ELECTRICAL
 CHARACTERISTICS
 of
 Transmission Circuits

THE LIBRARY OF

THE UNIVERSITY

 OF CALIFORNIA DAVISFROM THE LIBRARY
OF
SOPHIA L. MCDONALD

Digitized by the Internet Archive in 2007 with funding from
Microsoft Corporation

ELECTRICAL CHARACTERISTICS OF TRANSMISSION CIRCUITS

REPRINT 82
FEBRUARY, 1922

Copyrighted, 1922,

bY THE

Westinghouse Electric \& Manufacturing Co.

 East Pittsburgh, Pa
PREFACE

THE rapid expansion in distributing and transmission systems will continue unabated until the natural power resources will have been fully developed. This expansion will necessitate a tremendous amount of arithmetical labor 'in connection with the proper solution and calculation of performance of projected transmission and distributing circuits. It will demand much valuable time and energy in the education of the younger engineers now going thru the technical schools and others who will follow them. It was primarily to assist these younger engineers by making their work more easy and less liable to error, and providing them with all necessary tools that the data in this book have been compiled.

Many articles each pertaining to some particular method of solution of transmission circuits have been published from time to time. This book constitutes a review of each of numerous methods perviously proposed by different authors with examples illustrating each method of solution and the accuracy which may be expected by its use. Thus by permission of various authors the reader of this book is provided with a choice of numerous methods ranging between the most simplified graphical forms of solutions and complete mathematical solutions. He is also provided with numerous and extensive tables of circuit and other constants making it unnecessary for him to lose time and risk making mistakes in calculating constants for each case in question. Much effort has been expended with a view of simplifying explanations by the aid of supplementary diagrams and tabulations. The engineer upon whose lot it only occasionally falls to determine the size of conductors and performances of circuits appreciates how easy it is to make errors in calculations which may prove very serious and should find the quick estimating tables very useful particularly for short line solutions.

For those preferring to avoid the more mathematical solutions the all graphical methods for solving long line problems including the Wilkinson \& Kennelly charts for obtaining graphically the auxiliary constants should prove helpful.

When borrowed material has been used in this book full credit has been given the author at the place the material is used. It is desired, however, at this place to mention the high appreciation of assistance given by Ralph W. Atkinson, Herbert B. Dwight, Dr. A. E. Kennelly, Dr. A. S. McAllister, Ralph D. Mershon, F. W. Peak Jr., J. F. Peters, Charles R. Riker and T. A. Wilkinson.

2 m Nesbit

CONTENTS

Page
Chapter I Resistance, Skin Effect, Inductance 1
Chapter II Reactance, Capacitance, Charging Current 10
Chapter III Quick Estimating Tables 23
Chapter IV Corona Effect 35
Chapter V Speed of Electric Propagation, Resonance, Parallel- ing Transmission Circuits, Heating of Bare Con- ductors out of Doors 40
Chapter VI Determination of Frequency and Voltage 45
Chapter VII Performance of Short Transmission Lines 49
Chapter VIII Performance of Long Transmission Lines (graphical) 61
Chapter IX Performance of Long Transmission Lines (mathe- matical) 77
Chapter X Hyperbolic Functions 88
Chapter XI Performance of Long Transmission Lines (by hyper- bolic functions) 95
Chapter XII Comparison of Various Methods 111
Chapter XIII Cable Characteristics 121
Chapter XIV Synchronous Motors and Condensers for Power Factor Improvement 129
Chapter XV Phase Modifiers for Voltage Control 138
Chapter XVI A Typical 220 Kv. Problem 145

ELECTRICAL CHARACTERISTICS of TRANSMISSION CIRCUITS

CHAPTER I
 RESISTANCE-SKIN EFFECT-INDUCTANCE

THE transmission of alternating-current power involves three separate circuits, one of which is composed of the wires forming the transmission line, while the others lie in the medium surrounding the wires. The constants of these circuits are interdependent; although any one may vary greatly from the others in magnitude.* There is first the electric circuit through the conductors. Then since all magnetic and dielectric lines of force are closed upon themselves forming complete circuits there is a magnetic and a dielectric circuit. The magnetic circuit consists of magnetic lines of force encircling the current carrying conductors and the dielectric circuit the dielectric lines of force terminating in the current carrying conductors. The close analogy of these is given in Table A, a careful study of which will help those not familiar with the subject to a clearer understanding of what happens in an alternating-current transmission circuit.
a For a unidirectional constant current the magnetic field remains constant, and similarly for a unidirectional constant voltage the dielectric field is constant. With both the current and the voltage unidirectional and constant, the electric circuit alone enters into the calculations. A changing magnetic flux introduces a voltage into the electric circuit which modifies the initial or impressed voltage. This effect of the magnetic circuit, which is measured by the inductance L, storing the energy $0.52^{2} L$, is a function of the current, and hence is of most importance in dealing with heavy current circuits. Similarly a changing electrostatic flux adds

[^0](vectorially) a current to the main power current. This effect of the dielectric circuit, which is measured by the capacitance, storing the energy $0.5 e^{2} C$, is a function of the voltage, and hence is of most importance in dealing with high-voltage circuits.

In an alternating-current circuit, both the voltage and the current are continually varying in magnitude, and morever, reversing in direction for each successive half cycle. Therefore, with alternating currents, energy changes occur continuously and simultaneously in the interlinked magnetic, dielectric and electric circuits.

Figs. I to 5 inclusive illustrate the magnetic and dielectric field surrounding conductors carrying current. Figs. I and 3 represent respectively the magnetic and diclectric circuits when the conductors are far apart and Figs. 2 and 4 when they are close together. Fig. 5 represents the resultant of the superimposed magnetic and dielectric fields.

The magnetic field surrounding a conductor which is not influenced by any other field is represented by concentric circles. This field is strongest at the surface of the conductors and rapidly decreases with increasing distance from the conductor as indicated by the spacing of the lines of Figs. I and 2.

The dielectric stresses surrounding conductors are represented by lines drawn radially from the conductor. The strength of the dielectric field likewise decreases with the distance from the conductor as is indicated by the widening of the space between the lines. The magnetic and the dielectric lines of force always cross each other at right angles, as shown in Fig. 5.

RESISTANCE OF COPPER CONDUCTORS

In Table I the resistance per thousand feet is listed and in Table II per mile of single conductor. Values are given for both solid and stranded copper conductors at both 100 and 97.3 percent conductivity and corresponding to various temperatures between zero and 75 degrees.C. The foot notes with these tables cover all of the pertinent data upon which the values are based.

The resistance values in Table I corresponding to temperatures of 25 and 65 degrees C. were taken from

THE DIELECTRIC CIRCUIT

THEELECTRIC CIRCUIT
Bulletin 3I of the Bureau of Standards issued April Ist, 1912. The resistance values (taking into account the expansion of the metal with rise in temperature) for the other temperatures were calculated in accordance with the following rule from page 10 of Bulletin No. 3I.

The change of resistivity of copper per degree C. is a constant, independent of the temperature of reference and of the sample of copper. This resistivity-temperature constant may be taken for general purposes as 0.0409 ohm (mil foot).
As an illustration:-A 2000000 circ. mil stranded copper conductor at 100 percent conductivity, has a resistance of 0.00623 ohm per 1000 feet at 65 degrees C. Required to calculate its resistance at zero degrees C.
$65 \times 0.0409=2.6585$ ohms (mil-foot) temperature correction or 2658.5 ohms (mil, 1000 feet). $\frac{2658.5}{2000000}=0.00133 \mathrm{ohm}$ change in resistance. 0.00623 -0.00133 $=0.0049$ ohm resistance at zero degrees C.

It has been customary to publish tables of resistance values based upon a temperature of 20 degrees C. and 100 percent conductivity. The operating temperatures of conductors carrying current is usually considerably higher than 20 degrees C. and therefore calculations based upon this temperature do not often represent operating conditions. Neither does copper of 100 percent conductivity represent the usual condition for transmission circuit copper, whose average conductivity is probably nearer 97.3 percent. The values in Tables I and II furnish a comparison of resistance for annealed and hard drawn copper of stranded and solid conductors at various temperatures based upon the new "Annealed Copper Standard".

SKIN EFFECT

A solid conductor may be considered as made up of separate filaments, just as a piece of wood is made up of separate fibres. As a stranded conductor is actually made up of a number of separate wires, such a conductor will be considered in the following explanation. The inductance of the various wires of the cable will be different, due to the fact that those wires near the center of the cable will be linked by more flux lines than are the wires near the outer surface. The self-induced back e.m.f. will therefore be greater in the wires located near the center of the cable. The higher reactance of the inner wires causes the current to distribute in such a manner that the current density will be less in the interior than at the surface. This crowding of the current to the surface or "skin" of the wire is known as "skin effect".

Since the self-induced e.m.f. is proportional to the frequency as well as to the total flux linked, the skin effect becomes more pronounced at higher frequencies of the impressed e.m.f. It also becomes greater the larger the cross-section, the greater the conductivity and the greater the permeability of the conductor.

As a result the effective resistance of a conductor to alternating current is greater than to direct current. The effective resistance of nonmagnetic conductors to alternating current may be obtained by increasing their direct-current resistances by the percentages in Table B, which were derived by the formulas in Pender's Handbook. Thus the ohmic resistance of a I 000000 circ. mil cable is approximately 8.4 percent greater at 60 cycles than its resistance to direct current at a temperature of $25^{\circ} \mathrm{C}$. If the temperature of the conductor is $65^{\circ} \mathrm{C}$, its 60 cycle ohmic resistance will be approximately 6.4 percent greater than its direct-current resistance. The practical result of skin effect is to reduce the carrying capacity of large cables. As indicated by the values in Table B, skin effect may be neglected when employing non-magnetic conductors ex-
cept in the use ot very large diameters. It is usual to manufacture cables of very large diameter, especially for service at high frequencies, with a non-conducting core. In case of magnetic conductors, such as steel wire or cable, as is some times used for long spans or short high voltage feeders, skin effect must be carefully considered.*
viently large, a thousandth part of it, called the millihenry, is the usual practical unit. This unit is the coefficient of self-induction and is represented by the letter L.

distribution of flux

When current flows through a conductor, a magnetomotive force (m.m.f.) is established of a value proportional to the current. This m.m.f. is of zero value at the center of the conductor and increases as the square of the distance from the center until the surface is reached., (This statement as well as those following is based upon the assumption of a uniform distribution of current throughout the conductor, the conductor being of non-magnetic material and located in non-magnetic

INDUCTANCE

Any moving mass, for instance a flywheel in motion, will resist a change in velocity. That is, the inertia of the moving mass will tend to keep the mass moving when disconnected from the source of power. On the other hand the inertia will oppose any effort to speed up the movement of the mass.

In a similar manner, the inductance of an electric circuit resists a change in current. The cause of inductance in an electric circuit is the magnetic field which surrounds the circuit. When the current changes this magnetic field changes correspondingly, and in effect cuts the conductor, producing an e.m.f. in it. This e.m.f. of self induction has such a direction as to resist the change in current. While the current is increasing, energy is stored in the magnetic field and while the current decreases, the magnetic stored energy is returned to the electric circuit. This effect of the electric current on the surrounding space is termed magnetic induction.

Unit of Inductance-When a rate of change of current of one ampere per second produces an e.m.f. of one volt, the circuit is said to have a unit of inductance called a henry. The henry being incon-
*References:-For a bibliograply on the subject of skin effect see article "Experimental Researches on Skin Effect in Conductors" by A. E. Kennelly, F. A. Laws, and P. H. Pierce in A. I. E. E. Trans., Vol. 31, Part II of Sept. 1915. This article ends with a bibliography on the subject embracing a very "emplete list of articles.
"Calculation of Skin Effect in Strap Conductors" by H. B. Dwight in Electrical World, March II, 1916.
"Skin Effect in Tubular and Flat Conductors" by H. B. Dwight in A. I. E. E. Trans. for 1918.
surroundings, such as air). At the surface it becomes maximum for a given current and remains at this maximum value for all distances beyond the surface. It is customary to think of the magnetic field surrounding conductors as concentric circles of lines of force.

A physical picture of the magnetic field density surrounding a current carrying conductor A is shown by Chart I. The magnetic density due to the return circuit (conductor B) is indicated in outline by broken lines. The horizontal divisions represent the distance from the center of conductor A and the height of the

TABLE B-INCREASF, OF EFFECTIVE, RESISTANCE DUE TO SKIN EFFECT.
For various sizes of solid copper rods. For stranded conductors of equivalent cross sectional area the skin effect is practically the same as for the solid conductor.

			Percent lncrease of Copper Wires Above the Direct-Current Resistance Due to Atsernating Currenis of Different Frequencies									
			1sased Uppn Direct-Current Resistance at 25 Degrees C. (77 Degrecs F.)					Based Upon Direct-Currenl IRo. sistance at 65 Degrees C. (149 Degrees F.)				
			\cdots		¢	8	-			윤	8 第	-
2000000	1.631	1.414	2.2	6.0	14.1	28.0	78.6	1.7	4.5	10.9	22.1	67.0
1800000	1.548	1.342	1.8	4.0	11.7	23.7	70.4	1.3	3.7	9.0	18.5	60.0
1600000	1.459	1.265	1.4	3.9	9.4	19.4	61.4	1.1	3.0	7.3	15.0	51.8
1500000	1.412	1.225	1.3	3.4	8.4	17.4	57.3	0.9	2.6	6.4	13.5	47.4
1200000	1.263	1.096	0.8	2.1	5.5	11.7	42.7	0.6	1.7	4.1	9.0	34.8
1000000	1.152	1.000	0.6	1.5	3.8	8.4	33.8	0.4	1.1	3.0	6.4	26.2
; 50000	0.998	0.866	0.3	0.9	2.2	4.9	20.6	0.3	0.7	1.7	3.7	16.4
500000	0.815	0.707	0.1	0.4	1.0	2.2	10.1	0.1	0.3	0.1	1.7	7.7
250000	0.575	0.500	0.0	0.1	0.3	0.6	2.7	0.0	0.1	0.2	0.4	2.0

curve measured vertically the intensity of the ficld at the corresponding distance. The radius of the conductor has been assumed as unity, and maximum field density (always at the surface of the conductor) as 100 percent.

The intensity of the magnetic field starts at zero at the conductor center, and increases (with uniform distribution of current in the conductor) directly as the
distance from its center until its surface is reached, where it becomes maximum. For distances beyond the surface of the conductor, the field intensity varies inversely as the distance from its center.

The intensity of the magnetic field at any point is proportional to the m.m.f. acting at that point and inversely proportional to the length of its circular path (magnetic reluctance). Thus at the surface of the

TABLE I-RESISTANCE PER 1000 FEET
 OF COPPER CONDUCTORS AT VARIOUS TEMPERATURES STRANDED CONDUCTORS

$\begin{aligned} & 0 \\ & 2 \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	AREA 'circular MILS	OHMS PER 100 FEET OF SINGES															
		ANNEALED COPPER 100% CONDUCTIVITY								HARD DRAWN COPPER 97.3\% CONDUCTIVITY							
						$\begin{aligned} & 35 \\ & 95 \end{aligned}$						$\begin{aligned} & 20^{\circ} \mathrm{C} \\ & 68^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 77^{\circ} \mathrm{F} \end{aligned}$				${ }^{\circ} \mathrm{F}$
		.0048 .0051 .0054 0057	00518 00546 00577	00.5 0005 005 005	005 005		.00591 .00623 .00657		00643 00678 00716	$\left\lvert\, \begin{array}{\|} .00500 \\ 000526 \\ 00556 \end{array}\right.$.00533 00561 00593 006	.00544 00570 .00605		$\begin{aligned} & 00606 . \\ & 00640 . \\ & \hline \end{aligned}$	00607 00640 00675		$\begin{aligned} & 60 \\ & 77 \\ & 35 \\ & \hline \end{aligned}$
	$\begin{aligned} & 1700000 \\ & 1600000 \\ & 1500000 \end{aligned}$.0057 .0060 .0065	00610 00647 00690	$\begin{array}{\|} 00622 \\ 006660 \\ 00704 \end{array}$	$\begin{aligned} & 00635 \\ & 00674 \\ & 00719 \end{aligned}$.00659 00700 .00746	00695 00740 00787	$\begin{aligned} & 00733 \\ & 00779 \\ & 00830 \end{aligned}$	00758 00805 00858	00590 00626 00668	00626 00665 00709	00640 00678 00724	$\begin{aligned} & 00652 \\ & 00693 \\ & 00739 \end{aligned}$		$\begin{aligned} & 00714 \\ & 00760 \\ & 00808 \end{aligned}$		
	$\begin{aligned} & 1400000 \\ & 1300000 \\ & 1200000 \end{aligned}$	$\begin{aligned} & 0069 \\ & 0074 \\ & 0008 \end{aligned}$.0074 .0079 .0086	$\begin{aligned} & .0075 \\ & .0081 \\ & .0088 \end{aligned}$	$\begin{aligned} & 00771 \\ & 00830 \\ & 00899 . \end{aligned}$	008800 00862 00933	00840 00910 00985 0	00890 00958 0104		$\begin{array}{\|c\|} 00715 \\ 00770 \\ 00835 \end{array}$	$\begin{aligned} & 00761 \\ & 00820 \\ & .00887 \end{aligned}$	00775 00836 00905	100853	$\begin{array}{l\|} 00822 \\ 00885 \\ 00958 \end{array}$	00868 $.0101$		
	$\begin{aligned} & 1100000 \\ & 1000000 \\ & 950000 \end{aligned}$.00886 .00974 .0102		$\begin{gathered} .00960 \\ .0106 \\ 0111 \end{gathered}$	00981 0108 0114 0120				$\begin{aligned} & .0117 \\ & 0129 \\ & 0135 \end{aligned}$			$\begin{aligned} & 00986 \\ & 01109 \\ & 0114 \end{aligned}$					
	$\begin{aligned} & 900000 \\ & 850000 \\ & 800000 \end{aligned}$		$\begin{aligned} & 0115 \\ & 0122 \\ & 0130 \end{aligned}$	$\left\lvert\, \begin{array}{r\|rl} .0 & 11 & 7 \\ 0 & 1 & 24 \\ 0 & 13 & 3 \end{array}\right.$	$\begin{aligned} & .0120 \\ & .0127 \\ & .0135 \end{aligned}$	$\begin{aligned} & 0124 \\ & 0132 \end{aligned}$ $.0140$	$\begin{aligned} & 0131 \\ & 0139 \\ & 0148 \end{aligned}$						$\begin{array}{r} .0130 \\ .0139 \end{array}$		$\begin{aligned} & 0143 \\ & 0152 \end{aligned}$	$\begin{aligned} & .0151 \\ & 0160 \\ & \hline \end{aligned}$	
			$\begin{aligned} & .0138 \\ & 0148 \\ & .0160 \end{aligned}$.0140 .015 .0163 0176		$\begin{aligned} & 0149 \\ & 0160 \\ & 0172 \end{aligned}$	$\begin{aligned} & 0157 \\ & 0169 \\ & 0182 \end{aligned}$	$\begin{aligned} & 0166 \\ & 0178 \\ & 0192 \end{aligned}$	$\begin{array}{r} 0184 \\ 0199 \end{array}$	$\begin{aligned} & 0134 \\ & 0143 \\ & 0154 \end{aligned}$		$\begin{aligned} & 0155 \\ & 0167 \end{aligned}$	$\begin{array}{r} 0148 \\ 0158 \\ 0170 \end{array}$	$\begin{aligned} & 0153 \\ & 0164 \\ & 0176 \end{aligned}$	$\begin{aligned} & .0173 \\ & .0187 \end{aligned}$	$\left\|\begin{array}{l} .0183 \\ .0197 \end{array}\right\|$	
	$\begin{aligned} & 600000 \\ & 550000 \\ & 500000 \end{aligned}$	$\begin{aligned} & 016 \\ & 017 \\ & .019 \end{aligned}$	$\begin{aligned} & 0173 \\ & 0188 \\ & 0207 \end{aligned}$	$\begin{aligned} & .0176 \\ & 0191 \\ & 0211 \end{aligned}$	$\begin{aligned} & 0180 \\ & 0196 \\ & 0216 \end{aligned}$	$\begin{aligned} & 0187 \\ & 0203 \\ & 0224 \end{aligned}$	$\begin{aligned} & .0197 \\ & 0214 \\ & 0236 \end{aligned}$	$\begin{array}{r} .0208 \\ 0226 \\ .0249 \end{array}$	$\begin{array}{r} 0234 \\ 0258 \end{array}$			$\begin{aligned} & 0196 \\ & 0217 \end{aligned}$	$\begin{array}{r} 0202 \\ .0222 \end{array}$	$\begin{array}{r} 0 \\ 0 \end{array} 0991$	$\begin{aligned} & .0220 \\ & .0242 \end{aligned}$	$\begin{array}{r} 0232 \\ .0256 \end{array}$	$\begin{aligned} & 0221 \\ & 0240 \\ & 0265 \end{aligned}$
	$\begin{aligned} & 450000 \\ & 400000 \\ & 350000 \\ & \hline \end{aligned}$	$\begin{aligned} & .0216 \\ & .0243 \\ & .0278 \end{aligned}$	$\begin{aligned} & .0230 \\ & .0259 \\ & .0297 \end{aligned}$	$.026$	$\begin{array}{r} .0240 \\ 0270 \\ 0308 \end{array}$	$\begin{array}{r} 0280 \\ 0319 \\ \hline \end{array}$	$\begin{array}{r} 0296 \\ 0337 \\ \hline \end{array}$	$\begin{aligned} & 0311 \\ & 0356 \end{aligned}$	0368	0286	$\begin{array}{r} 0266 \\ 0305 \\ \hline \end{array}$	$\begin{aligned} & .0271 \\ & .0312 \\ & \hline \end{aligned}$	$\begin{array}{r} 0277 \\ 0316 \\ \hline \end{array}$	$\begin{array}{r} .0288 \\ .0328 \end{array}$	$\begin{array}{r} 0304 \\ .0346 \\ \hline \end{array}$	$\begin{aligned} & .0319 \\ & 0366 \end{aligned}$	
	$\begin{aligned} & 300000 \\ & 250000 \end{aligned}$ 211600	$\begin{array}{r} .0324 \\ .0390 \\ .0460 \\ \hline \end{array}$	$\begin{gathered} .0475 \\ .0490 \end{gathered}$	$\left\lvert\, \begin{array}{r} .0353 \\ 0423 \\ 0 \\ 0 \end{array} 000\right.$	$\begin{aligned} & 0432 \\ & 0510 \\ & \hline \end{aligned}$	$\begin{array}{r} 0448 \\ 0529 \\ \hline \end{array}$	$\begin{array}{r} .047 \\ 055 \end{array}$	$\begin{array}{r} .0498 \\ 0589 \end{array}$	0515 0649	$\begin{aligned} & 0400 \\ & 0473 \end{aligned}$	$\begin{array}{r} .0426 \\ .0503 \end{array}$	$\begin{aligned} & 0363 \\ & 0435 \\ & 0514 \end{aligned}$	0525	$\begin{array}{r} 0460 \\ .0544 \\ \hline \end{array}$	$\begin{aligned} & .0487 \\ & .0573 \end{aligned}$	$\begin{array}{r} .0512 \\ .0605 \end{array}$	
$\begin{gathered} 000 \\ 00 \\ 0 \end{gathered}$	167772 33079 105560	$\begin{array}{\|c\|} .0580 \\ .0732 \\ .0922 \end{array}$	$.077$	$\begin{aligned} & 0630 \\ & 0795 \\ & 100 \end{aligned}$	$\begin{aligned} & 0644 \\ & 0811 \\ & 102 \end{aligned}$			$\begin{aligned} & 0742 \\ & .0936 \\ & .118 \end{aligned}$	$\begin{aligned} & 01067 \\ & .1227 \\ & \hline \end{aligned}$	$\begin{array}{r} 0752 \\ .0948 \end{array}$	$\begin{aligned} & 080 \\ & 101 \end{aligned}$		$\begin{aligned} & 0834 \\ & 105 \end{aligned}$	$\begin{aligned} & .0865 \\ & 109 \\ & \hline \end{aligned}$	$\begin{aligned} & .0900 \\ & .115 \\ & \hline \end{aligned}$	$\begin{array}{r} 0962 \\ .121 \end{array}$	$\begin{aligned} & .0995 \\ & .125 \end{aligned}$
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	836 663 526	$\begin{array}{r} 147 \\ .185 \end{array}$	12 .15 19	.126 .15 20 20	$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{array}{r} 76 \\ 28 \end{array}$	$\begin{array}{r} 14 \\ 178 \\ 22 \\ \hline \end{array}$	237			$\begin{aligned} & 160 \\ & 202 \\ & \hline \end{aligned}$	$\begin{aligned} & .16 \\ & .20 \end{aligned}$			$\begin{array}{r} 183 \\ .231 \\ \hline \end{array}$		
6	26244	.233 .294 .371	$\begin{aligned} & .248 \\ & .314 \\ & .393 \\ & \hline \end{aligned}$	$\begin{aligned} & .2 \\ & 3 \\ & 4 \end{aligned}$		4	$\begin{array}{r} 358 \\ 452 \\ \hline \end{array}$	$\begin{aligned} & 376 \\ & 475 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 38 \end{aligned}$	$.32$		4		$.464$		
7	20 16																
SOLID CONDUCTORS																	
$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}\right]$	133079	$\begin{array}{r} .0564 \\ .0718 \end{array}$	$.0764$	$\begin{aligned} & 0618 \\ & 06779 \end{aligned}$	$\begin{aligned} & 0630 \\ & 0795 \end{aligned}$		$\begin{aligned} & 0541 \\ & 069 \\ & .087 \end{aligned}$	$\begin{aligned} & 0577 \\ & 0727 \\ & 0917 \end{aligned}$	$\begin{aligned} & 0596 \\ & 0752 \\ & 0948 \end{aligned}$	$\begin{aligned} & 0585 \\ & 0738 \end{aligned}$	$\begin{aligned} & 0623 \\ & 0785 \end{aligned}$	$\begin{array}{r} 0635 \\ 0800 \\ \hline \end{array}$	0817	$\begin{array}{r} 0672 \\ .0850 \\ \hline \end{array}$	$.0710$	$\begin{aligned} & 0746 \\ & .0942 \end{aligned}$	
2	$\begin{aligned} & 105560 \\ & 83694 \\ & 66358 \end{aligned}$	$\begin{aligned} & 10 \\ & 1 \\ & 1 \end{aligned}$			$\begin{array}{r} 126 \\ 1.159 \end{array}$		$\begin{aligned} & 130 \\ & 175 \end{aligned}$	$\begin{aligned} & 116 \\ & 146 \\ & 184 \end{aligned}$	$\begin{array}{r} 151 \\ .190 \\ \hline \end{array}$	117	$\begin{aligned} & 124 \\ & 157 \end{aligned}$	$\begin{aligned} & 127 \\ & 160 \end{aligned}$		$\begin{aligned} & 134 \\ & 1.170 \end{aligned}$	$\begin{aligned} & .143 \\ & 180 \\ & \hline \end{aligned}$		$.195$
3 4 4	52624 41738 33088	$\begin{aligned} & .181 \\ & .229 \\ & .289 \\ & \hline \end{aligned}$	$\begin{array}{r} 244 \\ .307 \end{array}$	$\begin{aligned} & .197 \\ & .248 \\ & .313 \end{aligned}$	$\begin{aligned} & 201 \\ & .253 \\ & .319 \end{aligned}$	$\begin{aligned} & 263 \\ & 331 \\ & \hline \end{aligned}$		$\begin{array}{r} 293 \\ .368 \\ \hline \end{array}$	$\begin{array}{r} 36 \\ .3 \\ \hline \end{array}$	$\begin{aligned} & 235 \\ & 297 \\ & \hline \end{aligned}$	$\begin{array}{r} 270 \\ .250 \\ 315 \end{array}$	$\begin{aligned} & 202 \\ & 255 \\ & 321 \\ & \hline \end{aligned}$	$\begin{array}{r} 260 \\ .328 \\ \hline \end{array}$	$\begin{array}{r} .270 \\ .340 \\ \hline \end{array}$	$\begin{array}{r} .38 \\ .36 \\ \hline \end{array}$		
6 7 8	26244 20822 16512	.364 .459 .579	.387 .488 .616	$\begin{aligned} & .395 \\ & .498 \\ & 628 \\ & \hline \end{aligned}$	$\begin{aligned} & 403 \\ & 508 \\ & 640 \\ & \hline \end{aligned}$	665	$\begin{array}{r} 753 \\ .702 \\ \hline \end{array}$	$\begin{array}{r} 586 \\ .739 \\ \hline \end{array}$	$\begin{aligned} & 606 \\ & 764 \end{aligned}$	$\begin{array}{r} 472 \\ 595 \\ \hline \end{array}$	$\begin{aligned} & 502 \\ & 633 \end{aligned}$	5	$\begin{aligned} & 523 \\ & 657 \\ & \hline \end{aligned}$	$\begin{aligned} & 543 \\ & 685 \end{aligned}$	$\begin{aligned} & 572 \\ & 722 \end{aligned}$		$\begin{array}{r} 777 \\ 623 \\ \hline 785 \\ \hline \end{array}$

These resistance values do not take into account skin effect. This should be considered when the larger conductors are used, particularly at the higher frequencies. No sllowance has bean made for increased length due to asg when the conductors are suapended.. The reaiatance values for the atranded conductors are two percent greater than for s solid rod of croas-aection equal to the tetal croba-gection of the wirea of the cable

The change of resistivity of copper per degree C. is a constant independent of the tempersture of reference and of the sample of cop per. Thia resiativity temperature constant ia 0.0409 ohm (mil, foot). The fundamental resistivity used in calculating this tshle is the an

For aizea not given in the table computations may be msde by the following formulas which were uad in calculating the above table:Ohms per 1000 feet of annealed copper at 25 degrees $C=\frac{10787}{\text { Circ. mila }}$; at 65 degrees $C=\frac{12457}{\text { Circ. mila }}$
conductor the m.m.f. reaches its maximum because all of the current of the conductor is acting to produre m.m.f. at this and all points beyond. On the other hand the circular path subject to this maximum m.m.f. is shortest at the surface, the reluctance a minimum
and consequently the field intensity is greatest. For points beyond the surface the length of the circular path through air is proportional to the distance from the center of the conductor. Thus at a distance of 2 from the center the circular path is twice as long as at

TABLE II-RESISTANCE PER MILE

OF COPPER CONDUCTORS AT VARIOUS TEMPERATURES STRANDED CONDUCTORS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
\& 0 \\
\& \mathbf{2} \\
\& \infty \\
\& \infty \\
\& \infty
\end{aligned}
\]} \& \multirow{3}{*}{AREA ciroular mis} \& \multicolumn{8}{|c|}{\multirow[t]{2}{*}{OHMS PER MILE ANNEALED COPPER \(100 \%\) CONDUCTIVITY}} \& \multicolumn{8}{|l|}{SINGLE CONDUCTOR} \\
\hline \& \& \& \& \& \& \& \& \& \& \multicolumn{8}{|l|}{\begin{tabular}{l}
HARD DRAWN COPPER \\
97.3\% CONDUCTIVITY
\end{tabular}} \\
\hline \& \& \[
\begin{array}{|l|}
\hline 0^{\circ} \mathrm{C} \\
32^{\circ} \mathrm{F}
\end{array}
\] \& \[
\begin{array}{l|}
\hline 15^{\circ} \mathrm{C} \\
69^{\circ} \mathrm{F}
\end{array}
\] \& \[
\begin{aligned}
\& 20^{\circ} \mathrm{C} \\
\& 68^{\circ} \mathrm{F}
\end{aligned}
\] \& \[
\left\lvert\, \begin{array}{|l|l}
25^{\circ} \mathrm{C} \\
\hline
\end{array}\right.
\] \& \[
\begin{aligned}
\& 35^{\circ} \mathrm{O} \\
\& 95^{\circ} \mathrm{F}
\end{aligned}
\] \& \[
=\begin{aligned}
\& 50^{\circ} \mathrm{C} \\
\& 122^{\circ} \mathrm{F}
\end{aligned}
\] \& \[
\begin{array}{|l}
65^{\circ} \mathrm{C} \\
149^{\circ} \mathrm{F}
\end{array}
\] \& \[
\begin{aligned}
\& 75^{\circ} \mathrm{C} \\
\& 187^{\circ} \mathrm{F}
\end{aligned}
\] \& \[
\left\lvert\, \begin{aligned}
\& 0^{\circ} \mathrm{C} \\
\& 32^{\circ} \mathrm{F}
\end{aligned}\right.
\] \& \[
\left|\begin{array}{l}
15^{\circ} \mathrm{C} \\
59^{\circ} \mathrm{F}
\end{array}\right|
\] \& \[
\begin{aligned}
\& 20^{\circ} \mathrm{C} \\
\& 68^{\circ} \mathrm{F}
\end{aligned}
\] \& \[
\begin{aligned}
\& 25^{\circ} \mathrm{C} \\
\& 77^{\circ} \mathrm{F}
\end{aligned}
\] \& \[
\begin{aligned}
\& 35^{\circ} \mathrm{C} \\
\& 95^{\circ} \mathrm{F}
\end{aligned}
\] \& \[
\begin{aligned}
\& 50^{\circ} \mathrm{C} \\
\& 122^{\circ} \mathrm{F}
\end{aligned}
\] \& \[
\begin{aligned}
\& 65^{\circ} \mathrm{C} \\
\& 149^{\circ} \mathrm{F}
\end{aligned}
\] \& \[
75^{\circ} \mathrm{O}
\] \\
\hline \& \& \begin{tabular}{l}
.0258 \\
\hline 027 \\
0286 \\
\hline 8.
\end{tabular} \& \begin{tabular}{|l|}
0274 \\
0284 \\
0305 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& .0279 \\
\& 3029 \\
\& 0.0311
\end{aligned}
\] \& 0285
031
0317 \& \[
\begin{aligned}
\& .0295 \\
\& 0312 \\
\& 0329 \\
\& 0
\end{aligned}
\] \& 0312
0330
0347 \& 0329
034
0367 \& \[
\begin{aligned}
\& 0340 \\
\& 0359 \\
\& 0379
\end{aligned}
\] \& 0265
02788
0294 \& \[
\begin{aligned}
\& 0282 \\
\& 028 \\
\& 0.814 \\
\& 0314
\end{aligned}
\] \& 0288
0381
0320 \& 0293
0304
0325 \& O32 \& 0321
0338
0357 \& [0.337 \& \begin{tabular}{l}
.0349 \\
.0368 \\
\hline
\end{tabular} \\
\hline \& \begin{tabular}{l}
1700000 \\
160000 \\
1500000 \\
\hline 180000
\end{tabular} \& .0303
0322
.0344
.0 \& 0323
0342
0365
035
0 \& \begin{tabular}{l}
0329 \\
0349 \\
0379 \\
\hline 039
\end{tabular} \& 0336
0357
0386 \& \(\begin{array}{r}\text { O348 } \\ 0378 \\ 0394 \\ 039 \\ \hline\end{array}\) \& \begin{tabular}{l}
0368 \\
0391 \\
0417 \\
\hline 041
\end{tabular} \& (e388 \& 0400
0425
0454 \& 0312
0331
0353 \& \& -3 \& 0344
0367
0397 \& 0338
0388
0405
0 \& \& \& \(\begin{array}{r}0412 \\ 0438 \\ 0467 \\ \hline 858\end{array}\) \\
\hline \& 160000
1300000
1300000
1200000 \& \begin{tabular}{|l|}
.0368 \\
0396 \\
0429 \\
048 \\
\hline
\end{tabular} \& \begin{tabular}{l}
O39 \\
.042 \\
045 \\
\hline 84
\end{tabular} \& \begin{tabular}{l}
0399 \\
\(0+36\) \\
\(0+65\) \\
\hline
\end{tabular} \& \begin{tabular}{l}
0408 \\
043 \\
\(0+75\) \\
\hline 85
\end{tabular} \& 0423
0456
0493 \& 0447
048
0.0520 \& 0470
0.507
0.550 \& 0487
0523
0565 \& \begin{tabular}{l}
0378 \\
047 \\
044 \\
\hline 04
\end{tabular} \& \begin{tabular}{l}
04 \\
04 \\
04 \\
\hline
\end{tabular} \& 0410
0442
0478 \& 0418
0481
0489 \& \begin{tabular}{l}
104 \\
04 \\
0.5 \\
\hline 0
\end{tabular} \& \(0+59\)
0495
0534
054 \& O484,
0852
0565 \& \\
\hline \& \begin{tabular}{l}
1100000 \\
100000 \\
900000 \\
\hline
\end{tabular} \& -0467 \& 0498
0.95
057
0.0 \& 0507
0597
0587 \& O518
0.503
0603 \& - \& .0572
0623
0656 \& 0597
0690
0693
063 \& 0618
0682
0713 \& \begin{tabular}{l}
0482 \\
0.528 \\
0.555 \\
\hline 05
\end{tabular} \& O5, \& \begin{tabular}{l}
0521 \\
0577 \\
0603 \\
\hline 063
\end{tabular} \& 0533
0587
0.88
068 \& O5 \& 067 \& 0615
0075
08710 \& \begin{tabular}{l}
06 \\
06 \\
073 \\
\hline
\end{tabular} \\
\hline \& 900000
850000
800000 \& .0571 \& 0608
0645
0687 \& 0618
0655
0698 \& 0635
0672 \& 06 \& 0693
0.735
0783 \& 0730
07785
0825 \& 0751
0851
0851 \& \begin{tabular}{l}
0587 \\
0620 \\
0660 \\
\hline 875
\end{tabular} \& 0623
0660
0763 \& \begin{tabular}{l}
0635 \\
0672 \\
078 \\
\hline 878
\end{tabular} \& 0658
0688
0735 \& 0672
0713
0762 \& 0708
0755
0803 \& . 0750 \& \\
\hline \& \& \& 072 \& \[
\begin{aligned}
\& 0740 \\
\& 0798 \\
\& 0861 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
0741 \\
0814 \\
0878 \\
\hline 80
\end{tabular} \& \[
\begin{array}{r}
.0788 \\
0846
\end{array}
\] \& \begin{tabular}{l}
0830 \\
0894 \\
0962 \\
\hline
\end{tabular} \& \[
\begin{array}{r}
0878 \\
0878 \\
102 \\
\hline
\end{array}
\] \& \begin{tabular}{l}
0905 \\
0973 \\
105 \\
\hline 105
\end{tabular} \& \& \& 0762
0819
0883 \& \begin{tabular}{l}
0782 \\
0835 \\
0935 \\
\hline 80
\end{tabular} \& \[
\begin{array}{rl}
2.08066 \\
0 \\
0 \& 886 \\
\hline
\end{array}
\] \& 0850
0875
0990 \& \({ }^{0900}\) \& \[
\begin{aligned}
\& 0925 \\
\& 108 \\
\& 108
\end{aligned}
\] \\
\hline \& 600000
550000
500000 \& \& \& \[
\begin{aligned}
\& 093 \\
\& 0,12 \\
\& 1012
\end{aligned}
\] \& \begin{tabular}{l}
0952 \\
.114 \\
\hline 18
\end{tabular} \& . 9888
.119 \& .104 \& 1120 \& 114 \& \begin{tabular}{|l|}
.0878 \\
.1063 \\
\hline 106
\end{tabular} \& \[
\begin{aligned}
\& .0940 \\
\& 102 \\
\& 1113
\end{aligned}
\] \& \begin{tabular}{l}
.0957 \\
.115 \\
\hdashline 115
\end{tabular} \& \begin{tabular}{l}
0978 \\
1077 \\
117 \\
\hline 181
\end{tabular} \& \[
\begin{aligned}
\& 102 \\
\& 1111 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 100 \\
\& 1128 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
113 \\
122 \\
135 \\
\hline 15
\end{tabular} \& \begin{tabular}{|l|}
117 \\
\hline 127 \\
\hline 140 \\
\hline 175
\end{tabular} \\
\hline \& \& 114
147 \& [122 \& 124
\(1 / 140\)

180 \& $\begin{array}{r}127 \\ 143 \\ 163 \\ \hline 19\end{array}$ \& $\begin{array}{r}138 \\ 148 \\ 169 \\ \hline\end{array}$ \& \begin{tabular}{l}
139

.157

\hline 178

 \&

176

\hline 165

.188

\hline
\end{tabular} \& 151

170
195 \& 118
$1 / 81$

151 \& $$
\begin{array}{r}
125 \\
141 \\
\hline 162 \\
\hline
\end{array}
$$ \& 127

164
165 \& 131
147
167

18 \& [136 \& | $1 / 16$ |
| :--- |
| 118 |
| 183 |
| 18 | \& 150

168
193

126 \& | 127 |
| :--- |
| 175 |
| 175 |
| 200 |

\hline \& \& | 1.17 |
| :--- |
| .206 |
| .243 | \& $\begin{array}{r}183 \\ .28 \\ .259 \\ \hline 1\end{array}$ \& \[

$$
\begin{aligned}
& 187 \\
& 224 \\
& \hline 264 \\
& \hline
\end{aligned}
$$
\] \& 190

228
269
269 \& 197
237
280 \& 2088
258
296
206 \& 220
263
.311 \& 226
272

322 \& | 176 |
| :--- |
| 21 |
| 249 |
| 1 | \& \[

$$
\begin{aligned}
& \begin{array}{r}
88 \\
285 \\
266 \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$
\] \& 192

230
272 \& 196
235

279 \& | 203 |
| :---: |
| 243 |
| 288 |
| 288 | \& 214 \& 226

276
320

320 \& | 233 |
| :--- |
| 280 |
| 330 |
| 156 |

\hline \% \& \& $$
\begin{aligned}
& 306 \\
& 3888 \\
& 488 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
326 \\
.12 \\
420 \\
\hline
\end{array}
$$

\] \& | 333 |
| :--- |
| 420 |
| 528 | \& $\begin{array}{r}341 \\ 428 \\ 440 \\ \hline\end{array}$ \& | 353 |
| :--- |
| 444 |
| 60 | \& | 372 |
| :--- |
| 470 |
| 97 |
| 9 | \& \[

$$
\begin{array}{r}
392 \\
495 \\
624 \\
\hline
\end{array}
$$
\] \& 40.5

312

645 \& \begin{tabular}{l}
319

398

102

\hline

 \&

335

323

335

\hline 35
\end{tabular} \& 342

432
545

54 \& \begin{tabular}{c}
350

442

455

\hline 58

 \& \&

383

4768

608

\hline

 \&

402

510

640

\hline 80

 \&

416

527

667

\hline 68
\end{tabular}

\hline | 1 |
| :--- |
| |
| 3 |
| 3 | \& | 83694 |
| :--- |
| 62658 |
| 5264 | \& \[

$$
\begin{aligned}
& 612 \\
& 677 \\
& 978 \\
& \hline
\end{aligned}
$$

\] \& \& - $\begin{aligned} & 665 \\ & 7.070 \\ & 1.07\end{aligned}$ \& | 682 |
| :--- |
| 8.62 |
| .09 | \& | .788 |
| :--- |
| .985 |
| $1 / 3$ |
| 18 | \& .745

7.19

7.19 \& $$
\begin{aligned}
& .787 \\
& 999 \\
& \hline 1.25
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
815 \\
103 \\
1.30
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
630 \\
\\
\hline 98 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 672 \\
& 8.84 \\
& 8.07 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& .682 \\
& .862 \\
& 1.10
\end{aligned}
$$

\] \& | 687 |
| :--- |
| 8.12 |
| 18 | \& \[

$$
\begin{aligned}
& .730 \\
& 9,16 \\
& \hline 9.16
\end{aligned}
$$
\] \& 7766

7.22

7.28 \& | 810 |
| :--- |
| 1.02 |
| 1.29 |
| 18 | \& [$\begin{array}{r}835 \\ \hdashline .05 \\ 1.33 \\ \hline 167\end{array}$

\hline | 4 |
| :--- | \& \& 12

1.56
1.96 \& 1.31
1.66
2.09 \& (1.34 \& 139
分 73

2.17 \& $$
\begin{aligned}
& 1.42 \\
& 1.80 \\
& 2.26
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.89 \\
& 1.89 \\
& 2.39 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|}
\hline 158 \\
199 \\
251 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{lll}
1.63 \\
2 & 0 & 5 \\
2 & 5 & 9 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 127 \\
& 1.60 \\
& 2.01 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 135 \\
1.714 \\
2.14 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.73 \\
& 2.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.41 \\
& 1.78 \\
& 2.24 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.46 \\
& 184 \\
& 2.32 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.55 \\
& 1.95 \\
& 2.45
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.61 \\
& 2.04 \\
& 2.58
\end{aligned}
$$

\] \& | 1.67 |
| :--- |
| 2.67 |
| 2.66 |
| 28 |

\hline 8 \& 208

165 \&	2.48
3.12	\& 2.63

3.32 \& $\frac{2.68}{3.38}$ \& 2.74 \& 2.84 \& 3.91
3.78 \& 3.16
3.99 \& 3.27
413 \& $2{ }^{2} 51$ \& 2.71

3.71 \& ${ }^{2} 3.78$ \& | 2.82 |
| :--- |
| 3.58 | \& 2.93 \& 33.8 \& 3.125 \& 3.35

\hline \multicolumn{18}{|c|}{SOLID CONDUCTORS}

\hline $$
\begin{aligned}
& 000 \\
& 00 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 211609 \\
& 167772 \\
& 133079
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
308 \\
.380 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 254 \\
& 325 \\
& \hline 404 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 259 \\
& 329 \\
& 3127
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
264 \\
.233 \\
.320 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 274 \\
& 376 \\
& \hline 436 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 289 \\
& 369 \\
& \hline 460
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
335 \\
.384 \\
\hline 485 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 315 \\
& 397 \\
& 301
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 245 \\
& 309 \\
& 390
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
261 \\
3181
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 266 \\
& 336 \\
& 426
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
34 \\
\hline 43 \\
\hline
\end{array}
$$

\] \& \[

4501

\] \& \[

47

\] \& 497 \& | 323 |
| :--- |
| 408 |
| 415 |
| 680 |

\hline '0 \& $$
\begin{aligned}
& 105560 \\
& 83694 \\
& 66358
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 478 \\
& 603 \\
& 760
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 509 \\
& 640 \\
& 808
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 520 \\
& 525 \\
& 825
\end{aligned}
$$

\] \& | 528 |
| :--- |
| 646 |
| 840 | \& | 550 |
| :--- |
| 972 |
| 872 | \& \[

$$
\begin{aligned}
& 582 \\
& \hline 935 \\
& 925
\end{aligned}
$$
\] \& 613

772
972 \& 695
798

101 \& | 492 |
| :--- |
| 188 |
| 78 | \& \[

$$
\begin{aligned}
& 52 \\
& 52^{2} \\
& .55 \\
& \hline 830
\end{aligned}
$$

\] \& | 535 |
| :--- |
| 742 |
| 845 | \& | ¢ |
| :--- |
| 80 |
| 888 |
| 862 | \& 565

708

908 \& \begin{tabular}{l}
597

\hline 95

950

\hline 15

 \&

628

793

\hline 00

\hline 06

 \&

.850

820

\hline .03

\hline 189
\end{tabular}

\hline | 3 |
| :--- |
| |
| 4 |
| 4 | \& \[

$$
\begin{array}{r}
52624 \\
51738 \\
\hline 33088 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
955 \\
3.25 \\
1.53 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 102 \\
& 109 \\
& 162 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 104 \\
& 1,31 \\
& 166 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 106 \\
& 1.34 \\
& 1699 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 119 \\
& 1.39 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 116 \\
& 147 \\
& 1.85 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 23 \\
& 155 \\
& 155 \\
& \hline
\end{aligned}
$$
\] \& 127

180
202
208 \& 983
184

157 \& $$
\begin{aligned}
& 105 \\
& 1332 \\
& 1.67 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.07 \\
& 1,35 \\
& 170 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.10 \\
& 1.38 \\
& 1.73 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.143 \\
& 143 \\
& \hline 80
\end{aligned}
$$
\] \& 119

190

190 \& \begin{tabular}{l}
126

159

2.00

\hline

 \&

1330

169

207

\hline
\end{tabular}

\hline $\frac{6}{7}$ \& (26244 \& \& \& 2.09
2.63 \& (1.4 $\begin{aligned} & 2.1 \\ & 2.69 \\ & 3.39\end{aligned}$ \& 2.21
2.7
3
3 \& 233
294
371 \& 246
3.190
390 \& 2
3
3
4
4
4

4 \& 19889 \& $$
\begin{aligned}
& 210 \\
& 265
\end{aligned}
$$ \& 2.15

3.1

3.4 \& | 2.20 |
| :--- |
| 2.47 | \& 227

287
362 \& \& \& 2.66
3.19

\hline
\end{tabular}

[^1]a distance of I (its surface) and consequently, although the m.m.f. is the same the reluctance is double, permitting only one-half as great a flux to flow as at the surface. For a similar reason the density of the field at a distance of $I O$ is one-tenth the surface density; at 50 it is one-fiftieth, etc. The curve of field density beyond the surface of the conductor therefore assumes the form of a hyperbola.

Inside conductor A the field density is represented by a straight line joining the center of the conductor to the apex of the density curve, represented as ioo percent. Suppose it is desired to determine the field den-

The m.m.f. resulting from equal currents is the same for all sizes of conductors. Thus the field density at points equally distant from the center of difrerent sizes of conductors carrying equal currents is equal provided these points lie beyond the surface of the larger conductor. For points equally distant from the center of different size conductors which lie inside the conductors the density will be different. Thus if the conductor diameter carrying equal current be reduced to one half, the m.m.f. at its surface will remain the same, but since the flux path at the surface is now only one-half as long, the flux density at the surface

CHART I-INDUCTANCE

TOTAL INDUCTANCE iN MILLINENRIES (L) PER 1000 FEET OF EACH CONDUCTOR L-0.01524 +0.1403 LOG $10 \frac{\mathrm{D}}{\mathrm{R}}$

FIG. 6
sity at a point midway between the center and surface of the conductor. At this point the length of the circular path is one half its length at the conductor surface. Since the current distributes uniformly throughout the cross-section of the conductor, at a point midway between the center and its surface, one-fourth of the total current would be embraced by the circle. The m.m.f. corresponding to this point would therefore be one-fourth its value at the surface. With one-fourtl? m.m.f. and one-half the surface reluctance the resulting density will be one-half of its surface density as shown by this value falling on the straight line at this distance from the center.
will be twice as great. In other words, the magnetic field density at the surface of conductors having different diameters but carrying the same currents is inversely proportional to their radii.

The area indicated by cross-sectional lines on the inductance chart represents the amount of inductance effective in conductor A resulting from current in this conductor. It will be seen that the total area between the adjacent surfaces of the conductors I to 9 below the flux density line is effective. This part of the inductance follows a logarithmic curve as illustrated on the chart and is represented by the formula.
$L=0.14037 \log _{10} \frac{D-R}{R}$

Where L is in millihenries per 1000 feet of single conductor.

The effective flux area departs from the flux density line at E dropping down in the form of a reverse curve and terminating in zero at $1 I$. All flux to the right of $I I$ cuts the whole of both conductors producing the same amount of inductance in both of them in such a direction as to oppose or neutralize each other.

The flux cutting conductor B irom g to $I I$ has its full value of effectiveness in producing inductance in conductor A. On the other hand it also produces to a less extent inductance in conductor B but in a direction to oppose that which it produces in conductor A. The difference between that produced in conductors A and B is the effective flux producing inductance in the circuit and is represented by the shaded portion through conductor B within the area $E-9-I I-T-E$. To illustrate how the effective flux curved line $E-T-I I$ was determined, suppose it is required to determine the effective flux at the distance 10 (center of conductor B). At this point the flux density is ten percent, but since these flux density lines are actually concentric circles, having their center at the middle of conductor A this flux density curve cuts conductor B in the form of an arc (see lower right hand corner of inductance chart). The area of the shaded portion between the two arcs is a measure of the inductance in conductor B at its center. The difference between this shaded area, and the whole area of B, or the clear part to the right of the shaded portion, is a measure of the difference in inductance of the two conductors. In other words, for the spacings shown, approximately 55 percent of ten $0 ;$ 5.5 percent is the value of the effective flux at distance of $I O$ from conductor A.

$$
\begin{aligned}
& \text { If in place of } L=0.1 .1037 \log _{10}=\frac{D-R}{h^{\prime}} \ldots \ldots .(1) \\
& \text { we take } \quad L=0.18037 \log _{10} \frac{D}{K^{2}} \ldots \ldots(2)
\end{aligned}
$$

we include all of the inductance area out to the vertical line $O-I O$. This would include the area $E-O-T$ but not the area $T-I O-I I$. Since these two areas are equal, the omission of one is balanced by including the other and therefore formula (2) correctly takes into account all of the effective inductance beyond the surface of conductor A.

The inductance within conductor A is determined as follows:-At a point midway between the center and its surface the flux density is 50 percent as indicated by the straight flux density line of the chart. However at this point only one-fourth of the conductor area is enclosed, so that, measured in terms of its effect if outside the conductor, its effectiveness would be only one-fourtls of 50 or 12.5 percent. This is the reason that the socalled effective flux line is curved and falls to the right of the straight flux density line. The area of the triangular section $O-I-100$ is a measure of the effective inductance within conductor A. This is a constant for all sizes of solid conductors and is represented by the
constant 0.01524 of the inductance formula based upon IOOO feet of conductor.

The fundamental formula for the total effective inductance (within and external to conductor A) of a single solid non-magnetic conductor suspended in air is therefore:

$$
\begin{aligned}
& L=0.01524+0.14037 \log _{10} \frac{D}{R^{2}} \text { per } 1000 f 1 \ldots \ldots \text { (3) } \\
& \text { or }
\end{aligned}
$$

$$
\boldsymbol{L}=0.08047+0.74155 \log _{10} \frac{D}{R^{j}} \text { per mile....... (7) }
$$

It may be interesting to note here that the above described graphical solution for inductance produces results in close agreement with these obtained by the fundamental formula for inductance. That is, lay out such a chart on cross section paper to a large scale and coun: the number of squares or area representing the internal and the external inductance due to current in conductor A. It will be seen that the relative values of the external and internal flux areas conform with the relative values as determined by the formula. This will alsu be true in the case of the conductors when so placed as to give zero separation, as illustrated by Fig. 6.

VARIATIONS FROM THE FUNDAMENTAL INDUCTANCE FORMULA

It has been proven mathematically by the Bureau of Standards and others that the fundamental formula (3) for determining inductance will give exact results for solid, round, straight, parallel conductors, provided skin and proximity effects are absent. Proximity effect is the crowding of the current to one side of a conductor, due to the proximity of another current carrying conductor. It is similar te skin effect in that it increases the resistance and decreases the inductance. Proximity effect as well as skin effect changes only the inductance due to the flux inside the conductor. Proximity effect is more pronounced for large conductors, high frequencies and close proximity.

For No. 0000 solid conductors at zero scparation and 60 cycles, the error in the results (as determined bythe fundamental inductance formula) due to skin effect is less than one-tenth of one percent. This erro-however, increases rapidly as the size of the conductor increases. Proximity effect cannot be calculated but it is believed to be less than two percent in the above case.

Should skin and proximity effect combined, be sufficient to force all of the current out to within a very thin annulus at the surface of the conductor (a condition obviously never obtained at commercial frequencies) their combined effect would be a maximum. In such a case there would be no inductance within the conductors and the first constant 0.01524 would disappear from formula (3).

Skin and proximity effect are so small in the case of the greater spacings of conductors required for hightension acrial transmission circuits that they may in such cases be ignored. Even in the case of the close

	$\left\lvert\, \begin{aligned} & 140 \\ & +450 \\ & +5+ \end{aligned}\right.$	$\begin{aligned} & n-20 \\ & 1+\infty \\ & ++t \end{aligned}$	
		$\begin{aligned} & 2-5 \\ & -6+7 \end{aligned}$	，
$\begin{aligned} & 0,60 \\ & - \pm+1 \end{aligned}$		$\left.\begin{array}{\|c\|} A+0 \\ 3+1 \\ +1 \end{array} \right\rvert\,$	
$\begin{aligned} & 500 \\ & 0=1 \\ & 7+4 \end{aligned}$			
$\begin{aligned} & \text { mb } \\ & -0 \\ & m+4 \end{aligned}$		$\begin{aligned} & 30+ \\ & +54 \end{aligned}$	
$\begin{aligned} & 6.9 n \\ & \text { moro } \\ & 7 n+7 \end{aligned}$		$\begin{aligned} & h m 0 \\ & m y+1 \\ & x+y \end{aligned}$	
	$\begin{aligned} & 5=0 \\ & 0=-\infty \\ & \forall \forall \end{aligned}$		
		$\begin{array}{r} 150 \\ \hdashline+5 \% \end{array}$	
	$\begin{array}{\|l\|} +\infty \\ \cos \theta \\ \cdots n n \end{array}$	$\begin{aligned} & i \end{aligned}$	
$\begin{aligned} & \text { Bra } \\ & \text { by } 40 \\ & \text { mym } \end{aligned}$	$\begin{aligned} & \text { MM0 } \\ & 1000 \\ & 97 m \end{aligned}$	$\left\lvert\, \begin{gathered} 150 \\ 000 \\ 97 t \end{gathered}\right.$	
$\begin{aligned} & \text { no } \\ & \text { nyb } \\ & \text { mmp } \end{aligned}$		$\begin{aligned} & \text { anom } \\ & \text { nooo } \\ & m m m \end{aligned}$	
	$\begin{aligned} & 5= \\ & +50 \\ & m 90 \end{aligned}$	$\begin{aligned} & \text {-4n } \\ & -7 \infty 0 \\ & 79 m \end{aligned}$	$\left\{\begin{array}{l} \text { and } \\ 0060 \\ m m y \end{array}\right.$
	$\begin{aligned} & \text { Mon } \\ & \text { Mot } \\ & m \text { m } \end{aligned}$		
$\begin{aligned} & \text { na } \\ & \text { ran } \\ & \text { ram } \\ & \hline \end{aligned}$	$\begin{aligned} & m m \\ & n=m \\ & m m m \end{aligned}$	$\begin{aligned} & n+m \\ & m+n \\ & m \cdots m \end{aligned}$	$606 m$ 以vN $\cdots M y$
	$\begin{array}{\|l\|} \hline \text { Nab } \\ \text { Noo } \\ \text { NN } \\ \hline \end{array}$		
	$+\infty$ なNへ	$\begin{aligned} & \text { hen } \\ & \text { Ooo } \\ & \text { Yク\% } \\ & \hline \end{aligned}$	
$\begin{aligned} & \begin{array}{l} 30 n \\ \text { Nmt } \\ \text { NNN } \end{array} \end{aligned}$			
$\left.\begin{array}{\|c\|} \hline N \infty 0 \\ \infty \\ -\infty \\ -\infty \end{array} \right\rvert\,$			$\left\{\begin{array}{l} 0.04 \\ \text { Nro } \\ \end{array}\right.$
00000 $1 r \infty$			
$\begin{aligned} & n m 6 \\ & 640 \\ & n=? \end{aligned}$	${ }^{N}$	$\begin{aligned} & \text { ton } \\ & \text { ONNN } \end{aligned}$	$\begin{aligned} & \text { ninm } \\ & \text { NMNN } \end{aligned}$
$\begin{aligned} & 0 y^{0} \\ & +n^{2} \end{aligned}$			
$=\sqrt{n} \rightarrow m$		$\begin{aligned} & -\infty 6 \\ & 0<0 N \end{aligned}$	$\left\lvert\, \begin{array}{ll} \mathrm{N}-\mathrm{n} \\ \infty \\ \infty & -\infty \\ \hline \end{array}\right.$
$\begin{aligned} & \text { man } \\ & \operatorname{rno} \\ & 000 \end{aligned}$		$\left\|\begin{array}{l} 0.6 m \\ -N m \end{array}\right\|$	$\begin{aligned} & 0+4 \\ & +43 \end{aligned}$
		N $4=$ 1000 000	$\begin{aligned} & \sin x \\ & 00= \\ & 09 \end{aligned}$
$\left.\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 7 \\ h & 0 \\ 0 & 0 & 0 \\ 6 & 6 & m \end{array}\right]$	$\left\|\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 10 & 0 \\ 0 & -1 \\ x & -6 \end{array}\right\|$	$\left\|\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 7 \\ & 5 & 0 \\ 9 & 9 & 0 \\ 9 & 0 & 00 \end{array}\right\|$	
$\begin{aligned} & \text { nt } \\ & 30+ \\ & 004 \end{aligned}$	$\begin{aligned} & 6+8 \\ & \text { bुb } \end{aligned}$		
030803N13473315			
WnNIWก7V			

[^2]spacings required for three conductor cables these contbined effects are usually less than four percent.

EFFECT OF STRANDING ON INDUCTANCE
The fundamental formula (3) for determining inductance is based upon a solid conductor, R being taken as the radius of the conductor. In stranded cables the effective value for R lies between the actual radius and that of a solid rod having an equivalent cross-section 10 that of the cable. The effective value for R varies with the stranding of the cable employed.

Formulas for use in determining the inductance of stranded cables when used for high-tension aerial transmission have been calculated by Mr. H. B. Dwight as follows:-

For a 7 -wire cable, $L=0.741 \log _{10} \frac{2.756 D}{d} \ldots \ldots$ (5)
For a 19 -wire cable, $L=0.741 \log _{10} \frac{2.640 D}{d} \ldots \ldots$ ($)$
For a 37 -wire cable, $L=0.741 \log _{10} \frac{2.605 D}{d} \ldots \ldots$ (7)
For a 61 -wire cable, $L=0.7 / 8 \log _{10} \frac{2590 D}{d} \ldots \ldots(s)$
where L is in millihenries per mile of a single conductor, D is the spacing between centers of cables, and d is the outside diameter of the cables measured in same units as D.

SPIRALING EFFECT UPON INDUCTANCE

Spiraling of the strands of a cable and spiraling of the conductors of a three-conductor cable tend to increase the inductance. It is difficult to calculate the effect of spiraling for the various cases, but it may be considered negligible for high-tension aerial transmission circuits using non-magnetic conductors. For three-conductor cables the effect of spiraling is probably in the neighborhood of two percent.

Values for inductance per thousand feet of single conductor are given in Table III, for commercial sizes of copper and steel reinforced aluminum conductors. The formula by which the values were derived are:-

$$
\begin{equation*}
L=0.015^{24}+0.1403 \log _{10} \frac{D}{R} \tag{3}
\end{equation*}
$$

where $L=$ Millihenries per 1000 fect of single conductor of a single phase, or of a symetrical three-phase circuit.
$D=$ Distance between centers of conductors.
$R=$ Radius (to be measured in same units as D) of solid conductor. In the case of stranded conductors, R was taken as the radius of a solid rod of equivalent cross-section to that of the stranded conductors.
Table III has been carried out to three figures only. This would seem sufficiently accurate for working values when it is considered that there are numerous sources of variation from the calculated values. In the first place formulas are based upon a uniform distribution of current throughout the cross section of the bnductors, whereas the current is seldom uniform and n the larger conductors, especially at 60 cycles, may be to a large extent crowded to the outer strands as a result of skin effect. This condition is further modi-
fied when the conductors are placed close together, by the proximity effect. Stranded conductors made up of various stranding combinations result in variation of inductance of several percent. In practice the length and spacing of conductors will vary more or less from those assumed when determining the calculated values.

The values for inductance of stranded conductors in Table III, as stated above, were derived by taking R as the radius of a solid rod having an equivalent crosssection area to that of the stranded conductors. Thus for 1000000 circ. mil cable the outside diameter is 1.152 in . and that of an equivalent solid iron is 1.0 in . R was therefore in this case taken as 0.5 in . The etfective radius is really slightly greater than that of the solid rod and less than that of the cable, varying with the stranding employed. The actual inductance of cables will therefore be slightly less (usually two or three percent) than those indicated in the table for solid rods. The table values are therefore conservative.

The steel core of steel reinforced aluminum cables carries so little current on account of its relatively greater resistance that for practical purposes it has been customary to ignore its presence and to consider such conductors as solid rods of same area as that of the aluminum strands. In the absence of accurate data this practice was followed in determining the values for inductance of such cables in Table III.

The minimum value for inductance occurs when the conductors have zero separation $\frac{D}{R}=2$, (Fig. 6). In this case the inductance in millihenries is independent of the size of the conductor. As given by formula (3) it is $L=0.05124+0.1403 \log _{10} 2=0.0575$ millihenries per 1000 feet of each conductor. Obviously insulation requirements will not permit of such a low value for inductance although it will be closely approached in low voltage cables.

Any given percentage difference in distance bctween centers of conductors represents a definite and constant value in inductance regardless of their siz.. These values are given in column B at the bottom of the table for various percentages increase in spacings. Thus if the distance between conductor centers is increased 50 percent the corresponding increase in inductance is 0.025 as indicated in column B, under the $\&$ values of $\mathbf{1 . 5 0}$. Likewise doubling the distance increases the inductance by an amount of 0.042 . For instance the table value for inductance of No. o solid copper conductor is for one-half inch spacing 0.084 , and for one inch spacing 0.126 (an increase of 0.012 .) For four foot spacing the table value is 0.362 , and for eight foot spacing 0.404, also a difference of 0.042 .

References:-An article by Prof. Charles F. Scott, "Inductance in Transmission Circuits" in The Electric Journal for Feb. 1906 very clearly covers the field of self and mutual inductance external to the conductors.
H. B. Dwight, "Transmission Line Formulas."
V. Karapetoff, "The Magnetic Circuit" p. 189.

CHAPTER II REACTANCE-CAPACITANCE-CHARGING CURRENT

REACTANCE

ACONDUCTOR carrying an electric current is surrounded by a magnetic flux, whose value is proportional to the current. If the current varies, this flux also changes, thereby inducing an electromotive force in a direction which opposes the change. This counter e.m.f. is proportional to the rate of change and hence in alternating current is proportional to the frequency. It can be expressed in ohms per mile of each conductor of a single-phase or of a symmetrical three-phase circuit as follows:-

Ohms Reactance $=2 \pi f L$ (9)
When $f=$ Frequency in cycles per second
$L=$ Henries per mile of single conductor.
The value for $2 \pi f$ are as follows:-

Frcquency	$2 \pi f$
1	6.28
15	9.4 .25
25	157.1
40	251.3
60	37.0
133	835.7

Tables IV and V indicate the reactance in ohms per mile, of a single conductor at 25 and 60 cycles respectively for various spacings of conductors. The foot notes to these tables cover the pertinent points relating to them. The resistance per roco feet, and per mile of single conductor at 25 degrees C. (77 degrees F) is given in parallel columns as a convenience for comparison of the resistance and reactance values. The resistance corresponding to other temperatures when desired may be taken from Tables I and II.

Tables VI and VII indicate the relative importance of reactance and resistance. In some cases of short lines and large single conductors, the reactance and not the resistance may determine the size and number of cables necessary. In other words, it may be necessary to keep the resistance abnormally low so that the reactance will not be so high as to result in an abnormal voltage drop in the circuit. In such cases the values in Tables VI and VII may be used for determining the permissible resistance in order not to exceed the desired reactance.
Example:-It is desired to use 1000000 circ. mil single conductor cables at 60 cycles, spaced two feet apart; from Table VII it is seen that the reactance drop under these conditions is 8.52 times the ohmic drop at 25 degrees C. If an ohmic drop of five percent at 25 degrees C is suggested the corresponding reaclive drop would be 5×8.52 or 42.6 percent which would be excessive. If it is desired to limit the reactive drop to 10 percent in this case, the ohmic drop at 25 degrees C must be 10 $\div 8.52$ or 1.18 percent.

Probably a more important use for Tables VI and VII is for determining the reactance of a conductor directly from its resistance. To do this it is only necessary to multiply its resistance (at 25 degrees C) by the
ratio value in table VI or VII corresponding to the conductor and spacing desired.

UNSYMMETRICAL SPACING

The inductance and capacitance per conductor of a three-phase circuit for symmetrical spacing of conductors is the same as the inductance and capacitance per conductor of a single-phase circuit for the same size conductor and the same spacing. For irregular spacing of conductors, the inductance and capacitance will be different. When the three conductors are placed in the same plane (flat spacing), the inductance of each of the outside conductors is greater than that of the middle conductor. By properly transposing the conductors, the inductance and capacitance may be equalized in all three conductors. However, the effect of flat spacing

F1G. 0
Conductor Spacings.
For three-phase irregular flat or triangular spacing (Figs. 7 and 8) use $D=\sqrt[3]{A B C}$.

For threc-phase regular flat spacing Fig. 9 use $D=1.26 A$.
For two-phase line the spacing is the average distance between centers of conductors of the same phase. It makes no difference whether the plane of the conductors with flat spacing is horizontal, vertical or inclined.
is equivalent to that of a symmetrical arrangement of greater spacing.

Various arrangements of conductors are indicated in Figs. 7, 8 and 9. Many three-phase high tension circuits have the three conductors regularly spaced in a common plane (regular flat spacing) Fig. 9. Beneath these figures are placed statements indicating the determination of "effective spacings" for any arrangement of conductors.

Since the so called "effective spacing" corresponding to unsymmetrical arrangements of conductors is usually a fractional number, the line constants for such effective spacing can usually not be taken directly from
one ampere. Stated another way, its capacitance in farads is numerically equal to the quantity of electricity in coulombs which it will hold under a pressure of one volt. The farad being an inconveniently large unit, one millionth part of it, the microfarad, is the usual practical unit.

CAPACITANCE FORMULA

An exact formula for the capacitance between parallel conductors must take into account the nonuniformity of the distribution of charge around the conductors. Such a formula* is formed by considering the charges as concentrated at the inverse points of the conductors; thus,-

$$
\begin{equation*}
C=\frac{0.008 \not q 67}{\cosh \cdot \frac{D}{d}} \tag{10}
\end{equation*}
$$

Where C equals the microfarads per 1000 feet of conductor between two parallel bare conductors in air, D, the distance between centers of the conductors and d, the diameter and R the radius of the conductors. measured in the same units as D.

$$
\begin{align*}
& \text { Since } \cosh ^{-1} X=\log _{\epsilon}\left(X+1 / \sqrt{\Gamma^{2}-1}\right) \ldots \ldots . \text { (Ir) } \\
& C=\frac{0.00 \delta_{467}}{\log _{\epsilon}\left(\frac{D}{d}+\sqrt{\left(\frac{D}{d}\right)^{2}-1}\right)} \ldots \ldots \ldots \ldots \text { (I2) } \tag{12}
\end{align*}
$$

FIG. IO-CHARGING CURRENT
Reducing to common logarithms and capitance to neutral,-

$$
\begin{equation*}
C=\frac{0.007357}{\log _{10}\left(\frac{D}{d}+\sqrt{\left(\frac{D}{d}\right)^{2}-1}\right)} \tag{13}
\end{equation*}
$$

Microiarads per 1000 fect of single conductor to neurral.
or

$$
\begin{equation*}
C=\frac{0.03 \delta S 29}{\log _{10}\left(\frac{D}{d}+\sqrt{\left(\frac{D}{d}\right)^{2}-r}\right)} \tag{14}
\end{equation*}
$$

Microfarads per mile of single conductor to neutral.
When D is greater than $10 ~ d$, which is always the case in high-tension transmission lines employing barc conductors, the following simplified formulas may be used with negligible error.-

$$
\begin{equation*}
C=\frac{0.007354}{\log _{10} \frac{D}{R}} \tag{15}
\end{equation*}
$$

[^3]
25 CYCLE CONDUCTOR

 DISTANCE (D) BETWEEN CENTERS

-

A	105	1.10	115	1.20	125	1.30	. 1.35	140	1.45	150	155	160	165	1.70	1.75	1.80	1.85	1.90	1.95	2.00
E	. 002	005	. 007	. 009	. 011	. 013	. 015	. 016	P. 019	020	:022	024	025	. 027	028	. 030	. 031	. 032	. 034	. 0.35

\times The reactance for any distance D not given in the tahle can be found as follows: Let E, the nearest maller distance in the table. Divide D by E and taking a value of A nearest to the quo-
find the corresponding value of B, which must be added to the reactance corresponding to the size of conductor and distance E. . Or a two-phase liae the spacing is the average datance

R IN OHMS AT	SEE FOOT NOTES，X ．THE TABLE VALUES WERE DERIVED FROM THE EQUATION－OHMS．	
$C\left(77^{\circ} \mathrm{F}\right)$	XX	CONDUCTOR．）．THE REACTANCE FOR OTHER FREQUENCIES IS $\frac{F}{60}$ THE TABLE VALUES．

	$\begin{array}{\|c\|} \hline 0 n \\ 0+9 \\ n+5 \end{array}$		（ers
$\left\lvert\, \begin{array}{cc} \left.\begin{array}{cc} 0 & 006 \\ 0 & 10 \\ 0 & 0 \end{array} \right\rvert\, \end{array}\right.$	$\begin{aligned} & -297 \\ & n x+ \end{aligned}$		
$\begin{array}{\|c\|c\|} \hline \text { chan } \\ \text { y } 50 \end{array}$	$\begin{aligned} & \text { one } \\ & \text { som } \end{aligned}$		
$\begin{array}{\|l\|} \hline 6 \\ 6 \\ 50 \\ 0 \\ 0 \end{array}$	$\begin{array}{ll} 300 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & \text { YOM } \\ & \text { ONM } \end{aligned}$	
$\left\|\begin{array}{\|cc\|} \hline 0 & -4 \\ 0 & -2 \\ 5 & -4 \end{array}\right\|$		$\begin{aligned} & 500 \\ & 500 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { Mbr } \\ & \text { Mn } \\ & \hline \end{aligned}$

＋	Ont	べmo	－
＋	N N\％	¢Mm	
	Con	Mot	cos

\bigcirc	－NM	～N（	Nam
		N02	

0
0
0
0
0
0
0
2
0
0
0

						ロ\％8	\％9\％	¢\％9		$\left.\left\lvert\, \begin{array}{c} 0+\infty \\ 0 \\ 0 \end{array}\right.\right)$	－	$\begin{aligned} & 0 \times 0 \\ & \text { or } \\ & \text { an } \\ & =20 \end{aligned}$		
ON 88 8									\％\％	\bigcirc	M＋	\％\％\％		b
S3HONI NI 	Exit		Fom	F\％oy			h줓	－${ }^{2}$	$\begin{aligned} & 0.00 \\ & 5+4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { mNN } \\ & \text { n?m? } \end{aligned}$	－			
$3 \mathrm{~d} \wedge 1$	O30n7418												anos	
TVIP317\％	y3ddOO													

 triangular spacing use $D=5$ A 13 C For a 1 wo－phase line tho spering is the averago iltutance between 15 increased by
ductors are u
 atranded conductora is ullgbtly greater．resultiog in ulightly less reactadee thea
aluminum cable tbe presence of the sieel utrands was ignored． D fer are based
the higher fr
of
D percent sectional oren sectional area，
values for tbe cactancs
table vi-RATIO of

THE RESISTANCE VOLTS HAVING BEEN DETERMINED（AT 25° C）THE REACTANCE VOLTS MAY BE FOUND BY MULTIPLYING THE RESISTANCE VOLTS BY THE The ratio for other frequencies is $\frac{F}{60}$ TIMES The

¢it	$\begin{aligned} & \text { on } \\ & \text { nMr } \\ & \text { nñ } \end{aligned}$	$\left\lvert\, \begin{aligned} & n+\infty \\ & n_{1}^{\infty}+\infty \\ & \hline \end{aligned}\right.$	-	N-500	$\begin{aligned} & \mathrm{r}_{1} 0^{2} \\ & =0 \end{aligned}$	$\begin{aligned} & 640 \\ & 6400 \\ & 0.500 \end{aligned}$		$\begin{aligned} & \text { NOO } \\ & 245 \\ & 2+m \end{aligned}$		Non	¢	$\left.\begin{gathered} -\infty \\ n-\infty \\ n \times n \end{gathered} \right\rvert\,$		\％
袻出	$\lim _{n \times \infty}$	－000	\bigcirc	$\mathfrak{d r n}$	$\left\|\begin{array}{l} 0+N \\ 0-0 \end{array}\right\|$	$\begin{array}{r} 640 \\ 0400 \\ 0000 \end{array}$		$\begin{aligned} & 3+n \\ & 5+1 \\ & 3+n \end{aligned}$		$\cos _{0}$	Nor	$\begin{aligned} & \infty, \infty \\ & \text { Non } \\ & \text { min } \end{aligned}$	$10=$	
त㻟	¢－0．	n_{0}^{000}	$?$	$\left\{\begin{array}{l} n r e \\ 2 n s \end{array}\right.$	$\begin{array}{\|l\|} \hline \infty \\ 005 \\ 000 \end{array}$			$\begin{aligned} & 000 \\ & 9+0 \\ & 3+7 \end{aligned}$	$\begin{aligned} & \text { Cono } \\ & 2 \mathrm{ncon} \end{aligned}$	－M60	0			
9 宕	$\left\|\begin{array}{l} 006 \\ n y n \\ n \\ n \end{array}\right\|$		2さ？	in	$\begin{gathered} 1-c \\ 1-c \\ 0 \\ 0 \\ -0 \end{gathered}$			OM， OM， cim	$\begin{gathered} m-40 \\ -20 \end{gathered}$	$\mathrm{TmO}^{\text {rmo }}$			\％no	
		$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	－	$\begin{aligned} & +\infty \\ & \therefore=8 \end{aligned}$		mocy $\operatorname{sic} 00 \mathrm{n}$	$\begin{aligned} & \sin 5 \\ & \infty \\ & 5 \times 56 \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Nho } \\ \text { an } \\ + \text { Nog } \end{gathered}\right.$, oos		4		－	0006
荘		$\begin{aligned} & n+m \\ & 2 x+i n \\ & \hline \end{aligned}$		0	$\begin{aligned} & 62 n \\ & 2020 \\ & 900 \end{aligned}$	$\begin{aligned} & 540 \\ & 500 \\ & 000 \end{aligned}$	$\left\|\begin{array}{ccc} \text { nyby } \\ 10 & 07 \\ -0 & 0 \end{array}\right\|$	mN	$\left\lvert\, \begin{aligned} & n+\infty \\ & 0+\infty \\ & m \times 0 \end{aligned}\right.$		ňM	$\left.\begin{array}{\|l\|} \infty 00 \\ \text { ono } \\ \text { minin } \end{array} \right\rvert\,$	ming	
운	$\begin{aligned} & n-8 \\ & n+9 \end{aligned}$	$\alpha 0.0$	퉁	こ？		$\begin{aligned} & 5 \pi n \\ & 20 \mathrm{~N} \\ & \hline 0 \end{aligned}$		$\begin{array}{\|l\|} \hline 3006 \\ 100 \end{array}$	nom	hn－	－6N	$\begin{array}{\|l\|} \hline \text { Nm- } \\ \text { ofor } \end{array}$	$\begin{aligned} & \text { bogm } \\ & 0 \\ & 0 \end{aligned}$	5
$=\frac{5}{4}$				$\left\lvert\, \begin{aligned} & \text { bat } \\ & \hdashline 90 \end{aligned}\right.$						1020	－ 7.		109	

DISTANCE（D）BETWEEN CENTERS OF CONDUCTORS

$\left[\begin{array}{l} 68 \\ 74 \\ 5+7 \end{array}\right]$	$\begin{aligned} & 4+4 \\ & 408 \\ & 90 \end{aligned}$		－
$\begin{aligned} & 6 x 0 \\ & 040 \\ & 6+9 \end{aligned}$	$\begin{aligned} & \text { gnn } \\ & \text { no } \\ & \text { now } \end{aligned}$		
$\left.\begin{array}{\|c} 040 \\ p_{7} \\ 5+0 \end{array} \right\rvert\,$	$\begin{aligned} & \text { ros } \\ & \text { for } \\ & \text { fon } \end{aligned}$		
$\begin{aligned} & \text { romon } \\ & \text { Non } \\ & 5+n \end{aligned}$			号mm
$\begin{aligned} & \mathrm{NNO} \\ & \mathrm{NHO} \\ & \mathrm{j} \end{aligned}$	Oran	$10-1$	－9ち4
		－80	＋ry
$\left[\begin{array}{l} x+\infty \\ 0 \\ 0 \\ +i n \end{array}\right]$			9
$\left\lvert\, \begin{aligned} & \infty 0 \infty \\ & 000 \\ & +4 \pi \end{aligned}\right.$			50\％
			－80．
			90\％
			\％
$\begin{array}{\|l\|} \hline 0+n \\ n 50 \\ +9 n \pi \end{array}$			
$\left\|\begin{array}{\|c\|c\|} \hline 0 \sin \\ 0 \mathrm{~mm} \\ +\mathrm{min} \end{array}\right\|$	0	0	NMy
$\begin{array}{\|cc\|} \hline \operatorname{con} \\ \operatorname{lon} \\ \sin \end{array}$			¢om
			Fnos
$\left\lvert\, \begin{array}{l\|l\|} \hline \left.\begin{array}{l} m \\ n \\ n \\ n \end{array} \right\rvert\, \end{array}\right.$			
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { OFA } \\ \text { ry } \end{array} \\ \hline \end{array}$		Anco	－min
$\begin{array}{\|l\|} \hline \text { n-N } \\ \text { nin } \end{array}$		298	－
	Ano		min
	$9-6$	NM\％	＋AN
	¢nt		
$\begin{aligned} & +64 \\ & +N 8 \\ & \hline-1 \end{aligned}$	00．	$1+m i n$	$\begin{aligned} & n-N \\ & n \mu-1 \end{aligned}$
－	0		m

												88			暏	cis		500	\％					\bigcirc	citio			2$\frac{2}{2}$323	
						cisyo			9tico	atiol	｜cazoo	ctiol	5ocis				2008		cistoo	coicio	cis	299\％	（20）	20，			\pm		
			37800	zo	ckyo		－žo	azei	trazoo：		－1．os：00	citioo	\％riog	－	1－1800	－	20，	Sticio		5：5	cititio	2980	800	¢ 5		既	105		
边	－	＊－		50\％20	－	zo					（1）		为		18	－${ }_{\text {dip }}$	8，			kso	＋1／200．			边			\％		
				\％				（tyzeie		00	8）			S88．			0	508\％			2			\％	zoto		St		
－	Pre	cre	cexo	coicle		｜ccicy	｜cky	｜rex									｜ck	cotitio	－	cot	citio	des		59．80	cie				
\％			Titao	Otzo		5	cisio		$1 z 0$ Lzo zzo	9te ${ }^{\text {or }}$	rateo	Etice		R8\％			5ot	2too	cisio	Ots		5isyo			coticio		\％os，		
	citizo	\％17\％		Hyzo				cisio	cisze	Kiszo				cise		ciol	5itio	coition		5		coick	12t5	ction	citio				
	720	zzto	\％다ํ	＋kzo	（1）	\＃zioi：	：3taoc：	｜cy	，izioo	\％7\％	5tio			－20roo	z880				95＋0\％	109\％o				\％	（1）				
		city			15780\％		280	zzzo			\％：	${ }^{3685808}$		zEOP：	32t	Foo	a		coso		${ }^{\text {Sts }}$				Stro．	coivit			
	cotiotio			cisk		ckize	cition		cose	30cos	coi．	zto	ceice	cision		r＋00			650	8is	creo	\％	（1000					O	
－	crex			2zo				cose					city	coick	atiol			Stiso					10，	coictiol			\％	0	
－				${ }_{3280}$		P8z 080	：8880	：					35\％	13800		\％stoo	¢0950	315090］		－6\％		\％ 78.85	边	cois		\％osisf			
	fix			Pitero				zif	（0xtiog			（tasi		86509	EEtoo：	21200\％	Cis	09，			coicle	56．	Stio	8，90		\％oo 006	\％		
				tre		${ }^{3} 86800$	：			＋eroiol				－	5＋tio	cotio	边5800	cityo	｜oiter	（09200		coio	coictio			\％08058	30\％		
	52\％		（217200		6tzo	cota			｜citico	Ot¢0\％	｜lo	： 5 T50\％					55500	ctitio	crize								\％		
	｜lizoo			，4200	＋oroo					｜ickioil						Bex	106500				cition		ce			\％oiot			
（tay			ctio		${ }^{1}$			－	｜ck					＋		${ }^{555}$	8，${ }^{\prime}$		Ezt ${ }^{\circ}$							\％08006́	cisen		
1337	$\left\|\begin{array}{\|c\|} \hline 1 \exists 31 \\ \varepsilon z \end{array}\right\|$	$1 \begin{aligned} & 1739 \\ & 12 \end{aligned}$	$1 \begin{aligned} & 1391 \\ & 81 \end{aligned}$	$1 \begin{aligned} & 1731 \\ & 41 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 1793 \\ \hline 91 \end{array}$	$1 \begin{aligned} & 17931 \\ & 81 \end{aligned}$	1433	$1 \begin{aligned} & 1739 \\ & 8 \end{aligned}$	1739	$\left\|\begin{array}{c} 1339 \\ 2 \end{array}\right\|$	1793	$1 \begin{aligned} & 1393 \\ & 9 \end{aligned}$	$\underset{\square}{1733}$	1739	$\stackrel{1334}{2}$	81	． 1	． 8	． 9	． 9	－			．	$\frac{\square}{1}$				
 																										SYOLOnaNOS			

TABLE IX－25 CYCLE CAPACITY SUSCEPTANCE TO NEUTRALPER MILE OF

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[
\begin{array}{|l|l}
w \\
\vdots \\
\vdots
\end{array}
\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\(\qquad\)} \& \multicolumn{26}{|l|}{MICROMHOS PER MILE OF EACH CONDUCTOR OF A SINGLE－PHASE OR OF A SYMMETRICAL THREE－PHASE LINE－THE SUSCEPTANCE VALUES WERE DERIVED FR equation b＝ \(2 \pi \mathrm{fc}\) c the CHARGing CURRENT in amperes PER MILE of single conductor to neutral－the（Susceptan table）\(\times\)（VOLTS TO NEUTRALJ \(\times 10^{-6}\) ，THE SUSCEPTANCE BETWEEN CONDUCTORS EQUALS ONE HALF THE TABLE VALUES} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& OET \& \& － \& \& － \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \(\frac{1}{2}\) \& \({ }^{\prime \prime}\) \& \(2 '\) \& \(3^{\circ}\) \& \(4^{\prime}\) \& \(5^{\prime}\) \& \(6^{\prime}\) \& \(8^{\prime}\) \& 12＇ \& 18＇ \& FEET \& \[
\begin{gathered}
3 \\
F E E T
\end{gathered}
\] \& FEET \& \[
\begin{gathered}
6 \\
\text { FEET }
\end{gathered}
\] \& FEET \& FEET \& \[
\left\lvert\, \begin{gathered}
8 \\
F E E T
\end{gathered}\right.
\] \& FEET \& FEET \& \[
\left\lvert\, \begin{gathered}
13 \\
\text { FEET }
\end{gathered}\right.
\] \& \[
\begin{aligned}
\& 15 \\
\& \text { FEET }
\end{aligned}
\] \& \[
\left\lvert\, \begin{gathered}
17 \\
\text { FEET }
\end{gathered}\right.
\] \& \[
\begin{gathered}
19 \\
\text { FEET }
\end{gathered}
\] \& FEET \& \(\stackrel{23}{\text { FEET }}\) \& \[
\begin{gathered}
2 \delta^{25} \\
F E T T
\end{gathered}
\] \\
\hline \multirow[t]{14}{*}{\[
\]} \& \multirow[t]{11}{*}{} \& \& \& \& \& 2：3 \& \begin{tabular}{l}
115 \\
107 \\
10 \\
\hline
\end{tabular} \& \begin{tabular}{l}
720 \\
8.8 \\
8.62 \\
\hline 8
\end{tabular} \& 790
780
750 \& \& （ 6.18 \& \& － \& （ 415 \& 3．706 \& 3964 \& （ \(\begin{aligned} \& 328 \\ \& 3.25 \\ \& 3.22 \\ \& 3\end{aligned}\) \& \begin{tabular}{|c|}
\\
3 \\
3 \\
308 \\
308 \\
\hline
\end{tabular} \& \& \& \& \& \& \& \& coly \(\begin{gathered}2.97 \\ 2+6 \\ 2+6\end{gathered}\) \& \& 2， 2.39 \& \begin{tabular}{|l|}
2.37 \\
2.36 \\
236 \\
2
\end{tabular} \\
\hline \& \& 13 \& \& \& \& is8 \& 10.5
108
986 \& （ \& ， \begin{tabular}{l}
7.38 \\
713 \\
7 \\
\hline
\end{tabular} \& － 6.7 \& \& \begin{tabular}{l}
502 \\
\(\substack{598 \\
7 \\
\hline 189}\)
\end{tabular} \& ＋ 4.40 \& ＋ 4.94 \& 2 \(\begin{aligned} \& 266 \\ \& 3 \\ \& 3 \\ \& 3 \\ \& 56 \\ \& 3\end{aligned}\) \& \& 320
318
318 \& 3．36 \& 296
293
291
293 \& \& \& 278
\(\frac{2}{2} 87\)
167 \& 20． \& \& \& 2．4． \& ¢ \& ¢ \& 2.36
2.3
3
3
3 \\
\hline \& \& 12 \& \begin{tabular}{l}
\(1 / 00800\) \\
1008008 \\
\hline 180808
\end{tabular} \& \& \& \& ¢ 9 \& 772
7.52
732 \& ¢ 6 \& 626
619 \& （ \& ci78 \& ＋109 \& 385
382
3
3 \& \& 326
326
317
317 \& 310
305
303 \& \& \％\({ }^{2} 8\) \& \begin{tabular}{l}
280 \\
278 \\
175 \\
\hline 18
\end{tabular} \& \& \& \& 24i \& 244
244
239 \& ¢ 2.19 \& \& \& 20 \\
\hline \& \& （1） \& 950 \& \& \& \& （1） \& \& \& \& ¢ \& 457
454
452
4
4 \& 4980 \& 373
378
368 \& ＋ 337 \& ¢ \begin{tabular}{l}
3.16 \\
3.5 \\
3.5 \\
\hline 1.0
\end{tabular} \& ¢ 208 \& \& \begin{tabular}{|c|}
288 \\
2 \\
2 \\
2 \\
2 \\
20
\end{tabular} \& \& \& 20， \& \& \& \& 2334 \& \& \& 2． 2.24 \\
\hline \& \& （\％ \& 800000
75080
78080 \& \& 12 \& 11074 \& 810
\(7 / 1\)
78
7 \& ¢ \({ }_{6}^{68}\) \& （ 6.22 \& 575
567
557
55 \& ¢ \& － 4.4 \& \begin{tabular}{l}
395 \\
371 \\
388 \\
\hline
\end{tabular} \& 近 \(\begin{gathered}364 \\ 364 \\ 360\end{gathered}\) \& 331
3
3
3 \& 3．08 \& \& \& 275
275
272 \& （ 268 \& \& \& \& \& \& 2.31
2131
227 \& \& and \& \\
\hline \& \& （\％8 \& 650000
6080008
590000 \& \& \& \begin{tabular}{l}
975 \\
4.35 \\
4.35 \\
\hline 8.
\end{tabular} \& 763
7.45
7.27 \& 657
673
630 \& cis \& 550
535
533
53 \& \& \& 389
376
378 \& 356
3
3
3
3
48
3 \& 3.2
3,28
316
3 \& － 3 \& ¢ 28 \& 2788
278
273 \& \& \& \& \& 退 \& \& lin 231 \& \& ， \& \& \\
\hline \& \& \& 500 \& \& 211
116 \& ¢ 9.93 \& \％ \begin{tabular}{l}
\(7 \%\) \\
670 \\
\hline 70
\end{tabular} \& \& ¢ 5.60 \& 5．\({ }^{5.2}\) \& （ty \& ＋1094 \& \begin{tabular}{|l|}
3.7 \\
3 \\
3 \\
\hline 65 \\
\hline
\end{tabular} \& ¢ \(\begin{aligned} \& 3.4 \\ \& 3 \\ \& 3 \\ \& 3\end{aligned}\) \& \begin{tabular}{l}
314 \\
304 \\
306 \\
\hline
\end{tabular} \& 近 \& \& \& \& \& 2
3
3
3
4
4 \& \& \& 231
124
226 \& and \& \& 2， 2.19 \& 2，\({ }_{2} 16\) \& （1） \\
\hline \& \& \& 350\％ 3 \& \& 行 \& （ \(\begin{aligned} \& 897 \\ \& 730 \\ \& 738\end{aligned}\) \& \& ciso \& ＋\({ }^{5} 8\) \& ＋ \& \& \& 3
3
3
3
39 \& 3.30
3.27
3.7
3 \& \& （1） \& \& \& \begin{tabular}{l}
2 \\
2 \\
2 \\
2 \\
2 \\
4 \\
\hline
\end{tabular} \& ， \& \& \& ， 220 \& \& ， 218 \& \& \& \& \\
\hline \& \& \& 211600
167378
1739 \& 32.5 \& ¢ 110.3 \& \& ¢ 519 \& \(\begin{array}{r}517 \\ \hline 177 \\ \hline 17\end{array}\) \& 175
4.52
4.90 \& ＋443 \& \& \begin{tabular}{l}
367 \\
3 \\
3 \\
3 \\
\hline 77
\end{tabular} \& \& 3101
307
208 \& \& \begin{tabular}{l}
2780 \\
\hline 2 \\
2 \\
2 \\
2 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& 259 \\
\& 253 \\
\& 248 \\
\& \hline
\end{aligned}
\] \& \& \& 年339 \& \begin{tabular}{l}
233 \\
238 \\
125 \\
\hline 28
\end{tabular} \& \& 22， 215 \& \& \& 2．07 \& 204
201
1,9
19 \& 202 \& （198 \\
\hline \& \& \& \％ 105568 \& （17 \({ }^{17} 18\) \& \& \& ＋ \& ＋488 \& 4ag
3
3
3 \& \& － \begin{tabular}{l}
374 \\
3.5 \\
3.50 \\
\hline
\end{tabular} \& \begin{tabular}{l}
3.36 \\
3.8 \\
3.8 \\
\hline 18
\end{tabular} \& \& \& 267
26
254
254 \& ， \& ［ \(\begin{aligned} \& 2 \\ \& 2 \\ \& 3 \\ \& 3 \\ \& 2 \\ \& 3 \\ \& 3\end{aligned}\) \& 2366 \& \& \& 220
3,5
2,2 \& \& 2209 \& ， 2001 \& \& \& \％ 19 \& （183 \& \begin{tabular}{l}
1.90 \\
\hline 187 \\
184 \\
184 \\
\hline 188
\end{tabular} \\
\hline \& \& \[
\begin{aligned}
\& 282 \\
\& 8820 \\
\& 804 \frac{3}{3} \\
\& \hline
\end{aligned}
\] \& \& \％ \& （10 \& 5．6． \& \begin{tabular}{l}
4.47 \\
738 \\
\hline 18
\end{tabular} \& （190 \& 3．15 \& \({ }_{\substack{366 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4}}\) \& 340
3
3
3 \& 3.12
3.18
3.8

3 \& 近 \& 270 \& \& \& \& \& \& \& 边 \& 2083 \& \& 品咗 \& \％ 9 \& \& \％${ }_{18} 8$ \& \％ \& ，

\hline \& \multirow[t]{3}{*}{} \& \& | 211600 |
| :--- |
| 16773 |
| 133074 |
| 10584 | \& \& cis 9 \& \& \& | ＋ 92 |
| :--- |
| +75 |
| +56 | \& － 4.57 \& \[

$$
\begin{array}{|}
330 \\
405 \\
\hline 05 \\
\hline
\end{array}
$$
\] \& $3 * 5$

383

372 \& | 2 |
| :--- |
| 25 |
| 3.55 |
| 3.55 | \& \[

$$
\begin{aligned}
& 322 \\
& 333 \\
& 305 \\
& \hline
\end{aligned}
$$

\] \& － \& 277\％ \& \& | 253 |
| :--- |
| 347 |
| 242 | \& \& \& \& \& \& 2,18

2,2
207
207 \& \& （ \& 209
208
188 \& （ 281 \& \％ \& ¢

\hline \& \& $$
\begin{array}{ll}
325 & 0 \\
385 & 0 \\
254 & \frac{1}{2}
\end{array}
$$ \& \& \& \& 560

514
517 \& 483
48
4
4

4 \& ＋38 \& $$
\begin{aligned}
& 408 \\
& 3.85 \\
& 3.85
\end{aligned}
$$ \& （39 \& \[

$$
\begin{aligned}
& 360 \\
& 3950 \\
& 340
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 326 \\
& 3.68 \\
& 308
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \\
& \hline
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 260 \\
& 2484 \\
& 2489
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 247 \\
& 241 \\
& 237
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 230 \\
& 2326 \\
& 2322
\end{aligned}
$$

\] \& \& \& 2is \& 近 209 \& \[

$$
\begin{array}{r}
209 \\
208 \\
3,97
\end{array}
$$
\] \& 2． 200 \& \& 管： \& 19189 \& \& \％

\hline \& \& \& \& 39\％ \& \％ \& ¢ 970 \& \& （1） \& 5．72
3.5

3.51 \& 215 \& （1） \& \& － 279 \& \& \& 233 \& | 224 |
| :--- |
| 2 |
| 2 |
| 2 |
| 2 |
| 18 | \& \& \& \& \& 管哏 \& \& \& \& \& － \& 3，78 \&

\hline
\end{tabular}

	（1）	20゙s	－
－\％	－	慈：	ここ？
－\％	こへさ	－if	ごら
	50\％	¢0ご	\％2\％
		$\begin{aligned} & \text { ano } \\ & \text { nom } \\ & \text { n } \end{aligned}$	20\％
			－0\％
			＋0\％
¢\％＊＊		$\begin{aligned} & \sin : n \\ & \sin 2 \end{aligned}$	Mom
$\begin{aligned} & \text { mut } \\ & \text { hnic } \end{aligned}$	$\begin{gathered} \substack{\text { inn } \\ \text { nnn } \\ \text { ven }} \end{gathered}$	$\begin{aligned} & \text { nine } \\ & \text { niñ } \end{aligned}$	\％oion
	chy		－50
$\begin{aligned} & \text { Oin } \\ & \text { OMO } \end{aligned}$		$\begin{aligned} & \text { nल... } \\ & \text { nल } \end{aligned}$	Now
－Num		¢¢¢	¢n¢
	Non	－${ }_{\text {cha }}^{\text {cin }}$	NMN
$\begin{array}{ll} \text { hand } \\ \text { onin } \end{array}$	－ $\begin{gathered}\text { an } \\ \text {－na }\end{gathered}$	$\begin{aligned} & \text { anc } \\ & \text { man } \end{aligned}$	
	－mik	ajh	citit －4，
		axion	2\％
－ijo			$\begin{aligned} & 200 \\ & \text { rमल } \end{aligned}$
	$\begin{aligned} & \operatorname{con} \\ & \text { añ } \end{aligned}$		－
$\begin{aligned} & 654 \\ & 5+5 \\ & 74 \end{aligned}$	$\begin{aligned} & 496 \\ & 7 n+5 \end{aligned}$	Res.	
－ 6			
－			
－	$\begin{aligned} & 400 \\ & 595 \\ & 595 \end{aligned}$	$\begin{aligned} & 80 \% \\ & 7 \pi \end{aligned}$	$\begin{aligned} & 106 \\ & \vdots=0 \\ & 458 \end{aligned}$
		$\begin{gathered} \operatorname{coc} \\ \operatorname{cin}+2 \\ \hline \end{gathered}$	comp
$\begin{array}{\|c\|} \hline 04 \\ 0 \times 4 \\ 0<4 \end{array}$	気呺	${ }_{\square}^{4 \times \pi}$	
$\begin{aligned} & 4 \times \pi \\ & 9 n_{0}=8 \end{aligned}$	20	20．${ }^{54}$	คnci
		0	～0x
9\％\％	－	fity	5re
03080ıN13873315			
WのNIWの7V			

BARE CONDUCTOR

CONDUCTORS MICROMHOS PER MILE OF EACH CONDUCTOR OF A SINGLE-PHASE OR OF•A SYMMETRIGAL THREE-PHASE LINE-THE SUSCEPTANCE VALUES WERE DERIVED FROM THE EQUATIONb-2 FFC. THE CHARGING CURRENT in Amperes. PER MILE OF SINGLE CONDUCTOR TO NEUTRAL = THE (SUSGEPTANCE FROM TABLE) \times (VOLTS TO NEUTRAL) $\times 10^{-8}$ THE SUSCEPTANCE BETWEEN CONDUCTORS EQUALS ONE HALF THE TABLE VALUES.
\qquad

, x For three \cdot phase regular flat spacing use $D=1.26 \mathrm{~A}$. For three-phase irregular flat or triangular spacing use $D=\overline{A B C}$ For a two-phase line the spscing is the average distance between

\begin{tabular}{|c|}
\hline \multicolumn{4}{|l|}{CONDUCTORS} \& \multicolumn{26}{|l|}{\multirow[t]{2}{*}{charging current PER MILE（expressed in kVa 3 phase）for a symetrical 3 phase circuit at．the average voltages and spacing CONDUCTORS STATED．FOR OTHER ARRANGEMENTS OF CONDUCTORS SEE FOOT NOTES．Xf FOR OTHER SPACINGS THESE VALUES WILL VARY DIRECTLY SUSCEPTANCEIVALUES OF THE SPACINGS COMPARED．THE CHARGING K．V．A． 3 PHASE－（CHARGING CURRENT IN．AMPERES TO NĖUTRAL）X（VOLTS TO NEUTR in determining the charging k．v．a．For the entire high tension system the length of all branch circuits must be included as well as THE MAIN CIRCUITS．}} \\
\hline \& \multirow[t]{3}{*}{\[
\left\lvert\, \begin{aligned}
\& \text { u } \\
\& \stackrel{a}{t}
\end{aligned}\right.
\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{} \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& E S \& \& \& \& \& \& \& \& 6 \& 0 \& C \& \& \& E \& S \& \& \& \\
\hline \& \& \& \& \[
\left\lvert\, \begin{aligned}
\& 20 \mathrm{KV} \\
\& 4 \mathrm{FT}
\end{aligned}\right.
\] \& \[
\begin{aligned}
\& 30 \mathrm{kV} \\
\& 4 \mathrm{FT} .
\end{aligned}
\] \& \[
\begin{aligned}
\& 40 \mathrm{KV} \\
\& 6 \mathrm{FT} . \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{l|}
50 \mathrm{KV} \\
8 \mathrm{FT}
\end{array}
\] \& \[
\begin{gathered}
80 \mathrm{KV} \\
8 \mathrm{FT} .
\end{gathered}
\] \& \[
\begin{aligned}
\& 70 \mathrm{kV} \\
\& 7 \mathrm{FT} .
\end{aligned}
\] \& \[
\begin{gathered}
80 \mathrm{KV} \\
8 \mathrm{FT} . \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
100 \mathrm{KV} \\
9 \mathrm{FT} .
\end{gathered}
\] \& \[
\begin{aligned}
\& 1110 \mathrm{kV} \\
\& 10 \mathrm{FT} .
\end{aligned}
\] \& \[
\begin{aligned}
\& 120 \mathrm{KV} \\
\& 11 \mathrm{FT} .
\end{aligned}
\] \& \[
\begin{aligned}
\& 140 \mathrm{KV} \\
\& 13 \mathrm{FT} .
\end{aligned}
\] \& \[
\left\{\begin{array}{l}
180 \mathrm{kV} \\
17 \mathrm{FT} .
\end{array}\right.
\] \& \[
\begin{aligned}
\& 200 \mathrm{kV} \\
\& 21 \mathrm{FT} .
\end{aligned}
\] \& \[
\begin{gathered}
20 \mathrm{KV} \\
4 \mathrm{FT} .
\end{gathered}
\] \& \[
\begin{aligned}
\& 30 \mathrm{KV} \\
\& 4 \mathrm{FT} .
\end{aligned}
\] \& \[
\begin{gathered}
40 \mathrm{KV} \\
5 \mathrm{FT} .
\end{gathered}
\] \& \[
\begin{aligned}
\& 50 \mathrm{KV} \\
\& 8 \mathrm{FT} .
\end{aligned}
\] \& \[
\begin{array}{|c|}
\hline 80 \mathrm{KV} \\
8 \mathrm{FT} \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 70 \mathrm{KV} \\
\& 7 \mathrm{FT} .
\end{aligned}
\] \& \[
\begin{aligned}
\& 80 \mathrm{KV} \\
\& 8 \mathrm{FT} . \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 100 \mathrm{KV} \\
\& 9 \mathrm{FT} .
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{V} 110 \mathrm{kV} \\
\& 10 \mathrm{FT} .
\end{aligned}
\] \& \[
120 \mathrm{KV}
\] \& \[
\begin{aligned}
\& 140 \mathrm{KV} \\
\& 13 \mathrm{FT} .
\end{aligned}
\] \& \& \[
\mathrm{T} \text {. }
\] \\
\hline \multirow[t]{14}{*}{\[
\begin{aligned}
\& a \\
\& \frac{1}{n} \\
\& n \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\]} \& \multirow[t]{11}{*}{} \& （ \& 1700000 \& 行38 \& crer 311 \& 5． 25
515
515 \& 782
7765
780 \& l11， \& 148
14
14 \& 1688 \& 28.5
28.2
28.2 \& 34.0
33.7
33.5 \& \& 52，
S1，
51 \& 659
640
64 \& \begin{tabular}{l}
97.6 \\
976 \\
96.8 \\
\hline
\end{tabular} \& 3. \& 7,59
739
730 \& 12．6． \& － 188 \& \begin{tabular}{l}
271 \\
\(\begin{array}{l}26.6 \\
26.5\end{array}\) \\
\hline
\end{tabular} \& \& 45.3
44.3 \& 68.9
67.7
67. \& 81.5
80.5
80.2 \& 95：0 \& 125
125
124 \& ¢ 175 \& \\
\hline \& \& \& （ 1500000 \& ， 1384 \& \& \& \& 110
\(10 \%\)
\(10 \%\) \& 145
14
14
14
14 \& 18．3 \& ¢ \& 3， 3.4 \& \begin{tabular}{l}
39.0 \\
387 \\
384 \\
\hline 9.
\end{tabular} \& 51,3
si，
507 \& 638
68.8
68.7 \& \& 323
3.22
3.18

3.1 \& 728
7185
715 \& 12.3
122

121 \& | 184 |
| :--- |
| 183 |
| 180 |
| |
| 8 | \& ¢ \& cis $\begin{gathered}34.9 \\ 3+5 \\ 3+3\end{gathered}$ \& ＋4．1 \& ¢7．9 \& 80.0

79.5

79.0 \& \& （123 \& \& | 23 |
| :--- |
| 238 |
| 228 |
| 228 |
| 28 |

\hline \& \& （1） \& 120000
1100008
100008 \& 130
139
127 \& \& － \& 7.37
723
725 \& 10.6
10.4 \& 14．${ }_{1 / 4}^{14}$ \& \& \& 年32．5 \& 377
37
37
3 \& 50.2
4.9

4.9 \& \begin{tabular}{l}
62.5

$6 / 12$

$6 / 2$

\hline 1

 \&

$9+3$

$9+8$

92.8

\hline 2.8
\end{tabular} \& 3.14

3.05

3 \& ¢ \begin{tabular}{l}
7.07

6.85

6.85

\hline

 \& ${ }_{11,6}^{11.7}$ \& 7178 \& $\xrightarrow{255}$ \&

33，

33，

35.2

\hline 3.2
\end{tabular} \& \& 65！ \& 770

776.5
76.5 \& 90.5
789.5
89.5 \& $\xrightarrow{1 / 20} 1 / 8$ \& $1 / 80$
148
148
1 \& 286
283
283
283
283
280

\hline \& \& （1803 \& 950008
Q 5000808
7 \& ， \& \& 1.80
+76

473 \& \& \begin{tabular}{l}
10.4

10.4

10.3

\hline 0.3

 \& \& $\xrightarrow{17.5}$ \&

26.6

26.5

26.3

\hline 26

 \&

31.9

$3 / 1 / 6$

31,3

\hline 1,3
\end{tabular} \& 370

37
366
36
36 \& ＋190． \& St．

$\substack{0.7 \\ 60.5}$ \& \& \& | 6.83 |
| :---: |
| $\substack{87 \\ 6.77}$ |
| 80 | \& ${ }_{\text {\％}}^{1115}$ \& | 17.3 |
| :--- |
| 17.2 |
| 17.1 |
| 178 | \& | 24.9 |
| :--- |
| 24.9 |
| 24.6 |
| 24 | \& \& | 420 |
| :--- |
| 41.8 |
| 41.5 |
| 18 | \& \& 760

750
750

7 \& \& \& － 1474 \& | 221 |
| :--- |
| 220 |
| 2120 |
| 20 |

\hline \& \& （\％98） \& 800000
700008

700000 \& ， 124 \& | 279 |
| :--- |
| 277 |
| 27 |
| 175 | \& ＋488 \& 707

707
700 \& 10.2
10.2
10.1
108 \& 13.5
13.5

13. \& 177！ \& 26.2
26.2
25.8
2.8 \& \& 366
336
360
368 \& \& ¢0．5 \& $\xrightarrow[\substack{90.7 \\ 0.0}]{\substack{\text { a }}}$ \& 2．98 \& c． 6.70 \& \％ $11 / 3$ \& 17.0
1768
768 \& 224 \& 324 \& 413
408
408
4 \& \& 74.5
$7+5$
73.7 \& 876
876

86.4 \& ${ }^{1115}$ \& | 145 |
| :--- |
| 144 |
| 143 |
| 148 | \& 218

2,18
$2 / 5$

\hline \& \& \& \& \& \& ¢ 460 \& （ 975 \& coion \& 13：2 \& （6．8 \& 258
255

253 \& \begin{tabular}{l}
30.2

30.4

30.7

\hline 0.

 \& 35．8． \& \& \& $\underset{\substack{89 \\ 88 \\ 88 \\ 8 \\ 8}}{ }$ \& \& ${ }_{\substack{6 \\ 0 \\ 48 \\ 48}}$ \&

1110

$1 / 09$

\hline 108
\end{tabular} \& 178

16.4
168 \& 24.0
239
236 \& $31 / 8$
$31 / 3$ \& 40.5
49.5
39.7 \& 622
608
609
608 \& 73.7
728
728 \& \& 淮 \& 1／42 \& $2,1 / 5$
212
$21 / 2$

\hline \& \&	815
.758	
.788	\& 500000

45008
40008 \& 寿1／8 \& \& \& ¢ 6 \& \& 12.
12.
12
12 \& （165 \& 25．28 \& co． 30.9 \& 近 354 \& 4 \& 501 \& \& 2．84 \& \& 109
18% \& lis \& \& $\begin{array}{r}310 \\ 310 \\ 305 \\ \hline 108\end{array}$ \& 386
387
387 \& cos $\begin{gathered}60.5 \\ 393\end{gathered}$ \& 71.7
71.7
70.4 \& \& 119\％ \& 140
$1 / 38$

189 \& | 210 |
| :--- |
| 307 |
| 207 |
| 208 |

\hline \& \& cisi \& 350808
350808
250008 \& （1／4 \& \& 435
482
422 \& ¢ \& \& \& ， 160 \& \& \& \& ＋449 \& 560
$\substack{545 \\ 547}$ \& \& \& ¢ 6.15 \& 18.4
10.1

18. \& $\xrightarrow{157} 1$ \& \& 309 \& \& cisis \begin{tabular}{c}
19.

