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V.I

ASTRONOMY
fc JJBRAK* ,

PREFACE TO THE FIRST EDITION,

THE fact that certain bodies, after being rubbed,

appear to attract other bodies, was known to the

ancients. In modern times, a great variety of other

phenomena have been observed, and have been found

to be related to these phenomena of attraction. They

have been classed under the name of Electric phe

nomena, amber, fa&crpov, having been the substance

in which they were first described.

Other bodies, particularly the loadstone, and pieces

of iron and steel which have been subjected to certain

processes, have also been long known to exhibit phe

nomena of action at a distance. These phenomena,

with others related to them, were found to differ from

the electric phenomena, and have been classed under

the name of Magnetic phenomena, the loadstone, vayvi?,

being found in the Thessalian Magnesia.

These two classes of phenomena have since been

found to be related to each other, and the relations

between the various phenomena of both classes, so

far as they are known, constitute the science of Elec-

tromagnetism.

In the following Treatise I propose to describe the
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most important of these phenomena, to shew how they

may be subjected to measurement, and to trace the

mathematical connexions of the quantities measured.

Having thus obtained the data for a mathematical

theory of electromagnetism, and having shewn how

this theory may be applied to the calculation of phe

nomena, I shall endeavour to place in as clear a light

as I can the relations between the mathematical form

of this theory and that of the fundamental science of

Dynamics, in order that we may be in some degree

prepared to determine the kind of dynamical pheno

mena among which we are to look for illustrations or

explanations of the electromagnetic phenomena.

In describing the phenomena, I shall select those

which most clearly illustrate the fundamental ideas of

the theory, omitting others, or reserving them till the

reader is more advanced.

The most important aspect of any phenomenon from

a mathematical point of view is that of a measurable

quantity. I shall therefore consider electrical pheno

mena chiefly with a view to their measurement, de

scribing the methods of measurement, and defining

the standards on which they depend.

In the application of mathematics to the calculation

of electrical quantities, I shall endeavour in the first

place to deduce the most general conclusions from the

data at our disposal, and in the next place to apply

the results to the simplest cases that can be chosen.

I shall avoid, as much as I can, those questions which,

though they have elicited the skill of mathematicians,

have not enlarged our knowledge of science.



PREFACE. vii

The internal relations of the different branches of

the science which we have to study are more numerous

arid complex than those of any other science hitherto

developed. Its external relations, on the one hand to

dynamics, and on the other to heat, light, chemical

action, and the constitution of bodies, seem to indicate

the special importance of electrical science as an aid

to the interpretation of nature.

It appears to me, therefore, that the study of electro-

magnetism in all its extent has now become of the

first importance as a means of promoting the progress

of science.

The mathematical laws of the different classes of

phenomena have been to a great extent satisfactorily

made out.

The connexions between the different classes of phe

nomena have also been investigated, and the proba

bility of the rigorous exactness of the experimental

laws has been greatly strengthened by a more extended

knowledge of their relations to each other.

Finally, some progress has been made in the re

duction of electromagnetism to a dynamical science,

by shewing that no electromagnetic phenomenon is

contradictory to the supposition that it depends on

purely dynamical action.

What has been hitherto done, however, has by no

means exhausted the field of electrical research. It

has rather opened up that field, by pointing out sub

jects of enquiry, and furnishing us with means of

investigation.

It is hardly necessary to enlarge upon the beneficial
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results of magnetic research on navigation, and the

importance of a knowledge of the true direction of

the compass, and of the effect of the iron in a ship.

But the labours of those who have endeavoured to

render navigation more secure by means of magnetic

observations have at the same time greatly advanced

the progress of pure science.

Gauss, as a member of the German Magnetic Union,

brought his powerful intellect to bear on the theory

of magnetism, and on the methods of observing it,

and he not only added greatly to our knowledge of

the theory of attractions, but reconstructed the whole

of magnetic science as regards the instruments used,

the methods of observation, and the calculation of the

results, so that his memoirs on Terrestrial Magnetism

may be taken as models of physical research by all

those who are engaged in the measurement of any

of the forces in nature.

The important applications of electromagnetism to

telegraphy have also reacted on pure science by giving

a commercial value to accurate electrical measure

ments, and by affording to electricians the use of

apparatus on a scale which greatly transcends that

of any ordinary laboratory. The consequences of this

demand for electrical knowledge, and of these experi

mental opportunities for acquiring it, have been already

very great, both in stimulating the energies of ad

vanced electricians, and in diffusing among practical

men a degree of accurate knowledge which is likely

to conduce to the general scientific progress of the

whole engineering profession.
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There are several treatises in which electrical and

magnetic phenomena are described in a popular way.

These, however, are not what is wanted by those who

have been brought face to face with quantities to be

measured, and whose minds do not rest satisfied with

lecture-room experiments.

There is also a considerable mass of mathematical

memoirs which are of great importance in electrical

science, but they lie concealed in the bulky Trans

actions of learned societies
; they do not form a con

nected system; they are of very unequal merit, and

they are for the most part beyond the comprehension
of any but professed mathematicians.

I have therefore thought that a treatise would be

useful which should have for its principal object to

take up the whole subject in a methodical manner,

and which should also indicate how each part of the

subject is brought within the reach of methods of

verification by actual measurement.

The general complexion of the treatise differs con

siderably from that of several excellent electrical

works, published, most of them, in Germany, and it

may appear that scant justice is done to the specu

lations of several eminent electricians and mathema

ticians. One reason of this is that before I began
the study of electricity I resolved to read no mathe

matics on the subject till I had first read through

Faraday s Experimental Researches on Electricity. I

was aware that there was supposed to be a difference

between Faraday s way of conceiving phenomena and

that of the mathematicians, so that neither he nor
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they were satisfied with each other s language. I had

also the conviction that this discrepancy did not arise

from either party being wrong. I was first convinced

of this by Sir William Thomson *, to whose advice and

assistance, as well as to his published papers, I owe

most of what I have learned on the subject.

As I proceeded with the study of Faraday, I per

ceived that his method of conceiving the phenomena
was also a mathematical one, though not exhibited

in the conventional form of mathematical symbols. I

also found that these methods were capable of being-

expressed in the ordinary mathematical forms, and

thus compared with those of the professed mathema

ticians.

