the re-

duction in ultimate resistance and elastic limit, therefore,

the operation gives a valuable quality to the steel.

Effect of Manipulations Common to Constructive Processes;

Also Punched, Drilled and Reamed Holes.

The shop treatment of steel must in some respects be

peculiar to that metal and different from that which

characterizes the manufacture of wrought-iron bridge mem-
bers. While the processes of punching and shearing may
not be specially injurious to comparatively thin plates and

shapes of low steel and of the lower carbon grades of

mild steel (perhaps up to a limit of 65,000 pounds per square

inch) they are sufficiently injurious to heavier sections and

to the higher grades of steel to necessitate the avoidance

of their effects. If punches and dies are kept in good sharp

condition, as they should be, the prejudicial effects are
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lessened. The effect of a punch, however, under the best

conditions of operation is not to make a smooth-sheared

surface, but one of somewhat ragged or serrated character

in which incipient cracks are started and which may be

continued indefinitely into the interior of the metal unless

some curative procedure is employed.
It has been found by actual test that the region affected

by the punch or by the jaw of the shear extends but a

short distance from the cutting-edge of the tool. Within

that region, however, the metal is much hardened and the

loss of ductility and elevation of elastic limit is due to that

hardening. The decreased ultimate resistance is probably
due to the violent disturbance of the molecules and the

resulting minute fissures in the metal within the same

region. In riveted work, the prejudicial effect is therefore

removed by reaming the punched hole to a diameter about

| inch larger than made by the punch. This removes a

thin ring of injured metal about yg- of an inch thick, and

it is found sufficient for the purpose.
In large and heavy work it has come to be the practice

by the best shops to make drilled holes in which cases no

question of the injury of metal can arise. The use of the

drill leaves a sharp edge at each surface of the plate which

tends to' produce a shearing effect upon the corresponding
rivet sections. Some specifications require this to be over-

come by a quick application of a proper tool to remove the

sharp edge.

The general effects of the cutting edge of the shear

are precisely the same as those of the punch, as the opera-
tion in each case is a shear. Hence, if sheared edges
are planed off to a depth of one-sixteenth to one-eighth
of an inch, the injured metal will be entirely removed.

The hardening effects of both shearing and punching

may also be removed by the process of annealing, although
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less effectually than by reaming and planing. As naturally

would be inferred by experience in punching, higher steel

and thicker plates are more injuriously affected by shear-

ing than low steels and thinner plates.

In consequence of the irregular edge of a large sheared

plate, bridge specifications frequently require that at

least one-quarter of an inch of metal shall be removed

from the edge of such plates by planing.

Steel seems to be very sensitive to the effects of hammer-

ing or working at what is termed a
"
blue heat." Con-

sequently it is necessary to heat the rivet to such a tem-

perature as will enable the operation of heading to be

completed before the rivet cools to the blue stage. A
bright red or yellow heat is requisite for good work, and

the rivet should be held under a pressure of fifty or sixty

tons per square inch of the shaft section until the metal

has time to flow throughout the rivet length and thus

completely fill the hole, otherwise the upsetting will be

complete at and in the vicinity of the rivet-heads only.

An additional advantage in holding the rivet under the

greatest pressure of the riveter for a short time is the

fact that the rivet becomes cool enough to prevent the

separation of the plates.

The forging of steel requires unusual skill and ex-

perience. When a piece has been heated to a proper

temperature it should be kept under work until it has

fallen in temperature to a proper point to secure all

the advantages of working, but of course not below

red heat. The forging should be done with a hammer
whose weight is suitably proportionate to the mass to be

forged. If the hammer is too light, the result will be a

surface effect only, with the interior but little changed.
Pressure forging,with appropriate facilities for attaininggreat

pressures, is probably capable of producing the best results.



342 TENSION. [Ch. VII.

The operation of annealing, particularly as applied

to full-size bars, is one of great importance in the manu-
facture of structural steelwork. The metal is heated as

uniformly as possible, so that undue stresses will not be

developed, to a bright cherry-red, corresponding probably
to about 1 1 oo or 1200 degrees Fahr., and then allowed

to cool gradually. By this means any internal stresses

that may have been produced by the process of forging,

or any other shop manipulation, are eliminated. The
metal is sufficiently softened at the highest temperature
to allow the molecules to adjust themselves to a condition

of essentially no stress, and if the cooling is gradual the

internal stresses will not be re-developed.

Change of Ultimate Resistance, Elastic Limit and Modulus

of Elasticity by Retesting.

It has been observed from the earliest experiences in

testing steel and wrought iron that if a piece of material

be subjected to an intensity of tensile stress higher than the

elastic limit, thus producing permanent stretch, the ultimate

resistance will be materially increased, although the duc-

tility is generally decreased. Sufficient investigation has

not even yet been undertaken to gage the full significance

of such phenomena, but enough has been done to show

some important results.

It is yet uncertain whether an indefinitely long rest may
not diminish to some extent at least the enhanced ultimate

resistance of a piece of metal stressed beyond the elastic

limit. Professor Bauschinger made some investigations in

this special field many years ago which indicate that the

elastic limit is considerably decreased by immediate retest-

ing, but that such a decrease does not take place if a

period of at least twenty-four hours or possibly more elapses
before retesting. Some tests indicate that the elastic limit
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may be much increased even by suitable periods of rest

between applications of loading.

The yield point appears to be raised materially by re-

testing and the same observation as already indicated is

equally applicable to the ultimate resistance.

Fracture of Steel.

The character of steel fractures has been incidentally

noticed, in some cases, in the different tables.

If the steel is low, or if some of the higher grades are

thoroughly annealed, the fracture is fine and silky, pro-
vided the breakage is produced gradually. In other

cases the fracture is partly granular and partly silky, or

wholly granular.

In any case a sudden breakage may produce a granular
fracture.

The Effects of Chemical Elements on the Physical Qualities

of. Steel.

Anything more than a meagre statement of the influ-

encekOf the chemical composition of steel on its physical

properties is obviously out of place here, but a knowledge,
however slight it may be, of the influence of certain ele-

ments on those properties is so essential to the engineer
in his structural work that attention should at least be

called to it.

Although other elements exert highly important influ-

ences upon the resisting qualities of steel, carbon is un-

doubtedly the most prominent hardener. The effect

of a given percentage of carbon, at least within certain

rather wide limits, is to give greater toughness and resist-

ing qualities to steel with less concurrent brittleness than

any other contained element. It is made, therefore,

the basis of classification of structural steel, the low steels

being low in carbon and the high steels high in carbon.
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The metal manganese also gives to steel some advan-

tageous qualities. At the present time it seldom enters

steel to an amount less than .5 per cent., nor more than

about i per cent. Its presence seems to confer the capacity
of resisting the effects of high temperatures in shop pro-

cesses. Metal low in phosphorus and sulphur appears
to require less manganese than that which is higher in

those impurities. It has been found that the influence of

manganese upon steel depends in a rather extraordinary
manner upon its amount. If the content reaches 1.5

or 2 per cent, steel becomes practically worthless on

account of its brittleness, but when a content of 6 or 7

per cent, of manganese is reached, the metal becomes

extremely hard and acquires to a high degree the property
of toughness by quenching in water without becoming
much harder.

When steel is alloyed with more than about 7 per

cent, of manganese, manganese-steel is the product, wr

hich,

in its natural state, may have an ultimate tensile resist-

ance running from 74,000 to over 116,000 pounds per

square inch. When quenched in water the ultimate

tensile resistance of the same metal may run from about

90,000 pounds per square inch up to nearly 137,000 pounds

per square inch. Before quenching the final stretch

ranged from i to 4 or 5 per cent., and after quenching
frorri 4 to 44 per cent. The preceding figures belong to

a range in manganese from about 7 per cent, to over 19

per cent, concurrently with carbon from about .61 per

cent, up to 1.83 per cent. This metal is an interesting

alloy, but is never used in structural engineering work.

Opinions vary much as to the influence of silicon

on steel, but it seems now to be well established that

that influence within the limits ordinarily found is of

minor consequence, or at least not prejudicial to either
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resistance or ductility. In structural steel it usually

ranges from less than .03 to .05 per cent., while in rail

steel it may run as high as .3 per cent. Jn some excellent

tool-steel it may run even from .2 to .75 per cent.

Sulphur is an impurity carrying with it highly preju-
dicial effects. It essentially injures metal for rolling, as

it makes the steel liable to crack and tear at the usual

temperatures found between the rolls. It also diminishes

capacity to weld. Its effects may, to some extent, be

overcome by the presence of manganese and by proper
care in heating. It is, however, highly prejudicial as

an element and is usually kept below about .04 per cent.

Of all the objectionable elements found in steel, phos-

phorus has the position of primacy. Although 'it is a

hardener which may increase the ultimate resistance

to some extent, it produces brittleness and diminishes

most materially the capacity to resist shock, and it is

one of the chief purposes of the best methods of steel

production to reduce phosphorus to the lowest practicable
limit. Its effects are sometimes erratic, being occasionally
found in excess in apparently good material. In structural

steel it is seldom permitted to run over .08 per cent., and
in the basic processes of manufacture it frequently falls

to .03 or .04 per cent.

The presence of .1 to .25 per cent, copper appears to

have no deleterious effect upon steel and may even be

beneficial. As high as i per cent, of copper has been

found in steel without serious effects where sulphur was
low.

Aluminum steel is an alloy containing at times as

high as 5 to 6 per cent, of aluminum. The effect of alumi-

num on ultimate resistance does not seem to be prejudicial,

nor, again, is it of any special advantage; nor does it

act seriously upon the ductility until its amount approaches
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about 2 per cent, or more. On the whole it does not

seem to be a valuable element for steel.

There are other special alloys such as tungsten and

chromium steel. They are used for the special purposes
of tools on account of their hardness, which is so extreme

that neither quenching nor tempering is required. They
dp not, however, enter into structural use.

Art. 59. Copper, Tin, Aluminum, and Zinc, and their Alloys-

Alloys of Aluminum Phosphor-bronze Magnesium.

Anything like a complete knowledge of the physical

properties of the alloys of copper, tin, aluminum, zinc, etc.,

is still lacking, although many investigations have been

made in the past by the late Prof, R. H. Thurston and

others, while other investigations are still in progress. The
character of many of these alloys changes so radically for

different proportions of the constituent elements and under

different conditions of heat and other treatment that the

results of tests are as varied as the relative amounts of

the constituents and the physical conditions which attend

the tests. Some of the results which follow belong to the

earlier work of Prof. Thurston, but as they exhibit the same

physical qualities as the corresponding alloys now used and

as the later investigations do not cover the same field, they

possess real value and are retained.

Table I gives the tensile coefficients of elasticity (E)

of copper and the alloys indicated as determined by Prof.

Thurston.

TABLE I.

Metal.
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Tobin's alloy is a composition of copper, tin, and

zinc, in the proportions (very nearly) of 58.2, 2.3, and

39.5, respectively. The value of E for this metal, and

those for the two preceding and one following it, are

calculated for small stresses and strains given by Prof.

Thurston in the
"
Trans. Am. Soc. Civ. Engrs.," for Sept.,

1881.

There will also be found in Tables VIII, IX, X and

XI coefficients of elasticity for aluminum-zinc, aluminum

magnesium, and other alloys, and for magnesium, alumi-

num, and zinc.

TABLE II.

CAST TIN.

p-
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"
p" is the intensity of stress in pounds per square inch,

at which the ratio E exists.

Each of these metals is seen to give a very irregular

elastic behavior.

Tables II, III, and IV are computed from data given

by Prof. Thurston in the United States Report (page

42,5) and " Trans. Am. Soc. Civ. Engrs.," already cited.

TABLE IV.

TOBIN'S ALLOY.

p.
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TABLE V.
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Percentage of
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give safe results for ordinary use within the limits of the

circumstances on which they are based.

Prof. Thurston found the "
strongest of the bronzes"

to be composed of:

Copper 55.0

100.00

This alloy possessed an ultimate tensile resistance of

68,900 pounds per square inch of original section, an

elongation of 47 to 51 per cent, and a final contraction

of fractured section of 47 to 52 per cent.

The first and sixth alloys of copper, tin, and zinc, in

Table V, are called by Professor Thurston "Tobin's alloy."
" This alloy, like the maximum metal, was capable of

being forged or rolled at a low red heat or worked cold.

Rolled hot, its tenacity rose to 79,000 pounds, and when

moderately and carefully rolled, to 104,000 pounds. It

could be bent double either hot or cold, and was found

to make excellent bolts and nuts."

As just indicated for the particular case of the Tobin

alloy, the manner of treating and working these alloys

exerts great influence on the tenacity and ductility.

Professor Thurston states: "brass, containing copper
62 to 70, zinc 38 to 30, attains a strength in the wire mill

of 90,000 pounds per square inch, and sometimes of 100,000

pounds."
All of Professor Thurston's specimens were what may

be called "long" ones, i.e., they were turned down to

a diameter of 0.798 inch for a length of five inches, giving
an area of cross-section of 0.5 square inch.
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Alloys of Aluminum.

Prof. R. C. Carpenter, of Cornell University, in the

transactions of the Am. Soc. Mech. Engrs., vol. xix, has

reported a number of interesting and valuable tests of

alloys of aluminum, as well as tests of pure magnesium.

TABLE VL

ALLOYS OF GREATEST RESISTANCE.

Percentage of
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TABLE VII.

ALUMINUM ALLOYS.

Composition, Per Cent,

by Weight.
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TABLE VIII.

ALUMINUM-ZINC ALLOYS.

Percentage.
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TABLE X.

ALLOYS OF ALUMINUM AND MAGNESIUM

Number of
Test Piece.
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The experimental results given in Tables IX and X
were also established at the testing laboratory of Sibley

College of Mechanical Engineering of Cornell University.

The tests were made by Messrs. Marks and Barraclough,

graduate students in 1893. Table IX gives results for

pure magnesium, including the coefficients of elasticity

and the final stretch, while Table X exhibits the results

for alloys of aluminum and magnesium, the per cent.

of magnesium being shown in one of the columns, the

remaining per cent, being aluminum. The ultimate resist-

ances given in Table IX show that magnesium is a metal

of considerable tensile resistance, especially in comparison
with its density, its specific gravity being but 1.74, that

of aluminum being 2.67.

Table XI exhibits the elastic limits and ultimate

TABLE XL Continued.

Final Stretch
Per Cent.
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resistances of all the different alloys shown in the table, and
in the conditions also exhibited by the table, i.e., whether

cast or rolled. There are also given coefficients of elasticity

for both tension and transverse tests, as well as elastic

limits and ultimate stresses (intensities) in the extreme

fibres of small beams, to which reference will be made
in the article devoted to transverse resistance.

It will be observed that both the elastic limits and
the ultimate resistances of Table XI are found within

the range exhibited by the results already shown in the

preceding tables.

If desired, diagrams can readily be constructed from

the results of each table which will show the variations

of physical quantities corresponding to the variations of

composition of the alloys.

In 1895 the Fairbanks Company tested at their New
York office four specimens of Tobin bronze manufactured

by the Ansonia Brass and Copper Co., with the following

results.

ROLLED TOBIN BRONZE PLATES SPECIMENS 8 INCHES LONG.

Specimen,
Inches.
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This alloy is known as
" aluminum bronze

"
or

"
gold."

These investigators made over a thousand tests in tension

and torsion and in other ways, including heat treatment for

both cast and rolled material. The investigation is one of the

most important ever made with this class of alloys. Out
of the great number of tests contained in the report, Table

XII has been selected as sufficiently typical for the purpose
of conveying a correct impression of the character of the

work done.

TABLE XII.

The percentage of aluminum only is given in the Table, as the alloy is of

aluminum and copper, the remaining percentage being copper.

No.
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tively few instances. In fact, the differences in results

found by the investigators between the cast and rolled

metal are much smaller than might have been expected.

The authors of the report state, among other obser-

vations :

"
(a) The limit of industrially serviceable alloys must

be placed at 1 1 per cent, of aluminum! For most purposes

the limit might be put at 10 per cent., beyond which there

is a rapid fall of ductility with no rise of ultimate resist-

ance. . . .

"
(b) Between these limits the alloys fall into two

classes: i. those containing from o to 7.35 per cent, of

aluminum: 2. Those containing from 8 to n per cent, of

aluminum. Class i represents material of apparently low

yield point and moderate ultimate stress, but of very good

ductility. The introduction and further addition of alumi-

num causes a gradual increase of strength but hardly affects

the ductility. It is true that as regards the steadiness of

the ductility this has only been established for the rolled

bars. But the sand and chill castings have shown the same

kind of variations as the rolled bars in all the properties

examined. . . .

"
Into Class 2 come alloys of relatively low yield point

but good ultimate stress. From 8 to 10 per cent, of alumi-

num the ductility is also good. ..."
To gain an adequate idea of the physical properties of

the various grades of this alloy of aluminum and copper

requires a full scrutiny of the entire report.

Bronzes and Brass Used by the Board of Water Supply of

New York City.

In the construction of the Additional Catskill Water

Supply for the city of New York by the Board of Water Sup-

ply a large amount of bronze castings and rolled bronze, as
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well as brass, was used for a great variety of large and

small articles varying from a number of tons in weight each

to a" few pounds, such as small bolts. The specifications

prescribed that
" Whenever the term

'

bronze
'

is used in

these Specifications in a general way or on the drawings,

without qualification, it shall mean manganese or vanadium

bronze or monel metal. . . .

" The minimum physical properties of bronze shall,

except as otherwise specified, be as follows :

Castings:

Ultimate tensile strength 65,000 Ibs. per sq.in.

Yield point 32,000 Ibs. per sq.in.

Elongation 25 per cent.

Rolled Material:

Ultimate strength 72,000 Ibs. per sq.in.

Yield point 36,000 Ibs. per sq.in.

Elongation 28 per cent.

Rolled material, thickness above one inch:

Ultimate strength 70,000 Ibs. per sq.in.

Yield point 35,ooo Ibs. per sq.in.

Elongation 28 per cent."

The modulus of elasticity E for tension and compression
was about 14,000,000.

The requirements of these specifications were even

exceeded both in resistances and in ductility. Much trouble,

however, was experienced by the rolled metal exhibiting

cracks and failures in articles large and small, in many cases

even before put in place in the work and subjected to duty.

Such difficulties, however, were not experienced in castings.

Investigations intended to discover the origin of these

difficulties have not yet been completed, but they are prob-

ably due to some feature of manipulation of material during
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processes of manufacture, including the treatment of the

molten metal.

Phosphor-Bronze .

Phosphor-bronze possesses merit not only as a structural

material on account of its high elastic limit and ultimate

resistance, but also because it is a good anti-friction metal.

Its elastic limit may be taken from 45,000 to 55,000 pounds

per square inch and its ultimate resistance from 50,000 to

75,000 pounds per square inch, both values being given for

unannealed material. The same material as uncmnealed

wire with a diameter of one-tenth to one-sixteenth of an

inch may give ultimate resistances varying from 100,000

to 150,000 pounds per square inch, or if annealed not more

perhaps than 50,000 to 60,000 per square inch. In the

latter case, however, the final stretch may run from 30
to 40 per cent.

Bauschinger's Tests of Copper and Brass as to Effects of

Repeated Application of Stress.

The late Professor Bauschinger made some investiga-

tions regarding the effect on elastic limit and yield point
of repeated application of loading similar to those made
on steel and wrought iron. The grade of brass used in his

tests was called
"
red brass."

With the exception of one case of brass the elastic limit

and the yield point were both materially elevated by
repeated application of loading, whether the repetition was

made without a period of rest between two consecutive

applications or not. Some repetitions were made immedi-

ately and some after periods of i;| to 53 hours of rest.

The effect on the modulus of elasticity was small and

irregular, i.e., in some cases there was a small increase and
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in others a small decrease and in some cases no material

change.

Art. 60. Cement, Cement Mortars, etc. Brick.

The ultimate tensile resistance of cements and cement

mortars depends upon many conditions. The two great

divisions of cements, i.e., natural and Portland, possess very
different ultimate resistances whether neat or mixed with

sand, the latter being much the stronger. With given

proportions of sand or neat, the ultimate resistances of

cement mortar or cement will vary with the amount of water,

used in tempering and with the pressure under which the

moulds are filled. Again, the character of the sand used

will obviously influence largely the tensile resistance of the

mortar produced, and not only the degree of cleanliness,

but the size of grain and the variety of sizes are elements

which must be considered. It has also been maintained by
some that silica-sand will give better results, other things

being equal, than other sand. Finally, the shape of

briquette used will affect the results to some extent. Fig. i,

on page 370, shows the form of briquette recommended by the

Committee of the American Society of Civil Engineers, and

it is the form generally used in American practice. It is

foreign to the purpose of this work to enter into the consider-

ation of all these influences; they are only mentioned to

enable the few typical experimental results which follow

to be interpreted properly.

As the fineness of grinding is an important quality of a

cement, it is usually noted by stating the percentage of

weight of the cement which either passes through or is

retained upon a sieve having a stated number of meshes

per linear inch, which number squared gives the number
of meshes per square inch. The sizes of the grains of sand
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used are graded in the same way. The " No." of a sieve

to which reference may be made in what follows indicates,

therefore, the number of meshes per linear inch.

Modulus of Elasticity.

In consequence of the fact that cement, mortars, and

concrete begin to exhibit permanent stretch at compara-

tively low tensile stresses there is a little uncertainty as to

the value of the modulus of elasticity unless distinct state-

ment is made of the intensities of stress at which those

values are obtained, and whether the total stretch is

used or that total less the permanent set. It is not possible

to make such statement in connection with all the values

which follow, except that they have been reached at low

intensities of stress unless otherwise stated, and with

elongations which may be considered wholly elastic. Al-

though cement mortars and concrete do not exhibit a per-

fectly elastic behavior their stress-strain lines for intensities

of stress even exceeding those used in practice are essentially

straight and, on the whole, exhibit elastic properties at

least equal to those of cast iron.

Comparatively few tests have been made to determine

either the tensile or compressive modulus of elasticity of

cement, mortar and concrete, although that quantity is a

most important element in the theory and design of much
concrete work and reinforced concrete members. Mr. W. H.

Henby of St. Louis, made a number of determinations of

the tensile modulus of elasticity of Portland cement con-

crete of 1-2-4, 1-2-5, i"3~6, and 1-4-8 mixtures and gave
the results in a paper read before the Engineers Club of

St. Louis in 1900. He obtained values varying from less

than 2,000,000 to 8,360,000. Other tests, however, indi-

cate that values above perhaps 3,000,000 should not be
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used. While higher values of the modulus of elasticity for

rich mixtures of concrete may exist, the more important
considerations of design usually bear 'upon work in which

concrete must take serious loading when less than thirty

days of age.

For all these reasons it will seldom be advisable to take

the modulus of elasticity of even as rich a mixture as i

cement, 2 sand, and 4 broken stone higher than about

2,500,000, and it will be seen later that in concrete steel

work where portions of a structure are liable to be loaded

to a material extent within a comparatively short time

after removal of the forms, it is the usual practice to consider

the modulus as having a value of 2,000,000 only. These

considerations are confirmed by the results of tests given

below.

Professor W. Kendrick Hatt, of Purdue University,

in a paper read before the American Section of the Inter-

national Association for Testing Materials, at its con-

vention, 1902, gave the following values for the tensile

coefficient of elasticity and ultimate tensile resistances of

Portland cement concrete composed of i cement, 2 sand,

and 4 broken stone at the ages of 25, 26, 28, and 33 days:
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compression, although conclusive data as to this point are

not complete.

Such tests as have been made show that the modulus

of elasticity in tension or compression for cinder concrete

should not be taken higher than about 1,250,000 for 1-2-5
mixtures. Some tests show somewhat lower values and

others values running over 2,000,000, but the latter results

are too high for cinder concrete as ordinarily made and

put in place.

Ultimate Resistance.

The ultimate resistances of neat Portland cement and
mortar made with the same cement have been somewhat
increased within the past half dozen years; but, upon the

whole, those resistances as exhibited in the following
tables are fairly representative of the best grades of cement
used at the present time (1915). The conditions of manu-
facture are now so well controlled that a high 7-day. or

28-day test cement may readily be produced; but that

is not always desirable
;

the main purpose in masonry
construction being rather the attainment of an ultimate

resistance possibly less high under a short-time test but

which continues to increase indefinitely. A cement show-

ing a high ultimate resistance on a short-time test may not

continue to increase its ultimate resistance satisfactorily,

or that resistance may even recede for a time.

The following tabular statement is of interest and value

as indicating the character of the cement used in the con-

struction of the first subway for the Rapid Transit Railroad

in the City of New York. It will be observed that the

ultimate resistances of both the neat cement and the mix-

ture of i cement, 2 sand, are practically as found a dozen

years later. The number of briquettes broken during the

vears 1900 and 1901 was over 18,000. The average ulti-
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mate tensile resistances in pounds per square inch found

by that series of tests of both Portland and natural cements,

as given in the report of the Chief Engineer, are the

following :



Art. 60.] CEMENT, CEMENT MORTARS, ETC. BRICK. 367

TABLE I.

Average Results of Tests of Portland Cement Made during 1912 Phila., Pa.

Brand
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TABLE II.

[Ch. VII.

Brand.
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TABLE III.

AVERAGE RESULTS OF PORTLAND CEMENT TESTS MADE
DURING 1901.

Brand.
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During the construction of a number of dams in the

Croton basin supplying the water works of the City of New
York, briquettes of neat cement and of mortar i to 2 and
i to 3 were tested after periods beginning with one week
and extending up to five years. There was a continuous

increase of ultimate resistance throughout the entire period,

although at a very slow rate after about six months. At
the end of five years the neat Portland cement attained

an ultimate resistance of 840 pounds per square inch and

the i to 2 mortar, 700 pounds per square inch, while the

i to 3 mortar reached 590 pounds per square inch.

Other tests of briquettes up to two years of age and

more confirm the preceding results.

The recent cement product, called silica-Portland

cement, is manufactured by grinding together certain

portions of clean silicious sand and Portland cement.

The results given below are taken from the tests of such

silica-Portland cement, manufactured by the Silica-Port-

land Cement Co., of Long Island City, N. Y. One part,

by weight, of Aalborg Portland cement was ground to-

'

TABLE IV..

SILICA-PORTLAND CEMENT.
Ultimate Tensile Resistance in Pounds per Square Inch.
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gether with six parts, by weight, of clean silicious sand

to such a degree of fineness that essentially all of the

product passed through a 32,ooo-mesh sieve. This finely

ground mixture of i cement to 6 sand, by weight, is called

"neat "
in what follows, while "(1-6)5. c.-2 q." is i part, by

weight, of the "neat" silica-Portland cement to 2 parts, by

weight, of crushed quartz, or "standard" sand, all of which

passes a No. 20 sieve and is retained on a No. 30 sieve. The

results were obtained in the cement-testing laboratory of

the department of civil engineering of Columbia University.

The figures on the left of the brackets show the number of

tests of which the ultimate resistances are the greatest,

mean, and least in each case.

Five seven-day tests of the Aalborg Portland cement

used in the manufacture of the silica-Portland cement

gave the following greatest, mean, and least ultimate

tensile resistances, the specimens having been one day in

air and six days in water:

Greatest. Mean. Least.

594 Ibs. per sq. in. 536 Ibs. per sq. in. 441 Ibs. per sq. in.

Four specimens of the neat silica-Portland cement (1-6),

one day in air and the remainder of the time in water,

gave the following results:

Age.

308 Ibs. per sq. in...... 199 days.

Neat (1-6).. . J 264
" "

..... '9
"

|

294 ..... 189
" "

..... 185
"

All the preceding tensile tests of cement and cement

mortars, unless otherwise stated, were made with the shape
of briquette shown in Fig. i, which was recommended for

use in the report of the
" Committee on a Uniform System

for Tests of Cement "
of the American Society of Civil

Engineers. That report was made in 1912, and the bri-
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quette recommended has become the standard in American

practice for the testing of cements and mortars.

FIG. i.

Weight of Concrete.

As concrete is frequently used in masses where weight
is an important element, it is always desirable to use an

aggregate of high specific gravity. Concrete when made of

cement, sand and silicious gravel or broken limestone, trap-

rock or granitic rock in such mixtures as are commonly
employed, will weigh from 140 to 155 pounds per cubic foot

with the greater part running from 145 to 150 pounds per
cubic foot.

The weight of cinder concrete will necessarily vary much
with the character of the cinders. It may usually be taken

as weighing about two-thirds as much as ordinary concrete
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made with gravel or broken stone, i.e., from 100 to no
pounds per cubic foot.

Adhesion between Bricks and Cement Mortar.

General Q. A. Gillmore many years ago investigated

the adhesion of bricks to the cement mortar joint between

them and also the adhesion of fine-cut granite to a similar

joint. As might be expected in connection with such tests

his results varied greatly, the highest belonging to a rich

cement mortar and the lowest to the lean mortar of i

cement to 6 sand. He found the adhesion to vary from

about 31 pounds per square inch for neat cement to brick

to nearly 3.3 pounds per square inch for a lean mortar of

i cement to 6 sand. With fine-cut granite the adhesion

for neat cement was 27.5 pounds per square inch and for

cement mortar of i cement to 4 sand about 8 pounds per

square inch. It is highly probable that the actual adhesion

of bricks and cut stone to the usual joints made of i cement

to 2 sand or i cement to 3 sand would be materially less

in a mass of masonry than as arranged for a laboratory

test. Nevertheless these early investigations would indi-

cate that such joints might be worth from 8 to 12 pounds

per square inch for bricks and but little different for

granite.

Mr. Emil Kuichling prepared a paper in 1888 from all

available sources for the purpose of disclosing what all

experimental investigation had determined up to that time.

These results indicated that neat cement might give ad-

hesion to bricks or cut stone varying from about 20 pounds

up to over 200 pounds per square inch, with values from

29 pounds up to 146 pounds per square inch for mortar of

i cement to i sand; and 38 pounds to 73 pounds per square
inch for a mortar of i cement to 2 sand. Further, accord-

ing to his table a mortar of i cement to 3 sand would



374 TENSION. [Ch. VII.

yield adhesion from 13 pounds up to 48 pounds per square
inch and but little less for a mortar of i cement to 4 sand.

Nearly all these results, however, are undoubtedly too high
for the usual masses of masonry in engineering construction.

Other experimental determinations of the adhesive

resistance of natural and Portland cement mortars to

brick and stone may be found in the report of the Chief of

Engineers, U. S. A., for 1895. At the age of 28 days
the adhesive resistance of neat Portland cement to the

surface of sawn limestone was about 270 pounds per square

inch; about 240 pounds per square inch with a mortar of

i cement to J sand; about 225 pounds per square inch

with a mortar of i cement to i sand, and about 170 pounds

per square inch with a mortar of i cement to 2 sand.

Table V exhibits the average results of three and six

months' tests of the adhesion of Portland and natural

cement mortars to bricks which were cemented to each

other at right angles and then pulled apart normally at the

ends of the periods named. These average results are

taken from the same report of the Chief of Engineers,

U. S. A,, for 1895.

TABLE V.

AVERAGE ADHESIVE RESISTANCE OF BRICKS CEMENTED
TOGETHER AT RIGHT ANGLES TO EACH OTHER.

Cement.



Art. 60.] CEMENT, CEMENT MORTARS, ETC. BRICK. 375

There will also be found in that report average values

of the shearing adhesion of plain i-inch round bolts to neat

Portland cement and to Portland cement mortars of i

month's age, the bolts having been embedded at various

depths from 2 to 10 inches in the mortars. The shearing
adhesion for the neat cement varied from a maximum
of 345 pounds per square inch for a depth of insertion of 4

inches down to 230 pounds per square inch for a depth of

insertion of about 8J inches. In the case of the Portland

cement mortar of i cement to 2 sand the shearing adhesion

varied from a maximum of 280 pounds per square inch for a

depth of insertion of the bolt of 2^ inches down to 250

pounds per square inch for a depth of insertion of about

7f inches. When the bolt was embedded in the Portland

cement mortar of i cement to 4 sand the shearing adhesion

ranged from a maximum of about 145 pounds per square
inch for a depth of insertion of 10 inches to a minimum of

about 70 pounds per square inch for a depth of insertion

of 2 inches. These values of shearing adhesion are impor-
tant results in the theory and design of concrete-steel

members.

The Effect of Freezing Cements and Cement Mortars.

There have been many attempts made to determine the
effect of freezing neat cements and cement mortars after

having been mixed for use at various ages and under
various conditions. vSome valuable data have been ac-

cumulated, but the conditions attending such investiga-
tions are so complicated and so difficult to be analyzed
quantitatively that many most discordant conclusions have
been reached. Different results will follow if the freezing
is done immediately after the mixing of the cement or

mortar, or after the initial set has taken place, or after the
considerable hardening which takes place at the age of
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12 to 24 hours. Probably the best data in this connection

arise from an engineer's practical experience in laying

masonry when the temperature of the air is below the

freezing-point. Under such circumstances it is rarely

the case that anything more than surface freezing takes

place before the hardening of Portland cement. With the

slower action of the natural cements similar conditions do

not exist. It is undoubtedly prejudicial even with Port-

land cements to have alternate freezing and thawing take

place at comparatively short intervals of time. On the

other hand, the great majority of laboratory investigations

indicate that Portland cement or cement mortars may be

severely frozen and remain so for long periods of time

without essential injury. It is probable that setting usually

proceeds during a frozen condition, but at an exceedingly
slow rate, and that the operation of setting is actively

renewed after thawing.

While it has been stated in some quarters that natural

cements may be frozen similarly and thawed without

essential injury, there is considerable laboratory evidence

as well as that of practice which indicates that conclusion

to be erroneous, especially if it be given any considerable

application. There may be cases in which natural cements

can be or have been frozen without essential injury, but

the author's experience in extended practical operations in

masonry construction induces him to believe that any
natural cement severely frozen before being thoroughly

hardened is so seriously injured as to be practically de-

stroyed. On the other hand, his extended observations

not only on his own work, but on those of others, lead him

to believe that, as a rule, Portland cement will not be

sensibly injured under the conditions of actual masonry
construction by being frozen. It is customary in most

large works to permit no masonry to be laid at a tempera-
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ture much below about 26 Fahr. above zero, but with

precautions easily attained it is certain that concrete and
other masonry laid in Portland cement mortar may prop-

erly and safely be put in place several degrees below that

temperature.
It has also been stated in some . quarters that natural

cements and some Portlands have been actually improved

by being frozen. Such conclusions should be received with

exceeding caution. The author believes that there is no

conclusive evidence that any cement or cement mortar can

be improved by freezing.

In cold weather it is customary on some works to use

salt water for mixing mortars and concretes, and that

practice when suitably conducted may be resorted to with

safety and propriety. Such solutions generally run from
2 to 8 or 10 per cent, by weight of salt. Occasionally, also,

soda is dissolved in water at the rate of 2 pounds per gal-

lon. Before using this solution an equal volume of water
is added so that the final solution contains about i pound
of soda to a gallon of water. This solution expedites
the setting of the cement with a view to accomplishing
a safe degree of hardening before the mortar is frozen.

It is doubtful whether this practice should be encouraged.

Tke Linear Thermal Expansion and Contraction of

Concrete and Stone.

Satisfactory investigations regarding the expansion and
contraction of concrete and stone are exceedingly few in

number, and the data by which variations in the dimen-
sions of large masses of masonry due to temperature changes
can be computed are correspondingly meagre. Professor
William D. Pence, of Purdue University, has made such

investigations and presented the results in a valuable

paper read before the Western Society of Engineers,
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November 20, 1901. In his experimental work he com-

pared the thermal linear changes of concrete bars and bars

of steel and copper, basing the coefficients of expansion of

the concrete and mortar on the relative changes of the

two materials for the same range of temperature. These

experiments were conducted with great care, but the

resulting values might perhaps have been at least better

denned had two materials been employed with a greater

difference in their rates of thermal expansion and contrac-

tion. Professor Pence employed two kinds of concrete and

one bar of Kankakee limestone, seven experiments having
been performed on a concrete of i Portland cement, 2 sand,

and 4 broken stone
;
one on a concrete of i Portland cement,

2 sand, and 4 gravel ;
and three on a concrete composed of i

cement and 5 of sand and gravel, making the mixture

essentially equivalent to the preceding concrete of i cement,

2 sand, and 4 gravel. The maximum, mean, and minimum
coefficients of linear expansion per degree Fahr. found in

these tests were as follows:

Kind of Concrete.
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and about 3 feet long, both bars being tested at the age
of about 5^ years. The coefficients of linear thermal

expansion for each degree Fahr. found in these investiga-

tions were as follows:

For 1:3:5 concrete 00000655
" 1:2 mortar 0000056 1

It is believed that these last two determinations were

made with the utmost accuracy attainable at the present

time in an unusually well equipped physical laboratory
and under most favorable conditions.

When it is remembered that the coefficient of linear

thermal expansion of such iron and steel as are used in

engineering structures is about .0000066,* it is apparent
that structures of combined concrete or other masonry and
steel may be expected to act under thermal changes essen-

tially as a unit, a conclusion which is justified at the present
time by extended experience.

Art. 61. Timber in Tension.

The ultimate resistance of timber in general is much
affected by the moisture which it contains, except that the

amount of moisture does not appear to affect sensibly the

ultimate tensile resistance. At this point, therefore, no

further attention will be given to the effect of moisture or sap
on the tensile resistance, but the influence of moisture on the

* A large number of determinations of the thermal expansion of iron and

steel per degree Fahr. may be found in the U. S. Report of Tests of Metals

and Other Materials for 1887. The maximum, mean, and minimum for

steel bars are as follows:

.000006756 .000006466 .00000617

Other coefficients of thermal expansion are also given as follows:

Wrought iron 00000673
Cast iron 000005926

Copper t 000009129
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compressive and bending resistances will be fully set forth

in the articles devoted to timber in compression and bending.
There are few results of investigations which give satis-

factory moduli of elasticity for timber in tension. Values

are given in the annual
"
U. S. Report of Tests of Metals

and Other Materials," but these results are generally for

small selected sticks which are quite different from com-

mercial sizes of lumber as generally used. Some of these

moduli run up to nearly 3,000,000, which is much too high for

any ordinary commercial timber as used in structural work.

In
"
Tests of Structural Timbers," by McGarvey Cline,

Director of Forest Products Laboratory, and A. L. Heim,

Engineer of Forest Products, issued as Bulletin 108 of the

U. S. Department of Agriculture, 1912, a large number of

determinations are made of ultimate resistance, elastic limit

and modulus of elasticity for commercial sizes of lumber

of nine different kinds of generally used timber. The
moduli of elasticity, however, are determined from bending

tests, which makes them a kind of composite of both tension

and compression values. The results found, however, are

among the best available.

The following tabular statement gives the moduli for

green and air-seasoned structural sizes:

TABLE I.
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It will be noticed that redwood gives the lowest

modulus of elasticity and Norway pine next above it

except the value for air-seasoned tamarack. Long-leaf

pine, short-leaf pine, and Douglas fir give nearly the

same results.

In determining the tensile resistance, and, indeed, other

resistances of timber, the size of the specimen plays a

more important part, probably, than in any other class

of materials used by the engineer. Small specimens, such

as are usually employed in tensile tests, are inevitably so

selected as to eliminate such defects as decay and decayed
or other knots, wind shakes, season cracks, and other

deteriorating features, so that the results exhibit physical

properties belonging to the best parts of full-size sticks.

In engineering practice, on the other hand, large pieces of

timber must be used as furnished in the timber market.

However close the inspection may be such pieces in-

variably include within their volumes many spots of weak-

ness due to those features which in the small specimen are

carefully excluded. It is of the utmost consequence,

therefore, in dealing with physical data belonging to timber
to realize that results determined by the testing of small

specimens are almost without exception materially mis-

leading in consequence of reaching higher values than those

which can possibly belong to the average stick used in

structural work. These observations must be carefully
remembered in considering the experimental data which
follow.

While there exists a large amount of data on the tensile

tests of timber it relates largely to small selected sticks

or is otherwise scarcely available for engineering construc-

tion. The best recent data are given by Messrs. Cline and
Heim from which Table I was taken. On page 57 of that
Bulletin tabulated data of a large number of bending tests
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of green and dry structural timbers are found, the failures

being by tension in the fibres subjected to that kind of

stress. Those data are shown in Table II. The modulus
of rupture is simply the intensity of stress in the most
remote fibre of the timber.

TABLE II.

Species.
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percentages of the average
"
green

"
moduli of rupture at

which the extreme fibres failed in tension uuder influence

of
"
large knots,"

"
small knots,"

"
irregular grain

"
or

"
nothing apparent

"
as indicated at the head of each

column. Although these values are not found by direct

tests of tension, they may be accepted as fair and suitable

ultimate resistances of the different kinds of timber in

tension.

TABLE III.

Kind of Timber.
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"
Strength of Bridge and Trestle Timbers "

of the Associa-

tion of Railway Superintendents of Bridges and Buildings
at the Fifth Annual Convention in New Orleans, 1895.
That series is given in Table III.

The ultimate resistances of the table are much too

high for full size pieces, but the working stresses may be

accepted as they stand.

It will be noticed that the ultimate tensile resistance

of the various timbers across the grain, so far as they are

given, are but small fractions of the ultimate resistances

along the grain. A corresponding large decrease in resist-

ance across the grain will also be found in connection with

the compressive resistance of the same timbers. The

working resistances given in this table are those employed
in the great bulk of engineering timber structures.



CHAPTER VIII.

COMPRESSION.

Art. 62. Preliminary.

WITH the exception of material in the shape of long

columns, but few experiments, comparatively speaking,

have been made upon the compressive resistance of con-

structive materials.

Pieces of material subjected to compression are divided

into two general classes
"
short blocks

" and "long col-

umns ' '

;
the first of these, only, afford phenomena of pure

compression.

A "
short block

"
is such a piece of material that if it be

subjected to compressive load it will fail by pure compres-
sion.

On the other hand, a long column (as has been indi-

cated in Art. 35) fails by combined compression and bending.
Short . blocks only will be considered in the articles

immediately succeeding, while long columns will be sepa-

rately considered further on.

The length of a short block is usually about three times

its least lateral dimension or less.

It has already been shown in Art. 5 that the greatest
shear in a short block subjected to compression will be

found in planes making an angle of 45 with the surfaces

of the block on which the compressive force acts, i.e., with

385
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its ends. If the material is not ductile this shear will

frequently cause wedge-shaped portions to separate from

the block. But the friction at these end surfaces, and in

the surfaces of failure will prevent those wedge portions

shearing off at that angle. In fact the friction will cause

the angle of separation to be considerably larger than 45;
let it be called a. Then, in order that there maybe perfect

freedom in failure, the length of the block must not be less

than its least width or breadth multiplied by 2 tan a. In

some cases, a has been found to be about 55, for which

value.

2 tan a = 2 X 1.43
= 2.86.

If the bearing faces of the short block under compres-
sion are of much area, for such a purpose, it will be difficult

in many cases, especially with large loads, to secure a

uniform application of those loads. The resulting ultimate

resistance for the entire block will give an average intensity

of pressure which may be quite different from the greatest

intensity. These simple considerations are particularly

pertinent to such materials as blocks of concrete or of

natural stone, which may be 12 inches square or more in

section.

Again, in such material as natural or artificial stone the

friction between the head of the testing machine and the

bearing surface of the specimen, or along the planes of

greatest ultimate shear will tend to support laterally to

some extent the material as it approaches failure, thus

raising the apparent ultimate resistance of the material.

The shorter the block the greater will be this frictional

supporting tendency. This effect has been marked where

the tests specimens have been cubes varying from 2 inches

on their edges to 12 inches, the large cubes showing mate-

rially greater resisting capacity.



Failure of short cylinders of cast iron showing the

shearing of the metal on the plane of maximum
shear.

View exhibiting the failure of short cylinders of Connecticut brown sandstone.

(To face page 386.)





Art. 63.] WROUGHT IRON. 3^7

Art. 63. Wrought Iron.

It is difficult to fix the point of failure of a short block

of wrought iron or other ductile material. As the load

increases above the elastic limit, the cross-sections of the

test "piece increase in lateral dimensions or
"
bulge out,"

so that increase of compressive force simply produces an

increased area of resistance, while the material never truly

fails by crumbling or shearing off in wedges.
It is comparatively easy to determine the elastic limit,

but at what degree of loading the material may be said to

fail after permanent distortion begins is not clear unless

some arbitrary limit should be fixed by convention.

In an actual structure obviously failure may be said

to take place when the degree of distortion is such that the

structure fails to discharge safely its function as a load

carrier, but that degree of distortion would vary much in

different structures or in different parts, possibly, of the

same structure.

For the present purpose it may perhaps be assumed

tentatively that a ductile material fails when its distortion

under compressive loading becomes apparent to the unaided

eye.

Modulus of Elasticity.

As wrought iron is no longer a structural material, there

are practically no recent tests to determine the compressive
modulus of elasticity, but earlier investigators made suf-

ficient tests when the material was in general use to establish

the modulus with reasonable accuracy. Those investi-

gations show that there is no essential difference between
moduli for compression and tension. Hence the modulus
of elasticity for wrought iron in compression may be taken

at 26,000,000. Small specimens would in some cases yield
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results perhaps as high as 28,000,000, but for general use

the former or smaller value is preferable.

Limit of Elasticity and Ultimate Resistance.

Investigations for determining the elastic limit of

wrought iron in compression are almost entirely lacking,

but its value may safely be taken the same as for tension,

i.e., depending upon the area of cross-section and the

amount of work put upon the material in its manufacture,
from 22,000 to perhaps 26,000 pounds per square inch, the

former for large sections and the latter for small sections.

The difficulties met in the effort to determine a well-defined

ultimate compressive resistance for wrought iron have

already been noticed, but such compression tests as were

made during the general use of wrought iron for structural

purposes indicate that what may be termed the ultimate

compressive resistance may reasonably be taken at about

the ultimate tensile resistance. The amount of permanent
distortion taking place at that degree of loading has not

been satisfactorily determined, but it would certainly be

apparent to the unaided eye and it might run from i per
cent, to 5 per cent, or possibly more. It may be assumed,

therefore, that the ultimate compressive resistance of

wrought iron will range generally from 45,000 to 50,000

pounds per square inch.

Art. 64. Cast Iron.

The behavior of cast iron under compression as found

in ordinary casting is not less erratic than in tension. When
this material was used for such purposes as heavy ordnance

and car wheels it was so produced as to possess excellent

physical qualities for a cast metal, especially after remelting

and being held in fusion. Even then, however, the modulus
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of elasticity was not much higher than for the best qualities

of ordinary castings. It may be said generally that the

modulus of elasticity for cast iron in either tension or com-

pression may be taken from 12,000,000 to 14,000,000.

These values are about half of the corresponding values for

wrought iron and little less than half the corresponding
values for structural steel.

Inasmuch as cast iron is a brittle material failing

suddenly at the limit of its resisting capacity, either in

tension or compression, it can scarcely be said to have an

elastic limit except for special grades of unusual excellence,

and even with such material it is not well defined.

The ultimate resistance of cast iron to compression is

fairly well defined, .but it varies greatly in value according
to its quality. Special grades for ordnance and car wheels

may have compressive resistances running from 100,000

per square inch up to 150,000 pounds per square inch.

For many years when cast-iron columns were used in engi-

neering practice it was customary to consider the ultimate

compressive resistance for such members as 100,000 pounds

per square inch, but that value is far too high. Although
the quality of ordinary castings is variable, it is reasonable

to take the ultimate compressive resistance at 80,000 pounds

per square inch for such material as may be used under

good and effective specifications for columns, machine

frames and similar purposes, although there are modern
cast-iron column tests which appear to indicate that even

that value is too high.

Art. 65. Steel.

Table I of Art. 58 contains the results found by Prof.

Ricketts in testing cylindrical specimens of mild steel in

compression. These specimens were six inches long be-

tween carefully faced ends, and, as the table shows, their
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diameter was about 0.75 inch. The coefficients of

elasticity for compression were found by measurements

very carefully made with a micrometer on a length of four

inches. The elastic limits, however, were determined by
operating with a cylinder two inches long, and were taken

at those points where the material of the specimens ceased

to hold up the scale beam, and may have been somewhat
above that point where the ratio between stress and strain

ceases to be essentially constant.

The coefficients of elasticity are found to be quite

uniform, irrespective of the per cents of carbon, within the

limits of the table, and they are seen to be a very little

less than the coefficients for tension. The difference is

so small that no essential error will arise if, for all en-

gineering purposes, they are assumed the same.

A comparison of the elastic limits for tension and

compression presents some irregularities; yet with the

exception of the high percentages of carbon in the last two

grades of Bessemer metal, the two sets of elastic limits as

wholes are not very different from each other. In the

Bessemer steel with the two high per cents of carbon, the

tensile elastic limits are materially higher than those for

compression. The following very important conclusion

results from this comparison of the elastic limits for the

mild structural steels: since these elastic limits are es-

sentially equal it is not only permissible but wholly rational

to increase the working resistances of mild steel bridge

columns over those for iron in at least the same proportion

that the tensile working stress of the same steel is increased

over that of iron in tension. Experiments on a sufficient

number of full-size steel columns are yet lacking to verify

this conclusion.

It appears from such data on the compressive resistance

of steel as exist that not only the coefficient of elasticity
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but, also, the limit of elasticity in compression may be
taken the same as that for tension for the same grade of

steel. This was practically true in the older investiga-
tions of Kirkaldy, and it is essentially confirmed in the

few later investigations available.

The ultimate compressive resistance of steel, like the

ultimate tensile resistance, varies with the content of

carbon, being comparatively low with a small percentage
of carbon, and correspondingly large with a high percentage
of that element. It is also much affected by the operations
of tempering and annealing.

Special grades of steel adapted to heat treatment have
after such treatment given ultimate compressive resistances

of various values up to nearly or quite 400,000 pounds per

square inch and values ranging from 150,000 pounds up
to 300,000 pounds per square inch are not uncommon in

the records of the older testing. Such high results, however,
are only obtained with hardened and tempered metal.

There is the same uncertainty as to the point at which

compressive failure takes place in steel which attaches to

the ultimate compressive resistance of all ductile metals
and which was commented upon in Art. 63. It is probably
safe, however, if not entirely correct, to take the ultimate

compressive resistances of different grades of steel equal
to their ultimate tensile resistances in the absence of

explicit determinations; and a similar observation may
be applied to the working resistances in pure compression
of same grades of steel.

Art. 66. Copper, Tin, Zinc, Lead, and Alloys.*

Table I shows some coefficients of elasticity (i.e., ratios
between stress and strain), computed from data deter-

* As this field of investigation has not been worked since Prof. Thurston
left it his results are allowed to stand (1915).
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mined by Prof. Thurston, and given by him in the
"
Trans.

Amer. Soc. of Civ. Engrs.," Sept., 1881. The gun bronze

contained copper, 89.97; tin, 10.00; flux, 0.03. The cast

copper was cast very hot.

TABLE I.
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TABLE II.

Composition.
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ductile alloys and metals, since such materials cannot be

said to completely fail under any pressure, but spread

laterally and offer increased resistance.

TABLE III.

Per Cent, of
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at 90,000 pounds per square inch. Tobin bronze contains

58.2 per cent, copper, 2.3 per cent, tin, and 39.5 per cent,

zinc.

Art. 67. Cement Cement Mortar Concrete.

The ultimate compressive resistances of mortars and

concrete determine the carrying power of many engineering

works, and it is of much importance to ascertain those

resistances and the conditions under which they may be

made the greatest possible. Obviously, the carrying power
in compression of both mortars and concretes will depend

upon a considerable number of elements such as the character

of the cement, the proportions of mixture of the sand and

cement for mortar or of the cement, sand, and gravel or

broken stone for concrete, the thoroughness of the ad-

mixture, the amount of water used, the conditions under

which the mortar and concrete are maintained while the

operation of setting is taking place, the temperature, and

other various influences.

The modulus of elasticity of concrete must necessarily

depend chiefly upon the proportions of the mixture and the

age of the concrete when tested. It will also depend to a

material extent upon the intensity of compressive stress at

which the strain is observed. At this point a clear under-

standing of the elastic behavior of the mortars and concrete

is necessary to a correspondingly clear view of what takes

place in a concrete-steel beam under loading. In many
cases of concrete under compression of varying intensities

a careful measurement of the resulting strains shows that

a permanent deformation or compression remains at least

for the time being after the removal of the load, even

when the latter is sometimes not more than 100 or 200

pounds per square inch. This permanent set is dependent

upon the age of the material and usually, perhaps always,
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decreases as age increases. In many other cases a per-
manent set is observable only under intensities of stress

'as high as 1000 or 1200 pounds per square inch, or even

considerably more. When these sets occur they are fre-

quently found far below what may probably be termed the

elastic limit of the material, and in some quarters they have

given the impression that mortar and concrete have little

or no true elastic behavior. This, however, is an erroneous

view, as in the testing of concrete and mortar cubes equal
increments of stress intensities quite uniformly give equal
increments of strain or deformation over a considerable

range. Although the upper limit of this essentially constant

ratio between stress and strain is usually not very clearly

defined, it is so .defined in a considerable percentage of

cases, and in almost all tests of well-made concrete and

mortar that limit may readily be assigned near enough for

all practical purposes.

A large amount of data bearing upon these points will

be found in the "
Report of Tests of Metals and Other Mate-

rials" at the Watertown Arsenal for 1899. Twelve-inch

cubes with a great variety of proportions of constituent

elements ranging from a few days up to six months in age

were employed in those investigations. Figs, i and 2 ex-

hibit graphically the results of twelve of those tests so taken

as to be fairly representative of all. The vertical ordinates

of the curves represent compressive stress intensities up to

failure, while the horizontal ordinates represent the total

compressive strains or deformation under the corresponding

stresses also up to the point of failure. These strains are

shown in the figures one hundred times their actual amounts.

In Fig. i the concrete nine days old shows only little resist-

ing power and a low coefficient of elasticity, as would be

expected. In nearly all the other cases, on the other hand,

the ratio between stress and strain is reasonably constant
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up to nearly 1000 pounds per square inch. The two excep-
tions are found in Fig. 2, belonging to i to 3 Portland-

cement mortar and to i, 2, and 4 steel-cement concrete, the

former four months old and the latter three months old.

2000

1000

On the other hand, the 1,2, and 4 concrete six months old

in the right-hand group of Fig. i discloses constant propor-

tionality between stress and strain up to 2000 pounds per

square inch, and the same observation may apply to a sim-
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ilar concrete represented by one of the curves in the left-

hand group of Fig. 2. Again the i to i granite-dust mortar

four months old represented by one of the curves in the

right-hand group of Fig. 2 shows a constant ratio up to

nearly 4000 pounds per square inch. Indeed, the whole

group of curves probably shows a more satisfactory approach
to a constant ratio between stress and strain than do similar

curves for cast iron. It should be stated, as will be observed

by referring to the report cited, that some of the curves

shown in Fig. i and Fig. 2 belong to groups for which small

permanent sets were observed below elastic limits, while

others belong to those which show no such permanent set.

This observation does not appear from the test records to

be applicable to any particular character of curves, but

sometimes to those which are more nearly straight and some-

times to those which are less so.

The results deduced from the tests of cubes covered by
the 1899 and other "Reports of Tests of Metals and Other

Materials" are confirmed by the investigations of such for-

eign authorities as M. Considere, Melan, Brik, and others.

They show conclusively that it is reasonable and safe to

apply to concrete and concrete-steel beams the formulae

established by the common theory of flexure after intro-

ducing into them empirical quantities established by experi-

ment precisely as is done with iron and steel beams.

Table I is a condensed statement of average values of

the modulus of elasticity for concrete of different propor-

tions of mixture prepared by Mr. Edwin Thacher from

original sources, including the annual Reports of Tests of

Metals .and Other Materials carried on by U. S. officers at

the Watertown Arsenal for a lecture given by him at the

College of Civil Engineering of Cornell University, 1902.

This table exhibits as reasonable values for the coeffi-

cient of elasticity in compression as can be determined at
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the present time. The value to be selected for any particu-

lar case will depend upon the proportions of mixture and

upon the degree of balancing of the sand and gravel or

broken stone, although the influence of the latter cannot

be definitely stated. It is not improbable that a considera-

ble portion at least of the variations in the results of the

table are due to the varying degrees of natural balancing
in the different test blocks. The value will also depend

upon the age of the concrete. For all ordinary engineering

constructions it is reasonable to take the coefficient of com-

pressive elasticity at 2,500,000 to 3,000,000 pounds per

square inch for a concrete mixture of i cement, 2 sand, and

4 gravel or broken stone. This table shows that practi-

cally the same value may be taken for a concrete of i cement,

3 sand, and 6 gravel or broken stone, especially if the mate-

rials are well selected and balanced. If the concrete is

mixed in the proportions of i cement, 6 sand, and 12 gravel

or broken stone, the coefficient of elasticity is seen to

decrease materially and should not be taken higher than

1,500,000 pounds per square inch. Suitable quantities

for mixtures other than those named in the table can be

reasonably and safely selected from those afforded in it.

These values show that the ratio of the coefficient of

elasticity for steel over that for concrete may range from

10 to 20 for the varying conditions described.

The more common practice is to make this ratio 15, i.e.,

on the basis of 30,000,000, for the modulus of elasticity for

steel and 2,000,000 for concrete. The ratio of 12, however,
is sometimes found by taking the same value as before for

the modulus of steel, but 2,500,000 for the modulus of

elasticity for concrete. The ratio of the two moduli is

constantly used in the treatment of reinforced concrete

work.

A further consideration must be kept in view in con-
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nection with the value of the modulus of elasticity for con-

crete, and that is the fact alluded to in previous pages that

nearly all concrete and reinforced concrete work must

usually carry considerable loading, in the exigencies of con-

struction, when it has attained no greater .age than perhaps
i o to 30 days, i.e., before the modulus of elasticity (or ultimate

resistance) has attained its full value. Again, a large mass

of concrete, as actually built, cannot reasonably be expected

to have as high a modulus as 12 -inch cubes or other com-

paratively small pieces made and tested in a laboratory.

For all these reasons it is prudent to take a rather low value

of the modulus of elasticity for the analytic work of design.

The following tabulated statement shows ultimate resist-

ances per square inch of 12 -inch cubes of concrete obtained

in the Testing Laboratory of the Department of Civil

Engineering of Columbia University in 1912 by Mr. James
S. Macgregor, in charge of the laboratory.

GRAVEL CONCRETE; i Cement, 2% Sand, 5 Gravel.
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TABLE II.

MEAN ULTIMATE COMPRESSIVE RESISTANCES OF 12-INCH PORT-
LAND-CEMENT CONCRETE CUBES.



A view exhibiting the failure under compression of a 12-in. concrete cube. The
composition is I Portland cement, I sand, and 4.5 broken stone. The age of
the concrete was I year, 8 months, 23 days, and the ultimate compressive
resistance attained was 4481 Ibs. per sq. in.

(To face page 402.)
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accounts for the low values of the starred ultimate resist-

ances per square inch, as indicated by the footnote. The

age of all the cubes was 42 days, also as indicated in the

table. These results are unusually valuable in one respect,

in that the cubes were not mixed in the laboratory, but in

the field, where actual work was being done, and hence

received no special care in the operation.

Tables II and III contain the results taken from the
" U. S. Report of Tests of Metals and Other Materials

"
for

1899. They exhibit the ultimate compressive resistances

of cubes of Portland-cement concrete, the cements being

among the well-known brands. The ages of these cubes

vary from seven days to six months. The data show

clearly the increase of ultimate resistance with the ages of

the cubes, and the same observation applies to the three

columns showing the coefficients of elasticity at one month,
three months, and six months. The compositions of the

different concretes of Table II are those quite generally

employed in engineering practice.

Table III exhibits the ultimate resistances of the same

concretes, but with the pressure applied to the 1 2-inch

cubes on areas 8 inches by 8J inches, this end being at-

tained by the use of steel plates. As would be expected,

the ultimate resistances are seen to be considerably greater

than are found with the total load distributed over the

entire surface of a cube.

The broken stone used in the cubes, the results of whose

tests are given in Tables II and III, was a conglomerate from

Roxbury, Mass., and the sand was coarse, clean, and sharp.

The voids of the broken stone measured 49.5 per cent, of

their total volume.

Table IV, taken from the same volume of the " U. S.

Report of Tests of Metal and Other Materials "as Tables II

and III, exhibits the ultimate compressive resistances of
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TABLE IV.

MEAN ULTIMATE COMPRESSIVE RESISTANCES OF MORTAR AND
CONCRETE 12-INCH CUBES.

Brand; Composition.

Mean Ultimate
Resistance,
Pounds per
Square Inch
at Age of

Four Months.

Weight per
Cubic Foot,
Pounds.

Coefficient of

Elasticity,
Pounds per
Square Inch.

f c., i s., ob. st 4,371
.

"
2
" O "

2,506

*st
\-\-l IE "S
I

i
"

6
" o "

185
LI" 7

" o "
118

eind 1

'
"

'
" "

Portland ['"
'" "

5.

fgSSd' 1'"
<" "

3,979

PoZnt ['"
'" "

4,353

Poland }'"
'*

"
5,306

Steel slag i
"

i s., o
"

i,743
i
"

2
"

4
'

1,939 1

Hoffman ) , ,,

Rosendale
J

J

Norton j

T

i',

x

",

""'"' 6^
,

Rosendale
|{,,

2

2
,

,,;;;;; g-|

136.5
134-2
133-8
120.9
"9-5
116.9
111.5

141-5

134-5

134-7

134-7

137-3

126.6

152.1

127.7

125.2
120.7
146.2

3,571,000
3,125,000
1,786,000

6,250,000

4,167,000

3,125,000

2,500,000

3,571,000

1,190,000
2,5OO,OOO

* Granite dust. f Age, 3 months. J Trap rock, broken stone.

TABLE V.

CHEMICAL ANALYSES OF PORTLAND AND STEEL-SLAG CEMENTS.

Cement. Silica. Oxide
of Iron.

Alumina. Lime. Magnesia. Sulphur
Trioxide.

Carbon
Dioxide.

Alpha. . .

Star. . . .

Standard
Alsen. . .

Steel. .

20

21.73
22.5
20.67
31.02

2.8

2-5
2.6
2 . I

Trace

10.87
9-47
11.98
14.6
10.9

58.66
56.34
51-44
42 . 16

57-31

3-35
3.61
3.6i
2.32
4-05

1-34
1.91
1-57
2.32
3.36

2.56
3-94
5.96
4-45
4.81
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the mortar and concrete 1 2-inch cubes described therein.

These results need no explanation, as they are similar to

those which have already been given, but it is well to note

that the last four lines of the table give results belonging to

two brands of natural cement. There are also shown one

test of a steel-slag cement mortar cube and one of concrete.

Table V exhibits the chemical analyses of the Portland

and steel-slag cements named in Table IV. These analyses

exhibit about the usual composition of the various grades

of cement to which they belong.

TABLE VI.

COMPRESSION TESTS OF 12-INCH CUBES OF PORTLAND-CEMENT
CINDER CONCRETE.

Brand.
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pounds per cubic foot shows that cinder concrete weighs
but about three fourths as much as that made with gravel

and broken stone. The data contained in this table were

taken from the " U. S. Report of Tests of Metal and 'Other

Materials" for 1898.

Messrs. Harold Perrine, C.E. and George E. Str^nan,

C.E. presented a paper to the Am. Soc. C. E. in 1915

describing their extended investigation* in
"
Cinder Con-

crete for Floor Construction between Steel Beams." The
Table VII is taken from that paper and each value is a

mean of ten results, except those in the second column

TABLE VII.

Proportions
Method
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from the right side of the Table, which are means of nearly
that number. The compressive test specimens were cinder-

concrete cylinders 8 inches in diameter and 16 inches long.
The values given in the Table are representative of good
structural cinder concrete.

A large number of tests, the results of which need not

be given here, have shown that gravel may advantageously
be used, in the interests of economy, in the place of broken

stone for concrete. On the whole, the broken-stone concrete

is probably stronger than that made with gravel, but the

difference is not material for all ordinary cases. The

gravel should not be water-worn, but have sharp, gritty
surfaces to which the setting cement may strongly bond
itself. All sizes from the largest permissible down to

coarse sand should be taken, and when so balanced the

voids may be reduced as low as 20 per cent, of the total

volume of the gravel or even lower. This balancing
of the broken stone or gravel enhances both economy
and resisting qualities.

A careful examination of all the Tables, I to V, shows

that reasonably well-made broken-stone concrete may
carry a load of 300 to 500 pounds per square inch without

exceeding \ to J, or possibly -J, of its ultimate resistance,

the composition of the mixture being i cement, 2 sand,

and 4 broken stone, or perhaps i cement, 3 sand, and 5

broken stone. It is possible that this may be an under

statement of the capacity of the concrete if the mixture is as

well balanced as it should be. It is a mistake, as has been

shown repeatedly by actual test, to screen out the finer

portions of the broken stone or to attempt to secure an

approximately even sand grain. It is conducive to an

increased resistance as it is to increased economy to balance

the sand, gravel, or broken stone by using all the varying
sizes between the least and the greatest. Indeed, in many
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TABLE VIII.

COMPRESSIVE RESISTANCES OF 12"x 12" CONCRETE COLUMNS.

11
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cases it may be advisable to use the entire product of the

crusher.

The relation between the ultimate compressive resist-

ance of concrete made with balanced material and the

length of column is illustrated by the results given in Table

VIII, which has been collated and arranged from the " U. S.

Report of Tests of Metal and Other Materials "for 1897.

The heights of column range from 2 to 14 feet. While there

are some exceptions, the rule is general that, other things

being equal, the ultimate resistance decreases as the length

or height of column increases. On the whole, the machine-

mixed material appears to be a little stronger than the

hand-mixed, but the difference is not substantial except for

the 8, 10, and 12 feet lengths.

Art. 68. Bricks and Brick Piers.

The ultimate compressive resistance of bricks depends

largely upon the manner in which they are tested and the

care with which the surfaces pressed are filled out with a

proper cushion and made truly parallel to the bearing
surfaces of the testing machine. The best of bricks as

produced for the market do not have opposite faces truly

parallel, and hence when they are placed in a testing

machine for testing to failure the pressure will be con-

centrated at different points and the bricks will be broken

partly by bending before the full ultimate compressive
resistance is developed unless the pressed surfaces are

made true by some kind of a cushion. This cushioning is

frequently and perhaps usually done with plaster of paris,

as in the case of the tests of bricks at the U. S. Arsenal,

Watertown, Mass., the results of which are given in Table II.

Again, a brick tested on edge will give a less ultimate

resistance per square inch than when tested flat and the
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resistance on end per square inch of section will be less

than that on edge. When the brick is tested flatwise,

even when truly surfaced with a cushion such as plaster of

paris, it is a very short block and the friction of the pressed
surfaces on the bearing faces of the testing machine is

sufficient to give the compressed material substantial lat-

eral support, not permitting it to separate and crush away
readily. It will be found, therefore, that when blocks are

tested flatwise the ultimate resistances per square inch,

as a whole, will be much higher than when tested on edge.

This condition of things holds to some extent when the

bricks are tested on edge, so that an endwise test will give

the ultimate compressive resistance per square inch some-

what less than that found when the brick is tested on edge.

An endwise test of the brick more truly represents the

ultimate compressive resistance of the material than a test

either flatwise or on edge.

A series of tests of a variety of bricks and terra-cotta

made in 1896 at the U. S. Arsenal at Watertown, Mass.,

gave moduli of elasticity about as follows: Pressed brick,

1,000,000 to 3,000,000 pounds per square inch, the hardest

varieties giving the higher values and the softer material,

the lower values; hard buff brick and terra-cotta, 4,000,000

to 4,800,000 pounds per square inch. Some soft-face brick

gave moduli of elasticity varying from about 400,000 to

890,000 pounds per square inch. These determinations of

the modulus were made with intensities of pressure from

about 1000 to 4000 or 5000 pounds per square inch.

Such experimental results ordinarily show some erratic or

abnormal features and these tests were no exception to

that rule.

The coefficients of thermal expansion and contraction

per degree Fahr., were at the same time found to range
from .00000205 to .00000754, the larger of these values



A solid i6-inch square-face brick pier laid in lime
mortar It was tested at the U. S. Arsenal, Water-
town, Mass., and gave an ultimate compressive
resistance of 1337 Ibs. per sq. in. The pier is

shown as it existed after failure.

(To face page 410.)
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being about 25 per cent, higher than the coefficient for

concrete.

In the Proceedings of the Am. Soc. C. E. for March,

1903, Mr. S. M. Turrill, Assoc. Am. Soc. C. E., gives the

results of a large number of tests of common building

brick, 2 in. by 4 in. by 8 in. in size, manufactured at Horse-

heads, N. Y. The following table is fairly representative

of the results of Mr. Turrill's tests, made with great care

at the civil-engineering laboratories of Cornell University:

TEST OF COMMON BUILDING BRICK.

Brick Tested.
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A large number of determinations of the ultimate com-

pressive resistances of bricks were made among the earlier

experimental investigations at the U. S. Arsenal at Water-

town, Mass. These results showed values for hard-burned

bricks varying from about 8,000 to about 12,000 pounds

per square inch with an average of about 9,000 pounds per

square inch when tested on edge. What may be termed

medium bricks, i.e., intermediate between hard-burned

strongest bricks and common building bricks, gave results

varying from about 4,000 to about 8,000 pounds per square

inch, with an average value of about 5,500 pounds per square
inch when tested on edge.

The following results of tests of three different kind

of brick and hollow tile were obtained by Mr. J. S. Mac-

gregor in the testing laboratory of the Department of Civil

Engineering at Columbia University. The ultimate resis-

tances given are the means of seven sets of tests, eight in

each set. Half bricks were tested flatwise. This mode of

testing obviously yields much higher values than if the

bricks were tested on edge.
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varied from about 41 square inches to 60 square inches.

The ultimate resistances per square inch on both the net

sections and the gross sections are as given below. There

were five sets of ten tests each and the results given are

the greatest, mean and least results of the five sets.

-
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before being burned and in consequence of the varying

degree of burning in each individual brick. Again, what-

ever may be the care in placing the bricks in a testing-

machine, including the cushioning of the ends, it is prac-

ticably impossible to secure anything like a uniform bear-

ing upon either the ends, sides, or beds. Their irregular

dimensions and exterior surfaces and the varying quality

of the materials, even in the best of brick,- introduce into

their resisting capacity elements of variation which are

frequently so great as to lead to abnormal results. While

the mortar used in forming a mass of brick masonry un-

doubtedly fills up many irregularities of surface, voids

of considerable magnitude frequently remain unfilled.

The consequence of these uncontrollable elements in a

mass of brick masonry is always a 'material reduction of

ultimate carrying capacity and frequently a large reduc-

tion. However excellent in quality, therefore, the mor-

tar or binding materia1 in a brick-masonry pier may be,

it is inevitable that there will be not only a wide range in

ultimate compressive resistance, but in all cases a material

reduction below that exhibited by the individual bricks

when tested by themselves.

Profs. Arthur N. Talbot and Duff A. Abrams reported,

in Bulletin No. 27 (1908) of the University of Illinois, the

results of a series of sixteen tests of brick piers and the

same number of hollow terra-cotta block piers. Two grades

of brick were used, a hard-burned shale brick and a soft

under-burned clay brick. Eighteen of the former tested

on beds gave :
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Sixteen of the soft bricks similarly tested gave:
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The brick columns were about 12 J inches by 12^ inches

in section and 10 feet long. The mortar joints were about

f inches thick. Failure of these columns took place chiefly

by vertical cracks through joints and bricks. Table I gives

the mean results of these tests.

The characteristics and dimensions of the terra-cotta

columns or piers and the average results of tests per square
inch of gross area are given in Table la.

TABLE IA.

AVERAGE VALUES FOR TERRA COTTA COLUMNS





An 8 X i6-in.-face brick pier with i6-in. square base
laid in lime mortar. It was tested at the U. S.

Arsenal, Watertown, Mass., and gave an ultimate

compressive resistance of 1233 Ibs. per sq. in. on
the upper section and 601 Ibs. per sq. in. on the

lower section. The cracks due to failure are clearly
seen.

(To face page 417.)
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the chief manner of fracture of both brick and terra-cotta

columns or piers is by longitudinal cracking.