37.0

\hline
\end{tabular} \& 69.7

687.5
67.5 \& \& liob 105 \& \& ¢

\hline \& \& $$
\begin{aligned}
& 5289000 \\
& 478 \\
& \hline 18 \\
& \hline 00 \\
& \hline
\end{aligned}
$$ \& 21.1600

16777

133079 \& | 1009 |
| :--- |
| 104 |
| 104 |
| 18 | \& \& 113

309

39% \& | 627 |
| :--- |
| 6.3 |
| 600 |
| 10 | \& （ \& | $11: 8$ |
| :--- |
| $11: 5$ |
| 10 | \& 153

150
14 \& 23.3
2.5
2.5 \& \& 3.35
32.5
31.2

30.2 \& ＋3， \& | 5×3 |
| :---: |
| $\substack{53 \\ s, 2 \\ 5 \times 2}$ |
| 1 | \& 8,5

885
785 \& \& ¢ 5.83 \& 993
970
983 \& 181／4 \& 2.17
202
207 \& 286
288
276

276 \& \begin{tabular}{l}
366

359

352

45

\hline

 \& ¢ $\begin{gathered}56.2 \\ 54.0 \\ 54.1\end{gathered}$ \&

66.7

65.7

640

\hline 6.0

 \&

770

770

75

\hline 18
\end{tabular} \& 104

102

100 \& | 121 |
| :--- |
| 128 |
| 126 |
| 28 | \& 196

798
198

\hline \& \& \& \& ＋ 108 \& \& 3．88 \& $\begin{aligned} & 590 \\ & 597 \\ & 565\end{aligned}$ \& $\begin{aligned} & 850 \\ & 8.32 \\ & 813\end{aligned}$ \& 11．3 \& if．4． \& 22，0 \& \& （ 3 30．8 \& 40.0
30.
39 \& 5.14
50.4

496 \& $$
\begin{aligned}
& 776 \\
& 788 \\
& 759 \\
& \hline
\end{aligned}
$$ \& 2

1
2
2 \& \& ¢ 935 \& 13.9
13.6
13.6 \& $\xrightarrow{30.4} 19$ \& 277
200
205 \& 35.5
345

33.3 \& （ \begin{tabular}{c}
530

518

518

\hline 18

 \&

62.7

60.4

60.5

\hline
\end{tabular} \& ¢ 7×18 \& \& 123

121
119 \& 178

\hline \& \& 退 \& \& \％ 4 \& \& 366
365
352 \& \％ 5.5 .5. \& ¢ \& cibl \& 13． 13.1 \& \& \& \& \& ＋891 \& \& \& ¢ \& \& \& 售年 \& － \& \& － \& ¢ 59.6 \& 69\％ \& \& ${ }_{1 / 4}^{1 / 4}$ \& 1784
1784
174
174

\hline \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { O} \\
& \hline 8
\end{aligned}
$$} \& \& 211600

163

13379 \& （103 \& \& \& \begin{tabular}{l}
610

\hline 885

587

 \& （

878

8.8

8.5

4

\hline
\end{tabular} \& \＃114 \& ， 1 \& \& 27.1

26.7
262 \& $31 / 9$
31.2
308 \& 42.3 \& 52.7
510
510 \& 803
308
778

7 \& \& ¢ 567 \& ¢ | 970 |
| :--- |
| 9.8 |
| 9.30 | \& \& 21

20
20
20 \& 201
275
274
26 \& \& \& 650
658

627 \& ${ }_{7}^{76.3}$ \& ¢ | 102 |
| :---: |
| 985 |
| 975 |
| 7 | \& \& 193

189
186
188

\hline \& \& ｜ll｜ \& $\begin{array}{r}105560 \\ 83 \\ 665 \\ \hline 65\end{array}$ \& ． 98 \& 212
$2 / 73$

$2 / 3$ \& \& S 575 \& | 88 |
| :--- |
| 829 |
| 800 |
| 18 | \& 109 10. \& 信 18 \& 21． \& 255 \& 380

307
292
29 \& 30%
30%
306 \& 50.
489

489 \& \begin{tabular}{l}
78.

78.8

73.7

\hline 18

 \& \& （ 533 \&

9.1

\hline 8.5

8.78

8.78
\end{tabular} \& 1388

13.3 \& \％ 198 \& \& \& （10． \& 60.5
60.5
59.5 \& 783
70.
70 \& \& 120
118

188 \& | 188 |
| :--- |
| 188 |
| 187 |
| 17 |

\hline \& \& \& \& \％ \& \& 3 35 \& $$
\begin{aligned}
& 542 \\
& \text { 545 } \\
& \hline 525 \\
& \hline 25
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 7878 \\
& 7.35
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 104 \\
& 10.2 \\
& \hline 100 \\
& \hline
\end{aligned}
$$

\] \& 13， 13. \& 20．5 \& \[

$$
\begin{aligned}
& 247 \\
& 246 \\
& 236 \\
& \hline
\end{aligned}
$$

\] \& \& 35： \& \[

$$
\begin{array}{r}
478 \\
47.8 \\
\hline 465 \\
\hline
\end{array}
$$
\] \& 729

70.4 \& \& （ 5.02 \& 880
8
8 \& \& \& － \& 321
31.4

31. \& \& \begin{tabular}{l}
S53

575

567

\hline

 \& ¢ \& ¢ \& （1／1／8 \&

775

178

\hline
\end{tabular}

\hline \&

\hline \multirow[t]{4}{*}{\sum
2
2
2

$\frac{3}{4}$} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \& \& 1822 \& \& 463 \& （ 695 \& － $\begin{aligned} & 10 \\ & 0 \\ & 9 \\ & 9 \\ & 9\end{aligned}$ \& ${ }^{13} 136$ \& | 169 |
| :--- |
| 167 |
| 14 |
| 18 | \& 25 ${ }^{25}$ \& \[

$$
\begin{aligned}
& 30.5 \\
& 39.4 \\
& 39.4
\end{aligned}
$$

\] \& | 366 |
| :--- |
| 354 |
| 34 | \& | 17.8 |
| :--- |
| 7.2 |
| 455 | \& \& 87．5 \& \& \& \[

$$
\begin{aligned}
& 11: 2 \\
& 106 \\
& \hline 106
\end{aligned}
$$

\] \& 1／67 \& 29， \& \％ $\begin{aligned} & 318 \\ & 30.4 \\ & 30.4\end{aligned}$ \& ［ $\begin{aligned} & 407 \\ & 382 \\ & 387\end{aligned}$ \& \[

$$
\begin{array}{r}
167 \\
597 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 730 \\
& 703 \\
& \hline
\end{aligned}
$$
\] \& ${ }_{8}^{85}$ \& $1 / 18$ \& ¢ $\begin{gathered}143 \\ 1 / 38 \\ 188\end{gathered}$ \& 2,515

207
207

\hline \& \& \& \& ¢119 \& \& 1.27
4.8
410

4 \& \& $$
\begin{aligned}
& 938 \\
& 98.8 \\
& 8183
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 123 \\
& 1,20 \\
& 1,18
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 157 \\
& 154 \\
& 150
\end{aligned}
$$
\] \& 240

23
23

23 \& $$
\begin{aligned}
& 206 \\
& 280 \\
& 276
\end{aligned}
$$ \& \[

$$
\begin{gathered}
339 \\
\text { 332 } \\
3292
\end{gathered}
$$

\] \& \& \[

$$
\begin{aligned}
& 55.5 \\
& 5+8 \\
& 53.5
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
82.5 .5 \\
81.6 \\
818
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2.67 \\
& 2.63 \\
& 2.68
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
601 \\
599 \\
59.7
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 10.3 \\
& 10.3 \\
& 9852
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1555 \\
& 159
\end{aligned}
$$
\] \& \& \& 377

342

34 \& （ 58 \& $$
\begin{aligned}
& 675 \\
& 675 \\
& 672 \\
& \hline 6
\end{aligned}
$$ \& 705

775

785 \& （185 \& ， \& | 208 |
| :--- |
| 202 |
| 196 |
| 198 |

\hline \& \& \& \& 105
180

108 \& \& \& \& \& \& \& \& $$
\begin{aligned}
& 270 \\
& 265 \\
& 265
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 3,5 \\
& 307 \\
& \hline 18
\end{aligned}
$$
\] \& 4 ± 3

10.3
408 \& 527
51.5

51.5 \& $$
\begin{gathered}
805 \\
778 \\
77
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 2.51 \\
& 2.81 \\
& 2.78
\end{aligned}
$$

\] \& cis \& 號建 \& 1464 \& \[

$$
\begin{aligned}
& 210 \\
& 807 \\
& 208
\end{aligned}
$$
\] \& 279

273
287
287 \& 356 \& \& \& \& 10\％ \& ¢ \& 193
$1 / 86$
186

\hline \& \& \& \& 9： \& \& 330
3.3
363 \& （ \& \& 11.0
107

105 \& ， | 140 |
| :--- |
| 13 |
| 13 | \& 込 $\begin{aligned} & 2116 \\ & 2107\end{aligned}$ \& \& 30， \& 48： \& \& ${ }^{7} 75$ \& \& \％ \& \％ $\begin{aligned} & 710 \\ & 892 \\ & 7\end{aligned}$ \& ${ }^{13} 135$ \& 1985 \& $\xrightarrow{2554}$ \& 336

33
33

3 \& \& \begin{tabular}{l}
61.5

59.2

\hline 9.2

\hline

 \&

723

700

700

\hline
\end{tabular} \& ${ }_{6}^{9} 9$ \& （180 \& $\xrightarrow{183}$

\hline
\end{tabular}

Microfarads per tooo feet of single conductor to neutral. or

$$
\begin{equation*}
C=\frac{0.03 S S_{3}}{\log _{10} \frac{D}{h^{\prime}}} \tag{16}
\end{equation*}
$$

Microfarads per mile of single conductor to neutral.
The above formulas are only applicable to ordinary overhead circuits when the distance from the conductor to other conductors, particularly the earth, is large compared to their distance apart. However, since the effect of the earth is usually small in most practical cases, the formulas give a very close approximation to the actual capacitance of overhead circuits.

The values of capacitance in Table VIII were derived by using formula (13). For calculating the capacitance for the stranded conductors, the actual overall diameter of the cable was taken. This introduces a small error which is negligible except for very close spacings not used in high tension transmission lines employing bare conductors.

CHARGING CURRENT

relation of charging currents of single and THREE-PHASE SYSTEMS
The diagrams (Fig. II) may assist in forming a clear understanding of the relation of charging current
system is 15.5 percent greater than in the single-phase system, and the resulting charging k.v.a. is just double that of the single-phase system. The charge on any particular conductor is in phase with the voltage between that conductor and the neutral and the charging current for that conductor is 90 degrees ahead of the voltage drop from that conductor to neutral.

Grounding of the neutral point of a system has no effect upon the charging current when the system is in static balance. In determining the total charging current to be supplied by a given generating station, it should be remembered that in cases of duplicate transmission circuits, when both circuits are excited, the charging current will be approximately double what it would be if only one of the circuits were in use.

Tables IX and X contain values for capacitance susceptance to neutral in micromhos per mile of conductor. As indicated, the charging current in amperes per mile of single conductor to neutral $=$ the (susceptance from table) \times (volts to neutral) $\times 10^{-6}$. Thus in a three-phase, 60 cycle, 100000 volt, $(57740$ volts to neutral), symmetrical circuit, the No. 0000 stranded conductors being arranged at the corners of an equilateral triangle spaced nine feet apart, the charging current per mile would be determined as follows:-

$5.62 \times 57740 \times 10^{-6}=0.3245$
amperes to neutral
or $0.3245 \times 57740=18.737$
k.v.a. to neutral
$18.737 \times 3=56.2 \mathrm{~K} . \mathrm{v.a}$.
total three phase
Table XI is an extension of Tables IX and X from which values in k.v.a., three-phase for charging current have
to susceptance for single and three-phase circuits. In the following consideration No. 0000 stranded copper conductors will be assumed as spaced nine feet between any two conductors, frequency 60 cycles, voltage 100000 volts between conductors. Voltage to neutral will therefore be, for single phase circuit, 50000 volts and for three-phase circuit 57740 volts. Distance of transmission one mile. From Table VIII, a capacitance to neutral of 0.00282 microfarads per 1000 feet is obtained which is equivalent to 0.0149 microfarads per conductor to neutral for this one mile of circuit. The susceptance will therefore be as follows:-

Per conductor to neutral $2 \pi £ \mathrm{C}_{\mathrm{n}}=5.62$ microhms
Between conductors $2 \pi \mathrm{f}_{12}=2.8 \mathrm{i}$ microhms
For Single-Phase Circuit-To neutral 5.62×50 $000 \times 10^{6}=0.281$ amperes or between conductors $2.81 \times 100000 \times 10^{6}=0.281$ amperes therefore charging k.v.a. is $0.281^{\circ} \times 50000 \times 2=28$. $\times 2$ k.v.a. single phase or $0.281 \times 100000=28.1$ k.v.a. single phase.

For a Three-Phase Circuit-To neutral 5.62×57 $740 \times 10^{6}=0.324$ amperes. Therefore charging k.v.a. is $0.324 \times 57740 \times 3=56.2$ k.v.a. three-phase.

It will be seen from the above that the charging current per conductor in the three-phase symmetrical
been calculated for certain assumed spacings and average voltages. In the case cited above it was found that the charging current would be 56.2 k.v.a., three-phase per mile. Table XI gives this value directly for the conditions specitied.

CHARGING CURRENT AT ZERO LOAD

The term charging current of a transmission circuit refers to the amount of current which flows into the circuit at the supply end with normal voltage held at the receiver end at zero load. If the circuit is long, its capacitance will be high and therefore the voltage at the supply end may be considerably less than at the receiver end. For instance a 60 cycle circuit 300 miles long, having certain constants will, with 100000 volts maintained at the receiver end, have a voltage of only 80000 volts at the supply end at zero load. This same circuit will at full load and 100000 volts maintained at the receiver end, require 120000 volts at the supply end. It is evident therefore that, since the charging current varies with the voltage, if the circuit has much capacitance the voltage along the circuit, and particularly near the supply end, will vary to a large extent
and consequently the charging current of the circuit will be different for different loads.

In case of the 300 mile circuit referred to above, the charging current at zero load will be very much less than it is at full load, because the average voltage at zero load is less than the average voltage at full load. At zero load the average voltage is less and at full load it is greater than the receiver end voltage.

It is customary to calculate the total charging current for the circuit by multiplying the total susceptance by the receiver end voltage. This would be correct if the voltage throughout the length of the circuit were held constant and of the same value as at the receiver end. This condition is approximately met within commercial lines and this method of determining the
susceptance by the receiver voltage. For a circuit 300 miles long the error in charging current is only two percent for 25 cycles and seven percent for 60 cycle circuits. The error in charging k.v.a. is four percent for 25 cycle and 32 percent for 60 cycle circuits.

RELATION OF INDUCTANCE TO CAPACITANCE

As conductors are brought closer together, the inductance decreases and the capacitance increases. These values change with changes in spacings between conductors in such a manner that their product $L \times C$ is practically a constant for all spacings (except very close spacings such as used in low-voltage service and lead-covered cables) and for all sizes of conductors. If there were no losses encountered by the electric

FIG. 12-CIIARGING CURRENT AT ZERO LOAD FOR VARIOUS LENGTHS
At zero load the voltage (on account of the effect of capacitance) decreases as the supply end of the circuit is approached. The charging current at points along the circuit decreases directly as the voltage. If the charging current far zero load is estimated by the approximate method based upon the receiver voltage being maintained throughout the length of the circuit the result will be too high. The error will increase as the length of the circuit is increased; it will also increase rapidly as the frequency is raised. The error in the resulting K.V.A. required to charge the circuit will therefore increase very rapidly with an increase in distance or frequency. The curves below represent an approximation of this error.
propagation in the conductors themselves the product of L and C would be a constant for all spacings and sizes of conductors.

In Table C is indicated the relation of the total inductance and capacitance, and their product, in two bare parallel conductors in air for a circuit one mile long. The values for L are in millihenries and for C in microfarads. Since the formulas by which L and C were calculated account for the flux within the conductors themselves, the product $L C$ is not a constant, as will be seen by the tatulated values, although for the larger spacings such as used in high-
total charging current is therefore sufficiently accurate for most practical purposes.

For the purpose of making exact calculation of the total current at the supply end of long circuits, the charging current must be calculated by mathematical formulas which accurately take into account the change in voltage along the circuit at zero load. This will be taken up in a later article. It may be interesting to note approximately, however, how the charging current and charging k.v.a., as determined by the above method, varies from what it would be if calculated by the rigorous formula. The curves in Fig. 12 represent an approximation to the error when calculating the charging current at zero load by multiplying the total
tension transmission the product is nearly a constant.
TABLE C-PRODUCT OF (TOTAL) L AND (TOTAL) C

Solid Conductors			Inducl ance /. $\underset{(4)}{1 \text { (} 0 \text { ata }}$ (4)	Capac lance 1Formula (14)	1'rodurs
Size	Diam. Inches				
1000000	1.00	2	1.053	0.03395	0.03575
1000000	1.00	2.4	2.653	0.01155	0.03064
1000000	1.00	300	4.279	0.00695	0.02974
0000	0.46	2	1.553	0.02079	0.03228
0000	0.46	24	3.153	0.00961	0.03030
0000	0.46	300	4.779	0.00623	0.02977

RELATION OF INDUCTANCE AND CAPACITANCE TO LIGHT VELOCITY
The propagation of the electric and the magnetic
fields in a dielectric, such as air, is the same as that of light. Along a transmission line it is retarded only slightly due to losses or the fact that the current is not confined to the surface of the conductors. If the inductance inside the conductors is negligible, then the velocity of the electric and the magnetic fields is the same as light, that is approximately 186000 miles per second or approximately $3 \times 10^{10} \mathrm{~cm}$. per second. For hightension transmission lines of large spacings, the inductance inside the conductor is relatively small, so that the speed of the electric field is practically that of light.

The following relation exists between inductance L in henries, capacity C in farads and velocity of light V per second:-

$$
\begin{equation*}
L C(\text { in air })=\frac{1}{V^{2}} \text { or, } V=\frac{1}{V \overline{L C}} \tag{I7}
\end{equation*}
$$

Thus it will be seen that if either L or C is known, the other may be determined since the velocity of light V is known. If values for L and C are taken which include the inductance inside the conductors, particularly if the conductors are very close together, it would be necessary to assume a velocity of electric propagation
somewhat less than that of light. If, on the other hand, the values for L and C external to the conductors are taken, then the above equation is rigidly correct.

In Table C, it was shown that for No. 0000 conductors, 300 inch spacing, the total values of L and C were for a single-phase line,-

$$
\begin{aligned}
L= & 0.004779 \text { henries per mile of circuit. } \\
C= & 0.00000000623 \text { farads per mile of cir- } \\
& \text { cuit. }
\end{aligned}
$$

therefore, $T=\frac{1}{\sqrt{0.004779 \times 0.00000000623}}=$
I83 000 miles per second
which is less than the speed of light.
If we take the inductance in the air space between the conductors, Formula (2) ; we arrive at the values,-

$$
\begin{aligned}
L= & 0.0046179 \text { henries per mile of circuit. } \\
C= & 0.00000000623 \text { farads per mile of cir- } \\
& \text { cuit. }
\end{aligned}
$$

therefore $T^{r}=\frac{1}{1 / \overline{0.0070179 \times 0.00000000023}}=$
I 86000 miles per second
which is approximately the speed of light.

CHAPTER III QUICK ESTIMATING TABLES

FOR every occasion where a complete calculation of a long distance transmission line is made, there are many where the size of wire needed to transmit a given amount of power economically is required quickly. This knowledge is, moreover, the basis for all transmission line calculations, as all methods of calculating regulation presuppose that the size of wire is known. To determine quickly and with the least possible calculation the approximate size of conductor corresponding to a given $I^{2} R$ transmission loss for any ordinary voltage or distance, is the function of Tables XII to XXI inclusive. By including so many transmission voltages it is not intended to indicate that any of them might equally well be selected for a new installation. On the contrary it is very desirable in the consideration of a new installation, to eliminate consideration of some of the voltages now in use. This point will be considered later.

Since both the power-factor of the load, and the charging current of the circuit, as well as any change in the resistance of the conductors, will alter the $I^{2} R$ loss, it is evident that it is impractical to present tables which will take into account the effect of all of these variables. The accompanying tables do, however, give the percentage $I^{2} R$ loss corresponding to the two temperatures (25 and 65 degrees C) ordinarily encountered in practice and the usual load power-factors of unity and 80 percent lagging, upon which the k.v.a. values of the tables are based. The effect, however, of charging current, corona or leakage loss is not taken into account in these table values. The latter two (corona and leakage) are usually small and need not be considered here. The effect of charging current, may, however, with long circuits be material and will he discussed.

The values of k.v.a. in these tables are based upon the following percentage $I^{2} R$ loss in transmission (neglecting the effect of charging current) :-

	Percent Loss	Percent Loss
	At $25^{\circ} \mathrm{C}$	At $65^{\circ} \mathrm{C}$
Load at 100 percent P-F.	8.66	1.0
Load at 80 percent P-F.	10.8	12.5

These loss values are based upon the power delivered at the end of the circuit as 100 percent, and not upon the power at the supply end. If raising or lowering tranisformers are employed, the loss and voltage drop in them will, of course, be in addition to the above.

At first glance, some of these tables may appear to have been carried to extremes of k.v.a. values for the conductor sizes. This is because the tables are calculated for ten percent loss, (at 100 percent power-
factor and 65 degrees C) whereas tre permissible loss is frequently much less than ten percent. As the loss is directly proportional to the load, the permissible loads for a given size wire and distance can be read almost directly for any loss. Thus for a two percent loss the permissible k.v.a. will be two-tenths the table values. Conversely, the size of wire to carry a given k.v.a. load at two percent loss will be the same as will carry five ($10 \div 2$) times the k.v.a. at ten percent loss. In other words to find the size of wire to carry a given k.v.a. load at any desired percent loss, find the ratio of the desired $I^{2} R$ loss to the $I^{2} R$ loss upon which the table values are based (corresponding of course to the temperature and the load power-factor). Divide this ratio into the k.v.a. to be transmitted. The result will be the table k.v.a. value corresponding to the desired $I^{2} R$ loss.

For example:-Assume 400 k.v.a. is to be delivered a distance of 14 miles at 6000 volts, three-phase, and 80 percent power-factor lagging, at an assumed temperature of 25 degrees C. Table XV indicates that this condition will be met with an I $I^{2} R$ loss of 10.8 percent if No. o copper or 167800 circ. mil aluminum conductors are used.

Now assume that the $I^{2} R$ loss should not exceed 5.4 percent, in place of ro. 8 percent (upon which the: table values are based). $5.4 \div 10.8=0.5$ and $400 \div 0.5$ $=800$ k.v.a. as the table value corresponding to an $\mathrm{I}^{2} \mathrm{R}$ loss of 5.4 percent. The conductors corresponding to 800 k.v.a. table value (5.4 percent $I^{2} R$ loss) will be seen to be No. 0000 copper or 336420 circ. mil aluminum.

If conductors corresponding to 15 percent $I^{2} R$ loss are desired the same procedure will be followed:$15 \div 10.8=1.39$ and $400 \div 1.39=287$ k.v.a. table value. This table value corresponds to approximately No. I copper or 133220 circ. mil aluminum conductors.

The table k.v.a. values have been tabulated for various distances. Should the actual distance be different from the table values and it is desired to obtain k.v.a. values corresponding to the losses upon which the table k.v.a. values have been calculated, the following procedure may be followed:-

For a given $I^{2} R$ loss in a given conductor (effect of clarging current neglected) the k.v.a. X feet or the k.v.a. X miles is a constant. Thus Table XII indicates that for 2000000 circ. mil cable, 756000 k.v.a. X feet is the constant ; that is 755 k.v.a. may be transmitted 1000 feet; 378 k.v.a., 2000 fcet, and so on. If the actua! distance to be transmitted is 1300 feet the corresponding k.v.a. value will be $756000 \div 1300$ or 58 r k.v.a. Usually the k.v.a. value can readily be approximated
for any distance with sufficient accuracy for the pur－ pose for which these quick estimating tables are pre－
sented．One way of dong this would be as follows：－ The k．v．a．value corresponding to 2500 ft ．is 302 k ．v．a．

TABLE XII－QUICK ESTIMATING TABLE

CONDUCTORS			KILOVOLT－AMPERES． 3 PHASE，WHICH MAY BE DELIVERED AT THE FOLLOWING VOLTAGES OVER THE VARIOUS CONDUCTORS FOR THE DISTANCES STATEO．BASED UPON THE FOLLOWING 1^{2} R LOSS（EFFECT OF CHARGING CURRENT NEQLECTED） 										
			220 VOLTS DELIVERED										
					${ }_{\text {FEET }}^{150}$	${ }_{F}^{200}$	边	T ${ }^{\text {a }}$				${ }_{\text {cose }}^{5000}$	O／MLE
	\％oiocooi				－${ }_{\text {S }}^{5}$	\％${ }^{\text {a }}$				${ }^{\text {c }}$	\％		
				， 9	${ }^{10} 5$		20			，	即		
				，${ }^{\text {and }}$			${ }^{\text {c }}$	3 ${ }^{\text {b }}$	－${ }^{3}$	cole		\％	
									${ }^{\text {c }}$				（10
－										$2{ }^{2}{ }^{3} 8$			
	S50808						${ }^{803}$	4，${ }_{4}$	${ }^{\text {c／}}$		\％	0^{4}	${ }^{\frac{3}{3}}$
						${ }^{87} 9$	${ }^{569}$			衡家	驁	t	
									髪				
						coicle			\％${ }^{\text {cos }}$	放			
					－			约	${ }_{\substack{53 \\ 3 \\ 3}}$	砤	售		
				髟	知	\％${ }^{\text {3\％}}$	［10			（1）	［｜		
440 Volts delivered													
				T ${ }_{\text {FEET }}^{100}$	${ }_{\text {FEET }} \mathrm{l}$（	$T_{\text {ceict }}^{200}$	OT				${ }^{\text {coser }}$		OTLE
边				Sex	速	S				207815	${ }^{210} 864$		
－							${ }^{\text {cose }}$	${ }_{818}^{818}$	${ }_{\text {a }}^{3}$	（ $1_{6 / 3 / 1 / 2}$	${ }^{988}$		
－ 1,1200808							${ }^{\text {a }}$			${ }^{\text {c }}$	${ }^{\text {cose }}$		
	Sisooool			为 ${ }^{\text {So }}$				－					
－	\％sio	｜${ }^{\circ}$		55			${ }^{31}{ }^{3} 5$		＋10				
	458080\％	T				${ }^{\text {a }}$			9\％8	Sse			
	3530808	－ 35975							${ }_{8}^{50}$	cis			
	－${ }^{1 / 15} 5$							${ }_{4}^{585}$		${ }^{3}$			
				边	，		\％ 5						（ ${ }^{\text {a }}$
										${ }_{\substack{33 \\ 3 \\ 3}}$			
								［10	［				

Tbe heating limitatlona may，for the shorter distances，particularly if insulated or concealed conductora are smployed，necessitate the uas of larger conductors，resulting in a correspondingly less iranamiasion loss．In the case of insulated or concealed conductora，ahould the the Values fall near or to the left of the heavy line，conault Table XXV for insulated or Table XXIII for bare conductors．The reactance for the larger conductora may be excessive，particularly for 60 －cycle aervice，producing excessive roltage drop．Thia may be obviated by inatalling two or more parallel circuits or using three－conductor csbles．For single－phage circuita the k．v．a．will be one－half the table values．

Hence the value corresponding to half this distance (1250 ft .) is 604 k.v.a., which is sufficiently accurate for practical purposes.
keactance limitations
The k.v.a. value of the tables naturally do not take into account the reactance of the circuit. It will be

TABLE XIII-QUICK ESTIMATING TABLE

The heating limitatione may, for the shorter distances, perticularly if insulated or concesled conductors are employed, necessitste the nse of larger conductors, resulting in a correspondingly leas iransmiasion loss. In tho care of Insulstod or concealed conductors, should tho k.v.a. values fall near or to the lefi of tho henvy hne, consult Tahle XXV for insulated or Tahle XXIII for baro conductors. The resctance for the larger conductors may ho excessive, partlcularly for 60 -cycle gervice, producing excessive voltage drop. This may he obviated by lastalliag two or more perallel circuita or neing threo-conductor cahles. For single-phase clrcuits tho k.t.s. will be one-hslf the ishle values.
necessary in some cases of low voltage and single conductors (where the reactance is high) to use lower values of k.v.a. or even in some cases to multiple cir-
cuits in order to keep the reactance within satisfactory operating limits. This will be considered later by examples on voltage regulation.

TABLE XIV-QUICK ESTIMATING TABLE

[^4]
TABLE XV-QUICK ESTIMATING TABLE

Tbe heatlog limleations may. for the aborter distances. particularly If labulated or concealed condactors arc emploged, neceasitate the ase of larger conductors resulting io a correapondiagly less iranamission loss. In the case of insulated or concealed conductors should tho
 two or more paralle! circuita or ueing three-condierar cables. For gingle-phose circulte the k.v.a. Will be one-hall the table values.

TABLE XVI-QUICK ESTIMATING TABLE

The heating limitstions msy. for the shorter dletances. particulsrly if insulsted or concealed conductors are employed. necessitate the nse of larger conductors, resulting in a correspondingly less transmission loss. In the case of insulated or concesied conductors, should thet tbe larger condurtors mag he excessive. narticularly for 60 -cycle servire. proinaulated or Tahle XXIII for hare conductors. The resctance for

TABLE XVII-QUICK ESTIMATING TABLE

22000 VOLTS DELIVERED

			MILES	MILES	MILES	MILES	MILES	$\begin{array}{\|l\|} \hline 12 \\ \text { MILES } \\ \hline \end{array}$	$\left\|\begin{array}{c} \text { I3 } \\ \text { MILES } \end{array}\right\|$	14 MILES	MILES	$\begin{aligned} & 18 \\ & \text { MILES } \end{aligned}$	$\begin{aligned} & 18 \\ & \text { MILES } \end{aligned}$	$\begin{aligned} & 20 \\ & \text { MILES } \end{aligned}$	${ }_{\mathrm{MLLES}}^{22}$	MLLES	${ }^{26} \text { MLES }$	MILES	$\begin{aligned} & 30 \\ & \text { MILES } \end{aligned}$
	$\begin{array}{r} 650000 \\ 600000 \\ 550000 \\ \hline \end{array}$	$\begin{aligned} & 954000 \\ & 874500 \\ & \hline \end{aligned}$	$\begin{array}{\|} 66500 \\ 612000 \\ 56800 \\ \hline \end{array}$	$\begin{array}{r} 58200 \\ 53300 \\ 49600 \\ \hline \end{array}$	$\begin{array}{r} 51800 \\ 47600 \\ \hline 4200 \\ \hline \end{array}$	$\begin{array}{r} 46600 \\ 42800 \\ 39700 \\ \hline \end{array}$	$\begin{array}{\|} 12200 \\ 389400 \\ 36700 \\ \hline \end{array}$	$\begin{array}{\|} 38800 \\ 35600 \\ 33100 \\ \hline \end{array}$	$\begin{aligned} & 35800 \\ & 329900 \\ & 30500 \end{aligned}$	$\begin{array}{\|} 33300 \\ 30600 \\ 28400 \\ \hline \end{array}$		$\begin{aligned} & 24100 \\ & 26700 \\ & 24800 \\ & \hline \end{aligned}$				$\begin{aligned} & 19400 \\ & 178000 \\ & 16500 \end{aligned}$	$\begin{array}{\|} 17400 \\ 16400 \\ 15200 \\ \hline \end{array}$		
	$\begin{array}{r} 500000 \\ 450000 \\ 400000 \\ \hline \end{array}$	$\begin{aligned} & 795000 \\ & 775500 \\ & 636000 \\ & \hline \end{aligned}$	$\begin{array}{r} 51300 \\ 46000 \\ 41200 \\ \hline \end{array}$	$\begin{aligned} & +8800 \\ & 40200 \\ & 36000 \end{aligned}$			$\begin{array}{r} 32600 \\ 29300 \\ 26200 \\ \hline \end{array}$		$\begin{aligned} & 27600 \\ & 24800 \\ & 24 \end{aligned}$					$\begin{aligned} & 17900 \\ & 119100 \\ & 14400 \end{aligned}$		$\begin{array}{\|l\|} \hline 14900 \\ 13400 \\ 12000 \\ \hline \end{array}$	$\begin{aligned} & 13800 \\ & 12100 \\ & 11100 \\ & \hline \end{aligned}$		
	$\begin{aligned} & 350000 \\ & 3000000 \\ & 250000 \\ & \hline \end{aligned}$	$\begin{aligned} & 556500 \\ & 377000 \\ & 397500 \\ & \hline \end{aligned}$	$\begin{aligned} & 35800 \\ & 30600 \\ & 25600 \\ & \hline \end{aligned}$	$\begin{aligned} & 31400 \\ & 26700 \\ & 22400 \\ & \hline \end{aligned}$					$\begin{aligned} & 19300 \\ & 16500 \\ & 13800 \end{aligned}$	$\begin{aligned} & 17900 \\ & 15300 \\ & 12800 \end{aligned}$		$\begin{array}{\|} 15700 \\ 13300 \\ 132000 \end{array}$					$\begin{aligned} & 9650 \\ & 8250 \\ & 6900 \end{aligned}$	$\begin{aligned} & 7650 \\ & 6400 \end{aligned}$	
$\begin{aligned} & 00 \\ & 00 \end{aligned}$		$\begin{array}{r} 336420 \\ 266800 \\ 21950 \\ \hline \end{array}$	$\begin{aligned} & 21500 \\ & 173600 \\ & \hline \end{aligned}$	$\begin{array}{\|} 18900 \\ 15100 \\ \hline 1800 \\ \hline \end{array}$	$\begin{array}{r} 16800 \\ 13400 \\ 10600 \\ \hline \end{array}$		$\begin{array}{\|} 13700 \\ 18000 \\ \hline 8450 \\ \hline \end{array}$		$\begin{array}{r} 16600 \\ 9300 \\ 7300 \\ \hline \end{array}$	$\begin{array}{r} 10800 \\ 8650 \\ 8780 \\ \hline \end{array}$	10100 8080 6330 1038			$\begin{array}{r} 6059 \\ 4750 \\ \hline \end{array}$		$\begin{array}{r} 6300 \\ 5050 \\ 3960 \\ \hline \end{array}$	7650		
,	$\begin{array}{r} 105560 \\ 83694 \\ 66358 \\ \hline \end{array}$	$\begin{array}{r} 67800 \\ 133220 \\ 105530 \\ \hline \end{array}$	$\begin{array}{r} 10800 \\ 8.520 \\ 6780 \\ \hline \end{array}$	$\begin{aligned} & 9450 \\ & 7480 \\ & 5950 \\ & \hline \end{aligned}$	$\begin{aligned} & 8380 \\ & 6650 \\ & 5280 \\ & \hline \end{aligned}$	$\begin{aligned} & 7550 \\ & 5970 \\ & 4750 \\ & \hline \end{aligned}$	$\begin{aligned} & 6860 \\ & 5420 \\ & 4320 \\ & \hline \end{aligned}$	$\begin{aligned} & 6300 \\ & 4980 \\ & 3960 \end{aligned}$	$\begin{array}{r} 5820 \\ 4600 \\ 3660 \\ \hline \end{array}$	$\begin{aligned} & 5400 \\ & 4270 \\ & 3400 \\ & \hline \end{aligned}$	$\begin{aligned} & 5030 \\ & 3980 \\ & 3980 \\ & \hline \end{aligned}$	$\begin{array}{r} 4720 \\ 3740 \\ 2970 \\ \hline \end{array}$	$\begin{array}{r} 4190 \\ 3320 \\ 2640 \\ \hline \end{array}$	$\begin{aligned} & 3770 \\ & 2980 \\ & 2370 \end{aligned}$	$\begin{aligned} & 3430 \\ & 2710 \\ & 2160 \\ & \hline \end{aligned}$	3150 2490 1980	$\begin{aligned} & 2910 \\ & 2300 \\ & 1830 \end{aligned}$		$\begin{aligned} & \begin{array}{l} 2510 \\ 2980 \\ 1590 \end{array} \end{aligned}$
3 4 5	$\begin{aligned} & 52624 \\ & 41738 \\ & 33088 \\ & \hline \end{aligned}$	52630	$\begin{array}{r} 5360 \\ 4300 \\ 3390 \\ \hline \end{array}$	$\begin{aligned} & 4680 \\ & 3770 \\ & 2770 \\ & \hline \end{aligned}$	$\begin{aligned} & 417 \\ & 26 \end{aligned}$		$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 313 \\ & 258 \\ & \hline 19 \\ & \hline \end{aligned}$	$\begin{array}{r} 23 \\ 15 \end{array}$		$\begin{aligned} & 201 \\ & \hline 58 \end{aligned}$	$\begin{aligned} & 182 \\ & 198 \\ & \hline \end{aligned}$	$\begin{aligned} & 2080 \\ & 1670 \\ & 1320 \\ & \hline \end{aligned}$	$\begin{aligned} & 1870 \\ & 1500 \\ & 180 \end{aligned}$	$\begin{aligned} & 1700 \\ & 1370 \\ & 1080 \end{aligned}$	1259	$\begin{aligned} & 1+40 \\ & 1860 \\ & 910 \end{aligned}$	$\begin{aligned} & 1310 \\ & 1870 \\ & 840 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1000 \\ & 790 \end{aligned}$

30000 VOLTS DELIVERED

			$\begin{aligned} & 12 \\ & \text { MILES } \end{aligned}$	$\begin{aligned} & 14 \\ & \text { MILES } \end{aligned}$	$\begin{gathered} 18 \\ \text { MILES } \end{gathered}$	$\left\lvert\, \begin{gathered} 18 \\ \text { MILES } \end{gathered}\right.$	${ }^{20} \text { MILES }$	MILES	MILES	$\begin{array}{\|c} 26 \\ \text { MILES } \end{array}$	MILES	$\begin{aligned} & 30 \\ & \text { MILES } \end{aligned}$	$\begin{gathered} 32 \\ \text { MILES } \end{gathered}$	MILES	MILES	MILES	MILES	${ }_{\text {MILES }}^{52}$	$\begin{gathered} \text { SB. } \\ \text { MILES } \end{gathered}$
	$\begin{array}{r} 650000 \\ 600000 \\ 550000 \\ \hline \end{array}$	$\begin{array}{r} 1033000 \\ 954000 \\ 874500 \\ \hline \end{array}$	$\begin{aligned} & 72200 \\ & 662000 \\ & 615000 \\ & \hline \end{aligned}$	$\begin{aligned} & 62000 \\ & 56800 \\ & 52800 \end{aligned}$	$\begin{aligned} & 54200 \\ & 499700 \\ & \hline 46200 \\ & \hline \end{aligned}$	$\begin{array}{\|} \hline 18200 \\ 44200 \\ \hline 1000 \\ \hline \end{array}$	$\begin{aligned} & 43200 \\ & 39800 \\ & 39900 \\ & \hline \end{aligned}$	$\begin{array}{r} 39400 \\ 36200 \\ 33500 \\ \hline \end{array}$	$\begin{aligned} & 36100 \\ & 33200 \\ & 30800 \end{aligned}$	$\begin{array}{\|l} 33300 \\ 30500 \\ 28400 \\ \hline \end{array}$	$\begin{aligned} & 30900 \\ & 28400 \\ & 16400 \\ & \hline \end{aligned}$	$\begin{aligned} & 28900 \\ & 26500 \\ & 24700 \\ & \hline \end{aligned}$	$\begin{aligned} & 27100 \\ & 24800 \\ & 23100 \\ & \hline \end{aligned}$	$\begin{aligned} & 24100 \\ & 22100 \\ & 205500 \\ & \hline \end{aligned}$	$\begin{aligned} & 21600 \\ & 19800 \\ & \hline 8800 \\ & \hline \end{aligned}$	$\begin{aligned} & 19700 \\ & 18100 \\ & 16700 \\ & \hline \end{aligned}$	$\begin{aligned} & 18000 \\ & 10600 \\ & 15400 \end{aligned}$	$\begin{aligned} & 16600 \\ & 1 / 5200 \\ & 14200 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 15400 \\ 14200 \\ 13200 \\ \hline \end{array}$
	$\begin{array}{r} 500000 \\ 450000 \\ 400000 \\ \hline \end{array}$	$\begin{aligned} & 7950000 \\ & 765500 \\ & \hline 66000 \\ & \hline \end{aligned}$	$\begin{array}{\|} 55600 \\ 50000 \\ 44500 \\ \hline \end{array}$	$\begin{array}{r} 47800 \\ 47800 \\ 38100 \\ \hline \end{array}$	$\begin{aligned} & 41800 \\ & 37500 \\ & 334000 \\ & \hline \end{aligned}$	$\begin{aligned} & 37100 \\ & 33400 \\ & 29700 \\ & \hline \end{aligned}$	$\begin{aligned} & 33400 \\ & 30000 \\ & 26700 \\ & \hline \end{aligned}$	$\begin{aligned} & 30400 \\ & 27300 \\ & 24300 \\ & \hline \end{aligned}$	$\begin{aligned} & 27900 \\ & 25100 \\ & 22200 \\ & \hline \end{aligned}$	$\begin{aligned} & 25700 \\ & 23100 \\ & 20500 \\ & \hline \end{aligned}$	$\begin{aligned} & 23900 \\ & 21900 \\ & 19100 \\ & \hline \end{aligned}$	$\begin{array}{r} 223300 \\ 10000 \\ 17800 \\ \hline \end{array}$	$\begin{array}{\|l\|} 20900 \\ 18700 \\ 16700 \\ \hline \end{array}$	$\begin{array}{\|} 18500 \\ 16700 \\ 14800 \\ \hline \end{array}$	$\begin{array}{r} 16700 \\ 15000 \\ 133000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 15200 \\ 13600 \\ 12100 \\ \hline \end{array}$	$\begin{aligned} & 13900 \\ & 12500 \\ & 11100 \\ & \hline 10 \end{aligned}$	$\begin{aligned} & 12800 \\ & 11500 \\ & 10200 \\ & \hline \end{aligned}$	$\begin{array}{r} 19900 \\ 10700 \\ 9540 \\ \hline \end{array}$
	$\begin{array}{r} 350000 \\ 300000 \\ 350000 \\ \hline \end{array}$	$\begin{array}{r} 556500 \\ 477000 \\ 3975000 \\ \hline \end{array}$	$\begin{aligned} & 38700 \\ & 33700 \\ & 27800 \\ & \hline \end{aligned}$	$\begin{aligned} & 33200 \\ & 281400 \\ & 23800 \\ & \hline \end{aligned}$	$\begin{aligned} & 29100 \\ & 244900 \\ & 20.800 \\ & \hline \end{aligned}$	$\begin{array}{\|} 25800 \\ 221000 \\ 185000 \\ \hline \end{array}$	$\begin{array}{\|} \hline 23200 \\ 197900 \\ \hline \end{array}$	$\begin{array}{r} 21100 \\ 18100 \\ \hline 15100 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 19400 \\ 16600 \\ 13900 \\ \hline \end{array}$	$\begin{array}{\|} 17900 \\ 153300 \\ 12800 \\ \hline \end{array}$	$\begin{array}{\|l} 16600 \\ 14200 \\ 119000 \\ \hline \end{array}$	$\begin{array}{\|} 15500 \\ 13,100 \\ \hline \end{array}$	$\begin{aligned} & 14500 \\ & 124000 \\ & 10400 \end{aligned}$	$\begin{array}{\|c\|} \hline 12900 \\ 11000 \\ 4260 \\ \hline \end{array}$	$\begin{array}{r} 1600 \\ 9950 \\ 8330 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 10600 \\ 9050 \\ \hline 570 \\ \hline \end{array}$	$\begin{aligned} & 9690 \\ & 8290 \\ & 6940 \\ & \hline \end{aligned}$	$\begin{aligned} & 8940 \\ & 7680 \\ & \hline 6900 \\ & \hline \end{aligned}$	$\begin{aligned} & 8300 \\ & 7100 \\ & 5950 \\ & \hline \end{aligned}$
$\begin{aligned} & 0000 \\ & 000 \\ & 00 \\ & \hline \end{aligned}$	$\begin{aligned} & 2116000 \\ & 167772 \\ & 133079 \\ & \hline \end{aligned}$	$\begin{aligned} & 336420 \\ & 246800 \end{aligned}$ 211950	$\begin{aligned} & 23400 \\ & 18400 \\ & 14700 \\ & \hline \end{aligned}$	$\begin{aligned} & 20100 \\ & 16000 \\ & 12600 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 17600 \\ 14000 \\ 1 / 030 \\ \hline \end{array}$	$\begin{array}{\|} \hline 5600 \\ 12400 \\ 9800 \\ \hline \end{array}$	$\begin{array}{r} 14100 \\ 11200 \\ \hline 8820 \\ \hline \end{array}$	$\begin{array}{r} 12800 \\ 10200 \\ 8020 \\ \hline \end{array}$	$\begin{array}{r} 17700 \\ 9330 \\ 7359 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 1800 \\ 8619 \\ \hline 6990 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 10000 \\ 8000 \\ 6300 \\ \hline \end{array}$	$\begin{aligned} & 9370 \\ & 7460 \\ & 5880 \\ & \hline \end{aligned}$	$\begin{aligned} & 8790 \\ & 5000 \\ & 5510 \\ & \hline \end{aligned}$	$\begin{aligned} & 7810 \\ & 4720 \\ & 4900 \\ & \hline \end{aligned}$	$\begin{aligned} & 7030 \\ & 5600 \\ & 4410 \\ & \hline \end{aligned}$	$\begin{aligned} & 6390 \\ & 5090 \\ & 4070 \\ & \hline \end{aligned}$	$\begin{aligned} & 5860 \\ & 4640 \\ & 3470 \\ & \hline \end{aligned}$	5410 4300 3900	5020 4000 3050 250
$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 105560 \\ & 83694 \\ & 66358 \end{aligned}$	167800 133220 105330	$\begin{array}{\|l\|} \hline 1700 \\ 9260 \\ \hline 350 \\ \hline \end{array}$	$\begin{array}{r} 10000 \\ 7940 \\ 6300 \\ \hline \end{array}$	$\begin{aligned} & 8800 \\ & 6940 \\ & 5910 \\ & \hline \end{aligned}$	$\begin{aligned} & 7810 \\ & 6170 \\ & 4900 \\ & \hline \end{aligned}$	$\begin{aligned} & 7030 \\ & 5550 \\ & 4410 \\ & \hline \end{aligned}$	$\begin{aligned} & 6390 \\ & 5050 \\ & 4010 \\ & \hline \end{aligned}$	$\begin{array}{r} 5860 \\ 4630 \\ 3670 \end{array}$	$\begin{aligned} & 5400 \\ & 4270 \\ & 3390 \\ & \hline \end{aligned}$	$\begin{aligned} & 5020 \\ & 3970 \\ & 3 / 50 \\ & \hline \end{aligned}$	4690 3700 2940	$\begin{aligned} & 4390 \\ & 3470 \\ & 2760 \end{aligned}$	$\begin{aligned} & 3910 \\ & 3040 \\ & 2150 \\ & \hline \end{aligned}$	$\begin{aligned} & 3510 \\ & 2780 \\ & 2210 \\ & \hline \end{aligned}$	3190 2520 2000	$\begin{aligned} & 2930 \\ & 2310 \\ & 1840 \\ & \hline \end{aligned}$	2700 21690	$\begin{aligned} & 2510 \\ & 1880 \\ & 1570 \end{aligned}$
$\frac{3}{4}$	$\begin{aligned} & 52624 \\ & 41738 \\ & 33088 \end{aligned}$	$\begin{aligned} & 83640 \\ & 66370 \\ & 83430 \end{aligned}$	$\begin{aligned} & 5810 \\ & 4640 \\ & 368, \end{aligned}$	$\begin{array}{\|l\|} \hline 4980 \\ 3980 \\ 3160 \end{array}$	$\begin{aligned} & 4360 \\ & 3480 \\ & 3 \end{aligned}$	$\begin{aligned} & 3880 \\ & 3100 \\ & 2450 \end{aligned}$	$\begin{aligned} & 3490 \\ & 2790 \\ & 2210 \end{aligned}$	$\begin{aligned} & 3170 \\ & 2530 \\ & 2010 \end{aligned}$	$\begin{aligned} & 2910 \\ & 2320 \\ & 1840 \end{aligned}$	$\begin{aligned} & 2680 \\ & 2140 \\ & 1700 \end{aligned}$	$\begin{aligned} & 2490 \\ & 1490 \\ & 1580 \end{aligned}$	$\begin{aligned} & 2330 \\ & 1860 \\ & 170 \end{aligned}$	$\begin{aligned} & 2180 \\ & 1710 \\ & 7380 \end{aligned}$	$\begin{aligned} & 1940 \\ & 1550 \\ & 1230 \end{aligned}$	$\begin{aligned} & 1740 \\ & 1390 \\ & 1100 \end{aligned}$	$\begin{aligned} & 1580 \\ & 1170 \\ & 1000 \end{aligned}$	$\begin{array}{r} 1450 \\ 160 \\ 920 \end{array}$	$\begin{aligned} & 1340 \\ & 1070 \\ & 850 \end{aligned}$	$\begin{array}{r} 1240 \\ 990 \\ 740 \end{array}$

33000 VOLTS DELIVERED

			MILES	MILES	MILES	$\begin{gathered} 18 \\ \text { MILES } \end{gathered}$	MILES	${ }^{22}$	MILES	${ }^{28} \text { MIES' }^{\prime}$	MILES	$\begin{aligned} & 30 \\ & \text { MILES } \end{aligned}$	MILES	MILES	MILES	MILES	MILES	$\text { MILES }^{62}$	MLES
	$\begin{aligned} & 650000 \\ & 600000 \\ & 550000 \end{aligned}$	954000 874500	$\left[\begin{array}{l} 87 \\ 80 \\ 75 \end{array}\right.$	7470 6888 648	$\begin{aligned} & 6530 \\ & 6520 \\ & 5670 \end{aligned}$	$\left\lvert\, \begin{aligned} & 58200 \\ & 53600 \\ & 50400 \end{aligned}\right.$			$\begin{array}{\|} \hline 4370 \\ 40720 \\ 3770 \end{array}$	$\begin{aligned} & 402 \\ & 37 \\ & 378 \\ & \hline \end{aligned}$	$\begin{aligned} & 374 \\ & 344 \\ & 324 \end{aligned}$		$\begin{aligned} & 32650 \\ & 30100 \\ & 28300 \\ & \hline \end{aligned}$		$\begin{aligned} & 26108 \\ & 24400 \\ & 22600 \\ & \hline \end{aligned}$			$\begin{array}{r} 20100 \\ 18500 \\ 17400 \\ \hline \end{array}$	$\begin{aligned} & 17200 \\ & 16200 \\ & \hline \end{aligned}$
	$\begin{array}{r} 500000 \\ 450000 \\ 400000 \\ \hline \end{array}$	$\begin{aligned} & 795000 \\ & 75500 \\ & 636000 \end{aligned}$	$\begin{aligned} & 67300 \\ & 600400 \\ & 54000 \\ & \hline \end{aligned}$	$\begin{aligned} & 578 \\ & 568 \\ & 5636 \end{aligned}$	$\left[\begin{array}{l} 50600 \\ 45300 \\ 40600 \end{array}\right.$	$\begin{array}{r} 45000 \\ 40200 \\ 36000 \\ \hline \end{array}$	$\begin{aligned} & 40400 \\ & 36300 \\ & 32400 \\ & \hline \end{aligned}$	$\begin{array}{r} 36800 \\ 33000 \\ 29500 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33700 \\ 30200 \\ 27000 \\ \hline \end{array}$		$\begin{aligned} & 28900 \\ & 25900 \\ & 23700 \\ & \hline \end{aligned}$			225 2010 180				$\begin{array}{\|} 13900 \\ 12500 \\ \hline \end{array}$	
		$\begin{aligned} & 556500 \\ & 477000 \\ & 397500 \end{aligned}$ 397500	$\begin{array}{r} 4706 \\ 4022 \\ 337 \end{array}$	$\begin{array}{\|l\|} \hline 10.300 \\ 34500 \\ 288000 \\ \hline \end{array}$	$\begin{aligned} & 35300 \\ & 30200 \\ & 25200 \end{aligned}$	$\begin{aligned} & 3140 \\ & 2690 \\ & 224 \end{aligned}$	$\begin{aligned} & 28200 \\ & 24100 \\ & 202000 \end{aligned}$	$\begin{aligned} & 25 \\ & 21 \\ & 18 \end{aligned}$	$\begin{array}{\|} 23500 \\ 208100 \\ \hline 16800 \\ \hline \end{array}$	$\begin{array}{\|l} 21 \\ 18 \\ 15 \end{array}$	$\begin{array}{\|} 20200 \\ 17300 \\ 14400 \\ \hline \end{array}$	$\begin{aligned} & 18800 \\ & 16100 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 17600 \\ 151000 \\ 12600 \\ \hline \end{array}$	$\begin{aligned} & 15700 \\ & 13400 \\ & 11200 \\ & \hline \end{aligned}$	$\begin{array}{\|} 14100 \\ 12000 \\ 10100 \\ \hline \end{array}$	$\begin{array}{r} 128 \\ 109 \\ 91 \end{array}$	$\begin{array}{\|} 11700 \\ 10000 \\ 8400 \\ \hline \end{array}$	$\begin{array}{r} 10800 \\ 9300 \\ 7350 \\ \hline \end{array}$	$\begin{aligned} & 10100 \\ & 8450 \\ & 7200 \\ & \hline \end{aligned}$
		$\begin{aligned} & 336420 \\ & 266800 \\ & 21890 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 283 \\ 226 \\ 178 \\ \hline \end{array}$	2	$\begin{array}{r} 2126 \\ 1693 \\ \hline 3 \end{array}$	$\begin{array}{\|l} 1890 \\ 1800 \\ 1180 \\ \hline \end{array}$	$\begin{aligned} & 7000 \\ & 13500 \\ & 10700 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline 15400 \\ 18300 \\ 9700 \\ \hline \end{array}$	$\begin{array}{r} 143200 \\ 18300 \\ 8900 \\ \hline \end{array}$	$\begin{array}{r} 13100 \\ 10000 \\ 8220 \\ \hline \end{array}$	$\begin{array}{r} 1220 \\ 968 \\ 762 \\ \hline \end{array}$	$\begin{array}{r} 1180 \\ 401 \\ 712 \\ \hline \end{array}$	$\begin{array}{r} 1060 \\ 845 \\ 665 \\ \hline \end{array}$	590	$\begin{aligned} & 8500 \\ & 6750 \\ & 5350 \\ & \hline \end{aligned}$				6100 4840 3810 300
2	105560 836958 6635	167800 133220 10530	$\begin{array}{\|c} 14200 \\ 11200 \\ 8900 \\ \hline \end{array}$	$\begin{aligned} & 12200 \\ & 9600 \\ & 7620 \end{aligned}$	$\begin{array}{\|r} \hline 0600 \\ 8400 \\ 6870 \\ \hline \end{array}$	$\begin{aligned} & 9460 \\ & 7480 \\ & 5920 \\ & \hline \end{aligned}$	$\begin{aligned} & 8520 \\ & 5310 \\ & 5330 \\ & \hline \end{aligned}$	$\begin{array}{r} 6120 \\ 4850 \\ \hline \end{array}$	$\begin{array}{r} 7100 \\ 5400 \\ \hline 450 \\ \hline \end{array}$	$\begin{array}{r} 6550 \\ 5180 \\ \hline \end{array}$	$\begin{array}{r} 6080 \\ 4820 \\ 3810 \\ \hline \end{array}$	$\begin{array}{r} 5680 \\ 3500 \\ 3560 \\ \hline \end{array}$	$\begin{aligned} & 5300 \\ & 4200 \\ & 3340 \\ & \hline \end{aligned}$	473 374 296	4260 3360 2670	3170 3060 2430	$\begin{aligned} & 3550 \\ & 2800 \\ & 2230 \\ & \hline \end{aligned}$	327 258 20. 185	3040 2410 1410
3		$\begin{aligned} & 83640 \\ & 66370 \\ & 52630 \\ & \hline \end{aligned}$	$\begin{aligned} & 7050 \\ & 5650 \\ & 4430 \\ & \hline \end{aligned}$	$\begin{array}{r} 6850 \\ 4850 \\ 3800 \end{array}$	$\begin{array}{r} 5300 \\ 3330 \\ 3330 \\ \hline \end{array}$	$\begin{aligned} & 4700 \\ & 3760 \\ & 2960 \\ & \hline \end{aligned}$	$\begin{array}{r} 4230 \\ 3390 \\ 2670 \\ \hline \end{array}$	$\begin{aligned} & 3850 \\ & 3080 \\ & 2420 \end{aligned}$	$\begin{aligned} & 3520 \\ & 2820 \\ & 2220 \end{aligned}$	$\begin{aligned} & 32.50 \\ & 2610 \\ & 2050 \end{aligned}$	$\begin{aligned} & 303 \\ & 240 \\ & 190 \end{aligned}$	$\begin{aligned} & 2820 \\ & 2260 \\ & 1770 \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \\ & 2 \% \\ & 1 \end{aligned}$		$\begin{aligned} & 2110 \\ & 1690 \\ & 1330 \end{aligned}$		14		510 210 150

[^5]
TABLE XVIII-QUICK ESTIMATING TABLE

[^6]
TABLE XIX-QUICK ESTIMATING TABLE

70000 VOLTS DELIVERED

			$\begin{gathered} 36 \\ \text { MILES } \end{gathered}$	MILES	MALES	MILE	MILES	MILES	MIIES	64 MILES	MILES	MILES	MILES	MILES	$\begin{aligned} & 104 \\ & \text { MILES } \end{aligned}$	112 MILES	MILES	MLLES	MLL
	$\begin{aligned} & 650000 \\ & 60080 \\ & 55000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1033000 \\ & 95400 \\ & 874500 \\ & \hline \end{aligned}$	$\begin{aligned} & 130000 \\ & 130000 \\ & 112000 \\ & \hline \end{aligned}$	$\left\{\begin{array}{l} 18000 \\ 108000 \\ 1000000 \\ \hline \end{array}\right.$	$\begin{array}{r} 107000 \\ 98500 \\ 91200 \\ \hline \end{array}$	$\begin{aligned} & 98000 \\ & 90.500 \\ & 83500 \end{aligned}$	$\begin{array}{\|l\|} \hline 90600 \\ 83500 \\ 77500 \\ \hline \end{array}$	$\begin{array}{\|l\|} 84000 \\ 77500 \\ 717009 \end{array}$	$\begin{array}{r} 78600 \\ 723000 \\ 679000 \end{array}$	$\begin{aligned} & 73500 \\ & 67700 \\ & 8260 \\ & \hline \end{aligned}$	$\begin{aligned} & 65500 \\ & 603000 \\ & 558800 \end{aligned}$	59000 54000 50000	$\begin{aligned} & 53500 \\ & 49200 \\ & \hline \\ & \hline \end{aligned}$	$\begin{array}{r} 49000 \\ 45200 \\ 41700 \\ \hline \end{array}$	-	42000 3770 35800	d		$\begin{aligned} & 32700 \\ & 30,00 \\ & 27900 \end{aligned}$
	$\begin{array}{r} 500000 \\ 450800 \\ 400000 \\ \hline \end{array}$	$\begin{aligned} & 795000 \\ & 715500 \\ & 636000 \end{aligned}$	$\begin{aligned} & 101000 \\ & 80800 \\ & 80800 \end{aligned}$	$\begin{aligned} & 90500 \\ & 81600 \\ & 72700 \end{aligned}$	$\begin{aligned} & 82500 \\ & 7+200 \\ & 661000 \end{aligned}$	75500 68000 60600	69800 68800 55900	$\begin{aligned} & 64800 \\ & 58500 \\ & 51900 \end{aligned}$	60500 8450 48400	$\begin{array}{\|} 56700 \\ 51000 \\ 45400 \\ \hline \end{array}$	$\begin{array}{\|c} 50500 \\ 45500 \\ 40400 \end{array}$	$\begin{aligned} & 45200 \\ & 48800 \\ & 36300 \end{aligned}$	$\begin{aligned} & 41200 \\ & 37100 \\ & 33000 \end{aligned}$	$\begin{array}{\|l\|} 37700 \\ 3 \\ 303000 \end{array}$	$\begin{aligned} & 34900 \\ & 31400 \\ & 2 \beta 000 \end{aligned}$	$\begin{aligned} & 32400 \\ & 27200 \\ & 25900 \end{aligned}$	$\begin{aligned} & 30200 \\ & 27200 \\ & 24200 \end{aligned}$	$\begin{aligned} & 28300 \\ & 25590 \\ & 22700 \end{aligned}$	
	$\begin{aligned} & 350000 \\ & 300000 \\ & 250000 \\ & \hline \end{aligned}$	$\begin{aligned} & 556500 \\ & 477000 \\ & 397500 \end{aligned}$	70300 60200 50400	$\begin{aligned} & 63300 \\ & 54200 \\ & 55300 \\ & \hline \end{aligned}$	$\begin{aligned} & 57500 \\ & 49200 \\ & 41200 \end{aligned}$	$\begin{aligned} & 52700 \\ & 45700 \\ & 37800 \\ & \hline \end{aligned}$	$\begin{array}{\|} 48700 \\ 11700 \\ 34900 \\ \hline \end{array}$	$\begin{array}{r} 45200 \\ 38700 \\ 32400 \\ \hline \end{array}$	$\begin{aligned} & 42200 \\ & 36100 \\ & 30200 \end{aligned}$	$\begin{aligned} & 39500 \\ & 33900 \\ & 28300 \end{aligned}$	$\begin{array}{\|l\|} 35100 \\ 30100 \\ 25200 \end{array}$	$\begin{aligned} & 31600 \\ & 27100 \\ & 22700 \end{aligned}$	$\begin{aligned} & 28800 \\ & 2+600 \\ & 20600 \\ & \hline \end{aligned}$	$\begin{aligned} & 26400 \\ & 22600 \\ & 18900 \end{aligned}$	$\begin{array}{\|} 24300 \\ 20800 \\ 19400 \\ \hline \end{array}$	$\begin{aligned} & 22600 \\ & 19300 \\ & \hline 6200 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 21100 \\ 188000 \\ 15100 \end{array}$	$\begin{array}{\|c} 19700 \\ 16900 \\ 112000 \end{array}$	$\begin{aligned} & 176000 \\ & 15000 \\ & 12600 \end{aligned}$
$\begin{gathered} 0000 \\ \because \because \\ 00 \\ \hline \end{gathered}$	$\begin{aligned} & 216600 \\ & 16778 \\ & \hline 33079 \\ & \hline \end{aligned}$	$\begin{aligned} & 336420 \\ & 266800 \\ & 21190 \\ & \hline \end{aligned}$	$\begin{array}{r} 42500 \\ 338800 \\ 26770 \\ \hline \end{array}$	$\begin{aligned} & 33300 \\ & 30400 \\ & 24000 \end{aligned}$	$\begin{aligned} & 34800 \\ & 27700 \\ & 21800 \end{aligned}$	$\begin{aligned} & 31900 \\ & 25400 \\ & 20000 \end{aligned}$	$\begin{array}{\|l\|} \hline 29100 \\ 23 \\ 18 \end{array}$	$\begin{aligned} & 27300 \\ & 28700 \\ & \hline \end{aligned}$	$\begin{array}{\|} 25500 \\ 20300 \\ 18000 \end{array}$	$\begin{array}{\|c\|} 23900 \\ 19000 \\ 15000 \end{array}$	$\begin{array}{\|l\|} \hline 21200 \\ 186900 \\ 133000 \end{array}$	$\begin{array}{\|} 19100 \\ 15200 \\ 12000 \end{array}$	$\begin{aligned} & 17400 \\ & 13800 \\ & 10900 \\ & \hline \end{aligned}$	$\begin{aligned} & 15900 \\ & 12700 \\ & 10000 \end{aligned}$	$\begin{array}{\|} 14700 \\ 11700 \\ 9240 \\ \hline \end{array}$	$\begin{array}{r} 13600 \\ 10900 \\ 8380 \\ \hline \end{array}$	$\begin{array}{r} 12600 \\ 10100 \\ 8000 \\ \hline \end{array}$	$\begin{array}{\|} 11900 \\ 9520 \\ 7500 \\ \hline \end{array}$	
\%	$\begin{array}{r} 105360 \\ 83694 \\ \hline 6358 \\ \hline \end{array}$	167800 133220 10530	21200 16800 13400	19100 15100 12000	17400 13700 10900	15900 12600 10000 1	$\begin{array}{r}14700 \\ 11600 \\ 9240 \\ \hline\end{array}$	(13600	12700 10100 8000	12000 $9+50$ 7500	10600 8400 670	9570 7560 6000	$\begin{aligned} & 8700 \\ & 6870 \\ & 5460 \\ & \hline \end{aligned}$	7970 6300 5000	7360 5820 4820	$\begin{aligned} & 6830 \\ & 5400 \\ & 5290 \\ & \hline \end{aligned}$	6380 5040 4000	6000 4720 3750	$\begin{array}{r}5310 \\ 4300 \\ 3330 \\ \hline 264 \\ \hline\end{array}$
		83640	10.500	9500	8630	7920	7300	6780	6330	5900	5270	4750	4320	3960	3670	3390	3/60	2970	2640
											DE	VE	RED						
			$\begin{gathered} 38 \\ \text { MILES } \end{gathered}$	MILES	MILES	MILES	$\begin{gathered} 52 \\ \text { MILES } \end{gathered}$	MILES	$\begin{gathered} 80 \\ \text { MILES } \end{gathered}$	MILES	MILES	MILES	$\begin{aligned} & 86 \\ & \text { MILES } \end{aligned}$	MILES	104 MILES	$\begin{array}{\|c\|} \hline 112 \\ \text { MILES } \\ \hline \end{array}$	MILES	$\begin{array}{\|c\|} \hline 128 \\ \text { MILES } \\ \hline \end{array}$	$\begin{aligned} & \text { IA4 } \\ & \text { MILES } \end{aligned}$
	$\begin{array}{r} 650000 \\ 600000 \\ 550000 \\ \hline \end{array}$	$\begin{array}{r} 954000 \\ 87+500 \\ \hline \end{array}$	$\begin{aligned} & 171000 \\ & 187000 \\ & 1+6000 \end{aligned}$	$\begin{aligned} & 154000 \\ & 142000 \\ & 131000 \end{aligned}$	$\begin{aligned} & 1+0000 \\ & 128000 \\ & 119000 \end{aligned}$	$\begin{aligned} & 128000 \\ & 118000 \\ & 110000 \\ & \hline \end{aligned}$	$\begin{aligned} & 118000 \\ & 109000 \\ & 101000 \end{aligned}$	$\begin{aligned} & 110000 \\ & 100000 \\ & 93600 \\ & \hline \end{aligned}$	$\begin{array}{r} 102000 \\ 94500 \\ 87600 \\ \hline \end{array}$	$\begin{array}{\|} \hline 86000 \\ 88500 \\ 82000 \\ \hline \end{array}$	$\begin{aligned} & 55500 \\ & 788500 \\ & 72800 \\ & \hline \end{aligned}$	$\begin{aligned} & 77000 \\ & 71000 \\ & 65500 \end{aligned}$	$\begin{array}{\|} 70000 \\ 64000 \\ 59500 \\ \hline \end{array}$	$\begin{array}{\|l\|} 64000 \\ 590000 \\ 559000 \\ \hline \end{array}$	$\begin{aligned} & 59000 \\ & 54500 \\ & 50500 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 50000 \\ 505900 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5000 \\ 47700 \\ 43800 \\ \hline \end{array}$	$\begin{array}{r} 4000 \\ 4800 \\ 41000 \\ \hline \end{array}$	
	$\begin{array}{r} 500000 \\ 450000 \\ 400000 \\ \hline \end{array}$	$\begin{aligned} & 795000 \\ & 635000 \\ & \hline \end{aligned}$	$\begin{aligned} & 132000 \\ & 118000 \\ & 105000 \\ & \hline \end{aligned}$	$\begin{aligned} & 19000 \\ & 107000 \\ & 94900 \\ & \hline \end{aligned}$	$\begin{aligned} & 108000 \\ & 97000 \\ & 86300 \\ & \hline \end{aligned}$	$\begin{array}{r} 89000 \\ 88800 \\ 79100 \\ \hline \end{array}$	91500 82000 73000	$\begin{array}{\|l\|} \hline 85000 \\ 76200 \\ 67800 \\ \hline \end{array}$	$\begin{array}{r} 79000 \\ 633000 \\ \hline \end{array}$	74870 66700 59300	$\begin{array}{r} 66000 \\ 59800 \\ 52700 \\ \hline \end{array}$	$\begin{array}{\|} 59500 \\ 53500 \\ 17400 \\ \hline \end{array}$	$\begin{array}{\|} 54000 \\ 48100 \\ 13100 \\ \hline \end{array}$	47500 47400 39500	$\begin{array}{r} 45700 \\ 36500 \\ \hline 1000 \\ \hline \end{array}$	$\begin{array}{r} 42500 \\ 381000 \\ 33900 \\ \hline \end{array}$		$\begin{array}{\|l} 31000 \\ 333000 \\ 29600 \\ \hline \end{array}$	$\begin{aligned} & 33000 \\ & 27600 \\ & 26300 \\ & \hline \end{aligned}$
	$\begin{aligned} & 350000 \\ & 300000 \\ & 250000 \\ & \hline \end{aligned}$	$\begin{aligned} & 479000 \\ & 397500 \end{aligned}$	$\begin{aligned} & 91800 \\ & 78600 \\ & 65800 \end{aligned}$	$\begin{aligned} & 82600 \\ & 70800 \\ & 59200 \\ & \hline \end{aligned}$	$\begin{aligned} & 75100 \\ & 64300 \\ & 53800 \end{aligned}$	$\begin{array}{r} 68900 \\ 59000 \\ 49400 \end{array}$	$\begin{array}{r} 63600 \\ 54400 \\ 45600 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 590000 \\ 50500 \\ 42300 \\ \hline \end{array}$	$\begin{array}{\|} 551100 \\ 47200 \\ 39500 \end{array}$	$\begin{array}{\|c\|} \hline 51600 \\ 41200 \\ 37000 \\ \hline \end{array}$	$\begin{aligned} & 45900 \\ & 393300 \\ & 32900 \end{aligned}$	$\begin{aligned} & 41300 \\ & 35400 \\ & 29600 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 37500 \\ 32190 \\ 26900 \\ \hline \end{array}$	$\begin{aligned} & 34400 \\ & 29500 \\ & 247000 \end{aligned}$	$\begin{aligned} & 31800 \\ & 27200 \\ & 22800 \end{aligned}$	$\begin{aligned} & 29500 \\ & 295300 \\ & 21100 \\ & \hline \end{aligned}$	$\begin{aligned} & 27500 \\ & 23600 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 20800 \\ 22100 \\ 18300 \\ \hline \end{array}$	$\begin{array}{\|} 22900 \\ 18600 \\ \hline 16400 \\ \hline \end{array}$
$\left\lvert\, \begin{gathered} 0000 \\ 000 \\ 00 \end{gathered}\right.$	$\begin{aligned} & 216600 \\ & 167772 \\ & 133079 \end{aligned}$	$\begin{array}{r} 336420 \\ 266800 \\ 211950 \\ \hline \end{array}$	$\begin{array}{r} 55500 \\ 44800 \\ 34800 \end{array}$	$\begin{array}{\|l} 50000 \\ 39800 \\ 31300 \end{array}$	$\begin{aligned} & 45400 \\ & 36200 \\ & 288500 \end{aligned}$	$\begin{aligned} & 41700 \\ & 33100 \\ & 261000 \end{aligned}$	$\begin{array}{\|l\|} \hline 38400 \\ 30600 \\ 24100 \end{array}$	$\begin{array}{\|l\|} 35700 \\ 28400 \\ 22400 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33300 \\ 265900 \\ 20900 \end{array}$	$\begin{array}{\|l\|} \hline 312000 \\ 24800 \\ \hline \end{array}$	$\begin{array}{r} 27800 \\ 221800 \\ 17400 \end{array}$	$\begin{array}{\|l\|} \hline 25000 \\ 19900 \\ 15600 \end{array}$	$\begin{array}{\|} 22700 \\ 181800 \\ 14200 \end{array}$	$\begin{aligned} & 20800 \\ & 18300 \\ & 73000 \end{aligned}$	$\begin{aligned} & 192000 \\ & 153300 \\ & 12100 \end{aligned}$	$\begin{array}{\|l\|} \hline 178000 \\ 14200 \\ 11200 \end{array}$	$\begin{aligned} & 16700 \\ & 13200 \\ & 104000 \end{aligned}$	$\begin{array}{\|c\|} \hline 15600 \\ 12400 \\ 9400 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3700 \\ 11800 \\ 18900 \\ \hline \end{array}$
i	105560 83694	$\begin{aligned} & 167800 \\ & 133220 \\ & 105330 \end{aligned}$	$\begin{aligned} & 27800 \\ & 21900 \\ & 77400 \end{aligned}$	$\begin{aligned} & 25000 \\ & 197700 \\ & 157700 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 22700 \\ 17400 \\ \hline \end{array}$	$\begin{aligned} & 20800 \\ & 16400 \\ & 31000 \end{aligned}$	$\left.\begin{array}{\|} 19200 \\ 15200 \\ 12100 \end{array} \right\rvert\,$	$\begin{array}{\|} 17800 \\ 14100 \\ 11200 \\ \hline \end{array}$	$\begin{aligned} & 16300 \\ & 13800 \\ & 10400 \end{aligned}$	$\begin{array}{\|c} 15600 \\ 12 \\ 9800 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 39900 \\ 18990 \\ \hline 8910 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12500 \\ 9880 \\ 7840 \\ \hline \end{array}$	$\begin{array}{r} 7300 \\ 8980 \\ 7130 \\ \hline \end{array}$	$\begin{array}{r} 10400 \\ 8230 \\ 5530 \\ \hline \end{array}$	$\begin{aligned} & 9610 \\ & 7600 \\ & 6030 \\ & \hline \end{aligned}$	$\begin{aligned} & 8930 \\ & 7050 \\ & 5600 \\ & \hline \end{aligned}$	$\begin{aligned} & 8330 \\ & 6580 \\ & 5230 \\ & \hline \end{aligned}$	$\begin{aligned} & 7810 \\ & 6870 \\ & 4900 \\ & \hline \end{aligned}$	$\begin{array}{r} 6940 \\ 5490 \\ 360 \\ \hline \end{array}$

88000 Volts delivered

	$\begin{aligned} & 650000 \\ & 600000 \\ & 550000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1033000 \\ & 954000 \\ & 874500 \end{aligned}$	$\left\|\begin{array}{l\|} 207000 \\ 191000 \\ 177000 \end{array}\right\|$	$\begin{array}{\|} 186000 \\ 171000 \\ 159000 \end{array}$	$\left.\begin{array}{\|} 169000 \\ 154000 \\ 1+4000 \end{array} \right\rvert\,$	155000 173000 132000	$\begin{array}{\|} 143000 \\ 132000 \\ 122000 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & 133000 \\ & 122000 \\ & 113000 \end{aligned}\right.$	$\begin{array}{\|l\|} 124000 \\ 114000 \\ 106000 \end{array}$	$\begin{array}{\|r\|} 160000 \\ 107000 \\ 99 \\ \hline \end{array}$	$\begin{aligned} & 103000 \\ & 95500 \\ & 88200 \\ & \hline \end{aligned}$	$\begin{aligned} & 93000 \\ & 85500 \\ & 79500 \\ & \hline \end{aligned}$	$\begin{aligned} & 84500 \\ & 78000 \\ & 72000 \end{aligned}$	$\begin{aligned} & 77500 \\ & 7500 \\ & 66000 \end{aligned}$	$\begin{aligned} & 71500 \\ & 66000 \\ & 61000 \end{aligned}$	$\begin{aligned} & 66500 \\ & 610000 \\ & 56500 \end{aligned}$	$\begin{aligned} & 62000 \\ & 57000 \\ & 53000 \end{aligned}$	$\begin{array}{r} 58000 \\ 53500 \\ +7700 \\ \hline \end{array}$	$\begin{aligned} & 51500 \\ & 47700 \\ & 44100 \end{aligned}$
	$\begin{array}{r} 500000 \\ 450008 \\ 400000 \\ \hline \end{array}$	$\begin{aligned} & 795000 \\ & 715500 \\ & 636000 \end{aligned}$	$\begin{array}{\|l\|} \hline 159000 \\ 143000 \\ 128000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 13000 \\ 124000 \\ 1 / 5000 \\ \hline \end{array}$	$\left\|\begin{array}{l\|} 131000 \\ 117000 \\ 105000 \end{array}\right\|$	$\begin{aligned} & 20000 \\ & 107000 \\ & 96000 \end{aligned}$	$\begin{array}{\|c\|} \hline 11000 \\ 99000 \\ 88700 \\ \hline \end{array}$	$\left\|\begin{array}{\|c\|} \hline 02000 \\ 92000 \\ 82500 \end{array}\right\|$	$\begin{aligned} & 96000 \\ & 86000 \\ & 76800 \end{aligned}$	$\begin{aligned} & 90000 \\ & 80600 \\ & 72000 \end{aligned}$	$\begin{aligned} & 80000 \\ & 71500 \\ & 64000 \end{aligned}$	$\begin{aligned} & 77500 \\ & 64500 \\ & 57500 \end{aligned}$	$\begin{aligned} & 65500 \\ & 58500 \\ & 52500 \end{aligned}$	$\begin{array}{\|} 40000 \\ 53300 \\ 48000 \\ \hline \end{array}$	$\begin{array}{\|} 55500 \\ 49500 \\ 44300 \end{array}$	$\begin{array}{\|l\|} 51000 \\ 16000 \\ 41200 \end{array}$	$\begin{aligned} & 48000 \\ & 43000 \\ & 38400 \end{aligned}$	$\begin{aligned} & 45000 \\ & 40300 \\ & 34000 \\ & \hline \end{aligned}$	$\begin{array}{\|} 40000 \\ 35700 \\ 32000 \\ \hline \end{array}$
	$\begin{aligned} & 150000 \\ & 300000 \\ & 250000 \end{aligned}$	556500 477000 397500	$\left.\begin{array}{\|r\|} \hline 11000 \\ 95000 \\ 79500 \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 100000 \\ 85500 \\ 71500 \end{array}$	$\begin{aligned} & 91200 \\ & 78000 \\ & 45000 \end{aligned}$	$\begin{aligned} & 83500 \\ & 75500 \\ & 59800 \end{aligned}$	$\begin{aligned} & 77200 \\ & 66000 \\ & 55000 \end{aligned}$	$\begin{aligned} & 71600 \\ & 61200 \\ & 51000 \end{aligned}$	$\begin{array}{\|l\|} \hline 67000 \\ 57200 \\ 57800 \end{array}$	$\begin{array}{r} 62700 \\ 53600 \\ 44800 \end{array}$	$\begin{aligned} & 55800 \\ & 47700 \\ & 39800 \end{aligned}$	$\begin{aligned} & 50000 \\ & 42700 \\ & 35700 \end{aligned}$	$\begin{aligned} & 15400 \\ & 39000 \\ & 32500 \end{aligned}$	$\begin{array}{\|l\|} \hline 11750 \\ 35700 \\ 29900 \end{array}$	$\begin{aligned} & 38600 \\ & 33000 \\ & 27500 \end{aligned}$	$\begin{array}{\|l\|} \hline 35800 \\ 30800 \\ 25500 \end{array}$	$\begin{aligned} & 33500 \\ & 28600 \\ & 23900 \end{aligned}$	$\begin{aligned} & 3300 \\ & 28800 \\ & 22400 \end{aligned}$	$\begin{aligned} & 27900 \\ & 23800 \\ & 19900 \end{aligned}$
$\begin{aligned} & 0000 \\ & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 211600 \\ & 167772 \\ & 133079 \end{aligned}$	$\begin{aligned} & 336420 \\ & 266800 \\ & 211950 \end{aligned}$	$\begin{array}{r} 67200 \\ 53500 \\ 42300 \end{array}$	$\begin{array}{r} 60500 \\ +8800 \\ 38000 \\ \hline \end{array}$	$\begin{array}{r} 55000 \\ +3800 \end{array}$ 346001	$\begin{array}{\|l\|} \hline 50500 \\ 40200 \\ 70700 \end{array}$ $13,700$	$\begin{aligned} & 46200 \\ & 37000 \\ & 29300 \end{aligned}$	$\left\|\begin{array}{l} 43200 \\ 31400 \\ 27200 \end{array}\right\|$	$\begin{aligned} & 40300 \\ & 32200 \\ & 25400 \\ & \hline \end{aligned}$	$\begin{aligned} & 37800 \\ & 30200 \\ & 23800 \end{aligned}$	$\begin{aligned} & 33600 \\ & 26800 \\ & 21200 \end{aligned}$	$\begin{aligned} & 30200 \\ & 24100 \\ & 19100 \\ & \hline \end{aligned}$	$\begin{aligned} & 27500 \\ & 27900 \\ & 17300 \end{aligned}$	$\begin{array}{\|l\|} 25200 \\ 20100 \\ 158800 \\ \hline \end{array}$	$\begin{aligned} & 23200 \\ & 18500 \\ & 14800 \\ & \hline \end{aligned}$	$\begin{array}{\|} 21600 \\ 17200 \\ 13600 \\ \hline \end{array}$	$\begin{array}{\|l} 20100 \\ 16100 \\ 12700 \\ \hline \end{array}$	$\begin{aligned} & 18900 \\ & 15100 \\ & 11900 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 16800 \\ 13400 \\ 10400 \\ \hline \end{array}$
-	$\begin{aligned} & 105560 \\ & 83694 \end{aligned}$	$\begin{aligned} & 167800 \\ & 133220 \\ & 105530 \end{aligned}$	$\begin{aligned} & 33700 \\ & 24500 \\ & 21100 \end{aligned}$	$\begin{aligned} & 30300 \\ & 23900 \\ & 19000 \end{aligned}$	$\begin{aligned} & 27600 \\ & 21700 \\ & 17200 \end{aligned}$	$\begin{aligned} & 25300 \\ & 19900 \\ & 15800 \end{aligned}$	$\begin{aligned} & 23300 \\ & 18300 \\ & 14800 \end{aligned}$	$\begin{aligned} & 21700 \\ & 17000 \\ & 13500 \end{aligned}$	$\begin{array}{\|l\|} \hline 20200 \\ 15900 \\ 12600 \end{array}$	$\begin{gathered} 190000 \\ 14900 \\ 1900 \end{gathered}$	$\begin{aligned} & 16800 \\ & 13200 \\ & 10500 \end{aligned}$	$\begin{array}{r} 15100 \\ 18800 \\ 95000 \end{array}$	$\begin{aligned} & 13800 \\ & 10850 \\ & 8400 \end{aligned}$	$\left\|\begin{array}{\|c\|} \hline 12600 \\ 9900 \\ 7900 \end{array}\right\|$	$\begin{aligned} & 11600 \\ & 9100 \\ & 7300 \end{aligned}$	$\begin{array}{\|c\|} \hline 10800 \\ 8500 \\ 6700 \end{array}$	$\begin{array}{r} 10100 \\ 7900 \\ 6300 \\ \hline \end{array}$	$\begin{aligned} & 9500 \\ & 7400 \\ & 5900 \\ & \hline \end{aligned}$	$\begin{aligned} & 8400 \\ & 6100 \\ & 5200 \end{aligned}$

The loss due to corona will not be exceasive with a ay of the above conductors used at kea level for the voltsges slated. For elevations chargiog current (alao corona and leakage losses) will be to inereaso or decrease the I R loas, depending on tho amount of load sod its powerfactor. See Fig. 13

TABLE XX-QUICK ESTIMATING TABLE

\begin{tabular}{|c|}
\hline \multicolumn{3}{|l|}{CONDUCTORS} \& \multicolumn{17}{|l|}{\begin{tabular}{l}
KILOVOLT-AMPERES, 3 PHASE. WHICH MAY BE DELIVERED AT THE FOLLOWING VOLTAGES OVER THE VARIOUS CONDUCTORS FOR THE DISTANCES STATED. BASED UPON THE FOLLOWING \(1^{2} R\) LOSS (EFFECT OF CHARGING CURRENT NEGLECTED) \\
FOR LOAD POWER-FACTOR OF \(100 \%-\frac{A T}{} 25^{\circ} \mathrm{C}-\frac{\text { AT } 66^{\circ} \mathrm{C}}{8.66 \% \text { LOSS }}\) \\
FOR LOAD POWER-FACTOR OF \(80 \%-10.8 \%\) LOSS- 12.5 LOSS
\end{tabular}} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\(\circ\) \\
\hline \\
\(\infty\) \\
\(\infty\) \\
\(\infty\) \\
\(\infty\)
\end{tabular}} \& \multirow[t]{2}{*}{COPPER AnEa omounar} \& \multirow[t]{2}{*}{\[
\underset{\substack{\text { ALEAMINUM } \\ \text { AREA } \\ \text { oiculan } \\ \text { MILE }}}{ }
\]} \& \multicolumn{17}{|c|}{10000 VOLTS DELIVERED} \\
\hline \& \& \& MILES \& Miles \& MLLES \& MiLES \& MLLES \& \({ }_{\text {MILES }}\) \& MiLES \& MILES \& \[
\begin{gathered}
104 \\
\text { MILES }
\end{gathered}
\] \& M1LES \& M120 \({ }^{12}\) \& M128 \& MILES \& | \(\begin{gathered}180 \\ \text { MLES }\end{gathered}\) \& MiLEs \({ }^{175}\) \& MILES \& 208 \\
\hline \& \[
\begin{aligned}
\& 6500000 \\
\& 500000 \\
\& 50000
\end{aligned}
\] \& \[
\begin{aligned}
\& 1033000 \\
\& 954 \\
\& 87400 \\
\& \hline 800
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 1,7009 \\
\& 0,15800 \\
\& 177000
\end{aligned}
\] \& \[
\begin{aligned}
\& 1,6000 \\
\& 488000 \\
\& 1,07000
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 120000 \\
\& 1,10000 \\
\& 103000
\end{aligned}
\] \& \& \[
\begin{array}{|}
100000 \\
925500 \\
8.5500 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 92500 \\
\& 859500 \\
\& 79000
\end{aligned}
\] \& \[
\begin{aligned}
\& 86000 \\
\& 78900 \\
\& 73500
\end{aligned}
\] \& \[
0
\] \& \[
\begin{aligned}
\& 75000 \\
\& 0 \\
\& \hline 69000 \\
\& 64000
\end{aligned}
\] \& \[
\begin{aligned}
\& 66,500 \\
\& 6,500 \\
\& 57000
\end{aligned}
\] \& \[
\begin{aligned}
\& 60000 \\
\& 55000 \\
\& 5,500
\end{aligned}
\] \& \[
0 \begin{aligned}
\& 54500 \\
\& 5050 \\
\& \hline+6700 \\
\& \hline 100
\end{aligned}
\] \& \[
\begin{aligned}
\& 50000 \\
\& \hline \begin{array}{l}
5000 \\
462000 \\
42700
\end{array}
\end{aligned}
\] \& \\
\hline \& 500800
450008
400008 \& 795000
736008
63608 \& 143000
\(1 / 80000\)
114000 \& \(1 / 38080\)
\(1 / 9090\)
106000 \& \(1 / 27000\)
118000
98900 \& \(1 / 6000\)
104000
92700 \& 103000
93000
82400 \& 7300
893500
74200 \& 84500
86900
67400 \& 77500
69500
69600 \& 71500
778000
5700 \& 66000
53000
53000 \& 62000
55950
49400 \& \begin{tabular}{l}
58000 \\
58000 \\
46300 \\
\hline 10
\end{tabular} \& 51500
41200
41200 \& 46500
47100
3 \& 4220
3800
37 \& \& 35700
38100
18500 \\
\hline \& 350000
35000
250000 \& \(\begin{array}{r}556500 \\ \hline 797500 \\ \hline 97\end{array}\) \& \[
\begin{array}{|}
99400 \\
851700 \\
\hline 710 \\
\hline
\end{array}
\] \& 92300
76000
6000 \& \begin{tabular}{l}
86100 \\
73700 \\
\hline 57
\end{tabular} \& 80700
897800
57800 \& \& \begin{tabular}{l}
69600 \\
\hline 56300
\end{tabular} \& S87 700
42100
4100 \& 53800
4.1
38600 \& 47900
453500
35600 \& \[
\begin{aligned}
\& 46190 \\
\& 39500 \\
\& 33000
\end{aligned}
\] \& [\& 190300
34900
28900 \& \[
\begin{aligned}
\& 35909 \\
\& 35700 \\
\& 25700
\end{aligned}
\] \& (\& \& 26900
23900
19000 \& \\
\hline 0 \& (216600 \& \begin{tabular}{l}
336420 \\
26680 \\
2614 \\
\hline 180
\end{tabular} \& 60, 180
37700

3700 \& 55800
3540
3500 \& \& 48800
38800
30800 \& 13400
33
27200
27 \& 39,00
34500
24500 \& 35500
2850

22300 \& \begin{tabular}{l}
32500

38500

20400

\hline

 \& \& | $\begin{aligned} & 27900 \\ & 17500 \\ & 17\end{aligned}$ \& \& [$\begin{aligned} & 24400 \\ & 1,5300 \\ & 5300\end{aligned}$ \& |l|

21700

13600

3600

\hline
\end{tabular} \& \& | 17700 \& 16200

109200
200 \&

\hline \& 105560 \& 167800

$1 / 35530$ \& \multicolumn{2}{|l|}{\[
$$
\begin{array}{|l|l|}
30000 & 27900 \\
233700 \\
28000 \\
18800 & 17500 \\
\hline
\end{array}
$$

\]} \& \[

$$
\begin{array}{r}
26000 \\
26000 \\
26300 \\
\hline
\end{array}
$$
\] \& 24400

19300 \& $$
\begin{aligned}
& 2700 \\
& 17700 \\
& 13600
\end{aligned}
$$ \& \[

$$
\begin{array}{|}
1950 \\
1,5400 \\
\hline 12000 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 17700 \\
& 17700 \\
& 11,100
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
16300 \\
16300 \\
102000 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 15000 \\
& 19900 \\
& 9400
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13800 \\
& 38800 \\
& 8800
\end{aligned}
$$

\] \& \[

\left.$$
\begin{array}{|c|c|}
\hline 13000 \\
3 & 10300 \\
82000
\end{array}
$$ \right\rvert\,

\] \& \[

$$
\begin{array}{|}
12300 \\
\hline 200 \\
9600 \\
\hline 86 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
10800 \\
8880 \\
\hline 8800
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|}
9800 \\
\hline 9780 \\
\hline 7000 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 8700 \\
& 7000 \\
& 5600 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 10100 \\
& 8100 \\
& 6700 \\
& 5100 \\
& \hline
\end{aligned}
$$
\] \& 7500

3900
4700

\hline \multicolumn{20}{|c|}{11000 VOLTS DELIVERED}

\hline \& \& \& MILES \& MILES \& MILES \& MILES \& MILES \& $$
80
$$ \& MILES \& MILES \& \[

$$
\begin{gathered}
104 \\
\text { MILES }
\end{gathered}
$$

\] \& MILES \& \[

$$
\begin{gathered}
120 \\
\text { MILES }
\end{gathered}
$$

\] \& MILES \& \[

$$
\begin{gathered}
1444 \\
\text { MILES }
\end{gathered}
$$

\] \& M1LES \& \[

$$
\begin{gathered}
176 \\
\text { MLLES }
\end{gathered}
$$
\] \& 192 \& 208

\hline \& | 550000 |
| :--- |
| 60000 |
| 550000 |
| 10000 | \& \[

$$
\begin{array}{|r|}
\hline 1033 \\
9.3000 \\
954 \\
87000 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 284000 \\
206000 \\
191000 \\
120
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 208000 \\
& 1981000 \\
& 177000
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 94000 \\
\hline 9 \\
\hline 785000 \\
\hline 6
\end{array}
$$

\] \& \& \[

$$
\begin{aligned}
& 1 \begin{array}{l}
12000 \\
480000 \\
38000
\end{array}
\end{aligned}
$$

\] \& \& \[

\left.\left\lvert\, $$
\begin{array}{l}
13000 \\
1,123000 \\
1,3000
\end{array}
$$\right.\right)

\] \& \[

$$
\begin{aligned}
& 121000 \\
& 11103000
\end{aligned}
$$

\] \& \[

\left.$$
\begin{array}{|c|}
\hline 12000 \\
\hline 03 \\
0 \\
9
\end{array}
$$\right)

\] \& \[

$$
\begin{aligned}
& 10400 \\
& 8550 \\
& 88500
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 91000 \\
& 83500 \\
& 77500
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 81000 \\
& 34000 \\
& 6900
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|}
73000 \\
672000 \\
6200
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 66508 \\
& 66500 \\
& 56500
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 60500 \\
& 55500 \\
& 54500
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 56000 \\
& 5,7700 \\
& 1700
\end{aligned}
$$
\]

\hline \& \& 795000
736000

76008 \& \multicolumn{2}{|l|}{$$
\begin{array}{|c|c|}
\hline 73000 & 16000 \\
\hline 755000 \\
138000 \\
1348000 \\
\hline
\end{array}
$$} \& \[

$$
\begin{array}{|}
150000 \\
139000 \\
119000 \\
\hline
\end{array}
$$
\] \& \& 12500

112000 99700 \& $$
\begin{array}{r}
112000 \\
101000 \\
89700
\end{array}
$$ \& \& \[

\left.$$
\begin{array}{|l}
93500 \\
84800
\end{array}
$$ \right\rvert\,

\] \& \[

$$
\begin{array}{|}
86000 \\
\hline 79600 \\
\hline 9.0
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
80000 \\
8.0000 \\
64000 \\
\hline
\end{array}
$$

\] \& \& \[

$$
\begin{array}{|}
70.00 \\
6300 \\
56100
\end{array}
$$

\] \& \& \[

$$
\begin{aligned}
& 5600 \\
& 5000 \\
& 14900
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 51000 \\
& 45800 \\
& 40800
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4=300 \\
& 43000 \\
& 37+00
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|}
13000 \\
388800 \\
34500
\end{array}
$$
\]

\hline \& | 350000 |
| :--- |
| 30008 |
| 250000 |
| 100 | \& \[

$$
\begin{array}{r}
556500 \\
+375008 \\
\hline 397 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|}
120000 \\
103000 \\
86,00 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 1110000 \\
& 956000 \\
& 8000
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|}
104000 \\
\hline 84700 \\
7+700 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 97700 \\
& 836000 \\
& 70000
\end{aligned}
$$

\] \& \& | 76180 |
| :--- |
| 6800 |
| 6600 | \& \[

$$
\begin{aligned}
& 71000 \\
& 6080 \\
& 8060
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7.000 \\
& 657700 \\
& 56600
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|}
60,100 \\
5150 \\
13100 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \begin{array}{l}
55800 \\
47800 \\
4000
\end{array}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|}
51100 \\
41000 \\
373300
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 48800 \\
& 418000 \\
& 3500
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7,700 \\
& 4340 \\
& 37200 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 39700 \\
& 33900 \\
& 28000
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 75.000 \\
& 35000 \\
& 35300
\end{aligned}
$$

\] \& \& | 30000 |
| :--- |
| 2500 |
| 2500 |
| 1780 |

\hline \multirow[t]{2}{*}{$$
\begin{array}{r}
0000 \\
000 \\
008
\end{array}
$$} \& \multirow[t]{2}{*}{211600} \& \[

$$
\begin{aligned}
& 336420 \\
& 366900 \\
& 2,1950 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
72700 \\
578800 \\
\hline 7500 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 67500 \\
& 437300 \\
& \hline 4
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 59100 \\
& 17000 \\
& 17000
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|}
48500 \\
32900 \\
32900
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
17200 \\
376.00 \\
29600 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
42900 \\
34200 \\
26900
\end{array}
$$

\] \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 39400 \\
& 31700 \\
& 247700 \\
& 19350
\end{aligned}
$$

\]} \& \[

$$
\begin{aligned}
& 36300 \\
& 28900 \\
& 28800
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 43000 \\
& 33700 \\
& 268100 \\
& \hline 1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 31500 \\
& 2515100 \\
& 19800
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2950 \\
& 2950 \\
& 38500
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 26200 \\
& 26900 \\
& 14900
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 36800 \\
148800
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 2500 \\
& 21500 \\
& 133500
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1,700 \\
& 1,5600 \\
& 12300 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
18200 \\
14+800 \\
114100 \\
19100
\end{gathered}
$$
\]

\hline \& \& \% 167820 \& 2 \& 33780

2680 \& 315900 \& (29 \& | 26200 |
| :--- |
| 20700 | \& 23600 \& 216400 \& \& 18100 \& 16900

13300 \& (15700 \& 1.7790 \& 13129

10300 \& 11800 \& '800 8. \& 9800 \& | 9100 |
| :--- |

\hline
\end{tabular}

120000 volts delivered

			$\left\|\begin{array}{c} 64 \\ \text { MILES } \end{array}\right\|$	72 MILES	$\begin{gathered} 80 \\ \text { MILES } \end{gathered}$	$\begin{gathered} 88 \\ \text { MILES } \end{gathered}$	${ }^{98}$	104 MILES	$\begin{gathered} 112 \\ \text { MILES } \end{gathered}$	$\begin{gathered} 120 \\ \text { MILES } \end{gathered}$	$\begin{gathered} 128 \\ \text { MILES } \end{gathered}$	144 MILES	$\begin{gathered} 160 \\ \text { MILES } \end{gathered}$	$\begin{gathered} 176 \\ \text { MILES } \end{gathered}$	192 MILES	$\left\|\begin{array}{c} 208 \\ \text { MILES } \end{array}\right\|$	$\begin{gathered} 224 \\ \text { MILES } \end{gathered}$	$\left\lvert\, \begin{gathered} 240 \\ \text { MILES } \end{gathered}\right.$	$\begin{gathered} 256 \\ \text { MILES } \end{gathered}$
	$\begin{aligned} & 650000 \\ & 6000000 \\ & 550000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1033000 \\ & 954000 \\ & 874500 \end{aligned}$	$\begin{array}{\|l\|} \hline 216000 \\ 199000 \\ 184000 \\ \hline \end{array}$	$\begin{aligned} & 192000 \\ & 177000 \\ & 164000 \end{aligned}$	$\begin{array}{\|} 173000 \\ 160000 \\ 148000 \\ \hline \end{array}$	$\begin{array}{\|} 157000 \mid \\ 145000 \\ 134000 \end{array}$	$\begin{aligned} & 14000 \\ & 133000 \\ & 123000 \end{aligned}$	$\begin{aligned} & 133000 \\ & 123000 \\ & 113000 \\ & \hline \end{aligned}$	$\begin{aligned} & 123000 \\ & 114000 \\ & 105000 \end{aligned}$	$\begin{array}{\|r\|} 115000 \\ 106000 \\ 98500 \\ \hline \end{array}$	$\begin{array}{\|} 108000 \\ 100000 \\ 92500 \\ \hline \end{array}$	$\begin{array}{\|} 96000 \\ 88500 \\ 82000 \end{array}$	$\begin{array}{\|l\|} 86500 \\ 800000 \\ 74000 \end{array}$	$\begin{aligned} & 78500 \\ & 72500 \\ & 670000 \end{aligned}$	$\begin{aligned} & 72000 \\ & 66500 \\ & 61500 \end{aligned}$	$\begin{array}{\|l\|} \hline 66500 \\ 67500 \\ 56500 \end{array}$	$\begin{array}{\|l\|} \hline 61500 \\ 57000 \\ 52500 \end{array}$	$\begin{array}{\|l\|} 57500 \\ 53000 \\ 44200 \\ \hline \end{array}$	$\begin{array}{\|} 54000 \\ 50000 \\ 46200 \end{array}$
	$\begin{aligned} & 500000 \\ & 450000 \\ & 400000 \end{aligned}$	795000 715500 636000	$\begin{array}{\|} 167000 \\ 150000 \\ 133000 \end{array}$	$\begin{array}{\|l\|} 148000 \\ 133000 \\ 119000 \end{array}$	$\begin{aligned} & 133000 \\ & 120000 \\ & 107000 \end{aligned}$	$\begin{aligned} & 121000 \\ & 109000 \\ & 971000 \end{aligned}$	$\begin{array}{\|l\|} 111000 \\ 100000 \\ 89000 \end{array}$	$\begin{aligned} & 182000 \\ & 82500 \\ & 82100 \end{aligned}$	$\begin{aligned} & 95000 \\ & 86000 \\ & 76300 \end{aligned}$	$\begin{array}{\|} 89000 \\ 80000 \\ 71200 \\ \hline \end{array}$	$\begin{aligned} & 83500 \\ & 75000 \end{aligned}$ 66700	$\begin{array}{\|} 74000 \\ 66500 \\ 59300 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & 66500 \\ & 60000 \\ & 53400 \end{aligned}\right.$	60500 54500 48500	$\left\lvert\, \begin{aligned} & 55500 \\ & 50 \\ & 4 \\ & 4 \end{aligned} 5000\right.$ 144500	$\begin{aligned} & 51000 \\ & 46200 \\ & 41100 \end{aligned}$	$\left\|\begin{array}{l} 47500 \\ 43000 \\ 20 \end{array}\right\|$ 38100	$\left\lvert\, \begin{aligned} & 44500 \\ & 40000 \\ & 35600 \end{aligned}\right.$	$\begin{aligned} & 41700 \\ & 37500 \\ & 33300 \end{aligned}$
	$\begin{aligned} & 350000 \\ & 300000 \\ & 250000 \\ & \hline \end{aligned}$	$\begin{aligned} & 556500 \\ & 477000 \\ & 347500 \end{aligned}$	$\left\|\begin{array}{\|l\|} \hline 16000 \\ 49000 \\ 83000 \end{array}\right\|$	$\begin{array}{\|c\|} \hline 103000 \\ 88500 \\ 74100 \\ \hline \end{array}$	$\begin{aligned} & 93000 \\ & 79600 \\ & 66700 \end{aligned}$	$\begin{aligned} & 84500 \\ & 72400 \\ & \hline \end{aligned}$	$\begin{aligned} & 77500 \\ & 66400 \\ & 55500 \end{aligned}$	$\begin{array}{\|l\|} \hline 71500 \\ 61200 \\ 51200 \\ \hline \end{array}$	$\begin{aligned} & 66400 \\ & 56900 \end{aligned}$ 47600	$\begin{array}{\|l\|} \hline 62000 \\ 53100 \\ 44400 \\ \hline \end{array}$	$\begin{array}{\|} 58100 \\ 49800 \\ 41600 \end{array}$	$\begin{aligned} & 57600 \\ & 44200 \\ & 37000 \end{aligned}$	$\begin{array}{r} 46500 \\ 39800 \\ 33300 \end{array}$	$\begin{aligned} & 42200 \\ & 36200 \\ & 30300 \end{aligned}$	$\begin{array}{\|l\|} 38700 \\ 3 \\ 27 \\ 2 \end{array} 7000\|\mid$	$\begin{aligned} & 35800 \\ & 30600 \end{aligned}$ 25600	$\begin{array}{\|l\|} \hline 33200 \\ 28400 \\ 23800 \end{array}$	$\begin{array}{\|l\|} \hline 310000 \\ 26500 \\ 22200 \end{array}$	$\begin{aligned} & 291000 \\ & 24800 \\ & 20800 \end{aligned}$
0000	$\begin{aligned} & 211600 \\ & 167772 \end{aligned}$	$\begin{aligned} & 336420 \\ & 266800 \\ & 21190 \\ & \hline \end{aligned}$	$\left[\begin{array}{\|c\|} 70300 \\ 58000 \\ 44100 \end{array}\right.$	$\begin{array}{\|} 62500 \\ 49700 \\ 39200 \\ \hline \end{array}$	$\begin{aligned} & 56200 \\ & 44800 \\ & 35300 \end{aligned}$	$\begin{array}{r} 51100 \\ 40700 \\ 32100 \\ \hline \end{array}$	$\begin{aligned} & 46800 \\ & 37300 \\ & 29400 \\ & \hline \end{aligned}$	$\begin{aligned} & 43200 \\ & 34400 \\ & 27100 \end{aligned}$	$\begin{array}{\|l\|} 40100 \\ 32000 \\ 25200 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 37500 \\ 29800 \\ 23500 \\ \hline \end{array}$	$\begin{array}{r} 35100 \\ 28000 \\ 22000 \\ \hline \end{array}$	$\begin{aligned} & 31200 \\ & 24800 \\ & 19600 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 28100 \\ 22300 \\ 17600 \end{array}$	$\begin{array}{\|l\|} \hline 25500 \\ 20300 \\ 16000 \\ \hline \end{array}$	$\left\|\begin{array}{\|} 23400 \\ 18600 \\ 14700 \end{array}\right\|$	$\begin{array}{\|l\|} \hline 21600 \\ 17200 \\ 13500 \end{array}$	$\begin{array}{\|llll\|} \hline 2 & 0 & 10 & 0 \\ 1 & 6 & 00 & 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 18700 \\ 14900 \\ 11700 \\ \hline \end{array}$	$\begin{aligned} & 17500 \\ & 14000 \\ & 11000 \end{aligned}$
		167800	35100	3/200	28100		2340					15600	1400		11700				