For instance, Faraday, in his mind s eye, saw lines

of force traversing all space where the mathematicians

saw centres of force attracting at a distance : Faraday

saw a medium where they saw nothing but distance :

Faraday sought the seat of the phenomena in real

actions going on in the medium, they were satisfied

that they had found it in a power of action at a

distance impressed on the electric fluids.

When I had translated what I considered to be

Faraday s ideas into a mathematical form, I found

that in general the results of the two methods coin

cided, so that the same phenomena were accounted

for, and the same laws of action deduced by both

methods, but that Faraday s methods resembled those

* I take this opportunity of acknowledging my obligations to Sir

W. Thomson and to Professor Tait for many valuable suggestions made

during the printing of this work.



PREFACE. xi

in which we begin with the whole and arrive at the

parts by anlaysis, while the ordinary mathematical

methods were founded on the principle of beginning
with the parts and building up the whole by syn

thesis.

I also found that several of the most fertile methods

of research discovered by the mathematicians could be

expressed much better in terms of ideas derived from

Faraday than in their original form.

The whole theory, for instance, of the potential, con

sidered as a quantity which satisfies a certain partial

differential equation, belongs essentially to the method

which I have called that of Faraday. According to

the other method, the potential, if it is to be considered

at all, must be regarded as the result of a summation

of the electrified particles divided each by its distance

from a given point. Hence many of the mathematical

discoveries of Laplace, Poisson, Green and Gauss find

their proper place in this treatise, and their appropriate

expression in terms of conceptions mainly derived from

Faraday.

Great progress has been made in electrical science,

chiefly in Germany, by cultivators of the theory of

action at a distance. The valuable electrical measure

ments of W. Weber are interpreted by him according

to this theory, and the electromagnetic speculation

which was originated by Gauss, and carried on by

Weber, Eiemann, J. and C. Neumann, Lorenz, &c. is

founded on the theory of action at a distance, but

depending either directly on the relative velocity of the

particles, or on the gradual propagation of something,
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whether potential or force, from the one particle to

the other. The great success which these eminent

men have attained in the application of mathematics

to electrical phenomena, gives, as is natural, addi

tional weight to their theoretical speculations, so that

those who, as students of electricity, turn to them as

the greatest authorities in mathematical electricity,

would probably imbibe, along with their mathematical

methods, their physical hypotheses.

These physical hypotheses, however, are entirely

alien from the way of looking at things which I

adopt, and one object which I have in view is that

some of those who wish to study electricity may, by

reading this treatise, come to see that there is another

way of treating the subject, which is no less fitted to

explain the phenomena, and which, though in some

parts it may appear less definite, corresponds, as I

think, more faithfully with our actual knowledge, both

in what it affirms and in what it leaves undecided.

In a philosophical point of view, moreover, it is

exceedingly important that two methods should be

compared, both of which have succeeded in explaining

the principal electromagnetic phenomena, and both of

which have attempted to explain the propagation of

light as an electromagnetic phenomenon, and have

actually calculated its velocity, while at the same time

the fundamental conceptions of what actually takes

place, as well as most of the secondary conceptions of

the quantities concerned, are radically different.

I have therefore taken the part of an advocate rather

than that of a judge, and have rather exemplified one
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method than attempted to give an impartial description

of both. I have no doubt that the method which I

have called the German one will also find its sup

porters, and will be expounded with a skill worthy

of its ingenuity.

I have not attempted an exhaustive account of elec

trical phenomena, experiments, and apparatus. The

student who desires to read all that is known on these

subjects will find great assistance from the Traite

d Electricite of Professor A. de la Rive, and from several

German treatises, such as Wiedemann s Galvanismus,

Biess Beibungseleldricitat, Beer s Einleitung in die Elek-

trostatik, &c.

I have confined myself almost entirely to the ma

thematical treatment of the subject, but I would

recommend the student, after he has learned, experi

mentally if possible, what are the phenomena to be

observed, to read carefully Faraday s Experimental

Researches in Electricity. He will there find a strictly

contemporary historical account of some of the greatest

electrical discoveries and investigations, carried on in

an order and succession which could hardly have been

improved if the results had been known from the

first, and expressed in the language of a man who

devoted much of his attention to the methods of

accurately describing scientific operations and their

results *.

It is of great advantage to the student of any

subject to read the original memoirs on that subject,

for science is always most completely assimilated when

*
Life and Letters of Faraday, vol. i. p. 395.
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it is in the nascent state, and in the case of Faraday s

Researches this is comparatively easy, as they are

published in a separate form, and may be read con

secutively. If by anything I have here written I

may assist any student in understanding Faraday s

modes of thought and expression, I shall regard it as

the accomplishment of one of my principal aims to

communicate to others the same delight which I have

found myself in reading Faraday s Researches.

The description of the phenomena, and the ele

mentary parts of the theory of each subject, will be

found in the earlier chapters of each of the four Parts

into which this treatise is divided. The student will

find in these chapters enough to give him an elementary

acquaintance with the whole science.

The remaining chapters of each Part are occupied

with the higher parts of the theory, the processes of

numerical calculation, and the instruments and methods

of experimental research.

The relations between electromagnetic phenomena
and those of radiation, the theory of molecular electric

currents, and the results of speculation on the nature

of action at a distance, are treated of in the last four

chapters of the second volume.

Feb. 1, 1873.
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WHEN I was asked to read the proof-sheets of the

second edition of the Electricity and Magnetism the

work of printing had already reached the ninth chapter,

the greater part of which had been revised by the

author.

Those who are familiar with the first edition will see

from a comparison with the present how extensive were

the changes intended by Professor Maxwell both in the

substance and in the treatment of the subject, and how

much this edition has suffered from his premature death.

The first nine chapters were in some cases entirely re

written, much new matter being added and the former

contents rearranged and simplified.