Table II exhibits the results of testing piers of brick

masonry in the Gov't testing machine at Watertown, Mass.

It is taken from
"
Ex. Doc. No. 35, 4pth Congress, ist

Session." The dimensions of piers are shown in the table;

also the kinds of mortar used and the grades of brick.

The " common "
and "

face
"

brick, both hard burnt,

were from North Cambridge, Mass. The other bricks

TABLE II.

CRUvSHING STRENGTH OF BRICK PIERS.

No.
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were from the Bay State Brick Co., of Boston and Cam-

bridge, Mass., and were medium burnt.

The brick piers were built of bricks "laid on beds and

joints broken every course, with the exception of two 12 by
12 piers, one of which had joints broken every sixth course,

and one had bricks laid on edge.

"They were built in the month of May, 1882," and

"their ages when tested ranged from 14 to 24 months."

They were all tested between cast-iron plates.
"
Loads were gradually applied in regular increments,

. . . returning at regular intervals to the initial load. . . .

Cracks made their appearance at the surfaces of the

piers and were gradually enlarged before the maximum
loads were reached. Final failure occurred by the partial

crushing of some of the bricks, and by the enlargement of

these cracks, which took a longitudinal direction and
occurred in the bricks of one course opposite the end joints

of the bricks in the adjacent courses. This manner of

failure was common to all piers.

It is important to notice that the resistance of the piers

varies with the strength of the mortar used in the joints.

Brick piers, 8 inches by 8 inches in cross-section and
6 feet high, built of Hudson River common brick, and
others of Sykesville face brick were tested to destruction in

the testing laboratory of the Department of Civil Engineer-

ing of Columbia University in 1915 by Mr. J. S. Macgregor,
in charge of the laboratory, with the following results, two
of the piers being built of Hudson River common brick and
three of the Sykesville face brick.
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These piers also gave the two following values for the

modulus of elasticity in compression :

Hudson River Common E= 748,000 Ibs. per sq. in.

Sykesville Face = 2,860,000 Ibs. per sq. in.

The age of the columns was 60 days. The ends were

finished with plaster of paris to secure square and uniform

bearings. The two moduli were determined at intensities

of stress less than 250 pounds per square inch.

Mr. Macgregor also obtained the ultimate resistances of

three piers, 74 inches high built up of single, approximately
8-inch by 12 -inch hollow tile giving a gross horizontal cross-

section of 94 square inches and a net section of actual tile

material of 50 square inches.

These tile piers had f-inch joints filled with Portland

cement mortar, i cement, 3 sand, the age of the piers

being 60 days.

The ultimate compressive resistances per square inch

for the three piers were as follows :

Gross Section 1,236; 1,239; and 1,117 Ibs. per sq. in.

Net Section 2,324; 2,329; and 2,100 Ibs. per sq. in.

These tile piers failed in the blocks in most cases, but

in other cases in the joints. The failures of the blocks

showed vertical cracks as well as horizontal and some spalling.

The results of all the experimental investigations

available in connection with brick masonry and experiences
in the best class of engineering work indicate that masonry
laid up of good hard-burnt common brick may safely

carry a working load of 15 to 20 tons per square foot or

210 to 280 pounds per square inch. In the construction

of this class of masonry where the duties are to be severe it

is of the utmost importance that the best class of Portland

cement mortar be employed, as the carrying capacity of

brick masonry depends largely if not chiefly upon the

character of the mortar.
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Art. 69. Natural Building Stones.

The ultimate compressive resistance of natural building

stones is affected greatly by the condition of the rock

from which the cube or other test-piece is taken. That

portion of a ledge exposed to the weather may be much
weakened and, in fact, even disintegrated, but the material

at a short distance from the exterior surface may have the

greatest resistance of which the particular kind of stone is

capable of yielding. Again, the compressive resistance

of stones on their natural beds is much greater than when

tested on edge. In the tests which follow the test-pieces

were fairly representative of such quality of stones as

would pass inspection in first-class engineering work, and

it is to be assumed that they were compressed on their

beds unless otherwise stated.

Table I taken from the " U. S. Report of Tests of Metals

and Other Materials" for 1894, exhibits the coefficients of

elasticity, ultimate compressive resistances, weights per

cubic foot and coefficients of thermal expansion per degree

Fahr., as well as the ratio, r, between lateral and direct

strains for the granites, marbles, limestones, sandstones,

and other stones shown in the left-hand column. The
coefficients of elasticity and of thermal expansion were

determined by employing blocks of stone about 24 ins.

long and 6 ins. by 4 ins. in cross-section, the gauged length

being 20 inches, but the ultimate compressive resistances

were found by testing 4-inch, cubes. The number of tests

for each coefficient of elasticity and ultimate resistance

varied from one to nine but were generally two or three.

The general run of values of ultimate resistance will be

found to conform as well as could be expected with results

for the same kind of stones in the tables which follow.
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It will be observed that the marbles are the heaviest stones,

although the granites are not much lighter. There is a

large difference, however, between the sandstones and the

marbles or granites.

TABLE I.

NATURAL STONES IN COMPRESSION ON BEDS.

Stone.



422 COMPRESSION. [Ch. VIII.

The coefficients of elasticity generally range considerably

higher than those for concrete in Art. 67, but the sand-

stones form an exception to this observation. The coeffi-

cients of thermal expansion vary between rather wide

limits but they are mostly a little lower only than those

determined for concrete. The coefficient for the Dycker-
hoff cement is very close to those exhibited for cement

mortar and concrete in Art. 60. The column headed r,

giving the ratios between lateral and direct strains, contains

interesting data. From what has been shown in Art. 4

it is apparent that the total volume of the test-pieces was

considerably reduced by the compression to which the

cubes were subjected.

The coefficients of elasticity were determined at in-

tensities of pressure running from 1000 or 2000 pounds

per square inch up to 8000 or 10,000 pounds per square
inch.

A coefficient would first be determined at comparatively
low pressures, as from 1000 to 3000 pounds per square

inch, and then at higher pressures, as from 7000 to 9000
or 10,000 pounds per square inch. As a rule, the co-

efficients determined at the higher pressures were mate-

rially higher in value than the others, the stiffness of the

stone increasing with the loads within the limits of the test.

The values in the table are the means of those at the low

and high pressures.

With the ordinary working values of pressures in

masonry, probably not more than two thirds of the

values of the coefficients of elasticity given in the table

should be employed.
In the " U. S. Report of Tests of Metals and Other Mate-

rials
"

for 1900 there may be found the results of compress-

ing 4-inch cubes of Tennessee marble and of granite from

the Mount Waldo Quarries at Frankfort, Maine. The
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ultimate compressive resistances of the 4-inch Tennessee

marble cubes expressed in pounds per square inch, were as

follows :

Maximum. Mean. Minimum.

25,478 20,329 16,309

The preceding three results cover twenty tests.

The ultimate resistances in pounds per square inch

of the
"
Black Granite" from the Waldo Quarries, as

determined from four tests of 2 -inch cubes, were as follows:

Maximum. Mean. Minimum.

3 2
>
635 3>949 29,183

Again, in the same report, the ultimate resistances in

pounds per square inch of four 4-inch cubes of limestone

from Carthage, Mo., are as follows*

Maximum. Mean. Minimum.

17,130 14,947 i3 66

The preceding tests and the results of others given in

Table II have been determined by compressing cubes 4
inches and 5 inches on the edge and it has been generally

customary to use a cube for a test piece for either natural

or artificial stones. It has already been indicated, however,
in Art. 62 that such a short test piece in compression must

necessarily give higher results than should be credited to

the material.

The use of compressive test specimens with lengths
two to two and one-half times the diameter is just begin-

ning, but that use has not become sufficiently general, nor
has it been long enough the practice, to make available

results from such desirable tests.

Furthermore, some tests have shown that ultimate com-

pressive resistances may be materially higher for large cubes



424 COMPRESSION. [Ch. VIII.

than for small ones. This is probably due to the lateral

supporting effect given to parts of the test piece by the

friction between the bearing head of the machine and the

face of the material under "test with which it is in contact.

Preferably no cube tested for engineering purposes should

be less than 12 by 12 inches in section, nor should any test

piece be shorter than twice its diameter.

The results found in Table II are taken from the
"
U. S.

Report of Tests of Metals and Other Materials," for 1894.

They relate to the various kinds of rock indicated and
were found by testing 4-inch to 5-inch cubes on their beds.

TABLE II.

State.
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Although this investigation was made as a contribution

more to physics than to engineering, the results obtained

are of both interest and value to engineers and it is well

to make use even for engineering purposes of results deter-

mined with so much care and such extreme accuracy in

spite of the fact that the specimens used were only i inch

square in section or i inch in diameter and 3 inches long.

If E is the ordinary modulus of elasticity in compression
G the modulus of elasticity for shearing, V the so-called

bulk modulus, i.e., the reciprocal of the rate of change of

unit volume for unit intensity of stress, and r the ratio of

the rate of lateral strain of . the specimen divided by the

rate of direct strain under compression, Table III gives

the results of these experimental determinations for those

materials which American engineers more commonly use.

TABLE III.

Specimen.



426 COMPRESSION. [Ch. VIII.
^

Art. 70. Timber.

The ultimate compressive resistance, coefficient of elas-

ticity, and other physical properties of timber in com-

pression are affected greatly by the amount of moisture

in the timber and by the size of stick. The investigations

of Professor J. B. Johnson, acting for the Forestry Division

of the U. S. Department of Agriculture, have shown that

when the amount of moisture exceeds about 30% by
weight of the timber the physical properties are not much
affected by any increased saturation. The walls of the

wood cells at that point seem to experience their maximum

softening. Green timber may be considered as carrying

about one third of its weight in moisture, and it seems to

matter little whether that moisture is water or sap, timber

once dried and resaturated appearing to suffer the same

diminished resistance as in its original green condition.

Professor Johnson's tests showed that the Southern pines

increased their ultimate compressive resistance in some

cases as much as 75% by the process of drying or seasoning

from 33% of moisture down to 10%, the general rule being

a greatly increased compressive resistance with a decrease of

moisture. It follows from these results, therefore, that green

timber will be much weaker in compression than seasoned

timber. Ordinary air seasoning even under cover seldom

reduces moisture below about 15% in weight of the timber

itself, although under favorable circumstances of seasoning

the moisture may sometimes drop to 12% of that weight.

As a matter of precision, therefore, or accuracy, the ulti-

mate compressive resistance of timber should always
be stated in connection with the percentage of moisture

carried by the timber. This will be found to be the case

in all of Professor Johnson's experimental work, to which

reference has already been made and the results of which
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are chiefly found in bulletins Nos. 8 and 15 of the Division

of Forestry of the U. S. Department of Agriculture, the

former being dated 1893.

The earlier tests of Professor Johnson were made on a

basis of 15% moisture, but in his later work a basis of 12%
moisture was adopted, and he states in Circular No. 15

that in reducing the moisture from 15% to 12% the corre-

sponding increases in the ultimate compressive resistance

in pounds per square inch of Southern pines are approxi-

mately as follows:
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pressive resistance of large sticks may be taken as practically

identical with that belonging to small selected test pieces,

the quality of the material being the same in both cases.

It is possible, if the quality of material throughout all

portions of every large stick were identical with the quality
of small selected specimens, that the ultimate compressive
resistance per square inch might be the same; but that is

radically different from the facts as they are. There is

probably no stick of timber whose condition is permanent
at any given time. If it is seasoning, its quality is im-

proving, but after reaching a maximum of excellence it

begins to depreciate by decay or from other causes. Any
large stick of timber as used by the engineer is seldom

free from some point of incipient decay and it is never

free from knots, large or small, wind shakes, cracks from

one cause or another, or from some other defective con-

dition, at some point. Small specimens for testing are

invariably so selected as to eliminate such spots as militating

against a comparatively high resistance. The inevitable

result for full-size sticks is a decreased resistance materially

below that of the small specimen. For all these reasons,

therefore, in engineering practice it would be a radical

error to accept the ultimate compressive resistance per

square inch of small test specimens as practically identical

with that of large sticks. Values for the latter class of

timber should.be determined upon pieces as large as those

used in structures and under the same conditions in which

they are used, which means an indefinite amount of moisture

ordinarily sensibly larger than 12% or 15%.
In the "U. S. Report of Tests of Metals and Other

Materials" for 1896 and 1897 there may be found results

of compressive tests for coefficients of elasticity for sticks of

timber as shown in Table I. Those sticks were many of

them large enough to form full-size posts. They appear to





The fracture of a piece of Douglass fir or Oregon pine loaded tangentially to

the rings of growth. The ultimate compressive resistance was found to be 600

Ibs. psr sq. in.

(To face page 429.)
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TABLE I.

TIMBER IN COMPRESSION.

Kind of Wood.
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give materially less values. It will also be observed that

the values for the very dry yellow-pine posts in the last

line of the table are high, showing the increased stiffness

due to the absence of moisture. The coefficients of elas-

ticity in the last five lines of the table were computed
from the resilience of the compressed columns by means

of a formula similar to eq. (2) of Art. 44.

The values of the elastic limit, ultimate resistance and

modulus of elasticity in compression along the fibres as

well as the elastic limit in compression across the fibres of

nine of the prominent structural timbers of the United

States, both for large or structural sizes and small speci-

mens, as shown in Table II, are taken from Tests of Struc-

tural Timbers, Forest Service-Bulletin 108, U. S. Depart-
ment of Agriculture, by Messrs. McGarvey Cline and A. L.

Heim, 1912, and exhibit some of the latest experimental

investigations in the elasticity and resistance of timber.

The large or structural sizes had cross-sections up to 10

inches by 16 inches and the small sizes down to 2 inches

by 2 inches. The resistances parallel to the fibres, i.e. on

end, were determined for pieces whose lengths were three

to four times the cross dimensions.

The authors of the paper properly observe that the
"
Results of tests made only on small thoroughly seasoned

specimens free from defects
" "

may be from one and one-

half to two times as high as stresses developed in large

timbers and joists." This is an important conclusion and

a number of results in Table II confirm the observations

of the authors.

It is essential to observe the small resisting capacity

of the various timbers when compressed across the grain,

the resistance in the latter condition being but a small

fraction of that along the grain.

Table III contains the results of tests by Colonel Laidley,
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No.
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U.S.A., "Ex. Doc. No. 12, 47th Congress, 2d Session."

A few other tests of short blocks from the same source will

be found in the
t
article on "Timber Columns." Unless

otherwise stated, all the specimens were thoroughly sea-

soned.

In this table the "length" of all those pieces which

were compressed in a direction perpendicular to the grain

might, with greater propriety, be called the thickness, since

it is measured across the grain.

In the tests (24-60) the compressing force was dis-

tributed over only a portion of the face of the block on

which it was applied ;
thus the compressed area was sup-

ported, on the face of application, by material about it

carrying no pressure. In some cases this rectangular com-

pressed area extended across the block in one direction,

but not in the other. In all such instances the ultimate

resistance was a little less than in those in which the area

of compression was supported on all its sides.

The "ultimate resistance" was taken to be that pressure

which caused an indentation of 0.05 inch.

Nos. (44-5 5 ) show the effect of varying thickness of blocks.

Within the limits of the experiments, the ultimate resistance

is seen to decrease somewhat as the thickness increases.

The best series of values of the ultimate compressive re-

sistance of timbers as actually used in large pieces and for

engineering structures that can be written at the present

time is that given in Table IV.

That table shows values for railway bridges and trestles

adopted by the American Railway Engineering Associa-

tion.

As in the case of tension,the compressive resistances across

the grain are but small fractions of those with the grain.

Values are given for columns under 15 diameters in length
for the reason that such columns fail essentially by com-
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pression and without the bending which characterizes long
columns. The table is one of great practical value.

TABLE IV.

TIMBER IN COMPRESSION.

Kind of Timber.



CHAPTER IX.

RIVETED JOINTS AND PIN CONNECTION.

Art. 71. Riveted Joints.

ALTHOUGH riveted joints possess certain characteristics

under all circumstances, yet those adapted to boiler and

similar work differ to some extent from those found in the

best riveted trusses. The former must be steam- and water-

tight, while such considerations do not influence the design

of the latter, consequently far greater pitch may be found

in riveted-truss work than in boilers. Again, the peculiar

requirements of bridge and roof work frequently demand

a greater overlap at joints and different distribution of

rivets than would be permissible in boilers.

Kinds of Joints.

Some of the principal kinds of joints are shown in Figs, i

to 6. Fig. i is a
"
lap-joint" single-riveted; Fig. 2 is a

"lap-joint" double-riveted; Fig. 3 is a "butt-joint" with

a single butt-strap and single-riveted; whi 1e Figs. 4, 5, and

9 are "butt-joints" with double butt-straps, Fig. 4 being

single-riveted, while the others are double-riveted. Fig. 5

shows zigzag riveting, and Fig. 6 chain riveting. All these

joints are designed to resist tension and to convey stress

from one single thickness of plate to another. Two or

435
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three other joints peculiar to bridge and roof work will

hereafter be shown.

In the cases of bridges and roofs these
"
butt-straps"

are usually called
"
cover-plates."

Art. 72. Distribution of Stress in Riveted Joints.

Bending of the Plates.

In order that rivets, butt-straps or cover-plates and

different parts of the main plates may take their proper

stresses, an accurate adjustment of these different parts to

the external forces or loads must be attained
;
but all shop

work is necessarily more or less imperfect and the varying
stresses at different parts of the joint produce at , least

elastic deformations so that the requisite conditions for a

proper distribution of stresses as computed cannot be main-

tained. The precise amount of stress, therefore, carried

by each rivet, cover-plate or other part of the joint in-

cluding the main plates cannot be computed. By means
of reasonable assumptions, however, and by the introduc-

tion of factors or coefficients determined by the actual

testing of riveted joints, simple and sufficiently accurate

formulas for all engineering purposes may be established.

The shafts of the rivets of any joint compress or

bear against the walls of the rivet holes in the transference

of loading from one main plate to the other. This con-

dition will necessarily subject the metal on either side of

the hole and adjacent to it to a higher degree of tension

than the metal midway between two neighboring holes.

This makes the average intensity of stress over the minimum
section of either the main plate or the cover-plate materi-

ally less than the maximum intensity at or near the wall

of the rivet hole. On the other hand, the removal of the

metal for the rivet holes makes that part of the plates
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between two consecutive holes at right-angles to the direc-

tion of loading a
"
short

"
specimen with a higher ultimate

resistance than a long specimen.

Again let Fig. 8, like Fig. 2 of the preceding article,

represent a longitudinal section of a double riveted lap-

joint, the thicknesses of the two plates being t and t
r

. The
two opposite loads P would produce a bending moment
about an axis at right-angles to the plane of section of

t+t'P . Usually the two thicknesses of plate are the same
2

making t the lever arm of the couple. This moment causes

bending in the plates in the vicinity of A and B of equal
amount and the bending intensities of stresses may be com-

puted in the usual manner if the joints were not distorted

so as to change the lever arm of the couple. As the load

is increased, however, the joint tends to take the shape
shown in Fig. 9, the two plates tending to pull into the

same straight line, making it impossible to compute accu-

rately the bending moment. It is sufficient, however, to

recognize this condition of flexure in the joint.

This eccentric action of the load P produces also the

same bending moment in the rivets of the joint, in the

aggregate, as that impressed upon the plates. The assumed

bending moment carried by each rivet will be the moment
t+t'p or Pt divided by the number of rivets in the joint.

2

This bending moment is seldom or never computed for

rivets but it is always computed in the design of pins of

a pin-connected truss bridge.

For all these reasons and others shortly to be considered

it is obvious that if a riveted joint of any type be tested to

destruction, it is essentially impossible to compute accu-

rately what the intensity of stress will be in any part of

it at any stage of loading. Such tests, however, yield most
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valuable empirical quantities to be used in formulae to be

established and without which it would be essentially

impossible to design a riveted joint in a rational manner.

Although these considerations are based upon the charac-

teristics of a double-riveted lap-joint, they apply to all

riveted joints of any type whatever. If the butt-joint with

double cover-plates shown in Fig. 5 of the preceding
article be considered, it will be clear at once that if a line

be drawn centrally through the section of the two main

plates, each half of the actual joint will be divided into

two equal double-riveted lap-joints in each of which the

plates will be subjected at least approximately to the same
condition of stress as that found in connection with Fig. 9

and the bending of the rivets will be precisely the same.

There will be, however, no bending of the main plates.

The special form of joint shown in Fig. 7, which has

come to be much used, will also have its parts subjected
to the same general condition of stresses including the bend-

ing of rivets and main plates.

It is clear that the bending of the plates illustrated in

Fig. 9 will increase with their thickness.

Net Section of Plates

The net section of any main plate or cover-plate in a

riveted joint is the gross section along any transverse line

of rivets less the metal taken out by the rivet holes. In

Fig. 2 of the preceding article, the net section of either main

plate will be its gross section less three rivet holes. The
pitch p of the rivets in any transverse line of rivet holes

in a riveted joint is the distance between the centres of two
consecutive rivets as shown in Fig. 7. In the centre line

of rivets in that figure, the pitch is one-half that in the outer

line. The net section of any plate, therefore, per rivet will
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be (pd)t, d being the diameter of the rivet hole and t

the thickness of the plate. If n is the number of rivets

in one main plate and if q is the number of rows of rivets

in it, then the number of rivets in each row will be - and the
8

total net section along any transverse row of rivets will

Bending of the Rivets.

It has already been seen that the rivets of any riveted

joint are subjected to bending. It is assumed that the

t+tf
total bending moment, M=P- -orM=Pt is divided

2

uniformly among all the rivets of the joint. Hence the

bending moment to which a single rivet is subjected is

M kAd .

in which A is the area of cross section of one rivet

and k the greatest intensity of tension or compression in

the extreme fibre due to bending. By introducing in eq.

(i) the values of M already used, eqs. (2) and (3) at once

result.

if /=*',

nAd

This equation is approximate because it is virtually

assumed that the pressure on the rivet is uniformly dis-
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tributed along its axis.* This is a considerable deviation

from the truth, particularly as failure is approached. The
true bending moment is much less than that given by

eq. (i) after the rivet has deflected a little.

When the joint takes the position shown in Fig. 9, it

is clear that the rivet is also subject to some direct tension.

The Bearing Capacity of Rivets.

There is a very high intensity of pressure between the

shaft of the rivet and the wall of the hole. This intensity

is not uniform over the surface of contact, but has its

greatest value at, or in the vicinity of, the extremities of

that diameter lying in the direction of the stress exerted

in the plate. At and near failure this intensity may be

equal to the crushing resistance of the material over a con-

siderable portion of the surface of contact.

The intricate character of the conditions involved ren-

ders it quite impossible to determine the law of the dis-

tribution of this pressure. The bending of the rivets under

stress tends to a concentration of the pressure near the

surface of contact of the joined plates, while the unavoid-

ably varying "fit" of the rivet in its hole, even in the best

of work, throws the pressure towards the front portion of

the surface of the rivet shaft. The intensity thus varies

both along the axis and around the circumference of the

rivet.

If any arbitrary law is assumed, the greatest intensity
of pressure is easily determined. Such laws, however, are

mere hypotheses and possess no real value. All that can

be done is to determine, by experiment, the mean safe

* In accordance with this assumption, strictly speaking, \t (thickness of

main plate) should be taken instead of i in the sum (/-h/') in the above

formulae for bending, when applied to the double butt-joint, Figs. 5 and 6.
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working intensity on the diametral plane of the rivet which
is equivalent to a fluid pressure of the same intensity against
its shaft.

Thus, if / is this mean (empirically determined) intensity,
d the diameter of the rivet, and t the thickness of the plate,

the total pressure carried by one rivet pressing against one

plate is
'

Bending of Plate Metal in Front of Rivets.

In addition to the bending of the plates of a riveted joint

about an axis parallel to the plates and at right angles to

the direction of loading, there is further bending of the

metal immediately in front of a rivet about an axis parallel

to the axis of the rivet. If a rivet, such as A, Fig. 7, be

considered, the metal on that side of the hole nearest to

the line BC will be in the condition approximately of a beam
fixed at each end of the diameter of the hole parallel to BC,
the bearing load jdt being the load resting upon it and

assumed to be uniformly distributed over the span d.

Manifestly the depth of this beam is not uniform, but it

is assumed to have a depth h
, Fig. 7, throughout the

2

span d. If t is the thickness of the plate, p the pitch of the

rivets and T the mean intensity of tension between the

rivet holes, the load on, this beam will be (pd)Tt and the

moment of inertia of the cross-section will be

12

It will be shown in the chapter on bending that k may

here be taken at -T.
2
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In Art. 30 the moments at the centre and end of a span
fixed at each end and uniformly loaded were shown to be

T̂ of the load into the span for the end moments and ^
of the load into the span for the centre moment.

Hence, by the usual formulae,

12 HM '
'

Sd . (5)

Shearing of Rivets.

The shearing of the rivets in a riveted joint takes place

in the plane of the surface of contact between any two

plates tending to move in opposite directions. In Fig. 8

the plane of shear would be the surface of contact between

the main plates A and B, and in Fig. 7 on both sides of the

main plate, F, i.e., between the main plates E and F and

at the surface of contact between the main plate F and the

bent cover-plate D. It is assumed that the total shear is

divided uniformly between all the shear sections of the

rivets so that if n were the total number of rivets carrying

the load P and if d be the diameter of the rivet while 5 is

the intensity of shearing stress in the normal sections of

the rivets, there would result for single shear the expression

P =n. 7854^5. The rivets shown in Fig. 8 and Figs, i, 2,

and 3 of the preceding article are in single shear. If each

rivet must be sheared at two normal sections in order

that the joint may fail (by shear), as in Figs. 4, 5, and 6

of the preceding article, the rivets are said to be in double

shear. In the latter case in the preceding expression 2n

must be written for n for all rivets in double shear. In
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Fig. 7 the two lower rows of rivets are in double shear and

the upper row in single shear.

In Fig. 8 and in Figs. 5 and 6 of the preceding article,

each row of rivets is assumed to take half the total load

carried by the joint. That condition, if the cover-plates of

Figs. 5 and 6 are of half the thickness of the main plates,

makes the intensity of stress the same in the main plate

and in the two covers between the two rows of rivets on

either side of the joint. If, however, the thickness of the

cover-plate is greater than one-half the thickness of the main

plate, as is always the case in such joints, then if each row

of rivets carries half the load, the intensity of stress in the two

covers between each two rows of rivets will be less than in

the main plate causing the rate of stretch in the latter to be

greater than in the former. This condition, would throw

more than half the load, as shear, on the outer row of rivets.

In other words, the tendency will be to make the stretch

of the plates within the joint added to the distortion due

to bending and shearing of the rivets equal to each other

between each pair of rows of rivets parallel to the joint

line between the main plates. If again there are three or

more rows of rivets on either side of an abutting joint,

there will be a corresponding tendency to overload the

outer rows of rivets and relieve those nearest the centre

or abutting line of the joint. There are further conditions

in addition to those already discussed, militating against

perfect uniformity in the stress conditions of the complete

joint. It is impossible, however, to make allowance for

these complicated and more or less obscure stress con-

ditions in the operations of design or development of

formulae. Hence, as already indicated, the usual assump-
tions of uniformity in the three principal methods of failure

of riveted joints are made leaving the working stresses to

be determined by the results of tests of actual joints.
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Art. 73. Diameter and Pitch of Rivets and Overlap of Plate.

Distance between Rows of Riveting.

Diameter of Rivets.

The diameter of rivet may at least approximately be

expressed in terms of the thickness of the plate which it

pierces. There are various arbitrary or conventional

rules based upon this method of determining the rivet

diameter. If the unit is the inch, the diameter d may be

expressed as ranging between the two following values

for ordinary thicknesses of plate:

d = -7$t + .375,)

-375, I

in which t is the thickness of the plate. Unwin gives the

following expression for the diameter of somewhat different

i'orm from that which precedes:

d = i.2VT. ...... (2)

Neither of the preceding expressions can be applied
for all thicknesses of plates. If the thickness is great,

those expressions make the diameter of the rivet too large,

the diameter rarely exceeding i inch even for the heaviest

plates. The application of eq. (i) to different thicknesses

of plates will give the following diameters of rivets ex-

pressed by the nearest TV in. :

/ d

i in. T
9
B in.

I i

i I

f if

i

* it

i iA
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In structural work for ordinary thicknesses of metal
the prevailing diameters of rivets are f in. and f in. For

light work, such as sidewalk railings or light highway
construction, rivets as small as J in. or f in. in diameter
are used. On the other hand, i to if-inch rivets are

employed for specially heavy sections.

Pitch of Rivets.

It is possible to determine the pitch of rivets approxi-

mately by an equation expressing equality between the

tensile resistance of the net section between two adjacent
rivets and the shearing or bearing capacity of a single rivet,

but it is scarcely practicable to proceed in that manner
as a rule. Again, the pitch will vary to some extent with

the number of lines of riveting on either side of the joint.

In single-riveting the pitch must be less than in double-

or other multiple-riveting. In boiler or other similar

riveting, also, the pitch must be usually less than in struc-

tural work, as questions of steam- and water-tightness or

other similar considerations are involved in the former

class of joints. Finally, the pitch will also obviously

depend largely upon the thickness of plates. In single-

riveting for comparatively thin plates the following rela-

tion may be taken, p being the pitch in inches :

/?
=

1.75 in. to 2.25 in (3)

For comparatively thick plates in single-riveting the follow-

ing relation may holil:

= 2.375 in. to 3 in (4)

In double-riveting, p and / still being the pitch and thick-

ness respectively, the following relation may be taken for

comparatively thin plates:
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=2.6875 in. to 3.25 in (5)

Again, for comparatively thick plates in double-riveting,

=3-375 in. to 3.75 in (6)

The values given by eqs. (3) to (6) are for boiler or

other similar work.

In structural work the pitch of rivets is seldom less than

about three times the diameter of the rivet, and it is fre-

quently specified not to exceed sixteen times the thickness

of the thinnest plate pierced by the rivet.

Overlap of Plate.

The overlap of a plate, h in Fig.. 2, Art. 71, in a riveted

joint is the distance from the edge of the plate to the centre

line of the nearest row of rivets. This distance, like other

elements of riveted joints, will depend somewhat upon
the thickness of the plate as well as the diameter of rivet

and other similar considerations. It is a common practice

to make the overlap not less than about 1.5^, d being the

diameter of the rivet. Occasionally in riveted joints it

is made a little less, but i . 5 times the diameter of the rivet

is about as small as the overlap should be made. Some-

times J in. is added to the preceding value of the overlap.
The width of overlap (h) may also be determined in

terms of d by the aid of eq. (u) of Art. 72. Since the load

on the rivet is represented by (p d)Tt, p must be taken

in terms of. d for a single-riveted joint, in which p = 2^d to

i\d. As a margin of safety, and as it will at the same
time simplify the resulting expression, let p =$d.

Eq. (5) of Art. 72 then gives, in confirmation of the

preceding rule, /* = i. 3 id* (7)

*In consequence of the direct tension in the metal on either side of the

rivet this value of h should be increased, i.e., to perhaps 1.5^.
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Experience has shown that this rule gives ample strength,
and is about right for calking in boiler joints.

It is to be remembered that the preceding conventional

rules for the diameter of rivet, pitch, and overlap of plate

are necessarily to a large extent conventional or approxi-

mate, and in special cases they cannot be applied with

mathematical exactness. As practical rules, however,

they are sufficiently close to give good general ideas of

those features of riveted joints.

Distance between Rows of Riveting.

The distance between the rows of riveting is not .susceptible

of accurate expression by formulas, although the considera-

tions involved in the establishment of eq. (n) of Art. 72

would lead to an approximate value. It is evident, how-

ever, that this distance should never be as small as h.

Apparently, in more than double-riveted joints, this dis-

tance should increase as the centre line of the joint is

receded from, in consequence of the bending action of the

rivet. There are other reasons, however, besides that of

inconvenience, why such a practice is not advisable.

In chain riveting the distance between the centre lines of

the rows of rivets may be taken equal to the pitch in a single-

riveted joint, or, as a mean, at 2.5 the diameter of a rivet.

In zigzag riveting (Fig. 5) this distance may be taken at

three quarters its value for chain riveting.

Art. 74. Lap-joints, and Butt-joints with Single Butt-strap for

Steel Plates.

A butt-joint with single butt-strap, similar to that shown

in Fig. 3, Art. 71, is really composed of two lap-joints in

contact, since each half of the butt-strap or cover-plate
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with its underlying main plate forms a lap-joint. It is

unnecessary, therefore, to give it separate treatment.

From these considerations it is clear that the thickness

of the butt-strap or cover-plate should be at least equal to

that of the main plate ;
it is usually a little greater.

Let t= thickness of plates;

d = diameter of rivets
;

p= pitch of rivets (i.e., distance between centres

in the same row) ;

T = mean intensity of tension in net section of plates

between rivets;

T'=mean intensity of tension in main plates;

/
= rnean intensity of pressure on diametral plane

of* rivet
;

5=mean intensity of shear in rivets;

n = number of rivets in one main plate ;

q = number of rows in one main plate ;

h=\ap as shown in Fig. 2, Art. 71.

If all the dimensions are in inches, then T, T f

, f, and 5
are in pounds per square inch.

The starting-point in the design of a joint is the thickness

t of the plate. The rivet diameter may then be expressed
in terms of t, and the pitch in terms of the diameter. Such

rules, like those given in Art. 72, may be useful within

a certain range of application, but they cannot be depended
upon in all cases.

The thickness t of boiler-plate depends upon the internal

pressure, and is to be determined in accordance with the

principles laid down in Art. 39, after having made allowance

for the metal punched out at the holes to find the net

section.

In truss work the thickness depends upon the amount
of stress to be carried, and the same allowance is to be

made for rivet-holes in finding the net section.
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The relation existing between T and Tf
is shown by the

following equations:

or

_fci*-i
d

T P f

In order that the joint may be equally strong in refer

ence to all methods of failure, the following series of equali

ties must hold:

-tpT'=-t(p

.'. tpT' =t(p-d)T=qfdt = 0.7854^5. . . (2)

It is probably impossible to cause these equalities to

exist in any actual joint, but none of the intensities T', T,

/, or 5 should exceed a safe working value.

The method of failure by tearing through the gross

section of the main plate is practically impossible under

ordinary circumstances, and it is neglected in designing

riveted joints. This neglect is expressed by dropping
the first member of eq. (2) and thus reaching eq. (3) :

..... (3)

This equation shows that the usual design of a riveted

joint must provide against failure in three principal ways :

1. Tearing through the net section of the plate.

2. Compression of the metal where the rivets bear against

the plate.

3. Shearing of the rivets.

Although these are the three principal methods of
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failure of riveted joints, whatever may be their type or

form, the proper design of such joints should be so per-

formed as to afford provision also against the secondary

stresses caused by rivet bending, bending of the plates, and

other indirect influences discusssd in preceding articles.

This latter end is attained by determining the empirical

intensities T, /, and 5 of eq. (3) by testing to failure actual

riveted joints in which those secondary stresses exist. In

that manner the design against the three principal methods

of failure, described above, will also afford provision against

the secondary or indirect stresses of rivet and plate bend-

ing or other similar conditions. The determination of the

intensities T, /, and 5 by tests of actual riveted joints will

be fully shown in the following articles.

It may be stated here, however, that an approximate
relation between the ultimate intensities of resistance to

shear and tension for steel has been used in engineering

practice in accordance with which

S = .7$T...... , . (4)

It will be found hereafter that / may be taken at least

1.25 T. If these values be substituted in the third and

fourth members of eq. (3) in which q
=

2, there will result

...... (5)

This value of d is too large for thick plates.

The rivet diameter, therefore, for steel plates may be said

to vary from 2t for thin plates to i.6t for thick ones, with

a maximum diameter of ij to i^ inches. The distance

between the centre lines of the rows of rivets may be taken

at 2.5^ to ^d for chain riveting and three fourths of that

distance for zigzag riveting.

The best designed single-riveted lap-joints give from

55 to 64 per cent, the strength of the solid plates.
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Well-designed double - riveted lap
-
joints should give

Irom 65 to 75 per cent, the resistance of the solid

plate.

Equally well-constructed treble- and quadruple-riveted

joints should have an efficiency of 70 to 80 per cent, of the

solid plate.

It is therefore seen that there is little economy in more

than double-riveting ordinary joints.

Art. 75. Steel Butt-joints with Double Cover-plates.

Butt-joints with double butt-straps or covers differ in

two respects, and advantageously, from lap-joints and butt-

joints with a single cover; i.e., in the former the rivets are

in double shear and the main plates are subjected to no

bending. The cover-plates, however, are subjected to

greater flexure than the plates of a lap-joint, for there is

no opportunity to decrease the leverage by stretching. As
the covers form only a small portion of the total material,

these, with economy, may be made sufficiently thick to

resist this tendency to failure.

Let t
r = thickness of each cover-plate ;

and let the re-

maining notation be the same as in Art. 74. The intensity
of compression between the walls of the holes in the cover-

plates and the rivets, and the tension in the former, will

be ignored on account of the excess in thickness of the two

cover-plates combined over that of the main plate. This
excess in thickness is required on account of the bending
in the covers noticed above.

The thickness of each cover should be from f to f the thick-

ness of the main plates, or t' =.625 to .875^.

The combined thickness of the covers will thus be from

1.25 to 1.75 that of the main plates.
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The four principal methods of rupture in the main plate

will then lead to the following equations, corresponding to

eq. (2), Art. 74:

-t(p-d)T=nfdt

. . . (i)

As in Art. 74, and for the reasons there given, the first

member of eq. (i) may be omitted, thus giving

t(p-d)T=qfdt = i.$>jo&qd
2S..... (2)

Tests of steel butt-joints with double cover-plates as

well as other tests in bearing and tension in net section of

plates make it reasonable to take /= 1.257, with T having
values from 55,000 to 60,000 pounds per square inch for

thick plates to perhaps 65,000 to 70,000 pounds per square
inch for thin plates.

With this value of /, and q
=

2, the first and second

members of eq. (2) give for double-riveted butt-joints with

two covers;

P=3-$d . . ..... (3)

If the same value of / be preserved, there will result for

single-riveted butt-joints with two covers

(4)

If, as in the preceding article, there be taken 5 = .

and /
= 1.257, the second and third members of eq. (2)

give

d = i.o6t...... ... (5)

This value of the rivet diameter is too small for thin plates,

but about right for thick plates.
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Double-riveted butt-joints designed in accordance with

the foregoing deductions should give a resistance ranging
from 65 to 75 per cent, of that of the solid plate.

Single-riveted joints will give an efficiency somewhat

less; perhaps from 60 to 65 per cent.

It is to be supposed, in applying the rules just established,

that all steel plates are drilled or punched and reamed.

As in the preceding cases, the distance between the

centre lines of the rows of rivets may be taken at 2.5 to $d
for chain riveting, and three quarters that distance for

zigzag.

Art. 76. Tests of Full-size Riveted Joints.

There have not been many tests of full-size riveted

joints of either iron or steel, and those which have been

made seldom include such heavy steel plates as are now

frequently employed both in boiler work and for structural

purposes. The most valuable tests avai 1 able and with the

greatest range in size of r vet and thickness of plate are

those which have been made at the U. S: Arsenal, Water-

town, Mass. The results shown in Table I were taken
from "Senate Ex. Doc. No. i, 47th Congress, 2d Session,"
while those in Table II are taken from "

Senate Ex. Doc.
No. 5, 48th Congress, ist Session." The results shown in

Table III are from the same source and are given in the
"U. S. Report of Tests of Metals and Other Materials"
for 1896. The character of plates, rivets, and holes is

shown in the tables, and the intensities of tension in the
net sections of plates, compression or bearing on diametral

surface, and shearing on rivets are those which existed at

the instant of failure. The bold-face figures show the
kind of failure, and when such figures are found, for the
same test, in two or three columns, they show that the

same two or three kinds of failure took place simultaneously.
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RIVETED JOINTS IRON AND STEEL.
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TABLE II.

RIVETED JOINTS IRON AND STEEL.
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The length of these test joints varied from 9.75 to 13

inches for Tables I and II, and from 10 to 27 inches for

Table III.

Although the results of these tables are somewhat

irregular, they confirm the general accuracy of the relations

established between the values of T, /, and 5 in the pre-

ceding articles, as well as other general rules and conclu-

sions for boiler work.

Some efficiencies are lower than those given for similar

joints in Art. 94, but such instances can, by the aid of the

tables, be traced either to indifferent design or a phenome-

nally low value of some one of the three resistances. In

general the results compare well with those given in that

article.

The pitches of rivets are seen to be adapted to boiler

work, being much less than are ordinarily used in bridge

work; yet the corresponding resistances show what may
legitimately be done and expected when unusual condi-

tions demand a departure from ordinary rules.

Before deducing working intensities for bridge con-

struction from the preceding results it is to be first ex-

plained that those results are as given in the government

reports, and that the net section used is the gross section

of the plate, less the actual metal removed by the punch or

drill, with no allowance for deterioration by the former in the

immediate vicinity of the hole. Again, in Tables I and II

the diametral bearing surface and the shearing area of the

rivet are taken to be those of the drill, or a mean between

the punch and die in case of punched holes. In bridge

work, in determining the net section, metal is deducted

for a diameter equal to that of the cold rivet before driving

plus one eighth of an inch
;
and the shearing and bearing

are computed for the section and diameter of the cold rivet

before driving.
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TABLE III.

TESTS OF STEEL-RIVETED JOINTS; HNCH PLATES.
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resistance for them is appreciably less than for the thin

plates used in most of the preceding tests.

The preceding working stresses aie based on steel for

rivets giving from 56,000 to 64,000 pounds per square inch

tensile resistance, while the steel for plates, in test speci-

mens, should offer from 58,000 to 66,000 pounds per square
inch ultimate tensile resistance.

In the government report from which Table I is ab-

stracted, can be found a large number of tests made for

the purpose of determining the proper minimum distance

from the centres of rivet-holes to the edge of plates. As
a result of those tests and other experience on the same

subject, it may be stated that the least distance from the

centre of a rivet-hole to the edge of a plate may be taken

at one and one half the diameter of the hole for
. steel and

one and five eighths the diameter of the hole for iron, in

cases where it is important to secure the maximum resist-

ance of the joint.

Efficiencies.

The values of the quantity which has been termed the
'

efficiency
"

of the joint, i.e., the ratio of the resistance of a

given width of joint over that of an equal width of solid

plate, in the preceding investigations, are those actually
determined by experiments with the joints themselves.

They may, therefore, be relied upon. Some values which
have for many years been considered as standard, but
which in reality are of a somewhat arbitrary nature, and
at best belonging to a limited class of joints, have been
disregarded.
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The tests of full-size wrought-iron and steel-riveted

joints exhibited in Art. 76 show, as a rule, that thin plates

give materially higher efficiencies than thick plates. Al-

though there are irregularities, single-riveted lap-joints may
yield efficiencies running from 50 to 74 per cent, for |-inch

plates, but dropping to 50 to 54 per cent, for f-inch plates

and materially lower for ^-inch plates. On the whole,

the double-riveted lap-joints show somewhat higher effi-

ciencies than the single-riveted, but not quite the same
relative differences between J-inch and f-inch plates, the

values being found more generally between about 60 and
80 per cent.

The single-riveted butt-joints of Table II, Art. 76,

give efficiencies ranging from about 52 to 72 per cent.

Some unusually high efficiencies are found in Table III

of the same article for butt-joints, i.e., about 78 to 90 per
cent. Those high values are due to the special design of

the joints, and they cannot ordinarily be attained in prac-

tice, but they show that well-considered designs will yield

greatly increased efficiencies.

In general, efficiencies running from 65 to 70 per cent,

may be considered excellent for the usual conditions of

practice.

Art. 77. Tests of Joints for the American Railway Engineering

and Maintenance of Way Association and for the Board of

Consulting Engineers of the Quebec Bridge.

In
"
Proceedings of the American Railway Engineering

and Maintenance of Way Association," Vol. 6, 1905, there

are given the results of a series of tests of carbon-steel riveted

joints and a duplication of that series of tests in both nickel

and chrome-nickel steel made for the Board of Consulting

Engineers of the Quebec Bridge by Profs. Arthur N. Talbot
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and Herbert F. Moore of the University of Illinois, also fully

described in Bulletin No. 49 (1911) of that institution.

There were 144 joints tested in the latter two series.

Furthermore, there were tested in alternate tension and

compression 16 other nickel-steel joints and the same

number of chrome-nickel steel joints.

All the main plates of these joints were 6.5 inches or

7.5 inches wide with thicknesses from f inch to f inch

except the 32 joints subjected to compression, for which

the plates were 2 inches thick. There were 24 lap joints,

the same number of butt-joints with double covers or butt-

straps and an equal number each of the same type of

joint with one filler and two fillers on each side of both

main plates. The remaining joints for tension loads only

(yixf-inch main plates), with the exception of two sets of

eight each, were also made with one or two fillers, but the

latter extended beyond the end of the cover far enough to

take one rivet.

All rivets were f-inch in diameter, and those driven by
a hydro-pneumatic riveter were called

"
shop

"
rivets while

those driven by a hand-pneumatic riveter were designated

TABLE I.

CHEMICAL COMPOSITION OF RIVET AND PLATE MATERIAL

Element.
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TABLE II.

PHYSICAL PROPERTIES OF RIVET AND PLATE MATERIAL
All stresses in pounds per square inch.

Item.
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The shearing of the rivets caused the failures of all the

nickel-steel and chrome-nickel steel joints.

The "
carbon steel

"
used in the American Railway Engi-

neering and Maintenance of Way Association tests was low

basic open hearth material conforming to the specifications

of that Association. Some of these joints failed by the

yielding of the plates but the greater part of them failed

by the shearing of the rivets and the results are all given

in terms of the maximum shearing stress in the rivets at

the instant of failure.

The lower values in the ultimate and final shear

stresses in these series of tests belong to the longer rivets,

i.e. to the joints in which fillers were used. This was to

be expected in consequence of the increased bending in

those rivets. Indeed, these tests indicate that with ordi-

nary thicknesses of plates the carrying capacity of the

rivets begins to be seriously affected when the
"
grip

"
of

the rivets, i.e. the aggregate thickness of piates pierced by
them, exceeds about four diameters. It should be stated,

however, that this depends much upon the design of the

joint.

Friction of Riveted Joints.

Careful observations were made by Profs. Talbot and
Moore as well as in the tests of joints for the American

Railway Engineering and Maintenance of Way Association

to determine the friction of riveted joints which experienced

engineers have long known to exist. These observations

indicate that a material slipping of the plates took place in

some of these joints when the shearing stress in the rivets

was not greater than about 6,000 pounds per square inch.

In other cases this slipping took place when the rivet shear

was as high as 15,000 pounds per square inch. It was
observed, as might be anticipated, that the quality of the
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material of the joints had little effect upon the degree of

stress at which slipping began. The results were about

the same for the low carbon steel joints as for the chrome-

nickel steel joints. As might be expected in a well-pro-

portioned joint, the friction between the plates depends

upon the force with which they are held in contact by the

rivets. The motion of the plates is obviously due to the

fact that the shaft of the rivet in cooling contracts more
than the comparatively cool plate around it leaving a small

annular space between the rivet and the wall of the hole.

As the load on the joint increases a degree of direct stress

of tension (or of compression in joints under compression)
is reached at which the plates slip on each other bringing
the rivet shafts successively, or more or less simultaneously,
in contact with the bearing side of the hole.

After the load increases still more, a higher stage of

stress is reached at which the yield point of the joint is

found when relatively rapid distortion takes place. As an

average the yield point of the nickel steel joints was found

at an intensity of shearing stress in the rivets of about

35,000 pounds per square inch and not much different from

that for the chrome-nickel steel joints. Material bending
of the rivets appears to be an influential element in the

increased deformation at the yield point of a joint and it

is reasonable to suppose that, other things being the same,

the longer the rivets the lower will be the degree of stress

at which the yield point is found, although it is doubtful

whether the rivets are long enough in the well-designed

riveted joints of good engineering practice to show much
effect upon the yield point. Profs. Talbot and Moore

state that
" The ratio of the yield point of riveted joints

to ultimate shearing strength in these tests was about the

same as the ratio of the yield point of the plate material in

tension to the ultimate tensile strength of the plate material."
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The results obtained from the joints tested in alternate

tension and compression were not markedly different from

those obtained in tension. The yield point seems to be

slightly lowered after a few alternations of tensile and com-

pressive loads. If these alternations took place rapidly,

doubtless the joints would show much diminution of re-

sisting capacity but the actual alternations were few in

number and not rapidly made.

These tests show that the friction between plates of a

riveted joint cannot properly be considered as enhancing
the resisting capacity. Furthermore, this slipping has a

direct bearing upon the computations of secondary stresses

in trusses with riveted connections. The corresponding
deformation may militate materially against the accuracy
or reliability of such computations.

Art. 78. Riveted-truss Joints.

The circumstances in which riveted joints are used in

truss work render permissible many special forms which

OO
oo

FIG. i.

can find no place in boiler-riveting. If joints are found
under the same circumstances, as far as the transference

of stress is concerned, precisely the same forms would be

used, except that calking is, of course, only required in

boiler work.
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Fig. i shows a common form of chord construction in

riveted-truss work,with the relative proportions exaggerated.
The lower portion of the figure shows M N

a section of the chord in which the cover-

or splice-plate is shaded. The joint is

supposed to be in tension.
v^^^

In this form of joint the splice-pla*te d

material is reduced to a minimum. These
(j

are, in reality, two lap-joints CD and DE
with the two plates C and E to be spliced. C

In each lap-joint there should be sufficient

rivets determined by the methods of Art. 74. The splice-

plate AB should be long enough to give the requisite plate
AC to the left of C, with the same length from B to a point

vertically over E.

In most cases one or two plates only should be spliced

at the same point.

The joint in the vertical plate should be formed as at

FG\ i.e., it should be a double-cover butt-joint. The

principles already established in a preceding section, in

regard to the thickness of covers and diameter of rivets,

should be observed here.

The two or more full rows of rivets on either side of the

joint may as well be chain-riveted with a pitch of 3 J to 4

diameters. Other rivets should then be staggered in until

the group of rivet centres on each side is brought to a point,

as shown in the upper part of Fig. i. In this manner the

available section of a width of plate equal to that of the

cover becomes approximately equal to the total, less the

material from one rivet-hole. Hence the efficiency of the

joint becomes correspondingly increased.

If the joint is in compression the preceding observa-

tions hold without change, except that all covers should

have the same thickness as the plates covered.
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Even if the joints C, D, E, and H are of planed edges,

little or no reliance should be placed upon their bearing on

each other, since the operation of riveting will draw them

apart more or less, however well the work may be done.

Unless great caution is observed and excellence of design

secured, there will frequently be excessive bending in the

riveted joints of truss work, on account of the great variety

of connections required.

Diagonal Joints.

Diagonal riveted joints have from time to time been

proposed, the line of the joint making an angle of perhaps

45 to the line of action of the loading. Such joints

when properly designed have high efficiencies for the reason

that a normal section of the joint taken anywhere within

its extreme limits will lie wholly within the main plates

except at the point where the oblique joint line cuts it. In

designing such a joint, however, the rows of rivets should be

placed parallel to the joint line and extend across the entire

main plates, or some other arrangement may be employed
which will make the centre of gravity of the group of rivets

on the two sides of the joint lie in the centre line of the

main plates or other connected members. If this con-'

dition is not attained, there will be eccentricity of the

aggregate resistance of the rivets on either side of the joint

line resulting in serious bending about an axis perpendicular
to the main plates. The added cost of this type of joint

and the inconvenience of its use in many cases prohibits

its general employment as a detail in riveted structural

work.

Riveted Joints in Angles.

It has been found by tests of full-size angles that if a

riveted joint be formed by riveting one leg only, the ulti-
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mate tensile resistance per square inch of the net angle
section may be but 75 per cent, of the ultimate tensile

resistance of test specimens cut from the same angle. On
the other hand, if both legs are riveted the ultimate, tensile

resistance per square inch of the net section may easily

be 90 per cent, of the ultimate resistance of test specimens
cut from the same angle. These results show that both

legs of angles should always be riveted at joints.

Hand and Machine Riveting.

The development of the pneumatic and other power
riveters for both shop and field purposes has practically

eliminated hand riveting from all structural work except
in rare cases. When hand riveting was done its inferiority

to power riveting was recognized by specifying that at

least one-third more rivets should be used when they were

driven by hand.

Art. 79. Welded Joints.

Welded joints, as a rule, have never been permitted in

first class structural work. Fairly good joints of that type,

however, were made where necessary in wrought iron, but

it is difficult, if not essentially impossible, to make a satisfac-

tory weld in structural steel by ordinary procedure. In cases

where welding of steel is done, some method is necessary
in which the metal at the weld is brought into a state of

fusion for a material depth. The thermit and other proc-

esses accomplish satisfactory welded joints in both steel

castings and rolled bars for many purposes although they
are not used in structural work.

Art. 80. Pin Connections.

A pin connection consists of two sets of eye-bars or links,

through the heads at one end of each of which a single pin
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passes. Fig. i shows a pin connection; A, A, B, B\ are

eye-bars or links, and P is the pin.

FIG. i.

The head of the eye-bar (one is shown in elevation in

Fig. 2) requires the greatest care in its formation. It is

imperfect unless it be so proportioned that when the eye-bar
is tested to failure, fracture will be as likely to take place
in the body of the bar as in the head

;
in other words, unless

its efficiency is unity.

In Fig. 2 the head of the eye-bar, or link, is supposed

FIG. 2.

to be of the same thickness as that of the body of the bar
whose width is w.

If t is the thickness of the bar so that wt is the area of

its normal section, then t is generally included between the
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limits of \w and \w for ordinary sizes of eye-bars. These

limits, however, are exceeded both for the smaller sizes used

and the larger sizes. A bar for which w=$ inches, may
have a thickness, of if inches, while the maximum thickness

of a bar 16 inches wide may be no 'more than 2 inches.

Similarly the minimum thickness of a 3 -inch wide bar may
be | inch while the least thickness of a 1 6-inch wide bar

may be taken at i f inches or t = %w.

In the early days of eye-bar manufacture earnest efforts

were made to analyze the complicated condition of stresses

in the eye-bar head so as to give it a rational outline, and

an approximate treatment of the problem may be found in

the
"
Trans. Am. Soc. of Civ. Engrs." Vol. VI, 1877, the

results of which agree essentially with those of experi-

ment.

After much experimenting, including the thickening of

the head, it has for many years been the practice to make
the heads of eye-bars circular in outline as shown in Figs.

i and 2 . In Fig. 2 the front part of the head NBM is a

semicircle and it is extended on both sides to the left of

NM so as to be tangent to the circular curves of the neck

drawn with the radius equal to the width d of the entire

head. The latter curves are also tangent to the body of the

bar as shown at H.

The head is formed by heating the end of'the bar to a

white heat, then upsetting it in a properly-formed die as

closely as possible to the finished shape. A little finishing

work is then usually done under a power hammer or between

rolls. The head is seldom thicker than the body of the bar.

The normal section of the head taken through the centre

of the pinhole is usually from 35 per cent, to 40 per cent,

in excess of the section of the bar. All steel eye-bars are

thoroughly annealed after the completion of manufacture

so as to remove all internal stresses in the head and any
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undue hardness that may have been acquired during that

process.

The diameter of the pin should never be less than about

80 per cent, of the width w of the- bar, and it may be from

if to i\ times that width, the greater of those factors be-

longing to bars of small width and the smaller to bars of

the greatest width used.

In pin connections the pin is subjected to heavy bend-

ing for which it is carefully designed as well as for the shear

in its normal section and for the bearing or compression
between it and the pin hole. The pin and the pin hole

are accurately machine finished, the diameter of the latter

being from perhaps T ^7 inch (for the smallest pins) to -^

inch (for the largest pins) greater than the former.

If M is the bending moment to which the pin is sub-

jected, k the greatest intensity of bending stress devel-.

oped, and A the area of the normal section of the pin, eq.

(4) of Art. 90 gives

M =k 4^ =o.ikd* (nearly), . . . . (i)
o

or

(2)

Values of k, for circular sections, may be found in

Art. QO.



CHAPTER X.

LONG COLUMNS.

Art. 81. Preliminary Matter.

THERE is a class of members in structures subjected to

compressive stress which do not fail entirely by compression.

The axes of these pieces coincide, as nearly as possible, with

the line of action of the resultant of the external forces,

yet their lengths are so great compared with their lateral

dimensions that they deflect laterally, and failure finally

takes place by combined compression and bending. Such

pieces are called
"
long columns," and the application to

them, of the common theory of flexure, has been made in

Art. 35.

Two different formulae were first established for use in

estimating the resistance of long columns
; they are known

as "Gordon's Formula" and "Hodgkinson's Formula/'

Neither Gordon nor Hodgkinson, however, gave the original

demonstration of either formula.

The form known as Gordon's formula was originally dem-
onstrated and established by Thomas Tredgold (''Strength
of Cast Iron and other Metals," etc.), for rectangular and
round columns, while that known as Hodgkinson's formula

(demonstrated in Art. 35) was first given by Euler.

In 1840, however, Eaton Hodgkinson, F.R.S., published
the results of some most valuable experiments made by

474
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himself on cast and wrought-iron columns (Experimental
Researches on the Strength of Pillars of Cast Iron, and
other Materials; Phil. Trans, of the Royal Society, Part II,

1840), and from these experiments he determined empirical
coefficients applicable to Euler's formula, on which account

it has since been called Hodgkinson's formula.

Prof. Lewis Gordon deduced from the same experiments
some empirical coefficients for Tredgold's formula, since

which time Gordon's formula has been known.
The latter has been quite generally used, but it has

lately been largely displaced by the straight-line formula
to be given later. Hodgkinson's coefficients and formula

have now been abandoned.

Before taking up the subject of long columns it is

desirable to establish some important" properties of the

moments of inertia of surfaces used in the analytic treat-

ment of long columns and in some problems of flexure.

It will also be both convenient and important to de-

termine the conditions which ex-

ist with an isotropic character of

section in respect to the moment
of inertia.

In Fig. i let BC be any figure

whose area is A, and whose cen-

tre of gravity is at 0. In the

plane of that figure let any arbi-

trary system of rectangular co-

ordinates X'
',
y be chosen and let XY be any other

system having the same origin ; also, let #', y
f and x, y be

the coordinates of the element D of the surface A in the

two systems. There will then result

x=xf cos a+y sin a,

y=y* cos a %' sin a.
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The moments of inertia of the surface about the axes y and
x will then be

1 x2dA = cos2 a \ oc'
2dA + 2 sin a cos a ( x'y'dA +

sin 2

ajy
2<M, . . . . (i)

J y
2dA = cos2

oj /
2<M 2 sin a cos a( x'y'dA+

sin2 ajV
2<M ..... (2)

If A; and y are to be so chosen that they are principal

axes, then must JxydA =o, or

o = JxydA =sin a cos afy'^dA + (cos
2 a sin2

a)fx'y
rdA

sin a: cos ajx
f2dA

; (3)

.'. tan 2 a .

fx'
2

dA-fy'
2dA

Hence, since tan 2a = tan ( 180 + 2 a), there will always

be two principal axes 90 apart.

Now, if fx'y'dA =o, while no other condition is imposed.

tan 2a=-o. This makes a=o or 90; i.e., X'Yf are the

principal axes.

If, however, (x'y'dA =o, while a is neither o nor 90,

eq. (3) becomes

or

o
tan 2a =-, i.e., indeterminate.

o
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This shows that any axis is a principal axis
; also that

fx'dA
=
fy

2dA =
fx'

2dA =
fy'

2dA.

Hence the surface is completely isotropic in reference to

its moment of inertia, or its moment of inertia is the same
about every axis lying in it and passing through its centre oj

gravity.

It has been seen that this condition exists where there

are two different rectangular systems, for which

fxydA
=
fyfydA

= o
;

but the first of these holds true if either x or y is an axis of

symmetry, and the latter if either x' or y' is an axis of sym-
metry.

Hence, if the surface has two axes of symmetry not at right

angles -to each other, its moment of inertia is the same about all

axes passing through its centre of gravity and lying in it.

Eqs. (3) and the two preceding it also show that the

same condition obtains if the moments of inertia about four
axes at right angles to each other, in pairs, are equal.

In the case of such a surface, therefore, it will only be

necessary to compute the moment of inertia about such an
axis as will make the simplest operation.

Principal Moments of Inertia.

If the moments of inertia I' about the axis of Y' and
I" about the axis of X' be expressed in terms of the prin-

cipal moments /i about the axis of Y and I2 about the

axis of X, eqs. (i) and (2) will give by simply changing the
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primes from the second to the first members of the equa-
tions

;

= /' =Ii COS 2a+I2 Sin2 a. . . . (4)

fy'
2dA 1" =I2 cos2 a+Ii sin2 a. . . . (5)

If the principal moments of inertia I\ and 12 are known

eqs. (4) and (5) show that the moments T and I" about

any axes making the angle a with the principal axes may
at once be computed.

Adding eqs. (4) and (5) ;

r+I"=Ii+l2=I (Polar moment).. . . (6)

Hence the sum of the two moments of inertia about any
two axes at right angles to each other is constant and equal

to the polar moment of inertia.

If the second members of eqs. (4) and (5) be divided by
the area A of the cross section, and if the radii of gyration

be represented by r'
,
r"

, r\ and r2 ;

r'
2 =ri2 cos2 +r 2

2 sin2 a. . . . ... .
( 7 )

in2 a. . % \ .

~

:,-

'

. (8)

Each of eqs. (7) and (8) is the equation of an ellipse in

which ri is the semi-axis in the direction of the coordinate

axis X and r 2 is the semi-axis of the ellipse in the direction

of the coordinate axis Y, while r' and r "are two semi-

diameters OD r and OD, all as shown in Fig. 2.

If eqs. (7) and (8) be added, eq. (9) will result;

. ;.. . . . (9)

This equation is the expression of one characteristic of

the ellipse, viz., the sum of the squares of any two conjugate
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semi-diameters is equal to the sum of the squares of the

two semi-axes. The two radii of gyration therefore about

any two inertia axes at right angles to each other, except

FIG. 2.

the principal axes, are semi-conjugate diameters of the

ellipse.

Eqs. (7) and (8) are precisely the same in character as

eq. (3) of Art. 9 and the ellipse of Fig. 2 is constructed pre-

cisely as was the ellipse of stress. The two principal radii

of gyration r\ and r2 are represented by the semi-axes OA
and OB, while the semi-conjugate diameters OD' and OD
represent the radii of gyration r' and r" taken about any
two axes at right angles to each other, represented by ON
and ON'. The construction lines of Fig. 2 show how the
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ellipse is constructed from eqs. (7) and (8), precisely as

was the ellipse of stress in Art. 9.

If it is desired to find the radius of gyration about any
axis, as the semi-diameter OQ, the construction of the

ellipse shows that it is only necessary to describe the two
circles with radii r\ and r^ as shown in the figure, then

erect ON perpendicular to OQ and draw the horizontal and
vertical lines respectively from N and K to their intersection

D on the ellipse. The semi-diameter OD will be the radius

of gyration desired and its direction on the figure of the

cross-section to which it belongs will obviously be ON, i.e.,

at right angles to OQ.
It is a well-known property of the ellipse that the

square of the perpendicular p drawn from the center to

the tangent to the curve, if the inclination of that per-

pendicular to the semi-axis is a, is
;

2 =ri 2 cos2 a+r2
2 sin2 a. . . . (10)

This value of p
2 is precisely the same as r'2 in eq. (7)

and it shows that the radius of gyration OR =OD about

any semi-diameter OQ considered as an inertia axis is equal
to the normal distance between that semi-diameter and the

parallel tangent RL''. This simple result finds an import-
ant application in the problem of the flexure of a beam of

unsymmetrical cross-section.

This same normal distance between a semi-diameter

of the ellipse and the parallel tangent RL' is also equal to

^, the semi-major axis of the ellipse being represented

by r\ and the semi-minor axis by 7-2, while r' represents

the semi-diameter.

The preceding equations indicate the principal proper-
ties of every form of cross-section which may affect the value

of the moment of inertia about any axis whatever passing

through its centre of gravity.
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a

Art. 82. Gordon's Formula for Long Columns.

Since flexure takes place in a long column subjected to

a thrust in the direction of its length, the greatest intensity

of stress in a normal section of the column may be

considered as composed of two parts,

one a uniform compression over the

whole section the total of which is equal

to the load on the column, and the

other the usual uniformly varying stress

due to flexure the total of which is zero

and the intensity of which is also zero * j p
>

along the neutral axis of the section.

Fig. i, which is supposed to represent

a longitudinal axial section of a column,

shows completely this composite stress.

The line fg is the trace of the normal

section and gd=cf = p' is the uniform

intensity of compression due to the com-

pressive load P. The bending moment FIG. i.

is represented by the stresses of flexure

varying uniformly in intensity from p" on the right-hand side

of the section to ef on the left side, being at the neutral

axis. The compressive stresses are indicated by and

the tensile stresses by +. The resultant of these two com-

posite stresses is a uniformly varying stress with the great-

est compressive intensity p' +p" on one side of the section

and the small compressive intensity ec on the left side.

The bending tension neutralizes exactly the same amount
of uniform compression, making the resultant intensity

uniformly varying. There is no resultant tensile stress in

the section, but it is obvious that there would be if the

bending moment were sufficiently large. In that case fe

would be larger than jc. This condition, however, seldom
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occurs in actual structural columns and never unless they
are slender and too heavily loaded.

The condition of stress as described above is that ordi-

narily assumed for columns, but the actual condition of

stress is frequently, if not almost invariably, much more

complicated. The details and the different main parts of

columns do not act with perfect concurrence nor are the

processes of manufacture even in the most careful shops
such as to leave the finished members without internal

stresses, nor are they perfectly straight. In fact the best

of columns may be a little convex in one direction at one

part of their length and concave in the same direction at

another part. It is imperative, however, to have some

reasonably simple rational analysis on which formulae may
be based leaving the erratic stress conditions which are too

obscure and uncertain to be reached by analysis to be

covered by empirical coefficients determined by tests of

actual full-size columns and the stress assumptions illus-

trated in Fig. i fulfill this requisite at least reasonably.
In order to determine the two parts of the resultant

stresses shown in Fig. i, let 5 represent the area of the

normal section; I, its moment of inertia about a neutral

axis normal to the plane in which flexure takes place; r,

its radius of gyration in reference to the same axis; P, the

magnitude of the imposed thrust; /, the greatest intensity

of stress allowable in the column, and J, the deflection

corresponding to /. Let p' be that part of / caused by the

direct effect of P, and p" that part due to flexure alone.

Then, if h is the greatest normal distance of any element

of the column from the axis about which the moment of

inertia is taken, by the
" common theory of flexure,"
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If the column ends are round, c
9 = i

; but if the ends

are fixed, the value of c' will depend upon the degree of

fixedness.

Also

P
^-_; ., // + /

^ /a

Hence

JS

1 "f"

(3)

Eq. (3) may be considered one form of Gordon's formula.

In order to make eq. (3) workable in actual computa-

tions, it is necessary to express the deflection A in terms

of known dimensions of the column. By referring back

to eq. (6a) in Art. 27 the desired expression for the deflec-

tion may be found and by its aid, introducing the notation

of this article, eq. (4) may be at once written;

a'p" J2
P ,-,-

It is seen, therefore, that the quantity a
x depends upon

both p" and E, but it is ordinarily considered constant.

Since I = Sr\ eqs. (i) and (7) give

(5)

Eq. (8) shows that a^^a.
Hence
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The integration by which eq. (4) is obtained, being
taken between limits, causes everything to disappear

which depends upon the condition of the ends

of the column. Consequently eq. (6) applies

to all columns, whether the ends are rounded

or fixed. Let the latter condition be assumed,

and let it be represented in the adjoining figure.

Since the column must be bent symmetrically,

there must be at least two points of contraflexure.

Two such points only may be supposed, since

such a supposition makes the distance between

any two adjacent points the greatest possible

and induces the most unfavorable condition

of bending for the column. FIG. 2.

If B and C are the points of contraflexure supposed,
then BC will be equal to a half of AD, for each half of BC
must be in the same condition, so far as flexure is concerned,
as either AB or CD. Also the bending moment at the

section midway between B and C must be equal to that

at A or D. Consequently the hinge- or round-end column

BC must possess the same resistance as the fixed- or flat-

end column AD. In eq. (6), therefore, let / = 2BC = 2/1,

W

Eq. (7) is, consequently, the formula for free- or round-

end columns with length /i.

The flat- or fixed-end column AD is also of the same

resistance as the column AC, with one end flat and one

end round. Hence in eq. (6) let there be put l

and there will result, nearly,
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1+1.80^5

Eq. (8) is, then, the formula for a column with one end

flat and the other round. A slight element of approxima-

tion will ordinarily enter eq. (8) on account of the fact that

C is not found in the tangent at A just as eqs. (6) and (7)

are based on the supposition that A and D lie exactly in the

line of action of the imposed load.

Eqs. (7) and (8) have been and are now generally

accepted as representing the resistances of columns with the

end conditions to which they are intended to apply. As a

matter of fact, however, tests of full-size members have

demonstrated that those conditions are not realized in the

actual use of columns. They have further shown that

essentially but one condition of column ends need be

recognized, and that is the actual pin-end condition, as

realized in pin-connected structures. In that condition

the end of the column is not free to turn . The compression
between the pin and the metal bearing against it caused

by the load carried by the column creates a considerable

surface of contact over a substantial portion of which the

intensity of pressure is high. This produces a condition of

great frictional resistance to any motion between the pin and

the end of the column, but not sufficient probably to induce

a fixed-end condition. It has been found by test that flat-

end columns, as a rule, give less ultimate resisting capacity
than pin-end columns of the same length and same radius

of gyration of cross-section. This is doubtless due to the

practical impossibility to secure a central application of

loading when flat ends are employed, the resulting eccen-

tricity reducing the ultimate carrying capacity of the

members. While, therefore, the classes .of columns repre-
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sented by eqs. (7) and (8) are still recognized, it would

be more rational and more in accordance with experience
to use only the general form of eq. (6) with a determined

from actual pin-end tests.

Although the quantities/ and a, in eqs. (6), (7), and (8)

are usually considered constant, they are strictly variable.

Eq. (4) shows that a is a function of p'
f +E. It is by no

means certain that p" is the same for different forms of

cross-section, or even for different sections of the same

form. While the modulus of elasticity E varies slightly it

may properly be taken as constant.

Again, the greatest intensity of stress, /, which can

exist in the column varies not only with different grades of

material, but there is some reason to believe that it must

also be considered as varying with the length of the column.

The law governing this last kind of variation, for many
sections, still needs empirical determination. It is clear,

therefore, that both / and a must be considered empirical

variables.

Since / and a are to be considered variable quantities,

p
let y take the place of / and x that of a; also, let p=-~

w3

represent the mean intensity of stress. Eq. (6) then takes

the form

in which c = l
2 +r2

.

In eq. (9) there are two unknown quantities, y and #,

consequently two equations are required for their deter-

mination. If two columns of different ultimate resistances

per unit of section, and with different values of c, are broken

in a testing machine, and the two sets of data thus estab-

lished separately -inserted in eq. (9), two equations will
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result which will be sufficient to give y and x. Those two

equations may be written as follows :

y=p'(i+c'x), . ..... (10)

y=p"(i+c"x). ..... (n)

The simple elimination of y gives

Either eq. (10) or (n) will then give y.

In selecting experimental results for insertion in eq.

(12), care should be taken to make the differences p" p
f

and c' c" as large numerically as possible, in order that

the errors of experiment may form the smallest possible

proportion of the first.

In consequence of the more or less erratic results of

tests of full-sized columns, if two or more pairs of values

of / and a be found as indicated above, they will not agree

with each other and some of them may differ largely. Con-

sequently the procedures illustrated by eqs. (10), (n) and

(12) are not sufficient for a satisfactory determination of

the quantities desired. The method of probabilities has

been employed, but it also is unsatisfactory because of the

small number of tests available if for no other reason.