			64 MILES	$\left\|\begin{array}{c} 72 \\ \text { MILES } \end{array}\right\|$	$\left\|\begin{array}{c} 80 \\ \text { MILES } \end{array}\right\|$	$\left\|\begin{array}{c} 88 \\ \text { MILES } \end{array}\right\|$	$\begin{gathered} 98 \\ \text { MILES } \end{gathered}$	104 MILES	MIL	MILES	$\begin{aligned} & 128 \\ & \text { MILES } \end{aligned}$	144 MILES	$\begin{array}{\|l\|} 160 \\ \text { MILES } \end{array}$	$\begin{gathered} 176 \\ \text { MILES } \end{gathered}$	$\left\|\begin{array}{c} 192 \\ \text { MILES } \end{array}\right\|$	$\stackrel{208}{\text { MILES }}$	$\begin{gathered} 224 \\ \text { MILES } \end{gathered}$	$\begin{array}{\|c\|} 240 \\ \text { MILES } \end{array}$	$\begin{gathered} 258 \\ \text { MILES } \end{gathered}$
	$\begin{aligned} & 650000 \\ & 600000 \\ & 550000 \end{aligned}$	$\begin{array}{r} 1033000 \\ 954000 \\ 874500 \end{array}$	262000 242000 223000	233000 198000	$\begin{array}{\|l\|} \hline 210000 \\ 193000 \end{array}$ $\|178000\|$	$\left\lvert\, \begin{aligned} & 191000 \\ & 176000 \\ & 162000 \end{aligned}\right.$	$\begin{aligned} & 175000 \\ & 161000 \\ & 149000 \end{aligned}$		$\begin{array}{\|l\|} \hline 50000 \\ 138000 \\ 128000 \end{array}$	$\begin{aligned} & 140000 \\ & 129000 \\ & 109000 \end{aligned}$	$\left\lvert\, \begin{array}{ll} 13 & 0000 \\ 12 & 0000 \end{array}\right.$	$\left\lvert\, \begin{gathered} 116000 \\ 107000 \\ 99000 \end{gathered}\right.$	$\begin{array}{\|l\|} 105000 \\ 86500 \\ 89000 \end{array}$	$\begin{array}{\|l} 95 \\ \hline 88000 \\ 810000 \end{array}$	$\begin{aligned} & 87500 \\ & 80500 \\ & 74500 \end{aligned}$	$\begin{aligned} & 80500 \\ & 740000 \\ & 68500 \end{aligned}$	$\begin{aligned} & 75000 \\ & 69000 \\ & 64000 \end{aligned}$	$\left\lvert\, \begin{aligned} & 70000 \\ & 6 \$ 500 \\ & 5 \$ 500 \end{aligned}\right.$	$\begin{aligned} & 65500 \\ & 60500 \\ & 56000 \end{aligned}$
	$\begin{aligned} & 500000 \\ & 450000 \\ & 400000 \\ & \hline \end{aligned}$	$\begin{aligned} & 795000 \\ & 715500 \\ & 636000 \end{aligned}$	$\begin{array}{\|l\|} \hline 202000 \\ 182000 \\ 162000 \\ \hline \end{array}$	$\begin{array}{r} 179000 \\ 161000 \\ 144000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 161000 \\ 145000 \\ 129000 \\ \hline \end{array}$	$\begin{array}{\|} 147000 \\ 132000 \\ 118000 \\ \hline \end{array}$	$\begin{array}{\|l\|} 134000 \\ 121000 \\ 108000 \\ \hline \end{array}$		115000 104000 42700	$\begin{aligned} & 107000 \\ & 96800 \\ & \hline 6500 \end{aligned}$	$\begin{array}{\|} \hline 101000 \\ 90800 \\ 81000 \\ \hline \end{array}$	$\begin{aligned} & 89500 \\ & 80500 \\ & 72000 \\ & \hline \end{aligned}$	$\begin{aligned} & 80500 \\ & 32500 \\ & 34500 \end{aligned}$	$\begin{aligned} & 73500 \\ & 660000 \\ & 59000 \end{aligned}$	$\begin{array}{\|l} 67000 \\ 60500 \\ 54000 \\ \hline \end{array}$	$\begin{aligned} & 62000 \\ & 56000 \\ & 50000 \\ & \hline \end{aligned}$	$\begin{aligned} & 57500 \\ & 52000 \\ & 46300 \end{aligned}$	$\begin{aligned} & 53500 \\ & 48400 \\ & 43200 \\ & \hline \end{aligned}$	$\begin{aligned} & 55050 \\ & 45400 \\ & \hline 5000 \end{aligned}$
	$\begin{aligned} & 350000 \\ & 300000 \\ & 250000 \end{aligned}$	$\begin{aligned} & 556500 \\ & 477000 \\ & 397500 \end{aligned}$	$\left.\begin{array}{\|l\|} \hline 140000 \\ 120000 \\ 100000 \end{array} \right\rvert\,$	$\begin{array}{\|} 125000 \\ 107000 \\ 89300 \end{array}$	$\left.\begin{array}{\|r\|} 112000 \\ 96000 \\ 80 \\ 80 \end{array} \right\rvert\,$	$\begin{array}{\|c} 102000 \\ 87500 \\ 73000 \end{array}$	93500 80000 67000	$\begin{aligned} & 86500 \\ & 74000 \\ & 62000 \end{aligned}$	80500 68700 57500	$\begin{aligned} & 75000 \\ & 64000 \\ & 53700 \end{aligned}$	$\begin{aligned} & 70300 \\ & 60000 \\ & 50200 \end{aligned}$	$\begin{aligned} & 62500 \\ & 53500 \\ & 44600 \end{aligned}$	$\begin{aligned} & 56000 \\ & 48000 \\ & 40200 \end{aligned}$	$\begin{aligned} & 51000 \\ & 43700 \end{aligned}$ 36500	$\begin{array}{r} +6750 \\ 40000 \\ 33500 \end{array}$	$\begin{aligned} & 43200 \\ & 37000 \\ & 31000 \end{aligned}$	$\begin{aligned} & 40200 \\ & 34300 \\ & 28700 \end{aligned}$	$\begin{aligned} & 37500 \\ & 32000 \\ & 26800 \end{aligned}$	$\begin{aligned} & 35100 \\ & 30000 \\ & 25100 \end{aligned}$
0000	21.600	$\begin{aligned} & 336420 \\ & 266800 \\ & 211950 \\ & \hline \end{aligned}$	$\begin{aligned} & 85000 \\ & 67700 \\ & 53500 \end{aligned}$	$\begin{aligned} & 75500 \\ & 60200 \\ & 47500 \\ & \hline \end{aligned}$	$\begin{array}{\|} 68000 \\ 54200 \\ 42700 \\ \hline \end{array}$	$\begin{aligned} & \$ 800 \\ & 49300 \\ & 38800 \\ & \hline \end{aligned}$	$\begin{aligned} & 56700 \\ & 45200 \\ & 35500 \end{aligned}$	$\begin{aligned} & 52300 \\ & 41700 \\ & 32900 \end{aligned}$	$\begin{aligned} & 48500 \\ & 38700 \\ & 30500 \end{aligned}$	$\begin{aligned} & 45300 \\ & 36100 \\ & 28500 \\ & \hline \end{aligned}$	$\begin{array}{\|} 42500 \\ 33900 \\ 26800 \\ \hline \end{array}$	$\begin{aligned} & 37700 \\ & 30100 \\ & 23700 \\ & \hline \end{aligned}$	$\begin{aligned} & 34000 \\ & 27100 \\ & 27300 \\ & \hline \end{aligned}$	$\begin{aligned} & 30900 \\ & 24600 \\ & 19400 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 28300 \\ 17200 \\ 17800 \end{array}$	$\begin{aligned} & 26100 \\ & 20800 \\ & 16400 \\ & \hline \end{aligned}$	$\begin{array}{\|} 24200 \\ 19300 \\ 15200 \\ \hline \end{array}$	$\begin{aligned} & 22400 \\ & 18000 \\ & 18200 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} 21200 \\ 16400 \\ 13 \\ \hline \end{array}$
					,	(0	0	V	,	DF	1VF	E						
			84 MILES	MILES	MILES	MILES	MILES	104 MILES	MILES	MJLES	$\stackrel{128}{\text { MILES }}$	144 MILES	$\begin{aligned} & 180 \\ & \text { MILES } \end{aligned}$	$\begin{aligned} & \text { I78 } \\ & \text { MILES } \end{aligned}$	$\begin{gathered} 192 \\ \text { MILES } \end{gathered}$	$\stackrel{208}{\text { MILES }}$	M24	$\begin{gathered} 240 \\ \text { MILES } \end{gathered}$	$\begin{gathered} 258 \\ \text { MILES } \end{gathered}$
	$\begin{aligned} & 650000 \\ & 600000 \\ & 550000 \end{aligned}$	$\begin{aligned} & 1033000 \\ & 954000 \\ & 874500 \end{aligned}$	$\begin{aligned} & 295000 \\ & 272000 \\ & 251000 \end{aligned}$	$\begin{aligned} & 262000 \\ & 242000 \\ & 223000 \end{aligned}$	$\begin{aligned} & 236000 \\ & 217000 \\ & 201000 \end{aligned}$	215000 197000 182000	$\begin{array}{\|} 196000 \\ 181000 \\ 147000 \end{array}$	181000 167000 155006	$\begin{aligned} & 168000 \\ & 1156000 \end{aligned}$ 143000	$\begin{aligned} & 157000 \\ & 145000 \\ & 134000 \end{aligned}$	$1+7000$ 136000 126000	$\begin{aligned} & 131000 \\ & 121000 \\ & 1110000 \end{aligned}$	118000 108000 100000	$\begin{aligned} & 107000 \\ & 98500 \\ & 910000 \end{aligned}$	$\begin{aligned} & 98000 \\ & 90500 \\ & 83500 \end{aligned}$	90500 83500 77500 77500	$\begin{array}{\|l} 84000 \\ 78000 \\ 71500 \\ \hline \end{array}$	$\begin{aligned} & 78500 \\ & 72500 \\ & 67000 \end{aligned}$	$\begin{aligned} & 73500 \\ & 68000 \\ & 63000 \end{aligned}$
	500000 400000 400000	$\begin{aligned} & 795000 \\ & 715500 \\ & 636000 \end{aligned}$	$\begin{aligned} & 226000 \\ & 103000 \\ & 181000 \end{aligned}$	$\left\lvert\, \begin{array}{ll} 201000 \\ 181000 \\ 161000 \end{array}\right.$	$\begin{aligned} & 181000 \\ & 163000 \\ & 145000 \end{aligned}$	$\begin{aligned} & 165000 \\ & 148000 \\ & 132000 \end{aligned}$	$\begin{aligned} & 151000 \\ & 135000 \\ & 121000 \end{aligned}$	$\begin{aligned} & 140000 \\ & 135000 \\ & 112000 \end{aligned}$	$\begin{aligned} & 130000 \\ & 116000 \\ & 104000 \end{aligned}$	$\begin{aligned} & 121000 \\ & 108000 \\ & 96900 \end{aligned}$	$\begin{array}{\|c\|} 113000 \\ 102000 \\ 90800 \end{array}$	$\begin{aligned} & 101000 \\ & 90400 \\ & 80800 \end{aligned}$	$\begin{aligned} & 90700 \\ & 81700 \\ & 72700 \end{aligned}$	$\begin{aligned} & 82500 \\ & 7+000 \\ & 64100 \end{aligned}$	$\begin{aligned} & 75600 \\ & 67800 \\ & 60600 \end{aligned}$	$\begin{aligned} & 69800 \\ & 62600 \\ & 55900 \end{aligned}$	$\begin{aligned} & 64600 \\ & 58100 \\ & 51900 \end{aligned}$	$\begin{aligned} & 60500 \\ & 54200 \\ & 48400 \end{aligned}$	$\begin{aligned} & 56700 \\ & 50800 \\ & 45400 \end{aligned}$
	$\begin{aligned} & 350000 \\ & 3000000 \\ & 250000 \\ & \hline \end{aligned}$	$\begin{array}{r} 556500 \\ 477000 \\ 397500 \end{array}$	$\begin{array}{\|} 158000 \\ 135000 \\ 113000 \end{array}$	$\begin{array}{\|l\|} \hline 140000 \\ 120000 \\ 101000 \end{array}$	$\begin{aligned} & 127000 \\ & 108000 \\ & 90700 \end{aligned}$	$\begin{aligned} & 15000 \\ & 98500 \\ & 82500 \end{aligned}$	$\begin{aligned} & 105000 \\ & 90300 \\ & 75600 \end{aligned}$	$\begin{aligned} & 97400 \\ & 83400 \\ & 69800 \end{aligned}$	$\begin{aligned} & 90400 \\ & 77400 \\ & 64800 \end{aligned}$	$\begin{aligned} & 84400 \\ & 72200 \\ & 60500 \end{aligned}$	$\begin{aligned} & 79100 \\ & 67700 \\ & 56700 \end{aligned}$	$\begin{aligned} & 70300 \\ & 60300 \\ & 50400 \end{aligned}$	$\begin{aligned} & 63300 \\ & 54200 \\ & 45400 \end{aligned}$	$\begin{aligned} & 57500 \\ & 49300 \\ & 41200 \end{aligned}$	$\left\lvert\, \begin{aligned} & 52700 \\ & 45100 \\ & 37800 \end{aligned}\right.$	$\begin{aligned} & 48700 \\ & 41700 \\ & 34900 \end{aligned}$	$\begin{aligned} & 45200 \\ & 38700 \\ & 32400 \end{aligned}$	$\begin{aligned} & 12200 \\ & 36100 \\ & 30200 \end{aligned}$	$\begin{aligned} & 39600 \\ & 33800 \\ & 28300 \end{aligned}$
0000	211600	$\begin{aligned} & 336420 \\ & 26680 \\ & 211450 \\ & \hline \end{aligned}$	$\begin{aligned} & 95700 \\ & 86700 \\ & 60000 \end{aligned}$	$\begin{aligned} & 85000 \\ & 67700 \\ & 53400 \end{aligned}$	$\begin{array}{\|l\|} 74500 \\ 61000 \\ 48000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6960 \\ 55400 \\ 43700 \end{array}$	$\begin{aligned} & 53800 \\ & 50800 \\ & 400009 \end{aligned}$	$\begin{aligned} & 58900 \\ & 46900 \\ & 36900 \end{aligned}$	$\begin{aligned} & 54700 \\ & 43800 \\ & 34300 \end{aligned}$	$\begin{aligned} & 51000 \\ & 40000 \\ & \$ 2000 \end{aligned}$	$\begin{array}{\|} 47800 \\ 38100 \\ 30000 \end{array}$	$\begin{aligned} & 42500 \\ & 33800 \\ & 24700 \end{aligned}$	$\begin{array}{l\|l\|} \hline 38300 \\ 30500 \\ 3 & 2000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 34800 \\ 27700 \\ 21800 \end{array}$	$\begin{aligned} & 31900 \\ & 35400 \\ & 20000 \end{aligned}$	$\begin{aligned} & 29400 \\ & 23400 \\ & 18500 \end{aligned}$	$\begin{aligned} & 27300 \\ & 218100 \\ & \hline 17 \end{aligned}$	$\begin{aligned} & 25500 \\ & 20300 \\ & 18000 \end{aligned}$	$\begin{aligned} & 23900 \\ & 19000 \\ & 15000 \end{aligned}$

[^7]
heating limitations

The k.v.a. values given in these tables do not take into account the heating and consequently carrying capacity of the conductors. This may be ignored in the case of the longer overhead high-voltage transmission circuits. For very short circuits (especially for the lower voltages and particularly for insulated or concealed conductors) the carying capacity (safe heating limits) of the conductors must be carefully considered.
approximately the point at which the carrying capacity of that particular conductor is reached if insulated and installed in a fully loaded four duct line. If the conductor is to be installed in a duct line having more than four ducts its Capacity will be still further reduced. The position of this line is based upon the use of lead covered, paper insulated, three conductor, copper cables for sizes up to 700000 circ. mils and of lead covered, paper insulated, single conductor, copper cables for the larger sizes. In other words, the position of this heavy

TABLE XXI-QUICK ESTIMATING TABLE

187,000 VOLTS DELIVERED

		MILES	$\begin{gathered} 104 \\ \text { MILES } \end{gathered}$	MILES	$\left\|\begin{array}{l} 120 \\ \text { MILES } \end{array}\right\|$	MILES	$\begin{aligned} & \text { LIA4 } \\ & \text { MILES } \end{aligned}$	160 MILES	MILES	MILES	$\begin{aligned} & 208 \\ & \text { MILES } \end{aligned}$	$\begin{aligned} & 224 \\ & \text { MiLES } \end{aligned}$	$\begin{aligned} & 240 \\ & \text { MILES } \end{aligned}$	$\begin{gathered} 256 \\ \text { MILES } \end{gathered}$	$\begin{gathered} 288 \\ \text { MILES } \end{gathered}$	$\begin{array}{r} 320 \\ \text { MILES } \end{array}$	$\begin{aligned} & 352 \\ & \text { MILES } \end{aligned}$	$\begin{gathered} 384 \\ \text { MILES } \end{gathered}$
$\begin{aligned} & 650000 \\ & 600000 \\ & 550000 \end{aligned}$	1033000 954000 874500 795000	$\begin{aligned} & 350000 \\ & 323000 \\ & 299000 \end{aligned}$	$\begin{aligned} & 323000 \\ & 297000 \\ & 275000 \end{aligned}$	$\begin{aligned} & 300000 \\ & 277000 \\ & 256000 \end{aligned}$	$\begin{aligned} & 280000 \\ & 258000 \\ & 239000 \end{aligned}$	$\begin{array}{\|l\|} 263000 \\ 242000 \\ 224000 \end{array}$	$\begin{array}{\|l\|} \hline 234000 \\ 215000 \\ 199000 \end{array}$	210000 143500 179000	$\left\{\begin{array}{l} 191000 \\ 176000 \\ 162500 \end{array}\right.$	$\begin{aligned} & 175000 \\ & 164500 \\ & 149000 \end{aligned}$	$\begin{array}{\|l\|} \hline 161500 \\ 149000 \\ 137500 \end{array}$	$\begin{aligned} & 150000 \\ & 138000 \\ & 128000 \end{aligned}$	$\begin{aligned} & 140000 \\ & 129000 \\ & 119500 \end{aligned}$	$\begin{array}{\|l\|} 131500 \\ 121000 \\ 112000 \end{array}$	$\begin{array}{\|c\|} \hline 16500 \\ 107500 \\ 99500 \end{array}$	$\begin{array}{r} 105000 \\ 87000 \\ 89500 \end{array}$	$\begin{aligned} & 95200 \\ & 8800 \\ & 81500 \end{aligned}$	$\begin{aligned} & 87500 \\ & 807700 \\ & 7+600 \end{aligned}$
$\begin{aligned} & 500000 \\ & 450000 \\ & 400000 \end{aligned}$	$\begin{aligned} & 795000 \\ & 7155000 \\ & 636000 \end{aligned}$	$\left\lvert\, \begin{aligned} & 270000 \\ & 2+3000 \\ & 217000 \end{aligned}\right.$	$\begin{aligned} & 250000 \\ & 225000 \\ & 200000 \end{aligned}$	$\left\lvert\, \begin{aligned} & 232000 \\ & 209000 \\ & 185500 \end{aligned}\right.$	$\begin{aligned} & 216000 \\ & 194500 \\ & 173500 \end{aligned}$	$\begin{array}{\|l\|} \hline 203000 \\ 182000 \\ 162500 \end{array}$	$\begin{array}{\|l\|} \hline 180000 \\ 162000 \\ 144500 \end{array}$	$\begin{aligned} & 162000 \\ & 1+5500 \\ & 130000 \end{aligned}$	$\begin{aligned} & 147500 \\ & 132500 \\ & 118500 \end{aligned}$	$\begin{aligned} & 135000 \\ & 121500 \\ & 108500 \end{aligned}$	$\begin{array}{\|l\|} \hline 125000 \\ 112000 \\ \hline \end{array}$ $1.00000 \mid$	$\left\lvert\, \begin{gathered} 115500 \\ 104000 \\ 93000 \end{gathered}\right.$	$\begin{aligned} & 108000 \\ & 97200 \\ & 86700 \end{aligned}$	$\begin{array}{\|c\|} \hline 101000 \\ 91000 \\ 81300 \end{array}$	$\begin{aligned} & 90000 \\ & 81000 \\ & 72200 \end{aligned}$	$\begin{aligned} & 81000 \\ & 73000 \end{aligned}$ 65000	$\begin{aligned} & 73700 \\ & 66200 \\ & 59000 \end{aligned}$	$\begin{aligned} & 67600 \\ & 60700 \\ & 54200 \end{aligned}$
	556500 477000 397500	$\left\|\begin{array}{l} 189000 \\ 161000 \\ 134500 \end{array}\right\|$	$\begin{aligned} & 174500 \\ & 199000 \\ & 124500 \end{aligned}$	$\begin{aligned} & 162000 \\ & 138000 \\ & 115500 \end{aligned}$	$\begin{aligned} & 151000 \\ & 129000 \\ & 107500 \end{aligned}$	$\begin{array}{\|l\|} \hline 141500 \\ 121000 \\ 101000 \end{array}$	$\left\|\begin{array}{c\|} 126000 \\ 107500 \\ 89800 \end{array}\right\|$	$\begin{aligned} & 113500 \\ & 96500 \\ & 80800 \end{aligned}$	$\begin{aligned} & 103000 \\ & 88000 \\ & 73500 \end{aligned}$	$\begin{aligned} & 94500 \\ & 80.500 \\ & 67300 \end{aligned}$	$\begin{aligned} & 87000 \\ & 77300 \\ & 62200 \end{aligned}$	$\begin{aligned} & 81000 \\ & 69000 \\ & 57800 \end{aligned}$	$\begin{aligned} & 7500 \\ & 64500 \\ & 53800 \end{aligned}$	$\begin{aligned} & 70800 \\ & 60500 \\ & 50500 \end{aligned}$	$\begin{array}{\|l\|} \hline 63000 \\ 33700 \\ 44800 \end{array}$	$\begin{aligned} & 56730 \\ & 48300 \\ & 40+00 \end{aligned}$	$\begin{aligned} & 51500 \\ & 44000 \\ & 36800 \end{aligned}$	$\begin{aligned} & 47200 \\ & 40300 \\ & 3370 \end{aligned}$
	336420	114000	105000	97500	91000	85200	75800	68200	62000	57000	52600	48800	45500	42700	38000	34200	31000	28500

		220,000 VOLTS DELIVERED																
		MILES	${ }_{\text {MLLES }} 10$	MILES	MILES	MILES	MLIES	${ }^{160}$ MLES	MILES	MLiLES	M1LES	MILES	$\begin{gathered} 240 \\ \text { MILES } \end{gathered}$	$\stackrel{\text { MLLES }}{ }$	$\begin{gathered} 288 \\ \text { MILES } \end{gathered}$	$\begin{array}{\|c\|} \hline 320 \\ \text { MILES } \end{array}$	MLLES	MILES
650000	$\begin{array}{r} 1033000 \\ 954400 \\ 874500 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 47000 \mid \\ 4+3000 \\ \hline 382000 \end{array}$	$\begin{aligned} & 177000 \\ & 383000 \\ & 354000 \end{aligned}$	$\begin{aligned} & 388000 \\ & 938000 \\ & \mathbf{3 3 1} 0 \end{aligned}$	$\begin{aligned} & 364000 \\ & 336000 \\ & 310000 \end{aligned}$	$\begin{aligned} & 323000 \\ & 998000 \\ & 276000 \end{aligned}$	$\begin{aligned} & 291000 \\ & 268000 \\ & 249000 \end{aligned}$	$\begin{aligned} & 265000 \\ & 2 \$+000 \\ & 266000 \end{aligned}$	$\begin{aligned} & 22+3000 \\ & 22+100 \\ & 207000 \end{aligned}$	$\begin{aligned} & 224000 \\ & 207000 \\ & 191000 \end{aligned}$	$\begin{aligned} & 208000 \\ & 172000 \\ & 177500 \end{aligned}$	$\begin{aligned} & 194000 \\ & 179000 \\ & 1755500 \\ & \hline \end{aligned}$	$\begin{aligned} & 182000 \\ & 168000 \\ & 155000 \end{aligned}$	$\begin{array}{\|} 102000 \\ 149000 \\ 138000 \end{array}$	$\begin{array}{\|l\|} \hline 1355050 \\ 1345000 \\ 124000 \end{array}$	$\begin{aligned} & 132500 \\ & 122000 \\ & 112800 \end{aligned}$	$\begin{aligned} & 121500 \\ & 112000 \\ & 103500 \end{aligned}$
	$\begin{aligned} & 795000 \\ & 715500 \\ & \hline 63000 \\ & \hline \end{aligned}$	$\begin{aligned} & 374000 \\ & 336000 \\ & 300000 \end{aligned}$	$\begin{aligned} & 345000 \\ & 310000 \\ & 277000 \end{aligned}$	$\begin{aligned} & 321000 \\ & 288000 \\ & 257000 \end{aligned}$	$\begin{aligned} & 299000 \\ & 269000 \\ & 240000 \end{aligned}$	$\begin{aligned} & 281000 \\ & 252000 \\ & 225000 \end{aligned}$	$\begin{aligned} & 249000 \\ & 224000 \\ & 200000 \end{aligned}$	$\begin{aligned} & 221000 \\ & 202000 \\ & 180000 \end{aligned}$	$\begin{aligned} & 204000 \\ & 183500 \\ & 163500 \end{aligned}$	$\begin{array}{\|l\|} \hline 87000 \\ 188000 \\ 150000 \\ \hline \end{array}$	$\begin{aligned} & 173000 \\ & 155.000 \\ & 1385000 \end{aligned}$	$\begin{aligned} & 160000 \\ & 14+000 \\ & 128500 \end{aligned}$	$\begin{array}{\|l\|} \hline 199500 \\ 134500 \\ 120000 \end{array}$	$\begin{array}{\|l\|} \hline 105000 \\ 1,126000 \\ 102500 \\ \hline \end{array}$	$\begin{array}{\|l\|} 12+500 \\ 112000 \\ 100000 \end{array}$	$\left.\begin{array}{\|l\|} 112500 \\ 10.000 \\ 90000 \end{array} \right\rvert\,$	$\begin{array}{r} 02000 \\ 42000 \\ 82000 \\ \hline \end{array}$	$\begin{aligned} & 93500 \\ & 8+200 \\ & 75000 \\ & \hline \end{aligned}$

The loss due to corona will not be exceasive with any of the above conductora used at see level for the voltages stated. For elevations above sea level. check the values with Table XXII, especially for the smaller conductors. On long circuits of high ratage, tho effect of chargiog current (also corona and leakage losses) will be to increase or decrease the I'R lose, dependiag on the amouat of load and ita power factor. See Fig. 13

For circuits of short length the carrying capacity of conductors will frequently determine these sizes and not the economic transmission loss. The carrying capacity of bare copper conductors suspended in air and of insulated copper conductors in duct lines are given in tables XXIII and XXIV, both of which are to appear in subsequent articles.

Running diagonally across each table from XII to XVII inclusive, is a heavy line. The point at which this heavy line intersects the horizontal line containing the k.v.a. values for a given size of conductor indicates
line is based upon the k.v.a. values for carrying capacity given in Table XXIV and is placed upon the tables as a warning that the heating limit capacity of the conductors must be considered. To illustrate, suppose 220 volts is to be delivered, over I 000000 circ. mil, insulated, single conductor, copper cables in a fully loaded four duct conduit. Table XII indicates that 189 k.v.a. can be transmitted over these conductors a distance of 2000 ft . without overheating the cable. If it is desired to transmit $378 \mathrm{k} . \mathrm{v.a}$. a distance of 1000 feet, the fact that this value occurs to the left of the heavy line, indicates that
it is beyond the safe carrying capacity for this size conductor in a four duct line. Reference to Table XXIV will show that 297 k.v.a. is the maximum capacity of this cable under the conditions stated. In this case, either a larger conductor, or two or more smaller conductors must be used to prevent overheating. This will result in a less loss than those upon which the table k.v.a. values are based, and in this case the heating of the cable will probably determine the size to use. effect of charging current in above $I^{2} R$ loss values

As stated previously, the percent $I^{2} R$ losses in the quick estimating tables are based upon the load current and therefore do not take into account the effect of the charging current which is of a distributed nature and superimposed upon the load current. The effect of the charging current is to increase or decrease the current in the circuit by an amount depending upon the relative
there will be a lagging component in the load current. The charging or leading current will be practically in opposition to the lagging component of the load current and will therefore tend to cancel or neutralize the lagging component of the load current. The result will be a reduction of the current in the circuit and consequently in the $I^{2} R$ loss. But if the circuit is very long, particularly if the frequency is 60 cycles and the load power-factor is near unity (lagging component int load current s:nall) the comparatively large leading component (charging current) will not only neutralize the lagging component of the load current, but will produce a leading power-factor at points along the cirzuit. If the charging current is sufficiently high it will ncrease the current, causing an increase in the $I^{2} R$ oss. Thus the effect of charging current in circuits delivering a lagging load is to decrease the $I^{2} R$ loss up

FIG. 13-EFFECT OF CHARGING CURRENT ON 1^{2} R TRANSMISSION LOSS
The curves represent (for certain circuits) an approximation of the resultant $I^{2} R$ loss, compared to what it would have been if there were no charging current present in the circuit. The effect of the charging current superimposed upon the receiver current is either to increase or to decrease the $I^{2} R$ loss of the circuit depending principally upon the relative amount of the leading and lagging components of the current in the circuit.
to a certain amount and then, if the charging current is sifficiently large, to increase $\mathrm{I}^{2} \mathrm{R}$ loss.

The curves in Fig. 13 show this effect for 25 and 60 cycle circuits delivering loads of unity power-factor; also loads of 80 percent lagging power-factor for circuits up to 500 miles long. It will be seen that for circuits 300 miles long the effect of charging current will be to reduce the $1^{2} R$ loss by approximately 25 percent if the load is 80
values of the lagging and leading quadrature components of the current in the circuit.

For instance assume that the power-factor of the load is unity. In such case there is no quadrature component in the load current. If, however, the circuit is of considerable length, and particularly if the frequency is 60 cycles, there will be an appreciable amount of charging current (quadrature leading component) added vectorially to the load current. The sum of these two currents in quadrature with each other wiil result in an increase of current in the circuit with a consequent increase in the $I^{2} R$ loss. Thus the effect of charging current in a circuit delivering a load of 100 percent power-factor will always be to increase the $I^{2} R$ loss.

If, however, the power-factor of the load is lagging,
percent lagging. If the load power-factor is unity the $I^{2} \mathrm{R}$ loss will be increased approximately io percent for these particular problems if the frequency is 25 , and 30 percent if the frequency is 60 cycles.

The curves in Fig. 13 show that for circuits 500 miles long, in which the entire charging current is furnished from one end of the circuit, the effect of this charging current is to increase the $I^{2} R$ loss by 300 percent if the frequency is 60 cycle and the load powe:factor 100 percent. In other words a large part of the current in the circuit for such a lang 60 cycle circuit is charging current so that the effect of the load current on the $I^{2} R$ loss is comparatively small. Of course such a long circuit, unless fed from two or more generating stations located at widely separated points along the transmission line, would not be commercially practical.

CHAPTER IV CORONA EFFECT

Abstract

In 1898 Dr. Chas. F. Scott presented a paper beiore the A.I.E.E. describing experimental tests (made during several years previous) relating to the energy loss between conductors due to corona effect. These investigations began at the Laboratory at Pittsburgh and were continued at Telluride, Colorado, in conjunction with the engineers of the Telluride Power Company. Preliminary observations were made by Mr. V. G. Converse and were continued in notable measurements by Mr. R. D. Mershon. These investigations were later followed by the work of Professor Ryan, by Mr. R. D. Mershon, Mr. F. W. Peek, Jr., Dr. J. B. Whitehead, Mr. G. Faccioli and others. The electrical profession is particularly indebted to Mr. Peek and Dr. Whitehead for the large amount of both practical and theoretical data which they have presented to the electrical profession on the subject. Mr. Peek developed and presented the empirical formulas which follow, for determining the disruptive critical voltage, the visual critical voltage and the power loss due to corona effect. The close accuracy of Mr. Peek's formulas has been confirmed by various investigators in different sections of the couniry. The following deductions concerning corona have to a large extent been previously presented by Mr. Peek.

CORONA, manifesting its presence usually by an electrostatic glow or luminous discharges, and audibly by a hissing sound, was clearly observed and studied in connection with electrostatic machines. It did not become a serious factor to be considered in connection with the design of commercial electrical apparatus until the increasing generator and transmission voltage emphasized its importance.

Although it is usual to think of corona effect only in connection with high-voltage transmission lines, it has received not a little thought of late by the designers of high-voltage generators and motors, notably large, high-voltage turbogenerators. By effectively insulating the portion of the conductor embedded in the iron of the armatures of alternating-current machines, particularly with mica, punctures to ground due to corona effect are not likely to occur. However, at the ends of the armature coils (where it is difficult to employ mica for insulating), where air is partially depended upon as an insulating medium between coils and ground, corona may appear. The presence of these corona stresses results in disintegrating and weakening some kinds of insulating materials, causing them to break down after a period of service. This deterioration of insulation may be due to local heating, mechanical vi-, bration or chemical formations in the overstressed air, such as ozone, nitric acid, etc.

Higher voltages are being chosen as an economic means for reducing loss in transmission. These higher voltages may result in corona loss far in excess of the saving in transmission loss due to the adaptation of the higher voltages. It is, therefore, pertinent that particular consideration be given to the limitation of corona loss when the choice of conductors is made. This consideration will sometimes make it desirable to take advantage of the higher critical voltage limits of aluminum conductors (with steel reinforced centers) of an equivalent resistance, due to their greater diameter; or it may be desirable to obtain the necessary larger diameter by the use of copper conductors having some form of nonconducting centers or, for still larger diameters, of
aluminum conductors having such centers, in order to avoid skin effect. The use of copper conductors having hemp centers has in some instances given mechanical trouble.

The critical voltage at which corona becomes manifest, is not constant for a given line, but is somewhat dependent upon atmospheric conditions. Assuming a line employing conductors just within the critical voltage limitations for the conditions to be met, the corona loss in such a line would be almost negligible during fair weather, but during stormy weather, (particularly during snowstorms) this corona loss would be many times what it is during fair weather. On the other hand, since the storm will usually not appear over the whole length of lines at the same time and since storms occur only at intervals, it may often be economical to allow this loss to reach fairly high values during storms. Fog, sleet, rain and snowstorms lower the critical voltage and increase the losses. The effect of snow is greater than any other weather condition. Increase in temperature or decrease in barometric pressure lowers the voltage at which visual corona starts.

The critical voltage increases with both the diameter of conductors and their distance apart. This sometimes makes it desirable to use aluminum conductors as previously stated. It also increases with the horizontal or vertical arrangement of conductors, due to the fact that the two outside conductors considered as a pair are twice as far apart as are the other pairs. The same general rules apply to stranded conductors as to solid conductors, the actual diameter of the former being considered as the effective diameter of the conductor.

The losses due to corona effect increase very rapidly with increase in voltage after the critical voltage has been reached. A long transmission line having considerable capacitance may deliver a higher voltage than appears at the generator end of the line due to capacitance effect. The corona loss would in this case be greater per mile at the receiving end than at the sending end of the line.

The magnitude of the losses, as well as the critical voltage, is affected by atmospheric conditions;-hence they probably vary with the particular locality and the season of the year. Therefore, for a given locality, a voltage which is normally below the critical point, may at times be above the critical voltage, depending upon changes in the weather.

The material of the conductors does not seem to affect the losses. Sometimes the conductors of new transmission lines, when first placed in service will show visual corona, which may entirely disappear after a few hours or weeks of service. This may be due to scratches, particles of foreign substances, etc., on the conductors which are eliminated after the voltage stress has been kept on the conductors for a short time. Under such conditions the corona loss will also become less as the visual effect disappears.

The loss of power due to corona effect increases with frequency and increases as the square of the excess voltage above a certain critical voltage referred to as the "disruptive critical voltage" e_{0}. This disruptive critical voltage is that voltage, at which a certain definite and constant potential gradient is reached at the conductor surface. This gradient g_{0} is 30 kv maximum (21.1 kv effective) per centimeter, or 76.2 kv maximum (53.6 kv effective) per inch. These values are based upon an air density at sea level ($25^{\circ} \mathrm{C}$., 29.92 inches or 76 cm . barometer). This gradient is independent of the size of conductors and therr distance apart, but is proportional to the air density, that is to the barometric pressure and the absolute temperatures. It may be considered as the dielectric strength of air. The presence of corona at a certain point of the system shows that a critical electric stress has been exceeded at that point. The corona loss is also proportional to the square root of the conductor radius r and inversely proportionai to the square root of the conductor spacing.

The law by which corona lesses increase with the voltage does not give a very steep curve, but a rather mild curve following the quadratic law at and above the critical limit. In other words there is no sharp elbow in the curve above which the losses increase very rapidly with the voltage and which could be adopted as the normal operating point of the circuit.

Table XXII, indicating the voltage limitations due to corona effect, has been worked up from Mr. F. W. Peek's formula as indicated at the bottom of the table. The values in this table are conservative and may in many cases be exceeded. They are the effective e_{0} disruptive critical voltage between conductors for fair weather based upon δ values for 25 degrees C. (77 degrees F) and m_{0} values of 0.87 for cable and 0.93 for wire. With these table values, corona loss should not be excessive during storms. If the values of Table XXII indicate that the conductors contemplated are close to the limit due to corona effect, a careful check should be made by the formula to determine definitely the corona loss for such conductors under storm operating conditions.

F. W. PEEK'S CORONA FORMULAE

Disruptive Critical Volts, Fair Weather (parallel wires)

$$
\begin{equation*}
c_{0}=2.302 m_{0} g_{0} \delta r \log _{10} \frac{s}{r} \tag{20}
\end{equation*}
$$

effective kv to neutral,-
Visual Critical Volts-Fair Weather (parallel wires)

$$
e_{V}=2.302 m_{\nabla} g_{0} \delta r\left(1+\frac{0.18 g}{\sqrt{r \delta}}\right) \log _{10} \frac{s}{r} \ldots(21)
$$

effective kv to neutral
Power Loss (fair weather) -

$$
\begin{equation*}
P=\frac{390}{\delta}(f+25) \sqrt{\frac{r}{s}}\left(e-e_{0}\right)^{2} 10^{-5} \ldots \ldots \ldots \tag{22}
\end{equation*}
$$

kw per mile of each conductor
Power Loss (Storm)-Storm power loss is higher and can generally be found with fair approximation by assuming $e_{0}=$ 0.80 times fair weather e_{0}. It generally works out in practice that the ϵ_{\circ} voltage is the highest that should be used on transmission lines . (22A)
All of the above voltages are to neutral. To find voltages belween lines multiply by 1.73 for three-phase, and by 2 for single phase.

Notation-

$c=$ Effective applied voltage in kv to neutral.
(This will vary at different points of the circuit and at different loads. At low loads and long lines of high voltage it may be higher at the receiving end than at the generator end due to inductive capacitance)
$c_{0}=$ effective disruptive critical voltage in kv to neutral. It is the voltage that gives a constant break down gradient for air of 76 kv maximum per inch, the "elastic limit" at which the air breaks down. Visual corona does not start at the disruptive critical voltage, but at a higher voltage c_{v}.
$c_{r}=$ effective visual critical kv to neutral (voltage at which visual corona starts)
$P=$ power loss in fair weather in kw per mile of single conductor,
$\delta=\frac{17.9 \mathrm{~b}}{459+t}$. This takes care of the effect of altitude and temperature, (air density). It is I at 25 degrees C. (77 degrees F.) and 29.92 inches (76 cm .), barometric pressure.
$g_{\circ}=53.6 \mathrm{kv}$ per inch effective (disruptive gradient of air)
$b=$ barometric pressure in inches.
$t=$ maximum temperature in degrees F.
$f=$ frequency in cycles per second.
$m t_{0}=$ irregularity factor.
$=\mathrm{I}$ for polished wires.
$=0.98$ to 0.93 for roughened or weathered wire.
$=0.87$ to 0.83 for cables.
$m_{v}=m_{0}$ for wires (I to 0.93)
$=0.72$ for local corona all along cables (7 strands)
$=0.82$ for decided corona all along cables (7 strands)
$r=$ radius of conductor in inches.
$s=$ spaeing in inches between ennductor centers, based upon the assumption of a symmetrical triangular arrangement. For three-phase irregular flat or triangular spacing take $s=\overline{F A B C}$. For threephase regular flat spacing take $s=1.26 \mathrm{~A}$.
Theoretically, if the conductors were perfectly smooth, no loss would occur until the critical voltage, ev is reached, when the loss should suddenly take a definite value, equal to that calculated by quadratic law, with e_{v} as the applied voltage and e_{o} as the critical voltage in the equation. It should then follow the quadratic law for all higher voltages. On the weathered conductors used in practice, the quadratic law is followed over the whole range of voltage, starting at e_{0}.

Example:-In order to show the variation in corona loss at different voltages and for different weather conditions, Table E has been calculated for No. o stranded copper conductors (105560 cire. mils, 0.373 in. diameter) and for steel reinforced aluminum conductors (167800 circ. mils, 0.501 in . diameter) having an quivalent resistance but greater diameter. F. W. Peek's formulas were used and the following assumptions were made :-

```
f}=60\mathrm{ cycles.
    mo = 0.87
    m
go = 0.72
```

$r=0.186 \mathrm{in}$. for copper $=0.250 \mathrm{in}$. for aluminum.
$s=144$ inches (delta arrangement of conductors).
b $\quad=28.9$ corresponding to an altitude of 1000 feet.
$t=77$ degrees F. \& therefore $=0.967$.
$\frac{s}{r}=774$ for copper $=576$ for aluminum
$\log _{10} 774=2.89$ and $\log _{10} 576=2.76$
$\sqrt{\frac{r}{s}}=0.036$ for copper and 0.0415 for aluminum.
DISRUPTIVE CRITICAL VOLTAGE-Fair Weather

$$
e_{0}=2.302 m_{0} g_{0} \delta r \log _{10} \frac{s}{r}(30)
$$

effective kv to neutral
For the Copper Conductors

$$
e_{0}=2.302 \times 0.57 \times 53.6 \times 0.967 \times 0.186 \times 2.89
$$

$=55.8 \mathrm{kv}$ to neutral (96500 volts between conductors).
Table XXII gives, by interpolation, the limitation of e_{0} for above conditions, as 96500 volts between conductors. To find e_{0} to neutral for any other altitude or temperatures insert the corresponding values of δ for the altitude and temperature in the formula.
TABLE D-WORKING TABLE- δ (DENSITY) VALUES Altitude and Temperature Correction Factors
$\delta=\frac{17.9 b}{459+t}$ where $b=$ barometric pressure in inches and $t=$ temperature in degrees F .

Altitude inFeel	Barometer		δ Values for Different Temp.		
	$\underset{\text { Inches }}{\text { In }}$	1 nCm .	$\begin{aligned} & \left.{\stackrel{0}{0} 0^{\circ} \mathrm{C}}_{\mathrm{C}}^{\mathrm{F}}\right) \end{aligned}$	$\left(\begin{array}{l} 25^{\circ} \mathrm{C} \\ \left(77^{\circ} \mathrm{F} .\right) \end{array}\right.$	$\left(\begin{array}{l} 50^{50} \mathrm{C} \\ \left(122^{\circ} \mathrm{F}\right. \\ \mathrm{F} \end{array}\right)$
Sea Level				*	
Sea Level	30.0 20.45	76.2 74.8	1.09 1.07	1.00 0.985	0.925 0.910
1000	28.90	73.3	1.05	0.967	0.892
1500	28.30	71.8	1.03	0.947	0.873
2000	27.80	70.7	1.01	0.932	0.860
2500	27.25	69, 2	0.955	0.912	0.841
3000	26.80	68.0	0.980	0.897	0.827
4000	25.75	65.3	0.940	0.860	0.793
5000	24.70	62.7	0.902	0.827	0.762
6000	23.90	60.7	0.875	0.800	0.738
7000	22.95	58.3	0.840	0.770	0.710
8000	22.05	56.0	0.805	0.738	0.682
9000	21.30	54.1	0.778	0.712	0.657
10000	20.50	52.1	0.750	0.687	0.633
12000	19.00	48.3	0.697	0.637	0.588
14000	17.55	44.7	0.643	0.588	0.543
15000	16.90	42.9	0.618	0.566	0.522

*This column contains the values for δ which were used in determining the values of e_{0} in Table XXII. That is, the values for sea level in Table XXII multiplied by these δ values gives the ϵ_{0} values of the table for the higher altitudes.

For the Aluminum Conductors
$e_{0}=2.302 \times 0.87 \times 53.6 \times 0.967 \times 0.25 \times 2.76$
$=71.5 \mathrm{kv}$ to neutral (123500 volts between conductors).
Table XXII gives (by interpolation) the limitation for above conditions as 123500 volts between conductors.

To find e_{0} to neurral for any other altitude or temperature insert the corresponding value of δ for that altitude and temperature in the formula.
DISRUPTIVE CRITICAL VOLTAGE-Stormy Weather
c_{0} during storm $=$ approximately 80 percent $\varepsilon_{\text {o during }}$ fair weather.
For the Copper Conductors
e. for storm $=55.8 \times 0.80=44.6 \mathrm{kv}$ to neutral or 77000 volts between conductors.
For the Aluminum Conductors
e_{0} for storm $=715 \times 0.80=57.2 \mathrm{kv}$ to neutral or 98800 volts between conductors.
VISUAL CRITICAL VOLTAGE-Fair Weather

$$
\begin{aligned}
& e_{\nabla}=2.302 \mathrm{~m}_{\mathrm{v}} g_{\circ} \delta r\left(1+\frac{0.189}{\sqrt{r \delta}}\right) \log _{30} \frac{\mathrm{~s}}{r} \ldots(21) \\
& \quad \text { effective } \mathrm{kv} \text { to neutral }
\end{aligned}
$$

For Copper Conductors

$$
c_{1}=2.302 \times 0.72 \times 53.6 \times 0.967 \times 0.186\left(1+\frac{0.189}{0.427}\right) 2.89
$$

$=66.4 \mathrm{kv}$ to neutral (115000 volts between conductors).
To find e_{v} to neutral for any other altitude and temperature, insert the corresponding values of δ for that altitude and temperature in the formula above.

For the Aluminum Conductors

$$
e_{\mathrm{V}}=2.302 \times 0.72 \times 53.6 \times 0.967 \times 0.25\left(1+\frac{0.189}{0.492}\right) 2.76
$$

$=82 \mathrm{kv}$ to ncutral (141500 volts between conductors).
To find e_{r} to neutral for any other altitude and temperature, insert the corresponding values of δ for that allitude and temeerature in the formula above.

POWER LOSS

$$
P=\frac{390}{\delta}(f+25) \sqrt{\frac{r}{s}}\left(e-e_{0}\right)^{2} 10^{-\delta} \ldots \ldots \ldots \text { (22) }
$$

kw per mile of each conductor
The corona power loss corresponding to various conditions for the above circuit has been calculated by formulae (22) and (22A). They are given in Table E. However, in order to illustrate the application of the power loss formula the losses for the following conditions are determined below. Assuming that the No. o stranded copper conductors will be operated at 105 kv between conductors (60.7 kv to neutral).

For Fair Weather-Max. Temp. 50 degrees C. (122 degrees

$$
\text { F.) }-E_{0}=51.3 \mathrm{kv} \text {. }
$$

$$
P=\frac{390}{\delta}(f+25) \sqrt{\frac{r}{s}}\left(e-e_{0}\right)^{2} r 0^{-5} \ldots \ldots \ldots \text { (zz) }
$$

kw per mile of each conductor

$$
P=\frac{390}{0.892}(60+25) \times 0.036(60.7-51.3)^{2} 10^{-5}
$$

$=1.2 \mathrm{kw}$ per mile of each conductor or 3.6 kw per mile for three conductors.
For Stormy Weather-Max. Temp. 25 degrees C. (77 degrees F.) $-E_{0}=55.8 \times 0.8=44.6 \mathrm{kv}$.

$$
P=\frac{390}{0.967}(60+25) \times 0.036(60.7-44.6)^{2} 10^{-5}(22 A)
$$

$=3.2 \mathrm{kw}$ per mile of each conductor or 9.6 kw per mile for three conductors.
By applying formula (20) to the above case it develops that the fair weather values of e_{0} are for 25 degrees C. (77 degrees F.) 96500 kv and for 50 degrees C. (122 degrees F.) 38800 kv between conductors. Table XXII values for 25 degrees C. (77 degrees F.) confirm this.

Table E values for corona loss indicate that No. o copper conductors can, with 144 inch delta arrangement of conductors and 1000 ft . elevation be used at line voltages as high as 100000 volts without excessive corona loss during stormy weather. At 100000 volts and assuming a 25 degrees C. (77 degrees F) temperature during fair weather and storm conditions, the corona losses would be 0.1 kw per mile for fair weather and 6.5 kw per mile for stormy weather. If the transmission is single circuit 100 miles long and without branches, has an average altitude of 1000 feet and the storm condition existed throughout the length of the circuit, the power loss due to corona would be 6.5×100 or 650 kw . The capacity of such a circuit at 100000 volts (see Table XX) would be roughly 15000 kw at ten percent $I^{2} R$ loss. The storm corona loss therefore would represent 650 $\frac{15000}{15} 4.3$ percent. This, in addition to ten percent $I^{2} R$ loss, would represent approximately 14 percent loss in transmission during the storm conditions.

In the above case it would probably be considered good engineering (so far as corona loss is concerned)

TABLE XXII－APPROXIMATE VOLTAGE LIMITATIONS RESULTING FROM CORONA

STRANDED COPPER CONDUCTORS

$\begin{aligned} & \text { ats smp } \\ & \text { and } \end{aligned}$			LIMIT IN KILOVOLTSIBETWEEN CONDUCTORS 3 PHASE FOR VÄRIOUS̄｜SPACINGSI											
${ }_{\text {ancular }}^{\text {misab }}$		FEET	$\begin{array}{\|c\|} \hline 3 \\ F T_{1} \\ \hline \end{array}$	$\begin{gathered} 4 \\ \text { FT. } \end{gathered}$	$\begin{aligned} & 6 \\ & \hline \text { FT. } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 6 \\ \hline \text { FT. } \\ \hline \end{array}$	$\begin{array}{\|c} 7 \\ E T \end{array}$	$\begin{gathered} 8 \\ \text { FT. } \end{gathered}$	$\begin{array}{\|c\|} \hline 8 \\ \hline \text { FT. } \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & \text { FT. } \end{aligned}$	$\begin{aligned} & 13 \\ & \hline F T \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & \mathrm{FT} \end{aligned}$	$\begin{aligned} & \hline 19 \\ & \text { FT. } \end{aligned}$	$\begin{aligned} & 26 \\ & \text { FT. } \end{aligned}$
4	232	BEA LEVEL 1000 8000	$\begin{aligned} & 54 \\ & 52 \\ & 50 \end{aligned}$	$\begin{aligned} & 56 \\ & 54 \\ & 52 \end{aligned}$	$\begin{aligned} & 58 \\ & 56 \\ & 54 \end{aligned}$	$\begin{aligned} & 60 \\ & 58 \\ & 56 \end{aligned}$	$\begin{aligned} & 62 \\ & 60 \\ & 58 \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \\ & 59 \end{aligned}$	$\begin{aligned} & 64 \\ & 62 \\ & 60 \end{aligned}$	$\begin{aligned} & 66 \\ & 64 \\ & 62 \\ & \hline \end{aligned}$	$\begin{aligned} & 67 \\ & 85 \\ & 83 \end{aligned}$	$\begin{aligned} & 69 \\ & 67 \\ & 65 \\ & \hline \end{aligned}$	71 66 66	73 788 68
		$\begin{aligned} & 4000 \\ & \hline 000 \\ & 0000 \\ & \hline 000 \end{aligned}$	46 40 40	［48	$\begin{array}{r} 50 \\ 46 \\ 43 \end{array}$	51 48 4 4	$\begin{array}{r} 53 \\ 49 \\ 46 \end{array}$	$\begin{aligned} & 54 \\ & 50 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 51 \\ & 47 \\ & \hline \end{aligned}$	$\begin{array}{r} 57 \\ 52 \\ 49 \\ \hline \end{array}$	$\begin{aligned} & 58 \\ & 53 \\ & 49 \\ & \hline \end{aligned}$	$\begin{aligned} & 59 \\ & 59 \\ & 51 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 61 \\ & 56 \\ & 52 \\ & \hline \end{aligned}$	63 58 58 58
		$\begin{aligned} & 10009 \\ & 12000 \\ & 14000 \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \\ & 32 \\ & \hline \end{aligned}$	$\begin{array}{r} 38 \\ 38 \\ 35 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 37 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & 41 \\ & 38 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & 39 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 43 \\ & 40 \\ & 37 \\ & \hline \end{aligned}$	$\begin{array}{r} 44 \\ 40 \\ \hline 37 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ 42 \\ 39 \end{array}$	$\begin{array}{r} 46 \\ 42 \\ 49 \\ \hline \end{array}$	$\begin{array}{r} 47 \\ 44 \\ \hline 40 \\ \hline \end{array}$	$\begin{array}{\|} 48 \\ 45 \\ 42 \\ \hline \end{array}$	$\begin{array}{r}50 \\ 46 \\ 4 \\ \hline\end{array}$
3	269	$\begin{gathered} \text { SEELEVEL } \\ 1 \text { LevE } \\ 2000 \\ \hline \end{gathered}$	$\begin{array}{\|} 59 \\ 57 \\ 55 \\ \hline \end{array}$	$\begin{aligned} & 62 \\ & 60 \\ & 58 \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & 62 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 66 \\ & 64 \\ & 62 \\ & \hline \end{aligned}$	$\begin{aligned} & 68 \\ & 66 \\ & \hline 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 69 \\ & 67 \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 68 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 72 \\ & 70 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 744 \\ & 32 \\ & 69 \\ & \hline \end{aligned}$	$\begin{aligned} & 76 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & 78 \\ & 76 \\ & 73 \\ & \hline \end{aligned}$	81 79 76
		$\begin{aligned} & 4000 \\ & .0000 \\ & 80000 \end{aligned}$	$\begin{aligned} & 51 \\ & 47 \\ & 43 \\ & \hline \end{aligned}$	$\begin{array}{r} 53 \\ 49 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 51 \\ & 47 \end{aligned}$	$\begin{array}{r} 57 \\ 53 \\ 49 \\ \hline \end{array}$	$\begin{aligned} & 58 \\ & 54 \\ & 50 \end{aligned}$	$\begin{aligned} & 59 \\ & 59 \\ & 59 \end{aligned}$	$\begin{aligned} & 60 \\ & 56 \\ & 51 \\ & \hline \end{aligned}$	$\begin{aligned} & 62 \\ & 57 \\ & 53 \\ & \hline \end{aligned}$	64 59 54 5	65 61 56	57 62 57 57	70 64 60 50
		10000 $\substack{12000 \\ 10000}$	$\begin{array}{\|} 40 \\ 37 \\ 34 \\ \hline \end{array}$	$\begin{aligned} & 42 \\ & 39 \\ & 36 \end{aligned}$	$\begin{aligned} & 44 \\ & 40 \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 42 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 46 \\ & 43 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 47 \\ & 44 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 44 \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & 46 \\ & 42 \\ & \hline \end{aligned}$	51 47 43	$\begin{aligned} & 52 \\ & 48 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \\ & 49 \\ & 46 \\ & \hline \end{aligned}$	50 51 47 18
2	292	$\begin{gathered} \operatorname{deA} \text { LEVEL } \\ 1000 \\ 2000 \\ \hline \end{gathered}$	$\begin{array}{r} 65 \\ 6.3 \\ 61 \\ \hline \end{array}$	$\begin{aligned} & 68 \\ & 66 \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & 79 \\ & 86 \\ & \hline 68 \\ & \hline \end{aligned}$	$\begin{aligned} & 73 \\ & 7 \frac{1}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 73 \\ & 70 \end{aligned}$	$\begin{aligned} & 77 \\ & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 38 \\ & 36 \\ & 73 \end{aligned}$	$\begin{aligned} & 80 \\ & 78 \\ & 75 \\ & \hline \end{aligned}$	$\begin{array}{r} 82 \\ 79 \\ 76 \\ \hline \end{array}$	$\begin{aligned} & 84 \\ & 87 \\ & 78 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 87 \\ 84 \\ 84 \\ \hline \end{array}$	40 87 84 7
		$\begin{aligned} & \text { coco } \\ & \hline 00000 \\ & 80000 \\ & 800 \end{aligned}$	$\begin{array}{\|l\|} \hline 56 \\ 52 \\ 48 \end{array}$	$\begin{aligned} & 58 \\ & 54 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 61 \\ & 57 \\ & 52 \\ & \hline \end{aligned}$	$\begin{aligned} & 63 \\ & 58 \\ & 54 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 66 \\ & 61 \\ & 57 \end{aligned}$	$\begin{array}{\|} 67 \\ 62 \\ 57 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & 64 \\ & 59 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 72 \\ & 67 \\ & 67 \end{aligned}$	$\begin{aligned} & 75 \\ & 69 \\ & 64 \\ & \hline \end{aligned}$	77 72 66 68
		（10000	$\begin{array}{\|c\|} \hline 47 \\ 318 \\ \hline \end{array}$	$\begin{aligned} & 46 \\ & 46 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & 45 \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 46 \\ & 43 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 \\ & 47 \\ & 44 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \\ & 49 \\ & 45 \\ & \hline \end{aligned}$	$\begin{array}{r} 53 \\ 49 \\ 46 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 51 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 56 \\ & 52 \\ & 48 \\ & \hline \end{aligned}$	$\begin{aligned} & 57 \\ & 53 \\ & 49 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & 51 \\ & \hline \end{aligned}$	62 57 53 59
1	332	$\begin{gathered} \hline \text { BEA LEVEL } \\ 1.000 \\ 2000 \\ \hline \end{gathered}$	$\begin{aligned} & 72 \\ & 70 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 76 \\ & 73 \\ & 71 \\ & \hline \end{aligned}$	$\begin{aligned} & 79 \\ & 74 \\ & \hline \end{aligned}$	$\begin{aligned} & 81 \\ & 78 \\ & 76 \\ & \hline \end{aligned}$	$\begin{aligned} & 83 \\ & 80 \\ & 77 \\ & \hline \end{aligned}$	$\begin{aligned} & 85 \\ & 82 \\ & 79 \\ & \hline \end{aligned}$	$\begin{array}{r} 87 \\ 84 \\ 8 i \\ \hline \end{array}$	$\begin{aligned} & 89 \\ & 86 \\ & 83 \\ & \hline \end{aligned}$	$\begin{array}{\|} \hline 88 \\ 88 \\ 85 \\ \hline \end{array}$	$\begin{aligned} & 93 \\ & 90 \\ & 87 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 93 \\ & 90 \\ & \hline \end{aligned}$	100 97 97 8
		＋000 6000 2000	$\begin{array}{\|} 62 \\ 57 \\ 53 \\ \hline \end{array}$	65 60 56	68 63 58 58	69 68 60	$\begin{aligned} & 76 \\ & 66 \\ & 61 \end{aligned}$	$\begin{aligned} & 73 \\ & 68 \\ & 62 \end{aligned}$	$\begin{aligned} & 75 \\ & 69 \\ & 64 \end{aligned}$	$\begin{aligned} & 77 \\ & 75 \end{aligned}$	$\begin{aligned} & 78 \\ & 73 \\ & 67 \end{aligned}$	$\begin{aligned} & 80 \\ & 74 \\ & 78 \end{aligned}$	$\begin{aligned} & 82 \\ & 77 \\ & 71 \end{aligned}$	86 80 74 74
		10000 12000 16000	$\begin{array}{\|} 49 \\ 45 \\ 42 \\ \hline \end{array}$	$\begin{aligned} & 52 \\ & 48 \\ & 44 \\ & \hline \end{aligned}$	$\begin{aligned} & 57 \\ & 50 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 57 \\ & \hline \end{aligned}$	$\begin{array}{r} 57 \\ 52 \\ 49 \\ \hline \end{array}$	$\begin{aligned} & 58 \\ & 58 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & 51 \\ & \hline \end{aligned}$	$\begin{aligned} & 61 \\ & 56 \\ & 52 \end{aligned}$	$\begin{array}{\|l} 62 \\ 58 \\ 53 \\ \hline \end{array}$	$\begin{aligned} & 64 \\ & 50 \\ & 54 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 66 \\ 66 \\ 56 \end{array}$	68 63 59 59 18
0	373	$\begin{aligned} & \text { GEA LEVEL } \\ & 1000 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 79 \\ & 77 \\ & 74 \\ & \hline \end{aligned}$	$\begin{aligned} & 83 \\ & 80 \\ & 77 \\ & \hline \end{aligned}$	$\begin{aligned} & 87 \\ & 84 \\ & 81 \\ & \hline \end{aligned}$	$\begin{aligned} & 89 \\ & 86 \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & 92 \\ & 89 \\ & 86 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 88 \\ & 88 \end{aligned}$	$\begin{aligned} & 96 \\ & 43 \\ & 89 \\ & \hline \end{aligned}$	$\begin{aligned} & 98 \\ & 95 \\ & 91 \\ & \hline \end{aligned}$	$\begin{aligned} & 101 \\ & 98 \\ & \hline 94 \\ & \hline \end{aligned}$	$\left[\begin{array}{c} 103 \\ 100 \\ 196 \end{array}\right]$	$\begin{array}{\|} 107 \\ 104 \\ 100 \\ \hline \end{array}$	｜l11
		2000 8000 0000	$\begin{array}{\|l\|} \hline 68 \\ 63 \\ 58 \\ \hline \end{array}$	$\begin{aligned} & 76 \\ & 66 \\ & 61 \end{aligned}$	$\begin{aligned} & 35 \\ & 69 \\ & 64 \end{aligned}$	$\begin{aligned} & 77 \\ & 71 \\ & 66 \end{aligned}$	$\begin{aligned} & 79 \\ & 73 \\ & 68 \end{aligned}$	$\begin{aligned} & 81 \\ & 75 \\ & 69 \end{aligned}$	$\begin{aligned} & 82 \\ & 76 \\ & 78 \end{aligned}$	$\begin{aligned} & 84 \\ & 78 \\ & 72 \end{aligned}$	$\begin{aligned} & 86 \\ & 86 \\ & 84 \end{aligned}$	$\begin{aligned} & 88 \\ & 82 \\ & 76 \end{aligned}$	$\begin{aligned} & 92 \\ & \hline 85 \\ & 89 \end{aligned}$	95 89 82 82
		$\begin{aligned} & 10000 \\ & 11000 \\ & 14000 \end{aligned}$	$\begin{array}{\|} 54 \\ 50 \\ 46 \end{array}$	$\begin{aligned} & 57 \\ & 52 \\ & 49 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \\ & 51 \end{aligned}$	$\begin{aligned} & 61 \\ & 61 \\ & 56 \\ & 52 \end{aligned}$	$\begin{aligned} & 63 \\ & 50 \\ & 54 \end{aligned}$	$\begin{aligned} & 64 \\ & 59 \\ & 59 \end{aligned}$	$\begin{aligned} & 66 \\ & 61 \\ & 56 \end{aligned}$	$\begin{aligned} & 67 \\ & 62 \\ & 57 \end{aligned}$	$\begin{aligned} & 69 \\ & \hline 64 \\ & 59 \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \\ & 60 \end{aligned}$	$\begin{array}{\|l} 73 \\ \hline 78 \\ 68 \\ \hline 8 \end{array}$	$\begin{aligned} & \frac{10}{76} \\ & 70 \\ & 65 \end{aligned}$
00	． 418	$\begin{aligned} & \text { SEA LEVE } \\ & 1000 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 87 \\ & 84 \\ & 81 \\ & \hline \end{aligned}$	$\begin{array}{\|} 91 \\ 88 \\ 85 \\ \hline \end{array}$	$\begin{aligned} & 95 \\ & 82 \\ & 88 \\ & \hline \end{aligned}$	$\begin{aligned} & 98 \\ & 95 \\ & 91 \end{aligned}$	$\begin{array}{\|l\|} 101 \\ 984 \\ 9 \end{array}$	$\begin{array}{\|} 103 \\ 100 \\ 96 \end{array}$	$\begin{array}{r} 105 \\ 102 \\ 98 \\ \hline \end{array}$	$\left[\begin{array}{l} 109 \\ 105 \\ 102 \end{array}\right.$	111 107 104	$\begin{aligned} & 114 \\ & 110 \\ & 107 \end{aligned}$	$\begin{array}{\|} 118 \\ 118 \\ 110 \end{array}$	$\begin{aligned} & 122 \\ & 118 \\ & 114 \end{aligned}$
		$\begin{aligned} & 4000 \\ & \hline 0000 \\ & \hline 0000 \end{aligned}$	$\begin{array}{\|} 75 \\ 69 \\ 64 \\ \hline \end{array}$	$\begin{aligned} & 78 \\ & 73 \\ & 67 \end{aligned}$	$\begin{aligned} & 82 \\ & 76 \\ & 70 \end{aligned}$	$\begin{aligned} & 84 \\ & 78 \\ & 72 \\ & \hline \end{aligned}$	$\begin{aligned} & 87 \\ & 80 \\ & 74 \end{aligned}$	$\begin{aligned} & 89 \\ & 82 \\ & 76 \end{aligned}$	$\begin{aligned} & 90 \\ & 82 \\ & 77 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 94 \\ & 87 \end{aligned}$	$\begin{aligned} & 95 \\ & 89 \\ & 82 \end{aligned}$	$\begin{aligned} & 98 \\ & 91 \\ & 84 \\ & \hline \end{aligned}$	101 84 87 8 1	105 97 970 8
		$\begin{aligned} & 10000 \\ & 10000 \\ & 4000 \end{aligned}$	$\begin{array}{\|c\|} \hline 59 \\ 55 \\ 51 \\ \hline \end{array}$	$\begin{array}{\|l\|} 62 \\ 58 \\ 53 \end{array}$	$\begin{aligned} & 65 \\ & 60 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 67 \\ & 62 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 69 \\ & 64 \\ & 59 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 71 \\ 65 \\ 61 \end{array}$	$\begin{array}{\|} 72 \\ 65 \\ 62 \end{array}$	$\begin{aligned} & 75 \\ & 68 \\ & 64 \end{aligned}$	$\begin{array}{\|l\|} \hline 76 \\ 70 \\ 65 \end{array}$	$\begin{aligned} & 78 \\ & 78 \\ & \hline 67 \\ & \hline \end{aligned}$	81 7 79	84 77 71 1
000	470	$\begin{gathered} \text { SEA LEVEL, } \\ 10000 \\ 2000 \\ \hline \end{gathered}$	$\begin{aligned} & 95 \\ & 92 \\ & 89 \\ & \hline \end{aligned}$	$\begin{aligned} & 108 \\ & 88 \\ & 94 \\ & \hline \end{aligned}$	$\begin{aligned} & 105 \\ & 102 \\ & 98 \\ & \hline \end{aligned}$	$\begin{aligned} & 108 \\ & 104 \\ & 104 \\ & \hline \end{aligned}$	$\begin{gathered} 112 \\ 1108 \\ 104 \\ \hline \end{gathered}$	$\begin{aligned} & 114 \\ & 1106 \\ & 10 \end{aligned}$	$\begin{array}{\|c} 116 \\ 112 \\ 108 \\ \hline \end{array}$	$\begin{aligned} & 120 \\ & 1162 \\ & 112 \\ & \hline \end{aligned}$	$\begin{aligned} & 123 \\ & 119 \\ & 115 \end{aligned}$	125 121 126 10		$\begin{aligned} & 335 \\ & 131 \\ & 126 \\ & \hline \end{aligned}$
		$\begin{aligned} & \text { coco } \\ & .0000 \\ & 00000 \end{aligned}$	$\begin{array}{\|l\|} \hline 86 \\ 76 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 80 \\ 80 \\ 74 \\ \hline \end{array}$	$\begin{array}{\|l\|} 90 \\ 84 \\ 77 \\ \hline \end{array}$	$\begin{aligned} & 93 \\ & 86 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 84 \\ & 83 \\ & \hline \end{aligned}$	$\begin{array}{\|} 98 \\ 91 \\ 84 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 100 \\ 92 \\ 85 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 103 \\ 98 \\ \hline 88 \\ \hline \end{array}$	$\begin{aligned} & 106 \\ & 98 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} 108 \\ 100 \\ 92 \\ \hline \end{array}$	$\begin{array}{\|c} 112 \\ 104 \\ 96 \\ \hline \end{array}$	（1168
		$\begin{aligned} & 10.000 \\ & 120000 \\ & 100000 \end{aligned}$	$\begin{array}{\|l} 65 \\ 60 \\ 56 \\ \hline \end{array}$	$\begin{array}{\|l} 69 \\ 64 \\ 59 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 27 \\ 67 \\ \hline 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 76 \\ 68 \\ 63 \\ \hline \end{array}$	$\begin{aligned} & 77 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 78 \\ & 72 \\ & 67 \end{aligned}$	$\begin{aligned} & 79 \\ & 73 \\ & 68 \end{aligned}$	$\begin{aligned} & 82 \\ & 76 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 84 \\ & 78 \\ & 72 \\ & \hline \end{aligned}$	$\begin{aligned} & 86 \\ & 76 \\ & 73 \\ & \hline \end{aligned}$	89 96 76	93 88 78 78 8
0000	528	$\begin{array}{\|c\|} \hline \text { SEA LEVEL } 1000 \\ \text { 10000 } \\ \hline \end{array}$	$\begin{aligned} & 104 \\ & 101 \\ & 97 \\ & \hline \end{aligned}$	$\begin{array}{\|} 111 \\ 187 \\ 103 \\ \hline \end{array}$	$\begin{aligned} & 115 \\ & 107 \\ & 107 \end{aligned}$	$\begin{array}{\|l\|} \hline 119 \\ 115 \\ \hline 111 \end{array}$	$\begin{gathered} 123 \\ 119 \\ 115 \end{gathered}$	$\begin{aligned} & 125 \\ & 1217 \\ & 1127 \end{aligned}$	$\begin{aligned} & 128 \\ & 128 \\ & 120 \\ & \hline \end{aligned}$	$\left[\begin{array}{l} 132 \\ 128 \\ 123 \end{array}\right]$	$\begin{aligned} & 336 \\ & 332 \\ & 127 \\ & \hline \end{aligned}$	$\begin{aligned} & 139 \\ & 134 \\ & 130 \end{aligned}$	$\begin{array}{\|c} 144 \\ 139 \\ 134 \end{array}$	（190
		$\begin{aligned} & \text { coco } \\ & \hline 0000 \\ & 80000 \end{aligned}$	$\begin{array}{\|l\|} 89 \\ 83 \\ 77 \\ \hline \end{array}$	$\begin{array}{\|l\|} 95 \\ 88 \\ 88 \\ \hline \end{array}$	$\begin{array}{r} 99 \\ 82 \\ 85 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 102 \\ 885 \\ \hline 88 \\ \hline \end{array}$	$\begin{aligned} & 106 \\ & 48 \\ & 91 \end{aligned}$	$\begin{array}{\|c} 107 \\ 100 \\ 92 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 102 \\ 102 \\ 95 \\ \hline \end{array}$	$\begin{array}{\|c\|} 113 \\ 105 \\ 97 \\ \hline \end{array}$	$\begin{gathered} 117 \\ 108 \\ 100 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 19 \\ 119 \\ 103 \end{array}$	$\begin{aligned} & 124 \\ & 115 \\ & 106 \end{aligned}$	仿29
		$\begin{aligned} & 10.000 \\ & 12000 \\ & 40000 \\ & \hline \end{aligned}$	$\begin{aligned} & 71 \\ & 66 \\ & 61 \\ & \hline \end{aligned}$	$\begin{aligned} & 36 \\ & 70 \\ & \hline 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 79 \\ & 73 \\ & 67 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 81 \\ 85 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 84 \\ & 38 \\ & 32 \end{aligned}$	$\begin{array}{\|l\|} \hline 66 \\ 79 \\ 73 \\ \hline \end{array}$	$\begin{aligned} & 88 \\ & 81 \\ & 75 \end{aligned}$	$\begin{aligned} & 91 \\ & 84 \\ & 77 \end{aligned}$	$\begin{aligned} & 93 \\ & 86 \\ & 80 \end{aligned}$	$\begin{array}{\|l\|} \hline 95 \\ 88 \\ \hline 2 \end{array}$	$\begin{aligned} & 99 \\ & 91 \\ & 84 \\ & \hline \end{aligned}$	［ 103

$\begin{aligned} & \text { - } \mathrm{A} 8 \text { na } \\ & \text { ANO } \end{aligned}$	岩䓂	N	LIMIT IN KILOVOLTS BETWEEN CONDUCTORS 3 PHASE IFOR̈ VARIOUS SPAÓINGS											
amoulan ML®	¢	Et	FT．	4	$\begin{array}{r} 5 \\ 5 T \end{array}$	$\begin{gathered} 6 \\ \mathrm{FT} . \end{gathered}$	7 FT	$\begin{array}{\|c\|} \hline 8 \\ \text { FT. } \end{array}$	$\begin{gathered} 9 \\ \hline \text { FT. } \end{gathered}$	$\left[\begin{array}{l} 11 \\ \text { FT } \end{array}\right.$	$\begin{aligned} & 13 \\ & \text { FT } \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \\ \hline \end{array}$	19 FT	25

260.000	575	$\begin{aligned} & 1000 \\ & 10000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 112 \\ & 109 \\ & 104 \\ & \hline \end{aligned}$	118	124 120 116	128	127	130 125	寿 137	142 132 132	145 140 135	寿 14.	150 145	150 149
		$\begin{aligned} & \substack{4000 \\ 0000 \\ 0000} \\ & \hline 000 \end{aligned}$	$\begin{array}{\|} 96 \\ 89 \\ 83 \\ \hline \end{array}$	$\begin{aligned} & 102 \\ & 94 \\ & 87 \\ & \hline \end{aligned}$	$\begin{aligned} & 107 \\ & 99 \\ & 91 \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 102 \\ 94 \\ \hline \end{array}$	$\begin{aligned} & 113 \\ & 105 \\ & 96 \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \\ & 108 \\ & 98 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 118 \\ 10 \\ 10 \\ \hline \end{array}$	122 113 105	125 107 108	128 11	133	$\begin{aligned} & 138 \\ & 128 \\ & 118 \end{aligned}$
		$\begin{aligned} & 10000 \\ & 10000 \\ & 12000 \end{aligned}$	$\begin{aligned} & 77 \\ & 66 \\ & \hline \end{aligned}$	$\begin{array}{\|} 81 \\ 75 \\ \hline 69 \\ \hline \end{array}$	$\begin{aligned} & 85 \\ & 79 \\ & 73 \\ & \hline \end{aligned}$	$\begin{array}{r} 88 \\ 81 \\ \hline 75 \\ \hline \end{array}$	$\begin{array}{r} 90 \\ 83 \\ 77 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 22 \\ 85 \\ 79 \\ \hline \end{array}$	$\begin{array}{\|l\|} 94 \\ 87 \\ 80 \\ \hline \end{array}$	$\begin{aligned} & 97 \\ & 90 \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & 99 \\ & 92 \\ & 85 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 02 \\ 984 \\ 87 \\ \hline \end{array}$	$\begin{array}{\|} 106 \\ 98 \\ 91 \\ \hline \end{array}$	（110 102

\qquad
SOLID COPPER CONDUCTORS

4^{1}	204	$\begin{array}{\|c\|} \hline \text { BEA LEVEL } \\ 1000 \\ 2000 \\ \hline \end{array}$	51 49 47	54 52 50 46		$\begin{aligned} & 58 \\ & 56 \\ & 54 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 57 \\ 57 \\ 55 \\ \hline \end{array}$	$\begin{array}{\|} 60 \\ 58 \\ 56 \\ \hline \end{array}$	$\begin{array}{\|} 61 \\ 59 \\ 57 \\ \hline \end{array}$	$\begin{gathered} 63 \\ 61 \\ 59 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 64 \\ 62 \\ 60 \\ \hline \end{array}$	［ 65	$\begin{aligned} & 68 \\ & 64 \\ & 63 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 68 \\ & 65 \\ & \hline \end{aligned}$	0	325		$\begin{aligned} & 75 \\ & 72 \\ & 70 \\ & \hline \end{aligned}$	79 74 78	$\begin{aligned} & 82 \\ & 79 \\ & 76 \\ & \hline \end{aligned}$	［ $\begin{aligned} & 85 \\ & 89 \\ & 79\end{aligned}$	87 84 84	89 86 83	［ $\begin{aligned} & 98 \\ & 85 \\ & 85\end{aligned}$	94 88	96 93 90	98 98 92	102 78 18	105 102 98 8
		$\begin{aligned} & 4000 \\ & \hline 000 \\ & 8000 \\ & \hline \end{aligned}$	$\begin{array}{\|} 44 \\ 44 \\ 37 \\ \hline \end{array}$		48 48 4 4 4	50 42 42	51 47 43	$\begin{aligned} & 51 \\ & 48 \\ & 44 \\ & \hline \end{aligned}$	$\begin{array}{r} 52 \\ 49 \\ 45 \\ \hline \end{array}$	$\left\|\begin{array}{c} 54 \\ 54 \\ 50 \\ 46 \end{array}\right\|$	$\begin{array}{\|c\|} \hline 55 \\ 51 \\ 47 \end{array}$	$\begin{aligned} & 56 \\ & 52 \\ & 58 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \\ & 50 \\ & \hline 10 \end{aligned}$	60 56 51 18			$\begin{aligned} & 1000 \\ & .0000 \\ & 80000 \\ & \hline 00 \end{aligned}$	$\begin{aligned} & 64 \\ & 60 \\ & 55 \end{aligned}$	68 68 58	$\begin{aligned} & 70 \\ & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 73 \\ & 68 \\ & 62 \end{aligned}$	$\begin{aligned} & 85 \\ & \hline 69 \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & 76 \\ & 76 \\ & 76 \end{aligned}$	$\begin{aligned} & 78 \\ & 73 \\ & 79 \end{aligned}$	81 79 69	82 76 76 76		88 82 75	90 89 87 78
		$\begin{aligned} & 10,000 \\ & 12000 \\ & 14000 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 32 \\ & 30 \\ & \hline \end{aligned}$	$\begin{array}{r} 37 \\ 34 \\ 32 \\ \hline \end{array}$	$\begin{array}{r} 38 \\ 35 \\ 33 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 30 \\ & 37 \\ & \hline 4 \end{aligned}$	$\begin{array}{\|l} \hline 40 \\ 37 \\ \hline 35 \\ \hline \end{array}$	$\begin{aligned} & 41 \\ & 38 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline 42 \\ 39 \\ 36 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 43 \\ 40 \\ 37 \\ \hline \end{array}$	$\begin{array}{\|} 44 \\ 40 \\ 37 \\ \hline \end{array}$	$\begin{aligned} & 44 \\ & 41 \\ & 38 \\ & \hline \end{aligned}$	$\begin{aligned} & 46 \\ & 43 \\ & 40 \\ & \hline \end{aligned}$	48 44 41 18			$\begin{aligned} & 10000 \\ & 12000 \\ & 10000 \\ & \hline \end{aligned}$	51	$\begin{aligned} & 54 \\ & 50 \\ & 48 \end{aligned}$	$\begin{aligned} & 56 \\ & 52 \\ & 58 \end{aligned}$	$\left.\begin{array}{\|c\|} 58 \\ 54 \\ 50 \end{array} \right\rvert\,$	$\begin{aligned} & 60 \\ & 55 \\ & 51 \end{aligned}$	$\begin{aligned} & 61 \\ & 56 \\ & 52 \end{aligned}$	$\begin{aligned} & 12 \\ & 58 \\ & 58 \\ & \hline 8 \end{aligned}$	64 68 58	$\begin{aligned} & 66 \\ & 61 \\ & 56 \\ & \hline \end{aligned}$	67 62 58	699	72 68 67 67
3	229	$\begin{array}{\|c\|} \hline \text { SEA LEVEL } \\ 1000 \\ 2090 \\ \hline \end{array}$	$\begin{aligned} & 57 \\ & 55 \\ & 53 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 58 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \\ & 59 \\ & \hline \end{aligned}$	$\begin{array}{r} 64 \\ 62 \\ 60 \\ \hline \end{array}$	$\begin{array}{\|l} 65 \\ 63 \\ 6 \\ \hline \end{array}$	$\begin{array}{\|} 67 \\ 85 \\ 62 \\ \hline \end{array}$	$\begin{array}{\|} \hline 68 \\ 66 \\ 63 \\ \hline \end{array}$	$\begin{array}{\|l\|} 70 \\ 68 \\ 65 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 71 \\ 69 \\ \hline \end{array}$	$\begin{aligned} & 73 \\ & 71 \\ & 68 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 75 \\ 73 \\ 70 \\ \hline \end{array}$	$\left[\begin{array}{r} 78 \\ 75 \\ 13 \end{array}\right.$	00	365	$\begin{gathered} \text { SEA LEVE } \\ \text { 1900 } \\ 2000 \end{gathered}$	83 80 77 7	$\begin{array}{\|} 88 \\ 85 \\ 82 \\ \hline 8 \end{array}$	$\begin{aligned} & 91 \\ & 88 \\ & 85 \\ & \hline \end{aligned}$	$\begin{array}{\|} 94 \\ 88 \\ \hline 8 \end{array}$	$\begin{aligned} & 96 \\ & 96 \\ & 93 \\ & \hline \end{aligned}$	$\begin{aligned} & 98 \\ & 94 \\ & 92 \end{aligned}$	$\begin{aligned} & 100 \\ & 97 \\ & 93 \end{aligned}$	104 100 97	$\begin{aligned} & 106 \\ & 103 \\ & 99 \end{aligned}$	109 105 18	108	116 118 108 8
		$\begin{aligned} & 20000 \\ & \text { 20000 } \\ & \hline 8000 \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & 15 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 \\ & 48 \\ & \hline 4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 54 \\ 50 \\ 46 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 51 \\ & 47 \\ & \hline \end{aligned}$	$\begin{aligned} & 56 \\ & 52 \\ & 58 \\ & \hline \end{aligned}$	$\begin{array}{r} 57 \\ 53 \\ 49 \\ \hline \end{array}$	$\begin{array}{\|l\|} 58 \\ 54 \\ 50 \\ \hline \end{array}$	$\begin{array}{\|} 60 \\ 60 \\ 56 \\ 51 \end{array}$	$\begin{array}{\|} 61 \\ 57 \\ 52 \\ \hline \end{array}$	$\begin{aligned} & 63 \\ & 58 \\ & 54 \end{aligned}$	$\begin{aligned} & 64 \\ & 60 \\ & 40 \\ & 55 \end{aligned}$	$\left[\begin{array}{l} 67 \\ 62 \\ 57 \\ \hline \end{array}\right.$				71 64 61	$\begin{array}{\|l\|} \hline 75 \\ 70 \\ 70 \end{array}$	$\begin{array}{\|l\|} \hline 78 \\ 73 \\ 73 \\ 67 \end{array}$	$\begin{array}{\|l\|} 81 \\ 75 \\ 69 \end{array}$	$\begin{aligned} & 82 \\ & 82 \\ & 77 \\ & 77 \end{aligned}$	$\begin{aligned} & 72 \\ & \hline 84 \\ & 78 \\ & 72 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 86 \\ 80 \\ 74 \end{array}$	$\begin{aligned} & 97 \\ & \hline 89 \\ & 83 \\ & 76 \end{aligned}$	$\begin{aligned} & 99 \\ & 91 \\ & 88 \\ & 78 \end{aligned}$	$\begin{aligned} & 102 \\ & \hline 97 \\ & 87 \\ & 80 \end{aligned}$	96 89 82	100 92 85 8
		10000 10000 12000 12000	$\begin{array}{r}39 \\ 36 \\ 3 \\ 3 \\ \hline 68\end{array}$	$\begin{array}{\|l} 41 \\ 38 \\ 35 \\ \hline \end{array}$	$\begin{aligned} & 43 \\ & 40 \\ & 37 \\ & \hline \end{aligned}$	$\begin{array}{r} 44 \\ 40 \\ 37 \\ \hline \end{array}$	$\begin{aligned} & 44 \\ & 38 \\ & 38 \\ & \hline \end{aligned}$	$\begin{aligned} & 46 \\ & 42 \\ & 39 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 46 \\ 43 \\ 40 \\ \hline \end{array}$	$\begin{aligned} & 48 \\ & 44 \\ & \hline 4 \\ & \hline \end{aligned}$	$\begin{array}{r} 49 \\ 45 \\ +2 \end{array}$	$\begin{aligned} & 50 \\ & 46 \\ & 43 \\ & \hline \end{aligned}$	$\begin{array}{r} 51 \\ 47 \\ 44 \\ \hline \end{array}$	$\begin{array}{\|r} 53 \\ 48 \\ 46 \\ \hline \end{array}$			$\begin{aligned} & 10000 \\ & 12000 \\ & 14000 \\ & \hline \end{aligned}$	57 53 48 4	$\begin{aligned} & 60 \\ & 56 \\ & 51 \end{aligned}$	$\begin{array}{r} 62 \\ 58 \\ 53 \\ \hline \end{array}$	$\begin{array}{r} 64 \\ 59 \\ 59 \\ 59 \end{array}$	$\begin{aligned} & 66 \\ & 66 \\ & 56 \\ & \hline \end{aligned}$	67 62 57 57	68 68 59 59	$\begin{aligned} & 71 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 72 \\ & 87 \\ & 62 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 69 \\ & 64 \end{aligned}$	37 76 61	79 788 788
2	258	$\begin{gathered} \text { SEA LVVEI } \\ \text { 10000 } \\ \hline 2000 \\ \hline \end{gathered}$	$\begin{array}{\|} \hline 62 \\ 60 \\ 58 \\ \hline \end{array}$	$\begin{aligned} & 66 \\ & 64 \\ & 61 \end{aligned}$	$\begin{array}{\|l\|} 68 \\ 66 \\ \hline 3 \\ \hline \end{array}$	$\begin{aligned} & 70 \\ & 68 \\ & \hline 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 72 \\ & 70 \\ & 67 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 73 \\ 71 \\ 68 \\ \hline \end{array}$	$\begin{aligned} & 70 \\ & 75 \\ & 33 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 77 \\ & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 72 \\ & 79 \\ & 76 \\ & 74 \end{aligned}$	$\begin{array}{\|l\|} 80 \\ 77 \\ 75 \end{array}$	$\begin{aligned} & 83 \\ & 80 \\ & 78 \end{aligned}$	$\begin{aligned} & 86 \\ & 83 \\ & 80 \\ & \hline \end{aligned}$	000	410	SEA LEVEL 1000 2000	91 88 85 85	$\begin{aligned} & 96 \\ & 96 \\ & 93 \\ & 90 \end{aligned}$	$\begin{array}{r} 100 \\ 97 \\ 93 \\ \hline \end{array}$	$\begin{aligned} & 103 \\ & 100 \\ & 96 \end{aligned}$			$\begin{aligned} & 111 \\ & 187 \\ & 183 \end{aligned}$	114 1106	$\begin{aligned} & 60 \\ & 117 \\ & 169 \end{aligned}$	120	124 12 18 18	128 124 120
		$\begin{aligned} & 2000 \\ & \hline 0000 \\ & 80000 \end{aligned}$	$\begin{array}{r} 53 \\ 49 \\ 49 \\ \hline \end{array}$	$\begin{aligned} & 57 \\ & 52 \\ & 48 \\ & \hline \end{aligned}$	$\begin{array}{r} 58 \\ 54 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 56 \\ & 51 \end{aligned}$	$\begin{aligned} & 62 \\ & 52 \\ & 53 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 63 \\ 58 \\ 54 \\ \hline \end{array}$	$\begin{aligned} & 64 \\ & \hline 64 \\ & 65 \\ & 50 \end{aligned}$	$\begin{array}{\|l} 66 \\ 67 \\ 57 \end{array}$	$\begin{array}{\|l} 68 \\ 63 \\ 58 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & 69 \\ & 59 \\ & \hline \end{aligned}$	$\begin{aligned} & 71 \\ & 66 \\ & 61 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 74 \\ 65 \\ 63 \end{array}$			$\begin{aligned} & 2000 \\ & \begin{array}{l} 0000 \\ 6000 \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 78 \\ & 73 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 82 \\ & 77 \\ & 71 \\ & \hline \end{aligned}$	$\begin{aligned} & 86 \\ & 86 \\ & 74 \\ & \hline \end{aligned}$	$\begin{aligned} & 88 \\ & 82 \\ & 76 \\ & \hline \end{aligned}$	$\begin{aligned} & 91 \\ & 84 \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 93 \\ & 87 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 95 \\ & 89 \\ & 82 \\ & \hline \end{aligned}$	$\begin{aligned} & 98 \\ & 91 \\ & 84 \\ & \hline \end{aligned}$	$\begin{array}{r} 100 \\ 93 \\ 86 \\ \hline \end{array}$	$\begin{aligned} & 103 \\ & 96 \\ & 88 \\ & \hline \end{aligned}$	103 99 7 1	｜110
		$\begin{aligned} & 10000 \\ & 12000 \\ & 140000 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 42 \\ 39 \\ 36 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 45 \\ 42 \\ 39 \\ \hline \end{array}$	$\begin{aligned} & 46 \\ & 43 \\ & 40 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 48 \\ 44 \\ \hline \end{array}$	$\begin{aligned} & 49 \\ & 45 \\ & \hline 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 46 \\ & 43 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 \\ & 47 \\ & 44 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \\ & 49 \\ & 45 \\ & \hline \end{aligned}$	$\begin{array}{r} 54 \\ 50 \\ 46 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 55 \\ & 47 \\ & \hline \end{aligned}$	$\begin{array}{r} 57 \\ 53 \\ 49 \\ \hline \end{array}$	$\begin{aligned} & 59 \\ & 54 \\ & 50 \\ & \hline \end{aligned}$			$\begin{aligned} & 10000 \\ & 1000 \\ & 12000 \\ & 14000 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 62 \\ 58 \\ 53 \\ \hline \end{array}$	$\begin{aligned} & 66 \\ & 66 \\ & 56 \\ & \hline \end{aligned}$	$\begin{gathered} 69 \\ 63 \\ 59 \\ \hline \end{gathered}$	$\begin{aligned} & 71 \\ & 6 \\ & 61 \\ & \hline \end{aligned}$	$\begin{aligned} & 73 \\ & 67 \\ & 62 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 75 \\ 69 \\ \hline 4 \\ \hline \end{array}$	$\begin{aligned} & 76 \\ & 70 \\ & \hline 5 \end{aligned}$	$\begin{aligned} & 78 \\ & 782 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \\ & 78 \\ & \hline \end{aligned}$	$\begin{aligned} & 82 \\ & \hline 76 \\ & 70 \\ & \hline \end{aligned}$	85 79 73	88 88 75 78
1.	288	$\begin{array}{\|c} \hline \text { SEE LEVEL } \\ \text { 1000 } \\ 2000 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & 66 \\ & 64 \\ & \hline \end{aligned}$	$\begin{array}{r} 72 \\ 69 \\ 67 \\ \hline \end{array}$	$\begin{array}{\|l\|} 75 \\ 72 \\ 70 \\ \hline \end{array}$	$\begin{aligned} & 77 \\ & 74 \\ & 72 \\ & \hline \end{aligned}$	$\begin{aligned} & 79 \\ & 76 \\ & 74 \\ & \hline \end{aligned}$	$\begin{array}{r} 81 \\ \hline 78 \\ 78 \\ \hline \end{array}$	$\begin{array}{r} 83 \\ 80 \\ 77 \\ \hline \end{array}$	$\begin{array}{\|l} 85 \\ 82 \\ 79 \\ \hline \end{array}$	$\begin{array}{\|l} 87 \\ 84 \\ 81 \\ \hline \end{array}$	$\begin{aligned} & 89 \\ & 86 \\ & 89 \\ & \hline \end{aligned}$	$\begin{aligned} & 92 \\ & 98 \\ & 89 \\ & 86 \end{aligned}$	$\begin{aligned} & 95 \\ & 92 \\ & 99 \\ & \hline \end{aligned}$	0000	460	BEA LEVEL 1000 2000	$\begin{aligned} & 100 \\ & 97 \\ & 93 \end{aligned}$	$\begin{gathered} 106 \\ 102 \\ 98 \\ \hline \end{gathered}$	$\begin{aligned} & 110 \\ & 106 \\ & 103 \end{aligned}$	$\begin{aligned} & 110 \\ & 106 \\ & 106 \end{aligned}$	$\begin{aligned} & 117 \\ & 103 \\ & 109 \end{aligned}$	$\begin{aligned} & 120 \\ & 116 \\ & 112 \\ & \hline \end{aligned}$	$\begin{aligned} & 122 \\ & 118 \\ & 114 \\ & \hline \end{aligned}$	126 1128 18	122			
		$\begin{aligned} & 4000 \\ & \hline 8000 \\ & \hline 0000 \end{aligned}$	$\begin{array}{\|l\|} \hline 59 \\ 59 \\ 5 \\ \hline \end{array}$	$\begin{array}{\|} 62 \\ 57 \\ 53 \\ \hline \end{array}$	$\begin{array}{\|l} 64 \\ 60 \\ 55 \\ \hline \end{array}$	$\begin{aligned} & 66 \\ & 67 \\ & 57 \end{aligned}$	$\begin{aligned} & 68 \\ & 63 \\ & 58 \\ & \hline \end{aligned}$	$\begin{aligned} & 69 \\ & 69 \\ & 65 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 71 \\ & 66 \\ & 61 \\ & \hline \end{aligned}$	$\begin{array}{\|} 73 \\ \hline 68 \\ 63 \\ \hline 3 \end{array}$	$\begin{aligned} & 75 \\ & 69 \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & 76 \\ & 7 \prime \\ & 65 \end{aligned}$	$\begin{aligned} & 79 \\ & 73 \\ & 68 \end{aligned}$	$\begin{aligned} & 81 \\ & 76 \\ & 70 \\ & \hline \end{aligned}$			$\begin{aligned} & 2000 \\ & 8000 \\ & \hline 0000 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{array}{\|l\|} \hline 86 \\ 86 \\ 80 \end{array}\right.$	$\begin{aligned} & 91 \\ & 85 \\ & 78 \\ & \hline \end{aligned}$	$\begin{aligned} & 95 \\ & 88 \\ & 81 \end{aligned}$	$\begin{aligned} & 98 \\ & 98 \\ & 84 \\ & \hline \end{aligned}$	$\begin{array}{r} 102 \\ 100 \\ 93 \\ 86 \end{array}$	$\begin{aligned} & 103 \\ & 96 \\ & 88 \end{aligned}$	$\begin{aligned} & 105 \\ & 97 \\ & 90 \end{aligned}$	$\begin{aligned} & 108 \\ & 108 \\ & 93 \end{aligned}$	$\begin{aligned} & 111 \\ & 103 \\ & 95 \end{aligned}$	$\begin{aligned} & 113 \\ & 105 \\ & 97 \end{aligned}$	118 109 101	122 105 103
		$\begin{aligned} & 10000 \\ & 10000 \\ & 10000 \\ & \hline \end{aligned}$	$\begin{array}{r} 47 \\ 46 \\ 40 \\ \hline \end{array}$	$\begin{array}{\|} 49 \\ 45 \\ 42 \end{array}$	$\begin{array}{r} 51 \\ 47 \\ 47 \\ \hline \end{array}$	$\begin{array}{\|} 53 \\ 49 \\ 45 \end{array}$	$\begin{aligned} & 54 \\ & 50 \\ & 46 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 51 \\ & 51 \\ & \hline \end{aligned}$	$\begin{aligned} & 57 \\ & 52 \\ & 49 \\ & \hline \end{aligned}$	$\begin{aligned} & 58 \\ & 59 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & 51 \\ & \hline \end{aligned}$	$\begin{array}{\|} \hline 61 \\ 56 \\ 52 \\ \hline \end{array}$	$\begin{aligned} & 63 \\ & 58 \\ & 54 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \\ & 66 \\ & \hline \end{aligned}$			$\begin{aligned} & 10000 \\ & 12000 \\ & 12000 \\ & \hline 1000 \end{aligned}$	$\begin{aligned} & 69 \\ & 69 \\ & 59 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 67 \\ & 62 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & 64 \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \\ & 37 \\ & \hline 7 \end{aligned}$	$\begin{aligned} & 80 \\ & 74 \\ & 69 \end{aligned}$	$\begin{aligned} & 82 \\ & 76 \\ & 70 \end{aligned}$	$\begin{aligned} & 81 \\ & 81 \\ & 77 \\ & 71 \end{aligned}$	$\begin{aligned} & 86 \\ & 86 \\ & 89 \end{aligned}$	$\begin{aligned} & 78 \\ & 88 \\ & 82 \\ & 76 \end{aligned}$	$\begin{aligned} & 94 \\ & 87 \end{aligned}$	新	处 $\begin{aligned} & 17 \\ & 30 \\ & 3\end{aligned}$

- to operate the No. o copper conductors at as high a line voltage as 100000 volts. If, however, for other reasons, 120000 is selected as the desirable operating voltage, then either a large diameter copper conductor or an
aluminum conductor having a greater diameter but ant equivalent conductivity to that of the No. o copper conductor should be selected.

TABLE E-COMPARISON OP CORONA LOSS
For No. 0 Stranded Copper Conductors 105560 cir. mil (diameter 0.373 in.) and equivalent Aluminum Conductors 167800 cir. mil (diameter 0.501 in.) Conductor Spacing (s) Delta $=144$ in. Altitude 1000 feet-Barometer 28.9 inches. Calculated from formula (22)

Kilovolts		Corona Loss in Kw. per Mile for Three Conductors at 60 Cycles											
		Fair Weather-(Formula 22)						Stormy Weather-(Formula 22-A)					
		No. 0 Copper Radius 0.186 in.			Aluminum Radius 0.25 in .			No. 0 Copper Radius 0.186 in.			Alumioum Radius 0.25 in.		
Between Conductors	Neutral	$\begin{gathered} 0^{\circ} \mathrm{C} \\ 32^{\circ} \mathrm{F} \\ \delta^{\circ}=1.05 \\ e_{0}=60.5 \end{gathered}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 77{ }^{\circ} \mathrm{F} \\ & \delta=0.967 \\ & e_{0}=55.7 \end{aligned}$	$\begin{gathered} 50^{\circ} \mathrm{C} \\ 122^{\circ} \mathrm{F} \\ \delta_{0}=0.892 \\ c_{0}=51.3 \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ 32 * F \\ \delta=1.05 \\ e_{0}=77.5 \end{gathered}$	$\begin{gathered} 25^{\circ} \mathrm{C} \\ 77^{\circ} \mathrm{F} \\ \delta=0.967 \\ e_{0}=71.5 \end{gathered}$	$\begin{gathered} 50^{\circ} \stackrel{\mathrm{C}}{\mathrm{~F}} \\ 122^{\circ} \stackrel{\text { P }}{\delta_{0}}=0.892 \\ e_{0}=66.0 \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ 32^{\circ} \mathrm{F} \\ \delta=1.05 \\ e_{0}=48.4 \end{gathered}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 77^{\circ} \mathrm{F} \\ & \delta^{=}=0.967 \\ & e_{0}=44.5 \end{aligned}$	$\begin{gathered} 50^{\circ} \mathrm{C} \\ 122^{\circ} \stackrel{F}{ } \\ \delta=0.892 \\ e_{0}=41.0 \end{gathered}$	$\begin{aligned} & 0: C \\ & 32: \stackrel{C}{P} \\ & \delta=1.05 \\ & e_{0}=62 . \end{aligned}$	$\begin{gathered} 25: C \\ 77 \cdot \stackrel{F}{2} \\ \delta=0.967 \\ e_{0}=57.2 \end{gathered}$	$\begin{gathered} 50^{\circ} \mathrm{C} \\ 122^{\circ} \mathrm{F} \\ \delta=0.892 \\ c_{0}=52.7 \end{gathered}$
$\begin{aligned} & 100 \\ & 110 \\ & 120 \end{aligned}$	$\begin{aligned} & 57.8 \\ & 63.5 \\ & 69.2 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.3 \\ & 2.6 \end{aligned}$	0.1 2.3 6.7	0.2 6.0 12.8	0 0 0	0 0 0	$\begin{array}{r} 0 \\ 0 \\ 0.4 \end{array}$	$\begin{array}{r} 0.3 \\ 7.8 \\ 14.8 \end{array}$	$\begin{array}{r} 6.5 \\ 13.3 \\ 22.6 \end{array}$	$\begin{aligned} & 11.3 \\ & 20.3 \\ & 32.0 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 2.0 \end{array}$	$\begin{array}{r} 0 \\ 1.7 \\ 6.2 \end{array}$	$\begin{array}{r} 1.1 \\ 4.6 \\ 12.6 \end{array}$
$\begin{aligned} & 130 \\ & 140 \\ & 150 \end{aligned}$	$\begin{aligned} & 75.1 \\ & 80.8 \\ & 86.7 \end{aligned}$	$\begin{aligned} & 7.25 \\ & 13.8 \\ & 22.4 \end{aligned}$	$\begin{aligned} & 13.9 \\ & 23.3 \\ & 35.5 \end{aligned}$	$\begin{aligned} & 22.6 \\ & 34.8 \\ & 50.2 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 3.7 \\ & 9.9 \end{aligned}$	$\begin{array}{r} 3.8 \\ 10.1 \\ 19.7 \end{array}$	$\begin{aligned} & 24.4 \\ & 35.8 \\ & 50.2 \end{aligned}$	34.6 48.7 66.	46.5 63.7 84.	$\begin{array}{r} 6.7 \\ 13.9 \\ 24 . \end{array}$	$\begin{aligned} & 13.7 \\ & 23.8 \\ & 37.2 \end{aligned}$	23.2 36.4 53.3
160 180	92.4 104.8	35.0 66.0	49.8 89.0	67.7 115.0	8.7 29.3	18.7 47.3	32.2 69.5	$\begin{array}{r} 66 . \\ 108 . \end{array}$	$\begin{array}{r} 85 . \\ 135 . \end{array}$	$\begin{aligned} & 106 \\ & 163 . \end{aligned}$	$\begin{aligned} & 36 . \\ & 72 . \end{aligned}$	$\begin{aligned} & 53 . \\ & 96 . \end{aligned}$	73 125.

Note: At 25 cycles the losses would be $\frac{f_{1}+25}{f+25}=\frac{25+25}{60+25}=\frac{50}{85}$ times the above table values. For conductors in a row (flat spacing) the
corona loss would be reduced below the values for delta or triangular arrangement. For the higher voltages in the above table the eonductor spacings would, in an a atual installation, be greater than 144 in . (upon which basis the table values are given) thus giving actually less corona loss for the higher voltages than indicated by the table values.

The accompanying photograph illustrating corona on an experimental line is puhlished with the kind permission of F. W. Peek, Jr.

Since the formulas pertaining to corona effect are to some extent worked up from test data they may be slightly changed from time to time. In case the problem at hand seems vitally near the critical point it will be well to consult the latest literature at that time as an additional check on the work.

CORON゙A AT 230 KV . 1.19 CM . HIMMETER, $0.47^{\prime \prime}$ C.NBLE, 310 CM. 10 FEFT SBAC1NG.

CHAPTER V

SPEED OF ELECTRIC PROPOGATION-RESONANCE PARALLELING TRANSMISSION CIRCUITS HEATING OF BARE CONDUCTORS

SPEED OF ELECTRIC PROPAGATION

ASTRONOMERS and investigators by various methods of determination have arrived at slightly different values for the speed of light. The Smithsonian Physical Tables give 186347 miles per second as a close average estimate. In electrical engineering, the speed of light is usually stated as approximately $3 \times$ ro ${ }^{10}$ centimeters per second. This is the equivalent of 18645 I miles per second. The speed of electrical propogation (assuming zero losses) is the same as that of light.

ELECTRIC WAVE LENGTH

Suppose a frequency of 60 cycles per second is impressed upon a circuit of infinite length. At the end of one sixtieth of a second the first impulse (neglecting retardation due to losses) will have fraversed a distance of $186347 \div 60$ or 3106 miles. A section of such a circuit 3106 miles long would be designated as having a full wave length for a frequency of 60 cycles per second.

In Fig. 14, the dotted line or one cycle wave is shown as extending over a circuit 3106 miles long. In this case, when the first part of the wave arrives at a point 3106 miles distant, the end of the same wave is at the beginning of the circuit. For each half wave length the current is of equal value but flowing in opposite directions in the conductor. Such a circuit is designated as of full wave length. Since the velocity of the electric propagation is slightly less than that of light, being slightly retarded due to resistance and leakage losses, the actual wave length will be slightly less than 3106 miles. Thus for a 300 mile, 60 cycle, three-phase circuit consisting of No. o00 copper conductors having 1o ft. flat spacing, the wave length is calculated to be 2959 miles. The wave length of such a circuit is indicated by the heavy line on the accompanying sketch. In the case of this particular circuit the electric field has been retarded approximately five percent, due to the losses of the circuit, as indicated by the displacement of the dotted and full line curves.

QUARTER WAVE RESONANCE

If the end of a long trough filled with water is struck by a hammer, the impact will cause a wave in the water to start in front of the point of impact and travel to the far end of the tank. When this wave reaches the far end of the tank it will be reflected, traveling back toward the point of origin, but on account of resistance encountered it will be of diminishing height or amplitude. If, at the instant it gets back to the point of origin, the end of the tank is again struck by the hammer, the
resulting impulse will be that due to the second hammer blow plus that remaining from the first blow. The result will be that the second wave from the near end of the tank will be of greater amplitude than the first wave. If when the second wave arrives back at the near end, the end of the tank is struck again with the hammer the resulting third impulse will be of greater amplitude than the second impulse. If at the instant of the return of each succeeding impulse the end of the tank is struck, the result will be cumulative and each succeeding wave will be of greater magnitude than the one preceeding until the point is reached where the losses due to resistance become sufficient to prevent a further increase in amplitude of the wave.

Under certain conditions a similar phenomenon may occur in electric circuits and this is known as "quarter wave resonance". If an electric impulse* is sent into a

FIG. I4-WAVE LENGTH OF 60 CYCLE CIRCUIT
conductor, such as a transmission circuit, this impulse travels along the conductor at the velocity of light. If the circuit is open at the other end, the impulse is there reflected and returns at the same velocity. If at the moment when the impulse arrives at the starting point a second impulse is sent into the circuit, the returned first impulse adds itself to, and so increases the second impulse ; the return of this second impulse adds itself to the third impulse, and so on ; that is, if alternating impulses succeed each other at intervals equal to the time required by an impulse to travel over the circuit and back, the effects of successive impulses add themselves, and large currents and high e.m.f.'s may be produced by small impulses. This condition is known as quarter wave electric resonance. To produce this condition, it is necessary that the alternating impulses occur at time intervals equal to the time required for the impulses to travel the length of the line and back. For example, the time of one half wave or cycle of impressed e.m.f.

[^8]is the time required by light to travel twice the length of the line, or the time of one complete cycle is the time light requires to travel four times the length of the line. Stated another way, the number of cycles or frequency of the impressed alternating e.m.f.'s in resonance condition, is the velocity of light divided by four times the length of the line; or to have free oscillation or resonance condition, the length of the line is one quarter wave length of light. The cycles at which this condition is reached (if there were no losses present) would be determined as follows:-
\[

$$
\begin{equation*}
\text { Frequency }=\frac{46587}{\text { Length in miles }} \tag{23}
\end{equation*}
$$

\]

or

$$
\begin{equation*}
\text { Length in miles }=\frac{46587}{\text { Frequency }} \ldots \ldots \ldots \ldots . . \tag{24}
\end{equation*}
$$

RESONANCE LENGTHS OF CIRCUITS

Commercial frequencies are so low that to reach a quarter wave resonance condition with them the circuit would have to be of great length. The following values, for the sake of simplicity, are based upon the assumption that there are no losses in the circuit.
Fundamental Frequency Resonance Length
15 cycles $\ldots \ldots \ldots \ldots . .3106$ miles
25 cycles $\ldots \ldots \ldots \ldots \ldots 1863$ miles
40 cycles $\ldots \ldots \ldots \ldots . .1165$ miles
60 cycles $\ldots \ldots \ldots . .176$ miles

Wave Length
12434 miles
7452 miles 4660 miles 3106 miles
The above lengths are based upon the impressed or fundamental frequencies. If these impressed frequencies contain appreciable higher harmonics, some of the latter may approach resonance frequency and, if of sufficient magnitude, may cause trouble. Thus the length of circuit corresponding to resonance conditions of various harmonics of the fundamental is given below.

Cycles	Harmonics		
	3rd.	5 th.	7th.
15	1035 miles	631 miles	447 miles
25	621 miles	372 miles	266 miles
40	388 miles	233 miles	166 miles
60	258 miles	155 miles	111 miles

Thus an impressed frequency of 60 cycles will not produce quarter wave electric resonance unless the circuit be approximately 776 miles long. If a third harmonic, however, is present in the impressed wave, this harmonic will develop quarter wave resonance in a circuit approximately 258 miles long, a 5 th harmonic in a circuit approximately 155 miles long, and a 7 th harmonic in a circuit approximately III miles long.

The above values are based upon no losses being encountered in transmission. Obviously this is an incorrect assumption, as electric propagation is always accompanied by more or less loss, depending upon the fundamental constants (resistance and leakage) of the circuit. The effect of such losses is to retard the velocity of the electric propagation, usually by an amount of five to ten percent below that of light. The above values of circuit lengths representing a condition for resonance may therefore be as much as ten percent above the actual lengths.

An investigation of the effects of higher harmonics
of the impressed wave is of importance in connection with very long distance transmission systems.

PARALLELING TRANSMISSION CIRCUITS

Transmission lines are frequently constructed with duplicate circuits which are normally operated in parallel. In other cases two circuits may lead from the generating station in divergent directions and at some distant point come together and be connected in parallel.

If the two circuits are fed from different generators, or sources of supply, the only condition necessary for paralleling the circuits is that the phase rotation of the two circuits be the same and that the regulation in speed of the prime movers of the generators feeding the two systems can be adjusted so as to bring the phases of the two circuits together for paralleling.

If, however, the two circuits which are to be connected in parallel are fed from the same source of supply, the case may become involved. There will be no trouble in obtaining the correct phase rotation, for should the circuits not rotate alike, it is only necessary to transpose any two of the connections of either of the circuits (assuming that the circuits are three-phase). The other condition to be met is that the phases of both circuits to be paralleled are the same, i. e., the voltages in the phases to be paralleled must pass through their zero and maximum values at the same instant.

If neither circuit has transformers between the points where they are to be connected in parallel, their phases will coincide and there will be no trouble about connecting them in parallel. If one circuit has no transformers and the other has transformers, the phase relations of the two circuits will depend upon the kind of transformer connections employed. Suppose it is assumed that the raising transformers are connected delta to star and the lowering transformers are connected delta to delta. With these connections the phases of the two circuits will be 30 electrical degrees apart and it will be impossible to parallel the circuits. In other words one delta-star or star-delta transformer connection produces a phase displacement of 30 degrees. It will be obvious that a second delta-star or star-delta connection will restore the original phase relation. A delta-delta connection or a star-star connection does not affect the phase relations. If both circuits have an even number of star and even number of delta windings, the equivalent resultant will be the same as if all the connections were either delta-delta or star-star; hence, there will be no resultant change in phase relations and the two circuits can be paralleled with each other or with a circuit having no transformations. If, however, both circuits have an odd number of delta and an odd number of star windings, any attempt to resolve them into the equivalent number of delta-delta and star-star connections will leave one star and one delta; the effect is the same as if there was one stardelta connection in the circuits. This will twist the phase relations of the terminals 30 degrees out of phase from the generators. Since boilh circuits will have an
equivalent phase displacement, they can be paraileled with one another, but since both are 30 degrees out of phase with the generators, they cannot be paralleled with a line having no transformations; nor with a line having an even number of star and delta connections.

When the phase angles of the two transmission circuits (receiving their power from a common source) are known to be such as to permit of parallel operation it is then necessary to phase them out before connecting the circuits together. The phase rotation can be checked most readily by means of a polyphase motor connected first to one circuit and then to the other, being careful to connect the leads in the same order in each case. If the motor runs in the same direction from both circuits, the phase rotation of the circuits will be the same. The phase angle can be readily tested by means of a singlephase synchroscope*. In case a polyphase motor and synchroscope are not available, the phasing out of the circuits may be accomplished by the use of a voltmeter and transformer.** As an illustration, assume that from a 4400 volt bus in a generating station a 4400 volt transmission circuit extends for some distance from the station. A second transmission circuit fed from the same bus but containing both raising. and lowering transformers is to be paralleled at the farther end with the 4400 volt circuit which contains no transformers. The phase angles of the lines are assumed to be such as to permit paralleling the two circuits, with proper connections.

One of the transmission circuits is connected to one side of the paralleling switch as in Fig. I5 and the other circuit to the other side of the same switch. The three terminals on one side of the switch may be tagged r-2-3. Likewise the three terminals on the other side of the switch may be tagged 4-5-6. Connect any two terminals together (I and 4 in this case) by a jumper. Take voltage readings across the corresponding terminals 2 to 5,3 to 6 , and 3 to 5,2 to 6 . From these voltage readings it is a simple matter to indicate by a vector diagram the relative phase relations at the switch contacts of the two circuits to be paralleled. In the case illustrated, the readings indicate that the relative voltage relations on the two sides of the paralleling switches are as indicated by the full line delta $1-2-3$, and the broken line delta $4-5-6$. It will be seen that phase $I-3$ will parallel with phase $4-5$, that phase $r-2$ will parallel with phase $6-5$ and phase $2-3$ will parallel with phase $4-6$. In order to bring about this phase relation it will be necessary to change the transformer connections on the low-tension side of the lowering transformers, inside of the delta. That is the σ end of the transformer windings 5 - 6 will be connected to the 4 end of transfor-

[^9]mer 4-5. The 4 end of transformer $4-6$ will be connected to the 5 end of transformer, 5-6 and the 6 end of transformer $4-6$ will be connected to the 5 end of transformer 4-5. These changes will shift the position of the delta $4-5-6$ so that it will coincide with delta I-2-3. A further test of voltage between switch terminals 2 to 5 and 3 to 6 should indicate zero voltage across the switch terminals to be connected together, in which case the paralleling switches may be closed. In order to measure the voltage across the paralleling switch contacts it will usually be necessary to employ a potential transformer. This transformer and voltmeter should be capable of withstanding 1.73 times the voltage of the circuit for, with the connections given in Fig. 15, one reading gave 7610 volts, whereas the voltage of the circuit was only 4400 volts.

In case there is a ground on both systems, the placing of a jumper across two of the switch contacts would result in a short-circuit. This jumper should not be placed across the switch until it has been shown by connecting a transformer across these two contacts that no potential exists between them.

HEATING OF BARE CONDUCTORS IN AIR

If the circuit is long, the voltage will probably be high and consequently the current to be transmitted

small. In this case, the heating effect of the current will be small and unimportant. If, however, the circuit is short and an unusually large amount of power is to be transmitted, the current will be large. Since the $I^{2} R$ loss varies as the square of the current and directly as the resistance, the heat generated, if the current is large, may be sufficient to overheat or anneal the material of the conductors. In some cases of unusually large amounts of power being transmitted short distances, the heating effect of the currents resulting may be sufficient to limit the amount of power that can be transmitted at a given voltage.

Table XXIII should be consulted in cases where the circuit is short and the amount of power to be transmitted large. In this table are columns containing current values which have been calculated corresponding to 10, 25 and 40 degrees C. rise in temperature for various sizes of bare copper conductors suspended in still air at a temperature of 25 degrees C. In other words these current values are based upon absolute temperatures of 35,50 and 65 degrees C. The current values corresponding to a temperature rise of 40 degrees C .

ERRATUM

The formula used in calculating the values for table XXIII, page 43, embodied the only available information on this subject at the time the values were calculated. Recent exhaustive and carefully conducted tests, made by George E. Luke, indicate a wide difference in results from the table values, especially in the larger size conductors. The table values corresponding to $40^{\circ} \mathrm{C}$ rise should not, therefore, be used.

In the April, 1923 issue of the Electric Journal, page 127, appears an article entitled "Current Capacity of Wires and Coils" in which Mr. Luke gives the results of his tests and the empirical formula he developed as a result of the test.

MUTAWR3

TABLE XXIII-HEATING CAPACITY FOR $40^{\circ} \mathrm{C}$. RISE of bare copper conductors suspended out of doors

(absolute temperature of 65 degrees C.) have also been expressed in the form of k.v.a., three-phase values corresponding to various transmission voltages. Thus No. 0000 stranded bare copper conductors suspended in still air out doors at 25 degrees C. will carry 750 amperes with a temperature rise of 40 degrees C. (absolute temperature 65 degrees C.). If the transmission voltage is 220 volts, the corresponding k.v.a. value will be 285 k.v.a. three-phase and if the transmission voltage is 10000 volts, 13000 k.v.a. may be transmitted with the same temperature rise.

As indicated by foot notes the values of the table were calculated by formulas from Foster's Handbook as follows:-

$$
\begin{aligned}
& \text { Amperes }=1100 \sqrt{\frac{T D^{3}}{R}} \text { for stranded conductor.... (25) } \\
& \text { Amperes }=1250 \sqrt{\frac{T D^{3}}{R}} \text { for sotid conductor.......(26) }
\end{aligned}
$$

Where
$T=$ Temperature rise in degrees C .
$D=$ Diameter of conductors in inches.
$R=$ Resistance of conductors in ohms per mil-foot at final temperature.