From the ninth chapter onwards the present edition

is little more than a reprint. The only liberties I have

taken have been in the insertion here and there of a

step in the mathematical reasoning where it seemed to

be an advantage to the reader, and of a few foot-notes

on parts of the subject which my own experience or that

of pupils attending my classes shewed to require further

elucidation. These footnotes are in square brackets.

There were two parts of the subject in the treatment
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of which it was known to me that the Professor con

templated considerable changes : viz. the mathematical

theory of the conduction of electricity in a network of

wires, and the determination of coefficients of induction

in coils of wire. In these subjects I have not found

myself in a position to add, from the Professor s notes,

anything substantial to the work as it stood in the

former edition, with the exception of a numerical table,

printed in vol. ii, pp. 317-319. This table will be found

very useful in calculating coefficients of induction in

circular coils of wire.

In a work so original, and containing so many details

of new results, it was impossible but that there should

be a few errors in the first edition. I trust that in

the present edition most of these will be found to have

been corrected. I have the greater confidence in ex

pressing this hope as, in reading some of the proofs, I

have had the assistance of various friends conversant

with the work, among whom I may mention particularly

my brother Professor Charles Niven, and Mr. J. J. Thom

son, Fellow of Trinity College, Cambridge.

W. D. NIVEN.

TRINITY COLLEGE, CAMBBIDGE,

Oct. i, 1881.
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ELECTEICITY AND MAGNETISM,

PEELIMINARY.

ON THE MEASUREMENT OF QUANTITIES.

1.] EVEEY expression of a Quantity consists of two factors or

components. One of these is the name of a certain known quan

tity of the same kind as the quantity to be expressed, which is

taken as a standard of reference. The other component is the

number of times the standard is to be taken in order to make up
the required quantity. The standard quantity is technically called

the Unit, and the number is called the Numerical Value of the

quantity.

There must be as many different units as there are different

kinds of quantities to be measured, but in all dynamical sciences

it is possible to define these units in terms of the three funda

mental units of Length, Time, and Mass. Thus the units of area

and of volume are defined respectively as the square and the cube

whose sides are the unit of length.

Sometimes, however, we find several units of the same kind

founded on independent considerations. Thus the gallon, or the

volume of ten pounds of water, is used as a unit of capacity as well

as the cubic foot. The gallon may be a convenient measure in

some cases, but it is not a systematic one, since its numerical re

lation to the cubic foot is not a round integral number.

2.] In framing a mathematical system we suppose the funda

mental units of length, time, and mass to be given, and deduce

all the derivative units from these by the simplest attainable de

finitions.

The formulae at which we arrive must be such that a person

VOL. I. B
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of any nation, by substituting for the different symbols the nu

merical values of the quantities as measured by his own national

units, would arrive at a true result.

Hence, in all scientific studies it is of the greatest importance

to employ units belonging to a properly denned system, and to

know the relations of these units to the fundamental units, so that

we may be able at once to transform our results from one system to

another.

This is most conveniently done by ascertaining the dimensions

of every unit in terms of the three fundamental units. When a

given unit varies as the ^th power of one of these units, it is said

to be of n dimensions as regards that unit.

For instance, the scientific unit of volume is always the cube

whose side is the unit of length. If the unit of length varies,

the unit of volume will vary as its third power, and the unit of

volume is said to be of three dimensions with respect to the unit of

length.

A knowledge of the dimensions of units furnishes a test which

ought to be applied to the equations resulting from any lengthened

investigation. The dimensions of every term of such an equa

tion, with respect to each of the three fundamental units, must

be the same. If not, the equation is absurd, and contains some

error, as its interpretation would be different according to the arbi

trary system of units which we adopt *.

The Three Fundamental Units.

3.] (1) Length. The standard of length for scientific purposes

in this country is one foot, which is the third part of the standard

yard preserved in the Exchequer Chambers.

In France, and other countries which have adopted the metric

system, it is the metre. The metre is theoretically the ten mil

lionth part of the length of a meridian of the earth measured

from the pole to the equator ;
but practically it is the length of

a standard preserved in Paris, which was constructed by Borda

to correspond, when at the temperature of melting ice, with the

value of the preceding length as measured by Delambre. The metre

has not been altered to correspond with new and more accurate

measurements of the earth, but the arc of the meridian is estimated

in terms of the original metre.

* The theory of dimensions was first stated by Fourier, Theorie de Chaleur, 160.
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In astronomy the mean distance of the earth from the sun is

sometimes taken as a unit of length.

In the present state of science the most universal standard of

length which we could assume would be the wave length in vacuum
of a particular kind of light, emitted by some widely diffused sub

stance such as sodium, which has well-defined lines in its spectrum.
Such a standard would be independent of any changes in the di

mensions of the earth, and should be adopted by those who expect
their writings to be more permanent than that body.

In treating of the dimensions of units we shall call the unit of

length [Z/]. If I is the numerical value of a length, it is under

stood to be expressed in terms of the concrete unit [Z], so that

the actual length would be fully expressed by I
[It].

4.] (2) Time. The standard unit of time in all civilized coun

tries is deduced from the time of rotation of the earth about its

axis. The sidereal day, or the true period of rotation of the earth,

can be ascertained with great exactness by the ordinary observa

tions of astronomers ; and the mean solar day can be deduced

from this by our knowledge of the length of the year.

The unit of time adopted in all physical researches is one second

of mean solar time.

In astronomy a year is sometimes used as a unit of time. A
more universal unit of time might be found by taking the periodic

time of vibration of the particular kind of light whose wave length
is the unit of length.

We shall call the concrete unit of time [T
7

],
and the numerical

measure of time t.

5.] (3) Mass. The standard unit of mass is in this country the

avoirdupois pound preserved in the Exchequer Chambers. The

grain, which is often used as a unit, is defined to be the 7000th

part of this pound.
In the metrical system it is the gramme, which is theoretically

the mass of a cubic centimetre of distilled water at standard tem

perature and pressure, but practically it is the thousandth part

of the standard kilogramme preserved in Paris.

The accuracy with which the masses of bodies can be com

pared by weighing is far greater than that hitherto attained in

the measurement of lengths, so that all masses ought, if possible,

to be compared directly with the standard, and not deduced from

experiments on water.