The usual process is to plot the results of tests using - for

a horizontal coordinate and the mean load per square inch

of cross-section of column for the vertical ordinate. The
results of -a series of tests will in this manner be represented

graphically by a more or less extended group of points

depending upon the range of -. A curved or straight line,
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as the case may be, is then drawn through such a plotted

group of points so as to give it a mean position among them.

The quantities / and a are then so determined by trial as

to produce a curve lying as close as possible to the experi-

mental curve and the resulting equation will then be

Gordon's formula for that particular set of tests or type of

columns. This operation is fully illustrated and will be

further considered in the next article in connection with

a series of tests of Phoenix columns and columns of other

shapes.

The accompanying diagrams represent some cross-sec-

tions of columns which have been much used.

Batten Lattice

Quetec Bridge
SQUARE PHOENIX AM.BR.CO.

TOP CHORD LATTICED. Z-BAR. SQUARE-LATTICED. PLATE AND ANGLES

There are a large number of other sections which have

also been employed either for wrought iron or steel columns.

For large columns it is occasionally necessary to build up
cross-sections consisting of a number of webs and angles,

all so secured to each other as to act as a unit. The Quebec

Bridge section is such a one.

Occasionally a so-called
"
swelled

"
column, i.e. with a

considerably enlarged cross-section at and in the vicinity
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of the centre of the column length, the outline of section

gradually but not uniformly decreasing from the centre

towards the ends, is required. A formula for such a

column similar to Gordon's formula may be written for a

varying moment of inertia, but it is too complicated to be

of practical use. In the case of such columns the judgment
of the engineer must be used in applying a column formula,

but it will generally be sufficient to take the radius of

gyration at the middle section of such a member in com-

puting the ratio. .

The preceding formulae and the considerations on which

they are based imply without qualification that all parts

of a column must be so rigidly bound together that each

such member will act as a perfect unit under loading and

they include the condition that the cross-section of the

column is maintained in its proper shape and proportions

without material distortion up to actual failure of the tested

columns. It is imperative, therefore, in the design of these

members that the details, including rivets, lattice bars,

batten plates and other spacing details, shall be. sufficient

in number and dimensions to maintain the column as a

unit up to its full carrying capacity. A failure to meet

these conditions may greatly and perhaps fatally reduce

the carrying capacity of the column and result in disaster,

as in the case of the first Quebec Bridge, caused by the

weak latticing of a compression member. If a column more

or less weak in its spacing or other details is tested to its

ultimate resistance, it will yield in some of its weak details

instead of failing as a whole, i.e., as a unit.

The general principles which govern the resistance of

built columns may, then, be summed up as follows.

The material should be disposed as far as possible from
the neutral axis of the cross-section, thereby increasing r;
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There should be no initial internal stress;

The individual parts of the column should be mutually

supporting;

The individual parts of the column should be so firmly
secured to each other that no relative motion can take place, in

order that the column may fail as a whole, thus maintaining
the original value of r.

These considerations, it is to be borne in mind, affect the

resistance of the column only; it may be advisable to

sacrifice some elements of resistance, in order to attain

accessibility to the interior of the compression member, for

the purpose of painting. This point may be a very im-

portant one, and should never be neglected in designing

compression members.

Art. 83. Tests of Wrought Iron Phoenix Columns, Steel Angles

and Other Steel Columns.

During the period of use of wrought iron as a struc-

tural material many full-size wrought-iron columns were

tested to failure giving data on which to base long column

formulae, but as yet few steel columns of full size have

been tested to failure and the data on which to base proper

long column formulas, either for ordinary structural carbon

steel or for nickel steel, are correspondingly meagre. At

this time (1915) full-size steel columns are in process of

testing at the National Bureau of Standards, Washington,
D. C., and when they are completed, the desired data will

be much increased.

In view of this condition of experimental work on steel

columns it seems best to give the results of tests of an

extended series of wrought iron Phoenix columns made with

much care at the U. S. Arsenal at Watertown, Mass, in

order to illustrate fully the method of graphical treatment
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of such results in the process of seeking proper column

formulae. The complete account of this series of tests is

given in the Transactions of the American Society of Civil

Engineers for 1882 and the numerical data relating both

to the dimensions of the columns and to the results of the

tests are given in Table I. It will be noticed that the ratio

TABLE I.

No.
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particularly in connection with eq. (6) of the preceding
article.

The five columns in the right-hand half of the Table

are pounds per square inch for the different purposes shown

by the headings of the columns, i.e. E. L. represents the

compressive stress in the column at the elastic limit,

while the column headed Exp. indicates the compressive
load per square inch of section at which it failed in the

testing machine. The headings, pi, p' and p" are computed

72000

12000

60

FIG. i.

values from eqs. (i), (2), and (3) to be explained immedi-

ately.

The numerical values in the column headed Exp. are

accurately plotted in the diagram, Fig. i, by laying off the

ratios - from to the left as horizontal ordinates and erect-
r

ing at their extremities the corresponding ultimate resist-

ances given in that column as vertical ordinates with the

scale as shown in Fig. i. It should be observed that

in the majority of cases in Table I, there are two experi-

mental results for each value of and each vertical ordinate
r

in Fig. i represents the mean of these two results.
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The full-curved line marked
" Watertown Exp. Curve "

is then drawn so as to represent as accurately as possible

the actual experimental results which, as shown in the

figure, include a few tests other than those made at Water-

town. This experimental curve rises rapidly for small

values of -, i.e., for what are actually short blocks. At
r

the left end of the curve where - equals 140, the slope of the

curve is but little more than for intermediate values of. that

ratio.

After a number of trials it was found that the value of

pi y
as given in eq. (i), agrees quite closely with the experi-

mental curve for all values between - = 28 and - = 112, and
r r

the results computed from it are shown in the column headed

pi of the Table

+
(i)

50000 r2

Eq. (i) is Gordon's formula for this particular set of

Phoenix columns except that the value of / (the numerator

of the second member) is seen to vary slightly with the
A*

ratio -. In actual engineering practice, however, the

numerator shown in eq. (i) was displaced by the numerical

value 42,000, as a constant numerator of the second member
makes a simpler application of the formula and it was

sufficiently accurate for all practical purposes.

Inasmuch as all long columns used in structural work are

found within the limits of -=30 and - = 120 (usually for
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bridge truss members, 100) Gordon's formula is never used

outside of practically these limits.

It may be observed that the experimental curve is

nearly a 'straight line from a point just above b to the

extreme left of the diagram. For that portion of the

curve, therefore, the following formula applies very closely:

'=39,640 -46-.* (2)

The results of this formula are given in the column

headed
"
p'." The table, in connection with the diagram,

shows that this formula may be used with accuracy for

values of l + r lying between 30 and 140, and further ex-

periments may possibly show that it is applicable above

the latter limit.

For values of l-r-r less than 30, the following formula

will be found to give results approximating very closely to

the experimental curve:

p" = 64,700 4, (

The results of the application of this formula are given
in the column headed

"
p
n
'."

It will be observed in Table I that the ultimate resist-

ance per square inch of the Phoenix columns tested for

* This equation known as the straight-line formula for long columns was
first proposed in a paper by the author before the Annual Convention of the

American Society of Civil Engineers in 1881. It was established at that

time concurrently, but independently, by the author and Prof. Mansfield

Merriman. The formula is sometimes called the Johnson Straight Line

Formula, but Mr. Johnson's paper, in which he discussed the straight-line

formula, was not given to the American Society of Civil Engineers until

1885, four years after the papers by the author and Professor Merriman had

been published.
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ratios of - between about 40 and 112 ranges from about

34,000 to about 38,000 pounds, which is somewhat above

the yield point of the material but far below the ultimate

compressive resistance per square inch as found for short

blocks.

In built-up sections of columns in which the component

parts are less well supported than in the Phoenix section,

the ultimate column resistance per square inch will be but

little if any above the yield point of the material and with

high values of - the ultimate resistance may not rise above

the elastic limit. This is a most important feature of long
column resistance and it shows the effect of bending or

flexure which increases as - becomes greater.
r

Many tests of full-size pin-end wrought-iron columns

have shown that, when well designed with lattice bars and

other spacing details of sufficient capacity, the ultimate

resistance of such columns may be represented by eqs. (4)

and (40);

30,000 r2

Or;

=42,500-140-...... (40)

Although either equation is for columns with pin ends,

it may be used generally for such end conditions as are

usually found in structures like bridges or buildings. The
flat end condition has already been indicated as giving in

general somewhat erratic results, but with no advantage
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over pin ends for ordinary circumstances or for such ratios

of - as are commonly employed.

For working stresses in wrought-iron columns eqs. (5)

or (50) may be used. They are derived from eqs. (4) or

(40) by dividing the second members of those equations

by a so-called
"
safety factor

"
of about 3.5; .

- "' %, (5)
iH

30,000 r2

Or;

= I2,OOO4O- (50)

Steel Columns.

The paucity of tests of suitably-designed full-size steel

columns, either with pin ends or other end conditions, has

already been observed. Some scattered tests of such mem-
bers have fortunately been made while others have been

made upon members so designed as to bring out in ex-

aggerated form certain features of actions of stresses in

various parts of the columns without, however, reaching

data available for the best designs for general engineering

practice.

Among the most valuable of these data are some results

of old tests by the late Mr. James Christie and described

in the Transactions of the American Society of Civil Engi-
neers for 1884. Mr. Christie tested mild and high steel

angle struts with ratios of - running from 20 up to 300.

The mild steel contained from .11 to .15 per cent, carbon,

while the high steel contained .36 per cent. The ultimate

tensile resistance of the mild steel ran from 60,000 to 66,000
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pounds per square inch with 24 to 26 per cent, stretch in

8 inches. The high steel had an ultimate tensile resistance

of about 100,000 pounds per square inch and a stretch

of about 1 6 per cent, in 8 inches.

Table II gives the results of these steel angle tests and

TABLE II.

FLAT-END STEEL ANGLE STRUTS.
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when the column ratio - increases from 20 to 40, then up

to a value of at least 140 the curves differ but little from

straight lines. Above the latter, the curvature becomes

decided but not sharp and the two lines converge so that

when - becomes equal to 300 the difference between the two

resistances is but little over 1000 pounds per square inch..
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This convergence is one element of confirmation of Euler's

Formula as the carrying capacity for such high values of

- depends chiefly upon the modulus of elasticity. With

still higher ratios the two curves would probably coincide

as both grades of steel have the same modulus.

The difference between the working parts of the two

curves shown in Fig. 2 is reproduced on a much larger scale

for- in Fig. 3. Between -=30 and -=140, the two full

straight lines may be drawn as shown. As the points

represent accurately the numerical values of Table II, it

is seen that the straight lines represent the ultimate resist-

ances of the angle struts with sufficient closeness for all

practical purposes between - =35 and - = 140.

The straight line for the mild-steel angles is represented

by eq. (6) ;

p = 53,000
- 186 -. ...'.. (6)

Similarly the straight line for the high-steel angles is

represented by eq. (7) ;

= 79,000-325- (7)

The curved broken lines represent approximately the

unit ultimate resistances for - less than about 40. If the

second members of eqs. (6) and (7) be divided by a so-called
"
safety factor

"
of about 3, eqs. (8) and (9) will represent

working stresses;

For high steel = 25,000 100- (8)

For mild steel = 17,000 53-. . . . . . . (9)
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A number of
" model

"
carbon steel columns of large

dimensions have been tested within two or three years in

the large testing machine of the Phoenix Bridge Company
at Phoenixville, Pa., together with two such nickel steel

columns, under the supervision of Mr. James E. Howard,
all but three of those tests having been made for the pur-

pose of affording data for the design of the new Quebec

Bridge across the St. Lawrence River. The results of these

tests, as given in the Transactions of the American Society

of Civil Engineers for 1911 and in the Engineering Record

for 1914 are shown on Fig. 3. The average of three tests

of built up carbon steel columns, 30 inches by 20 inches

a
42.75 Sq. Ins.

b
66.65 Sq. Ins.J

n

34.63 Sq. Ins.

FIG 4. FIG. 5. FIG. 6.

in outline, as indicated by Fig. 4, are shown at d, the value

of --
being 47 and the average ultimate resistance of the

three tests (varying but little from each other) being 30,000

pounds per square inch.

The results shown at e, f and g are also for carbon

steel columns with built-up sections shown in the diagram
on page 488, the cro^s-sectional area being 70.65 square
inches. The length of these columns was 18 feet 9 inches

and the ratio - was 38.

Again a and b represent results for carbon-steel columns

having - equal to 78 and 58 and with cross-sectional areas

42.75 square inches distributed as shown in Fig. 5. ,
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Finally, the point n represents the result for two nickel

steel columns having an area of cross-section of 34.63 square

inches and - =
52, the section being shown in Fig. 6/

The number of tests of the carbon-steel columns is not

sufficient to form a proper basis for a straight line long

column formula, but the broken line drawn through a and

c and below e may, as a tentative matter, be represented

by eq. (10);

=44,000 150- (10)

All these built-up carbon-steel columns were of mild

steel, but their ultimate resistances are distinctly lower than

the results for Mr. Christie's mild-steel angles. Full-size

tests, however, have shown that the built-up column, unless

designed with great care so as to act solidly as a unit, will

not offer ultimate resistances as high as might be expected

from the quality of the steel of which they are composed.
On the same basis used for eqs. (7) and (9), the tentative

working stress for built-up mild carbon-steel columns would

be;

= 14,000-50 ....... (ll)

The average for the two nickel-steel columns, shown at

n, Fig. 3 is about 50,000 pounds per square inch and more

than one-third greater than the corresponding result shown

for the mild carbon steel at c.

In all these column tests the elastic limit or the yield

point of the member as a whole appears to be the controlling

feature, i.e., the ultimate resistance is not above the yield

point of the column and if the ratio - is comparatively large

it will not be above the limit of elasticity of the column as

a whole. It must be remembered also that both the elastic
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limit and the yield point of built-up columns will be

materially lower than the corresponding points of a single

piece of the same metal.

These tests appear to indicate that the ultimateresistances

of nickel-steel columns exceed those of mild carbon-steel

columns in about the same proportion that the elastic limit

of nickel steel exceeds the elastic limit of the carbon-steel.

Observations in these tests of full-size columns made
at Phoenixville by Mr. Howard indicate that steel columns

may be considered to have a true modulus of elasticity of

about 29,000,000 or perhaps 29,500,000 for intensities of

loading not greater than ordinarily allowed working stresses,

i.e., from 8,000 to 12,000 pounds per square inch. While

there are not sufficient data to determine precisely such

physical elements of steel column resistance, there seems

to be a relative motion of the component parts of a built-up

member under test, which does not permit the existence

of a true modulus of elasticity when loadings exceed about

12,000 to 15,000 pounds per square inch. Obviously the

more nearly a column acts as a perfect unit, the better

defined will be its elastic properties.

Much more data derived from experimental work with

full-size steel columns are imperatively necessary in order

to reach definite conclusions regarding actions of stresses

in the various parts of such members as well as for the

development of such important details as latticing, battens,

and other riveted details.

Typical Formula Now in Use.

As a result of the present conditions of experimental

knowledge of built columns, as well as of those that are

not built up, there is a great variety of column formulae

used by engineers, both of the Gordon and straight-line

type. The straight-line formula, however, is largely dis-
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placing the Gordon formula. The General Specifications

for Steel Railway Bridges recommended by the American

Railway Engineering Association as applied to the design
of cross-sections of steel columns is;

p = i6,000 70-...... (12)

The New York Central Lines are using the same formula

in the design of their bridge work, as are engineering or-

ganizations of other railway companies. Under the use

of this formula a greater compressive load than 14,000

pounds per square inch is not permitted.

The American Bridge Company Specifications for Steel

Structures 1913, uses the following formula in its design work ;

= 19,000 100 ...... (13)

A provision for impact is made and 13,000 pounds per

sq. in. is the maximum allowed under the use of eq. (13).

A form of Gordon's formula still appearing in engineer-

ing practice is

12,500p= ' ----- (14)

36,000 r2

This formula is really an old wrought-iron column

formula and should not be used without reducing the 36,000
in the denominator to 30,000.

The New York Building Law gives for a steel column
;

= 15,200-58 -. . . . . '., (15)

The formula used by the City of Philadelphia for its

buildings is of the Gordon type as follows:

16,250P=- -
J2
...... (l6 )

iH--- .-

11,000 r2
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Other formulae could be cited but enough is shown to

indicate the pronounced lack of uniformity in this practice.

None of the preceding formulae should be used for -

less than 30 nor more than about 120.

In every case where a column formula is used, it would

be much more convenient to employ a diagram with the

curves accurately drawn to represent the desired formulae.

The actual results, without computations, could be read

directly from such long column curves.

Details of Columns.

In addition to the data already given in another portion
of this article, the tests cited in this chapter show that

the unsupported width of no plate in a compression member
should exceed 30 to 3 5 times its thickness. These tests have

usually been made with plates or metal J to ^ inch in thick-

ness, and it is altogether probable that the above ratio

of width over thickness would be increased with greater

thicknesses.

In built columns, however, the transverse distance between

centre lines of rivets securing plates to angles or channels, etc.,

should not exceed 35 times the plate thickness. If this width

is exceeded, longitudinal buckling of the plate takes place,

and the column ceases to fail as a whole, but yields in detail.

The same tests show that the thickness of the leg of an

angle to which latticing is riveted should not be less than % of

the length of that leg or side, if the column is purely and

wholly a compression member. The above limit may be

passed somewhat in stiff ties and compression members

designed to carry transverse loads.

The panel points of latticing should not be separated by a

greater distance than 60 times the thickness of the angle leg to

which the latticing is riveted, if the column is wholly a com-

pression member.
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The rivet pitch should never exceed 1 6 times the thickness

of the outside thinnest metal pierced by the rivet, and if the plates

are very thick it should never nearly equal that value.

Art. 84. Complete Design of Pin-end Steel Columns.

In actual design it is necessary not only to make appli-

cation of the preceding formulae for ultimate resistance of

columns, but also to proportion a considerable number of

details as matters largely of judgment and experience. If

the column, like the section shown as the latticed channel

or latticed upper chord in the preceding article, has two

open sides as in the former or one open side as in the latter

latticed, i.e., has small bars of iron running diagonally

across those open sides in order to hold the parts of the

column in their proper relative positions, those lattice

bars vary in size with the size of column. While the dimen-

sions vary somewhat among engineers, the following table,

which has been largely used, illustrates effectively sizes

that may properly be employed.

"or 6 in

7

8

9

10

ii

12

13

15

16

18

19-23

24-29
"

30
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These bars or lattices may be used in single system, in

which case each one should make an angle of about 60 with

the centre line of the side of the column on which they are

placed. If they are used in double system each pair of

bars will intersect at their mid-points, and in this case the

bars may make angles of 45 with the centre line of the side

of the column on which they are employed. In the case

of double latticing the intersecting pairs of bars are riveted

at their intersections. Lattice bars are held at their ends

by one rivet or by two rivets according to the size of the

column, as shown in the next table.

Figs, i, 2, and 3 illustrate different modes of riveting

the ends of lattice bars. The size and number of rivets

o o o p_o_o_o p

oooooooo
FIG. i.

FIG. 2. FIG. 3.

will obviously depend upon the size of the lattice bars

employed and to some extent upon the manner in which

their ends are held.

The following table has been used in actual structural

practice and exhibits good practice in the design of single

latticing. It is based on the supposition that the lattice

bars are flats. In very large columns or in some exposed
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situations it is necessary to use steel angles for latticing,

the ends of which must be secured by rivets proportionate

in number and diameter to the size of angle.

Size of Lattice.
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work and rarely more than i in., the prevailing diameter

being J in.

One of the most important details of a column is the

jaw or extension of one side at the end. The two jaws
contain the pin holes through which are transferred to the

pin the total load carried by the column. These jaws or

extensions are formed so as to fit in between the parts of

intersecting members, usually the upper or lower chords

and eye-bars. It is, therefore, imperative to make them
as thin as the bearing upon the pins and the carrying

capacity of the jaws themselves acting as short columns

will permit. Figs. 4, 5, 6, and 7 exhibit some types of

FIG. 4.

these post jaws as they commonly occur. As the figures

show, they are formed by cutting away the flanges of the

angles or channels forming parts of the posts and riveting
on the pin or thickening plates required to strengthen
the detail. The jaws form short columns whose lengths
should be taken from the centre of the pin hole to the last

centre line of rivets in the body of the column back of the
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cut in the angle or in the flange of the channel. This

length indicated by / is shown in each of the figures.

There have been but few tests made to determine the
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be at least two jaws at the end of each column. The width

of the side of the column will be represented by 6, as shown
in Figs. 4 and 6, and t will represent the total thickness of

metal whose width is b, also as indicated in the same figures.

If P represents the total load on one jaw of the post, usually

one half the total load carried by the post or column,
the average working intensity of pressure on the section of

metal bt may be written

P I f \- = 9000-340-. (i)

The thickness t of metal is usually the quantity desired,

and eq. (i) gives

90006 26*

In these equations P should be taken in pounds, with

b, t, and / in inches.

Eq; (2) has been used to a considerable extent in the

design of steel railroad bridges, and it is probably as reason^

able and safe a value of the thickness t as can be written

with the experimental data and experience now available.

It is applicable to steel with ultimate tensile resistance

running from 60,000 to 68,000 pounds per square inch.

For higher steel or for highway bridges, or for other struc-

tures where less margin of safety may be justifiable, the

value of t may be made correspondingly less than that-

given in eq. (a);'_ ^_
Prob. i. It is required to design a mild-steel pin-end

column 45 feet long between centres of pins to carry a load
of 353,000 pounds. The column formula to be used is

essentially that given as eq. (n) of Art. 83 :

= 16,000-70-. ..... .' (^y
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This equation gives the greatest mean intensity allowed

<n the column, so that p multiplied by the area of cross-

section to be determined must be

^ equal or nearly equal to 232,000. ?

The least diameter or width of a

built column should not exceed about

one thirty-fifth of its length, except
where posts or columns are used as

-^ lateral members, when the length may
FlG g

reach as much as 40 times the least

diameter or width of cross-section.

In this case the column is to be built of two plates and

four angles, as shown in Fig. 8, and the width of plate

FG must, therefore, not be less than about 16 inches. A
width of 1 8 inches will make a well-proportioned column

and that dimension will be assumed. The separation of

the plates is preferably made such that the moment of

inertia of the section about the axis AB will be a little larger

than the moment about the axis CD. The pin will pierce

the two plates so that its axis will be parallel to CD. Under

these conditions, if the column is designed so as to be strong

enough with the moment of inertia of section taken about

CD, it will be still stronger in reference tp the axis AB, and

no further attention need be given to possible failure about

the latter axis.

If columns of this type are proportioned in the general
manner indicated, the radius of gyration of the section

about the axis CD will be approximately .35 of the width.

In this case that trial radius will, therefore, equal 6.3

inches. Hence, inserting the values of = 540 inches and

r=6.3 inches in eq. (3), there will result p = 10,000 pounds
per square inch. The total area of section required, there-

fore, will be closely 353,000 -=-10,000=35.3 sq. ins. The
distribution of this metal between the plates and angles is
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largely a matter of judgment. Let there be assumed

Two i8"Xf" plates =22 . 5 sq. ins.

Four 3i"X 3i"X 1 1 -pound angles =13
" "

Total =35 5 sq. ins.

This is a tentative composition of section which must be

tested by eq. (3) to determine whether it is as nearly

accurate as it should be. In order to do this, the moments
of inertia of the section, as indicated, must be taken about

the two axes AB and CD.

MOMENT OP INERTIA ABOUT CD:
Two i8"Xf" plates =2X1x3*= 607.50
Four 3^"X 3?"X i i-lb angles about own axis = 14. 20

Four 3i"X3|"Xii-lb.anglesabout CZ?=4X3-25X(7.99)
2 = 829.92

Moment of inertia = 1451 . 62

MOMENT OF INERTIA ABOUT AB:

Two i8"X f
"

plates about own axis 2X
1

. 74

Two 1 8"X f"plates about AB 2X n.25X(6.o6)
2 = 758.70

Four 3^"X3"X n-lb. angles about own axis = 14.20
Four 3i"X3i"Xn-lb.anglesabout,4= 4X3.25X(7.38)

2 = 708.38

Moment of inertia = 1482 .02

These computations show, first, that the moment of

inertia about AB is a little larger than that about CD,
which is as it should be. They also show that the radius of

gyration r is 6.39 inches. The approximate rule gives r =

6.3 inches. These two values are sufficiently near to accept
the former. The trial composition of section may, there-

fore, be considered satisfactory and final. The thickness

of the side plates, .625 inch, is sufficient to insure no buckling
in the unsupported width between rivets. Similarly the

length of leg of the 3^-inch angles is also far within safe or

proper limits. All features of the cross-section are, there-

fore, so arranged as to meet all the requirements of suitable

resistance in detail.
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The details of the ends of the columns where they are

formed into jaws, as shown by Figs. 9 and 10, still remain
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proper bearing surface for the pin ;
but that thickness must

be decided by the formula for the jaws, eq. (2). In that

equation, P = 116,000 pounds, while b = iS inches and /,

from Fig. 9, is 9 inches. Making these substitutions in eq,

(2),

/ = i . 1 3 inches.

In order to meet the requirements of the post-jaw for-

mula, therefore, the pin plate must be at least ^ inch

thick. It is essential however to make these details

specially stiff and strong and the thickness will, therefore,

be taken at -& inch, as shown in Fig. 9.

The number of rivets required above the pin hole

would ordinarily be computed for the thickness of plate

required for bearing on the pin, i.e., with the thickness of

pin plate of j\ inch. Assuming that thickness for this

purpose, the rivets being taken | inch in diameter, the

bearing value of a single rivet will be

|XiVXi6, 000 = 6125 Ibs.

The single shear of one f-inch rivet at 9000 pounds per

square inch has, a value of 5412 pounds which is less than

the bearing value; the shear will, therefore, decide the

number of rivets required. The bearing value of the f-inch

side plate on the pin is 7X1X16,000 = 70,000 pounds.
Hence the number of rivets required in the pin plate on

each side of the column will be

116000 70000' = nine rivets (nearly).
54i2

These nine rivets must be found above the pin. That

number, however, is far too small for the pin plate acting
as a part of the jaw, and it will be judicious to make the

total number of rivets above the pin 12, as shown in Fig. 9.
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The jaw plates will extend 5 inches beyond the pin, as

shown. The two batten plates above which the latticing

begins will each be taken J inch thick, and they will be

placed as shown in both Figs. 9 and 10.

It is assumed that the ends of the column are to fit

into or between other members of the truss, so as to require

cutting away the legs of the steel angles, as shown, as this

is a common requirement.
The length of a batten plate should not be less than

its width. In the present instance the width of batten will

be 19.75 inches; the length will, therefore, be taken as

20 inches.

As indicated in the tabular statement at the beginning
of this article, the lattice bars, fully shown in Fig. 10, will

be 2^Xf inches, and the latticing will be taken as double,

although this is not always done for the size of column in

this particular instance. The lattice bars will be riveted

at their intersections also as shown in Fig. 10. The length
of lattice bar between rivets will be about u inches, as

the angle made by each lattice bar with the side of the

column will be about 45 degrees. A single f-inch rivet,

therefore, at the end of each bar will be sufficient, as shown

by the second table of this article. At each panel point

of latticing a single J-inch rivet will hold the ends of both

lattice bars.

The complete bill of material for the entire column will

be as follows:

Four 3i"X3i"Xii-lb. angles, 46.42 ft. long. .185.7X11=2,043^3.
Two 18"Xf" plates, 46.42 ft. long 93X38.25 = 3,557

"

Four 27"X ii"X Ty' Plates 9X21 = 189
"

Four 2o"X 20"Xi" battens 6|X34= 227
"

24olin. ft. of 2$"Xf" latticing 240X3.19= 766
"

1060 |" rivets 10.6X54= 57 2
"

Total weight of one column = 7,354 Ibs.
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Prob. 2. Let it be required to design a mild-steel

column with pin ends, 36 feet long between centres of pins,

to carry a load of 225,500 pounds. It is supposed that

the column is a member of a railroad bridge, so that the

load given includes a full allowance for impact. Gordon's

formula as formerly employed in the American Bridge Com-

pany's specification will be used :

17000

nooor

In this formula p is the greatest mean intensity of

working pressure allowed on the section of the column, / the

length between centres of pins in inches,

and r the radius of gyration of the
j

column section in inches. As the length

of the column is but 36 ft. =432 inches

two rolled 15 -inch channels latticed

may be taken as the principal parts, as

shown in Fig. n. By turning to the

tables in any steel handbook, it will be

found that the radius of gyration of a

1 5 -inch channel about the axis AB varies from about 5.6

inches to nearly 5.2 inches. The larger of the two values

will be tentatively employed. Substituting 1 = 432 and
r = 5.6 in the above formula for p,

p = n,ooo pounds per sq. in.

Hence the total area required is

*3 *-l~f-+-*

j

j

P
FIG. ii.

225500
1 1 000

=
20.5 sq. ins.

The_table of steel channels in any handbook shows
that the combined area of two 15 -inch 3 5-pound channels

is 20.58 sq. in., and they will be accepted as correct. The
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same table gives the radius of . gyration r about the axis

AB,. Fig. H, as 5.57 inches, which is essentially equal to the

trial value 5.6 inches.

As shown in Prob. i, it is desirable to have the moment
of inertia of the section about AB, Fig. n, a little less than

that about CD, the former (AB) being parallel to the axis

of the pin. Let the separation of the channels be made
10 inches in the clear. By using the values of the table,

the moments of inertia about the two axes may be- written:

ABOUT Axis AB:

Moment of inertia =320X 2 =640.

, 640HenCC T
=2-0^8

=3I ' 2; 5.57 ms.

ABOUT Axis CD:

Moment of two channel sections each about axis parallel to

CD and through centre of gravity 2X 8 . 48 = 16 . 96

2X10.29X5-79 =689.84

Moment of inertia = 706 . 80

O ^O O O

o o o o

'""

1

_L

yy
\

&f--.-WK'L-\
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remain to be considered. The following data will be

required :

Thickness of channel web......................... = .43 inch.

Allowed shearing on rivets and pins ................ = io,cco Ibs. per sq. in.

Allowed bearing on rivets and pins................. = 20,000 Ibs. per sq. in.

Diameter of rivets............................... = f inch.

Diameter of pin................................. =6 inches.

Value of one f-inch rivet in single shear............. =6,013 IDS -

Bearing of pin on channel web.................... =6X .43 X 20,000
= 5 1,600 Ibs.

Bearing to be carried by pin plate
= 51,600=61,150 Ibs.

Thickness of pin plate................. ^

Bearing value of one -inch rivet on -inch plate =

|XiX20,ooo= 8,750 Ibs.

Hence one pin plate needs = ten %-inch rivets.

It is assumed that the ends of the column must be

formed into the jaws shown in Figs. 12 and 13. As indi-

cated in Fig. 12 the mean or effective length of the jaw is

12 inches. The load carried by one jaw is 112,750 pounds;
hence the thickness of that jaw is by eq. (2)

-
= lA inch (nearfy)-

8000x15

The thickness of the jaw or pin plate to be riveted to

the jaw must therefore be i TV 43=11 inch. In order

that these plates may be firmly made a solid extension of

the post or column they should be riveted to the webs of

the channels with the rivets shown in Fig. 12. The proper

design of the jaw, therefore, requires a much longer and

thicker plate and more rivets than the simple consideration

of the pin and rivet bearing and shearing,

The width of channel flange is 3.43 inches, hence the

total width of column over these flanges, as shown in Fig.
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13, is i6| inches. Each batten plate is therefore taken as

17 inches by 18 inches.

The length of each lattice bar of the single, 3o-degree

latticing will be about 16 inches between centres of rivets

at their ends. Lattice bars 2\ inches by f inch in section

will, therefore, be used.

The complete bill of material for one column will then be

Two 15" 35-lb. channels 37^ ft. long 2X 35X 3?i = 2,602 Ibs.

Four 1 3"X 30"X \\"plates 10X41. 44 = 415
"

Four 1 7"X 1 8"X" plates 6X28.9 = 173
"

Forty-six 2j"Xf"X 19" bars 72X 3- 19 = 230
"

Two hundred and twenty-five \" rivets 2^X54 = J 22 "

Total weight of one column = 3,542 Ibs.

Art. 85. Cast-iron Columns.

Cast iron was the earliest form in which the metal

iron was used for 'columns, and it is natural, therefore,

that the first long-column formulae for cast iron should have

been among the earliest for that class of members. The
first experimenter was Eton Hodgkinson, who published
the results of his tests on small cast-iron columns, the

greatest length of which was but 60.5 inches, in the "
Philo-

sophical Transactions of the Royal Society of London for

1840." He not only recognized the round- and fixed-end

conditions, but he also made the distinction between long
columns and short blocks, the length of the latter being
from 4 to 5 times the diameter or least cross-section dimen-

sion. If d be the diameter of the column in inches and /

the length in feet, and in the case of hollow round columns
if D be the exterior diameter in inches and d the interior

diameter in the same unit, while P is the total or ultimate

load in pounds on the column, Hodgkinson established

the following formulae for long cast-iron columns:

^3.76P =
33.379777-

; (for rounded ends). . . . (i)
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ds-ss
P =

98,922-7^-; (for fixed ends)..... (2)

For hollow cylindrical columns of cast iron

)3- 76 _ ^3-76
P = 29,120

--
77^
--

; (for rounded ends). . (3)

P =99,320
---

Y-1

--
' (f r fiXed endS)' ' (4)

The working or maximum load allowed in any design

of cast-iron columns would be found by taking one fifth to

one eighth of the values given in eqs. (i) to (4) inclusive.

It will be observed that Hodgkinson's formulae expressed

in the preceding equations are simply Euler's formulae

as given in eqs. (6) and (9) of Art. 35. with the introduction

of an empirical coefficient and with the indices of d and /

changed to harmonize with the experimental results.

As Hodgkinson's experiments were made on very
small columns of different metal from that used in cast-

iron columns of the present day, his formulae cannot safely

be used for practical purposes at the present time.

A correct formula for cast-iron columns must be based

upon tests of full-size columns cast with the metal ordi-

narily employed in structural practice. Such tests have

been made at the U. S. Arsenal at Watertown, Mass., and
will be found reported in H. R. Ex. Doc. No. 45, 5oth Con-

gress, 2d Session, and in H. R. Ex. Doc. No. 16, 5oth

Congress, ist Session. A valuable series of tests was also

made at Phcenixville, Pa., at the works of the Phoenix

Bridge Co., under the auspices of the Department of

Buildings of New York City in 1896-97. Although the

entire series, including both the tests at Watertown and
Phoenixville, do not cover the variety of sectional forms

and range of ratio of length to diameter that could be
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desired, the results are sufficiently extended to show closely

what may be considered the proper ultimate values for

hollow round cast-iron columns of full size.

TABLE I.

No.
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former group under the immediate direction of Mr. W. W.

Ewing, and the latter under the immediate direction

of Mr. Gus C. Henning. The results shown for tests 15 to

1 8 inclusive were taken from H. R. Ex. Doc. No. 45, 5oth

Congress, 26. Session, but those for Nos. 19 to 29 inclusive

are either taken or digested from H. R. Ex. Doc. No. 16,

5oth Congress, ist Session, being portions of reports of

tests of metals and other materials at the United States

Arsenal, Watertown, Mass.

As 'fable I shows, the columns Nos. 19 to 29 inclusive

were slightly conical, although probably not enough so to

affect appreciably their resistances. The areas of section

in square inches for these columns were taken at mid-

distance between their ends. As the area of section varied

considerably in some columns that operation may be a

source of a little error in determining the ultimate resist-

ance per square inch from the result of the tests, but if the

error exists at all it must be very small. The mid-external

diameter was also taken for these columns in determining
the ratio of the length over the diameter shown in the

Table and in the Plate.

As will be observed both in the Table and in the Plate,

the ultimate resistances per square inch determined by
the tests are quite variable, even for the same ratio of

length over diameter. Indeed, in a number of cases they
are quite erratic. In Nos. i to 6, for which the ratio of

length over diameter was 12.7, the ultimate resistances

vary from a little over 24,000 Ibs. per square inch to over

40,000 Ibs. per square inch with no failure at the latter

value. Again, the ultimate resistance per square inch,

for No. 25, which shows a ratio of length over diameter of

less than 20, is nearly 47,000 Ibs. per square inch, which is

excessively high as compared with other ultimate resist-

ances with the same or less ratio of length over diameter.
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These erratic results are not surprising in view of the

ordinary character of the metal. It should be remembered
that the failures of these columns are frequently recorded

with such
' '

remarks
' '

as the following :

' '

Foundry dirt or

honey-comb between inner and outer surfaces," "bad

spots," "cinder pockets and blow holes near middle of

column," "flaws and foundry dirt at point of break."

In other words, it was no uncommon feature to observe that

defects, flaws, or blow holes or thin metal had determined

the place of failure. There is considerable uncertainty in

platting the results of tests affected by these abnormal con-

ditions, but a more or less satisfactory law for the generality
of cases may be determined from a graphical representation
of the results, as shown on Plate I. On that Plate the

ultimate resistances in pounds per square inch, as shown
in Table I, have been platted as vertical ordinates, while

the ratios of length over diameter given in the same Table

are represented by the horizontal abscissas, all as clearly

shown. The full straight line drawn in about a mean

position among the results of the tests probably represents

as near as any that can be found a reasonable law of variation

of ultimate resistance with the ratio of length over diameter.

It is evident that within the range of these experiments a

straight line will represent the ultimate resistances fully

as well as any curve, if not better, although the results for

the lengths of thirty-four times the diameter begin to

indicate a little curvature. The formula which represents

this straight line, i.e., which gives the ultimate resistance

per square inch, is as follows:

p = 30,500 -160^ (5)

It is to be borne in mind that these columns were round

and hollow, and that they were tested with flat ends in all
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cases. The ordinary formula, based upon Hodgkinson's

tests, and frequently used in cast-iron column construction,

is as follows:

80000
t= ? (v

400 d 2

The curve corresponding to this particular form of

Tredgold's formula is also shown on the Plate. It will be

seen that at the ratio of length over diameter of 10 to 12

(not an uncommon ratio) the ultimate, as given by this

formula, is just about double that shown by actual test. In

other words, if a safety factor of 5 were required, as is the case

in some building laws, the actual safety factor would be but

2^. The curve represented by eq. (6) is seen to cross the true

curve at a ratio of length over diameter of about 29. A
glance at the Plate will show how erroneous and dangerous
is the use of the usual formula for hollow round cast-iron

columns; indeed, that formula is grossly wrong, both as to

the law of variation and the values of ultimate resistance.

In view of the working resistances, which have been

used in the design of cast-iron columns, it is no less interest-

ing than important to compare the ultimate resistances per

square inch of mild-steel columns, as determined by actual

tests, with the ultimate resistances of cast-iron columns,
as shown by the tests under consideration. The broken

line of short dashes represents the formula

= 52,000-180- (7)
a

determined by actual tests of mild-steel angles made by
Mr. James Christie at the Pencoyd Bridge Works, and

given in Art. 60. This line or formula shows that the

ultimate resistances per square inch of mild-steel columns
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are from 40 to 50% greater than the corresponding quanti-

ties for cast-iron, the same ratio of length over diameter

being taken in each comparison.
When the erratic and unreliable character of cast-iron

columns is considered, it is no material exaggeration to

state that these tests show that the working resistance

per square inch may be taken twice as great for mild-steel

columns as for cast-iron; indeed, this may be put as a

reasonably accurate statement.

The series of. tests of cast-iron columns represented in

the Plate constitute a revelation of a not very assuring

character in reference to cast-iron columns now standing,

and which may be loaded approximately up to specification

amounts. They further show that if cast-iron columns

are designed with anything like a reasonable and real margin
of safety the amount of metal required dissipates any

supposed economy over columns of mild steel.

If the average working stress per square inch is one

fourth of the ultimate resistance, eq. (5) gives

I=
7600-40^ (8)

If the working stress is to be taken at one fifth the

ultimate, eq. (5) gives

=
6100-32^ (9)

In these equations p is the average working intensity

of pressure in pounds per square inch. The length / and the

exterior diameter d must be taken both in the same unit,

ordinarily the inch.

These formulae may be used between the limits of - = 10
d

and - = 35 or even 40. They may also be applied to hollow
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rectangular columns with reasonably close approximation,
d being taken as the smaller exterior side of the rectangular

cross-section.

Art. 86. Timber Columns.

The greater part of available tests of full-size timber

columns have been made prior to 1900, and their results

have not been obtained either by the aid of improved appli-

ances in testing now employed, or in all respects under the

care given in later testing work to secure accuracy or to

avoid misinterpretation of the more or less obscure condi-

tions which attend the testing of full-size timber members.

The ratio of the length divided by the radius of gyration
is much less in timber columns than those of iron or steel.

Furthermore, as sections taken at right angles to the axes

of timber columns are almost always rectangular, it is per-

missible to use the ratio of the length over the least side

rather than the length over the least radius of gyration,

gaining thereby a little simplicity in the use of column

formulae.

Timber columns are subject to the same vicissitudes of

knots, wind-shakes, season cracks and decay as other timber

members. Indeed most failures of full-size timber mem-
bers are induced by some local defect such as a knot, either

decayed or sound. Unless in a thoroughly protected place,

timber columns are in a condition of almost constant change
and in the long run for the worse.

The degree of seasoning is an element of material effect

in the resistance of timber columns. The greater the

amount of moisture in timber, the less will be its capacity

for compressive resistance, other conditions remaining un-

changed. As in all other full-size timber tests, the con-

dition of moisture should be known and stated in connection

with the results of timber column tests. It makes little
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or no difference whether the moisture is the original sap or

the result of a damp atmosphere or immersion in water.

Among the earliest tests were those of Professor Lanza,

who investigated timber mill columns, mostly of circular

section and some of them after standing in use in com-

pleted buildings for various periods from one year to twenty-
five years. These columns varied in length from about 2

to 14 feet, the great majority of them being from n to 14

feet. The diameters varied generally from about 5 inches

to about 1 1 inches. A few were square. Neither the shape
nor the dimensions of cross-sections appeared to affect

materially the results of tests. The principal results of

these tests are given in the tabulated statement below:
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ratio of the length over the radius of gyration and the

ultimate column resistance. The latter was influenced

little or none by the length of the columns.

Tables I and II show the results of the early tests of

Col. Laidley, Engineer Corps, U. S. A., made many years

ago and reported in "Ex. Doc. 12, 47th Congress, ist

Session." They show the large increase in ultimate resist-

ance per square inch with short lengths. Indeed some of

the pieces were short blocks. These results indicate the

care that should be taken in discriminating between the

ultimate compressive resistances of short timber blocks and

long columns. The results in Table I for those pieces

seasoned twenty"years are too high, while those for pieces

Nos. 16, 17, and 18 are low, in consequence of the material

TABLE I.

YELLOW PINE.

No.
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TABLE II.

SPRUCE THOROUGHLY SEASONED.

No.
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"
i st. Green, half-seasoned sticks answering to the

specification 'good, merchantable lumber.'
"
2d. Selected sticks reasonably straight and air-sea-

soned tinder cover for two years and over.

"3d. Average sticks cut from lumber which had been

in open-air service for four years and over."

If / = length of column in inches,

d = least side of column section in inches,

and p = Ult. Comp. resistance in Ibs. per sq. in.
;

then the formulae found for these three groups were :

>orNo.i:/>=
54

, 2 .

_ __ 8200
For No. 2 : p = -

For No. 3:^=
5

But in order to provide against ordinary deterioration

while in use, as well as the devices of unscrupulous builders,

Mr. Smith recommends the formula for group No. 3 as the

proper one for general application. He also recommended

that the factor of safety be v / until 25 diameters are
\d

reached, and five thenceforward up to 60 diameters.

This last limit he regards as the extreme for good

practice.
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Tests of White Pine and Yellow Pine Full-size Sticks with

Flat Ends.

In consequence of the usual manner of simply abutting

the end of timber columns against their supports, all such

members are practically always assumed to have flat ends,

but this expression does not mean accurately squared
"

flat

ends." Tables III and IV have been formed by digesting

the results of tests of nearly or quite full-size white and

yellow pine timber columns made at the U. S. Arsenal at

Watertown, Mass., and reported in
"
Ex. Doc. No. i, 47th

Congress, 26. Session," constituting one of the best series

of timber column tests yet made in this country.
Each result in both Tables is usually a mean of from

two to four tests, although a few belong to one test only.

All timber, both of yellow and white pine, was ordinary
merchantable material, with about the usual defects, knots,

etc., and failure frequently took place at the latter
;

it was all

well seasoned, and all columns were tested with flat ends.

TABLE III.

YELLOW-PINE COLUMNS WITH FLAT ENDS.



S3 4 LONG COL UMNS [Ch. X.

Flat-end yellow-pine columns were observed to begin to

fail with deflection at a length of about 22d, d being the

width or least dimension of- the normal cross-section. All

columns were of rectangular section, and / in the following

table is the length. Table III, therefore, includes no short

column, i.e., one which failed by compression alone with

no deflection.

About sixteen of the latter were tested with the follow-

ing results :

Short yellow-pine columns; (
maximum = 5,6 7 7 Ibs. per sq in.

/H-d below 22. Mmean = 4,442
( minimum = 3,430

'

Each of the preceding tests was made on a single rectan-

gular stick. A number of tests, however, were made on

compound columns formed by bolting together from two

to three rectangular sticks, with bolts and packing or

separating blocks at the two ends and at the centre. The
bolts were parallel to the smaller sectional dimensions of

the component sticks. As was to be expected, those

compound columns possessed essentially the same ultimate

resistance per square inch as each component stick con-

sidered as a column by itself, as the following results show.

/ is the length of the column and d the smallest dimension

or width of one member of the composite column. All

had flat ends.

l+ d. Number of Tests.

{maximum

-=4,559 Ibs. per sq. in.

mean =3,841
minimum =2,756
(maximum = 3, 357

36.... 18
-jmean =3,122
(minimum =2,942

Table IV gives the results for white-pine columns, and

corresponds with Table III, in that it shows only the failures

with deflection, which was observed to begin with those

columns at a length of 32^. / and d possess the same
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TABLE IV.

WHITE-PINE COLUMNS WITH FLAT ENDS.
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A comparison of these results with those given in Table

IV shows that these composite or built columns were the

same in strength per square inch with the single sticks

of which they were composed, the latter being considered

single columns.

All the white-pine composite columns were tested wit!

Plate F.

flat ends and were built up with the greatest widths of

individual sticks adjacent to each other.

The results in Tables III and IV are shown graphically

in Plate F. One ordinate gives the values of / -r- d, and the

other the ultimate resistance in pounds per sq. in.

The full curved lines running into horizontal tangents at

the left represent about mean lines through the points

indicating the actual column tests.

The broken lines represent the following empirical for-

mulae
;
in which p is either the ultimate resistance or work

mg stress in pounds per sq. in.
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For yellow pine . . . ^ = 5800
"

white . . .
= 38oo-

For wooden railway structures there may be used:

For yellow pine . . . p
' white "...

For temporary structures, such as bridge false works

carrying no traffic:

For yellow pine . . .
= 1500 i8(/-f- d)

" white
"

. . . p = looo- i2(l ^d)

The preceding formula are to be used only between the

limits of - = 20 and - = 60 for yellow pine and 3=30 and
d d a

- = 60 for white pine.
d

For short columns below - = 20 and -=30 there are to
d d

be used for yellow and white pine respectively :

Ultimate. Railway Bridges.

Yellow pine . . . . p = 4400 ........ 550 ........ 1 100 Ibs. per sq. in.

White ' '

. . . .p = 2400 ........ 300 ........ 600 ' ' " ' '

All the preceding values are applicable to good average
lumber for the engineering purposes indicated.

Table V exhibits a number of results of the tests of

short timber columns taken from the " U. S. Reports of

Tests of Metals and Other Materials" for 1894, 1896, 1897,
and 1900. It will be observed that the ratios of length over

thickness, i.e., minimum dimension of cross-section, are

less than 22, and with two exceptions much less. These

columns do not, therefore, come within the range of appli-

cation of such formulas as those given on the preceding

page for yellow pine and white pine.
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TABLE V.

SHORT TIMBER COLUMNS.

Timber.
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giving the average shown in the Table of 6093 pounds per

square inch, was submerged in water for a period of 130

days and then tested with the result of failing at 3800

pounds per square inch.

The values given in Table V correspond closely to the

results shown for yellow pine and white pine on pages

534 and 535, so far as they may properly be compared.



CHAPTER XI.

SHEARING AND TORSION.

Art. 87. Modulus of Elasticity.

IT has already been shown in some of the Articles of

the first part of this book that the stresses of shearing and

torsion are identical, both being shears; hence the modulus

of elasticity is the same for both.

As it is much more convenient to make accurate deter-

minations of the modulus of elasticity in torsion than in

direct shearing, the former method has been employed in

practically all cases. A number of such moduli for four

varieties of steel are given in Art. 38. Those values show

that the modulus changes but little for the different varieties

of steel indicated.

The aggregate of torsion tests so far as they have been

made indicate that the two moduli of elasticity, G for shear

and E for direct stresses of tension and compression, have

the approximate relation :

G =
(.4 to .

Prof. Bauschinger published in
" Der Civilingenieur,"

Heft 2, i .88 1, the results of some of his tests of cast-iron

cylinders or prisms which are still valuable on account of

the accuracy with which he made his determinations.

The prisms were about 40 inches long, and were subjected

to torsion, while the twisting of two sections about 20 inches

540
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apart, in reference to each other, was carefully observed.

The results for four different cross-sections will be given

i.e., circular, square, elliptical (the greater axis was twice the

less), and rectangular (the greater side was twice the less).

In each case the area of cross-section was about 7.75 square
inches. The angle a is the angle of torsion i.e., the

angle twisted or turned through by a longitudinal fibre

whose length is unity and which is at unit's distance from

the axis of the bar.

Section.

Circular. ..

G.

0.007 degree .7,466,000 Ibs. per sq. in.

Elliptical

Square

Rectangular. .

0.07
0.009
0.076
0.008

0.073
o.oi
0.08

.6,157,000

7,437,000
6,228,000
7,039,000
5,987,000
6,996,000
5,716,000

The formula by which G is computed, when the torsional

moment and angle a are given, is the following:

r M Ip
~^'

CA' ' ' ' * ' ' (l)

in which M is the twisting moment, A the area of the cross-

section, Ip the polar moment of inertia of that cross-section,

and c a coefficient which has the following value?

47:
2 = 39.48 for circle and ellipse,

42.70
"

square,

42.00
"

rectangle,

as shown in Appendix I.

Bauschinger's experiments show that the coefficient of

shearing elasticity for cast iron may be taken from 6,000,000

to 7,000,000 pounds per square inch; also that it varies for

different ratios between stress and strain.

It has been shown in Art. 6, that if E is the coefficient

of elasticity for direct stress, and r the ratio between direct
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and lateral strains, for tension and compression, that G
may have the following value:

E
^oTTZTv ...... (2)

Prof. Bauschinger, in the experiments just mentioned,
measured the direct strain for a length of about 4 inches,
and the accompanying lateral strain along the greater axis

of the elliptical and rectangular cross-sections, and thus

determined the ratio r between the direct and lateral strains

per unit in each direction. The following were the results :

COMPRESSION.
Section. r. G.

Circular o. 22 6,541,000 Ibs. per sq. in

Elliptical 0.23 6,541,000
" " "

Square 0.24 6,442,000
" " "

Rectangular 0.24 6,499,000
" " "

TENSION.

Circular o. 23 6,570,000 Ibs. per sq. in.

Elliptical 0.21 6,811,000
" " "

Square....- 0.26 6,399,000
" " "

Rectangular 0.22 6,527,000
" " "

"

'!

The values of E are not reproduced, but they can be

calculated indirectly from eq. (2) if desired.

It is seen that the values of G, as determined by the

different methods, agree in a very satisfactory manner,
and thus furnish experimental confirmation of the funda-

mental equations of the mathematical theory of elasticity

in solid bodies.

The fact that G is essentially the same for all sections is

also strongly confirmatory of the theory of torsion in

particular.

These experiments show that, for cast iron, the lateral

strains are a little less than one quarter of the direct strains.

If r were one quarter, then G =\E, or E =%G.
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Art. 88. Ultimate Resistance.

It has seemed more convenient to give some values of

ultimate and working resistances for the materials iron and

steel which are much more commonly used than any others

to resist torsion in Arts. 37 and 38, where the complete

analyses of the formulae for the common theory of torsion

are given. Those articles should, therefore, be consulted

for such formulae and analytic operations as are involved

in the design of shafting to resist torsion. The experimental
values set forth in the following articles may be employed
in the formulae of the common theory of torsion for any de-

sired practical operation in the design of torsion members.

Before considering the ultimate shearing resistance of

special materials it will be well to notice the two different

methods in which a piece may be ruptured by shearing.

If the dimensions of the piece in which the shearing force

or stress acts are very small, i.e., if the piece is very thin,

the case is said to be that of "simultaneous" shearing. If

the piece is thick, so that those portions near the jaws of

the shear begin to be separated before those at some dis-

tance from it, the case is said to be that of "shearing in

detail." In the latter case failure extends gradually, and

in the former takes place simultaneously over the surface

of separation. Other things being the same, the latter

case (shearing in detail), will give the least ultimate shearing
resistance per unit of the whole surface.

In reality no plate used by the engineer is so thin that

the shearing is absolutely simultaneous, though in many
cases it may be essentially so.

Wrought Iron.

There may be found in the Articles on Riveted Joints

some experimental determinations of the ultimate shearing
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resistance of wrought iron which, under the conditions of

such joints, may range from about 34,000 to about 43,000

pounds per square inch. It has been observed in the

consideration of riveted joints that the ultimate resistance

to shear of rivets will generally be less with thick plates

than with thin, because the bending stresses of tension

and compression will generally be greater for thick plates

than for those that are thinner. If the riveted joint is so

designed that the bending stresses are not greater for thick

plates than for thin ones, the effects of bending will neces-

sarily disappear.

Such tests as have been made on direct shearing resist-

ance show that generally it may safely be taken at 35,000

to 40,000 pounds per square inch, or if 5 is the ultimate

shear per square inch and T the ultimate tensile resistance

of wrought iron per square inch, there may be taken ap-

proximately

S = .ST.

Cast Iron.

There are few tests available for the determination of

the ultimate shearing resistance of cast iron. For the ordi-

nary grades, such as cast-iron water pipes and similar soft

gray-iron castings, the ultimate shearing resistance has

sometimes been taken equal to the ultimate tensile resist-

ance, i.e., 15,000 to 18,000 pounds per square inch, but

this is probably too high except for the special stronger

grades of material.

For general purposes it is probably safe to take the ulti-

mate shearing resistance of cast iron about three-quarters

of its ultimate tensile resistance. It should only be used

for shearing, however, at a low working stress, depending

obviously on the purpose for which its use is contemplated.
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Steel.

The results of Prof. Ricketts' shearing tests on both open-
hearth and Bessemer steel rounds with different grades of

carbon are given in Table I of Art. 43. The elastic limit

is the point at which the metal first fails to sustain the scale

beam. The double-shear resistance in one case exceeds the

single by over six per cent. According to these tests, the

ultimate shearing resistance of mild steel may be taken

at three quarters of its ultimate tensile resistance. Each
shear result is a mean of three tests.

The rivet steel was low, containing but .09 per cent, of car-

bon. While the specimens of Bessemer steel were a little

higher in carbon, ranging from . 1 1 to . 1 7 per cent., except the

last six, they were also of low or medium steel. It should

be carefully noted that the results in that table show that

the ultimate shearing resistances for the low or medium
steels running from 44,600 pounds per square inch up to

53,260 pounds per square inch are closely three fourths

the corresponding ultimate tensile resistances. On the

other hand, the six specimens of high steel give ultimate

shearing resistances but little over two thirds of the corre-

sponding ultimate tensile resistances. This is a feature of

the relation between the ultimate shearing and ultimate

tensile resistances of different grades of steel which is

commonly exhibited in tests. The high steel appears to

yield an ultimate shearing resistance of sensibly less per-

centage of the tensile ultimate than low steel.

In the .Arts. 74 and 76 on riveted joints there will be
found a number of values of ultimate resistance for steel

rivets in shear. They constitute important determinations

of the ultimate shearing resistance of steel rivets under con-

ditions in which they are frequently used.
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Copper, Tin, Zinc, and Their Alloys.

The following values of the ultimate resistance to torsive

shear Tm ,
were determined by Prof. R. H. Thurston in his

early experimental work on the bronzes. Although these

determinations were made on test specimens only .625 inch

in diameter and with a torsion length of i inch, they con-

stitute practically the only fairly complete shear and torsion

data on the copper-tin and copper-zinc alloys.

TABLE I.

Composition.
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Percentage of
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described in the University of Illinois Bulletin No. 15,

December, 1909, are of unusual value. The full-size beams
were 13.5 feet to about 14.5 feet span and with cross-sections

of 7 inches by 12 inches, 7 inches by 14 inches and 7 inches

by 1 6 inches. Other smaller beams were, however, used.

The beams were of sound merchantable lumber and of about

the quality used in good engineering work. The following
table gives the results of these tests, showing the number
of pieces tested to failure with the highest, average and lowest

ultimate shear per square inch along the fibres in or near

the neutral surface.

TABLE III.

ULTIMATE RESISTANCES ARE GIVEN IN POUNDS PER
SQUARE INCH

Timber.
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values for shear along the grain and in the neutral surface

of beams as given in Table IV of Art. 90.

Natural Stones.

The ultimate shearing resistance of stones has not as

great practical value as the ultimate compressive or the

ultimate bending resistance, yet there are occasional

structural conditions under which it is necessary to ascer-

tain what shearing capacity may be relied upon. Valuable

data for this purpose are shown in Table IV taken from the
" U. S. Report of Tests of Metals and Other Materials" for

1894 and 1899. The sheared surfaces were about 6 inches

by 4 inches in area. Generally one such surface was

sheared, but occasionally two.

TABLE IV.

SHEARING RESISTANCE OF NATURAL STONES.

Stone.
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All the results except the last are taken from the Report
for 1894. Where but one value appears in the table one

test only was made. In the other cases two tests were

made and the mean values are means of the two shown in

the columns containing the greatest and least. It will be

observed that the ultimate shearing resistance is scarcely

more than ten per cent, of the ultimate compressive re-

sistance of the various stones tested.

The greatest permissible working stresses for natural

stones in shear, in design work, will necessarily depend
on the duty to be performed. In view of the variable char-

acter of even the best of natural stones as delivered ready
for use, one eighth to one tenth of the ultimate is as much as

should be taken in ordinarycases,and materiallyless than that

under some conditions.

Bricks.

The shearing resistance of bricks, like that of natural

stones, is seldom employed, but it is sometimes needed.

The ultimate resistances of bricks in shearing shown in

Table V are taken from the
"
U. S. Report of Tests of

Metals and Other Materials
"

for 1894.

TABLE V.

BRICKS IN SHEARING.

Kind of Brick.
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In these shearing tests the sheared surfaces were each

about 2.25 by 4 inches in dimensions.

The ultimate shearing resistances in Table V range

scarcely 10 to 20 per cent, of the ultimate compressive resist-

ances of the same materials shown in Art. 68.

Working shearing stresses for design operations should

not be taken more than one eighth to one tenth of the

ultimate values found in Table V,



CHAPTER XII.

BENDING OR FLEXURE.

Art. 89. Modulus of Elasticity.

THE modulus of elasticity as determined by experiments
in flexure can scarcely be considered other than a con-

ventional quantity. If the span of a beam were very long

compared with the depth of the beam and if the moduli

of elasticity for tension and compression were equal to each

other, and if all the hypotheses involved in the common

theory of flexure were true, then the modulus of elasticity

for flexure would be a real quantity and essentially the same,

at least, as that for either tension or compression.
These conditions, however, do not exist in bent beams

and the quantity ordinarily called the modulus of elas-

ticity in flexure possesses value chiefly as an empirical

factor which enables deflection, independently of shear, to

be estimated with sufficient accuracy for all usual purposes.

The formulae to be employed in the determination of

the modulus of elasticity for flexure have already been

established in connection with the common theory of flexure

and their use will be shown in succeeding articles.

Art. 90. Formulae for Rupture.

The formulae of the common theory of flexure, available

for practical use, are true only within the limits of elas-

ticity. In the testing of beams to failure they are employed
precisely as if the elastic properties of the material were

maintained up to the degree of loading which causes failure.

552
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While this, strictly speaking, is irrational, it is the only

satisfactory procedure available. By placing the analytic

expression for the moment of the internal stresses in the

normal section of a bent beam equal to the moment of the

external loading causing failure, the resulting equation may
be solved so as to give the apparent ultimate intensity of

stress k in the extreme fibres of the beam. The so-

called intensity of fibre stress found in this manner is an

empirical quantity which may be introduced into the for-

mulae of the common theory of flexure and so make them

applicable to the operations of engineering practice in con-

nection with loaded beams of any shape of cross-section.

If k and k 1 are the greatest intensities of stress in the

section of rupture and at the instant of rupture; y the

variable normal distance of any fibre from the neutral sur-

face; y\ and y' the greatest values of y\ b the variable

width of the section (normal to y)\ and M the resisting

moment at the instant of rupture; then the general for-

mula for rupture by bending, as given by eq. (i) of Art.

26, is

M=~ y*bdy+.\ y
2
bdy. . ,,:- . (i)

yijQ
'

y J-y'

This equation is in reality, based on the supposition that

the moduli of elasticity for tension and compression are not

equal. It is rare, however, that such a supposition is made.

It is practically the invariable rule to assume the moduli

of elasticity for tension and compression to have equal
values and such an assumption is fortunately sufficiently

accurate for all ordinary purposes.
If the tensile and compressive moduli of elasticity are

k k
f

the same =. and eq. (i) becomes
yi y

M=^. . . (2)



554 BENDING OR FLEXURE. [Ch. XII.

This is the usual equation of flexure employed so fre-

quently in connection with the design of bent beams or the

investigation of their carrying capacity, I being the moment
of inertia of the normal section of the beam d\ the distance

of the most remote fibre from the neutral axis of the section

and M the moment of the external forces or loading about

the neutral axis of the section in question. In the prac-

tical use of this formula it is only necessary to introduce the

proper values of I and d\ for the shape of a section involved.

Art. 91. Beams with Rectangular and Circular Sections.

These are the simplest forms of sections for bent beams

employed in engineering work. Timber beams are with few

exceptions of rectangular section and so are many rein-

forced concrete beams, although in such a case the section

is composite, i.e., composed of two materials, and it will

receive separate treatment in a later article. The solid

circular section belongs to pins in pin-connected truss

bridges whose design always involves their consideration

as a loaded beam of very short span.

The following are the values of I and d^ for rectangular

and circular sections, h being the side of the rectangle normal

and b that parallel to the neutral axis, while r is the radius

of the circular section and A the area in each case :

12 12

Rectangular:
h

_^ *** ,

Circular:
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If the beams are supported at each end and loaded by a

weight W at the centre of the span (or distance between

supports) ,
which may be represented by /, then the moment

at the centre of the beam becomes

Wl , xPx=M= . ...... (2)
4

There will then result from eq. (2), Art. 89:

For rectangular sections :

For circular sections :

The quantity k is called the modulus of rupture for

bending, and if experiments have been made, so that W
is known, eq. (3) gives

and eq. (4)

, Wl Wl

If the rectangular section is square, bh2 =b3 =h3
.

Steel

If the beam is simply supported at each end and carries

a load W at the centre, while E is the coefficient of elasticity

and w the deflection at the centre, eq. (28) of Art. 28 gives
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If, in any given experiment, w is measured, E may then

be found by the following form of eq. (7) :

Wls

... (8)

If the section is rectangular

WPE=-ry-o....... (o)3

These equations enable the coefficient of elasticity E to

be computed readily from experimental observations. It

is only necessary to measure accurately the deflection w
produced by the load or weight W and then introduce all the

known quantities in eq. (8) or eq. (9).

A bar of wrought iron 3 inches deep and i inch wide

was placed on supports 48 inches apart and loaded with a

weight of 400 pounds at mid-span. The measured de-

flection was .0138 inch. Hence

400X48X48X48E = - = 29,730,000.
4 XiX3X3X3X.oi 3 8

Other applications may be made in precisely the
same way.

High Extreme Fibre Stress in Short Solid Beams.

During the period when wrought iron was used for

structural purposes, especially for wrought-iron pins with

diameters up to 9 or 10 inches, it was observed that if the

ultimate extreme fibre intensity k was computed by eq. (5)

or (6) with data obtained by actual test, the result would

be excessively high, i.e., far beyond the ultimate resistance

to tension. These pins, however, on which are packed the
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lower chord eye-bars of an ordinary truss bridge, have very
short spans, indeed the span is usually much less than the

diameter of the pin and sometimes less than one quarter
of the diameter of the pin. It should be remembered in

this connection that the common theory of flexure is im-

plicitly if not explicitly based upon the condition that the

length of span of the bent beam must be long compared with

the depth of the beam. In fact the span should be many
times that depth, and the longer it is the more nearly

correct becomes the common theory of flexure. These ob-

servations are equally true whether the cross-section of the

beam is circular or rectangular or has any other shape.

The following Table shows the results of tests of a series

of short wrought-iron beams of circular section made by the

author when wrought-iron pins were used in bridge con-

struction, but which illustrate markedly the intensities of

extreme fibre stress found with short spans. It will be

observed that the spans were 8 inches and 12 inches only

CIRCULAR BEAMS OF "BURDEN'S BEST" WROUGHT IRON.

Kind.
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while the diameters of the circular beam sections varied

from 1.25 inches down to .75 inch.

W is the centre load and the extreme fibre intensity k

is computed by eq. (6). The ultimate intensity k was

assumed to be reached when the deflection at the centre of

span amounted to about the diameter of the circular section

of the beam. This particular feature of the tests is a matter

of judgment, but k would differ little whether it be taken

at a centre deflection equal to the diameter of the circular

section or one half that diameter or even less.

It will be noticed that the ultimate values of k are all

much larger for the 8-inch span than for the 1 2-inch, and

that all the ultimate values increase materially with the

depth of the beam, rising to 107,000 to 114,700 pounds

per square inch for diameters (i.e., depths of beams) of i

inch and i J inch. It will also be observed that the elastic

limits are greatly increased. The ultimate tensile resist-

ance of the iron used in these tests was about 55,000

pounds per square inch and the elastic limit a little more
than half that value.

Steel.

Investigation by actual test has shown that short steel

beams with circular or rectangular section will exhibit the

same elevation of ultimate intensity of fibre stress k as

found for wrought iron in the preceding section. This is

well illustrated by the following tabular statement of results

of tests of Bessemer steel beams with circular cross-section,

also made by the author in the early days of the use of steel

for bridge building.

The Table is self-explanatory in view of the explanations-

made for short wrought-iron beams of circular section. The
ultimate tensile resistance of the mild Bessemer steel used

in these tests was about 65,000 to 70,000 pounds per square
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CIRCULAR BESSEMER STEEL BEAMS, EQ. (6).

Kind.
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The explanation of this phenomenally high resistance to

the tension of flexure (and also the compression) is found,
as already indicated, in the fact that the common theory
of flexure is not correctly applicable to such excessively

short beams. No such high intensity of tensile (or com-

pressive) stress actually exists in the metal as computed by
eqs. (5) and (6). When the span becomes very short, not

more than perhaps three or four times the depth of the

beam, lines of stress run from the point of application of

the load at the centre of the span direct to both supports,

transverse shear being the vertical components of the

stresses acting along these lines. All such or similar stress

action reduces the actual flexure and makes the bending
stresses of tension and compression correspondingly less;

but as the flexure formulae, eqs. (5) or (6), contain no

recognition of this condition, the apparent fibre stresses

computed by their use are far above the actual.

Numerous other similar short solid beam tests have

confirmed the results given in the preceding two Tables.

Cast' Iron.

Although cast iron is rarely ever used to resist flexure

except in window and door lintels or other similar members

whose duties are light, tests of short cast-iron beams have

shown the same phenomena of greatly elevated ultimate

resistance as found for the more ductile metals. The

apparent ultimate intensity k in the extreme fibres of short

cast-iron beams of circular or square section may be taken

50 per cent, above the ultimate tensile resistance of the

same metal under ordinary tensile tests.

Alloys of Aluminum.

Table VIII of Art. 59, in the fifth column from the left

side, exhibits values of the ultimate stress in the extreme
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fibres of small beams of varying proportions of aluminum -

zinc alloys. As might be anticipated, beams of either of

those metals showed comparatively low resistance, but

with aluminum varying from 80 down to 50 per cent, and

zinc from 20 up to 50 per cent, the resistance was excel-

lent, the maximum being found with Al 75 and zinc 25.

Table XI of Art. 59 exhibits the ultimate fibre stresses

in small beams of the alloys of aluminum with copper, zinc,

manganese and chromium. The rolled bars of Al 96 and

Cu 4 give excellent results; as does the cast bar of A I 75.7,

Cu 3, zinc 20 and Man 1.3. The remaining values of the

transverse resistances in the table are self-explanatory.

Copper, Tin, Zinc, and their Alloys.

In the following table are given the data and the results

of the experiments of Prof. R. H. Thurston, as contained in

his various papers, to which reference has already been

made. The distance between the points of support was

twenty-two inches, while the bars were about one inch

square in section, and of cast metal.

The modulus of rupture, k
t is found by eq. (5), in

which, however, in many of these cases, W is the weight

applied at the centre, added to half the weight of the bar.

When k is large and the specimens small, this Correction

for the weight of the bar is unnecessary ;
otherwise it is ad-

visable to introduce it.

The coefficient of elasticity, E, is found by eq. (9), in

which W is the centre load added to five eighths of the

weight of the bar.

The manner in which both these corrections arise is com-

pletely shown in Case 2 of Art. 28.

E, for any particular bar, has a varying value for dif-

ferent degrees of stress and strain. Those given in the table
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SQUARE BARS.

Percentage of
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may be considered average values within the elastic

limit.

As usual, "elastic over ultimate" is the ratio of k at the

elastic limit over its ultimate value.

An examination of the ultimate tensile and compressive

resistances of these same alloys, as given iti preceding pages,

shows that the. ratio of k over either of those resistances is

very variable. It is usually found between them, but occa-

sionally it exceeds both.

Timber Beams.

As timber beams are always rectangular in section, eq.

(3) only will be needed. Retaining the notation of that

equation, if the beam carries a single weight W at the centre

of trie span /,

2 kAh ( NW =-.. ...... (10)

If the total load W is uniformly distributed over the

span,

(I!)

As k is supposed to be expressed in pounds per square

inch, all dimensions in eqs. (10) and (n) must be expressed

in inches.

In the use of timber beams it is usually convenient to

take the span / in feet, and the breadth (b) and depth

(h) in inches. Placing i2/ for /, therefore, in eqs. (10)

and (n),

T3rr kAh , rl
kAh

, N

W=^; and W =2^..... (12)
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in which formulae / must be taken in feet and A and h in

inches.

k
If B be put for

t eq. 12 becomes
18'

W =
B^> and W' = 2B~. . . . (13)

Hence when W and W have been determined by ex-

periment,

For single load W at centre

Wl Wl iSWl_ \Wl' IWI
~~ '

; ~=~Ak~ \6 =4 - 24 \ (I4)

For total loadW uniformly distributed

~
2Ah

~
2AB" Ak ^ 2Bb~ 6 ^ kb-

it the beam has a section one inch square and is one foot

W
long, B =W' =

. B, therefore, may be considered the

unit of transverse rupture ;
it is sometimes called the coefficient

for centre-breaking loads.

If the depth h of the beam is given and the breadth is

desired, eq. (14) gives

Wl

Eq. 15 also gives

Wl gWl

In general, whatever may be the distribution of the load-

ing, if the bending movement is M (in inch-pounds), eq.

(3) gives
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w rw

or

b
M 6M

-

The general observations which have already been made
in connection with the ultimate resistances of timber in

tension and compression are equally applicable to the flex-

ure or bending of timber beams. The ultimate resistance

of the timber as exhibited by the intensity of stress in the

extreme fibre can safely be taken only when determined

from tests of full-size beams as actually used in engineering

structures. Such resistances or moduli when determined

from small pieces selected for the purpose of test are liable

to be largely in error for the reasons given in detail in Art. 61.