CHAPTER VI

DETERMINATION OF FREQUENCY \& VOLTAGE

FREQUENCY DETERMINATION

Cost of Transformers-Sixty cycle transformers cost approximately 30 to 40 percent less than 25 cycle transformers; or stated another way, 25 cycle transformers cost approximately 40 to 66 percent more than 60 cycle transformers. The saving in first cost may vary between $\$ \mathrm{I} .50$ and $\$ 2.50$ per kv-a. in favor of 60 cycles. Assuming that the total kv-a. of transformer capacity connected to a transmission circuit is 2.5 times the kv-a. transmitted over the circuit, the saving in favor of 60 cycle transformers would be $\$ 3.75$ to $\$ 6.25$ or an average of $\$ 5.00$ per kv-a. transmitted. Assuming $20000 \mathrm{kv}-\mathrm{a}$. to be transmitted, the saving in cost at $\$ 5.00$ per $\mathrm{kv}-\mathrm{a}$. will be $\$ 100000$ in favor of 60 cycle transformers. The actual difference in cost will depend upon the type of the transformers, that is, whether water or self-cooled and also upon their average capacity. The difference in cost will be greater for the self-cooled type and for the smaller capacities.

Weight and Space of Transformers-The less weight of 60 cycle transformers makes them easier to handle and they require less space for installation.

Higher Reactance-Inductive reactance at 60 cycles is 2.4 times its value at 25 cycles. This tends to produce poorer voltage regulation of the circuit. Higher reactance has one advantage for the larger systems in that it tends to limit short-circuit currents and thus assists the circuit opening devices to function properly. By virtue of the higher reactance it might be possible in some cases to obtain sufficient reactance in the transformers without the addition of current limiting reactance coils.

Efficiency-The efficiency of 60 cycle transformers is usually 0.25 to 0.50 percent higher than for 25 cycle transformers.

Charging Current-At 25 cycles both the charging current and the reactance are approximately 42 percent of their values for 60 cycles. This tends to give better regulation and usually higher efficiency in transmission. On the other hand, the higher transmission efficiency may be offset by the slightly lower efficiency of 25 cycle transformers. In cases of very long circuits (particularly if the circuits are in duplicate and both in service) or of transmission systems embracing many miles of high tension mains and feeders, the charging currents may be so great as to limit the choice in transmission voltage. On the other hand large charging currents may be permitted, provided under excited synchronous motors are used at various parts of the transmission
system for partially neutralizing this charging current and for maintaining constant voltage.

Inductive Disturbances-Lightning, switching and cther phenomena cause disturbances on conductors of transmission circuits. The frequency of these disturbances is independent of that impressed on the system. After the removal of the disturbing influence they oscillate with the natural frequency of the line.

The natural frequency of the line is far above commercial frequencies but, if the transmission line is long, there may be some odd harmonic present in the fundamental impressed frequency which corresponds with the natural period of the line. This might tend to produce an unstable condition or resonance. This condition is somewhat less likely to occur at 25 cycles.

Summary-Although there are a number of large 25 cycle transmission systems in operation, they were mostly installed before the design of 60 cycle converting apparatus and electric light systems had reached their present state of perfection. Unless it is desirable to parallel with an existing 25 cycle system located in adjoining territory without the introduction of frequency changers, it is now quite general practice to choose the frequency of 60 cycles.*

VOLTAGE DETERMINATION

From a purely economic consideration of the conductors themselves, Kelvin's law for determining the most economical size of conductors would apply. Kelvin's law may be expressed as follows:-
"The most economical section of a conductor is that which makes the annual cost of the $I^{2} R$ losses equal to the annual interest on the capital cost of the conducting material, plus the necessary annual allowance for depreciation". That is, the economical size of conductor for a given transmission will depend upon the cost of the conducting material and the cost of power wasted in transmission losses. The law of maximum economy may be stated as follows:-"The annual cost of the energy wasted per mile of the transmission circuit added to the annual allowance per mile for depreciation and interest on first cost, shall be a minimum".

Attempts have been made to determine by mathematical expression the most economical transmission voltage, all factors having been taken into account. There are so many diverse factors entering into such a

[^10]treatment as to make such an expression complicated， difficult and unsatisfactory．There are many points re－ quiring careful investigation，not embraced by Kelvin＇s law，before the proper transmission voltage can be de－ termined．Some of these points are given below．

Cost of Conductors－For a given percentage energy loss in transmission，the cross－section and consequently the weight of conductors required by the lower and medium voltage lines（up to approximately 30000 volts）to transmit a given block of power varies in－ versely as the square of the transmission voltage．Thus if this voltage is doubled，the weight of the conductors will be reduced to one fourth with approximately a cor－ responding reduction in their cost．This saving in con－ ducting material for a given energy loss in transmission becomes less as the higher voltages are reached，becom－

TABLE E 1－WEIGHT OF BARE COPPER CONDUCTORS

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{$$
\left\lvert\, \begin{aligned}
& 0 \\
& 2 \\
& 0 \\
& \infty \\
& \infty
\end{aligned}\right.
$$} \& \multirow{4}{*}{$$
\begin{gathered}
\text { AREA IN } \\
\text { CIRCULLAR } \\
\text { MILS }
\end{gathered}
$$} \& \multicolumn{6}{|c|}{WEIGHT In Pounds}

\hline \& \& \multicolumn{3}{|c|}{PER 1000 FEET OF CIRCUIT} \& \multicolumn{3}{|c|}{PER MILE OF CIRCUIT}

\hline \& \& \multicolumn{3}{|c|}{NUMBER OF CONDUCTORS} \& \multicolumn{3}{|r|}{NUMBER OF CONDUCTORS}

\hline \& \& ONE \& two \& THRE \& ONE \& Two \&

\hline \& \& $$
\begin{aligned}
& 6800 \\
& \hline 5870 \\
& \hline 5850 \\
& \hline 560
\end{aligned}
$$ \& $$
\begin{aligned}
& 1,360 \\
& 113,748 \\
& 1,120
\end{aligned}
$$ \& $$
\begin{aligned}
& 18540 \\
& 176680 \\
& 18680
\end{aligned}
$$ \& $$
\begin{aligned}
& 30630 \\
& 39959 \\
& 29095
\end{aligned}
$$ \& \&

\hline \& ， 7808088 \& S 250
4630
4.3080 \& 250 \& 1， 178 \& \& \&

\hline \& （1400008 \& $$
\begin{array}{|l}
\hline 4320 \\
43010 \\
3710
\end{array}
$$ \& $$
\begin{aligned}
& 860 \\
& 8.8040 \\
& 7420
\end{aligned}
$$ \& \& （2810 \& 39 \&

\hline \& ，11080808 \& 3400
3980
2980 \& 6800
6886
586 \& $\begin{array}{r}1020 \\ 920 \\ 879 \\ \hline 70\end{array}$ \& 17395 \& \&

\hline \& \& \& － \& 8340
7810
8 \& 4678
3834

388 \& \&

\hline \& \& \& 4640
4320

4020 \& \& $$
\begin{aligned}
& 12550 \\
& 1060, \\
& 1060
\end{aligned}
$$ \& \& 1839

\hline \& 650008
500808

5008 \& $$
\begin{array}{|c}
\begin{array}{c}
1850 \\
18508 \\
17850
\end{array} \\
\hline 1840
\end{array}
$$ \& \& － 5 S50 \& \& 1.195 \&

\hline \& 450088
458080

3 \& | 1390 |
| :--- |
| 1288 |
| 1080 | \& 2780

2480
2180
1 \& $\begin{array}{r}41788 \\ 3 \\ 3 \\ 324 \\ \hline\end{array}$ \& \& \&

\hline \& \& ¢ 926 \& ¢ \& 2737． \& － $\begin{aligned} & 4889 \\ & 3 \\ & 3\end{aligned}$ \& Y778
6896

689 \& $$
1034
$$

\hline 0 \& ， 168000 \& | 518 |
| :--- |
| $\substack{\text { 426 }}$ |
| 226 | \& 1036 \& ， 1554 \& 2735

1721 \& 5478
342
3 \&

\hline 2 \& \& $\substack { \text { 226 } \\ \begin{subarray}{c}{258 \\ i 63{ \text { 226 } \\ \begin{subarray} { c } { 2 5 8 \\ i 6 3 } } \end{subarray}$ \& 5166 \& 年 \& \& 2 \&

\hline | 3 |
| :--- | \& 52600 \& 163 \& \& 489 \& \& \&

\hline \& $$
\begin{aligned}
& 41700 \\
& 33808 \\
& 2680
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& 258 \\
& 204 \\
& \hline 062
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 388 \\
& 3828 \\
& 2436
\end{aligned}
$$
\] \& \& （3628 \& ［1043

\hline $\frac{5}{6}$ \& P\％ 380 \& \％í \& 1828 \& ， \& 26 \& \& ＇1868

\hline
\end{tabular}

ing increasingly less as voltages go higher．This is for the reason that for the higher voltages at least two other sources of losses，leakage over insulators and the escape of energy through the air between the conductors （known as＂corona＂）appear．In addition to these two losses，the charging current，which increases as the transmission voltage goes higher，may either increase or decrease the current in the circuit depending upon the power－factor of the load current and the relative amount of the leading and lagging components of the current in the circuit．Any change in the current of the circuit will consequently be accompanied by a corre－ sponding change in the $I^{2} R$ loss．In fact，these sources of additional losses may，in some cases of long circuits or extensive systems，materially contribute toward limit－ ing the transmission voltage．The weight of copper
conductors，from which their cost may readily be cal－ culated，is given in Table E－I．As an insurance against breakdown，important lines frequently are built with circuits in duplicate．In such cases the cost of conductors for two circuits should not be overlooked．

Table E－1 contains the weights of bare stranded copper cables per 1000 feet of circuit，also per mile of circuit．For the purpose of facilitating rapid calcula－ tion for any given case，the weights are given corre－ sponding to one，two and three conductors for these two lengths of circuit．

Reduced Electric Surges－The better insulation necessitated by higher transmission voltages tends to make the circuit more secure against ordinary disturb－ ances．Also the smaller currents resulting with the higher voltages cause less disturbance in the circuit in the case of grounds，short－circuits，switchings，light－ ning and other disturbances．

Less Reactance Volts Drop－Since the current cor－ responding to higher transmission voltages goes down as the voltage goes up，the voltage necessary to over－ come the reactance of the circuit will be less，and the percentage reactance volts much less for higher volt－

TABLE F－PRESENT RELATIVE COSTS OF
HIGH TENSION APPARATUS HIGH TENSION APPARATUS
Expressed in Percent（ 6600 Volt Costs Taken as 100% ）

		80\％		適：	\％	咢	8	新	8\％	\％\％	8is	8	
Trans－ formers Switche			10	15410	${ }^{206} 11$	1081	115	125	150	175 255	200 420	22	25
Electro－ lytic Ar－ resters		151	160	50									
Insulators	100	135	185	5536	5 43	130	650	1250	3500	5500	6500		

ages．Thus，if the transmission voltage is doubled，the current will be halved and for the same spacing of conductors the reactance volts drop will be one half，re－ sulting in one fourth the percentage of the reactance－ volts drop．

Cost of Transformers－If the transmission voltage exceeds i3 200 volts，banks of step－up transformers will！ be required of sufficient capacity to transform ali of the $\mathrm{kv}-\mathrm{a}$ ．to be transmitted．A still greater capacity of step down transformers will be tequired to reduce the voltage to that suitable for operating motors and lights． In some cases two reductions from the transmission circuit voltage may be required，the first usually re－ ducing to 22000 ， 11000 or 6600 volts for general dis－ tribution and the second reducing from the general dis－ tribution voltage to the proper voltage for motors and lights．The net result is that the total capacity in trans－ formers connected to a transmission system employing toth step up and step down transformers may vary from a minimum of two to a maximum of about four times the kv －a．transmitted over the high－tension cir－ cuits．The average condition we will assume as 2.5 times the kv－a．to be transmitted．

The cost of power transformers at the present time
for 66000 volts service will vary between $\$ 1.25$ to $\$ 3.00$ for 60 cycle and $\$ 2$ to $\$ 5$ per kv-a. for 25 cycle service, depending upon their type and capacity. The total cost per kv -a. of transformers on a system would therefore be represented by approximately 2.5 times the above costs. The present relative costs of transformers for different voltages are given in Table F. For instance if the transmission voltage is increased from 33000 to 66000 volts the transformers will cost in the neighborhood of $150 \div 115$ or 31 percent more than they would cost for 33000 volts. Knowing the amount of power to be transmitted, an approximate estimate may be made as to the additional cost of the necessary transformers for a higher voltage.

Cost of Insulators-Table F values indicate a wide difference in the cost of insulators for the higher volt-

Efficiency-The efficiency of transformers will be slightly higher for the lower voltages.

Small Customers - The furnishing of power to small customers at points along the transmission circuits should receive careful consideration. The cost of switching apparatus, lightning arresters and transformers required to permit service being given to such customers will be less for the lower voltage.

Charging Current - The amount of current recuired to charge the transmission circuits varies approximately as the transmission voltage. Therefore the charging current, expressed in $\mathrm{kv}-\mathrm{a}$. varies approximately as the square of the voltage. This the charging current required for a 33000 volt circuit is approximately one half and the charging kv -a. one fourth that of a 66000 volt circuit.

TABLE G-FORM OF TABULATION FOR DETERMINING VOLTAGES AND CONDUCTORS

BASED ON THE TRANSMISSION OF 10000 KV-A. FOR TEN MILES AT 80 PERCENT POWER-FACTOR LAGGING, 60 CYCLES, THREE PHASE

VOLTAGE			CONDUCTORS							VOLTAGE DROP AT FULL LOAD			FIRST COST						ANNUAL OPERATING COST			
						TOTAL 1^{2} R LOSS											$\begin{aligned} & \infty \\ & \stackrel{\pi}{0} \\ & \vdots \\ & 5 \\ & 5 \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{5} \\ & \stackrel{0}{\circ} \end{aligned}$				$\stackrel{\frac{1}{\gtrless}}{\circ}$
						$\begin{gathered} 10.000 \\ \text { KVA } \end{gathered}$		$\begin{aligned} & 2500 \\ & \mathrm{KVA} \\ & \hline \end{aligned}$														
							$\begin{array}{\|l\|} \hline \underline{z} \\ 0,0 \\ 0,0 \\ \hline \end{array}$															
16.500	9526	350	500000	43	1.17	430	5.3	27	1707470	4.3	21.7	7.5	86098		\%	00	700	0882	/8453			39616
			300000	146670	1.96	0	9.0	45	2857950	. 2	22.7	20	36670	75000	30	1000	900	116570	6994	11657	28580	4723
			4000	82	3.50	1286	16.1	80	5102700	2.9	24.2	25	20512	75000	300	1000	900	10041	6025	10041	51027	67
22.000	12702	262	0000	146670	1.96	403	5.0	25	1598700	4.0	12.8	11	36670	76500	300	050	1200	118420	7105	11842	15987	34938
			* 000	82050	3.50	720	9.0	45	2857950	7.2	13.6	14	20512	76 s00	300	050	1200	102262	6136	10226	28580	44942
			- 0	51630	5.55	1143	14.3	71	4534760	11.5	4.1	17.5	12910	76500	30	1050	1200	94660	5680	9466	45 348	6049
33000	19053	175	\# 00	65100	4.42	406	5.1	25	1609650	4.0	6.5	7.0	16275	82500	330	1600	1980	10565	6340	10565	16097	33002
			* 2	32460	8.83	811	10.1	50	3215650	8.0	6.8	10.5	8117	82500	3300	1600	1980	97497	5850	9749	3215	+7
			- 4	20430	4.1	1295	16.2	81	5140660	12.9	7.1	14.5	5107	82500	330	600	1980	94487	5670	9448	S1407	66525
44000	25404	131	-2	32460	8.83	454	5.7	29	1805290	4.6	3.9	6.0	8117	90000	3450	220	3960	107727	6463	10772	1805	35288
			5	16170	17.8	916	11.4	58	3639780	9.1	4.0	9.5	4040	90000	3450	2200	3960	103650	6219	10365	36398	5298

ages: thus the increased cost of 66000 volt insulators ahove the cost of 33000 volt insulators is stated as $3500 \div 650$ or 540 percent.

Cost of Other Apparatus-The cost of lightning arresters, high-tension circuit breakers and general insulation increase with the voltage. The increased cost of these items, however, may not have sufficient weight to materially influence the selection of the transmission voltage.

Cost of Buildings - Lower voltage transformers, switching equipment and lightning arresters require less space for insulation. If this apparatus is to be placed indoors, the cost of necessary buildings may be less. The amount of real estate required may also be less in case of the lower voltage.

Rclatize Cost Values - Table F contains relative cost values for different transmission voltages. They indicate approximately the variation, at the present time, in cost of the principal material which is affected by a change in transmission voltage. Cost values are very unstable at present but the table will serve in a general way to indicate comparative costs.

Summary - In deciding upon the transmission voltage, careful and full consideration should be given to the present (or probable future) voltage of any neighboring or adjacent systems. There is an increasing tendency to combine generating and transmission systems for purposes of economy, and insurance against breakdown in service. If a possible future consolidaton is not kept in mind when selecting the transmission voltage, a voltage may be decided upon which would render it impossible to parallel with' a neigliboring system, except through connecting transformers. In this case the transformers of the two systems would probably not be interchangeable for service on either system.

If the contemplated transmission systen is remote from any existing system, a study of the initial and operating costs should be made corresponding to varions sizes of conductors and to various assumed transmission voltages. A suggested talulation for such comparisons is shown in Table G. In this table, it is assumed that 10000 kv -a. (8000 kw at 80 percent power-factor ingging), is to be transmitted a distance of ten miles at 60 cycles, three-phase for ten hours, followed by
$2500 \mathrm{kv}-\mathrm{a}$. (2000 kw at 80 percent power-factor lagging) for 14 hours. Delta spacing is assumed of three feet for the lower two and four feet for the higher two voltages. Raising and lowering transformers will be required of an assumed total capacity of 2.5×10000 or 25000 kv -a. Conductors of hard drawn stranded copper are employed, the resistance of the conductors being taken at a temperature of 25 degrees C. from Table II.

The cost of the pole or tower line, the right of way, buildings and real estate for buildings is not included in this tabulation. Neither is the difference in transformer efficiencies taken into account. The difference in these items will not be sufficient in this case greatly to influence the choice of the transmission voltage, because all of the voltages compared are relatively low. Because of the large amount of power to be transmitted a comparatively short distance, the approximate rule of 1000 volts per mile for short lines does not hold true for this problem.

Assuming for the sake of argument that the price values given in this form of tabulation are approximately correct for this problem and that there are no neighboring transmission systems, then the problem reduces to cost economics.

Since both the first and operating costs in Table G are higher for 16500 volts than they are for 22000 volts, it is evident that 16500 volts is economically too low a voltage.

In the consideration of 22000 volts it will be seen that, of the three sizes of conductors, the largest size (300000 circ. mil.) will be the cheaper in the end. Thus, if No. 000 were selected, the first cost would be \$16 I 59 less than for 30000 circ. mil conductors, but the operating cost (due to greater loss in transmission) will be approximately $\$ 10000$ a year more. For a similar reason No. o conductors will be disqualified.

In the consideration of 33000 volts, No. 00 conductors will be the choice and in the consideration of 44000 volts, No. 2 conductors will be the choice. The choice then comes down to the following:-

Voltage Transmission	Conductors	Total Cost First	Annual Operating Cost
22000	300000 circ. mils	$\$ 118420$	$\$ 34934$
33000	No. 00		
44000	No. 2	105655	33002
107727	35288		

It will thus be seen that a voltage of 33000 volts and No. oo conductors are the most economical of those tabulated. The transmission loss will be 5.1 percent, the reactance 6.5 percent and the voltage drop seven percent at full load. The value assigned as the cost per
kw-hour for power lost in transmission will obviously have great influence in determining the proper economic size of conductors for any given transmission voltage. The cost of the copper will have a relatively greater importance on longer lines. As a matter of fact, a larger s:ze than any of the conductors listed in Table G wculd be still more economical, under the conditions given. There have been numerous mistakes made in under-estimating the ultimate demand for electrical power and consequently adopting too low a transmission voltage. When in doubt the higher voltage will, in the course of time, most likely justify its adoption by reason of future growth not apparent at the time the choice is made.

The design and construction of transformers, circuit breakers, lightning arresters, etc. for a multiplicity of high-tension voltages is expensive. The manufacturers of such apparatus are endeavoring to standardize transmission voltages for the purpose of minimizing the number of designs of high-tension apparatus. This point could with mutual profit be taken up with the
TABLE H-COMMON TRANSMISSION VOLTAGES

| Length of Line | Voltages |
| ---: | ---: | ---: |
| I to 3 miles | 550 or 2200 volts |
| 3 to 5 miles | 2200 or 6600 volts |
| 5 to 10 miles | 6600 or 13200 volts |
| 10 to 15 miles | 13200 or 22000 volts |
| 15 to 20 miles | 22000 or 33000 volts |
| 20 to 30 miles | 33000 or 44000 volts |
| 30 to 50 miles | 44000 or 66000 volts |
| 50 to 75 miles | 66000 or 88000 volts |
| 75 to 100 miles | 88000 or 110000 volts |
| 100 to 150 miles | 110000 or 132000 volts |
| 150 to 250 miles | 132000 or 154000 volts |
| 250 to 350 miles | 154000 or 220000 volts |

manufacturers before any particular voltage is decided upon.

The amount and cost of power to be transmitted is a very important factor in determining the economic transmission voltage. For average conditions isolated from existing transmission lines the voltages shown in Table H have been quite generally used. For exceptional cases, exceptional values will be used. For example if $40000 \mathrm{kv}-\mathrm{a}$. is to be transmitted 20 miles, 66000 volts or higher might be used. On the other hand if a very small amount of power is to be transmitted, lower voltages would probably be selected.

At the present time the prospects seem bright for the standardization of the following "normal" system voltages.

$$
\begin{array}{rr}
44000 & 132000 \\
66000 & 154000 \\
88000 & *_{187000} \\
110000 & 220000
\end{array}
$$

*The use of 187000 volts is likely to occur only in case it is found necessary to have a voltage between 154000 and 220000 volts.

CHAPTER VII

PERFORMANCE OF SHORT TRANSMISSION LINES

(EFFECT OF CAPACITANCE NOT TAKEN INTO ACCOUNT)

THE PROBLEMS which come under the general heading of short transmission lines are those in which the capacitance of the circuit is so small that its effect upon the performance of the circuit may, for all practical purposes, be ignored. The effect of capacitance is to produce a current in leading quadrature with the voltage, usually designated as charging current. This leading component of current in the conductor does not appear in the load current at the receiving end of the circuit. It is zero at the receiving end of the circuit but increases at nearly a uniform rate as the sending end of the circuit is approached, at which point it ordinarily becomes a maximum.

The effect of this charging current flowing through the inductance of the circuit is to increase the receiv-ing-end voltage and therefore to decrease the voltage drop under load. Since the charging current is 2.4 times greater for a frequency of 60 cycles than it is for a frequency of 25 cycles, its effect upon the voltage regulation will be considerably greater at 60 cycles than at 25 cycles. The effect of charging current upon the voltage regulation will also increase as the distance of transmission is increased.

If the circuit were without capacitance, there would be no charging current and consequently the mathematical and the two graphical solutions (impedance methods) which follow under the general heading of "short transmission lines" would all produce accurate results. All circuits, however, have some capacitance, and as the length or the frequency of the circuit increases, these three methods will therefore yield results of increasing inaccuracy. Some engineers consider these impedance methods sufficiently accurate for circuits 20 to 30 miles long while others use them for still longer circuits. To act as a guide, Table J indicates the error in the supply voltage as determined by these impedance methods, for circuits of different lengths corresponding to both 25 and 60 cycle frequencies. These three impedance methods produce practically the same results, and the sending end voltage, as determined by any of these methods, is always slightly high. In other words the effect of the charging current is to reduce the voltage necessary at the sending end, for maintaining a certain voltage at the receiving end of the circuit. The error referred to below for the three methods is expressed in percentage of the receiving end voltage. Thus, for a 30 mile, 25 cycle circuit, the error is 0.04 percent, and for a 30 mile, 60 cycle circuit the error is 0.2 percent. If an error of 0.5 percent is con-
sidered permissible, then the Dwight or the Mershon Chart methods, or the corresponding mathematical solution, may be used for 25 cycle circuits up to approximately 125 miles, and for 60 cycles circuits up to approximately 50 miles. Of course these impedance methods may be used for still longer circuits by making proper allowance to compensate for the fundamental error.
diagram illustrating a short transmission circuit
Fig. I6 illustrates the relation between the various elements in short transmission circuits, when the effect of capacitance and leakage is not taken into account. The current flowing in such a circuit meets two opposing e.m.f's.; i.e. of resistance in phase with the current and reactance in lagging quadrature with the current.

The upper part of Fig. 16 illustrates such a circuit schematically and the lower part vectorially. The volt-

TABLE J

Length of Circuit (Miles)	Error in Percentage of Receiver Voltage	
	25 cycles	60 cycles
20	+0.02	+0.10
30	+0.04	+0.2
50	+0.1	+0.5
100	+0.4	+1.9
200	+1.4	+8.0
300	+3.3	+18.0

age component required at the sending end to overcome the resistance $I R$ of the circuit is indicated in the vector diagram by a short line parallel with the base line I, representing the phase of the current. These lines are drawn parallel, since the resistance voltage drop is in phase with the current. The voltage component required at the sending end to overcome the reactance $I X$ of the circuit is indicated by a line in quadrature or at right angles, to the phase of the current. The reactance is in quadrature with the current for the reason that the rate of change in the magnetic field (consequently the e.m.f. of self-induction or reactance) surrounding the conductor is greatest when the current is passing through zero. The hypotenuse $I Z$ of this small right angle impedance triangle represents the impedance voltage of the circuit. It represents the direction and value of the resulting voltage necessary to overcome the combined effect of the resistance and the reactance of the circuit.

The relative values and phases of the receiving and
sending end voltages, and their phase relations with the current I, are also indicated on the vector diagram. This diagram is plotted for a receiving end load based upon 80 percent power-factor lagging. $E_{:}$represents the value of the voltage required at the sending end of the circuit to maintain the voltage E_{r} at the receiving end, when the impedance of the circuit is $I Z$ and the receiving end power-factor is 80 percent lagging. The phase angle θ_{Δ} indicates the amount by which the current lags behind the voltage at the sending end; $\cos \theta_{s}$ being the power-factor of the load as measured at the sending end. Likewise $\cos \theta_{r}$ is the power-factor of the load at the receiving end.

TAPS TAKEN OFF CIRCUIT

Usually the main transmission circuit is tapped and power taken off at one or more points along the circuit. The performance of such a circuit must be calculated by steps thus:-Assume a circuit 200 miles long with 10000 kw taken off at the middle and 10000 kw at the receiving end. From the conditions known or assumed at the receiving end, calculate the corresponding send-

FIG. 16-DIAGRAMS FOR SHORT TRANSMISSION LINES Impedance method, capacitance effect not taken into account. ing end conditions, that is the voltage, power and power-factor at the substation in the middle of the circuit. To the calculated value of the actual power in kilowatts add the losses at the substation in the middle of the circuit. Any leading or lagging component in the substation load current must also be added algebraically, in order to determine the power-factor at the sending side of the substation. This will then be the receiving end conditions at the substation in the middle of the circuit, from which the corresponding conditions at the sending end of the circuit may be calculated. If the sending end conditions are fixed, and the receiving end conditions are to be determined, the substation losses will in such case be subtracted in place of added.

CABLE AND AERIAL LINES IN SERIES-COMPOSITE LINES
In some cases it is necessary to place part of a transmission circuit underground, and in other cases it may be desirable to use two or more sizes of conductors in series. The result will be that the circuit constants will be different for the various sections. If the effect of capacitance be neglected, the combined circuit may
be treated as a single circuit having a certain total resistance R and a total reactance X.

PROBLEMS
Later a table will be presented listing a large number of transmission circuits from 20 to 500 miles long, at both 25 and 60 cycles operating at from 10000 to 200000 volts. These problems are numbered from I to 64. When a reference is made in the following to some problem number it will refer to one of this list of problems.

SYMBOLS

The symbols which will be employed in the following treatment are given below:-

FOR LOAD CONDITIONS

$K v-a_{\mathrm{r}}=$ (total) at receiving end.
$K v-a_{\mathrm{rn}}=$ (one conductor to neutral) at receiving end.
$K v-a_{s}=$ (total) at sending end.
$K v-a_{\mathrm{sn}}=$ (one conductor to neutral) at sending end.
$K w_{\mathrm{r}}=\mathrm{Kw}$ (total) at receiving end.
$K w_{\mathrm{ra}}=K w$ (one conductor to neutral) at receiving end.
$K w_{s}=K w$ (total) at sending end.
$K w_{\mathrm{sn}}=\mathrm{Kw}$ (one conductor to neutral) at sending end.
$E_{\mathrm{r}}=$ Voltage between conductors at receiving end.
$E_{\mathrm{rn}}=$ Voltage from conductors to neutral at receiving end.
$E_{s}=$ Voltage between conductors at sending end.
$E_{\text {*n }}=$ Voltage from conductors to neutral at sending end.
$I_{r}=$ Current in amperes per conductor at receiving end.
$I_{3}=$ Current in amperes per conductor at sending end.
$\operatorname{Cos} \theta_{r}=$ Power-factor at receiving end.
$\operatorname{Cos} \theta_{4}=$ Power-factor at sending end.
FOR ZERO LOAD CONDITIONS
The symbols corresponding to zero load conditions are as indicated above for load conditions with the addition of a sub zero.

THE FUNDAMENTAL OR LINEAR CONSTANTS
The fundamental, or "linear constants" of the circuit for each conductor per unit length are represented as follows:-
$r=$ Linear resistance in ohms per conductor mile (taken from Table II)
$x=$ Linear reactance in ohms per conductor mile (taken from Table IV or V)
$b=$ Linear capacitance susceptance to neutral in mhos per conductor mile (taken from Table IX or X)
$g=$ Linear leakage conductance to neutral in mhos per conductor mile. (This represents the direct escape of active power through the air between conductors and of active power leakage over the insulators. These losses must be estimated for conditions similar to these of the circuit under consideration. For all lines except those of great length and high voltage it is common practice to disregard the effects of leakage or corona loss and to take g as equal to zero.
$z=$ Linear impedance $=\sqrt{\sqrt{3}^{3}+y^{2}}$
$y=$ Linear admittance $=\sqrt{g^{2}+b^{2}}$
If the length of each conductor of the circuit in unit length is designated as l we have

$$
r l=\text { Total resistance in ohms per conductor }=R
$$

$x l=$ Total reactance in ohms per conductor $=X$
$b l=$ Total susceptance in mhos per conductor to neutral
$g l=$ Total B $=G$
then,
$Z=v \overline{R^{2}+X^{2}}$ ohms
and, $V=\sqrt{G^{2}+B^{2}}$ mhos
$I R=$ Voltage necessary to overcome the resistance.
$I X=$ Voltage necessary to overcome the reactance.
$I Z=$ Voltage necessary to overcome the impedance.
METHODS FOR DETERMINING THE CONSTANTS OF TEE CIRCUIT
Several different methods for determining the fundamental constants of the circuit are in use. These methods are illustrated below.

Problem-Find the resistance volts $I R$ and the reactance volts $I X$ in percent of delivered volts E_{r} for the following conditions:-100 kw active power to be delivered at 1000 volts, three-phase, 60 cycles, over three No. 0000 stranded, hard drawn, copper conductors, circuit one mile long, with a symmetrical delta arrangement of conductors, two foot spacing, the temperature being taken as 25 degrees C.

Resistance of one mile of single conductor $=0.277$ ohm (from Table II)

Reactance of one mile of single conductor $=0.595$ ohm (from Table V)
Method No. I-When three-phase circuits first came into use, it was customary (and correct), in determining the loss and voltage regulation, to consider them equivalent to two single-phase circuits, each singlephase circuit transmitting one-half the power of the three-phase system. This practice is still followed by some engineers; thus:-

$$
\begin{aligned}
& \frac{50000}{1000}=50 \text { amp. per conductor for each single-phase cir- } \\
& \text { cuit. }
\end{aligned} \begin{aligned}
& \frac{0.277 \times 2 \times 50}{1000} \times 100=2.77 \% \\
& \frac{0.595 \times 2 \times 50}{1000} \times 100=5.95 \% \\
& \begin{array}{l}
\text { resistance volts drop of } \\
\text { single-phase circuit. }
\end{array} \\
& \begin{array}{l}
\text { reactance volts drop of } \\
\text { single-phase circuit. }
\end{array}
\end{aligned}
$$

Method No. 2 consists of treating the case as a straight three-phase problem. Thus:

$$
\left.\begin{array}{l}
\frac{100000}{1000 \times 1.732}=57.73 \begin{array}{l}
\text { amperes per conductor of three- } \\
\text { phase circuit. }
\end{array} \\
\frac{0.277 \times 1.732 \times 57.73}{1000} \times 100=2.77 \%
\end{array} \begin{array}{l}
\text { resistance volts } \\
\text { drop of three- } \\
\text { phase circuit. }
\end{array}\right]-5.95 \% \begin{aligned}
& \text { reactance volts } \\
& \text { drop of threc- } \\
& \text { phase circuit. }
\end{aligned}
$$

Method No. 3 consists in assuming one-third the total power transmitted over one conductor with neutral or ground return (resistance and reactance of return being taken as zero). Such an equivalent circuit is shown by diagram in the upper part of Fig. i6. Thus the circuit constants for the above problem would be determined as follows:-

Watts per phase $=\frac{100000}{3}=33333$ watts.
Volts to neatral $=1000 \times 0.5774$ or 577.4 volts.
$\frac{33333}{577.4}=57.74 \begin{gathered}\text { amperes per conductor; (same as for } \\ \text { method No. 2) }\end{gathered}$
$\frac{0.277 \times 57.74}{577.4} \times 100=\begin{aligned} & 2.77 \% \text { resistance volts drop of } \\ & \text { three-phase circuit. }\end{aligned}$
$\frac{0.595 \times 57.74}{577.4} \times 100=\begin{aligned} & 5.05 \% \text { reactance volts drop of } \\ & \text { three-phase circuit. }\end{aligned}$

It will be seen that all three methods produce the same results. Method No. 3 seems the most readily adaptable to various kinds of transmission systems and will be used exclusively in the treatment of the problems which will follow.

APPLICATION OF THE TABLES

Numerous tables of constants, charts, etc., have been presented, and a few more will follow. Chart II plainly indicates the application of these tables, etc. to the calculation of transmission circuits and the sequence in which they should be consulted.

graphical vs. mathematical solutions

At the time of the design of a transmission circuit the actual maximum load or power-factor of the load that the circuit will be called upon to transmit is seldom known. An unforseen development leading to an increased demand for electrical energy may result in a greatly increased load to be transmitted. The actual length of a circuit (especially when located in a hilly or rolling country) is never known with mathematical accuracy. Moreover, the actual resistance of the conductors varies to a large extent with temperature variations along the circuit.

When it is considered that there are so many indeterminate variables which vitally affect the performance of a transmission circuit, it would seem that a comparatively long and highly mathematical solution for determining the exact performance, necessarily based upon rigid assumptions, is hardly justified. In many cases the economic loss in transmission will determine the size of conductors and, if the circuit is very long, synchronous machinery is likely to be employed for controlling the voltage.

Mathematical solutions have one very important virtue, in that they provide an entirely different but parallel route in the solution of such problems, and therefore are valuable as a check against serious errors in the results obtained by the more simple graphical solutions.

In the following treatment, simple but highly accurate graphical solutions will be first presented, for determining the performance not only of short transmission lines, but also for long lines. For short lines the Dwight and the Mershon charts will be used. For long lines, where the effect of capacitance must be accurately accounted for, the Wilkinson Charts, supplemented with vector diagrams will be used. These three forms of graphical solutions will, when correctly applied to any power transmission problem, produce results in which the error will be much less than that due to irregularities in line construction and inaccurate assumptions of circuit constants. These three graphical solutions will in each case be followed by mathematical solutions. In the case of short lines the usual formulas employing trigonometric functions will be employed, and in the case of long lines the convergent series, and two different forms of hyperbolic solutions will be employed.

GRAPHICAL SOLUTION

When the receiving end load conditions, that is, the voltage, the load and the power-factor are known, the $I R$ volts required to overcome the resistance and the $I X$ volts required to overcome the reactance of the circuit, may be readily calculated.

On a piece of plain paper or cross-section paper divided into tenths, a vector diagram of the current and of the various voltage drops of the circuit may be laid out to a convenient scale. Whichever kind of paper is used, the procedure will be as in the following example.

Single-Phase Problem-Find the voltage at the sending end of a single-phase circuit 16 miles long, consisting of two stranded, hard drawn No. ocoo copper conductors spaced three feet apart. Temperatures taken as 25 degrees C. Load conditions at receiving end assumed as $4000 \mathrm{kv}-\mathrm{a}$ (3200 kw at 80 percent powerfactor lagging) 20000 volts, single-phase, 60 cycles.

$$
\begin{aligned}
K v-a_{\mathrm{rn}} & =\frac{4000}{2}=2000 \mathrm{kv-a} \text { to neutral. } \\
E_{\mathrm{rn}} & =\frac{20000}{2}=10000 \text { volts to neutral. } \\
I_{\mathrm{r}} & =\frac{2000000}{10000}=200 \text { amperes per conductor. }
\end{aligned}
$$

The fundamental constants per conductor are:-

$$
\left.R=16 \times 0.277{ }^{\prime} \text { from Table } I I\right)=4.432 \text { ohms }
$$

$$
X=16 \times 0.644(\text { from Table } V)=10.304 \mathrm{ohms}
$$

and $I R=200 \times 4.432=886$ volts resistance drop

$$
=\frac{886}{10000} \times 100=8.86 \text { percent }
$$

$I X=200 \times 10.304=2061$ volts reactance drop

$$
=\frac{206 \hat{\mathrm{I}}}{10000} \times 100=20.61 \text { percent }
$$

Having determined the above values a vector diagram may be made as follows:-

Draw an are quadrant having a radius of 10000 (the receiving end voltage to neutral) to some convenient scale, as shown in Fig. 17. The radius which represents the base, or horizontal line will be assumed as representing the phase of the current at the receiving end of the circuit. Divide this base line into ten equal parts. These ten divisions will then correspond to loads of corresponding power-factors. Since a load has been assumed having a power-factor of 80 percent lagging, draw a vertical line from the 0.8 division on the base line, until it intersects the arc of the circle. From this point of intersection draw a line to the right and parallel with the base line. To the same scale as that plotted for the receiver voltage (10000) measure off to the right 886 volts to D. This is the voltage which, as determined above is required to overcome the resistance of one conductor of the circuit. It is sometımes stated as the voltage consumed by the line resistance. It will be noted that this voltage drop is in phase with the current at the receiving end. From this point lay off vertically, and to the same scale, 206I volts which is, as determined above, the volts necessary to overcome the reactance of one conductor of the circuit. This is sometimes stated as the voltage consumed by the line reactance. Connect this last point by a straight

CHART II.-APPLICATION OF TABLES TO SHORT TRANSMISSION LINES (EFFECT OF CAPACITANCE NOT TAKEN INTO ACCOUNT) OVER HEAD BARE CONDUCTORS

Starting with the kv-a., voltage and power-factor at the receiving end known.

QUICK ESTIMATING TABLES XII TO XXI INC.
From the quick estimating table corresponding to the voltage to be delivered, determine the size of the conductors corresponding to the permissible transmission loss.

HEATING LIMITATION-TABLE XXIII

If the distance of transmission is short and the amount of power transmitted very large there is a possibility of overheating the conductors-to guard against such overheating the carrying capacity of the conductors contemplated should be checked by this table.

CORONA LIMITATION-TABLE XXII

If the transmission is at 30000 volts, or higher, this table should be consulted to avoid the employment of conductors having diameters so small as to result in excessive corona loss.

RESISTANCE-TABLES I AND II

From one of these tables obtain the resistance per unit length of single conductor corresponding to the maximum operating temperature-calculate the total resistance for one conductor of the circuit-if the conductor is large (250000 circ. mils or more) the increase in resistance due to skin effect should be added.

$I^{2} \mathrm{R}$ TRANSMISSION LOSS

Calculate the $I^{2} R$ loss of one conductor by multiplying its total resistance by the square of the current-to obtain the total loss multiply this result by the number of conductors of the circuit.

REACTANCE-TABLES IV AND V

From one of these tables obtain the reactance per unit length of single conductor. Calculate the total reactance for one conductor of the circuit. If the reactance is excessive (20 to 30 percent reactance volts will in many cases be considered excessive) consult Table VI or VII. Having decided upon the maximum permissible reactance the corresponding resistance may be found by dividing this reactance by the ratio value in Table VI or VII. When the reactance is excessive, it may be reduced by installing two or more circuits and connecting them in parallel, or by the employment of three conductor cables. Using larger conductors will not materially reduce the reactance. The substitution of a higher transmission voltage, with its correspondingly less current, will also result in less reactance.

GRAPHICAL SOLUTION

A simple graphical solution, as described in the text, may be made by which the kv-a, the voltage and the powerfactor at the sending end of the circuit may be determined graphically. Or the voltage at the sending end may be determined graphically by the use of either the Dwight or the Mershon chart. With the Mershon chart the powerfactor at the sending end may be read directly from the chart.

MATHEMATICAL SOLUTION

As a precaution against errors the results obtained graphically should be checked by a mathematical solution, in cases where accuracy is essential.
line with the center E of the arc. The length of this line $E S$ represents the voltage to neutral at the sending end which, for this problem, is 11998 volts. The distance this line extends beyond the arc represents the drop in voltage for one conductor of the circuit. The voltage drop for this problem is $\frac{1998}{10000} \times 100=19.98$ percent of the receiving end voltage.

The phase difference between the current and the voltage at the receiver end is $\theta_{\mathrm{r}}=36^{\circ} 52^{\prime}$. This is the angle whose cosine is 0.8 corresponding to a power-factor at the receiving end of 80 percent. Likewise the phase difference between the receiving end current and the sending end voltage is $\theta_{3}=42^{\circ} 13^{\prime}$ corresponding to a power-factor at the supply end of 74.06 percent. The difference in these two phase angles ($5^{\circ} 21^{\prime}$) represents the difference in the phase of the voltages at the sending and receiving ends of the circuit. The power-

FIG. 17-GRAPHICAL SOLUTION FOR A SHORT TRANSMISSION LINE Capacitance effect not taken into account.
factor at the sending end of the circuit may be readily obtained by dropping a vertical line down from the point where the line representing the sending end voltage $E S$ intersects the are of the circle, to the base line representing the phase of the receiving end current. Such a line will correspond to a power-factor of 74.06 percent. This assumption that the vector representing the direction of the receiving end current also represents the direction of the sending end current is upon the basis that the circuit is without capacitance. It, therefore, is permissible only with short lines.

In Fig. if the location of the impedance triangle is also indicated (by broken lines) in positions corresponding to a receiving end load of 100 percent powerfactor; and also for a receiving end load of zero lagging power-factor. It is interesting to note that in the case of 100 percent power-factor the resistance drop (at right angle to the arc) has a maximum effect upon the voltage drop; whereas the reactance drop (nearly parallel with the arc) has a minimum effect upon the volt-
age drop. At zero lagging power-factor load just the reverse is true; namely the resistance drop is nearly parallel with the are and causes a minimum voltage drop, while the reactance is at right angles and produces a maximum effect upon the voitage drop.

VOLTAGE AT SENDING END AND LOAD AT RECEIVING END FIXED

In cases of feeders to be tapped into main transmission circuits, the voltage at the sending end is usually fixed. It may be desired to determine what the voltage will be at the receiving end corresponding to a given load. This may be obtained graphically as follows:-

Draw a horizontal line which will be assumed to represent the phase of the current. (Fig. 17) Since the power-factor of the load at the receiving end is known, the angle whose cosine corresponds may be obtained from Table K. This angle represents the phase relation between the current and the voltage at the receiving end of the circuit. For the problem illustrated by Fig. I7 this angle is $36^{\circ} 52^{\prime}$, corresponding to a power-factor of 80 percent. Having determined this angle, draw a second radial line intersecting the current vector at the angle corresponding to the receiving end load power-factor. This second line will then represent the direction of the voltage at the receiving end of the circuit. If the load power-factor is lagging, this line will be in the forward direction, and if the load power-factor is leading it will be in the backward direction from the current vector. Now with the intersection of the current and voltage vectors as a center, draw an are of a circle to some suitable scale, representing the voltage at the sending end. Calculate the voltage necessary to overcome the resistance, and also that necessary to overcome the reactance of the circuit.

Draw a right angle impedance triangle to the same scale, using the resistance volts as a base. Cut out the impedance triangle to its exact size. Keeping the base of the triangle (resistance voltage) in a horizontal position (parallel with the current vector) move the triangle over the diagram in such a manner that its apex follows the arc of the circle representing the numerical value of the voltage at the sending end. Move the triangle up or down until a position is found where it makes connection with the vector representing the voltage at the receiving end. This is then the correct position for the impedance triangle, and the receiving end voltage may be scaled off.

graphical solution by the mershon chart

The above graphical solution is that employed in the well known chart which Mr. Ralph D. Mershon early presented to the electrical profession, and which is reproduced as Chart III. The Mershon Chart is simply a diagram on cross-section paper with vertical and horizontal subdivisions each representing one percent of recciving end voltage. On this chart a number of concentric ares are drawn, representing voltage drops up to 40 percent. After the reactance and the resistance volts have been calculated and expressed in per-

CHART III-MERSHON CHART

cent of $E_{\mathbf{r}}$ the impedance triangle is traced upon the chart and the voltage drop in percentage of E_{r} is read directly as indicated by the directions. All values on the chart are expressed in percent of the receiving end voltage.

Single-Phase Problem-Taking the resistance voltage as 8.86 percent and the reactance voltages 20.61 percent of the receiving end voltage, for the above singlephase problem, (Fig. 17) and tracing these values upon the Mershon Chart for a receiving end load of 80 percent power-factor lagging, the voltage drop is determined as 19.9 percent. The calculated value being 19.98 percent, the error by the chart is seen to be negligible.

WHEN THE SENDING END CONDITIONS ARE FIXED

When the conditions at the sending end are fixed and those at the receiving end are to be determined, the solving of the problem by the Mershon Chart is more complicated. In such cases, it is usual to estimate what the probable receiving end condition will be. From these estimated receiving end conditions, determine by the chart the corresponding sending end conditions. If the conditions as determined by this assumption are materially 'different from the known conditions, another assumption should be made. The corresponding sending end conditions should then be checked with the known conditions. Several such trials will usually be necessary to solve such problems.

GRAPHICAL SOLUTION BY THE DWIGHT CHART

Mr. H. B. Dwight has worked up a straight line chart, shown as Chart IV, in which the resistance and the reactance of the circuit have been taken into account through the medium of spacing lines marked for various sizes of conductors.* The use of this chart does not, therefore, require the calculation of the resistance and reactance or the use of tables of such constants. The Dwight Chart is also constructed so as to be applicable to loads of leading as well as to loads of lagging power-factors, whereas the Mershon chart, as generally constructed, is applicable to loads of lagging power-factor only. However the Mershon Chart can be made applicable for the solving of problems of leading as well as lagging power-factor loads by extending it through the lower right-hand quadrant. The application of synchronous condensers frequently gives rise to loads of leading power-factor. The Dwight Chart is well adapted to the solution of such circuits. Still another feature of this chart is that formulas are given which take capacitance effect into account with sufficient accuracy for circuits with a length up to approximately 100 miles.

Single-Phase Problem-Find the voltage at the sending end of a single-phase circuit 16 miles long, consisting of two stranded, hard-drawn, No. o000 copper conductors, spaced three feet apart. Temperature

[^11]taken as 25 degrees C . Load condition at receiving end assumed as 4000 kv -a (3200 kw at 80 percent powerfactor lagging) 20000 volts single-phase, 60 cycles.

From Table II the resistance of No. 0000 stranded, hard-drawn, copper conductors at 25 degrees C. is found to be 0.277 ohm per wire per mile. Lay a straight edge across the Dwight Chart from the resistance value per mile 0.277 (as read on the lower half of the vertical line to the extreme right) to the spacing of three feet for copper conductors and 60 cycles at the extreme left. Along this straight edge read factor $\mathrm{V}=0.62$, corresponding to a lagging power-factor of 80 percent. This factor V is equivalent to the change in receiving end voltage per total ampere per mile of circuit, due to the line impedance.

It will be noted that opposite the resistance values (extreme right vertical line) is placed the corresponding sizes of copper and aluminum conductors on the basis of a temperature of 20 degrees C. If the temperature is assumed to be 20 degrees C. it will not be necessary to consult a table of resistance values. In such a case, the straight edge would simply be placed over the division of the vertical resistance line corresponding to the size and material of conductors. Marking a resistance value on this vertical line makes the chart adaptable to resistance values corresponding to conductors at any temperature. Had the power factor been leading, in place of lagging, the corresponding resistance point would have been located on the upper half of the vertical resistance line.

Continuing following the directions on the chart for short lines, we obtain the following. Since the circuit is single-phase, use $2 V=I .24$
Voltage drop in percent of $E_{r}=\frac{100000 \times 4000 \times 16 \times 1.24}{20000^{2}}$ $=19.84$ percent

The voltage drop, as calculated mathematically, is 19.98 percent representing an error of 0.14 percent by the chart.

Three-Phase Problem (No. 33)-Find the voltage at the sending end of a three-phase circuit, 20 miles long, consisting of three No. 0000 stranded, hard-drawn, copper conductors, spaced three feet apart in a delta arrangement. Temperature taken as 25 degrees C . Load conditions at receiving end assumed as $1300 \mathrm{kv}-\mathrm{a}$ (1040 kw at 80 percent power-factor lagging) 10000 volts, three-phase, 60 cycles.

From Table II, the resistance per wire per mile is again found to be 0.277 ohm and since the spacing and frequency are both the same as in the case of the above single-phase problem, we again obtain $\mathrm{V}=0.62$. The voltage drop in percent of E_{5} is therefore
$\frac{100000 \times 1300 \times 20 \times 0.62}{10000^{2}}=16.12$ percent
The voltage drop as calculated mathematically is 16.16 percent, representing an error of 0.04 percent.

capacitance

In long circuits the effect of capitance is to decrease the voltage drop, or increase the voltage rise, as

CHART-IV DWIGHT CHART

for determining the voltage regulation of transmission circuits containing capacitance

FOR SINGLE PHASE USE 2 VIN PLACE OF V
COPYRIGHT IEIS BY H. B. OWIGHT
will be explained later．The Dwight and Mershon charts do not recognize the effect which capacitance has upon the voltage drop．In the lower left hand corner of the Dwight Chart，however，there is placed a formula by which a correction may be applied to the voltage drop as given by the chart．This correction accounts for the effect of the charging current（resulting from capacitance）quite accurately，provided the circuit is not too long or the frequency too high．The application of this corrective factor will be evident from the follow－ ing problem．

TABLE K－COSINES，SINES AND TANGENTS

ANGLE	$\underset{(\mathrm{P} \mathbf{~ F} \theta}{\cos \theta}$	$\sin \theta$	Tan θ
$\circ^{\circ}{ }^{\circ} 0^{\prime}$	1.000	0.0000	0.0000
${ }_{11^{\circ}}{ }^{\circ} 0^{06}$	0.990 0.980	0.1409 0.1988	0.1423 0.2028
$14^{\circ}{ }^{\circ}$ 04，	0.970	0.2430	0.2506
${ }^{160^{\circ}}$	0.060	0.2798	0.2915
	0.950	0.3120	${ }^{0.3285}$
${ }_{21}{ }^{\circ}{ }^{\circ}{ }^{\circ} 33^{\prime}$	0.940 0.930	0.3410 0.3673	0.3627 0.349
${ }^{23} 3^{\circ} 0^{\circ} 4^{\prime}$	0.920	0.3918	0.4258
${ }^{24} 4^{\circ}{ }^{\circ} 22^{\prime}{ }^{\prime}$	${ }^{0.910}$	0.4144	0.4584
$\begin{array}{ll}25^{\circ} & 50 \\ 27^{\circ} & \\ 07^{\prime}\end{array}$	0.900 0.800	0.4357 0.4558	${ }_{0}^{0.4841}$
${ }_{28} 8^{\circ}{ }^{\circ} 21^{\prime}$	0.880	0.4748	0．5306
${ }^{29^{\circ}}{ }^{\circ} 32^{\prime}$	． 0.870	0.4929	0.5665
	0.860	0.5103	0.5934
${ }^{31}{ }^{\circ}{ }^{\circ} 47^{\prime}$	0.850	0.5267	0.6196
${ }_{33^{\circ}}{ }^{\circ} 54^{\circ}{ }^{\prime}$	0.840 0.830	0.5424 0.5577	0.6457 0.6720
34° 。 $54{ }^{\prime}$	0.820	0.5721	0.6976
$35^{\circ}{ }^{\circ} 54^{\prime}$ ，	0.810	0.5864	0.7239
$36^{\circ}{ }^{\circ} 52^{\prime}$	0.800	0.6000	0.7499
${ }_{37^{\circ}}{ }^{\circ}{ }^{48}{ }^{\prime \prime}{ }^{\prime}$	0.790 0.780	0.6129 0.6257	0.7757 0.8021
39°－ 38^{\prime}	0.770	0.6379	0.8283
$40^{\circ}{ }^{\circ} 32^{\prime}$ ，	0.760	0.6499	0.8551
$41^{\circ}{ }^{\circ} 24^{\prime}$	0.750	0.6013	0.8816
$4_{43^{\circ}}{ }^{\circ}{ }_{06} 0^{\prime}$	0.740 0.730	0.6726 0.6833	0．0089
$43^{\circ}{ }^{\circ} 6^{\prime}$	0.720	0.6938	0.0634
44° 。 45 ，	0.710	0.7040	0.9913
$4_{45^{\circ}}{ }^{\circ}{ }_{22^{\prime}}{ }^{\prime}$	0.700 0.600	${ }^{0.7141}$	I． 1.0199
$47^{\circ}{ }^{\circ} \mathrm{o}{ }^{\prime}$	0.680	0.7331	1．0780
$47^{\circ}{ }^{\circ} 55^{\prime}$	0．670	0.7422	1.1074
${ }_{40^{\circ}}{ }^{\circ}{ }^{42^{\prime}}$	0.660 0.650	0.7513 0.7508	1．12383
$50^{\circ} 12{ }^{\prime}$	0.640	0.7683	1．2002
$50^{\circ}{ }^{\circ} 57^{\prime}$	0．630	0.7766	1．2327
	0.620 0.610	0.7846 0.7023	I． 2.2655 I． 2085
53°－ 7^{\prime}	0.600	0.8000	1.3327
$53{ }^{\circ}$ 。 50^{\prime} ，	0.590	0.8073	1.3680
$554^{50}{ }^{\circ} 32^{\prime}$	0.580 0.570	0.8145	I． 4037
	0.570 0.560	0.8215 0.8284	1．4406
$55^{\circ}{ }^{\circ} 37^{\prime}$	0.550	0.8350	1．5175
$5_{57}{ }^{\circ}{ }^{18} 8^{\prime}$	0.540	0.8415	1.5577
${ }_{57}^{58^{\circ}}{ }^{\circ}{ }^{59}{ }^{\prime} 0^{\prime}$	0.530 0.520	0.8479 0.8542	1.5993 r．6426
$59^{\circ}{ }^{\circ} 0^{\prime}$	0.510	0.8601	1.6864
${ }^{60} 0^{\circ} 0^{\circ} 0^{\prime}$	0．500	0.8660	1．7320
	0.490 0.480	0.8716 0.8771	1.7783 1.8265 1.858
$61^{\circ} \quad 57^{\prime}$	0.470	0.8825	1.8768

Three－Phase Problem（No．45）－Find the volt－ age at the sending end of a three－phase circuit， 100 miles long，consisting of three No．0000，stranded，hard－ drawn copper conductors，spaced nine feet apart in a delta arrangement．Temperature assumed as 25 de－ grees C．Load conditions at receiving end assumed as 22000 kv －a， 80 percent power－factor lagging， 88000 volts， 60 cycles．

From Table II the resistance is found to be 0.277 ohm per mile．From Dwight Chart read $V=0.70$ ． Then，the voltage drop in percent of E_{r} ，if the line were short，would be，

$$
\frac{100000 \times 22000 \times 100 \times 0.70}{88000^{2}}=19.80 \text { percent }
$$

From directions on the Dwight chart for circuits over 30 miles long，the charging current of this circuit is found to be such as to decrease the voltage drop un－ der load conditions or to increase the voltage at zero load by the amount of $100 \times 2.16\left(\frac{100}{1000}\right)^{2}=2.16$ percent．Hence the voltage at the sending end，under load conditions，will be $19.89-2.16=17.73$ percent． The actual result as calculated rigorously is 17.94 per－ cent．Thus the error by the Dwight graphical solution is approximately 0.21 percent．

If the power－factor of the load is assumed as roo percent（problem 46）in place of 80 percent lagging，we get $V=0.33$ ．and find the error for the Dwight graphi－ cal solution of this 100 mile， 60 cycle circuit to be ap－ proximately 0.75 percent．It should be noted，however， that the reactance volts are in this case 22 percent of the receiving end voltage．

SENDING END CONDITIONS FIXED

When the sending end conditions are fixed，a dif－ ferent form of solution must be employed to determine the size of conductors corresponding to a given voltage drop．In such cases，the Dwight Chart is particularly applicable．To use the chart for the solution of such problems proceed as follows．First V is calculated by means of the formulas on the chart，and then a straight edge is placed through V（on the line corresponding to the power－factor of the load）and the point for the spacing and frequency to be used，and the required size of conductor can be seen at a glance on the resistance scale at the right．To make this application of the chart clear，the following is given，－

Voltage drop in percent of $E_{\mathrm{F}}=\frac{100000 \mathrm{Kv-a} \times 1 . V}{E_{\mathrm{r}}{ }^{2}}(2 \$)$ Hence

$$
V=\frac{\text { Voltage drop in percent of } E_{r} \times E_{r}{ }^{2}}{100000 K v-a \times Z} \ldots \ldots \ldots \text { (20) }
$$

Applying（29）to the above problem No． 33 we get

$$
V=\frac{16.12 \times 10000^{\prime}}{100000 \times 1300 \times 20}=0.62
$$

Following the above directions，the resistance per mile is found to be 0.277 ohm and the corresponding size of conductor No．o000 copper．

matiematical solution

In order to check any one，or all of the above dc－ scribed graphical methods，a complete mathematical solution may be made by applying the various trigono－ metrical formulas，Fig．I8，to the values of the problem under consideration．These formulas have been ar－ ranged to meet the conditions of loads of either lagging or leading power－factors，and for conditions fixed at either the receiving or the sencing ends．

There are numerous problems requiring a solution
where the voltage at the sending end, and the kilowatts and the power-factor of the load at the receiving end are fixed. In such cases it is required to determine the corresponding receiving end voltage. This determination can be made mathematically, but such a solution is tedious, since the formulas applying to such cases are cumbersome. Formulas are given at the bottom of Fig. 18 which may be applied to such problems. Time and labor may, however, be saved in solving such problems by the employment of a cut-and-try method usually used in such cases, as follows:-

Assume what the voltage drop will be, corresponding to the size of conductors likely to be used. On the basis of this assumption the receiving end voltage is fixed; thus, all of the receiving end conditions are assumed to be fixed. The corresponding sending end voltage is then readily determined by one of the graphical methods described. If the sending end voltage thus determined is found to be materially different from the fixed sending end voltage, another trial, based upon a different receiving end voltage, will probably suffice.

Single-Phase Problem-Find the characteristics of the load at the sending end of a single-phase circuit, i6 miles long, consisting of two stranded, hard drawn, copper conductors, spaced three feet apart; temperature taken as 25 degrees C ; load conditions at receiving end assumed as $4000 \mathrm{kv}-\mathrm{a}$ (3200 kw at 80 percent powerfactor lagging) 20000 volts, 60 cycles; transmission loss to be approximately ten percent.

Following the procedure given in Chart II, consult Quick Estimating Table XVII for a delivered voltage of 20000 . Since the conditions of the above problem are a power-factor of 80 percent, and a temperature 25 degrees C , the corresponding $\mathrm{kv}-\mathrm{a}$ values are as indicated at the head of the table on the basis of 10.8 percent loss in transmission for a three-phase circuit. For a single-phase circuit the corresponding values will be one-half the table values. Thus the $4000 \mathrm{kv}-\mathrm{a}$ single phase circuit of the problem is equivalent to $8000 \mathrm{kv}-\mathrm{a}$, three-phase on the table. From the table, it is seen that for a distance of 16 miles 7810 kv -a, three-phase can be transmitted over No. o000 conductors with a loss of ro. 8 percent. 78 ro kv-a is near enough to $8000 \mathrm{kv}-\mathrm{a}$, and the loss of 10.8 percent is near enough to an assumed loss of ten percent, so we decide that No. oooo copper conductors come nearest to the proper size to meet the conditions of the problem. The loss with No. 0000 conductors will be $\frac{8000}{78 \mathrm{ro}} \times 10.8=11.06$ percent, as will be shown later.

Table XXIII indicates that there will be no overheating of this size of conductor.

Table XXII indicates that 20000 volts is too low to result in corona loss with No. 0000 conductors, at any reasonable altitude. Then,-

$$
\begin{aligned}
K v-a_{\mathrm{ra}} & =\frac{4000}{2}=2000 \mathrm{kv}-\mathrm{a} \text { to neutral. } \\
K w_{\mathrm{rat}} & =\frac{3200}{2}=1600 \mathrm{kw} \text { to neutral. }
\end{aligned}
$$

$$
\begin{aligned}
E_{r} & =\frac{20000}{2}=10000 \text { volts to neutral. } \\
I_{\mathrm{r}} & =\frac{2000000}{10000}=200 \text { amperes per conductor. }
\end{aligned}
$$

The resistance per conductor is
$R=16 \times 0.277$ (from Table II) $=4432$ ohms.
The reactance per conductor is
$X=16 \times 0.644$ (from Table V) $=10.304$ ohms. and $I R=200 \times 4.432=866$ volts, resistance drop

$$
=\frac{886}{10000} \times 100=8.86 \text { percent }
$$

$I X=200 \times 10.304=2061$ volts, reactance drop
$=\frac{2061}{10000} \times 100=20.61$ percent

$\theta_{s}=\tan ^{-1}\left(\frac{(10000 \times 0.6)+2061}{(10000 \times 0.8)+886}\right)=42^{\circ} 13^{\prime} \ldots \ldots$ (3x)
Percent $P F_{n}=\left(\right.$ Cos. $\left.42^{\circ} 13^{\prime}\right) \times 100=74.06$ percent \ldots...(32)
$K v-a_{s a}=\frac{200 \times 11998}{1000}=2399.6 \mathrm{kv}-a$ per conductor...... (33)
$K w_{s \mathrm{~s}}=2399.6 \times 0.7406=1777.1 \mathrm{kw}$ per conductor.....(37)
Percent voltage drop $=\frac{11998-10000}{10000} \times 100=19.98$ percent
Transmission loss $=\frac{(200)^{2} \times 4.432}{1000}=177.28 \mathrm{kw}$ per conductor
Percent transmission loss $=\frac{177.28 \times 2}{3200} \times 100=11.08$ percent
Three-Phase Problem (No. 33)-Find the characteristics of the load at the sending end of a threephase circuit 20 miles long, consisting of three strauded, hard-drawn, copper conductors, spaced in a three foot delta. Temperature taken as 25 degrees C. Load conditions at receiving end assumed as $1300 \mathrm{kv}-\mathrm{a}$. (IO 40 kw at 80 percent power-factor lagging) io 000 volts, 60 cycles; transmission loss not to exceed ten percent.

Following the procedure given in Chart II, the following results are obtained:-

Consult Table XV for a delivered voltage of 10000 volts. Since the conditions of the above problems are, power-factor of load 80 percent, temperature 25 degrees C. the corresponding three-phase kv -a values of the table are on the basis of 10.8 percent loss in transmission. From Table XV it is seen that $1240 \mathrm{kv}-\mathrm{a}$, threephase can be transmitted over No. 000 conductors, or $1560 \mathrm{kv}-\mathrm{a}$., three-phase over No. 0000 conductors at 10.8 percent loss. Since the loss for the problem is not to exceed ten percent and $1300 \mathrm{kv}-\mathrm{a}$ is to be transmitted, we will select No. 0000 conductors. The loss for these conductors will therefore be $\frac{1300}{1560}$ of 10.8 , or nine percent as will be shown later.

Table XXIII indicates that there will be no overheating of this size of conductor when carrying 1300 $\mathrm{kv}-\mathrm{a}$, three-phase.

Table XXII indicates that 10000 volts is too low to result in corona loss with No. 0000 conductors at any reasonable altitude. Then:-
$K v-a_{\mathrm{ra}}=\frac{1300}{3}=433.33 \mathrm{kv}-a$ to neutral.
$K w_{r s}=\frac{1040}{3}=346.6 \mathrm{kw}$ to neutral.

$$
\begin{aligned}
E_{\mathrm{ra}} & =\frac{10000}{1.732}=5774 \text { volts to neutral. } \\
I_{\mathrm{r}} & =\frac{433333}{5774}=75.05 \text { amperes per conductor. }
\end{aligned}
$$

The resistance per conductor is, -
$R=20 \times 0.277$ (from Table II) $=5.54$ ohms.
The reactance per conductor is, -
$X=20 \times 0.644$ (from Table V) $=12.88$ ohms .
and

$$
I R=75.05 \times 5.54=415.8 \text { volts, resistance drop. }
$$

$$
=\frac{415.8}{5774} \times 100=7.20 \text { percent } .
$$

LOADS OF LAGGING POWER-FACTOR

Transmission loss $=\frac{\left(75.05^{2}\right) \times 5.54}{1000}=31.20 \mathrm{kw}$ per conductor
(47)

Percent transmission loss $=\frac{31.20 \times 3}{1040} \times 100=9.00$ percent

MIXED SENDING AND RECEIVING END CONDITIONS FIXED

Branon circuits are frequently run from the main transmission trunk circuit to the center of some local distribution. In such cases the voltage at the sending end and the current or the power and power-factor at

GENERAL FORMULAS

WHEN THE VOLTAGE AT SENDING END AND THE AMPERES AND POWER-FACTOR AT RECEIVINGEND ARE FIXE $E_{R}=-1\left(R \cos \theta_{R}+\frac{\neq}{} \times \sin \theta_{R}\right)+\sqrt{E_{S}^{2}-I^{2}\left(R^{2} \sin ^{2} \theta_{R}+x^{2} \cos ^{2} \theta_{R}\right)_{\frac{1}{+}} 21^{2} R \times \cos \theta_{R} \sin \theta_{R}} \text { (44) }$ USE + WHEN THE POWERFACTOR OF THE LOAD IS LAOOING AND - WHEN THE PÓWERFACTOR IS LEADING.		
WHEN THE VOLTAGE AT SENDINO END AND THE POWER AND POWERFACTORAT RECEIVINGEND ARE FIXEO$E_{R N}=A \sqrt{1 \pm \sqrt{1-\frac{\left(R^{2}+X^{2}\right) K W_{R N} \times 10^{\theta}}{A^{4} \cos ^{2} \theta_{R}}}} \text { WHERE } A=E_{S N} \sqrt{\frac{1}{2}-\frac{1000 K W_{R N}\left(R \cos \theta_{R}+X \sin \theta_{R}\right)}{E_{S N} \cos \theta_{R}}} \text { (POWER FACTOR LAGGING) }$		

$$
\% \text { VOLTAQE OROP }=\frac{E_{S}-E_{R}}{E_{R}} \times 100
$$

TRANSMISSION LOSS $=\frac{1^{2} R}{1000} K W$ PER CONDUCTOR (47)
\% TRANSMISSION LOSS $=\frac{\text { TOTAL }^{2} \mathrm{R}(I N K W}{\text { TOTAL } K W_{R}} \times 100 \quad$ (48)
FIG. I8-TRICONOMETRICAL FORMULAS FOR SHORT TRANSMISSION LINES Capacitance effect not taken into account.
$I X=75.05 \times 12.88=966.6$ volts, reactance drop.
$=\frac{966.6}{5774} \times 100=16.74$ percent.
$E_{s: ~}=\sqrt{(5774 \times 0.8+415.8)^{2}+(5744 \times 0.6+966.6)^{2}}=6707$ volts to neutral
$\theta_{a}=\tan ^{-1}\left(\frac{5774 \times 0.6+966.6}{5774 \times 0.8+415.8}\right)=41^{\circ} 22^{\prime}$
$P F_{\mathrm{s}}=\left(\operatorname{Cos} 41^{\circ} 22^{\prime}\right) \times 100=75.05$ percent $\ldots \ldots \ldots .$. . 32)
$K v-a_{s}=\frac{75.05 \times 6707}{1000}=503.4$ kv-a per conductor. (33)
$K_{w_{s a}}=503.4 \times 0.7505=377.8 \mathrm{kw}$ per conductor \qquad (3t)
Percent voltage drop $=\frac{6707-5774}{5774} \times 100=16.16$ percent
the receiving end are approximately fixed. In such cases the calcuiation for the voltage at the receiving end requires more arithmetical work than is required when all the conditions at one end of the circuit are fixed. Such problems can be more readily solved graphically, as previously explained, but may be solved mathematically by applying formula (44) or (45), Fig. 18.

To illustrate the application of formula (44) we will apply the values of Problem 33 to formula (44) and calculate the receiving end voltage. Thus we have as fixed conditions:-

To illustrate the application of formula (45) we will apply the values of Problem 33 to formula (45)

TABLE L
illustrating variation in reactance
Resultiog from Changes in the Conductors and Transmission Voltages

CONDUCTORS	$\begin{aligned} & \text { Total } \\ & \text { Tot } \\ & \text { Lor } \\ & \text { (KW) } \end{aligned}$	1R		$1 \times$		$\begin{gathered} \text { Approximate } \\ \text { Vollage } \\ \text { Regulation at } \end{gathered}$	
		Volts	$\begin{aligned} & \text { Per } \\ & \text { Cent. } \end{aligned}$	Volls	$\begin{aligned} & \text { Per } \\ & \text { Cent. } \end{aligned}$	$\begin{array}{\|c\|} 100 \\ \text { Per } \\ \text { Cent. } \\ \text { Power } \\ \text { Factor } \end{array}$	

Single Circuil of three 500,000 circ. mil bare overhead conductors	129	123	3.22	622	16.32	4.5	12.8
Two circuits each of three 250,000 circ mil bare overbead conductors.	129	123	8.22	333	8.73	3.6	7.7
	123	1.23	3.22	172	4.52	3.2	5.0
REOEIVING END VOLTAOE - 13200							
Single circuil of three 125,000 circ. mil bare overbead conductors.	129	247	3.22	354	4.64	3.2	5.1

and calculate the receiving end voltage. Thus we have as fixed conditions:-

$$
E_{\mathrm{sn}}=6707 \text { volts }
$$

$K w_{\mathrm{ra}}=346.6 \mathrm{kw}$

$$
R=5.54 \text { ohms }
$$

$X=12.88 \mathrm{ohms}$
$\operatorname{Cos} \theta_{r}=0.8$
$\operatorname{Sin} \theta_{r}=0.6$
$A=6707 \sqrt{0.5-\frac{1000 \times 346.6(5.54 \times 0.8+12.88 \times 0.6)}{6707^{2} \times 0.8}}$
then

$$
E_{\mathrm{ra}}=A \sqrt{1+\sqrt{1-\frac{\left(5.54^{2}+12.88^{2}\right) 346.6^{2} \times 10^{0}}{A^{4} \times 0.8^{2}}}} \cdots
$$

$$
A=6707 \sqrt{0.5-0.1172}=4152
$$

$$
E_{r n}=4152 \sqrt{1+0.936}=5774 \text { volts }
$$

Alternative to (44) and (45)-The following formulas have been proposed by Mr. H. B. Dwight to meet the mixed conditions referred to,-

$$
E_{\mathrm{sin}}=6707 \text { volts }
$$

$1000 \times K w_{r a}=346600$ watts
$1000 \times$ reactive $K v-a_{r a}=346600 \times \frac{0.6}{0.8}=260000 v-a$
$R=5.54$ ohms
$X=12.88 \mathrm{ohms}$
$\begin{aligned} L & =346600 \times 5.54+260000 \times 12.88=5270000 \\ M & =346600 \times 1288-260000 \times 5.54\end{aligned}$
$\boldsymbol{M}=346600 \times 12.88-260000 \times 5.54=3025000$

$$
\begin{aligned}
& E_{\text {sn }}=6707 \text { volts } \\
& I_{r}=75.05 \text { amperes } \\
& \text { Cos } \theta_{r}=0.8 \\
& \operatorname{Sin} \theta_{r}=0.6 \\
& R=5.54 \text { ohms } \\
& X=\mathbf{I} 2.88 \mathrm{ohms} \\
& I R=415.8 \text { volts } \\
& \text { Then } \\
& E_{\mathrm{r}}=-75.05(5.54 \times 0.8+12.88 \times 0.6)+ \\
& \sqrt{6707^{2}-75.05^{2}\left(5.54^{2} \times 0.6^{2}+12.88^{2} \times 0.8^{2}\right)+2 \times} \\
& 75.05^{2} \times 5.54 \times 12.88 \times 0.8 \times 0.6 \ldots \\
& =-913+144983849-660242+385831 \\
& =-913+6637=5774 \text { volis. }
\end{aligned}
$$

$$
\begin{aligned}
& E^{2}=0.5 E_{\mathrm{s}}{ }^{2}-L+0.5 \sqrt{E_{\mathrm{s}^{4}}-4 E_{5}^{2} 1 .-4 M^{2}} \\
& E=5774 \text { volts } \\
& \text { or } \\
& E=E_{9}-\frac{L}{E_{9}}-\frac{L^{2}}{E_{5}^{3}}-\frac{M^{2}}{2 E_{8}^{3}}-\frac{2 L^{3}}{E_{8}^{5}}-\frac{3}{2} \frac{L M^{2}}{E_{8}^{5}}-\frac{5 L^{4}}{E_{8}{ }^{3}} \\
& -\frac{5 L^{2} M^{2}}{E_{\mathrm{s}}{ }^{7}}-\frac{5}{8} \frac{M^{4}}{E_{\mathrm{s}}{ }^{7}} \\
& E^{\circ}=5779 \text { volts }
\end{aligned}
$$

CIRCUITS OF EXCESSIVE REACTANCE

If a large amount of power is to be transmitted at comparatively low voltage, particularly if the frequency is high, the reactance of the circuit will be high compared with its resistance. If the reactance is excessive (20 to 30 percent reactance volts may in some cases be considered excessive), the voltage regulation of the circuit may be seriously impaired.

As will be seen by consulting Tables VI and VII, there is a fixed relation between the resistance and the reactance of a circuit for a given frequency, size and spacing of conductors. This ratio is 2.4 times greater for 60 cycle than it is for 25 cycle circuits. For a given size of conductor the reactance can be varied only slightly by changing the spacing of overhead bare conductors. Substituting a larger or smaller conductor may change the resistance materially, but this will have little effect upon the reactance.

The reactance may be reduced by either or all of the following methods. The circuit may be split up into two or more circuits employing smaller conductors and these circuits connected in parallel. The voltage may be raised, if the installation is new, and smaller conductors employed; or the overhead conductors may be replaced by three conductor cables. To illustrate the above methods, the following problem has been assumed and the results tabulated.

a high reactance problem

Table L refers to the following problem-4000 kv-a, three-phase, 60 cycles, is to be delivered a distance of three miles over hard-drawn, stranded copper conductors. The $I^{2} R$ loss is to remain at 129 kw . The spacing of the overhead conductors assumed as 3 by 3 by 3 ft . Temperature 25 degrees C .

It is evident from Table L that if two three-phase circuits, each consisting of three 250000 circ. mil. conductors are installed in place of one three-phase circuit, consisting of three 500000 circ. mil. conductors, the reactance will be reduced by nearly one half, and a corresponding improvement in the voltage drop or regulation will occur, particularly if the load power-factor is So percent lagging. A further improvement along this line will be obtained if a single three-conductor cable is employed. Doubling the voltage for the overhead circuit and employing three 125000 circ. mil. conductors results in practically as good performance in voltage regulation as for the 6600 volt three-conductor cable.

[^12]
CHAPTER VIII PERFORMANCE OF LONG TRANSMISSION LINES

(GRAPHICAL SOLUTION)

THE E.M.F. of self-induction in a transmission circuit may either add to or subtract from the impressed voltage at the sending end, depending upon the relative phase relations between the current and the voltage at the recelving end of the circuit. This is illustrated by means of voltage vectors in Fig. 20, in which the phase of the current is assumed to be constant in the horizontal direction indicated by the arrow on the end of the current vector. The voltage at the receiving end is also assumed as constant at 100 volts. The vector representing the receiving end voltage ($\mathrm{E}_{\mathrm{r}}=100$ volts) is shown in two positions corresponding to leading current, two positions corresponding to lagging current and in one position corresponding to unity power-factor. The components $I R$ and $I X$ of the supply voltage necessary to overcome the resistance R and the reactance X (e.m.f. of self-induction) of the circuit are assumed to be io volts and 20 volts respectively. Since the current is assumed as constant, IX and $I R$ are also constant. The impedance triangle of the voltage components required to overcome the comtined effect of the resistance and the reactance of this circuit is therefore constant. It is shown in five different positions about the semicircle, corresponding to five different load power-factors. The voltage E_{3} at the sending-end required to maintain ioo volts at the re-ceiving-end is indicated for each of the five positions of the impedance triangle.

Counter-clockwise rotation of the vectors will be considered as positive. This means that when the current is lagging behind the impressed e.m.f., the voltage vector will be in the forward or leading direction from the current vector as indicated by the arrow. When the current leads the impressed voltage, the voltage vector will be in the opposite or clockwise direction from the current vector. In other words, assuming the vectors all rotating at the same speed about the poin: O in a counter-clockwise direction, the current vector will be behind the voltage vector when the current is lagging and ahead of it when the current is leading.

The alternating magnetic flux surrounding the conductors, resulting from current flowing through them, generates in them a counter e.m.f. of self-induction. This e.m.f. of self-induction has its maximum value when the current is passing through zero and is therefore in lagging quadrature with the current. On the diagrams an arrow in the line $I X$, indicates the direction of the e.m.f. of self-induction. It will be seen that since the direction of the current is assumed constant, the e.m.f. of self-induction acts downward in all
five impedance diagrams. The sending-end voitage is therefore opposed or favored by this selfinduced voltage (see arrows) to a greater or less extent depending upon the power-factor of the load. Thus at lagging loads of high power-factor, the self-incuced voltage acts approximately at right angles to the sending-end voltage, and therefore requires a small component of the sending-end voltage to balance or neutralize its effect. As the power-factor of the receiving-end load decreases in the lagging direction (upper quadrant of diagram) the sending-end voltage siwings around more nearly in line with the direction of the induced voltage, thus requiring a greater component of the send-ing-end voltage to counter-balance its effect. At zero power-factor lagging, the direction of the sending-end voltage and that of the induced e.m.f. are practically in cpposition, (as indicated by the arrows), so that the component of the sending-end voltage required to overcome the induced voltage is a maximum, or nearly as much as the e.m.f. of self-induction. It is interesting to note that at zero lagging power-factor, when the effect of self-induction on line voltage dróp reaches a maximum, the sending-end voltage component $I R$ necessary to overcome the resistance of the circuit, (now nearly at right angles to the supply voltage), is a minimum. The reverse of these conditions is true for receivingend loads of power-factors near unity.

Now consider receiving-end loads of leading power-factors, (lower quadrant of diagram). It will be seen that the e.m.f. of self-induction does not now oppose the sending-end voltage (indicated by direction of the arrows) but has a direction more or less parallel to that of the sending-end voltage. At high leading power-factors, the e.m.f. of self-induction has little effect on the sending-end voltage, but as zero leading power-factor is approached these two e.m.f.'s more rearly come in phase with each other. At zero powerfactor leading, the e.m.f. of self-induction adds almost directly to the sending-end voltage.

It will be seen, therefore, that for receiving-end loads of lagging power-factor, the sending-end voltage is greater than the receiving-end voltage, by an amount necessary to overcome the resistance and self-induction of the circuit. For receiving-end loads of leading power-factor, the sending-end voltage is less than the receiving-end voltage, for the reason that the e.m.f. of self-induction is in such a position as to assist the send-ing-end voltage.

The following values from Fig. 20 illustrate these conditions:

Power-Factor of
Receiving End Load
o percent lagging
80 percent lagging
100 percent
80 percent leading
o percent leading

Supply Voltage
' 120.4
120.4
III. 8
98.5
80.6

The condition of leading power-factor at the re-ceiving-end would be unusual in practice, since the power-factor of receiving-end loads is usually lagging. In cases, however, where condensers are used for voltage or power-factor control, the power-factor at the receiving-end may be leading. If the circuit were without inductance, there could be no rise in voltage at the

F1G. 20-effect of self induction on regulation receiving-end, for in such a case, $I X$ of the diagram would disappear, and the voltage drop would be the same as with direct current. All alternating-current circuits are inductive, and the greater their inductance, the greater will be the voltage drop, or the voltage rise along the circuit.

Any alternating-current circuit may be looked upon as containing three active e.m.f.'s out of phase with each other. In addition to the impressed e.m.f. at the send-ing-end, there are two e.m.f's of self-induction, one as the result of the receiving-end current and lagging 90
degrees behind it and the other as the result of the line charging current and lagging 90 degrees behind it. These two combine at an angle, with each other and with the impressed e.m.f. at the sending-end.

CHARGING CURRENT

Conductors of a circuit, being separated by a diclectric (such as air, in overhead circuits, or insulation ir cables), form a condenser. When alternating-current flows through such a circuit, current (knowil as charging current) virtually passes from one conductor through the dielectric to the other conductors, which are at a different potential. This current is in shunt with the circuit, and differs from the current which passes between conductors over the insulators etc. (leakage current) or through the air (corona effect) only in that the charging current leads the voltage by 90 degrees, whereas the leakage current is in phase with the voltage.
For a given spacing of conductors, the claarging current increases with the voltage, the frequency and the length of the circuit. For long high-voltage circuits, particularly at 60 cycles per second, the charging current may be as much as the full-load current of the circuit, or more. In some cases of long 60 cycle circuits, where a comparatively small amount of power is to be transmitted, it is necessary to limit the voltage of transmission, in order that the charging current may not be so great as to overload the generators. This charging current, being in leading quadrature with the voltage, represents nearly all reactive power, but it is just as effective in heating the generator windings as if it sepresented active power. On the other hand, it combines with the receiving-end current at an angle (depending upon the power-factor of the receiver load) in such a manner that the addition of the full-load receiving-end current, in extreme cases, may not greatly increase the sending end current. In other words (if the charging current is near full-load current) the current at the generator end may not increase much when full load at the receiver end is added, over what it is when no load is taken off at the receiving-end.
Since the e.m.f. of self-induction due to the charging component is proportional to the charging current, its effect upon the voltage regulation of the circuit will also be proportional to the charging current. For a short low-voltage circuit, the charging current is so small that its effect on voltage regulation may be ignored. On the longer circuits, especially long 60 cycle circuits, such as will be considered later, its effect must be given careful consideration.

VARIATION IN CURRENT AND VOLTAGE ALONG THE CIRCUIT
It was explained above and illustrated in Fig. 20 that with a receiving-end load of leading power-factor,
the voltage at the sending-end of the circuit might be less than that at the receiving-end. It was shown that the e.m.f. of self-induction, resulting from the leading current, tends to raise the voltage along the circuit. This boosting effect of the voltage is entirely due to the leading component of the load current.

If, now, it is assumed that the power-factor of the receiving-end load is 100 percent, there will be no leading component in the load current, and therefore there can be no boosting of the voltage due to the load current. Since, however, all circuits have capacitance, and since the current is alternating, charging current will flow into the line and this being a leading current, the same tendency to raise the voltage along the circuit will take place as is illustrated by Fig. 20.

The upper part of Fig. 2I is intended to give a physical conception of what takes place in an alternat-ing-current circuit. As the load current starts out from the sending-end, and travels along the conductor, it meets with ohmic resistance. This is represented by r in Fig. 21. It also meets with reactance in quadrature to the current. This is represented by $j x$ in the diagram. Superimposed upon this load current is a current flowing from one conductor to the others, in phase with the voltage at that point and representing true fower. This current is the result of leakage over insulators and of corona effect between the conduciors. It is represented by the letter g in the diagrams. Then there is the charging current in leading quadrature with the voltage. This current does not consume any active power except that necessary to cvercome the resistance to its flow.

In Fig. 2I the four linear constants of the alternat-ing-current circuit, r representing the resistance, $j x$ representing the reactance, g representing the leakage and b representing the susceptance, are shown as located, or lumped, at six different points along the circuit. This i, as they would appear in an artificial circuit divided into six units. In any actual line, these four constints are distributed quite evenly throughout the length of the circuit.
voltage and current distribution for problem X
The effect of the charging current flowing through the inductance of the circuit gives rise to a very interesting phenomenon. In order to illustrate this effect, the current and voltage distribution for a 60 cycle, 1000 volt, three-phase circuit, 300 miles long, is plotted in Fig. 21. This circuit will be referred to as problem X. In such a long 60 cycle circuit, this phenomenon is quite pronounced; so that such a problem serves well as an illustration. The voltage and the current have been determined for points 50 miles apart along the circuit. Values for both the current and the voltage under zero load, also under load conditions have been plotted. The load conditions refer to a receiving-end load of 18000 kv-a, at 90 percent power-factor, lagging, 60 cycle three-phase. The voltage is assumed as being held constant 104000 volts at the receiving-end, for both zero and full-load conditions.

Zero-Load Conditions-Without any load being taken from the circuit, it will be seen that the charging current at the sending-end approaches in value that established when under full load; i.e., 94.75 amperes. The charging current drops down to approximately 50 amperes at the middle, and to zero at the receiving-end of the unloaded circuit. The lower full line curve shows how this current is distributed along the circuit. Starting at zero, at the receiving-end of the circuit, it increases as the sending-end of the circuit is approached, at which point it reaches its maximum value cf 87.89 amperes. The voltage distribution under zeroload conditions is some-what opposite to that of the current distribution. That is the voltage (104000 volts at the receiving-end) keeps falling lower until it reached a value of 84676 at the sending-end. It should be noted that the voltage curve for zero load condition drops down rapidly as the sending-end is approached. The reason for this is the large charging current flowing through the inductance of the circuit at this end of the circuit. The larger the charging current the greater the resultant boosting of the receiving-end voltage.

Load Conditions-When 16000 kv -a at 90 percent power-factor lagging is taken from the circuit at the receiving-end, the current at this end goes up to 90.92 amperes. As the supply end is approached the current becomes less, reaching its lowest value (approximately 83 amperes) in the middle of the circuit. At the supply end it is 94.75 amperes, which is less than it is at the receiver end. Thus the full line representing the current in amperes along the circuit assumes the form of an arc, bending downward in the middle of the circuit. The shape of this current curve is dependent upon the relative values of the leading and lagging components of the current at points along the circuit. The reason that the current is a minimum rear the middle of the circuit, is because this is the point where the lagging current of the load and the leading charging current of the circuit balance or ncutralize each other, and the power-factor is therefore unity. Starting at the re-ceiving-end, the power-factor is 90 percent lagging. As the middle of the circuit is approached, the increasing charging current neutralizes an increasing portion of the lagging component of the load current. Near the middle of the circuit, this lagging component is entirely neutralized, and the power-factor therefore rises to unity. Passing the middle and approaching the sending-end there is no more lagging component to be neutralized, and the increasing charging current causes a decreasing leading power-factor which, when the sending-end is reached, becomes 93.42 percent leading. It will, therefore, be seen that the power-factor as well as the current and voltage varies throughout the length of the circuit.

The voltage distribution under load condition is indicated by the top broken line. In order that the re-ceiving-end voltage may be maintained constant at 104000 volts, the voltage at the sending-end will vary
from 84676 volts at zero load to 122370 volts at the assumed load.

THE AUXILIARY CONSTANTS

With the impedance methods considered under the general heading of "Short Transmission Lines" the current was considered as of the same value throughout the circuit, and the voltage drop along the circuit was considered as proportional to the distance. These assumptions, which are permissible in case of short lines, are satisfied by simple trigonometric formulas.

The rigorous solution for circuits of great clectrical length accurately takes into account the effect produced by the non-uniform distribution of the current and the voltage throughout the length of the circuit. This effect will hereafter be referred to as the distribution effect of the circuit, and may be taken into account

fig. 2I-Diacrams of transmission circuit-problem X
300 miles long, 104000 volts delivered, 60 cycle. The upper diagram gives a physical conception of the conditions along the line. The curves show the variation in current and voltage along the circuit.
 m gives a
through the application of the so called auxiliary constants of the circuit.

The auxiliary constants A, B and C of the circuit are functions of its physical properties, and of the frequency only. They are entirely independent of the voltage or current of the circuit. The various solutions for long transmission circuits are in effect schemes for determining the values of these three auxiliary constants. Mathematically they may be calculated, by hyperbolic functions or by their equivalent convergent series. Graphically they may be obtaired to a high degree of accuracy from the accompanying Wilkinson Charts for overhead circuits not exceeding 300 miles in length. Having determined the values for these three constants for a given circuit, the remainder of the solution is just as simple as for short lines. It is only necessary to apply any desired load conditions to these constants and plot the results by vector diagrams.

DIAGRAM OF THE AUXILIARY CONSTANTS
In Fig. 22 are shown voltage and current diagrams representing the application of the auxiliary constants to the solution of transmission circuit problems. To construct the voltage vector diagram, the two auxiliary constants A and B are required, and to construct the current vector diagram, constants A and C are required.

Since these diagrams are based upon one volt and one ampere at the receiving-end, it is necessary to multiply the values of the auxiliary constants by the volts or the amperes at the receiving-end, in order to apply the auxiliary constants to a specific problem. Since the diagrams are shown corresponding to unity power-factor, it will also be necessary to change the position of the impedance and charging current triangles in case the power-factor differs from unity. This will te explained later.

$$
\text { Constants } a_{1} \text { and } a_{2} \text {-Refer- }
$$ ring to the voltage diagram, Fig. 22, if the line is electrically short the charging current, and consequently its effect upon the voltage regulation is small. In such a case the auxiliary constant a_{2} would be unity, and the auxiliary constant a_{2} would be zero. In other words, the impedance diagram would (for a powerfactor of 100 percent) be built upon the end of the vector $E R$, the point O coinciding with the point R. In such a case, the voltage at the sending end, at zero load, would be the same as that at the receivingend. If the circuit contains appreciable capacitance, the e.m.f. of self-induction, resulting from the charging currents which will flow, will result in a lower voltage at zero load at the sending-end than at the receiving-end of the line, as previously explained. Obviously, the load impedance triangle must be attached to the end of the vector representing the voltage at the sending-end of the circuit at zero load. This is the vector $E O$ of the voltage diagram, Fig. 22. This voltage diagram corresponds to that of a 60 cycle circuit, 300 miles in length. In such a circuit, the effect of the charging current is sufficiently great to cause the shifting of the point O from R (in a short line) to the position shown in Fig. 22. In other words, the voltage at zero load at the sending-end has shifted from $E R$ for circuits of short electrical length, to EO for this long 60 cycle circuit. The auxiliary constants a_{1} and a_{2}, therefore, determine the length and position of the vector representing the sending-end voltage at zero load. Actually, the constant a_{2} represents the volts resistance drop due to the charging current, for each volt at the

receiving-end of the circuit. That is, the line $O F$ equals approximately one-half the charging current times the resistance R , taking into account, of course, the distributed nature of the circuit. If the circuit is short, it would be sufficiently accurate to assume that the tetal charging current flows through one-half of the resistance of the circuit. To make this clear, it will be shown later that, for problem X, the resistance per conductor $R=105$ ohms and the auxiliary constant $C_{2}=$ 0.001463 . Thus, this line will take 0.001463 ampere charging current, at zero load, for each volt maintained at the receiving-end, and since $O F=$ approximately $I_{\mathrm{c}} \times \frac{R}{2}$ we have OF $\left(a_{2}\right)=0.001463 \times \frac{105}{2}=$ 0.0768075 . The exact value of a_{2} as calculated rigorously, taking into account the distributed nature of the circuit, is 0.07683 I . Since the charging current is in

FIG. 22-DIAGRAMMATIC REPRESENTATION OF AUXILIARY CONSTANTS OF A TRANSMISSION CIRCUIT
The vectors are based upon one volt and one ampere being delivered to the receiving end at unity power-factor. These diagrams correspond to those of a long circuit.
leading quadrature with the voltage $E R$, the resistance drop $O F$ due to the charging current is also at right angles to $E R$, as in Fig. 22.

The length of the line $F R$ or ($I-a_{1}$), represents the voltage consumed by the charging current flowing through the inductance of the circuit. This may also be expressed with small error if the circuit is not of great electrical length as $I_{\mathrm{c}} \times \frac{X}{2}$. The reactance per conductor for problem X is 249 ohms. Therefore $F R=$ $0.001463 \times \frac{249}{2}=0.182143$ and $a_{1}=1.000000-$ $0.182143=0.817857$. The exact value for a_{1} as calculated rigorously, taking into account the distributed nature of the circuit, is 0.810558 . The vector $F R$, representing the voltage consumed by the charging current flowing through the inductance, is naturally in quadrature with the vector $O F$, representing the voltage consumed by the charging current flowing through the resistance of the circuit.

Constants b_{1} and b_{2} represent respectively the resistance and the reactance in ohms, as modified by the distributed nature of the circuit. The values for these constants, multiplied by the current in amperes at the receiver-end of the circuit, give the $I R$ and $I X$ volts

FIG. 23-VARIATION OF THE AUXILIARY CONSTANTS FOR CIRCUITS of different lenctis
drop consumed respectively by the resistance and the reactance of the circuit. To illustrate this, the values of R and X for problem X are $R=105$ ohms and $X=$ 249 ohms per conductor. The distribution effect of the circuit modifies these linear values of R and X so that
their effective values are $b_{1}=91.7486$ and $b_{2}=$ 235.868 ohms. The impedance triangle, as modified so as to take into exact account the distributed nature of the circuit, is therefore smaller than it would be if the circuit were without capacitance.

Constants c_{1} and c_{2} represent respectively conductance and susceptance in mhos as modified by the distributed nature of the circuit. The values for these constants, multiplied by the volts at the receiving-end of the circuit, give the current consumed respectively by the conductance and the susceptance of the circuit. To illustrate, the value of B for problem X is 0.001563 mho per conductor. The distribution effect of the circuit modifies this fundamental value so that its effec-

FIG. 24-VARIATION OF THE AUXILIARY CONSTANTS
For a 60 cycle circuit (problem X) up to full wave length.
tive value $c_{2}=0.001463$. The value of c_{1} is so small that its effect is negligible for all except very long circuits. For power circuits it will usually be sufficiently accurate to neglect c_{1}. The value c_{2} will in such cases represent the charging current at zero load per volt at the receiving-end. Thus c_{2}, muitiplied by the receivingend voltage, gives the charging current at zero load for the circuit. For problem $X, c_{2}=0.001463$, and this, multiplied by the receiving-end voltage to neutral $60044=87.85$ amperes charging current per conductor.

VARIATION IN THE AUXILIARY CONSTANTS

The curves, Fig. 23, will serve to illustrate in a general way how the auxiliary censtants vary for moth

25 and 60 cycle circuits for lengths up to and including 500 miles. In other words these curves have been plotted from calculated values for these constants for certain circuits.

When the circuit is short, these constants do not vary materially from the linear constants of the circuit, but when the circuit becomes long, they depart rapidly, particularly if the frequency is high.

AUXILIARY	WAVE LENGTH OF THE OIRCUIT ANO TRANSMISSION OISTANCE-MILES							
	3/8TH	$1 / 4$. $3 / 8 \mathrm{TH}$	1/2	5/8TH	3/4	7/8TH,	full
	$\begin{aligned} & 389.8 \\ & \text { MILES } \end{aligned}$	$\begin{aligned} & 1738 . \\ & \text { MILES } \end{aligned}$	$\begin{array}{\|l\|} \hline 1109.7 \\ \text { MILES } \end{array}$	$\begin{aligned} & 1479.5 \\ & \text { MILES. } \end{aligned}$	$\begin{aligned} & 1849.4 \\ & \text { MILES. } \end{aligned}$	$\begin{array}{r} 2219.3 \\ . \text { MILES } \\ \hline \end{array}$	$\begin{aligned} & 2589.2 \\ & \text { MILES } \end{aligned}$	$\begin{aligned} & 2959.1 \\ & \text { MILES } \end{aligned}$
a_{1}	+.716	\bigcirc	-.789	-1.209	-. 942	0	+1.191	+1.922
a_{2}	+,113	+.323	+.350	0	-.622	-1.104	-. 958	0
b_{1}	+10	+87	-77.5	-276	-33	-1	+292	+670
b_{2}	+281	+428	+350	+55.5	-330	-605	-560	-135
	.000075	.00050	0012	. 0016	00101	+.00071	+.0028	+.0039
C_{2}	. 00	+.0024	0169	. 000032	-.00250	-. 0035	-0.00233	$+.00078$
(A)	$\begin{array}{\|r\|} \hline .725 \\ \angle 8^{\circ} 58^{\circ} \\ \hline \end{array}$	$\begin{gathered} .323 \\ \hline 90^{\circ} 00^{\prime} \end{gathered}$	$\begin{gathered} 863 \\ \hline 156^{\circ} 05 \\ \hline \end{gathered}$	$\begin{gathered} 1.209 \\ \angle 80^{\circ} 00 \\ \hline \end{gathered}$	$\begin{gathered} 1.129 \\ \angle 13^{\circ} 26 \end{gathered}$	$\begin{gathered} 1.104 \\ \angle 270^{\circ} 00^{\circ} \end{gathered}$	$\begin{array}{\|l\|} 1.528 \\ 1321^{\prime}, 1 \end{array}$	$\begin{array}{\|c} 1.9220 \\ \hline 360^{\circ} 00^{\circ} \end{array}$
(B)	$\left\|\begin{array}{c} 301.4 \\ \hline 69^{\circ} 37^{\prime} \end{array}\right\|$	$\begin{gathered} 437 \\ \angle 78^{\circ} 34 \end{gathered}$	$\begin{gathered} 358.8 \\ \hline 102^{\circ} 29^{\circ} \end{gathered}$	$\begin{array}{r} 282.3 \\ 168^{\circ} 34 \end{array}$	$\begin{aligned} & 469.5 \\ & \angle 225^{\circ} 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 619.3 \\ & \angle 258^{\circ} 34 \end{aligned}\right.$	$\begin{array}{r} 635.7 \\ \boxed{297^{2} 23} \\ \hline \end{array}$	$\begin{gathered} 682.4 \\ \left\langle 348^{3} 34\right. \end{gathered}$
(C)	$\begin{array}{r} -00173 \\ \hline 192^{\circ} 29^{\prime} \\ \hline \end{array}$	$\left\|\begin{array}{l} .002527 \\ 1101^{\circ} 26^{\prime} \end{array}\right\|$	$\begin{array}{\|} \hline 0.02075 \\ 125021 \end{array}$	$\begin{aligned} & .00633 \\ & 291^{2} 26 \end{aligned}$	$\begin{aligned} & .002715 \\ & \hline 247^{\circ} 99 \end{aligned}$	$\begin{aligned} & 003582 \\ & \angle 280^{\prime} 26^{\circ} \end{aligned}$	$\begin{array}{\|c\|} \hline .003677 \\ \hline 320^{\circ} 15^{\prime} \end{array}$	$\begin{array}{\|c\|} \hline 003947 \\ \angle 371^{\circ} 26^{\prime} \end{array}$

fig. 25-VARIATION of the auxiliary constants For problem X up to full wave length.

The auxiliary constants have been calculated for problem X up to and including a full wave length, namely 2959 miles. Calculations were made only for distances representing each $1 / 8$ th wave, that is each 370 miles. The results are tabulated in Fig. 25, and are plotted graphically in Fig. 24. It is interesting to note how these auxiliary constants vary with increasing negative and positive values as the circuit increases in length. A polar diagram is plotted in Fig. 26, indicating the manner in which the auxiliary constant A and its rectangular co-ordinates vary. Although these extreme variations are instructive and interesting, they are not encountered in power transmission circuite, although they will be in long distance telephone practice.

FIG. 26-POLAR DIAGRAM
Showing the variation of the auxiliary constant A for problem X, up to full wave length.

TIIE WILKINSON CHARTS

Mr. T. A. Wilkinson has prepared charts frum which the auxiliary constants may be read directly, thus abridging a great amount of tedious mathematical calculation. These charts, are plotted for circuits of lengths up to and including 300 miles.*

[^13]
CHART V－WILKINSON CHART A

（FOR DETERMINING AUXILIARY CONSTANTS－ZERO LOAD VOLTAGE）
コロIS SIH1 WOyy OVヨy $\exists 8$ O1 1y甘HO SIH1

CYCLES RESISTANCE（OHMS）X SUSCEPTANCE（MICROR：＊IOS）－PER MILE
their effective values are $b_{1}=91.7486$ and $b_{2}=$ 235.868 ohms. The impedance triangle, as modified so as to take into exact account the distributed nature of the circuit, is therefore smaller than it would be if the circuit were without capacitance.

Constants c_{1} and c_{2} represent respectively conductance and susceptance in mhos as modified by the distributed nature of the circuit. The values for these constants, multiplied by the volts at the receiving-end of the circuit, give the current consumed respectively by the conductance and the susceptance of the circuit. To illustrate, the value of B for problem X is 0.00 r 563 mho per conductor. The distribution effect of the circuit modifies this fundamental value so that its effec-

Fig. 24-Variation of the auxiliary constants For a 60 cycle circuit (problem X) up to full wave length. tive value $c_{2}=0.001463$. The value of c_{1} is so small that its effect is negligible for all except very long circuits. For power circuits it will usually be sufficiently accurate to neglect c_{1}. The value c_{2} will in such cases represent the charging current at zero load per volt at the receiving-end. Thus c_{2}, muitiplied by the receivingend voltage, gives the charging current at zero load for the circuit. For problem $X, c_{2}=0.001463$, and this, multiplied by the receiving-end voltage to neutral $60044=87.85$ amperes charging current per conductor.

VARIATION IN THE AUXILIARY CONSTANTS

The curves, Fig. 23, will serve to illustrate in a general way how the auxiliary constants vary for noth

25 and 60 cycle circuits for lengths up to and including 500 miles. In other words these curves have been plotted from calculated values for these constants for certain circuits.

When the circuit is short, these constants do not vary materially from the linear constants of the circuit, but when the circuit becomes long, they depart rapidly, particularly if the frequency is high.

AUXILIARY OONSTANTS	WAVE LENGTH OF THE CIRCUIT AND TRANSMISSION DISTANCE-MILES							
	1/8TH	1/4	. $3 / 8$ TH	1/2	5/8TH	3/4	7/8TH.	FULL
	$\begin{aligned} & 389.8 \\ & \text { MILES } \end{aligned}$	$\begin{aligned} & 1739.8 \\ & \text { MILES } \end{aligned}$	11109.7 MILES	1479.6 MILES.	$\begin{aligned} & \text { 1849.4 } \\ & \text { MILES. } \end{aligned}$	$\begin{aligned} & 2219.3 \\ & + \text { MILES } \end{aligned}$	$\begin{aligned} & 2589.2 \\ & \text { MILES } \end{aligned}$	$\begin{aligned} & 2959.1 \\ & \text { MILES } \end{aligned}$
a	+.716	-	-. 789	-1.209	-. 942	\bigcirc	+1.191	+1.922
$a_{2}{ }^{\text {. }}$	+.113	$+.323$	4.350	0	-. 622	-1.104	-. 958	0
b_{1}	$+105$	+87	-77.5	-276	-330	-122	+292	670
b_{2}	+281	+428	$+350$	+ 55.5	-330	-605	-560	-135
C_{1}	00075	00	0012	-.0016	-. 00101	+.00071	+.0028	+.0039
C_{2}	+.00174	002	9	2	-.00250	-. 0035	. 00	+.00078
(A)	$\begin{array}{r} .725 \\ \hline 8^{\circ} 58^{\circ} \\ \hline \end{array}$	$\begin{array}{\|} .323 \\ \hline 90^{\circ} 00 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 863 \\ 1 i 56^{\circ} 05^{\circ} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1209 \\ \angle 180^{\circ} 00^{\prime} \end{array}$	$\begin{array}{\|c\|} \hline 1.129 \\ \hline 213^{\circ} 26^{\circ} \\ \hline \end{array}$	$\begin{gathered} 1.104 \\ \angle 270^{\circ} 00^{\prime} \end{gathered}$	$\begin{array}{\|l\|} \hline .528 \\ \left\langle 321^{\circ} 111^{\prime}\right. \end{array}$	$\begin{array}{r} 1.922 \\ \angle 360^{\circ} 00^{\prime} \\ \hline \end{array}$
(8)	$\begin{array}{r} 301.4 \\ \angle 69^{\circ} 37^{\prime} \\ \hline \end{array}$	$\begin{array}{\|c\|} 437 \\ \hline 78^{\circ} 34^{\circ} \end{array}$	$\begin{array}{r} 358.8 \\ 1102^{\circ} 29^{\prime} \\ \hline \end{array}$	$\begin{array}{\|r\|} 282.3 \\ 1168^{\circ} 34 \\ \hline \end{array}$	$\begin{array}{\|c\|} 469.5 \\ \hline 225^{\circ} 07 \\ \hline \end{array}$	$\begin{gathered} 619.3 \\ \angle 288^{\circ} 34 \end{gathered}$	$\begin{array}{r} 635.7 \\ \hline 297^{\circ} 23 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 682.4 \\ \hline 348^{2} 34 \\ \hline \end{array}$
(C)	$\begin{array}{r} .001743 \\ \angle 92^{\circ} 29^{\prime} \\ \hline \end{array}$	$\begin{array}{\|} \hline 002527 \\ 1101^{\circ} 26^{\prime} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline-002075 \\ 1125021 \\ \hline \end{array}$	$\begin{aligned} & .001633 \\ & 1191026 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline .0027 / 5 \\ \angle 247^{\circ} 59 \\ \hline \end{array}$	$\begin{array}{\|} \hline .03588^{\circ} \\ \hline 281^{\circ} 26^{\circ} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .003677 \\ \angle 320^{6} / 5^{\prime} \end{array}$	$\begin{aligned} & .003947 \\ & \angle 371^{\circ} 26^{\prime} \end{aligned}$

FIG. 25-variation of the auxiliary constants For problem X up to full wave length.

The auxiliary constants have been calculated for problem X up to and including a full wave length, namely 2959 miles. Calculations were made only for distances representing each $I / 8$ th wave, that is each 370 miles. The results are tabulated in Fig. 25, and are plotted graphically in Fig. 24. It is interesting to note how these auxiliary constants vary with increasing negative and positive values as the circuit increases in length. A polar diagram is plotted in Fig. 26, indicating the manner in which the auxiliary constant A and its rectangular co-ordinates vary. Although these extreme variations are instructive and interesting, they are not encountered in power transmission circuits, although they will be in long distance telephone practice.

FIG. 26-POLAR DIAGRAM
Showing the variation of the auxiliary constant A for problem X, up to full wave length.

The Wilkinson charts

Mr. T. A. Wilkinson has prepared charts frum which the auxiliary constants may be read directly, thus abridging a great amount of tedious mathematical calculation. These charts, are plotted for circuits of lengths up to and including 300 miles.*

[^14]
CHART V-WILKINSON CHART A

(FOR DETERMINING AUXILIARY CONSTANTS-ZERO LOAD VOLTAGEI

CHART VI-WILKINSON CHART B
 (FOR DETERMINING AUXILIARY CONSTANTS-LINE IMPEDANCE)

CHART VII-WILKINSON CHART C
 (FOR DETERMINING AUXILIARY CONSTANTS-CHARGING CURRENT)

The reading of these charts is simplified by reason of the fact that all three charts are somewhat similar. In following any of thern, the start is made from the intersection of the short arc representing length of circuit and the straight line representing the frequency. From this intersection a straight line is followed tc a diagonal line and thence at right angles to the constant required. Thus in a few minutes the auxiliary constants of the circuit may be obtained directly from the chart, whereas by a mathematical solution from 15 minutes to an hour might be consumed in obtaining them. It is not, however, the time saved in obtaining these constants which is most important. The greatest advantage in this graphical solution for the auxiliary constants is that it not only abridges the use of a form of mathematics which the average engineer is inefficient in using, but it tends to prevent serious mistakes being made. In calculating these auxiliary constants by either convergent series or hyperbolic methods, an incorrect algebraic sign assigned to a number may cause a very serious error. Errors of magnitude are less likely to occur when using a comparatively simple graphical solution.

In order to determine the accuracy obtainable by a complete graphical solution, using the Wilkinson Charts for obtaining the auxiliary constants and vector diagrams for the remainder of the solutions, 48 problems were solved both graphically and mathematically. These problems consisted of circuits varying between 20 and 300 miles in length, and voltages varying between 10000 and 200000 volts. Twenty-four problems were for 25 cycle, and the same number for 60 cycle circuits. The maximum error in supply end voltage by the graphical solution employing a four times magnifying glass was one-fourth of one percent. A tabulation of the results as determined by various methods for these circuits will follow later.

APPLICATION OF TABLES

The application of the tables to long transmission lines follows, in general, the same plan as for short lines, published as Chart II, with such modifications as are produced by the effects of distributed capacitance and reactance. The procedure best suited for long transmission lines is shown in Chart VIII.

graphical solution of problem X

Problem X-Length of circuit 300 miles, conductors three No. ooo stranded copper spaced io by io by 20 feet (equivalent delta 12.6 feet) Temperature taken as 25 degrees C. Load conditions at receiving-end $18000 \mathrm{kv}-\mathrm{a}$, (16200 kw at 90 percent power-factor lagging). 104000 volts, three-phase, 60 cycles.

$$
\begin{aligned}
& E_{r a}=\frac{104000}{1732}=600.46 \text { volts. } \\
& I_{r}=\frac{6000 \times 1000}{60046}=99.92 \text { amperes. }
\end{aligned}
$$

CHART VIII.-APPLICATION OF TABLES TO LONG TRANSMISSION LINES

(EFFECT OF DISTRIBUTED CAPACITANCE TAKEN INTO ACCOUNT) OVERHEAD BARE CONDUCTORS

> Starting with the kv-a., voltage and power-factor at the receiving end known.

QUICK ESTIMATING TABLES XII TO XXI INC.

From the quick estimating table corresponding to the voltage to be delivered, determine the size of the conductors corresponding to the permissible transmission loss.

CORONA LIMITATION-TABLE XXII

If the transmission is at 30000 volts, or higher, this table should be consulted to avoid the employment of conductors having diameters so small as to result in excessive corona loss.

RESISTANCE-TABLE II

From this table obtain the resistance per unit length of single conductor corresponding to the maximum operating temperature-calculate the total resistance for one conductor of the circuit-if the conductor is large (250000 circ. mils or more) the increase in resistance due to skin effect should be added.