In descriptive astronomy the mass of the sun or that of the
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earth is sometimes taken as a unit, but in the dynamical theory

of astronomy the unit of mass is deduced from the units of time

and length, combined with the fact of universal gravitation. The

astronomical unit of mass is that mass which attracts another

body placed at the unit of distance so as to produce in that body

the unit of acceleration.

In framing a universal system of units we may either deduce

the unit of mass in this way from those of length and time

already defined, and this we can do to a rough approximation in

the present state of science ; or, if we expect* soon to be able to

determine the mass of a single molecule of a standard substance,

we may wait for this determination before fixing a universal

standard of mass.

We shall denote the concrete unit of mass by the symbol [M]
in treating of the dimensions of other units. The unit of mass

will be taken as one of the three fundamental units. When, as

in the French system, a particular substance, water, is taken as

a standard of density, then the unit of mass is no longer inde

pendent, but varies as the unit of volume, or as
[I/

3
].

If, as in the astronomical system, the unit of mass is defined

with respect to its attractive power, the dimensions of [M] are

For the acceleration due to the attraction of a mass m at a

ay*

distance r is by the Newtonian Law -j . Suppose this attraction

to act for a very small time t on a body originally at rest, and to

cause it to describe a space s, then by the formula of Galileo,

O

whence m = 2^-. Since r and s are both lengths, and t is a
t

time, this equation cannot be true unless the dimensions of m, are

[L*T-
2
].

The same can be shewn from any astronomical equa

tion in which the mass of a body appears in some but not in all

of the terms f.

* See Prof. J. Loschmidt, Zur Grosse der Luftmolecule, Academy of Vienna,

Oct. 12, 1865
;

G. J. Stoney on The Internal Motions of Gases, Phil. Mag., Aug.

1868 ;
and Sir W. Thomson on The Size of Atoms,

5

Nature, March 31, 1870.

t If a centimetre and a second are taken as units, the astronomical unit of mass

would be about 1-537 x 107
grammes, or 15 37 tonnes according to Baily s repetition

of Cavendish s experiment. Baily adopts 5 6604 as the result of all his experiments

t* the mean density of the earth, and this, with the values used by Baily for the

dimensions of the earth and the intensity of gravitation at its surface, gives the above

&amp;gt;-alue as the direct result of his experiments.
*f
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Derived Units.

6.] The unit of Velocity is that velocity in which unit of length
is described in unit of time. Its dimensions are [X2

7 &quot; 1

].

If we adopt the units of length and time derived from the

vibrations of light, then the unit of velocity is the velocity of

light.

The unit of Acceleration is that acceleration in which the velo

city increases by unity in unit of time. Its dimensions are [Z2
7 &quot;2

].

The unit of Density is the density of a substance which contains

unit of mass in unit of volume. Its dimensions are [JfZ/~
3
],

The unit of Momentum is the momentum of unit of mass moving
with unit of velocity. Its dimensions are \_MLT~

l

~\.

The unit of Force is the force which produces unit of momentum
in unit of time. Its dimensions are [MLT~2

~].

This is the absolute unit of force, and this definition of it is

implied in every equation in Dynamics. Nevertheless, in many
text books in which these equations are given, a different unit of

force is adopted, namely, the weight of the national unit of mass;
and then, in order to satisfy the equations, the national unit of mass

is itself abandoned, and an artificial unit is adopted as the dynamical

unit, equal to the national unit divided by the numerical value of

the intensity of gravity at the place. In this way both the unit of

force and the unit of mass are made to depend on the value of the

intensity of gravity, which varies from place to place, so that state

ments involving these quantities are not complete without a know

ledge of the intensity of gravity in the places where these statements

were found to be true.

The abolition, for all scientific purposes, of this method of measur

ing forces is mainly due to the introduction by Gauss of a general

system of making observations of magnetic force in countries in

which the intensity of gravity is different. All such forces are

now measured according to the strictly dynamical method deduced

from our definitions, and the numerical results are the same in

whatever country the experiments are made.

The unit of Work is the work done by the unit of force acting

through the unit of length measured in its own direction. Its

dimensions are
[MIPT&quot;*].

The Energy of a system, being its capacity of performing work,

is measured by the work which the system is capable of performing

by the expenditure of its whole energy.
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The definitions of other quantities, and of the units to which

they are referred, will be given when we require them.

In transforming the values of physical quantities determined in

terms of one unit, so as to express them in terms of any other unit

of the same kind, we have only to remember that every expres

sion for the quantity consists of two factors, the unit and the nu

merical part which expresses how often the unit is to be taken.

Hence the numerical part of the expression varies inversely as the

magnitude of the unit, that is, inversely as the various powers of

the fundamental units which are indicated by the dimensions of the

derived unit.

On Physical Continuity and Discontinuity.

7.]
A quantity is said to vary continuously if, when it passes

from one value to another, it assumes all the intermediate values.

We may obtain the conception of continuity from a consideration

of the continuous existence of a particle of matter in time and space.

Such a particle cannot pass from one position to another without

describing a continuous line in space, and the coordinates of its

position must be continuous functions of the time.

In the so-called equation of continuity, as given in treatises

on Hydrodynamics, the fact expressed is that matter cannot appear

in or disappear from an element of volume without passing in or out

through the sides of that element.

A quantity is said to be a continuous function of its variables

if, when the variables alter continuously, the quantity itself alters

continuously.

Thus, if u is a function of a?, and if, while x passes continuously

from # to a?!,
u passes continuously from UQ to u19 but when sc

passes from ^ to #
2 ,
u passes from u{ to u

z , u{ being different from

%, then u is said to have a discontinuity in its variation with

respect to x for the value x= xl9 because it passes abruptly from ^
to u{ while x passes continuously through #r

If we consider the differential coefficient of u with respect to x for

the value x=ce1
as the limit of the fraction

when x.2 and XQ are both made to approach ^ without limit, then,

if a? and #
2 are always on opposite sides of aslt

the ultimate value of

the numerator will be u^u^ and that of the denominator will

be zero. If u is a quantity physically continuous, the discontinuity
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can exist only with respect to the particular variable x. We must

in this case admit that it has an infinite differential coefficient

when 0?=^. If u is not physically continuous, it cannot be dif

ferentiated at all.