In fact Messrs. Cline and Heim state in Bulletin 108,
"
Tests of Structural Timbers," U. S. Department of Agri-

culture, that values obtained from testing small thoroughly
seasoned selected specimens

"
may be from one and one

half to two times as high as stresses developed in large

timbers and joists," and that statement is rather under than

over, as many tests have shown. Furthermore, it is essen-

tial to know at least approximately the degree of seasoning
to which the timber has been subjected. Ordinary air

seasoning will seldom reduce the moisture in full-size timber

beams to less than 15 per cent, to 20 per cent. Inasmuch
as timber in open engineering structures, like bridges, will

at ali times be exposed to rainfalls often heavy, working
stresses used in the design of such structures should be

prescribed for wet or green condition. If the structure is

to be protected from atmospheric moisture, values belong-

ing to seasoned timber may properly be employed.
Table II of Art. 61 gives the modulus of rupture for
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full-size beams tested to failure on a span of 1 5 feet by con-

centrated loading at two points one third of the span from

each end (Messrs. Cline and Heim, U. S. Dept. Agri-

culture). These results include failures by tension and

compression of fibres as well as failures due to shear along
the neutral surface of the beams. Both green and air-

seasoned timbers were tested with the sections given in the

Article cited.

Table I gives the results of the same series of tests under

a proposed grading by which all beams tested were divided

into Grade I and Grade II, the higher resistances being
found in the former.

TABLE I.

AVERAGE RESISTANCE VALUES OF DIFFERENT SPECIES BY
PROPOSED GRADES

Species.
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The table does not include results for white pine and

spruce, but the resisting and elastic qualities of those two

timbers are so near to the corresponding qualities of Norway
pine that they may be assumed to be the same under ordi-

nary conditions.

Table II gives a summary of the results of tests of full-

size beams made by Prof. Arthur N. Talbot and described

by him in Bulletin No. 41 (1909) of the University of Illinois.

The cross-sections of these beams varied from 7 inches by
12 inches to 8 inches by 16 inches and the spans were 13.5

feet and 14.5 feet. The loads were applied equally at two

points, each one third of the span from each end.

The series into which the program of results is divided

were used as a matter of convenience only and have no sig-

nificance as to quality of material or as to physical features

of the results.

It will be observed that small beams and shear blocks

were also tested and that the results for these smaller pieces

are on the whole materially larger than for the full-size

beams and nearly or quite twice as large in some cases.

The extreme fibre stress was computed by means of

eq. (5), in which W is the total load at the two points of

application at failure and / is two-thirds of the actual length
of -span in the tests, which makes the bending moment
M =%Wl. If this external bending moment is placed equal

2kl
to the -r-

,
the intensity of stress k will take the value, as

indicated by eq. (5) :

In this equation h is the depth of the beam and b its

breadth, as already explained in connection with eqs. (i)

and (ia). W is obviously the load given by the reading
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of the scale beam of the testing machine. If W\ is one of

the two equal loads applied to the beam at each one third

point of the span, iW\ must be written for W.
The ultimate intensity of shear shown in Table II, which

is both the intensity of shear in the neutral surface and on

a normal section of the beam at the same point, is found by
simply taking one and one half the end reaction divided

by the cross-section bh of the beam. .As the total transverse

shear is greatest at the end of the span, the greatest inten-

sity of shear on the neutral surface will be found at that

point at or near which failure by shear will begin unless

induced elsewhere by a season crack, wind-shake, decay
or some other weakness of the material. Obviously there

is neither transverse nor longitudinal shear between the

two points, equally loaded, as they are symmetrically located

with reference to the centre of the span.

Table III shows the moduli of elasticity computed by
Professor Talbot from the data secured by his beam tests.

The modulus is found by observing the centre deflection of

the beam when loaded within its elastic limit and then

inserting the observed value of the deflection and the cor-

responding observed load in a formula similar to eq. (7).

Eq. (7) itself is not applicable for the reason that these

TABLE III.

Timber.
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beams were not loaded at the centre of span. The formula

for the centre deflection, however, is readily derived by
an analysis similar to that used in Art. 28. That operation

will give

i2 96/'
or E =

The preceding experimental values for timber are among
the latest determinations and are representative of the

best engineering practice, especially as they are based on

tests of full-size timbers of as good quality as can probably
be secured in the open market.

The American Railway Engineering Association, after

careful scrutiny of all tests of timber made up to 1911,

recommended the values given in Table IV for use in the

TABLE IV.

UNIT STRESSES IN POUNDS PER SQUARE INCH

Timber.
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design and construction of timber railway structures for

the modulus of elasticity in flexure, the ultimate resistance

and working stress in extreme fibres of bent beams, and

similar quantities for ordinary shearing parallel to the grain

and for longitudinal shearing along the fibres in the neutral

surface of beams.

The intensities of working stresses given in this Table

are for railway structures. It may be justifiable to use

somewhat higher values in other structures where the mov-

ing loads are more steady or where perhaps it may be proper
to consider all loading as practically quiescent or dead load.

It is always to be remembered, however, that timber struc-

tures are usually highly combustible and hence that it

will frequently be advisable to provide some surplus of

sectional area to prolong the carrying capacity of timber

members after the beginning of a fire.

Failure of Timber Beams by Shearing Along the Neutral

Surface.

In the preceding treatment of timber beams, it has been

assumed that when broken under test the extreme fibres

will fail, either in tension or compression. As a matter of

fact, failure of such beams usually takes place at some weak

spot, as a knot, point of incipient or active decay, or at some

other point where abnormal weakness is developed. This

latter observation holds true whether the failure of the beam
takes place by tension or compression in the extreme fibres

or by shearing in the neutral surface.

In Art. 15 it was shown that the greatest intensity of

either transverse or longitudinal shear in any normal sec-

tion of a beam takes place at the neutral surface, and hence

that the tendency of the fibres there is to separate by longi-
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tudinal movement over each other. This is precisely the

kind of failure which actually takes place in some short tim-

ber beams. If the total transverse shear at any normal sec-

tion of the beam is 5, eq. (8) of Art. 15 shows that the

maximum intensity, s, of shear in the neutral surface is

<>>

In this equation, b is the breadth or width of the beam
and d the depth, usually taken in inches.

If W is a single weight or load at the centre of span of a

beam simply supported at each end, the shear s, as far as

that single load is concerned, is constant throughout the

entire length of the beam with the value

If, again, the beam is uniformly loaded with the total

load W'
t
the intensity of shear 5 in the neutral surface has

a value which varies from zero at the centre of span to the

value given by eq. (21) after making W = W'. Whenever
the value of the intensity s exceeds the ultimate intensity

of shear along the fibres lying in the neutral surface, the

beam will fail by the separation of its two halves or parts
at the neutral surface.

The mean values for the ultimate resistance to shear

along the fibres in the neutral surface of his loaded beams
were found by Prof. Talbot and are given in Table II for

the best varieties of pine timber and for Douglas fir, in-

cluding results for creosoted beams of shortleaf pine and

loblolly pine. The values for shear and other quantities
recommended by the American Railway Engineering Associ-

ation are found in Table IV,
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The average values of the ultimate shear in the neutral

surface determined by Messrs. Cline and Heim in their
"
Tests of Structural Timbers," already cited, are given in

Table V for nine varieties of structural timbers, both green

and air-seasoned. These results belong to the same full-

size beams as the values given in Table I of this Article.

TABLE V.

COMPUTED SHEARING STRESSES DEVELOPED IN STRUCTURAL
BEAMS
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which induce at least partial separation of the fibres at the

neutral surface, are the sources of incipient failure by shear-

ing in the neutral surface.

In designing timber beams this liability to shear along

the neutral surface should always be carefully tested by

computations. Relatively short beams are particularly

liable to fail in this manner, and the greater part of the

timber beams used in engineering work are of this

class.

It is a very simple analytical matter to establish such

a relation between the methods of failure by longitudinal

shearing and rupture of the fibres as to indicate more or

less approximately the limit beyond which one mode of

failure is more liable to occur than the other, but empirical

values for both these ultimate resistances have been seen

to be so variable as to make it more advisable to compute
the carrying capacity of the beam by both methods, especi-

ally as each is a simple procedure.

Influence of Time on ike Strains of Timber Beams.

It has been found by actual observation that if a timber

beam is loaded to no greater extent than one fourth of its

ultimate load, the resulting deflection will continue to in-

crease under continued loading for a long period of time.

Sufficient investigations have not yet been made to express
these results quantitatively with much accuracy. Enough
has been ascertained, however, to show that the influence

of time is most important in determining the deflection of

timber beams under loads applied for a considerable period
of time, and that when the loading becomes a large portion
of the ultimate, i.e., perhaps 75 per cent., the beam may
fail if the application be sufficiently continued. Indeed,
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some experiments indicate that failure may possibly take

place at .6 or .7 of the ultimate of a single application, if

that amount be imposed a sufficient length of time.

It should be understood, therefore, that in using the co-

efficients of elasticity given in this article for the purpose
of computing deflections, such computations may be applic-

able only when the loads are applied for short periods of

time.

Concrete Beams.

When a concrete or a natural stone beam is subjected to

transverse loading it fails by tearing apart on the tension

side. The failure of the beams, therefore, indicates to some

extent the ultimate tensile resistance of the material. Ob-

viously, in the case of concrete beams the ultimate carrying

capacity will depend upon a number of elements, such as

the kind and quality of cement, sand and broken stone used,

and the proportions of the mixture. Table VI contains

results of tests of a considerable number of concrete beams
6 ins. by 6 ins. in cross-section and six months of age. For

three months these beams were frequently wetted though

kept in air. During the remaining three months they were

kept in air without wetting. The length of span for some
of these beams was 42 ins. and 18 ins. for the remainder.

Within the limits of the tests this difference in span appeared
to make no essential difference in the ultimate intensities

of stress in the extreme fibres. With the cross-sections of

the beams, i.e., 6 ins. wide and 6 ins. deep, the ratio of span

length divided by the depth was either 7 or 3, making the

beams very short. The different columns of the table show
the character of the ingredients of the concrete as well as

the greatest, mean, and least values of the intensities of ex-

treme fibre stress K. As would be anticipated, the values
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TABLE VI.

CONCRETE BEAMS SIX MONTHS OLD.
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for the two materials. Even with Portland cement, and

with as rich a mixture as 1-2-4, the results show that

working values of the greatest intensity in extreme fibres

should not exceed 40 to 60 pounds per square inch.

The investigations from which the results in Table VI

have been taken were conducted by Messrs. George C.

Saunders and Herbert D. Brown, graduating students in the

class of Civil Engineering of Columbia University in 1898.

The results of tests of twelve Giant Portland cement

concrete beams with 30- and 68-inch spans are given in

the " U. S. Report of Tests of Metals and Other Materials
"

for 1900, and they are shown in Table VII.

TABLE VII.

TRANSVERSE TESTS OF GIANT PORTLAND-CEMENT
CONCRETE BEAMS.

Composition: i c., 3 s., 5 br. st.

Span,
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Chief Engineer of the Michigan Lake Superior Power Com-

pany, at Sault Ste. Marie, Mich., and they are taken from

his paper in the " Transactions of the American Society of

Civil Engineers
"

for December 1899. The beams were 6

inches by 6 inches in cross-section, with a span of 18 inches.

The ratio of length over depth, therefore, was 3.

TABLE VIII.

PORTLAND-CEMENT CONCRETE BEAMS, 6 INS. BY 6 INS. SECTION,
18 INS. SPAN.

Cement.



Art. 91.]
CONCRETE BEAMS. 579

The chief elements in. the composition of the Portland

cements indicated by E and R in the Table were as follows :

Cement E. Cement R.

Lime 62 . 38 63 . 55

Silica 23 . 08 2 1 . 70
Alumina 5 . 69 8.76

Magnesia 1.21 2.96
Iron oxide 5 . 35 1.27

Potash and soda i .66 1.12

The sand used in Mr. Von Schon's tests was from St.

Mary's River, the broken sandstone was the native Pots-

dam variety, while the broken boulder stone was granitic

in character. All broken stone would pass through a ij-

inch ring and be retained on a i-inch ring; the material

was, therefore, little balanced.

In the constructions executed under the supervision of

the Boston Transit Commission, large amounts of concrete

were needed, and in the report of the Commission for the

year ending June 30, 1902, there are exhibited a large num-
ber of tests of Portland-cement concrete beams 6 inches

by 6 inches in cross-section with 30-inch spans. The ratio

of length of span over depth of beam in this case is, there-

fore, 5. Table IX gives the greatest, average, and least

results of these tests with the number of beams broken.

TABLE IX.

PORTLAND-CEMENT CONCRETE BEAMS, 6 INS. BY 6 INS. SECTION,
30 INS. SPAN.

Composition by
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The concrete was machine mixed and Vulcanite-Port-

land cement was used. The stone dust, to which reference

is made in the table, was finely crushed stone varying from

impalpable powder up to J inch diameter, the broken stone,

on the other hand, being of ordinary size. It will be noticed

that these beams were kept a part of the time in compressed
air at pressures varying from 7 to 25 pounds, presumably
for the reason that some of the material was to be used under

such conditions.

Table X contains results of a number of tests of con-

crete beams 6 inches by 6 inches in cross-section and with

30-inch spans, made for the purpose of comparing the re-

sistances of concretes made with stone dust and sand.

This table is also taken from the Report of the Boston

Transit Commission for the year ending June 30, 1902,

TABLE X.

PORTLAND-CEMENT CONCRETE BEAMS, 6 INS. BY 6 INS. SECTION,
30 INS. SPAN.

Composition by Volume (Approximate).
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Engineering of Columbia University in 1902 by Mr. Myron S.

Falk.* They have special value from the age of the beams,

which was about seven years. These beams were originally

made under the supervision of Mr. A. Black, Instructor in

Civil Engineering, Columbia University, for the purpose of

determining thermal linear expansion. They were kept
well moistened for several months after being made, but

subsequently until tested they were kept under cover with-

out moistening. The gravel used was rounded, varying in

size from -J to 2^- inches.

TABLE XI.

PORTLAND-CEMENT MORTAR AND CONCRETE BEAMS BROKEN
BY CENTRE WEIGHT.

Bar.
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representative of what may be expected with such mate-

rial in flexure.

Plate A represents graphically the results of the tests

of the preceding three bars B. As usual, the strain of

deflection consisted of two parts in all cases, one perma-

nent, at least for the time being, and one elastic, which

disappeared on the removal of the load. This feature is

shown by two lines, in each case indicated by the same
letter and subscript. The difference between the total

and permanent strain or deflection varied very nearly as

the centre load, and that difference being the elastic de-

flection was used in computing the coefficients of elasticity

given in Table XI. No coefficient of elasticity was com-

puted for a centre loading less than about 200 pounds
For the purpose of computing deflections under ordinary

working stresses from a condition of little or no loading,

it would be best to take the coefficient of elasticity at not

more than one half of the values given in the Table, in

order to allow for that part of the deflection which does

not disappear immediately upon the removal of the loading.

Reviewing all the preceding values of the ultimate

stress in the extreme fibres of concrete and mortar beams,

the working intensities of stress in extreme fibres can prob-

ably not be properly taken higher than 50 to 75 pounds

per square inch when Portland cement is used for well-

balanced mixtures not less rich than i cement, 2 sand, and

4 broken stone, or possibly, where exceptionally well made,

i cement, 3 sand, and 5 broken stone. If gravel is em-

ployed, some reduction should be made, depending upon

its character, and a similar observation must be applied

to mixtures less rich in cement than the preceding.

For natural cements, values of working stress greater

than one fourth of the preceding probably should not be

used. Indeed, it may be a serious question whether



Art. 91.] CONCRETE BEAMS.

PLATE A.

583

.001 .002 .004 DEFLECTION AT CENTERJN INCHES



584 BENDING OR FLEXURE. [Ch. XII.

natural cement should be used at all where concrete or

mortar may be subjected to flexure.

TABLE XII.

BRICK-MASONRY BEAMS.

(Age of beams about equally 5 months, 8 days, and 6 months.)

ROSENDALE-CEMENT MORTAR: I C., 2 S.

Span, Inches.
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ume of cement to two volumes of sand, while the Portland-
cement mortar was mixed with one volume of cement to
three volumes of sand. During the first three months the
beams were kept well wetted, but less so during the last

three months. At no time were they dry. The Table gives

FIG. i.

all the results of tests and shows that the beams had very
little resisting capacity, although possibly 15 to 20 pounds

per square inch might be justified as working values in the

extreme fibres of the beams built with Portland-cement

mortar. The bricks were laid by ordinary masons with

such care as could be impressed upon them, although the

experimenters stated that the brickwork was of very in-

different quality and hence that the results are lower than

they should be.
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Natural-stone Beams.

Table XIII exhibits results found by the same experi-
menters as in the case of Table XII with a number of.

natural-stone beams, the spans for which varied from 36
ins. down to 12 ins. The first figure in the second column 1

of the table headed "
Section

"
gives the depth of each beam, \

TABLE XIII.

NATURAL-STONE BEAMS.

BIvUESTONE.
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while the second figure gives the width. It will be observed

/

from the ratios of -j given in the third column that the beams

were very short. The extreme fibre stresses are seen to run

comparatively high for the bluestone, granite, and marble.

Indeed, working values of intensities may reasonably be

taken as follows:

For blue tone 250 to 400 pounds per square inch.
"

granite. 200 to 300
"

" marbl 17 10225
"

"
sandstone iootoi 5o

" " "

In the use of sandstone it should be understood that the

preceding values apply only to the best qualities of that

particular stone.



CHAPTER X1IL

,fwi ;.
CONCRETE-STEEL MEMBERS.

Art. 92. Composite Beams or Other Members of Concrete
and Steel.

CONCRETE, like other masonry, is admirably adapted to

resist compression. Its capacity of resistance to tension

is much less than its ultimate compressive resistance,

although if the concrete is well made the tensile resistance

may have considerable value. The purpose of the con-

crete-steel combination is the production of a beam or

other member almost entirely of concrete, but which shall

have a high capacity to resist tension in those portions
which may be subjected to tensile stresses. This result

is accomplished by embedding steel bars of desired shape
and of suitable cross-sectional area in the proper parts of

the concrete. While no general rule can be given for the

area of the steel section in comparison with the concrete,

it may be stated approximately that the steel section is

usually between f and i J per cent, of the area of a normal

section of the concrete. Inasmuch as the presence of the

steel is for the purpose of giving tensile resistance to the

member it is evident that the re-enforcing steel bars will

always be found in those portions of the concrete mass

which may be subjected to tension. In such concrete-

steel construction as arches the steel re-enforcement is

frequently used both on the tension and compression sides

of the concrete.

588
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In the case of concrete-steel beams or other similar

members, as the steel is entirely embedded in the concrete,

the loads and reactions must obviously be applied directly

to the latter. When the concrete takes its stress, there-

fore, at least a portion of that stress must be conveyed to

the steel, and that requires that the adhesive joint or bond
between the steel and concrete shall be as strong as possible.

Hence in laying the steel bars in the concrete it is necessary

that the contact between the two materials shall be inti-

mate and essentially continuous. Various means are em-

ployed to accomplish these ends. Square bars are fre-

quently twisted, while round bars may be nicked and flat

ones either twisted continuously in one direction or have

alternate portions twisted in opposite directions, or, finally,

rolled with alternately enlarged and contracted sections.

Again, where built-up members are embedded in concrete,

rivet-heads and other details of construction serve the

same general purposes. The efficiency of the concrete-

steel construction depends wholly upon the resistance of

this bond, and the design must always be such that the

adhesive shear, so to speak, or the stress of sliding along
the steel surface, shall never exceed per square unit the

ultimate resistance of the bond.

In the analysis and computations which follow it is

assumed, as it must be, that the bond between the steel

and concrete is such as to make the entire mass act as a

unit, so that the combination of the two heterogeneous
elements shall act as a single whole.

Art. 93. Physical Features of the Concrete-steel Combination

in Beams.

It will be shown later on that so far as can be deter-
mined from physical data now available the coefficient of

elasticity for concrete in compression for the operations
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ordinarily employed in designing engineering structures

^and for mixtures not less rich in cement than i cement,

3 sand, and 6 gravel or broken stone, at ages of one to six

months, may range from about 2,000,000 pounds per square
inch to more than 4,000,000 pounds per square inch, while

for concrete beams the coefficient or modulus may range
from about 1,500,000 pounds per square inch for compara-

tively shallow beams to more than 3,000,000 pounds per

square inch for beams of comparatively great depths.

Values for the coefficient of elasticity for concrete in

tension can be found in Art. 60. Further tests for the

determination of this quantity are much to be desired, but

enough has been done to establish at least closely approxi-

mate values. Some authorities assume the tensile coeffi-

cient to be much less than the coefficient of elasticity for

concrete or mortar in compression. As a matter of fact,

the tests of a Momer arch of 75 feet span by a committee
of the Austrian Society of Engineers and Architects,

which made its report in 1895, showed in that particular
case the coefficient of elasticity of concrete in tension to be

nearly one fifth greater than the coefficient for compression,

although it should be stated that the age of the tensile

specimens was materially greater than that of the com-
pression material. The values in Art. 60 indicate that the
tensile coefficient is at least equal to the compressive.
It is possible that subsequent investigations may show
that the tensile coefficient of elasticity is less than that for

compression, but at the present time there appears to be
practically no basis for that assumption. It seems to
be reasonable and safe, as it is more simple to take
the two coefficients equal to each other until further

investigations have conclusively established a different
ratio.

It is important to state in this connection that the re-
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suits of tests with concrete-steel beams, so far as they have
been made, indicate that the elastic or semi-elastic behavior

of concrete under stress will in the main characterize the

behavior of the same material when under loading in the

composite beam of concrete and steel, so that the coefficients

of elasticity determined for concrete alone may be used in

the composite member.

There is one important respect in which the action of

concrete alone is quite different from that which takes place
when it is combined with steel. In the latter case the con-

crete will stretch under a stress nearly or quite equal to its

ultimate resistance a comparatively large amount. It is

sometimes stated that under such conditions the coeffi-

cient of tensile elasticity of the concrete is practically zero,

but there is just as much ground, or more, for making the

same observation in connection with such ductile materials

as structural steel. What is actually meant is simply that

the concrete will stretch before parting much more when its

deformation is controlled by the corresponding deformation

of the steel reinforcement than when it acts by itself or

without such reinforcement. This feature of the action

under stress of concrete in the composite beam has a most

important bearing upon some rather peculiar phenomena
connected with the testing of such beams to failure. M.

Considere has stated ('

'

Comptes Rendus Academic des Sci-

ences,
' '

Paris, Dec. 12, 1898) that mortar will stretch twenty
times as much when combined with steel as when unaided

by that combination. He further states that the concrete

stretches uniformly with uniform increments of bending
moment up to about four tenths of the ultimate moment.

As the coefficient of elasticity for concrete is a small

fraction only of that of steel the tendency of the concrete

in composite beams is to stretch or compress more than

the steel embedded in it. Hence the concrete immediately
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adjacent to the steel tends to slide along the latter, but

that tendency is resisted ^by the adhesive shear at the joint,

in consequence of which the steel acquires its stress whether

of tension or compression. The normal section of the

unloaded beam, therefore, will not remain normal after

flexure, but there will be either a cup-shaped depression
around the steel or a similar shaped elevation. This is

illustrated in Fig. i.

A

JcTi

FIG. i.

In that figure the intensity of stress on either side of

the neutral axis is assumed to vary directly as the distance

from the axis, but in a subsequent analysis a different law of

variation will be assumed in order that the treatment may
be complete, although the author is not of opinion that the

assumption of any law of variation different from that of

the common theory of flexure is at the present time justified.

It will further be assumed in the analysis which follows

that normal sections of the unloaded beam will remain

normal under loading. This is a common procedure, and

it is not believed that the amount of variation from a plane
section under stress, described above, is sufficient to make
the assumption sensibly in error.

Art. 94 Rate at Which Steel Reinforcement Acquires Stress.

The determination of the rate at which the concrete

gives stress to the steel is not of great importance in ordi-

nary design work or in most other practical relations; yet
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it is desirable in some cases, and it is an element of the

action of internal stresses in a composite beam which
should be understood as clearly as practicable. The fol-

lowing analysis offers a means of determining that rate

as nearly as it can be done at the present time. The
notation used is shown also in Fig. 3 on the opposite page.

The intensity of stress in the concrete at the distance

dv the distance of the steel reinforcement, from the neutral

axis is k. Then if / represent the moment of inertia of the

entire composite section about its neutral axis (located by
d

lt
determined hereafter), there may be written

If 5 is the total transverse shear in the normal section

in question at the distance x from one end of the beam,

dk J

(2)

Let p be the total perimeter of section of the steel re-

inforcement at the section located by x.

Let A
2
be the area of steel section with perimeter p.

Let s'be the intensity of adhesive shear at the surface or

joint between the steel and concrete.

Let k
2
be the intensity of stress in the steel.

The variation of k
2
for the indefinitely small distance

dx is dk
2

. From what has preceded there may be written

. . . (3).

2 .. .

Inserting the value of dx from eq. (3) in eq. (2),

dk dk
:

,

,

O/i, : =~r~/ .

d
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By solving this equation for s' and remembering that

dk2=E2

dk ~Ei

,_<-./, d2 dk 2 _ ^>E2 d2 A 2 / \

This value of s' must never exceed the ultimate adhe-

sive resistance between the steel and concrete.

Tests for the determination of the adhesive shear between

concrete and imbedded round rods have been made by Pro-

fessors Talbot, Withey, Hatt, Duff A. Abrams and others.

In view of the inevitable uncertainties of condition of such

rods in respect to the bond between them and the concrete,

greatly varying values must be anticipated, as they will

depend upon the age proportions of the concrete, the smooth-

ness (or roughness) of the surface of the rods, the amount

of water used in mixing the concrete and the continuity of

contact between the concrete and the rods. The value of

adhesive shear has sometimes been taken as 16 to 20 per

cent, of the ultimate compressive resistance of the concrete,

but this is probably too high, even for the best qualities of

concrete.

Again, the ultimate value of adhesive shear as deter-

mined by the pulling of rods directly from a block of con-

crete may be materially different from that developed in

a bent beam and, hence, the latter procedure should be the

basis of determinations for reinforcing rods for beams. A
clear distinction should be drawn between the adhesive

shear existing prior to movement of the rod in its mastic

and the resistance to that motion after it once begins.

Professor M. O. Withey published in a Bulletin of the

University of Wisconsin, No. 321, 1909, the data of a large

number of tests in which the results were obtained from
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loaded beams, the stretch of the rods being accurately
measured by an extensometer for a given length of imbedded
rod. The diameter of rod was f inch and the age of the

concrete varied from seven days up to six months. A large

number of tests gave the adhesive shear as varying from

a minimum of 129 pounds per square inch to a maximum
of 362 pounds, a few only of the results falling below 200

pounds per square inch. It would probably be fair to

take 250 pounds per square inch as a representative

average of these results.

In a series of tests with diameters of bars running from

f inch to i inch, the average results were 278 and 286

pounds per square inch for the two smaller sizes of bars

and 163 pounds and 195 pounds per square inch for the

i -inch bars. The age of the 1-2-4 concrete in this case

was two months.

There may be found in Bulletin No. 71, University of

Illinois, a full account of a large number of
"
Tests of Bond

between Concrete and Steel," by Duff A. Abrams. These

tests were made under a great variety of conditions as to

age, sizes of rods, surface of rods, i.e., whether plain or

deformed, shapes of cross-sections, rods pulled out of blocks

and rods stressed in reinforced concrete beams, accompanied

by extended observations as to effects of loading including

careful measurements of the stretch of steel both in pulling

rods from blocks and as they were stressed in beams. In

these tests a clear distinction was recognized between the

adhesion to the surface of the rods and the resistance of

movement after initial slip, the greatest intensity of bond

resistance usually being developed after the beginning of

slip.

A roughened surface of rod will obviously yield a greater

bond resistance than a perfectly smooth surface, the resist-

ance of the latter being almost wholly adhesion.
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The following are a few of Mr. Abrams' conclusions:
"

(41) The mean computed values for bond stresses in

the 6-foot beams in the series of 1911 and 1912 were as

given below. All beams were of 1-2-4 concrete, tested at

2 to 8 months by loads applied at the one third points of

the span. Stresses are given in pounds per square inch.
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"
(46) The beams in which the longitudinal reinforce-

ment consisted of three or four bars smaller than those used

in most of the tests gave bond stresses which, according to

the usual method of computation, were about 70 per cent,

of the stresses obtained in the beams reinforced with a sin-

gle bar of large size."

As the greatest bond stress was developed after the

beginning of slip, the preceding results show that such a

maximum value exists beyond a net slip of o.ooi inch.

Again referring to the resistance of deformed bars, he

states,
" The mean bond resistance for the deformed bars,

tested was not materially different from that for plain

bars until a slip of about .01 inch was developed; with a

continuation of slip, the projections came into action and

with much larger slip high bond stresses were developed."

Again referring to a working bond stress, he states :

"
(59) A working bond stress equal to 4 per cent, of ths

compressive strength of the concrete tested in the form of

8- by 1 6-inch cylinders at the age of 28 days (equivalent to

80 pounds per square inch in concrete having a compressive

strength of 2000 pounds per square inch) is as high a stress

as should be used. This stress is equivalent to about one

third that causing first slip of bar and one fifth of the maxi-

mum bond resistance of plain round bars as determined

from pull-out tests. The use of deformed bars of proper

design may be expected 'to guard against local deficiencies

in bond resistance due to poor workmanship and their

presence may properly be considered as an additional safe-

guard against ultimate failure by bond. However, it does

not seem wise to place the working bond stress for deformed
bars higher than that used for plain bars."

The preceding results were obtained from statically

loaded beams. Professor Withey found no injurious effects

on the resistance of adhesive shear under repeated loads until
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the latter became 50 to 60 per cent, of the ultimate static

loads. This last percentage may be raised to 60 to 70 per
cent, with corrugated bars. Investigations made by the

same authority indicate that the results of static tests on

smooth round rods imbedded in beams will give values

for the bond or adhesive shear between the concrete and

the rods from one half to two thirds only of corresponding
results obtained by pulling imbedded steel rods from the con-

crete cylinders, but Mr. Abrams appears to believe that

the results of properly made
' '

pull-out
' '

tests will be about

the same as found for beams.

While materially larger values for ultimate resistance

of adhesive shear have been reported by some experimenters
with small rods, it appears prudent not to take the ultimate

resistance greater than perhaps 200 to 350 pounds per square
inch for round or square rods from ij inch to f inch in

diameter.

The working value for this bond for adhesive shear

should not be taken more than one fourth to one fifth of

its ultimate value.

Art. 95. Ultimate and Working Values of Empirical Quan-
tities for Concrete-steel Beams.

It is necessary for the practical use of the preceding

and following analyses that a number of empirical quanti-

ties be determined, chiefly for the concrete. The coeffi-

cient of elasticity for wrought iron for this purpose may
be taken at 28,000,000 pounds per square inch, and

30,000,000 pounds per square inch for structural steel,

which is now generally used in the reinforcement of con-

crete-steel beams.

The modulus of elasticity for concrete at different ages

and for different proportions of matrix and aggregate has
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been fully considered in Art. 67, and Table I of that Article

exhibits a full set of values. A mixture of i cement, 2 sand

and 4 broken stone or gravel is generally used in rein-

forced concrete work
;
and for such concrete the Table cited

above shows that the modulus of elasticity at the age of

one month may be taken from about 1,500,000 to nearly

3,000,000. In view, however, of the uncertain conditions

attending the making of concrete on actual work a higher

value than 2,000,000 is seldom used. The ratio of the

modulus for steel divided by that for concrete is generally

taken at 15, although 12 is sometimes employed, the latter

value implying a modulus for concrete of 2,500,000.

The ultimate resistances of mortar and concrete in

tension and compression will be found in Arts. 60 and 67.

These values will also depend upon the proportions and

character of mixture or upon the age. The records of

tests and experience which have thus far accumulated in

connection with concrete-steel construction show that the

compressive working stress of concrete in beams, where the

mixture is in the proportions of i cement, 2 sand, and 4

gravel or broken stone, may probably be taken as high as

500 pounds per square inch. It should be remembered

that this intensity will exist in the extreme fibres of the

beam only. Mixtures of less strength would require a

corresponding reduction in the maximum working in-

tensity of compression. A mixture, for example, of i

cement, 2^ sand, and 5 broken stone, unless the materials

were well balanced, might justify a reduction of the

greatest working stress to 400 pounds per square inch.

Some foreign authorities have prescribed two degrees
of safety, in the first of which the maximum working stress

of compression of 427 pounds per square inch is allowed,

and 711 pounds per square inch for safety of the second

degree. Structures in which the duty of the concrete is
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severe might be designed with the smallest of those values,

but where the duty is materially less severe, with the

larger.

It is not unusual at the present time in the design of

concrete-steel arches to allow a maximum intensity of

compression of 500 pounds per square inch and 50 to 75

pounds per square inch for the maximum intensity of

tension, if tension is allowed.

Tensile tests of concrete show that where proportions

of i cement, 2 sand, and 4 gravel or broken stone are used

a maximum intensity of. tension of 50 to 70 pounds per

square inch is about J to J the ultimate tensile resistance

at the age of three to six months. These values are reason-

able and may be employed in concrete work where it is

permitted to avail of the tensile resistance of concrete. In

much of the best engineering practice at the present time,

however, the tensile resistance of the concrete is neglected

in the interests of additional safety in concrete-steel beam
construction. Inasmuch as fine cracks may appear in

concrete from other agencies than tensile stress, it is un-

doubtedly advisable in most cases certainly to omit the

bending resistance of the concrete in tension, especially

as that omission does not sensibly increase the weight or

cost of the beam when properly designed.

Art. 96. General Formulae and Notation for the Theory of

Concrete-steel Beams According to the Common Theory of

Flexure.

The application of the common theory of flexure to

the bending of concrete-steel beams is in reality the de-

velopment of the theory of flexure for composite beams

of any two materials. The notation to be used and the

general formulas will first be written, therefore, and then

the special formulae for concrete-steel beams will be estab-



Art. 96.] GENERAL FORMULA AND NOTATION. 601

lished in the succeeding articles. These general formulae,

it should be observed, apply to beams of any shapes of

cross-section of either material or for any relative areas

of cross-section of those materials, although in concrete-

steel beams the area of cross-section of the steel is frequently
or perhaps usually but one to one and a half per cent, of

the area of the concrete.

Again, the formulae will be so written as to make

practicable the use of different coefficients of elasticity

for concrete in tension and compression if that should

be desired.

The notation to be used in the succeeding articles is

chiefly the following:

E
2
= coefficient of elasticity of the steel.

E
l

= " " " " "
concrete in compression.

nEi =
" " " " "

concrete in tension.

A
l
and A

2
are the areas of normal section of the concrete

and steel respectively.

7j and /
2
are the moments of inertia of A

l
and A

2 respec-

tively about the neutral axis of the normal section.

k
l
= greatest intensity of bending compression in the con-

crete.

k r = greatest intensity of bending tension in the concrete.

c = greatest intensity of bending compression in the steel.

t = greatest intensity of bending tension in the steel.

b= breadth of the concrete.

h and hj are total depths of the concrete and steel re-

spectively.

h
2
= vertical distance between the centres of the steel

reinforcing members.

d^ distance of extreme compression "fibre" of the con-

crete from the neutral axis.

d
2
= distance of the centre of the compression steel rein-

forcing member from the neutral axis.
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ds = distance from the neutral axis to the centre of

the tension steel reinforcement.

dj = distance from extreme compression fibre of the

steel to the neutral axis.

a = distance of the centre of the compression steel

reinforcing member from exterior compression
surface of concrete.

a i
= distance of the centre of the tension steel rein-

forcing member from exterior tension sur-

face of concrete.

M
2
=area of normal section of reinforcing steel in

tension.

(i r) .A 2
= area of normal section of reinforcing steel in

compression.

k= intensity of corrrpressive stress in the concrete

at distance z from the neutral axis.

k" = intensity of tensile stress in the concrete at dis-

tance z from the neutral axis.

2= intensity of stress in the steel at distance z from

the neutral axis.

u = tensile or compressive strain in unit length of
"
fibre" at unit distance from the neutral

axis.

In all the theory* of bending of concrete-steel beams it

is assumed, as in the common theory of flexure, that any

plane, normal section of the beam, before bending takes

place, will remain plane (and normal) while the beam is

subjected to bending. Hence

k=EiUZ, k" =nE\uz, and k 2 =E2uz. . (i)

Inasmuch as all the loading carried by concrete-steel

beams is supposed to act in a direction normal to the axes

* Given in Art. 32. Eqs. (i) to (4) are simple adaptations of the equa-
tions of that Art. to this case.
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of the beams, as is usual in the common theory of flexure,

the total stresses of tension and compression in any normal

section of a beam induced by the bending must be equal

to zero. The expression of this sum, written by the aid of

eqs. (i) and by which the neutral axis of the composite
section is determined, is the following:

Or

/v, ro /w
/ zdA.+ n zdAt + j? I

lt
dA

t
~o.

J Jhidi tLif dz'hj
(3)
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Hence the value of the moment is

[Ch. XIII.

IA V (4)

This equation is also completely general whatever may
be the shape of section of either material. It will be de-

veloped for the ordinary form of concrete-steel beams in

Art. 97.

Eqs. (3) and (4) cover completely the theory of bending
or flexure of composite beams of two materials, one of

them having different values for the coefficients of elasticity

in tension and compression. It will be observed that the

position of the neutral axis of any section of the beam, as

located by eq. (3), is affected by the values of Ev E2 ,
and n

y

and that it does not in general pass through the centre of

gravity of the section.

Art. 97. T-Beams of Reinforced Concrete.

The general formulae of Art. 96 belong to beams of any
shape of cross-section whatever; it is only necessary, there-

FIG. i.

fore, in this case, to apply them to the T-shaped section.

Two conditions may arise, in one of which the neutral
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axis lies in the flange of the beam whose cross-section is

shown in Fig. i, or, as shown in that figure, it may lie below

the flange. As is usually the case in actual work, the

tensile resistance of the concrete will finally be neglected.

This latter condition makes it necessary to consider only

the case shown by Fig. i .

Position of Neutral Axis.

Using the notation of Art. 96 under the conditions out-

lined above, but first recognizing the tensile resistance of

the concrete,

Again,

/** rdi rdi-f
I zdAi= I z-b ldz+ I z-bdz
JO Jdi-f JO

-,/(* -f

zdAi
-dl

As the steel section is small it will be essentially correct

to consider each part of it concentrated at its centre of

gravity. Hence there may be written,

/</.'

-d2') =A 2 (d2 -rh2). (ib)

Introducing the values given by eqs. (i), (ia) and (2)

in eq. (3) of Art 96,
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7ixj 7 1/
2 bd 2

7 , , bf
2 d 2bn ,, , bh*

o fa. o [-
l baj + l

h non.a. n 122 22 2

i n i n

E
l

b i n

The solution of this quadratic equation will give

'b
1

i

i-n Bi 6 i-w (i-w) 2

3

If the two coefficients of elasticity for concrete in tension

and compression are the same, as is always assumed in

actual work, n = i. This value gives indetermination in

Eq. 3, but it is only necessary to multiply both members

of Eq. 2 by (i n) and then make n = i. These opera-

tions give

1 /
>_

\ > .
'I 1 . -C"> -A-

d,

If the entire steel reinforcement is on the tension side of

the beam, r =
i, and in Eqs. 3 and 4, a + r/z

2 =a+/*2 =^i
The tensile capacity of the concrete is practically always
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neglected ;
hence n = o in Eq. 3, and

These formulae locate the neutral axis by giving the dis-

tance Jj for all cases.

An important special case arises where the neutral axis

NS, Fig. i, lies in the lower side of the flange, i.e., when

di =/. Making that substitution in the equation preceding

eq. (2),

, <>b

f nb ,7/77 . E2 A \ nbhi2
. E2 A ,

1 ^ ,, N
di2--

\-di(nbhi + A 2
)
=--+^-A 2 (a+ rh2). (6)

2 \ ki\ I 2 rL\

Solving this quadratic equation,

If concrete in tension be neglected, n =o and,

2^2^ I/E 2 A2\
2

,

E2 A 2 (a
p; 77~ rt* / I

~ T~T
] ~\~2 .

Ei b \vEi b
f

/ Ei b'

Eq. (8) shows that the case of a T-beam with neutral

axis at the lower surface of the flange and with tensile

resistance of concrete neglected is equivalent to a solid

rectangular beam of the same width as the flange under
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the same assumption of the neglect of the concrete in ten-

sion. No material error will be committed in assuming

any T-beam similarly equivalent to a solid rectangular

beam if the neutral axis is near the under side of the flange.

If the neutral axis NS lies in the flange the area (b
f

b)

(fdi) of concrete flange section will be in tension. In

that case the term n(b' b)
--- must be added to the

2

third member of eq. (ia), and hence to the first member of

the equation preceding eq. (2). This will add obvious cor-

responding terms to eqs. (3), (4) and (5), but the special

case is so rare that it needs no further attention. Unless

(fdi) has material value eqs. (7) and (8) may be used.

Balanced or Economic Steel Reinforcement.

In order that there may' be economy of material it is

necessary that the relation between the cross-sectional areas

of the steel and concrete may be such as to make the

greatest intensities of stress in each equal to the prescribed

working stresses. This condition is said to make a
"
bal-

anced
"

section or a balanced percentage of steel reinforce-

ment.

In the general case of tensile and compressive steel

reinforcement with the tensile resistance of concrete recog-

nized, the equality of the total tensile and compressive
stresses in a normal section of a T-beam gives eq. (9), if

the neutral axis lies in the under surface of the flange, as

is assumed in establishing eqs. (6), (7) and (8);

(9)

Adding \k\\)'d% to each side of eq. (9) and then dividing the

resulting equation by b'(di+dz) =b'hi, eq. (10) will result:
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or

(xoa)

It will now be convenient to simplify the forms of the

preceding equations by using the following notation :

iff

e=, the ratio of the modulus of elasticity for steel

Ei
over that for concrete. Usually =

15, but occa-

sionally
= 12.

p=-^-, the steel ratio, usually expressed as per cent, of
b hi

total rectangular section, i.e., in 'case of the T-beam

per cent, of total rectangular outline b'h\.

The steel ratio or per cent, p, is written in terms of the

circumscribing rectangle b'hi in the interests of simplicity

and as being at least as rational as any other method.

The effective depth of the beam is taken as hi because

the exterior thickness of concrete (hhi) is usually a pro-

tecting shell against fire, possibly to be partially or wholly

destroyed in a conflagration, and, hence, not to be counted

as effective beam material. The formulae may easily be

changed so as to be expressed in terms of the full .depth

h by simply writing h o for hi, o being the difference

(hhi), i.e., the thickness of the concrete from the centre

of the tension steel reinforcement to the lower surface of

the web or stem of the beam, usually 2 to 3 inches, or
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more for very large beams. The preceding notation will

enable the following formulae for practical use to be written.

Formula to Locate Neutral Axis in T-Beams.

T-^- f / \ 1 7 j -j.- E>2 b A.2 r 2 A.2
Dividing eq. (3) by hi and wntmg -rj-

for -
;

Li rL,i

b
f

7 7 V L /
' ' L

di = = hi\b / o

hi i n

V \/2

T--j)r*+n u/ / 1

b /hi 2
b' ^ a+rh2 \hi\b

( \2i-n b (i-n)hi (i-n)
2

Doing precisely the same with eq. (4) there will result

for the usual condition of the two moduli for tension and

compression being the same, but with tensile resistance of

the concrete recognized :

For the special case of neglect of the tensile resistance

of concrete, eq. (5) gives, after dividing both sides by hi :

J2 ^
r /74-r/7. / f /h' \ h' \2

y

If the neutral axis lies in the under side of the flange,
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both sides of eq. (7) are to be divided by hi, and that equa-
tion may then take the form :

Or, if concrete in tension be neglected, n =o and eq. (8)

then gives

If the reinforcing steel is wholly on the tension side of

the beam section r = i and a+rh2=a+h<2=h\. Hence in

eqs. (12), (13), (14) and (15),-^
- = i

,
but no other change

hi
is needed.

The value of the steel ratio or per cent, for the perfectly

general case is given by eq. (10), by placing p =TT^- in that
b hi

equation and then solving for p, which will give:

c(i-r)-rt
.....

If concrete in tension be neglected, eq. (9) shows that
k i

dz=ki=o in eq. (16), and that equation will then take

the form

2 C(i-r)-rt 2 (c(i -r) -rt)hi
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If the reinforcing steel is wholly on the tension side of

the beam section, r = i and c(i r) rt rt. Eq. (17)

will then take the form :

,

The laws of the common theory of flexure give the fol-

lowing relations :

ki t i d\ eki f N

T =~T> or T =
-T> . . . (19)

a\ e 0,3 0,3 t

hence :

eki+t hi f ,

d*
Also:

-, and i= C

Placing the value of r-^ from eq. (20) in eq. (18) :

n\

The area of the steel section A 2 can at once be found from

p in all cases by simply writing :

p=77r-, and hence, A 2 =pb'hi. . . (23)

In all these equations for locating the neutral axis of a

section NS, Fig. i
,
the ratios

,

~- and other similar quan-
o h\
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titles depending on the dimensions of the cross-section will

be known, at least tentatively. Indeed in making prac-
tical applications of these equations it will in general be

necessary to assign trial dimensions of the cross-sections of

the beam if the application is made for the design of the

latter. Such trial dimensions must be assigned by the aid

of prior experience or other beams already designed for

more or less similar conditions. After trial dimensions have

been tested by actual computations for the assigned loads,

such modifications or revision of these dimensions as may
be necessary must then be made.

If the neutral axis lies within the section of the flange,

the changes in the preceding formulas already indicated for

that case may be easily introduced, but the case is so rare

that complete expressions for its treatment need not be

.written. If the tensile resistance of the concrete is neg-

lected, the formulas for the special case, only, of the neutral

axis lying in the under surface of the flange are needed,

simply considering the depth of flange / as the distance from

the upper flange surface to the neutral axis. In fact that

special case will cover the great majority of T-beams with

sufficient accuracy for practical purposes.

The general value of the steel ratio or per cent, for a

balanced section may be considered as given by eq. (16)

even though the neutral axis does not lie in the under sur-

face of the flange, at least as a reasonably close approxima-
tion even when the position of the neutral axis is materially
different from that supposition. In determining that ratio

or per cent. k\, c and t must be considered as prescribed

working values of those respective intensities of stress, the

ratio between c and t being fixed by the distances of

the steel reinforcements from the neutral surface. When
the steel reinforcement is wholly on the tension side, as

in the usual cases, ki and t are prescribed working stresses
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for the concrete in compression and the steel in tension,

respectively.

Art. 98. Bending Moments in Concrete-steel T-Beams by
Common Theory of Flexure.

The complete expressions for the bending moments of

concrete-steel T-beams may now be written and their

values for any particular case estimated, by introducing

the notation already employed into eq. (4) of Art. 95.

The moment of inertia or integral in the last term of the

second member of that equation takes the form :

z2dA 2 = (i -r)A 2d2
2 +rA 2d3

2
. (i)

Referring to Fig. i of Art. 96, the other two moments

of inertia in the first and second terms of the second member
of eq. (4) of Art. 95 become: '****

dl

?dAl= Vd^_(b,_fy(di-/)
3

f

xx

o 3 3

Jhi
...... (3)

'hi -di 3

Also,

77 kl , K E2z7 #2&1 f vEiu=\ and E2u=E 1u=. . . (4)

Introducing these values in eq. (4) of Art. 95, remem-

bering that hidi=h2 d2 =d3 the bending moment M for

a T-beam become :

(s)
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This equation is written in terms of one intensity of stress

k\ for convenience in computation, but it will be advisable

sometimes to use other intensities, such as the greatest
. stress t in the tensile steel reinforcement. This can readily

be done by the aid of the following relations based upon
common theory of flexure, in addition to the relations

shown in eq. (4) and remembering that -=r=e.

k
r

ki ,,v=.. . . (6)

These simple values will enable any intensity to be expressed

in terms of any other. The greatest compression in the

concrete, k\, and greatest tension in the steel, t, are those

mostly required.

If, as is usual, the two moduli of elasticity of concrete in

tension and compression are equal to each other, n = i in eq.

(5), but no other change is needed.

/

-

Neglect of Concrete in Tension.

If the resistance to concrete in tension be neglected,

n=o in eq. (5), and:

. (7)

In ordinary T-beams all steel reinforcement is in tension;

hence r = i and eq. (7) becomes:
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Special Case of Neutral Axis in under Surface of Flange.

In this case (d\ /) =o and eq. (7) will take the form:

If the steel reinforcement is wholly on the tension side r = i ,

as in eq. (8).

This special case may, without material error, be con-

sidered to include all T-beams for which (d\ /) or (fdi)
is relatively small.

Art. 99. Concrete Steel Beams of Rectangular Section.

All formulae for reinforced concrete beams with rect-

angular section may be written at once from those for

T-beams by simply making b
f = b in the latter. A typical

rectangular cross-section for the general case is shown in

Fig. i, Art. 96, although in the usual case the steel rein-

forcement is wholly on the tension side.

Formula to Locate Neutral Axis in Beams of Rectangular
Section.

The general case requires eq. (n) of Art. 97. Making
b' = 6 that equation becomes:

=q= \/~~ \-2ep-, -T-: h~7 t^r. (i)
hi in \i n (i n)hi (i n)

2

If the moduli for tension and compression are the same,

as is invariably assumed in engineering practice, b = b
f

in

eq. (12), Art. 97:

a+rh2,- +ep
2 h
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If the tensile resistance of the concrete be neglected,

the same substitution of b =b' is made in eq. (13) of Art. 97 :

. . (3)

When the reinforcing steel is wholly on the tension side

r = i and a+rh2 = a+h2 =h\, hence:

-=q = - epV2ep+e2
p
2

. .... (4)
hi

This is the ordinary case.

It will be observed that eq. (3) is identical with eq. (15)

of Art. 97.

The steel ratio or per cent., p =7-^-, for the general case
ok i

of balanced sections is given by eq. (16) of Art. 97 by
making b = b' :

When the tensile resistance of the concrete is neglected,

the value of p given by eq. (17) of Art. 9*7 remains un-

changed :

Eq. (18) of the same article gives p as it stands if the

tensile resistance of the concrete is neglected, i.e., of r = i :
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Eqs. (19), (20) and (21) of Art. 97 hold true for rect-

angular sections and, hence, eq. (7) may take the form of

eq. (22) of that article:

These values of the steel ratio p will form the basis of

economical beam design. The working stresses k\ for con-

crete in compression and t for steel in tension will be pre-
scribed in the specifications for the work to be done.

Bending Moments for Rectangular Sections.

The general value of the bending moment, M, i.e., for

unequal moduli in tension and compression and with tensile

resistance of concrete recognized, is given by eq. (5) of Art.

98 after making b
f = b.

(9)
3

If it be desired to express this equation in terms of other

intensities than k\ y
the following relations given in eq. (6)

of Art. 98 will enable that to be done :

eki t c A k' k\ xx
:
= = -r- and =

. do)

The moduli for concrete in tension and compression are

invariably considered equal, and in that case n = i in eq. (9) ,

but no other change is required.
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Neglect of Concrete in Tension.

The neglect of the concrete in tension is affected by
making n = o in eq. (9) giving :

M=-^ +eA2(d2
2
(i r) -\-d%

2
r) . . . (n)

The steel reinforcement is usually wholly on the tension

side, i.e., r = i. Making this substitution in eq. (n) :

(12)

All the preceding values of the bending moment M may,
if desired, be expressed in terms of the steel ratio p by sub-

stituting pbhi for A 2.

In the preceding equations the distance d\ of the neutral

axis from the exterior compression surface of the beam is

to be found from the appropriate formula for q of this article,

since d\ = qh\.

The preceding equations complete all that are necessary

in the treatment of practical questions of design or of

ultimate carrying capacity.

In all the preceding analyses of Arts. (97), (98) and (99),

the total depth h of either the T-beam or the solid rect-
A

angular section may be used if desired by making p = yyr-
b h

or =
>
but in that case in the equations for d\ the fraction

oh

a+h2

(when r i) will occur, that fraction having values

varying from about .67 for floor slabs to .95, for beams of

much depth instead of - = i . It is rare, however, that
i

such a form of equation will need to be used.
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Art. 100. Shearing Stresses and Web Reinforcements in

Reinforced Concrete Beams.

In the case of reinforced concrete T-beams it will be

assumed that the stem or web extending from the upper
surface of the flange down to the centre of the tension steel,

i.e., having the depth hi and the width ft, will carry the

whole transverse shear. In the solid rectangular section,

the total sectional area less that part of it below or outside

of the centre of the tension steel reinforcement will be

assumed to resist transverse shear, i.e., the resisting area

will be bhi as in the case of the T-beam.

Fig. i represents a simple T-beam supported at each

end Q and R, having steel reinforcement both in the flange

6 a

L M

FIG. i.

and in the lower or tension part of the beam. In order

to illustrate fully the action of the shearing stresses in such

a beam, the tensile resistance of the concrete may be recog-
nized. If there were no steel reinforcement, the analysis
of Art. 15 shows that in the case of a rectangular section

the greatest intensity of either longitudinal or transverse

shear exists at the neutral axis of the section and has the

value of f the average shear on the whole section. If s

be that maximum intensity of shear and if. 5 is the total

external transverse shear at the given section, then will
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s = -rr-. In Fig. i, Oc = 0a=s and both of the curves
3 wfci

Ae'a and Bee are parabolas with the vertices at a and c,

so that horizontal ordinates from AO to the curve in the

one case and from BO to the curve in the other case repre-

sent intensities of the longitudinal and transverse shear at

the points from which those horizontal ordinates are drawn.

This is the condition of the shearing stresses in beams of

a single material subjected -to flexure, and reinforced con-

crete beams represent simitar members, but of two materi-

als. The stresses given to the longitudinal steel reinforce-

ments may be assumed provisionally to be conveyed to them

from the neutral surface at a constant intensity s\ and in

Fig. i that constant intensity is represented by cd and ab.

The curves df and bf are drawn so as to make a constant

horizontal ordinate between them and the parabolas already

indicated. The total maximum intensity of longitudinal or

transverse shear at the neutral axis will, therefore, be the

sum of 5 and si\ this may be taken with sufficiently close

approximation, at least for practical purposes, as f the

total average transverse shear at a given section.* Even
if the horizontal ordinate between the two curves is not

uniform, this value of the maximum intensity may properly
be used.

In the case of the tensile resistance of the concrete

*
It has come to be the practice, for some reason not easily appreciated,

to treat the transverse shear in the normal section of a reinforced concrete

beam as if it were uniformly distributed over that normal section, which
is an error on the side of danger. In the interests of both safety and cor-

rect analysis, the established variation of intensity of shear in the normal
section of a bent beam should be recognized, for it holds just as much for

a resisting concrete section as for a section of any other material. When
the bending resistance of the concrete on the tension side is ignored, the

law of variation of intensity will change, but the maximum intensity at the

neutral axis will be unchanged.
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being neglected, Fig. 2, representing a part of a continuous

reinforced concrete T-beam, shows the variation of the in-

tensity of the longitudinal and transverse shears. The

parabolic curve Aa shows the variation of the intensity of

the shear in passing from the neutral axis of the section

to the exterior surface A, aO being the maximum intensity

and equal to f the average intensity for the entire section.

Inasmuch as the tensile resistance of the concrete is neg-

lected, the maximum intensity of longitudinal shear Ob = Oa

may be considered as varying by some unknown law such,

however, as to make the total internal transverse shear

=

FIG. 2.

equal to the total external, cd representing the intensity

at the centre of the tension steel reinforcement.

It is impossible to analyze with complete accuracy the

variation of the intensity of shear in the' concrete by which

the reinforcing steel, either in tension or compression, ac-

quires its stress, but it cannot have a uniform value equal

to the maximium intensity at the neutral surface. It is to

be understood that the constant horizontal shear ordinates

in both Figs, i and 2 are to be interpreted in this

manner.

The shearing resistance of concrete in any plain or

reinforced concrete structure is of uncertain value, much
as is the tensile resistance, although the practice of crediting
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it with some material amount may be justified. At the

same time the incipient surface cracks which are found to

form with lapse of time at any point may extend deep

enough ultimately to prejudice seriously resistance to shear.

It is probably hazardous, therefore, to depend upon concrete

alone to resist transverse shear in beams, either of the T
form or solid rectangular, or, of any other form. In fact

it is prudent to state unqualifiedly that reinforced concrete

beams carrying moving loads tending to produce vibrations

or shock should be so designed as to provide for the entire

transverse shear independently of the shearing resistance of

h J C' j'

FIG. 3.

the concrete. This provision for resistance to transverse

shear is made chiefly by bending upward, in that part of

the spans near the end supports, the steel tension reinforce-

ment as shown in Figs. (2) and (3). The inclination of

the bent parts of the rods will depend upon the judgment
of the engineer in view of the length of the span, depth of

beam or other features of each case. Usually all of the

rods constituting the tension reinforcement are not bent

upward, as that much provision for shear is not needed. If

the span is short, there may be but one set of bent rods,

as shown in Fig. 2, but in other cases there may be two or

more sets bent upward at different distances from each
end of the span, as shown in Fig. 3, the number of such
sets of rods being determined, like the angle of inclination,

in accordance with the best judgment of the designing

engineer. The vertical components of the stresses in these
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bent rods may obviously equal the transverse shear at the

section considered. For example, in^Fig. 3, the total trans-

verse shear at the section CD multiplied by the tangent of

the inclination of the rods to the vertical must for good

design be at least equal to the required horizontal rein-

forcement to be afforded by those rods, i.e., the section of

the rods must be sufficient to take their stresses without

exceeding the prescribed working stress, which is frequently

16,000 pounds per square inch. A similar computation is

to be made at other points where rods are to be bent up-
ward. It is not necessary (although usual) that the differ-

ent sets of inclined parts of rods should be parallel, i.e.,

those nearer the centre of the span may have a greater

inclination to a vertical than those near the points of

support.

Again, vertical reinforcing pieces or stirrups, such as

those at FH, F'H', CD, CD', in Fig. 3, are introduced

under the assumption that they will take the vertical trans-

verse shear in tension. These stirrups are of a variety of

forms and may be in sets of two or more vertical prongs
or parts, but they should be securely fastened to the hori-

zontal steel reinforcement. If the total transverse shear at

any section as JK is supposed to be carried by the stirrup

as tension in that section, the cross-sectional area of the

steel stirrups should be sufficient for that purpose at the

prescribed working stress. Furthermore, the adhesive shear

or bond on the exterior surfaces of these stirrups should

be sufficient to give such tension without exceeding the

prescribed working stress for that shear or bond. These

vertical stirrups are thus supposed to act the part essen-

tially of vertical truss members in tension and so produce

diagonal stresses of compression in the concrete as shown

by broken lines in the vicinity of KC and K'C' . It is

known that the greatest diagonal stresses of tension and
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compression exist at angles of 45 degrees with the neutral

surface of every bent beam. The function of these stirrups

is intended to be such as to relieve the concrete of that

tension and induce diagonal stresses of compression. Indeed

their function is somewhat similar to that of vertical stiffen-

ing members on the web plates of plate girders when those

stiffeners are assumed to take tension and produce com-

pression in the web in a 4 5 -degree direction, as was fully

shown in Art. 34. The distance apart of these vertical

stirrups should certainly not be greater than the depth of

the beam from the upper surface down to the tension steel

reinforcement; probably a horizontal distance apart of

about three-quarters of that depth is advisable.

If any beam carry a set of loads, W\, W%, Ws, etc., and

if R' is the end shear at A, Fig. 3, and if IW be the sum of

the loads between the end A and any section at which it

is desired to obtain the transverse shear S', then will

that transverse shear at any stirrup, as CD, Fig. 3, be

S'=R'2W, and it is assumed that the stirrup will carry

that shear as tension. If t' is the allowed tensile stress in

S'
the stirrup, the sectional area A s of thelatter will be A s

=
.

If the intensity of permitted bond shear is s
f and if the cir-

cumference of a stirrup section is o, and if I' is the imbedded

length of one complete stirrup, including all prongs, then

must s'ol' be at least equal to S'. Evidently a form of

cross-section like an oblong rectangle will give much more

area for bond shear, for a given sectional area, than such a

section as a circle or a square and it will have a correspond-

ing advantage for this purpose.

The ends of all stirrup bars as well as all reinforcing rods

should be turned or bent at right angles so as to prevent

slipping at and near .the ends. Furthermore, they should

preferably be looped at top and bottom, around the rein-
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forcing rods where they exist, so as to bear directly on the

concrete supplementary to the bond shear.

Obviously if both the inclined bent rods shown in Figs.

2 and 3 and the vertical stirrups shown in Fig. 3 effectively

perform their functions, both would not be needed at the

same part of a beam, but as the effectiveness of each detail

by itself is somewhat uncertain, both are frequently used

concurrently. The stirrups may judiciously be used in the

central part of the span extending well toward the ends

where the bent rods are employed.
Another form of steel reinforcement of beams is shown in

Fig. 4, which is supposed to be part of a reinforced con-

crete beam on both sides of CD, the centre of span. The

beam may be either a T-beam or a beam of rectangular

section. The steel reinforcement AB is supposed to be on

the tension side of the beam only, although a precisely

similar reinforcement might be placed on the compression
side also. The small inclined bars ab, cd, a'b', c'd'

, etc.,

are usually parts of the main tension reinforcement bent

upward in a diagonal direction, as shown, which may be

at the angle of 45 degrees of theory or at some other angle.

They should extend above the neutral surface NS and be

carried nearly to the top of the beam.

As has already been indicated, a solid beam of a single

material will have the greatest intensity of tensile stress at
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the neutral surface, making an angle of 45 degrees with a

horizontal line and sloping upward and away from the

centre of span, as indicated in Fig. 4. Tests of plain and

reinforced concrete beams show that in those parts of the

span near the end, this diagonal tension is likely to cause

failure of the concrete. Hence these inclined bars are run

up from the main tension steel reinforcement to assist the

concrete in taking up this diagonal tension and thus pre-

venting its failure so far as possible. The 'concrete will be

in compression in the diagonal direction at right angles to

these inclined bars.

If a vertical section of a beam should cut two or more
sets of them, the force or stress obtained by multiplying
half the total transverse shear at such a section by the

secant of the inclination of these bars to a vertical line will

give the total stress to which those two or more sets will

be subjected, the distribution being assumed to be uniform

among them. The other half of the transverse shear at that

section may be considered as giving compression to the

concrete at right angles to the 4 5-degree tension in the

inclined bars. It is clear also that the total bond shear

on the surface of each one of the inclined bars must be at

least equal to the tensile stress which the bar carries at an

intensity not greater than that prescribed in the speci-

fications for the work. If such a normal or vertical sec-

tion of the beam cuts but one set of these inclined bars,

the single set must take the stress due to half the total

transverse shear, precisely as described above for two or

more sets. The ends of these inclined bars should be bent

at right angles or otherwise formed so as to prevent the

possibility of slipping, and thus supplement effectively the

bond shear.

It is clear that such bars must add to the carrying

capacity of a beam, not only by taking up the inclined
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tensile stresses as described, but also as tending to bind the

entire beam together as a unit.

The greatest transverse shear is that at the ends of

the span where the sum of the vertical components of the

stresses in the bent rods must be equal to that end shear or

to so much of it as may be prescribed. In Fig. 3, for

example, the sum of the vertical components of the stresses

in the inclined rods bK (a set of reinforcing rods) must be

equal to the transverse shear prescribed. All inclined rods

like bK, JD, etc., lie in the direction of the diagonal tension

(maximum at inclination of 45 degrees) and act directly

to carry shear.

When beams are continuous over supports, as shown in

Figs. 2 and 3, bending moments will be developed over those

supports opposite in sign to those found at and near the

centres of the spans, producing tension in the upper parts

of the beams. For this reason tensile steel reinforcement

formed either of the bent rods continued into the adjoining

spans, as shown in Fig. 3, or of separate rods introduced

for the purpose are required to take that tension.

The precise degree of constraint when beams or girders

are
"
continuous

"
over points of support cannot be deter-

mined, but certain values of moments expressing the results

of experience in modifications of formulae for conditions of

perfect continuity will be given in the next article.

In the practical consideration of provision for transverse

shear in reinforced concrete beams, it is a matter of some

uncertainty how much the concrete may be allowed to take,

if any, and hence what corresponding steel must be intro-

duced in the form of bent reinforcing rods or stirrups. As
has been intimated, it is a serious question whether the

concrete should be credited with any resistance to shear. It

is frequently the practice to assume that one-third of the

transverse shear will be carried by the concrete under suit-
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able conditions and a prescribed working stress, but that

the other two-thirds shall be taken by steel provided for

the purpose as already described. Aside from the difficulty

arising in the attempt to distribute by measure the dis-

charge of an important function between two different

methods, there is grave doubt about the propriety of

assuming dependable resistance against shear by con-

crete, particularly if the moving load is of a character to

produce vibrations or shock. In the latter case steel should

certainly be provided to take all shear. That procedure
is more prudent in all cases except, possibly, where the load

is wholly dead or essentially so, when the concrete may be

allowed to carry one-third of the total transverse shear.

Many tests of full-size reinforced concrete T-beams and
beams of rectangular section have been made by Profs.

Talbot, Withey, Hatt, and others in the United States and

by Considere, Feret and other foreign investigators in

Europe, and full descriptions of all results may be found in

the Bulletins of the Universities of Illinois and Wisconsin

and in many other publications, hence it would be super-
fluous to repeat them here. The working results of those

tests bearing upon computations for design or other prac-
tical work will be given in the next article, chiefly in con-

nection with the recommendations of the
"
Report of the

Committee on Concrete and Reinforced Concrete
"

of the

American Society for Testing Materials, Vol. XIII, 1913.

Art. ioi. Working Stresses and Other Conditions in Reinforced

Concrete Design.* Design of T-beams.

In the design of reinforced concrete beams there are

some features of the work determined by experience and

*The report of the Committee on Concrete and Reinforced Concrete,
Proc. of Am. Soc. for Testing Materials, Vol. XIII, 1913, has largely been
used in the preparation of this article.
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quite independent of analysis. Reinforcing bars or rods

must be surrounded by enough concrete to receive the

proper stress from the -latter. This may be assumed to be

done if the lateral spacing between the centres of parallel

rods is not less than three diameters, or two diameters from

the outer concrete surface to the centre of the nearest rod,

the clear vertical space between two horizontal layers of

rods being not less than i inch. It is seldom advisable

to use more than two courses of such rods. In all cases

scrupulous and effective care should be taken by the aid

of blocking, ties and other devices to hold the reinforcing

steel accurately in place until the concrete is set.

As a fire protection a thickness of at least 2 inches

of concrete should be placed outside of the steel in all rein-

forced concrete beams and columns. In relatively small

beams a least thickness of i^ inches may be allowed, and

i inch may be permitted in floor slabs.

Floor slabs should be designed and reinforced as con-

tinuous over supports, and if the length in any case exceeds

1.5 the width transverse reinforcement should be provided
to carry the entire load.

The continuity of beams and slabs may be recognized

and expressed as follows, assuming the combined dead and

moving loads equivalent to a uniform load of q (pounds)

per linear foot on the effective span :

Floor slabs: moment at centre of span and at

0/2
end of span .

12

Beams: For exterior span of series, moment at

al2

centre of span and at outer fixed end of span. .

10

For interior spans moment at centre

al
2

and at end of span .

12
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Beams and Slabs: continuous over two spans

only, moment at central support

Moment near middle of span

ql
2

-^
.

8

q?
10

At ends of continuous beams and girders where the

degree of constraint is uncertain, the computation of the

negative end bending moment must be controlled by
the judgment of the responsible engineer.

Working Stresses.

The following working stresses are chiefly given as per

cents, of the accompanying ultimate compressive resistances.

They are for moving and dead loads considered as static

loads, with the assumption that proper additions to moving
loads must be made, when advisable, to provide for impact
or vibrations.

ULTIMATE COMPRESSIVE RESISTANCES

Proportions and Ult. Resistances, Pounds per
Sq. In.

Aggregate.
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of 28 days. If, for instance, the ultimate compressive resist-

ance of a i : 2 : 4 concrete is 2200 pounds per square inch,

then the extreme fibre working stress would be 2200X^25
= 715 pounds per square inch. Adjacent to the support of

continuous beams, these stresses may be increased 15 per
cent.

Shear and Diagonal Tension.

For beams with horizontal reinforcing bars only, i.e.,

with no web reinforcement, 2 per cent, of the ultimate com-

pressive resistance may be allowed. If the latter were 2200

pounds per square inch, as for the 1:2:4 concrete of the

above table, the allowed shear would be .02X2200=44
pounds square inch. This shear would be taken wholly by
the concrete.

For beams thoroughly reinforced in the web, 6 per cent,

of the ultimate compressive resistance may be allowed. In

this case, however, the web reinforcement, exclusive of bent-

up reinforcing bars, must be designed to take two-thirds

of. the external vertical shear. Again, using the 1:2:4
concrete, the allowed shear would be 0.06X2200 = 132

pounds per square inch of total concrete section. In this

case, however, the steel reinforcement would be designed
to carry two-thirds of the total transverse shear, making
the actual shear in the concrete 44 pounds per square inch

on the basis of the exact division between the two methods

of carrying the shear prescribed.
" For beams in which part of the longitudinal reinforce-

ment is used in the form of bent-up bars distributed over a

portion of the beam in a way covering the requirements for

this type of web reinforcement, the limit of maximum ver-

tical shearing stress
"
may be taken 3 per cent, of the ulti-

mate compressive resistance.

Where what is termed
"
punching shear

"
occurs, i.e.,
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pure shear without bending, a working shearing stress of

6 per cent, of the ultimate compressive resistance may be

allowed.

Bond or Adhesive Shear.

The working intensity for this bond or shear between

concrete and plain reinforcing rods may be taken at 4 per

cent, of the compressive resistance, but 2 per cent, only for

drawn wire. For i : 2^ : 5 concrete at 1600 pounds per

square inch of ultimate compressive resistance, the two

working stresses would be .04 X 1600 =64 pounds per square

inch or half that for drawn wire.

Steel Reinforcement.

The tensile or compressive working stress in steel rein-

forcement should not exceed 16,000 pounds per square inch.

Modulus of Elasticity.

For computations locating the neutral axis and for com-

puting the resisting moment of beams and for compression
of concrete in columns, it is recommended that the ratio

of the steel modulus divided by the concrete modulus be

taken at 15 if the ultimate compressive resistance of the

concrete is taken at 2200 pounds per square inch or less;

and at 12 if the ultimate compressive resistance of the con-

crete is greater than 2200 pounds per square inch and less

than 2900 pounds per square inch; and, finally, at 10 if the

ultimate compr.essive resistance of the concrete is taken

greater than 2900 pounds per square inch.

The preceding specifications express substantially the

views of a Committee on Concrete and Reinforced Concrete

of the American Society for Testing Materials, 1913. In

that Report the transverse shear is computed as ifuni-
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formly distributed throughout the normal section of a bent

beam, which, as has already been indicated, is incorrect.

On the whole, however, the recommended values are judi-

cious and may be commended for practical use.

Design of T-Beam for Heavy Uniform Load.

The given data are as follows: Effective length of span

32 feet (non-continuous); moving load on floor, 250 pounds

per square foot. Floor slab 6 inches thick. Each T-beam
carries 10 feet width of floor.

The steel reinforcement of the beam is on the tension

side only.

As the floor slab will be reinforced (at right-angles to

the beam) its weight will be taken at 155 pounds per cubic

foot. The concrete will be considered a 1:2:4 mixture

weighing about 150 pounds per cubic foot.

The floor slab being 6 inches thick, a little less than

four times its thickness will be assumed as effective com-

pression flange area on each side of the stem or web of the

beam. Referring to Fig. i of Art. 96, the following dimen-

sional data will be assumed for trial computations :

b' = 60 inches; / = 6 inches; 6 = 15 inches. ^1=29
inches; thickness of concrete outside of steel, 2 inches.

Trial value of steel ratio or per cent., p = .8 per cent. = . 008.