REACTANCE-TABLES IV AND V

From one of these tables obtain the reactance per unit length of single conductor. Calculate the total reactance for one conductor of the circuit. If the reactance is excessive (20 to 30 percent reactance volts will in many cases be considered excessive) consult Table VI or VII. Having decided upon the maximum permissible reactance the corresponding resistance may be found by dividing this reactance by the ratio value in Table VI or VII. When the reactance is excessive, it may be reduced by installing two or more circuits and connecting them in parallel, or by the employment of three conductor cables. Using larger conductors will not materially reduce the reactance. The substitution of a higher transmission voltage, with its correspondingly less current, will also result in less reactance.

CAPACITANCE SUSCEPTANCE-TABLES IX AND X

From one of these tables obtain the capacitance susceptance to neutral, per unit length of single conductor. Calculate the total susceptance for one conductor of the circuit to neutral.

GRAPHICAL SOLUTION

From the Wilkinson charts obtain the auxiliary constants. Applying these auxiliary constants to the load conditions of the problems, make a complete graphical solution as explained in the text. Vector diagrams of the voltage and the current at both ends of the circuit are then constructed, from which the complete performance can be readily obtained graphically.

MATHEMATICAL SOLUTION

As a precaution against errors in those cases where accuracy is essential, the result obtained graphically should be checked by the convergent series or the hyperbolic method.

From tables the following linear constants per mile are determined.
$r=0.35$ olm (Table No. II)
$x=0.83 \mathrm{ohm}$ (Table No. V by interpolation)
$b=5.21$ micromhos (Table No. X by interpolation)
$g=$ (in this case taken as zero)
therefore,

$$
r b=0.35 \times 5.21=1.82
$$

The auxiliary constants of the above circuits are now taken directly from the Wilkinson Charts. This problem is stated on the Wilkinson chart. Following

AUXILIARY CONSTANTS OF CIRCUIT

(CALCULATEO RIGOROUSLY BY CONVERGENT SERIES)
$\begin{aligned}(A)=+0.81055 \varepsilon & +j 0.078831 & (B) & =+61.7488+j 235.8880 \\ & \left(a_{1}+j a_{2}\right) & & \left(b_{1}+j b_{2}\right) \\ & & & \\ & & & \\ & & & 253.083\left(86^{\circ} 44^{\circ} 41^{\circ} \text { OHMS }\right.\end{aligned}$
$(C)=-0.000041+j 0.001463$
$=0.00146\left(c_{1}+j C_{2}\right)$
$=0.001464$ L81 $38^{\prime} 38^{\prime}$ МНО graphical solution.

$$
r b^{2}=0.35 \times 5.21^{2}=9.50
$$

FIG. 2\%-GRAPHIC SOLUTION OF PROBLEM X
rent calculated rigorously which will appear in a later section. The j terms preceding some of the numerical values in Fig. 27 apply to the mathematical treatment, and have no significance in connection with the

VOLTAGE DIAGRAM

The vector $E R$, representing the constant voltage at the receiving-end (for all loads) is first laid off to some convenient scale. Along this vector, starting from E, lay off a distance equal to the receiving-end voltage multiplied by the constant a_{1} ($60046 \times 0.810558=48,671$ volts). This is EF of Fig. 27. From F lay off vertically (to the same scale) the line $F O$ equal to the receiving-end voltage multiolied by the constant $a_{2}(60046 \times$ $0.076831=4613$ volts). Connect the points O and E by a line. This line EO represents the voltage at the sending-end at zero load. This voltage vector may, if desired, be located by polar co-ordinates in place of rectangular co-ordinates. If it is desired to work with polar co-ordinates lay off the line $E O$ at an angle of $5^{\circ} 25^{\prime}$ in the forward direction from the receiving-end voltage vector ER. (For the graphical solution it is not necessary to take account of seconds in angles) The length of the vector EO will be found by multiplying the constant A by the receiving-end voltage $(0.8142 \times 60044=48889$ volts).
Having located the point O, the impedance triangle is built upon it in the following manner. Since the power-factor of the load is 90 percent lagging, determine from a table of cosines what the angle is whose cosine is 0.9. This is found (from Table K) to be 25 degrees, 50 minutes. Lay off the line $O D$ at an angle with the vector
the directions printed on the charts, we obtain for this circuit the following values for the auxiliary constants.

$$
\begin{array}{lll}
a_{1}=0.81 & b_{1}=91.7 & c_{1}=0.00004 \\
a_{2}=0.077 & b_{2}=235 & c_{2}=0.00146
\end{array}
$$

From this point on, the solution is made graphically as indicated in Fig. 27. It should be noted here that the auxiliary constants obtained from the Wilkinson Charts are practically the same as those stated at the top of Fig. 27, which values were calculated rigorously by convergent series. We will employ the rigorous values in plotting the diagram so that the values on the diagram will agree with the values of voltage and cur-
of reference $E R$ of $25^{\circ} 50^{\circ}$ in the lagging direction. The length of $O D$ will be determined by multiplying the current in amperes per conductior by the auxiliary constant $b_{1}(99.92 \times 91.7486=9167$ volts). This represents the resistance drop per conciuctor. From the point D thus found draw a line $D S$ at right angles with $O D$. This line $D S$ represents the reactance volts per conductor; its length is found by multiplying the current in amperes per conductor by the auxiliary constant $b_{2}(99.92 \times 235.868=23568$ volts). Connect the point S with E, the length of which rerresents the voltage (70652 volts) at the sending-end for

CHART IX-PETER'S EFFICIENCY CHART

FOR DETERMINING TRANSFORMER LOSSES AND EFFICIENCIES

TO OBTAIN EFFICIENCY AT ANY LOAD LAY STRAIGHT EDGE AT GIVEN IRON AND COPPER LOSS POINTS and read the efficiency at required load on their respective scales where straight edge CROSSES THEM.
VICE VERSA, TO OBTAIN LOSSES, PLACE STRAIGHT EDGE ACROSS ANY TWO GIVEN EFFICIENCY POINTS AND READ PER CENT IRON AND COPPER LOSS ON THEIR RESPECTIVE SCALES.

CHART X--PETER'S REGULATION CHART

FOR DETERMINING TRANSFORMER REGULATION

the resistance per conductor including an equivalent value to correspond to the resistance in the high and low tension windings of two transformers will be,-

$$
R+R_{\mathrm{t}}=105+6.25+6.25=117.5 \text { ohms }
$$

The percent reactance volts of a transformer having 3.74 percent regulation at 80 percent lagging powerfactor and 1.04 percent resistance volts may be read directly from Peter's Regulation Chart (Chart X) by laying a straight edge along the points corresponding to 1.04 percent resistance and 3.74 on the 80 percent powerfactor line. The intersection of the straight edge with the last solid line at the right will give the percent reactance, $=4.85$ percent.

The percent reactance volts can also be read directly from the Mershon Chart. To do this, follow
TABLE M-APPROXIMATION OF RESISTANCE AND REACTANCE VOLTS FOR TRANSFORMERS OF VARIOUS CAPACITIES

Transformer Capacity in Kv-a	Voltage Drop in Percent			
	Resistance		Reactance	
	25 cycles	60 cycles	25 cycles	60 cycles
300	2.15	1.3	4.0	5.6
500	1.4	1.2	4.1	6.0
750	1.2	1.1	4.2	6.3
1000	1.7	1.1	6.0	6.5
1500	1.4	0.9	6.2	7.0
2000	1.3	0.8	6.4	7.0
3000	1.2	0.75	6.8	7.0
5000	1.1	0.65	7.2	7.0
7500	1.0	0.6	7.8	8.0
10000	1.0	0.6	8.0	8.0
15000	0.95	0.55	8.0	8.5
25000	0.9	0.5	8.0	9.0

upward the vertical line in the Mershon Chart corresponding to 80 percent power-factor until it intersects the first arc. From this point of intersection follow the horizontal line to the right a distance corresponding to r.04 percent resistance volts. From this point thus obtained follow the vertical line until the arc representing 3.74 percent voltage drops is reached. The length of this vertical line will be the percentage reactance volts of the transformer, in this case 4.8 percent. Of course the reactance may, if desired, be calculated by following the general construction traced out as above described upon the Mershon chart, but the chart will give sufficiently accurate values for practical purposes.

The volts necessary to overcome the reactance of the windings of one of these transformers is therefore found to be $60046 \times 0.048=2882$ volts to neutral. The
ohins reactance will therefore be $\frac{2882}{99.9^{2}}=28.8_{4}$ ohms to nentral for each transformer. Since the reactance of each line conductor is 249 ohms, the reactance per conductor, including an equivalent value to correspond to the reactance in the high and low tension windings of two transformers will be,-

$$
X+X_{t}=249+28.84+28.84=306.68 \mathrm{ohms}
$$

The impedance of one conductor of the circuit of problem X including the raising and lowering transformers will be,-

$$
\begin{aligned}
Z & =117.5+j 306.68 \text { ohms } \\
Y & =\left(\begin{array}{c}
\text { assumed to to be the same as without the trans- } \\
\text { formers). }
\end{array}\right.
\end{aligned}
$$

With the assumed values for the impedance, the performance of the combined circuit may be calculated as though there were no transformers in the circuit.
voltage and current at intermediate points along

the circuit

Thus far we have considered the electrical condition at the two ends of a transmission circuit only. Occasionally it may be desired to determine the voltage or the current at a point, or at various points along the circuit. In Fig. 21, graphs of the voltage and of the current are shown for points between the terminals of a circuit corresponding to the condition of zero load, and also of rated load. The graphs were plotted by determining graphically the voltage and the current for points at 50 mile intervals along this 300 mile circuit, as follows:-

To determine the conditions 250 miles from the sending-end, (50 miles from the receiving-end) the three auxiliary constants were obtained from the Wilkinson charts corresponding to a circuit 50 miles long. In other words, it was assumed that the circuit was only 50 miles long. By multiplying these auxiliary constants by the known voltage and current at the re-ceiving-end of the circuit, voltage and current diagrams were constructed as in Fig. 27 and on these, the corresponding values of voltage and current at the sendingend of the 50 mile section were scaled off. This gives the conditions, for the load assumed, at a point 250 miles from the sending-end. In a similar manner the voltage and current at this point, corresponding to zero load at the receiving-end, may be obtained. A similar precedure will determine the electrical conditions for a point 100 miles from the receiving-end (200 miles from the sending-end). The auxiliary constants will this time be read from the charts, corresponding to a 100 mile circuit, but the same receiving-end conditions will be used, as before. The electrical condition for any intermediate points along any smooth line, may thus be readily determined.

CHAPTER IX PERFORMANCE OF LONG TRANSMISSION LINES

 (RIGOROUS CONVERGENT SERIES SOLUTION)THE APPROXIMATE electrical performance of overhead circuits having a length not exceeding 300 miles, may readily be determined by the use of the Wilkinson Charts for determining the values of the auxiliary constants, supplemented by vector diagrams representing the current and voltages of the circuits. In important cases, as a final check upon the values obtained by the simple graphical solution, a mathematical solution yielding rigorous results should be made. If the circuit is more than 300 miles long, a mathematical solution yielding rigorous values will be required for determining the correct values of at least the auxiliary constants.

FORMS OF RIGOROUS SOLUTIONS

The most direct method for determining mathematically the exact performance of circuits of great electrical length is by the employment of hyperbolic functions, and the fundamental equations are usually expressed in such terms. Many engineers have a general aversion to the use of mathematical expressions employing hyperbolic functions. One reason for this is that the older engineers attended college before the hyperbolic theory as applied to transmission circuits had been developed, and tables of such functions were not at that time available.

In 1893 Dr. A. E. Kennelly introduced vector arithmetic into alternating-current computation for the first time.* Although real hyperbolic functions had well recognized uses in applied science, it was in 1894** that he, for the first time, suggested and illustrated the application of vector hyperbolic functions to the determinations of the electrical performance of transmission circuits. Since that time Dr. Kennelly has been a most persistent advocate of the employment of these functions in electrical engineering problems. To advance their use, he has calculated and published numerous tables and charts of such functions. Such tables were, until recently, incomplete and the result was that it was necessary, in using these tables, to interpolate values, thus introducing complications and inaccuracies into the calculations.

Tables of hyperbolic functions and charts are now sufficiently extensive and complete for accurate work. The universities quite generally are encouraging instruction of students in the hyperbolic theory. It is there-

[^15]fore to be expected that, in the future, the employment of hyperbolic functions for the solution of long transmission lines will come into general use.

The fundamental hyperbolic equations expressing the electrical behavior of transmission circuits may be expressed in the form of convergent series and, in such form have, in some cases, certain advantages over the hyperbolic form. The convergent series form of solution does not require the employment of tables or charts of hyperbolic functions, whereas hyperbolic forms of solutions do require such tables or charts. If, therefore, such tables or charts are not available, hyperbolic solutions cannot be employed.

While the amount of arithmetical work involved is considerable, any degree of accuracy may readily be obtained by the convergent series solution by working out the terms for the auxiliary constants until they become too small to have any effect upon the results. This can also be done with hyperbolic functions, but exact interpolation of such functions from tabular values, may be considered more difficult than the working out of an extra term or two in the convergent series form of solution. The above remarks apply to cases where an unusual degree of accuracy is required. Later will be included a tabulation of the performance of 64 different electrical circuits, as determined by a rigorous, and also by eight different approximate methods of calculation. As the rigorous values are taken as 100 percent correct, in determining the percent error by the approximate methods, it was important that the so called "rigorous" values be exact. To make them so, it was found convenient to employ the convergent series form of solution for these particular problems, covering circuits up to 500 miles long and potentials up to 200000 volts. For the calculation of the performance of practical power transmission circuits, tables of hyperbolic functions are now sufficiently complete to yield results well within the errors due to variation in the assumed linear constants of the circuits from their actual values.

The employment of convergent series requires a working knowledge of complex quantities only, whereas the employment of hyperbolic functions in addition leads into hyperbolic trigonometry. As literature pertaining to the hyperbolic theory becomes more generally available, and as the younger engineers take up active engineering work, the hyperbolic theory will become more generally used.

For the purpose of providing a choice of rigorous methods, both convergent series and two forms of hy-
perbolic solutions are given. The numerical values employed in these solutions have been carried to what may appear as an unnecessary degree of precision. The reason for this is to demonstrate the fact that all of these rigorous solutions yield the same results. For practical problems less accuracy would be essential, thus reducing the amount of arithmetical work.

Before taking up the rigorous solutions, it has been thought desirable to review the rules regarding the use of complex quantities and vector operations.

COMPLEX QUANTITIES

The calculation of the auxiliary constants of the circuit by convergent series, and the further calculation of the electrical performance of the circuit, involve the use of complex numbers, that is, numbers containing j terms. Thus $A=a_{1}+j a_{2}$ is a complex quantity. To the beginner, expressions containing j terms may seem difficult to understand. It cannot be made too emphatic that the rules governing the use of such terms are so simple (embodying only the simple rules of algebra) that the beginner will shortly be surprised with the ease at which complex quantities are handled.
j Terms-In the complex notation $Z=X+j Y$, the prefix j indicates that the value Y is measured along the axis perpendicular to that of X, or what is called the imaginary axis. There need be no significance attached to the symbol j other than that of a mere distinguishing mark, to designate a distance above or below the reterence axis in the vector diagram. However, great use is made of a further assigned significance. It has a numerical significance in the form of $j=1=1$ which enables all formal algebraic operations, multiplication, addition, extraction of roots; etc. incident to computation involving complex quantities, to be carried out rigorously. This numerical designation for j does not prevent its use as a designating symbol for the vertical direction in the vector diagram.*

PLANE VECTORS

Alternating voltages and currents which vary according to the sine or cosine law, may be represented graphically by directed straight lines, called plane vectors. The length of the vector represents the effective value of the alternating quantity, while the position of the vector with respect to a selected reference vector, base or axis, gives the phase displacement. The line $O P$, of Fig. 29, represents a plane vector inclined at an angle of $33^{\circ} 41^{\prime}$ with the base $O S$ (the axis of reference). The length of the line $O P$ is a measure, to some assumed scale, of the effective value of the voltage or current, while the angle $S O P$ gives the phase displacement.

Counter-clockwise rotation is considered positive. Thus, in Fig: 29, if the line OS represents the instantaneous direction of the current and the line $O P$ that of the voltage at the same instant, the current is represented

[^16]as lagging behind the voltage by the angle $33^{\circ} 4 \mathbf{I}^{\prime}$. By means of vectors the relative phase position and value of either currents or e.m.f.'s can be represented in the same manner as forces in mechanics.

The position of P, with respect to O, is usually defined in terms of rectangular or polar co-ordinates. In rectangular co-ordinates there are two fixed mutually perpendicular axes, $-X O X$ and $-Y O Y$ (Fig. 31) in the plane of reference. The former, $-X O X$, is called the real axis, or axis of real quantities. The latter, -YOY, is called the imaginary axis, or axis of imaginary quantities. The qualifying adjective "imaginary" does not mean that there is anything indeterminate or fictitious about this axis. The perpendicular projections of $P-I \quad$ (Fig. 3I) on the X and Y axes are respectively the real component X, and the imaginary component Y.

The magnitude and sign of the rectangular components X and Y completely determine the positioa of the vector $O P$. Positive is indicated to right and upward, negative to the left and downward as indicated in Fig. 30. Thus, if X and Y are both positive, $O P$ lies in the first quadrant. If X and Y are both negative, $O P$ lies in the third quadrant. If X is - and Y is,$+ O P$ lies in the second quadrant. If X is + and Y is 一, $O P$ lies in the fourth quadrant. Any plane vector may be completely specified by its real and imaginary components X and Y. Thus, beneath Fig. 3r, is a table in which the point P is located in the plane by co-ordinates for all quadrants.

From Fig. 30 it is evident that, mathematically, the quadrature numbers are just as real as the others. The quadrature numbers represent the vertical, and the ordinary numbers the horizontal directions.

VECTOR OPERATIONS

In general, in the handling of complex numbers involving j terms, the simple rules of algebra are followed. In Fig. 3^{2} two vector quantities are shown. Vector A has a magnitude of 5 units and is inclined in the positive or leading direction at an angle of $36^{\circ} 52^{\prime}$ with the horizontal reference vector, and vector B has a magnitude of 4.47 units, and is inclined in the positive or leading direction at an angle of $63^{\circ} 26^{\prime}$ with the reference vector. These vector quantities are expressed in rectangular co-ordinate as $A=+4+j 3, B=+2+$ $j 4$ or in polar co-ordinates as $A=5 / 36^{\circ} 52^{\prime}, B=4.47$ $163^{\circ} 26^{\prime}$. The prefix j simply means that the number following it is measured along the vertical or Y axis. The dot under the vector designation indicates that A is expressed as a complex number, so that the absolute value of A would be $\sqrt{(4)^{2}+(3)^{2}}=5$ and of $B=$ $\sqrt{(2)^{2}+(4)^{2}}=4.47$. The absolute value of a complex number is called its "size"; while the angle is called its "slope".

In order to illustrate the handling of complex quantities, the various operations of addition, subtraction, multiplication, division, evolution and involution of the vectors A and B in Fig. 32, will be performed.

Addition-Fig. 33 illustrates the addition of these vectors expressed in rectangular co-ordinates. The resulting vector will have as its real component, the alge-
units and is inclined in the forward direction at a slope of $49^{\circ} 24^{\prime}$ with reference to the initial line, $O S$.

Subtraction-Fig. 34 illustrates the subtraction A -

figs. 29 to 36-EXAMPLES OF VECTOR SOLUTIONS
braic sum of the reals, and as its imaginary component, the algebraic sum of the imaginaries. Thus:

$$
\begin{aligned}
A & =+4+j_{3} \\
+\dot{B} & =+2+j_{4} \\
A+B=C & =+6+j 7 \\
\dot{C} & =v \frac{(6)^{2}+(7)^{2}}{(2)}=9.22 \text { absolute. }
\end{aligned}
$$

The resulting vector has, therefore, a size of 9.22
B. This is simply addition after the signs of both of the components of the vector to be subtracted have been reversed. Thus,-

$$
\begin{gathered}
A=+4+j 3 \\
-\dot{B}=-2-j 4 \\
A-B=\dot{C}=+2-j 1 \\
\dot{C}=1 \frac{(2)^{2}+(1)^{2}}{(2-24}=2 \text { absolute. }
\end{gathered}
$$

The resulting vector C has therefore a size of 2.24 units and a slope of $-26^{\circ} 34^{\prime}$. In polar co-ordinates, $C = 2 . 2 4 \longdiv { 2 6 ^ { \circ } 3 4 ^ { \prime } }$.

Division-To divide one plane vector by another, divide their sizes and subtract their slopes, Fig. 35 . Thus,-

$$
\text { Absolute value of } C=\frac{5}{4.47}=1.12
$$

Angle of inclination of $\mathrm{C}=36^{\circ} 52^{\prime}-63^{\circ} 26^{\prime}=$ - $26^{\circ} 34^{\prime}$ in the negative direction. In polar co-ordinates $C = 1 . 1 2 \longdiv { 2 6 ^ { \circ } 3 4 ^ { \prime } }$.

Multiplication-Fig. 36 illustrates the multiplication of the vectors A and B. Here the rules of algebra also apply, except that when two j terms are multiplied signs are assigned opposite to those which would be used in the ordinary solution of an algebraic problem. This is for the reason that,-

$$
\text { hence, } j^{j}=\sqrt{-I}
$$

Hence where j^{2} occurs it is replaced by its value $-I$ and therefore,

$$
\begin{array}{r}
-j \times j=+\frac{1}{j}=-j \\
j^{4}=+I \\
j^{3}=+j,
\end{array}
$$

Thus, to get the product of A and B :-

$$
\begin{aligned}
& A=+4+j 3 \\
& \dot{B}=+2+j 4 \\
&+8+j 6 \\
&=12+j 16
\end{aligned}
$$

$A \times B=C=-4+j 22=22.35$ absolute
The resulting vector C has therefore a size of 22.35 units and is inclined in the positive direction at an angle of $100^{\circ} 18^{\prime}$ to the vector of reference. The polar expression is $C=22.35 \backslash 100^{\circ} 18^{\prime}$

The magnitude and position of the product may be also determined by multiplying the sizes of the vectors and adding their slopes. Thus:-

$$
\begin{aligned}
& \text { Size of } C=5 \times 4.47=22.35 \text { (as above) } \\
& \text { Slope of } C=63^{\circ} 26^{\prime}+36^{\circ} 52^{\prime}=100^{\circ} 18^{\prime} .
\end{aligned}
$$

Involution-Involution is multiple multiplication. To obtain the power of a plane vector, find the power of the polar value and multiply the angle by the power to which the vector is to be raised. Thus,-vector $A=$ $5 / 36^{\circ} 52^{\prime}$; and $\left(5 / 36^{\circ} 52^{\prime}\right)^{2}=5^{2} / 73^{\circ} 44^{\prime}=25$ $173^{\circ} 44^{\circ}$.

Evolution-To find the root of a polar plane vector, find the root of the polar value and then divide the slope by the root desired. Thus vector $A=5 / 36^{\circ} 52^{\prime}$; and $\sqrt{5 / 36^{\circ} 52^{\prime}}=2.236 / 18^{\circ} 26^{\prime}$.

SOLUTION BY CONVERGENT SERIES

The hyperbolic formula for determining the operating characteristics of a transmission circuit in which exact account is taken of all the electric properties of the circuit is frequently expressed in the following form,-

$$
\begin{align*}
& E_{\mathrm{b}}=E_{\mathrm{r}} \cosh \sqrt{Z Y}+I_{\mathrm{r}} \sqrt{\frac{\bar{Z}}{Y}} \sinh \sqrt{Z Y} \ldots \ldots(51) \\
& I_{\mathrm{s}}=I_{\mathrm{r}} \cosh \sqrt{\bar{Z} Y}+E_{i} \frac{1}{\sqrt{\frac{Z}{Y}}} \sin h \sqrt{\overline{Z Y}} \ldots \ldots(52) \tag{52}
\end{align*}
$$

Since $\sqrt{Z Y}$ is complex, the hyperbolic functions of complex quantities are required in solving these equations.

In above formula, expressed in hyperbolic language, the three auxiliary constants A, B and C which take into account the "distributed" nature of the circuit are represented by the quantities-

$$
\begin{align*}
& A=\operatorname{Cosh} \sqrt{\overline{Z Y} \ldots \ldots \ldots} \tag{53}\\
& B=\sqrt{\frac{Z}{Y}} \sinh \sqrt{Z Y} \ldots \tag{54}\\
& C=\frac{1}{\sqrt{\frac{Z}{Y}}} \sinh \sqrt{\overline{Z Y}} . \tag{55}
\end{align*}
$$

Equations (51) and (52) above may therefore be expressed in terms of the auxiliary constants, A, B and C, as follows:-

$$
\begin{align*}
& E_{\mathrm{r}}=E_{\mathrm{r}} A+I_{\mathrm{r}} B \tag{56}\\
& I_{\iota}=I_{\mathrm{r}} A+E_{\mathrm{r}} C
\end{align*}
$$

$$
\begin{aligned}
& \text { or } E_{\mathrm{r}}=E_{\mathrm{B}} A-I_{\mathrm{s}} B \ldots \ldots \ldots \ldots \text { (58) } \\
& I_{\mathrm{r}}=I_{\mathrm{s}} A-E_{\mathrm{a}} C \ldots \ldots \ldots \ldots \text { (59) }
\end{aligned}
$$

These three auxiliary constants may be calculated by convergent series as follows:-
$A=\left[1+\frac{Y Z}{2}+\frac{Y^{2} Z^{2}}{24}+\frac{Y^{3} Z^{3}}{7^{20}}+\frac{Y^{4} Z^{4}}{403^{20}}+\right.$ etc. $] \ldots(60)$
$B=Z\left[1+\frac{Y Z}{6}+\frac{Y^{2} Z^{2}}{120}+\frac{Y^{3} Z^{3}}{5040}+\frac{Y^{4} Z^{4}}{362880}+\right.$ etc. $] \ldots(6 r)$
$C=Y\left[x+\frac{Y Z}{6}+\frac{Y^{2} Z^{2}}{120}+\frac{Y^{3} Z^{3}}{5040}+\frac{Y^{4} Z^{4}}{362880}+e t c.\right] \ldots$ (62)
The above series are simply expressions for the auxiliary constants as previously stated. These constants are functions of the physical properties of the circuit and of the frequency only, and not of the voltage or the current. After the values for the auxiliary constants have been calculated for a given circuit and frequency their numerical values may be applied directly to any numerical values of E and I for which a solution is desired. From this point on, the performance of the circuit may be determined either by the graphical method previously described or by mathematical calculation.

Any degree of accuracy may be obtained by the use of convergent series for determining the auxiliary constants, by simply using a sufficient number of terms in the series. The rapidity of convergence of these series is dependent upon the value of the argument $Z Y$ and thus upon the square of the length of the circuit and frequency, and also, to a lesser extent upon the product of total circuit conductance and total circuit resistance.

As far as calculations based upon the more or less uncertain values of the fundamental constants of the circuit are concerned, the use of three terms in the series expression yields results in a 300 mile circuit which are sufficiently close to the exact values as given by the use of hyperbolic functions (infinite number of terms). In the case of shorter circuits two terms will give a high degree of accuracy. The number of terms necessary will be determined while doing the work, for it is usual to figure out the terms of the series until they become too small to be considered when added to $\frac{Y Z}{2}$ or $\frac{Y Z}{6}$.

In Table N are given values for the auxiliary constants (expressed in rectangular co-ordinates) illustrating the convergence of the series for a 300 mile, 60 cycle circuit (Problem X), the complete calculation of which will follow.

Table N shows that even for a 60 cycle, 300 mile circuit, three terms give sufficiently accurate results for determining constant A, whereas two terms are sufficient for determining constants B and C. This is on account of the slower convergence of the hyperbolic cosine series.

TABLE N-CONVERGENT SERIES TERMS FOR PROBLEM X.

No. of Terms	Constant A	Constant B	Constant C
I	$1.000000+\mathrm{j} 0.000000$	$105+\mathrm{j} 249$	+j0.001563
2	$0.805407+j$ j 0.082057	$91.3788+$ j 235.7211	-0.000043 + j 0.001462
3	$0.810506+$ j 0.076735	91.7527 + j 235.8678	$-0.000041+j 0.001463$
fin	$+0.810558+\mathrm{j} 0.076832$	$91.7486+\mathrm{j} 235.8680$	$-0.000041+j 0.001463$
finit	$+0.810558+\mathrm{j} 0.076831$	91.7486 + j 235.8680	$-0.000041+\mathrm{j} 0.001463$

leakage may be approximated from the most suitable test data available. It is general practice in the solution of all but the very longest high-voltage circuits to ignore the effect of the losses due to leakage and corona effect. These losses will be ignored in this case, so that G becomes zero. After Z and Y have been written down in the form of complex quantities the product YZ should be found as previously described for the multiplication of complex quantities. The second, third and fourth power of $Y Z$ may then te found, if desired. Chart XI shows the fourth power, but on ali but the longest circuits a total of four terms will be sufficient, and for most problems three terms will give sufficient accuracy. The range of accuracy has been previously indicated for a 300 mile circuit on the basis of any number of terms being used up to and including infinity. The values in Chart XI are carried out to six decimal places whereas four places will usually give sufficient accuracy far calcrinting the waluee nf the innstants A and B. The smallness of the value of constant C may make six places desirable when calculating

After the values of $Y Z, Y^{2} Z^{2}, Y^{3} Z^{3}$ etc., have been calculated they are divided by $2,24,720$ etc., respectively, set down and added to I. This gives the value of the auxiliary constant A, as $+0.810558+j 0.07683 I$ which is also referred to as $a_{1}+j a_{2}$. The absolute value of the constant $A=0.8142$ is simply the square root of the sum of the square of a_{1} and a_{2}. The polar value of A is thus $0.8142 / 5^{\circ} 24^{\prime} 53^{\prime \prime}$.
The solution for the constant B is of the same general form as the solution for the constant A, except that the values of $Y Z, Y^{2} \cdot Z^{2}$, and $Y^{3} Z^{3}$ etc., are divided by 6,120 and 5040 respectively. After these results are added to I they are multiplied by Z, the product being the value of the auxiliary constant B or $b_{1}+j b_{2}$. The absolute value of B is obtained in the same manner as the absolute value of A.

The solution for C is the same as for B except that in place of the constant B series being multiplied by Z it is multiplied by Y and the values of C or $c_{1}+j c_{3}$ obtained.

auxiliary constants of various circuits

In Chart XII are tabulated exact values for the auxiliary constants for the 64 problems to which frequent reference will be made. These auxiliary constants have been calculated by convergent series, the results having been checked through the medium of three separate calculations made at different times. They are therefore believed exact to at least five significant digits. The results have been expressed in both rectangular and polar co-ordinates.

CALCULATIONS OF PERFORMANCE

In Chart XIII is given the complete calculation of the electrical performance for problem X, starting with

CHART XI-EXAMPLE ILLUSTRATING RIGOROUS SOLUTION FOR THE AUXILIARY CONSTANTS BY CONVERGENT SERIES FOR PROBLEM X.

PHYSICAL CHARACTERISTICS OF CIRCUIT - FREQUENCY

LENGTH, 300 MILES. CYCLES, 60 . CONDUCTORS-\#OOO STRANNDED COPPER. SPACING OF CONDUCTORS $10 \times 10 \times 20^{\mathrm{F} E E T}$. EQUIVALENT DELTA SPAOING $=12.6$ FEET.

LINEAR LINE CONSTANTS

from tables - PER MLLE
TABLE NO. $2, r=.350$ OHM AT $26^{\circ} \mathrm{C}$,
TABLE NO. $6, \mathrm{X}=.830$ OHM (BY INTERPOLATION).
TABLE NO. $10 \mathrm{~b}=6.21 \times 10^{-6}$ MHO (BY INTERPOLATION). $\mathbf{g}=$ (IN THIS CASE TAKEN AS ZERO).
TOTAL PER CONDUCTOR
$\mathbf{R}=\mathbf{r l}=.360 \times 300=105$ OHMS TOTAL RESISTANCE. $X=\mathrm{XI}=.830 \times 300=249$ OHMS TOTAL REACTANCE. $\mathrm{B}=\mathrm{bl}=5.21 \times 300 \times 10^{-6}=.001563 \mathrm{MHO}$ TOTAL SUSCEPTANCE. $\mathrm{G}=\mathrm{gl}=0 \times 300=0 \mathrm{MHO}$ TOTAL CONDUCTANCE.

MULTIPLICATION OF YZ
$Y=\frac{0}{Z}=\frac{106+j .001 .563}{0}+0 . j 249$
$-.389187+j .164116$
$Y Z=-.389187+j .164116$
$Y Z=\frac{-.389187+j-164115}{+.151466-j .063871}$

NOTE

SOLUTION FOR (A)
(A) $=\left[1+\frac{Y z}{2}+\frac{r^{2} z^{2}}{24}+\frac{r^{3} z^{3}}{720}+\frac{r^{4} z^{4}}{40,320}+\right]$.
1.000000
$\frac{Y Z}{2}=-.!94593+j .082057$

$$
\frac{\gamma^{2} z^{2}}{24}=+.005189-j .005322
$$

$$
\frac{y^{3} z^{3}}{720}=-.000038+j .000097
$$

$$
\frac{r^{4} z^{4}}{40.320}=-.000000-j .000001
$$

$(A)=+.810568+j .076831$
$\left(a_{1}+j a_{2}\right)$
$=0.8142 \angle 5^{\circ} 24^{\prime} 63^{\prime \prime}$
SOLUTION FOR (B)
$(B)=z\left[1+\frac{Y z}{6}+\frac{r^{2} z^{2}}{120}+\frac{r^{3} z^{3}}{5.040}+\frac{r^{4} z^{4}}{382.880}+\right]$.

$\frac{y z}{6}$	$=-.054883+j .027352$
$\frac{y^{2} z^{2}}{120}$	$=+.001038-j .001064$
$\frac{y^{3} z^{3}}{5,040}$	$=-.000005+j .000014$
$\frac{y^{4} z^{4}}{362,880}$	$=-.000000-j .000000$

$(B)=z(+.93617+j .026302)$ $z=\quad 106+j 249$
$+98.2978+\mathrm{j} 233.1063$
$\begin{aligned}(B) & =+91.7486+j 235.8680 \\ & =\end{aligned}$
$=253.083 / 68^{\circ} 44^{\prime} 41^{\prime \prime} \mathrm{OHMS}$
SOLUTION FOR (C)
(C) $=Y\left[1+\frac{Y z}{6}+\frac{Y^{2} z^{2}}{120}+\frac{Y^{3} z^{3}}{5.040}+\frac{Y^{4} z^{4}}{362.880}+\right.$
$(C)=\begin{array}{ccc}Y(+ & 93617+J & 026302) \\ Y= & 0 & +j 001563\end{array}$
$(C)=-.000041+j 001463$
$=.0014,64 \backslash 91^{\circ} 36^{\prime} 18^{\prime} \mathrm{MHO}$
the values for the auxiliary constants and the receiving end load conditions known. The calculations are carried out by the employment of complex numbers, the complete performance being calculated for both load and zero load conditions. In order to give a more clear understanding of these mathematical operations the reader is referred to the vector diagrams of Fig. 37.

In Chart XIII are given the formulas for determining the E_{s} and I_{s} values under load conditions. On Fig. 37 these two same formulas are given, but in the form of vector diagrams, upon which vectors the isumerical values corresponding to problem X are stated. With the numerical values of the vectors and angles stated, it should be a comparatively simple manner to
follow graphically (Fig. 37) the mathematical calculations shown in Chart XIII.

The formulas for E_{8} and I_{5} which are stated in Chart XIII and in Fig. 37 contain a complei number $\left(\operatorname{Cos} \theta_{\mathrm{r}} \pm j \sin \theta_{\mathrm{r}}\right)$ not previously stated in connection with the fundamental hyperbolic formulas for long circuits. The formulas previously given were based upon minty power-factor. The introduction of this new complex number is made necessary in order that the effect of the power-factor of the load current may be included in the calculations. The function of this new complex number is to rotate the current vector through an angle corresponding to the power-factor of the load current. It will be referred to as the rotating triangle. If the

CHART XII-AUXILIARY CONSTANTS OF VARIOUS CIRCUITS

		Conductors	aun00000000	linear constants TOTAL PER CONDUCTOR \star				AUXILIARY CONSTANTS OF CIRCUIT these auxhlary constants take into account the effect of disiributed CAPACITANCE. THEY HAVE BEEN CALCULATED RIGOROUSLY BY CONVERGENT SERIES			
				rl raom $\underset{\substack{\text { TABLE } \\ \text { No. } 2}}{\substack{\text { n }}}$				$\frac{\text { CONSTANT (A) }}{a_{1}} \frac{a_{2}}{}$	CONSTANT (B)	CONSTANT (C)	
25 C Y C L E S											
$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 3 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & " \prime \\ & " 1 \\ & \hline 0 \end{aligned}$		3	5.54	$4 \begin{gathered} 5.36 \\ 11 \end{gathered}$	"	0		$\begin{aligned} & .999817+3.000158 \\ & =.999847 \angle 000^{\prime} 32^{\prime \prime} \\ & .999847+j .000158 \\ & =.999847 \angle 0^{\circ} 0^{\prime} 32 \end{aligned}$	$\begin{aligned} & 5.5394+j 5.3600 \\ & =1.70814403^{\prime 2} 27^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} 0+j .0000 .57 \\ =.000057 \angle 9000.0 \end{aligned}$
			${ }^{3}$. 5	5.36	57.2	-	$\begin{aligned} & 5.5394+15.3600 \\ & =7.7081 \angle 44^{4} 3^{\prime 2} 27^{\prime \prime} \\ & \hline \end{aligned}$		$\begin{aligned} & 0+3.000057 \\ = & .000057<90^{\circ} 0^{\prime \prime} 0^{\prime \prime} \end{aligned}$	
			4	31	8.5	81	\bigcirc	$\begin{aligned} & .999656+j .000336 \\ & =.999656\left[10^{\circ 11100}\right. \\ & \hline \end{aligned}$	$\begin{aligned} & 8.3082+18.4999 \\ & =11.8866155^{\circ} 3912 \end{aligned}$	$\begin{array}{r} .000+1.000081 \\ =.0000818000^{0} 1 \\ \hline \end{array}$	
			4	8.31	${ }^{8.5}$	${ }^{81}$	-	$\begin{aligned} & 999956+j .000336 \\ & =.999656 \angle 0^{\circ} 110^{6} \end{aligned}$	$\begin{aligned} & 8.3082+18.49999 \\ & =\quad 11.88645^{\circ} 399^{12} \end{aligned}$	$\begin{array}{r} 000+j .000081 \\ =.000081190^{\circ} 0^{\circ} 0^{\circ} \end{array}$	
12	50		4	13.8	514.1	35	-	$\begin{aligned} & .999948+j .00093 .5 \\ & .9 .999048<0^{\circ} 3^{1122^{\prime \prime}} \end{aligned}$	$\begin{aligned} & 13.841+j 14.09966 \\ &= 19.757 \angle 45^{\circ} 31.44^{0} \end{aligned}$	$\begin{array}{r} 0+j .000^{135} \\ =.000135190^{0} 0^{0} \end{array}$	
			6	85	15.1	125	\bigcirc	$\begin{aligned} & .999056+j .000866 \\ & =.99905610^{\circ} 2^{\prime} 58^{8} \end{aligned}$	$\begin{aligned} & 13.8413+1 / 5.0991 \\ & =20.4833 / 47^{\circ} 29^{\prime} 20^{\circ} \end{aligned}$	$\begin{array}{r} 0+1.000125 \\ =.000125<900000 \\ \hline \end{array}$	
$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	$\begin{array}{\|c\|} \hline 100 \\ \vdots \end{array}$	$\begin{gathered} 0000 \text { COPPER } \\ \vdots \\ \hline \end{gathered}$		27	32	233	\bigcirc	$.996248+j, 003224$	$27.6307+132.1894$	$\begin{array}{r} 002+1.000233 \\ =.00023319000^{23} 0 \\ \hline \end{array}$	
				27.7	33	226	\bigcirc	$\begin{array}{r} .996249+j .003126 \\ =.996254<0^{010} 40^{\prime} 4{ }^{\prime} \end{array}$	$\begin{aligned} & 27.6308+j 33.1874 \\ & =43.1841 / 1500 / 3^{1} 13^{\circ} \\ & \hline \end{aligned}$	$\begin{array}{r} 0+1.000226 \\ =.000226 \angle 90^{\circ} 0^{\circ} 0^{\prime \prime} \end{array}$	
17	$\begin{gathered} 200 \\ \vdots \\ \hline \end{gathered}$		11	39.2	64.8	464	\bigcirc		$\begin{aligned} & 38.808+j 64.594 \\ & =75.356\left(50^{\circ} 0^{\prime 1} 10^{\prime}\right. \end{aligned}$	$\begin{array}{r} .000001+3.000462 \\ =.000462 \angle 909727^{\prime \prime} \end{array}$	
17 20			17	39.2	69.2	434	\bigcirc	$\begin{aligned} & .985009+11008464 \\ & =.985050 \angle 0^{\circ} 29^{\prime} 31^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { 38.8084+j68.965 } \\ & =\quad 79.134 \angle 6037158 \end{aligned}$	$\begin{aligned} & .000001+j .000432 \\ & =.000432 \angle 90 \cdot 70{ }^{2} \end{aligned}$	
21 22	300 \vdots \vdots	$\begin{gathered} 6.36 \mathrm{M} \text { ALUM } \mathrm{O}_{0} \\ \vdots \end{gathered}$		44.1		74	0	$\begin{aligned} & .966085+j .016285 \\ & = \\ & =966222 \angle 005710 \end{aligned}$	$\begin{aligned} & 43.1033+190.40 .8 \\ & =100.157 \angle 6430.36 \end{aligned}$	$\begin{aligned} & -.00000+1.000,39 \\ & =.000739 \angle 900,7110^{01} \end{aligned}$	
23 24 24				44.1	101	67	\bigcirc	$\begin{aligned} & .966219+1.014650 \\ & =.96633010^{\circ} 52^{\prime 6} 6^{\prime \prime} \end{aligned}$	$43.1070+1100.077$ $=108.966 / 66^{941} 48^{\prime \prime}$	$\begin{aligned} & -.000003+1 \cdot 000664 \\ & =.000664\left(90^{\circ} / 5^{\circ} 24^{\prime \prime}\right. \end{aligned}$	
退	400$\vdots$$n$	$\begin{array}{c\|} \hline 636 \mathrm{M} \text { ALUM } \\ \prime \prime \\ " \\ \hline \end{array}$	17	58.8	130	928	$\stackrel{1}{0}$	$\begin{array}{\|l\|} \hline .940161+j .026738 \\ =.9405411^{10} 3745^{*} \end{array}$		$\begin{array}{r} -000008+1.0009009 \\ =.00090969093014 \end{array}$	
8			2	58.8	134	896	-	$\begin{array}{r} .940452+j .025819 \\ =.9408011103420 \\ \hline \end{array}$	$\begin{aligned} & 56.4664+1131.842 \\ & =143.425666^{\circ} 48^{\prime} 5 \end{aligned}$	$\begin{aligned} & -.000008+j .000878 \\ & =.0008781903118 \end{aligned}$	
	500$!$			73	163	1160	\bigcirc	$\begin{aligned} & .906642+j .041299 \\ & =.90758312036 .14 \end{aligned}$			
				73.5	168	1120	0	$\begin{aligned} & .907109+1.039880 \\ & =.907985 .2031 .20 \end{aligned}$	$\begin{aligned} & 68.9507+j 163.76 \\ & =177.684870 .10^{\circ} \end{aligned}$	$\begin{array}{r} -.000015+j .001085 \\ 0.001085{ }^{\circ} 90.4733 \end{array}$	
	6 O C Y C L E S										
33 34 3	$\begin{gathered} 20 \\ 3 \\ n \\ \hline \end{gathered}$	$\left[\begin{array}{c} 0000 \text { COPPE } \\ " \\ \vdots \\ \hline \end{array}\right.$	3 	5. 54	2.88	137	-	$=.999118100^{* 1.18}$	$=14.0167 \angle 68^{\circ} 9+0^{\circ}$	$\begin{gathered} 00019.000137 \\ =.0001374900^{10} 0^{\prime \prime} \end{gathered}$	
36			3	5.54	2.88	7	-	$\begin{aligned} & .999118+j \cdot 000379 \\ & =.99911810011^{18} \end{aligned}$	$\begin{aligned} & 5.53675+112.8769 \\ & =14.0167 \angle 66^{\circ} 44^{\circ} 0^{\circ} \end{aligned}$	$\begin{aligned} & 00+1.000137 \\ = & .000137<90^{\circ} 00 \end{aligned}$	
37 38 38	$\begin{array}{\|c\|} \hline 30 \\ ! \\ \hline \end{array}$	$\begin{gathered} -000 \text { COPPER } \\ n \\ n \end{gathered}$	4	8.31	20.4	195	\bigcirc	$\begin{array}{r} 998011+j .00081 \\ =.998011102^{48} \\ \hline \end{array}$	$\begin{array}{r} 8.299+120.3887 \\ =22.0144691,5=1 \end{array}$	$\begin{aligned} & 00+1.000195 \\ & =.000 / 95<0090 \\ & \hline \end{aligned}$	
			4	8.31	20.4	19	$\stackrel{0}{0}$	$=.998011 \angle 0^{\circ} 2^{\prime} 47^{\prime \prime}$		$\begin{array}{r} 0 \\ = \\ =.000195 \angle 900195 \\ \hline \end{array}$	
$\begin{aligned} & 41 \\ & 42 \\ & 43 \\ & 44 \\ & \hline \end{aligned}$		$\begin{gathered} 0000 \text { COPPER } \\ \vdots \\ \hline \end{gathered}$	4	13.85	4.0	${ }^{324}$	\bigcirc	$\begin{aligned} & .994496+1.002239 \\ & =.994498100733 \end{aligned}$	$\begin{aligned} & 13.7992+133.9479 \\ & =36.645667^{\circ} 52^{\prime} 45 \end{aligned}$	$\begin{gathered} 000+j .000333^{3} \\ =.0003234900^{3} 0 \end{gathered}$	
			6	3.85	36.4	301	\bigcirc	$\begin{aligned} & .994526+1.002081 \\ & =.994528<08714 \end{aligned}$	$\begin{aligned} & 13.7994+136.34 .32 \\ & \\ &= 38.874<6912.30^{\prime} \end{aligned}$	$\begin{array}{r} 0+1.000390 \\ =.0003001900 .0 \\ \hline \end{array}$	
$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \end{aligned}$		$\begin{gathered} 0000 \text { COPPER } \\ \vdots \\ \hline \end{gathered}$	9	27.7	77.4	562	0	$\begin{array}{\|l\|} \hline .97832+1.007728 \\ =.97835 \\ \hline 0047^{\prime \prime} 10^{\prime \prime} \end{array}$	$\begin{array}{r} 27.2996+376.9116 \\ =81.6129170^{\circ} 27^{\circ} 36 \\ \hline \end{array}$	$\begin{array}{r} -000001+j .000558 \\ =.000558 \angle 190.6^{\circ} 11 \end{array}$	
			"	27.7	7%	542	\bigcirc	$\begin{array}{r} .97847+1.007452 \\ =.97849810 .26 .14 \\ \hline \end{array}$	$\begin{gathered} 27.302+179.1963 \\ =83.7740^{10} 58^{\prime} 30^{\circ} \end{gathered}$	$\begin{aligned} & =000001+1.000538 \\ & =.000538190 .6 .27 \end{aligned}$	
49 50			I!	39.2	156	1116	\bigcirc	$\begin{aligned} & .914128+j .021243 \\ & =.914375(1919.31 \\ & \hline \end{aligned}$	$36.9541+j / 51.791$ $=156.2241869 .2^{\prime \prime}$	$\begin{array}{r} -000008+1.001084 \\ =.001084490025^{123} \end{array}$	
!			17	39.2	166	044	0	$\begin{aligned} & .914524+j .019876 \\ & =.914740 .1114140^{\prime \prime} \end{aligned}$	$\begin{aligned} & 36.9641+\mathrm{j} 161.507 \\ & =165.69 \mathrm{L70} 9.31^{\prime} \end{aligned}$		
	$\begin{gathered} 300 \\ ! \end{gathered}$		11	44.1	220	1792	O	$\begin{aligned} & .808816+\mathrm{j} .033006 \\ & =.809662 \angle 2^{63} 37^{\circ} 0^{\prime} \end{aligned}$	$\begin{aligned} & 38.4655+1206.359 \\ & =269.913<7992628 \end{aligned}$	$\begin{aligned} & -000023+3.001678 \\ & =.001678 \angle 90^{\circ} 478^{\circ} \end{aligned}$	
55 56			$2!$	44.1	243	1614	-	$\begin{aligned} & .810022+1.033307 \\ & =.81070142^{\circ 611} 21^{1} \end{aligned}$	$\begin{aligned} & 38.5002+1227.918 \\ & =231.17880 .24^{\prime 4} \\ & =23 \end{aligned}$	$\begin{aligned} & 000018+1.001510 \\ & =.0015101904 .6 \end{aligned}$	
57 58 58	$\begin{gathered} 400 \\ n \\ n \\ \hline \end{gathered}$		17	58.8	314	212	O	$\begin{aligned} & .671701+1.057759 \\ & =.674179<44^{54} 54{ }^{5} \end{aligned}$	$\begin{gathered} 45.8726+3280.04 \\ =8837780^{\circ} 41^{50} \end{gathered}$	$\begin{aligned} & 000044 \pm 1.001958 \\ & =.001959 \mathrm{C910} 80^{\circ} \\ & \hline \end{aligned}$	
59 60			21	58.8	322	2152	-	$\begin{aligned} & .672455+{ }^{j} .056208 \\ & =.6748004444^{\circ} 39 \end{aligned}$	$\begin{aligned} & 45.9013+1287.194 \\ & =290.83980^{9} 51.0^{0} \end{aligned}$	$\begin{aligned} & 000042+j .001912 \\ & =.0019 \times 3.919 .21 \end{aligned}$	
61 62	$\begin{gathered} 500 \\ \vdots \\ n \\ \hline \end{gathered}$		17	73.5	390	785	-	$\begin{aligned} & .502772+1.084790 \\ & =.509871,1934.200 \end{aligned}$	$\begin{array}{r} 48.9614+1325.247 \\ =328.912<812621 \end{array}$	$\begin{aligned} & 000085+1 \\ & =.002309 \text { 沿 } 2307 \end{aligned}$	
62 63 64				73.5	402	2690	-	$.504852+j .081969$ $=.5114631901312^{\prime \prime}$	$\begin{aligned} & 49.061+j 335.414 \\ & =338.98 \angle 8 r^{\circ} 40^{\prime} 43^{\prime} \end{aligned}$	$\begin{aligned} & 000079+1.002230 \\ & =.002232 \angle 92^{10} 45^{\circ} \\ & \hline \end{aligned}$	

*rl is the resistance in ohms at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right), x l$ the reactance in ohms, $b l$ the susceptance in micromlos to neutral (multiply by 100° to convert to mhos). The x and b values for the 636000 circ. mil aluminum cable were taken as those of 700000 circ. mil copper on the assumption that these two conductors would have approximately the same diameter. gl, the loss resulting from leakage over insulators and from corona has, for simplicity, been assumed as zero.

CHART XIII-RIGOROUS CALBULATION OF PERFORMANCE WHEN RECEIVING END CONDITIONS ARE FIXED

SOLUTION FOR Es LOAD CONDITIONS SOLUTIONFOR I I_{s}

$\mathrm{KW}_{\text {SN }}=(87,180 \times 73,778)+(21,028 \times 69,461)=0,256 \mathrm{KW}$ PER PHASE. EFFICIENCY $=\frac{6400 \times 100}{6255}=86,33 \%$. $\mathrm{KV}-\mathrm{A}_{S N}=(70.662 \times 94.76)=6694 \mathrm{KV} \cdot \mathrm{A}$ PER PHASE. $\quad \mathrm{PF}_{\mathrm{S}}=\frac{8255 \times 100}{6694}=93.42 \%$ LEADING. LOSS $_{\bar{N}}=6265-5400=855 \mathrm{KW}$ PER PHASE.
PHASE ANGLES - at full load the voltage at the senoing end leado the voltage at the receiver eno by the angle

 -ANGLE $18^{\circ} 00^{\prime}=20^{\circ} 52^{\prime}$. THE POWER-FACTOR AT THE' SENDING-END IS THEREFORE COS $20^{\circ} 52^{\prime}=93.42 \%$ LEADING AT LOAD SPECIFIED.

ZEROLOAD CONDITIONS

REGULATION

A RISE IN VOLTAGE AT THE SENDING-END OCCURS OF $70652-48889=21763$ VOLTS TO NEUTRAL WHEN THE LOAD IS INCREASED FROM ZERO TO 99.92 AMPERES AT 00% POWER FACTOR LAGGING AT THE RECEIVER ENO WITH CONSTANT VOLTAGE AT THE RECEIVING END. PHASE ANGLES

AT ZERO LOAD THE VOLTAGE AT THE SENDING-END LEADS THE VOLTAGE AT THE RE GEIVER END BY THE ANGLE TAN ${ }^{-1} \frac{4613}{4867.1}=$ $\operatorname{TAN}^{-1} .0947=6^{\circ} 26^{\circ}$ AND THE CURRENT AT THE SUPPLY END LEADS THE VOLTAGE AT THE RECEIVER END BY THE ANGLE TAN $\frac{1}{-1} \frac{8786}{-2} 462=$ TAN $(-35.7)_{1}=91^{\circ} 36^{\prime}-$ HENCE THE CURRENT AT THE SUPPLY END LEADS THE VOLTAGE AT THE SUPPLY END BY THE ANGLE $191^{\prime} 36^{\prime} /-15^{\circ} 25^{\prime} /=$ 88* II'. THE POWER FACTOR AT THE SENDING-END IS THEREFORE COS $86^{\circ} \| I^{\prime}=6.64 \%$ LEADING AT ZERO LOAD.
load power-factor is 100 percent, this rotating triangle will equal $I \pm \mathrm{j} o$, hence it has no effect or power to rotate. If the power-factor of the load is 80 percent the rotating triangle would have a numerical value of $0.8 \pm \mathrm{j} 0.6$.

The various phase angles given in Chart XIII show whether the power-factor at the supply end is leading or lagging. These various phase angles are given to make the discussion complete. Actually, in order to determine whether the power-factor at the supply end is leading or lagging, it is only necessary to note if the supply end
current vector leads or lags behind the supply end voltage vector. At the lower end of Fig. 37 combined current and voltage vectors are shown for this problem, corresponding to both load and zero load conditions.

In Chart XIV is given a complete calculation of the electrical performance of problem X, starting with the values for the auxiliary constants and the sending end load condition known. In other words the supply end conditions which were derived by calculation in Chart XIll have in this case been assumed as fixed, and the receiver end conditions calculated. The reason that

COMBINED CURRENT AND VOLTAGE VECTORS

fig. 37-grapilic representation of problem X Illustrating rigorous calculations of performance when receiving end conditions are fixed.
there is a slight difference between the receiving end conditions as calculated on Chart XIV and the known receiving end conditions is that the value for the sine in the rotating triangle (0.436) in chart XIII was carried out to only three places, whereas in Chart XIV it was carried out to four places. If the values for the rotating triangles had been carried out to five or six places in the calculations in both charts, the receiving end conditions would have checked exactly.

TERMINAL VOLTAGES AT ZERO LOAD

For a given circuit and frequency, the relation of the voltage at the two ends of the circuit is fixed. The ratio of sending end to the receiving end voltage is expressed by the constant A. The ratio of receiving to sending end voltage is expressed by $\frac{I}{A}$. For example, problem X, the sending end voltage under load is 70652 volts. If the load is thrown off, and this sending end voltage is maintained constant at 70652 volts, the receiving end voltage will rise to a value of $\frac{7065^{2}}{0.814^{2}}=$ 86775 volts to neutral. The rise in percent of sending end voltage is therefore $\frac{100 \times 86775-70652}{70652}=$ 22.82 percent.

PERFORMANCE OF VARIOUS CIRCUI'S

In Chart XV is tabulated the complete performance of the 64 problems for which the auxiliary constants are tabulated in Chart XII. The auxiliary constants in Chart XII were applied to the fixed load conditions as stated in Chart XV for the receiving end, and both load and zero load conditions at the sending end were calculated and tabulated.

The object of calculating and tabulating the values for the 64 problems was two fold. First to obtain data on 25 and 60 cycle problems covering a wide range which would provide a basis for constructing curves, illustrating the effect that distance in transmission has upon the performance of circuits and upon the auxiliary constants of the circuit. Second, to give the student a wide range of problems from whicl he could choose, and from which he could start with the tabulated values as fixed at either end and calculate the conditions at the other end. It is believed that such problems will furnish wery profitable practice for the student and will also serve as a general guide when making calculations on problems of similar length and fundamental or lineal constants. It is not intended that the figures given for longer circuits, included in these tabulations, shall coincide with ordinary conditions encountered in practice.

CHART XIV-RIGOROUS CALCULATION OF PERFORMANCE WHEN SENDING END CONDITIONS ARE FIXED

$$
K V-A_{S}=20082 . \quad K W_{S}=188785 . \quad E_{S}=122359 \text { voLTS } 3 \text { PHASE } . \quad P F_{S}=03.42 \% \text { LEADING } .
$$

PER PHASE TO NEUTRAL

$\mathrm{KV}-\mathrm{A}_{\mathrm{SN}}=\frac{20082}{3}=6694 . \mathrm{KW} \mathrm{SN}=\frac{18765}{3}=6265 . \quad \mathrm{E}_{S N}=\frac{122369}{1.732}=70852 . \mathrm{I}_{\mathrm{S}}=\frac{8694 \times 1000}{70652}=94.75$ AMPERES.
AUXILIARY CONSTANTS OF CIRCUIT
$(A)=+.810550+j .076831$
$(B)=+9.7486+j 236.868$
$=\quad\left(b_{1}+j b_{2}\right)$
(C) $=-.000041+j .001463$
$=\quad\left(a_{1}+i a_{2}\right)$
$=.8142 / 5^{\circ} 24^{\prime} 53^{\circ}$
$=253.083 \angle 68^{\circ} 44^{\prime} 41^{\circ}$ OHMS
$=\left(C_{1}+j c_{2}\right)$
$=.001464<91^{\circ} 36^{\prime} 18^{\circ} \mathrm{MHO}$

ZEROLOAD CONDITIONS

$I_{\text {SO }}=48898 \frac{(1+.0000792+j .001189}{.6629}=48898(.000119+j .001794)=48888 \times .001798=87.82$ AMPERES.

REGULATION

A RISE IN VOLTAGE AT THE SENDING-END OCCURS OF $70652-48898=21754$ VOLTS TO NEUTRAL WHEN THE LOAD IS INCREASED FROM ZERO TO 89.87 AMPERES AT BO.0 1% POWER FACTOR LAGGING ATI THE RECEIVER END WITH CONSTANT VOLTAGE AT THE RECEIVING END.: PHASE ANGLES
at zero load the voltage at the receiver end lags behind the voltage at the sending-end by the angle
TAN ${ }^{-1} \frac{5667}{69780}=$ TAN $^{-1} \quad .0948=5^{\circ} 25^{\prime}$; AND THE CURRENT AT THE SENDING-END LEADS THE VOLTAGE AT THE SENDING-END GY THE ANGLE
$\operatorname{TAN}^{-1} \frac{.001794}{000118}=$ TAN $^{-1} 15.08=86^{\circ} 11$. THE POWER-FACTOR AT THE SENDING-END IS THEREFORE COS $88^{\circ} 11^{\prime}=6.64 \%$ LEADING AT ZERO LOAD.

RECEIVING-END CONDITIONSFIXED							SENDING-END CONDITIONS-CALCULATED*											
LOAD CONDITIONS							LOAD CONDITIONS							ZERO LOAD				
KV-A	$\underset{3}{E_{\text {P PHASE }}}$	ITO NEUTRAL					TO NEUTRAL							TO NEUTRAL				
				$\mathrm{E}_{\text {RN }}$	I_{R}	$\%{ }^{n}$			$E_{\text {SN }}$	I_{5}	$\begin{array}{\|c\|} \left.\begin{array}{\|c\|} \star \star \\ \mathrm{PF} \\ \hline \end{array} \right\rvert\, \\ \hline \end{array}$			KV-A SN		$E_{\text {SNO }}$		
25 C Y C L E S																		
$\begin{array}{\|l\|l\|} \hline 1 & 130 \\ 2 & \cdots \end{array}$	10000		$3 \begin{aligned} & 346.6 \\ & 43.3\end{aligned}$	${ }^{5774}$		180		377	6347 6202 202							5773		
3	?	${ }^{1666.6}$	${ }^{1 / 3336.6}$	'	194.4	18	${ }_{1}^{18}$		12		9	7.5s	${ }^{8.71} 8$			548	. 66	
35	200	${ }^{1167}$	933	115	101		${ }_{1}^{1727} 12$									11546	4	
80	30000	2667	2/33		15								3	24.29		3/3	1403	
8	\cdots		2			100			18					,		,		
$\begin{gathered} 9 \\ 10 \end{gathered} \mathbf{5}^{500}$	30000	${ }^{1667}$	[1333	173	96.	100	$1{ }^{1}$		18		80.29	10.76	$\begin{aligned} & 9.77 \\ & 2.63 \end{aligned}$	${ }^{10.32}$		7304	${ }^{2.33}$	
11200	$60 \div$	6667	$7{ }^{5} 33$	34640	192.5	80							9,53	49.8		607		
13220	880	7333	586											599:3	4	5620		
14	${ }^{\prime \prime}$		7333			100		15	51820						*	"		
${ }_{17}^{15} 4{ }^{40}$	O	3)	$3{ }^{1 / 1366}$		192.5		14	11648 4364 189	77 74 7	${ }^{18} 18$			7.75	${ }^{281}$	\%	99.30		
17.2	200	83												2185	15.29	68253		
			8333					8913.0										
[1900	0	3333	${ }^{106} 1$	80.8	" ${ }^{5}$		1327 1445 18	11610 1412	91 865					${ }^{2780}$	7.4	${ }^{62}$		
21200	120.0	66	6667	¢	96.		5683 7652	$\begin{aligned} & 562.9 \\ & 105 \mathrm{~A} \end{aligned}$		106			5.57	342	.22	6950		
22.0	-		666				7652	$1105 A$	71762				816.57					
600	200	20000	20000		73	80LAG	22	17048 27381 381	12				6.5s	8559	10°	"'.		
200	140000	66			82.							-6.89	5.40	5s8s	109.6	76024		
		6.6	16667				1.	(1222	(1278833		${ }_{88.9} 8$		6.6					
150	140	50		80	686		6183	A						66.5		3360		
$32{ }^{3}$.							190	/1672\|,	115162	165.82]	2) 7.83							
6 O C Y C L E S																		
$\left[\left.\begin{array}{l} 33 \\ 34 \end{array} \right\rvert\,\right.$			$\left[\begin{array}{l} 366.6 \\ 433.3 \end{array}\right]$		$\overline{75}$		499	$\left\lvert\, \begin{aligned} & \text { 377.94 } \\ & 164.18\end{aligned}\right.$	6702 6259		$7^{7 s, t}$		$\begin{aligned} & 3.8 .90 \\ & \hline 773 \\ & \hline \end{aligned}$	${ }^{4.588}$		769		
5	20.	6.	1333 1667	15				18	13			R05	18.78					
											J.							
5	$2{ }^{\circ}$	16	1167	Y "	"	100	126	251.	$1 / 2$			$\left[\begin{array}{c} -16 \\ -8 \end{array}\right.$						
398000 40 40	${ }^{30} 00$	2667	2133 2667	1732	${ }^{154}$	180	[3073			${ }_{1}^{151.65}$			2.39 ${ }^{9.1}$	58.43		7286		
500	300	667	1333 1667	73	96.2			1456218						6.29	2.	17225		
											2.73				s			
44	60	-	6667		,		729	18	377	191.	9.913	9.05			.	,		
	88	7333	${ }_{5}^{58}$	${ }^{50}{ }^{8}$	444.				59 548 48		8158	-7.99	$\begin{gathered} 8.74 \\ .7 .94 \end{gathered}$	1409	8.62	?!		
44 ¢	120	13.33	${ }_{3} 106$	92	22.		13796 14366	436	81				7.74	2528	11.	80	37.	
	1200	$8{ }^{83}$	6667 8333	692	20.3	80	9								75.7	63357		
51.4000	.			8	165							9,9	29	606	89.78			
	-		13333	\%	-	100	14	1443	84	172		1.99	3.29					
200	1200	6667	${ }^{5} 5333$	692	96	80	69728 90617	5626 7238		9			\% 5.59	${ }^{6523}$	208.8	56.1		
6000	200	20000	140	115	73						8		5. ${ }^{56}$	16330	476.4	36		
58	140.		6667	${ }^{80}$		100	11014	539.	643				1309			-		
so.00	1	6.	16667		4,	100	21139	$\begin{aligned} & 1434 \\ & 1875 \end{aligned}$						21				
50	140				61.86													
			5000															
- "						800	2,750	(220	8							59074		

The above performances are based upon values for the auxiliary constants as given on Chart XII.

CHAPTER X
 HYPERBOLIC FUNCTIONS

Abstract

In the consideration of the hyperbolic theory as applicd to transmission circuits, the writer desires to express his high appreciation of the excellent literature already existing. Dr. A. E. Kennelly's pioneer work and advocacy of the application of hyperbolic functions to the solution of transmission circuits has been too extensive and well known to warrant a complete list of his contributions. His most important treatises are "Hyperbolic Functions Applied to Electrical Engineering", 1916; "Tables of Complex Hyperbolic and Circular Functions", 1914; "Chart Atlas of Hyperbolic Functions", 1914, which provides a ready means of obtaining values for, complex functions, thus materially shortening and simplifying calculations, and "Artificial Electric Lines", 1917. "Electrical Phenomena in Parallel Conductors" by Dr. Frederick Eugene Pernot, 1918, is an excellent treatise on the subject and contains valuable tables of logarithms of real hyperbolic functions from $\mathbf{x}=0$ to $x=2.00$ in steps of 0.001 .

An article "Long-Line Phenomena and Vector Locus Diagrams" in the Electrical World of Feb. 1, 1919, p. 212, by Prof. Edy Velander is an excellent and valuable contribution on the subject, because of its simplicity in explaining complicated phenomena.

To employ hyperbolic functions successfully in the solution of transmission circuits it is not necessary for the worker to have a thorough undersianding of how they have been derived. On the other hand it is quite desirable to understand the basis upon which they have been computed. A brief review of hyperbolic trigonometry is therefore given before taking up the solution of circuits.

CIRCULAR angles derive their name from the fact that they are functions of the circle, whose equation is $x^{2}+y^{2}=I$. Tabulated values of such functions are based upon a radius of unit length. The geometrical construction illustrating three of the functions, the sine, cosine and tangent of circular angles is indicated in Fig. 38. The angle AOP, indicated by full lines in the positive or counter-clockwise direction, has been drawn to correspond to one radian. The radian is an angular unit of such magnitude that the length of the are which subtends the radian is numerically equal tc that of the radius of the circle. Thus, the number of radians in a complete circle is 2π. Expressed in degrees the radian is equal approximately to $57^{\circ} I 7^{\prime}$ $44.8^{\prime \prime}$. The segment $A O P$ of any angle $A O P$ of one radian has an area equal to one-half the area of a unit square. Therefore the angle may be expressed in radians as,-

$$
\frac{\text { Length of arc }}{\text { radius }} \text { or } \frac{2 \times \text { area }}{(\text { radius })^{-}}
$$

Circular functions are obtained as follows,-

$$
\begin{aligned}
\text { Circular angle }= & \frac{2 X \text { area }}{(\text { radius })^{\frac{1}{2}}} \text { radians } \\
\text { Sine } \theta & =\frac{Y}{R} \\
\text { Cosine } \theta & =\frac{X}{R} \\
\text { Tangent } \theta & =\frac{Y}{X}
\end{aligned}
$$

The variations in the circular functions, sine, cosine and tangent are indicated graphically in Fig. 39 for a complete revolution of 360 degrees. Since for the second and each succeeding revolution these graphs would simply be repeated, circular functions are said to have a period equal to 2π radians. In other words, adding 2π to a circular angle expressed in radians does not change the value of a circular function.

REAL HYPERBOLIC ANGLES
Real hyperbolic angles derive their name because they are functions of an equilateral hyperbola. A hyperbola is a plane curve, such that the difference between the distances from any point on the curve to two fixed points called the foci is constant. In an equilateral hyperbola, Fig. 40, the asymptotes $O S$ and $O S^{\prime}$ are straight lines at right angles to each other and make equal angles with the X -axis. The hyperbola continually approaches the asymptotes, and meets them at infinity. The equation of such a hyperbola is $x^{2}-y^{2}$ $=I$.

The hyperbolic angle $A O P$ of Fig. 40, called for convenience θ^{*}, has been drawn so as to correspond to an angle of one hyperbolic radian, or one "hyp" as it is usually' designated. Hyperbolic angles are determined by the area of the sector they enclose. Thus the hyperbolic angle of one hyp $A O F$, encloses an area $A O P$ of one-half, or the same as the area $A O P$ of the corresponding circular angle of Fig. 38. It should be observed here that although one circular radian subtends an angle $A O P$ of $57^{\circ} 17^{\prime} 44.8^{\prime \prime}$, one hyperbolic radian subtends a circular angle $A O P$ of $37^{\circ} 17^{\prime} 33.67^{\prime \prime}$ (0.65087 circular radian).

In the same way as for the circle the hyperbolic angle may be expressed in radians as,-

$$
\frac{\text { Length of arc }}{\rho} \text { or } \frac{2 \times \text { area }}{(\text { radius })^{3}}
$$

where $\rho=$ the integrated mean radius from O to $A P$. As an illustration, the length of the arc $A P$, Fig. $4 a$

[^17]is 1.3168 and the mean integrated radius to arc $A P$ is 1.3167.

Hyperbolic functions, distinguished from Linuln functions by the letter h affixed, are obtained as foi-lows:-
c. varrations in hyperbolic functions are indicated aphically in Fig. 4I for hyperbolic angles up to approximately 2.0 hyps for the sine and cosine and up to 3.0 hyps for the tangent.

Hyperbelic functions have no true period, but add-

fig. 3S-real circular angles
$X^{2}+Y^{2}=I$

Fig. 40-real hyperbolic angles
$X^{2}-Y^{2}=I$

fig. 39-Graphs of Circular functions

FIC. 41-GRAPHS OF HYPERBOLIC FUNCTIONS

Hyperbolic angle $\theta=\frac{\text { Length of are } A P}{\text { Length of mian radius radians. }}$ $\operatorname{Cosh} \theta=\frac{X}{O A}$
$\sinh \theta=\frac{Y}{O A}$
$\operatorname{Tan} h_{b} \theta=\frac{Y}{X}$
ing a $2 \pi j$ to the hyperbolic angle does not change the values of the functions, hence these functions have an imaginary period of $z \pi j$.

Circular functions can be used to express the phase relations of current and voltage, but not the magnitude, or size, whereas hyperbolic functions, continually in-
creasing or decreasing, can be used to express the magnitude of current in a long circuit.

In Fig. 42 is shown a circular angle corresponding to one circular radian divided into five equal parts, each of 0.2 radian. Assuming unity radius, each of the arcs will have a constant length of 0.2 and a constant mean radius of 1.0. In Fig. 42 is shown a hyperbolic angle corresponding to one hyperbolic radian divided into five equal hyperbolic angles each of 0.2 hyperbolic radian. In this case the length of the arcs corresponding to each subdivision increases as the hyperbolic angle increases. The lengths of the corresponding integrated mean radii vectors also increase with the angle. By dividing the length of the arc of any of the five subdivisions by the length of the mean radius for that subdivision it will be seen that each subdivision represents 0.2 hyps.

From the above it will be evident that in radian measure, the magnitudes of circular and hyperbolic

CIRCULAR RADIAN

MYPERBOLIC RADIAN

TIG. 42-SUBDIVISION OF A CIRCULAR AND A HYPERBOLIC RADIAN INTO FIVE SECTORS OF 0.2 radian each
plex angle takes, the construction for the cosine of a hyperbolic complex angle is illustrated by Fig. 43.

CONSTRUCTION FOR COSH θ

The construction, Fig. 43, assumes that the real part, that is the hyperbolic sector subtends an angle of one hyperbolic radian and the imaginary part, that is the circular sector, subtends an angle of one circular radian. This hyperbolic complex angle has therefore a numerical value of $r+j r$ hyperbolic radian. These numerical values embrace sectors sufficiently large for the purpose of clear illustration. The actual construction for obtaining the complex function $\cosh \left(\theta_{1}+j \theta_{2}\right)=\cosh$ ($I+j I$ hyperbolic radians) may be carried out as fol-lcws:-

On a piece of stiff card board lay out to a suitable scale the hyperbolic sector $\theta_{1}=E O C$, equal to one hyp as shown in the upper left hand corner of Fig. 43. This may readily be plotted by the aid of a table of real hyperbolic functions for say each one tenth of a hyp up to and including one hyp. These are then plotted on the cardboard and joined with a curved line thus forming the arc $E C$ of Fig. 43. The ends of the are are then joined with O by straight lines. The real part of this hyperbolic complex angle is then cut out of the cardboard.

The circular part $j \theta_{2}$ of this complex angle is traced upon the cardboard as follows:- With radius equal to $\cosh \theta_{1}$ (to the same scale as used when trac-
angles are similarly defined with reference to the area of circular and hyperbolic sectors.

COMPLEX ANGLES AND TIEEIR FUNCTIONS

A complex angle is one which is associated with both a hyperbolic and a circular sector. If the complex angle is hyperbolic, its real part relates to a hyperbolic and its imaginary to a circular sector. On the other land, if the complex angle is circular, its real part relates to a circular and its imaginary part to a hyperbolic sector. Complex hyperbolic trigonometry and complex circular trigonometry thus unite in a common geometrical relationship.

In the following treatment for the solution of transmission circuits by hyperbolic functions, only hyperbolic complex angles will enter into the solution. Such a complex angle will then consist of a combination of a "real" hyperbolic sector and a so-called "imaginary" or circular sector. The circular sector will occupy a plane inclined at an angle to the plane of the hyperbolic sector. In other words, the complex angle will be of the threedimensional order. The construction of such a complex angle may be difficult to follow if viewed only from one direction. In order to illustrate the form that a com-
ing the hyperbolic sector θ_{1}) draw the arc $D O F$ of a length such that the angle $D O F$ is $57^{\circ} 17^{\prime} 44.8^{\prime \prime}$ (on: circular radian). Join the ends of the are to O witl straight lines. The circular part $j \theta_{2}$ of this complex angle is now cut out of the piece of cardboard. This gives models of the two parts of the complex angle which may be arranged to form the complex angle $I+j I$ hyps. These two models are shown at the top of Fig. 43.

The two parts of the complex angle are arranged as follows:-Upon a drawing board or any flat surface occupying a horizontal plane, place the hyperbolic sector θ_{1} in a vertical position. The plane of this hyperbolic sector will then be at right angles to the plane of the drawing board. The circular sector $j \theta_{2}$ is now placed in a vertical position just back of the hyperbolic sector. The toes O of each sector will then coincide, as well as the line $O D$ of the circular sector with the line $O C$ of the hyperbolic sector. The top of the circular sector is now turned back so that the plane of the circular sector lies at an angle with the vertical plane occupied by the hyperbolic sector. This displacement angle between the planes of the two sectors is

CIRCULAR SECTOR

TOP PLAN OF GOARD (MODEL REMOVED) SHOWING OOSH $\left(\mathrm{O}_{1}+\mathrm{j}_{2}\right)$ TRACED UPON BOARD

> MATHEMATICAL SOLUTION

$$
\cosh \left(\theta_{1}+j \theta_{2}\right)=\left(\cosh \theta_{1} \cos \theta_{2}+j \sinh \theta_{1} \sin \theta_{2}\right)
$$

LOQ COSH $\theta_{1}=0.18$ Be,39日 LOQ SINH $\theta_{1}=0.070 .112$
$\log \cos \theta_{2}=\frac{\overline{1} .732 .03 \theta}{i .021,025} \quad$ LOQ $\sin \theta_{2}=\frac{1.025 .039}{i .905,151 .}$
$\operatorname{COSH}\left(\theta_{1}+j \theta_{2}\right)=0.9337+j 0.0889$
$=1,207 \angle 49^{\circ} 52^{\prime} 05^{\prime}$
fig. 43-graphical construction for the hyperbolic cosine of the complex angle $\theta_{1}+j \theta_{2}=I+j r$ Hyperbolic Radians.
circular sector of this complex angle is moved in the forward direction through an angle of $49^{\circ} 36^{\prime} 18^{\prime \prime}$ so that the plane of the circular sector assumes an angle of 90° oo $00^{\prime \prime}-49^{\circ} 36^{\prime}$ $18^{\prime \prime}=40^{\circ} 23^{\prime} 42^{\prime \prime}$ with the horizontal plane of the drawing board. From the end of the circular sector (point F) thus inclined, a plummet may be suspended until it meets the horizontal plane of the drawing board at the point f of the illustration. In other words, the point F is projected orthogonally onto the horizontal plane of the drawing board.

A top view of the drawing board, with the model removed, is illustrated in the lower left hand corner of Fig. 43. The line OF ($1.297 / 49^{\circ} 52^{\prime} 05^{\prime \prime}$) traced upon the horizontal drawing board, is a vector representing the complex cosine of the complex angle $\theta_{1}+j \theta_{2}=I+j I$ hyperbolic radians. This complex cosine has rectangular coordinates of +0.8337 and + $j 0.9889$.

At the bottom of Fig. 43 is given the mathematical expression for the exact solution for the cosine of a complex hyperbolic angle following the construction illustrated. There are numerous other mathematical equations with their equivalent geometrical constructions which will produce the same values for the cosine, but the above is probably as easy to follow as any, and will therefore be used exclusively hereafter.
known as the "gudermannian complement" of the hyperbolic angle θ. It will be referred to as θ_{g}. The front eleration of Fig. 43 illustrates how these two sectors would appear when viewed from the front. To the right of this illustration is shown how these two sectors would appear when viewed from the left hand end of the model. The displacement angle θ_{G} has a value for this particular complex angle of $49^{\circ} 36^{\prime} 18^{\prime \prime}$. This mumerical value is determined by virtue of the fact that this displacement angle has a cosine of
$\frac{1}{\cosh \theta_{1}}=\frac{1}{1.5+3081}=0.6+805$ or cosine of $\theta_{\mathrm{R}}=\operatorname{sech} \theta_{1}$ $=0.64805$. It has a sine of tanh $\theta_{1}=0.76159$.

The angle whose cosine is 0.64805 and whose sine is 0.76159 is $49^{\circ} 36^{\prime} 18^{\prime \prime}$. Thus the top part of the

CONSTRUCTION FOR SINII θ

The construction for the sine of the complex hyperbolic angle $I+j I$ is indicated in Fig. 44. In this case the same construction may be used for obtaining the sinh as for determining the cosh of the complex angle with the following two exceptions.

The circular sector is made one quadrant $\left(90^{\circ}\right)$ larger. In other words the angle $D O F^{\prime}$ is $90^{\circ}+57^{\circ}$ $17^{\prime} 44.8^{\prime \prime}$ or $147^{\circ} 17^{\prime} 44.8^{\prime \prime}$ as indicated by Fig. 44. It occupies the same plane as when determining the cosh of the angle but is simply extended in the forward direction through one quadrant, as indicated by the dotted lines of Fig. 44. The plummet is again suspended, this time from point F^{\prime} upon the horizontal board, which it
meets at point f^{\prime}. The other difference is that the sine $O F^{\prime}$ is read off from the Y axis as the vector of reference in place of the X axis as in the case of the cosine. Thus the circular sector has been carried forward through an angle of 90 degrees in the circular angle plane and the vector of reference has been advanced 90 degrees in the horizontal plane of reference. The sine of this angle is $1.446 / 63^{\circ} 56^{\prime} 37^{\prime \prime}$ and has rectangular components of $0.6349^{-}+j 1.298 \overline{5}$. The mathematical

TOP PLAN OF BOARD (MODEL REMOVED) SHOWING SINH $\left(\theta_{1}+j \theta_{2}\right)$ TRACED UPON BOARO (

MATHEMATIOAL SOLUTION.

 $\operatorname{SINH}\left(\theta_{1}+j \theta_{2}\right)=\left(\operatorname{SinH} \theta_{1} \operatorname{Cos} \theta_{2}+j \operatorname{COSH} \theta: \operatorname{Sin} \theta_{2}\right)$

$$
\begin{aligned}
\operatorname{SINH}\left(\theta_{1}+j \theta_{2}\right) & =0.634 \theta+j 1.2985 \\
& =1.448 \underline{\angle 63^{\circ}} 66^{\prime} 37^{\prime}
\end{aligned}
$$

NOTE - THE CONSTRUCTION FOR THE COSINE OF THE COMPLEX HYPERBOLIO ANGLE. MAY ALSO BE USED FOR OETERMINING THE SINE OF THE ANGLE WITH THE FOLLOWINO OHANGES: - THE OIROULAR SECTOR MUST BE EXTENDED THRU ONE QUADRANT AND THE SINE MEASURED FROM THE Y AXIS AS THE VECTOR OF REFERENCE IN PLACE OFT HE X AXIS AS IN THE CASE OF THE COSINE.
fig. 44-Graphical construction for the hyperbolic sine of the complex angle $\theta_{1}+j \theta_{2}=I+j I$ hyperbolic radians.
that Dr. Kennelly's description of the model and its application in determining the cosh and sinh of complex angles may be followed as given in the following paragraphs.

DESCRIPTION OF MODEL

In this model, the cosine or sine of a complex angle, either hyperbolic or circular, can be produced, by two successive orthogonal projections onto the $X Y$ plane, one projection being made from a rectangular hyperbola, and the other projection being then made from a particular circle definitely selected from among a theoretically infinite number of such circles, all concentric at the origin O, which circles, however, are not coplanar. The selection of the particular circle is determined by the foot of the projection from the hyperbola. This effects a geometrical process which is easily apprehended and visualized; so that once it has been realized by the student, the three-dimensional artifice is rendered superfluous, and he can roughly trace out a complex sine or cosine on an imaginary drawing board, with his eyes closed. The model, however, possesses certain interesting geometrical properties as a three-dimensional structure.
A drawing made from a photograph of the model is shown in Fig. 45. On an ordinary horizontal drawing board 53.5 by 31.8 cm ., is a horizontal rod $A B$, which merely serves to support the various brass-wire semicircles, and a semihyperbola, in their proper positions. The axis of $A B$ in the $X Y$ plane, on the upper surface of the board, is a line of symmetry for the structure, which, if completed, would be formed by full circles and a complete hyperbola. For convenience, however, only the half of the structure above the $X Y$ plane is presented, the omission of the lower half being readily compensated for in the imagination.
The cight wire semicircles are formed with the following respective radii, in decimeters: 1.0, $1.020 . . ., 1.081 . \ldots, 1.185 \ldots$, $1.337 \ldots, 1.543 \ldots, 1.810 \ldots$, and $2.150 \ldots$, which are the respective cosines of $0,0.2,0.4,0.6,0 . S, 1.0,1.2$, and I. 4 hyperbolic. radians, according to ordinary tables of real hyperbolic funitions. These successive semi-circles therefore have radii equal to the cosines of successively increasing real hyperbolic angles θ_{2}, by steps of 0.2 , from 0 to 1.4 hyperbolic radians, inclusive. All of these semicircles have their common center at the origin O, in the plane $X O Y$, of the drawing board. The planes of the semicircles are, however, displaced. The smallest circle of unit radius (I decimeter), occupies the vertical plane XOZ,

FIG. 45 -DRAWING FROM A PHOTOGRAPH OF A GEOMETRICAL MODEL
For the orthogonal projection of the sines and cosines of complex angles. This model was developed by A. E. Kennelly.
in which also lies the rectangular semi-hyperbota $X O H$. Angular distances corresponding to $0.2,0.4, \ldots$. I. 4 hyperbolic radians, are marked off along this hyperbola at successive corresponding intervals of 0.2. The cosines of these angles, as obtainablc projectively on the $O X$ axis are marked off between C and B along the brass supporting bar, and at each mark, a semicircle rises from the $X Y$ plane, at a certain angle θ_{1} with the vertical $X O Z$ plane. This displacement angle is determined by the relation,-

$$
\cos \theta_{0}=\frac{1}{\cosh \theta_{2}}=\operatorname{sech} \theta_{1}
$$

Where θ_{3} is the particular hyperbolic angle selected. This means, as is well known, that the displacement angle θ_{G} between the plane of any semicircle and the vertical plane $Z O X$ is equal to the gudermannian of the hyperbolic angle θ_{2}.

The model is, of course, only a skeleton structure of eight stages. If it could be completely developed, the number of semicircles would become infinite, and they would form a smooth continuous surface in three dimensions. Along the midplane $Z O Y$, all or these circles would have the same level, raised one decimeter above the horizontal drawing board plane of reference $X \quad O \quad Y$. The circles would increase in radius without limit, and would cover the entire X O Y plane to infinity, the hyperbola extending likewise to infinity towards its asymptote $O S$, in the $X O Z$ plane. The actual model is thus the skeleton of the upper central sheet of the entire theoretical surface, near the origin.

The semicircles are also marked off in uniform steps of circular angle. Each step is taken, for convenience, as nine degrees, or one tenth of a quadrant. Corresponding angular steps on all of the eight semicircles are connected by thin wires. as shown in the illustrations.

A front elevation of the model, taken from a point on the $O Y$ axis- 15 units from O, is given in Fig. 46. It will be seen that any tie wire, connecting corresponding circular angular

fig. 46-front elevation of model
From a point on the $O Y$ axis, -15 units from 0 .
points on the semicircles, is level, and lies at a constant height $\sin \theta_{2}$ decimeters above the drawing bnard. That is, the tie wire that connects all points of circular angle θ_{2}, measured from $O X$ positively towards $O Y$, lies at the uniform height $\sin O_{2}$ decimeters above the drawing board.

A plan view of the model, taken from a point on the $O Z$ axis, +15 units above O, is given in Fig. 47. It will be seen that each semicircle forms an ellipse, when projected on the base plane $X O Y$. The semi-major axis of this ellipse has length cosh θ_{1}, where θ_{1} is the hyperbolic angle corresponding to that semicircle. The semi-minor axis is,-

$$
\cosh \theta_{1} \sin \theta_{G}=\cosh \theta_{1} \tanh \theta_{1}=\sinh \theta_{1}
$$

from the well known relation that exists between a hyperbolic argle and its gudermannian circular angle; namely,-

$$
\sin \theta_{3}=\tanh \theta_{1}
$$

All of these ellipses have the same center of reference O. Any such system, having semi-major axes cosh θ_{1}, and semiminor axes sinh $\theta_{\text {t }}$ are well known to he confocal, and the foci must lic at the points $+I$ and $-I$ in the $X O Y$ plane, or the points in which the innermost circle cuts that plane.

PROCEDURE FOR PROJECTING $\cosh \left(\pm \theta_{1} \pm j \theta_{2}\right)$

Thus premised, the process of finding the cosine of a complex hyperbolic angle $\theta_{1}+j \theta_{2}$; that is, the process of finding cosh ($\theta_{1}+j \theta_{2}$) is as follows:

Find the arc $C E$, Fig. 45 , from $C=+1$ along the rectangular hyperbola $C E H$, which subtends θ_{1} radians. The hyperbolic sector comprised between the radius, $O C$, the hyper-
bolic arc, and the radius vector $O E$, on this arc from the origin O, will then include $\frac{\theta_{1}}{2}$ sq. dm . of area. Drop a vertical perpendicular from E onto $O X$. It will mark off a horizontal distance $O D$ equal to $\cosh \theta_{1 .}$ Proceed along the circle which rises at D, in a positive or counterclockwise direction, through θ_{2} circular radians, thus reaching on that circle a point G whose clevation above the drawing board is $\sin \theta_{2}$ decimeters. The area enclosed hy a radius vector from the orizin O on the circle, followed between the axis $O C$ and the circular curve, will be $\frac{0_{2}}{2} \cosh ^{2} \theta_{1}$ sq. dms.

From G_{2} drop a vertical plummet, as in Fig. 46, on to the drawing board. In other words, project G orthogonally on the plane $X O Y$. Let g be the point on the drawing board at which the plummet from G touches the surface. Then it is easily seen that $O g$ on the drawing board is the required magnitude and direction of $\cosh \left(\theta_{1}+j \theta_{2}\right)$, in decimeters, with reference to $O X$ as the initial line in the plane $X O Y$. It may be read off /either in rectangular coordinates along axes $O X$ and $O Y$ on a tracing cloth surface as shown in Fig. 47, or in polar coordinates printed on a sheet seen through the tracing cloth.

If the circular angle θ_{2}, i. e., the imaginary hyperbolic angle $j \theta_{2}$, lies between π and 2π radians, (in quadrants 3 and 4), the point G will lie on the under side of the plane $X O Y$, and the projection onto g in that plane must be made upwards, instead of downwards.

If the hyperbolic angle whose cosine is required has a negative imaginary component, according to the expression cosh $\left(\theta_{1}-j \theta_{2}\right)$, then starting from the projected point D, we must trace out the circular angle in the negative or clockwise direction, as viewed from the front of the model.

FIG. 47-PLAN VIEW OF MODEL
From a point on the $O Z$ axis, 15 units from 0 .
If the real part of the hyperbolic angle is negative, according to the expression $\cosh \left(-\theta_{2} \pm j \theta_{3}\right)$; then since cosh - $\left(\theta_{3}\right.$ $\left.\mp j \theta_{2}\right)=\cosh \left(\theta_{2} \mp j \theta_{1}\right)$, we proceed as in the case of a positive real component, but with a change in the sign of the imaginary component.

The operation of tracing cosh $\left(\pm \theta_{2} \pm j \theta_{2}\right)$ on the $X Y$ plane, thus calls for two sucecssive orthogonal projections onto that plane; namely (1) the projection corresponding to cosh ($\pm \theta_{1}$) as though $j \theta_{2}$ did not exist, and then (2), the projection corresponding to $\cosh j \theta_{2}=\cos \theta_{2}$ independently of θ_{1}, except that the radius of the circle, and its plane, are both conditioned by the magnitude of θ_{1}.

If we trace the locus of $\cosh \left(\theta_{1} \pm j \theta_{2}\right)$, where θ_{1} is beld constant, it is evident from Fig. 47 that we shall remain on one circle, which projects into the same corresponding ellipse on the $X \quad Y$ plane. That is, the locus of $\cosh \left(\theta_{1} \doteq j \theta_{1}\right)$ with θ_{1} held constant, is an ellipse, whose semi major and minor diameters are $\cosh \theta_{1}$ and $\sinh \theta_{1}$ respectively. If, on the other hand, we trace cosh $\left(\pm \theta_{3}+j \theta_{2}\right)$ with θ_{2} held constant, we shall run over a certain tie wire bridging all the circles in the model, which tie wire is $\sin \theta_{2} \mathrm{dm}$. above the board, and its projection on the board, in the plane $X Y$ of projection, is part of a hyperbola.

PROCEDURE FOR SINH ($\theta_{1}+j \theta_{3}$)
It would be readily possible to produce a modification of this model here described, which would enable the sine of a complex angle to be projected on the $X Y$ plane following constructions already referred to. The transition to a new model for sines is, however, unnecessary. It suffices to use the cosine
model here described in a slightly different way. One has only to recall that

$$
\begin{aligned}
& \sinh \theta=-j \cosh \left(\theta+j \frac{\pi}{2}\right) \\
& \sinh \left(\theta_{1}+j \theta_{2}\right)=-j \cosh \left[\theta_{1}+j\left(\theta_{2}+\frac{\pi}{2}\right)\right]
\end{aligned}
$$

or

Consequently, in order to find the sine of a complex hyperbolic angle, we proceed on the model as though we sought the cosine of the same angle, increased by $\frac{\pi}{2}$ radians or one quadrant, in the imaginary or circular component. We then operate with $-j$ on the plane vector so obtained; i. e., we rotate it through one quadrant in the $X Y$ plane and in the clockwise direction. An equivalent step is, however, to rotate the X and Y axes of reference in that plane through one quadrant in the reverse or
positive direction. ${ }^{-}$That is, we may omit the $-j$ operation, 1 , in dealing with sine projections, we treat $O Y$ as an $O X$ axis, and $-O X$ as an $O Y$ axis, or read off the projections on the $X Y$ plane to the $-Y O Y$ axis as initial line.

The only difference, therefore, between projecting the cosine and the sine of a complex hyperbolic angle in the model, is that in the latter case the circular component is increased by one quadrant and the projected plane vector is read off to the $O Y$ reference axis as initial line. The model thus gives the projection of either cosh ($\pm \theta_{1} \pm j \theta_{2}$) or $\sinh \left(\pm \theta_{1} \pm j \theta_{2}\right)$ within the limits of +1.4 and -1.4 for θ_{1}, and for θ_{2} between the limits $+\alpha$ and $-\alpha$. For accurate numerical work, reference would, of course, be made to the charts and tables of such functions already published, and which enable such functions to be obtained either directly or by interpolation, for all ordinary values of θ_{1} and θ_{2}.

CHAPTER XI

 PERFORMANCE OF LONG TRANSMISSION LINES

 PERFORMANCE OF LONG TRANSMISSION LINES

 (RIGOROUS SOLUTION BY HYPERBOLIC FUNCTIONS)

 (RIGOROUS SOLUTION BY HYPERBOLIC FUNCTIONS)}

AS STATED in the discussion of the convergent series solution, the performance of an elecrric circuit is completely determined by its physical characteristics;-resistance, reactance, conductance and capacitance and the impressed frequency. These five quantities are accurately and fully accounted for in the two complex quantities.

$$
\text { Impedance } Z=R+j X
$$

Admittance $Y=G+j B$
Having determined the numerical values for these two complex quantities, no further consideration need Le given to the physical quantities of the circuit or to the frequency.

In the hyperbolic theory the circuit is said to subtend a certain complex angle, $\theta=\sqrt{Z Y}$. This quantity represents in a sense the electrical length of the circuit. 'ihe numerical value of this angle θ is expresse 1 in hyperbolic radians. If the circuit is very long electrically the numerical value of the angle will be comparatively large. Conversely, if the circuit is electrically short, it will be comparatively small. The numerical value of the angle θ is, therefore, a measure of the electrical length of the circuit and an indication of how much distortion in the distribution of voltage and current is to be expected as an effect of the capacitance and leakance of the circuit.

In order to give an idea of the extent of the variation in the complex θ and its functions $\cosh \theta$ and $\sinh \theta$ for power transmission circuits of various lengths corresponding to 25 and 60 cycle frequencies approximate values have been calculated, as skown in Table O .

This tabulation indicates that for circuits of from 100 to 500 miles in length, operated at frequencies of 25 and 60 cycles, the complex hyperbolic angle of the circuit (which is a plane-vector quantity) has a maximum modulus, or size of 0.41 for 25 cycles and of 1.05 for 60 cycles. It has an argument, or slope, lying between 70 and 78 degrees for 25 cycles and between 80 and 85 degrees for 60 cycles.

In the convergent series solution, the three so-called auxiliary constants A, B and C determine the perfo:mance of the circuit. These three auxiliary constants are simply expressions for certain hyperbolic functions of the complex hyperbolic angle θ of the circuit.

Thus

$$
\begin{aligned}
& A=\cosh \theta \\
& B=\sinh \dot{\theta} \sqrt{\frac{Z}{\zeta}}=Z \frac{\sinh \theta}{\theta}=Z^{\prime} \\
& C=\sinh \theta \frac{r}{\sqrt{\frac{Z}{Y}}}=Y \frac{\sinh \theta}{\theta}
\end{aligned}
$$

ADDITIONAL SYMBOLS

In addition to the symbols previously listed, the following will be employed in the hyperbolic treatment.
$\alpha=$ Linear hyperbolic angle expressed in hyps per mile. It is a complex quantity consisting of a real component α_{1} and an imaginary component α_{2}. It is also known as the attenuation constant or the propagation constant of the circuit.
$\alpha_{1}=$ The real component of the linear hyperbolic angle α, expressed in hyps. It is a measure of the shrinkage or loss in amplitude of the traveling wave, per unit length of line traversed.
$\alpha_{2}=$ The imaginary component of the linear hyperbolic angle α, expressed in circular radians. It is a measure of the loss in phase angle of the traveling wave, per unit length of line traversed.
$0=$ The complex hyperbolic angle subtended by the entire circuit, expressed in hyps. It differs from α in that it embraces the entire circuit, whereas α embraces unit length of circuit (in this case one mile), $\theta=\alpha \times L$. where L is the length of the circuit expressed in miles.
$\theta_{1}=$ The real component of the complex hyperbolic angle of the circuit expressed in hyps, and defines the shrinkage or loss in amplitude or size of a traveling wave, in traversing the whole length of the line.
$\theta_{3}=$ The imaginary component of the complex hyperbolic angle of the circuit expressed in circular radians, expressing the loss in phase angle or slope of the traveling wave, in traversing the whole length of line.
$\epsilon=2.7182818$ which is the base of the Napierian system of logarithms. $\log _{10}=0.4342945$.
$\theta_{0}=$ Position angle at sending end.
$\theta_{\mathrm{r}}=$ Position angle at receiving end.
$\theta_{p}=$ Position angle at point P on a circuit.
$\delta=$ Impedance load to ground or zero potential at receiving end line, in ohms at an angle.
$z_{0}=\sqrt{\frac{z}{y}}=$ Surge impedance of a conductor in ohms at an angle.
$y_{0}=\frac{I}{z_{0}}=$ Surge admittance of a conductor in mhos at an angle.

TABLE O-GENERAL EFFECT OF DISTANCE AND FREQUENCY UPON THE COMPLEX HYPERBOLIC ANGLE AND ITS FUNCTIONS

	z				\%	- - $\sqrt{27}$	cosera	sinc.
25 c YCLE								
60 C Y C L E S								

These values are but roughly approximate to illustrate the general effect for certain circuits.

determination of the auxiliary constants

It was shown in Chart XI how values for the auxiliary constants A, B and C may be determined mathematically by convergent series form of solution, using problem X as an example. Chart XVI gives information as to how these same auxiliary constants may be determined by the use of real hyperbolic functions.

The solution for the auxiliary constants by real hyFerbolic functions is given completely for problem X in Chart XVI. Vector diagrams are given to assist in following the solution. In the solution for the auxiliary constants by convergent series, the operations were carried out by aid of rectangular co-ordinates of the complex, or vector quantities. In Chart XVI, the operations are to a large extent carried out by the aid of polar co-ordinates. In the case of convergent series, most of the operations consist of adding the various terms of the series together. As addition and subtrac-
tion of complex quantities can be most readily carried out when expressed in rectangular co-ordinates, this form of expression is used for the convergent-series solution. On the other hand, powers and roots of complex quantities are most readily obtained by polar coordinate expression. In the solution by real hyperbolic functions Chart XVI, operations for powers and roots predominate, and for this reason polar expressions have been quite generally employed. The solution by real hyperbolic functions is briefly this:-

The impedance Z and the admittance Y are first set down in complex form and their product obtained.
square root of this product gives the complex angle $\theta=V^{\overline{Z Y}}$ of the circuit. This angle is then expressed in rectangular co-ordintes as $\theta_{1}+j \theta_{2}$ for the purpose of determining the numerical value of its real part θ_{1} (expressed in hyps) and its imaginary or circular part θ_{2} expressable in circular radians. This circulor par θ_{2}

CHART XVI-RIGOROUS SOLUTION FOR AUXILIARY CONSTANTS OF PROBLEM X BY REAL HYPERBOLIC FUNCTIONS

```
CHARACTERISTICS OF CIRCUIT
        LENGTH 300 MILES. CYCLES 60.
        CONDUCTORS-3* 000 STRANDED COPPER. SPACING OF CONDUCTORS \(10 \times 10 \times 20\) FEET. EQUIVALENT DELTA SPACING \(=12.6\) FT.
LINEAR CONSTANTS OF CIRCUIT TOTAL PER CONDUOTOR
\(\mathbf{R}=0.350 \times 300=105\) OHMS TOTAL RESISTANOE AT \(25^{\circ} \mathrm{O}\).
\(X=0.830 \times 300=249\) OHMS TOTQL REACTANCE.
\(B=5.21 \times 300 \times 10^{-6}=.001563\) MHO TOTAL SUSCEPTANCE.
\(\mathbf{G}=0 \times 300=0\) MHO TOTAL CONDUCTANOE.
\(\mathrm{g}=(\) IN THIS CASE TAKEN AS ZERO).
```

SOLUTION FOR $\theta=\sqrt{2 Y}$	
$\begin{aligned} \theta_{Y}=\operatorname{TAN}^{-1} \frac{B}{G} & =\operatorname{TAN}^{-1} \frac{0.001583}{0}=80^{\circ} \\ Y=G+j B & =0+j 0.001583 \\ & =\sqrt{0^{2}+0.001553^{2}}=0.001563 \\ & =0.001563180^{\circ} \end{aligned}$	$\underbrace{}_{\gamma_{-}}$
$\begin{aligned} \theta_{Z Y} & =\theta_{Z}+\theta_{Y}=67^{\circ} 8^{\prime} 8^{\prime}+90^{\circ}=157^{\circ} 8^{\prime} 8^{\prime \prime} \\ Z Y & =270.233 \times 0.001563=0.4223745 \\ & =0.4223745 \backslash 157^{\circ} 8^{\prime} 8^{\prime \prime} \end{aligned}$	
$\begin{aligned} \theta=\sqrt{Z Y} & =0.6498035 / 78^{\circ} 34^{\prime} 4^{\circ} \mathrm{HYP} \\ & =0.128817+\mathrm{j} 0.537008 \mathrm{HYP} \\ & =\quad \mathrm{L}\left(\alpha_{1}+\mathrm{j} \alpha_{2}\right) \end{aligned}$	
$\begin{aligned} \sqrt{\frac{Z}{Y}} & =\sqrt{\frac{270.233 / 67^{\circ} 8^{\prime} 8^{\circ}}{0.001563 \sqrt{90^{\circ}}}} \\ & =\sqrt{172893 \sqrt{22^{\circ} 51^{\prime} 52^{\prime}}} \\ & =415.805 \sqrt{11^{\circ} 25^{\prime} 56^{\circ}} \end{aligned}$	
WAVE LENGTH $\begin{aligned} & \theta_{2}=+j 0.637009 \mathrm{HYP} . \\ & \alpha_{2}=\frac{0.637009}{300}=0.00212336 \end{aligned}$ - WAVE LENGTH $=\frac{2 \pi}{\alpha_{2}}=\frac{6.2831853072}{0.00212336}=2959$ MILES	

VOLTAGE DIAGRAM

SOLUTION FOR (A)

$(A)=\cosh \sqrt{Z Y}=\left(\cos H \theta_{1} \cos \theta_{2}+j \sinh \theta_{1} \sin \theta_{2}\right)$ $\theta_{1}=0.128817 \mathrm{HYP} \quad \theta_{2}=\frac{360^{\circ}}{2 \pi} \times 0.537009=36^{\circ} 29^{\prime} 52^{\prime}$ LOG COSH $\theta_{1}=0.003594 \quad$ LOG SINH $\theta_{1}=\bar{T} .111172$ LOG COS $\theta_{2}=$ = $.806184 \quad$ LOO SIN $\theta_{2}=\overline{1} .774359$ LOG $a_{1}=\bar{T} .908788 \quad$ LOG $a_{2}=\bar{i} .885531$ $a_{1}=0.81056 \quad a_{2}=0.07583$

(A) $=0.8142 \quad$| $0.81056+j 4^{\circ}$ |
| :--- |
| $4^{\prime} 52^{\prime}$ |

SOLUTION FOR(B)

$(B)=\sqrt{\frac{Z}{Y}} \sinh \sqrt{Z \gamma}=\sqrt{\frac{Z}{Y}}\left(\operatorname{sinH} \theta_{1} \cos \theta_{2}+j \cosh \theta_{1} \sin \theta_{2}\right)$ LOG SINH $\theta_{1}=\bar{i} .111172 \quad$ LOC COSH $\theta_{1}=0.003594$ LOO $\cos \theta_{2}=\frac{\bar{T} .005194}{1.016368} \quad$ LOG SIN $\theta_{2}=\frac{1.774359}{1.777853}$ $\operatorname{SINH} \theta_{1} \operatorname{COS} \theta_{2}=0.10383 \operatorname{COSH} \theta_{1} \operatorname{SIN} \theta_{2}=0.5 \theta \theta 73$
$\operatorname{TAN}^{-1} \frac{0.59973}{0.10383}=\angle 80^{\circ} 10^{\prime} 40^{\prime}$
$\operatorname{SiNH} \theta_{1} \cos \theta_{2}+j \cosh \theta_{1} \sin \theta_{2}=$

$$
=0.10383+10.59873
$$

$=0.80865 \angle 80^{\circ} 10^{\prime} 40^{\prime}$
$\sqrt { \frac { Z } { Y } } = 4 1 5 . 8 0 5 \longdiv { 1 1 ^ { \circ } 2 5 ^ { \prime } 5 6 ^ { \circ } }$
$(B)=415.005 \quad \begin{aligned} & \Pi 11^{\circ} 26^{\prime} 55^{\prime} \\ & \quad 68^{\circ} 44^{\prime} 44^{\prime}\end{aligned}$

SOLUTION FOR (C)

(C) $=\frac{1}{\sqrt{\frac{2}{Y}}} \sin H \sqrt{\sqrt{Z Y}}$,

$$
\begin{aligned}
& =\frac{1}{415.605 \sqrt{10^{\circ} 25^{\prime} 56^{\prime}}} \times 0.60855 \angle 80^{\circ} 10^{\prime} 40^{\prime} \\
& =0.002405 \angle 11^{\circ} 25^{\prime} 58^{\prime}
\end{aligned} \times 0.00865 \angle 80^{\circ} 10^{\circ} 40^{\prime}{ }^{\prime}
$$

is converted to degrees by multiplying by 57°. 29578 . The hyperbolic cosine and sine of this complex angle are next obtained by the aid of logarithms of the functions of the component parts of the hyperbolic complex angle θ. The equation for $\cosh \theta$ and $\sinh \theta$ is given just above the solution. With a view of eliminating the necessity of calculation for each complex angle, $\cosh \theta$ and $\sinh \theta$, Dr. Kennelly has prepared tables and charts from which these two functions (and others) may be obtained directly, thus very materially shortening the solution by hyperbolic functions. Since complex angles have two variable components $\left(\theta_{1}+j \theta_{2}\right)$ tables of functions of such angles would have to be quite extensive in order that the steps for which values for the functions are given be not excessive. Although tables of functions of complex angles are not as complete as is desired they are a great help in the solution of ordinary power circuits. Functions corresponding to angles lying between the values for angles in these tables may readily be approximated by simple proportion, giving values sufficiently accurate for ordinary power transmission circuits. They have been calculated in Chart XVI for the purpose of illustrating such procedure and also as a high degree of accuracy was here desired for the purpose of illustrating the agreement of the results as obtained by different rigorous methods. Ordinarily these values would be taken from tables.

SOLUTION BY NOMINAL π METHOD

By this method, in place of considering the admittance of the circuit as being distributed (as it is in the actual circuit) it is based upon the assumption that the total conductor admittance may be lumped at two points, one half being placed at each end of the circuit. Such an artificial circuit is known as a "nominal π " circuit since the nominal values of impedance and admittance are ascribed to this circuit. On the above assumption, the current per conductor is the vector sum of the receiving end load and the receiving end condenser currents. The sending end current is the vector sum of the conductor and the sending end condenser currents. The performance of such a circuit may be determined either graphically or mathematically.

If the circuit is not of great electrical length, (say not over 100 miles at 60 cycles or 200 miles at 25 cycles) the performance of the corresponding nominal π circuit will not be materially different from that of the actual circuit having distributed constants which it imitates. If, however, the circuit is of great electrical length the performance of the nominal π circuit no longer closely imitates the performance of the actual circuit which it represents, owing to an error due to the lumpiness of the artificial circuit. Dr. Kennelly has shown that by making certain modifications in the linear or fundamental constants for the impedance and admittance of the nominal π circuit, the lumpiness error will vanish, so that the artificial circuit will then truly represent at the terminals the behavior under steady state
operation, taking distributed admittance into account. Such a corrected artificial circuit is known as the "equivalent" π circuit, because it then becomes externally equivalent to the actual circuit, having distributed constants, in every respect.

The complex numbers which must be applied to the impedance, Z and the admittances, $\frac{Y}{2}$ and $\frac{Y^{\prime}}{2}$ of the nominal π circuit in order to correct these nominal values into the equivalent circuit are called the correcting factors of the nominal π circuit. The nominal values of the impedance Z and the admittances $\frac{Y}{2}$ of the circuit must be multiplied by these vector correcting factors in order to convert them into the "equivalent" values; thus:-

$$
\begin{aligned}
& Z^{\prime}=Z \frac{\sinh \theta}{\theta} \\
& \frac{Y^{\prime}}{2}=\frac{Y}{2} \frac{\tanh \theta / 2}{\theta / 2}
\end{aligned}
$$

Where $\theta=\sqrt{Z Y}$ is the hyperbolic complex angle subtended by the circuit.

Complete tables of hyperbolic functions are not always available; then again, many engineers have a natural aversion to the use of such functions. In order to avoid these objections as well as to simplify calculations, Dr. Kennelly has charted these "correcting factors" for hyperbolic complex angles up to θ $=1.0$ radian in steps of 0.01 in size and 1 degree in slope. The writer is particularly indebted to Dr. Kennelly for these charts, which are reproduced herewith for the first time, as Charts XVIII, XIX, XX and XXI. It is believed that the use of these charts will greatly simplify the calculation of the performance of electric power transmission circuits by hyperbolic functions. They enable the vector values of these ratios to be read to at least three decimal places in sizes and to two decimal places in slope, and their availability makes the use of tables of hyperbolic functions unnecessary. The corrected conductor impedance Z^{\prime} is the same as the familiar auxiliary constant B.

EQUIVALENT π SOLUTION FOR PROBLEM X

The solution for problem X by the equivalent π method is given in Chart XVII. At the top of the sheet are two diagrams, one a diagram for one conductor of the circuit of problem X and the other a corresponding vector diagram of the currents and the voltages at both ends. The numerical values of the angles and the quantities pertaining to problem X are placed upon the two diagrams for the purpose of assisting in fellowing the mathematical solution.