It is possible in physical questions to get rid of the idea of

discontinuity without sensibly altering the conditions of the case.

If OCQ is a very little less than x^ ,
and #2 a very little greater than

#!, then u will be very nearly equal to u^ and n
2 to u{ . We

may now suppose u to vary in any arbitrary but continuous manner

from u to u
2
between the limits # and a?

2 . In many physical

questions we may begin with a hypothesis of this kind, and then

investigate the result when the values of # and #2 are made to

approach that of x and ultimately to reach it. If the result is

independent of the arbitrary manner in which we have supposed

u to vary between the limits, we may assume that it is true when it,

is discontinuous.

Discontinuity of a Function of more than One Variable.

8.] If we suppose the values of all the variables except x to be

constant, the discontinuity of the function will occur for particular

values of #, and these will be connected with the values of the

other variables by an equation which we may write

4&amp;gt;

=
&amp;lt;J&amp;gt;(0,y,s,&c.)

= 0.

The discontinuity will occur when $ = 0. When &amp;lt; is positive the

function will have the form F
2 (x, yt z, &c.). When &amp;lt; is negative

it will have the form F
1 (x,y 9 z, &c.). There need be no necessary

relation between the forms F
l
and F

2
.

To express this discontinuity in a mathematical form, let one of

the variables, say #, be expressed as a function of $ and the other

variables, and let F
1
and F2 be expressed as functions of $,y, z, &c.

We may now express the general form of the function by any
formula which is sensibly equal to F2 when $ is positive, and to

F
1
when $ is negative. Such a formula is the following

F

As long as n is a finite quantity, however great, F will be a

continuous function, but if we make n infinite F will be equal to

F
2 when &amp;lt; is positive, and equal to F^ when

&amp;lt;p

is negative.
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Discontinuity of the Derivatives of a Continuous Function.

The first derivatives of a continuous function may be discon

tinuous. Let the values of the variables for which the discon

tinuity of the derivatives occurs be connected by the equation

&amp;lt;

= $(x,y,z...) = 0,

and let F
l
and F2 be expressed in terms of &amp;lt; and ^1 other

variables, say (y, z . .

.).

Then, when &amp;lt; is negative, Fl
is to be taken, and when &amp;lt; is

positive F2
is to be taken, and, since F is itself continuous, when

&amp;lt; is zero, Fl
= F2

.

Hence, when d&amp;gt; is zero, the derivatives -=-1 and -~ may be
u&amp;lt;(p a&amp;lt;p

different, but the derivatives with respect to any of the other

variables, such as =-^ and =-^
,
must be the same. The discon-

dy dy

tinuity is therefore confined to the derivative with respect to
(/&amp;gt;,

all

the other derivatives being continuous.

Periodic and Multiple Functions.

9.] If u is a function of x such that its value is the same for

x, iv+ a
t x-\-na, and all values of x differing by a, u is called a

periodic function of a?, and a is called its period.

If x is considered as a function of u, then, for a given value of

n, there must be an infinite series of values of x differing by-

multiples of a. In this case x is called a multiple function of u
}

and a is called its cyclic constant.

S] SY*

The differential coefficient -=- has only a finite number of values
du

corresponding to a given value of u.

On the Relation of Physical Quantities to Directions In Space.

10.] In distinguishing the kinds of physical quantities, it is of

great importance to know how they are related to the directions

of those coordinate axes which we usually employ in defining the

positions of things. The introduction of coordinate axes into geo

metry by Des Cartes was one of the greatest steps in mathematical

progress, for it reduced the methods of geometry to calculations

performed on numerical quantities. The position of a point is made

to depend on the length of three lines which are always drawn in

determinate directions, and the line joining two points is in like

manner considered as the resultant of three lines.
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But for many purposes of physical reasoning, as distinguished

from calculation, it is desirable to avoid explicitly introducing the

Cartesian coordinates, and to fix the mind at once on a point of

space instead of its three coordinates, and on the magnitude and

direction of a force instead of its three components. This mode

of contemplating geometrical and physical quantities is more prim
itive and more natural than the other, although the ideas connected

with it did not receive their full development till Hamilton made

the next great step in dealing with space, by the invention of his

Calculus of Quaternions.

As the methods of Des Cartes are still the most familiar to

students of science, and as they are really the most useful for

purposes of calculation, we shall express all our results in the

Cartesian form. I am convinced, however, that the introduction

of the ideas, as distinguished from the operations and methods of

Quaternions, will be of great use to us in the study of all parts

of our subject, and especially in electrodynamics, where we have to

deal with a number of physical quantities, the relations of which

to each other can be expressed far more simply by a few expressions

of Hamilton s, than by the ordinary equations.

11.] One of the most important features of Hamilton s method is

the division of quantities into Scalars and Vectors.

A Scalar quantity is capable of being completely defined by a

single numerical specification. Its numerical value does not in

any way depend on the directions we assume for the coordinate

axes.

A Vector, or Directed quantity, requires for its definition three

numerical specifications, and these may most simply be understood

as having reference to the directions of the coordinate axes.

Scalar quantities do not involve direction. The volume of a

geometrical figure, the mass and the energy of a material body,

the hydrostatical pressure at a point in a fluid, and the potential

at a point in space, are examples of scalar quantities.

A vector quantity has direction as well as magnitude, and is

such that a reversal of its direction reverses its sign. The dis

placement of a point, represented by a straight line drawn from

its original to its final position, may be taken as the typical vector

quantity, from which indeed the name of Vector is derived.

The velocity of a body, its momentum, the force acting on it,

an electric current, the magnetization of a particle of iron, are

instances of vector quantities.
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There are. physical quantities of another kind which are related

to directions in space, but which are not vectors. Stresses and

strains in solid bodies are examples of these, and so are some of

the properties of bodies considered in the theory of elasticity and
in the theory of double refraction. Quantities of this class require

for their definition nine numerical specifications. They are ex

pressed in the language of Quaternions by linear and vector

functions of a vector.