The working stresses are :

Compression for concrete: k\ = 650 Ibs. per sq.in.

Tension for steel : / = 16,000 Ibs. per sq.in.

Eq. (1.3) of Art. 96 then gives:

r^= i. ii 1.524 = +.414.-. Ji = .414/11 = 12 ins.
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Eq. (18) of Art. 96 may now be used:

p = 5 X .414 = .0084 = .84 per cent.
2 X 16,000

This last value of p agrees closely enough with the

assumed value. Hence the computed values of d\ and p

may be accepted. Consequently: ^3 = 29 12=17 inches.

The required steel sectional area is :

A 2 =pb'hi =.0084X60X29 = 14.62 square inches.

There may then be taken eight ij-inch round bars

whose aggregate area is 14.16 square inches.

The cross-section of the effective beam may be made
as shown in Fig. i. Deformed rods of any suitable section

of the aggregate computed area may obviously be used.

The dead load or own weight of the beam, including
10 feet width of floor slab, may be taken at 1225 pounds

per linear foot of span. The uniformly distributed moving
load will be 10X250 = 2500 pounds per linear foot of span.

The bending moment produced by these two loads will be:

M = (25oo + i225)
3 3 Xi2 =5,028,800 inch pounds.

o

The resisting moment of the beam section must now
be computed by the aid of eq. (8), Art. 97.

b b
f

j , A<i j

-j-

=I - 2 5;
~ = 4; ai-/=o; =.944; $3 = 17', di=i2

'

and =
15.

Introducing these numerical quantities in eq, (8), Art. 97 :

M =
5,024,611 inch-pounds.

This result is substantially equal to the external bending
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moment found above and the tentative design may be

accepted as satisfactory.

There still remains to be considered suitable provision

for end and intermediate shears which will be made by

bending upward the proper number of reinforcing rods

supplemented by stirrups.

Fig. i shows to scale about 12 J feet of the T-beam, the

effective cross-section, 60 inches wide, being shown in shaded

outline. The dimensions are self-explanatory in connection

with the computations already made. NS is the neutral

FIG. i.

axis. The eight i^-inch round rods in two courses with

their central line 4 inches from the bottom surface are shown

both in section and in longitudinal broken lines. This

latter dimension allows a fire-protecting shell of concrete

2 inches thick and i inch clear vertical distance between

the two layers of four rods each.

The combined dead and moving load on the beam has

already been shown to be 3725 pounds per linear foot,

making the end shear 3725X15=55,875 pounds. If bent

rods inclined at an angle of 45 be supposed to take

this whole shear, the total stress in those rods will be

55,875 Xsec. 45 degrees = 79,007 pounds. If the steel be

stressed at 16,000 pounds per square inch, a little less than
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5 square inches of section will be required. Three ij-inch

rounds, or their equivalent sectional area, will supply the

desired section. It will be convenient to bend the upper
set of four rods as shown in Fig. i

,
thus reducing tho actual

stress in the inclined parts to about 12,000 pounds per

square inch, the reduced unit stress not being objectionable.

A greater vertical depth of concrete would have been avail-

able for shear if the lower set had been bent upward,
but with the use of stirrups this is not important and the

arrangement shown is a little more convenient in actual con-

struction. If desired the lower set could be bent, but it

would be necessary to slightly rearrange the position of all

the rods so that the bent parts of the lower set may pass
the upper set, all of which is quite feasible. The hori-

zontal ends of the bent rods should also be bent at right

angles so as to secure the firmest possible hold on the con-

crete at the end of the beam. The horizontal ends of the

bent bars are about 12 inches long, making the lower bend

of the same rods about 3.25 feet from the end of the beam.

Vertical stirrups, 24 inches apart, will be placed through-
out the central part of the beam and they will be carried

down so as to pass under the lower reinforcing rods. There

will be four prongs to each stirrup, looped at top and bottom.

By this arrangement of the stirrups the bond shear on their

surfaces is greatly reinforced by the vertical bearing on the

concrete and reinforcing rods at the bottom. The first

stirrup, as shown, will be placed at the lower bend in the

upper set of reinforcing rods, although the stress in it is

indeterminate, as the inclined rod is supposed to take the

total shear.

The total transverse shear in the second stirrup, 5.25 feet

from the end of the beam, will be computed as carrying in

tension 9.75X3725=26,320 pounds, requiring at 16,000

pounds per square inch, 2.25 square inches. Four if-inch X
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f-inch flat bars will give the required area, each such flat

bar constituting one member or prong of the stirrup. The

shear at the next stirrup point, 2 feet farther from the end

of the span, will be 28,870 pounds, and four iJ-inchXife-

inch stirrup sections will give a little more than needed, and

that jection of bar will be adopted. Although smaller bars

would be. sufficient for the remaining sections, the i|-inch

X A-inch bars will be retained for the remaining stirrups.

The total available concrete section for resisting shear

is 29 inches X 15 inches =435 square inches which, under the

specifications of the preceding article, may be taken at 44

pounds per square inch, making a total shear of 19,140

pounds to be provided for in this way if it should be con-

sidered permissible. If the latter procedure were followed

it would leave but two-thirds of the total transverse shear

at each stirrup section to be resisted by the steel stirrups.

In the case of such a heavy beam, however, it is believed

to be the better practice to take care of all the shear by
steel reinforcement.

If 4 5 -degree steel reinforcements attached to the main

reinforcing rods were used, the length of such inclined bars

would be about 27 Xsec. 45 degrees =38 inches. Inasmuch

as half the transverse shear at any section may be assumed

to produce 4 5 -degree compression at right angles to such

inclined tension bars, the latter may be computed as being
stressed by half the transverse shear multiplied by sec. 45

degrees. The 4 5 -degree tension bars near the end of the

span under such an assumption would take about 28,000

pounds only and if there were four of them, each i^ inch X
TQ inch, they would be sufficient. At intermediate posi-

tions further removed from the ends, a correspondingly

smaller section might be used. The bond shear at the sur-

face of such inclined bars could be taken at a working
stress of 88 pounds per square inch of surface. Such in-
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clined tension bars should be placed not more than about

21 inches apart horizontally in order to secure effective

action. Their upper ends should be bent at right angles or

looped to secure a firmer hold on the concrete.

These computations illustrate clearly the simple pro-

cedures required in the design of a reinforced concrete

T-beam. If the beam is of rectangular section, the pro-

cedures are precisely the same, as the actual rectangular

section in that case would correspond precisely to the effect-

ive shear section taken for the T-beam.

Design of Continuous Floor Slab for 6 Feet Span between

Steel Beams.

The slab is assumed to carry a warehouse load of 175

pounds per square foot in addition to own weight. It

will also be assumed to be continuous over the steel beams
6 feet apart centres, the degree of continuity being that

prescribed in Art. 100, making the centre and end bending

moments each
,
w being the load per lineal foot of span.

A trial depth of slab of 4 inches will be assumed and the

design will be made for a 12 -inch width of slab. A depth
of i inch of concrete will be taken outside of the steel

reinforcement, which will be wholly on the tension side of

the slab, and the tensile resistance of the concrete will be

neglected. The data to be used will then be:

Span =6 feet. Moving load = 1 7 5 pounds per square foot.

Dead l^ad = 50 pounds per square foot.

Tension in steel, t = 16,000 pounds per square inch.

Compression in concrete, k\ =500 pounds per square inch.

7^=2=15; h =4 inches; ^1=2.75 inches; 6 = 12 inches,
-tii
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The external bending moment, M = 225X X
Xi2=8ioo

12

inch-pounds. The section to be designed must give a

resisting moment at least equal to 8100 inch-pounds.

Eq. (8), Art. 98, gives the steel ratio:

p = .005 = . 5 per cent.

Hence,

Ai =.005 X4Xi2 = .24 square inch.

Eq. (4), Art. 98, then gives the position of the neutral

axis :

^
= -.075 .394 = +.3 19;

and
d\ =0.88 inch;

ds =hi di = 1*87 inches.

The internal resisting moment will . now be given

eq. (12), Art. 98:

.88 \
=g7oo inch_pounds

By revising the design the excess above 8100 inch-pounds

may be reduced if desired, but the difference is too small

to be material.

Two f-inch square bars, placed 6 inches apart, having
a combined area of .28 square inch, will afford satisfactory

reinforcement, remembering that they must be carried

from 1 1 inches above the lower surface of the slab at the

centre of span to that distance below the upper surface

at the ends of the span.

The end shear of 3X225=675 pounds is provided for
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by the bending up of the reinforcing rods, especially as

the concrete section is 4X12 =48 square inches.

Art. 102. Reinforced Concrete Columns.

Reinforced concrete columns may be divided into

two classes. The reinforcing steel in one of these classes

is a wrapping or banding, usually as a spiral, of the concrete

by coarse wire or thin flat bars, so that the lateral strains

or enlargement due to axial compression will be prevented
as much as possible with the intent to increase correspond-

ingly the carrying capacity of the col-

umn. It is customary to use longi-

tudinal steel rods spaced equidistantly

around the column adjacent to and

inside of the spiral banding, as shown
in Fig. 2, the former being strongly
fastened to the latter by clamps or

wires. When the cylindrical cage
thus formed is filled with concrete, FlG x

usually a rich mixture such as i : 2 : 4,

and encased with concrete about 2 inches thick, the com-

plete column is formed.

The steel reinforcement in the other class of columns

is a load-carrying member, in fact a steel column in itself,

filled with concrete and encased with the same exterior

shell of concrete as in the banded column, as shown in

Fig. 3. In the latter case the parts of the steel column

reinforcement form the banding or wrapping around the

concrete. The shape of cross-section of column for either

class may be any desired, although the circular section

is more convenient for the first class.
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Lateral Reinforcement and Shrinkage

The analytic expression for the gain in carrying

capacity arising from banding is easily written. Let Fig.

i represent a band one unit (inch) in length, i.e., along the

axis of the column, its interior diameter being d. When
the column receives load its diameter d tends to increase

in consequence of the lateral strains, thus pressing against
the interior of the band and causing the latter to stretch

accordingly. Let

2 =30,000,000 = modulus of elasticity of the steel;

EI = 2,000,000 = modulus of elasticity of the concrete;

px = uniform intensity of pressure between the ring

or band and concrete;

pi = intensity of column loading on a normal section;

6* = area of section of band;
A = stretch of steel ring due to internal pressure px .

Hence :

A =^~^d. .'. New circumference =wdl i + ?~) ( T )

The new diameter will be d[
2tE2,

If r is the^ratio between the direct compressive and lateral

strains for concrete, the new diameter of the banded con-

crete will be :

EI

Equating the two values of the new diameter, if ~Er=ey

ti&r^-^^r
' t>=tJ-^\ (3)
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Eq. (3) gives the value of the intensity of pressure be-

tween the banding and the concrete. If ^r
=

15, and if r =-,
J^^ i ^

(4)

If there is no change in diameter, eq. 3 gives,

With the above value of r, p'x
= would prevent all

4

lateral strain, and as eq. (4) shows that px has real value,

it is clear that the banding appears to be highly effective.

Concrete, however, shrinks when it sets in air with a

coefficient of shrinkage, according to such tests as have

been made, of .0002 to .0005. If 1
= 2,000,000 and if,

for example, 1
= 600 pounds per square inch, then by

eqs. (2) and (4), if t = \ inch,

/6oo 43 X4\\

72,ooo,ooo\ 5 5 / 23,400

As both and are greater than
,
these

5000 2000 23,400

computations show that shrinkage of concrete setting in air

will more than neutralize the advantage supposed to be

due to banding, at least until the elastic limit of the con-

crete, and probably the yield point, is exceeded. This

explains why banding shows no advantage in full-size

column tests until the yield point is passed, as will be seen

later.
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Longitudinal Reinforcement

In considering the effect of longitudinal steel reinforce-

ment, let

A = total available sectional area of the column (the

outer 2 -inch thickness is neglected in computa-
tions for carrying capacity) ;

A 2 = sectional area of steel;

A i
= sectional area of concrete;

p= steel ratio -/}
J\.

p\ = intensity of compression in concrete;

c = intensity of compression in longitudinal steel;

A=Ai+A 2 and *=:?.
tL\

P = carrying capacity of reinforced column
;

pi= carrying capacity of plain concrete column of

section A.

Hence :

. . (7)

Or

jr=p(e-i)+i (8)

Eq. (8) shows the gain of carrying capacity due to the

longitudinal reinforcing steel. The fractional gain is:

(9)

Many tests of full-size columns of both types have been

made by Professors Talbot, Withey, the author, and others,

the results of which fully described may be found in the

bulletins of the Universities of Illinois and Wisconsin,
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and those of the author in the
"
Proceedings of the Insti-

tution of Civil Engineers
"

of London.

The effect of a proper amount of spiral or other band-

ing, either by itself or in connection with longitudinal

steel rods firmly secured to it, or of a self-supporting load-

carrying steel column, is, in all these ty^pes, to support the

concrete to such a degree as to develop substantially its

ultimate carrying power in short blocks, for such lengths
of columns as have been tested.

In order to accomplish this result i per cent, of

lateral steel reinforcement in spiral shape is sufficient.

Furthermore it is preferable to use longitudinal steel rod

reinforcement in connection with the lateral spiral rein-

forcement, the two being firmly attached to each other

in all cases. The spiral cage firmly secured to the longi-

tudinal rods constitutes practically an independent load-

carrying steel column, particularly when filled with con-

crete. A properly designed reinforced column of this type

may have its ultimate carrying capacity closely represented

by eq. (7), in which pi is the ultimate compressive resist-

ance of the concrete and c the ultimate compressive resist-

ance of the steel. If longitudinal rods are used without

the steel banding, they cripple or buckle under compara-

tively light loads, as would be expected, and make an

unsatisfactory column in combination with the concrete

of reduced carrying power.
As has already been shown in connection with eqs. (i) to

(5) the shrinkage of the concrete in setting prevents the

banding influence of the steel from being effective until

the yield point of the concrete has been passed, and the

results of tests have confirmed fully the indications of

analysis. The same tests, however, have shown that in

properly designed columns of both classes the concrete

and the steel act together effectively except in the case of
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longitudinal rods without spiral or other banding. This

latter type of column, however, is too indifferent in char-

acter to be used in practice.

Types of Columns.

Figs. 2 and 3 .illustrate the two types or classes of

reinforced concrete columns generally used. Fig. 2 shows

FIG. 2. FIG. 3-

a spiral reinforcement inside of which there are a suitable

number of longitudinal round or other rods which must
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be firmly secured to the spiral reinforcement. The size

of the latter may vary according to the size of the column

from J inch diameter to f inch or more, and the pitch may
vary from i to several inches, according to the size of the

column. It has been found, as already indicated, that the

amount of spiral or lateral reinforcement should be about

i per cent., i.e.-, the volume of the spiral metal should be

about i per cent, of the volume of the column, counting the

diameter of the latter as the diameter of the cylinder

formed by the centre line of the spiral. The amount

of longitudinal steel rods may be i^ to 2 or 3 per cent,

or more; although it has been found generally to be more

economical to increase the richness of the concrete core

and use less longitudinal steel than to use more of the latter

with leaner and less expensive concrete. The exterior

concrete shell, usually about 2 inches thick, is not con-

sidered as an available or load-carrying part of the com-

plete column. It has been found by experiment that this

exterior shell may carry from 40 to 50 per cent, as much
load per square inch as the concrete core, and that it will

not crack off under test until the yield point of the steel

has been reached, but it is quite likely to be at least par-

tially destroyed in a burning building. On the whole,

therefore, it is considered better practice, and it is certainly

safer to consider the core only of reinforced columns, i.e.,

only that part within the exterior enveloping volume of

the steel as load carrying.

Fig. 3 is typical of the class of columns in which the

steel is designedly a load-carrying member. The figure

shows a column of four angles latticed in the usual manner
with batten plates as well as lattice bars on all four sides,

but a great variety of forms may obviously be used in this

type of column. Many full-size tests have shown that the

concrete filling of this type of column, no less than in the
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other type, may be considered as carrying load up to its

full ultimate short block capacity before failure of the

column for all lengths used in actual tests. The load

carried by such a column may be computed by adding the

carrying capacity of the concrete filling considered as a

short block to the carrying capacity of the steel column

computed as such.

Prof. Withey has concisely expressed the results of

the tests of full-size columns of both these types in the

Bulletin of the University of Wisconsin as follows :

"
i. A small amount, 0.5 to i per cent., of closely spaced

lateral reinforcement, such as the spirals used, will greatly

increase the toughness and ultimate strength of a concrete

column, but does not materially affect the yield point.

More than i per cent, of lateral reinforcement does not

appear to be necessary. The use of lateral reinforcement

alone does not seem advisable.

." 2. Vertical steel in combination with such lateral

reinforcement raises the yield point and ultimate strength

of the column and increases its stiffness. Columns rein-

forced with vertical steel only are brittle, and fail suddenly
when the yield point of the steel is reached, but are con-

siderably stronger than plain columns made from the same

grade of concrete.

..." 3. Increasing the amount of cement in a spirally

reinforced column increases the strength and stiffness of

the column. A column made of rich concrete or mortar

and containing small percentages of longitudinal and

lateral reinforcement, is without doubt fully as stiff and

strong and more economical than one made from a leaner

mix reinforced with considerably more steel. In these

tests, doubling the amount of cement increased the yield

point and ultimate strength of the columns without vertical

steel about 100 per cent.,, and added about 50 per cent, to
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the strength of those reinforced with 6.1 per cent, vertical

steel.

"4. From the behavior under test of the columns

reinforced with spirals and vertical steel and the results

computed, it would seem that a static load equal to from

35 to 40 per cent, of the yield point would be a safe working
load.

"5. The results obtained from tests of columns rein-

forced with structural steel indicate that such columns

have considerable strength and toughness, and that the

steel and concrete core act in unison up to the yield point
of the former. The shell concrete will remain intact until

the yield point of the steel is reached, but no allowance

should be made for its strength or stiffness."

"2. Although the yield point of a reinforced concrete

column is practically independent of the percentage of spiral

reinforcement, the ultimate strength and the toughness are

directly affected by it. ... Consequently, only enough
lateral reinforcement is needed to prevent the longitudinal

rods from bulging outward, and to provide an additional

factor of safety against an overload by increasing the

toughness and raising the ultimate strength somewhat
above the yield point. From these tests i per cent, of a

closely spaced spiral of high-carbon steel seems to be

sufficient for this purpose.

"3. By the addition of longitudinal steel the yield

point, ultimate strength and stiffness of a spirally rein-

forced column can be considerably increased. If maximum
economy in floor space is desired, if a column is so long or

is so eccentrically loaded that tension exists on a portion
of the cross-section, or if a large dead load must be sus-

tained by the column while the concrete is green, a high
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percentage of longutidinal reinforcement may often be

advantageously employed. Such reinforcement is also a

valuable safeguard against failure due to flaws in the

concrete. If the cost of cement is extremely high, it may
be economical to use a leaner mixture than suggested in

(i) and considerable longitudinal steel to increase the

stiffness and strength; columns like those of Series i

may profitably be used. In general, however, cement is

a more economical reinforcement than steel. Therefore,

for ordinary constructions it does not seem advantageous
to use in combination with a rich concrete more than 2

or 3 per cent, of longitudinal steel."

"8. Briefly summarizing the foregoing, it seems eco-

nomical to use for reinforced concrete columns a very rich

mixture, and advantageous to employ about i per cent, of

closely spaced high-carbon steel lateral reinforcement com-

bined with 2 or 3 per cent of longitudinal reinforcement.

From the test data -presented it seems apparent that such

columns, centrally loaded, may be subjected to a static

working stress equal to one-third of the stress at yield

point."

Working Stresses

The results of analysis and of the full-size tests to

which reference has been made furnish a rational basis

on which proper working stresses may be based. The
concrete is so held and supported in both types of column,

when properly designed, that the working stress in it may
be prescribed as if it were a short block. In that class of

columns in which the steel reinforcement is a steel column

by itself, the working stress in the latter may be prescribed

precisely as for any other steel column. Manifestly the

fraction of the ultimate resistance represented by the work-

ing stresses for both materials must be the same. Actual
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tests of full-size columns enable the unit working stress

for the longitudinal steel in the spiral-banded columns to

be properly prescribed, the steel spiral banding being a

1 per cent, lateral reinforcement not to be credited as

carrying any direct load.

The unit compressive working stress of the longitudinal
steel reinforcing members in either type of column is taken,
in the recommendations of the American Society for Testing
Materials in their Proceedings for 1913, at 16,000 pounds
per square inch, it being understood that the length of no
column shall exceed fifteen times the least width, that

width not including the protective shell, usually about

2 inches thick.

The same ratio of length to least width holding for

both types of columns, the following compressive working
stresses are recommended by the Committee on Concrete

and Reinforced Concrete of the American Society of Civil

Engineers, 1913, the per cents, stated to be applied to the

ultimate resistances of the various grades of concrete given
in Art. 101.

Structural steel in tension 16,000 Ibs per sq.in.
Per cent, of
Ult. Com-
press!ve
Resist.

Concrete in compression where resisting area is at least twice

loaded area 32 . 5
Concrete in plain concrete column or pier centrally loaded, length =

12 diameters or less 22 . 5
Concrete in column with I to 4 per cent, longitudinal reinforcement

only; length of column = 12 diameters or less 22 .5
Concrete in column with lateral reinforcement of spirals, etc., at

least i per cent, of volume of column, clear spacing of spirals or

hooping, ro to of diameter 'of encased column, in no case ex-

ceeding 2 1 inches, the length of laterally unsupported column to

be not more than 8 diameters" of hooped core 27 .

Concrete in column with i per cent, to 4 per cent, of longitudinal
bars with spirals, hoops, etc., as specified above column, the

length of laterally unsupported hooped core, not more than 8

diameters of core 32 . 625
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Reinforced columns with longitudinal steel rods, only,

embedded in the concrete are highly unsatisfactory and

they should not be used where the failure of the column

would entail serious consequences.

The tests of such load-carrying columns for steel rein-

forcement of reinforced concrete as have been made by
the author show that their ultimate resistances will be closely

given for such lengths as have been tested by the simple

straight-line formula

P I

-=43,000-155-.

In this formula - is the ratio of length of column to

the radius of gyration of its cross-section about the neutral

p
axis and A is the area of cross-section. Hence is the

A
average unit compressive stress over a normal section of

column.

This type of column is not limited in use to any ratio

of length over least diameter, nor is the per cent, of steel

section restricted. As the steel reinforcement is a perfectly

designed load-carrying column, it may be treated like any
other steel column, while the concrete filling is so banded

and supported by the enclosing steel column that load

may be imposed upon it as in the case of a short concrete

block.

These columns have been used for tall buildings of

eleven stories or more in height. They are well adapted
to such a purpose, not only in consequence of the load-

carrying capacity of the steel, but also on account of the

facility with which floor beams and girders or other members

may be detailed to them.
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The spiral or otherwise banded column is not so well

adapted to structural purposes. The design is such that

they are available only for comparatively short lengths in

connection with the prescribed working stresses. They may
probably be used up to lengths of unsupported core equal

to twelve times the least diameter under a reduction of

working stresses to 80 per cent, of those prescribed.

The two following problems will illustrate the applica-

tions of the preceding results to actual design work:

PROBLEM I.

Design a reinforced-concrete column 13 feet 6 inches

long, with spiral banding and longitudinal rod reinforce-

ment to carry a load of 354,000 pounds.
As the column must not exceed 8 diameters in length,

the diameter of the spiral banding will be taken as 20

inches, giving an effective area of 314.2 square inches.

There will be assumed eight if-inch longitudinal round

rods arranged as shown in Fig. 2. The concrete will be

taken as a i : 2 : 4 mixture with an ultimate resistance

at twenty-eight days of 2250 pounds per square inch.

Hence the working unit stress will be 1^ = 2250X32. 625 =734
pounds per square inch. The working stress, c, of the steel,

as has been shown by the specifications of the joint com-

mittee of the Am. Soc. C.E. and the Am. Soc. for Testing

Materials, may be taken at 16,000 pounds per square inch.

Hence the total carrying capacity of the column is:

Of the steel section 8 X 16,000 =128,000 Ibs.

Of the concrete section. (314.2-8) X734 = 244,751 Ibs.

Total -

352,751 IBs.

This is sufficiently near 354,000 to be considered satis-

factory and it will be accepted* It illustrates fully the



654 CONCRETE-STEEL MEMBERS. [Ch. XIII.

procedure to be followed in the design of this type of

column.

The i per cent of spiral lateral reinforcement may be

determined as follows: The volume of spiral metal per
inch of length of column is 0.01X314=3.14 cubic inches.

If the pitch is 2 inches (one-tenth the diameter) the length

of one complete turn of the spiral will be about 63 inches.

Hence the sectional area of the spiral rod will be =
. i

63

square inch (nearly), requiring a f-inch round rod. This

close wrapping or banding by a f-inch spiral with 2 -inch

pitch must be firmly fastened by coarse wire or clips to

the eight if-inch longitudinal round rods.

PROBLEM II.

Design a reinforced-concrete column 20 feet long to

carry a load of 283,000 pounds, the steel reinforcement to

be a load-carrying column.

Let the reinforcing column be composed of four 3 X3 X re-

inch steel angles latticed to form a column like Fig. 3.

The square formed by the angles will be 15 inches on a

side, i.e., from back to back of angles. The radius of

gyration r of such a section is 6. 7 inches. Hence - = -^
=36,

r 6.7

p
and eq. (10) gives -r =37,420 pounds per square inch. If

A.

working stresses be taken at one-third the ultimate, the

working stress for steel will be g= 3 '- = 12,470 pounds
o

per square inch. The sectional area of a 3X3 X^-inch
angle is 2.43 square inches. Hence the effective area

of the concrete section is 15X15 4X2. 43 =215. 3 square
inches. The concrete will be assumed to be a 1:2:4
mixture, for which the ultimate resistance may be taken
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at 2250 pounds per square inch, and the working resist-

ance, 750 pounds per square inch. The total carrying

capacity of the column will then be:

Of the steel section 12,470X9.72 =121,240 Ibs.

Of the concrete section . 750X215.3=16 1 ,460 Ibs.

Total 282,700 Ibs.

This result shows that the design is satisfactory.

Art. 103. Division of Loading Between the Concrete and Steel

Under the Common Theory of Flexure.

It is occasionally desirable to determine the portion of

the total loading of either a concrete-steel beam or arch

carried by the steel and concrete parts of the member.

In making this determination the formula established in

the preceding articles in accordance with the common

theory of flexure will be employed. It will be convenient

also for this purpose to represent the intensity of stress in

the extreme fibre of the steel, whether tension or com-

pression, by kv the distance of that extreme fibre from the

neutral axis of the composite section, established in Art. 97,

being represented by d%. It will further be supposed that

the coefficients of elasticity for concrete in tension and

compression are the same. Eqs. (4) of Arts. 96 and 98,

representing the resisting moment of the internal stresses

in a normal section of a composite member, may then be

written

kill &2/2
, xM=^r+^ (i)

Let the total load on the composite beam or arch be

represented by W, while W\ and W2 represent the portions
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of W carried by the steel and concrete respectively. Also

W W
2

let q1
and q2

be so taken that ^-^r and <?2
=
^7.

The

remaining notation will be that given in Art. 96.

Since the bending moments in the portions A l
and A

2

are proportional to the loads which those portions carry,

k k
remembering that -r and

-f
are equal to E u and E

2
u re-

Gfj
a

2

spectively, there may be written, as indicated by eq. (i),

_^_ E^ and q -E>- _IAand q,- w -

Also K (2)

I, and a. = -

and

W
Also, if n==

>

Then, since M
l =ql

M and M
2 =qz

M

k^-f and *,=. ... (4)
*1 ^2

Eqs. (2), (3), and (4) show the portions of loading

carried by the two materials and the greatest intensities

of stresses in their extreme fibres.

It is sometimes necessary to combine a bending moment
with the direct compression (or tension) produced by a

force P acting along or parallel to the axis of a beam or

arch. Let p l
and p2 represent the intensities of stress

produced in the two portions A 1
and A

2 by such a direct

force. Since equal unit longitudinal strains exist in the
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two materials, the intensities of stress in the portions A
l

and A
2
will be proportional to their coefficients of elastici-

ties. Hence

Hence

(6)

In the case of an elastic arch like those of combined

concrete and steel, the thrust P is in general exerted along

the axis of the arch ring but at some distance, /, from it.

In such a case the bending moment is

M=Pl', hence M^qfl and M
2 =q2Pl. . (7)

The values of the bending moments are to be placed in

eq. (4), in order to determine the intensities k
l
and k

2
.

In determining the resultant of stress for any section

of an arch ring, if the conditions under which eqs. (2) were

written be employed, the thrust on the portion A l
will be

qf y
and qf on A,, since the thrusts on the two portions

will be proportional to the loads which they carry. Hence,
if k^ and k

2 again be used to represent the greatest inten-

sities of stress in the two portions, there may at once be

written

P Md\
-r*) (9)

In eqs. (8) and (9), M=Pl.
If, again, the last members of eqs. (5) and (6) be used
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in connection with eqs. (2) and (4) the resultant values

of &j and k
2
will be

P

P

In the use of all these equations, care must be taken

to give the proper sign to the bending moment M.
These equations comprise all that are necessary in order

to ascertain the distribution of the loading between the

steel and the concrete, or any other two materials, whether

the case may be one of pure bending or a combination of

bending and direct stress.



CHAPTER XIV.

ROLLED AND CAST FLANGED BEAMS

Art. 104. Flanged Beams in General.

ROLLED flanged beams as produced by steel mills and

used in building or other construction have already been

treated in cases of simple bending, using the moment of

inertia either by itself or as part of the section modulus

for steel beams where their moments of resistance take

the usual form,

(i)

In this equation d\ is the distance of the extreme fibre

from the neutral axis in which the intensity of stress k

exists, and I and are the moment of inertia and the
01

section modulus, respectively, numerical values of which

for all shapes are given in handbooks. In this treatment

of rolled or other flanged beams the resistance of the web is

included, but there are cases when it is permissible to neglect

the bending resistance of the web or, again, in which the

bending resistance of the two flanges is treated separately,

as if the intensity of stress in each is uniform throughout
the flange section, to which a closely approximate simple

expression for the bending resistance of the web may or

may not be added.

If the bending resistance of the flanges is to be com-
659
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puted by itself, it is evident that economy of design requires

that the two flanges must fail concurrently if the beam
be loaded to failure. If the ultimate tensile and com-

pressive resistances of the material are not the same, it

is equally clear that the two flanges should not be of equal

section, the area of the flange in which the ultimate resist-

ance is greater being less than that of the flange in which

the ultimate resistance is less. This results from the

fact that the total stress of compression in the compres-
sion flange must be equal to the total tensile stress in the

tension flange, the beam being supposed to be horizontal

and the load vertical. If the bending resistance of the

web is recognized, the equality of the two total flange

stresses no longer holds, since the tension and compression

developed in the web is to be added to the corresponding
stresses in the flanges in order to make equality.

Each total flange stress is evidently equal to the flange

area multiplied by the intensity of assumed uniform stress

in it. The centre of each flange stress will then be the

centre of gravity of the section on which it acts. The
vertical distance d between the centres of gravity or stress

of the two flanges is called the effective depth of the beam,
because if it be multiplied by either flange stress the prod-
uct will be the resisting moment of the stresses acting

in the section of the beam. In other words the effective

depth d is the lever arm of the internal couple whose moment
is equal to the external bending moment.

Let a be the sectional area of the tension flange and T
the uniform intensity of stress in it, and let a' and C be

the corresponding values for the compression flange, while

d is the effective depth. Then, since aT = a'C, the moment
of the internal stresses will be

M=aTd=a'Cd. (2)
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The use of both eqs. (i) and (2) will be illustrated by
numerous practical applications.

It is clear from what has preceded that the chief

function of the flanges is to resist the bending proper,

while the main function of the web is to resist the trans-

verse shear.

The direct stresses of tension and compression in a

beam with solid rectangular section correspond to, i.e.,

perform the same function as, the flange stresses of tension

and compression in the flange beam, while the web, supposed
to take shear only, corresponds approximately to the zone

of material in the vicinity of the neutral surface of the

solid section in which the direct stresses of tension and

compression are either zero or nearly zero.

Art. 105. Flanged Beams with Unequal Flanges.

By the common theory of flexure, if the two coefficients

of elasticity are equal, it has been shown that if C> Fig. i,

is the centre of gravity of the h~~~&"~
"71 _

cross-section, the neutral axis I

of the section will pass through

that point. Let it now be sup-

posed that the lower flange is in
^__

tension, while the upper is in com-

pression. Also let T represent I ^
the ultimate resistance to tension

D
i

in bending, and let C represent the

same quantity for compression in FIG. i.

bending. Then s
:nce intensities vary directly as distances

from the neutral axis,

'
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The ratio between ultimate intensities is represented by
nf

. If d=k + h
i

is the total depth of the beam, and hence

l d

.

If, as an example, for cast iron there be taken

"T^

n'= =0.2, hi=-d.
L o

The relation between h and h^ shown in eq. (2) is en-

tirely independent of the form of cross-section. But

according to the principles just given, in order that economy
of material shall obtain, the cross-section should be so de-

signed that h and h^ shall represent the distances of the centre

of gravity from the exterior fibres.

The analytical expression for the distance of the centre

of gravity from DF is

frV+ (b-V)f(d-tf) +K6 1 ~fr')*1

2
, x

-'
(6 -&'X + (&i-&'K

The meaning of the letters used is fully shown in the

figure. In order that the beam shall be equally strong in

the two flanges, the various dimensions of the beam must

be so designed that

*!=/*!....... (4)

It would probably be found far more convenient to cut

sections out of stiff manila paper and balance them upon
a knife-edge.
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The moment of inertia about the axis AB, thus deter-

mined, is

. (4a)

. to be substituted in the formula 71

now changed to

kl
This value is to be substituted in the formula M=

,

<

For various beams whose lengths are / and total load W
the greatest value of M becomes :

Cantileve uniformly loaded,

WlM= .

2

Can'ilever loaded at end,

Beam supported a' each end and uniformly loadedt

M-^-~
Q

" ~
Q

'

O O

Beam supported a each end and loaded at centre,

WlM= .

4

The last two cases combined,

Sometimes the resistance of the web 's omitted from

consideration. In such a case the intensity of stress in
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each flange is assumed to be uniform and equal to either

T or C. At the same time the lever-arms of the different

fibres are taken to be uniform, and equal to h for one flange

and h^ for the other, h and h^ now representing the vertical

distances from the neutral axis to the centres of gravity of

the flanges, while d=h + hr
On these assumptions, if / is the area of the upper flange

and f that of the lower, there will result

M^fC.h + fT.h,. . ^.,>n,> . (5)

But since the case is one of pure flexure,

fC=f'T. . :.,: . . ;,.- . (6)

... M=fC(h + k
1)=fCd=f'Td. ><-V:'<, (7)

Also, from eq. (6),

/ T

Or, the areas of the flanges are inversely as the ultimate

resistances.

Frequently there is no compression flange, the section

being like that shown in Fig. 2. In such

case b is equal to b
f

,
or t

r

is equal to zero;

hence b =b f

in eq. (40), but no other change
-

|

is to be made in the second member of that

-pIG 2 equation. Eq. (46) may then be used pre-

cisely as it stands for the internal resisting

moment of a beam with the section shown in Fig. 2.

Prob. i. It is required to design a cast-iron flanged

beam of 5 feet effective span to carry a load of 1800 pounds

applied at the centre of span, the section of the beam to

be like that shown in Fig. 2, i.e., without upper flange.

The greatest permitted working stress in compression will
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be 8000 pounds per square inch, and the total depth of the

beam is to be taken at 9 inches.

Referring to eqs. (40), (46), and Fig. i for the notation,

the given data and the dimensions to be assumed for trial

will be as follows: d = g inches; b=b'=l inch; bi=S

inches; ti = i inch; / = 5 feet; and C = 8ooo. The intro-

duction of these values into eq. (3) will give for the distance

of the centre of gravity above the bottom surface of the

beam

hi = 2.6 inches and h =d hi = 6.4 inches.

The preceding trial dimensions will make the beam

weigh about 50 pounds per lineal foot. If all the preced-

ing values are substituted in eqs. (40) and (46), remembering
Wl

that M =
,
there will be found

4

W = 1994 125= 1869 pounds.

The trial dimensions, therefore, give the centre-load

capacity of the beam 69 pounds greater than required,

which may be considered sufficiently near to show that the

assumed dimensions are satisfactory.

Art. 106. Flanged Beams with Equal Flanges.

Nearly all the flanged beams used in engineering prac-

tice are composed of a web and two equal flanges. It has

already been seen that the ultimate resistances, T and C,

of structural steel and wrought iron to tension and com-

pression are essentially equal to each other
;
the same may

be said a
1

so of their coefficients of elasticity for tension

and compression. These conditions require equal flanges

for both steel and wrought-iron rolled beams.
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H +
I

I

B-

In Fig. i is represented the normal cross-section of an

equal-flanged beam. It also approximately represents

what may be taken as the section of
(

c

any wrought-iron or steel I beam, the * ft

j
*

exact forms with the corresponding

moments of inertia being given in hand-

books. Although the thickness t' of the

flanges of such beams is not uniform,

such a mean value may be taken as

will cause the transformed section of

Fig. i to be of the same area as the

original section.

Unless in exceptional cases where

local circumstances compel otherwise,

the beam is always placed with the web vertical, since the

resistance to bending is much greater in that position.

The neutral axis HB will then be at half the depth of the

beam. Taking the dimensions as shown in Fig. i
,
the mo-

ment of inertia of the cross-section about the axis HB is

FIG. i.

7 _
12

while the moment of inertia about CD has the value

12

(i)

(2)

With these values of the moment of inertia, the genera]

formula, M=-r, becomes (remembering that d\=- or -
di \ 22

(3)

or
6b

(4)
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k is written for all extreme fibre stress.

Eq. (3) is the only formula of much real value. It will

be found useful in making comparisons with the results

of a simpler formula to be immediately developed.

Let di = %(d+h). Since t' is small compared with

-, the intensity of stress may 'be considered constant in
2

each flange without much error. In such a case the total

stress in each flange will be kbt' = Tbt', and each of those

forces will act with the lever-arm %di. Hence the moment
of resistance of both flanges will be

kbt'-di.

th*
The moment of inertia of the web will be . Conse-

quently its moment of resistance will have very nearly the

value

kth2

6
'

The resisting moment of the whole beam will then be

(5)

A further approximation is frequently made by writing

dji for H 2
\
then if each flange area bt' =/, eq. (5) takes the

form

il*Uh(f*f)
(6)

Eq. (6) shows that the resistance of the web is equivalent

to that of one sixth the same amount concentrated in each

flange.
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If the web is very thin, so that its resistance may be

neglected,
M = kfd 1 =kbt'di, ...... (7)

or

Cases in which these formulae are admissible will be

.given hereafter. It virtually involves the assumption that

the web is used wholly in resisting the shear, while the

flanges resist the whole bending and nothing else. In

other words, the web is assumed to take the place of the

neutral surface in the solid beam, while the direct resistance

to tension and compression of the longitudinal fibres of the

latter is entirely supplied by the flanges.

Again recapitulating the greatest moments in the more

commonly occurring cases:

Cantilever uniformly loaded,

Wl pPM = = ....... (9)
2 2

Cantilever loaded at the end,

M = Wl......... (10)

Beam supported at each end and uniformly loaded,

Wl pi
2

M=^--w..... 11 (II >

Beam supported at each end and loaded at centre,

WlM =
. . . ...... (12)

Beam supported at each end and loaded both uniformly
and at centre,
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In all cases W is the total load or single load, while p, as

usual, is the intensity of uniform load, and / the length of the

beam.

Art. 107. Rolled Steel Flanged Beams.

The resisting moments of all rolled steel beams sub-

jected to bending are computed by the exact formula

k being the greatest intensity of stress (i.e., in the extreme

fibres) at the distance d
l
from the neutral axis about which

the moment of inertia / is taken. In all ordinary cases

the webs of beams are vertical so that the axis for / is

horizontal; but it. sometimes is necessary to use the mo-
ment of inertia / computed about the axis passing through
the centre of gravity of section and parallel to the web.

The latter is frequently employed in considering the lateral

bending effect of the compression in the upper flange.

The upper or compression flange of a rolled beam
under transverse load, unless it is laterally supported, is

somewhat in the condition of a long column and, hence,

tends to bend or deflect in a lateral direction. This ten-

dency depends to some extent on the ratio of the length of

flange (/) to the radius of gyration (r) of the section about

the axis parallel to the web, as will be shown in detail in

a later article. It will be found there that the ultimate

compression flange stress decreases as the ratio l + r in-

creases. Hence in Table I there will be found values of

l + r for the different beams tested.
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The results of tests given in Table I were found by
Mr. James Christie, Supt. of the Pencoyd Iron Co., and

they are taken from a paper by him in the " Trans. Am.
Soc. C. E." for 1884. All beams, both I and bulb, were

loaded at the centre of span. Hence the moment of the

centre load, W, and the uniform weight of the beam itself,

pi, will be, as shown in eq. (13) of Art. 106,

'
( 2 )

4 \ '2 / d\

Hence

The known data of each test will give all the quanti-
ties in the second member of eq. (3). The two columns

of elastic and ultimate values of k in the table were com-

puted by eq. (3). The positions of the bulb beams (i.e.,

the bulb either up or down) in the tests are shown by the

skeleton sections in the second column.

The coefficients of elasticity E were computed from

the data of the tests taken below the elastic limit by the

aid of eq. (21), Art. 28:

(4)

W being the centre load and pi the weight of the beam,
the length of span / being given in inches.

All beams were rolled at the Pencoyd Iron Works.

The "mild steel" contained from o.n to 0.15 per cent, of

carbon, and the "high steel" about 0.36 per cent, of carbon.

These steels are the same as those referred to in Art. 60.

No. 14 is the only test of a "high" steel beam; all the
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remaining tests being with mild-steel shapes. Tests 3 to

9 inclusive were of deck or bulb beams, as the skeleton

sections show.

Beams 3 and 4 were rolled from the same ingot, as were

also 6 and 7, as were also 10, 12, and 13, and as were also

1 6, 17, 1 8, and 19. All beams were unsupported laterally

in either flange. The moments of inertia were computed
from the actual beam sections. The length of span is

represented by /, while r is the radius of gyration of each

beam section about an axis through its centre of gravity
and parallel to its web. The values of r were as follows:

5inch I . . . .r=o.54inch. 3 inchl. . . .r=o.59 inch.
"

. . . .^=0.63

"....r=o.7i
"

r=o.83

8

10

12

1

r=o.

=0-95
'

= 1.01 "

TABLE I.

TRANSVERSE TESTS OF STEEL BEAMS.

No.
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The values of k both for the elastic limit and the ulti-

mate are erratic, and the range of results in the table is not

sufficient to establish any law, but on the whole the small

ratios l-s-r accompany the larger values of k. The bulb

or deck beams also appear to give larger values of k than

the I beams.

The results of these tests indicate that the greatest

working intensities of stress in the flanges of rolled steel

beams may be taken from 12,000 to 16,000 pounds per

square inch if the length of unsupported compression

flange does not exceed i5or to 20or.

In the work of design, the quantity 1-^-d^ used in eq. (2),

called the "section modulus," is much employed, and it

can be taken directly from the Cambria Steel Company's
tables at the end of the book, as can the moment of inertia /.

Eq. (2) shows that

---
(s)

d,~k
'

Hence the moment of the loading in inch-pounds di-

vided by the allowed greatest flange stress in pounds per

square inch must be equal or approximately equal to the

section modulus of the required beam.

There may be found in the Proceedings of the American

Society for Testing Materials, 1909, the results of tests

of rolled I beams and girders produced by the Bethlehem
Steel Company and of standard rolled I beams by Profes-

sor Edgar Marburg. Also Professor H. F. Moore gives

results of his testing of steel I beams of the regular or

standard pattern in Bulletin No. 68 of the University of

Illinois. Professor Marburg's main purpose appears to

have been to make comparative tests of the ordinary
I beam and of the wide-flange Bethlehem shapes, while

the principal object of Professor Moore was to investigate
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the influence of lateral deflection on the capacity of the

compressive flange without lateral support. Table II

gives the results of these tests, each of professor Marburg's
results except one being an average of three.

TABLE II.

TESTS OF ROLLED STEEL BEAMS.

Type.
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been plotted on Plate I and the explanatory matter on

the Plate will make clear the results belonging to each

investigator. The horizontal ordinate is the ratio ,
r'

being the radius of gyration of the normal section of

the column about a vertical axis parallel to the web and

passing through its centre. The vertical ordinate is the

intensity k of the extreme fibre stress produced by the

ultimate load on the beam as shown in Table I.

The equation

=39,000-44,

represents the broken line drawn on Plate I. It is a tenta-
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Professor Marburg made no effort to give lateral sup-

port to his beams under test, nor did he endeavor to give
the compressive flange lateral freedom, as did Professor

Moore for a part of his tests. As, however, the results

appear to be about the same, whether the compressive flange
has complete lateral freedom or not, under ordinary cir-

cumstances of testing, no distinction is made on this account

between the various plottings on Plate I. The extremely

high values on that Plate belong to the first nine tests

by Mr. Christie, as given in Table I. They are abnormally

high and whether such results are characteristic of bulb

sections or due to some other reason is not clear.

Prob. i. It is required to design a rolled steel beam
for an effective span of 20 ft. to carry a uniform load of

725 Ibs. per linear foot in addition to the weight of the beam

itself, the circumstances being such that it is not advis-

able to use a greater total depth of beam than 12 ins.

The greatest permitted extreme fibre stress k will be

taken at 12,000 Ibs. per sq. in. It will be assumed for

trial purposes that the beam itself will weigh 35 Ibs. per

linear foot, so that the total uniform load will be. 760 Ibs.

per linear foot. The centre moment in inch-pounds will,

therefore, be

760X20X20X12M= 5 =456,000 in. -Ibs.
o

By eq. (5) the section modulus will be 456,000-^12,000
=
38. By referring to the tables in almost any steel com-

pany's handbook it will be found that this section modulus

belongs to a 1 2-inch, 35-pound steel rolled beam, and

that beam fulfills the requirements of the problem.

Prob. 2. It is required to design a rolled-steel beam
for a 3 2 -ft. effective span to carry a load of 1280 pounds per

linear foot in addition to the weight of the beam, and a
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concentrated load of 1 1 ,000 pounds at a point 1 1 feet distant

from one end of the span. The greatest permitted work-

ing stress in the extreme fibres of the beam is 16,000 Ibs.

per sq. in.

It will be assumed for trial purposes that a 24-in. beam

weighing 95 Ibs. per linear foot will be required so that

the total uniform load per linear foot will be 1375 pounds.
It will then be necessary to ascertain at what point in the

span the maximum bending moment occurs, i.e., at what

point the transverse shear is equal to zero. Let a be the

distance of the concentrated weight from the nearest end

of the span, i.e., a = n ft. Then 1

et P be the single weight,

p the total uniform load per linear foot, and / the length

of span. The following equation representing the condi-

tion that the transverse shear must be equal to zero may
be written

pi Pa
--px + -r =o.

I Pa
Hence * =

J +^T
In the above equation x is obviously the distance from

that end of the span farthest from P to the section of

greatest bending moment. Substituting the above numeri-

cal values in the equation for x, there will result

# = 16 + 2.75
= I &'7$ ft.

Since 32 18.75=13.25 the following will be the value

of the greatest bending moment in inch-pounds :

1375X18. 75 11,000X1
^- -Xi 3 .25 +-----Xi.i 2

2,900,363 inch-pounds.

1 \
-Xi8. 75

J
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The section modulus of the beam required is by eq. (5)

2,900,363-^16,000
= 181. The section modulus of a 24. -in.

steel beam weighing 85 Ibs. per linear foot is 180.7, as will

be found by referring to the tables at the end of the book.

Hence that beam will be assumed for the correct solution

of the problem. The fact that the beam weighs 10 Ibs.

per linear foot less than the assumed weight has too small

an effect upon the greatest bending moment to call for

any revision.

Prob. 3. A steel tee beam of 8 ft. span is to be used as

a purlin to carry a uniform load of 125 Ibs. per linear foot

with the web of the tee in a vertical position. The greatest

permitted intensity of stress in the extreme fibre of the

tee is 14,000 Ibs. per sq. in. It is required to find the

dimensions of the tee. By referring to eq. (5) the section

modulus will be written

1000X96 .

S = s--
- =

. 86 in.
8X 14,000

By referring again to the steel handbook tables it

will be found that a 3X3X1^ in. steel tee weighing 6.6

Ibs. per lin. ft. has just the section modulus required.

That tee therefore fulfils the requirements of the problem.

Prob. 4. It is required to support a single weight of

12,000 Ibs. at the centre of a span of 13 ft. 6 ins. on two

rolled steel channels with their webs in a vertical position

and separated back to back by a distance of 3 ins., the

greatest permitted intensity of stress in the extreme fibre

of the flanges being 15,000 Ibs. Find the size of channels

required.

Art. 108. The Deflection of Rolled Steel Beams.
,

The deflections of rolled steel beams may readily be

computed by the formulae of Art. 28. The general pro-
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cedure will be illustrated by using the equations for a non-

continuous beam simply supported at each end and loaded

by a weight at the centre of span, or uniformly, or in both

ways concurrently. Eq. (20) will give the deflection at

any point located by the coordinate x, while eq. (21) will

give the centre deflection only. The tangent of the in-

clination of the neutral surface at any point located by x

will be given by the value of -7- found in eq. (19).

Prob. i. Let the centre deflection of the rolled-steel

beam of Prob. i of Art. 107 be required. Referring to

eq. (21) of Art. 22,

W = o
;

/ = 20 feet = 240 inches
; p = 760 pounds ;

7 = 228.3; and E may be taken at 29,000,000.

Hence the centre deflection is

_ 240 X 240 X 240 X 5 X 760 X 20 _ .W
*
~
"48X8X29,000,000X228.3"

:

If half the external uniform load of 725 pounds per
linear foot had been concentrated at the centre of span,

' = 7250 pounds; p = 35

and / = 20 ft. = 240 ins. Also pi
= 700 pounds.

Hence the centre deflection would be

240 X 240 X 240 X (7250 + 437 -5)^ =
48X29,000,000X228.3

=
' 333 lnch '

Prob. 2. In Prob. 2 of Art. 107 place the n,ooo-pound

weight at the centre of span, then find the inclination of

the neutral surface and the deflection of the 24-inch 85-
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pound steel beam at the centre and quarter points of the

32-foot span, taking = 29,000,000 pounds.

Art. 109. Wrought-iron Rolled Beams. .

Although wrought-iron rolled beams are not now manu-
factured, being completely displaced by steel beams, yet

many are still in use. Hence it is advisable to exhibit

the empirical quantities required to design them and to

determine their safe carrying capacities as welt as their

deflections under loading.

It has been observed in Art. 107 that the upper or com-

pression flange of a loaded flanged beam will deflect or

tend to deflect laterally at a lower intensity of compressive
stress as the unsupported length of such a flange is in-

creased. The experimental results given in Table I ex-

hibit the values of the intensity of stress K in the extreme
fibres of the beam both at the elastic and ultimate limits,

the usual formula for bending resistance being used,

In the autumn of 1883 an extensive series of tests of

wrought-iron rolled beams, subjected to bending by centre

loads, was made by the author, assisted by G. H. Elmore,

C.E., at the mechanical laboratory of the Rensselaer Poly-
technic Institute. The object of these tests was to dis-

cover, if possible, the law connecting the value of K for

this class of beams with the length of span when the beam
is entirely without lateral support. The means by which the

latter end was accomplished, and a full detailed account

of the tests will be found in Vol. I, No. i,
"
Selected Papers

of the Rensselaer Society of Engineers." The main results

of the tests are given in Table I. All the tests were made
on 6-inch I beams with the same area of normal cross-
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[Ch. XIV.
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The experimental values of W, I, d, and / inserted in

the above formula give the values of k shown in the table.

The coefficient of elasticity, E, was found by the usual

formula,

77
Wl *

f ^E =
4^j>

(4)

in which w is the deflection caused by W.
The full line is the graphical representation of the values

of k given in Table I. Since k must clearly decrease with

Piaie t.

)000-

the length of span, and increase with the radius of gyration
of the section about an axis through its centre and parallel

to the web (the latter, of course, being vertical), k has

been plotted in reference to l + r as shown. No simple
formula will closely represent this curve, but the bioken

line covers all lengths of span used in ordinary engineering

practice, and is represented by the formula

/

51,000-75-. (5)

For railway structures the greatest allowable stress

per square inch in the extreme fibres of rolled beams may
be taken at

I= 10,000 15. (6)
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Values of k taken from a large scale plate, like Plate I,

are, however, far preferable to those given by any formula.

The ultimate values of k given in Table I are fairly

representative of the best wrought-iron I beams. The
coefficients of elasticity E range from about 22,000,000 to

about 25,000,000 pounds; the average may be taken about

24,000,000 pounds.
The deflection of wrought-iron beams may be computed

by the formula

WP .

when the load W is at the centre of the beam. In the

general case of a beam carrying the centre load W and

the uniform oad pi, the quantity (W + pl) must displace

W in eq. (7). If the beam carry only the uniform load pi,

W in eq. (7) must be displaced by \pl.

If it is desired to apply the law expressed in eqs. (5)

and (6) to mild-steel beams, the second members of those

equations may be multiplied by to f for close approxi-

mations.



CHAPTER XV.

PLATE GIRDERS.

Art. no. The Design of a Plate Girder.

A PLATE girder is a flanged girder or beam built usually

of plates and angles, the flanges being secured to the web

by the proper number of rivets suitably distributed. The

flanges, unlike those of rolled beams, are usually of vary-

ing sectional area, although occasionally either flange may
be of uniform section throughout when formed , of two

angles, or two angles and a cover-plate. Fig. i is a general

view of a plate girder, while Figs. 2, 3, 4, and 5 show
some of the general features of design.

The total length of a plate girder is materially more
than the length of clear span over which the girder is de-

signed to carry load. Blocks or pedestals of masonry or

metal, as the case may be, support the ends of the girders

and rest on the masonry or other supporting masses or

members carrying the girder and its load. The distance

between the centres of these 'blocks or pedestals is called

the effective span of the girder, as it is the span length
which must be used in computing bending moments,
shears, or reactions. Plate girders must evidently be:

somewhat longer than the effective span. \In the Figs, the

relations of the various parts at the end of the plate girder

are shown in detail. The girder illustrated in Fig. i has

683
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an effective span of 68 ft. with the centre of the pedestal

block 15 inches from the face of the masonry abutment

and 12 inches from the extreme end of the girder. The
- effective depth of the girder is

'

the vertical distance or

depth between the centres of gravity of the two flanges.

When the girder has cover-plates this effective depth may
be greater than the depth of web plate at the centre of

span and less than that at the ends, even when the web

plate is of uniform depth. It is always customary, how-

ever, to take the effective depth of a plate girder with

uniform depth of web as constant. Frequently that depth
is taken equal to the depth of the web plate; or, again, it

may be taken equal to the depth between the centres of

gravity of the flanges at mid-span without sensible error.

In case the web plate is not of uniform depth the effective

depth might still be taken as the depth of web plate at

the various sections of the girder, or it may be taken as the

depth between centres of gravity of the flanges at the same

sections.

The plate girder shown in Fig. i and to be assumed for

the purposes of design is of the deck type and has a clear

span of 65 ft. 6 ins., an effective span of 68 ft., and a length

over all of 70 ft. The differences between the effective

span and the clear span and total length are obviously

dependent upon the length of span. For short spans

those differences are relatively small, and relatively large

for long spans. The depth of web plate will be taken as

6 ft. 8 ins., and it will be found later that at and in the vicin-

ity of the centre of span three cover-plates will be needed.

The girder will be assumed to be of mild structural steel

and will be supposed to carry a single-track railroad mov-

ing load with the concentrations and spacings shown in

Table I, Art. 21.

The dead load or own weight of the girder and track

will depend somewhat upon whether the girder is of the
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through or deck type. The only difference in computa-
tion arising in those two types is due to the fact that if the

girders are of the deck class (i.e., carrying the moving load

directly on their upper flanges) the rivets connecting the

upper flanges with the webs must be assumed to carry the

wheel concentrations in addition to their other duties, as

will be shown in the following computations. The total

dead load or own weight will be taken as 1400 Ibs. per linear

foot. Inasmuch as there are two girders, each will carry

one half of the moving load and one half of the dead load

or own weight. It should be observed that the effective

length of span being 68 ft., the two locomotives at the head

of the train load will more than cover the span, so that the

uniform train load will not appear in the computations.
The design of this plate girder will be made in accord-

ance with the provisions of the American Railway Engi-

neering and Maintenance of Way Association and refer-

ences will be made to those provisions.

Bending Moments.

The first computations necessary are those required
to determine the bending moments, and from them the

flange stresses at different points of the span. Those

points may be taken at 5, 8, or 10 ft. apart as may be

desired for the purpose of design; the closer together the

sections are taken the greater will be the degree of accuracy
attained. In the present instance those sections will be

taken 5 feet apart up to 25 ft. from the end of the span,

but the next or final section will be at the centre of span.

After the bending moments are obtained, the flange

stresses at once result by dividing the former by the effec-

tive depth.

Figs, i and 2 show the complete single-track railway
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deck-plate girder span consisting of two girders with the

requisite bracing connections between them. The total

dead load or own weight is a uniform load and consists of :

Lbs. per Lm. Ft.

Track (ties, rails, etc.) 450
Two girders and bracing 1050

Total..................... 1500

r^ ' J ISOOOr for one girder. . . ............ ~ = 750
2

As each girder will carry 750 Ibs. of dead load per linear

foot, and as the effective span is 68 ft., the expression for

the dead-load bending moment in foot-pounds at any

point will be as follows:

(i)

The application of eq. (i) to the sections of the girder

5, 10, 15, 20, 25, and 34 ft. from the ends will give the

following expressions for the bending moments in foot-

pounds :

D. L. Moment.
x ,

Ft. Lbs.

5 ............................... 118,120

10 .......... ...... ............. 217,500

15. ...... ,.. ..
................... 298,100

20......................... ...... 360,000

25 .................... ........... 403,100

34............................. 433,500

The moving-load bending moments are next to be found

by using the concentrations shown in Table i, Art. 21.

For this purpose the criterion for the maximum bending
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moment, eq. (5), Art. 21, must be applied at the assumed

sections in which I' (equal to oo in the above dead-load

computations) has the values 5, io, 15, 20, 25, and 34 ft.

The application of that criterion to the section BO, Fig. i,

5 ft. from the end of the span shows that W2, or the first

driving wheel, must rest at the section in question for the

maximum bending moment, the loads Wi to Wi2 inclusive

resting on the span. Wi will be off the span. By the aid

of Table i, Art. 21, the greatest bending moment desired

is:

Ms =-^-(9,030,000+2 X273,ooo) =704,000 ft.-lbs.
68

Similarly for the section CN, io ft. from the end of the

span, the criterion eq. (5) of Art. 21 shows that W% must

be placed at C with W\z 2 ft. from the end of the span
and Wi off the span. By the aid of Table i the desired

moment takes the value:

M 10 =77: (9, 030,000+ 2 X273,ooo) 150,000= 1,260,000 ft.-lbs.
68

Concisely stating the conditions and results for the

remaining sections shown on Fig. i : For DL, 1 5 feet

from end of span, two positions of moving load, T/F3 at D
ancb Wi2 at D satisfy the criterion, but the latter with

13 feet of uniform train load on the span gives the greatest

moment. Total load on the span is

(Wio+ . . . + 1^18+3000X13)

and the moment is:

j-/ T
~2\

M}5 =7^(6,310,000 + 2 13,000 X 13 +3000 X ) -345,000 =Oo \ 2 /

1,715,000 ft.-lbs.
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For EM, 20 feet from end of span, place Wi2 at E\

M20 =^(6,3 10,000 +8 (2 13,000 H
3ooo\ \ _

345>ooo==
o8\ \ 2 //

2,040,000 ft.-lbs.

For GH, 25 feet from end of span, place Wi 2 at G and
the moment is:

M25 =^-(7,500,000+ 232, 500X3 +3000^-) -755,000 =
DO \ 2 /

2,265,000 ft.-lbs.

The moment at the centre of the span can be computed
in the same manner, but by referring to Table II of Art.

21, it will be seen to be:

M34 = 2,435,4oo ft.-lbs.

A reference to the American Railway Engineering
and Maintenance of Way Association specifications, Art.

9, will show that the required allowance for impact is

represented by the factor I, in which L' is the length of

load on the span:

1 = 300

I/+300*

The positions of loading already found for the greatest

moving load moments give the lengths L' in feet in the

following table:

Pt.
Ft.
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By adding the 'dead load or own weight moments,

already computed, to the moving load and impact moments
in the preceding table, the total or resultant moments
will be:

TABLE I.

-P, Total Moment"
Ft.-lbs.

5 ......................... 1,404,000

10 .........................
'

2,518,000

15 ......................... 3,418,000

20 ......................... 4,230,000

25-
' ....................... 4,534,000

34 ......................... 4,855,000

Shears.

Both dead and moving load shears must be computed.
As the dead load or own weight is a uniform load on the

girder, the shear at any point is simply the load between

that point and the centre of span. Hence indicating the

transverse shear at any section by the figure showing its

distance from the end of the span, there will result the

following values, 5 being the end shear or reaction:

50=34X750 = 25,000 Ibs.
.

55 = 29X750 = 21,750

510 = 24X750 = 18,000
"

515 = 19X750 = 14,250
"

520 = 14X750 = 10,500
"

525 = 9X750= 6,750
"

= 0X750= o
"

The moving load shears will also be needed. Although
there is no systematic criterion for such shears at different
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points in a span traversed by a train of concentrations,
it is a simple matter to find the greatest moving load shears

at the sections contemplated by inspection and trial. The

greatest end shear, i.e., the greatest reaction, has been

found in Art. 21 and is given in Table II of that Article:

End shear for 68-ft. span = 161,700 Ibs.

End impact shear =131, 800
' *

The impact factors for the shears are computed by the

same formula already used for impact moments.

For a shear 5 feet from end of span : place W% at the

5 -foot section, then the greatest shear is

c 9,030,000 + 2X273,000 1U55 =- - =141,000 Ibs.
Oo

By trying other positions it will be found that this

gives the greatest shear. W\ is not on the girder and W\*
is 2 feet from the end of the span.

For section 10 feet from end; place W\\ at the section.

Hence

6,310,000 + 213,000 Xi3 (3000 X -

5 10
= -150,000 =

OO

122,000 Ibs.

For section 15 feet from end: place W\\ at the section

and there will result

82

6, 3 10,ooo + 2 13,ooo X 8 +3000 X
5i5=- gg- --150,000 =

104,300 Ibs.
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For 20-ft. section: place W2 at the section and there

will result

6,050,000= - -- 150,000=87,200 Ibs.
Oo

For a 2 5 -ft. section: place W% at the section and the

greatest shear will be

$, 240,000+213.000 Xs525 = - 1 50,000 = 7 1
, 500 Ibs.

Oo

For the centre of span : place

greatest shear will be:

at that point and the

~ 3,230,000 + 174,000X5 1U5 34= - -150,000=45,300 Ibs.
08

The loaded lengths in each of these cases to be used

in computing the impact factors are in the order of the

sections beginning with that at 5 feet from the end, 63,

66, 61, 56, 51, and 42 feet, the latter belonging to the

centre of span. The following tabular statement repre-

sents the elements of these moving load shears and the

impact allowances:

SHEARS AND IMPACT ALLOWANCES

Section.
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Adding together the dead load, moving load and impact
shears as now determined, the following will be the resultant

or total shears at sections under consideration:

TABLE II.

RESULTANT OR TOTAL SHEARS.

Section.
lotal^hears.

End 319,000

5 279,300
10 240,500

15 205,100
20 169,500

25 139,400

34 85,000

The preceding results or computations due to the dead

and moving loads are the principal data required in the

design of the girder.

Web Plate.

The effective depth of the girder will tentatively be

taken as 6 feet 8 inches and the depth from the back of

flange angles in the upper flange to the back of the lower

flange angles will be taken as 6 feet 8J_ inches. As the

depth of the web plate must be taken a little less than the

depth from back to back of angles, in order that the flange

plates may not touch the edges of the web plates when
the different parts of the girder are assembled, that depth
should be taken as 6 feet 8 inches. In fact the effective

depth of a plate girder is sometimes prescribed as the depth
of the web plate. This depth of web plate will leave

\ inch clear at the top and bottom flanges, which is sufficient

to insure the flange plates freedom from hitting the edges
of the web.

Art. 1 8 of the Specifications allows a working stress

in shear of 10,000 pounds per square inch of gross cross-
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section of the web. As the total end shear has been

found to be 319,000 pounds, the gross web plate section

at the end of span should be 31.9 square inches. The

minimum thickness must then be ^^ = .399 inch.
80

A web plate 80 X-^
inch will be used, giving a gross

sectional area of 80 X. 43 7 5 =3 5 square inches. The sur-

plus area is small and it is judicious design to have it.

This web plate thickness also satisfies Art. 29 of the Speci-

fications which prescribes that
" The thickness of web

plates shall not be less than of the unsupported dis-
100

tance between fiange angles," as 6X6 inch flange angles

will be used,

Flanges.

Art. 29 of the Specifications provides that the design
of the flanges may be based either on the moment of inertia

of the net section of the girder or on the assumption that

the flange stress is of constant intensity with its centre

at the centre of gravity of the flange area, the latter

including one-eighth of the gross section of the web, the

difference between one-sixth and one-eighth -of the web
section being supposed to cover the material punched out

in the tension side of the web plate. The latter method
will be employed.

Art. 30 of the Specifications provides that
" The gross

section of the compression flanges of plate girders shall

not be less than the gross section of the tension flanges."

It will be best, therefore, to design the tension flange

first.

Using the total or resultant bending moment at the
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centre of the span, the trial effective depth of 6 feet 8 inches

will give the centre flange stress as follows:

4,855,000
,

- = 728,000 Ibs.

6.67

The specifications permit a working tensile stress in

the net section of the tension flange of 16,000 pounds per

square inch. Hence the required net tension flange area

is

728,000

The available flange section due to one-eighth the gross

sectional area of the web is ^ =4.375 square inches. The
o

amount of flange area to be supplied by the flange plates

and angles is, therefore,

45.5-4.4=41.1 sq.ins.

In providing 41.1 square inches it is necessary to know
what rivet holes are to be deducted from each cover-plate
and each flange angle. It is clear that two rivet holes

only need be deducted from each cover-plate, and it is plain

that at least two rivet holes must be deducted from each

flange angle section. In designing cover-plates for flanges

it must be remembered that no such plate must be thicker

than the one under it, i.e., if these plates are not of the same

thickness, the thickest one must lie on the angles, the

remaining thicknesses to decrease or be the same in passing

outward from the angles. As a trial section let the follow-

ing be assumed:
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Angles or Cover-plates.
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/ = length of span in feet
;

Li = length of outside cover-plate in feet;

L2 = length of second cover-plate in feet;

A = total net flange area, square inches;

ai =net area of outside cover-plate, square inches;

a2 =net area of second cover-plate, square inches;

as =net area of third cover-plate, square inches.

It has already been seen that if a beam simply supported

at each end be loaded uniformly throughout the span, the

bending moment at any point will be represented by the

vertical ordinate of a parabola whose vertex is over the

centre of span while the end of each branch is at one end

of the span. It is assumed that the greatest bending
moments in the plate girder, already computed, vary by
the same parabolic law. This is not quite true, but suf-

ficiently near for ordinary purposes.

Then, as will be shown in the next Article,

+a2. T~
3#

In this case / =68 feet and A =45.3 square inches.

a.i = a2 = 03 = 9 sq. ins.

Making these numerical substitutions, there will result

Li =30.7 feet.; Li =42.9 feet; L3 = 52.5 feet. These lengths

are clearly the minimum permissible. In actual construc-

tion it is desirable to have the end of the plate from i to

1.5 feet further from the centre, making the total length of

the plate 2 to 2.5 feet greater than the length computed
above. This lengthening of the cover-plate is essential

in order that the cover-plate metal may be taking stress

at the point where the plate is computed to begin. Also
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as will be seen a little further on, the pitch of rivets in

these ends of the cover-plates is made less than in the

body of the plate for greater effectiveness where the plate

begins to take its stress. The lengths of cover-plates

then, beginning with the shortest, will be 33.2, 45.4, and

55 feet.

Another method of procedure, more accurate than the

preceding, is to draw a moment curve on the effective

span, which can readily be done by laying down as vertical

ordinates the resultant or total moments as given in Table I.

These moment ordinates would be 5 feet apart except
at the centre of span. The lengths of cover-plates must
be such as to give resisting moments of the flange stresses

at least equal to the external bending moments shown
on such a diagram. The moments of the flange stresses

will require the centres of gravity of parts of the flange
sections to be computed at each moment point. The

following tabulation shows the elements of this method
of procedure for the centre section of the girder:

Section.
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if the girder be of the deck type, i.e., with ties resting upon
the upper flange. That flange being under compression,
it is advisable that the horizontal legs of the angles be

supported throughout their entire length by riveting

them to a cover-plate. This will add to the stiffness and

carrying capacity of the flange. If ties rest directly upon
the upper flange, their deflection tends to bend one side

of it out of its horizontal position, but this tendency will

be materially lessened by the added stiffness gained in

riveting the horizontal angle legs of the flange to the cover-

plate.

Although this process of design has been used in con-

nection with the tension flange, under the specifications

the compression flange is to be made like the tension flange,

i.e., a duplicate of it.

Pitch of Rivets in Flanges.

Arts. 5 and 31 of the specifications relate to the rivets

required to join the vertical legs of the flange angles to the

web plate. Art. 31 requires that "The flanges of plate

girders shall be connected to the web with a sufficient

number of rivets to transfer the total shear at any point

in a distance equal to the effective depth of the girder at

that point combined with any load that is applied directly

on the flange. The wheel loads where the ties rest on the

flanges shall be assumed to be distributed over three ties."

The chief function of these rivets is to transfer hori-

zontal shear from the web plate to the flanges, as it is in

this way that the flanges receive their stresses. If the

rivets take the direct load of the locomotive driving wheels,

as in the case of a -deck girder like that being designed,

they must resist the resultant stress due to both vertical

and horizontal loads.
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Strictly speaking the number of rivets required between

two moment sections, as shown in Fig. i, should be just

sufficient to give the increase of flange stress in passing

from one section to the next one toward the centre of span.

Art. 31 of the specifications, therefore, requires more

rivets than are needed except at the end of the span. It

is always necessary, however, to introduce more rivets

near the centre of span than is required by actual computa-

tions, for the general stiffness of the girder. Indeed even

more rivets are generally provided than those prescribed

in Art. 3 1 of the specifications.

If d is the effective depth of the girder at the end of

the span and if the end shear or reaction is R, and if tA is

the flange stress at the distance d from the end of span,

then will the following equation of moments be found,

neglecting the negative moment of any load within the

distance d from the end of the span:

Rd = tAd.

Hence

This shows that an amount of stress equal to the end

shear must be given to each flange within the distance d

from the end. The number of rivets required by this

computation is a little more than necessary if any load

rests upon the girder between the end and the section at

the distance d from it.. It will be clear that the general

provision of Art. 31, quoted above, is based upon this

end shear requirement, and it is analytically incorrect,

but the excess of rivets which it calls for adds to the general

stiffness and capacity of the girder.

The weight of one driving wheel is 30,000 pounds, and

it is to be distributed over three ties or 42 inches. As
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the prescribed impact is 100 per cent., the vertical load

per horizontal inch of girder will be:

42

It is obvious that the flange stress taken by one-eighth

of the sectional area of the web is received directly by the

latter and does not affect the rivets through the vertical

legs of the flange angles. If A\ is the actual net flange

section of cover-plates and angles and A 2 the total flange

area, including one-eighth of the web section, and if 5
is the total shear at any moment section, while d is the

effective depth of the girder, then the horizontal flange

stress H to be taken up per linear inch by the rivets

5 A\
between two sections the distance d apart will be H=.

Ct ./i 2

The values of A\ and A 2 , beginning at the end section

of the girder, are as follows :

Section A , A
^

End 2 2. 88 sq.ins. 2 7. 2 6 sq.ins.