The physical properties of the circuit are first set down, its linear constants obtained from the tables of constants and multiplied by the length of the circuit to obtain the total values per conductor. The next procedure is to calculate the hyperbolic angle θ of the circuit. To do this the impedance and the admittance of the circuit are set down as complex quantities in the form of polar co-ordinates and multiplied together by multiplying their slopes and adding their angles. The square root of the resulting vector is obtained by tak-

CHART XVIII

KENNELLY CHART FOR IMPEDANCE CORRECTING FACTOR

(FOR ANGLES HAVING POLAR VALUES BETWEEN 0 AND 0.40)

[^18]
CHART XIX
 KENNELLY CHART FOR IMPEDANCE CORRECTING FACTOR

(FOR ANGLES HAVING POLAR VALUES BETWEEN 0.40 AND I.0)

To find the vector "correcting factor" corresponding to any complex line angle θ, of a circuit, the angle θ is expressed in polar form with the slope in fractional degrecs. The correcting factor as read from the chart will be in polar form with its slope in fractional degrees. Consult Table P for rapid conversion to minutes and seconds. For example:-
$\theta=0.8 \angle 62^{\circ}$, correcting factor $=0.043 \angle 5^{\circ} .10=0.043 \angle 5^{\circ} 11^{\prime} 24^{\prime \prime}$
$0=0.6499 \angle 78^{\circ} .57$, correcting factor $=0.9365 \angle 1^{\circ} .61=0.9365$ $L^{\circ} 36^{\prime \prime} 36^{\prime \prime}$

To find the vector correcting factor corresponding to any com- Consult Table P for rapid conversion to minutes and seconds. For example:$\theta=0.4 \angle 6 I^{\circ},\left(\frac{0}{2}\right)=0.2 \angle 61^{\circ}$, correcting factor $= 1 . 0 0 7 \longdiv { 0 ^ { \circ } . 6 5 5 }$
$=1.007{ }^{\circ} 39^{\circ} 18^{\prime \prime}$
$\theta=0.326 \angle 75^{\circ} \cdot .5,\left(\frac{\theta}{2}\right)=0.163 \angle 75^{\circ} \cdot 5$, correcting factor $=10078$ $\sqrt { 0 ^ { \circ } . 2 5 } = 1 0 0 7 8 \longdiv { 0 ^ { \circ } 1 5 ^ { \prime } 0 0 ^ { \prime \prime } }$

CHART XXI KENNELLY CHART FOR ADMITTANCE CORRECTING FACTOR
 (FOR ANGLES HAVING POLAR VALUES BETWEEN 0.20 AND 0.60)

ing the square root of the slope and halving the angle. The result is the hyperbolic angle θ of the circuit expressed in hyps.

The ratio charts XIX and XXI are next consulted and the correcting values $\frac{\sinh \theta}{\theta}$ and $\frac{\tanh \theta / 2}{\theta / 2}$ corresponding to the thyperbolic angle of the circuit read off. Having thus obtained the correcting factors corresponding to this circuit, the linear impedance Z and linear admittance Y per conductor are multiplied respectively by the sinh and the tanh correcting factors.

If the circuit under consideration is electrically short the effect of these correcting factors upon the linear constants will be small and possibly negligible but, as the circuit becomes longer, their effect becomes increasingly greater. The effect of the correcting factors for problem X is to change the linear impedance Z from $270.233 / 67^{\circ} \quad 08^{\prime \prime} \quad 08^{\prime \prime}$ to $Z^{\prime}=253.083 / 68^{\circ} 44^{\prime} 41^{\prime \prime}$ and to change the linear admittance Y from $0.001563 / 90^{\circ}$ to $Y^{\prime}=$ $0.001615512 / 89^{\circ} 10^{\prime} 45^{\prime \prime}$. In other words this circuit will behave in the steady state at 60 cycles as though its conductor resistance were reduced from 105 to 91.7486 ohms and its inductive reactance reduced from 249 to 235.866 ohms. Similarly it will behave as though a non-inductive leak of $11.5 \% 1$ micromhos, has been applied to each condenser in shunt.

In order to illustrate the exact agreement in the results as obtained by the equivalent π method with those obtained by either the convergent series or pure hyperbolic solution, the ratio values used for this problem were calculated and not obtained graphically. The accuracy in the performance resulting from the use of ratio values taken from the charts is well within the requirements of practical power circuits. The mathematical solution for these factors is given in Fig. 48.

Having determined the corrected values for the impedance Z^{\prime} and the admittance Y^{\prime} which will produce exact results, the remainder of the solution may be carried out graphically as indicated by the vector diagram in the upper right hand part of Chart XVII or mathematically as indicated under this vector diagram.

EQUIVALENT T SOLUTION

Dr. Kennelly has shown that the correcting factors which convert the nominal π into the equivalent π of the conjugate smooth line, are the same as those which convert the nominal T into the equivalent T, but in inverse order;-that is the correcting factors for the nominal T line are

$$
\begin{aligned}
& Z^{\prime}=Z \frac{\tanh \theta / 2}{\theta / 2} \\
& Y^{\prime}=Y \frac{\sinh \theta}{\theta}
\end{aligned}
$$

Either the equivalent π or the equivalent T solution may be used by applying the two correcting factors properly. Usually less arithematical work will be required for the equivalent π solution.

ELECTRICAL CONDITIONS AT INTERMEDIATE POINTS
In the foregoing, the behavior of circuits at their terminals has been considered. In some cases it may
be desirable to predetermine the voltage and the current at points along the circuit between the terminals. This may be particularly desirable in case of circuits of great electrical length and consequently having a pronounced bend or hump in the voltage graphs representing the voltage at points along the circuit. In Fig. 21 voltage and current graphs were shown for the circuit of problem X corresponding to zero load; also load conditions. Accompanying this stated was the step-by-step method by which the current and voltage at these intermediate points had been determined. In a corresponding manner the intermediate electrical conditions may be determined by the employment of hyperbolic functions. It is usual, however, when employing hyperbolic functions for determining the voltage or the current at points along a smooth circuit, in the steady state, to take advantage of the following facts relative to the variation in current and potential from point to point in such a circuit.

The potentials of any and all points of such a circuit are as the sines and the currents as the cosines of the corresponding position angles. This means that if the position angles corresponding to two points of a smooth circuit in the steady state are known, and the voltage or the current at one of these points is also known, then the voltage or current at any other point will be directly proportional to the sine or the cosine respectively of the corresponding position angles. In a similar manner, the impedance follows the tangents, the admittance the contagents and the volt-amperes the sines of twice the angles. Herein lies the beauty of the application of hyperbolic functions of complex angles for determining the electrical performance of electric circuits. The relationship expressed above (taken from Dr. Kennelly's "Artificial Electric Lines") are given in equation form below for ready reference:-

$$
\begin{aligned}
& \frac{E_{\mathrm{p}}}{E_{\mathrm{c}}}=\frac{\sinh \theta_{1}}{\sinh \theta_{\mathrm{c}}} \text { numeric }: \\
& \frac{I_{n}}{I_{\mathrm{c}}}=\frac{\cosh \theta_{\mathrm{p}}}{\cosh \theta_{\mathrm{c}}} \text { numeric } L \\
& -\frac{Z_{r}}{Z_{\mathrm{c}}}=\frac{\tanh \tanh ^{\tan } \frac{\theta_{n}}{\theta_{\mathrm{c}}} \text { numeric } L}{} \\
& \frac{Y_{D}}{Y_{c}}=\frac{\operatorname{coth} \theta_{D}}{\operatorname{coth} \theta_{c}} \text { numeric } L_{L} \\
& \left|\frac{K v-a_{p}}{K v-a_{c}}\right|=\left\lvert\, \frac{\sinh 2 \theta_{p}}{\sinh 2 \theta_{c}}\right. \text { mumeric } L
\end{aligned}
$$

Where p and c are points along the circuit, c being some point where the electrical conditions are known, and p the point for which they are to be computed. The vettical lines enclosing the two parts of the last equation are for the purpose of indicating that the "size" of these complex quantities are referred to in this equation.

POSITION ANGLES

Reference has been made to the line as subtending a certain complex hyperbolic angle θ. Since the circuit through the load also encounters resistance and reactance, the load may be said to subtend also a certain complex hyperbolic angle, so that the receiving end of the circuit occupies an angular position θ_{r}. The total

CHART XVII-RIGOROUS EQUIVALENT π SOLUTION OF PROBLEM X

CHARACTERISTICS OF CIRCUIT LENGTH. 300 MILES. CYCLES, 80.

 OONOUOTORS - 3 * 000 STRANDED COPPER, SPACINO OF CONDUCTORS $10 \times 10 \times 20$ FEET. EQUAVALENT DELTA SPACINQ $=12.8 \mathrm{FT}$.LINEAR CONSTANTS OF CIRCUIT FROM TABLES PER MILE
TABLE NO. 2, $\mathbf{r}=0.350$ OHM AT $25^{\circ} \mathrm{O}$.
TABLE NO. $5 . \mathbf{X}=0.930$ OHM (EY INTERPOLATION). TABLE NO. IO. $\mathbf{b}=5.21 \times 10^{-8} \mathrm{MHO}$ (BY INTERPOLATION) $\mathbf{g}=$ = IN THIS CASE TAKEN AS ZERO. TOTAL PER CONDUCTOR
R $=0.360 \times 300=105$ OHMS TOTAL RESISTANCE.
$X=0.930 \times 300=249$ OHMS TOTAL REACTANOE.
$\mathbf{B}=5.21 \times 300 \times 10^{-6}=.001683 \mathrm{MHO}$ TOTAL SUSOEPTANOE.
$\mathbf{G}=0 \times 300=0$ MHO TOTAL CONDUCTANOE.

SOLUTION FOR HYPERBOLIC ANGLE $\theta=\sqrt{Z Y}$

$$
\begin{aligned}
& \mathbf{Z}=105+\mathbf{j} 249 \quad \mathbf{Y}=0+\mathrm{j} 0.001583 \\
& ,=270.233 \angle 87^{\circ} 8^{\prime} 9^{\prime} \quad=0.001583 \angle 80^{\circ} \\
& \theta=\sqrt{270.233 \angle 87^{\circ} 8^{\prime} g^{\prime} \times 0.001583\left[80^{\circ}\right.} \\
& =\sqrt{0.4223745 / 157^{\circ} 8^{\prime} 8^{\prime}} \\
& =0.8499035 \quad \angle 78^{\circ} 34^{\prime} 4^{\prime} \text { HYP. } \\
& =0.6498036 / 78^{\circ} .6878 \text { HYP. } \\
& =0.1289188+j 0.8370092 \text { HYP. }
\end{aligned}
$$

FROM DR. KENNELLY'S CHARTS
CHART XIX $\frac{\operatorname{SINH} 9}{\theta}=0.93^{\prime} 65385 \cdot \angle 1: 8094=0.9385385 / 10^{\circ} 38^{\prime} 33^{\prime}$ CHART $\times \times 1 \frac { T A N H \theta / 2 } { \theta / 2 } = 1 . 0 ^ { \prime } 3 3 5 9 9 \longdiv { 0 ^ { \circ } . 9 2 0 8 } = 1 . 0 3 3 6 9 8 \longdiv { 0 ^ { \circ } 4 8 ^ { \prime } 1 5 ^ { \circ } }$
\star these values were calculated in order to obtain a high oEgree of accuraoy for the purpose of demonstratina the FUNDAMENTAL ACCURACY OF THIS METHOO.

CORRECTION OF LINEAR CONSTANTS

$Z^{\prime}=270.233 \angle 87^{\circ} \dot{g}^{\prime} g^{\prime} \times 0.9386385 / \circ^{\circ} 38^{\prime} 33^{\prime}$

- 253.093 /B90 $44^{\prime} 41^{\prime}$ (WHICH IS AUXILIARY CONSTANT (B))
$-81.7486+\mathbf{j} 235.988$ OHMS
$Y ^ { \prime } = 0 . 0 0 1 5 6 3 \underline { 1 9 0 ^ { \circ } } \times 1 . 0 3 3 5 9 9 \longdiv { 0 ^ { \circ } 4 8 ^ { \prime } 1 6 ^ { \prime } }$
$=0.001815512 / 89^{\circ} 10^{\prime} 45^{\circ}$ MHO
$\frac{Y^{\prime}}{2}$
$=0.000807758 \angle 99^{\circ} 10^{\prime} 45^{\prime}$
$=0.000011571+j 0.00080787$
$= 1 2 3 9 \longdiv { 8 0 ^ { \circ } 1 0 ^ { \prime } 4 5 ^ { \prime } }$ OHMS REAOTANCE.

$$
\begin{array}{ll}
\text { CALCULATION OF PERFORMANCE } \star \\
\text { PER PHASE TONEUTRAL } \\
\text { KV-A } \\
E_{R N}=\frac{18,000}{3}=6,000 . & \mathrm{KW}_{8 N}=\frac{18,200}{3}=5,400 . \\
1.732 & =80,048 .
\end{array} \mathrm{I}_{\mathrm{R}}=\frac{8,000 \times 1000}{60,046}=99.92 . .
$$

$P F_{R}=60 \%$ LAGGINa.

RECEIVING-END CONDITIONS

$I_{C R}=80,048 \times 0.000807768 \quad \angle 99^{\circ} 10^{\prime} 45^{\prime}=48.5028 \quad \angle 89^{\circ} 10^{\prime} 45^{\circ}$ $=0.6949+j 48.4973$ AMP.
$I_{R}=99.92(0.90-j 0.436)+0.8948+j 49.4973$
$=80.623+\mathrm{j} 4.9322$ AMPS.
$=80.78$ /3' $0^{\prime} 65^{\prime}$ AMPS.
$P F_{R}=\cos 3^{\circ} 6^{\prime} 65^{\prime}=89.85 \%$ LEADINQ.
$K W_{C R}=80,040(0.8948+j 48.4973)$
$K W_{R N}=8000(0.80-j 0.438)+41.72+j 2912.07$
$=5441.72+j 286.07$
$I_{R} Z^{\prime}=90.78 \angle 3^{\circ} 6^{\prime} 55^{\prime} \times 253.093 \angle 88^{\circ} 44^{\prime} 41^{\prime}$

$=7151+\mathrm{j} 21,828$,VOLTS

SENDING-END CONDITIONS

$E_{S N}=80,048+7161+j 21928$
$=87,197+j 21,928$ VOLTS
$=70,852 \angle 17^{\circ} 59^{\prime} 45^{\prime}$ VOLTS
$I_{C S}=70,852 \times 0.000807758 / 89^{\circ} 10^{\prime} 45^{\circ}$
$=0.9175+j 57.0635$ (TO SUPPLY END VOLTAGE)
$=57.0896$ И107"10' 30^{\prime} TO VECTOR OF REFERENCE
$=-16.8504+j 64.5099$
$I_{S}=(90.023+j 4.9322)+(-16.8504+j 54.5089)$
$=73.77+59.44$ AMPS.

$P F_{S}=\cos 38^{\circ} 51^{\prime} 38^{\circ}-17^{\circ} 68^{\prime} 46^{\prime}=03.44 \%$ LEADINQ
$\mathrm{KW}_{\mathrm{SN}}=70.652 \times 84.74 \times .8344=8265 \mathrm{KW}$ PER PMASE
LOSS $=8255-8400=855 \mathrm{KW}$ PER PHASE
$E F F=\frac{5400 \times 100}{6255}=68.33 \%$

ZERO LOAD CONDITIONS

lCR $0.6848+j 49.4973$ AMPS.
vOLTAGE AT SENDING-EN VOLTAGE AT SENDING-END $=49890$ VOLTS $\quad \mid X^{\prime}$

$$
I R^{\prime}=(0.8649+j 49.4973) \times 91.7488=84+j 4448 \text { VOLTS }
$$

$1 X^{\prime}=(-48.4973+j 0.6948) \times 235.986=-11438+j 164$
$I R^{\prime}+I X^{\prime}=-11374+4813$
$E_{S N O}=(80,048-11373)+4813=48880$ VOLTS $\quad 5^{\circ} 24^{\prime} 61^{\prime}$
*The above results check with those obtained by convergent series. (See Chart XIII).
angle of the circuit (line and load) will be $\theta_{r}+\theta$ $=\theta_{8}$. By similar reasoning all points lying between the receiving and sending ends of a line will occupy or assume an angular position θ_{p}. If that part of the linear angle θ of the line between the receiving end and the point p be designated as $\theta_{p_{p}}$, then the angular position of the point p will be $\theta_{p}=\theta_{\mathrm{r}}+\theta_{\mathrm{pr}}$. Thus, at a point in the middle of the line, the position angle will be $\theta_{\mathrm{p}}=\theta_{\mathrm{r}}+\theta_{\mathrm{pr}}=\theta_{\mathrm{r}}+\theta / 2$.

If the line is grounded or short-circuited at the receiving end, there will be no load containing resistance and reactance, and consequently no load angle. In such case $\theta_{r}=0$ and the distribution of position angles along the line will be purely a linear function of the total line angle θ. In such a case $\theta_{s}=\theta$.

Load Conditions - In Fig. 49 the procedure is shown which may be followed for determining by complex functions of position angles the current and the voltage vectors at points 25 miles apart along problem X circuit, under load conditions.

The procedure is first to determine the complex angle θ_{r}, at the receiving end resulting from the load. The mathematical determination of this load angle is tedious. Such determination is given for problem X circuit under stated load in Fig. 49. This complex angle θ_{c} of the load (that is the position angle at the receiving end) is such that its complex tangent equals the impedance load δ to ground, or zero potential, at the receiving end of line (ohms \angle) divided by the surge impedance Z_{0} of a conductor (ohms \angle). That is,-

$$
\tanh \theta_{\mathrm{r}}=\frac{\delta}{Z_{0}}
$$

Since we are here interested only in the ratio between the load impedance and the surge impedance, the values may be taken either per unit length or total per conductor. Although $\tanh \theta_{\mathrm{r}}$ is readily calculated, as may be seen by consulting Fig. 49, the subsequent calculation for the corresponding angle θ_{r} is tedious. After having calculated the tanh θ_{r}, the corresponding angle θ_{r} may be obtained with sufficient accuracy from a table of tangents of complex angles or, more readily still, from a chart of such functions.* After having determined the angle θ_{r} by consulting a chart of tangents of complex angles, or by mathematical calculation, as in Fig. 49, the position angles at points along the circuit may easily and readily be determined as follows:

The change in the position angle from point to point along the circuit, due to the line impedance and the line admittance is purely a linear function of the line angle θ. This is the case whether the line is grounded, loaded or free at the receiving end.

Referring to Fig. 49, the angular position of the receiving end, due to the load conditions assumed, was calculated to be $0.48047+\mathrm{j}$ 1.06354. It is therefore necessary to add this angle to each of the linear line angles of the various points along the line in order to obtain the position angles of the points in question.

Thus the linear line angle of the middle point of the circuit is $0.0644084+j 0.3185046$ and adding to this the load angle $0.48047+$ j 1.06354 gives $0.544874+$ j I.3820446, which corresponds with the entry in the tabulation of Fig. 5 I for the position angle at the middle of the circuit. In a similar manner position angles for the load assumed are readily determined for points 25 miles apart. Having determined the position angles for the various points along the circuit, the sines and the cosines corresponding to these position angles may be approximated closely from tables or charts of such complex functions, or may be calculated accurately by following the equations at the lower left hand corner of Fig. 51. Since the receiving end voltage and current are known to be 60046 volts and 99.92 amperes respectively, the voltage and currents at all other points of this circuit will be as the sines and cosines of the corresponding position angles. From the vector quantities that have been assigned to the voltage and current at the points along the circuit, the power-factors at these points are readily determined.

The current and voltage graphs at the bottom of Fig. 5I were plotted from values as determined by the use of functions of position angles. These check exactly with similar graphs as determined by the Wilkinson charts and step-by-tep process (See Fig. 2I).

Zero Load Condition-The procedure which may be followed for determining the position angles under zero load, their functions and the corresponding current and voltage distribution is the same as given above for load conditions and is shown in Fig. 50. In this case, however, there is no load and consequently no real part to the load angle. On the other hand the impedance of the load is infinite, that is $\delta=\propto$ so that $\theta_{\mathrm{r}}=$ $\tanh ^{-1} \frac{\alpha}{Z_{0}}=j \frac{\pi}{2}$. The effect of this supersurge impedance load at the receiving end at zero load is to cause a phase rotation of 90 degrees or one quadrant, $j \frac{\pi}{2}=x .57080$ circular radians. Thus, at zero load, $\theta_{\mathrm{ro}}=\left(0+j \frac{\pi}{2}\right)=$ $"+j I .57080$ and this angle must be added to each of the linear position angles of the points along the line. With the position angles corresponding to zero load thus cbtained, and assigned to the points along the circuit, the voltage will be found to follow the sines, and the current the cosines, etc. of these position angles.

POLAR DIAGRAM OF CURRENT VOLTAGE

In Fig. 52 are shown the polar graphs of the voltage and the current for problem X, corresponding to load, and also to zero load conditions. These polar graphs were plotted from the vector values for current and voltage as tabulated in Figs. 49 and 50 for each 25 miles of circuit.
*Such as that worked out by Dr. Kennelly and published by the Harvard University Press. The chart atlas referred to contains graphs of complex tangents of complex angles, and by following the chart in the reverse from the usual direction the complex angle corresponding to any complex tangent may be read off directly.

CURRENT \& VOLTAGE DISTRIBUTION

(LOAD CONDITIONS)

(D-X) MILES	x MILES	POSITION ANGLE $\theta_{\mathrm{P}}=\theta_{\mathrm{PR}}+\theta_{\mathrm{R}}$	SINH θ_{p} (THE VOLTAGE FOLLOWS THIS COMPLEX FUNCTION)	$\begin{aligned} & E_{P N} \\ & \text { votTs } \angle \end{aligned}$	COSH θ_{p} (THE CURRENT FOLLOWS THIS COMPLEX FUNOTION)	$\underset{\text { AMPERES }}{\mathrm{I}_{\mathbf{p}}} \mathrm{L}$	$\begin{gathered} \text { PF } P_{P} \\ \%^{2} \end{gathered}$
0	300						-90.00
25	275					$\frac{96.64}{21^{\circ} 38^{\prime} 03^{\prime \prime}}$,
50	250					$\frac{93.66}{17^{\circ} 04^{\prime} 33^{\prime \prime}}$. 0
75	225					$\frac{91.06}{\sqrt{12^{\circ} 10^{\prime} 20^{\prime \prime}}}$	-95.94
100	200						-92
125	175	$\begin{array}{r} 0.53414+j 1.32895 \\ \theta_{2}=\begin{array}{c} \circ \\ 76^{\circ} 08^{\prime} 38^{\prime} \end{array} \end{array}$			$=0.60815 \angle 63^{\circ} 12^{\prime} 39^{\prime \prime}$		-98.90
150	150	$\begin{array}{r} 0.54488+j 1.38204 \\ \theta_{2}=-19^{\circ} / 1107 \end{array}$					-99.73
175	125	$\begin{array}{r} 0.55561+j 1.43512 \\ \theta_{2}=\begin{array}{c} 12 \\ 82^{\circ} 13 \\ \hline \end{array}, ~ \end{array}$					+99.99
200	100	$\theta_{2}=85^{\circ} / 6^{\prime} 05^{\prime \prime}$	$=1.1618 \quad 87^{\circ} 34^{\prime} 11^{\nu}$		$\begin{aligned} & 0.09608+j 0.59508 \\ & =0.60279180^{\circ} 49^{\prime} 42^{\prime \prime} \end{aligned}$		+99.66
225	75	$\begin{array}{r} 0.57708+j 1.54129 \\ \theta_{2}=88^{\circ} / 8^{\prime} 35^{\prime \prime} \end{array}$		$\begin{array}{\|c\|} 69843 \\ \hline 13^{\circ} 03^{\prime} 38^{\prime} \\ \hline \end{array}$	$\begin{aligned} & 0.03455+j 0.60939 \\ & =0.60962 \angle 86^{\circ} 45^{\circ} 18 \end{aligned}$	$\begin{gathered} 87.45 \\ \angle 22^{\circ} 07^{\prime} 39^{\prime \prime} \end{gathered}$	+98.75
250	50	$\begin{array}{r} 0.58782+j 1.59438 \\ \theta_{2}=91021^{\prime} 04 \end{array}$	$=1.1775 \angle 90^{\circ}+2^{\prime} 57^{\prime \prime}$	$\begin{array}{r} 70.243 \\ L^{14^{\circ} 39^{\prime}} 22^{\prime \prime} \\ \hline \end{array}$	$=0.62270 / 92^{\circ} 33^{\prime} 44^{\prime \prime}$	$\begin{gathered} 89.33 \\ \angle 27^{\circ} 56^{\prime} 03^{\prime} \end{gathered}$	+97.32
275	25	$\begin{array}{r} 0.59855+j 1.64746 \\ \theta_{2}=94^{\circ} 23^{\prime} 34^{\prime} \end{array}$	$=1.1821 \quad 92^{\circ} 21^{\prime} 28^{\prime \prime}$		$\begin{array}{r} -0.09073+j 0.63306 \\ =0.63953 / 98^{\circ} 09^{\prime 2} 22^{\prime \prime} \end{array}$	$\angle 34^{91.74}$	$+95.17$
300	0	$\begin{array}{r} 0.60929+j 1.70055 \\ \theta_{2}=17^{\circ} 26^{\circ} 03^{\prime \prime} \end{array}$	$\begin{aligned} & -0.08381+j 1.1814 \\ & =1.1844 \angle 94^{\circ} 03^{\prime} 28^{\prime \prime} \end{aligned}$	$\begin{array}{\|c\|} 70652 \\ \hline 17^{\circ} 59^{\prime} 53^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|} -0.15416+j 0.64226 \\ =0.66050\left\lfloor 103^{\circ} 29^{\prime} 45^{\prime \prime}\right. \end{array}$	$\angle 38^{\circ} 52^{\circ} 04^{\prime \prime}$	+93.43

GRAPHS OF CURRENT AND VOLTAGE (LOAD CONDITIONS)

$\operatorname{SINH}\left(\theta_{1}+j \theta_{2}\right)=\left(\operatorname{SINH} \theta_{1} \operatorname{COS} \theta_{2}+j \operatorname{COSH} \theta_{1} \operatorname{SIN} \theta_{2}\right)$.
$\operatorname{COHH}\left(\theta_{1}+j \theta_{2}\right)=\left(\operatorname{COSH} \theta_{1} \cos \theta_{2}+j \operatorname{SINH} \theta_{1} \operatorname{SIN} \theta_{2}\right)$.

CURRENT AND VOLTAGE DISTRIBUTION (ZERO LOAD CONDITION)

$\begin{aligned} & (D-X) \\ & \text { MILESS } \end{aligned}$	$\left\lvert\, \begin{gathered} \mathrm{X} \\ \text { MILES } \end{gathered}\right.$	POSITION ANGLE $\theta_{P O}=\theta_{P R O}+\theta_{R O}$	SINH $0_{\text {PO }}$ (THE VOLTAGE FOLLOWS THIS COMPLEX FUNCTION)	$\begin{gathered} \text { EPNO } \\ \text { volts } \angle \end{gathered}$	COSH $\theta_{\text {po }}$ (THE CURRENT FOLLOWS THIS COMPLEX FUNCTION)	Ipo AMPERES \angle	$\begin{gathered} \mathrm{PF}_{\mathrm{PO}} \\ \% \end{gathered}$
0	300	$\begin{array}{r} +j 1.57080 \\ \theta_{2}= \\ 90^{\circ} 00^{\prime} 00^{\prime \prime} \end{array}$	$\begin{aligned} & 00+j 1.00000 \\ & =1.00000190^{\circ} \end{aligned}$	$\begin{gathered} 60046 \\ \angle 0^{\circ} \end{gathered}$	$0 \quad 190^{\circ}$	$\angle 11^{\circ} 25^{\prime} 56^{\prime \prime}$	
25	275	$\begin{aligned} 0.01073 & +j 1.62388 \\ \theta_{2} & =93^{\circ} 02^{\prime} 29^{\prime} \end{aligned}$	$\begin{aligned} & 0.00057+j 0.99865 \\ & =0.99865 / 89^{\circ} 58^{\prime} 03^{\prime \prime} \end{aligned}$		$\begin{aligned} & 0.05307+j 0.01070 \\ & =0.05414 \angle 11^{\circ} 23^{\prime} 58^{\prime \prime} \end{aligned}$	$\begin{gathered} 7.82 \\ 90^{\circ} 01^{\prime} 58^{\prime \prime} \end{gathered}$	\bigcirc
50	250	$\begin{array}{r} 0.02146+j 1.67696 \\ \theta_{2}=96^{\circ} 04^{\prime} 58^{\prime \prime} \end{array}$	$\begin{aligned} & 100227+j 0.99460 \\ & =0.99460 \angle 89^{\circ} 2^{\prime} 09^{\prime \prime} \end{aligned}$	$\begin{gathered} 59803 \\ \angle 0^{\circ} 07^{\prime} 51^{\prime \prime} \end{gathered}$	$\begin{aligned} & 0.10598+j 0.02133 \\ & =0.10816 \angle 11^{\circ} 22^{\prime} 48^{\prime \prime} \end{aligned}$	$\begin{gathered} 15.62 \\ 90^{\circ} 03^{\circ} 08^{\prime \prime} \end{gathered}$	+00.12
75	225	$\begin{array}{r} .0 .03220 \pm j^{\prime} .73004 \\ \theta_{2}=9^{\circ} 07^{\prime} 28^{\prime \prime} \end{array}$	$\begin{aligned} & 0.00511+j 0.98785 \\ & =0.98786 / 89^{\circ} 42^{\prime} 13^{\prime \prime} \end{aligned}$	$\begin{gathered} 5.9317 \\ \angle 0^{\circ} 17^{\prime} 47^{\prime \prime} \\ \hline \end{gathered}$	$\begin{aligned} & 0.15866+j 0.03179 \\ & =0.16181 \angle 11019^{\prime} 48 \end{aligned}$	$\begin{gathered} 23.37 \\ 90^{\circ} 06^{\prime} 08^{\prime \prime} \end{gathered}$	$+00.32$
100	200	$\begin{array}{r} 0.04294+j 1.78313 \\ \theta_{2}=102^{\circ} 0957^{\prime} \end{array}$	$\begin{aligned} & 0.00905+j 0.97844 \\ & =0.97847 / 89^{\circ} 28^{\prime} 12^{\prime \prime} \end{aligned}$	$\begin{array}{r} 58753 \\ \angle 0^{\circ} 3148^{\prime \prime} \end{array}$	$\begin{aligned} & 0.21090+j 0.04199 \\ & =0.21503 \angle 11^{10} 15^{\prime} 35^{\prime \prime} \end{aligned}$	$\begin{gathered} 31.05 \\ 90^{\circ} 10^{\prime} 21^{\prime \prime} \end{gathered}$	+00.61
125	175	$\begin{array}{r} 0.05367+j 1.83621 \\ \theta_{2}=105^{\circ} / 2^{\prime} 26^{\prime \prime} \end{array}$	$\begin{aligned} & 0.01409+j 0.96638 \\ & =0.96648 \angle 89^{\circ} 09^{\prime} 50^{\prime \prime} \end{aligned}$	$\begin{aligned} & 58033 \\ & \angle 0^{\circ} 50^{\prime} 10^{\prime \prime} \end{aligned}$	$\begin{aligned} & 0.26269+j 0.051842 \\ & =0.26776 / 11^{\circ} 09^{\prime} 50^{\prime \prime} \end{aligned}$	$\begin{gathered} 38.66 \\ 90^{\prime \prime} 6^{\prime} 06^{\prime \prime} \end{gathered}$	$+00.99$
150	150	$\begin{array}{r} 0.06441 \\ \theta_{2} \end{array}=j 1.88930$	$\begin{aligned} & 0.02018+j 0.95168 \\ & =0.95188 / 88^{\circ} 47^{\prime} 07^{\prime \prime} \end{aligned}$	$\begin{array}{r} 57156 \\ 1012^{\prime} 53^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & 0.31380+j 0.06120 \\ & =0.31970 / 11^{\circ} 02^{\prime} 10^{\prime \prime} \end{aligned}$	$\begin{gathered} 46.17 \\ 90^{\circ} 23^{\prime} 46^{\prime \prime} \end{gathered}$	+1.42
175	125	$\begin{array}{r} 0.07514 \pm j 1.94238 \\ \theta_{2} \end{array}=111017^{1} 25^{\circ}$	$\begin{aligned} & 0.02731+j 0.93436 \\ & =0.93476 \angle 88^{\circ} 19^{\prime} 33^{\prime \prime} \end{aligned}$	$\begin{gathered} 56129 \\ \angle 1^{\circ} 40^{\prime} 27^{\prime \prime} \end{gathered}$	$\begin{aligned} & 0.36417+j 0.07006 \\ & =0.37085 \angle 10^{\circ} 53^{\prime} 2 z^{\prime \prime} \end{aligned}$	$\begin{gathered} 53.55 \\ 90^{\circ} 32^{\prime} 33^{\prime \prime} \end{gathered}$	+1.98
200	100	$\begin{array}{r} 0.08588+f 1.99546 \\ \theta_{2}=114^{\circ} 19^{\prime} 54^{\prime \prime} \end{array}$	$\begin{aligned} & 0.03543+j 0.91452 \\ & =0.91522 \angle 87^{\circ} 46^{\prime} 53^{\prime \prime} \end{aligned}$	$\begin{array}{\|c\|} \hline 54955 \\ \angle 2^{\circ} 13^{\prime} 07^{\prime \prime} \\ \hline \end{array}$	$\begin{aligned} & 0.4135 .4+j 0.07835 \\ & =0.42090 \angle 10^{\circ} 43^{\prime \prime} 41^{\prime \prime} \end{aligned}$	$\begin{gathered} 60.77 \\ 90^{\circ} 42^{\prime} / 5^{\prime \prime} \end{gathered}$	+2.65
225	75	$\begin{array}{r} 0.09661+j 2.04854 \\ \theta_{2}=117^{\circ} 22^{\prime} 24^{\prime \prime} \end{array}$	$\begin{aligned} & 0.04449+j 0.89218 \\ & =0.89328 \angle 87^{\circ} 08^{\prime} 43^{\prime \prime} \end{aligned}$	$\begin{array}{r} 53638 \\ \angle 2^{\circ} 51^{\prime} 17^{\prime \prime} \end{array}$	$\begin{aligned} & 0.46194+j 0.08593 \\ & =0.46986 / 10^{\circ} 32^{\prime} 16^{\prime \prime} \end{aligned}$	$\begin{gathered} 67.85 \\ 90^{\circ} 53^{\prime} 40^{\prime \prime} \end{gathered}$	$+3.40$
250	50	$\begin{array}{r} 0.10735{ }^{+j 2.10164} \\ \theta_{2}=120^{\circ} 24^{\prime} 53^{\prime \prime} \end{array}$	$\begin{aligned} & 0.05445+j 0.86735 \\ & =0.86905 \angle 86^{\circ} 24^{\prime 2} 28^{\prime \prime} \end{aligned}$	$\begin{gathered} 52183 \\ \angle 3^{\circ} 35^{\prime} 32^{\prime \prime} \end{gathered}$	$\begin{aligned} & 0.50917+j 0.09275 \\ & =0.51755 \angle 10^{\circ} 19^{\prime} 26^{\prime \prime} \end{aligned}$	$\begin{array}{r} 74.73 \\ 91^{\circ} 06^{\prime} 30^{\prime \prime} \\ \hline \end{array}$	$+4.33$
275	25	$\begin{array}{r} 0.11808+j 2.15473 \\ \theta_{2}=123^{\circ} 27^{\prime} 22^{\prime \prime} \end{array}$	$\begin{aligned} & 0.06525+j 0.84014 \\ & =0.84267 \angle 85^{\circ} 33^{\prime} 33^{\prime \prime} \end{aligned}$	$\begin{gathered} 50599 \\ \left\langle 4^{\circ} 26^{\prime} 27^{\prime \prime}\right. \end{gathered}$	$\begin{aligned} & 0.55514+j 0.09874 \\ & =0.56385 \angle 10^{\circ} 05^{\prime} 07 \end{aligned}$	$\begin{gathered} 81.42 \\ 191^{\circ} 20^{\prime} 49^{\prime \prime} \end{gathered}$	$+5.41$
300	\bigcirc	$\begin{array}{r} 0.12882+j 2.20781 \\ \theta_{2}=126^{\circ} 292^{\prime \prime} \end{array}$	$\begin{aligned} & 0.07683+j 0.81056 \\ & =0.81420 \angle 84^{\circ} 35^{\prime} 08^{\prime \prime} \end{aligned}$	$\begin{array}{r} 48889 \\ \angle 5^{\circ} 24^{\prime} 52^{\prime \prime} \end{array}$	$\begin{aligned} & 0.59973+j 0.10384 \\ & =0.60865 / 9049^{\prime} 22^{\prime \prime} \end{aligned}$	$\begin{gathered} 87.89 \\ 91^{\circ} 36^{\prime} 34 \end{gathered}$	$+6.64$

GRAPHS OF CURRENT AND VOLTAGE (ZERO LOAD CONDITIONS)

$\operatorname{SINH}\left(\theta_{1}+j \theta_{2}\right)=\left(\operatorname{sinH} \theta_{1} \cos \theta_{2}+j \cosh \theta_{1} \sin \theta_{2}\right)$.
$\cosh \left(\theta_{1}+j \theta_{2}\right)=\left(\operatorname{COSH} \theta_{1} \operatorname{Cos} \theta_{2}+j \operatorname{SiNH} \theta_{1} \operatorname{Sin} \theta_{2}\right)$.
angle at feceiving end $\boldsymbol{\theta}_{\text {RO }}=0+j 1.67080$ ANGLE OFLINE $0 \quad=0.12882+\mathrm{j} 0.63701$ $\theta_{\mathrm{SO}}=\boldsymbol{\theta}+\boldsymbol{\theta}_{\mathrm{RO}}=0.12882+\mathbf{j} 2.20781$
R=105 OHMS. }\quadX=2490HMS
R=105 OHMS. }\quadX=2490HMS
G=O MHO., Y=0.001563 MHO.
G=O MHO., Y=0.001563 MHO.
Z=270.233\angle67'08'08'
Z=270.233\angle67'08'08'
Y=0.001563190
Y=0.001563190
0=\sqrt{}{ZY}=\sqrt{}{0.4223745/15\mp@subsup{7}{}{\circ}0\mp@subsup{8}{}{\prime}0\mp@subsup{8}{}{\prime\prime}}
0=\sqrt{}{ZY}=\sqrt{}{0.4223745/15\mp@subsup{7}{}{\circ}0\mp@subsup{8}{}{\prime}0\mp@subsup{8}{}{\prime\prime}}
=0.6499035\angle78'34'04'
=0.6499035\angle78'34'04'
=0.1288168+j0.6370092
=0.1288168+j0.6370092

SINH 0=0.103 8393+j0.599735
SINH 0=0.103 8393+j0.599735
=0.6086583/80%10'38'\prime}
=0.6086583/80%10'38'\prime}
SINH0}=\frac{0.6086583/8\mp@subsup{0}{}{\circ}1\mp@subsup{0}{}{\prime}3\mp@subsup{7}{}{\prime\prime}}{0.6499035/7\mp@subsup{8}{}{\circ}3\mp@subsup{4}{}{\prime}0\mp@subsup{4}{}{\prime\prime}
SINH0}=\frac{0.6086583/8\mp@subsup{0}{}{\circ}1\mp@subsup{0}{}{\prime}3\mp@subsup{7}{}{\prime\prime}}{0.6499035/7\mp@subsup{8}{}{\circ}3\mp@subsup{4}{}{\prime}0\mp@subsup{4}{}{\prime\prime}
=0.936 5365/1036'33"
=0.936 5365/1036'33"
= IMPEDANGE CORRECTING FACTOR.
= IMPEDANGE CORRECTING FACTOR.
$\begin{aligned} & \quad \text { Calculation ror } \frac{\tanh (\theta / 2)}{\theta / 2} \\ & \frac{\theta}{2}=0.3249518 / 78^{\circ} 34^{\prime} 04^{\prime \prime} \\ &=0.0644084+j 0.3185046\end{aligned}$
$\operatorname{Sin} H \frac{\theta}{2}=0.06121122+90.3137963$
$=0.3197107 \angle 78^{\circ} 57^{\prime} 43^{\prime \prime}$
$\cos H \frac{\theta}{2}=0.9516754+j 0.0201832$
$=0.9518894{11012^{\prime} 54^{\prime \prime}}^{\prime}$
FANH $\frac{\theta}{2}=\frac{\sin H(\theta / 2)}{\cosh (\theta / 2)}=\frac{0.3197107178^{\circ} 57^{\prime} 43^{\prime \prime}}{0.9518894 / 1^{\circ} 12^{\prime} 54^{\prime \prime}}$
TANH ($\theta / 2$) $0.3358696 \angle 77^{\circ} 44^{\prime} 49^{\prime \prime}$
$\frac{\text { ANH }(\theta / 2)}{\theta / 2}=\frac{0.3358696 \angle 77^{\circ} 44^{\prime} 49^{\prime \prime}}{0.3249518 \angle 78^{\circ} 34^{\prime} 04^{\prime}}$
$0.3249518 / 78^{\circ} 34^{\prime} 04^{\prime \prime}$
$= 1 . 0 3 3 5 9 8 \longdiv { 0 ^ { \circ } 4 9 ^ { \prime } / 5 ^ { \prime \prime } }$
- ADMITTANCE CORRECTING FACTOR.
CHECK, SINH $\theta=2 \sin \frac{\theta}{2} \cosh \frac{\theta}{2}=2 \times .03197107 / 78^{\circ} 57^{\prime} 44^{\prime \prime} \times 0.9518894 / 1^{\circ} / 2^{\prime} 54$ $=0.6086584 \angle 80^{\circ} 10^{\prime} 38^{\prime \prime}$ (WHICH CHECKS WITH *).

FIG. $4^{8-M A T H E M A T I C A L}$ determination of CORrecting Factors FOR EQUIVAlent π SOLUTION

$\begin{aligned} & Z=105+j 249=270.233 \angle 67^{\circ} 08^{\circ} 08^{\circ} \text { OHMS } \\ & Y=0+j 0.001563=0.0151563\left\lfloor 90^{\circ} \mathrm{MHO} .\right. \\ & \theta=\sqrt{Z Y}=0.1288168+j 0.6370092 \mathrm{HY} \\ & K V-A_{R N}=6000000 \sqrt{25^{\circ} 50^{\prime} 31^{\prime \prime} \mathrm{WATTS} .} \\ & \\ & =5400000-j 2615340 . \\ & \begin{aligned} & E_{R N}=60044.4 \mathrm{VOLTS} \text { TO NEUTRAL. } \\ & I_{R} = 9 9 . 9 2 6 0 5 \longdiv { 2 5 ^ { \circ } 5 0 ^ { \prime } 3 1 ^ { \prime \prime } } \end{aligned} \end{aligned}$	

$$
\begin{aligned}
& \text { solution for tanh } \mathrm{O}_{\mathrm{R}} \\
& \delta=\frac{E_{R N}}{I_{R}}=600.888 \angle 25^{\circ} 50^{\prime} 31^{\prime \prime} \text { OHMS. } \\
& Z_{0}=\sqrt{\frac{Z}{Y}}=415.805 \sqrt{11^{\circ} 25^{\prime} 56^{\prime \prime}} \text { OHMS. } \\
& \text { TANH } \theta_{R}=\frac{600.888 \angle 25^{\circ} 50^{\prime} 31^{\prime \prime}}{415.805 \sqrt{11^{\circ} 25^{\prime} 56^{\prime \prime}}} \\
& =1.44512 / 37^{\circ} 16^{\prime} 27^{\prime \prime} \\
& =1.14995+j_{j} 0.875209 * \\
& =\left(\theta_{1}+j \theta_{2}\right)
\end{aligned}
$$

CHOICE OF VARIOUS METHODS

Two graphical and two mathematical forms of solution for circuits of long electrical length have been described thus far. These four methods have been given for the purpose of providing a choice of procedure for the beginner. Graphical solutions are more simple and more readily performed than mathematical solutions and, if used correctly and made to a large scale, will yield results well within the limits of permissible error for power transmission circuits. There is always a possibility of error with any method, even though the solution is carefully checked. For this reason it is desirable that errors be guarded against by the use of two different forms of solution. For instance

fig. 52-polar diagram of current and voltage distribution for problem X
the first solution could be made by making use of the Wilkinson charts followed by its accompanying graphical solution. The second solution could then be made by means of Dr. Kennelly's ratio charts XVIII to XXI, followed by its accompanying graphical solution. These two methods would then yield results obtained by two entirely different routes and methods of procedure. The use of two such methods would constitute check against errors being made in either solution.

EFFECT OF HARMONIC CURRENTS AND VOLTAGES

The foregoing discussion is based upon the assumption that the fundamental wave is of sine shape and consequently free from harmonics. If harmonics of considerable magnitude are present in the fundamental
$V_{n}+V^{\prime}{ }_{1} \sin \omega t+V^{\prime}{ }_{2} \sin 2 \omega t+V^{\prime} \operatorname{vin}^{2 \omega t}+V^{\prime \prime} \operatorname{Vin}^{\prime \prime} \sin +$ $\mathrm{V}^{\prime \prime} \ldots \ldots \ldots .+V^{\prime \prime}{ }_{1} \cos \omega t+V^{\prime \prime}{ }_{2} \cos 2 \omega t+V^{\prime \prime}{ }_{2} \cos 3 \omega t+$
 where V_{0} is a continuous potential, such as might be developed by a storage battery, ordinarily absent in an a. c. generator wave, $V_{1}^{\prime}, V^{\prime \prime}, V_{1}^{\prime}, V^{\prime \prime}$, etc., maximum cyclic amplitudes of the various sine and cosinc components. The even harmonicsare ordinarily negligible in an a. c. generator wave; so that $V^{\prime}{ }_{2}, V^{\prime \prime}{ }_{2}, V^{\prime}{ }_{4}, V^{\prime \prime}$, etc., are ordinarily all zeros. If we count time from some moment when the fundamental component passes through zero in the positive direction, $V^{\prime \prime}{ }_{3}=0$ and the series becomes
$V^{\prime}{ }_{3} \sin \omega t+V^{\prime \prime}, \sin 3 \omega t+V^{\prime}{ }^{\prime} \sin 5 \omega t+$ \qquad

$$
V^{\prime \prime} \cos 3 \omega t+V^{\prime \prime} \cos 5 \omega t+
$$

\qquad volts (2) Compounding sine and cosine harmonic components into resultant harmonics of displaced phase, this may be expressed as $V_{r 1} \sin \omega t+V_{r 2} \sin \left(3 \omega t+\beta_{3}{ }^{\circ}\right)+V_{r b} \sin \left(5 \omega t+\beta_{\mathrm{r}}{ }^{\text {a }}\right)+$ where $V_{r n}=\sqrt{V^{\prime} n_{n}^{3}+V^{\prime n_{n}^{2}}} \quad$ volts (4)
and
$\tan \beta_{\mathrm{a}}{ }^{\circ}=\frac{V_{V_{n}}^{\prime \prime}}{\overline{V_{n}^{\prime}}}$
numeric

Formulas (1) and (2) give the wave analysis in sine and cosine harmonics, while (3) gives it in resultant sine harmonics.
"When considering a plural-frequency alternating-current line, we require to know the harmonic analysis of the impressed potential, either in sine and cosine harmonics, or in resultant harmonics, the latter analysis is preferable, as being shorter and containing fewer terms. Λ decision must be made as to the number of frequencies or upper harmonics which must be taken into account.
"Ordinarily, the sizes of the harmonics diminish as their order increases; but there are numerous exceptions to this rule, as when some particular tooth frequency in the alternating current gencrator establishes a prominent size for that harmonic. Care must therefore be exercised not to exclude any important harmonics. On the other hand, the fewer the ha:monics to be dealt with, the better, because the labor involved in correctly solving the problem increases in nearly the same ratio as the number of harmonics retained.
"The rule is to work out the position angle, r.m.s. potential. and r.m.s. current distributions, over the artificial or conjuzate smooth line, for each harmonic component in turn, as though it existed alone, and then to combine them, at each position, in the well-known way for root mean squares.
"Combination of Components of Different Frequencies into a R.m.s. Resultant.-Let the r.m.s. value of each alternating current harmonic component be obtained by dividing its amplitude with $\sqrt{2}$ in the usual wav, and let

$$
\begin{equation*}
V_{n}=\frac{V_{m}}{\sqrt{2}}=\sqrt{\frac{V_{n}^{\prime}{ }^{2}+V^{\prime \prime \prime}}{2}} \tag{6}
\end{equation*}
$$

r.m.s. volts
be the r.m.s. value of the nth harmonic. Then the r.m.s. value of all the harmonics together, over any considerable number of cycles, will be

$$
V=V^{\prime} V_{1}^{2}+V_{3}^{2}+V_{3}^{2}+\ldots \ldots \ldots \text {..m.m. volts }
$$ or, as is well known, the joint r.m.s. value of a plurality oi r.m.s. values of different frequency, is the square root of the sum of their squares. If a continuous potential V 。 be present this may be regarded as a r.m.s. harmonic of zero frequency, and be included thus:

$$
V=\sqrt{V_{0}^{2}+V_{3}^{2}+V_{3}^{2}+V_{3}^{3}+\ldots \text { r.m.s. volts }}
$$

Morcover, from (4), it is evident that the squares of the r.m values of the sinc and cosine terms of any harmonic may be

FIG. 53-GEOMETRICAL REPRESENTATION OF A JOINT R.M.S. VALUE
OF PLURAL-FREQUENCY COMPONENTS BY PERPENDICULAR SUMIMATION OR "CRAB ADDITION"
substituted for the square of their resultant; or that, in this respect, the sine and cosine terms may be treated as though they were components of different frequencies.
"The same procedure applies to plural-frequency currents. Find the r.m.s. resultant harmonics. The r.m.s. value of all together will be the square root of the sum of their squares. A rontinuous current, if present, may be included, as the r.m.s. value of an alternating current of zero frequency.
"Graphical Representation of R.m.s. Plural-frequency Com-bimation.-The process represented algebraically in (7) or (8) may he represented graphically by the process of successive prr pendicular summation, or "crab addition." An example will suffice to make this clear. A fundamental alternating current of 100 amp . r.m.s., is associated with a continuous current of 50 amp ., and with two other alternating currents of other frequencies of 20 and 10 amp. r.m.s., respectively. What will be the joint r.m.s. current? Here by (8),
$I=\sqrt{100^{2}+50^{2}+20^{2}+10^{2}}=\sqrt{10000+2500+400+100}$ $=\sqrt{13000}=114.0175 \mathrm{amp}$. r.m.s.
"In Fig. 53, OA represents the fundamental r.m.s. current. $A B$, added perpendicularly to $O A$ represents the continuous current, or current of $50 \mathrm{r} . \mathrm{m} . \mathrm{s}$. amp. at zero frequency. The perpendicular sum of $O A$ and $A B$ is $O B=111.8034$ amp. Adding similarly the other frequency components $B C$ and $C D$,
the total perpendicular sum is $O D=114.0175 \mathrm{amp}$. The order in which the components are added manifestly does not affect the final result, and it is a matter of insignificance whether the various frequencies coacting are "harmonic," i. e., are integral multiples of a fundamental, or not, so long as they are different.
"The complete solution of an alternating-current line with complex harmonic potentials and currents thus requires an independent solution of potential and current for each sing!e frequency in turn, as though the others were non-existent, and then the r.n.s. value at any point on the line is the perpendicular sum of the separate frequency values. The powers and cnergies of the different frequencies are independent of each other, and the total transmitted energy is the sum of the energies transmitted at the scparate component frequencies."

BIBLIOGRAPHY

In order to give due prominence to some of the valuable contributions on the subject of performance of electrical circuits and as an acknowledgment to their authors of the assistance received from a study of them, the following publications are suggested as representing a very helpful and valuable addition to the library of the transmission engineer. They are given in the approximate order of their publication:-

Calculation of the High Tension Line and Output and Regulation in Long Distance Lines by Percy H. Thomas. (Published in A. I. of E. E. Trans. Vol. XXVIII, Part, I, 1909), The former paper introduces a so-called "wave formula" for determining the performance of long lines having considerable capacity which embodies the use of algebra only. The second paper suggests the use of split conductors in order to adjust the ratio of the capacity and inductance of the line so that the leading and lagging components more nearly neutralize each other.

Formulae, Constants and Hyperbolic Constants by W. E. Miller. (Published in G. E. Review, supplement dated May 1910). This is a treatise upon the subject wherein hyperbolip functions of complex angles are tabulated for sinh and cosh ($x+j y$) up to $x=1, y=1$ in steps of 0.02 .

Transmission Line Formulas by H. B. Dwight. (Published by John Wiley \& Sons, Inc.). This book introduces what are known as "Dwight's ' K ' formulas," which permit the solution of transmission problems without the use of mathematics higher than arithmetic. It also contains working formulas based upon convergent series and the solution of many problems both by the K formulas and by convergent series.

Tables of Complex Hyperbolic and Circular Functions by Dr. A. E. Kennelly. (Published by the Harvard University Press). This book gives functions of complex angles for polar values up to 3.0 by steps of 0.1 and for angles from 45° to 90° by steps of one degree; also functions in terms of reactangular coordinates $x+j y$ to $x=10$ by steps of 0.05 and of y virtually to infinity by steps of 0.05 .

Chart Allas of Complex Hyperbolic and Circular Functions by Dr. A. E. Kennelly. (Published by Harvard University Press in large charts, 48 by 48 cm .) Presenting curves for all the tables published in above referred to "Tables of Complex Hyperbolic and Circular Functions" for rapid graphical interpolation.

Constant Voltage Transmission by H. B. Dwight. (Published by John Wiley \& Son, Inc.). Embraces a very complete study of the use of over-excited synchronous motors for controlling the voltage of transmission.

The Application of Hyperbolic Functions to Electrical Engineering Problems by Dr. A. E. Kennelly. (Published by the McGraw-Hill Book Company). Every student should have a copy of this book because of its simplicity and completeness in explaining the application of hyperbolic functions to transmission circuit problems. It also contains a very complete bibliography of publications upon this general subject.

Artificial Electric Lines by Dr. A. E. Kennelly. (Published by McGraw-Hill Book Co.). This is a valuable treatise in which the subject is treated in accordance with the hyperbolic theory. .

Electrical Phenomena in Parallel Conductors by Dr. F. E. Pernot. (Published by John Wiley \& Son, Inc.). Being a very recent treatise, this book contains much practical and many readily understandable explanations for both the beginner and those further advanced in the study of this subject. It contains a six-place table of logarithms of real hyperbolic functions for values of x from 0.000 to 2.000 for intervals of 0.001 in the argument. This is the most complete table of real hyperbolic functions which the author has seen.

TABLE P-SUBDIVISIONS OF A DEGREE

SEGDNDS TO DEGRES		minutes ro DEGREES		DEGREESTOMINUTES AND SECONDS					
II $=$		$1=$	0	$0=$	7	IF	$0=$	7	17
$\begin{aligned} & 01 \\ & 02 \\ & 03 \end{aligned}$	$\begin{aligned} & 0.0003 \\ & 0.0006 \\ & 0.0008 \end{aligned}$	$\begin{aligned} & 01 \\ & 02 \\ & 03 \end{aligned}$	$\begin{aligned} & 0.0167 \\ & 0.0333 \\ & 0.0500 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.002 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 0366 \\ & 07.2 \\ & 10.8 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.007 \\ & 0.008 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 21.6 \\ & 25.2 \\ & 28.8 \end{aligned}$
$\begin{aligned} & 04 \\ & 05 \\ & 06 \end{aligned}$	$\begin{aligned} & 0.0011 \\ & 0.0014 \\ & 0.0017 \end{aligned}$	$\begin{aligned} & 04 \\ & 05 \\ & 06 \end{aligned}$	$\begin{aligned} & 0.0667 \\ & 0.0833 \\ & 0.1000 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 32.4 \\ & 36.0 \end{aligned}$
$\begin{aligned} & 07 \\ & 08 \\ & 09 \end{aligned}$	$\begin{aligned} & 0.0019 \\ & 0.0022 \\ & 0.0025 \end{aligned}$	$\begin{aligned} & 07 \\ & 08 \\ & 09 \end{aligned}$	$\begin{aligned} & 0.1167 \\ & 0.1333 \\ & 0.1500 \end{aligned}$						
10 11 12	$\begin{aligned} & 0.0028 \\ & 0.0031 \\ & 0.0033 \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 0.1667 \\ & 0.1833 \\ & 0.2000 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \\ & \hline \end{aligned}$	$\begin{aligned} & 36 \\ & 12 \end{aligned}$	0.51	$\begin{array}{r} 30 \\ 31 \end{array}$	$\begin{aligned} & 36 \\ & 12 \end{aligned}$
$\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.0036 \\ & 0.0039 \\ & 0.0042 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.2167 \\ & 0.2333 \\ & 0.2500 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 01 \\ & 02 \\ & 03 \end{aligned}$	$\begin{aligned} & 48 \\ & 24 \\ & 00 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.54 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 24 \\ & 00 \end{aligned}$
16 17 18	$\begin{aligned} & 0.0044 \\ & 0.0047 \\ & 0.0050 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2667 \\ & 0.2833 \\ & 0.3000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.07 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 03 \\ & 04 \\ & 04 \\ & \hline \end{aligned}$	$\begin{array}{r} 36 \\ 12 \\ 48 \\ \hline \end{array}$	$\begin{aligned} & 0.56 \\ & 0.57 \\ & 0.58 \\ & \hline \end{aligned}$	$\begin{aligned} & 33 \\ & 34 \\ & 34 \\ & \hline \end{aligned}$	$\begin{array}{r} 36 \\ 12 \\ 48 \\ \hline \end{array}$
$\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0053 \\ & 0.0055 \\ & 0.0058 \end{aligned}$	$\begin{aligned} & 19 \\ & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 0.3167 \\ & 0.3333 \\ & 0.3500 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.10 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 05 \\ & 06 \\ & 06 \end{aligned}$	$\begin{aligned} & 24 \\ & 00 \\ & 36 \end{aligned}$	$\begin{aligned} & 0.59 \\ & 0.60 \\ & 0.61 \end{aligned}$	$\begin{array}{r} 35 \\ 36 \\ 36 \\ \hline \end{array}$	$\begin{aligned} & 24 \\ & 00 \\ & 36 \end{aligned}$
$\begin{aligned} & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.0061 \\ & 0.0064 \\ & 0.0067 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.3667 \\ & 0.3833 \\ & 0.4000 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.13 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 07 \\ & 07 \\ & 08 \\ & \hline \end{aligned}$	$\begin{array}{r} 12 \\ 48 \\ 24 \end{array}$	$\begin{aligned} & 0.62 \\ & 0.63 \\ & 0.64 \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \\ & 38 \end{aligned}$	$\begin{aligned} & 12 \\ & 48 \\ & 24 \end{aligned}$
$\begin{aligned} & 25 \\ & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 0.0069 \\ & 0.0072 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 0.4167 \\ & 0.4333 \\ & 0.4500 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.16 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 09 \\ & 09 \\ & 10 \end{aligned}$	$\begin{aligned} & 00 \\ & 36 \\ & 12 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.66 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 39 \\ & 39 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 00 \\ & 36 \\ & 12 \\ & \hline \end{aligned}$
$\begin{aligned} & 28 \\ & 29 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0078 \\ & 0.0081 \\ & 0.0083 \end{aligned}$	$\begin{aligned} & 28 \\ & 29 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4667 \\ & 0.4833 \\ & 0.5000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.19 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 48 \\ & 24 \\ & 00 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.69 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 24 \\ & 00 \end{aligned}$
$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0086 \\ & 0.0089 \\ & 0.0092 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5167 \\ & 0.5333 \\ & 0.5500 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.22 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 36 \\ & 12 \\ & 48 \end{aligned}$	$\begin{aligned} & 0.71 \\ & 0.72 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 42 \\ & 43 \\ & 43 \end{aligned}$	$\begin{aligned} & 36 \\ & 12 \\ & 48 \\ & \hline \end{aligned}$
$\begin{aligned} & 34 \\ & 35 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0094 \\ & 0.0097 \\ & 0.0100 \end{aligned}$	$\begin{array}{r} 34 \\ 35 \\ 36 \\ \hline \end{array}$	$\begin{aligned} & 0.5667 \\ & 0.5833 \\ & 0.6000 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.25 \\ & 0.26 \end{aligned}$	$\begin{array}{r} 14 \\ 15 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 24 \\ & 00 \\ & 36 \end{aligned}$	$\begin{aligned} & 0.74 \\ & 0.75 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 44 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 24 \\ & 00 \end{aligned}$ 36
37 38 39	$\begin{aligned} & 0.0103 \\ & 0.0106 \\ & 0.0108 \end{aligned}$	$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6167 \\ & 0.6333 \\ & 0.6500 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.28 \\ & 0.29 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 12 \\ & 48 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.78 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \\ & 47 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 48 \\ & 24 \end{aligned}$
$\begin{array}{r} 40 \\ 41 \\ 42 \\ \hline \end{array}$	$\begin{aligned} & 0.0111 \\ & 0.0114 \\ & 0.0117 \end{aligned}$	$\begin{array}{r} 40 \\ 41 \\ 42 \\ \hline \end{array}$	$\begin{aligned} & 0.6667 \\ & 0.6833 \\ & 0.7000 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.31 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 00 \\ & 36 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.81 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \\ & 49 \\ & \hline \end{aligned}$	$\begin{array}{r} 00 \\ 36 \\ 12 \\ \hline \end{array}$
$\begin{array}{r} 43 \\ 44 \\ 45 \\ \hline \end{array}$	$\begin{aligned} & 0.0119 \\ & 0.0122 \\ & 0.0125 \\ & \hline \end{aligned}$	$\begin{array}{r} 43 \\ 44 \\ 45 \\ \hline \end{array}$	$\begin{aligned} & 0.7167 \\ & 0.7333 \\ & 0.7500 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.34 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 19 \\ & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 48 \\ & 24 \\ & 00 \end{aligned}$	$\begin{aligned} & 0.83 \\ & 0.84 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 24 \\ & 00 \end{aligned}$
$\begin{array}{r} 46 \\ 47 \\ 48 \\ \hline \end{array}$	$\begin{aligned} & 0.0128 \\ & 0.0130 \\ & 0.0133 \\ & \hline \end{aligned}$	$\begin{array}{r} 46 \\ 47 \\ 48 \\ \hline \end{array}$	$\begin{aligned} & 0.7667 \\ & 0.7833 \\ & 0.8000 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.37 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \\ & 22 \\ & \hline \end{aligned}$	$\begin{array}{r} 36 \\ 12 \\ 48 \\ \hline \end{array}$	$\begin{aligned} & 0.86 \\ & 0.87 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 51 \\ & 52 \\ & 52 \end{aligned}$	$\begin{array}{r} 36 \\ 12 \\ 48 \\ \hline \end{array}$
$\begin{array}{r} 49 \\ 50 \\ 51 \end{array}$	$\begin{aligned} & 0.0136 \\ & 0.0139 \\ & 0.0141 \end{aligned}$	$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.8167 \\ 0.8333 \\ 0.8500 \\ \hline \end{array}$	$\begin{aligned} & 0.39 \\ & 0.40 \\ & 0.41 \end{aligned}$	$\begin{array}{r} 23 \\ 24 \\ 24 \\ \hline \end{array}$	$\begin{aligned} & 24 \\ & 00 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.90 \\ & 0.91 \end{aligned}$	$\begin{aligned} & 53 \\ & 54 \\ & 54 \end{aligned}$	$\begin{aligned} & 24 \\ & 00 \\ & 36 \end{aligned}$
$\begin{array}{r} 52 \\ 53 \\ 54 \\ \hline \end{array}$	$\begin{aligned} & 0.0144 \\ & 0.0147 \\ & 0.0150 \end{aligned}$	$\begin{aligned} & 52 \\ & 53 \\ & 54 \end{aligned}$	$\begin{aligned} & 0.8667 \\ & 0.8833 \\ & 0.9000 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.43 \\ & 0.44 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 26 \end{aligned}$	$\begin{aligned} & 12 \\ & 48 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.93 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 48 \\ & 24 \end{aligned}$
$\begin{aligned} & 55 \\ & 56 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0153 \\ & 0.0156 \\ & 0.0159 \end{aligned}$	$\begin{aligned} & 55 \\ & 56 \\ & 57 \end{aligned}$	$\begin{aligned} & 0.9167 \\ & 0.9333 \\ & 0.9500 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.46 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \\ & 28 \\ & \hline \end{aligned}$	$\begin{array}{r} 00 \\ 36 \\ 12 \\ \hline \end{array}$	$\begin{aligned} & 0.95 \\ & 0.96 \\ & 0.97 \\ & \hline \end{aligned}$	$\begin{aligned} & 57 \\ & 57 \\ & 58 \end{aligned}$	$\begin{aligned} & 00 \\ & 36 \\ & 12 \\ & \hline \end{aligned}$
58 59 60	$\begin{aligned} & 0.0162 \\ & 0.0164 \\ & 0.0167 \end{aligned}$	$\begin{aligned} & 58 \\ & 59 \\ & 60 \end{aligned}$	$\begin{aligned} & 0.9667 \\ & 0.9833 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.49 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 28 \\ & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 48 \\ & 24 \\ & 00 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.99 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 58 \\ & 59 \\ & 60 \end{aligned}$	$\begin{aligned} & 48 \\ & 24 \\ & 00 \end{aligned}$

$0^{0} .41=0^{\circ} 24^{\prime}, 36^{\prime \prime} \quad 0^{\circ}+11^{\prime} 00^{\prime \prime}=0^{0} .6833$.
$0.005^{\circ}=0^{\circ} .00^{\prime} 18^{\prime \prime} \quad, 0^{\circ} 00^{\prime} 46^{\prime \prime}=0^{\circ} .0128^{\circ}$.

CHAPTER XII COMPARISON OF VARIOUS METHODS

Abstract

The "localized capacitance" or "localized admittance" methods are discussed below for the two iollowing reasons. A discussion of them is of academic interest and a tabulation of the magnitude oi the errors in the results as obtained by these approximate methods when applicd to circuits of different lengths and frequencies should be helpful. These methods may be carricd out cither graphically or mathematically, but since they are only approximate the simpler graphical solution should suffice. Their principle virtue is the fact that they simplify the determination of performance, but this is obtained at the expense of accuracy. The more accurate of these methods is somewhat tedious to carry out. The graphical solution previously described in connection with the Wilkinson charts will be gencrally more accurate and shorter than these localized capacitance methods.

THE LOCALIZED CAPACITANCE methods are:-the single end condenser method; the middle condenser or T method; the split condenser or nominal π method and Dr. Steinmetz three condenser method. These four lumped capacitance methods assume the total capacitance of the circuit as being divided up and "lumped" in the form of condensers shunted across the circuit at one or more points.
methods, usually an approximation to the true value may be obtained.

The middle condenser or T method assumes that the total capacitance may be shunted across the circuit at the middle point. On this assumption the total charging current will flow over one half the length of the circuit. This method is therefore more nearly accurate than the single-condenser method.

The split condenser or π method assumes one half

Fig. 54-SINGLE END CONDENSER METHOD
Problem X.

The single condenser method assumes the total capacitance as being lumped or shunted across the circuit at. the receiving-end. On this assumption the total charging current for the circuit would flow over the entire circuit. Actually the charging current is distributed along the circuit so that the entire charging current does not flow over the entire circuit. Obviously the assumption of the total capacitance being lumped at the receiving-end will therefore give over compensaton for the effect of the charging current upon the voltage regulation of the circuit. This method of solution yields a voltage too low at the sending end by nearly the same amount that the straight impedance method gives it too high. By averaging the values, as obtained by the impedance and single end condenser
the capacitance being shunted across the circuit at each end. In this case one-half of the charging current flows over the entire circuit. This assumed distribution of the charging current also more nearly represents the actual distribution than the single-condenser method.

Dr. Steinmetz has proposed a method assuming three condensers shunted across the circuit. One in the middle, of two-thirds, and one at each end, each of one sixth the total capacitance of the circuit. This method is equivalent to assuming that the electrical quantities are distributed along the circuit in a way representing ar arc of a parabola. This method assumes one-sixth the charging current flowing over one half the entire circuit and five sixth the charging current flowing over the other half of the circuit. This method gives quite
accurate results unless the circuit is very long and the fi equency high.

Figs. 54-57 show leaky condensers placed at different points of the circuits, that is they indicate that there is:a leak G, as well as a susceptance B. For simplicity pure condensers have been assumed in the accompanying calculations; that is we have assumed $G=0$. This is the usual assumption in such cases, for the reason that G^{\prime} is usually very small, and localized capacitance methods are approximations at best. In the equivalent π solution previously given, we have indicated the treatment when the condensers have a leak. In such case, however, the equivalent π method produces exact results, and the nature of such solution may demand a condenser having a material leak.

AUXILIARY CONSTANTS

Mr. T. A. Wilkinson and Dr. Kennelly have worked out the algebraic expressions for the auxiliary
receiving-end. In such case the entire charging current would flow over the total length of the circuit.

Solution by Impedance Method-The diagrams of connections and corresponding graphical vector solution for problem X by the single end condenser method is indicated by Fig. 54. The current $D N$ consumed by the condenser (zero leakage assumed) leads the receivingend voltage $O R$ by 90 degrees and is,-

$$
I_{\mathrm{e}}=0.001563 \times 60.046=93.852 \text { amperes }
$$

The load current of 99.92 amperes, lagging $25^{\circ} 50^{\prime} 30^{\prime \prime}$ (90% power-factor) has a component $O A$ of $99.92 \times 0.90=89.928$ amperes in phase with the re-ceiving-end voltage and a component $A D$ of $99.92 \times$ $0.4359=43.555$ amperes in lagging quadrature with the receiving-end voltage. This lagging component is therefore in opposite direction to the charging current, the effect of which is to neutralize an equivalent amount of charging current. The remaining current $A N$ in leading quadrature with the receiving-end voltage is

FIG. 55-NOMINAL π OR SPLIT CONDENSER METHOD
Problem X.
constants corresponding to these four circuits of localized capacitance. These are given in Table Q. It may be interesting to observe to what extent each of the four localized capacitance methods takes account of the three linear line constants R, X and B. The rigorous or exact expression for the auxiliary constants is given under Table Q for comparison with the values corresponding to the localized condenser methods. The numerals. under the algebraic expressions correspond to problem X; that is, to a certain 60 cycle circuit, 300 miles long. They are given to illustrate for a long circuit, the account taken of the fundamental constants for each of the five methods listed. These numerals may be compared with the rigorous or exact values as given under the rigorous expressions at the bottom of the table.

SINGLE END CONDENSER METHOD

This method assumes that the total capacitance of the circuit may be concentrated across the circuit at the
$93.852-43.555=50.297$ amperes. The current $O N$ in the conductor is therefore:-

$$
\begin{aligned}
I_{r} & =\sqrt{\left(89.928^{2}+(50.297)^{2}\right.} \\
& =103.038 \text { amperes. }
\end{aligned}
$$

The current at the sending-end leads the voltage at the receiving-end by the angle θ_{R} whose tangent is,-.

$$
\frac{50.297}{89.928}=29^{\circ} 13^{\prime} 06^{\prime \prime}
$$

The voltage consumed by the resistance, and the reactance of each conductor is,-

$$
\begin{aligned}
& I R=103.038 \times 105=10819 \text { Volts (resistance drop) } \\
& I X=103.038 \times 249=25656 \text { Volts (reactance drop) }
\end{aligned}
$$

The receiving-end conditions are thus, -

$$
\begin{aligned}
I_{\mathrm{R}} & =103.038 \text { amperes } \\
\theta_{\mathrm{R}} & =29^{\circ} \mathrm{I}^{\prime} \\
\operatorname{Cos} \theta_{\mathrm{R}}^{\prime \prime} & =0.8772 \\
\operatorname{Sin} \theta_{\mathrm{R}} & =0.4881
\end{aligned}
$$

and from (40)

$$
\begin{aligned}
& E_{\text {an }}= \\
& \sqrt{.(60046 \times 0.8727+10819)^{2}+(60046 \times 0.4881-25656)^{2}} \\
& = 6 3 3 2 9 \longdiv { 3 ^ { \circ } 1 8 ^ { \prime } 2 7 ^ { \prime \prime } } \text { volts to vector } \mathrm{ON} \\
& =63320 \angle 25^{\circ} 54^{\circ} 39^{\prime \prime} \text { volts to vector of refercuce. } \\
& P F_{0}=\operatorname{Cos} \angle 3^{\circ} 18^{\circ} 27^{\prime \prime}=99.927 \text { percent leading. } \\
& \kappa V-A_{\text {on }}=103.038 \times 63.329=6525 \mathrm{kv} \text {-c. } \\
& K W^{\prime}{ }_{\text {on }}=6525 \times 0.99927=6520 \mathrm{kw} . \\
& \text { Lusin }_{n}=6520-5400=1120 \mathrm{kw} . \\
& \text { Solution by Complex Quantilies-From Table } Q \\
& \text { the auxiliary constants corresponding to the single end } \\
& \text { condenser method are found as follows:- }
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}={ }^{\mathrm{I}}-X B=0.610813 \\
& a_{4}=R B=0.164115 \\
& b_{1}=R=105 \text { ohms. } \\
& b_{2}=X=249 \text { ohms. } \\
& c_{1}=0 \\
& c_{c_{2}}=B=0.001563 \mathrm{mho} .
\end{aligned}
$$

The voltage at the sending end is determined as follows:-

$$
\begin{aligned}
I_{L}\left(\operatorname{Cos} \theta_{L}-j \operatorname{Sin}_{\text {in }} \theta_{L}\right) & =89.928-j 43.555 \\
\times\left(b_{1}+j b_{2}\right) & =20286+j 17819 \\
+E_{10}\left(a_{1}+j a_{2}\right) & =36677+j 984 \\
E_{0 u} & =56963+j 27673 \\
& =633295^{\circ} 54^{\circ} 39^{\prime \prime} \text { volls. }
\end{aligned}
$$

end is completely determined by the load current at the receiving-end and the vector addition thereto of the current supplied at that end to the condenser under receiv-ing-end voltage. For determining the sending-end voltage $A^{\prime}{ }_{\mathrm{v}}=r+Y Z$ and $B^{\prime} v=Z$; but for determining the sending-end current $A^{\prime}{ }_{\mathrm{I}}=I$ and $C^{\prime}{ }_{I}=Y$. If the condenser were applied symmetrically $A^{\prime}{ }_{v}$ and A_{1}^{\prime} would be identical.

SPLIT CONDENSER OR NOMINAL π SOLUTION

This method assumes that the total capacitance of the circuit may be concentrated at the two ends, onehalf being placed across the circuit at either end. In this case one-half the charging current flows over the entire circuit. The total resistance and the total reactance of one conductor is placed between the two terminal condensers.

With this assumption the current consumed by the condenser across the receiving-end of the circuit is added vectorially to the load current and the power-factor of the combined currents calculated. With these new load conditions determined the conditions at the

TABLE Q-AUXILIARY CONSTANTS CORRESPONDING TO CIRCUITS OF LOCALIZED CAPACITANCE

METHOO	a_{1}	a_{2}	b_{1}	b_{2}	9	C_{2}	EQUIVALENT CONVERGENT BEAIES FORM OF EXPREBSION
Imperinace	1	0	$\begin{gathered} R \\ -108 \\ \hline \end{gathered}$	$\begin{gathered} x \\ =+j 240 \\ \hline \end{gathered}$	0	-	$A^{\prime}=1 \quad B^{\prime}=2 \quad C^{\prime}=0$
sinale eno dondender	$\begin{gathered} 1=x \mathrm{~B} \\ =0.010013 \end{gathered}$	$\begin{gathered} R B \\ =-j 0.184118 \end{gathered}$	$\begin{gathered} R \\ =108 \end{gathered}$	$\begin{gathered} x \\ -+j 249 \end{gathered}$	0		$A^{\prime}=1+z \quad B^{\prime}=z \quad C^{\prime}=Y$
DOUELE ENO OONDEMPER 而量 NOMINAL - ת" $\frac{8}{2}$ П	$\begin{aligned} & 1-\frac{x \mathrm{~B}}{2} \\ & -0.0064086 \end{aligned}$	${ }_{-1}^{\frac{R 8}{2}}$	$\begin{gathered} R \\ -100 \end{gathered}$	$\begin{gathered} x \\ -+j 240 \end{gathered}$	$\begin{aligned} & -\frac{\theta^{2} R}{2} \\ & =-0.0000041 \end{aligned}$	$\begin{aligned} & 8-\frac{8^{2 x}}{4} \\ & =+10.001411 \end{aligned}$	$A^{\prime}=\left(1+\frac{V Z}{2}\right) B^{\prime}=2 \quad C^{\prime}=Y\left(1+\frac{Y Z}{4}\right)$
	$\begin{gathered} 1-\frac{\times 8}{2} \\ -0.0064006 \end{gathered}$	$\begin{gathered} \frac{\mathrm{AB}}{2} \\ -4 j 0.082068 \end{gathered}$	$\begin{aligned} & R-\frac{R \times B}{2} \\ & =84.6077 \end{aligned}$	$\begin{gathered} x-\frac{8}{4}\left(x^{2}-R^{2}\right) \\ \cdots j 220.084 \end{gathered}$	0	$\begin{gathered} 8 \\ \cdots+j 0.001603 \end{gathered}$	$\begin{gathered} A^{\prime}=\left(1+\frac{Y Z}{2}\right) \quad B^{\prime}-z\left(1+\frac{r Z}{2}\right) \\ C^{\prime}-r \end{gathered}$
	$\begin{aligned} 1-\frac{X B}{2} & +\frac{B^{2}}{36}\left(x^{2}-R^{2}\right) \\ & =0.800806 \end{aligned}$	$\left\lvert\, \begin{aligned} & \frac{\mathrm{AB}}{2}-\frac{R \times B^{2}}{10} \\ & =\rightarrow j 0.076600 \mid \end{aligned}\right.$	$\begin{aligned} R & =\frac{R \times B}{3} \\ & =0.3786 \end{aligned}$	$\begin{aligned} x & =\frac{8}{8}\left(x^{2}-R^{2}\right) \\ & =j 236.721 \end{aligned}$	$\begin{aligned} & =\frac{6 R B^{2}}{36}+\frac{n \times 8^{3}}{106} \\ & =-0.0000347 \end{aligned}$	$\begin{gathered} 0=\frac{5 \times 0^{2}}{36}+\frac{8^{3}}{210}\left(x^{2}-R^{2}\right) \\ +j 0.0014704 \end{gathered}$	$\begin{gathered} A^{\prime}=\left(1+\frac{\pi}{2}+\frac{r^{2} z^{2}}{36}\right) \quad B^{\prime}-z\left(1+\frac{r z}{6}\right) \\ C^{\prime}-r\left(1+\frac{6 r}{36}+\frac{r^{2} z^{2}}{218}\right) \end{gathered}$

$$
\begin{aligned}
& \text { A }-\left(1+\frac{r_{2}}{2}+\frac{\gamma^{2} z^{2}}{24}+\frac{r^{3} z^{3}}{720}+\frac{r_{2}^{4}}{40230}+\right)
\end{aligned}
$$

$-2,81 \times H$ - $0817408+1236200$

which checks exactly with the results as obtained previously by the impedance method.

The current at the sending end may be determined as follows:-
I. $\left(\operatorname{Cos} \theta_{1 .}-j \operatorname{Sin} \theta_{L}\right)=89.928-143.555$

$$
\left.\begin{array}{rl}
+E_{m}\left(c_{2}+j c_{1}\right) & =\frac{0+j 93.852}{l_{1}}
\end{array}=\frac{89.928+j 50.297}{}=103.038 \angle 20^{\circ} 13^{\prime} 06^{\prime \prime}\right)
$$

" amperes.
which also checks exactly with the result as previously determined by the impedance method.

It should be noted here that in determining the sending-end current, the auxiliary constant ($a+j a_{2}$ did not enter into the calculation as it does in the rigorous solution; this is owing to the inherent dissymmetry of the single-end condenser. This is the only case in which the capacitance is applied dissymmetrically, consequently the current entering the line at the sending-
sending-end are calculated by the impedance method. This is the only calculation required when employing the nominal π method for determining the sending-end voltage. The voltage at the seriding-end is therefore more readily calculated by this method than by the T method which requires the calculation of the two separate halves of the circuit. If, however, the current, power-factor and kw input are required, a second calculation must be made to determine them. In such cases the current consumed by the condenser at the sendingend must be added vectorially to that of the line conductors.

Solution by Impedance Method-The diagrams of connections and corresponding graphical vector solutions for problem X by the nominal π method is indicated in Fig. 55. The charging current consumed by the condenser (zero leakage assumed) at the receiving-
end of the circuit leads the receiving-end voltage by 90 degrees and is,-

$$
I_{\mathrm{cr}}=\frac{0.001563}{2} \times 60046=46.926 \text { amperes. }
$$

The current I_{r} in each conductor is the vector sum cf the load and condenser currents and may be determined as follows:-

$$
\begin{aligned}
I_{r} & =\sqrt{(99.92 \times 0.90)^{2}+\left(I_{\mathrm{er}}+99.92 \times-0.4359\right)^{2}} \\
& =89.991 \angle 2^{\circ} 08^{\prime} 48^{\prime \prime} \text { amperes. } \\
\text { PF } & =\operatorname{Cos} 2^{\circ} 08^{\prime} 48^{\prime \prime}=99.33 \text { percent leading. }
\end{aligned}
$$

The voltage consumed by the resistance, and the reactance of each conductor is,-

$$
\begin{aligned}
& I R=89.991 \times 105=9449 \text { volts (resistance drop) } \\
& I X=89.991 \times 249=22408 \text { volts (reactance drop) }
\end{aligned}
$$

and from (40),
$\frac{E_{\mathrm{sn}}=}{\sqrt{1(60046 \times 0.9933+9449)^{2}+(60046 \times 0.037458-22408)^{6}}}$

$$
\begin{aligned}
& =72319 \angle 16^{\circ} 11^{\prime} 08^{\prime \prime} \text { volts to current vector } O P . \\
& =72319 \angle 18^{\circ} 19^{\circ} 56^{\prime \prime} \text { volts to vector of reference } O R .
\end{aligned}
$$

The charging current consumed by the condenser at the sending-end (zero leakage assumed) leads the voltage at the sending-end by 90° and is,-

$$
I_{c 4}=\frac{0.001563}{2} \times 72319=56.517 \text { amperes. }
$$

The current at the sending-end is the vector sum of the current in the conductor and the current consumed by the condenser at the sending-end. It may be calculated as follows:-

$$
\begin{aligned}
& O T=89.991\left(\operatorname{Cos} 16^{\circ} 11^{\prime} 08^{\prime \prime}\right)=86.424 \text { amperes. } \\
& T P=89.991\left(\operatorname{Sin} 16^{\circ}{ }^{\circ} I^{\prime}{ }^{\prime} 08^{\prime \prime}\right)=25.085 \text { amperes. } \\
& T N=56.517-25.085=31.432 \text { amperes. }
\end{aligned}
$$

therefore,-

$$
\text { I. }=\sqrt{80.424^{2}+31.432^{2}}
$$

$=91.962 \angle 19^{\circ} 59^{\prime}$ o7 $^{\prime \prime}$ amperes to vector OS.
$=91.962 \angle 38^{\circ} 19^{\circ} 03^{\prime \prime \prime}$ to vector of reference OR.
PF. $.=\operatorname{Cos} 19^{\circ} 59^{\prime} 07^{\prime \prime}=93.979$ percent leading .
$K V-A_{\mathrm{os}}=91.962 \times 72.319=6651 \mathrm{kv}-a$.
$K W_{\text {o。 }}=6651 \times 0.93979=6251 \mathrm{kw}$.
Loss $_{\mathrm{n}}=6251-5400=851 \mathrm{kz}$.
$E f f=\frac{5400 \times 100}{6251}=86.37$ percent.
Solution by Complex Quantities-From Table Q the auxiliary constants corresponding to the nominal π method of solution are found as follows:-

$$
\begin{aligned}
& a_{1}=1-\frac{X B}{2}=0.8054065 . \\
& a_{2}=\frac{R B}{2}=0.0820575 . \\
& b_{1}=R=105 \text { ohms. } \\
& b_{2}=X=+j 249 \text { ohms. }
\end{aligned}
$$

$$
\begin{aligned}
& c_{2}=-\frac{B^{2} R}{4}=-0.0000641 \mathrm{mho} \\
& c_{2}=B-\frac{B^{2} X}{4}=0.001411 \mathrm{mho} .
\end{aligned}
$$

The voltage at the sending-end is determined as follows:-

$$
\begin{aligned}
I_{L}\left(\operatorname{Cos} \theta_{L}-j \sin o_{L}\right) & =89.928-i 43.555 . \\
\times\left(b_{1}+j b_{1}\right) & =2026+j 1819 \text { volts. } \\
+E_{\mathrm{ra}}\left(a_{2}+j a_{2}\right) & =48361+j 4927 \text { volts. } \\
E_{\mathrm{am}} & =68647+j 22746 . \\
& =72319 \angle 18^{\circ} 19^{\prime} 56^{\prime \prime} \text { volts. }
\end{aligned}
$$

The current at the sending-end may be determined as follows:-

$$
\begin{aligned}
& I_{L}\left(\operatorname{Cos} \theta_{L}-\rho \sin \theta_{L}\right)=89.928-143.555 . \\
& \times\left(a_{1}+j a_{2}\right)=+76.003-j 27.700 \text { amperes. } \\
& +E_{10}\left(C_{1}+j C_{1}\right)=-3.849+j 84.7 \mathrm{~T} 8 \text { amperes. } \\
& \text { 1. }=72.154+157.018 . \\
& =91.962\left\langle 38^{8} 19^{\prime} 03^{\prime \prime}\right. \text { amperes. }
\end{aligned}
$$

The above results check exactly with those previously obtained by impedance calculations. This agreement indicates that the nominal π solution may, if desired, be used with complex quantities, assuming values for the auxiliary constants as indicated in Table Q.

Convergent Series Expression-Table Q indicates that the nominal π solution is equivalent to using the following values for the auxiliary constants in the convergent series form of solution,-

$$
A^{\prime}=\left(I+\frac{Y Z}{2}\right), \quad B^{\prime}=Z, \quad C^{\prime}=Y\left(I+\frac{Y Z}{4}\right)
$$

We will now show that the above expressions yield the same values for the auxiliary constants as given in Table Q. From chart XI the following values corresponding to problem X are taken.

$$
Z Y=-0.389187+j 0.164115
$$

therefore,

$$
\begin{aligned}
& A^{\prime}=1.0000000 \\
&-0.1945935+j 0.0820575 \\
& A^{\prime}=0.8054065+j 0.0820575 \\
& B^{\prime}=105+j 249 \\
& C^{\prime}=1.000000 \\
&=0.0972967+j 0.0410287 \\
&=Y(0.0027033+j 0.0410287) \\
& C^{\prime}=-0.0000641+j 0.00141 \mathrm{I} .
\end{aligned}
$$

Thus the values for the auxiliary constants as determined by the above incomplete convergent series expression check with those as determined above from the cquations in Table Q.

MIDDLE CONDENSER OR NOMINAL T METHOD

THIS METHOD assumes that the total capacitance of the circuit may be concentrated at its middle point. In such a case the entire charging current would flow over half of the circuit. The resistance and the reactance on each side of the capacitance or condenser is equal respectively to half the total conductor resistance and conductor reactance.

From an inspection of the diagram of such a circuit, Fig. 56, it is evident that two calculations will be required. Starting with the known receiving-end conditions, the conditions at the middle of the circuit are first calculated by the simple impedance method. To these calculated results the current consumed by the condenser shunted across the middle of the circuit must be vectorially added. This will give the load condition at the middle of the circuit from which the sending-end conditions may be calculated.

Solution by Impedance Method-The diagram of connections and the corresponding graphical vector solution for problem X by the nominal T method is indicated by Fig. 56. The electrical conditions at the middle of the circuit may be determined as follows:-

$$
\begin{aligned}
I_{\mathrm{R}} \frac{R}{2} & =99.92 \times 52.5=5246 \text { volts (resistance drop) } \\
I_{\mathrm{R}} \frac{X}{2} & =90.92 \times 124.5=12440 \text { volts (reactance drop) } \\
E_{\mathrm{mn}} & =\sqrt{(60046 \times 0.9+524)^{3}+(60046 \times 0.4359+12440)^{2}} \\
& =70753 / 33^{\circ} 04^{\prime} 36^{\prime \prime} \text { to current vector } O D \\
& =70753 / 7^{\circ} 14^{\prime} 05^{\prime \prime} \text { to vector of reference } O R
\end{aligned}
$$

The current consumed by the condenser (zero leakage assumed) leads the voltage $O M$ at the middle of the circuit by 90 degrees and is:-
$I_{\mathrm{c}}=0.001563 \times 70753=110.587$ amperes
The voltage consumed by the condenser current flowing back to the sending-end is:-

$$
\begin{aligned}
I_{\mathrm{e}} \frac{R}{2} & =110.587 \times 52.5=5806 \text { volts (resistance drop) } \\
& =F C \\
\text { Ie } \frac{X}{2} & =110.587 \times 124.5=13768 \text { volts (reactance drop) } \\
& =F M
\end{aligned}
$$

The voltage vector $O C$ upon which the impedance triangle corresponding to the receiving-end load current $I_{\mathrm{R}}=I_{\mathrm{L}}$ flowing over the sending-end half of the circuit is constructed, may be found as follows:-

$$
\begin{aligned}
O C & =v^{\prime}(70753-13768)^{2}+5806^{2} \\
& =57280 / 5^{\circ} 49^{\prime} 03^{\prime \prime} \text { volts to vector } O M \\
& =57280 / 13^{\circ} 03^{\prime} 08^{\prime \prime} \text { volts to vector of reference OR }
\end{aligned}
$$

The voltage $O C$ leads the receiving-end current $O D$ by the angle $33^{\circ} 04^{\prime} 36^{\prime \prime}+5^{\circ} 49^{\prime} 03^{\prime \prime}=3^{\circ} 53^{\prime} 39^{\prime \prime}$ which angle corresponds to a power-factor of 77.83 I
percent. The voltage at the sending-end will therefore be:-

$$
\begin{aligned}
E_{\mathrm{za}} & =\sqrt{\left(57280 \times 0.778^{3 s}+524\right)^{3}+(57280 \times 0.62788+32440)^{\prime}} \\
& =69467 / 44^{\circ} 10^{\prime} 14^{\prime \prime} \text { volts to vector } O D \\
& =69467 / 18^{\circ} 19^{\prime} 43^{\prime \prime} \text { volts to vector of reference } O R
\end{aligned}
$$

If desired, the receiving-end current and the condenser current may be combined and the corresponding impedance triangle for the sending-end half of the circuit constructed on the end of vector $O M$ as indicated by the dotted lines.

The current at the sending-end may be determined as follows:-

$$
\begin{aligned}
& O R=99.92 \cos 33^{\circ} 04^{\prime} 36^{\prime \prime}=83.727 \text { amperes. } \\
& B D=99.92 \text { sin } 33^{\circ} 04^{\prime} 36^{\prime \prime}=54.53^{\prime} \text { amperes. } \\
& B N=110.587-54.532=56.055 \text { amperes. } \\
& I=O N=1 \quad \frac{53.727)^{2}+(56.055)^{2}}{(80} \\
& =100.76 / 33^{\circ} 48^{\prime} 06^{\prime \prime} \text { amperes to vector } O B \text {. } \\
& =100.76 / 4 \mathbf{1}^{\circ} 02^{\prime} 11^{\prime \prime} \text { amperes to vector of } \\
& \text { reference OR. }
\end{aligned}
$$

The current at the sending-end leads the voltage at the sending-end by the angle $41^{\circ} 02^{\prime} 11^{\prime \prime}-18^{\circ} 19^{\prime} 43^{\prime \prime}$ $=22^{\circ} 42^{\prime} 28^{\prime \prime}$, which corresponds to a power-factor at .the sending-end of 92.25 percent leading. .

The power at the sending-end is:-

$$
\begin{aligned}
& K v-a_{\mathrm{sn}}=100.76 \times 69467=7000 \mathrm{kv}-a . \\
& K w w_{\mathrm{sn}}=7000 \times 0.9225=6457 \mathrm{kw} . \\
& \text { Loss }_{\mathrm{n}}=6457-5400=1057 \mathrm{kre} .
\end{aligned}
$$

Solution by Complex Quantities-From table Q the auxiliary constants corresponding to the nominal T method of solution are found as follows:

$$
\begin{aligned}
& a_{1}=1-\frac{X B}{2}=0.8054065 \\
& a_{2}=\frac{R B}{2}=0.0820575 \\
& b_{1}=R-\frac{R X B}{2}=84.5677 \\
& b_{2}=X-\frac{B}{4}\left(X^{2}-R^{2}\right)=229.081 \\
& c_{1}=O \\
& c_{3}=B=0.001563
\end{aligned}
$$

The voltage at the sending-end is obtained as fol-lows:-

$$
\begin{aligned}
& I_{\mathrm{R}}\left(\cos \theta_{\mathrm{R}}-j \sin \theta_{\mathrm{n}}\right)=89.928-j 43.55+ \\
& \times\left(b_{1}+j b_{2}\right)=17582+j 16918 \\
&+E_{\mathrm{rL}}\left(a_{1}+j a_{3}\right)=48361+j 4927 \\
& E_{\mathrm{an}}=65943+j 21845 \\
&=69467 / 18^{\circ} 19^{\prime} 43^{\prime \prime}
\end{aligned}
$$

The current at the sending-end may be calculated as follows:-

$$
\begin{aligned}
I_{\mathrm{R}}\left(\cos \theta_{\mathrm{R}}-j \sin \theta_{\mathrm{R}}\right) & =89.928-j 43.554 \\
\times\left(a_{1}+j a_{\mathrm{z}}\right) & =76.0026+j 27.6094 \\
+E_{\mathrm{ra}}\left(c_{1}+j c_{2}\right) & =0 \quad 0 \quad j 93.8519 \\
I_{\mathrm{s}} & =76.0026+j 66.1525 \\
& =100.76 / 41^{\circ} 02^{\prime} 11^{\prime \prime} \text { amperes }
\end{aligned}
$$

The above results check with those previously obtaine by impedance calculations. This agreement indicates that the nominal T solution may, if desired, be made by complex quantities, assuming values for the auxiliary constants as indicated in Table Q.

Convergent Series Expression-Table \mathbb{Q} indicates that the nominal T solution is equivalent to using the following values for the auxiliary constants in the convergent series form of solution:-

$$
\begin{aligned}
& A^{\prime}=\left(1+\frac{Z Y}{2}\right) \\
& B^{\prime}=Z\left(1+\frac{Z Y}{4}\right) \\
& C^{\prime}=Y
\end{aligned}
$$

Comparing the above expressions for the auxiliary constants with the complete expression yielding rigorpus values the following difference may be noted.

For auxiliary constant A^{\prime} the first two terms in the complete series for the hyperbolic cosine are used and
expression: check exactly with those as determined above from the equations in Table Q .

THREE CONDENSER METHOD

This method (proposed by Dr. Chas. P. Steinmetz) assumes that the admittance of the circuit may be lumped or concentrated across the circuit at three points, one-sixth being localized at each end and two-thirds at the middle of the circuit. This is equivalent to assuming that the electrical quantities are distributed along the circuit in a manner represented by the arc of a parabola. It is evident that this method more nearly approaches the actual distribution of the impedance and the admittance of the circuit than any of the three previously described localized admittance methods, and therefore yields more accurate results.

From an inspection of the diagram of such a circuit, Fig. 57 , it will be evident that it is necessary to calculate the performance of the two halves of the cir-

FIG. 56-NOMINAL T OR MIDDLE CONDENSER METHOD
all terms beyond omitted. For auxiliary constant B^{\prime} the first two terms of the complete series are also used except that the coefficient of the second term is given as $1 / 4$, whereas in the complete series it is $I / 6$. Auxileary constant C^{\prime} is equivalent to the first term only of the complete expression.

We will now show that the above expressions yield the same values for the auxiliary constants as given in Table Q. From Chart XI the following values corsesponging to problem X are taken:-

$$
\begin{aligned}
Z & =105+j 249 \\
Z Y & =-0.389187+j 0.164115 \\
\text { Therefore } A^{\prime} & =-0.000000 \\
A^{\prime} & =+0.1945935+j 0.0820 .575 \\
B^{\prime} & =1.000000+j 0.0820575 \\
& =Z \frac{0.09729675+j 0.04102875}{(0.90270325+j 0.04102875)} \\
B^{\prime} & =84.5677+j 229.081 \\
C^{\prime} & =0+j 0.001563
\end{aligned}
$$

Thus the values for the auxiliary constants as determined by the above incomplete convergent series
cuit in order to arrive at the sending-end voltage and an additional calculation will be required to determine the sending-end current, power and power-factor.

Solution by Impedance Method -The diagram of connections and corresponding graphical vector soluton for problem X by the three condenser method is indicated by Fig. 57. The charging current consumed by the condenser (zero leakage assumed) at the re-ceiving-end leads the receiving-end voltage by 90 degree and is:-

$$
I_{\mathrm{cr}}=\frac{0.001563}{6} \times 600.46=15.642 \text { amperes. }
$$

The current per conductor for the receiving-end half of the circuit is:-

$$
\begin{aligned}
& I_{\mathrm{r}}=\sqrt{(99.92 \times 0.9)^{2}+(99.92 \times 0.4359-15.642)^{2}} \\
&=94.16 \backslash 17^{\circ} 14^{\prime} 38^{\prime \prime} \\
& \text { amperes } \\
& P F_{\mathrm{r}}=\cos \backslash 17^{\circ} 14^{\prime} 38^{\prime \prime}=95.505 \text { lagging }
\end{aligned}
$$

The voltage consumed by the resistance and the reactance per conductor between the receiving-end and the middle of the circuit is:-
$I_{\mathrm{r}} \frac{R}{2}=94.16 \times 52.5=4943.4 \mathrm{Volts}$ (resistance drop)
$1_{s} \frac{X}{2}=94.16 \times 124.5=11723$ Volts. (reactance drop)
The voltage at the middle of the circuit is from (30):-

$$
\begin{aligned}
E_{\mathrm{mo}} & =\sqrt{(60046 \times 0.95505+4943-4)^{2}+(60046 \times 0.29644+1 t 723)^{\prime}} \\
& =68933 / 25^{\circ} 21^{\prime} 33^{\prime \prime} \text { volts to current vector OP } \\
& =68933 / 8^{\circ} 06^{\prime} 55^{\prime \prime} \text { volts to vector of reference } \text { or }
\end{aligned}
$$

The charging current consumed by the condenser (zero leakage assumed) at the middle of the circuit leads the voltage at the middle of the circuit by 90 degrees and is:-

$$
I_{\mathrm{cm}}=\frac{0.001563}{\mathrm{I} .5} \times 68933=71.828 \text { amperes. }
$$

The current per conductor for the sending-end half of the circuit may be determined as follows:-

$O T=\operatorname{Cos} 25^{\circ} 21^{\prime} 33^{\prime \prime} \times 94.16=85.0867$ amperes.

The current at the sending-end of the circuit may be determined as follows:-

$$
\begin{aligned}
& O S=\operatorname{Cos} 10^{\circ} 19^{\prime \prime} 07^{\prime \prime} \times 90.73=89.2624 \\
& V S=\operatorname{Sin} 10^{\circ} 19^{\prime} 07^{\prime \prime} \times 90.73=16.2516 \\
& N S=16.2516+18.3777=34.6293 \text { amperes } . \\
& I_{s}=\sqrt{89.2624^{2}+34.6293^{2}} \\
& =95.744 / 21^{\circ} 12^{\prime} 13^{\prime \prime \prime} \text { to voltage vector OS. } \\
& =95.744 / 39^{\circ} 18^{\prime} 56^{\prime \prime} \text { to vector of reference } O R \text {. } \\
& K v-a_{30}=95.744 \times 70.548=6755 \mathrm{kv-a} \\
& P F_{s}=\operatorname{Cos}\left(39^{\circ} 18^{\prime} 56^{\prime \prime}-18^{\circ} 06^{\prime} 43^{\prime \prime}\right) \\
& =\operatorname{Cos} 21^{10} 12^{\prime} 13^{\prime \prime}=93.23 \text { perceni leading } \\
& K w_{\text {s }}=6755 \times 0.9323=6298 \mathrm{kw} \\
& \text { Loss }_{\mathrm{n}}=6298-5400=898 \mathrm{kw} \\
& E_{f f .}=\frac{5400 \times 100}{6298}=85.75 \text { percent } .
\end{aligned}
$$

Solution by Complex Quantities-From Table Q the auxiliary constants corresponding to the three condenser method of solution are found to be:-
$a_{2}=1-\frac{X B}{2}+\frac{B^{2}}{36}\left(X^{2}-R^{2}\right)=0.808866$

fig. 57-Dr. chas. p. Steinmetz's three condenser method

```
\(T P=\operatorname{Sin} 25^{\circ} 21^{\prime} 33^{\prime \prime} \times 94.16=40.3278\) amperes.
\(T V=71.828-40.3278=31.5002\) amperes.
\(I_{n}=\sqrt{85.0867^{2}+31.5002^{2}}\)
    \(=90.73 / 20^{\circ} 18^{\prime} 55^{\prime \prime}\) amperes to voltage vector \(O M\) at
        middle.
    \(=90.73 / 28^{\circ} 25^{\prime} 50^{\prime \prime}\) to vector of reference \(O R\)
```

The voltage consumed by the resistance and the reactance per conductor between the middle and sendingend of the circuit is:-
$I_{\mathrm{m}} \frac{R}{2} \times 90.73 \times 52.5=4763.3$ volts (resistance drop)
$I_{\mathrm{m}} \frac{X}{2} \times 90.73 \times 124.5=11296$ volts (reactance drop)
The voltage at the sending-end from (40) is:-
$\left.E_{31}=\sqrt{(68933 \times 0.93779}+4763.3\right)^{3}+(68933 \times 0.34719-11296)^{3}$
$= 7 0 5 4 8 \longdiv { 1 0 ^ { \circ } 1 9 ^ { \prime } } 1 7 ^ { \prime \prime \prime }$ volts to current vector OV
$=70548 \quad 18^{\circ} 06^{\prime \prime} 43^{\prime \prime}$ volts to vector of reference $O R$
The charging current consumed by the condenser (zero leakage assumed) at the sending-end of the circuit leads the voltage at the sending-end by 90 degrees and is:-

$$
I_{\mathrm{c} 1}=\frac{0.001563}{6} \times 70548=18.3777 \text { amperes. }
$$

$a_{2}=\frac{R B}{2}-\frac{R X B^{2}}{18}=0.0785091$
$b_{2}=R-\frac{R X B}{3}=91.3785$
$b_{2}=X-\frac{B}{6}\left(X^{2}-R^{2}\right)=235.7208$
$c_{2}=-\frac{5 R B^{2}}{36}+\frac{R X B^{2}}{108}=-0.0000347$
$c_{2}=B-\frac{5 X B^{2}}{36}+\frac{B^{2}}{216}\left(X^{2}-R^{2}\right)=+0.0014794$
These values for the auxiliary constants are in close agreement with the rigorous values.
$I_{\mathrm{L}}\left(\operatorname{Cos} \theta_{\mathrm{L}}-j \operatorname{Sin} \theta_{\mathrm{L}}\right) \times\left(b_{\mathrm{I}}+j b_{2}\right)$
$=1844+j 17218$

$$
\begin{aligned}
E_{10} & =67053+j 21932 \\
& =70548 \text { _18 } 08^{\prime} 43^{\prime \prime} \text { volts }
\end{aligned}
$$

The current at the sending-end is:-

$$
I_{\mathrm{L}}\left(\operatorname{Cos} \theta_{\mathrm{L}}-j \operatorname{Sin} \theta_{\mathrm{L}}\right) \times\left(\alpha_{2}+j \sigma_{2}\right)
$$

$E_{\text {ro }}\left(C_{3}+j C_{2}\right)=-26.159-j 28.170$

$$
\begin{aligned}
I_{\mathrm{s}} & =74.075+j 60.662 \\
& =95.744 / 39^{\circ} 18^{\prime}{ }^{\prime \prime} \text { " amperes }
\end{aligned}
$$

By comparing these results with those obtained

CHART XXII-COMPARISON OF RESULTS BY VARIOUS METHODS

*It would be commercially impractical to transmit such small amounts of power some of the extreme distances indicated by the tabulation. The problems are stated simply for the purpose of illustrating in an approximate manner the effect distance of transmission has upon the voltage drop as calculated by various methods.
by the impedance method of procedure, it will be seen that they are in exact agreement.

Convergent Series Expression-Dr. F. E. Pernot in "Electrical Phenomena in Parallel Conductors," Vol. I, shows that the above described three condenser solution is equivalent to using the following values for the auxiliary constants in the convergent series form of solution:-

$$
\begin{aligned}
& A^{\prime}=\left(1+\frac{Z Y}{2}+\frac{Z^{2} Y^{2}}{36}\right) \\
& B^{\prime}=Z\left(1+\frac{Z Y}{6}\right) \\
& C^{\prime}=Y\left(1+\frac{5 Z Y}{36}+\frac{Z^{2} Y^{2}}{216}\right)
\end{aligned}
$$

Comparing the above expressions for the auxiliary constants with the complete expressions yielding rigorous values, the following differences may be noted. For constant A^{\prime} the first two terms are the same as in the complete series, but the third term is less than in the complete series, and all terms beyond the third are omitted. For constant B^{\prime} the first two terms are the same as in the complete series, but all terms beyond the second are omitted. For constant C^{\prime} both the ZY and the $Z^{2} Y^{2}$ terms are smaller than in the complete series and all terms beyond the third are omitted.

The above expressions yield the same values for the auxiliary constants as given in Table Q. Thus from chart XI, the following values corresponding to problem X are taken:-

$$
\begin{aligned}
Z Y & =-0.389187+j 0.164115 \\
Z^{2} Y^{2} & =+0.124532-j 0.127742
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& A^{\prime}=\quad 1.000000 \\
& -0.194593+j 0.0820575 \\
& 0.003459-j 0.0035484 \\
& A^{\prime}=0.808866+j 0.0785091 \\
& B^{\prime}=1.000000 \\
& -0.0648645+j 0.0273525 \\
& B^{\prime}={ }_{91.3785}^{Z(0.9351355+j}+{ }_{235.7208}^{0.0273525)} \\
& C^{\prime}=\quad 1.000000 \\
& -0.0540538+i .0 .0227938 \\
& +0.0005765-j 0.0005914 \\
& C^{\prime}=\frac{Y(0.9465227+j 0.0222024)}{-0.0000347}+j 0.0014794
\end{aligned}
$$

It will be seen that the above convergent series expression for the auxiliary constants check exactly with those as determined by the equations in Table Q.

COMPARATIVE ACCURACY OF VARIOUS METHODS

In order to determine the inherent error in various methods of solution, when applied to circuits of increasing length; also for frequencies of both 25 and 60 cycles, 64 problems were solved. These problems embrace thirty-two 25 cycle circuits, varying in length from 20 to 500 miles and in voltage from 10000 to 200000 volts. Fixed receiving-end load conditions were assumed for unity, and also for 80 percent powerfactor lagging. These same problems were also solved for a frequency of 60 cycles.

These 64 problems with corresponding linear constants and assumed load conditions are stated on Chart
XXII. This is followed by columns in which have been tabulated the error in voltage at the sending-end of these circuits as determined by nine different methods. The errors are expressed in percent of re-ceiving-end voltage. Obviously the inherent error corresponding to various methods will vary widely for conductors of various resistances and to some extent for different receiving-end loads. The tabulated values should therefore be looked upon as comparative rather than absolute for all conditions.

Rigorous Solution-The column headed "Rigorous Solution" contains values for the sending-end voltage which are believed to be exact. These values were obtained by calculating values for the auxiliary constants by means of convergent series and then calculating the performance mathematically. The calculations were carried out to include the sixth place and terms in convergent series were used out to the point where they did not influence the results.

The first values calculated were checked by a second set of values calculated independently at another time and where differences were found the correct values were determined and substituted. This corrected list of values was again checked by a third independent calculation. It is therefore believed that the values contained in this column are exact, representing roo percent.

Semi-Graphical Solution-The next column contains the error in the results as derived by the combination of an exact mathematical solution for the auxiliary constants and a graphical solution from there on. This combination gave results in which the maximum error does not exceed eight one hundredths of one percent of receiving-end voltage for either frequency. In other words, since the values for the auxiliary constants used in this method were exact, the maximum error of eight one hundredths of one percent occurs in the construction and reading of the graphical constructions.

Complete Graphical Solution-This solution employs Wilkinson's charts for obtaining graphically the auxiliary constants, the remainder of the solution being also made graphically as previously described. It will be seen that the maximum error as obtained by this complete graphical solution is seven hundredths of one percent for the 25 cycle and twenty-five hundredths of one percent for the 60 cycle circuits. These errors represent the combined result of various errors. First there is a slight fundamental error in the basis upon which the Wilkinson Charts are constructed when used for circuits employing conductors of various sizes and spacings, the introduction of this error making possible the simplification attained. Then there is the inherent limitation of precision obtainable in the constructon and reading of the charts and vector diagrams.

These results show that the inherent accuracy of this simplified, all graphical solution is sufficiently accurate for all practical power circuits up to 300 miles long.

Dwight's " K " Formulas-The high degree of accuracy resulting by the use of H. B. Dwight's " K " formulas should be noted. This error is a maximum of eleven hundredths of one percent for these 32 twenty-five cycle problems. The statement is therefore justified that these " K " formulas are sufficiently accurate for all 25 cycle power circuits.

For the 60 cycle problems the maximum error by the " K " formulas for problems up to and including 200 miles is one-fourth of one percent of receiving-end voltage. For 300 mile circuits this error is one-half of one percent and increases rapidly as the circuit exceeds 300 miles in length. The accuracy of the " K " formulas for 60 cycle circuits is therefore well within that of the assumed values of the linear constants for circuits up to approximately 300 miles in length.

The " K " formulas are based upon the hyperbolic formula expressed in the form of convergent series. In the development of these formulas, use was made of the fact that the capacitance multiplied by the reactance of non-magnetic transmission conductors is a constant quantity to a fairly close approximation. This assumption has enabled the " K " formulas to be expressed in comparatively simple algebraic form without the use of complex numbers. To those not familiar or not in position to make themselves familiar with the operation of complex numbers, such as is used in the convergent
series or hyperbolic treatments, the availability of the Dwight " K " formulas will be apparent.*

Localized Capacitance Methods-The next four columns contain values indicating the error in results as determined by the four different localized capacitance methods previously described in detail. It is interesting to note the high degree of accuracy inherent in Dr. Steinmetz's three condenser method. It is also interesting to note that three of these methods over compensate (that is, give receiving-end voltages too low) and one (the split condenser method) gives under compensation.

Impedance Method-The values of the sending-end voltage as obtained by the impedance method (which takes no account of capacitance) are always too high when applied to circuits containing capacitance. The results by this method are included here simply to serve as an indication of how great is the error for this method when applied to circuits of various lengths and frequencies of 25 and 60 cycles. Some engineers prefer to use this method for circuits of fair length and allow for the error. These tabulations will give an approximation of the necessary allowance to be made.

[^19]
CHAPTER XIII CABLE CHARACTERISTICS

Heating Limits for Cables

T\checkmark HE MAXIMUM safe-limiting temperatures in degrees C at the surface of conductors in cables is given in the Standardization Rules of the A. I. E. E. (1918) as follows:-

For impregnated paper insulation ($85-\mathrm{E}$)
For varnished cambric ($75-\mathrm{E}$)
For rubber insulation ($60-0.25 \mathrm{E}$)
Where E represents the effective operating e.m.f. in kilovolts between conductors and the numerals represent temperature in degrees C. Thus, at a working pressure of 5 kv , the maximum safe limiting temperature at the surface of the conductors in a cable would be:-

> For impregnated paper insulation (80 degrees C)
> For varnished cambric insulation (70 degrees C)
> For rubber compound insulation (58.75 degrees C)

The actual maximum safe continuous current load for any given cable is determined primarily by the temperature of the surrounding medium and the rate of radiation. This current value is greater with direct than with alternating current and decreases with increasing frequency, being less for a 60 cycles than for 25 cycles. The carrying capacity of cables will therefore be less in hot climates than in cooler climates and will be considerably increased during the winter.