The addition of one vector quantity to another of the same kind

is performed according to the rule given in Statics for the com

position of forces. In fact, the proof which Poisson gives of the

parallelogram of forces is applicable to the composition of any

quantities such that turning them end for end is equivalent to a

reversal of their sign.

When we wish to denote a vector quantity by a single symbol,
and to call attention to the fact that it is a vector, so that we must

consider its direction as well as its magnitude, we shall denote

it by a German capital letter, as 1, S3, &c.

In the calculus of Quaternions, the position of a point in space

is defined by the vector drawn from a fixed point, called the origin,

to that point. If we have to consider any physical quantity whose

value depends on the position of the point, that quantity is treated

as a function of the vector drawn from the origin. The function

may be itself either scalar or vector. The density of a body, its

temperature, its hydrostatic pressure, the potential at a point,

are examples of scalar functions. The resultant force at a point,

the velocity of a fluid at a point, the velocity of rotation of

an element of the fluid, and the couple producing rotation, are

examples of vector functions.

12.] Physical vector quantities may be divided into two classes,

in one of which the quantity is defined with reference to a line,

while in the other the quantity is defined with reference to an

area.

For instance, the resultant of an attractive force in any direction

may be measured by finding the work which it would do on a

body if the body were moved a short distance in that direction

and dividing it by that short distance. Here the attractive force

is defined with reference to a line.

On the other hand, the flux of heat in any direction at any

point of a solid body may be defined as the quantity of heat which

crosses a small area drawn perpendicular to that direction divided
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by that area and by the time. Here the flux is defined with

reference to an area.

There are certain cases in which a quantity may be measured

with reference to a line as well as with reference to an area.

Thus, in treating of the displacements of elastic solids, we may
direct our attention either to the original and the actual position

of a particle, in which case the displacement of the particle is

measured by the line drawn from the first position to the second,

or we may consider a small area fixed in space, and determine

what quantity of the solid passes across that area during the dis

placement.

In the same way the velocity of a fluid may be investigated

either with respect to the actual velocity of the individual particles,

or with respect to the quantity of the fluid which flows through

any fixed area.

But in these cases we require to know separately the density of

the body as well as the displacement or velocity, in order to apply

the first method, and whenever we attempt to form a molecular

theory we have to use the second method.

In the case of the flow of electricity we do not know anything

of its density or its velocity in the conductor, we only know the

value of what, on the fluid theory, would correspond to the product

of the density and the velocity. Hence in all such cases we must

apply the more general method of measurement of the flux across

an area.

In electrical science, electromotive and magnetic intensity

belong to the first class, being defined with reference to lines.

When we wish to indicate this fact, we may refer to them as

Intensities.

On the other hand, electric and magnetic induction, and electric

currents, belong to the second class, being defined with reference

to areas. When we wish to indicate this fact, we shall refer to them

as Fluxes.

Each of these forces may be considered as producing, or tending

to produce, its corresponding flux. Thus, electromotive intensity

produces electric currents in conductors, and tends to produce them

in dielectrics. It produces electric induction in dielectrics, and pro

bably in conductors also. In the same sense, magnetic intensity

produces magnetic induction.

13.] In some cases the flux is simply proportional to the force

and in the same direction, but in other cases we can only affirm
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that the direction and magnitude of the flux are functions of the

direction and magnitude of the force.

The case in which the components of the flux are linear functions

of those of the force is discussed in the chapter on the Equations
of Conduction, Art. 297. There are in general nine coefficients

which determine the relation between the force and the flux. In

certain cases we have reason to believe that six of these coefficients

form three pairs of equal quantities. In such cases the relation be

tween the line of direction of the force and the normal plane of the

flux is of the same kind as that between a diameter of an ellipsoid

and its conjugate diametral plane. In Quaternion language, the

one vector is said to be a linear and vector function of the other, and

when there are three pairs of equal coefficients the function is said

to be self-conjugate.

In the case of magnetic induction in iron, the flux, (the mag
netization of the iron,) is not a linear function of the magnetizing
force. In all cases, however, the product of the force and the

flux resolved in its direction, give a result of scientific import

ance, and this is always a scalar quantity.

14.] There are two mathematical operations of frequent occur

rence which are appropriate to these two classes of vectors, or

directed quantities.

In the case of forces, we have to take the integral along a line

of the product of an element of the line, and the resolved part of

the force along that element. The result of this operation is

called the Line-integral of the force. It represents the work

done on a body carried along the line. In certain cases in which

the line-integral does not depend on the form of the line, but

only on the positions of its extremities, the line-integral is called

the Potential.

In the case of fluxes, we have to take the integral, over a surface,

of the flux through every element of the surface. The result of

this operation is called the Surface-integral of the flux. It repre

sents the quantity which passes through the surface.

There are certain surfaces across which there is no flux. If

two of these surfaces intersect, their line of intersection is a line

of flux. In those cases in which the flux is in the same direction

as the force, lines of this kind are often called Lines of Force. It

would be more correct, however, to speak of them in electrostatics

and magnetics as Lines of Induction, and in electrokinematics as

Lines of Flow.
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15.] There is another distinction between different kinds of

directed quantities, which, though very important in a physical

point of view, is not so necessary to be observed for the sake of

the mathematical methods. This is the distinction between longi
tudinal and rotational properties.

The direction and magnitude of a quantity may depend upon
some action or effect which takes place entirely along a certain

line, or it may depend upon something of the nature of rota

tion about that line as an axis. The laws of combination of

directed quantities are the same whether they are longitudinal or

rotational, so that there is no difference in the mathematical treat

ment of the two classes, but there may be physical circumstances

which indicate to which class we must refer a particular pheno
menon. Thus, electrolysis consists of the transfer of certain sub

stances along a line in one direction, and of certain other sub

stances in the opposite direction, which is evidently a longitudinal

phenomenon, and there is no evidence of any rotational effect

about the direction of the force. Hence we infer that the electric

current which causes or accompanies electrolysis is a longitudinal,
and not a rotational phenomenon.
On the other hand, the north and south poles of a magnet do

not differ as oxygen and hydrogen do, which appear at opposite

places during electrolysis, so that we have no evidence that mag
netism is a longitudinal phenomenon, while the effect of magnetism
in rotating the plane of polarized light distinctly shews that mag
netism is a rotational phenomenon.