5ft. 22.88
"

27.26
"

10
" 22.88 "

27.26
"

15
"

31.88
"

36.26

25
"

40.88
"

45.26
"

Centre 40.88
"

45.26
"

The unit (inch) increments H of horizontal flange

stress found for the various sections by the preceding
formula are:

T^ j TT 319*500 VX 22. 88 -,End # =V , X- T=333olbs.
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15 ft. H= =2170 Ibs.

2 5
" #= =I 560

"

Centre H = 954
lt

Each of the above results gives the horizontal stress H
in pounds per linear inch, over each 80.5 inches of girder

flange for each moment section and to be taken up by the

rivets.

The rivet pitch p at any section will then be determined

by the following formula if K is the working value of one

rivet in shear or bearing :

Each rivet bears against the web plate as well as against
each vertical leg of the flange angle, and as the web plate
is much thinner than the sum of the thickness of the two

angle legs, the bearing value against the web plate will-

be much less than that against the angle legs. Furthermore
each rivet is subjected to double shear, the two shearing
sections of the rivets coinciding with the two faces of the

web plate. K, therefore, must be taken as the least of the

double shearing value and the bearing value against the

web plate. The rivets to be used are f-inch diameter

before being driven and the bearing value of such a rivet

against a ^-inch plate at 24,000 pounds per square inch

is 9190 pounds and 14,430 pounds in double shear at 12,000

pounds per square inch, both of these working stresses

being in accord with the specifications.

Applying the numerical results thus established to the

formula for the pitch,

there will result:
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., ., QIQOAt end p==^ y
=2.55 ins.

5 ft. point P =- =2.83

10 " f= =3.18
"

" "
15 P= =3-53

25 P= = 4.34

Centre p= =6.26

If desired a curve can be drawn at the various points

with the corresponding pitch as a vertical ordinate at each

point. Such a curve will give the rivet pitch at any point

in the span, but such detail is not usually required. The
above values of the pitch may be used, with judgment,
without further computations for any part of the girder.

Fig. i shows the pitch used at the different girder points;

it is frequently adjusted to the position of the intermediate

stiffeners.

Pitch of Rivets in Cover-

The number of rivets required in a cover-plate is at once

determined from its net section. In the present case the

net section of each cover-plate is ^ square inches, which,

at 16,000 pounds, gives 144,000 pounds as the stress value

of the plate. The rivets in the cover-plates are subjected

to single shear and the single-shear value of one f-inch

rivet is 7220 pounds. Hence the number of rivets required

to develop the full value of one cover-plate is
1 44>ooo = 2Q
7220

rivets. Between the end of the cover-plate, therefore,

and the point at which the next cover-plate outside of it

begins, there must be at least 20 rivets. As a matter of

fact considerably more than that number will be found,
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as the pitch must not exceed 6 inches in any case and it

should not be more than 3 inches for a distance of 12 to

1 8 inches from the end of the plate. It will be seen upon

examining the drawing that these conditions are fulfilled.

Top Flange.

As this flange is in compression, gross areas may be

used. If the provisions of Art. 30 and other Articles of

the specifications be scrutinized, it will be found that they
are fulfilled by the compression flange made up as shown

in the figures, and they need no further detailed attention.

End Stiffeners.

The end stiffeners must be heavy members of their

class and rigidly riveted to the girder, as they take the severe

impact or pounding at the points of support due to rapidly

moving heavy locomotives and trains. Art. 79 of the

specifications provides that
"
There shall be web stiffeners

generally in pairs, over bearings, at points of concentrated

loading, and at other points where the thickness of the web
is less than one-sixtieth of the unsupported distance between

flange angles. . . . The stiffeners at the ends and at points of

concentrated loads shall be proportioned by the formula

of paragraph 16, the effective length being assumed as

one-half the depth of girders. ..." This provision
makes it necessary to treat the end stiffeners as a column,
the working stress to be:

p = 16,000 70.

The column load in this case is the maximum end shear

including impact allowance as given by Table II, i.e.,

319,000 pounds.
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If two pairs of 5 X3^ Xii-inch angles be assumed for

trial with the 3j-inch legs against the web plate, remem-

bering that they will be separated by the thickness of the

plate, the radius of gyration of their combined section

about an axis lying in the centre of a horizontal web section

and parallel to the web will be 3.13 inches. The length

of the column is -=40.25 inches =/. Hence the pre-

scribed formula will give a working stress of 15,100 pounds

per square inch. On this basis

A . , 319,000Area required = = 21 sq.ms.
15,000

The actual sectional area of four of the assumed angles

will be 23.24 square inches, which is sufficiently close to

the area required to be accepted as satisfactory.

The entire load is carried to the end stiffeners by the

|-inch rivets which bind them to the web plate. The rivets

are in double shear and bear on the web plate. It has

already been seen that the bearing value on the web plate,

9190 pounds per rivet, is much less than the double shear

value. Hence the number of rivets required is
3 I 9>000 -

9190
rivets. This computed number of rivets distributed

throughout the length of the 3^-inch angle legs would make
the pitch too great. The pitch should not exceed about

4 inches, which would make the number of rivets about

40. It is essential, as already indicated, that the end

stiffeners be made exceptionally stiff and rigid.

End stiffeners are not bent, but are riveted onto filling

plates having the same thickness as the flange angle legs.

These filling plates enhance the stiffness and resisting

capacity of the end stiffeners as they, in fact, form a part

of the latter.
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Intermediate Stiffeners.

By referring to Art. 79 of the specifications there will

be found an empirical formula giving the maximum dis-

tance between intermediate stiffeners, providing, however,
that that distance in no case shall exceed the clear depth of

the web. Intermediate stiffeners are sometimes regarded
as being equivalent to the vertical compression members
of a Pratt truss, but as a matter of fact there is no rational

system of basing their design on computations. They
are almost invariably made of angles, but sectional areas

are determined by experience. Inasmuch as the total

transverse shear at the centre of span is small, they are

sometimes omitted there. As a rule they are never placed
farther apart than the depth of web plate.

As this girder is to carry a heavy railroad load pre-

sumably at high speed, 5X3^Xf-inch steel angles will

be used with the 3! inch leg placed against the web

plate. As the transverse shear increases toward the end

of the span, the distance apart of these intermediate

stiffeners will correspondingly be decreased. In the central

part of the span this distance is seen to be 5 feet if inches,

but near the ends it is reduced to 3 feet 5! inches. The

pitch of the rivets in these intermediate stiffeners may vary
from 3 inches to 5 or 6 inches, the greater pitch being near

the mid depth of the web.

Splices in Flanges.

It will be found that cover-plates and flange angles

may be purchased of full lengths required on this plate

girder. When, in general, the girders are so long as to

require splicing of the parts of flanges, those joints for the

tension flange must be so designed as to leave the net

section as large as practicable, as the entire stress must be
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carried by the net section. It is good practice and cus-

tomary not to have two joints in adjacent parts concur,

i.e., there should be breaking of joints so as to have a

joint in one part only of the flange at the same section.

In this manner the net section at each joint may attain

its maximum value. In the splicing of angles both legs

should be spliced. In compression, riveted joints can

scarcely be expected to transfer stresses by abutting sur-

faces in those joints. They should be spliced about as

effectively as tension joints, although the question of net

section does not arise, the gross section being available.

Splices in Web Plates.

As one-eighth of the gross web-plate section is considered

as resisting bending as a part of the flange area, the rivets

at a web-plate splice must be sufficient to resist the cor-

responding bending moment. This web-plate moment is,

therefore,

= 5,670,000 in.-lbs.
8 io

There must be two splice-plates, one on each side of

the web, each of which need not be as thick as the main

plate, but in this case f-inch splice-plates have been used

so that the intermediate stiffener need not be bent. For

this size of girder there should be three rows of rivets on

each side of the joints. If it be assumed that the pitch

be A inches in each row, there will be nine rivets in each of

the three rows between the mid depth of the web and the

back of the flange angles. If the loads carried by these

rivets in resisting bending vary directly as the distance

from the neutral axis at mid depth, their resultant will

act at 1X40 = 26.7 inches from that line. The bearing
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value of a {-inch rivet against the ^-inch web is 9190

pounds. Hence the resisting moment of the 54 rivets

on one side of the joint is:

. 7 =6,600,000 in.-lbs.

As this is greater than 5,670,000 in.-lbs., the proposed

arrangement of the joint is satisfactory. The two splice-

plates will, therefore, each be 19 Xf inches by 5 feet 8| inches,

as shown in Fig. i.

In general every joint splicing should be tested for

the transverse shear which it must carry. In this instance

it is clear that the splice-plates will carry more shear than

the web.

General Considerations.

The girder proper with its flanges, web, and stifleners

has been designed in this article without indicating the

manner of connecting such lateral or cross bracing as

would be required in the complete design of a railroad

plate-girder span. The design of such bracing would be

supplementary to the actual design of the girder as made,
and it is the purpose here to illustrate only those principles

belonging to the design of the girder proper. The design
of the bracing and the details of its connection with the

girder belong rather to bridge construction than to the

subject treated here. Fig. 2 has been introduced, however,
as an illustration to indicate the general features of the

complete structure.

Large plate girders are not always built complete in

the shop, although girders nearly 100 feet in length are

frequently and perhaps usually so completed at the present
time. When it is necessary to build them in portions
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and rivet the portions together in the field, the general

principles governing the construction of the necessary

field-joints are precisely the same as those illustrated in

this article. They are simply adjusted or adapted to the

exigencies of each particular case.

The bill of material and estimated weight of a single

girder as designed is as follows :

Pounds.

Two 80" XT*" web plates, 21' n" long ............. 5,236

One 80" XiV' web plate, 26' \" long ................. 3,094

Four 6"X6"Xf" angles, 70' long ................... 8,036

One 14" Xl" cover-plate, 70' long .................... 2,499

One 14" X I" cover-plate, 55' 5^" long ................

Two 14" X|" cover-plates, 47' 6" long..............

Two 14" X?" cover-plates, 33' 3" long ...............

Eight 5"X3i"XH" ar-gles, 6' 7" long ...............

Twenty-eight 5"X3l"Xf" angles, 6' 7" long.. ........

Four io"Xf" filler-plates, 5' 8|" long ................

Four 19" Xf" splice-plates, 5' 8|" long ...............

Twenty-four 3l"Xf" filler-plates, 5' 8|" long .........

Two 14" Xf" sole-plates, i' 6" long .................. 107

Rivets........................ . .................. 800

Total for one girder..... ....................... 30,502

The weight of girder per linear foot therefore is:

70

If the plate girder were of the through type, there

would be no change whatever in the procedures of design

which have been followed, but in order to give a better

appearance to the ends they would be formed as shown in

Fig. 5- The latter figure shows the same end stiffness,

depth of girder and the same flange angles as Fig. i.

Art. in. Length of Cover-plates.

There are various methods of determining the lengths

of cover-plates of plate girders involving simple compu-
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tations only, which are well illustrated by the following

procedures :

The first of these procedures is based on the assump-
tion that the depth of the girder is uniform and that the

bending moment throughout the length of girder varies

as the ordinate of a parabola as in the case of uniform

loading. The following notation is required:

/ = effective length of span either in feet or inches
;

L== length of cover-plate required in the same unit as /;

A = total net flange area
;

a = net cover-plate area required.

Since the flange and cover-plate areas vary directly

as the flange stresses, and as the latter vary as the ordi-

nates of a parabola when the depth of girder is constant,

the following equation will result:

_
I
2
~
A*

or

(0

Eq. (i) will give the length of the cover-plate whose
area of section is a. Any convenient unit may be taken

for a and A, but the square inch is ordinarily employed.
If there are several cover-plates, a is to be taken suc-

cessively the area of the first, second, third, etc., cover-

plates in summation, i.e., it will first be taken as the net

sectional area of the top cover, then as the net sectional

area of the top cover added to that of the cover-plate
below it, and so on.

The second method is the following, and is applicable
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to the case of a' girder with varying depth, the notation

being as follows :

Let w = uniform load per linear foot, or
"
equivalent

uniform load" per linear foot;

d and d' represent the effective depths of girder in

feet at the centre of span and at the end of

the cover-plate respectively;

A a = a' = area of flange section at the end of

cover-plate ;

T = permissible flange stress per square inch;

the bending moment at the end of the cover-plate will

then be

/
2

w/L\ UM = w^ =AdT-w-^- = d'a'T. . . (2)
Q 2 \2 J O

By solving the second and third members of the pre-

ceding equation there will result

- \(Ad-a'd')T _^ (Ad-a'd')T

It must be remembered that the application of either

of the two preceding methods will give the net length of

the cover-plate. There must be added 12 to 18 ins. at

each end with rivets closely pitched so that the cover-

plate may certainly take its stress at the points where its

effectiveness should begin.

Art. 112. Pitch of Rivets.

A simple method of finding the pitch of rivets piercing

the vertical legs of the flange angles and the web plate of a
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plate girder at any section of the beam may readily be found

by using the general but elementary expression for the bend-

ing moment,

By differentiating this equation, .

2P.doc = Sdx=dM\

S representing the total transverse shear.

If dM is the change of bending moment for the distance

along the flange represented by the pitch of rivets, p, the

change of flange stress for the same distance will be found

by dividing dM by the effective depth of the girder, d. If

the pitch of rivets, p, be placed in the preceding equation in

place of dx, the corresponding change of flange stress will

represent the amount of stress transferred to the flange by
one rivet. Representing that variation of flange stress by
v, the last of the preceding equations may be written

In this equation v represents either the bearing capacity
of one rivet against the web plate or against the two flange

angles, or the double shearing value of the same rivet, i.e.,

the least of those three values. Ordinarily the bearing of

the rivet against the web plate will be less than either of the

two other quantities; hence that bearing value would then

be substituted for v. In general the least of the three pre-

ceding values for one rivet is to be substituted for v in an

actual computation. The total transverse shear S is always
known at any section or may readily be determined. The

preceding formula for the pitch, therefore, is a very simple

one and is much employed.



CHAPTER XVI.

MISCELLANEOUS SUBJECTS.

Art. 113. Curved Beams in Flexure.

IF beams are sharply curved, i.e., if the radius of curva-

ture of the neutral surface is comparatively small, the for-

mulae expressing the common theory of flexure for such

beams will contain the radius of curvature and corre-

sponding variations from the formulae for straight beams.

Let Fig. i represent part of a curved beam subjected to

flexure, AC representing the radius of curvature at the

point A before flexure while C'A' represents the radius

of curvature of the same surface after flexure takes place.

OAO' represents the neutral surface. A'b" is the continu-

ation of C'A'. Similarly A'b is the continuation of CA'.

Finally, A'b' is drawn parallel to CA. def represents the

normal section of the beam and AA' is supposed to be

a differential of the length of the neutral surface.

712
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The ordinate y is measured from A as an origin

toward B or D, respectively, z is the varying width of

the normal section of the beam and hence it is measured

normal to y and x, the latter being measured along OAO'.

A differential of the section of the beam is zdy.

As the normal sections of the beam are assumed to

remain plane after flexure, let the rate of strain, i.e., the

strain per unit of length of fibre at any point distant y
from the neutral surface be uy, u being the apparent
rate of strain at unit distance from the neutral surface.

By referring to Fig. i there may at once be written:

b'b =dx\ bb" =

By similarity of triangles,

y

This equation gives at once :

r-r' r'

r
i

- --
If the beam were originally straight, in which case the

radius of curvature r = co
, eq. (2) would take the form

u=
,
the usual expression for the rate of strain at unit

distance from the neutral surface of a straight beam.

If again the radius of curvature is sufficiently large, so that

r may be written for r+y without sensible error:

(3)
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This expression for u may be used for curved beams if

the curvature is not too sharp.

If the radius r is infinitely great, u = -
f ,

which is the

value for a straight beam.

Eq. (2) shows that the rate of strain u at unit distance

from the neutral surface and corresponding to the rate of

strain at any distance y is variable, as y appears in the

denominator in such a way as to make u smaller the

greater the distance of the fibre from the neutral surface.

This is in consequence of the curvature of the beam and

results from the assumption that normal sections plane
before flexure remain plane after flexure. With the

increase of length of fibre due to curvature as its distance

from the neutral axis increases, a less rate of strain is

required to keep the section plane after flexure. This

assumption is not strictly true, and it may be a matter of

doubt whether it is necessary or advisable even in the

interests of correct analysis.

If k is the fibre stress of tension or compression at any
distance y from the neutral axis, there may be at once

written :

The stress on an element zdy of the section will then be :

.. . fa,

Let k
f and k" be the intensities of stress at the distances

y' and y" from the neutral surface. Then by eq. (4) :

*' / r-y"
k" r+y' -y

1
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From this equation :

v> v-,, .... (Sfl)
r-y"

If y'=y" t eq. (50) becomes:

Eq. (5&) shows that the intensity of stress at a given
distance from the neutral axis will be greater on the concave

side of the curve than on the convex, and that this relation

holds until the radius of curvature becomes infinitely

great.

In order to locate the neutral axis the integral of the

two members of eq. (5) between the limits of y and y
must be placed equal to zero, giving eq. (6) :

Again, the bending moment formed by the direct

stresses of tension and compression in the section may be

written in the usual manner as follows, M representing the

moment :

Eq. (6) shows that the neutral axis will not pass through
the centre of gravity of the section. As the intensity of

stress on the convex side of the curve will be less than if

the beam were straight, the neutral axis will be on that
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side of the centre of gravity of the section toward the con-

cave surface of the beam. Eq. (7) shows, again, that the

integral is not the moment of inertia of the section about

the neutral axis, but it will reduce to that if the radius

of curvature r be supposed infinitely great.

The integrations shown in the second members of eqs.

(6) and (7) can at once be made when the form of cross-

section is known. Inasmuch as this analysis for curved

beams finds one of its important applications in connection

with the design and carrying capacity of large hooks, a trape-
zoidal cross-section shown in Fig. 2 will be assumed by

way of illustration, and from
that the rectangle section at

once results. In that figure

the larger end CD of the trap-
ezoid will be considered to

lie in the concave or inner

surface of the hook and at

right angles to the plane of

the hook. As the trapezoid
is symmetrical, a=%FH, and

i the angle of inclination of a

'FIG. 2. sloping side as HD to the

centre line will be taken as a,

Then z will represent one-half of the width of the trapezoid
at any point:

y) tan a. (8)

If z be inserted in eqs. (6) and (7) there will be required
the following integrations in which yi+yo=d:

fJ- r-y
(9)
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r* log '-+, ( I0)&

<"'

If these values of z and the integrals given in eqs. (9),

(10) and (n) be substituted in eq. (6), there will at once

result :

d r+- tana+a

As known quantities let r+y\=R and r yo=Ro,
then eq. (12) may take the form:

7? /d \
r log -^-(R tan a -fa) = rd tan a +d( - tan a -fa 1 .

KO \2 /

Hence :

f-I- R v ^- (13)

(7? lg"B ^)
^an <*+# log

After r is determined by eq. (13) there will at once
result :

yi=R-r and yo=dyi. . . . (14)

If the section is rectangular, =tan =o, hence,

' = B- and yi =R--d-. m .

logf logj*M> /M)
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If the section is triangular, a = o and the second member

of eq. (13) will be correspondingly simplified as follows:

As this expression is independent of a, y\ and yQ remain

unchanged whatever may be the value of that angle.

Having thus found y\ and y ,
the position of the neutral

axis of the section is determined and the expression for

the bending moment can now be written by the aid of

eqs. (4) and (7), the latter being the general expression

for the bending moment. By the aid of eq. (4) the inr

tensity of stress in the extreme fibre at the distance yQ

from the neutral axis may be written as follows :

-.
, (16)

-yo
Hence,

...... <

By introducing the second member of eq. (17) in eq.

(7) as well as the value of z from eq. (8) and the integrals

given in eqs. (10) and (n), the following value of the

moment M will result :

2k (r-yo) Cyi
/ \

(18)

yo

-y r+y]

, d
tan

j 91 f~yi ana /J9 N , ^~cfr+r2

log-^-j-
(dt-wiyon- . - (19)
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As is evident, the factor 2 appears in the second members

of eqs. (18) and (19), for the reason that the section taken

is symmetrical and the varying ordinate z is half the width

of section at any point. If a were taken as the extreme

width of section on the narrow side instead of half that

width and if a were to be so taken that (y\y) tan a.

added to a represents the full width of the section at the

point located by y, the factor 2 would be omitted from the

second member of the value for M.
If the section is rectangular a = tan a = o and the

expression for the moment M then becomes :

(2o)

If the section were triangular a = o in the second member
of eq. (19).

These equations may be employed in the design of curved

beams of any form of cross-section or degree of curvature

when those based on the common theory of flexure for

straight beams are not applicable. As a general statement

it may be said that the formulae for straight beams may be

used without essential error in all cases except those of such

special character as hooks and other structural or machine

members in which the curvature is sharp. The applica-

tion of the preceding formulae to the case of hooks will be

illustrated in the next article.

Art. 114. Stresses in Hooks.

The diagram of a hook shown in Fig. i illustrates the

conditions of loading to which hooks in general are sub-

jected. The material to the right of the point of applica-

tion of the load is subjected to no stress whatever except

in a secondary way near that point. On the left of the
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load, however, the arc of the hook, supposed to be circular

in this case, is subjected to direct stress, shear and .bending,
the bending moment increasing as that part of the hook

parallel to the loading is approached, but it decreases in

passing on to the shaft of the hook supposed to be in line

with the load. The section of maximum bending AB
is subjected to the combined direct pull of the load and
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the bending moment equal to the load multiplied by the

normal distance from its line of action to the centre of

gravity of the section. This cross-section of greatest

bending moment will first be treated as if subjected to

pure flexure. The necessary simple analysis required to

determine the greatest intensity of stress in the section will

then be made. In the section

of greatest bending moment
there is no shear.

The cross-section of the

main part of a hook maybe
taken as approximately trap-

ezoidal, as shown in Figs, i

and 2. In the present in-

stance the greatest dimension

of this cross-section lying in

the central plane of the hook

will be taken as 5 inches and

the corners will be rounded

approximately as shown.

Obviously the integrations

of eqs. (9), (10) and (n) of the

preceding article do not rep-

resent accurately the approx-
imate trapezoid of Fig. 2 . This

integration or its equivalent,

however, may be accomplished with sufficient accuracy

by a number of approximate processes, i.e., by transformed

figures and by dividing the section into a sufficient

number of small parts. A simpler method and one giving

reasonably accurate results is to draw two lines F'C' and
FD in such a way as to make a true trapezoid whose resist-

ing moment will be essentially the same as the approx-
imate trapezoid. This will be accomplished if the two

FIG. 2.
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lines indicated be drawn in such a way that each area

between a broken line as F'C' and the inclined full line

of the actual section be three times the combined area

between CB and the curved end of the section and between

AF' and the other curved end of the section. This rela-

tion results from the fact that the bending stress between

the two lines indicated varies in intensity from zero at the

neutral axis to nearly the maximum in the extreme fibre

of the section and has its centre at two-thirds of the distance

from the neutral axis to the extreme fibre. The relation

indicated, therefore, makes the bending moments of the two

parts inside and outside of the actual section equal. This

construction will give for one-half the modified figure:

.43 inch=a; BC = i.i inches; a =8 30';

tan a =.148; ^ = 5+2.2=7.2 inches; R = 2.2 inches.

d = 5 inches.

Fig. i shows that R and RQ are the interior and exterior

radii respectively of the arc of the hook where the section

of greatest bending moment exists. By introducing these

numerical quantities in eq. (13) of the preceding article

there will at once result :

r =3.87 inches.

Hence,
y\=R r =3.33 inches;

yo =dy\ =1.67 inches.

By inserting the same numerical values together with

y\ and y in eq. (19) of the preceding articles, the value of

the bending moment becomes :

M =4.88^0. (i)
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This moment obviously can be expressed in terms of the

intensity of stress in the extreme fibres on the opposite

side of the section, i.e., 3.33 inches from the neutral surface.

By eq. (4) of the preceding article:

yo(r+yi)

After substituting the values of the quantities already

determined there will be found ki=.6iko. Or there may
be written from the same eq. ko = i.64.k\. The bending
moment expressed in terms of the greatest intensity of

stress in the extreme fibres is obviously the form desired

for practical purposes.

Let the hook shown in Fig. i be supposed to carry

a load of 20,000 pounds. The centre of gravity G of

the actual cross-section is 2.13 inches from the side CD
of the cross-section, Fig. 2. Hence the load assumed

will cause a bending moment about the line GH equal

to 20,oooX(2. 13 +2.2 =4.33) =86,600 inch-pounds. It is

to be observed that inasmuch as the 20,000 pounds is taken

as uniformly distributed over the cross-section the lever

arm of the load is the normal distance from its line of

action to the centre of gravity of that section, although the

resisting moment of internal stresses has the axis deter-

mined by eq. (14) of the preceding article, the two axes

being parallel to each other.

The greatest intensity of tensile bending stress in the

section therefore takes the following value:

7 86,6OO -M / \

ko =
' - = 17,740 Ibs. per sq.in: . . (2)

4.00

The uniformly distributed tensile stress equal to the

load will act upon the entire actual area of section, which
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is 7.9 square inches. Hence, that tensile intensity will

be ! =2530 pounds per square inch. The resultant
7-9

greatest intensity of stress in the entire section will be:

17,740 + 2530 = 20,270 Ibs. per sq.in. . . (3)

The resultant intensity on the opposite side of the sec-

tion at A, Fig. 2, will be, since ki=.6iko\

17,740 X.6i +2530 = 8291 Ibs. per sq.in. . (4)

The minus sign is used because the bending stress is

compression throughout that part of the section indicated

by yi.

It is commonly observed in actual experience that

hooks or other similar bent members break at the inside

of the section where the curvature is the sharpest. The

eqs. (4) and (56) of the preceding article indicate clearly

the reason for such failures as the intensity of stress k in

the extreme fibre is shown to vary inversely with the radius

of curvature r+y. When, therefore, the curvature is

sharp, i.e., the radius of curvature is small, the fibre stress

k increases rapidly, especially on the inside of the curve

where the radius of curvature is ry.
This example shows the general method of treating the

stresses in hooks by the common theory of flexure based

on the assumption that normal sections plane before flexure

remain plane after bending.
It is well known that this assumption is not strictly

correct, and it is further known that the ordinary or com-

mon theory of flexure is not accurately applicable to such

short beams as are contemplated in the theory of hooks.
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Comparison with the Theory of Flexure for Straight Beams.

It is indicated above that the assumptions on which the

preceding analyses are based are not strictly correct. If

it be assumed that the intensity of stress varies directly

as the distance from a neutral axis passing through the

centre of gravity of the section, as for straight beams, and

if k'i is the greatest intensity of stress in the extreme

fibres (FF
f

, Fig. 2) the bending moment will be:

In this equation I is the moment of inertia about an axis

through the centre of gravity G, Fig. 2, while yc is jthe

distance of that axis from the most remote fibre at A.

The moment of inertia / of the actual section shown in

Fig. 2 about a neutral axis through the centre of gravity

G at the distance 2.87 inches from A is 14.9. Hence,

the bending moment on the preceding assumption is:

(6)
2.87

C *2

As the fraction -^=1.07 this assumption is seen
4.88

to give a result only 7 per cent, greater than that of the

analysis for curved beams if the extreme fibre stress is the

same in amount in both cases. It is true that the result

has the apparent defect of placing the greatest intensity
of stress on the wrong end of the section.

Art. 115. Eccentric Loading.

The analysis of stresses produced in a column or other

structural member by eccentric loading has already been
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discussed in preceding articles, but it is desirable to con-

sider some further and more general features of that analysis.

A column or structural member is said to be eccentric-

ally loaded when it carries a force or load acting parallel

to its axis but not along that axis. The perpendicular

FIG. i.

distance between the axis of the piece and the line of action

of the load is called the eccentricity of the latter.

Let Fig. i represent the normal cross-section of such a

member when the load P acts at any point Q in that cross-

section. The load P will then act parallel to the axis of

the piece, but at the distance CQ from it, C being supposed
to be the centre of gravity of the section. The ellipse
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drawn with C as its centre is the ellipse of inertia, the semi-

axes ri and r? being the principal radii of gyration of the

normal section. Any semi-diameter as CQ' represents
a radius of gyration r

r

.

If the force or load P acts at any point whatever, as Q,
and parallel to the axis of the piece, it will create a bending
moment equal to PxQC. If #' and y' are the coordinates

of Q the components of that moment will be Px' and Py'',

the former about the axis Y, the latter about the axis X.
1 1 and 12 being the principal moments of inertia, as already

indicated, the intensities of bending stresses produced by
these two component moments at any point, whose co-

Px' PV
ordinates are x and y, will be x and ^-y, respectively.

^1 -L2

Furthermore, the load P will produce a uniform normal
stress over the entire cross-section of the member, if A

p
is the area of that cross-section, represented by . The

A
resultant intensity of stress k therefore at any point of the

section will be :

, P
,

Px'
, Py'

T) / / / \

"'" k=
A\I+7^

+^) (l )

At the neutral axis the intensity of stress is equal to zero,

hence,

Eq. (2) is the equation of a straight line, i.e., the neutral

axis, along which the intensity of stress is zero, x and y

being the variable coordinates. It is obvious from eq. (2)

in connection with the general considerations respecting
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the action of the load P that the position of the neutral

axis will depend upon the magnitude of that load and the

distance of its line of action from the axis of the member.
If x and y are zero, there will be no bending, and the section

of the member will be subjected to uniform compression

only.

If the point of application Q of P is on the curve its coor-

dinates %' and y' must satisfy the equation of the ellipse :

The equation of a straight line tangent to the ellipse

at a point whose coordinates are x' and y
1

is :

When the point of application of P is on the ellipse, x'

and y
f have the same values in eqs. (2) and (4). Hence in

that case -^ also has the same value in the two equations,
dx

showing that the neutral axis is parallel to the tangent to

the ellipse at the point where P acts. If in eq. (4) %'

and y' be substituted for +# and -\-y, that equation will

become identical with eq. (2), i.e., for this case the neutral

axis is tangent to the ellipse at a point diametrically opposite

to the point of application of the load P
;

in other words,

the load is applied at one extremity of a diameter and the

neutral axis is tangent to the curve at the other extremity

of that diameter.

In Fig. i if the load P is applied at Q' (on the curve)

the neutral axis N'B f

will be tangent to the ellipse at B',

the other extremity of the diameter Q'B'.

If the point of application of the force P moves along
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the indefinite straight line BQ, the coordinates x' and y
f

x'
will vary in the same proportion, making a constant.

From eq. (2) :

%*??% (5)

x'
Hence, as is constant, all neutral axes will be parallel

while the point Q moves along a straight line.

Again, the coordinates x and y of the points of inter-

section of the line QB with the neutral axes must neces-

sarily be opposite in sign from x' and /, as the origin C
lies between them. If therefore x and y be inserted

in eq. (2) :

^+^J
= i (6)

By similarity of triangles, a being a constant:

-' = -=a /. xx'=ay'x=ayy'. ... (7)
y y

Eq. (7) in connection with eq. (6) shows that each of

the quantities x'x and y'y is constant, and that is equivalent

to making the products of the segments of the line QB on

either side of C constant :

QCxCB=Q f

CxCB'=r'*=Q"CxCB". . . (8)

As the point of application of P will always be given, the

quantity to be found will be the distance from the centre C
to the neutral axis, which may be called v. The semi-

diameter r' = CQ' at once becomes known after the ellipse

of inertia is constructed. In general, therefore:

(9)
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In some cases the reverse problem is given, i.e., v is

known and the distance of the point of application of the

load P is required. Hence,
r '2

QC= (10)

Rotation of the Neutral Axis about a Fixed Point in It.

One feature of eq. (2) remains to be considered before

the actual application of the preceding results can be made
to form a complete graphical construction. If the co-

ordinates x and y of the neutral axis be considered constant,

while the coordinates x
r and y' of the point of application

of the load P vary, eq. (2) shows that the path of the move-

ment of the point of application of P will be a straight

line, since the equation is of the first degree in respect

to x' and y' . This is equivalent to a movement of rota-

tion of the neutral axis about the fixed point whose coor-

dinates are x and y, while x' and y' determine the path

through which the line of action of P moves. The same
result can be shown by treating eq. (i) in precisely the same
manner for a fixed or constant value of k, that constant

being zero for the neutral axis.

The preceding procedures may be applied to a number
of problems, one or two of which will be illustrated. It is

sometimes desired to determine that part of the cross-sec-

tion of a member of a structure, or sometimes of the struc-

ture itself, within which a resultant load may be applied

anywhere without any change in the kind of stress induced,

usually compression.

Application of Preceding Procedures to Z-bar and Rectangular
Sections.

Let it be required to ascertain within what part of a

Z-bar section an axial compressive force may be applied
without any part of the section being subjected to tensile
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stress. The Z-bar section is shown in Fig. 2, the depth
of bar being 6 inches and the thickness of metal f inch.

As this section is unsymmetrical the axes for the principal

moments of inertia passing through the centre of gravity
C of the section will be inclined to the central plane of

the web. The ellipse of inertia MVNU has MN for its

major axis and UV for its minor axis, the former representing

a moment of inertia of 5 2 and the latter a minimum moment
of inertia of 5.7, the corresponding radii of gyration being

ri=2.55 inches and r2 =.8i inch.

If no part of the cross-section of the bar is to be sub-

jected to tension, the outer limits or lines of that section

such as TS, 50, OL, etc., may be neutral axes for different

positions of the load B, but in no case must the neutral

axis lie in any part of the metal section, even to cut across

a corner of it. This means that 75, 50, OL, LH, HE,
and ET will be successively considered neutral axes. Let

ET be the first neutral axis considered or, rather, ET and
OL may be considered concurrently, as they are parallel

to each other and at the same distance from the centre of

the ellipse. First draw tangents to the ellipse parallel to

ET and OL as shown in the figure. The points of tangency
will fix the diameter DA, which is then extended to R
and W in the assumed neutral axes. As shown in the

preceding demonstration, the square of half the diameter

represented by AD will be equal to CR multiplied by CA,
the distance from the centre of the ellipse to the point
of application A of the force P. The distance CR is the

v of eq. (10), while CA is the distance QC desired, r' is

half the diameter determined by the two points of tangency.

Dividing the square of half the diameter by CR locates

the point A, one of the points desired. In precisely the

same manner D is located by dividing the square of half

the same diameter by CW = CR.
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Tangents to the ellipse parallel to 75 and HL are then

drawn as shown, one at N, as indicated, at the lower

extremity of the ellipse and the other at the upper extremity,

thus locating the diameter NCF. Squaring half the diam-

eter so determined and then dividing by the distance from

the centre of the ellipse to TS or HL along the diameter

NF, the points B and F are found. In a precisely similar

way the vertical tangents indicated are drawn parallel to

SO and EH, determining the corresponding diameter. By
the use of that diameter in the manner already indicated,

the points G and K are located.

The points A and B are points of application of the force

P when ET and TS respectively are neutral axes. In the

preceding sections of this article it has been shown that if

a neutral axis such as ET be revolved about a point in it,

as T, to the position TS, the corresponding path of the point

of application of the load will be a straight line, and in this

case AB will be that straight line, since the two points A
and B correspond to the neutral axes ET and TS. By
similarly connecting the other points, the closed figure

ABKDFG is found. So long as the force P acts within

this area no part of the section can be subjected to tension,

but if the point of application is outside of this figure

some part of the section will be in tension

The closed figure thus established is called the
"
core

section." Although it possesses much analytic interest,

the ordinary operations of the engineer are such as to make
it of comparatively little value in actual structural opera-

tions.

If any line such as Z'L parallel to a tangent to the

ellipse at g be drawn through a corner L of the Z-bar sec-

tion, and if a line dgZ' be drawn through the same point

of tangency and the centre C, cutting the side of the core

at d, it is shown in the preceding section of this article
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that the product of dC by CZ' is equal to the square of the

semi-diameter Cg of the ellipse of inertia For any other

position of a line Z'L the same general observation holds,

the line always being parallel to a tangent to the ellipse

FIG. 2 *

at a point through which is drawn the line extending

through the centre and cutting the side of the core.

Probably the most usual section to which the core

* A number of construction lines shown in this figure are drawn for use

in the next article.
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procedure may be applied is the simple rectangle. A
masonry structure having such a horizontal section must
be designed so that compression only may always be

found in it. A simple diagram of pressures will show that

the resultant force or load must act within the middle

third of the section, but Fig. 3 shows the core procedure

applied to the same axis. AB is the length of the section

and BD is the width. AB is usually taken as one unit.

The ellipse OLMN is drawn with its

semi-major axis LC representing the

greatest radius of gyration of the rec-

tangle and the semi-minor axis OC is

laid off equal to the least radius of

gyration. Two lines drawn tangent

to the ellipse at M and N parallel to

BD and ED will determine the axes

of the ellipse, in fact already known,
then dividing the square of each semi-

axis by the normal distance of C from

BD and ED, respectively, the dis-

tances CF and CK will be found, thus

fixing the points F and K. The points

H and G are found in precisely the same manner, using the

sides AE and AB respectively. As already indicated, the

distance of H from BD will be one-third of AB, while K
will be one-third of BD from AB.

General Observations.

The preceding results show that bending combined with

uniform stress induced by a load normal to the section

will prevent the neutral axis from passing through the centre

of gravity of the cross-section. Furthermore, in this general

case the neutral axis or neutral surface will not be at right

angles to the plane containing the axis of the piece and the

FIG. 3.
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line of action of the force unless that plane contains one
of the principal axes of inertia.

Manifestly the neutral axis for any section will be on

the opposite side of the centre of gravity of that section

from the force P. Eq. (8) shows that if the force acts at

C, making QC equal zero, CB will be infinitely great, which

means that the stress will be uniformly distributed, i.e.,

there will be no bending. On the other hand, if the force

P is at an indefinitely great distance from C, making QC
infinity, then will CB be equal to zero, i.e., the neutral

axis will pass through the centre of gravity. This is the

ordinary case of flexure and it is equivalent to taking all

load on the member at right angles to its axis.

Art. 116. General Flexure Treated by the Core Method.

The procedures given in the preceding article may be

used for the general problem of flexure for straight beams
of any form of cross-section carrying any parallel loads at

right angles to their axes, the loads supposed to be acting

in a plane which contains the axis of the beam in each case.

Under such conditions there will clearly be no direct uni-

form compression on any normal section of a beam. This

is equivalent to assuming that the flexure is produced by an

indefinitely small force acting parallel to the axis (or at

right angles to a normal section) of the beam and at an

infinite distance from the latter.

It is clear, since the product of the distance of the point
of application of a force normal to the cross-section from

the centre of gravity of the latter multiplied by the disr

tance of the neutral axis from the same point, but on the

opposite side from the point of application of the loading,

must be equal to the square of half the diameter of the

ellipse of inertia, that if that square be divided by
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infinity, the distance of the point of application of the

load from the centre, the quotient will be zero, i.e., the

neutral axis must pass through the centre of gravity of

the section.

This condition is further equivalent to taking any finite

loading at right angles to the axis of the beam, as in the

ordinary cases of engineering practice. The stresses found

in the normal section in such cases will be the direct tension

and compression with intensity varying directly as the

normal distance from the neutral axis with the accompany-

ing shears, as in the common theory of flexure.

The preceding investigations show, however, that with

unsymmetrical sections the neutral axis, while passing

through the centre of gravity of the section, is not at right

angles to the plane of loading, unless that plane happens
to contain one of the two principal axes of inertia of the

section.

Let the Z-bar section shown in Fig. 2 of the preceding

article be considered and suppose that the loading acts in

the vertical plane ZZ'
', the latter line passing through the

centre of gravity C of the cross-section. It may be con-

sidered that the Z-bar is supported at each and on the lower

surface HL of the lower flange. Inasmuch as the bending
moment acts in the plane ZCZ' the neutral axis will be

drawn through the centre C parallel to the tangents to the

ellipse where the line ZZ' cuts the latter, as shown at g

and at the opposite end, not lettered, of the vertical diameter.

The diameter A'B' is then the neutral axis desired. The
line Cb drawn at right angles to ZZ' may be considered

the axis of the external bending moment to which the beam
is subjected. The angle between Cb and the neutral

axis, is a, as shown.

If the coordinate x be taken as at right angles to the

neutral axis A'B'
t
and if dA represent an element of the
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normal section of the beam, then the distance of that element

from the neutral axis measured parallel to ZZ' will be

x sec a. If k is the maximum intensity of stress at any

point of the section, that stress will occur at L or T, where

the value of x=n is the greatest for the entire section.

The distance of that point parallel to ZZ' will be n sec a.

If M is the value of the external bending moment acting

in the plane ZZ', dM may be written:

kdM = - x sec a - dA - x sec a. (i)
wseca

If / is the moment of inertia of the section about the

neutral axis,

M = CdM =-I sec a- =-r'A sec a. , (2)
J n n

In Fig. 2 the line ZZ' cuts at d the side DF of the core.

Let the distance dC be represented by /. Then, as shown

in the preceding article,

jCZ'=Cg.

But the radius of gyration of the section about the axis

A'B' has been shown in Art. 81 to be equal to the normal

distance r' between the neutral axis and the parallel tangent

to the ellipse drawn at g.

Cg = r' sec a.

It has already been seen that CZ f

is equal to n sec a.

r'
2 sec a. = nj.

If this value of r'
2 sec a be substituted in the third

member of Eq. (2) there will result,

M=kAj. (3)
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Eq. (3) is the expression for the external bending moment
in terms of the greatest intensity of stress in the section,

the area of that section, and the distance /from the centre

of the section to the side of the core as constructed by the

methods explained in the preceding section. Although the

construction has been made with the Z section the method
of procedure is precisely the same for any form of section

whatever.

Component Moments.

By- again referring to Fig. (2) of the preceding article

it will be seen thatM cos a is that component of the external

moment whose axis is parallel to the neutral axis, while

the component M sin a has an axis be at right angles to the

neutral axis, but lying in the plane of the normal section

of the beam. The former component produces the bending
stresses about the neutral axis, the maximum intensity of

which is k and a deflection normal to it; the latter compo-
nent moment tends to produce an oblique movement of

the beam in consequence of its unsymmetrical section.

This tendency in oblique flexure, especially marked with

unsymmetrical sections, is always toward that position

in which the least radius of gyration of the section (repre-

sented by the least semi-axis of the ellipse of inertia) is

found in the plane of bending, i.e., that plane in which the

bending moment acts.

In Fig. 2 of the preceding article ZZ f

is the plane in which

the vertical loading acts, and it is clear that the plane in

which the resultant bending compression on one side of the

neutral axis A'B' and the resultant bending tension on the

other side act is not the plane in which ZZ' lies, but inclined

somewhat to the right of CZ. Inasmuch as these two

planes are neither the same nor parallel, there must be

combined with the couple producing pure flexure such a
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couple as to make the resultant external moment equal

and opposite to the internal resisting moment, and the

component of M represented by be is such a couple, Ce

representing the couple producing pure flexure about

A'B'.

These analytic considerations show how essential it is

to give careful consideration to the principles governing

oblique or general flexure for loads not in a plane of

symmetry of a beam and for unsymmetrical sections.

The method of finding the location of the plane of

resistance of the bending stress existing in any normal

section of the beam will be given in the next article.

Art. 117. Planes of Resistance in Oblique or General Flexure.

The preceding treatment of general flexure has shown

that the plane of action of the external bending moment
will not in general coincide with the plane in which the

internal resisting couple acts. The plane of the external

bending moment is supposed to pass through the axis of

the beam assumed to be straight. If this external bend-

ing couple is to produce pure flexure it must .be in equilib-

rium with the internal moment produced by the stresses

in any normal section, and that requires that the two planes
of action shall either coincide or be parallel.

Let it be supposed that the 6X3^Xf-inch steel angle

section shown in Fig. i represent any unsymmetrical sec-

tion, and let it also be supposed that GY is the neutral

axis of the section, G being the centre of gravity; then let

GX and GY be the axes of rectangular coordinates negative
when measured to the left and downwards. The stresses

above GY will be supposed compressive, and those below,

tensile. The intensities will be assumed to vary directly

as the normal distances from GY as in the ordinary theory
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of flexure. The centre of all the compressive stresses will

be taken at C and at T for the tensile stresses. The plane
whose trace is CT will be called the plane of resistance,

while AB' will be taken as the plane of action of the

external bending moment. In other words, if the angle
were to carry vertical loading as a beam AB should be

vertical with the lines of cross-section correspondingly
inclined.

If x and TI are the coordinates of the centre C of the

compressive stresses in the section and if a is the intensity

of stress at a unit's distance from the neutral axis GY,
eqs. (i) and (2) will immediately result:

ffyaxdxdyjfxydxdy^
ffaxdxdy ffxdxdy

Qi

ffxaxdxdy ffx
2
dxdy j't

~~
ffaxdxdy ffxdxdy Qi

The quantities J\ and J'i are the so-called "product
of inertia

" and the moment of inertia of that part of the

cross-section lying above GY, while Q\ is obviously the

statical moment of the same part of the cross-section in

reference to the same axis.

If the subscript 2 be used for the corresponding quanti-
ties relating to that part of the section below GY, eqs. (3)

and (4) will at once result, the negative sign being used

in the second member because the coordinates are negative:
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Q, I and / represent quantities belonging to the whole

cross-section, then, since G is the centre of gravity of that

section,

e

\

\

\

\

-.555\
\

FIG. i.

It is desired to find the straight line joining C and T,

and in order to do that the general equation of a straight

line may be written as follows:

x+by-=c. (5)
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If y\ and xi taken from eqs. (i) and (2) be first written

in eq. '(5) and then y2 and x2 from eqs. (3) and (4), and if

the second of the equations so formed be subtracted from

the first, there will result: b = .

Then eq. (5) will take the form

x=jy+c.
.../. .... (6)

In 'Fig. i suppose a line parallel to CT drawn from G
to B. If the ordinate x\ be produced upward, the line

BC = Gc' will be determined. If in eq. (6) y = o, x c = Gc' =

BC. The triangles with the bases y\ and y2 will then be

similar and that similarity will be expressed by the following

equation, remembering that x and y are negative:

^-=*- - - (7)

Substituting the values of xi, yi, X2 and y2 established

above there will result the following value of c:

_
JQ

Placing this value of c in eq. (6),

This is the equation of the line CT, Fig. i
,
drawn through

the centres of the tensile and compressive resisting stresses

acting in the normal section, i.e., it is the trace of the plane
in which the resisting couple acts. The tangent of the
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angle which it makes with the neutral axis GY is -^=-.
dy J

If GY is one of the principal axes of inertia of the section

dx
J =o and becomes infinitely great, i.e., in that case

the line CT is at right angles to GY and it will presently
be shown that it will pass through G, the centre of gravity
of the section.

If y=o in eq. (8),

The distance Gc' is on the negative side of G. Again if

#=o, there will result:

These coordinates Ge and Gc' shown in Fig. i give two

points e and c' in the desired line CT, which must agree

obviously with the points C and T as found by computa-
tions.

If Ge should be zero, eq. (n) will result:

(n)

Inasmuch as the moments of inertia I'\ and I' 2 will

always have real values for an actual section, in general
if eq. (n) holds true, then must /i=/2=o. That condi-

tion will of course exist for the principal axes and for the

case where at least one* of the coordinate axes is an axis

of symmetry of the section.

Although the figure used for the establishment of the

preceding formulae is the normal section of a steel angle,

those formulae are completely general and are applicable



744 MISCELLANEOUS SUBJECTS. [Ch. XVI.

to any form of cross-section whatever, as indicated by
eqs. (i) and (2) and all the equations following.

It is thus seen that if the plane of action AB of any
external loading producing flexure of a beam with unsym-
metrical cross-section is parallel to the plane whose trace

is CT, there will be pure bending only as the external bend-

ing moment has the same axis as the couple formed by the

internal stresses. The planes of the external bending
moment and that of the internal resisting stresses may in

some cases coincide.

If the steel angle shown in Fig. i is to act as a beam
under vertical loading in pure flexure, the end supports
should be so formed as to make the lines AB and CT verti-

cal. In general, whatever may be the cross-section of a

beam, the latter should be so held at its points of support
that the loading will produce pure flexure. If the section

of the beam has an axis of symmetry, the plane of loading

may be taken through the axes of symmetry of the cross-

section.

Example. The application of the preceding formulae

may be illustrated by using the 6X3|-inch, 22.4-lb. steel

angle shown in Fig. i. The thickness of each leg is .75

inch. By using eqs. (i) and (2) there will at once result:

7'i=g.4i; /' 2 = i3-94; /i=5-47;

72=3-04; / = 8.5i; = 5.484

Inserting these values in eqs. (i), (2), (3) and (4) there

will result :

3/1=1 in.; #1=1.72 ins.; y2 = -.555 in.;

#2= 2. 54 ins.; XQ = 1.02 ins.
; y =

.3 72 in.

These coordinates are laid off in Fig. i, as shown, so as

to locate the four points C, e, c' and T. In making these
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computations it should be remembered that I'\ and I' 2

are moments of inertia of areas, one of whose sides coin-

cides with the axis of y and that the same observation is

also true of the quantities, J\ and /2, as well as Q.

Art. 118. Deflection in Oblique Flexure.

The general case of deflection of a beam with unsym-
metrical cross-section, or of a beam with symmetrical
cross-section but loaded obliquely, may readily be found

by the aid of the ordinary formulae for flexure used in

connection with the preceding investigations. The requisite

treatment may be well illustrated by considering the case

of a 6 Xsi Xf-inch steel angle, the section of which is shown
in Fig. i to be same as that used in the preceding article.

Such an angle may be considered to be used as a beam
in roof work or for some other similar purpose with the

6-inch leg placed in a vertical position. It will be assumed

that the span length is 15 feet = i8o inches and that the

angle is to carry as a beam a uniform load of 200 pounds

per linear foot. The data given in an ordinary handbook

on steel sections will show the position of the centre of

gravity G of the section and enable the ellipse of inertia to

be constructed as in Fig. i.

The maximum radius of gyration represented by the

greater semi-axis of the ellipse is 1.97 inches, while the least

radius of gyration at right angles to the preceding and

represented by the smaller axis is .75 inch. The load

acts in a vertical plane passing through the axis G. The
various dimensions of the cross-section required in the

computations are all shown in Fig. i.

By drawing vertical tangents on opposite sides of the

ellipse, the neutral axis A'B' drawn through the points of

tangency and the centre G of the ellipse is determined.
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This neutral axis of the section makes the angle, 46 30',

as carefully measured on the diagram, with the horizontal

axis of Y. By drawing a tangent to the ellipse parallel

to A'B' the radius of gyration about the neutral axis is

found to be i.i inches, i.e., the normal distance between

the neutral axis and the parallel tangent to the ellipse.

The greatest deflection of the angle beam will be found

at the centre of span at which the moment of the external

forces is

M = 2 X225 Xi2 =67,500 in.-lbs. (i)

The component moment, as shown in the preceding

article, with axis parallel to the neutral surface, is

M cos a = .6884M = 46,467 in.-lbs. ... (2)

The component moment having an axis at right angles

to the neutral axis is, similarly,

M sin a = .7 2 5471^=48,964 in.-lbs. ... (3)

The actual flexure is produced by the first of these com-

ponents M cos a. The deflection produced by it will obvi-

ously -be normal to the neutral axis, and it can be computed

by the ordinary formula for the deflection at the centre

of span of a beam simply supported at each end and loaded

uniformly throughout its length, the uniform load to be

taken in this case as 200 cos 01 = 138 pounds per linear foot.

If g is the load per linear foot of span, the usual expres-

1-^4
sion for the centre deflection is w = ~r- Substituting

3&4&Z
138X15 for gl in the formula, / = 180 inches, E =30,000,000,
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and I = 7.94 (moment of inertia of section about the neutral

axis) there will result:

w=o.66 inch. (4)

As cos a = .6884 and sin a = .7 2 54, the vertical deflec-

tion =.66 X. 6884 =.454 inch; and the horizontal deflec-

tion = .66 X. 72 54 =.479 inch.

FIG. i.

It is thus seen that the horizontal deflection slightly

exceeds the vertical, in consequence of the major axis of

the ellipse of inertia being slightly inclined to a vertical
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line, thus causing the inclination of the neutral axis of

the section to be relatively large.

Precisely the same general treatment would be followed

for any form of cross-section or any other amount or dis-

position of loading.

In the preceding article where the same angle was so

held as to make the plane of loading parallel to that of

the resisting couple, the horizontal diameter of the ellipse

drawn through G is the neutral axis corresponding to the

conjugate diameter DF, parallel to the trace of the plane
of the resisting internal couple as determined in that

article. The normal distance, 1.95 inches, between the hori-

zontal diameter through G and the horizontal tangent at

F is the radius of gyration corresponding to the horizontal

neutral axis through G. As the area of cross-section of

the steel angle is 6.56 square inches, the moment of inertia

corresponding to the horizontal neutral axis through
G is I = 6.56 X i. 95

2

=24.93, the moment of inertia of the

cross-section about the neutral axis A'B'
t Fig. i, is

7 = 6.56 Xi. i
2 =

7.94. The distance from the horizontal

neutral axis through G to the extreme fibre is 3.82 inches,

while the corresponding distance of the extreme fibre from

A'B f
is 2.3 inches. Hence, the resisting moment for the

horizontal neutral axis through G is

3.82

For the neutral axis A'B':

2-3

Hence -

f
=

1.9. In other words, the same angle placed
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so as to take the vertical loading in a plane parallel to the

resisting internal couple will offer nearly twice as much

bending "resistance with the same extreme fibre stress as

when placed with the longer leg vertical. Economic use

of the metal as well as avoidance of unnecessary deflection,

therefore, requires that the beam of unsymmetrical section

shall be so held at its supports as to make the plane of

loading parallel to the resisting plane and as nearly parallel

to the greater axis of the ellipse of inertia of the cross-

section as possible.

Art. 119. Elastic Action under Direct Loading of a Composite
Piece of Material.

Let it be supposed that a combined straight or cylin-

drical piece of material with length L is subjected to the

direct stress of either tension or compression. If the total

area of cross-section is A, it may be assumed to be composed
of the following parts :

A i =area of cross-section with modulus of elasticity E\\

A2= area of cross-section with modulus of elasticity 2 ;

A 3
= area of cross-section with modulus of elasticity 3 ;

etc., etc.

Then will

A=Ai+A 2 +A 3 +etc. . . .>*,.- (i)

Let the total load P act parallel to L and let / be the

strain per unit of length of the piece, i.e., the unit strain,

then will IL be the total lengthening or shortening of the

piece. Under these conditions every part of the piece

will be subjected to the same rate of longitudinal strain

and the following equation may be at once written:
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EilA 1 +E2lA2+E3lA3+etc.=P=ElA. . . (2)

Hence,
,_P_ , v

Also the first and third members of eq. (2) will give

eq. (4):

- E lAi+E2A 2 +E3A 3 +etc. ,- - ' '

Eq. (3) will give the lengthening or shortening of each

unit of length of the piece under any assigned load P, the

moduli of elasticity of the areas of the different parts of

the section being known.

The modulus of elasticity E given by eq. (4) may be

considered a mean or average modulus or an equivalent

value for the actual moduli, as the same longitudinal strain

would be yielded by a piece of uniform material having
that modulus of elasticity and the same area of cross-

section as the composite piece.

Art. 120. Helical Spiral Springs.

A spiral spring like that shown in Fig. i takes its load

at the ends as indicated at A and B. In the general case

there may be applied at each end a single load P and a

couple, or either a force or a couple alone may act. The

analysis will be so written as to include concurrent force

and couple or either one separately. The following nota-

tion will be employed:
R = radius of spiral, Fig. i

;

<j>
= pitch angle of spiral, Fig. i

;

z = axial elongation or compression of spring under load-

ing;
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/= length of spiral;

r = radius of spiral wire
;

P = axial load, Fig. i
;

M=moment of applied twisting couple or torque, as-

sumed to be a right-hand moment ;

u = unit strain at unit distance from the neutral axis

in bending or flexure
;

a = angle of torsion (unit strain at unit distance from

axis of piece in torsion) ;

T= total twist or rotation of spring measured on central

cylinder of spiral ;

T
r== angle of twist of spring in radians.

J\

The forceP will be considered positive when it stretches

the spring as shown in Fig. i. If the force P compresses
the spring it must have the negative sign in all the following

analysis.

The moment M will be considered a right-hand moment
when it twists the spiral so as to bring the helical parts

near together, i.e., tightens the spiral. It should be re-

membered that all parts of the spiral are uniformly stressed

or bent. The cross-section of the spiral rod will be con-

sidered circular, although the general analysis is adapted
to any form of cross-section.

The load P produces a moment Mi about the centre of

any section of the spiral rod given by

Mi =PR . . . (i)

The axis of this moment is a horizontal line through
the centre of the section and tangent to the central cylinder

of the spiral shown by a broken-line circle in the lower

part of Fig. i. If A, Fig. 2, be the centre of the section
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considered, KL may be taken as the axis of the moment
PR. If AK, therefore, represent by a convenient scale, the

moment Mi =PR, AG and GK (drawn perpendicular to

AG) will represent by the same scale the component mo-
ments of Mi about those lines as axes passing through
the centre of the section. As the axis AG is the axis of

FIG. i
FIG. 2.

the spiral rod, it represents a torsion moment. SimilarlyGK represents a bending moment as it lies in the section
and, m fact, is a neutral axis. Hence, if the subscripts
t and b mean torsion and bending,

And,
AG=M't =M l cos

GK=M'b =-M sin

(2)

(3)
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The moment M sin < has a negative sign because the

triangle AKG, Fig. 2, shows that it will tend to untwist

the spiral of Fig. i, which is opposite to a positive effect.

The right-hand moment M will act at the centre of

section of the spiral rod about an axis parallel to AC,
Fig. i, i.e., about BD, Fig. 2, and AB may represent that

moment. Its two components will be:

M",=Msin 0, .... (4)

AF=M"b =M cos 0. .... (5)

The resultant moments of torsion and bending at the

section considered will therefore be:

Mt =Mi cos 0+M sin <j>, ... (6)

Mb =M cos Mi sin 0. ... (7)

By the common theory of torsion (correct for a cir-

cular section only) if G is the modulus of shearing elasticity,

the angle of torsion, or unit strain a, is

moment M\ cos 0+M sin < /ox~~ ~~ ~" ' '

TTf
4 64

Evidently, Q=G (for circle); and Q=G (for
2 6

square) .

If the exact theory of torsion is used for other sections

of the spiral rod than circular, the corresponding value of

a must be introduced, but no other change is needed.

In the same manner, if E is the modulus of elasticity

for direct stress, I the moment of inertia of the section
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about its neutral axis, and if Q' =EI =E (for circular
4

section) or Q' =E (for square section), the unit strain,
12

u, for bending is,

_moment _M cos Mi sin , ,

The quantities a and u are unit motions giving to the

spiral spring corresponding motions of rotation and axial

lengthenings or shortenings.

The torsion moment Mt will cause one end of an indefi-

nitely short length dl of the

spiral rod to rotate through
the angle adl, inducing a

movement of that end, rela-

tive to the axis of the spiral,

perpendicular to the axis of

the rod, equal to Radl, as

shown by Fig. 3. The hori-

zontal component of this

movement tangent to the

spiral cylinder is, Radl sin 0,

or for each unit of length of

the rod, Ra sin 0. As the

state of stress is uniform

throughout the spiral rod, the

twist of the spiral spring due to

FIG. 3.

FIG. 4.

total circumferential

torsion is

' P7 c.;^=KLa$m <j>=
cos sn

And the angle of twist is

T,_T_ l
Micos

R
sn

. f N
Sin*,. (10)

' ' ' (loa)
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The axial component of the same movement, as shown
by Fig. 3 is, Radl cos <. Hence the total axial movement
due to torsion is

' _ z?/^ 1 cos +^f sm
z _m _

The movement of a normal section of the spiral rod,
relative to the axis of the spring, due to bending about its

neutral axis parallel to GK and AF, Fig. 2, is illustrated by
Fig. 4. That movement will be parallel to the axis of the

rod and the broken-line triangle showing it and its com-

ponents is moved vertically to clear it from the centre line

of the rod. The horizontal component representing the

tangential or rotating movement due to bending is seen to
be

Rudl cos 0.

Or, for the entire length / of the spring,

~v, -pM cos Mi sin <f>
, .

1 =Rl- -cos<. . . . (12)

The angular twist is

T" M cos 4> Mi sin

Similarly, the axial component of the movement due

to bending, as shown in Fig. 4, is

Rudl sin </>.

This value is negative, as the axial motion is downward
and opposite to that due to torsion shown in Fig. 3.

Hence,

D7M cos < Mi sin </>
.

z = -Rl-
-g- -an*. . .



756
MISCELLANEOUS SUBJECTS. [Ch. XVI.

The angle of twist of the spring under loading will be

the sum of the second members of eqs. (ioa) and (i2a):

. (14)

The circumferential motion of the spring will be

T=RT.
'

. . .'".v ; ? ;;
. (15)

^ axial extension or compression of the spring will

be found by the aid of eqs. (n) and (13) :

2

-H. (16)

Eqs. (6) and (7) will enable any spiral spring to be

designed to perform a given duty such as to carry a pre-

scribed load or serve the purposes of a dynamometer, while

eqs. (14) and (16) will give the distortions of the spring,

either angular or axial.

If 5 is the greatest intensity of torsive shear in a normal

section of the spiral rod at the distance r from the centre,

while IP is the polar moment of inertia of the section,

Mt
= s
-IP . y . ; ... (17)

For a circular section, Ip=.
. ,

2

For a square section, Ip =(6 = side of square).

Eq. (17) gives:
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When 5 is given,

-4
2M1

(circular section). . . . (i8a)
ITS

In both eqs. (6) and (7), MI and M are known quanti-

ties, as they are the given loads.

Again if k is the intensity of stress in the most remote

fibre at the distance d\ from the neutral axis, and if / is

the moment of inertia of the section about the neutral axis,

...... (19)

When k is given,

d\ =r= A HT? (circular section). . . (iga)\ irk

The two intensities 5 and k exist at the same point,

and they are to be used to determine the greatest intensities

of stress in the cross-section of the spiral rod precisely as was

done in Art. 10.

By eq..'(2) of that article, the greatest and least inten-

sities of stress (principal stresses of opposite kinds) will be :

k I k2

ax. intensity =- +\ s2 -\ (tension) ;

2 \ A
max

k I k2

min. intensity =--\ s2 -\ (compression).
2 \ 4

At the opposite end of that diameter of section of the

rod normal to the neutral axis where k is compression,

the above
" max. intensity

"
will be compression also,

and the
"
min. intensity

"
will be tension.
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The planes on which these principal stresses act are

given by eq. (3) of Art. (10) :

25
tan 2a= T-.

k

The greatest shear at the same point is given by eq.

(6) of Art. (9) ; i.e., -its intensity is half the difference of the

principal intensities, or,

_max. min.

2

There are a number of special cases which may easily

be developed from the preceding general analysis.

Small Pitch Angle.

If the pitch angle <f> is so small that sin may be con-

sidered zero without essential error,

sin <=o and cos < = i .

Eqs. (6) and (7) then give:

(20)

From eqs. (14) and (16):

Ml

PR2
l

'

--' ' ('3)
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Rotation of Spring Prevented.

In this case twisting of the spring is prevented, or T =o.

Eq. (14) then gives:

Substituting this value of M in eq. (16) :

_ DP27 (cos
2

,

sin2
(sine/) cos </>)

2(Q'-Q) 2
] f

.

l "'

The torsion moment Mt , eq. (6), and bending moment
Mb , eq. (7), are to be computed by using the value of M
given in eq. (24).

Axial Extension or Compression Prevented.

By making z =o in eq. (16),

M ^ sin cos 0(Q' -Q) ( ,>.V cos2 0+Q sinV ' ' (26

The angle of twist then becomes:

_ sin2 cos2
(sin cos0)

2
(Q'

-
"

fl 0' (

For circular or square sections Q' Q =
(

-- G'lf or
)

\2 / \ 2 67
and the square of the latter alternative factor is common
to (Q

f -QY and Q'Q in the second number of eq. (27), thus

canceling and simplifying the numerical application of

that equation.

In computing Mt and Mb , eqs. (6) and (7), the value

of Mi given by eq. (26) is to be used.
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This form of helical spring is employed in the transmis-

sion dynamometer.

Work Performed in Distorting the Spring.

The work performed in producing the angular and axial

distortions r and z by the moment M and force P is easily

found by the aid of eqs. (14) and (16) or corresponding

equations for special cases. The couple whose moment
is M performs work in twisting the spring through the arc

T (measured at unit distance from the axis of the helix)

expressed by

(28)

The force P performs work in extending or compressing
the spring the distance z given by the equation

The total work done in the general case will then be:

. k . (30)

corre
For special cases, as already indicated, the

sponding value of T and z must be used in eq. (30).
In writing the preceding equations it has been assumed

that both M and P are gradually applied. If they were
suddenly applied, the distortions would be 2r and 2Z and
oscillations having those amplitudes would be set up.
The periods of the amplitudes would depend upon the
masses moved.
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Art. 121. Plane Spiral Springs.

A plane spiral spring may be represented by Fig. i.

The outer end is fastened at B, but the inner end is secured

to a rotating post or small shaft at C. The spring or coil

is
' ' wound up

"
to an increasing number of turns by apply-

ing a couple to the shaft C, as in winding a clock.

As a couple only is applied at C, every section of the

spring is subjected to bending. by the same couple, i.e.,

there is a uniform bending moment throughout the entire

spring. This uniform condition of stress makes the analysis

of this spring exceedingly simple if the thickness of the metal

is small. As the spring is a spiral beam subjected to uni-

form bending, the analysis, to be perfectly correct, should

be based on that for curved beams. That procedure would

introduce much complexity, and as the thickness of the strip

of metal constituting the spring is small compared with its

radius, no essential error is committed in neglecting the

effects of curvature. The usual cross-section of this type
of spring is a much elongated or narrow rectangle, the

greater dimension of the rectangle being parallel to the

axis of the couple or perpendicular
to the plane of the spring.

If u is the unit strain at unit

distance from the neutral axis of a

section of the spring, I the moment
of inertia of the same section about

the neutral axis, and E the modulus

of elasticity, whileM is the moment

applied at C, Fig. i,

M=EIu= constant. . . (i)
Fia '

If I is the total length of the spring and the total

angular distortion for that length, then will udl be the
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change of direction or angular distortion for each element

dl. Hence,
Mdl=EIudl=EId(3. ... . (2)

Integrating :

and fl,-.. . . . (3)

With the thin metal used I is small and /3 may be a

number of complete circles, perhaps sufficient to wrap the

spring closely around the shaft C.

If the moment M is applied gradually, the work done in

producing the total angular distortion is

, M M2
l , ,

This is the same as the expression for the work performed
in bending "a beam by a moment uniform throughout its

length. In fact the plane spiral is simply a special case of

flexure, the bending moment being uniform.

If the moment M should be applied suddenly, the total

angular distortion would be 2/3, and oscillations having
that amplitude might be set up.

Art. 122. Problems.

Problem i. A helical spring having a diameter of helix

of 3 inches and composed of twelve complete turns of a

f-inch round steel rod sustains an axial load of 45 pounds.
Find the axial deflection of the spring and the greatest
intensities of torsive shear and bending tension and com-

pression in the rod.

P=45lbs.; # =
1.5 ins.; ^ = 15; = 117 ins.;

E = 30,000,000; G = i2,000,000; r=i%in.
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= 6S.5 in.-lbs.; M=o;

Q =6^
= 23,373; Q'=^ = 29,217.

Substituting these quantities in eq. (16):

6faL
23,373 29,217

By eqs. (6) and (7) :

Mt =Mi cos </>
=66. 2 in.-lbs.;

and
M&= Mi sin <= 17.74 in.-lbs.

Since Ip = and I= -, eqs. (18) and (19) give:
2 4

5=9460 Ibs. per sq.in. torsive shear;

^=3432 Ibs. per sq.in. greatest bending stress.

Problem 2. Design a helical spring for a transmission

dynamometer for 8 H.P. at 90 revolutions per minute.

Axial distortion of the spring is prevented, or 0=0. Let

low working stresses and other data be taken as follows'

k = 16,000 Ibs. per sq.in. ;
5 = 12,000 Ibs. per sq.in. ;

jR=3ins.; </>
= n /. sin </>

= .191 and cos< = .982;

(7 = 12,000,000; =30,000,000.

MX9oX27r=8X33,ooo .'. M =466.8 ft. -Ibs. =5602 in.-lbs.

Q=G^ and Q'=E^.
2 4

Eq. (26) then gives:

Mi 212 in.-lbs.
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By eqs. (6) and (7) :

in.-lbs.; and M6
= 554i in.-lbs.

Solving eqs. (18) and (19) for the radius of the rod:
^

By eq. (i8a), r = .$6 in.; and by eq. (iga), r = .y6 in.

Bending of the rod, therefore, requires the greater

radius, and r = .>]6 in. will be taken.

Eq. (17) gives the greatest torsive shear in a section:

s = 1250 Ibs. per sq.in.

The equations following eq. (19) now give:

max. intensity = +16,097 Ibs. per sq.in.;

min. intensity = 97 Ibs. per sq.in.

The spring will be assumed to have twelve complete

turns, so that its length will be:

/ = 27r3 Xi2Xsec = 230. 5 ins.

The twist r at unit distance from the axis of the helix

now becomes :

in.

At the distance of 10 inches from the axis the twist

would be 1.59 inches, but the spring is too stiff to be very
sensitive. A higher working stress k may properly be taken.

If in the same problem there be taken 120 revolutions

per minute and an alloy steel for which the working stresses

=40,000 pounds per square inch and 5=30,000 pounds
per square inch may be prescribed, then by using the

results already established:

M -^ Xs6o2 =4200 in.-lbs.;
120
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M\ = f X 2 1 2 = 159 in.-lbs.
;

M< = 1x862=647 in.-lbs.;

^& = fX554i =4156 in.-lbs.

3 1? j
For shear: r =^p X X-36 =.67 X-36 =.24 in.

\4 2 -5

3/~
~

For bending: r=\^-X X. 76 =.67 X. 76 =.51 in.M 2.5

.150

At the distance of 10 inches from the axis of the helix

the twist would be ioX. 795 = 7. 95 inches.

Problem 3. What will be the angular distortion /3

of a plane spiral spring i inch by ^ inch in section and

20 inches long if the distorting moment is 10 inch-pounds.

Eq. (3) of Art. 121 gives:

10X20 10X20X12X125,000
P =-^L =- = IO

3O,OOO,OOOX/ 30,000,000

(about i^ complete turns).
The fibre stress is

ioX
, 100 1U
k =- =150,000 Ibs. per sq.m.

12 X 125,000

Art. 123. Flat Plates.

The correct analysis of stresses in loaded flat plates even

of the simplest form of outline has not yet been made suf-

ficiently workable for ordinary engineering purposes, either

for plates simply resting on edge supports or with edges of

plates rigidly fixed to their supports. It is necessary,
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therefore, to combine simple, but approximate analysis

based on reasonable assumptions, with experimental results

so as to obtain workable formulae. The following pro-

cedures, due chiefly to Bach and Grashof, are commonly
employed in treating flat plates:

Square Plates Uniform Load.

In Fig. i let ABCD represent a square plate simply
resting on the edges of a square opening. Tests of such

/ plates by Bach have shown that when
T
B

increasingly loaded they will ulti-

mately fail along a diagonal, as AB.
Let the plate be uniformly loaded

with p pounds per square unit, then
let moments be taken about the diag-
onal AB. If b is the side of the

square, the load on the triangular

half of the square is
,
and the distance of its centre

2

from AB is Jfe sin 45 =.2366. The upward supporting
forces or reaction on the sides AD and DB will also be

half the load on the plate, -, and its centre will be at the
2

distance -

^^- =
,3S4b from AB Hence the moment

about AB will be:~-
=.059^3. . . . (i)

If h be the thickness of the plate, the moment of inertia
/ about its neutral axis will be:

T
b sec 45 h3
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The ordinary flexure formula then gives for the greatest

intensity of bending stress k, assuming it to be uniform

throughout the diagonal section,

,,M-

Or,' if the thickness is desired,

....... (4)

Eq. (4) gives the thickness of plate required to carry

the unit load p when the working stress is k.