Cables immersed in water, carry at least 50 percent more than when installed in a four-duct line, and when buried in the earth 15 to 30 percent more than in a duct line, depending upon the character of soil moisture, etc. Circulating air or water through conduits containing lead covered cables will increase their capacity. From the above it is evident that no general rule relative to carrying capacity can be formulated to apply in all cases, and it is necessary, therefore, to consider carefully the surroundings when determining the size of cables to be used.

The practicability of tables which specify carrying capacity for cables installed in ducts will generally be questioned, for the reason that operating conditions are frequently more severe than those upon which table values are based. A duct line may operate at a safe temperature throughout its entire length, except at one isolated point adjacent to a steam pipe or excessive local temperatures due to some other cause. If larger cables are not employed at this point, burnouts may occur here when the remainder of the cable line is operating well within the limits of safe operating temperature. The danger in using table values for carrying capacity without carefully considering the condition of earth temperatures throughout the entire duct length is thus evident.

HEATING OF CABLES-TABLE XXIV

The basis upon which the data in Table XXIV has been calculated is covered by foot notes below the table. The kv-a values are determined from the current in amperes and are based upon 30 degree C rise and a maximum of 3000 volts.* Expressing the carrying capacity of cables in terms of kv-a (corrected for the varying thickness of insulation required for various voltages) may be found more convenient than the usual manner of expressing it in amperes. It will be noted that the kv -a values of the table are on the basis of a four-duct line and that for more than four ducts in the line the table kv -a values will be reduced to the following:-

For a 4 duct line- 100 percent.
For a 6 duct line- 88 percent.
For an 8 duct line- 79 percent.
For a 10 duct line- 71 percent.
For a 12 duct line- 63 percent.
For a 16 duct line- 60 percent.
When applied to all sizes of cables, the above values are only approximate. The reduction of carrying capacity caused by the presence of many cables is more for large cables than for small ones. Also, where load factors are small, the reduction due to the presence of many cables is less than the value assigned, although the carrying capacity of a small number of cables is only slightly affected.

REACTANCE OF THREE-CONDUCTOR CABLES

Tables XXV and XXVI contain values for the inductance, reactance and impedance of round threeconductor cables of various sizes and for the thicknesses of insulation indicated.All values in the tables are on the basis of one conductor of the cable one mile long.

The table values were calculated from the fundamental equation (4),

$$
L=0.08047+0.741 \log _{10} \frac{D}{R}
$$

where $L=$ the inductance in millihenries per mile of each conductor, R the actual radius of the conductor and D the distance between conductor centers expressed in the same units as R. As indicated in Section I, under Inductance,** this formula has been derived on the basis of solid conductors. In the case of cables, the effective radius is actually slightly less than that of the stranded conductor. The values for

[^20]
TABLE XXIV－CARRYING CAPACITY OF INSULATED COPPER CONDUCTORS

The following values for carrying capacity must not be assumed unless it is positively known that the conditions upon which they are based will not be exceeded in service．

THREE CONDUCTOR CABLES

$\begin{array}{\|l\|} \text { AREA } \\ \text { IN } \\ \text { CIRCULAR } \\ \text { MILS } \end{array}$		K．V a．Which may be transmitted at three phase and the following voltages over paper insulated LEAD COVERED CABLES INSTALLED IN A FOUR DUCT LINE WITH $30^{\circ} \mathrm{C}$ RISE IN TEMPERATURE BASED UPON THE ASSUMPTION that all ducts oarry loaded cables and upon a normal earth temperature of $20^{\circ} \mathrm{O}$ FOR A 8 DUCT LINE THESE K．V．A．VALUES WOULD BE REDUCED TO APPROXIMATELY 88 PER CENT FOR AN 8 DUCT LINE TO 79 PER CENT．FOR A 10 DUCT LINE TO 71 PER CENT FORAI2 DUCT LINE TO 63 PER CENT AND FOR A 18 DUCT LINE （4 WIDE AND 4 HIGH）TO 60 PER CENT OF THE TABLE VALUES．$x \times x x$ ．																
		$\begin{gathered} 220 \\ \text { VOLTS } \end{gathered}$	$\begin{aligned} & \text { V40 } \\ & \text { VIolTS } \end{aligned}$	Vot 6	$\begin{gathered} \text { vol } \\ \text { VOLTS } \end{gathered}$	$\begin{gathered} 2200 \\ \text { volts } \end{gathered}$	$\begin{array}{r} 330 \\ \mathrm{vol} \end{array}$	$\begin{gathered} 4000 \\ \text { VOLTS } \end{gathered}$	$\begin{array}{\|c\|} \hline 6000 \\ \text { volts } \end{array}$	$\begin{gathered} 6600 \\ \text { VoLTS } \end{gathered}$	$\begin{gathered} 10000 \\ \text { VVLTS } \end{gathered}$	$\begin{aligned} & 11000 \\ & \text { volts } \end{aligned}$	$\left\|\begin{array}{c} 12000 \\ \text { vol TS } \end{array}\right\|$	$\begin{aligned} & 13200 \\ & \text { VOLTS } \end{aligned}$	$\begin{aligned} & 15000 \\ & \text { volts } \end{aligned}$	$\begin{aligned} & 20000 \\ & \text { VVLTS } \end{aligned}$	22000	VOL 2500
10	30	为	23	28	37	114				336	500	547						
8	70	年	53	38 38 56	133	边	400	275 885 88	410	785	96，7\％	li30		8，67		， 12	1380	
2		${ }^{3} 8$				$4{ }^{36} 4$			9770 $7 / 330$	1065 1436		1730 2350 2370		$20<0$ 2389 2820	3170	4120		
		45	寿	143 192 198	285 328 380	578 547 760	855 9740 140			1710 1940 2240	2500 3804 3 3	2740 370 3650	2970 3370 3960	3268 369 434	3660 48750 487	4750 537 635	5170 895 980	
	退	\％ 86			＋428		1285 1438 148 188	1550	230 2560 2860		37 46 46	$\begin{array}{r}4100 \\ 4750 \\ 4 \\ \hline 100\end{array}$			547 688 68		7750 3650 980	108
	318 348 360	129	近													9800 19750 180		
40880	180 480	7，52	30\％	380	878	砤	2288 268											

SINGLE CONDUCTOR CABLES

$\left\|\begin{array}{c} B \text { \& } S \text { NO } \\ \text { AREA } \\ \text { IRCU } \\ \text { CIRCUR } \\ \text { MILS } \end{array}\right\|$	CARRYINQ CAPACITYIN AMPERES DIRECT CURRENT			K．V A．WHICH MAY BE TRANSMITTED AT THREE PHASE AND THE FOLLOWING VOLTAGES OVER THREE PAPER INSULATED LEAD COVERED CABLES INSTALLED IN A FOUR DUCT LINE WITH $30^{\circ} \mathrm{C}$ RISE IN TEMPERA TURE BASED UPON THE ASSUMPTION THAT ALL DUCTS CARRY LOADED CABLES AND UPON A NORMAL EARTH TEMPERATURE OF $20^{\circ} \mathrm{C}$ fOR A 8 DUCT LINE THESE K．V．A．VALUES WOULD BE REDUCED TO APPROXIMATELY 88 PER CENT FOR AN 8 DUCT LINE TO 79 PER CENT FOR A 10 DUOT LINE TO 71 PER CENT：FOR A 12 DUCT LINE TO 63 PER CENT and For a 18 dUct line（4 Wide and 4 High）TO 60 Per Cent of the table values $x x x x$																
	$\begin{array}{\|c\|} \hline \text { N. E CODE } \\ \text {-INTEROOR CONOUCTORE } \end{array}$																			
				$\begin{gathered} 220 \\ \text { volrs } \end{gathered}$	$\begin{gathered} 440 \\ \text { volts } \end{gathered}$	$\left\lvert\, \begin{gathered} 660 \\ \text { vorrs } \end{gathered}\right.$	$\begin{aligned} & 1100 \\ & \text { volts } \end{aligned}$	2200	$\begin{aligned} & 3300 \\ & \text { volrs } \end{aligned}$	4000volss	$\begin{aligned} & 6000 \\ & \text { volts } \end{aligned}$	$\left\|\begin{array}{c} 6600 \\ \text { volts } \end{array}\right\|$	$\left\|\begin{array}{c} 10000 \\ \text { vors } \end{array}\right\|$	H1000	$\left\lvert\, \begin{aligned} & 12000 \\ & \text { volts } \end{aligned}\right.$	$\begin{aligned} & 13200 \\ & \text { vor ts } \end{aligned}$	1 15000	$2 \begin{aligned} & 2000 \\ & \text { vols }\end{aligned}$	22000	525000
告	20	20	40	多	$3{ }^{23}$	38	\％	i＇s	${ }_{27}$	165 275	20． 3	270 335 450		＋337	595	868	975	265		
	35	50	$\frac{5}{75}$	21	42	52	104	－9	314	378	560	61	917	101	109	1195	131		189	
	50	70	75	28	57		142	284	$\overline{428}$	515	765	842	125	1270	485	16	83	2370	25	
	80		95	36	72	90	181	62	540	653	70	1065	51585		880	2060	2320		3270	
6	125	，		47	9， 9															
0	12			${ }_{6}$	130		32	177	${ }_{9} 85$	1,178	154	／9	${ }_{2}$	10		36	15	硣		
										／3										
$\bigcirc 000$	225			3	205	256	5，2	102s	1340	$188{ }^{\circ}$	$2{ }^{2350}$						56		，	
	275	＋00	318	1／24			57													
											3880	42			752			2	3	
4500%			480	$1{ }^{3}$			${ }_{8}^{880}$	$156{ }^{1}$	2	2820	418				128					
800	500	848	670	2332	510	538	1275	2550	3480	4600	685							12		
，90000	600		7880	2	¢	${ }^{6} 9$	， 7380	2976	4100	4950	73	875	1200	315			75			
	730																			
， 355008			0	342	685	855	1710	3420	5130	62	9200	1010	1500		1780		2190			
1400008	895	1290	30			980	60	3920												
				430	860				645											
	18150	1／67	1260	480																

X For purposes of comparison these values are given for interior conductors．

XX For four conductor cables these ampere values would be reduced by 12.5 percent．

$X \dot{X} X$ For solid conductors these ampere ratings would be reduced by seven percent．For two conductor cables made up either round or flat，they would be reduced by 15 percent．For two conductor concentric cables they would be reduced by 25 percent．They will also be reduced in the case of the larger conductors when used on alternating－current circuits on account of skin effect，unless special cables having non－conducting cores are used．These special cables should be used for 700000 circ．mils and larger for 60 cycle and 1000000 circ．mils and larger for 25 cycle service．
. XXXX For the higher voltage cables the kv －a values of the table have been reduced by one percent for each 2000 volts that the working pressure exceeds 3000 volts，that is by II percent for a 25000 volt cable．For insulated alurninum conductors the safe carrying capacity（based upon 61 percent conductivity）is 79.3 percent of the above table values with the same kind of insulation．These kv－a values are based upon the current in columns headed by XX and XXX．

TABLE XXV-INDUCTANCE, REACTANCE AND IMPEDANCE, AT 25 CYCLES, PER MILE OF SINGLE CONDUCTOR FOR THREE CONDUCTOR CABLES

*Resistance based upon 100 percent conductivity at 25 degrees C (77 degrees F), including two percent allowance for spiral of strands and two percent allowance for spiral of conductors. For a temperature of 65 degrees C (r49 degrees F) these resistance values would be increased 15 percent.
**The inductance is in millihenries; the reactance and the impedance are in ohms.
The table values were derived from the equation $L=0.08047+0.741 \log _{10} \frac{D}{R}$ where R is the radius of conductor, D the distance between centers of conductors expressed in the same terms as R, and L the inductance in millihenries per mila of each conductor. All values in the table are single-phase and based upon a single conductor one mile long.

TABLE XXVI-INDUCTANCE, REACTANCE AND IMPEDANCE, AT 60 CYCLES, PER MILE OF SINGLE CONDUCTOR FOR THREE CONDUCTOR CABLES

[^21]inductance, as determined by the fundamental formula, would thus tend to give values several percent less than the actual when applied to three-conductor cable calculations. On the other hand spiraling the conductors of three conductor cables tends to increase their reactance by several percent. It may, therefore, be
assumed that the use of the fundamental formula in the case of three-conductor cables give results approximately correct. Skin effect on the larger cables will, however, tend to decrease the reactance slightly, particularly at 60 cycles.

1- CAPACITANCE OF 3 CONDUCTOR CABLES

Formulas for determining the approximate capacitance of three-conductor cables are cumbersome. They give reasonably accurate results only in the case of a homogeneous dielectric and in cases where the conductors are small compared to the radius of the sheath. They give inaccurate results in cases of large conductors closely spaced. Fig. 58* illustrates the various
 RECIPROCAL MODEL

FIG. 58-REPRESENTATION of CAPACITANCES OF A SYMMETRICAL three-phase cable
capacitances of a three-conductor cable. Formulas taken from Russel's "Alternating Currents" have been combined and converted to common logarithms and are given below. They were derived by the method of images and on the assumption that the conductors are round and symmetrically spaced with respect to the axis of the sheath.

$$
\begin{aligned}
C_{1} & =\frac{1}{13.82 \log _{10} \frac{R^{6}-d^{8}}{3 R^{2} d^{2} r}}+ \\
& \frac{1}{6.91 \log _{10}\left(\frac{1.73 d}{r} \times \frac{R^{2}-d^{2}}{\left(R^{4}+R^{2} d^{2}+d^{6}\right)^{1 / 2}}\right)} \times 0.179 \times K . \quad(70) \\
C_{1:} & =\frac{1}{13.82 \log _{10} \frac{R^{3}-d^{4}}{3 R^{3} d^{2} r}}-
\end{aligned}
$$

$$
\frac{1}{13.82 \log _{10}\left(\frac{1.73 d}{r} \times \frac{R^{2}}{\left(R^{4}+R^{2} d^{2}+d^{4}\right)^{1 / 2}}\right)} \times 0.179 \times K \quad(71)
$$

Where,-
$R=$ inside radius of sheath in centimeters (Fig. 59).
$r=$ radius of conductor in centimeters.
$d=$ distance between axis of conductor and axis of sheath in centimeters.
$K=$ the dielectric constant. For impregnated paper insulation it varies between 3 and 4; for varnished cambric insulation it varies between 4 and 6; for rubber insulation it varies between 4 and 9.
$C_{1}=$ capacitance in microfarads per mile between one conductor and the other two conductors plus the sheath.
$C_{1-2}=$ mutual capacitance in microfarads per mile between any two conductors. The capacitance to neutral is twice this value.
C_{12} is used in determining the capacitance for various combinations or arrangements as explained below.

Capacitance and susceptance-Table xxvir

Table XXVII contains values for capacitance and susceptance of three conductor paper insulated cable for the various sizes of conductors and thicknesses of insulation indicated. All values are based upon a value for K of 3.5 and, as indicated, a thickness of insulation for the jacket the same as that surrounding each con-

[^22]ductor. The values were calculated by equations (70) and (7 I).

The susceptance values given for 25 and 60 cycles are to neutral. In calculating the voltage regulation of circuits, it is general practice to calculate the regulation on the basis of one conductor to neutral. The susceptance between two of the conductors would be half the table values to neutral. The values for susceptance were calculated from the equation,-

Susceptance to neutral in micromhos $=2 \pi \mathrm{f} C$
Thus No. o three-conductor cable with $7 / 64$ and 7/64 insulation has a capacitance between conductors of 0.195 microfarads (0.39 microfarads to neutral). The susceptance to neutral at 60 cycles therefore is,$2 \pi 60 \times 0.39=147$ microfarads, as indicated by the table.

INTER-RELATION OF CAPACITANCE OF THREECONDUCTOR CABLES

The following equations for determining the effective capacitance for various arrangements of the three conductors and the sheath are given in Russell's "Alternating Currents."

Capacitance between I and $2=1 / 2\left(C_{1}-C_{12}\right) \ldots \ldots$ (72)
Capacitance between I and 2, $3=2 / 3\left(C_{1}-C_{12}\right) \ldots$ (73)
Capacitance between I and $S(z$ and 3 insulated) $=$ $\frac{\left(C_{1}-C_{12}\right)\left(C_{1}+2 C_{n}\right)}{C_{1}+C_{12}}$ $C_{1}+C_{12}$
Capacitance between I and $S, 2(3$ insulated $)=$ $\frac{\left(C_{1}-C_{12}\right)}{C_{1}} \frac{\left(C_{1}+C_{12}\right)}{}$
Capacitance between I and $S, 2,3=C_{1} \ldots \ldots \ldots .$. (76)
Capacilance between S and $1,2,(3$ insulated $)=$ $\frac{2\left(C_{1}-C_{12}\right)\left(C_{1}+2 C_{12}\right)}{C_{1}}$
Capacitance between I, S and 2, $3=2\left(C_{1}+C_{12}\right) \ldots$ (78)
Capacitance betzecen S and $I, 2,3=3\left(C_{1}+2 C_{12}\right) \ldots$ (79)

FIG. 59-DIMENSIONS OF A SYMMETRICAL THREE-PIIASE CABLE
C_{1} (76) may be measured in the ordinary way, by reading the throw of a mirror galvanometer and comparing with the throw given by a standard condenser. A further measurement of (78) or (79) will give a simple equation to find C_{12}. For instance, if measurements were taken of (78) and (79) and were found to be:-

TABLE XXVII-CAPACITANCE AND SUSCEPTANCE PER MILE OF THREE CONDUCTOR PAPER INSULATED CABLES

AREAINCIRCULARMILSB \& S.NO.	INSULATION THICKNESS IN G4THS OF AN INCH																			
	$\frac{3}{64} B Y \frac{3}{64}$					$\frac{4}{64}$ BY $\frac{4}{64}$					$\frac{5}{64}$ BY $\frac{6}{64}$					$\frac{6}{64}$ BY $\frac{6}{64}$				
	CAPACITANCE			SUSCEPTANGE TO NEUTRAL		CAPACITANCE			SUSCEPTANCE TO NEUTRAL		CAPACITANCE			SUSCEPTANCE TO NEUTRAL		CAPACITANCE			SUSCEPTANCE TO NEUTRAL	
	C_{1}	C_{12}	$\mathrm{C}_{1 \& 2}$	$\underset{\text { CYCLES }}{25}$	$\underset{\text { croles }}{60}$	c_{1}	${ }^{C_{12}}$	$\mathrm{C}_{1 \& 2}$	$\underset{\text { CYCLES }}{25}$	$\begin{gathered} 60 \\ \text { cYCLES } \end{gathered}$	c_{1}	C_{12}	$C_{1 \& 2}$	$\underset{\text { CYCLES }}{25}$	60	C_{1}	C_{12}	${ }_{182}$	$\begin{gathered} 25 \\ \text { GYOLES } \end{gathered}$	$\begin{gathered} 60 \\ \text { CYCLES } \end{gathered}$
$\begin{aligned} & 500000 \\ & 450000 \\ & 400000 \\ & \hline \end{aligned}$.680 .667 .657	$\begin{aligned} & -.217 \\ & =.197 \\ & -.194 \end{aligned}$	$\begin{aligned} & .448 \\ & : 432 \\ & 425 \\ & \hline \end{aligned}$	$\begin{array}{r} 141 \\ 136 \\ 133 \\ \hline \end{array}$	$\begin{array}{r} 337 \\ 325 \\ 320 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .613 \\ .590 \\ .570 \\ \hline \end{array}$	$\begin{aligned} & =.175 \\ & =.169 \\ & -.159 \\ & \hline \end{aligned}$	$\begin{aligned} & .394 \\ & -379 \\ & .364 \\ & \hline \end{aligned}$	$\begin{aligned} & 124 \\ & 119 \\ & 114 \\ & \hline \end{aligned}$	$\begin{aligned} & 297 \\ & 286 \\ & 274 \end{aligned}$	$\begin{aligned} & -555 \\ & .538 \\ & .517 \end{aligned}$	$\begin{aligned} & =.154 \\ & =.149 \\ & -.142 \\ & \hline \end{aligned}$	$\begin{array}{r} .354 \\ : 343 \\ .329 \\ \hline \end{array}$	$\begin{aligned} & 111 \\ & 108 \\ & 103 \end{aligned}$	$\begin{aligned} & 267 \\ & 259 \\ & 248 \\ & \hline \end{aligned}$	$\begin{aligned} & .505 \\ & .488 \\ & .475 \end{aligned}$	$\begin{aligned} & -.137 \\ & =.130 \\ & -.125 \\ & \hline \end{aligned}$	$\begin{array}{r} .321 \\ .309 \\ .300 \end{array}$	$\begin{aligned} & 101 \\ & 97 \\ & 94 \end{aligned}$	$\begin{aligned} & 242 \\ & 233 \\ & 226 \end{aligned}$
$\begin{aligned} & 350000 \\ & 3000000 \\ & 250000 \end{aligned}$.640 .606 .590	$\begin{aligned} & -.189 \\ & -.176 \\ & -171 \end{aligned}$	$\begin{array}{r} .414 \\ : 391 \\ : 380 \\ \hline \end{array}$	$\begin{array}{r} 130 \\ 123 \\ 120 \\ \hline \end{array}$	$\begin{aligned} & 313 \\ & 294 \\ & 286 \\ & \hline \end{aligned}$	$\begin{aligned} & .560 \\ & .545 \\ & .518 \\ & \hline \end{aligned}$	$\begin{aligned} & =.158 \\ & =.153 \\ & =.142 \end{aligned}$	$\begin{array}{r} .359 \\ : 349 \\ : 330 \\ \hline \end{array}$	$\begin{aligned} & 113 \\ & 110 \\ & 104 \\ & \hline \end{aligned}$	$\begin{aligned} & 270 \\ & 263 \\ & 249 \\ & \hline \end{aligned}$	$\begin{array}{r} .506 \\ : 490 \\ .468 \\ \hline \end{array}$	$\begin{aligned} & -.138 \\ & \hdashline .131 \\ & -.125 \\ & \hline \end{aligned}$	$\begin{array}{r} .322 \\ 310 \\ : 296 \\ \hline \end{array}$	$\begin{aligned} & 101 \\ & 97 \\ & 93 \\ & \hline \end{aligned}$	$\begin{aligned} & 242 \\ & 234 \\ & 223 \\ & \hline \end{aligned}$	$\begin{aligned} & .460 \\ & .446 \\ & .427 \end{aligned}$	$\begin{aligned} & =119 \\ & =.116 \\ & -109 \end{aligned}$	$\begin{aligned} & .289 \\ & -281 \\ & .268 \\ & \hline \end{aligned}$	$\begin{aligned} & 91 \\ & 88 \\ & 84 \end{aligned}$	$\begin{aligned} & 218 \\ & 212 \\ & 202 \\ & \hline \end{aligned}$
0000 000 00	$\begin{array}{\|l\|} \hline .570 \\ .535 \\ .513 \end{array}$	$\begin{aligned} & -.160 \\ & -.147 \\ & -.140 \end{aligned}$	$\begin{aligned} & \cdot 365 \\ & \cdot 341 \\ & 1327 \end{aligned}$	$\begin{aligned} & 111 \\ & 107 \\ & 103 \end{aligned}$	$\begin{aligned} & 265 \\ & 257 \\ & 246 \end{aligned}$	$\begin{aligned} & .500 \\ & .475 \\ & .447 \end{aligned}$	$\begin{aligned} & -.134 \\ & -.125 \\ & -.116 \end{aligned}$	$\begin{array}{r} .317 \\ .300 \\ .281 \end{array}$	$\begin{aligned} & 100 \\ & 94 \\ & 88 \end{aligned}$	$\begin{aligned} & 239 \\ & 226 \\ & 212 \end{aligned}$	$\begin{array}{r} .440 \\ .420 \\ .398 \end{array}$	$\begin{aligned} & =.115 \\ & =.107 \\ & -.101 \end{aligned}$	$\begin{aligned} & .280 \\ & .262 \\ & .249 \end{aligned}$	$\begin{aligned} & 88 \\ & 82 \\ & 78 \end{aligned}$	$\begin{aligned} & 211 \\ & 198 \end{aligned}$	$\begin{array}{r} .407 \\ .384 \\ .364 \end{array}$	$=.103$ $=.095$ -.088	$\begin{array}{r} .255 \\ .239 \\ .226 \end{array}$	80 75 71	$\begin{aligned} & 192 \\ & 180 \\ & 170 \end{aligned}$
$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{array}{r} .494 \\ .462 \\ .420 \\ \hline \end{array}$	$\begin{array}{r} -123 \\ -.119 \\ -.107 \\ \hline \end{array}$	$\begin{array}{r} .308 \\ .290 \\ .263 \\ \hline \end{array}$	$\begin{aligned} & 97 \\ & 91 \\ & 83 \end{aligned}$	$\begin{aligned} & 232 \\ & 219 \\ & 198 \\ & \hline \end{aligned}$	$\begin{array}{r} .422 \\ .398 \\ .373 \\ \hline \end{array}$	$\begin{aligned} & -.107 \\ & -.099 \\ & -.091 \end{aligned}$	$\begin{array}{r} .264 \\ -248 \\ -232 \\ \hline \end{array}$	$\begin{array}{r} 83 \\ 78 \\ 73 \\ \hline \end{array}$	$\begin{aligned} & 199 \\ & 187 \\ & 175 \\ & \hline \end{aligned}$	$\begin{array}{r} : 374 \\ : 356 \\ : 332 \\ \hline \end{array}$	$\begin{aligned} & -.090 \\ & -: 086 \\ & \hline \end{aligned}$	$\begin{aligned} & -232 \\ & -221 \\ & -203 \\ & \hline \end{aligned}$	$\begin{aligned} & 73 \\ & 69 \\ & 64 \end{aligned}$	$\begin{aligned} & 175 \\ & 167 \\ & 153 \\ & \hline \end{aligned}$	$\begin{array}{r} 342 \\ -323 \\ \hline 305 \\ \hline \end{array}$	$\begin{aligned} & =.081 \\ & -.074 \\ & -.070 \\ & \hline \end{aligned}$	$\begin{array}{r} .211 \\ 0198 \\ \hline 187 \\ \hline \end{array}$	66 62 59	159 149 149
$\begin{aligned} & 3 \\ & \frac{4}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & .402 \\ & .378 \\ & .342 \end{aligned}$	$\begin{array}{\|l\|} \hline .101 \\ =: 1000 \\ =.081 \end{array}$	$\begin{aligned} & .251 \\ & .239 \\ & .211 \end{aligned}$	$\begin{aligned} & 79 \\ & 75 \\ & 66 \end{aligned}$	$\begin{array}{r} 189 \\ 180 \\ 159 \\ \hline \end{array}$	$\begin{array}{r} .352 \\ .330 \\ .301 \\ \hline \end{array}$	$\begin{aligned} & =.084 \\ & =.077 \\ & =.063 \end{aligned}$	$\begin{aligned} & .218 \\ & .203 \\ & .182 \\ & \hline \end{aligned}$	$\begin{aligned} & 69 \\ & 64 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 165 \\ & 153 \\ & 137 \\ & \hline \end{aligned}$	$\begin{array}{r} .114 \\ : 295 \\ .264 \\ \hline \end{array}$	$\begin{aligned} & =072 \\ & =066 \\ & =056 \end{aligned}$	$\begin{array}{r} .193 \\ 180 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & 67 \\ & 57 \\ & 50 \\ & \hline \end{aligned}$	145 136 121	$\begin{aligned} & 284 \\ & : 270 \\ & 239 \\ & \hline 2 \end{aligned}$	$\begin{aligned} & =062 \\ & =.059 \\ & =059 \end{aligned}$	$\begin{array}{r} -173 \\ -164 \\ 144 \\ \hline \end{array}$	$\begin{array}{r} 54 \\ 522 \\ 45 \\ \hline \end{array}$	$\begin{aligned} & 131 \\ & 124 \\ & \hline \end{aligned}$
	${ }^{\prime}$																			
	$\frac{7}{64}$ BY $\frac{7}{64}$					$\frac{8}{64} B Y \frac{8}{64}$					$\frac{9}{64} B Y \frac{9}{64}$					$\frac{10}{64}$ BY $\frac{10}{64}$				
	CAPACITANCE			SUSCEPTANCE TO NEUTRAL		CAPACITANCE			SUSCEPTANCE TO NEUTRAL		CAPACITANCE			SUSCEPTANCE TO NEUTRAL		CAPACITANCE			SUSCEPTANCE TO NEUTRAL	
	C	C_{12}	$\mathrm{C}_{1 \& 2}$	$\begin{gathered} 26 \\ \text { CVCLES } \end{gathered}$	$\begin{gathered} 80 \\ \text { CYCLES } \end{gathered}$	C_{1}	C_{12}	$C_{1 \& 2}$	$\begin{gathered} 25 \\ \text { croles } \end{gathered}$	$\begin{gathered} 80 \\ \text { CYCLES } \end{gathered}$	C_{1}	C_{12}	$\mathrm{C}_{1 \& 2}$	$\begin{gathered} 25 \\ \text { CVCLES } \end{gathered}$	$\begin{gathered} 60 \\ \text { CYCLE } \end{gathered}$	C_{1}	C_{12}	$C_{1 \& 2}$	$\begin{gathered} 25 \\ \text { CVCLES } \end{gathered}$	$\begin{gathered} 60 \\ \text { creles } \end{gathered}$
$\begin{array}{r} 500000 \\ 450000 \\ 400000 \\ \hline \end{array}$	$\begin{aligned} & .468 \\ & : 454 \\ & : 442 \end{aligned}$	$\begin{aligned} & -.124 \\ & =1116 \\ & -.116 \end{aligned}$	$\begin{aligned} & .296 \\ & .286 \\ & \hline 279 \\ & \hline \end{aligned}$	$\begin{aligned} & 93 \\ & 90 \\ & 88 \end{aligned}$	$\begin{aligned} & 224 \\ & 216 \\ & 210 \\ & \hline \end{aligned}$	$\begin{aligned} & .435 \\ & : 427 \\ & \hline 415 \\ & \hline \end{aligned}$	$\begin{aligned} & =.115 \\ & =.107 \\ & -.105 \end{aligned}$	$\begin{aligned} & .275 \\ & .267 \\ & .260 \end{aligned}$	$\begin{aligned} & 86 \\ & 84 \\ & 82 \\ & \hline \end{aligned}$	$\begin{aligned} & 207 \\ & 207 \\ & 196 \end{aligned}$	$\begin{array}{\|l\|} \hline .410 \\ .405 \\ .392 \\ \hline \end{array}$	$\begin{aligned} & =.104 \\ & =.103 \\ & -.099 \end{aligned}$	$\begin{array}{r} .257 \\ .254 \\ .245 \\ \hline \end{array}$	$\begin{aligned} & 81 \\ & 79 \\ & 77 \end{aligned}$	$\begin{aligned} & 193 \\ & 191 \\ & 184 \\ & \hline \end{aligned}$	$\begin{array}{r} .392 \\ : 380 \\ 0368 \\ \hline \end{array}$	$\begin{aligned} & =.097 \\ & =.093 \\ & =.090 \end{aligned}$	$\begin{aligned} & .244 \\ & .236 \\ & 0229 \\ & \hline \end{aligned}$	$\begin{aligned} & 77 \\ & 74 \\ & 72 \end{aligned}$	$\begin{aligned} & 184 \\ & 178 \\ & 173 \\ & \hline \end{aligned}$
$\begin{aligned} & 350000 \\ & 3000000 \\ & 250000 \end{aligned}$	$\begin{aligned} & .426 \\ & 415 \\ & 400 \end{aligned}$	$\begin{aligned} & =.108 \\ & =.105 \\ & -.101 \end{aligned}$	$\begin{aligned} & .267 \\ & .260 \\ & .250 \end{aligned}$	$\begin{aligned} & 84 \\ & 82 \\ & 79 \\ & \hline \end{aligned}$	$\begin{aligned} & 201 \\ & 196 \\ & \hline 88 \end{aligned}$	$\begin{array}{r} .398 \\ .390 \\ .370 \end{array}$	$\begin{aligned} & =.099 \\ & =.096 \\ & -.089 \end{aligned}$	$\begin{array}{r} .248 \\ -243 \\ .229 \end{array}$	$\begin{aligned} & 78 \\ & 76 \\ & 72 \end{aligned}$	$\begin{aligned} & 187 \\ & 183 \\ & \hline \end{aligned}$	$\begin{array}{r} -380 \\ .365 \\ .3 .52 \\ \hline \end{array}$	$\begin{array}{\|} =.093 \\ =.089 \\ -087 \end{array}$	$\begin{aligned} & .236 \\ & -227 \\ & 0219 \end{aligned}$	$\begin{aligned} & 74 \\ & 71 \\ & 69 \\ & \hline \end{aligned}$	$\begin{aligned} & 178 \\ & 178 \\ & 165 \end{aligned}$	$\begin{array}{r} .358 \\ .348 \\ .332 \\ \hline \end{array}$	$\begin{aligned} & =087 \\ & =087 \\ & \because 078 \end{aligned}$	$\begin{aligned} & .222 \\ & .215 \\ & .205 \end{aligned}$	$\begin{aligned} & 70 \\ & 68 \\ & 65 \end{aligned}$	$\begin{aligned} & 167 \\ & 162 \\ & 155 \end{aligned}$
$\begin{aligned} & 0000 \\ & 000 \\ & 00 \end{aligned}$	$\begin{aligned} & .380 \\ & .358 \\ & .336 \end{aligned}$	$\begin{aligned} & -.094 \\ & -.086 \\ & -.080 \end{aligned}$	$\begin{array}{r} 237 \\ -222 \\ .208 \end{array}$	$\begin{aligned} & 75 \\ & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 178 \\ & 168 \\ & 157 \end{aligned}$	$\begin{array}{r} .354 \\ .332 \\ .313 \end{array}$	$\begin{aligned} & -085 \\ & -.079 \\ & -.077 \end{aligned}$	$\begin{array}{r} .220 \\ .205 \\ .192 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & 64 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 166 \\ & 155 \\ & 145 \end{aligned}$	$\begin{array}{r} .334 \\ .315 \\ .295 \end{array}$	$\begin{aligned} & =076 \\ & =073 \\ & =067 \end{aligned}$	$\begin{array}{r} .205 \\ .194 \\ .181 \end{array}$	64 61 57	$\begin{aligned} & 156 \\ & 146 \\ & 136 \\ & \hline \end{aligned}$	$\begin{array}{r} .316 \\ .296 \\ .278 \\ \hline \end{array}$	$\begin{aligned} & \because 073 \\ & \because 066 \\ & \because 061 \end{aligned}$	$\begin{array}{r} .194 \\ 181 \\ 169 \\ \hline \end{array}$	61 57 53	$\begin{aligned} & 146 \\ & 136 \\ & 127 \\ & \hline \end{aligned}$
$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & .317 \\ & .299 \\ & .279 \end{aligned}$	$\begin{array}{\|} -.073 \\ =.0662 \\ -.062 \end{array}$	$\begin{array}{r} 195 \\ \therefore 83 \\ \hdashline 170 \\ \hline \end{array}$	61 58 54	$\begin{array}{r} 147 \\ 138 \\ 128 \\ \hline \end{array}$	$\begin{aligned} & .293 \\ & .280 \\ & .264 \\ & \hline \end{aligned}$	$\begin{aligned} & =.065 \\ & =061 \\ & =0.056 \end{aligned}$	$\begin{array}{r} 179 \\ : 170 \\ \hline 160 \\ \hline \end{array}$	56 54 50	$\begin{aligned} & 135 \\ & 128 \\ & 121 \\ & \hline \end{aligned}$	$\begin{aligned} & .279 \\ & .261 \\ & .247 \end{aligned}$	$\begin{aligned} & =061 \\ & =056 \\ & =052 \end{aligned}$	$\begin{aligned} & .170 \\ & \because 58 \\ & 150 \end{aligned}$	54 50 47	$\begin{aligned} & 128 \\ & 119 \\ & 113 \\ & \hline \end{aligned}$	$\begin{aligned} & .263 \\ & -247 \\ & -233 \\ & \hline \end{aligned}$	$\begin{aligned} & -.056 \\ & =.055 \\ & =.048 \end{aligned}$	$\begin{aligned} & .159 \\ & .151 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 47 \\ & 47 \end{aligned}$	120 114 106
$\begin{aligned} & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & -264 \\ & 250 \\ & 221 \\ & \hline 221 \end{aligned}$	$\begin{aligned} & =056 \\ & =053 \\ & -045 \end{aligned}$	$\begin{aligned} & 160 \\ & 151 \\ & 133 \end{aligned}$	$\begin{array}{r} 50 \\ 47 \\ 42 \\ \hline \end{array}$	$\begin{aligned} & 121 \\ & 114 \\ & 1000 \end{aligned}$	$\begin{aligned} & .248 \\ & .233 \\ & .209 \\ & \hline \end{aligned}$	$\begin{aligned} & =.052 \\ & =.048 \\ & =.041 \end{aligned}$	$\begin{aligned} & .150 \\ & 6140 \\ & .125 \end{aligned}$	$\begin{aligned} & 47 \\ & 44 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 113 \\ & 106 \\ & 94 \\ & \hline \end{aligned}$	$\begin{array}{r} .232 \\ .221 \\ .198 \\ \hline \end{array}$	$\begin{aligned} & -048 \\ & =045 \\ & =037 \end{aligned}$	$\begin{array}{r} 140 \\ : 133 \\ 1117 \\ \hline \end{array}$	$\begin{aligned} & 44 \\ & 42 \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & 106 \\ & 100 \\ & 88 \\ & \hline \end{aligned}$	$\begin{aligned} & .222 \\ & .210 \\ & .188 \\ & \hline \end{aligned}$	$\begin{aligned} & -.044 \\ & =041 \\ & \because 036 \\ & \hline \end{aligned}$	$\begin{array}{r} 133 \\ 5125 \\ 6112 \\ \hline \end{array}$	$\begin{array}{r} 42 \\ 39 \\ 35 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 84 \\ 85 \\ \hline \end{array}$
			BY					BY	$\frac{12}{0}$				BY	$\frac{13}{64}$				BY	$\frac{14}{64}$	
	CAP	PACITAN	NCE	$\begin{aligned} & \text { SUSCEF } \\ & \text { TO NE } \end{aligned}$	TANCE UTRAL	CAP	PACITA	NCE	$\begin{aligned} & \text { SUSCEP } \\ & \text { TO NE } \end{aligned}$	PTANCE UTRAL	CAP	ACITAN	CE	$\begin{aligned} & \text { SUSCEF } \\ & \text { TO NE } \end{aligned}$	TANCE JTRAL	CAP	ACITA	NCE	$\begin{aligned} & \text { SUSCEP } \\ & \text { TO NEI } \end{aligned}$	PTANCE UTRAL
	C_{1}	C_{12}	$C_{1 \& 2}$	$\stackrel{25}{\text { crCLEs }}$	$\begin{gathered} 60 \\ \text { CYCLES } \end{gathered}$	0	C_{12}	$\mathrm{C}_{1 \& 2}$	$\begin{gathered} 25 \\ \text { crCLES } \end{gathered}$	$\begin{array}{\|c\|} \hline 60 \\ \text { CYCLES } \end{array}$	c_{1}	C_{12}	$\mathrm{C}_{1 \& 2}$	$\begin{gathered} 26 \\ \text { OVCLES } \end{gathered}$	$\begin{gathered} 60 \\ \text { creLes } \end{gathered}$	${ }^{\circ}$	C_{12}	$\mathrm{C}_{1 \& 2}$	$\begin{gathered} 25 \\ \text { crcles } \end{gathered}$	$\underset{\text { CYCLES }}{60}$
$\begin{array}{r} 500000 \\ 450000 \\ 400000 \\ \hline \end{array}$	$\begin{aligned} & .371 \\ & .364 \\ & 0.356 \\ & \hline \end{aligned}$	$\begin{aligned} & -.089 \\ & -087 \\ & -085 \end{aligned}$	$\begin{aligned} & .230 \\ & .225 \\ & .220 \\ & \hline \end{aligned}$	$\begin{aligned} & 72 \\ & 69 \\ & \hline \end{aligned}$	$\begin{aligned} & 173 \\ & 170 \\ & 166 \\ & \hline \end{aligned}$	$\begin{array}{r} .355 \\ : 352 \\ .338 \\ \hline \end{array}$	$\begin{aligned} & =.085 \\ & =085 \\ & =080 \end{aligned}$	$\begin{aligned} & .220 \\ & -218 \\ & .209 \end{aligned}$	$\begin{aligned} & 69 \\ & 68 \\ & 66 \end{aligned}$	$\begin{aligned} & 166 \\ & 164 \\ & 157 \end{aligned}$	$\begin{array}{r} .343 \\ : 332 \\ .326 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .082 \\ =.078 \\ -076 \end{array}$	$\begin{array}{\|l\|} \hline .212 \\ .205 \\ \hline 201 \\ \hline \end{array}$	$\begin{aligned} & 67 \\ & 64 \\ & 63 \end{aligned}$	$\begin{aligned} & 160 \\ & 155 \\ & 152 \end{aligned}$	$\begin{array}{r} .329 \\ 0321 \\ 0310 \\ \hline \end{array}$	$\begin{aligned} & =.078 \\ & =.075 \\ & =.071 \end{aligned}$	$\begin{array}{\|l\|} .203 \\ .198 \\ .190 \\ \hline \end{array}$	$\begin{aligned} & 64 \\ & 62 \\ & 60 \end{aligned}$	$\begin{aligned} & 153 \\ & 149 \\ & 143 \\ & \hline \end{aligned}$
$\begin{array}{r} 350000 \\ 300000 \\ 250000 \\ \hline \end{array}$	$\begin{array}{r} 340 \\ 329 \\ 3316 \end{array}$	$\begin{array}{r} -080 \\ -078 \\ -072 \end{array}$	$\begin{aligned} & 1.210 \\ & 1203 \\ & 199 \end{aligned}$	$\begin{aligned} & 66 \\ & 64 \\ & 63 \end{aligned}$	$\begin{array}{r} 158 \\ 153 \\ 150 \end{array}$	$\begin{array}{r} .328 \\ -313 \\ \hline \end{array}$	$\begin{aligned} & =.077 \\ & =.077 \\ & =.068 \end{aligned}$	$\begin{aligned} & .202 \\ & 192 \\ & 183 \end{aligned}$	$\begin{aligned} & 63 \\ & 60 \\ & 58 \end{aligned}$	$\begin{aligned} & 152 \\ & 145 \\ & 138 \end{aligned}$	$\begin{array}{r} 317 \\ .303 \\ .388 \\ \hline \end{array}$	$\begin{aligned} & =073 \\ & =069 \\ & -064 \end{aligned}$	$\begin{aligned} & 195 \\ & : 186 \\ & 176 \\ & \hline \end{aligned}$	$\begin{aligned} & 61 \\ & 59 \\ & 55 \end{aligned}$	$\begin{aligned} & 147 \\ & 143 \\ & \hline \end{aligned}$	$\begin{aligned} & .300 \\ & .290 \\ & .276 \end{aligned}$	$\begin{aligned} & -.068 \\ & -.065 \\ & -.061 \end{aligned}$	$\begin{aligned} & 184 \\ & 1: 177 \\ & \hline 168 \end{aligned}$	$\begin{array}{r} 58 \\ 56 \\ 53 \end{array}$	139 133 127
$\begin{aligned} & 0000 \\ & 000 \\ & 00 \end{aligned}$	$\begin{aligned} & .302 \\ & .282 \\ & .267 \end{aligned}$	$\begin{aligned} & -069 \\ & \because 069 \\ & -058 \end{aligned}$	$\begin{aligned} & .185 \\ & 171 \\ & .162 \end{aligned}$	$\begin{aligned} & 58 \\ & 54 \\ & 51 \end{aligned}$	$\begin{aligned} & 149 \\ & 129 \\ & 122 \end{aligned}$	$\begin{aligned} & .235 \\ & 271 \\ & .255 \end{aligned}$	$\begin{aligned} & =067 \\ & =066 \\ & =054 \end{aligned}$	$\begin{aligned} & .176 \\ & 165 \\ & 1.54 \end{aligned}$	$\begin{aligned} & 55 \\ & 52 \\ & 48 \end{aligned}$	$\begin{array}{r} 133 \\ 124 \\ 116 \\ \hline \end{array}$	$\begin{aligned} & .278 \\ & .267 \\ & .247 \end{aligned}$	$\begin{aligned} & \because 061 \\ & \because 056 \\ & \because 052 \end{aligned}$	$\begin{aligned} & .169 \\ & 158 \\ & .150 \end{aligned}$	$\begin{array}{r} 53 \\ 50 \\ 47 \\ \hline \end{array}$	$\begin{aligned} & 127 \\ & 119 \\ & 113 \end{aligned}$	$\begin{aligned} & .264 \\ & : 251 \\ & .237 \end{aligned}$	$\begin{aligned} & =056 \\ & =053 \\ & -048 \end{aligned}$	$\begin{array}{\|l\|} \hline 160 \\ 152 \\ 142 \\ \hline 142 \end{array}$	$\begin{array}{r} 50 \\ 48 \\ 45 \end{array}$	$\begin{aligned} & 121 \\ & 115 \\ & 107 \end{aligned}$
$\begin{aligned} & 9 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{r} .250 \\ .237 \\ 222 \end{array}$	$\begin{aligned} & =053 \\ & =050 \\ & =045 \end{aligned}$	$\begin{array}{r} .151 \\ 143 \\ 133 \\ \hline \end{array}$	$\begin{aligned} & 48 \\ & 45 \\ & 42 \end{aligned}$	$\begin{aligned} & 114 \\ & 108 \\ & 1000 \end{aligned}$	$\begin{aligned} & .241 \\ & -228 \\ & .216 \\ & \hline \end{aligned}$	$\begin{aligned} & -050 \\ & \therefore 047 \\ & -044 \end{aligned}$	$\begin{array}{r} .145 \\ \because 37 \\ \hdashline 130 \\ \hline \end{array}$	$\begin{array}{r} 46 \\ 43 \\ 41 \\ \hline \end{array}$	$\begin{aligned} & 109 \\ & 103 \\ & 98 \end{aligned}$	$\begin{array}{r} 233 \\ -220 \\ -208 \end{array}$	$\begin{aligned} & \div 048 \\ & \div 044 \\ & \because 041 \end{aligned}$	$\begin{array}{r} .140 \\ : 132 \\ .124 \\ \hline \end{array}$	$\begin{aligned} & 44 \\ & 42 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 106 \\ & 100 \\ & 94 \\ & \hline \end{aligned}$	$\begin{array}{r} -222 \\ .212 \\ 199 \\ \hline \end{array}$	$\begin{aligned} & \because 044 \\ & \div 042 \\ & \div 039 \end{aligned}$	$\begin{aligned} & .133 \\ & 1127 \\ & 1 / 18 \\ & \hline \end{aligned}$	$\begin{array}{r} 42 \\ 40 \\ 37 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 96 \\ & 89 \\ & \hline \end{aligned}$
$\begin{aligned} & 3 \\ & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 612 \\ & .201 \\ & 181 \\ & \hline \end{aligned}$	$\begin{aligned} & -042 \\ & =039 \\ & =033 \end{aligned}$	$\begin{array}{r} .127 \\ \because 120 \\ 10 \end{array}$	$\begin{aligned} & 40 \\ & 38 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 81 \end{aligned}$	$\begin{aligned} & .204 \\ & .192 \\ & 1174 \end{aligned}$	$\begin{aligned} & =039 \\ & =037 \\ & =031 \end{aligned}$	$\begin{array}{r} \because 121 \\ \because 114 \\ 1102 \\ \hline \end{array}$	$\begin{array}{r} 38 \\ 36 \\ 32 \\ \hline \end{array}$	$\begin{aligned} & 91 \\ & 86 \\ & 77 \end{aligned}$	$\begin{array}{r} 195 \\ 186 \\ 188 \\ \hline 18 \end{array}$	$\begin{array}{r} -037 \\ =034 \\ =030 \end{array}$	$\begin{aligned} & 116 \\ & 1110 \\ & .099 \\ & \hline \end{aligned}$	$\begin{array}{r} 36 \\ 35 \\ 31 \\ \hline \end{array}$	$\begin{aligned} & 88 \\ & 83 \\ & 75 \\ & \hline \end{aligned}$	$\begin{array}{r} 190 \\ 180 \\ 183 \end{array}$	$\begin{aligned} & -036 \\ & -033 \\ & -029 \end{aligned}$	$\begin{aligned} & .113 \\ & -106 \\ & -096 \\ & \hline \end{aligned}$	$\begin{array}{r} 36 \\ 33 \\ 30 \\ \hline \end{array}$	$\begin{array}{r} 85 \\ 80 \\ 73 \\ \hline \end{array}$
			8 BY	$\frac{18}{64}$				$B Y$	$\frac{18}{64}$				BY	$\frac{20}{64}$			$\frac{22}{64}$	BY	$\frac{22}{64}$	
	CAP	PACITAN	NCE	$\begin{aligned} & \text { SUSCEF } \\ & \text { TO NE } \end{aligned}$	PTANCE UTRAL	CAP	PACITA	NCE	$\begin{aligned} & \text { SUSCER } \\ & \text { TO NE } \end{aligned}$	PTANCE UTRAL	CAP	ACITAN	NCE	$\begin{aligned} & \text { SUSCEF } \\ & \text { TO NE } \end{aligned}$	TANCE TAAL	CAP	ACITA	CE	suscer TO NE	TANCE TAAL
	C_{1}	C_{12}	$C_{1 \& 2}$	$\underset{\text { crcles }}{25}$	$\begin{gathered} 60 \\ \text { CYCLES } \end{gathered}$	c_{1}	C_{12}	$C_{1 \& 2}$	$\begin{gathered} 26 \\ \text { CYCLES } \end{gathered}$	$\begin{gathered} 60 \\ \text { croles } \end{gathered}$	c_{1}	C_{12}	${ }_{1 \& 2}$	$\begin{array}{\|c\|} \hline 25 \\ \text { crCLES } \\ \hline \end{array}$	$\begin{gathered} 60 \\ \text { crCles } \end{gathered}$	C_{1}	C_{12}	$C_{1 \& 2}$	$\begin{gathered} 25 \\ \text { OYCLES } \end{gathered}$	$\begin{gathered} 60 \\ \text { CrCLES } \end{gathered}$
$\begin{aligned} & 500000 \\ & 450000 \\ & 400000 \\ & \hline \end{aligned}$	$\begin{array}{\|r} \hline 308 \\ : 302 \\ : 292 \\ \hline \end{array}$	$\begin{aligned} & =076 \\ & =069 \\ & =066 \end{aligned}$	$\begin{aligned} & 189 \\ & 185 \\ & \hline 179 \end{aligned}$	$\begin{array}{r} 59 \\ 58 \\ 56 \\ \hline \end{array}$	$\begin{aligned} & 143 \\ & 140 \\ & \hline \end{aligned}$	$\begin{array}{r} .288 \\ .282 \\ .276 \\ \hline \end{array}$	$\begin{aligned} & -.065 \\ & =.062 \\ & -.060 \end{aligned}$	$\begin{array}{r} : 176 \\ : 172 \\ \hline 168 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 54 \\ & 53 \\ & \hline \end{aligned}$	$\begin{array}{r} 133 \\ 130 \\ 127 \\ \hline \end{array}$	$\begin{aligned} & .276 \\ & .269 \\ & .260 \\ & \hline \end{aligned}$	$\begin{aligned} & =.061 \\ & =058 \\ & =0.05 \end{aligned}$	$\begin{array}{\|l\|} \hline 168 \\ \because 163 \\ \hline 157 \\ \hline \end{array}$	$\begin{aligned} & 53 \\ & 51 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 127 \\ & 123 \\ & 118 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 263 \\ : 25 \\ : 249 \\ \hline \end{array}$	$\begin{aligned} & -.0 .57 \\ & =.054 \\ & -.053 \end{aligned}$	$\begin{aligned} & \because 160 \\ & \because 154 \\ & \therefore 151 \end{aligned}$	$\begin{array}{r} 50 \\ 48 \\ 47 \\ \hline \end{array}$	$\begin{aligned} & 1216 \\ & 116 \\ & 113 \\ & \hline \end{aligned}$
$\begin{aligned} & 350000 \\ & 300000 \\ & 250000 \end{aligned}$	$\begin{aligned} & .282 \\ & 271 \\ & 2760 \end{aligned}$	$\begin{aligned} & =061 \\ & =.059 \\ & =.055 \end{aligned}$	$\begin{aligned} & .171 \\ & 165 \\ & 1.57 \end{aligned}$	$\begin{array}{r} 54 \\ 52 \\ 49 \end{array}$	$\begin{aligned} & 129 \\ & 125 \end{aligned}$	$\begin{aligned} & .266 \\ & -2.56 \\ & .244 \end{aligned}$	$\begin{aligned} & =057 \\ & =054 \\ & =051 \end{aligned}$	$\begin{aligned} & .161 \\ & 155 \\ & 1147 \end{aligned}$	$\begin{aligned} & 51 \\ & 49 \\ & 46 \end{aligned}$	$\begin{aligned} & 121 \\ & 117 \end{aligned}$	$\begin{aligned} & .252 \\ & : 242 \\ & : 231 \end{aligned}$	$\begin{array}{\|l\|} \hline 053 \\ \because 050 \\ -048 \end{array}$	$\begin{aligned} & .152 \\ & 146 \\ & 139 \end{aligned}$	$\begin{aligned} & 48 \\ & 46 \\ & 44 \end{aligned}$	$\begin{aligned} & 115 \\ & 110 \\ & 105 \end{aligned}$	$\begin{array}{r} 24 \\ -242 \\ -23 \\ -2 \end{array} 2$	$\begin{aligned} & =049 \\ & =.047 \\ & =.044 \end{aligned}$	$\begin{array}{r} 144 \\ \because 139 \\ 133 \end{array}$	$\begin{array}{r} 45 \\ 44 \\ 42 \end{array}$	$\begin{aligned} & 108 \\ & 105 \\ & 100 \end{aligned}$
$\begin{gathered} 0000 \\ 000 \\ 00 \end{gathered}$	$\begin{aligned} & .248 \\ & .234 \\ & -222 \\ & \hline \end{aligned}$	$\begin{aligned} & -052 \\ & =048 \\ & =044 \end{aligned}$	$\begin{array}{r} .150 \\ 141 \\ 133 \\ \hline \end{array}$	$\begin{array}{r} 47 \\ 44 \\ 42 \\ \hline \end{array}$	$\begin{array}{r} 113 \\ 106 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & .233 \\ & 0221 \\ & 0209 \\ & \hline \end{aligned}$	$\begin{aligned} & -049 \\ & -044 \\ & -0.41 \end{aligned}$	$\begin{array}{r} .141 \\ \therefore 132 \\ 125 \\ \hline \end{array}$	$\begin{aligned} & 44 \\ & 42 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 106 \\ & 100 \\ & 94 \end{aligned}$	$\begin{aligned} & .222 \\ & .211 \\ & .199 \end{aligned}$	$\begin{aligned} & -.044 \\ & =041 \\ & -038 \end{aligned}$	$\begin{aligned} & 133 \\ & 1126 \\ & .118 \end{aligned}$	$\begin{aligned} & 42 \\ & 40 \\ & 37 \end{aligned}$	$\begin{aligned} & 100 \\ & 95 \\ & 89 \end{aligned}$	$\begin{aligned} & .211 \\ & .200 \\ & .191 \end{aligned}$	$\begin{aligned} & =041 \\ & =038 \\ & -036 \end{aligned}$	$\begin{aligned} & .126 \\ & 119 \\ & 1113 \end{aligned}$	$\begin{aligned} & 40 \\ & 38 \\ & 36 \end{aligned}$	$\begin{aligned} & 96 \\ & 90 \\ & 85 \end{aligned}$
$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{r} .210 \\ \because 198 \\ \hline 190 \\ \hline \end{array}$	$\begin{array}{\|} -041 \\ -038 \\ -036 \end{array}$	$\begin{aligned} & .125 \\ & \because 118 \\ & \hline \end{aligned}$	$\begin{aligned} & 39 \\ & 37 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 89 \\ & 86 \end{aligned}$	$\begin{array}{r} 199 \\ 1188 \\ 179 \end{array}$	$\begin{aligned} & -038 \\ & =\because 35 \\ & =.032 \end{aligned}$	$\begin{array}{r} 118 \\ 1111 \\ .105 \end{array}$	$\begin{array}{r} 37 \\ 35 \\ 33 \\ \hline \end{array}$	$\begin{aligned} & 89 \\ & 84 \\ & 79 \end{aligned}$	$\begin{array}{r} .188 \\ : 181 \\ 170 \end{array}$	$\begin{array}{r} -.036 \\ =.034 \\ =.030 \end{array}$	$\begin{aligned} & 112 \\ & : 107 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 35 \\ 33 \\ 32 \\ \hline \end{array}$	$\begin{aligned} & 85 \\ & 81 \\ & 76 \end{aligned}$	$\begin{array}{r} 180 \\ 182 \\ 1163 \\ \hline \end{array}$	$\begin{aligned} & -.030 \\ & =.030 \\ & -.029 \end{aligned}$	$\begin{aligned} & 105 \\ & 101 \\ & 1096 \end{aligned}$	$\begin{aligned} & 33 \\ & 32 \\ & 30 \\ & \hline \end{aligned}$	79 76 73
$\begin{aligned} & 2 \\ & \hline 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & .179 \\ & .170 \\ & .154 \end{aligned}$	$\begin{array}{r} \because 034 \\ =-030 \\ -025 \end{array}$	$\begin{aligned} & .107 \\ & : 100 \\ & .089 \end{aligned}$	$\begin{array}{r} 34 \\ 32 \\ 28 \\ \hline \end{array}$	$\begin{aligned} & 81 \\ & 76 \\ & 67 \end{aligned}$	$\begin{array}{r} \because 171 \\ \because 162 \\ 147 \end{array}$	$\begin{aligned} & \because 031 \\ & =027 \\ & -024 \end{aligned}$	$\begin{aligned} & 101 \\ & 1094 \\ & .085 \end{aligned}$	$\begin{array}{r} 32 \\ 30 \\ 27 \\ \hline \end{array}$	$\begin{aligned} & 76 \\ & 71 \\ & 64 \end{aligned}$	$\begin{aligned} & : 162 \\ & : 154 \\ & : 141 \end{aligned}$	$\begin{aligned} & -028 \\ & -026 \\ & -023 \end{aligned}$	$\begin{aligned} & .095 \\ & : 090 \\ & 0082 \end{aligned}$	$\begin{array}{r} 30 \\ 28 \\ 26 \\ \hline \end{array}$	$\begin{aligned} & 72 \\ & 68 \\ & 62 \end{aligned}$	$\begin{aligned} & .155 \\ & 148 \\ & 136 \end{aligned}$	$\left.\begin{array}{\|l\|} \hline .02 \\ =0 \\ -02 \\ -0 \end{array} \right\rvert\,$	$\begin{aligned} & .090 \\ & .086 \\ & \hline .078 \\ & \hline \end{aligned}$	$\begin{array}{r} 28 \\ 27 \\ 25 \\ \hline \end{array}$	68 65 59

Capacitance-The values in table for capacitance were derived by formulas in Alexander Russel's "Alternating Currents." These values are as follows: $-C_{2}$ values are the capacitance in microfarads per mile between one conductor and the other two conductors plus sheath. C_{1-2} values are the mutual capacitance in microfarads per mile between any two conductors. The capacitance to neutral is twice these values. C_{13} values per mile are used in the application of Russel's formulas for determining the capacitance corresponding to various arrangements of the three conductors and the sheath.

The Charging Current in amperes per mile for each conductor to neutral $=$ susceptance in micromhos to neutral (taken from Table) \times volts to neutral $\times 10^{-6}$.

Dielectric Constant-All of the above table values are based upon a value for the dielectric constant K of 3.5. For all other values of K the table values will change in direct proportion. Values for K will usually be found between the following limits; for impreguated paper 3.0 to 4.0 ; for varnished cambric 4.0 to 6.0 and for rubber 4.0 to 9.0 .

TABLE XXVIII-THREE-PHASE CHARGING KV-A PER MILE OF THREE-PHASE CIRCUIT OF THREE CONDUCTOR PAPER INSULATED CÁBLES

25 C Y C L E S

The values in Table XXVIII are based upon a value for the dielectric constant K° of 3.5 . For all other values of K the table values will change in direct proportion. Values for K will usually be found between the following limits; for impregnated paper 3.0 to 4.0 ; for varnished cambric 4.0 to 6.0 and for rubber 4.0 to 9.0 .

$$
\begin{aligned}
& \quad 2 C_{1}+{ }_{2} C_{12}=0.410 \mathrm{mf} . \text { per mile } \ldots \ldots \ldots \ldots \text { (78) } \\
& \text { And } 3 C_{1}+6 C_{12}=0.450 \mathrm{mf} . \text { per mile } \ldots \ldots \ldots \ldots \text { (79) } \\
& \text { Therefore } C_{1}=0.26 \mathrm{mff.} \text { per mile } \\
& \qquad C_{12}=-0.055 \mathrm{mf} \text { per mile }
\end{aligned}
$$

Numerical Examples-From Table XXVII for a 250000 circ. mil., three-conductor cable having a band of insulation surrounding each conductor of $16 / 6+$ of an inch and an insulation jacket surorunding all three conductors of the same thickness, the following values are obtained:-
$C_{1}=0.260 \mathrm{nff}$. per mile.
$C_{12}=-0.0 .55 \mathrm{mf}$. per mile.
Then, in the order in which the capacitance increases,-
Cafacitance between I and $z=0.157 \mathrm{mf}$. per mile.... (72)
Capacitance between I and $2,3=0.210 \mathrm{mf}$. per mile.. (73)
Capacitance between I and S (2 and 3 insulated) $=$ 0.230 mf . per mile

Capacitance between I and S, $2(3$ insulated $)=0.248$ mf. per mile
Capacitance between I and $S, 2,3=0.260 \mathrm{mf}$. per mile.
Capacitance betzeen S and $I, 2(3$ inshated $)=0.363$ mf. per mile (77)

Capacitance between $1, S$ and $2,3=0.410 \mathrm{mf}$. per
 mile...

 COMPARISON OF CALCULATED CAPACITANCE WITH

 COMPARISON OF CALCULATED CAPACITANCE WITH TEST RESULTS

 TEST RESULTS}

The difference between measured results of capacitance and the results calculated by the above formulas are given in Fig. 60. It will be seen that in all cases these calculated results are less than the corresponding test results, the discrepancy being greater as the conductor becomes larger and the separation less. The differences vary from zero to as much as eleven percent for the largest cable, at the minimum spacing shown. The discrepancy is greatest with the minimum thickness of insulation. Since such cables would be used only for low-voltage service, the charging current would be small and consequently this error would probably be of little importance. For 6600 volt cables the results by the formula would seem to be approximately five percent too low.

Fig. 60-COMPARISON of Calculated and measured capacitances Tests made on three conductor paper insulated cables, $K=3.5$.

The cause of the discrepancy between the formula and test results is as follows:- In order to obtain a mathematical solution, Russell found it necessary to make certain approximations to the true physical conditions. Thus the resulting mathematical formula cannot give exact results. The approximation made by Russell is very close to the actual physical fact where the conductors are small compared with the insulation thickness, but it is not very close where the conductors are large compared with the insulation.

CIIARGING KV-A-TABLE XXVIII

Table XXVIII contains values for charging current (expressed in $\mathrm{kv}-\mathrm{a}$, three-phase) for three-conductor paper insulated cables, both 25 and 60 cycles, based upon a value for K of 3.5 . For other values of K, the table values would vary in proportion. For other thicknesses of insulation, the kv-a values would vary as the susceptance values corresponding to the thickness of insulation (See Table XXVII). In some cases, such for instance, as grounded neutral systems, the thickness
of insulation of the jacket may be less than that surrounding the conductors. In such cases it might be desirable to calculate the susceptance and charging current, if accurate results were desired. The values for charging current corresponding to two thicknesses of insulation are included for some of the commonly employed transmission voltages.

These kv-a values were calculated by using the values for susceptance in Table XXVII which, in turn, were derived from the capacitance in the same table obtained by formulae (70) and (7I). Thus a 350000 circ. mil cable with $10 / 64$ and $10 / 64$ paper insulation has a 60 cycle susceptance to neutral of 167 micromhos per mile. Since the charging current in amperes to neutral equals the susceptance to neutral X volts to neutral $X \mathrm{ro}^{-6}$ and assuming 6600 volts, three-phase between conductors, we have:-

$$
167 \times \frac{6600}{1.73} \times 10^{-6}=0.637 \text { amperes to neutral. }
$$

Charging $k v-a=0.637 \times 3815 \times 3=7.25 \mathrm{kv}-a$,
as indicated in Table XXVIII.

VALUES FOR K

The capacitance of any cable depends upon the dielectric constant of the insulating material and a dimension term or form factor. The dielectric constant should be determined from actual cables and not from samples of material. The usual range in value for K is given below.

Value of K

All values in Tables XXVII and XXVIII are based upon a value of K of 3.5 . For all other values of K all table values will vary in the same proportion as their K values. The actual value of permittivity of most paper insulation runs about ten percent less than the value 3.5 which has been used in calculating the accompanying table values. The true alternating-current capacitance is always considerably lower than the capacitance measured with ballistic galvanometer.

REFERENCES

"Electric Power Conduclors," by W. S. Del Mar.
"Electric Cables," by Coylc and Howe, London, England.
"The Heating of Cables with Current," by Melsom \& Bonth. Journal I. E. E., Vol. 47-I911.
"Current and Rating of Electric Cables," by Atkinson \& Fisher, Trans. A. I. E. E., 1913, p. 325.
"The Heating of Cables Carrying Current," by Dushman. Trans. A. I. E. E., 1913, p. 333.
"Effect of Moisture in the Earth on Temperature of Underground Cables," by Imlay, Trans. A. I. E. E., I915, Part I, p. 2.3.
"Temperature Rise of Insulated Lead Covered Cables," by Richard A. Powell, Trans. A. I. E. E., 1916, Part II, p. Iori.
"The Restoration of Service After a Necessary Interruption," by Rickets, Trans. A. I. E. E., 1916, Part II, p. 635.
"The Dielectric Field in an Electric Power Cable," by Atkinson, Trans. A. I. E. E., June I919.
"The Current Carrying Capacity of Lead Covered Cables," by Atkinson, Journal A. I. E. E., Sept. 1920.

CHAPTER XIV
 SYNCHRONOUS MOTORS AND CONDENSERS FOR POWER-FACTOR IMPROVEMENT

BEFORE discussing the employment of synchronous machinery for improving the powerfactor of circuits, it may be desirable to review how a change in power-factor affects the generators supplying the current.

Fig. 6I shows the effect of in-phase, lagging and leading components of armature current upon the field strength of generators*. A single-coil armature is illustrated as revolving between the north and south poles of a bipolar alternator. The coil is shown in four positions 90 degrees apart, corresponding to one complete revolution of the armature coil. The direction of the field flux is assumed to be constant as indicated by the arrows on the field poles of each illustration. In addition to this field flux, when current flows through the armature coil another magnetic flux is set up, magnetizing the iron in the armature in a direction at right angles to the plane of the armature coil. This will be referred to as armature flux.

This armature flux varies with the armature current, being zero in a single-phase generator when no armature current flows, and reaching a maximum when full armature current flows. It changes in direction relative to the field flux as the phase angle of the armature current changes.

The revolving armature coil generates an alternating voltage the graph of which follows closely a sine wave, as shown in Fig. 61. When it occupies a vertical plane marked start no voltage is generated, for the reason that the instantaneous travel of the coil, is parallel with the field flux.** As the coil moves forward in a clockwise direction, the field enclosed by the armature coil decreases; at first slowly but then more rapidly until the rate of change of flux through the coil becomes a maximum when the coil has turned 90 degrees, at which instant the voltage generated becomes a maximum. As the horizontal position is passed the voltage decreases until it again reaches zero when the coil has traveled 180 degrees or occupies again a vertical plane. As the travel continues the voltage again starts to increase but since the motion of the coil

[^23]relative to the fixed magnetic field is reversed the voltage in the coil builds up in the reverse direction during the second half of the revolution. When the coil has reached the two 270 degree position the voltage has again become maximum but in the opposite direction to that when the coil occupied the position of 90 degrees. When the coil returns to its original position at the start the voltage has again dropped to zero, thus completing one cycle.

If the current flowing through this armature coil is in phase with the voltage, it will produce cross magnetization in the armature core, in a vertical direction, as indicated by the arrows at the 90 and 270 degree positions. The cross magnetization neither opposes nor adds to the field flux at low loads and therefore has comparatively little influence on the field flux. At heavy loads, however, this cross magnetization has considerable demagnetizing effect, due to the shift in rotor position resulting from the shifting of the field flux at heavy loads.

If the armature is carrying lagging current, this current will tend to magnetize the armature core in such a direction as to oppose the field flux. This action is shown by the middle row of illustrations of Fig. 6I. Under these illustrations is shown a current wave lagging 90 degrees representing the component of current required to magnetize transformers, induction motors, etc. When the lagging component of current reaches its maximum value the armature coil will occupy a vertical position (position marked start, 880 degrees and 360 degrees) and in this position the armature flux will directly oppose the field flux, as indicated by the arrows. The result is to reduce the flux threading the armature coil and thus cause a lowering of the voltage. This lagging current encounters resistance and a relatively much greater reactance, each of which consumes a component of the induced voltage, as shown in Fig. 62. When the armature current is lagging, the voltage induced by armature inductance is in such a direction as to subtract from the induced voltage, and thus the voltage is still further lowered, as a result of the armature self induction. In order to bring the voltage back to its normal value it will be necessary to increase the field flux by increasing the field current. Generators are now usually designed of sufficient field capacity to compensate for lagging loads of 80 per cent power-factor.

If the armature is carrying a leading current this leading component will tend to magnetize the armature core in such a direction as to add to the field flux.

This action is shown by the bottom row of illustrations of Fig. 6I. Under these illustrations is shown a current wave leading the voltage wave by 90 degrees. When the leading component of current reaches its maximum values, the armature coil will again occupy vertical positions, but the armature flux will add to that of the field flux, as indicated by the arrow. The resulting flux threading the armature coil is thus increased causing a rise in voltage. This leading current flowing through the generator armature encounters resistarice and a relatively much greater reactance, each of which consumes a component of the induced voltage, as shown in Fig. 62. When the armature current is lead-

FIG. GI-EFFECT OF ARMATURE CURRENT UPON FIELD EXCITATION OF ALTERNATING-CURRENT GENERATORS
ing, the voltage induced by armature inductance is in such a direction as to add to the induced voltage and thus the voltage at the alternator terminals is still further increased as the result of armature self-induction. In order to reduce the voltage to its normal value it is necessary to decrease the field flux by decreasing the field current.

With alternators of high reaction the magnetizing or de-magnetizing effect of leading or lagging current will be greater than in cases where the armature reaction is low. For instance if the alternator is so designed that the ampere turns of the armature at full armature current are small compared to its field ampere turns, the voltage of such a machine would be less disturbed with a change in power-factor of the arma-
ture current than in an alternator having armature ampere turns large compared with its field ampere turns.

Modern alternators are of such design that when carrying rated lagging current at zero power-factor they require approximately 200 to 250 percent of their no-load field-current and when carrying rated leading current at zero power-factor they require approximately -15 to +15 percent of their no-load field current. Thus with lagging armature current the iron will be worked at a considerable higher point on the saturation curve and the heating of the field coils will increase because of the greater field current required.

The voltage diagrams of Fig. 62 are intended to show only the effect of armature resistance and armature reactance upon voltage variation. Voltage regu-

FIG. 62-vEctors illustrating the effect of armature reactance and resistance upon the terminal voltage for in-phase, leading and lagging currents
lation is the combined effect of armature impedance and armature reaction. Turbogenerators have, for instance, very low armature reactance but their armature reaction is higher, so that the resulting voltage regulation may not be materially different from that of a machine with double the armature reactance. Under normal operation armature reaction is a more potent factor in determining the characteristics of a generator than armature reactance. In the case of a generator with a short circuit ratio of unity, this total reactive effect may be due, 15 percent to armature reactance and 85 percent to armature reaction.

For the case illustrated by Fig. 62 the field flux corresponds to the induced voltage indicated, but the field current does not. The field current corresponds to a value obtained by substituting the full synchronous impedance drop for that indicated.

SYNCHRONOUS CONDENSERS A'ND' PHASE' MOUIFIEKS
The term "synchronous condenser" applies to a synchronous machine for raising the power-factor of circuits. It is simply floated on the circuit with its fields over excited so as to introduce into the circuit a leading current. Such machines are usually not intended to carry a mechanical load. When this double duty is required they are referred to as synchronous motors for operation at leading power-factor. On long transmission circuits, where synchronous condensers are used in parallel with the load for varying the power-factor, thereby controlling the transmission voltage, it is sometimes necessary to operate them with under excited fields at periods of lightloads. They are then no longer synchronous condensers but strictly speaking become synchronous reactors.

Whether synchronous motors for operation at leading power-factor, synchronous condensers or synchronous reactors be used they virtually do the same thing, that is; their function is to change the powerfactor of the load by changing the phase angle between the armature current and the terminal voltage. They

TABLE R-SYNCHRONOUS CONDENSER LOSSES

Kv-a	Loss (Kw)	Kv-a	Loss (Kw)
100	12	3500	180
200	18	5000	220
300	22	7500	320
500	32	10000	420
750	47	15000	620
1000	55	20000	820
1500	70	25000	1000
2000	120	35000	1400
2500	130	50000	2000

are, therefore, sometimes referred to as "phase modifiers." This latter name seems more appropriate when the machine is to be operated both leading and lagging, as when used for voltage control of long transmission lines.

Rating - Synchronous condensers as regularly built may be operated at from 30 to 40 percent of their rating lagging, depending upon the individual design. Larger lagging loads result in unstable operation on account of the weakened field. Phase modifiers can be designed to operate at full rating, both leading and lagging, but they are larger, require larger exciters, have a greater loss and cost 15 to 20 percent more than standard condensers.

Starting-Condensers are furnished with squir-rel-cage damper windings, to prevent hunting, which also provides a starting torque of approximately 30 percent of normal running torque. They have a pullin torque of around 15 percent of running torque. The line current at starting varies from 50 to 100 percent of normal. The larger units are sometimes equipped for forced oil lubrication, which raises the rotor sufficiently to permit of oil entering the bearing, thus reducing the starting current.

Mechanical Load-Synchronous condensers are generally built for high speeds and equipped with shafts of small diameter. If they are to be used to transmit some mechanical power it may be necessary to equip them with larger shafts and bearings, particularly if belted rather than direct connected. If a phase modifier is to furnish mechanical energy and at the same time to operate lagging at times of light load for the purpose of holding down the voltage on an unloaded transmission line there may be danger of the machine falling out of step, if a heavy mechanical load occurs when the machine is operating with a weak field.

Losses-At rated full load leading power-factor the total losses, including those of the exciter, will vary from approximately 12 percent for the smallest capacity to approximately four percent for the larger capacity 60 cycle synchronous condensers. The approximate

FIG. 63-V-CURVES OF A PHASE MODIFIER
values given in Table R may be of service for preliminary purposes.
"V" Curves-The familiar V curves shown in Fig. 63 serve to give some idea of the variation in field current for a certain phase modifier when operating between full load lagging and full load leading kv-a.* For this particular machine the excitation must be increased from 112 amperes at no load minimum input or unity power-factor to 155 amperes at full $\mathrm{kv}-\mathrm{a}$ output leading or a range of 1.4 to I in. field excitation. For operation between full lagging and full leading, with no mechanical work done, the range of excitation is from 67 to 155 or 2.3 to I .

Generators as Condensers-Ordinary alternators may be employed as synchronous condensers or synchronous motors by making proper changes in their field poles and windings to render them self-starting

[^24]and safely insulated against voltages induced in the field when starting.

Where transmission lines feed into a city net work and a steam turbine generator station is available these generating units can serve as synchronous condensers by supplying just enough steam to supply their losses and keep the turbine cool. When operated in this way they make a reliable standby to take the important load quickly in case of trouble on a transmissson line.

Location for Condensers-The nearer the center of load that the improvement in power-factor is made the better, as thereby the greatest gain in regulation, greatest saving in conductors and apparatus are made since distribution lines, transformers, transmission lines and generators will all be benefited.

How High to Raise the Power-Factor-Theoretically for most efficient results the system power factor should approach unity. The cost of synchronous apparatus having sufficient leading current capacity to raise the power-factor to unity increases so rapidly as unity is approached, as to make it uneconomical to carry the power-factor correction too high. Not only the cost but also the power loss chargeable to power-factor improvement mounts rapidly as higher power-factors are reached. This is for the reason that the reactive kv -a in the load corresponding to each percent change in power-factor is a maximum for powerfactors near unity. It usually works out that it doesn't pay to raise the power factor above 90 to 95 percent, except in cases where the condenser is used for voltage control, rather than power-factor improvement.
determining the capacity of synchronous motors
AND CONDENSERS FOR POWER-FACTOR IMPROVEMENT
A very simple and practical method for determining the capacity of synchronous condensers to improve the power-factor is by aid of cross section paper. A very desirable paper is ruled in inch squares, sub-ruled into so equal divisions. With such paper, no other equipment is required.

With a vector diagram it is astonishing how easy it is to demonstrate on cross section paper, the effect of any change in the circuit. A few typical cases are indicated in Fig. 64. These diagrams are all based upon an original circuit of $3000 \mathrm{kv}-\mathrm{a}$ at 70 percent powerfactor lagging, shown by (I). It is laid off on the cross section paper as follows. The power of the circuit is 70 percent of 3000 or 2100 kw , which is laid off on line $A B$, by counting 21 sub-divisions, making each sub-division represent 100 kw or $100 \mathrm{kv}-\mathrm{a}$. Now lay a strip of blank paper over the cross section paper and make two marks on one edge spaced 30 sub-divisions apart. This will then be the length of the line $-4 C$. This blank sheet is now laid over the cross section paper with one of the marks at the edge held at the point A. "The other end of the paper is moved downward until the second mark falls directly below the point B thus locating point C. The length of the
line $B C$ represents the lagging reactive $\mathrm{kv}-\mathrm{a}$ in the circuit, in this case $2140 \mathrm{kv}-\mathrm{a}$.

Diagram (2) shows the effect of adding a 1500 kv-a synchronous condenser to the original circuit. The full load loss of this condenser is assumed as 70 kw . The resulting $\mathrm{kv}-\mathrm{a}$ and power-factor are determined as follows: Starting from the point C trace to the right a line 0.7 of a division long. This is parallel to the line $A B$ for the reason that it is true power, so that there is now 2170 kw true energy. 'The black triangle represents the condenser, the line $C D$, 15 divisions long, representing the rating of the condenser. In this case, however, the vertical line is traced upward in place of downward, because the condenser kv-a is leading. This condenser results in decreasing the load from $3000 \mathrm{kv}-\mathrm{a}$ at 70 percent powerfactor to 2275 kv -a at 95.4 percent power-factor. The line $A D$ represents in magnitude and direction, the resulting kv-a in this circuit. The power-ractor of the resulting circuit is the ratio of the true energy in kw to the kv -a or 95.4 percent, in this case. Since the line $A D$ lays below the line $A B$, that is in the lagging direction, the power-factor is lagging.

Diagram (3) is the same as (2) except that the condenser is larger, being just large enough to neutralize all of the lagging component of the load, resulting in a final load of 2215 kw at 100 percent power-factor. Diagram (4) is similar to (3) except that at still larger condenser is shown. This condenser not only neutralizes all of the lagging kv-a of the load but in addition introduces sufficient leading kv-a into the circuit to give a leading resultant power-factor of 9.1 percent with an increase in kv-a of the resulting circuit from 2215 of (3) to $2400 \mathrm{kv}-\mathrm{a}$ of (4).

Diagram (5) illustrates the addition to the original clrcuit of a 100 percent power-factor synchronous motor of 600 hp . rating As this motor has no leading or lagging component, there is no vertical projection. The power-factor of the circuit is raised from 70 to 77 percent as the result of the addition of 500 kw true power (load plus loss in motor) to the circuit. A resistance load would have this same effect.

Diagram (6) shows a 450 kw (600 hp .) synchronous motor of $625 \mathrm{kv}-\mathrm{a}$ input at 80 percent lead-1 ing power-factor added to the original circuit. The input to this motor (including losses) is assumed to be 500 kw . The resulting load for the circuit is 3150 $\mathrm{kv}-\mathrm{a}$ at 82.5 percent lagging power-factor.

The Diagram (7) shows an 850 kw , (I 140 hp .) synchronous motor generator of $1666 \mathrm{kv}-\mathrm{a}$ input at 60 percent power-factor leading added to the original circuit. This gives a resulting load of $3200 \mathrm{kv}-\mathrm{a}$ at 96.9 percent lagging power-factor.

Diagram (8) shows the addition to the original circuit of the following loads, including losses.

A 550 kw synchronous converter at 100 percent powerfactor.
A 650 kw in laction motor at 70 percent lagging power-factor.
A ${ }^{\text {a }} 500 \mathrm{kw}$ synchronous mutor.

The resultant load of this circuit is 3800 kw , and if a power-factor of 95 percent lagging is desired the total kv-a will be 4000 . The line $A D$ may be located by a piece of marked paper and the capacity of the necessary synchronous motor scaled off. This is found to be 1650 kv -a at 30.3 percent power-factor.

The Circle Diagram-The circle diagram in Fig. 65 shows the fundamental relations between true kw , reactive kv -a and apparent kv -a corresponding to different power-factors, the values upon the chart being read to any desired scale to suit the numerical values of the problem under consideration. This diagram is suffi-

FIG. 64-EXAMPLES IN POWER-FACTOR IMPROVEMENT
ciently accurate for ordinary power-factor problems. In place of drawing out the vector diagrams as just explained they are traced out with a pin point on the circle diagram.

Assume again a load of 2100 kw at 70 percent power-factor lagging, and that the power-factor is to be raised to 95.4 percent as in (2) of Fig. 64, and that the loss in the condenser necessary to accomplish this is again taken as 70 kw . The capacity of the synchronous condenser may be traced on the circle diagram as follows: From the true power load of 2100 kw (top horizontal line) follow vertically downward
of the condenser would be the hypotenuse rather than the vertical projection. The error in assuming the vertical projection as the rating of the condenser is negligible unless the condenser furnishes mechanical power, in which case the hypotenuse should be marked on a separate strip of paper and its length determined from the kv-a scale.

ADVANTAGE OF HIGH POWER-FACTOR

Less Capacity Installed-Low power-factors demand larger generators, exciters, transformers, switching equipment and conductors. Loads of 70 percent

until the diagonal line representing 70 percent powerfactor is reached. This is opposite $2140 \mathrm{kv}-\mathrm{a}$ reactive component. From the point thus obtained, go horizontally to the right a distance representing 70 kw power. From this point go vertically upward until the diagonal line representing 95.4 percent power-factor is reached. Then read the amount of reactive $\mathrm{kv}-\mathrm{a}$ (640) corresponding to this last point. The original lagging component of $2140-640=1500 \mathrm{kv}$-a which is approximately the capacity of the condenser necessary to accomplish the above results. Actually the rating
power-factor demand equipment of 28 percent greater capacity than would be required if the power-factor were 90 percent. The cost of apparatus for operation at 70 percent power-factor would be approximately is percent greater than the cost of similar apparatus for 90 percent power-factor operation, since the capacity of apparatus to supply a certain amount of energy is inversely proportional to the power-factor.

Higher Efficiency-Assume that the power-factor of a $1000 \mathrm{kv}-\mathrm{a}$ (700 kw at 70 percent power-factor) transmission circuit is raised to 90 percent. As the cop-
per loss varies as the square of the current, raising the power-factor reduces the copper loss approximately 40 percent. If we assume an efficiency for the generator of 93 percent (one percent copper loss) ; for combined raising and lowering transformers 94 percent (three percent copper loss) and for the transmission line 92 percent, the saving in copper loss correspondirg to 90 percent power-factor operation would be as follows:

Gencrators 0.4 percent
Transformers 1.2 percent
Transmission line 3.2 percent
Total 4.8 percent or approximately 33 kw .
To raise the power-factor to 90 percent would require a synchronous condenser of $375 \mathrm{kv}-\mathrm{a}$ capacity. This size condenser would have a total loss of about 30 kw , resulting in a net gain in loss reduction of three kw. Against this gain would be chargeable, the interest and depreciation of the condenser cost with its accessories, also any cost of attendance which there might be in connection with its operation. It is evident that in this case it would not pay to install a condenser if increased efficiency were the only motive.

TABLE S--COST OF POWER-FACTOR CORRECTION WITH SYNCHRONOUS MOTORS

Syn. Motor$\mathrm{Kv}-\mathrm{a}$	Motor Will Furnish		Chargcable to Power-Factor Correction	
	Mech. Kw	Leading Kv-a	$\begin{aligned} & \text { Loss } \\ & \text { Kww } \end{aligned}$	Difference in Price
140	100	100	1.6	\$500.00
280	200	200	2.5	500.00
420	300	300	5.0	500.00
700	500	500	8.0	800.00
1050	750	750	9.0	1000.00
1400	1000	1000	14.0	1200.00

The improvement in power-factor can be more cheaply and efficiently obtained by the installation of one or more synchronous motors designed for operation at leading power-factor. Sufficient capacity of these will give, in addition to mechanical load, sufficient leading current to raise the power-factor to 90 percent. The extra expense and increased loss of synchronous motors enough larger to furnish the necessary leading component for power-factor correction is very small. Table S gives in a very approximate way, some idea of the amount of loss and proportional cost of synchronous motors chargeable to power-factor improvement when delivering both mechanical power and leading current.

Thus if a synchronous condenser is used on the above circuit there is a loss of 30 kw , chargeable to power-factor improvement, whereas if a synchronous motor of sufficient capacity ($530 \mathrm{kv}-\mathrm{a}$) to give 375 kw mechanical work and at the same time the necessary $375 \mathrm{kv}-\mathrm{a}$ leading current for power-factor improvement, the extra loss chargeable to power-factor improvement would be something like six kw. The increased cost of a synchronous motor to furnish 375 $\mathrm{kv}-\mathrm{a}$ leading current in addition to 375 kw power would be about $\$ 600$ whereas the cost of a $375 \mathrm{kv}-\mathrm{a}$
condenser would be in the neighborhood of $\$ 4000$. Varying costs and designs make cost and loss values unreliable. They are given here only to illustrate the points which should be considered when considering synchronous motors vs synchronous condensers.

Improved Voltage Regulation-The voltage drop under load for generators, transformers and transmission lines rapidly increases as the power-factor goes down. Table T gives an idea of the variation in voltage drop corresponding to various power-factors at 60 cycles.

Automatic voltage regulation may be used to hold the voltage constant at the generators or at some other point, but it cannot prevent voltage changes at all points of the system.

Increased Plant Capacity-The earlier alternators were designed for operation at 100 percent power-factor with prime movers, boilers, etc. installed on the same basis. Increasing induction motor loads have resulted in power-factors of 70 and 80 percent. As a result, some of the older generating stations are being operated with prime movers, boilers etc. underloaded because the 100 percent power-factor generators which
TABLE T-EFFECT OF POWER-FACTOR ON VOLTAGE DROP

Percent Power-Factor.	100	90	80	70
Gencrators * (older design)	8.0	-	25.0	-
Transformers				
Transmission line	1.2	4.1	4.9	5.5
	7.9	13.0	14.2	15.2

they drive limit the amount of power that can be generated without endangering the generator windings. This condition some times makes it necessary to operate three units, where two might be sufficient to carry the load at unity power-factor. The shutting down of a. unit would result in a considerable saving in steam consumption. A recent case came up of a transmission line 30 miles long, fed at each end by a small generating station. On account of heavy line drop it was necessary to operate both stations to furnish the comparatively light night load. Investigation developed that by installing a synchronous condenser at one of these terminal stations for reducing the voltage drop in the line, one generating station could be shut down during the night, thereby resulting in a very large annual saving in coal and labor bills.

A station may have some generating units designed for 100 percent power-factor and other units designed for 80 percent power-factor; or again, where two generating stations feed into the same transmission system, one may have 100 percent power-factor generating units and the other 80 percent power-factor

[^25]generating units. In such cases, the field strength of the generators may be so adjusted as to cause the 80 percent power-factor units to take all the lagging current, thus permitting the 100 percent power-factor units to be loaded to their full kw rating.

behavior of a. c. generators when charging a TRANSMISSION LINE*

It has been shown above how leading armature current, by increasing the field strength, causes an increase in the voltage induced in the armature of an alternator and consequently an increase in its terminal voltage. It was also shown that the terminal voltage is further increased as result of the voltage due to self induction adding vectorially to the voltage induced in the armature.

If an alternator with its fields open is switched onto a dead transmission line having certain electrical characteristics, it will become self exciting, provided there is sufficient residual magnetism present to start the phenomenon. In such case, the residual magnetism in the fields of the generator will cause a low voltage to be generated which will cause a leading line charging current to flow through the armature. This leading current will increase the field flux which in turn will increase the voltage, causing still more charging current to flow, which in turn will still further increase the line voltage. This building up will continue until stopped by saturation of the generator fields. This is the point of stable operation. Whether or not a particular generator becomes self exciting when placed upon a dead transmission line depends upon the relative slope of the generator and line characteristics.

In Fig. 66 are shown two curves for a single $45000 \mathrm{kv}-\mathrm{a}, \mathrm{II} 000$ volt generator, the charging current of the transmission line being plotted against generator terminal voltage. One curve corresponds to zero excitation, the other curve to 26.6 percent of normal excitation. A similar pair of curves correspond to two duplicate generators in parallel**. The straight line representing the volt-ampere characteristics of the transmission line fed by these generators corresponds to a 220 kv , 60 cycle, three-phase transmission circuit, 225 miles long, requiring 69000 kv -a to charge it with the line open at the receiving end.

The volt-ampere charging characteristic of a transmission line is a straight line, that is, the charging current is directly proportional to the line voltage. On the other hand the exciting volt-ampere characteristic for the armature has the general slope of an ordinary saturation curve.
*For a more detailed discussion of this subject see the following articles:-"Characteristics of Alternators when Excited by Armature Currents" by F. T. Hague, in the Journal for Aug. 1915; "The Behavior of Alternators with Zero Power-Factor Leading Current" by F. D. Newbury, in the Journal for Sept. 1918; "The Behavior of A. C. Generators when Charging a Transmission Line" by W. O. Morris, in the General Electric Revicze for Fcb. 1920.
**It is assumed that with the assumed field current such generators can be synchronized and held together during the process of charging the line.

If the alternator characteristic lie above the line characteristic at a point corresponding to a certain charging current the leading charging current will cause a higher armature terminal voltage than is required to produce that current on the line. As a result the current and voltage will continue to rise until, on account of saturation, the alternator characteristic falls until it crosses the line characteristic. At this point the voltage of the generator and that of the line are the same for the corresponding current. If on the other hand the alternator characteristic falls below the line characteristic the alternator will not build up without permanent excitation.

As stated previously, whether or not a generator becomes self-exciting when connected to a dead transmission line depends upon the relative slopes of generator and transmission line characteristics. The relative slopes of these curves depend upon:-
a-The magnitude of the line charging current.
b-The rating of the generators compared to the full voltage charging kv-a of the line.
c-The armature reaction. High armature reaction, (that is
low short-circuit ratio) favors self-excitation of the generators.
d-The armature reactance. High armature reactance also favors self-excitation of the generators.
Methods of Exciting Transmission Lines-If the relative characteristics of an alternator and line are such as to cause the alternator to he self-exciting, this condition may be overcome by employing two or more

FIG. 66-vOLT AMPERE CHARACTERISTICS OF ONE 45000 KV -A, 11000 VOLT GENERATOR; TWO DUPLICATE 45000 KV -A GENERATORS; AND A three-phase, single-circuit, 220 KV TRANSMISSION LINE
alternators (provided they are available for this purpose) to charge the transmission line. The combined characteristics of two or more alternators may be such as to fall under the line characteristic, in which case the alternator will not be self-exciting. In such case, the alternators could be brought up to normal speed, and given sufficient field charge to enable them to be
synchronized and held in step, after which they could be connected to the dead transmission line and their voltage raised to normal.

Generators as normally designed will carry approximately 40 percent of their rated current at zero leading power-factor. If more than this current is demanded of them they are likely to become unstable in operation. By modifying the design of normal alternators so as to give low armature reaction, they may be made to carry a greater percentage of leading current. If the special design is such that with zero

TABLE U-INSTALLATIONS OF LARGE PHASE MODIFIERS (I921) By Amerlcan Manufacturers

Kr -a	R.P.M.	Volta	Cycles	No. of Units	Date of Order	NAME AND LOCATION
30000	600	6600	50	1	1919	So. Cal. Ed. Co., Loa Angelea, Cal.
20000	600	11000	60	2	1921	Pacifc Gas \& Elec.
15000	375	6600	50	1	1912	Southern Osl. Ed. Co., Loa Ang., Cal.
12500	600	22000	50	2	1912	Andhra Valley, India
7500	400	6600	60	2	1913	Utah Pr. \& Lt. Co., Salt Lake, Utah
7500	400	6600	60	2	1916	Canton El. Co., Canton, Ohio
7500	600	13800	60	1	1917	Blackstono Valley Gas \& Elec. Co., Pawtucket, R. I.
7500	600	13800	60	1	1917	New England Pr. Co., Worcester, Mass.
7500	720 800	13800	60	1	1918	New England Pr. Co., Fitchburg, Masa.
7500	800 750	11500 11000	40 50	1	1918	Adirondack El. Pwr. Corp. Watervliet, New York Energia Electrica de Cataluna Barcelona Spain
7500	600	111000 11000	60	1	1920	Energia Electrica de Cataluna, Barcelona, Spain Duqueane Light Co.
7500	600	1200	60	2	1918	J. G. White, Engincera
7500	600	11000	60	1	1918	Duquesne Light Co.
7500	600	11000	60	1	1916	Dnqueane Light Co.
7500 6500	600 750	11000 2200	60 50	${ }_{1}^{2}$	1917	Duquesne Light Co.
6000	500	16500	50	1	1914	Shanghai Municipal Conncil, Shanghai, Cbical
5000	600	7200	60	1	1916	Pac. Pwr. \& Lt., Kennewick, Waah.
5000	500	6600	50	2	1915	Tata Hydro El. Pr. \& S. Co., India
5000	750	6600	50	3	1917	Ebro Irrigation \& Pr. Co., Barcelona, Spain
5000 5000	750 600	11500 2300	50	1	1919	Societa Lombarda Diatribuzlona Energla Elettrica, Italy
5000	720	$\begin{aligned} & 23000 \\ & 23000 \\ & 4000 \end{aligned}$	60	1	1921	Public Service of N. Int.
5000	720	11000	60	1	1921	Takata \& Co., Japan.
5000	600	13200	60	1	1919	Conn. Lt. \& Pr. Co.

Fig. 66, and there were sufficient residual magnetism to start the phenomenon, the generator voltage would rise to approximately double normal value before the point of staple operation is reached. If, however, two generators having 26.6 percent of normal excitation were paralleled and connected to this circuit, a point of staple operation would be reached at a terminal voltage of approximately 15500 volts. Actually stable operation would be reached at a somewhat less terminal voltage for the reason that the line would probably not be open at the receiving end, but would probably have the lowering transformers connected to it. In such case the magnetizing current required for lowering transformers would lower the receiving end voltage, resulting in less line charging current.

In either case the curves of Fig. 66 show that either more than two generators will be required to charge the line when unloaded, or some other method of charging must be resorted to. Reactance coils could be used at the recciving end t, furnish lagging current for neutralizing some of the line charging cur-
voltage field excitation when carrying half the line charging kv -a, the armature voltage will not exceed 70 percent of normal, this reduced voltage will result in a line charging kv-a of half of normal value. Specially designed alternators usually result in larger and more costly machines and the gain resulting in the special design is usually not sufficient to warrant the extra cost.

If a single generator with its field circuit open were connected to a dead transmission circuit such as the one whose volt-ampere characteristics are shown in
rent, but there might be difficulty in removing these from the circuit when the line is fully charged At the present time it is expected that the problem of charging long transmission lines may usually be solved by starting one or more generators with sufficient field strength to permit them to be synchronized and held in step. One or more phase modifiers with under-excited fields may then be connected to the line at the receiving and and brought up to normal speed with the generators. Such a method of solving this problem has been employed by the Southern California Edison Company.

CHAPTER XV PIIASE MODIFIERS FOR VOLTAGE CONTROL

WITH alternating-current transmission there is a voltage drop resulting from the resistance of the conductors, which is in phase with the current. In addition there is a reactance voltage drop; that is a voltage of self-induction generated within the conductors which varies with and is proportional to the current, and may add to or decrease the line voltage. If the line is long, the frequency high or the amount of power transmitted large, this induced voltage will be large, influencing greatly the line drop. By employment of phase modifiers the phase or direction of this induced voltage may be controlled so that i_{i} will be exerted in a direction that will result in the desired sending end voltage.

A certain amount of self-induction in a transmission circuit is. an advantage, allowing the voltage at the receiving end to be held constant under changes in load by means of phase modifiers. It may even be made to reduce the line voltage drop to zero, so that the voltage at the two ends of the line is the same for all loads. Self-induction also reduces the amount of current which can flow in case of short-circuits, thus tending to reduce mechanical strains on the generator and transformer windings, and making it easier for circuit breaking devices to function successfully. On the cther hand, high self-induction reduces the amount of power which may be transmitted over a line and may, in case of lines of extreme length, make it necessary to adopt a lower frequency. It also increases the capacity of phase modifiers necessary for voltage control. High reactance also increases the surge overvoltage that a given disturbance will set up in the system.

On the long lines, the effect of the distributed leading charging current flowing back through the line inductance is to cause, at light loads, a rise in voltage from generating to receiving end. At heavy loads, the lagging component in the load is usually sufficient to reverse the low-load condition; so that a drop in voltage occurs from generating to receiving end. The charging current of the line is, to a considerable extent, an advantage; for it partially neutralizes the lagging component in the load, thus raising the power-factor of the system and reducing the capacity of synchronous condensers necessary for voltage control.

The voltage at the receiving end of the line should be held constant under all loads. To partially meet this condition, the voltage of the generators could be varied to a small extent. On the longer lines, however, the voltage range required of the generators would be too great to permit regulation in this
manner. In such cases; phase modifiers operating in parallel with the load are employed. The function of phase modifiers is to rotate the phase of the current at the receiving end of the line so that the self-induced voltage of the line (always displaced 90 degrees from the current) swings around in the direction which will result in the desired line drop. In some cases a phase modifier is employed which has sufficient capacity not only to neutralize the lagging component at full load, but, in addition, to draw sufficient leading current from the circuit to compensate entirely for the ohmic and reactance voltage drops of the circuit. In this case, the voltage at the two ends of the line may be held the same for all loads. This is usually accomplished by employing an automatic voltage regulator which operates on the exciter fields of the phase modifier. The voltage regulator may, if desired, be arranged to compound the substation bus voltage with increasing load.

CHECKING THE WORK

A most desirable method of determining line performance is by means of a drawing board and an engineer's scale. A vector diagram of the circuit under investigation, with all quantities drawn to scale, greatly simplifies the problem. Each quantity is thus represented in its true relative proportion, so that the result of a change in magnitude of any of the quantities may readily be visualized. Graphical solutions are more readily performed, and with less likelihood of serious error than are mathematical solutions. The accuracy attainable when vector diagrams are drawn 20 to 25 inches long and accurate triangles, T squares, straight edges and protractors are employed is well within practical requirements. Even the so-termed "complete solution" may be performed, graphically with ease and accuracy. A very desirable virtue of the graphical solution which follows is that it exactly parallels the fundamental, mathematical solution. For this reason this graphical solution is most helpful even when the fundamental mathematical solution is used, for it furnishes a simple check against serious errors. The result may be checked graphically after each individual mathematical operation by drawing a vector in the diagram paralleling the mathematical operation. Thus, any serious error in the mathematical solution may be detected as soon as made.*

[^26]When converting a complex quantity mathematically from polar to rectangular co-ordinates, or vice versa, the results may readily be checked by tracing the complex quantity on cross-section paper and measuring the ordinates and polar angle, or for approximate work the conversion may be made graphically to a large scale. For instance, in using hyperbolic functions, polar values will be required for obtaining powers and roots of the complex quantity. For approximate work much time will be saved by obtaining the polar values graphically.

In the graphical solution of line performance it will usually be desirable to check the line loss by a mathematical solution in cases which require exact loss values. Since the line loss may be five percent or less of the energy transmitted, a small error in the overall results might correspond to a large error in the value of the line loss.

EFFECT OF TRANSFOṘMERS IN THE CIRCUIT

Usually long transmission circuits have transformers installed at both ends of the circuit and one or more phase modifiers in parallel with the load. Such a transmission circuit must transmit the power loss of the phase modifiers and of the receiver transformers. In addition to this power loss, a lagging reactive current is required to magnetize the transformer iron. A complete solution of such a composite circuit (generator to load) requires that the losses of the phase modifiers and transformers be added vectorially to the load at the point where they occur so that their complete effect may be included in the calculation of the performance of the circuit. A complete solution also requires that three separate solutions be made for such a circuit.* First with the known or assumed conditions at the load side of the lowering transformers the corresponding electrical conditions at the high voltage side of the transformers is determined by the usual short line impedance methods. With the electrical conditions at the receiving end of the high-tension line thus determined, the electrical conditions at the sending end of the line are determined by one of the various methods which take into account the distributed quantities of the circuit. With the electrical condition at the sending end thus determined the electrical conditions at the generating side of the raising transformers are determined. The above complete method of procedure, is tedious if carried out mathematically, but if carried out graphically is comparatively simple.

It is the general practice to neglect the effect of condenser and lowering transformer loss in traveling over the line, but to add this loss to the loss in the high-tension line after the performance has been calculated. If the loss in condensers and lowering transformers is five percent of the power transmitted the

[^27]error in the calculated results would probably be less than 0.5 percent, a rather small amount.

In order to simplify calculations, it is the general practice to consider the lumped transformer impedance as though it were distributed line impedance by adding it to the linear constants of the line and then proceeding with the calculations as though there were no transformers in the circuit. This simplifies the solution but at the expense of accuracy, particularly if the line is very long, the frequency high or the ratio transformer to line impedance high. This simplified solution introduces maximum errors of less than two percent in the results for a 225 mile, 60 -cycle line.

It has been quite general practice to disregard the effect of the magnetizing current consumed by transformers. The magnetizing current required to excite transformers containing the older transformer iron was about two percent and therefore its effect could generally be ignored. Later designs of transformers employ silicon steel, and their exciting current varies from about 20 percent for the smaller of distribution type transformers, to about 12 percent on transformers of 100 kv -a capacity and about five percent for the very largest capacity transformers. The average magnetizing current for power transformers is between six and eight percent. This magnetizing current is important for the reason that it is practically in opposition to the current of over-excited phase modifiers used to vary the power-factor. If in a line having 100000 kv-a transformer capacity at the receiving end, the magnetizing current is five percent, there will be a 5000 kv -a lagging component. If the capacity of phase modifiers required to maintain the proper voltage drop under this load is 50000 kv -a the lagging magnetizing component of 5000 kv -a will subtract this amount from the effective rating of the phase modifiers, with a resulting error of ten percent in the capacity of the phase modifiers required.

In the diagrams and calculations which follow, the transformer leakage, consisting of an in-phase component of current (iron loss) and a reactive lagging component of current (magnetizing current), is considered as taking place at the low-tension side of the transformers. A more nearly correct location would be to consider the leak as at the middle of the transformer, that is, to place half the transformer impedance on each side of the leak. To solve such a solution it would be necessary to solve two complete impedance diagrams for the transformers at each end of the circuit. The gain in accuracy of results would not, for power transmission lines, warrant the increased arithmetical work and complication necessary.

In the case of lowering transformers, it would seem that the magnetizing current would be supplied principally from synchronous machines connected to the load. If phase modifiers are located near the lowering transformers, the transformers would probably draw most of their magnetizing current from
them rather than from the generators at the distant end of the line. Partly for this reason, but more particularly for simplicity, the leak of the lowering transformers will be considered as taking place at the laad side of the transformers. On this basis we first
current also from the low side; that is from the generators. Both the complete and the approximate methods of solving long line problems which follow, include the effect of not only the magnetizing current consumed by the transformers, but also the losses in

TABLE V-COMPARISON OF RESULTS AS OBTAINED BY FIVE DIFFERENT METHODS OF CALCULATIONS

$\begin{array}{\|c} \text { AREA } \\ \text { IN } \\ \text { CIRCULAR } \\ \text { MLS } \end{array}$	$\begin{aligned} & 0 \\ & \frac{0}{5} \\ & \vdots \\ & \vdots \\ & \Sigma \\ & 7 \end{aligned}$	RECEIVING END TO NEUTRAL						SEmDINE END TO NEUTRAL										LOSSESIN KW TO NEUTRAL								
		LOW TENSION SIDE OF TRANGF ORMERS.			HIOH TENSION SIDE OF trangformers.			HIGH TENSION SIDE OF TRANSFORMERS					LOW TENSION SIDE OF TRANSFORMERS					LOWERINO TRANSFORMERS		comdenser	HIGHTENSION LINE		$\begin{gathered} \text { RAISING } \\ \text { TRANSFORMERS } \\ \hline \end{gathered}$		total loss	
		VOLTS	AMPS		vouts	AMPS	PF_{8}	volta		CUR	RENT	PF_{s}	VOLTAO		CURR	EENT			COPP			Loss		COPPER		Loss
		$E_{\text {LN }}$	$\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{C}}$	LEAD	$E_{R N}$	I_{R}	LaO	$\mathrm{E}_{\text {SN }}$	\%	$\mathrm{J}_{\text {s }}$	\%	lead	$\mathrm{E}_{\text {OEN-N }}$	\%	$\mathrm{I}_{\text {cen }}$	\%	LEAD				KV	$x w_{L}$				${ }_{\sim}{ }_{\sim}^{*}$
$\begin{gathered} 605000 \\ ? \end{gathered}$	$\begin{aligned} & A \\ & B \\ & C \end{aligned}$	127020	202.3		127556	204.9	9963	$\begin{array}{\|l\|} 129090 \\ 124 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 463 \\ & \hline \end{aligned}$	$\begin{aligned} & 2278 \\ & 2365 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 1039 \end{aligned}$	$\begin{array}{\|} 9377 \\ 9335 \end{array}$	126920	$\frac{100}{98.2}$	$\frac{2261}{2323}$	$\frac{100}{1028}$	97.49	235	130	666	[$\begin{aligned} & 1582 \\ & 163 \\ & 153 \\ & 583\end{aligned}$	816 653 633 6	235	(165	2973 3078 3021 3085	
"	$\stackrel{D}{E}$:.	-	:				126783	98.4	2287	1004	9432	127537	$\overline{100.5}$	224.6	993	95.87	-	\%	-	/1/533	6.21 6.04	"	166	2985 2936	11197
715	A	"	":	"	127556	2049	9963	$\begin{aligned} & 127811 \\ & 123041 \end{aligned}$	$\begin{aligned} & 100 \\ & 962 \end{aligned}$	$\begin{aligned} & 2387 \\ & 237.5 \end{aligned}$	$9 \begin{gathered} 100 \\ 103.9 \end{gathered}$	$\begin{array}{\|l\|} \hline 9350 \\ 9309 \end{array}$	$\left\lvert\, \begin{array}{\|c\|} 125668 \\ 123409 \end{array}\right.$	$\frac{100}{982}$	$\frac{3266}{2331}$	$\frac{100}{102.8}$	$\frac{9736}{94.93}$	".	"	"	(-	$\xrightarrow{766}$	[2752	\#100
".	E	-	-	"				125576	982	2297	100.4	24.09	126292	100.5	225.4	99.5	9567	-	"	$\stackrel{\square}{\square}$	1369 1273	S 510	-	168	2783 2701	111.13 10.80 1050
$\begin{gathered} 795000 \\ \vdots \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \hline \end{aligned}$	\vdots	:	$\ddot{\square}$	127556	204.9	9963	$\begin{aligned} & 127196 \\ & 122313 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 962 \end{aligned}$	$\begin{aligned} & 239.3 \\ & 2380 \\ & \hline \end{aligned}$	1008	$\begin{aligned} & 93.33 \\ & 9794 \\ & \hline \end{aligned}$	$\frac{124909}{122618}$	$\frac{100}{98.2}$	$\frac{2274}{233.5}$	$\frac{100}{102.7}$	$\frac{9724}{94.80}$	"	"	"	$\begin{aligned} & 1192 \\ & 1960 \\ & 1177 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 477 \\ 507 \\ 4 \\ 4 \end{array}$	$:$	767	$\begin{aligned} & 2625 \\ & 3707 \\ & 2617 \end{aligned}$	10.50 1083 104 18
"	$\stackrel{\square}{B}$	"	-	".				124846	981	2302	100.4	93.94	125532	100.5	225.8	99.3	95.55	"	"	"	$11 / 28$	4.79 4.50	*	169	2633	10.53 10.22
954000	$\begin{array}{\|l\|} \hline R \\ C \\ C \end{array}$	"	"	\cdots	127556	204.9	9963	$\begin{array}{\|c\|c\|} \hline 126 & 132 \\ 121 & 212 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 961 \\ & \hline \end{aligned}$	$\begin{aligned} & 2704 \\ & 239.4 \end{aligned}$	$\begin{aligned} & 100 \\ & 1039 \end{aligned}$	$\begin{aligned} & 9293 \\ & 9255 \end{aligned}$	$\frac{123740}{121488}$	$\frac{100}{982}$	$\frac{228.4}{2351}$	$\frac{100}{1029}$	$\frac{9699}{9451}$:	*	"."	$\begin{array}{r} 976 \\ 1059 \\ 1070 \end{array}$	390 423 408	-	169 183 177	2411 2508 2463	9.61 10.03 9.85 8.
-	E	"	-	"				123737	98.1	2315	1005	9358	$12+368$	100.5	2273	99.5	95.31	-	\because	\because	1014 98	105 393	\cdots	170	2450 2415	9.9 9.66

*A-Transformer impedances treated as lumped at the ends of the line. This is the most nearly accurate of the five methods. It is referred to in the text as the complete solution.
B-This assumes the impedance of the lowering transformers as line impedance. It takes no account of the leakage of the lowering transformers.
C-This assumes the impedance of both lowering and raising transformers as line impedance-It takes no account of the leakage of the lowering and raising transformers.
D-This is the same as B except that the leakage of the lowering transformers has been added to the load-It is referred to in the text as the approximate solution.
E-This is the same as C except that the leakage of the lowering transformers has been added to the load.
have a load current expressed in rectangular coordinates with the load voltage as a temporary vector of reference. To this we add algebraically a phase modifier current (loss +j or leading) and to this we add the transformer leakage (loss - j or lagging). In other words, these three components of current at the receiving en α of the line add up algebraically upon a
transformers and phase modifiers flowing over the line.
For the purpose of determining the magnitude of errors in the calculated results corresponding to simplified methods of calculation where transformers are required at both ends of the line, the calculations shown in Table V were made. Five methods of calculations were made for each of four sizes of cable. A con-

TABLE W-PERCENTAGE ERRORS IN RESULTS, AS DETERMINED BY VARIOUS METHODS OF CALCULATION.
These methods do not take complete aceount of the effects of the transformers in the circuit

Method	At Generator Percent Error			At Sending End Percent Error			Line Loss Percert Error	Transformer Account
	$\mathrm{E}_{\text {gen }}$	$1_{\text {gen }}$	$\mathrm{PF}_{\text {gen }}$	Es,	Is	PFs		
A	0	0	0	0	0	0	0	Complete method-Assumed for comparison as resulting in 100 percent values.
B	-3.7	+3.9	-0.42	+0.37	Leak of lowering transformers ignored. Impedance of lowering transformers assumed as line impedance.
C	-1.8	+2.8	-2.35	\ldots	+0.17	Leaks of raising and lowering transformers ignored. Impedance of raising and lowering transformer assumed as line impedance.
D	...		\ldots	-1.6	+0.4	+0.55	+0.05	Same as B except that the transformer leak has been added to the load.
E	+0.5	-0.7	-1.62	-0.12	Same as C except that the transformer leak has been added 10 the load.

common vector of reference, thus making it very easy to obtain the resulting load at the receiving end of the line.