On Line-integrals.

16.] The operation of integration of the resolved part of a vector

quantity along a line is important in physical science generally,
and should be clearly understood.

Let x, y, z be the coordinates of a point P on a line whose

length, measured from a certain point A, is s. These coordinates

will be functions of a single variable s.

Let R be the numerical value of the vector quantity at P, and
let the tangent to the curve at P make with the direction of R the

angle e, then R cos e is the resolved part of R along the line, and the

integral r
L \ Rcostds

*J

is called the line-integral of R along the line s.
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We may write this expression

o ds d

where X, 7, Z are the components of E parallel to x, y, z respect

ively.

This quantity is, in general, different for different lines drawn

between A and P. When, however, within a certain region, the

quantity Xd+7dy+Zdz=D3f,
that is, when it is an exact differential within that region, the

value of L becomes
L = VA-*P,

and is the same for any two forms of the path between A and P,

provided the one form can be changed into the other by continuous

motion without passing out of this region.

On Potentials.

The quantity ^ is a scalar function of the position of the point,

and is therefore independent of the directions of reference. It is

called the Potential Function, and the vector quantity whose com

ponents are J, J, Z is said to have a potential #, if

When a potential function exists, surfaces for which the potential

is constant are called Equipotential surfaces. The direction of B at

anv point of such a surface coincides with the normal to the surface,

d&amp;lt;V

and if n be a normal at the point P, then E = -^

The method of considering the components of a vector as the

first derivatives of a certain function of the coordinates with re

spect to these coordinates was invented by Laplace* in his treat

ment of the theory of attractions. The name of Potential was first

given to this function by Green f, who made it the basis of his

treatment of electricity. Green s essay was neglected by mathe

maticians till 1846, and before that time most of its important

theorems had been rediscovered by Gauss, Chasles, Sturm, anc

Thomson {.

^ Esty ofttip
V

pJLion of Mathematical Analysis to tte Theories of!Electncity

and Magnetism, Nottingham, 1828. Reprinted in CrdUs Journal, and m Mr. Ferrers

edition of Green s Works.

J Thomson and Tait, Natural Philosophy, 483.
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In the theory of gravitation the potential is taken with the

opposite sign to that which is here used, and the resultant force

in any direction is then measured by the rate of increase of the

potential function in that direction. In electrical and magnetic

investigations the potential is denned so that the resultant force

in any direction is measured by the decrease of the potential in

that direction. This method of using the expression makes it

correspond in sign with potential energy, which always decreases

when the bodies are moved in the direction of the forces acting
on them.

17.] The geometrical nature of the relation between the poten
tial and the vector thus derived from it receives great light from
Hamilton s discovery of the form of the operator by which the vector

is derived from the potential.

The resolved part of the vector in any direction is, as we have

seen, the first derivative of the potential with respect to a co

ordinate drawn in that direction, the sign being reversed.

Now if i, j, Jc are three unit vectors at right angles to each

other, and if X, Y, Z are the components of the vector g resolved

parallel to these vectors, then

% = iX+jY+kZ\ (1)

and by what we have said above, if # is the potential,

If we now write V for the operator,

. d . d . d
i

-j -\- 1 -= + K -j i (3)ax ay dz

g=-V*. (4)

The symbol of operation V may be interpreted as directing us

to measure, in each of three rectangular directions, the rate of

increase of *, and then, considering the quantities thus found as

vectors, to compound them into one. This is what we are directed

to do by the expression (3). But we may also consider it as directing

us first to find out in what direction ^ increases fastest, and then

to lay off in that direction a vector representing this rate of

increase.

M. Lame, in his Traite des Fonctlons Inverses, uses the term

Differential Parameter to express the magnitude of this greatest

rate of increase, but neither the term itself, nor the mode in which
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Lame* uses it, indicates that the quantity referred to has direction

as well as magnitude. On those rare occasions in which I shall have

to refer to this relation as a purely geometrical one, I shall call the

vector S ^ne space-variation of the scalar function ^, using the

phrase to indicate the direction, as well as the magnitude, of the

most rapid decrease of #.

18.] There are cases, however, in which the conditions

dZ dY dX dZ dY dX= 0, -, =- = 0, and -= = 0,

dy dz dz dso dx dy

which are those of Xdx + Ydy + Zdz being a complete differential,

are satisfied throughout a certain region of space, and yet the line-

integral from A to P may be different for two lines, each of

which lies wholly within that region. This may be the case if

the region is in the form of a ring, and if the two lines from A

to P pass through opposite segments of the ring. In this case,

the one path cannot be transformed into the other by continuous

motion without passing out of the region.

We are here led to considerations belonging to the Geometry

of Position, a subject which, though its importance was pointed

out by Leibnitz and illustrated by Gauss, has been little studied.

The most complete treatment of this subject has been given by

J. B. Listing*.

Let there be p points in space, and let I lines of any form be

drawn joining these points so that no two lines intersect each

other, and no point is left isolated. We shall call a figure com

posed of lines in this way a Diagram. Of these lines, p 1 are

sufficient to join the p points so as to form a connected system.

Every new line completes a loop or closed path, or, as we shall

call it, a Cycle. The number of independent cycles in the diagram

is therefore K = I _p+ 1.

Any closed path drawn along the lines of the diagram is com

posed of these independent cycles, each being taken any number of

times and in either direction.

The existence of cycles is called Cyclosis, and the number of

cycles in a diagram is called its Cyclomatic number.

Cyclosis in Surfaces and Regions.

Surfaces are either complete or bounded. Complete surfaces are

either infinite or closed. Bounded surfaces are limited by one or

* Der Census RailmlicTier Complete, Gott. Abh., Bd. x. S. 97 (1861).
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more closed lines, which may in the limiting cases become double

finite lines or points.

A finite region of space is bounded by one or more closed

surfaces. Of these one is the external surface, the others are

included in it and exclude each other, and are called internal

surfaces.