Square Plates Single Centre Load.

If a single load P rests at the centre of a square plate,

using Fig. i and following the same method as in the

preceding section, the moment about the diagonal AB
will be :

,., Pb sin 45 , , .M=-- -=.i77P6..... (5)

The moment of inertia I is the same as befoie and it

is given by eq. (2). Hence, assuming a uniform intensity

k throughout the extreme fibres :

(6)
a!

Or,
fo

(7)
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Rectangular Plates Uniform Load.

Fig. 2 shows a rectangular plate with sides a and b.

With a much oblong rectangle the indications of tests are

not so well defined as to the section of failure, but tenta-

tively the diagonal section AB may be taken as a close

approximation for usual proportions. DF is a normal

to AB drawn from D. The uniform load on the triangular

half ABD of the plate is and its centre of action is at
2

the normal distance - from AB. The centre of the sup-
o

porting forces or reaction along the edges AD and DB is

- from AB. Hence the moment about AB is
2

M _pabin n\ _pabn
2 \2 12

. (8)

n\

FIG. 2.

Referring to Fig. (2) :

n=b sin </> and AB =b sec $. . . (9)

Therefore the moment of inertia of the diagonal section

sin Jb sec cf>h
2

is

T b sec 4>h? ,/= -; and
12 12
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k=p
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ab sin cos
or = sn cos ^. (10)

As is obvious, P =pab is the total load on the plate.

Rectangular Plate Centre Load.

If a single load P rests at the centre of the plate, the

moment about the diagonal AB, Fig. 2, is produced by the

reaction, only, of tKe supporting forces along the edges
AB and BD, and its value is

*

M= n _^Pb sin

2 2

Consequently,

, $P sin cos
or,

.... (n)

sin cos 0. (12)

Circular Plate Uniform Load Centre Load.

The circular plate with radius r is shown in Fig. 3.

The same general assumptions are made as in the preceding

cases, i.e., uniform condition of

bending stress throughout the

section of failure and uniform

support along the edge of the

plate. It is clear that the latter

assumption is strictly correct for

the circular outline. Any diam-

eter, as AB, may be taken for

the section of failure.

It will be convenient to sup-

pose the uniform load to be ap-

plied on a circle of radius n, as shown in Fig. 3. Then
TTfl

2

the load on half of the plate is p and its centre is at
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the distance from AB. The edge-supporting force or
.3*-

reaction, equal to the half load on the plate, has its centre
2 Y

at the distance of from AB. The moment about the
7T

latter diameter is, therefore,

If h is the thickness of the plate, as in the preceding

cases, the moment of inertia I is

j-_*>"> _rh
3

12 "IT

Hence,

/''"
,

*=M2^-T^ (16)

Or,

If the load is uniform over the entire circular plate,

r=ri, and

and, h =r. . . (18)

If the load is concentrated at essentially a point, r\ =o,

but
l

must be displaced by ;

2 2

7T/?

These formulae for circular plates are more nearly

; and, h-. . . (19)
7T/?
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correct in analysis and give results more nearly in agree-
ment with tests than those derived for other cases.

Elliptical Plates Centre Load Uniform Load.

An elliptical plate is shown in Fig. 4. The approximate
formulae for this case may be conveniently established by
first considering two axial strips of

the same (unit) width, the length
of AB being 2a and of CD, 26, a

single load being placed at their

intersection. The centre deflec-

tions of the two strips as parts of

the plates must be the same. Let

Pi be the centre load for the strip

AB, and P 2 the centre load for CD.

The desired centre deflection for each strip acting as a beam
is given by eq. (28), Art. 28. The equality of the two de-

flections gives the equation, 2a being one span and 2b the

other :

FIG. 4.

P 2 as

W

(20)

ness

6EI 6EI
'

h?
As each strip .is of unit width, / = ,h being the thick-

12

of plate. Hence the greatest fibre stresses are

Mh ^ a b=
3Pi: and,

, ,

(21)

Eqs. (21) and (20) then give:

ki =Pia
k 2 P 2 b

b2

(22)

Eq. (22) shows that k 2 is the greatest fibre stress and,

hence, that the major axis of the ellipse will be the line of

failure, as would be anticipated without the analysis.
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. If the ellipse of Fig. 4 be elongated by lengthening
the major axis 2a to infinity, the result will be a corre-

spondingly long rectangular plate of 26 width or span.

Hence, the greatest fibre stress for this case of uniform

load will be for a unit cross strip of plate:

Mh_p(2b) 2 hl2
=

2!
'

8 "afca

This is the greatest intensity of stress for an ellipse

whose major axis 2a is infinity. The other extreme is the

circle for which the greatest intensity of stress is, eq. (18),

For ellipses in general, in the absence of a satisfactory

analysis, it is tentatively proposed to write:

When b= a, eq. (25) gives the correct value for a circle,

and when b=o the result is correct for the extreme ellipse.

The thickness of plate for a given uniform load p is

(26)

Flat Plates Fixed at Edges.

Grashof and others have partly by analysis and partly

empirically deduced a number of formulae for plates fixed

at their edges, i.e., encastre, instead of simply supported.
The following have been used and may be considered fairly

satisfactory, using the same notation as in the preceding

parts of this article.

I. Circular plate with radius r and uniform load p.

The greatest intensity of stress is, if h is the thickness,
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.

and
>

/t

II. Stayed flat surfaces, stay bolts being the distance

c apart in two directions at right angles to each other.

Each stay carries the uniforni load pc
2

. The greatest

intensity of stress may be taken:

: and, h=-. ,,,,. (28)

III. Rectangular plate a long, b wide, supporting uniform

unit load p. The greatest intensity of stress may be taken :

a4 b2 ,
7 9 , p i , x

;
and ' fc=0*- (29)

If the plate is square, a = b :

k2 j / f \k= P-~: and, h=-.

All these plates with edges either fixed or simply sup-

ported are supposed to be truly flat, as any arching or

dishing changes materially the conditions of stress.

Problem i. What thickness of steel plate is required

to carry a load of 200 pounds per square inch over a rect-

angular opening 24 by 36 inches. Eq. (10) gives the

expression for the thickness h of the plate when simply

supported along its edges. The total load isP = 2ooX36X
24 = 168,800 pounds.

tan </>=f! =.667 /. 4> =33 40' and sin cos =
.461.

If the working stress &== 16,000 pounds per square inch;

x.46 1 =1.56 inches. A plate i A- inches
2 X 16,000

thick, therefore, meets the requirements.

Problem 2. Design a circular steel plate, simply sup-

ported on its edge, for an opening 30 inches in diameter
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to carry a load of 100 pounds per square inch, if k = 15,000

pounds per square inch. r = i5 inches and P = iooXirr2 =

100 X 706.9 = 70,690 pounds. _
Eq. (18) then gives: h = i$<J

I0
=1.22 inches. A

plate i \ inches thick will therefore be satisfactory.

If the plate were rigidly fixed along its edge^eq. (27)

shows that the thickness would be: h = i.22V% = i inch

thick.

Art. 124. Resistance of Flues to Collapse.

IF a circular tube or flue be subjected to external normal

pressure, such as that of steam or water, the material of

which it is made will be subjected to compression around

the tube, in a plane normal to its axis. If the following
notation be adopted,

/ = length of tube;

d = diameter of tube
;

t = thickness of wall of the tube
;

p = intensity of excess of external pressure over internal
;

then will any longitudinal section It, of one side of the tube,

be subjected to the pressure . But let a unit only of

length of tube be considered. This portion of the tube is

approximately in the condition of a column whose length

and cross-section, respectively, are xd and t.

The ultimate resistance of such a column is (Art. 35)

As this ideal column is of rectangular section,

r_
12'
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and

Ft 3

p- :=~
2 '

But P =
pd, hence

Et 3

is the greatest intensity of external pressure which the tube

can carry. But the formulae of Art. 35 are not strictly

applicable to this ideal column. The curvature on the one

hand and the pressure on the other tend to keep it in position

long after it would fail as a column without lateral support.
Hence p will vary inversely as. some power of d much less than

the third.

Again, it is clear that a very long tube will be much more

apt to collapse at its middle portion than a short one, as the

latter will derive more support from the end attachments;
and this result has been established by many experiments.
Hence p must be considered as some inverse function of the

length /.

Eq. (i), therefore, can only be taken as typical in form,

and as showing in a general way, only, how the variable

elements enter the value of p. If x, y, and z, therefore, are

variable exponents to be determined by experiment, there

may be written

in which c is an empirical coefficient.

Sir Wm. Fairbairn ("Useful Information for Engineers,

Second Series") made many experiments on wrought-iron

tubes with lap- and butt-joints single riveted. He inferred
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from his tests that y = z = i. Two different experiments

would then give

pld = ct*, ....... (3)

p'l'd'=ct'
x........ (4)

Hence

log (pld)=log

in which "log" means "logarithm." Subtracting one of

these last equations from the other, the value of x becomes

log(pld)-log(p'l'd')

log ,_ logr
- .-. (5)

As p, I, d, t, p',l',d', and t' are known numerical quantities

in every pair of tests, x can at once be computed by eq. (5) ;

c then immediately results from either eq. (3) or eq. (4).

By the: application of these equations to his experimental

data, Fairbairn found for wrought-iron tubes:

, . t
2 - 19

f

^ = 9,675, 600-^-,
...... (6)

in which p is in pounds per square inch, while t, /, and dare

in inches. Eq. (6) is only to be applied to lengths between 18

and 120 inches.

He also found that the following formula gave results

agreeing more nearly with those of experiment, though it is

less simple:

t
2 - 19 d

=
9,675,600-^-0.002^.

.... (7)
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Fairbairn found that by encircling the tubes with stiff

rings he increased their resistance to collapse. In eases

where suck rings exist, it is only necessary to take for I the

distance between two adjacent ones.

In 1875 Prof. Unwin, who was Fairbairn' s assistant in

his experimental work, established formulae with other

exponents and coefficients (" Proc. Inst. of Civ. Engrs.,"

Vol. XLVI). He considered x, y, and z variable, and

found for tubes with a longitudinal lap-joint:

t
2 - 1

= 73 6
3,<>oo/^lT6-

..... (8)

From one tube with a longitudinal butt-joint, he deduced:

t
2 - 21

=
9,614,000^^. ..... (9)

For five tubes with longitudinal and circumferential joints,

he found:
2.35

=
15,547,000^^. .... (10)

By using these same experiments of Fairbairn, other

writers have deduced other formulas, which, however, are

of the same general form as those given above. It is proba-
ble that the following, which was deduced by J. W. Nystrom,
will give more satisfactory results than any other:

At the same time, it has the great merit of more simple

application.

From one experiment on an elliptical tube, by Fairbairn,

it would appear that the formulae just given can be approxi-
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mately applied to such tubes by substituting for d twice

the radius of curvature of the elliptical section at either

extremity of the smaller axis. If the greater diameter or

axis of the ellipse is a and the less 6, then, for d, there is

to be substituted -r-.
6

Art. 125. Approximate Treatment of Solid Metallic Rollers.

An approximate expression for the resistance of a roller

may easily be written. The approximation may be con-

sidered a loose one, but it furnishes a basis for an accurate

empirical formula.

The following investigation contains the improvements

by Prof. J. B. Johnson and Prof. H. T. Eddy on the

method originally given by the

author.

The roller will be assumed
to be composed of indefinitely
thin vertical slices parallel to

its axis. It will also be as-

sumed that the layers or slices

act independently of each

other.

Let E' be the coefficient of

elasticity of the metal over the

Fro. i roller.

Let E be the coefficient of elasticity of the metal of

the roller.

Let R be the radius of the roller and Rf the thickness

of the metal above it.

Let w = intensity of pressure at A
;

p=
"
any other point;



Art. 125.] TREATMENT OF SOLID METALLIC ROLLERS. 779

Let P= total weight which the roller sustains per unit

of length.

x be measured horizontally from A as the origin ;

d=AC;
e=DC.

From Fig. i :

wR
- A'W pR

--, AB =--.

+ . . . (i)

and

A'C'-A'B'+B'V-p+. ... (2)

Dividing eq. (2) by eq. (i),

But

If the curve DAH be assumed to be a parabola, as may
be done without essential error, there will result:

/-\-

e A
=
3*

*

Hence

(3)
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e = \/2Rd d 2 = \/2Rd, nearly.

By inserting the value of d from eq. (i) in the value of

?, just determined, then placing the result in eq. (3),

p =' (4)

p= 4
-l

EE' (5)

The preceding expressions are for one unit of length.

If the length of the roller is /, its total resistance is

Or if R=R',

R R
(6)

(7)

In ordinary bridge practice eq. (7) is sufficiently near

for all cases.

A simple expression for conical rollers may be obtained

by using eqs. (4) or (5).

I* i
3!r 71

|---* *

TIG. 2

As shown in Fig. 2, let z be the distance, parallel to the

axis, of any section from the apex of the cone
;
then con-



Art. 126.] RESISTANCE TO DRIVING AND DRAWING SPIKES. 781

sider a portion of the conical roller whose length is dz. Let
R

l
be the radius of the base. The radius of the section

under consideration will then be

and the weight it will sustain, if R
1 =R\

Hence

-/'

Eqs. (6), (7), and (8) give ultimate resistances if w is

the ultimate intensity of resistance for the roller.

It is to be observed that the main assumptions on which
the investigation is based lead to an error on the side of

safety.

If for wrought iron, w = 12,000 pounds per square inch,

and = ' = 28,000,000 pounds, eq. (5) gives

Art. 126. Resistance to Driving and Drawing Spikes.

Some very interesting experiments on driving and draw-

ing rail spikes were made by Mr. A. M. Wellington, C.E.,

and reported by him in the
"
R. R. Gazette," Dec. 17, 1880.

He experimented with wood both in the natural state and

after it had been treated by the Thilmeny (sulphate of

baryta) preserving process.
11 The test-blocks were reduced to a uniform thickness of

4.5 inches, this thickness being just sufficient to give a full
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bearing surface to the parallel sides of the spikes when
driven to the usual depth, and to allow the point of the

spike to project outwards. It was considered that the bev-

TABLE I.

SPIKES WERE STANDARD: 5.5 INCHES X T
9
ir INCH.

Kind of Wood.
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TABLE II.

RESISTANCE OF RAILROAD SPIKES TO PULLING OUT AND
PRESSING IN.

Kind of Tie and Spike.
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spike (length 5.5 ins., weight 6.8 oz.). The timber of the

ties is shown in the two tables. The spikes were forced

TABLE III.

RESISTANCE OF LAG-SCREWS TO PULLING OUT.*
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2 inches, to 5580 pounds for 3.5 inches, and to 6555 pounds
for 4.5 inches.

The following results showing the relative holding

power of common and screw railroad spikes were found

by tests made by Prof. W. Kendrick Hatt for the U. S.

Dept. of Agriculture and published in Forest Service

Circular 46, 1906.

TABLE IV.

HOLDING FORCE OF COMMON AND SCREW SPIKES.

Species of Wood and
Kind of Spike.
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TABLE V.

HOLDING FORCE OF COMMON AND SCREW SPIKES.

SEASONED CLEAR AND KNOTTY LOBLOLLY PINE TIES.

Position of Spike.
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In many cases the specimen sheared and split simultane-

ously in front of the hole. By putting bolts through the

pieces in a direction normal to the force exerted, so as to

prevent splitting, the resistance was found (in most cases)
to be considerably, though irregularly, increased.

Unless otherwise stated, the wood was thoroughly sea-

soned.

The accompanying table gives the results of Col. Laid-

lev's tests.

Kind of Wood.
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Art. 128. Method of Least Work Stresses in a Bridge Portal.

In the consideration of stresses in structures or parts of

structures where the equations of condition for statical

equilibrium are not enough to determine all the unknown

quantities, it is necessary to find other equations involving

the elastic properties of the materials used. The Method
of Least Work affords one procedure by which such extra

equations may be found.

If a force P is gradually applied at a point in a struc-

ture it produces a deflection or distortion 5 in its own
direction and performs the work,

2a

As a consequence of Hook's law P=ad, a being a con-

stant and a direct function of the modulus of elasticity

E or G. Hence

dW P

This is called the first theorem of Castigliano, enun-

ciated in his
"
Theorie des Gleichgewichtes elastischer

Systeme." Eq. (2) is perfectly general and includes all

elastic deformation or deflection. It shows that the first

derivative of W, the work performed by the load. P, in

respect to that load as the independent variable, is the

elastic distortion as well in the case of a force acting axially

along a bar either in tension or compression as in that of a

load producing deflection of a bridge at its point of applica-
tion.

The third member of eq. (i) shows that
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This equation may at times be useful.

If the point of application of the force or load P in eq.

(2) be supposed unchanged in position while P acts, the

other parts of the structure or piece moving in adjust-

ment to that condition as may be required by the corre-

sponding strains, then will 5=o and

dW

If this equation be satisfied by solving it for P, the

resulting value will make W, in general, either a maxi-

mum or minimum. In engineering structures, however,
it is obvious that W will be a minimum, as the test by the

second derivative will show in individual cases.

Eq. (4) expresses Castigliano's second theorem. If

then the first derivative of a function W expressing the

work performed in distorting a structure or structural

member in terms of an indeterminate force or stress P,

whose point of application may be supposed fixed, be taken

in reference to
.
that indeterminate force as the variable,

a new equation of condition will result whose solution

will yield a value of the force making the energy expended
in the elastic distortions the least possible. Hence this

procedure is called
"
the method of least work."

Stresses in a Bridge Portal.

The treatment of a bridge portal will illustrate the use

of the method of least work in treating an important

part of a bridge. Fig. i shows a skeleton diagram of the

portal, AF and BG being the end posts in full length h in

their own plane. ABCD is the outline of the portal brac-

ing which may be a plate girder or open bracing. The
corner or gusset bracings at C and D are omitted. The
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equal end post stresses due to vertical dead and moving
loads are indicated by P and P. The total horizontal

wind load acting at the upper ends of the end posts is shown

by H, and it is taken as applied wholly on the windward
side. As is usual, the end posts are considered fixed in

direction at both upper and lower ends. The lateral

FIG. i.

action of the wind will distort the portal in the manner
shown exaggerated.

As both posts are supposed to be in the same condition
and equally affected by the lateral wind pressure, the two
points of contraflexure K and must be at same distance

ho (to be determined) from FQ. The points M' and M"
are in the neutral surface of ABCD, i.e., at its mid-depth.
The notation of Fig. i is self explanatory. The left arrow
TT

is below K and external to the upper part of Fig. i,
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TT

but the right arrow is above and external to the

lower part of the figure. Right-hand moments are posi-

tive and left-hand negative. Taking moments of forces

acting on the upper part ABOK of the portal and about 0;

(P l -P=P')b-H(h-h )=o .'. P'b=H(h-hQ). (5)

Obviously,. P' is the transferred load from the wind-

ward truss to the leeward due to the wind pressure H.

In order to find the work performed in distorting the

members of the portal, it is necessary to determine the

bending moments M'',
M"', Mi and Mi at the points indi-

cated by these letters. Taking a section through K and

moments about M', Fig. i :

... M'=-(h-h --} . . .. ... . (6)
2 \ 2/

Then moments about M" will give

M" = --(h-ho--} = -M'. (7)
2 \ 2/

Obviously the signs of the moments Mi and Mi must

be opposite to those of M" and M' respectively. Hence,

M2 =-/*o; and Mi = ~ho. ... (8)
2 2

The moments throughout the parts of the portal will

then be :
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For girder AC,

For left post FA,

For right post BG,

Mi-M'' ---. . (n)

It has been shown in the chapter on resilience that the

work done in bending a beam is == I M2
dx, I being

zrj
the moment of inertia of the normal section of the beam.

Similarly the work performed by an axial force P on a

straight member whose area of cross-section is A and

P2h
length h is . If /i is the moment of inertia for the

2/L.c,

member AC, Fig. i, and I2 for each post AF and BG, while

A 2 is the common area of cross-section for the latter, one
77

carrying the axial load P+ (hho) and the other
P

77

Pr(hho), the total work done on the entire portal is

2EI
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d H2h2

If n=h- and g =P2
-\ there will result:

2 b2

H2b , f H2kW =
3

/n
2

[
--

\

h I 2H2h
7 ,

H2--
Eq. (5) shows that ho may be replaced in this equation

f D/ u ^^ ^^ niin terms of P
;
hence -TT- corresponds to -r^-.. Placing

r = o and solving, therefore,
O00'

b3A 2I 2 +6hb2A 2I
' '

This locates the points of contraflexure and enables

all computations to be made.

If the axial compression of the two end posts be neglected,

the last term in both numerator and denominator of the

second member of eq. (13) disappears, and

l)

If T2 is the radius of gyration of A 2 and if -r =i, e
-LI

(13) may take a more convenient form for computation:



794 MISCELLANEOUS SUBJECTS. [Ch. XVI.

In the same manner eq. (14) becomes:

.. .... (i6)

l+6



CHAPTER XVII. "'."/,
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;:: S

THE FATIGUE OF METALS.

Art. 129. Woehler's Law.

IN all the preceding pages, that force or stress which,

by a single or gradual application, will cause the failure or

rupture of a piece of material has been called its
"
ultimate

resistance." It has long been known, however, that a stress

less than the ultimate resistance may cause rupture if its

application be repeated (without shock) a sufficient number
of times. Preceding 1859 no experiments had been made
for the purpose of establishing any law connecting the num-
ber of applications with the stress requisite for rupture, or

with the variation between the greatest and least values of

the applied stress.

During the interval between 1859 and 1870, A. Wohler,
under the auspices of the Prussian Government, undertook
the execution of some experiments, at the completion of

which he had established the following law:

Rupture may be caused not only by a force which exceeds

the ultimate resistance, but by the repeated action of forces

alternately rising and falling between certain limits, the greater

of which is less than the ultimate resistance; the number of

repetitions requisite for rupture being an inverse function

both of this variation of the applied force and its upper limit.

This phenomenon of the decrease in value of the break-

795
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ing load with an increase of repetitions is known as "the

fatigue of materials."

Although the experimental work requisite to give
Wohler's law complete quantitative expression in the

various conditions of engineering constructions can scarcely

be considered more than begun, yet enough has been done

by Wohler and Sparigenberg to establish the fact of metallic

fatigue, and a few simple formulae, provisional though they

may be. The importance of the subject in its relation to

the durability of all iron and steel structures is of such a

high character that a synopsis of some of the experimental
results of Wohler and Spangenberg will be given in the next

article.

Art. 130. Experimental Resul s.

The experiments of Wohler are given in
"
Zeitschrift fur

Bauwesen," Vote. X., XIII., XVI., and XX., and those of

Spangenberg may be consulted in "Fatigue of Metals,"

translated from the German of Prof. Ludwig Spangenberg,

1876.

These results show in a very marked manner the effect

of repeated vibrations on the intensity of stress required

to produce rupture.

Spangenberg states that "the experiments show that vi-

brations may take place between the following limits with

equal security against rupture by tearing or crushing:

r + i7,6oo and 17,600 Ibs. per sq. in.

Wrought iron \ + 33,000 and o " " '

I +48,400 and +26,400
" " '

f +30,800 and 30,800
" " "

Axle cast steel 4 + 52,800 and o " " "

I +88,000 and+ 38, 500
" " "

f + 55,ooo and o " " "

I +77,000 and+ 27, 500
" " "

Spring-steel not hardened. . i . 00 , ,

I +88,000 and+ 44,000
'

I +99,000 and+66
;
ooo " " "
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And for axle cast steel in shearing:

+ 24,200 and 24,200 Ibs. per sq. in.

+ 41, 800 and o " " " "

PHCENIX IRON IN TENSION.

797

Pounds Stress per
Square Inch.
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COMMON BRONZE IN TENSION.

[Ch. XVII.

tO 22,000
o to 16,500
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KRUPP'S SPRING-STEEL IN FLEXURE (ONE DIRECTION ONLY).

o to 110,000
o to 88,000
o to 66,000
o to 55 ooo
o to 4Q.5oo

88,000 to 132,000
99,000 to 132,000
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The late Capt. Rodman, U.SA., made a considerable

number of experiments on the fatigue of cast iron, but they
were sufficient in number and character to show the general
effect only, and gave no quantitative results.

The specimens used in all the preceding experiments
were small.

During 1860, '61, and '62 Sir Wm. Fairbairn con-

structed a built beam of plates and angles with a depth of

1 6 inches, clear span of 20 feet, and estimated centre break-

ing load of 26,880 pounds.
This beam was subjected to the action of a centre load

of 6643 pounds, alternately applied and relieved eight

times per minute; 596,790 continuous applications pro-

duced no visible alterations.

The load "was then increased from one fourth to two

sevenths the breaking weight, and 403,210 more applications

were made without apparent injury.

The load was next increased to two fifths the breaking

weight, or to 10,486 pounds; 5175 changes then broke the

beam in the tension flange near the centre.

The total number of applications was thus 1,005,175.

The beam was then repaired and loaded with 10,500

pounds at centre 158 times, then with 80*25 pounds 25,900

times, and finally with 6643 pounds enough times to make a

total of 3,150,000.

In these experiments the load was completely removed

each time.

It is thus seen that vibrations (without shock) with one-

fourth the calculated breaking centre load produced no

apparent effect on the resistance of the beam, but that

two fifths of that load caused failure after a comparatively
small number of repetitions.

It is probable that the breaking centre load was calcu-
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lated too high, in which case the ratios J and f should be

somewhat increased.

Art. 131. Formulae of Launhardt and Weyrauch.

Let R represent the intensity (stress per square unit of

section) of ultimate resistance for any material in tension,

compression, shearing, torsion, or bending; R will cause rup-
ture at a single, gradual application. But the material may
also be ruptured if it is subjected a sufficient number of

times, and alternately, to the intensities P and Q, Q being
less than P and both less than R, while all are of the same

kind. When Q = o let P = W, and letD=P-Q. W is called

the "primitive safe resistance," since the bar returns to its

primitive unstressed condition at each application. In the

general case P is called the "working ultimate resistance."

By the notation adopted:

P='Q +D . (i)

But by Wohler's law, P is a function of D, or

P=f(D). .... ;". . (2)

A sufficient number of experiments have not yet been

made in order to complete! )
r determine the form of the

function / (D).

It is known, however, that

for. Q=o, P=D = W\
and for D=o, P= Q=R.

Provisionally, Launhardt satisfies these two extreme

conditions by taking
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Even at these limits this is not thoroughly satisfactory,

when D=o, P =
(o

By solving eq. (3),

for when D=o, P = (R-W), or is indeterminate.
o

But if the least value of the total stress to which any
member of a structure is subjected is represented by min B,

and its greatest value by max B, there will result-75
=

p.

Hence

R-WminB

which is Launhardt's formula. In the preceding article

some values of W are shown. In applying eq. (5) it is only

necessary to take the primitive safe resistance, W, for the

total number of times which the structure will be subjected

to loads. Since bridges are expected to possess an indefinite

duration of life, in such structures that number should be

indefinitely large,

Eq. (5), it is to be borne in mind, is to be applied when
the piece is always subjected to stress of one kind, or in one

direction only. It agrees well with some experiments by
Wohler on Krupp's untempered cast spring steel.

If the stress in any piece varies from one kind to another,

as from tension to compression, or vice versa, or from one

direction to another, as in torsion on each side of a state of

no stress, Weyrauch has established the following formula

by a course of reasoning similar to that used by Launhardt.

If the opposite stresses, which will cause rupture by a

certain number of applications, are equal in intensity, and



Art. 131.] FORMULA OF LAUNHARDT AND WEYRAUCH. 803

if that intensity is represented by 5, then will 5 be called

the
"
vibration resistance"

;
this was established by Wohler

for some cases, and some of its values are given in the pre-

ceding article.

Let + P and Pf

represent two intensities of opposite
kinds or in opposite directions, of which P is numerically the

greater. Then if D = P + P'
,

P=D-P'.

The two following limiting conditions will hold:

For P'=o, P=D = W\
ForP'=S; P =S = *

2D.

But by Wohler' s law P=f(D), and the two limiting

conditions just given will be found to be satisfied by the

provisional formula

w,s W_ S-
2W-S-PU ~2\V-S-P^

By the solution of eq. (6),

If, without regard to kind or direction, max B is numer-

ically the greatest total stress which the piece has to carry,

while max B f
is the greatest total stress of the other kind

Pf max Bf

or direction, then will -75-
= - ~. Hence there will resultP max B

the following, which is the formula of Weyrauch:

W max
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Eqs. (5) and (8) give values of the intensity P which are

to be used in determining the cross-section of pieces d e-

signed to carry given amounts of stress. If n is the safety

factor and F the total stress to be carried, the area of sec-

tion desired will be

A _nF_A ~ :

p

p t

in which is the greatest working stress permitted.

If for wrought iron in tension W = 30,000 and R =

50,000, eq. (5) gives

/ 2 mm B \P = 30,000 i +- 7-,).

\ 3 max B]

Hence, if the total stress due to fixed and moving loads

in the web member of a truss is max B = 80,000 pounds,
while that due to the fixed load alone is min B= 40,000,

there will result

/ 2

(1
+.-=30,0001 .-. =40,000.

In such a case the greatest permissible working stress

with a safety factor of 3 would be about 13,300 pounds.
For steel in tension, if W = 50,000 and ^ =

75,000,

T-,
/i min B \P = 50,000 i +- -=).
\ 2 max B/

For wrought iron in torsion, if 5 = 18,000 and W = 24,000,

eq. (8) will give

/ i max B f
\

\ 4 max B /
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Other methods based on Wohler's experiments have been

deduced by Muller, Gerber, and Schaffer, of which synopses

may be found in Du Bois' translation of Weyrauch's
"
Structures of Iron and Steel."

Art. 132. Influence of Time on Strains.

In an earlier section of this book devoted to data of

certain tests, the effect of prolonged tensile stress and

subsequent rest between the elastic limit and ultimate resist-

ance was shown to be the elevation of both those quantities.

It is a matter of common observation, however, that if a piece

of wrought iron be subjected to a tensile stress nearly equal
to its ultimate resistance, and held in that condition, the

stretch will increase as the time elapses.

Experiments are still lacking which may show that a

piece of metal can be ruptured by a tensile stress much
below its ultimate resistance. It may be indirectly inferred,

however, from experiments on flexure, that such failure

may be produced, as the following by Prof. Thurston will

show.

A bar 10 parts tin and 90 parts copper, 1X1X22 inches

and supported at each end, sustained about 65 per cent, of

its breaking load at the centre for five minutes. During
that time its deflection increased 0.021 inch. The same

bar sustained 1485 pounds at centre for 13 minutes and

then failed.

A second bar of the same size, but 90 parts tin and 10

parts copper, was loaded at the centre with 160 pounds,

causing a deflection of 1.294 inches. After 10 minutes the

deflection had increased 0.025 inch
;
after one day, i .00 inch

;

after two days, 2.00 inches
;
and after three days, 3.00 inches,

when the bar. failed under the load of 160 pounds.
Another bar of the same size showed remarkable results

;



806 THE FATIGUE OF METALS. [Cn. XVII

it was composed of 90 parts zinc and 10 parts copper. It

gave the same general increase of deflection with time, but

eventually broke under a centre load which ran down from

1233 to 911 pounds, after holding the latter about three

minutes.

A bar of the same size and 96 parts copper with 4 parts

tin, after it had carried 700 pounds at centre for sixty min-

utes was loaded with 1000 pounds, with the following

results :

After. Deflection.

o minute 3.118 inches,

5 minutes 3 . 540
1 5 minutes 3 . 660 "

45 minutes 4 . 102
"

75 minutes 7 . 634
"

Broke under 1000 pounds.

A wrought-iron bar of the same size gave, under a centre

load of 1600 pounds:

After. Deflection.

o minute o . 489 inch.

3 minutes o . 632

6 minutes o . 650

16 minutes o . 660

344 minutes o . 660

It subsequently carried 2589 pounds with a deflection of

4.67 inches.

During 1875 and 1876 Prof. Thurston made a number of

other similar experiments with the same general results.

Metals like tin and many of its alloys showed an increas-

ing rate of deflection and final failure, far below the so-called

"ultimate resistance." The wrought-iron bars, however,

showed a decreasing increment of deflection, which finally

became zero, leaving the deflection constant.

Whether there may be a point for every metal, beyond
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which, with a given load, the increment of deflection may
retain its value or go on increasing until failure, and below

which this increment decreases as the time elapses, and

finally becomes zero, is yet undetermined, but seems proba-
ble.

It does not follow, therefore, that the principle enunci-

ated in the section named at the beginning of this article

is to be taken without qualification. If "rest" under

stress, too near the ultimate resistance, be sufficiently pro-

longed, it has been seen that it is possible that failure may
take place.

In verifying some experimental results by Herman

Haupt, determined over forty years ago,. Prof. Thurston

tested three seasoned pine beams about ij inches square
and 40 inches length of span, and found that 60 per cent,

of the ordinary "breaking load" caused failure at the end

of 8, 12, and 15 months. In these cases the deflection slowly

and steadily increased during the periods named.

Two other sets of three pine beams each broke under 80

and 95 per cent, of the usual "breaking load," after much
shorter intervals of time.

In all these instances it is evident that the molecules

under the greatest stress
"
flow" over each other to a greater

or less extent. In the cases of decreasing increments of

strain, the new positions afford capacity of increased resist-

ance
;
in the others, those movements are so great that the

distances between some of the molecules exceed the reach

of molecular action, and failure follows.

In many cases strained portions of material recover par-

tially or wholly from permanent set. In such cases a por-

tion of the material has been subjected to intensities of

stress high enough to produce true
"
flow" of the molecules,

while the remaining portion has not. The internal elastic

stresses in the latter portion, after the removal of the exter-
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nal forces, produce in time a reverse flow in consequence of

the. elastic endeavor to resume the original shape.

It is altogether probable that the phenomena of fatigue

and flow of metals are very intimately associated. Some
of the prominent characteristics of the latter will be given
in the next chapter



CHAPTER XVIII.

THE FLOW OF SOLIDS.

Art. 133. General Statements.

ALTHOUGH there is no reason to suppose that true solids

may not retain a definite shape for an indefinite length of

time if subjected to no external force other than gravity,*

many phenomena resulting both from direct experiment for

the purpose, and incidentally from other experiments involv-

ing the application of external stress of considerable inten-

sity, show that a proper intensity of internal stress (in

many cases comparatively low) will cause the molecules of a

solid to flow at ordinary temperatures like those of a liquid.

And this flow, moreover, is entirely different from, and inde-

pendent of, the elastic properties of the material; for it

arises from a permanent and considerable relative displace-

ment of the molecules. Nor is it to be confounded with

that internal ''friction" which, if an elastic body is sub-

jected to oscillations, causes the amplitudes to gradually

decrease and finally disappear, even in vacuo. This latter

motion is typically elastic and the retarding cause may be

considered a kind of elastic friction.

It is evident that if a mass of material be enclosed on all

its faces, or outer surfaces, but one or a portion of one, and

if external pressure be brought to bear on those faces, the

*This, perhaps, may be considered a definition of a true solid.

809



8io THE FLOW OF SOLIDS. [Ch. XVIII.



Art, 134.] TRESCA'S HYPOTHESES. 8ll

The total pressure on the face AB varied from 119,000 to

198,000 pounds. The initial thickness AD varied from 0.24
inch to 2.4 inches.

Some experiments exhibiting in a remarkably clear man-
ner the flow of metals in cold punching were made by David
Townsend in 1878, and the results were given by him in the
"
Journal of the Franklin Institute" for March of that year.

If the dotted rectangle ABFG, Fig. 3, shows the original

outline of the middle section of a nut before punching, he

found that the final outline of the same section would be

represented by the full lines. The top and bottom faces

were depressed by the punching, as shown
;
the upper width

AB remained about the same, but the lower, GF, was in-

creased to CD. Although the depth of the nut, AC, was 1.75

inches, the length of the core punched out was only 1.063

inches. The density of this core was then examined and

found to be the same as that of the original nut. Hence a

portion of the core equal in length to 1.75 1.063=0.687
inch was forced, or flowed, back into the body of the nut.

Subsequent experiments showed that this flow did not take

place at the immediate upper surface AB, nor very much
in the lower half of the nut, but that it was chiefly confined

to a zone equal in depth to about half that of the nut, the

upper surface of which lies a very short distance below the

upper face of the nut. The location of this zone is shown by
the lines HK and MA7

in Fig. 3.

Tresca's experiments on punching showed essentially the

same result.

Art. 134. Tresca's Hypotheses.

The central cylinder FGKH> Fig. i of Art. 133 was called

by Tresca the "primitive central cylinder." As the metal

flows, this cylinder will be drawn out into the volume of

revolution, whose axis is that of the orifice and whose
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meridian section is FGkKHh, Fig. 2, the diameter FG being

gradually decreased.

It was found by experiment that if the original mass AC,
Fig. i

,
was composed of horizontal layers of uniform thick-

ness, the reduced mass in Fig. 2 was also composed of the

same number of layers of uniform thickness, except in the

immediate vicinity of the central cylinder.

Tresca then assumed these three hypotheses:
i. The density of the material remains the same whether

in the cylinder or in the jet; in other words, the volume of the

material in the jet and in the cylinder remains constant.

Let R = radius of the cylinder;

R
l
= radius of the orifice

;

y =yariable length of the jet (i.e., hH)\
D = original depth of material (BC =AD, Fig. i)

in the cylinder;

d = variable depth of material (BC = AD, Fig. 2)

in the cylinder;

then by the hypothesis just stated

R^d=R 2D-R^y . (i)

2. The rate of compression along any and all lines paral-

lel to the axis of the primitive central cylinder, and taken outside

of that limit, is constant.

If, then, the material lying outside of the central cylinder

be divided into horizontal layers of equal thickness, a very

small decrease in the variable depth equal to d (a) will cause

the same amount of material to move or now from each of

these layers into the space originally occupied by the central

cylinder, thus causing a portion of the material previously

resting over the orifice to flow through the latter. If d(d)

i-j the indefinitely small change of depth, and dR
1
the in-

definitely small change in the radius of the cylindrical por-
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tion resting over the orifice, then the equality of volumes
expressing this hypothesis is the following:

or

d(d) 2R
i
dR

l

(2)

3. The rate of decrease of the radius of the primitive cen-

tral cylinder is constant throughout its length at any given in-

stant during flow.

Let r be any radius less than Rv then if the latter is de-

creased by the very small amount dR
ly

the former will be

shortened by the amount dr\ and by the last hypothesis
there must result

dR. dr

R (3)

This is a perfectly general equation, in which r may or

may not be the variable value of the radius of that portion
of the primitive central cylinder remaining above the orifice

at any instant during now.

These are the three hypotheses on which Tresca based

his theory of the flow of solids. It is thus seen to be put

upon, a purely geometrical basis, entirely independent of the

elastic or other properties of the material.

+

Art. 135. The Variable Meridian Section of the Primitive

Central Cylinder.

The meridian curve haH, or hbK, Fig. 2 of Art. 133,

may now easily be determined.

Eq. (i) of Art. 134 may take the first of the following
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forms, while its differential, considering d and y variable,

may take the second:

Dividing the second by the first,

d(d) dy 2R
1

The last member of this equation is simply eq. (2) of

Art. 134; and if the value of dRv in eq. (3) of the same

article, be inserted, in the third member of this equation,

there will result

27?^ dr dy
R

Integrating between the limits of r and Rv and remem-

bering that r will be restricted to the representation of the

radius of that portion of the primitive central cylinder

which remains, at any instant, over the orifice, by taking

y = o for r =Rv

K* . r .
/

' K.
1 in& Ino I

r> 2 lB ZP
WS 02R

"log" indicates a Napierian logarithm.
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Passing from logarithms to the quantities themselves,
and reducing,

^ n

This is the desired equation of the line, in which r is

measured normal to the axis of the cylinder or jet, while y
is measured along that axis from the extremity of the jet.

When the material is wholly expelled,

R 2

Eq. (2) is applicable to the jet only. For the line hF or

Gk, resort will be had to the equation

d(d) =
2RS dr

d ~R*-R^ r'

Again integrating between the limits d and D, or r and

Rv and reducing,

This value of r is the radius of that portion of the primi-

tive central cylinder which remains over the orifice when D
is reduced to d.

Art. 136. Positions in the Jet of Horizontal Sections of the

Primitive Central Cylinder.

That portion of the primitive central cylinder below ab,

in Fig. i of Art. 133 will be changed to abKH in Fig. 2 of

the same article.
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If, in the latter Fig., y' is the distance from HK to ab,

measured along the axis, then the volume of HKab will

have the value

/yr.r^dy.
o

If df
is the distance aF = bG, in Fig. i, the equality of

volumes will give

I** r*dy
= R*(D-dr

).J o

Eq. (i) of Art. 125 gives

/ r*dy=R*D - R

If N is the number of horizontal layers required to com-

pose the total thickness D, and. n the number in the depth d'
,

D A/-

Hence

C*-l
/ \ R2

-W >
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Tresca computed values of y' for some of his experiments
and compared the results with actual measurements. The

agreement, though not exact, was very satisfactory. Within

limits not extreme, the longer the jet the more satisfactory

was the agreement.

Art. 137. Final Radius of a Horizontal Section of the Primitive

Central Cylinder.

Let it be required to determine what radius the section

situated at the distance df from the upper surface of the

primitive central cylinder will possess in the jet.

It will only be necessary to put for y in eq. (i) of Art.

135 the value of y
r

taken from eq.. (i) of Art. 136. This

operation gives

Hence

/rjf\ 2R*

(i)

If 7\
1
is small, as compared with R, there will result ap-

proximately

Art. 138. Path of Any Molecule.

The hypotheses on which the theory of flow is based

enable the hypothetical path of any molecule to be easily

established.
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In consequence of the nature of the motion there will be

three portions of the path, each of which will be represented

by its characteristic equation, as follows:

First, let the molecule lie outside of the primitive central

cylinder.

Let R f and H be the original co-ordinates of the mole^

cule considered, measured normal to and along the axis of

the cylinder, respectively, from the centre of the orifice HK
(Fig. i, Art. 133) as an origin, while r and h are the variable

co-ordinates.

The first hypothesis, by which the density remains con-

stant, then gives the following equation:

or

This is the equation to the path of the molecule, in

which r must always exceed Rr
As this equation is of the third degree, the curve cannot

be one of the conic sections.

Second, let the molecule move in the space originally occu-

pied by the central cylinder.

While h and r now vary, the volume nr 2

(D h) must
remain constant. When r =R

l
let h =-hr Hence

r
2(D-h)=R1

2(D-h
1 ) (2)

But if h=h
1
and r = R^ in eq. (i),

Placing this value in eq. (2).

... (3)
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Third, let the molecule move in the jet.

After the molecule passes the orifice, its path will evi-

dently be a straight line parallel to the axis of the jet. Its

distance r
t
from that axis will be found by putting h = o in

eq. (3). Hence

H R 2-R' Z\*



APPENDIX I.

ELEMENTS OF THEORY OF ELASTICITY IN
AMORPHOUS SOLID BODIES,

CHAPTER I.

GENERAL EQUATIONS.

Art. i. Expressions for Tangential and Direct Stresses in Terms

of the Rates of Strains at Any Point of a Homogeneous Body.

LET any portion of material perfectly homogeneous be

subjected to any state of stress whatever. At any point as

0, Fig. i, let there be assumed any three rectangular co-

ordinate planes; then consider any small rectangular par-

allelepiped whose faces are parallel to those planes. Finally

let the stresses on the three faces nearest the origin be re-

solved into components normal and parallel to their planes

of action, whose directions are parallel to the co-ordinate

axis.

The intensities of these tangential and normal compo-
nents will be represented in the usual manner, i.e., /^signi-
fies a tangential intensity on a plane normal to the axis of

X (plane ZY), whose direction is parallel to the axis of

y, while p xx signifies the intensity of a normal stress on
820
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a plane normal to the axis of X (plane ZY) and in the

direction of the axis of X. Two unlike subscripts, there-

fore, indicate a tangential stress, while two of the same kind

signify a normal stress.

FIG. i.

From eq. (3), Art. 2, and eq. (7), Art. 5, there is at

once deduced

$ =
2(1

(i)

Now when the material is subjected to stress the lines

bounding the faces of the parallelepiped will no longer be

at right angles to each other. It has already been shown

in Art. 2 that the angular changes of the lines from right

angles are the characteristic shearing strains, which, multi-

plied by G$ give the shearing intensities.

Let (^ be the change of angle of the boundary lines

parallel to X and Y.

Let
<j)2

be the change of angle of the boundary lines

parallel to Y and Z.

Let
</> 3 ,

be the change of angle of the boundary line

parallel to Z and X.
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Eq. (i) will then give the following three, equations:

M

In Fig. i let the rectangle agfh represent the right pro-

jection of the indefinitely small parallelepiped doc dy dz. If

u, v, and w are the unit strains parallel to the axes of x, y,

and z of the original point h, the rates of variation of strain

du dv dw - .,
-r-, -7-,

-
, etc., may be considered constant throughout

dx dy dz

this parallelepiped; consequently the rectangular faces will

change to oblique parallelograms. The oblique parallelo-

gram dhck, whose diagonals may or may not coincide with

those of agfh, therefore, may represent the strained con-

dition of the latter figure.

Then, by Art. 2, the difference petween dhc and the right

angle at h will represent the strain r But, from Fig. i, <^

has the following value:

(5)

But the limiting values of the angles in the second mem-
ber are coincident with their tangents ;

hence

de be
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But, again, de is the distortion parallel to OX found by

moving parallel to OY only; hence it is a partial differential

of u, or it has the value

In precisely the same manner be is the partial differential

of v in respect to x, or

L dv j
bc = -r-dx.

dx

By the aid of these considerations, eq. (6) takes the form

du dv

If XY be changed to YZ, and then to ZX
y
there may be

at once written by the aid of eq. (8)

dv dw

^=dz+Ty>
-

; ;
(9)

dw du

Eqs. (2), (3), and (4) now take the following form:

dv

d
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The direct stresses are next to be given in terms of the

displacements u, v, and w. Again, let the rectangular par-

allelepiped dx dy dz be considered. Eq. (i), on page 3,

shows that the strain per unit of length is found by dividing

the intensity of stress by the coefficient of elasticity, if a sin-

gle stress only exists. But in the present instance, any state

of stress whatever is supposed. Consequently the strain

caused by p xxt for example, acting alone must be combined

with the lateral strains induced by p yy and p gg . Denoting
the actual rates of strain along the axes of X, Y, and Z by
lv 1

2 ,
and /

3 , therefore, the following equations may be at once

written by the aid of the principles given on pages 9 and 10 :

ds)

Eliminating between these three equations,

But if w, v, and w are the actual strains at the point where

these stresses exist, the rates of strain lv lv and 1
3
will evi-
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du dv dw
dently be equal to -T-, -T-

,
and -77, respectively. The volume

of the parallelepiped will be changed by those strains to

dx(i -\-l^dy(\ +I2)dz(i +/3)
=dx dy dz(i + /

1 + /
2 + /

3)

if powers of lv /
2 ,
and /

3
above the first be omitted. The

quantity (/ 1 + /
2 +y is, then, the rate of variation of volume,

or the amount of variation of volume for a cubic unit. If

there be put

du dv dw E
o=-r- +-r- +-?, and (j=,

eqs. (17), (18), and (19) wr
ill take the forms

^du
+ 2GV; . . . .' (20)y

i 2r
(22)

The form in which eqs. (14), (15), and (16) are written

shows that if pxv , p yy ,
or p zs

is positive, the stress is tension,

and compression if it is negative. Consequently a positive

value for any of the intensities in eqs. (20), (21), or (22) will

indicate a tensile stress, while a negative value will show
the stress to be compressive.

The eqs. (14) to (19), together with the elimination in-

volved, also show that the coefficients of elasticity for ten-

sion and compression have been taken equal to each other,

and that the ratio r is the same for tensile and compressive
strains.
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Further, in eqs. (n), (12), and (13), it has been assumed

that G is the same for all planes.

Hence eqs. (n,) (12), (13), (20), (21), and (22) apply

only to bodies perfectly homogeneous in all directions.

It is to be observed that the co-ordinate axes have been

taken perfectly arbitrarily.

Art. 2. General Equations of Internal Motion and Equilibrium.

In establishing the general equations of motion and equi-

librium, the principles of dynamics and statics are to be

applied to the forces which act upon the parallelepiped repre-

sented in Fig. i
,
the edges of which are doc, dy, and dz. The

notation to be used for the intensities of the stresses acting

on the different faces will be the same as that used in the

preceding article.

Let the stresses which act on the faces nearest the origin

be considered negative, while those which act on the other

three faces are taken as positive.

The stresses which act in the direction of the axis of X
are the following:

On the face normal to X, nearest to 0, p xjt dy dz
;

" " " " " "
farthest from 0, (pxx + -^dxj

\ ax /

" " "
dy doc nearest to 0, -p zx dy dx\

" " " " " farthest from 0,
( p sx + -%**dz}dydx\

" dz doo nearest to 0, p yx dz dx\

" " " farthest from 0.



dz^
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The line of action of the resultant of all the forces which

act on the indefinitely small parallelepiped, at its limit,

passes through its centre of gravity, consequently it is sub-

jected to the action of no unbalanced moment. The parallele-

piped, therefore, can have no rotation about an axis passing

through its centre of gravity, whether it be in motion or

equilibrium. Hence, let an axis passing through its centre

of gravity and parallel to the axis of X, be considered. The

only stresses, which, from their direction can possibly have

moments about that axis, are those with the subscripts (yz),

(zy), (yy), or (zz). But those with the last two subscripts

act directly through the centre of the parallelepiped, conse-

quently their moments are zero. The stresses
-^r*dy

doc dz

and j
Zy dz . dx dy are two of six forces whose resultant is

directly opposed to the resultant of those three forces which

represent the increase of the intensities of the normal, or

direct, stresses on three of the faces of the parallelepiped;

these, therefore, have no moments about the assumed axis.

The only stresses remaining are those whose intensities are

pzy and p yz . The resultant moment, which must be equal
to zero, then, has the following value:

xdy.dz = o'
1 ... (4)

P2y....... (5)

Hence the two intensities are equal to each other.

The negative sign in eq. (5) simply indicates that their

moments have opposite signs or directions; consequently,
that the shears themselves, on adjacent faces, act toward

or from the edge between those faces. In eqs. (i), (2), and

(3), the tangential stresses, or shears, are all to be affected
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by the same sign, since direct, or normal, stresses only can
have different signs.

The eq. (5) is perfectly general, hence there may be
written :

P xy=Pyx >
and p zx =pxz . . . "V ; (6)

Adopting the notation of Lame, there may be written:

by which eqs. (i), (2), and (3) take the following forms:

dN
l

dT
3

dT m
-df'> (7)

dT
3

dN
2 dT,+V +~^ + F =

dT
2 dT, dN

3-

The equations (u), (12), (13), (20), (21), and (22) of the

preceding article are really kinematical in nature
;
in order

that the principles of dynamics may hold, they must satisfy

eqs. (7), (8), and (9). As the latter stand, by themselves,

they are applicable to rigid bodies as well as elastic ones;

but when the values of N and T, in terms of the strains u, v,

and w, have been inserted, they are restricted, in their use,

to elastic bodies only. With those values so inserted, they
form the equations on which are based the mathematical

theory of sound and light vibrations, as well as those of

elastic rods, membranes, etc. In general, they are the equa-

tions of motion which the different parts of the body can
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have in reference to each other, in consequence of the elastic

nature of the material of which the body is composed.
If all parts of the body are in equilibrium under the

action of the internal stresses, the rates of variation of the

d 2u d 2v ,

strains -ITF, -r^,
and

-^-,
will each be equal to zero.

Hence, eqs. (7), (8), and (9) will take the forms

dN. dT
s dT,

o;. do)

dT
a dN, dT.

. .....
dx dy dz

These are the general equations of equilibrium. As they

stand, they apply to a rigid body. For an elastic body, the

values of N and T from the preceding article, in terms of the

strains u, v, and w, must satisfy these equations.

The eqs. (10), (n), and (12) express the three conditions

of equilibrium that the sums of the forces acting on the

small parallelepiped, taken in three rectangular co-ordinate

directions, must each be equal to zero. The other three con-

ditions, indicating that the three component moments about

the same co-ordinate axes must each be equal to zero, are

fulfilled by eqs. (5) and (6). The latter conditions really

eliminate three of the nine unknown stresses. The remaining

six consequently appear in both the equations of motion

and equilibrium.

The equations (7) to (12), inclusive, belong to the interior

of the body. At the exterior surface, only a portion of the

small parallelepiped will exist, and that portion will be a
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tetrahedron, the base of which forms a part of the exterior

surface of the body, and is acted upon by external forcea

Let be the area of the base of this tetrahedron, and let

p, q, and r be the angles which a normal to it forms with

the three axes of X, Y, Z, respectively. Then will

da cos p = dy dz, da cos q=dz dx, and da cos r = dx dy.

Let P be the known intensity of the external force acting

on da, and let TT, /, and p be the angles which its direction

makes with the co-ordinate axes. Then there will result :

X =P da.. cos TT, Y =PJa.cos/, and Z =Pda.cosp.

The origin is now supposed to be so taken that the apex of

the tetrahedron is located between it and the base; hence

that part of the parallelepiped in which acted the stresses

involving the derivatives, or differential coefficients, is

wanting ; consequently those stresses are also wanting.
The sums of the forces, then, which act on the tetra-

hedron, in the co-ordinate directions, are the following:

-
(N\ dy dz + T3

dz dx + T2 dy dx) + Pda cos TT = o;

(T3
dz dy + A/3 dz dx + 7\ dy dx) + Pda cos 7

= 0;

(T2
dz dy + 7\ dz dx +N3 dy dx) + Pda cos p

= o.

Substituting from above,

N
l
cos p + T

3
cos q + T2

cos r =P cos TT
;

. . (13)

T
3
cos p +N2

cos q + Tl
cos r =P cos # ;

. . (14)

T
2
cos p + Tl

cos q +N3
cos r **P cos p. , 4 (15)

These equations must always be satisfied at the exterior

surface of the body; and since the external forces must

always be known, in order that a problem may be determi-

nate, they will serve to determine constants which arise



83 2 ELASTICITY IN AMORPHOUS SOLID BODIES. [Ch. I.

from the integration of the general equations of motion and

equilibrium.

Art. 3. Equations of Motion and Equilibrium in Semi-polar
Co-ordinates.

For many purposes it is convenient to have the condi-

tions of motion and equilibrium expressed in either semi-

polar or polar co-ordinates
;
the first form of such expression

will be given in this article.

The general analytical method of transformation of co-

ordinates may be applied to the equations of the preceding

article, but the direct treatment of an indefinitely small

portion of the material, limited by co-ordinate surfaces, pos-

sesses many advantages. In Fig. i are shown both the

FIG. i.

small portion of material and the co-ordinates, semi-polar

as well as rectangular. The angle made by a plane normal

to ZY, and containing OX, with the plane XY is repre-

sented by <j> ;
the distance of any point from OX, measured

parallel to ZY, is called r\ the third co-ordinate, normal to
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r and <, is the co-ordinate x
t
as before. It is important to

observe that the co-ordinates x, r, and <, at any point, are

rectangular.

The indefinitely small portion of material to be con-

sidered will, as shown in Fig. i
,
be limited by the edges dx, dr,

and r d<j>. The faces dx dr are inclined to each other at the

angle d(j>.

The intensities of the normal stresses in the directions of

X and r will be indicated by A/\ and R, respectively. The

remainder of the notation will be of the same general char-

acter as that in the preceding article; i.e., Txr will represent

a shear on the face dr.rd(j)m the direction of r, while N^ is

a normal stress, in the direction of <, on the face dx dr.

The strains or displacements, in the directions of x, r, and

(f>,
will be represented by u, p, and w\ consequently the

unbalanced forces in those directions, per unit of mass,

will be

d zu d 2
p d*w , xm

dT"
mW' and mW ' (l)

Those forces acting on the faces hf, fe, and he, will be

considered negative ;
those acting on the other faces, posi-

tive.

Forces Acting in ike Direction of r.

R.rd<f>dx, and

+ Rrd<j>dx+ (~|p<fr
=
rjjdr +Rdr\(l<j> dx.

T^dr dx, and

+ T^dr dx + ^rd<l>
. dr dx.

Txr . r dcj) dr, and
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On the face dr dx, nearest to ZOX, there acts the normal

stress (N^drdx-\---r^d^.drdx}=N
r

\
and N' has a com-

\ ^r /

ponent acting parallel to the face fe and toward OX, equal to

N' sin (d<j>)
= N'

T

^=N'd(l>. But the second term of this

product will hold (d(f>)
2

,
hence it will disappear, at the limit,

in the first derivative of N'd<j> /. Nr

d^ = N^d(j) dr doc.

Since this force must be taken as acting toward OX, it

acts with the normal forces on hf, and, consequently, must

be given the negative sign.

If R Q is the external force acting on a unit of volume,
another force (external) acting along r will be R Q . r d<t> dr dx.

The sum of all these forces will be equal to

m. rd<j> dr dx . ~.

Forces Acting in ike Direction of $.

dx, and

+ N^dr dx+
d

-^d$ . dr djc.

Trj . r d(f> dx, and

dr, and
/7T"

As in the case of NW, in connection with the forces along

r, so the force T^ dr dx has a component along </> (normal
to fe) equal to T^drdx. sin (d$) =T^r d^ dr dx. It will

have a positive sign, because it acts from OX.
The external force is @ .r d<j> dr dx.
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Forces Acting in the Direction of x.

-ATj.r d(j> dr, and
dN

f NjT d(j>dr + -j-^dx . r d<j> dr.

~Trx .dx r d$, and

dr, and

+ T6xdx dr +~d^> . doc dr.

Th? external force is X . r d<j> dx dr.

Putting each of these three sums equal to the proper
rates of variation of momentum, and dropping the common
factor r d<j> dx dr:

These are the general equations of motion (vibration) in

terms of semi-polar co-ordinates
;

if the second members are

made equal to zero, they become equations of equilibrium.

Eqs. (2), (3), and (4), are not dependent upon the nature of

the body.
Since x, r, and <j>

are rectangular, it at once follows that

Trx
= Txr ,

T
r<f>

=
Tfr, and Tx+

= T^. . . (5)
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In order that eqs. (2), (3), and (4) may be restricted to

elastic bodies, it is necessary to express the six intensities

of stresses involved, in terms of the rates of variation of the

strains in the rectangular co-ordinate directions of x, r, and

(j>.
Since these co-ordinates are rectangular, the eqs. (n),

(12), (13), (20), (21), and (22) of Article i, may be made

applicable to the present case by some very simple changes

dependent upon the nature of semi-polar co-ordinates.

For the present purpose the strains in the co-ordinate

directions of x, y, and z will be represented by u', v'
', and

wf

. Since the axis of x remains the same in the two systems,

evidently

dur

_du
doc

~
doc*

From Fig. i it is clear that the axis of y corresponds

exactly to the co-ordinate direction r\ hence

=
dy dr'

From the same Fig. it is seen that the axis of z corre-

sponds to <, or T(f>. But the total differential, dwf

,
must be

considered as made up of two parts ; consequently the rate

of variation -j- will consist of two parts also. If there is no

distortion in the direction of r, or if the distance of a mole-

cule from the origin remains the same, one part will be

-77
= -fi. If> however, a unit's length of material be re-

d(r$) rd<f>

moved from the distance r to r+ p from the centre 0, Fig. i,

while
<j>

remains constant, its length will be changed from

i to fi+
j,

in which p may be implicitly positive or
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negative. Consequently there will result

dwf

_ dw p
dz ~rd<j> r'

For the reason already given, there follow

du' du . dvf

dp
-T^ = ~5 and -3

' = ~r~.

dy dr dx doc

In Fig. 2 let dc be the side of a distorted small portion

of the material, the original position Q a
f

e

of which was d'e. Od is the distance

r from the origin, ad=dr and ac =

dw, while ddf =w. The angular
ac dw

change in position of dc is ~~
(
r*~

(
r\ FIG. 2.

but an amount equal to 3
= is due to the movement of

r, and is not a movement of dc relatively to the material

immediately adjacent to d.

Hence

dwf

_dw w dv f

dp

lty~dr~~r>
also

dz~
=
7d$'

There only remain the following two, which may be at

once written

dw' dw duf du
r- = T and r-
dx dx dz rd<f>'

The rate of variation of volume takes the following form

in terms of the new co-ordinates:

(W dv du/du dp dw p



838 ELASTICITY IN AMORPHOUS SOLID BODIES. L
Ch - *

Accenting the intensities which belong to the rectan-

gular system x, y, z, the eqs. (n), (12), (13), (20), (21), and

). of Art. i, take the following form:

. -;-+><

dw

If these values are introduced in eqs. (2), (3), and (4),

those equations will be restricted in application to bodies

of homogeneous elasticity only.

The notation t is used to indicate that the r involved is

the ratio of lateral to direct strain, and that it has no rela-

tion whatever to the co-ordinate r.

The limiting equations of condition, (13), (14), and (15)

of Art. 2, remain the same, except for the changes of nota-

tion, shown in eqs. (7) to (12), for the intensities N and T.
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Art. 4. Equations of Motion and Equilibrium in Polar

Co-ordinates.

The relation, in space, existing between the polar and

rectangular systems of co-ordinates is shown in Fig. i . The

angle </>
is measured in the plane ZY and from that of XY

;

FIG. i.

while
</

is measured normal to ZY in a plane which contains

OX. The analytical relation existing between the two sys-

tems is, then, the following:

oc = r sin
</>, y = r cos <p cos and = r cos sn

The indefinitely small portion of material to be considered

is a h e d. It is limited by the co-ordinate planes located by

</>
and 0, and concentric spherical surfaces with radii r and

r + dr. The directions r, <, and 0, at any point, are rectangu-

lar
;
hence the sums of the forces acting on the small portion

of the material, taken in these directions, must be found and

put equal to

m
sf'

m
dt>'

and mW'
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in which expressions, p, t),
and w represent the strains in the

direction of r, </>,
and ^ respectively.

Those forces which act on the faces ah, bd, and cd will be

considered negative, and those which act on the other faces

positive.

The notation will remain the same as in the preceding

articles, except that the three normal stresses will be indi-

cated by Nry Nf, and A/V

Forces Acting Along r.

Nr .r dfy r cos $ d<f>.

-fATr .r
2 cos

<[> d$ d<j>

+ 2rNdr cosr dr\

dT^

T^.rcos $ d(j) dr.

.r cos
<{r d(f> dr

ft.
j,

N$ .r d<p dr. sin aOc N^> . r d
</t
dr . cos <p d(f>, on face ce.

AT^.rcos <[> d$ dr.smaOb = Nf.r cos
<[> d$ dr.d<l>,

on face be.

Forces Acting Along $.

T
r<3?

. r cos
</> d<j> r d 0.

cos rf# d<t>.
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N<J> . r d
(f>

dr.

T^.r cos d(j> dr.

+ 7^cos <f>.r d(j> dr

/J(T^cos <[>)
. . tdTt+j r T* t j \ j i j

+ (- ^
-d<l>=cos (ff-r^d^-T^

sin ^ d<f> jr d<f> dr.

+ T$r rd </;
dr . cos d<, on face c^.

m akc =
'

= -Trddr. sin

on face ce.

The lines a^ and c& are drawn normal to Oc and Oa.

Forces Acting Along <p.

Tr .r cos
<f> d<j>.r di[>.

d(Trd>r'
1

} ,

H
a = T r<l,

, rj ,

ar = T dr+2rTr<l,dr}cos
\
}

-T^.rd^dr.

NJ, . r cos $ d(j) dr.

.r cos

d ps N d

\-Tfr.r cos <f>d<t>dr.d</>, on face 6^.

f A^ .rd(I>dr.smakc=* + N^ r d</>dr.sm $ d<j>, on face
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The volume of the indefinitely vSmall portion of the

material is (omitting second powers of indefinitely small

quantities)

r cos
<l> d(f> . r d

<[>
. dr = J V,

and its mass is m multiplied by this small volume. The
latter may be made a common factor in each of the three

sums to be taken.

The external forces acting in the directions R, <, and ^
will be represented by

and

respectively.

Taking each of the three sums, already mentioned, and

dropping the common factor JV, there will result

dNr dT6r . AT*, , 2A>-.V (i-A^-r^tan
~jr~~rdr r cos (l>.d(j>

=W^72"> C 1 )

V I V T TT

dr r cos ^.^^ rc/^

+
* 1 ^ ^r 1_^LJLr + w^v. ^^

+ - VV7 +
Jr r cos 0<i^ r d0

2T^ + 7^- N# tan + N^ tan ^
^ y^, (a)^

Since r, ,
and

<[>
are rectangular at any point,

7 = 7, and T^T.
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Hence

These relations somewhat simplify the first members df

eqs. (2) and (3).

Eqs. (i), (2), and (3) are entirely independent of the

nature of the material
; also, they apply to the case of equi-

librium, if the second members are made equal to zero.

The rectangular rates of strain, at any point, in terms

of r, (j>,
and ^ are next to be found. As in the preceding

article, the rates of strain in the rectangular directions of

r, </>,
and ^ will be indicated by

dv' dwf duf
dv' duf

dy" ~dzT' dx?'dxn jy"
etc *

Remembering the reasoning in connection with the value

of ~j ,
in the preceding article, and attentively considering

Fig. i, there may at once be written,

du' _ da) p

In Fig. i, if ac = i and ab = CD, while ak=r cot. $ (oik is

perpendicular to aO), the difference in length between ac

and bh will be

w a> tan ^
r cot

<l>

~
r

This expression is negative because a decrease in length takes

place in consequence of a movement in the positive direction

of
r<f>.
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Again, a consideration of Fig. i, and the reasoning con-

nected with the equation above, will give

dw' dt] p a)tan(pp

r

Without explanation there may at once be written :

djS dp

dy
f ~dr'

Fig. i of this, and Fig. 2 of the /preceding article, give

du f
d<D aj dvf

= ~ dp

These are to be used in the expression for T^.
the same figures and method give

Precisely

dv' dp
r cos $ d<j>

dw dy y
and -j-f =-3 -,

dy dr r
1

which are to be used in finding T (f>r
.

dw'
, The expression for -7-7- will be composed of the sum of

two parts. In Fig. 2, ab is the original position of r d<{>, and

after the strain y exists it takes the position ec. Consequently
* ac (equal and parallel to bd and perpen-

dicular to ak) represents the strain
r),

while ed represents dy. Since, also, fc is

perpendicular to ck, the strains of the kind

y change the right angle fck to the angle

fce-t or the angle eck is equal to

dw' ed ca
j-r = ecd + dck = ~r + r
dx' dc ak

~~rd(/> r cot<!>'

In Fig. 2, the points a, 6, and k are

identical with the points similarly lettered in Fig. i. The

f _ 1 -iff

* ?
FIG. 2.
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expression for
j-j- may be at once written from Fig. i. There

may, then, finally be written,

du/ ^TI TI tan du' _ dcu= ~~*~ ~

These equations will give the expression for T^.
The value of

du' dv' dw'-+ +

now takes the following form:

dr) doj 2p ojtan

rdr~ r

The last two terms are characteristic of the spherical

co-ordinates.

The eqs. (20), (21), (22), (n), (12), and (13), of Art.

i, take the forms

<

di, do,
r,
tan

.

r
' ' '
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If these values are inserted in eqs. (i), (2), and (3), the

resulting equations will be applicable to isotropic material

only.

As in the preceding article, t is used to express the ratio

between direct and lateral strains, and has no relation what-

ever to the co-ordinate r.

It is- interesting and important to observe that the equa-
tions of motion and equilibrium for elastic bodies are only

special cases of equations which are entirely independent of

the nature of the material, of equations, in fact, which

express the most general conditions of motion or equilibrium.



CHAPTER IT.

THICK, HOLLOW CYLINDERS AND SPHERES, AND
TORSION.

Art. 5. Thick, Hollow Cylinders.

IN Fig. i is represented a section, taken normal to its

axis, of a circular cylinder whose walls are of the appreciable
thickness t. Let p and p^ represent the interior and exterior

intensities of pressures, respectively. The material will not

be stressed with uniform intensity throughout the thickness t.

Yet if that thickness, comparatively

speaking, is small, the variation will

also be small; or, in other words,

the intensity of stress throughout
the thickness t may be considered

constant. This approximate case

will first be considered.

The interior intensity p will be

considered greater than the exterior

pv consequently the tendency will

be toward rupture along a diametral plane. If, at the same

time, the ends of the cylinder are taken as closed, as will be

done, a tendency to rupture through the section shown in the

figure will exist.

The force tending to produce rupture of the latter kind

will be

F = n(pr"-ps*) (i)

847

FIG. i.
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If A7

! represents the intensity of stress developed by this

force,

If the exterior pressure is zero, and if r* is nearly equal to

In this same approximate case, the tendency to split the

cylinder along a diametral plane, for unit of length, will be

If Nf
is the intensity of stress developed by F'9

A7'
is thus seen to be twice as great as N

l
when p^

= o. If,

therefore, the material has the same ultimate resistance in

both directions the cylinder will fail longitudinally when the

interior intensity is only half great enough to produce trans-

verse rupture, the thickness being assumed to be very small and

the exterior pressure zero.

N! and N' are tensile stresses, because the interior pres-

sure was assumed to be large compared with the exterior. If

the opposite assumption were made, they would be found to

be compression, while the general forms would remain ex-

actly the same.
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The preceding formulas are too loosely approximate for

many cases. The exact treatment requires the use of the

general equations of equilibrium, and the forms which they
take in Art. 3 are particularly convenient. As in that article,

the axis of x will be taken as the axis of the cylinder.

Since all external pressure is uniform in intensity and
normal in direction, no shearing stresses will exist in the

material of the cylinder. This condition is expressed in the

notation of Art. 3 by putting

T$x
= Trx

= Tr<p
= o.

Again the cylinder will be considered closed at the ends,

and the force F, eq. (i), will be assumed to develop a stress

of uniform intensity throughout the transverse section

shown in Fig. i. This condition, in fact, is involved in that

of making all the tangential stresses equal to zero.

Since this case is that of equilibrium, the equations (2).

(3), and (4) of Art. 3 take the following form, after neglect-

ing XQt R ,
and :

dR R-

(7)

These equations are next to be expressed in terms of the

strains u, p, and w.

In consequence of the manner of application of the exter-

nal forces, all movements of indefinitely small portions of
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the material will be along the radii and axis of the cylinder.

Hence

u will be independent of r and
<j> ;

The rate of change, therefore, of volume will be (eq. (6)

of Art. 3)

du dp p
u = -j h~r~ + ~~

(o)dx dr r v '

As p is independent of x,
-j~

=
;T^ ;

hence if the value of

Nj be taken from eq. (7) of Art. 3 and put in eq. (5) of this

article,

dN, 26* d?u d 2u

dx ~i-2

But the transverse section in which the origin is located

may be considered fixed. Consequently if x = o, u=o and

thus a' =o. The expression for u is then u =ax.

The ratio u + x is the / of eq. (i), on page 3, while the

p of the same equation is simply N1
of eq. (2), given above.

Hence
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Again, eq. (8) of Art. 3, in connection with eqs. (8)

and (6) of this, gives

-^)=o.

:')

r dp-\- p dr =d(pr) = cr dr.

cr
2

cr b
.'. pr

= + b, or P =j + -. (10)

This value of p in eqs. (8) and (9) of Art. 3 will give

(12)

At the interior surface R must be equal to the internal

pressure, and at the exterior surface to the external pressure.

Or since negative signs indicate compression,

If r = r'

If r = r,

Either of these equations is the simple result of applying

eqs. (13), (14), and. (15) to the present case, for which

cos />=cos r =cos TT=COS
/?
=

o,

cos q = cos = i
,
and P = p or pt

.
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Applying eq. (n) to the two surfaces,

c b

b

Subtracting (14) from (13),

Inserting this value in eq. (13),

i-2t

The general expressions of R and N^, freed from the

arbitrary constants of integration, can now be easily written

by inserting these last two values in eqs. (n) and (12). By
making the insertions there will result

The stress N^ is a tension directed around the cylinder,

and has been called
"
hoop tension." Eq. (16) shows that the

hoop tension will be greatest at the interior of the cylinder.