The transformers at the sending end of the line have been considered as receiving their magnetizing
stant load, load voltage and condenser capacity were assumed for all calculations and the resuits of these calculations are tabulated in Table W. Thus method B which does not take any account of the lowering transformer magnetizing current and assumes the transformer im-
pedance as line impedance, gives the sending end voltage too low by 3.7 percent and the current too high by 3.9 percent.

Table X contains approximate data upon transformers of various capacities 25 and 60 cycles. Since such data will vary greatly for different voltages it must be considered as very approximate but may be found useful in the absence of specific data for the problem at hand.

Fig. 67 shows complete current and voltage diagrams for both short and long lines. The diagram illustrating short lines is based upon the current having the same value and direction at all points of the circuit. On this basis the $I R$ drops of the line and of the raising and lowering transformers will be in the same direction. Likewise their individual $I X$ drops will also be in the same direction. It is evident, therefore, that, for short lines where the capacitance
voltage circuit in order to combine properly with the linear constants of the line. Although all calculations are made in terms of the high-voltage circuit the results may, if desired, be converted to terms of the low voltage circuit, by applying the ratio of transformation.

The transformer impedance to neutral is onethird the equivalent single-phase value. The reason for this is that the $I^{2} R$ and $I^{2} X$ for one phase is identical whether to neutral or between phases. Since the current between phases is equal to the current to neutral divided by $\sqrt{ } \overline{3}$, the square of the phase current would be one-third the square of the current to neutral ; therefore, R and X to neutral will be one-third the phase values. Another way of looking at this is that the resistance and reactance ohms vary with the square of the voltage, and since the phase voltage is $\sqrt{ } 3$ times the voltage to neutral, the phase resistance and phase reactance would be three times that to neutral. In

TABLE X-APPROXIMATION OF RESISTANCE AND REACTANCE VOLTS, OF IRON AND COPPER LOSSES AND OF MAGNETIZING CURRENT FOR TRANSFORMERS OF VARIOUS CAPACITIES

$\begin{gathered} \text { Capacity } \\ \text { of } \\ \text { Transformer } \\ \text { KV-A } \end{gathered}$	60 CYC1.ES PER SECOND					25 CYCLES PER SECOND				
	Percen: -Resistance	Percent -Reactance	l'ercent Loss		Percent Magoctizing Current	Percent Resistance	Percent. Resciance	Percent Lnss		Percent Ma<nctizing Current
			Iron	Copper				Iron	Copper	
$\begin{aligned} & 200 \\ & 30.3 \\ & 500 \end{aligned}$	1.5 1.3 1.2	5.5 5.6 6.0	1.4 1.3 1.2	1.5 1.3 1.2	10 9 8	2.6 2.15 1.85	4.0 4.0 4.1	1.1 1.0 1.0	$\begin{aligned} & 2.6 \\ & 2.15 \\ & 1.85 \end{aligned}$	$\begin{gathered} 10 \\ 10 \\ 9 \end{gathered}$
$\begin{array}{r} 750 \\ 1000 \\ 1500 \end{array}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 1.55 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 6.0 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 1.55 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 9 \\ & 8 \\ & 8 \end{aligned}$
$\begin{aligned} & 2000 \\ & 3000 \\ & 5000 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.75 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.75 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	1.3 1.2 1.1	$\begin{aligned} & 6.4 \\ & 6.8 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \\ & 0.5 \end{aligned}$	1.3 1.2 1.1	8 7 7
$\begin{array}{r} 7500 \\ 10000 \\ 15000 \end{array}$	$\begin{aligned} & 0.6 \\ & 0.6 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 8.9 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \\ & 0.55 \end{aligned}$	5 5 5	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 0.95 \end{aligned}$	7.8 8.0 8.0	0.5 0.5 0.6	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \\ & 6 \end{aligned}$
$\begin{aligned} & 25000 \\ & 35000 \\ & 50000 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{array}{r} 9.0 \\ 9.5 \\ 10.0 \end{array}$	$\begin{aligned} & 0.6 \\ & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	5 5 5	$\begin{aligned} & 0.9 \\ & 0.9 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$

*The actual ohms resistance and ohms reactance will vary as the square of the voltage. The values in above table must be considercd as only roughly approximale. They will vary materially with transformers woun 1 for different voltages
is neglible, the transformer impedance may be added directly to the line impedance, provided the electrical characteristics on the high-tension side of the trans.* formers are not required.

As the line becomes longer, the current changes in both amount and direction from point to point, as a result of the superimposed distributed charging current of the line. The result of this is that the impedance triangles of the line and of lowering and raising transformers change in both size and relative position; so that their individual impedances can no longer be added together and considered as all line impedance, without accepting an error in the results thus obtained. The complete diagram for long lines shown by Fig. 67 will be considered later.

TRANSFORMER IMPEDANCE TO NEUTRAI*

Transformer constants are referred to the high

[^28]calcuating the impedance to neutral, the results will be the same whether star or delta connection is used.

Even if the transformers at both ends of the transmission line are duplicates their impedance will not be the same if operated on different taps of the windings to accommodate different voltages. In such cases, their impedances will vary as the square of the voltages. For instance, if they are operated at 220 and 230 kv at the receiving and sending end respectively, then their impedances will have the relation of 220^{2} $\frac{230^{2}}{23}=0.915$. In other words, if the resistance and reactance of the receiving end transformers is 3.185 and 39.82 ohms respectively, the sending end transformers will have resistances and reactances of 3.48 r and 43.52 ohms respectively; provided transformer taps corresponding to this higher voltage are used.

The impedance in ohms of an 18000 kv -a, threephase, or of three $6000 \mathrm{kv}-\mathrm{a}$ single-phase transformers, connected in a bank, may be determined as fol-
lows. Assume that they are operated at 104000 volts between conductors (60046 to neutral) and that the resistance voltage is 1.04 percent and reactance voltage is 4.80 percent.

The single-phase values are:-

$$
\begin{gathered}
\frac{6000000}{107000}=57.7 \text { amperes } \\
R_{\mathrm{t}}=\frac{107000 \times 0.0104}{57.7}=18.75 \text { ohms resistance } \\
X_{\mathrm{t}}=\frac{104000 \times 0.048}{57.7}=86.52 \text { ohms reactanee }
\end{gathered}
$$

The values to neutral are, as stated above, onethird of the above ; but, for the sake of uniformity in determining values to neutral, should preferably be determined as follows:-

$$
\begin{gathered}
\frac{6000000}{600,06}=99.92 \text { amperes to neutral } \\
R_{\text {in }}=\frac{60046 \times 0.0104}{99.92}=6.25 \text { ohms resistance to neutral } \\
X_{\text {in }}=\frac{600,76 \times 0.0480}{99.9^{2}}=28.84 \text { ohms reactance to neutral }
\end{gathered}
$$

If two or more banks operate in parallel, the resulting impedance Z_{r} can be obtained by taking the re-
to the same kv-a base. For instance, if a 6000 kv -a and a $3000 \mathrm{kv}-\mathrm{a}$ transformer each have a resistance of 1.04 percent and a reactance of 4.8 percent, their impedance is 4.91 percent. Before combining the impedances, that of the 3000 kv -a unit should be put in terms of the $6000 \mathrm{kv}-\mathrm{a}$, and the resultant would be:-

$$
\begin{aligned}
Z_{\mathrm{r}} & =\frac{4.91 \times 9.82}{4.91+9.82}=3.27 \text { percent at } 6000 \mathrm{kva} . \\
& =0.69 \text { percent resistance volts at } 6000 \mathrm{kva} . \\
& =3.19 \text { percent reactance volts at } 6000 \mathrm{kvia} .
\end{aligned}
$$

If the impedance triangles of the two banks to be paralleled are considerably different (that is their ratio of resistance to reactance) it will be necessary to express the impedances in complex form. We have assumed above that the triangles are proportional, otherwise they would not divide the load evenly at all power-factors. Solving the preceding problem for the resultant impedance by complex notation, we get:

$$
\begin{aligned}
Z_{\mathrm{r}} & =\frac{(1.07+j 4.8) \times(2.08+j 9.6)}{(1.04+j 4.8)+(2.08+j 9.6)} \\
& =\frac{-43.917+j 19.968}{3.12+j 14.7}
\end{aligned}
$$

FIG. 67 -vector diagrams for short and long lines
ciprocal of the sum of the reciprocals of the individual impedance. Thus:-

$$
Z_{\mathrm{r}}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
$$

In the above example $Z_{\mathrm{t}}=1 \overline{1.04^{2}+4.8^{2}}=$ 4.91 percent.

To parallel two banks containing transformers duplicates of the above, we get, by the above rule, the following resultant impedance:-

$$
Z_{T}=\frac{4.9 I \times 4.9 I}{4.9 I+4.9 I}=2.45 \text { percent }
$$

Which is just half the impedance of a single bank, as is evident without applying the rule.

Where two or more banks are to be operated in parallel consisting of transformers not duplicates, then the above rule must be applied to determine the resultant impedance. If the impedances are expressed in percent, as is usual, then they must be both referred

$$
\begin{aligned}
& =\frac{48.25 \backslash 155^{\circ} 3^{\prime} 2^{\prime \prime} 8^{\prime \prime}}{14.734 \angle 77^{\circ} 46^{\prime} 29^{\prime \prime}} \\
& =3.27 \angle 77^{\circ} 46^{\prime} 29^{\prime \prime} \\
& =0 . \mathrm{hms} \\
& =0.69+j 3.19 \text { ohms }
\end{aligned}
$$

Which checks with the results determined above on the percentage basis.

THE AUXILIARY CONSTANTS

The graphical construction for short lines represented typically by the Mershon Chart is so generally known and understood that a similar construction modified to take into accurate account the distribution effect of long lines will readily be followed. Both the short and the long line diagrams are reproduced in Fig. 68. From these diagrams it will be seen how the three auxiliary constants correct or modify the short line diagram adapting it to long line problems. The two mathematical and three graphical methods of obtaining the auxiliary constants are indicated a^{t} the
bottom of this figure. Since the auxiliary constants are functions of the physical properties of the circuit and of the frequency only, they are entirely independent of the voltage or the current. Having determined

HCW THE AUXILIARY CONSTANTS MAY AE OBTAINED
$(A)=\left(s_{1}+j z_{2}\right)=\left[1+\frac{y z}{2}+\frac{y^{2} z^{2}}{24}+\frac{y^{3} z^{3}}{720}+\frac{r^{4} z^{2}}{40.320}+E T C.\right]$ (BY CONVERGENT SERIES-8EE CHARTXI) = COSH θ (BY REAL HYPERBOLIC FUNCTIONS-SEE CMART XVI)
= $\frac{\text { SINH 8/0 }}{\text { TANH } / 0}$ (CRAPNICAL-8EE KENNELLY CORREGTINO FACTOR CHART8 XVII-XIX-XX-XXI) - - COSH O (GRAPHICAL-SEE KENNELLY'S CMART ATLAS. MARVARO PPRESS) - COSH O (ALL CRAPHICAL FROM WLKINBON'S OMART "A"--8EE OHARTV)
 $\frac{2}{\frac{2}{Y}}$ SINH θ (IY REAL MYPERQOLIC FUNOTIONS-SEE CHART XVI)
= z BINH (GRAPHICAL - SEE KENNELLY'S CORRECTING FACTOR CMARTS XVII - XIX)
$=\sqrt{\frac{2}{Y}}$ SINT θ (CRAPNICAL-SEE KENNELLY'S CMART ATLAS. MARVARD PRESS)
= $\sqrt{\frac{z}{Y}}$ SINH θ (ALL ORAPMICAL FROM WILKINSON'S CHART "B"-SEE CHART VI)
 - $\frac{1}{\sqrt{\frac{2}{Y}}}$ SINH θ (BY REAL MYPERSOLIC FUNOTIONS - SEE CHART XV)
= Y Y SINH © (GRAPHICAL-SEE KENNELLY'S CORREOTING FA OTOR OHARTS XVII - XIX)
= $\frac{1}{2}$ ginh a (CRAPHICAL-SEE KENNELLIS OHART ATLAS, HARVARD PRESS)
$=\sqrt{\frac{2}{y}}$
WHERE $8=\sqrt{2 Y}=\sqrt{\frac{\sqrt{Y}}{Y}}$
FIG. 68-HOW THE AUXILIARY CONSTANTS MODIFY SHORT LINE dIAGRAMS ADAPTING TIIEM TO LONG LINE PROBLEMS
by any of the five methods referred to, the value for the auxiliary constants corresponding to a given circuit, the remainder of the solution for any receiving end current or voltage is readily performed graphically.

Constants a_{1} and a_{2}-If the line is short electrically the charging current, and consequently its effect upon the voltage regulation is small. In such a case constant a_{1} would be unity and constant a_{2} would be zero, and the line impedance triangle would be attached to the end of the vector $E R$ representing the receiving end voltage, since this vector also represents the sending end voltage at zero load.

If, however, the circuit contains appreciable capacitance, the e.m.f. of self-induction resulting from the charging current will result in a lower voltage at zero load at the sending end than at the receiving end of the line. Obviously, the load impedance triangle must be attached to the end of the vector representing the voltage at the sending end of the circuit at zero load. This is the vector $E R^{\prime}$ of the long line diagrams of Fig. 68. In such a circuit the effect of the charging current is sufficiently great to cause the shifting of the point R for a short line to the position R^{\prime} for the long line. The constants a_{1} and a_{2} therefore, determine the length and position of the vector representing the sending end voltage at zero load. Actually the constant a_{2} represents the volts resistance drop due to the charging current for each volt at the receiving end of the circuit. That is, the line $F R^{\prime}$ equals approximately one-half the charging current times the resistance R, taking into account, of course, the distributed nature of the circuit. For a short line, it would be sufficiently accurate to assume that the total charging current flows through one-half the resistance of the circuit. To make this clear, it will be shown later that, for a 220 kv problem, the resistance per conductor is $R=34.65$ ohms and the auxiliary constant $C_{2}=$ 0.00121 I mho. Thus, this line will take 0.0012 II ampere charging current, at zero load, for each volt maintained at the receiving end, and since $F R^{\prime}=$ approximately $I_{\mathrm{cc}} \times \frac{R}{2}$ we have $F R^{\prime}$ or $a_{2}=0.001211 \times$ $\frac{34.65}{2}=0.020980$. The exact value of a_{2} as calculated by hyperbolic functions, taking into account the distributed nature of the circuit is 0.020234 . Since the charging current is in leading quadrature with the voltage $E R$, the resistance drop $F R^{\prime}$ due to the charging current is also at right angles to $E R$.

The length of the line $F R$ or (one- a_{1}), represents the voltage consmed by the charging current flowing through the inductance of the circuit. This may also be expressed with small error if the circuit is not of great electrical length as $I_{\mathrm{cc}} \times \frac{X}{2}$. The reactance per conductor for the 220 kv problem is 178.2 ohms. Therefore, $F R=0.00121$ I $\times \frac{178.2}{2}=0.107900$ and $a_{1}=1-0.107900=0.892100$. The exact value of a_{1} as calculated rigorously, is 0.893955 .

Constants b_{1} and b_{2}-These constants represent respectively the resistance and the reactance in ohms,
as modified by the distributed nature of the circuit. The values for these constants, multiplied by the current in amperes at the receiving end of the circuit, give the $I R$ and $I X$ volts drop consumed respectively by the resistance and the reactance of the circuit. To illustrate this, the values of R and X for the 220 kv problem are 34.65 ohms and 178.2 ohms per conductor. The distributed effect of the circuit modifies these linear values of R and X so that their effective values are $b_{1}=32.198$ and $b_{2}=172.094$ ohms. The line impedance triangle, as modified to take into exact account the distributed nature of the circuit, is therefore smaller than it would be if the circuit were without capacitance.

Constants c_{1} and c_{2}-These constants represent respectively the conductance and susceptance in mhos as modified by the distributed nature of the circuit. The values for these constants, multiplied by the volts at the receiving end of the circuit, give the current consumed respectively by the conductance and the susceptance of the circuit. To illustrate, the linear value of c_{2} for the 220 kv problem is o.0012II mho. The distribution effect of the circuit modifies this linear value so that its effective value $c_{2}=0.001168$. The value of c_{1} is so small that its effect is negligible for all except for long circuits. An exception to this statement would be that if the line loss is very small compared to the amount of power transmitted the percent error in the value of line loss may be considerably increased if the effect of c_{1} is not included in the solution. If c_{1} is ignored, c_{2} will represent the charging current at zero load per volt at the receiving end. Thus c_{2} multiplied by the receiving end voltage, gives the charging current at zero load for the circuit. For the 220 kv problem $c_{2}=0.001168$ and this multiplied by 127020 , the re-
ceiving end voltage to neutral, gives 148.36 amperes charging current per conductor.

Referring to the formulas at the top of Fig. 68, $E_{\mathrm{r}}\left(a_{1}+j a_{2}\right)$ is that part of E_{s} which would have to be impressed at the sending end if $I_{\mathrm{r}}=0$, or the line was freed at the receiving end with E_{r} steadily maintained there. It may be called "free" component of $E_{\mathrm{B}}{ }^{*}$. Again $I_{\mathrm{r}}\left(b_{1}+j b_{2}\right)$ is that other part of E_{s} which would have to be impressed at the sending end, if $E_{\mathrm{r}}=0$, or the line was short-circuited at the receiving end, with I_{r} steadily maintained there. It may be called the "short" component of E_{8}.

Similarly, the term $I_{\mathrm{r}}\left(a_{1}+j a_{2}\right)$ is the component of I_{B} necessary to maintain I_{r} at the receiving end without any voltage there ($E_{\mathrm{r}}=0$) ; while $E_{\mathrm{r}}\left(c_{1}+\right.$ $j c_{2}$) is the component of I_{B} necessary to maintain E_{r} at the receiving end without any current there ($I_{\mathrm{r}}=$ 0). The reason that c_{1} is likely to be negative in ordinary power lines is because the complex hyperbolic angle of any good power transmission line has a large slope, being usually near 88 degrees. The sinh of sucb an angle, within the range of line lengths and sizes of 6 ordinarily present, is also near 90 degrees in slope. The surge impedance $Z_{0}=\sqrt{\frac{Z}{Y}}$ of such a line is not far from being reactanceless; but it usually develops a small negative or condensive slope. This means that the surge admittance $Y_{0}=\frac{I}{Z_{0}}$ usually develops a small positive slope. Consequently, C or the product E_{r} ($c_{1}+j c_{2}$) usually slightly exceeds 90 degrees in slope; or c_{1} becomes a small negative rectilinear component.
*See paper by Houston and Kennelly on "Resonance in A. C. Lines" in Trans. A. I. E. E. April, 1895

CHAPTER XVI
 A TYPICAL 220 KV PROBLEM

TO illustrate the method of determining the performance of long lines requiring phase modifiers for voltage control, the following 220 kv problem will be considered, which is typical of many likely to be considered in the near future. A line necessitating such large expediture would warrant a thorough investigation before determining the final design. The conclusions are given only for the purpose of illustrating the procedure.

The Problem-It is assumed that 300000 kw at 85 percent lagging power-factor is to be delivered a distance of 225 miles, at 220 kv , three-phase, 60 cycles. Two lines will be required, so that in case one is under repair, the other will transmit the entire 300000 kw load. Since the self-induced voltage would be excessive if the 300000 kw were transmitted in emergency over a single-circuit tower line, we will assume that each tower line will support two three-phase circuits. The cost of two threephase circuits per tower line will not be greatly in excess of a single circuit tower line employing conductors of double the cross-section. On this basis each of the four three-phase circuits will normally transmit 75000 kw and, under emergency condition, each of the two circuits on one tower line will transmit 150000 kw . Such a transmission is illustrated by Fig. 69*

Economic Size of Conductors-For a fixed transmission voltage and material of conductors, the most economic size of conductor will be found by applying Kelvin's law extended to include, in addition to the cost of conductors, that part of the cost of towers, insulators, line construction, phase modifiers, etc. which increases directly with the cost of conductors. Kelvin's law is as follows:-
"The most economical section of a conductor is that which makes the annual cost of the $I^{2} R$ losses equal to the annual interest on the capital cost of the conducting material plus the necessary annual allowance for depreciation". Stated another way, "The annual cost of the energy wasted, added to the annual allowance for depreciation and interest on first cost shall be a minimum".

[^29]In Table Y is shown a comparison of values of capitalized losses vs. first costs of conductors for four sizes of aluminum-steel cables considered in connection with this 220 kw problem**. The cost of power losses is based upon rates of $0.3,0.4$ and 0.5 cents per kw hour, an average load corresponding to 80 percent ofi. the full load loss and a capitalization of these losses at I5 percent. The cost of the cables is based upon 29 cents per pound for the complete cable (aluminum plus the steel). All tabulated data is based upon fotr three-phase circuits. The losses include those in the high voltage line only. If the capacity of transformers or phase modifiers varies materially for different conductors, the difference in their losses should be included.

If the base load power generated in such a large amount by water power costs 0.3 of a cent per kw-hr.,

F1G. 69-THE TRANSFORMER AND CONDENSER ARRANGEMENT UPON WHICH THE CALCULATIONS FOR THE 220 KV PROBLEM HAVE bEEN BASED.
It is not intended that this arrangement would, upon a complete study of the problem, be found to be the most desirable. Ii single-phase transformers were selected, possibly three banks for each double circuit would be found more desirable than four banks, as indicated above.
the values in Table Y show that the smallest size cable, 605000 circ. mil. will be the cheapest to install. At 0.3 cents per kw-hr. the power loss for this cable, capitalized at 15 percent, represents the equivalent of an investment of $\$ 2593000$ for the four three-phase circuits, whereas the cost of the conductors is $\$ 3224000$. If the cost of power loss is taken as 0.4 cents per kw-hr., the next larger cable will be the most economical size to use, provided that there is no increased cost of towers, insulators, etc. If the losses in transformers or condensers vary for the different sizes of cables compared such losses should be included with the conductor losses.

There is always a question as to what price should be charged in Kelvin's equation in estimating the cost of power loss. If all power saved could be promptly sold, the cost to allow might be considered the cost at the consumers meter. If, on the contrary, none of the power saved can be sold under any circumstances,

[^30]then the cost to allow is the cost at the generating switchboard. Intermediate cases may occur.

The conductor losses of Table Y were taken from the calculated values by the complete method A listed in Table V^{*}. It is usually sufficient to calculate the

TABLE Y-APPLICATION OF KELVIN'S LAW

Conductors Circ. Mill.	$\left\{\begin{array}{c} \text { Total Loss } \\ \text { in } 12 \\ \text { Conductors } \\ \mathrm{KW} \end{array}\right.$	Cost of Power lost In 12 Conductors, Capitalized at 15%			Cost of 12 Conductors at 20 c per Lh.
		At 0.3 c per Kw-hr.	At 0.4 C per Kw-hr	At 0.5 c per Kw-hr.	
*605 000	18504	\$2593000	\$ 3458000	\$4322000	\$3224000
715500	15840	\$2220000	\$2960000	\$3700000	\$3837000
795000	14304	\$2040000	\$2673000	\$3341000	\$4 244000
954000	11712	\$1641000	$\$ 2188000$	\$2736000	\$5011000

*Thia is the amalleat conductor which ia, in thia caae, permisaible on sccount of corona limitstions. These tahulstions sre total for four three-phsse circuita. It will usually be sufficiently accurate to calculate the conductor $I^{2} R$ loss for one aize of conductor and saaume thst the loss for other aizea will be proportional to their resistsncea. Thia ssaumes thst the diatribution of current throughout the length of circuit will be approximstely the same for the different aizes of conductora compared. The ahove dsta ia hssed upon 75000 kw si
85 percent power-factor, three-phase, 60 cyclea delivered over esch of 85 percent power-factor, three-phase, 60 cyclea, delivered over esch of the four circuits \& diatsnce of 225 miles at 220 kv with $850000 \mathrm{kv}-\mathrm{s}$
condenser in psrallel with the losd on each of the four circuits snd sn condenser in parallel with the losd on each of the four circuits snd sn
average load equivalent to 80 per cent of full load. It should be noted average load equivalent to 80 per cent of full load. It should be noted of the power loat, but give inatead the valuea at which theae losses ara capitalized.
loss in the conductors for one size of cable and to estimate it for other sizes of cable, assuming that this loss varies as the resistance of the conductors, that is, for a given line, frequency, load, delivery voltage and condenser capacity the current distribution in the line is approximately the same for various sizes of conductors likely to be considered. Since the conductor loss varies as the square of the current and directly as the resistance, it will be sufficient to estimate the loss for other conductors as being inversely proportional to their resistance.

The various constants corresponding to the four sizes of conductors considered are listed in Table Z. It may be interesting to note the variation in these constants corresponding to the different sizes of cable for the high-tension line alone, and also when the transformer impedances are included with the line impedance.

SOLUTION OF THE 220 KV PROBLEM

Assuming that 605000 circ. mil. alumi-num-steel cables work out as the most economical size, the next step is the determination of the auxiliary constants A, B, and C for this size of conductor, spacing and 60 cycles. (These constants would have previously been determined when determining the most economical size). Mathematically these constants may be calculated by real hyperbolic functions (Chart XVI) or by convergent series (Chart XI). Graphically, they may be obtained from Wilkinson's charts (Charts V, VI and
VII) or through the medium of Dr. Kennelly's charts
*In the Journal for Dec. 1921, p. 544.
(Charts XVIII, XIX, XX and XXI). When using charts it is desirable to read the results from them at two different times as a check against errors in reading, or the constants may be read from both the Wilkinson and Kennelly charts and the results compared. From Table V we find $r=0.154$ ohms, so that $R=0.154 \times$ $225=34.65$ ohms and $x=0.792$ so that $X=0.792^{\circ} \times$ $225=178.2$ ohms. From Table X we obtain $b=5.38$ $\times 10^{-6}$ so that $B=5.38 \times 225 \times 10^{-6}=0.001211$ mho. G is assumed here as zero.

From Wilkinson Charts-

$$
\begin{aligned}
a_{1} & =0.892 \\
\text { and since } r b & =0.828 \\
a_{2} & =0.020 \\
b_{1} & =32.2 \text { ohms } \\
b_{2} & =173.5 \text { ohms } \\
\text { and since } r b^{2} & =4.457 \\
c_{1} & =\text { (too small to read) } \\
c_{2} & =0.001 \text { I } 75
\end{aligned}
$$

From Dr. Kennelly's Charts-We must first obtain the hyperbolic complex angle of the circuit as fol-lows:-

$$
\begin{aligned}
& Z=34.65+j_{178} 7.2 \\
& =181.54+178^{\circ} 59^{\prime} 46^{\prime \prime} \\
& Y=0+j 0.001211 \\
& =0.001211 \quad 190^{\circ} \\
& Z Y=0.2198+\quad 168^{\circ} 59^{\prime} 46^{\prime \prime} \\
& \theta=\sqrt{ } \overline{Z Y}=0.4689 \quad 84^{\circ} 29^{\prime} 53^{\prime \prime} \\
& \text { From Chart XIX, } \frac{\text { Sinh } \theta}{\theta}=0.96+10.4^{\circ} \\
& =0.964<0^{\circ} 24^{\prime} 0^{\prime \prime} \\
& \text { From Chart XXI, } \frac { \text { Tanh } \theta } { \theta } = 1 . 0 7 8 5 \longdiv { 0 . 8 8 ^ { \circ } } \\
& = 1 . 0 7 8 5 \longdiv { P ^ { \circ } 5 2 ^ { \prime } 4 ^ { \prime \prime } }
\end{aligned}
$$

TABLE Z-CABLE AND CIRCUIT CONSTANTS CORRESPONDING TO A THREE-PHASE, 60 CYCLE CIRCUIT, 225 MILES LONG CONSISTING OF FOUR SIZES OF ALUMINUM CABLES OF AN ARRANGEMENT EQUIVALENT TO 21 FEET DELTA

*Since two 50000 kv -a banks of transformers will be required at each end the corresponding values for impedance will be half these amounts.

$$
\begin{aligned}
A=\frac{\operatorname{Sinh} \theta \mid \theta}{\operatorname{Tinh} \theta \mid \theta} & =\frac{0.964 \quad \angle 0^{\circ} 24^{\prime} 00^{\prime \prime}}{1.0785 \sqrt{0^{\circ} 5^{\prime} 4^{\prime \prime} 8^{\prime \prime}}} \\
& =0.8939 \angle 1^{\circ} 16^{\prime} 4^{\prime \prime} \\
a_{1} & =0.8937 \\
a_{2} & =0.01096
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
B=Z \frac{\operatorname{Sinh} \theta}{\theta} & =181.54 \angle 78^{\circ} 59^{\prime} 4^{\prime \prime} \times 0.964 \angle 10^{\circ} 24^{\prime} 00^{\prime \prime} \\
& =175.0\left\lfloor 79^{\circ} 23^{\prime} 4^{\prime \prime}\right.
\end{aligned} \\
& b_{1}=32.2 \text { ohms } \\
& b_{2}=17_{2} \text { ohms } \\
& C=Y \frac{\operatorname{Sinh} \theta}{\theta}=0.001211 \quad 120^{\circ} \times 0.96+\not 0.24^{\prime} 00^{\prime \prime} \\
& =0.001167120^{\circ} 24^{\prime} 00^{\prime \prime} \text { mho } \\
& c_{1}=-0.000008 \mathrm{mho} \\
& c_{2}=0.001167 \mathrm{mho}
\end{aligned}
$$

The auxiliary constants as obtained graphically and by exact mathematical solution, are given in Table ZZ . It is thus seen that the Kennelly charts, although primarily intended for correcting the linear impedance and the linear admittance of circuits for the equivalent π solution, are highly adaptable to determining the values of the auxiliary constants to a very close degree of accuracy. The use of these charts for obtaining auxiliary constants requires more arithmetical work than the use of the Wilkinson charts. For instance the hybolic angle, $\theta=\sqrt{\overline{Z Y}}$ of the circuit must first be calculated before the charts can be employed. The results, read from charts, must then be multiplied by the impedance and the admittance of the circuit for obtaining auxiliary constants B and C. Auxiliary constant A cannot be taken directly from a single Kennelly chart. To obtain this auxiliary constant from these charts it is necessary to divide the values read from two of these charts since $A=\frac{\sinh \theta / \theta}{\tanh \theta / \theta}$. Chart $\tanh \theta / \theta$ is constructed for angles up to and including 0.50 polar values. This makes it adapted to angles up to 1.0 polar value when used for determining correcting factors for the equivalent π solution. This is for the reason that for obtaining such correcting factors we enter this chart with $\theta / 2$. However for obtaining auxiliary constant A by means of values read from these charts we must enter this chart with θ in place of $\theta / 2$. This limits the use of the Kennelly charts for obtaining auxiliary constant A to circuit angles not exceeding 0.5 polar values. In case the circuit angle has a polar value greater than 0.5 , Wilkinson chart A may be used provided the line is not over 300 miles long. If the circuit is over 300 miles long the auxiliary constants should be determined by mathematical calculation.

In the following discussion the calculated values for the auxiliary constants will be used, since exact results are required for the purpose of comparing the results with those obtained by the approximate method, a description of which follows the complete solution.

NORMAL LOAD-COMPLETE SOLUTION

The complete solution for normal load is given by Chart XXIII. At the top is illustrated the circuit diagramatically. Underneath this is stated the load conditions, linear and the auxiliary constants for this circuit. The transformer data and method of determining the amperes iron loss, magnetizing current and impedance to the neutral of the lowering transformer is
also shown. Actually the impedance of raising and lowering transformers, even when duplicates, is slightly different when the connections are not made to similar taps. This difference is so slight (and so far as the raising transformer is concerned so unimportant), that for simplicity, we are assuming that both raising and lowering transformers have the same impedance. This comprises all the data required for a complete mathematical or graphical solution of this circuit.

Following the data is a complete graphical vector solution of this circuit with symbois placed on all vectors indicating the manner of obtaining their values. At the lower left hand corner is placed a complete mathematical solution of the problem, which parallels the graphical solution (one method of solution checking the other). In the calculations of the high-voltage circuit the current, in order to include the power-factor, must always be expressed in complex form referred to the vector of reference, as indicated by a dot under the symbol I.

At the lower right hand corner a method is indicated of determining the transmission loss from the calculated quantities. The loss in the high-tension line
TABLE ZZ-AUXILIARY CONSTANTS FOR 220 KV PROBLEM APPROXIMATE SOLUTION

	Calculated	From Wilkinson Chart	From Kenselly Chart
a_{1}	$0.893955=100 \%$	$0.892=99.78 \%$	$0.8937=99.97 \%$
a_{2}	$0.020234=100 \%$	$0.020=98.85 \%$	$0.01996=98.65 \%$
$\mathrm{~b}_{1}$	$32.198=100 \%$	$32.2=100 \%$	$32.2=100 \%$
$\mathrm{~b}_{2}$	$172.094=100 \%$	$173.5=100.82 \%$	$172=99.95 \%$
c_{1}	$-0.000008=100 \%$	can't read	$-0.000008=100 \%$
c_{3}	$0.001168=100 \%$	$0.001175=100.6 \%$	$0.001167=99.91 \%$

can be determined graphically by scaling off the voltage and the current at each end of the high-tension line and measuring the angle between the vectors representing the current and the voltage. The current times the voltage times the cosine of this angle will give the power at the point considered and the difference between the power as so determined at the two ends of the hightension line is the line loss. The losses in transformers and condensers are known and stated at the top of the chart.

The complete vector diagram is constructed as follows: First draw the horizontal line representing $E_{\text {LN, }}$, the voltage at the load to neutral. This should be drawn to as large a scale as possible. All other voltage vectors will of course be drawn to the same scale. The vector I_{L} representing the load current is now drawn to as large a scale as can be used without mixing the current vectors with the voltage vectors. This is drawn at an angle of $31^{\circ} 47^{\prime}$ from E_{LN} in the lagging direction, corresponding to a lagging load of 85 percent powerfactor. It usually works out that for normal load the power-factor at the receiving end should be slightly lagging and at the sending end slightly leading so that the average power-factor of the line will be close to unity. This will necessitate a phase modifier in parallel with the load, having approximately the capacity of the lagging kv-a in the load.

The lagging kv -a in the load is equal to the kv -a of the load times the sine of the angle of the load. In this case it is $88235 \times \sin 31^{\circ} 47^{\prime}=46500 \mathrm{kv}-\mathrm{a}$. The vector diagram is constructed on the basis of a 45000 kv -a condenser in parallel with the load. This condenser has a power loss of 4.72 amperes to neutral and since this is in phase with the load voltage, we trace from the end of the load current vector horizontally to the right a distance representing 4.72 amperes by the current scale. The current per terminal for the condenser is 118.09 amperes so that the leading component of the current input of the condenser is 18.00 amperes. Since this is leading it is drawn vertically upward from the last point determined. Actually we will not need to determine the 118 amperes leading component, but will complete the solid black condenser triangle, since the length of the input line is 188.09 amperes. To the vector sum of load and condenser currents thus determined we now add the leakage current of the lowering transformers, the lagging component of which materially effects the capacity of the phase modifiers required because of its nearly direct opposition to it under load. We have assumed that the leakage current required by the lowering transformers will be supplied by the phase modifier on account of its close electrical proximity to the lowering transformers. On this assumption the triangle representing this transformer leakage will be located as indicated. There is a loss current of 1.85 amperes in phase with the load voltage and a magnetizing current of 13.9 amperes in lagging quadrature with the load voltage. We thus find that the current I_{R} at the receiving end of the line is 204.17 amperes, lagging $5^{\circ} 1^{\prime}$ 16" behind the load voltage. In this case the magnetizing current of the lowering transformer reduces the effective capacity of the phase modifier by an amount of I3.9 amperes; that is by 5.3 percent of the total capacity of the lowering transformers.

We next determine the voltage at the high-voltage side of the lowering transformers; that is the voltage $E_{\text {RN }}$ at the receiving end of the transmission line. Knowing the resistance and reactance of the lowering transformer banks to neutral and the curent I_{R}, the transformer resistance voltage drop is plotted in phase with the current I_{R} and the reactance voltage drop in quadrature with the resistance drop as indicated. The voltage at the sending end E_{SN} of the transmission line is next determined by applying auxiliary constants A and B to the voltage and current respectively of the receiving end.

The base of the impedance triangle for the hightension line $I_{\mathrm{R}} \times b_{1}$ represents the resistance drop of the high-tension line in phase with the receiving end current. In quadrature to this is the reactance volts drop of the line $I_{\mathrm{R}} \times b_{2}$. The voltage at the sending end is thus determined to be 131858 volts which corresponds to slightly less than 230000 volts between conductors. An arc of a circle corresponding to the voltage to be maintained at the sending end will serve as
a guide in determining the proper capacity condenser necessary to maintain this sending end voltage. An increase in condenser capacity rotates the vector I_{R} in a counter-clockwise direction, swinging the line impedance triangle also in a counter-clockwise direction thus decreasing the voltage $E_{\text {SN }}$ and reducing the line drop. A decrease in condenser capacity rotates the vector I_{R} in a clockwise direction, swinging the line impedance triangle also in a clockwise direction, thus increasing the voltage E_{SN} and increasing the line drop. Thus the effect upon line voltage drop may be readily determined for condensers of various capacities.

The next step is to determine the current at the sending end. This is done by applying auxiliary contants A and C to the current and voltage respectively of the receiving end. It will be noted that the charging current is drawn as leading by 90 degrees the hightension voltage at the receiving end, which voltage is taken as the vector of reference as in previous discussions. The current at the sending end is thus determined to be 220.34 amperes leading the vector of reference by $35^{\circ} 12^{\prime}$. The impedance triangle for the raising transformers may now be drawn in, the resistance drop of same being drawn parallel with I_{s}. This then gives the voltage at the generators. The current at the generators is determined by adding vectorally to I_{s} the leakage of the raising transformers. It is assumed that the raising transformers will receive their excitation from the generators, in which case the leakage triangle will occupy the position shown, resulting in a current at the generators of 218.88 amperes.

NORMAL LOAD-APPROXIMATE SOLUTION

The approximate solution for normal load is given in Chart XXIV. It differs from the complete solution in that the impedance of the lowering transformers is added to and considered as a part of the line impedance so that there are no transformer impedance triangles to construct. It differs also in that, in the case illustrated, the conditions at the sending end only are obtained, whereas in the complete diagram the conditions at both sending end and generators were determined. If the condition at the generators in place of at the sending end is required, the impedance of the raising transformers would also be added to that of the line, the general construction of the diagram remaining the same as for the complete solution.

If it is not necessary to know conditions at both sides of the raising and lowering transformer banks, then it will be seen from a comparison of the two diagrams that the approximate solution will be simpler, although the results will be somewhat incorrect. For instance, for the 220 kv problem illustrated, the errors in the results will, according to tabulations in the lower right hand corner, vary from 0.88 to 2.38 percent. If the losses in condensers and transformers were not added to the load (as they are in both these complete and approximate methods) and the transformer mag-

CHART XXIII-220 KV PROBLEM-NORMAL LOAD
 (COMPLETE SOLUTION)

'(LOW TENSION VALUES REFERRED TO THE MIOH TENGIDN CIROUTM

LINEAR CONSTANTS
$Z=34.65+j 176.2$ OHMS
$Y=0+j .001211$ MHO

AUXILIARY CONSTANTS

(A) $=\left(8_{1}+j 9_{2}\right)=\operatorname{COSH} 8=.803 .068+j .020 .234=.80410 / 1.1 T 4 T$
(B) $=\left(\mathrm{b}_{1}+, \mathrm{D}_{2}\right)=2 \frac{\operatorname{sinH} \theta}{\theta}=\sqrt{\frac{2}{y}} \operatorname{sinH} 8=32.188+\mathrm{j} 172.084$ OHMS
 WHERE $E=\sqrt{2 Y}$

TRANSFORMERS

(TWO BANKS IN PARALLEL AT EACM END OF THE LINE) ON \&ABS DF |RESISTANCE VOLTS - $\quad 0.066$ \%

 VALUESTO NEUTRAL
$K V-A_{T N}=33.333 . \quad E_{T N}=127.020 . \quad I_{T N}=262.4$
$R_{T N}=\frac{.00068 \times 127.020}{282.4}=3.186$ OHMS RESISTANCE
$X_{T N}=\frac{.08225 \times 127,020}{282.4}=38.82$ ONMS REACTANCE MAONETIZING CURRENT $=\frac{.0530 \times 33.333 .333}{127.020}=13.9$ AMPS AT 127.020 VOLTS IRON LOSS $=\frac{.00706 \times 33.333 .333}{127.020}=1.86$ AMPS AT 127.020 volTs RONLDSS -235 KW TO NEUTRAL

NOTE-FROM THE VECTOR OIADRAM IT MAY BE BEEN THAT'THE RAISINO TRANSFORMERS WLL BE EXCITED BY A VOLTAGE EQUIVALENT TO I THE LEAKAGE CURRENT REQUIRED TO EXCTTE THE RAISINO TRANSFORMERS WLL THEREFORE EE
MADNETIZINO CURRENT $=13.6$ AMPS. AT 129.818 VOLTS IRON LOSS $=1.81$ AMPS. AT 129.814 VOLTS
$\mathrm{KW}_{\mathrm{C} \text {-Loss }}{ }^{-11800} \mathrm{KW}_{\mathrm{C} \text {-Loss-N }} \mathrm{N}^{-800}$
$\mathrm{I}_{\text {OLLOSS }}=4.72 \quad \mathrm{I}_{\text {OLOSS-N }}=4.72$ NOTE - TNE CONDENSER INDICATED BY BROKEN LINE CIRCLE SERVES AS A SPARE DURING NORMAL OPERATION BUT IS REQUIREO FOR THE EMERGENOY CONDITION.

LINE CHARACTERISTICS

LENOTH OF TRANSMISSION 225 MILES CONOUCTORS- $3-605.000$ OM 8 T. REINFOROED ALUMINUM DIAMETER OF CONOUCTORS Q53 ${ }^{\circ}$ SPACINO-EQUIVALENT TO 21^{\prime} DELTA SPACING

CALCULATION
 FOR RECEIVING-END

CURRENT AND VOLTAGE

$I_{L}=188.82-\mathrm{j} 121.97$ AMPS TOVEOTOR $E_{\text {IN }}$
$\mathrm{I}_{\mathrm{C}}=4.72+j 11.00 \quad 0080^{\circ} 0110^{-2}=.09018$ $\mathrm{T}^{\circ} \mathrm{C} .78 \mathrm{~F}$
$\mathrm{I}_{\mathrm{T}}=\underline{1.88-\mathrm{j}^{13.90}}$ $\begin{array}{ll}\mathbf{I}_{R}=203.39-j 1787 & \cos 8^{\circ} 36^{\circ} 10^{\circ}=.08974 \\ \text { SIN } 6^{\circ} 39^{\circ} 19^{\circ}=14903\end{array}$ - $204.17 \sqrt{50010}$ AMPS, TOVECTOR $E_{L N}$
$= 2 0 4 . 1 7 \longdiv { 0 ^ { \circ } 3 8 ^ { \circ } 1 8 ^ { \circ } }$ AMPS, TO VEOTOR OF REFERENOE

- 201.87-j 30.56
$E_{R N}=\sqrt{(127.020 \times 00818+204.17 \times 3.186)^{2}+(127.020 \times 007623+204.17 \times 30.62)^{2}}$
$=128.630 / 8^{\circ} 30^{\circ} 19^{\circ}$ VOLTS TO VECTOR I_{R}
CALCULATION FOR HIGH TENSION CIRCUIT

$E_{R N}(A)=114,080$ +j 2.003	$!_{R}($ A $)=181.08-j 23.23$
$!_{R}(B)=11.787+j 33.767$	$E_{R N}(C)=-1.03+j 180.24$
$E_{S N}=120.746+j 30.360$	$\mathrm{I}_{8}=180.05+j 127.01$
-131.688 /10,0024- Volts	- $220.34 \angle 36^{\circ} \cdot 12.00^{\circ}$ AMPS.

CALCULATION FOR GENERATOR VOLTAGE AND CURRENT
$E_{\text {OEN-N }}=\sqrt{(131.650 \times 94442+220.34 \times 3.185)^{2}+(131860 \times 32878-220.34 \times 30.02)^{2}}$

- $120.910 / 16^{\circ} 25^{\circ} 03^{\circ}$ VOLTS TO VECTOR I_{8}
- $129.910 \angle 10^{\circ} 46^{\circ} 57^{\circ}$ VOLTS
$\mathrm{KV}-\mathrm{A}_{8}=131.860 \times 220.34 \times 3=\mathbf{8 7 . 1}$ e3 PER 3 PHASE CIRDUIT KV-A OEN $=129.810 \times 218.88 \times 3=86.306$ PER 3 PHASE CIROUIT $K V-A_{C O}=131858 \times 180.24 \times 3=68.431$ PER 3 PHASE CIRCUIT
$220.34(.90394+j .28813)$
$=\quad 1.81-j 13.80$ (LEAKAGE OF RASINO TRANSFORMERS)
$J_{\text {OEN }-N}=\overline{214.20+j 46.04}$
- $218.06 \varliminf_{11^{\circ} 62^{\circ} 25^{\circ}}$ AMPERES TO VEOTOR $E_{\text {OEN }}$
- $210.86 / 31^{\circ} 36^{\circ} 25^{\circ}$ AMPERES

CHART XXIV-220 KV PROBLEM-NORMAL LOAD (APPRUXIMATE SOLUTION)

NORMAL LOAD	
PER 3 PHASE	PER PHASE
CIRCUIT	TO NEUTRAL
$\mathrm{KV}-\mathrm{A}_{L}=88.236$	$K V-A_{L N}=29.412$
K $W_{L}=16.000$	KW $\mathrm{LN}^{=25.000}$
PF $\mathrm{L}_{\mathrm{L}}=85 \% \mathrm{LAO}$.	PF LN $=86 \%$ LAG.
$E_{L}=220.000$	$E_{L N}=127.020$
$\mathrm{I}_{L}=231.65$	$\mathrm{I}_{\text {LN }}=231.56$
\%0 oroles	

CONDENSER

IONE REOUIRED)
3 PHASE TO NEUTRAL $\mathrm{KV}-\mathrm{A}_{\mathrm{C}}=45.000 \quad \overline{\mathrm{KV}-\mathrm{A}_{\mathrm{CN}}=15.000}$ $E_{C}=220.000 \quad E_{C N}=127.020$ $\mathrm{I}_{\mathrm{C}}=118.09 \quad \mathrm{I}_{\mathrm{ON}}=115.09$
$K W_{\text {C-LOss }}=1800 \mathrm{KW}_{\text {OLOSS-N }}=800$
$\mathrm{I}_{\text {CLOSs }}=4.72 \quad \mathrm{I}_{\text {C-LOSS-N }}=4.72$
NOTE - THE CONDENSER INDICATEO SY SROKEN LINE OIROLE SERVES AS A SPARE DURINO NORMAL OPERATION SUT IS REQUIRED FOR THE EMERGENOY Connition.

LINE CHARACTERISTICS
LENOTH OF TRANSMIBSION 225 MLLES
CONDUOTORS- $3-806.000 \mathrm{CM}$ ST. REINFOROED ALUMINUM OIAMETER OF CONDUOTORS 953° SPAOING- EQUIVALENT TO 21^{\prime} DELTA SPAOING

LINEAR CONSTANTS

$Z=37.035+j 218.02$ OHMS \star
THIS INOLUDES IMPEDANOE OF LOWERING TRANSFORMERS

AUXILIARY CONSTANTS

(A) $=\left(a_{1}+j \theta_{2}\right)=\cos H 9=.870783+j .021811$
(B) $=\left(b_{1}+j b_{2}\right)=z \frac{\operatorname{SiNH} \theta}{\theta}=\sqrt{\frac{Z}{Y}} \operatorname{SINH} \theta=34.6863+j 208.53$ OHMS
$(C)=\left(C_{1}+j C_{2}\right)=Y \frac{\operatorname{SINH} \theta}{\theta}=\frac{1}{\sqrt{\frac{Z}{Y}}} \operatorname{SinH} \theta=-.000 .009+j .001168$ MHO

TRANSFORMERS
(TWO BANKS IN PARALLEL AT EACH ENO OF THE LINE) FOR.TWO SANKS $\begin{aligned} & \text { MAGNETIZING CURRENT } \\ & \text { IRON LOSS } \\ & \text { I................ } \\ & \text { I }\end{aligned}$ VALUES TO NEUTRAL $K V-A_{T N}=33,333 . \quad E_{T N}=127,020 . \quad I_{T N}=262.4$ $\boldsymbol{R}_{\text {TN }}=\frac{.00658 \times 127.020}{202.4}=3.185$ OHMS RESISTANOE $X_{T N}=\frac{.08226 \times 127.020}{262.4}=36.82$ OHMS REACTANCE
MAGNETIZING CURRENT $=\frac{.0530 \times 33.333 .333}{127.020}=13.9$ AMPS AT 127.020 VOLTS IRON LOSS.. $=\frac{.00705 \times 33,333.333}{127.020}=1.86$ AMPS AT 127.020 VOLTS IRON LOSS $=236 \mathrm{KW}$ TO NEUTRAL
 $\mathrm{KV}-\mathrm{A}_{00}=129.315 \times 147.00 \times 3=67.084$ PER 3 PHASE CIRCUIT
netizing current were not taken into account, (as it also is in both these methods) the error resulting from the use of the approximate method would be considerably greater than the above values.

The simplified graphical approximate solution illustrated by Chart XXIV will yield results sufficiently accurate for preliminary work, although for final results it should be supplemented by a mathematical solution and, in cases of very long lines, a complete mathematical solution might be desirable. A complete solution as given by Chart XXIII may be followed as a guide in such cases.

The method of obtaining the auxiliary constants corresponding to the approximate solution is given below. The linear constants of the circuit including transformer impedance are determined as follows:-

	Resistance (Ohms)	Reactance (Ohius)
Line.	. 34.650	178.20
Transformers	- 3.185	39.82
Total........	. 37.835	218.02

Dividing these total values by 225 we obtain the following as the impedance per mile of the combined circuit.

$$
\begin{aligned}
& r=0.168 \mathrm{I} \text { ohms } \\
& x=0.969 \mathrm{ohms}
\end{aligned}
$$

TABLE ZZZ-AUXILIARY CONSTANTS FOR 220 KV PROBLEM, APPROXIMATE SOLUTION

Calculated	$\begin{aligned} & \text { From } \\ & \text { Witkinson Chart } \end{aligned}$	$\xrightarrow[\substack{\text { From } \\ \text { Kennelly Chart }}]{\text { nen }}$
$\mathrm{a}_{1}=0.870783=100 \%$	$\left\lvert\, \begin{aligned} & 0.892=102.44 \% \\ & 0.868=99.68 \% \text { (corrected) } \end{aligned}\right.$	$0.8713=100.05 \%$
$\mathrm{a}_{3}=0.021911=100 \%$	$0.0221=100.86 \%$	$0.02206=100.68 \%$
$\mathrm{b}_{1}=34.5653=100 \%$	$34.3=99.23 \%$	34.561 $=$
$\mathrm{b}_{2}=208.83=100 \%$	$211.2=101.14 \%$	8,
$c_{1}=-0.000009=100 \%$	$-0.00001=111.11 \%$	$-0.000009=100 \%$
$\mathrm{c}_{2}=0.001158=100 \%$	0.001163 $=100.43 \%$	$0.001159=100.09 \%$

The auxiliary constants as obtained graphically and by exact mathematical results are given in Table ZZZ.

The same remarks in regard to use of the Kennelly charts for obtaining the auxiliary constants as given under the complete solution also apply when the approximate solution is used. Wilkinson chart A, if used when transformer impedance is added to the line impedance, as in the approximate method, requires a correction to constant a_{1}. Constant a_{2} as read from this chart will be correct but constant a_{1} as read from the chart will be too high for the following reason. Constant c_{1} accounts for the rise in voltage along the line at zero load due to the charging current flowing through the line inductance adding directly to the sending end voltage. The section of Wilkinson chart A applying to constant a_{1} is based upon dis tance and frequency only, so that values read from this section would be the same for a giv-
The admittance per mile is assumed the same as en distance and frequency regardless of whether or not before namely:-

$$
\begin{aligned}
b & =5.38 \times 10^{-6} \mathrm{mho} \\
g & =0
\end{aligned}
$$

From IVilkinson's Charts

$$
\begin{aligned}
a_{1} & =0.892 \\
\text { and since } 1 . b & =0.904 \\
a_{2} & =0.221 \\
b_{1} & =34.3 \text { ohms } \\
b_{2} & =211.2 \text { ohms } \\
\text { and since } b^{2} & =4.865 \\
c_{1} & =0.000010 \\
c_{2} & =0.001163
\end{aligned}
$$

From Dr. Kennelly's Charts

$$
Z=37.835+j 218.02
$$

$$
=221.2880^{\circ} 09^{\prime} 23^{\prime \prime}
$$

$Y=0+j 0.001211$
$=0.001211120^{\circ}$
$Z Y=0.267971{ }^{170^{\circ} 09^{\prime} 23^{\prime \prime}}$
$Z Y$
from Chart XIX $\frac{\operatorname{Sinh} \theta}{\theta}=0.957 \not 0.45^{\circ}$
$=0.957{ }^{\circ}{ }^{\circ} 27^{\prime} 00^{\prime \prime}$
from Chart XXI $\frac { \text { Tanh } \theta } { \theta } = 1 . 0 9 8 \longdiv { 1 ^ { \circ } 0 ^ { \prime } 0 0 ^ { \prime \prime * } }$

[^31]transformer impedance is included with the line constants. This section of chart A therefore takes acount only of the voltage lowering effect of the charging current flowing through the line inductance. In addition to this, it flows also through the transformer inductance, which further lowers the value of a_{1}. The value of a_{1} read from the chart must therefore be reduced. From the chart, $a_{1}=0.892$ volt corresponding to a voltage rise of 0.108 volt which results from a linear conductance reactance of 178.02 ohms. Actually the reactance of the circuit including lowering transformers is 218.02 ohms or 22.5 percent greater. Increasing 0.108 volt by 22.5 percent we get 0.132 volt rise, so that a_{1} becomes $1.000-0.132=0.868$, which is 99.68 percent of the calculated results.

In the following solutions calculated values for the auxiliary constants are used since exact results are required for the purpose of comparing the results with those previously obtained by the complete solution.

$$
\begin{aligned}
& \mathbf{A}=\frac{\operatorname{Sinh} \theta / \theta}{\operatorname{Tanh} \theta 1 \theta}=\frac{0.957 \angle 0^{\circ} 27^{\prime} 00^{\prime \prime}}{1.098 \sqrt{1^{\circ} 00^{\prime} 00^{\prime \prime}}} \\
& =0.8716{ }^{1} \mathrm{I}^{\circ} 27^{\prime} \infty^{\prime \prime} \\
& a_{1}=0.8713 \\
& a_{2}=0.02206 \\
& B=Z \frac{\operatorname{Sinh} \theta}{\theta}=221.28 \quad \underline{80^{\circ} 09^{\prime} 23^{\prime \prime}} \times 0.957 \underline{\circ^{\circ} 27^{\prime} \omega^{\prime \prime}} \\
& =211.7^{6} \quad 80^{\circ} 3^{\prime} 6^{\prime} 23^{\prime \prime} \text { ohms } \\
& b_{1}=34.561 \mathrm{ohms} \\
& b_{2}=208.92 \mathrm{ohms} \\
& C=Y \frac{\operatorname{Sinh} \theta}{\theta}=0.001211 \quad 10^{\circ} \times 0.957 \angle 0^{\circ} 27^{\prime} 0^{\prime \prime} \\
& =0.0011589 \quad 100^{\circ} 27^{\prime} 00^{\prime \prime} \\
& c_{1}=-0.000009 \\
& c_{2}=0.001159
\end{aligned}
$$

EMERGENCY LOAD-COMPLETE SOLUTION

The complete solution for emergency load conditions shown by Chart XXV follows the same construction as covered by Chart XXIII for normal load. The difference being that the load is doubled and the condenser capacity for a circuit increased nearly four times. Thus to force double the amount of power through the line and transformer impedance, with the same voltage drop, it is necessary in this case, nearly to quadruple the condenser capacity per circuit. Thus to meet the emergency condition nearly double the total condenser capacity will be required. This large increase in condenser capacity necessitated drawing the current vectors to one half the scale used for current vectors in the normal load diagram.

emergency load-approximate solution

The approximate solution for emergency load shown by Chart XXVI follows the same construction as

In Fig. 70 are plotted curves* showing the phase modifier capacity required to produce certain voltages at the sending end corresponding to various receivingend loads at 85 percent power-factor and 220 kv . At 85 percent power-factor and 220 kv 200000 kw is approximately the maximum amount of power which may be transmitted through the lowering transformers and over this line of three 605000 circ. mil. cables if the sending end voltage is not permitted to exceed 230 kv . This is indicated by the fact that the curve corresponding to this load becomes flat when it reaches the 230 kv horizontal line. To deliver this maximum load at 220 kv through the impedance of this line will require a total condenser capacity of about $300000 \mathrm{kv}-\mathrm{a}$. The economic capacity of the line is reached at loads very much below the maximum theoretical limit of 200000 kw.

The sending end voltages corresponding to various in Chart XXIV for normal load with the exception of increased load and condenser capacity.

ZERO LOAD-COMPLETE SOLUTION
The complete solution for zero load is shown by Chart XXVII. In this case the load is made up of a lagging phase modifier load and the leakage of the lowering transformers. The same constructions are used as for the other complete solutions.

ZERO LOAD-APPROXIMATE SOLUTION

The approximate solution for zero load is shown by Chart XXVIII. It may be seen from the tabulated errors that this approximate method produces at zero load larger errors than the corresponding errors for loaded conditions. This is usually of little importance, however, as the light load conditions are generally not important.

PHASE MODIFIER CURVES

Frequently the normal and maximum amount of power to be transmitted is known ; that is the transmission line, condensers and transformers are designed for a certain maximum load and it is of little importance what condenser capacity would be required for other loads or for various sending end voltages. At other times, especially in preliminary surveys, such data may be very necessary.

FIG. 70-phase modifier Capacity required to maintain constant receiver voltage.
These curves indicate for a constant load power-factor of 85 percent lagging and constant load voltage of 220 kv , the amount of energy which may be delivered to the load over one 225 mile, 60 cycle, three-phase circuit consisting of three 605000 circ . mil alumi-num-steel conductors corresponding to various voltages between conductors at the high-tension side of the raising transformers. The values by which these curves were drawn were determined graphically. For 230 kv at the sending end the maximum amount of power which can be transmitted is approximately 200000 kw and to force this amount of power through the line impedance will require approximately 300000 kv -a capacity in phase modifiers.
capacities of phase modifiers in parallel with different receiving end loads for drawing curves such as shown by Fig. 70 are most readily obtained by the following graphical procedure. After auxiliary constants A and B for the circuit under investigation have been determined (preferably through the medium of both the Wilkinson and Kennelly charts) a tabulation of the current to neutral corresponding to each load for which curves are desired is made. A further tabulation of current to neutral for condensers of various capacities is made. The current to neutral which represents the loss in the various condensers, is also tabulated. The resist-

[^32]
CHART XXV-220 KV PROBLEM-EMERGENCY LOAD

 (COMPLETE SOLUTION)

CALCULATION FOR GENERATOR VOLTAGE AND CURRENT

$E_{\text {GEN-N }}-\sqrt{(132.164 \times .08818+453.4 \times 1.5826)^{2}+(132.184 \times .040368+453.4 \times 10.91)^{2}}$	453.4 (.9942-j. 10763)
- $133.582 \angle 8^{*} 10.23^{*}$ VOLTS TO VECTOR I_{S}	- 450.77-j4.75 - $3.52-\mathrm{j} 28.40$ (LEAKAOE OF RAISNO TRANSFORMERS)
$=133.562 \angle \Delta 0^{\circ} 30^{\circ}$ OT VOLTS	$\mathrm{I}_{\text {OEN-N }}=454.29-\mathrm{j} 75.21$
KV- $\mathrm{A}_{8}=132.184 \times 453.40 \times 3=179.708$ PER 3 PHASE CIRCUIT	- $4 8 0 . 4 7 \longdiv { 0 ^ { \circ } 2 4 0 ^ { \circ } 0 0 ^ { \circ } }$ AMPERES to vector E ${ }_{\text {GEN }}$
KV-A CEN $=133.852 \times 480.47 \times 3=184.490$ PER 3 PHASE CIRCUIT	= 480.47 /31.08. O1 AMPERES

CHART XXVI-220 KV PROBLEM-EMERGENCY LOAD

(APPROXIMATE SOLUTION)

mich tension line

$$
\begin{aligned}
& Z=34.86+j 178.2 \mathrm{OHMS} \\
& \mathbf{Y}=0+j .001211 \mathrm{MHO}
\end{aligned}
$$

LOWERINO TRANSFORMERS
$\mathbf{Z}_{\text {TN }}{ }^{1.1 .682 \overline{+}+j 16.810 H M S}$

TRANSFORMERS
(FOUR BANKS IN PARALLEL AT EACH ENO OF THE LINE)

$$
\begin{aligned}
& \mathrm{R}_{T N^{=1}=1.5826 \text { OHMS RESISTANCE }} \\
& \mathrm{X}_{T N^{*}}=18.9 \text { OHMS REACTANCE }
\end{aligned}
$$

$\mathrm{I}_{\mathrm{L}}=483.1{ }_{80} \quad \mathrm{CYCLES} \mathrm{I}_{\mathrm{LN}}=483.1$

CONDENSERS

FOUR 46.000 KV.A SYNOHRONOUS
CONOENSERS PER 3 PHASE CIRCUIT WHEN OPERATING AT FULL LOAD PROVIOE MORE COMPENSATION THAN REQUIREO FOR MEETING THE EMERGENCY CONOITIONS-SINCE BOTH 3 PHASE CIRCUITS ON THE SAME TOWERS WILL BE OPERATEO IN PARALLEL 7 CONOENSERS MAY SE USED FOR THE TWO CIRCUITS. THE BTH CONOENSER BEINO AVAILABLE AS A SPARE. UPON THIS GASIS THE CONOENSER OATA PER CIRCUIT IS AS FOLLOWS

3 PHASE	TO NEUTRAL
$K \sqrt{-A_{C}}=167.600$	$\overline{\mathrm{KV}-\mathrm{A}_{\mathrm{CN}}=52.500}$
$E_{C}=220.000$	$E_{\mathrm{CN}}=12 \mathrm{l} .020$
$\mathrm{I}_{\mathrm{C}}=413.34$	$\mathrm{l}_{\mathrm{CN}}=413.34$
$\mathrm{KW}_{\text {C-Loss }}{ }^{\mathbf{8}} \mathbf{8 3 0 0}$	KW ${ }_{\text {O-LOSS }-\mathrm{N}}=2100$
$\mathrm{I}_{0-\text { LOSS }}=10.53$	$\mathrm{ICHLCSS}-\mathrm{N}=16.63$

(A) $=\left(a_{1}+j a_{2}\right)=\cos { }^{2}=670783+j 02181$
A) $=\left(a_{1}+j a_{2}\right)=C$

LINEAR CONSTANTS

$Z=37.835+j 218.02$ OHMS
$Y=0+j .001211 \mathrm{MHO}$
\star THIS Incluoes impedance of lowering transformers
(B)
$=\left(b_{1}+j b_{2}\right)=z \frac{\operatorname{SiNH} B}{8}=\sqrt{\frac{2}{Y}} \sin H \theta=34.5663+j 208.83$ OHMS
(C) $=\left(\mathrm{c}_{1}+j \mathrm{C}_{2}\right)=r \frac{\mathrm{SINH} \mathrm{\theta} \theta}{\theta}=\frac{1}{\frac{2}{2}} \operatorname{SiNH} \theta=-.000 .009+j .001158$ MHO. WHERE $\theta=\sqrt{Z Y}$

MACNETIZING CURRENT $=27.8$ AMPS. AT 127.020 VOLTS
IRON LOSS $\ldots ~$
$=3.70$ AMPS. AT I 27.020 VOLTS IRON LOSS
IRON LOSS \qquad $=3.70$ AMPS. AT 127.020
$=470 \mathrm{KW}$ TO NEUTRAL
\qquad

ance, reactance, iron loss and magnetizing currents of the transformer banks to neutral should also be determined for all capacity transformer banks required. W'ith the above data tabulated any draughtsman can be instructed how to draw vector diagrams of the circuit to determine the sending end voltages corresponding to
ficient to locate the curve, although more points were calculated for drawing the curves of Fig. 70. This method of obtaining condenser capacities corresponding to sending end voltages is a cut and try method. It has one important advantage in its favor. That is, the results check each other, so that an error in one

CHART XXVII-220 KV PROBLEM-ZERO LOAD
 (COMPLETE SOLUTION)

(THIS CORRESPONDS TO NORMAL LOAD CONNECTIONS)

Abstract

 N OMGINEO WITH A MOMENTARY OVER SPEEO OF TME GENERATOAS MAY CAUEE THE AECEIVINC GNO VOLTAGCTO GREATLY EXCEEO TNE AMOVE VALUE.

CONDENSER
(ONE REQUIREO)
3 PHASE TONEUTRAL
$K V-A_{C}=30.000 \quad K V-A_{C N}=1.000$
$\begin{array}{ll}E_{\mathrm{C}}=220.000 & \mathrm{E}_{\mathrm{CN}}=127.020 \\ \mathrm{I}_{\mathrm{C}}=78.73 & \mathrm{I}_{\mathrm{CN}}=78.73\end{array}$
ERES
$\mathrm{H}_{\mathrm{OC}}=-1.04+j 152.89$ amperes
$=57.11 \angle 81^{\circ} 56^{\circ} 044^{\circ}$ AMPER
PF GEN $=14.8$ \% LEADING
$=84^{\circ} 44^{\prime} 31^{\circ} \mathrm{PF}_{\text {SO }}=9.18 \%$ LEADING
$Z=34.65+j 178.2$ OHMS
$Y=0+j .001211$ MHO
WHERE $\theta=\sqrt{\overline{Z Y}}$
CALCULATION FOR
RECEIVING-END CURRENT AND VOLTAGE

DETERMINATION OF LOSSES
$\begin{array}{ll}K W_{\text {LNO }} & =0 \\ K W_{\text {RNO }} & =130.724 \times 02.71\left(00880^{\circ} 21^{\prime} 2 T\right)=770\end{array}$

$K W_{\text {OEN-NO }}=130.208 \times 67.11100381^{1} 26^{\circ} 487=1100$
LOSSES TO NEUTRAL
LOWERINO TRANSFORMER8 ANO CONOENSER = 770 HION TENEION LINE OGT - 770 TOTAL LOSS TO NEUTRAL $=\frac{26}{1100}$

AS A PARTIAL CHECK
LOWERING TRANSFORMERS
(IRON LOS8 1.06×127.02
IARON LOS8 1.06×127.02
(OOPPER LOSS 92.712×3.1031
(OOPPER LOSS $\left.0.7 .71^{2} \times 3.108\right) \ldots . .$.
RAISING TRANSFORMERB
(IRON LOSS 1.80×130.205) $\quad 296$
(COPPER LOSS $70.35^{2} \times 3.106$)_- $\quad 10$ HIOH TENSION LINE
(VALUE ABOVE ASSUMED AS CORREOT $=\frac{87}{1100}$
EFFICIENCY
EFFIIIENOY. (AIOH TENSION LINE) $-\ldots=\frac{770}{867}=85.88 \%$

CALCULATION FOR GENERATOR VOLTAGE AND CURRENT

cos. $81^{\circ} 25^{\circ} 48^{\prime \prime}=.14802$
$=130.2088^{\circ} \cdot 31^{\circ} 50^{\circ}$ VOLTS TO VECTOR $\mathbf{I}_{S O}$
$=130.208 \angle 0^{\circ} 30^{\prime} 16^{\circ}$ VOLTS
$84^{\circ} 3 \mathrm{IV}^{\circ} 50^{\circ}\left\{\begin{array}{l}\text { COS }=.095316 \\ \mathrm{SIN}=.98546\end{array}\right.$
$70.381 .085315+j .98545$
$=8.71+j 70.04$
$=1.80-j 13.67$ (LEAKAGE OF RAISINO TRANSFORMERS)
$I_{\text {CEN N N }}=8.51+j^{58.47}$
$=67.11 / 81^{\circ} 26^{\circ} 48^{\circ}$ AMPERES TO VECTOR EGEN-NO
$=67.11 \angle 81^{\circ} 58^{\circ} 04^{\circ}$ AMPERES
$\mathrm{KV}-\mathrm{A}_{\text {SO }}=132.974 \times 70.38 \times 3=28.088$ PER 3 PHASE CIRCUIT
$\mathrm{KV}-\mathrm{A}_{\mathrm{GEN}-\mathrm{O}}=130.200 \times 57.11 \times 3=22.308$ PER 3 PHASE CIRCUIT
$\mathrm{KV}-\mathrm{A}_{\mathrm{OO}}=132.974(.001188 \times 148,510) \times 3=89.197$ PER 3 PHASE CIRCUIT \star \star BASED UPON H.T. LINE BEING OPEN AT RECEIVINO END.
the various receiving end loads and different phase modifier capacities.

The graphical method used in determining the values to plot the curves of Fig. 70, is illustrated by Fig. 71. Three solutions are illustrated, two with condensers of different size and one without condensers. Three such solutions for each load will usually be suf-
of the graphical constructions corresponding to a given load will be detected, since the point will not lay in the curve and an error in a curve corresponding to a given load will be detected by the curves of Fig. 72.

CAPAC1TY OF PIIASE MODIFIERS
The curves of Fig. 7o show that, for a constant delivered load, power-factor and voltage, the leading
capacity of phase modifiers required goes down as the Kne drop increases. For instance 75000 kw at 85 percent puwer-factor and 220 kv can be delivered over this line with 230 kv sending end voltage, if $43000 \mathrm{kv}-\mathrm{a}$ condenser capacity is placed in parallel with the load. If, however, a line drop of 20 kv is selected in place of 10 kv , the sending end voltage will be 240 kv and the corresponding condenser load will be reduced to approximately $30000 \mathrm{kv}-\mathrm{a}$. On the other hand this increased line drop will necessitate a greater capacity

The dotted line in Fig. 70 is simply the zero load line thrown over to the leading load side to facilitate studv in phase modifier capacity. For instance, projection from the points where the dotted line intersects a load curve will give the minimum capacity of phase modifier on the bottom scale and the corresponding sending end voltage on the vertical scale to the left. Thus with a load of 75000 kw , intersection of the dotted line with this load curve indicates that $33000 \mathrm{kv}-\mathrm{a}$ phase modifier capacity will be required both at this load and at zero

CHART XXVIII-220 KV PROBLEM-ZERO LOAD

(APPROXIMATE SOLUTION)

Abstract

(THIS CORRESPONDS TO THE NORMAL LOAO CONNEOTIONS) 迤

at zero load in order to maintain 240 kw constant at the sending end. Thus with 230 kv at the sending end, about 30000 kv -a reactor load will be required at zero load, whereas with 240 kv at the sending end, about $40000 \mathrm{kv}-\mathrm{a}$ reactor load will be required at zero load.

Obviously the smallest phase modifier capacity possible to maintain regulation is one in which full capacity leading will be required under maximum load and full capacity lagging under zero load. At half load such a phase modifier would operate at near zero $\mathrm{kv}-\mathrm{a}$.
load and that the corresponding sending end voltage will be approximately 236 kv . At 100000 kw load, nearly $50000 \mathrm{kv}-\mathrm{a}$ phase modifier capacity will be required, and the corresponding sending end voltage would be 250 kv .

As previously stated, phase modifiers which may be operated at rated load both lagging and leading are special, and cost more than standard phase modifiers. On account of unstable operation due to weakened field, standard condensers usually cannot be operated at lag-
ging loads above approximately 70 percent of their full load leading rating. To deliver $75000 \mathrm{kv}-\mathrm{a}$ at 85 percent power-factor reçuires approximately 42000 kv -a in phase modifier capacity with 230 kv at the sending end. To maintain the sending end voltage of 230 kv at zero
which determines the total capacity of phase modifiers, for the 220 kv problem. For instance at normal load, 43000 kv-a in capacity is required, whereas for the double or emergency load $157000 \mathrm{kv}-\mathrm{a}$ capacity (nearly four times) is required This large increase is due to the fact that the line charging current (which tends to reduce phase modifier capacity under load) has not changed, and that the line impedance volts has become twice as much, making it necessary to turn the line impedance triangle through a large angle in the counter-clockwise direction in order that the sending end voltage be not increased.

FIG. 72-pHASE MODIFIER CAPACITY REQUIRED FOR TIIE VARIOUS LOADS
These curves are plotted from values read from the curves of Fig. 70 and are on the basis of a constant load voltage of 220 kv .
load requires approximately 30000 kv -a lagging. This is 70 percent of the capacity leading, thus permitting of employing a standard $43000 \mathrm{kv}-\mathrm{a}$ condenser. To provide margin a $45000 \mathrm{kv}-\mathrm{a}$ standard condenser might be selected for this normal load condition.

Under emergency conditions (that is, double or 150000 kw load at 85 percent power-factor) 157000 $\mathrm{kv}-\mathrm{a}$ phase modifier capacity will be required if 230 kv is not to be exceeded at the sending end. If the generator can be operated during the emergency condition at increased voltage of, for instance, 240 kv , the phase modifier capacity could be reduced to approximately 140000 kv-a. However, too much liberty in variation of generator operating voltage should not be taken. If the voltage is held constant at the highvoltage side of the raising transformers, the generator operating voltage will have to be varied to compensate for the regulation of the sending end transformers, and to provide a still greater range in generator operating voltage might impose a hardship on the generator designers. The voltage drop through the transformers is small under load conditions, since the power-factor will be near unity, but under zero load condition the drop will be considerable, due to the low power-factor, especially if a large phase modifier load is required at zero load. It will be seen that it is the emergency condition

FIG. 7 I-GRAPHIC METIIO FOR DETERMINING THE Voltage at the sending end.

Corresponding to different condenser loads in parallel with a constant power load of 75000 kw at 85 percent power-factor and 220 kv. The results as plotted in Fig. 70 were obtained by similar constructions.

FIG. 73-VECTOR DIAGRAMS SHOW1NG THE EFFECT OF THE LENGTH of the line on the phase modiFIER CAPACITY REQUIRED

The diagrams represent a threc-phase, 60 cycle circuit, consisting of three 605000 circ. mil aluminum steel reinforced conductors, when delivering 75000 kw at 85 percent lagging powerfactor at a lond voltage of 220 kv with a sending end voltage of 230 kv.

The zero load curve on Fig. 70 is drawn for the normal load connection; that is, for two 50000 kv -1 transformer banks in parallel. For the emergency load four transformer banks in parallel will be required. The result of the increased magnetizing current consumed by four in place of two transformer banks will be to reduce the capacity of phase modifiers required under zero load. A second zero load line could be added, covering four transformer banks. Such a line would lie directly above the one for two transformer banks but would not materially affect the results. For load conditions of 100000 kw at 85 percent power-fac-

FIG. 74-CURVE SHOWING THE RELATION BETWEEN PHASE MODIFIER CAPACITY AND SENDING END VOLTAGE
For various receiving end loads of 85 percent lagging power-factor and a constant load voltage of 220 kv . These curves apply to a three phase, 60 cycle circuit consisting of three 605000 circ. mil aluminum steel conductors. The vector construction of these four lines is shown in Fig. 73.
tor and above, the points for the curves were determined on the basis of four transformer banks.

In the above it was assumed that the power-factor of the load would be 85 percent lagging. A long line such as this would probably feed into an extended distribution net work, having numerous load centers. At these load centers synchronous condensers would probably be located for the purpose of holding the voltage constant. This would necessitate operating the condenser leading at heavy loads thus raising the powerfactor of the entire system under load, and in effect reducing the capacity of phase modifiers required for voltage control at the receiving end of the line. This point should be investigated where a long line such as
this feeds a net work on which condensers are required for voltage control.

It may be desired to investigate the effect of line charging current on phase modifier capacity for lines of different lengths. For this purpose the vector diagrams Fig. 73, and the phase modifier curves, Fig. 74, were prepared. These vector diagrams and curves are based upon a constant load of 75000 kw at 85 percent power-factor delivered at 220 kv and a line drop of 10 kv . In other words the only variable for the four different lines is the length and this varies in equal increments.

The vector diagrams of Fig. 73 show the influence of line charging current upon condenser capacity. As the length of the line increases, the influence of the in-

FIG. 75-CURVES SHOWING THE VOLTAGE ON EACH Side of the raising transformers
Corresponding to condenser loads of various capacities in parallel with a constant load of 75000 kw at 85 percent power factor lagging and 220 kv . The vertical distance between the two voitage lines is the voltage drop or voltage rise through the raising transformers. For condenser loads up to 15000 kv -a there is a drop in voltage through the raising transformers. For condenser loads above 15000 kv -a there is a rise in voltage through the raising transformers.
creased line charging current is toward a reduction in condenser capacity; that is the line itself furnishes a large part of the leading current necessary to maintain the proper line voltage drop. If this line were longer than 450 miles, the line charging current at a certain length would be sufficient in itself to maintain the desired voltages at the two ends of the line without the aid of condensers. In such a case, however, a large reactor capacity would be required at zero and low loads to hold the receiving end voltage at a constant value.

The reason that a short line may necessitate more condenser capacities for voltage control than a long line is simple. For the 112.5 mile line the charging current will be about one half as much as for a 225 mile line. Since the line is only half as long this smaller charging curent will flow through only half the inductance so that the net result of half the line charging current and half the inductance will be about one fourth the voltage
boosting effect due to line charging current. On the other hand the line impedance will be only half as grear, but the net result will be more condenser capacity for the short line. A large part of the condenser capacity is required for neutralizing the lagging reactor component of the load.

Auxiliary constant A, as previously explained, accounts for the effect of the line charging curent flowing through the impedance of the circuit; that is, the voltage boosting effect of the charging current. Thus for the 112.5 mile line (Fig. 73) a_{1} which accounts for the line charging current flowing through the inductance of the circuit is near unity and a_{2} near zero, but for the 450 mile line a_{1} drops to 0.594 and a_{2} increases to 0.07508 . As the length of line increases, constant A moves the line impedance triangle to the left and raises its toe somewhat. The increased line impedance and
slightly increased current at the receiving end increases the size of the line impedance triangle.

The curves of Fig. 74 show the relation between phase modifier capacity and sending end voltage for diíferent receiving end loads of 85 percent lagging powerfactor and a constant load voltage of 220 kv . It is interesting to note the effect of distance for fixed size conductors upon the maximum amount of power which can be transmitted over a circuit, as evidenced by the load curves bending upward as the line length increase. It is also interesting to note the decrease in phase modifiers leading capacity and increase in phase modifier lagging capacity as the line becomes larger, as evidenced of the load curves shifting to the right. The curves, Fig. 75, show the voltage at each side of the raising transformer, corresponding to various condenser capacities in parallel with a constant load of 75000 kw at 85 percent lagging power-factor and 220 kw .

H. B. DWIGHT'S METHOD.

In the various methods for determining the performance of transmission lines which are described above, current and voltage vectors or corresponding vector quantities have been employed throughout. It was believed that solutions embodying the use of current and voltage vectors would be the more easily followed by the young engineer, for the assistance of whom this book has been primarily written.
H. B. Dwight worked out and published in book form formulas for determining the complete performance of circuits by the employment of quantities not generally employed in the methods described above. These quantities require a new set of symbols applicable to his meihod. Partiy to prevent confusion in symbols hut principally because his method has been so completely and clearly set forth and illustrated with numerous examples worked out in the two books referred to his method has not been detailed in this book. To include it here would simply be a duplication of what is already available in very complete form.

THE CIRCLE DIAGRAM

Varions forms of circle diagrams as an aid in determining the performance of short transmission lines have been frequently described by writers, notably by R. A. Philip'thru the medium of the A. I. E. E. transactions of February 1911. Following this H. B. Dwight worked out a solution and construction for a circle diagram which accurately takes into account the effect of capacitance in transmission lines that is, a circle diagram for long high voltage lines. This circle diagram consists of curves which indicate the phase modi-
fier capacity (leading or lagging) required to maintain a certain reciving end voltage corresponding to all valnes of delivered load up to the maximum capacity of the line. In other words it gives data such as is given by the curves of Fig. No. 80.

The next step in the development of the circle diagram was to so alter the constants upon which it is constructed that it will take accurately into account the localized impedance and loss in raising or lowering transformers or in both. Of course' the transformer impedance may be added to the line impedance as is frequently done and considered as distributed line impedance: Such procedure, will, however, in the case of the circle diagram for the line alone result in objectionable errors in the results. In order to correctly apply the circle diagram to long lines so as to accurately include the effect of transformers in the circuit it is necessary to develop new formulas for obtaining values for the constants by which the circle diagram is constructed. See articles on transmission line constants by R. D. Evans and H. K. Sels in the Electric Journal, page 306 July 1921, page 356 August 1921 and page 530 December 1921.

To the expent who spends much time investigating transmission problems the general use of the circle diagram should be of great assistance. It indicates performance at all loads, which with other methods would have to be obtained by a separate calculation or vector diagram construction for each load.

[^33]
I N D E X

Pages.
Accuracy of Various Methods--Comparative 119 \& 140
Admittance Correcting Factor for Kennelly Equivalent " π " Solution-Charts XX and XXI 100-101
Advantages of High Power Factor 134
Angle-Hyperbolic 88
Application of Tables to the Solution of Short Lines- Chart II 52
Long Lines-Chart VIII 70 70
Armature Current-Effect Upon Field Excitation of A . C. Generators 129-130
Armature Impedance-Effect Upon Voltage of A. C. Generators 130
Auxiliary Constants-Corresponding to Localized Capa- citance methods 112-113
Comparison of Results When Taken from Wilkinson and Kennelly Charts 146-151
Definition of 64-142
Determination by Convergent Series. 80 \& 82
Determination by Hyperbolic Functions, 96
Five Different Methods of Determining 143
How They Modify Short Line Diagrams 143
83
Tabulation for 64 Different Circuits 83
67
Wilkinson Chart for Obtaining A-Chart V 68
Wilkinson Chart for Obtaining B-Chart VI..............
Wilkinson Chart for Obtaining B-Chart VI.............. 68
69
Behavior of A. C. Generators when Charging a Trans- mission Line. 135
Bibliography on Solution of Circuits 109
On Cable 128
Cables-Capacitance of 3-Conductor 125-126
Capacitance and Susceptance of 3-Conductor-Table XXVII 126
Charging Kv-a for 3-Conductor-Table XXVIII...... 127
Effect of Stranding and Spiraling Upon Inductance 121-122
Inductance, Reactance, Impedance of 3 -.. Cable at 25 Cycles-Table XXV 123
Inductance, Reactance, Impedance of 3-Conductor Cable at 60 Cycles-Table XXVI. 124
Reactance of 3-Conductor Cable 121
Capacitance-Charging Current, Inductance-Chapter II 10
Definition of1 \& 20
Relation to Inductance. 21
Susceptance Bare Conductors, at 25 Cycles-T... 18Susceptance Bare Conductors at 60 Cycles-Table X
Three Conductor Cable. -126To Neutral per 1000 Feet of Single Bare Conductor-Table VIII16
Capacity of Synchronous Motor and Condensers forPower Factor Improvement.132of Phase Modifiers for Voltage Control Chapter XV
of Bare Conductors in air (heating limit) TableXXIII
Susceptance to Neutral Per Mile of Single Bare Con-138
ductor at 25 Cycles-Table IX.Susceptance to Neutral Per Mile of Single Bare Coni-ductor at 60 cycles--Table X.431718
Charging Current-At Zero Load
Capacitance, reactance-Chapter I II....20
Effect upon Conductor Loss34Of Short Lines.62
Relation in Single and Three Phase Circuits.. 20
Charging Kv-a-In three Phase Circuits Per Mile of 3 Bare Condnctors-Table XI 19
of 3 -Conductor Cables. 127
Charging Transmission Lines-Behavior of A. C. Gen- erators when. 136
Chart I Inductance 6If Application of Tables to Short TransmissionLines52
III Mershon Chart for Determining Line Drop inShort Lines54
IV Dwight Chart for Determining Line Drop in Short Lines. 56

Pages.
V Wilkinson Chart A for Determining AuxiliaryWilkinson Chart B_{2} for Determining Auxiliary67
VI Wilkinson Chart B for Determining Auxiliary V1 Wilkinson Chart B for Determining Auxiliary 68VII Wilkinson Chart C for Determining Auxiliary
Constants c_{1} and c_{2}.
VIII Application of Tables to Long Transmission 69
Lines IX Peters Efficiency Chart for Transformers 70
X Peters Regulation Chart for Transformers. 74
XI Determination of Auxiliary Constants by Con- vergent Series.
82
83
XII Auxiliary Constants of 64 Different Circuits..
XIII Calculation of Performance (Receiver End Conditions Fixed) 84
XIV Calculation of Performance (Sending End Conditions Fixed)... 86
87
XV Calculated Periormance of 64 Different Circuits
XVI Determination of Auxiliary Constants by Hy -
XVI Determination of Auxiliary Constants by Hy - perbolic Functions. 96
XVII Equivalent " π " Solution of Problem X 103
XVIII Kennelly Chart for Impedence Correcting Fac- tor (Angles 0 to .40). 98
XIX Kennelly Chart for Impedance Correcting Fac- tor (Angles .40 to 1.0) 99
XX Kennelly Chart for Admittance Correcting Fac- tor (Angles 0 to .20) 100
XXI Kennelly Chart for Admittance Correcting Fac- tor (Angles .20 to .50) 101
XXII Comparison of Results by Various Methods...... 118
XXIII 220 Kv . Problem-Normal Load (Complete Solution) 149
XXIV 220 Kv. Problem-Normal Load (Approxi- mate Solution) 150
XXV 220 Kv. Problem-Emergency Load (Com- plete Solution) 153
XXVI 220 Kv. Problem-Emergency Load (Approxi- mate Solution) 154
XXVII 220 Kv. Problem-Zero Load (Complete So- lution) 155
XXVIII 220 Kv. Problem-Zero Load (Approximate Solution) 156
Checking the Work 138
Choice of Various Methods 108
Circuits-Paralleling 41
Electric, Dielectric and Magnetic 1-2
Circular Functions 88
Sines, Cosines, Tangents-Table K 57
Common Transmission Voltages--Table H. 48
Comparison-Accuracy of 9 Different Method 118-119
Accuracy of 5 Methods of Including Transformers.... 140
of Calculated Capacitance of 3-Conductor Cables with test results 128
of 9 Different Methods-Chapter XII. 111
Complex Angle-Definition 90
Complex Hyperbolic Functions-Definition. 90-94
Dr. Keunelly's Model. 92
Complex Quantities-Definition 78
Condensers and Phase Modifiers. 131
Condensers and Synchronous Motors-For Power Factor Improvement-Chapter XIV. 129
Determination of Capacity 132-134
Condensers-Generators a 131
Installations of Large Capacity-Table U. 137
Location 132
Methods of applying-Chapter XII. 111
Mechanical Load Carried. 131
Ratings, Starting, "V" Curves, Losses, Etc. 131
Conductors-Capacitance (See Capacitance)
Economic Size. 45 \& 145
Effect of Unsymmetrical Spacing... 10
Effect of Stranding and Spiraling unon Inductance 9
Flux Distribution Around $\stackrel{3}{3}$
Heating of Bare Conductors in Air. 42-43
Heating of 3 -Conductor Cables 121-122Inductance (See Inductance)Impedance (See Impedance)Pages.
Reactance (Sec Reactance)Resistance (Sce Resistance)Weight of Bare-Table Et46
Constants-Auxiliary (See Auxiliary Constants)
Methods of Determining the Linear Constants 51
Transformer Constants Taken Into Account. 73 \& 139
Convergent Series for Determining the Auxiliary Constants 80-82Copper Loss of Transformers-Table X.141
Copper Conductors (Sce Conductors)
Corona-Effect of-Chapter IV. 35
Formulas
Voltage Limitation-Table XXII.36-3738
Correcting Factors-Charts for Impedance for Equivalent π Solution Charts XVIII and XIX 98-99
Charts for Admittance for Equivalent π Solution- Chart XX and XXI. 100-101
Mathematical Determination for Equivalent π Solu- tion 107
Cosines, Sines and Tangents of Angles-Table K 57
Cost-Relative Cost of High Tension Apparatus. 46
Power Factor Improvement by Synchronous Motors 135 135
Current and Voltage Determination Along Circuit-By Auxiliary Constants $62-64$ \& 76
by Hyperbolic Position Angles. 102-106
Degree-Subdivisions of, Table P. 110
Determination of-Capacity of Synchronous Motors and Condensers 132-134
Correcting Factor for Equivalent π Solution Mathe- matically 107
Frequency and Voltage 45
Dielectric Circuit. 2
Distribution of Current and Voltage Along the Circuit- By Auxiliary Constants. 22-64 \& 76
by Hyperbolic Position Angles. 102-106
by a Polar Diagram 108
Dwight Chart for Short Lines. 55-56
Economics Size of Conductors. 45 \& 145
Effect of Armature Current Upon Field Excitation ofA. C. Generators..129-130
Armature Impedance upon Terminal Voltage of A. C. Generators 130
Corona-Chapter IV35
Charging Current on Conductor Loss 34 108
Harmonies in Current and Voltage.
Harmonies in Current and Voltage.
Spiraling and Stranding of Conductors Upon Induc- tance 9
Transformers in the Line. \& 139
Corona-Chapter IV. 35
Effective Spacing of Conductors 10
Efficiency Chart for Transformer-Peters Chart IX... 74
Electric Circuit-The 2
Electric Propogation-Speed of. 40
Electric Wave-Length of. 40
Equivalent π Method-Charts for Impedance Correcting Factor-Charts XVIII \& XIX. 98-99
Charts for Admittance Correcting Factor-Charts XX \& XXI. 100-101
General
97
103
Example of Calculation-Chart XVII.............................
Example of Calculation-Chart XVII.............................
Mathematical Determination of the Correcting Fac-
Mathematical Determination of the Correcting Fac- tors 107
Equivalent "T" Solution-General 102
Estimating Tables-Quick-Chapter III 23
Exciting Transmission Lincs-Methods of 136
Field Excitation-Effect of Armature Current Upon 129-130
Flux-Effect of Armaturc Flux Upon Field Excitationof A. C. Generator.129-1 30
Distribution Around Conductor. 3-6
Formulas 7 \& 9
Formulas-Capacitance $11 \& 20$
Carrying Capacity $\& 20$
44 $\& 20$
44
Converg36-37
Inductance 7 \& 9
Transmission Line in Terms of the Auxiliary Con- stants 80
Transmission Lines of Short Length 59
Transmission Line in Terms of Hyperbolic Functions 80
Frequency Determination. 45
Pages.
Functions-Complex Fiunctions of Hyperbolic Angles. 90-94 88
Iyperbolic-Keal88
Hyperbolic-Complex 91
57
Gencrators-As Synchronous Condensers 131
Behavior When Charging Transmission Lincs.......... 136
Effect of Field Excitation Upon A. C. Generators. 129-130
Graphical Solution (See Solutions)
Harmonic Currents and Voltages-Effect of. 108
in Quarter Wave Resonance 41
Heating-Bare Conductors in Air. 42-43
Limits for Cables, General. 121-122
Tabulated Values for Cables-Table XXIV. 122
High Power Factor-Advantages. 134
High Tension Apparatus-Relative Cost-Table F 46
How High to Raise the Power Factor 132
Hyperbolic Angles-Real 88
Complex 90-94
Hyperbolic Functions-Applied to the Solution of Line Performance-Chapter XI: 95
Chapter X
Chapter X
88
Complex Angles
91
91
Formulas for Long Lines. 80
96
for Determining the Auxiliary Constants.
for Determining the Auxiliary Constants. 95
Inductance-Capacitance-Charging Current-Chapter II 10
Effect of Spiraling and Stranding of Conductors Upon
-
-
Formula \& 9
Graphic Solution-Chart I 6
8
8
Reactance and Impedance of 3-Conductor Cables at 25 Cycles-Table XXV 123
Reactance and Impedance of 3-Conductor Cables at 60 Cycles-Table XXVI 124
Relation to Capacitance. 21
Skin Effect and Resistance-Chapter I: 1
7
Installations of Large Phase Modifiers-Table U. 137
Impedance-Correcting Factor for Equivalent π Solu- tion-Charts XVIII and XIX \& 99
Effect of Armature Impedance Upon Voltage of A. C. Generators
130
130
Effect of Transformer Impedance in the Circuit... \& 139
Inductance and Reactance of 3-Conductor Cables at 25 Cycles-Table XXV 123
Inductance and Reactance of 3-Conductor Cables at 60 Cycles-Table XXVI 124
Transformer Impedance to Neutral 141
Iron Loss in Transformers-Table X. 141
Kennelly-Charts for Impedance Correcting Factors for Equivalent π Solution-Charts XVIII and XIX 98-99
Charts for Admittance Correcting Factors for Equiva- lent π Solution-Charts XX and XXI.
$100-10$
$100-10$
Equivalent π Solution-General 97
Equivalent π Solution-Example of Solution-Chart XVII 103
Model for Explaining Functions of Complex Angles 92
Light Speed-Relation to Inductance and Capacitance. 21
Location for Synchronous Condensers. 132
Localized Capacitance Methods-Chapter XII. 111
Auxiliary Constants Corresponding to.... 113
Losses in Transformers-Table X
141
141
Synchronous Condensers. 131
Magnetic Circuit-The 2
Magnetizing Current of Transformers. 141
Mechanical Load Carricd by Synchronous Condensers... 131
Mershon Chart-General 53
Mershon Chart-Chart III. 54
Where it Falls in Error When Applied to Long Lines 143
Methods of Exciting Transmission Lines 136 Solution (See Solution)Middle Condenser or Nominal T Solution115
Model for Explaining Complex Functions of Complex Hyperbolic Angles. 92-94

Pages.

Nominal " π " or Split Condenser Solution........................... 97 \& 113
"T" or Middle Condenser Solution................................. 115
Paralleling Transmission Lines.
Peeks Corona Formulas
36
Performance of Short Lines-Chapter VII.
Composite Lines.
Formulas for.......
Graphical Methods.
Mathematical Methods.
Procedure in Determining-Cliart II.
Performance of Long Lines-By Hyperbolic FunctionsChapter XI...
by Convergent Series-Chapter $1 \times$
by Graphical Method-Chapter VIII
by Localized Capacitance Methods-Chapter XII.......
Equivalent π Method.

Tabulated Performance of 64 Circuits-Chart XV....
Typical 220 Kv Problem-Chapter XVI........................
Performance of Long Lines Including Transformers........
87

Peters Efficiency Chart for Transformers-Chart IX.... Regulation Chart for Transformers-Chart X............
Phase Modifiers for Voltage Control-Chapter XV....... and Synchronous Condensers....
Installations of.
Curves of.
Capacity of..
Polar Diagram of Voltage and Current Distribution for Problem X

108
Position Angles-Explanation of..102-107
Mathematical Determination.. 107
Solution for Voltage and Current Along the Circuit by Hyperbolic.

02-106
Power Factor-Advantages in High Power Factor........ 134
Cost of Improvement...
Examples of Determination of Improvement..
Effect on Voltage Drop..
How High to Raise.. -Chapter XIV.
Propogation-Speed of Electric.
Quick Estimating.
Quantities-Complex... 78
Ratings of Synchronous Condensers.
Ratio of Reactance to Resistance at $25^{\circ} \mathrm{C}$. and 25 Cycles -Table VI..
60 Cycles-Table VII..
eactance and Resistance of Copper and Aluminum Conductors at 25 Cycles, Table IV.
60 Cycles-Table V
A High Reactance Problcm
Reactance-Capacitance and Charging Current-Chapter II..
Inductance and Impedance of 3 -Conductor Cables at 25 Cycles-Table XXV.
Inductance and Impedance of 3 -Conductor Cables at 60 Cycles, Table XXVI
Ratio of Reactance to Resistance at 25° C. and 25 Cycles-Table VI.
Ratio of Reactance to Resistance at 25° C. and 60 Cycles-Table VII...
Three-Conductor Cables..
Transformers
Regulation Chart-Dwights-Chart IV.
Mershons-Chart III:
Peters Transformer-Chart X.
Relation of Inductance to Capacitance.
Inductance and Capacitance to Speed of Light
Charging Current in Single and Three Phase System
Relative Cost of High Tension Apparatus-Table F..........
Resistance-Copper Conductors-General...............................
Copper Conductors-Per 1,000 Feet-Table I..........
sistance-Copper Conductors-General.................................
Copper Conductors-Per 1,000 Feet-Table I...........
Copper Conductors-Per Mile-Table II.
and Reactance of Copper and Alıminum Conductors -25 Cycles-Table IV..
and Reactance of Copper and Aluminum Conductors 60 Cycles-Table V
Ratio Reactance at 25 Cycles to-Table VI.
Ratio Reactance at 60 Cycles to-mable VII................ Transformers
Self Induction-Effect Upon Voltage Regulation 62
Short Lines-Formulas 59
Performance 49
Symbols 50
Single End Condenser Method. 112
Sines, Cosines and Tangents of Circular Angles. 57
Skin Effect-In Conductors 2
Resistance and Inductance-Chapter I. 1
3
Solution-A Typical 220 Kv. Problem.. 145
Choice of 108
Comparison of Various Methods-Chapter XII. 118-119
Comparison of Short and Long Line Diagrams.......... 72 \& 142
Complete for Long Lines Including Transformers..
Complete for Long Lines Including Transformers..
Dwight Chart 145
Equivalent π-General 97
Equivalent $\underset{T}{\pi}$ Example-Chart XVII: 103
Equivalent 102
51Graphical for Short Lines52
Graphical for Problem "X" 70
Graphical for Long Lines Including Transformers.. 145
Hyperbolic Functions-Chapter XI.
111
Localized Capacity-Chapter XII. 53-54
Middle Condenser or Nominal T Method... 115
Nominal π or Split Condenser Method. 97 \& 113
Position Angles. 02-106
Single End Condenser Method 112
Split Condenser or Nominal π Method. 113
Typical 220 Kv Problem-Chapter XVI 145
Spacing of Conductors-Equivalent 10
Split Condenser or Nominal π Solution. 113
Speed of Electric Propogation. 40
Speed of Light-Relation of Inductance and Capacitance to 21
Steinmetz's Three Condenser Method 116
Sub-division of a Degree-Table P 110
Susceptance-Thrce Conductor Cables-Table XXVII.. 126
Overhead Conductors at 25 Cycles-Table IX 17
Symbols-Corona 36
Line 50
Hyperbolic 95
Synchronous Condensers- (See Condensers)
Table I Resistance of Copper Conductors at Varions Temperatures per 1000 feet. 4Temperatures Per Mile5
III Inductance of Single Conductors per 1000 fcet
IV Resistance and 25 Cycle Reactance per Mile... 8
12
V Resistance and 60 Cycle Reactance Per Mile..... 13
VI Ratio of 25 Cycle Reactance to Resistance at 25° C 14
VII Ratio of 60 Cycle Reactance to Resistance at $25^{\circ} \mathrm{C}$ 15
VlII Capacitance of Single Conductor per 1000 feet 16
IX 25 Cycle Capacity Susceptance of Single Bare Conductors Per Mile 17
X 60 Cycle Capacity Susceptance of Single Bare Conductors Per Mile. 18
XI Charging Kv-a, 3 Phasc Circnits, Barc Conduc- tors Per Mile. 19
XII Quick Estimating Table for 220 and 440 Volts
XIII Quick Estimating Table for 550 and 1100 Volts 24
XIV Quick Estimating Table for 2200, 4000 and 4400 Volts 26
XV Quick Estimating Table for $6000,6600,10000$ and 11000 Volts 27
XVI Quick Estimating Table for $12,000,13,200,15,000$ and 16,500 Volts 28
XVIl Quick Estimating Table for $20,000,22,000,30,000$ and 33,000 Volts 29
XVIII Quick Estimating Table for $40,000,44,000,50,000$, and 60,000 Volts 30
XIX Quick Estimating Table for $66,000,70,000$, 80,000 and 88,000 Volts. 31
XX Quick Estimating Table for $100,000,110,000$, $120,000,132,000$ and 140,000 Volts 32
XXI Quick Estimating Table for $154,000,187,000$33
and 220,000 Volts..
XXII Approximate Voltage Limitations from Corona
Pages.
XXIII Heating Capaoity for $40^{\circ} \mathrm{C}$. Rise Bare Con- ductors 43
XXIV Carrying Capacity of Insulated Copper Con- ductors 122
Inductance, Reactance, Impedance at 25Cycles, 3-Conductor Cables123
XXVI Inductance, Reactance, lmpedance at 60 Cycles 3-Conductor Cables.XXVII Capacitance and Susceptance Per Mile of 3 -Conductor Paper Insulated Cables...................... 126124XXVIII Charging Kv-a of 3 -Conductor Cables PerMile126127
Tangents, Sines and Cosines of Circular Angles (Table K) 57
Three Condenser or Dr. Steinmetz Method. 116
Transformers-Constants 141
Effect in Circuit 139 139
Iron Loss, Impedance, Magnetizing Current. 141
Peters Efficiency Chart 74
75
75
Reactance, Resistancc. 141
Transmission Lines-Bchavior of A. C. Gencrators When Charging 136
Common Voltages

THIS BOOK IS DUE ON THE LAST DATE
STAMPED BELOW

BOOKS REQUESTED BY ANOTHER BORROWER ARE SUBJECT TO RECALL AFTER ONE WEEK. RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

103543

[^0]: *For a further description of these circuits see "Alternating Currents" by Prof. Carl E. Magnusson, from which Figs. I to 5 are reproduced with the permission of the author.

[^1]: These reslatance values do not take lato account skin effect. This should be considered when the larger conductors are used, partica, larly at tha higher frequencies. No allowance has beed made for locreased length due to sag when the conductors are snspended. The resist. anco values for the stran conductora ara two percant greater than for a solid rod of cross-saction equal to the total crosa-section of the wires of the cable.

 The change of reaiativity of copper per degrea C. ia a constant independent of the temparature of retarence and of the sample of cap per. This resistivity-tamperatura conatant is 0.0409 ohm (mil, foot). The fundanental resistivity uad ia calculating this table is tbo an neeled copper standard, viz. 0.15328 ohm (meter, gram) et 20 degress 0 .

[^2]:

[^3]: *See article by Pender \& Osborne in Electrical World of Sept. 22, 1910, Vol. 56.

[^4]: The heating limitations may, for the shorter distances, particularly if insuleted or conceeled conductors are employed, necessitete the ase of larger conductora, resulting in a correapandingly less transmission loss. In the case of insulatad or concealed conductora, should the k.v.e. values fell near or to the left of the heavy line, consult Table XXV for insulated or Table XXIII for bere conductors. The reactance for the larger conductora may be excessive, particularly for $60-c y c l e$ cervice, producing excessive voltage drop. - This may be ohviated hy inatallin two or more perallel circuite or using three-conductor cehlee. For single-phase circuite the k.t.e. will be one-half the teble veluen.

[^5]: Ths heating limitationg msy, for the shorter distances, particularly if insulated or cancesled conductors ars employed, necessitate the uss of larger conductors, resulting in s correspondingiy less trsnsmission loss. In ths csso of insulated or concesled conductors ohoula the k.v.a. values fall near or to the left of the heavy line, consult rable Nxp for insulsted or Tsble xalil for bare condactors. The resetancs for the isrger conductors may bs sxcessive, particularly for $60 \cdot \mathrm{cyc}$ els service, producing excessive voltage drop. Tbis may bs obviated by lastalling two or more parallel circnits or using tbres-conductor cables. For ainjle-phase circuits tbs k.v.a. Will bs one-half the tabls values.

[^6]: The loss due to corens will not be exeessive with any of the sbove conductors used at sees level for the voltages stated. For olerations obove eea level, eheck the values with Table XXII, especiality for the smaller conductiors. On long circuita of hish roltage, the effect of chare ing surrent (alloc corons and leakage loseses) will he to increase or decreaso the $\mathrm{I}^{2} \mathrm{R}$ loss, depending on the amount of losd and ita powerfactor. See Fig. 13

[^7]: The loss due to corona will not be excessive with any of ths above conductors used at sea level for the voltagea stated. Far elevations abors aed level, check the valuea with Table XXII, especislly for the smsller conductors. On long circuita of high voltage, the effect of charging current (also coroma and lesksge lossea) will be to increaas or decrease the Iar josa, depending on the amount of load and ita power.

[^8]: *For a complete study of this subject see "Transient Electric Phenomena and Oscillations" by C. P. Steinmetz, from which the above description of quarter wave resonance has largely been taken.

[^9]: *These tests are described in an article on "Phasing Out High Tension Lines" by E. C. Stone in the Journal for Nov. 1917, p. 448.
 .**This method is described in an article on "Determination of Polarity of Transformers for Parallel Operation" by W. M. McConahey, in the Journal for July 1912, p. 613. See also article on "Polarity of Transformers" by W. M. Dann in the Inurnal. for July igib, p. 350.

[^10]: *For a complete discussion of this subject see a paper by D. B. Rushmore before the Schencctady section A. I. E. E, May 17, 1912, on "Frequency" and an article by B. G. Lamme on "The Technical Story of the Frequencies" in the Journal for June, 1918, p. 230.

[^11]: *The basis of the construction of this chart is described in the Journal for July, 1915, p. 306. "

[^12]: *See article by Mr. H. B. Dwight on "Effect of a Tie Line between Two Substations" in the Electrical Review, Dec. 21, 1918, p. 966 . The formulas given in this article make complete allowance for the effect of capacitance and are very similar to the above.

[^13]: *Similar Charts by Mr. Wilkinson were published in the Electrical World for Mar. 16, 1918.

[^14]: *Similar Charts by Mr. Wilkinson were published in the Electrical World for Mar. 16, 1918.

[^15]: *Trans. Am. Inst. Elec. Engrs., Vol. X, page 175 "Impedance."
 **"Electrical World", Vol. XXIII, No. I, page 17, January 1894, "The Fall of Pressure in Long-Distance AlternatingCurrent Conductors."

[^16]: *For an extended explanation of j terms, reference is made to Dr. Charles P. Steinmetz's "Enginering Mathematics", and Dr. A. E. Kennelly's "Artificial Electric Lines."

[^17]: *A "hyperbolic angle", in the sense above described, is not the opening between two lines intersecting in a plane, but a quantity otherwise analogous to a circular angle and the argument x of the function sinh x, $\cosh x$, tanh x, etc. The use of the term hyperbolic angle can only be justified by its convenience of anology.

[^18]: To find the vector "correcting factor" rurresponding to any complex line angle θ, of a circuit, the angle θ is expressed in polar form with the slope in fractional degrees. The correcting factor as read from the chart will be in polar form with its slope in fractional degrees. Consult Table P for rapid conversion to minutes and seconds. For example:-
 $\theta=0.3 \angle 68^{\circ}$, correcting factor $=0.9803 \angle 0^{\circ} .60=0.0803 \angle 0^{\circ} 36^{\prime} 00^{\prime \prime}$
 $\theta=0.215 \angle 80^{\circ} .5$, correcting factor $=0.0927 \angle 0^{\circ} . \mathrm{J} 42=0.9927 \angle 0^{\circ} 08^{\prime} 56^{\prime \prime}$

[^19]: *These have been included with much other valuable material in "Transmission Line Formulas" by H. B. Dwight, published by D. Van Nostrand Co. of New York City.

[^20]: *These current values are taken from General Electric Bulletin No. . 49302 dated March 1917. They are in general slightly higher than those published by the Standard Underground Cable Company in their Hand Book dated 1906.

 * Chapter I.

[^21]: *Resistance based upon 100 percent conductivity at 25 degrees C (77 degrees F), including two percent allowance for spiral of strands and two percent allowance for spiral of conductors. For a temperature of 65 degrees C (I49 degrees F) these resistance values would be increased is percent.
 **The inductance is in millihenrics; the reactance and the impedance are in ohms.
 The table values were derived from the equation $L=0.08047+0.741 \log _{10} \frac{D}{R}$ where R is the radius of conductor, D the distance between centers of conductors expressed in the same terms as R, and L the inductance in millihenries per mile of each conductor. All values in the table are single-phase and based upon a single conductor one mile long.

[^22]: - *Reproduced from Alexander Russel's "Alternating Currents."

[^23]: *For a more detailed discussion of this subject the reader is referred to excellent articles by F. D. Newbury in the Electric Journal" of April 1918, "Armature Reaction of Polyphase Alternators"; and of July 1918, "Variation of Alternator Excitation with Load".
 **For the sake of simplicity this and the following statements are based upon the assumption that armature reaction does not shift the position of the field flux. Actually, under load, the armature reaction causes the position of the field flux to be shifted toward one of the pole tips, so that the position of the armature coil is not quite vertical at the instant of zero voltage in the coil.

[^24]: *These curves have been reproduced from H. B. Dwight's book "Constant Voltage Transmission".

[^25]: *The present-day design of maximun rated generators with a short-circuit ratio of about unity will barely circulate fullload current with normal no-load excitation. Under such conditions the terminal voltage would be practically zero regardless of the Dower-factor.

[^26]: *A method of checking arithmetical operations which requires little time and is an almost sure preventative of errors is that known as "casting out the nines." This method is given in most older arithmetics but has been dropped from many of the modern ones. A complete discussion is given in Robinson's "New Practical Arithmetic" published by The American Book Company.

[^27]: *A method for calculating a transmission line with transformers at each end in one solution is given in the articles by Messers. Evans and Sels in the Jourval for July, August, September, ct scq. 1921.

[^28]: *The writer desires to express his appreciation of helpful assistance and useful data on transformer characteristics received from Mr. J. F. Peters.

[^29]: *The calculations and the illustrations in this article were made in such a way as to be equally suited for the series of articles on "Electrical Characteristies of Transmission Circuits" and the Superpower Survey. Figs. 69, 70, 72 and 75 and Charts X.XII. X.XV and XXVII appear also in the report of the latter, which is printed as Profissional Paper 123 by the United States Gcological Survey. Similarly, Charts XXIV, XXVI and XXVIII appear in the Yaper by L. E. Imlay in the Journal of the A. I. E:. $E:$. for Junc, 1921. (Ed.)

[^30]: **An interesting graphic presentation of Kelvin's Law is given in the article by Mr. L. J. Moore in the Electrical World for Sept. 24, 1921, p. 612.

[^31]: *This was interpolated since this angle lies beyond the range of this chart.

[^32]: *Such curves were suggested by Mr. F. W. Peek, Jr. in an article on "Practical Calculations of Long Distance Transnission Line Characterictics" in the General Electrical Review for June, 1913, p. 430.

[^33]: *Transmission Line Formulas, 1913, D. Van Nostrand Co., New York City and Constant-voltage Transmission, 1915, John Wiley \& Sons Inc., New York City.