An expression for the thickness, t, of the annulus in terms of

the greatest hoop tension (which will be called ti) can easily

be obtained from eq. (16).
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If r =/ in that equation,

Eq. (17) will enable the thickness to be so determined

that the hoop tension shall not exceed any assigned limit h.

If pl
is so small in comparison with p that it may be neg-

lected, t will become

:8)

If pl
is greater than p, N^ becomes compression, but

the equations are in no manner changed.
The values of the constants b and c may easily be found

from the two equations immediately preceding eq. (15).

It is interesting to notice that the rate of change of vol-

ume, 6, is equal to (a + c) and therefore constant for all

points.

Art. 6. Torsion in Equilibrium.

The formulas to be deduced in this article are those first

given by Saint-Venant, and established in substantially the

same manner.

It will in all cases, except that of the final result for a

rectangular cross-section, be convenient to use those equa-
tions of Art. 3 which are given in terms of semi-polar co-

ordinates.
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V

-o

Let Fig. i represent a cylindrical piece of material, with

any cross-section, fixed in the plane ZY, and let the origin of

co-ordinates be taken at 0. Let

it be twisted also by a couple

P.ab=Pl,

the plane of which is parallel to

ZY. The material will thus be

subjected to no bending, but to

pure torsion.

The axis of the piece is sup-
. posed to be parallel to the axis

of X as well as the axis of the

couple. Normal sections of the

piece, originally parallel to ZOF,
will not remain plane after tor-

sion takes place. But the tendency to twist any elementary

portion of the piece about an axis passing through its centre

and parallel to the axis ofX will be very small compared
with the tendency to twist it about either the axis of r or <;

consequently the first will be neglected. In the notation

of Art. 3, this condition is equivalent to making Tr^
= o.

As the piece is acted upon by a couple only, all normal

stresses will be zero.

Eqs. (7), (8), (9), and (u) of Art. 3 then become

T (I)

dp dw iv

. (3)

(4;
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After introducing the values of Trx and 7^, from eqs.

(10) and (12) of Art. 3, in eqs. (2), (3), and (4) of the same

article, at the same time making the external forces and

second members of those equations equal to zero, and bear-

ing in mind the conditions given above, there will result

dTrx dT^x Trx
J J ; '

dr rd(> r

d 2u d 2

p

(6)

d 2u

Also by eq. (6) of Art. 3,

e+
dx dr ra<p r

The cylindrical piece of material is supposed to be of

such length that the portion to which these equations apply
is not affected by the manner of application of the couple.

This portion is, therefore, twisted uniformly from end to

end; consequently the strain u will not vary with any
change in x. Hence

du

Eq. (i) then shows that 6 = 0. This was to be antici-

pated, since a pure shear cannot change the volume or
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density. Because =
o, eqs. (2) and (3) at once give

dp dw p

dr
=^ +

r
=0 (IO >

As the torsion is uniform throughout the portion con-

sidered,

dp dp .

-T- = O= 7- (n)dx r dx

Eq. (n), in connection with eq. (10), gives

d 2w
(

.

17-7=0 (12)
rdxd<f>

Eqs. (n) and (12), in connection with eq. (10), reduce

eci- (5) to the following form:

d 2u ,d
2u du d 2/

i= 0:=
55 2 " dr

d( }
lu

, \dr)

Both terms of the second member of eq. (6) reduce to

zero by eqs. (9) and (n), and give no new condition. The

second term of the second member of eq. (7) is zero by
eq. (9); -the remaining term therefore gives

d 2w

As the stress is all shearing, p will not vary with
<f>.

Hence
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Eqs. (10), (n), and (15) show that p-o, and reduce

eq. (4) to

dw w- = 0. .' , . . ./. ( I6 )

Eq. (10) now becomes =o, and shows that w does

not contain 0; while eq. (14) shows that w does not con-
tain x 2 or any higher power of x. The strain w, in connec-
tion with these conditions, is to be so determined as to sat-

isfy eq. (16).

If a is a constant, the following form fulfils all condi-
tions :

w=--arx........ (17)

Eq. (17) shows that the strain w, in the direction of 0,

i.e., the angular strain at any point, varies directly as the dis-

tance from the axis of X, and as the distance from the origin

measured along that axis. This is a direct consequence of

making 7^ = 0.

The quantity a is evidently the angle of torsion, or the

angle through which one end of a unit of fibre, situated at

unit's distance from the axis, is twisted
;
for if

An equation of condition relative to the exterior surface

of the twisted piece yet remains to be determined ;
and that

is to be based on the supposition that no external force what-

ever acts on the outer surface of the piece. In eqs. (13),

(14), and (15) of Art. 2, consequently, P = o. The conditions

of the problem also make all the stresses except

T = T and T
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equal to zero, while .the cylindrical character of the piece

makes
= 90; .*. cos p=o.

If cos t be written for cos r,

cos t = sin q.

Eq. (13), just cited, then gives

Txr cos q + T<f,x sin q = o (18)

But since p
= o and w = arx,

Txr =G^ (19)dr

and

Eq. (18) now becomes

rf*

dr,
, . . . (21)

in which r is the value of r for the perimeter of any normal

section.

Eqs. (13) and (21) are all that are necessary and all that

exist for the determination of the strain u. Eq. (13) must
be fulfilled at all points in the interior of the twisted piece,

while eq. (2 1 ) must at the same time hold true at all points
of the exterior surface.
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After u is determined, Txr and T
x<f>

at once result from

eqs. (19) and (20). The resisting moment of torsion then

becomes

In this equation IP = J Jr
2

. r dc/> dr is the polar moment of

inertia of the normal section of the piece about the axis of

X, and the double integral is to be extended over the whole

section.

According to the old or common theory of torsion

M=GaIP .

The third member of eq. (22) shows, however, that such an

expression is not correct unless u is equal to zero
; i.e., unless

all normal sections remain plane while the piece is subjected
to torsion. It will be seen that this is true for a circular sec-

tion only.

It may sometimes be convenient to put eq. (22) in the

following form:

r r du
. fM =G I I rdr.-Tjd(j)-{-GaIp

=GI u.rdr+ Ga!p . (23)

In this equation u is to be considered as

/*
du
-rd^j
dfp

while the remaining integration in r is to be so made that

the whole section shall be covered.
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The preceding analysis shows that the old or common

theory of torsion is correct in its expression for torsive

strain, as it is identical with eq. (17) of Art. 6, i.e.,

but it will be seen later that the remaining formulae of the

common theory are incorrect for all shapes of cross-section

except the circle. Fortunately the torsion members prin-

cipally used in engineering practice are shafts of circular

section.

Equations of Condition in Rectangular Co-ordinates.

In the case of a rectangular normal section, the analysis

is somewhat simplified by taking some of the quantities

used in terms of rectangular co-ordinates.

In the notation of Art. 2 all stresses will be zero except
T

3
and T

2
. Hence eqs. (10), (n), and (12) of that article

reduce to

dT, dT
2

dy dz ~-'

d%

doo

=o;

= o.

The strains in the directions of x, y, and z are, respec-

tively, 11, v, and w. Introducing the values of T
s
and T

2

in the equations above, in terms of these strains, from

eqs. (n) and (13) of Art. i, and then doing the same in

reference to the conditions,
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the following equations will result:

57+5?=' ...... (26)

dv dw

The operations by which these results are reached are

identical with those used above in connection with semi-

polar co-ordinates, and need not be repeated.

Eq. (27) is satisfied by taking

v = axz
;

w = '

axy ;

in which a is the angle of torsion, as before.

Eqs. (n) and (13) of Art. 5 then give

dv -
, c

(28)

du dw\ du

The element of a normal section is dz dy. Hence the

moment of torsion is

/. M=Gf(zudz-yudy)+GaIP..... (31)
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is the polar moment of inertia of any section about the

axis of X.

The integrals are to be extended over the whole section
;

hence, in eq. (31), zu dz is to be taken as

zdz. I y-dyJ -y dy
*

and yu dy as

in which expressions y and are general co-ordinates of

the perimeter of the normal section.

Eq. (26) is identical with eq. (13), and can be derived

from it, through a change in the independent variables, by
the aid of the relations

> and =rsin<.

Solutions of Eqs. (13) -and (21).

It has been shown that the function u, which represents

the strain parallel to the axis of the piece, must satisfy

eq. (13) [or eq. (26)] for all points of any normal section,

and eq. (21) (or a corresponding one in rectangular co-

ordinates) at all points of the perimeter ;
and those two are

the only conditions to be satisfied.

It is shown by the ordinary operations of the calculus

that an indefinite number of functions u, of r and 0, will

satisfy eq. (13) ; and, of these, that some are algebraic and

some transcendental.

It is ftirther shown that the various functions u which

satisfy both eqs. (13) and (21) differ only by constants.
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If u is first supposed to be algebraic in character, and if

cv c
2 ,

c
3 , etc., represent constant coefficients, the following

general function will satisfy eq. (13):

_ sn (> + cr sn 2<-K sn

and the following equation, which is supposed to belong to

the perimeter of a normal section only, will be found to

satisfy eq. (21) :

r 2

+ c.r cos
(/) + c

2
r
2 cos 2< + 3

r
3 cos

2

c
f

l
r sin <p c

f

2
r
2
sin 2 < c'

s
r
s
sin 3 (f>

. . .
= C. (33)

C is a constant which changes only with the form of

section.

T , du du , . dr
If -r- and *

,
be found from eq. (32), while -7-7 be

taken from eq. (33), and if these quantities be then intro-

duced in eq. (21), it will be found that that equation is

satisfied.

The only form of transcendental function needed,

among those to which the integration of eq. (13) or eq. (26)

leads, will be given in connection with the consideration of

pieces with rectangular section, where it will be used.

Elliptical Section about its Centre.

Let a cylindrical piece of -material with elliptical normal

section be taken, and let a be the semi-major and b the

semi-minor axis, while the angle < is measured from a

with the centre of the ellipse as the origin of co-ordinates,

since the C3
7linder will be twisted about its own axis. The
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polar equation of the elliptical perimeter may take the

following shape:

"" + """ '

~~r~TT? COS 2 =
2 2 a 2 + 6 2 Y

By a comparison of eqs. (33) and (34), it is seen that

c
2
=

(a*~?b 9\ and C= ? , a ,

and that all the other constants are zero. Hence eq. (32)

gives

6
2-a 2 a

U = a
2 (a* + b

2
)

Sm 2 ^ =^r sm 2 ^' ' ' (35)

The quantity represented by / is evident.

By eqs. (19) and (20)

b 2 a 2

r sin 2(56; ..... (36)

H. . . . (37)

Since
'

=^^4, A being the area of the ellipse, or

nab, the second member of eq. (22), by the aid of eq. (37),

may take the form

M =Ga I dd> I -2 r-S cos 2
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Then using eq. (34),

(38)

If Ip is the polar moment of inertia of the ellipse (i.e.,

about an axis normal to its plane and passing through its

centre), so that

then

M =Ga 55-7-.
47r"L>

Using / in the manner shown in eq. (35), the resultant

shear at any point becomes, by eq. (24),

+ 2 cos

dT

gives

siri2< =
o, or ^ = 90 or o.

Since / is negative, T will evidently take its maximum
when

<j>
has such a value that 2} cos 2^ is positive, or

<j>

must be 90.
Hence the greatest intensity of shear will be found some-

where along the minor axis. But the preceding expression

shows that T varies directly as the distance from the centre.

Hence the greatest intensity of shear is found at the extremities

of the minor axis.
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Making <
= 90 and r = b in the value of T,

2a 2b

[Ch. II.

(40)

Taking Ga from eq. (40) and inserting it in eq. (38),

(41)

in which

or the moment of inertia of the section about the major axis.

Equilateral Triangle about its Centre of Gravity.

This case is that of a cylindrical piece whose normal cross-

section is an equilateral triangle, and the torsion will be sup-

posed about an axis passing through
the centres of gravity of the different

normal sections. The cross-section is

represented in Fig. 3, G being the H

centre of gravity as well as the origin

of co-ordinates.

Let GH = \GD =a. Then from the {
known properties of such a triangle, FIG. 3.

FD =DB --=BF = 2a\/3.

2a r cos d>

Hence the equation for DB is
;
r sin

</)

--
;=

z = o .

Hence the equation for BF is
;

r cos < f a = o .

Hence the equation for FD is
;
r sin

<f> + - ,-=
- = o .
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Taking the product of these three equations and reduc-

ing, there will result for the equation to the perimeter

</>=
-...... (42)

2 6a 3

Comparing this equation with eq. (33)

i 20,

T~ and C =
6a 3

j r- 2a
c
s
= and C=

Hence

=0.6 GaIP = i.S G'aaV; . (46)

since 7^,= polar moment of inertia = 3
4 \/3.

6a

And by eqs. (19) and (20)

Txr
= -Ga- ^-; ..... (44)

- ..... (45)

Eq. (22) then gives

M=CaIt -Gaf r-
t/ y
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By eq. (24)

<t>
r'

a" +^< (47)

.". ~JT = O gives sm30=o,

or

0=o, 60, 120, 180, 240, 300, or 360.

The values o, 120, 240, and 360 make

cos 30= +i;

hence, for a given value of r, these make T a minimum. The
values 60, 1 80, and 300 make,

hence, for a given value of r, these make T a maximum.
Putting cos 30 = i in eq. (47),

(48)

This value will be the greatest possible when r is the

greatest. But $ = 60, 180, and 300 correspond to the nor-

mal a dropped on each of the three sides of the triangle

from G. Hence r = a, in eq. (48), gives the greatest intensity
of shear T

,
or

yn *

(49)
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Or the greatest intensity of shear exists at the middle point

of each side. Those points are the nearest of all, in the

perimeter, to the axis of torsion.

The value of Ga, from eq. (49), inserted in eq. (46),

gives

Z
3T

'

in which /= side of section = 2<n/3.

Rectangular Section about an Axis passing through its

Centre of Gravity.

In this case it will be necessary to consider one of the

transcendental forms to which the integration of eq. (13)

[or (26)] leads; for if the polar equation to the perimeter be

formed, as was done in the preceding case, it will be found

to contain r
4

,
to which no term in eq. (33) corresponds.

If e is the base of the Napierian system of logarithms

(numerically = 2.71828, nearly) and A any constant what-

ever, it is known that the general integral of the partial

differential eq. (13) may be expressed as follows:

But the second member of this equation is evidently

equal to zero if

or
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These relations make it necessary that neither n or n' shall

be imaginary.

It will hereafter be convenient to use the following no-

tation for hyperbolic sines, cosines, and tangents :

By the use of Euler's exponential formula, as is well

known, and remembering that n'
2=n 2

, eq. (51) may be

put in the following form :

u = Ienr cos * [A n sin (nr sin
<j>) +A' H cos (nr sin $)],

in which the sign of summation is to be extended to all pos-

sible values of A n and A' n . At the centre of any section for

which r is zero, u must be zero also, for the axis of the piece

is not shortened. This condition requires that A' n
= o; u

then becomes

u = Ienr cos * A n sin (nr sin <) .

The subsequent analysis will be simplified by introduc-

ing the form of the hyperbolic sine, and this may be done

by adding and subtracting the same quantity to that al-

ready under the sign of summation, in such a manner that

u = 2\A n sin (nr sin <p) . sih (nr cos <)

+ %A sin (nr sin <) e~ nr cos
#]. (52)

Now if the product

sin (nr sin <f>)
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be developed in a series and multiplied by A nt one term will

consist of the quantity

r
2
sin

(j>
cos <

multiplied by a constant, and if

IA
n sin (nr sin

<j>)
e
~ nrcos ^

be replaced by simply,

ar 2
sin

</>
cos <,

all the conditions of the problem will be found to be satis-

fied. This is equivalent to putting

ar 2
sin < cos

<j>

for a general function of r sin
(f>
and r cos <. This change will

give the following form to
,
first used by Saint-Venant :

u = IA n sin (nr sin 0) . sih (nr cos <) ar 2
sin

<j>
cos <. (53)

Fig. 4 represents the cross-section with C as the origin of

co-.ordinates and axis. The angle (j>
is measured positively

1

^''
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equation to the perimeter, dr will be zero. Hence at those

points, by eq. (21),

-i- = I[A n sin (nr sin
<j>)

. n cos
<j>

. coh (nr cos <)

. n sin
</>

. cos (nr sin <) . sih (nr cos </>)]

2ar sin (> cos < =o.

At the points under consideration < has the values o,

90, 1 80, 270, and 360. At the points N and K, <j>
=0 or

180; hence sin
</>
=

o, and both terms of the second mem-

ber of
-j-

reduce to zero, whatever may be the value of n.

But at H and L, <
= 90 and 270 ;

hence sin
<j>
= + i or i

and cos < = o.

In order, then, that -r* =o at H and L, these must obtain :

cos nr = cos ( nr)= o.

If HL=c and KN =
b, then

nc
cos -

2
=COS

(~T)
==O (54)

If the signification of n be now somewhat changed so as

to represent all possible whole numbers between o and oo
,

eq. (54) will be satisfied by writing

2n i
7T

c
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for n in that equation. Eq. (53) will then become

<*>
. /2tt I . \ /2H I

u = 2A n sin I
- nr sin < ) . sih (

1 \ C / \
nr cos

\ C

?
. . . (55)

The quantity A n yet remains to be determined by the

aid of eq. (21), which expresses the condition existing at

the perimeter of any section.

Now, for the portion BN of the perimeter,

b
r cos <p

=
>

and - A will be the tangent of (<), or

dr =- tan (-</>)= tan <.

Hence eq. (21) becomes

!u

^
= tan

<j>, (56)

du

dr

du

or

dw du .

ar sin (
= cos ^~ sm <^'

Substituting from eq. (55), then making

r cos <=-,

2HI . 2HI , . 2HI
r sin = J.4 .

-
. coh- fc . sm *r sm
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If r sin
cj) be represented by the rectangular co-ordinate

y, and another quantity by H, the above equation may be
written

TT .

. . . -//sm

c

2H

If both sides of this equation be multiplied by

-I \
,

nyJ.dy,

2H-
sin

and if the integral then be taken between the limits o

and -, it is known from the integral calculus that all terms

except the nth will disappear, and that

c_

2
-

sm

Completing these simple integrations,

# =

Hence

/ T \ II J. /~- .*

/l _
v
~ T /

c 4
^ M 7 \ ' 2

"
/ \
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If this value of A n be put in eq. (55), and if rectangular

co-ordinates

=r$m(> and 2=

be introduced, that equation will become

3/2\ 3
ac^S

W '

.Slh

(57)

This value of u placed in eq. (31) will enable the moment
of torsion to be at once written.

The limits +y Q and y are +- and
,
and the limits

and Z Q are -f- and -. Hence

H-= abc

n,2 Slh

b-tfi f
\

1

2H i)
3 COh 2^,1,)2C / J

= Q, for brevity;

= abc

/ vi (-i) 71
" 1^ sih( -Kb) .sin (-^-ny)

-(-} -2 \ 2c I \ c 'i r

\ 2(7 / J
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For the next integration

[Ch. II.

/-\

2

Qzdz =
b

abc
12

2bc
.coh:

/ \ ..
(2H I)n 2C

*^*ti
2C /

(2W-l)
3

f/Rydy
=

12 \xj b x

2C

i)
3 coh (Szirt)\ 2C / J

Thus the integrations indicated in eq. (31) are com

pleted. Hence

M =

Remembering that

^=6^

M
tah

( Tib]

_ *.*&*?* L_ 64C
4

^, \ 2C /
= CzaL 6

" "

^ t(2"-l)
4

7T
5 t (2W-I)

5 J' (58)

But it is known that

2 7T
1

T (2W l)
4

1.2.3 2
5
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Hence eq. (58) becomes

r
|_

tah

. (S9)

Since

(i

tah TT i tah 37T- i tab 5^ \~
~Y~ ~?~ 7

tah Ti tah ;: tah

i 3
5

5
s

and since

64 = 0.209137,

and remembering that

-f. / \ f /

2(^rJ = i+ 5
+ 4 + -(* i

* \ .

'

/ o o \

eq. (59) becomes

3

|

-
0.210083^-

L 3

0.209137^1-
-+

,--:<* .... ,-
i tah -

i tah
2C

Eq. (60) gives the value of the moment of torsion of a

rectangular bar of material.
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If z had been taken parallel to b, and y parallel to c, a

moment of equal value would have been found, which can

be at once written from eq. (60) by writing b for c and c for 6.

That moment will be

M --=Gacb*\ 0.210083-

, ,

i-tah-r i-tah-r-

+ 0.209137-!- -+---5
--

+.../ |. (6i)
*".

Eq. (60) should be used when b is greater than c, and eq.

(61) when c is greater than 6, because the series in the paren-

theses are then very rapidly converging, and not diverging.

It will never be necessary to take more than three or four

terms and one, only, will ordinarily be sufficient. The follow-

ing are the values of

/ 1
"7T\

(x-tehT)

for a few values of n:

1 1 tah
j
=0.083 : -373 : 0.000162 : 0.000007 ;

Square Section.

If c=b either eq. (60) or.eq. (61) gives

M=Gab 4
\

0.2101+0.209(1 tah-J ;

44
.*. M =0.1406 Gab 4 = Ga -

j-,
. . (62)

42.7 J- +
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in which A is the area (
= 6

2 )
and IP is the polar moment of

/ b*\
inertia =.

Rectangle in which b = 2C.

If b = 2C, eq. (60) gives

**Ga*2C* 0.105 + 0.1046 (i tah n) ;

4 4

;
-

. .- (63)
42

in which A is the area (
= 2C

2
) and 7^,

= polar moment of in-

ertia

12 6

Rectangle in which b = 4.0.

If b = 4C, eq. (60) then gives

!
0.0525

J
=1.123 Gac4

',

\o /

. . . -. . . . . (64). -^--r, . . . . . . .

40-2 IP

in which A =area = 4<:
2 and IP

=
polar moment of inertia

12
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If b is greater than 20, it will be sufficiently near for all

ordinary purposes to write

M--=Ga li-o.6ir

Greatest Intensity of Shear.

There yet remains to be determined the greatest inten-

sity of shear at any point in a section, and in searching for

this quantity it will be convenient to use eqs. (28) and (29).

It will also be well to observe that by changing z to y,

y to z, c to 6, and b to c, in eq. (57), there may be at once

written

. 2H

(2H l)
3Coh

2b

. (66)

This amounts to turning the co-ordinate axes 90.
Since the resultant shear at any point is

it will be necessary to seek the maximum of

du \
2 Idu T 2

The two following equations will then give the points

desired :
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/du \d*u /du=
(^

+az)w + (^-

d/ir\
\G

2

/ /du \/ d*u \ /du \d*u_\ ^ = / +a2j)(
- +a \ + ( _ ay

\ =0, (68 )dz \dy / \dzdy ) \dz ^Jdz
2

It is unnecessary to reproduce the complete substitu-

tions in these two equations, but such operations show that

the points of maximum values of T are at the middle points of

the sides of the rectangular sections, omitting the evident fact

that r = o at the centre. It will also be found that the great-

est intensity of shear will exist at the middle points of the

greater sides.

This result may be reached independent of any analytical

test, by bearing in mind that an elongated ellipse closely

approximates a rectangular section, and it has already been

shown that the greatest intensity in an elliptical section is

found at the extremities of the smaller axis.

By the aid of eqs. (28), (29), (57), and (66), it will also

be found that T
3
= o at the extremities of the diameter c,

and T
2
= o at the extremities of the diameter b. The maxi-

mum value of T will then be

By the use of eq. (57)

du~ aydz

(2n i)
2 coh (

--no 1
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Putting z=o and y = in this equation, there will result

il-GoTi-Al rl-- (70)

If b is greater than c the series appearing in this equation
is very rapidly convergent, and it will never be necessary to

use more than two or three terms if the section is square, and

if b is four or five times c there may be written

(71)

Square Section.

Making b =c in eq. (70), and making n = i, 2, and 3 (i.e.,

taking three terms of the series), there will result

0.676 Gac; :.'Ga = 1.48 -.
c

Inserting this value in eq. (62),

M
< ,

-p, .... (73)

in which

T A c
1= and a=-=-,

12 22
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Rectangular Section; b = 2C.

Making b = 2C in eq. (70), and making n = i, only, there

will result

r
T =o.9$Gac', .'. Ga = i.o&-*.

c

Inserting this value in eq. (63),

- (74)

M M
a^2 3 , .... (75)

in which

r be
3

c
4

^ c
I =-2~ and a = .126 2

Rectangular Section; b=4C.

Making b = ^c in eq. (70), and making w = i, only,

Tm =0.997
'

Inserting this value in eq. (64),

M = i. 126 r
37m

=
1.69^.

> (76)

..... (77)

in which

= = and a=-.
123 2
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Circular Section about its Centre.

The torsion of a circular cylinder furnishes the simplest

example of all.

If r is the radius of the circular section, the polar equa-
tion of that section is

= C (constant).

Comparing this equation with eq. (33), it is seen that

By eq. (32) this gives u = o. Hence all sections remain

plane during torsion.

Eqs. (19) and (20) then give

Txr
= o and Tx^=Gar (78)

Eq. (23) gives for the moment of torsion

M=GaIpt (79)

or

in which equation A is the area of the section and

4

P 2
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The greatest intensity of shear in the section will be ob-

tained by making r = r in eq. (78), or

;

.-.C=-^.
. . . . (81)

Eq. (80) then becomes

Jl/ = o.5 7rr
sr m = 2 (82)

r o

A/ M
.'. rm =o.64 3 =o. 5yr , (83)

in which / =
4

It is thus seen that the circular section is the only one

treated which remains plane during torsion.

General Observations.

The preceding examples will sufficiently exemplify the

method to be followed in any case. Some general conclu-

sions, however, may be drawn from a consideration of

eq. (33).

If the perimeter is symmetrical about the line from

which
<j)

is measured, then r must be the same for + <f>
and

$ ;
hence

c/
= c

2

f = c
s

' =
. . .

= o.

If the perimeter is symmetrical about a line at right

angles to the zero position of r, then r must be the same for

(h = oo -f~ <b and QO <p \
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hence

^=^3 = ^5. =cj=cf=cj- .... =o.

In connection with the first of these sets of results,

eq. (32) shows that every axis of symmetry of sections repre-
sented by eq. (33) will not be moved from its original position

by torsion.

If the section has two axes of symmetry passing through
the origin of co-ordinates, then will all the above constants

be zero, and its equation will become

cos 2
<j> + c

4
r

4 cos 4^ + c^r* cos

Art. 7. Torsional Oscillations of Circular Cylinders.

Two cases of torsional oscillations will be considered,

in the first of which the cylindrical body twisted is sup-

posed to be the only one in motion. In the second case,

however, the mass of the twisted body will be neglected,

and the motion of a heavy body, attached to its free end,

will be considered. In both cases the section of the cylin-

der will be considered circular.

Since these cases are those of motion, the internal

stresses are not, in general, in equilibrium; hence equations

of motion must be used, and those of Art. 3 are most con-

venient. Of these last, the investigations of the preceding

article show that eq. (4) is the only one which gives any
conditions of motion in the problem under consideration.

Putting the value of

r1 = rdw(j
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in eq. (4) of Art. 3, that equation may take the form

Gd 2w
or

~df~-dx* =0 ' ' to

>"

For brevity, 6
2
is written for .

That dimension of the cross-section of the body which
lies in the direction of the radius will be assumed so small

that w may be considered a function of x and t only. The
results will then apply to small solid cylinders and all hollow

ones with thin walls.

The general integral of eq. (i), on the assumption just

made, is (Books'
"
Differential Equations," Chap. XV,

Ex. i)

in which / and F signify any arbitrary functions whatever.

Now it is evident that all oscillations are of a periodic char-

acter, i.e., at the end of certain equal intervals of time, w
will have the same value. Hence since / and F are arbitrary

forms, and since circular functions are periodic, there may
be written

w --= A n {
sin (a n

x + a ,bt) + sin (a nx-a bt) }

-J5
M {cos (a nx + a Hbt)-cos (a nx-a ubt)}, (2)

in which a n ,
A

n ,
and B n are coefficients to be determined.

Substituting for the sines and cosines of sums and differ-

ences of angles,

w = 2 sin a nx(A H cos a nbt + B tt
sin a nbt). . . (3)

Let the origin of co-ordinates be taken at the fixed end

of the piece, w must then be equal to zero, as is shown by
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eq. (3). But there may be other points at which w is always
equal to zero, whatever value the time / may have. These

points, called nodes, are found by putting w =
o, or

sin ax = o (4)

This equation is satisfied by taking

TT 2?r 3?r nn
a "

=
a' "a"' "a"'

"
'. a'

and x = a
;
in which a is the length of the piece.

Hence at the distances

a a

? 3'

from the fixed end of the piece, there, will exist sections which

are never distorted or moved from their positions of rest. These

are called nodes, and one is assumed at the free end, although
such an assumption is not necessary, since a is really the

distance from the fixed end to the farthest node and not

necessarily to the free end.

If, as is permissible, A n and Bn be written for twice

those quantities, the general value of w now becomes

Tixf . nbt nbt\= sin ( A
l
cos + B l

sin I

7tX/
.

a \

w =

27ibt 27rbt\

+ sin -- .4, cos - - + By sin -

a /

+ sm i

, cos + 5, sin ^-}a a I

nr.x/ . nnbt . m:bt\
+ sin (A n cos

-^- +
Bn sin

j.
. . (5)
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The coefficients A and B are to be determined by the

ordinary procedure for such cases. Let

be the expression for the initial or known strain at any point,

for which the time t is zero. Then if A n is any one of the

coefficients A,

r\ I & -t/l TT'Y"

A n=~ / <(*)sm--d#. "v;V . . (6)
LI*/ 0- U

The velocity at any point, or at any time, will be given

by

dw . nxf . nbt _ nbt\7ib
-r = sm (Asm-- B. cos ) . . . (7)
dt a \ 1 a a / a

In the initial condition, when the time is zero, or J=o,

it has the given, or known, value

Then, as before,

Thus the most general value of w is completely deter-

mined.

The intensity of shear at any place or time is given by

dw

w being taken from eq. (5).
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The second case to be treated is that of the torsion pen-

dulum, in which the mass of the twisted body is so incon-

siderable in comparison with that of the heavy body, or

bob, attached to its free end that it may be neglected.

Let M represent the mass of the pendulum bob, and k

its radius of gyration in reference to the axis about which it is

to vibrate, then will Mk~ be its moment of inertia about the

same axis.

The unbalanced moment of torsion, with the angle of

torsion a, is, by eq. (9) of Art. 6,

The elementary quantity of work performed by this

unbalanced couple, if
ft is the general expression for the

angular velocity of the vibrating body, is

GaIP .pdt.

This quantity of energy is equal in amount but opposite
in sign to the indefinitely small variation of actual energy
in the bob

;
hence

Galf3dt =-d

But if a is the length of the piece twisted,

d(aa)= and
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Multiplying this equation by 2d(aa), and for brevity

putting

then integrating and dropping the common factor a 2
,

When a=av the value of the angle of torsion at the

extremity of an oscillation, the bob will come to rest and

- will be zero. Hence
ai

and

da H ,

^\ .at;

.'. $m-i~ =t\~ + (C'=o). . . . (9)

C' =o because a and t can be put equal to zero together.

At the opposite extremities of a complete oscillation a

will have the values

and (-aj.

Putting these values in the expression
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and taking the difference between the results thus obtained,

the following interval of time for a complete oscillation will

be found:

(:

The time required for an oscillation is thus seen to vary

directly as the square root of the moment of inertia of the bob

and the length of the piece, and inversely as the square root of

the coefficient of elasticity for shearing and the polar moment

of inertia of the normal section of the piece twisted.

The number of complete oscillations per second is -. If

this number is the observed quantity, the following equa-
tion will give G :

if

The formulas for this case should only be used when the

mass of the cylindrical piece twisted is exceedingly small in

comparison with M.

Art. 8. Thick, Hollow Spheres.

In order to investigate the conditions of equilibrium of

stress at any point within the material which forms a thick

hollow sphere, it will be most convenient to use the equa-
tions of Art. 4. As in the case of a thick hollow cylinder,

the interior and exterior surfaces of the sphere are supposed
to be subjected to fluid pressure.

Let r' and r
l
be the interior and exterior radii, respec-

tively.

Let p and p^ be the interior and exterior intensities,

respectively.
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Since each surface is subj ected to normal pressure of uni-

form intensity no tangential internal stress can exist, but

normal stresses in three rectangular co-ordinate directions

may and do exist. Consequently, in the notation of Art. 4,

TV =
T<j,r

= TW = o.

With a given value of r, also, a uniform state of stress

will exist. Neither N</, nor N^ can, then, vary with <p or
<f>.

By the aid of these considerations, and after omitting R
,

<P
, ^o, and the second members, the eqs. (i), (2), and (3)

of Art. 4 reduce to

dN,
'

r
.....

(2)

dr
'

By eq. (2)

Eq. (i) then becomes

Nr -N+

On account of the existing condition of stress which has

just been indicated it at once results that

ij

= a>=o,

and that p is a function of r only.

Eqs. (4) to (10) of Art. 4 then reduce to

(4)
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After substitution of these quantities, eq. (3) becomes

l(Pp 2rdp2pdr\ ^d
2
o dp p

FT: -f 5-H + 2G--7-.r + 4,6 ; 4U^ =0,

One integration gives

dp 20
(7)

Hence 0, the rate of variation of volume, is a constant

quantity. Eq. (7) may take the form

rdf} + 2f)dr
= cr dr.

As it stands, this equation is not integrable, but, by in-

specting its form, it is seen that r is an integrating factor.

Multiplying both sides of the equation, then, by r,

2rpdr =d(r
2

p) =cr
7

dr;

... (8)

Substituting from eqs. (7) and (8) in eq. (5),

A 4bGA- ,.

It is obvious what .4 represents.
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When / and r
t
are put for r, Nr becomes -p and -ft.

Hence

and

These equations express the conditions involved in eqs.

(13), (14), and (15) of Art. 2.

The last equations give

r
/ 3 _ 3

These quantities make it possible to express Nr and N+
independently of the constants of integration, c and b, for

those intensities become

ft-pr Pl-prr i.

/S.S ^S.S r3,

Thus it is seen that A^=A^ has its greatest value for

the interior surface; that intensity will be called h.

It is now required to find r
l

r
f =tin terms of h, p, and pv

If r =r' in eq. (n) f
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Dividing this equation by r'
3 and solving,

r
t

a

If the intensities p and pl
are given for any case, eq. (12)

will give such a thickness that the greatest tension h (sup-

posing pl considerably less than p) shall not exceed any

assigned value. If the external pressure is very small com-

pared with the internal, p1 may be omitted.

The values of A and 46*6 allow the expressions for c and

b to be at once written.

If p^ is greater than p, nothing is changed except that

N+N+ becomes negative, or compression.



CHAPTER III.

THEORY OF FLEXURE.

Art. 9. General Formulae.

IF a prismatic portion of material is either supported at

both ends, or fixed at one or both ends, and subjected to

the action of external forces whose directions are normal

to, and cut, the axis of the prismatic piece, that piece is said

to be subjected to
"
flexure." If these external forces have

lines of action which are oblique to the axis of the piece, it

is subjected to combined flexure and direct stress.

Again, if the piece of material is acted upon by a couple

having the same axis with itself, it will be subjected to
"
tor-

sion."

The most general case possible is that which combines

these three, and some general equations relating to it will

first be established.

The co-ordinates axis of X will be taken to coincide with

the axis of the prism, and it will be assumed that all external

forces act upon its ends only. Since no external forces act

upon its lateral surface, there will be taken

retaining the notation of Art. 2. These, conditions are not

strictly true for the general case, but the errors are, at most,

excessively small for the cases of direct stress or flexure, or

897
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for a combination of the two. By the use of eqs. (12), (21),

and (22) of Art. i the conditions just given become

r (du dv (h^\ J_d^_ / \+ ^~
r (du dv dw dw

dv dw

Eqs. (i) and (2) then give

dv dw
(4)

In consequence of eq. (4) eqs. (i) and (2) give

dv dw du

By the aid of eq. (5) and the use of eqs. (n), (13), and

(20) of Art. i, in eqs. (10), (n), and (12) of Art. 2 (in this

case X = y o =Z =
o), there will result

d2u d 2v

^Ty
+ d^

d 2u d 2w
doc dz^ doc

, .

(8)

Eqs. (3), (5), (6), (7), and (8) are five equations of

condition by which the strains u, v, and.w are to be deter-

mined.
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Let eq. (6) be differentiated in respect to x:

d*u d zu

dx 3

dy
2 dx dzrdx

=
'

From this equation let there be subtracted the sum of

the results obtained by differentiating eq. (7) in respect to y
and (8) in respect to z:

d su d sv d 5w

In this equation substitute the results obtained by
differentiating eq. (5) twice in respect to x, there will result

d*

This result, in the equation immediately preceding eq.

(9), by the aid of eq. (5) will give

dx 2

dy
= o.

After differentiating eq. (7) in respect to y, and substi-

tuting the value immediately above,

d'u

Eqs. (9) and (10) enable the second equation preceding

eq. (9) to give

d̂ \
dx)
dz
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Let the results obtained by differentiating eq. (7) in

respect to z and (8) in respect to y be added :

d 3u d 3v . d 3w
dx dy dz dx 2 dz dx 2

dy

The sum of the second and third terms of the first mem-

ber of this equation is zero, as is shown by twice differentiat-

ing eq. (3) in respect to x. Hence

Jdu
d*u (dx,

_^

dy dz dx dy dz

Eqs. (9), (10), (n), and (12) are sufficient for the

determination of the form of the function -y-, if it be assumed
ax

to be algebraic, for

Eq. (9) shows that x2 does not appear in it
;

"
(10)

"

"
(12) yz

The products xz and xy may, however, be found in the

function. Hence if a, a
lf

a
2 , b, bv and b

2
are constants,

there may be written

du , v

(i3)

"Eq. (5) then gives

. . (14)
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Substituting from eq. (13) in eqs. (7) and (8),

(15)

The method of treatment of the various partial deriva-

tives in the search for eqs. (13) and (14) is identical with that

given by Clebsch in his
"
Theorie der Elasticitat Fester

Korper."

It is to be noticed that the preceding treatment has been

entirely independent of the form of cross-section or direction

of external forces.

It is evident from eqs. (13) and (14) that the constant a

depends upon that component of the external force which

acts parallel to the axis of the piece and produces tension or

compression only. For (pages 9, 10) it is known that

if a piece of material be subjected to direct stress only,

du dv dw
-j-

= a and -r=-r = w,
dx dy dz

the negative sign showing that ra is opposite in kind to a,

both being constant.

Again, if z and y are each equal to zero, eq. (13) shows

that

du ,

-j-
= a + ox.

dx

Hence bx is a part of the rate of strain in the direction of x

which is uniform over the whole of any normal section of the

piece of material, and it varies directly with x. But such a
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portion of the rate of strain can only be produced by an

external force acting parallel to the axis of X, and whose

intensity varies directly as x. But in the present case

such a force does not exist. Hence b must equal zero.

The eqs. (13), (14), (15), and (16) show that av b
l
and

dv b
2
are symmetrical, so to speak, in reference to the co-

ordinates z and y, while eqs. (13) and (14) show that the nor-

mal intensity A^ is dependent on those, and no other, ..con-

stants in pure flexure in which a = o. It follows, there-

fore, that those two pairs of constants belong to the two
cases of flexure about the two axes of Z and Y.

No direct stress A/^ can exist in torsion, which is simply a

twisting or turning about the axis of X.
Since the generality of the deductions will be in no man-

ner affected, pure flexure about the axis of Y will be con-
sidered. For this case

Making these changes in (13) and (14),

du

dv _dw du

dy dz
~ ~ r

~cfoc

= ~ r (ai
z + b

1xz). . . . (18)

* _du dv dw
dx dv dz

~ z (ai~T~t>i
x)( I ~ 2rh - (19)

Also,

(20)
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since

2G(r+i)=E.

Taking the first derivative of N
19

V).
;

..... (21)

This important equation gives the law of variation of

the intensity of stress acting parallel to the axis of a bent

beam, in the case of pure flexure produced by forces exerted

at its extremity. That equation proves that in a given nor-

mal section of the beam, .whatever may be the form of the

section, the rate of variation of .the normal intensity of stress is

constant
;
the rate being taken along the direction of the external

forces.

It follows from this that N^ must vary directly as the

distance from some particular line in the normal section

considered in which its value is zero. Since the external

forces F are normal to the axis of the beam and direction

of Nv and because it is necessary for equilibrium that the

sum of all the forces N
1dy dz, for a given section, must be

equal to zero, it follows that on one side of this line tension

must exist, and on the other compression.
Let A/" represent the normal intensity of stress at the

distance unity from the line, b. the variable width of the

section parallel to y, and let A = bdz. The sum of all the

tensile stress in the section will be

tz' fz'

Nz4=N\ zA.
Jo Jo

The total compressive stress will be

.'.I...'.' . - ,. fO

N\ zd.
J -2!
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The integrals are taken between the limits o and the greatest
value of z in each direction, so as to extend over the entire

section. In order that equilibrium may exist, therefore,

04-

FlG. I.

= 0. (22)

Eq. (22) shows that the line of no stress must pass through
the centre of gravity of the normal section.

This line of no stress is called the neutral axis of the

section. Regarding the whole beam, there will be a sur-

face which will contain all the neutral axes of the different

sections, and it is called the neutral surface of the bent

beam. The neutral axis of any section, therefore, is the

line of intersection of the plane of section and neutral sur-

face.

Hereafter the axis of X will be so taken as to traverse

the centres of gravity of the different normal sections

before flexure. The origin of co-ordinates will then be
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FIG. 2.

taken at the centre of gravity of the fixed end of the beam,
as shown in Fig. i.

The value of the expression (a l + b
lx), in terms of the

external bending moment, is yet to be determined. Con-

sider any normal section of the beam located

at the distance x from 0, Fig. i, and let

OA =/. Also, let Fig. 2 represent the sec-

tion considered, in which BC is the neutral

axis and df and d
1
the distances of the most

remote fibres from BC. Let moments of all

the forces acting upon the portion (l x) of

the beam be taken about the neutral axis BC. .If, again, b

is the variable width of the beam, the internal resisting

moment will be

[
N

lbzdz=E(al + b
lx)\ z\bdz.

J -di J -di

But the integral expression in this equation is the moment

of inertia of the normal section about the neutral axis, which

will hereafter be represented by /. The moment of the

external force, or forces, F, will be F(l x), and it will be

equal, but opposite in sign, to the internal resisting moment.

Hence

(23)

(24)

Substituting this quantity in eq. (16),

M
dx (25)
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It has already been seen (page 38) that eq. (25) is one

of the most important equations in the whole subject of the

"Resistance of Materials."

An equation exactly similar to (25). may of course be

written from eq. (15); but in such an expression M will

represent the external bending moment about an axis par-

allel to the axis of Z.

No attempt has hitherto been made to determine the

complete values of u, v, and w, for the mathematical opera-
tions involved are very extended. If, however, a beam be

considered whose width, parallel to the axis of Y, is indefi-

nitely small, u and w may be determined without difficulty.

The conclusions reached in this manner will be applicable

to any long rectangular beam without essential error.

If y is indefinitely small, all terms involving it as a factor

will disappear in u and w
; or, the expressions for the strains u

and w will be junctions of z and x only. But making u and w
functions of z and x only is equivalent to a restriction of

lateral strains to the direction of z only, or to the reduction

of the direct strains one half, since direct strains and lateral

strains in two directions accompany each other in the un-

restricted case. Now as the lateral strain in one direction

is supposed to retain the same amount as before, while the

direct strain is considered only half as great, the value of

their ratio for the present case will be twice as great as that

used on pages 9 to 12. Hence 2r must be written for r, in

order that that letter may represent the ratio for the unre-

stricted case, and this will be done in the following equations.
Since w and u are independent of y,

dw du dv
j = -j-

=
o, and To = G~r".

dy dy dx

But, by eq. (14),

v- - 2r(o 1 + btfzy + f(x, z).
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By eq. (3), since

dw

dy=>

dv d f

f(x, z) =o.

This equation, however, involves a contradiction, for it

makes f(x, z) equal to a function which involves y t
which is

impossible. Hence

f(x,z) =o.

Consequently

dv

which is indefinitely small compared with

dv

^=- 2r(a1 + b
lx)z,

and is to be considered zero

Because f(x,z)=o,

dv
~j~

= iro.zy.dx

This quantity is indefinitely small; hence

is of the same magnitude.
Under the assumption made in reference to y, there may

be written, from eqs. (17) and (18),

.... (26)

. (27)



98 THEORY OF FLEXURE. [Ch. III.

Using eq. (26) in connection with eq. (6),

By two integrations,

". . (28)

Using eq. (27) in connection with eq. (8),

By two integrations,

a.x
-J

The functions u and w now become

. x 2
b.z

3

uajcz+biz -c'z + c"; . . . (29)

w = _ ra^ - rb.xz
2 - b - - + c,x+ cir . (30)

The constants of integration c
f

,
c"

, etc., depend upon
the values of u and w, and their derivatives, for certain

reference values of the co-ordinates x and z, and also

upon the manner of application of the external forces, F, at

the end of the beam, Fig. i . The last condition is involved

in the application of eqs. (13), (14), and (15) of Art. 2.
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In Fig. i let the beam be fixed at 0. There will then

result, for x = 6 and 2 = 0,

du

In virtue of the last condition,

c"=cn =o.

In consequence of the first,

c'=o.

After inserting these values in eqs. (29) and (30),

du , x 2

dw . x
. -rb

l
z*-b

1

-

The surface of the end of the beam, on which F is applied,

is at the distance / from the origin and parallel to the

plane ZY. Also, the force F has a direction parallel to the

axis of Z. Using the notation of eqs. (13), (14), and (15) of

Art. 2, these conditions give

=
o, cosr=o,

COS7T=0, COS 7 = 0, COS|0 = I.
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Since, for x = l
t

eqs. (24) and (20) give N1
=o for all points of the end sur-

face. Eq. (15) is, then, the only one of those equations
which is available for the determination of cv

That equation becomes simply

T,-P.

For a given value .of z, therefore, any value may be as-

sumed f :>r T
2

. For the upper and lower surfaces of the beam
let the intensity of shear be zero; or for z= d let T

2
= o.

Hence, by eq. (31),

Fh
-V-*). ...... (33)

The constants a
t
and b

l
still remain to be found. The

only forces acting upon the portion (/ x) of the beam are

F and the sum of all the shears T
2
which act in the section x.

Let Ay be the indefinitely small width of the beam, which,

since z is finite, is thus really made constant. The princi-

ples of equilibrium require that

f

+
T

2 .4y.dz
= Gb

1(i+r)r (d\ Ay.dz-z\ Ay .dz] =F.
J d

'

J d

The first part of the integral will be 2 dyd
s

,
and the second

part will be the moment of inertia of the cross-section (made
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rectangular by taking Ay constant) about the neutral axis.

Hence

i+r)7-F, or &i--. (33)

.-.T, -((*'-*). ..... (34)

If x=o in eq. (24),

FJ
(35)

Thus the two conditions of equilibrium are involved in

the determination of a
v
and bv The complete values of the

strains u and w are, finally,

(37)

These results are strictly true for rectangular beams of

indefinitely small width, but they may be applied to any
rectangular beam fixed at one end and loaded at the other,

with sufficient accuracy for the ordinary purposes of the

civil engineer. It is to be remembered that the load at the

end is supposed to be applied according to the law given

by eq. (34), a condition which is never realized. Hence
these formulae are better applicable to long than short

beams.
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The greatest value of T
2 ,

in eq. (34), is found at the

neutral axis by making 2=0; for which it becomes

F
7 is the mean intensity of shear in the cross-section;

hence the greatest intensity of shear is once and a half as

great as the mean.

In eq. (36), if 2 = 0, u = o. Hence no point of the neu-

tral surface suffers longitudinal displacement.
In eq. (37) the last term of the second member is that

part of the vertical deflection due to the shear at the neu-

tral surface, as is shown by eq. (38). The first term of

the second member, being independent of x, is that part
of the deflection which arises wholly from the deformation

of the normal cross-section.

The usual modification of this treatment, designed to

supply formulae for the ordinary experience of the engineer,

has already been given in preceding articles.



APPENDIX II.

CLAVARINO'S FORMULA.

IN Art. 13 reference is made to
.
Clavarino's formula

for thick cylinders. It will be sufficient here to establish

the equation for the circumferential or hoop tension in

a thick cylinder to illustrate Clavarino's fundamental idea.

If / represents the unit strain in the direction of. a

tensile force acting alone and whose intensity is T, and
if I' is the unit longitudinal strain in the same direction

under the same stress T but with two intensities of com-

pressive stress R and 5 acting at right angles to each other

and to the stress T with corresponding direct unit strains l\

and /2, and finally if r is the ratio of the lateral strain

divided by the direct or longitudinal strain, then will

(i

According to Clavarino's view a lateral strain repre-

sents the action or an actual force or stress with an in-

tensity equal to the modulus of elasticity E multiplied

by the lateral unit strain. Consequently he considered

In the case of the thick cylinder T is the intensity of

stress originally established by Lame and given by eq.

(16) Art. 5 of Appendix I, while R is the radial compres-

sion given by eq. (15) of the same Art., and 5 is the intensity

913
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of longitudinal tensile stress existing if the cylinder has

closed ends and it is found by eq. (3) ;

*-* (3)

As 5 is a tensile stress and causes a negative lateral

strain the term rS in eq. (2) must have the negative sign.

Again, eq. (15), Art. 5, of Appendix I is so written as to

make R negative. Hence, for the present purpose, eq. (2)

must be written :

Substituting the values of R and T from eqs. (15) and

(16), Art. 5, Appendix I, and the value of 5 from eq. (3),

in eq. (4) and taking r = \,

If r -r' in eq. (5), the greatest value of T r

becomes:

Finally, if 1=0,

If the stress S=o the corresponding modifications of

the formulae are obvious.

Eq. (6) gives for the exterior radius;
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These equations illustrate Clavarino's formulae. For

the reasons given fully in Art. 13, they can be considered

approximate only.

Related closely to Clavarino's method is that procedure
E>

of arbitrarily assuming T-\ = constant in an analysis of
o

the stresses in the wall of a thick cylinder. At best the

results are but approximate.



APPENDIX III.

RESISTING CAPACITY OF NATURAL AND
ARTIFICIAL ICE.

In the early part of 1913 two graduating students in

Civil Engineering, Messrs. A. F. Lipari and R. M. Marx,

at Columbia University, acting under the immediate direc-'

tion of Mr. J. S. Macgregor, in charge of the testing labora-

tory of the Department of Civil Engineering, conducted a

series of physical tests of natural and artificial ice, both in

compression and in flexure. These tests were made with

scrupulous care as to the application of loads to test pieces

and in the quantitative determination of results. The
test pieces in compression were subjected to their loads in

the cooling apparatus employed. The compression tests of

the natural ice were made with the load applied in some

cases normal to its natural surface and in other tests parallel

to that surface, in other words normal to its bed and parallel

to its bed.

The behavior of the two kinds of ice in the tests was

quite different in some respects. A block of clear artificial

ice would soon be clouded under a gradual application of

loading by the formation of crystals, which finally would

determine the lines of compressive failure; while the ten-

dency of the natural ice was to separate and fail in columns.

In both cases, however, there was a distinct tendency to

shear on oblique planes, making an angle of about 45 with

the direction of loading. The separation along these shear

planes was distinctly marked in many specimens.
916
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In general the height of the compression test specimens
was about twice the greatest cross dimensions, but the larg-
est specimens tested were exceptions to this observation.

The accompanying table gives a concise statement of the

results of the fifty-seven tests of natural ice in compression
and of the thirty-one compressive tests of the artificial ice.

TABLE I.

NATURAL ICE IN COMPRESSION.

Size of
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of the artificial, and about the same relation holds for the

maximum intensities.

The temperature of the test pieces as determined by
thermo-couples during the actual procedure of testing ranged

generally from about +28 Fahr. to about freezing. It is

probable that the -temperature of the ice was considerably
lower than indicated by the apparatus.

The test pieces were not selected with any special care,

but were fair averages of natural and artificial ice as or-

dinarily sold in quantities for the usual purpose of city

consumption. Naturally the quality varied materially in

many blocks as bought, causing correspondingly wide

variations in the ultimate resistances determined. The
results of these compressive tests show that sound natural

ice, at about the temperatures indicated may be expected
to give on the average an ultimate resistance of about

500 Ibs. per sq. in., with a range of perhaps 100 to 1000

Ibs. per sq. in. The artificial ice tested appears to have

had about one-third the ultimate resistance only of the

natural ice.

In some cases the test pieces of natural ice appeared to

give somewhat greater ultimate resistances when tested

on their beds than when tested on edge. In scrutinizing

the whole list, however, there appears to be but little, if any,

difference. Hence no distinction of this kind has been made
in Table I, but all the tests have been treated as of one

group.

Table II shows the results of testing beams of both

natural and artificial ice with loads applied at the centre

of span. The effective span in all cases was 18 inches.

The normal cross-sections of the beams were square and

varied but little from 3.5 inches by 3.5 inches. There

were nine such tests of beams of natural ice and twelve of

beams of artificial ice. The modulus of rupture is the usual
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so-called intensity of stress in the extreme fibre. It is

difficult to state whether the ice failed by tension or com-

pression. In some cases there was evidence of partial

failure at least by internal shear. Some of these beams were

placed so as to be loaded on their beds, so to speak, and some
on edge, but on the whole there appeared to be little dif-

ference in the results. Occasionally there appeared to be a

tendency to fail in such manner as to exhibit the "bedding"

planes.

TABLE II

BEAMS OF NATURAL ICE

LOAD AT CENTRE OF SPAN

Span.
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Adhesion between bricks and stones

and cement mortars, 373-375
Adhesive shear or bond, 592-598, 633

Alloys of copper, tin, aluminum,
zinc in tension, 346-362

Alloys of copper, tin, zinc in torsion,

193-195, 546

Alloys of copper, tin, zinc in beams,

355, 56i, 562

Aluminum, 354, 355
Aluminum alloys in bending, 560, 561

Aluminum, alloys of, in tension,

352-358

Aluminum, alloys of, in torsion,

193-196
Aluminum-zinc beams, 354

Angles, steel, as columns, 496-500

Annealing of steel, 338, 339

B

Balanced economic steel reinforce-

ment, 608-613, 617-618
Batten plates, 508
Beams of ice, 918

Beams, solid, rectangular, and cir-

cular, 554-562

Bearing capacity of rivets, 441

Bending and direct stress combined,

254-267

Bending and direct stress in eye-bars,

255-267

Bending and torsion combined, 246

Bending moments and shears in

general, 64

Bending moments in concrete-steel

beams, 614-616, 618-619

Brass, 349~35i
Brick masonry beams, 584, 585
Brick piers or columns, 413-417

Bricks, adhesion between cement

and, 373-375
Bricks and brick piers in compression,

409-419
Bricks in shearing, 550

Bridge portal, stresses in, 789

Briquette, Am. Soc. C. E. standard

for cement tests, 372
Bronzes and brass, Board of Water

Supply, N. Y. City, 359, 360

Building stones, 420
Bulk modulus, 19

Castings, steel, 322
Cast-iron beams, 560
Cast-iron columns, 520-527

Cast-iron, elastic limit, 286

Cast-iron, fatigue of, 295
Cast-iron flanged beams, 662-664
Cast-iron in compression, 388
Cast-iron in shearing, 544
Cast-iron in torsion, 192-193, 544

Cast-iron, modulus of elasticity,

286-290, 294, 389

921
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Cast-iron, remelting and continued

fusion of, 294

Cast-iron, tensile resilience of, 286-

294

Cast-iron, tensile strain diagram, 285

Cast-iron, ultimate tensile resist-

ance, 292, 294
Cement in compression, 395
Cement in tension, 362-377
Cement mortar in compression, 395
Cement mortar in tension, 362-377
Chemical elements in steel, 343
Chrome vanadium steel, 329-331
Cinder concrete in compression,

405-407
Cinder concrete in tension, 365
Circular cylinders, torsion of, 884
Clavarino's formula, 48, 913
Coefficient of elasticity, see Mod-

ulus of elasticity.

Collapse of flues, 774-778
Column design, 505-520
Columns of cast-iron, 520-527
Columns of concrete, 408
Columns of timber, 528-529

Columns, long, 169

Columns, long, wrought iron and

steel, 490-520
Combined bending and compression,

268

Combined bending and direct stress,

254
Combined bending and torsion, 246
Common theory of flexure, 49, 99

Common theory of flexure for beam
of two materials, 156

Common theory of torsion, 182-196

Composite material, elastic action

of, 749

Compression, 385

Compressive resistance of cast-iron,

388

Compressive resistance of steel,

389-391

Compressive resistance of wrought
iron, 387, 388

Compressive stress, 4, 385
Concrete columns, 408
Concrete columns, reinforced, 641-

655
Concrete beams, 575-583
Concrete in compression, 395-409

Concrete-steel, adhesive shear, 592-

598
Concrete-steel beams, 600-640
Concrete-steel beams, design of,

629-640

Concrete-steel, modulus of elasticity,

633
Concrete-steel members, 588-658
Concrete-steel theory, by common

theory of flexure, 591-620

Connections, 435-473

Connections, pin, 470-473

Connections, riveted joints, 435-

470
Continuous beams in general, 118

Copper, alloys of, in tension, 346-

362

Copper in compression, 396

Copper in shearing and torsion, 546

Copper in tension, 347-349

Copper, tin, zinc beams, 561, 562

Copper, tin, zinc, lead, and alloys

in compression, 391-395

Copper, under repeated stress, 361
Core method for general flexure,

735-739
Core surface or section, 732
Cover plates for plate girders,

length of, 708-710
Crank shaft stresses, 247-253
Criterion for greatest moment, 84
Curved beams, 712-719

Cylinders^ thick hollow, 203-223,

847

Cylinders, thin hollow, 197-201

Cylinders, torsion of, 853-892
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Deflection due to shearing, 125, 153
Deflection in oblique flexure, 745-749
Deflection in terms of greatest fibre

stress, 124
Deflection of beams, 121, 126-131
Deflection of rolled-steel beams,

677, 678

Design of columns, 505-520

Design of concrete-steel beams,

629-640

Design of concrete-steel columns,

653-655

Diagonal riveted joints, 469
Diameter of rivets, 445
Distribution of shear in beams of

various sections, 60, 62

Distribution of stress in riveted

joints, 437
Division of loading between concrete

and steel, 655

Driving and drawing spikes, 781-786

Ductility, 286

Ductility of wrought iron, 302

E

Eccentric loading of any surface,

725-735
Effect of chemical elements on steel,

343
Effect of low temperatures on steel,

333-335
Effect of shpp manipulation on steel,

339

Efficiency of riveted joint, 454-461
Elastic limit, 5, 282

Elastic limit of wrought iron, 298

Elasticity, i, 4

Elasticity, modulus of, 4, 281

Ellipse of inertia, 478, 480

Ellipse of strain, 43

Ellipse of stress, 26, 33

Ellipsoid of strain, 42

Ellipsoid of stress, 36, 40

Elliptical cylinder, torsion of, 186-188,

54L 863
End shear in bent beams, 68

Equilibrium and motion, equations
of internal, 820-846

Euler's formula, 169

Expansion and contraction (thermal)
of mortar, concrete, and stone, 377

Eye-bars of steel, 314-327

Eye-bars subjected to bending and

tension, 255, 258, 263

Fatigue of metals, 795-806

Flanged beams, 659-682

Flanged beams with equal flanges,

665-682

Flanged beams with unequal flanges,

661-665
Flat plates, square, rectangular, cir-

cular, elliptical, 765-774

Flexure, common theory of, 49
Flexure by oblique forces, 175

Flexure, general treatment by core

method, 735~739
Flexure of beams, 121-168

Flexure of beams of two materials,

156

Flexure of curved beams, 712-719
Flexure of long columns, 169, 175

Flexure, theory of, general formulas,

897-912
Flow of solids, 809-819

Flues, collapse of, 774-778
Formula (column) of C. Shaler

Smith for timber columns, 531, 532
Formulas for long columns, 493-505
Fracture of steel, 343
Fracture of wrought iron, 302, 303

Freezing cements and mortars, effect

of, 375-377
Friction of riveted joint, 465
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General formulae of theory of flexure,

99, 897-912

Girders, design of plate, 683-708
Gordon's formula, 474, 481-490
Granites in compression, 421-425

Graphical determination of bending

moments, 160

Greatest intensity of shearing stress,

29, 36, 163
Greatest stresses in beams, 162

Gun-bronze, 346, 349, 392

H

Hardening and tempering of steel,

336, 337
Helical spiral springs, 750-760

High extreme fibre stress in short

solid beams, 556
Hollow cylinders, thick, 203-223, 847
Hollow cylinders, thin, 197
Hollow spheres, thick, 224, 892
Hollow spheres, thin, 201, 202

Hooke's Law, 2, 3

Hooks, stresses in and design of,

719-725

Hoop tension, 204, 206

Ice in compression and flexure,

915-918
Inclination of neutral surface of

beam, 122, 123
Influence of time on strains, 805

Intensity of stress, 3

Intermediate and end shear in bent

beams, 68

Jaws of columns, design of, 510, 511

Joints, pin connections, 470-473

Joints, riveted, 435, 470

Joints, welded, 470

Lateral strains, 9
Lattice bars, 506-508
Latticed columns, 506-516
Launhardt's formula, 801, 802

Law, Hooke's, 2, 3

Least work, method of, 788

Length of cover plates for plate

girders, 708-710
Limestones in compression, 421-425
Limit of elasticity, 5, 282

Lag-screws, resistance to pulling out,

784

Long colums,
n

i69, 175, 474-506

Long column formulas, 493-505 t

M

Magnesium, 354, 355

Magnesium alloys, 355

Manganese steel, 344
Marbles in compression, 421-425
Method of least work, 788
Moduli of elasticity, relation be-

tween, ii

Modulus of elasticity, 4, 281, 552
Modulus of elasticity for tension and

compression in terms of shearing

elasticity, 19, 20

Modulus of elasticity for torsion,

186, 187, 540-542
Modulus of elasticity of alloy beams,

562
Modulus of elasticity of aluminum-

zinc beams, 354
Modulus of elasticity of cast iron,

286-290, 294, 389
Modulus of elasticity of concrete, 399
Modulus of elasticity of steel, 303-

308, 390
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Modulus of elasticity of timber in

tension, 380
Modulus of elasticity of wrought

iron, 297
Modulus of rupture in bending solid

rectangular and circular beams,

554-562
Moisture in timber, effect of, 426, 427

Moment, greatest, produced by con-

centrations, 83-86
Moment in cantilever, 126, 128

Moment of inertia, general treatment

of, 475-48o
Moment of single load at centre of

span, 95, 129
Moment of uniform load, 80, 81, 96,

129

Moment produced by concentrated

loads, 83
Moment produced by two equal

weights, 76
Moments and shears in bent beams,

64
Moments in ordinary continuous

beams, 131-142, 144-152
Moments tabulated for plate girders,

89,90
Mortise holes, shearing behind, 786

Motion, equations of, 820-846

N
Natural building stones, 420-425, 549
Neutral axis, 51, 52
Neutral axis, position of, in reinforced

concrete beams, 605-608, 610, 6n
Neutral curve for continuous beams,

132-155
Neutral curve for special cases,

126-132
Neutral surface, shearing in, 61, 63,

163

Nickel steel, 319, 325-328
Notation concrete steel beams, 600-

602

Oblique or general flexure, 739-749

Orthogonal stresses, 43

Oscillations, torsional, 886

Pendulum, torsion, 890
Permanent set, 286

Phoenix-column section, 488
Phoenix columns, tests of, 490-496

Phosphor-bronze, 361

Phosphor-bronze wire, 361

Pine, white, in compression, 432-434

Pine, yellow, in compression, 427-434
Pin connections, 470-473
Pitch of rivets, 446-453
Pitch of rivets in flanges of plate

girder, 698-702, 710, 711
Plane spiral springs, 761-765
Planes of resistance in oblique

flexure, 739~745
Plate girder, design of, 683-708

Plates, carrying capacity of, 766-774
Points of contraflexure, 136, 138,

148, 152

Poisson's ratio, 10

Portland cement and cement mortar

in tension, 362-377
Portland cement concrete in com-

pression, 395-409
Portland-cement concrete in tension,

362-377

Principal moments of inertia, 477-480

Principal stresses, 23, 24, 26, 27, 40

Punching, drilling, etc., of steel, 339

R

Rail-steel, 323
Reactions for bridge floor beams, 74
Reactions under continuous beams,

112, 114, 118
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Rectangular cylinders, torsion of,

869-883
Reduction of resistance between

ultimate and breaking point, 285

Reinforced concrete columns, 641-655

Resilience, 231
Resilience of cast-iron in tension, 290
Resilience of flexure, 233
Resilience of steel in tension, 311, 312

Resilience of tension and compres-

sion, 232
Resilience of torsion, 240
Resilience of wrought iron, 299, 300
Resilience of shearing, 236

Resilience, total, due to direct

stresses and shearing, 239

Resisting capacity of ice, 915-918
Riveted joints, 435-470
Riveted joints, butt-joints with

double cover plates, for steel,

436-452
Riveted joints, distribution of stress

in, 437
Riveted joints for trusses, 468-470
Riveted joints in angles, 469
Riveted joints, lap-joints, and butt-

joints with single butt-strap, for

steel, 436-448
Riveted joints, tests of full-sized,

454-464
Riveted steel in shearing, 443, 451,

460

Rivets, bearing capacity of, 441, 460

Rivets, bending of, 440

Rivets, diameter and pitch of, 445

Rivets, shear of, 443, 460

Rivets, steel, 324, 451, 460

Rollers, resistance of, 778-781

Sandstones in compression, 420-425
Section modulus, 55

Set, permanent, 286

Shear, first derivative of moment, 65

Shear, greatest caused by uniform

load, 79

Shearing, behind mortise holes, 786

Shearing, greatest intensity of, 29,

36, 163

Shearing, modulus of elasticity, 5,

186, 191

Shearing stress in beams, 57, 165-167

Shearing stress and strain, 13, 185,

1 86, 540

Shearing in neutral surface of timber

beams, 57, 165-167, 57i~574

Shearing, ultimate resistance, 543-551
Shears in bent beams, 64, 68

Shears, single load located at centre

of span, 95

Shears, tabulated for plate girders,

89, 90

Shears, uniform load on span, 97
Short blocks, 386
"Short" test specimens, 309, 310

Shrinkage stresses in thick hollow

cylinders, 213
Silica sand, Portland cement, and

mortar in tension, 370, 371

Spheres, thick hollow, 224-230, 892

Spheres, thin hollow, 201-202

Spikes, driving and drawing, 781-786

Spiral springs, helical, 750-765

Spiral springs, plane, 761-765

Spruce columns, 429-434

Spruce in compression, 439-443

Steel, 303

Steel, annealing, 338
Steel castings, 322

Steel, change of elastic properties

under repeated stresses, 342

Steel, effect of high and low tem-

peratures, 333-335

Steel, effect of punching, drilling,

reaming, and shop processes, 339

Steel, effects of chemical elements,

343
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Steel, elastic limit, 310, 311, 330, 390
Steel eye-bars, 314, 316

Steel, fracture of, 343

Steel, hardening and tempering, 336,

337

Steel, in compression, 389-391

Steel, in shearing, 545

Steel, in torsion, 190-192, 545

Steel, modulus of elasticity, 303-308,

390

Steel, nickel, 325-328
Steel rails, 323
Steel reinforcement acquires stress,

592-598
Steel reinforcement, economic or

balanced, 608-613, 617, 618

Steel, resilience of, 311, 312
Steel rivets, 324

Steel, rolled flanged beams, 669-682
Steel shapes and plates, 315, 317, 319
Steel short solid beams, 558

Steel, ultimate tensile resistance, 305,

333
Steel wire, 320, 321
Stone beams, 586, 587

Stones, natural, in compression,

420-425

Stones, natural, in shearing, 549

Straight-line formula for columns,

494-504

Strain, i, 2, 4

Strains, influence of time on, 805

Stress, I, 2, 3, 4

Stress, intensity of, 3

Stress parallel to one plane, 21

Stress-strain curve, 6

Stress-strain curves for cast iron, 288

Stresses at any point in beam, 162

Stresses, expressions for tangential

and direct, 820-826

Stresses of tension and compression,
resolution of, 7, 8

Structural steel, classes of, 303

Suddenly applied loads, 242, 243

Temperature, effect of high, 334, 335
Temperature, effect of low, 333

Tempering of steel, 336, 337
Tensile stress, 281

Terra cotta and columns, 415, 416,

419
Tests of riveted joints, 454-464
Tests of steel angle and other col-

umns, 496-503
Tests of wrought-iron Phoenix col-

umns, 490-496
Theorem of three moments, 102, 109,

in, 114

Theory of flexure, general formulae,

99, 897
Thermal expansion and contraction

of mortars, concrete, and stone,

377-379
Thick hollow cylinders, 203-223, 847
Thick hollow spheres, 224, 892
Thin hollow cylinders, 197
Thin hollow spheres, 201, 202

Timber beams, 563-575
Timber columns, 528-539
Timber in compression, 426-434
Timber in shearing and torsion,

547-548
Timber in tension, 379-383

Tin, 347, 349, 546

Tin, alloys of, 346-356
Tobin bronze, 35i~357, 394
Tobin bronze in compression, 394, 395
Tobin's alloy, 346-357

Torsion, 182, 196, 540, 853

Torsion, combined with- bending,

246-253

Torsion, general observations,

186-188, 885

Torsion, greatest shear in circular

sections, 186-188, 541, 885

Torsion, greatest shear in elliptical

sections, 186-188, 541, 865
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Torsion, greatest shear in rectangular

sections, 186-188, 541, 880-883

Torsion, greatest shear in triangular

sections, 868

Torsion in equilibrium, 182-196, 540,

853
Torsion of circular sections, 182-196,

541, 884
Torsion of elliptical sections, 186-188,

541, 863
Torsion of rectangular sections, 186-

188, 541, 869
Torsion of triangular sections, 866

Torsion oscillations, 886

Torsion pendulum, 890
Torsion (twisting) moment in terms

of H.P., 188, 189
Tresca's experiments, flow of solids,

810

Tresca's hypotheses, flow of solids,

811

U

Ultimate resistance, 285, 543
Ultimate resistance affected by high
and low temperature, 333-335

Ultimate resistance affected by re-

peated stressing, 361, 795-806
Ultimate resistance of cast-iron in

tension, 292, 294
Ultimate resistance of steel in ten-

sion, 303-346

Ultimate resistance of wrought iron,

295-303, 387

V

Vanadium steel, 328-333

W
Web reinforcement in concrete-steel

beams, 620-629

Weight of concrete, 372

Welded joints, 470

Weyrauch's formula, 80 1, 803
White-oak columns, 529
White oak in compression, 429, 432,

434

White-pine columns, 528-539
White pine in compression, 432-434

Wire, steel, 320, 321
Wohler's experiments, 796-799
Wohler's law, 795-796
Work expended in producing strains,

231

Working stresses in concrete steel

beams, 629

Working stresses in concrete steel

columns, 650

Wrought iron, 295-303, 387

Wrought-iron bars, diagram of

strains, 298

Wrought-iron beams, 680-682

Wrought iron, ductility and resilience

of, 297-300

Wrought iron, fracture of, 302

Wrought iron in compression, 387,

388

Wrought iron, in shearing, 543

Wrought iron, in torsion, 192, 543

Wrought iron, modulus of elasticity,

296, 387

Wrought-iron, short solid beams, 557

Wrought iron, ultimate resistance,

and elastic limit, and yield point,

297, 388

Yield-point, 7, 284

Yield-point of wrought iron, 297

Yellow-pine columns, 528-539
Yellow pine in compression, 427-434

Zinc, 346-362, 546

Zinc, alloys.of, 193-1 95, 346-362, 546
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