If the region has one bounding surface, we may suppose that

surface to contract inwards without breaking its continuity or

cutting itself. If the region is one of simple continuity, such as

a sphere, this process may be continued till it is reduced to a

point ;
but if the region is like a ring, the result will be a closed

curve; and if the region has multiple connexions, the result will

be a diagram of lines, and the cyclomatic number of the diagram
will be that of the region. The space outside the region has the

same cyclomatic number as the region itself. Hence, if the region
is bounded by internal as well as external surfaces, its cyclomatic
number is the sum of those due to all the surfaces.

When a region encloses within itself other regions, it is called a

Periphractic region.

The number of internal bounding surfaces of a region is called

its periphractic number. A closed surface is also periphractic, its

periphractic number being unity.

The cyclomatic number of a closed surface is twice that of either

of the regions which it bounds. To find the cyclomatic number of

a bounded surface, suppose all the boundaries to contract inwards,
without breaking continuity, till they meet. The surface will then

be reduced to a point in the case of an acyclic surface, or to a linear

diagram in the case of cyclic surfaces. The cyclomatic number of

the diagram is that of the surface.

19.] THEOREM I. If throughout any acyclic region

the value of the line-integral from a point A to a point P taken

along any path within the region will be the same.

We shall first shew that the line-integral taken round any closed

path within the region is zero.

Suppose the equipotential surfaces drawn. They are all either

closed surfaces or are bounded entirely by the surface of the re

gion, so that a closed line within the region, if it cuts any of the

surfaces at one part of its path, must cut the same surface in

the opposite direction at some other part of its path, and the

VOL. i. c

V
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corresponding portions of the line-integral being equal and opposite,

the total value is zero.

Hence if AQP and AQ P are two paths from A to P, the line-

integral for AQ P is the sum of that for AQP and the closed path

AQ PQA. But the line-integral of the closed path is zero, there

fore those of the two paths are equal.

Hence if the potential is given at any one point of such a

region, that at any other point is determinate.

20.] THEOREM II. In a cyclic region in which the equation

Xdx + Ydy+Zdz = -DV
is everywhere satisfied, the line-integral from A to P, along a

line drawn within the region, will not in general be determinate

unless the channel of communication between A and P be specified.

Let K be the cyclomatic number of the region, then K sections

of the region may be made by surfaces which we may call Dia

phragms, so as to close up K of the channels of communication,

and reduce the region to an acyclic condition without destroying

its continuity.

The line-integral from A to any point P taken along a line

which does not cut any of these diaphragms will be, by the last

theorem, determinate in value.

Now let A and P be taken indefinitely near to each other, but

on opposite sides of a diaphragm, and let K be the line-integral

from A to P.

Let A and P be two other points on opposite sides of the same

diaphragm and indefinitely near to each other, and let K be the

line-integral from A to P . Then K = K.

For if we draw AA and PP , nearly coincident, but on opposite

sides of the diaphragm, the line-integrals along these lines will

be equal. Suppose each equal to L, then K ,
the line-integral of

AT, is equal to that of A A + AP +PP^ -l+K+L=K= that

ofAP.

Hence the line-integral round a closed curve which passes through

one diaphragm of the system in a given direction is a constant

quantity K. This quantity is called the Cyclic constant corre

sponding to the given cycle.

Let any closed curve be drawn within the region, and let it cut

the diaphragm of the first cycle p times in the positive direction

and/ times in the negative direction, and let p /= %. Then

the line-integral of the closed curve will be n^K^
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Similarly the line-integral of any closed curve will be

where nK represents the excess of the number of positive passages
of the curve through the diaphragm of the cycle K over the

number of negative passages.

If two curves are such that one of them may be transformed

into the other by continuous motion without at any time passing

through any part of space for which the condition of having a

potential is not fulfilled, these two curves are called Reconcileable

curves. Curves for which this transformation cannot be effected

are called Irreconcileable curves *.

The condition that Xdx + Ydy+Zdz is a complete differential

of some function ^ for all points within a certain region, occurs in

several physical investigations in which the directed quantity and

the potential have different physical interpretations,

In pure kinematics we may suppose X, T3 Z to be the com

ponents of the displacement of a point of a continuous body whose

original coordinates area?, ^, z\ the condition then expresses that

these displacements constitute a non-rotational strain f.

If X, Y, Z represent the components of the velocity of a fluid at

the point #,
y&amp;gt;

z, then the condition expresses that the motion of the

fluid is irrotational.

If X, Y, Z represent the components of the force at the point

a?, y, z, then the condition expresses that the work done on a

particle passing from one point to another is the difference of the

potentials at these points, and the value of this difference is the

same for all reconcileable paths between the two points.

On Surface-Integrals.

21.] Let dS be the element of a surface, and the angle which

a normal to the surface drawn towards the positive side of the

surface makes with the direction of the vector quantity R, then

RcosedS is called the surface-integral ofR over ike surface 8.

THEOREM III. The surface-integral of the flux inwards through a

closed surface may be expressed as the volume-integral of its con

vergence taken within the surface. (See Art. 25.)

Let X, Y, Z be the components of R, and let /, m, n be the

* See Sir W. Thomson On Vortex Motion, Trans. R. S. Edin., 1867-8.

t See Thomson and Tait s Natural Philosophy, 190 (*).

C 2,
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direction-cosines of the normal to S measured inwards. Then the

surface-integral of R over S is

JJR coavdS =jjxid8 +f/Ym dS+ffzndS; (1)

the values of X, Y, Z being those at a point in the surface, and

the integrations being extended over the whole surface.

If the surface is a closed one, then, when y and z are given,

the coordinate x must have an even number of values, since a line

parallel to x must enter and leave the enclosed space an equal
number of times provided it meets the surface at all.

At each entrance

IdS = dydzt

and at each exit 7 7 Q 7 ,

IdS =.dydz.
Let a point travelling from # = oo to # = + oo first enter

the space when x = selt then leave it when x = a?
2 , and so on ;

and let the values of X at these points be X^X^, &c., then

. (2)

If X is a quantity which is continuous, and has no infinite values

between x
l
and #

2 , then

where the integration is extended from the first to the second

intersection, that is, along the first segment of x which is within

the closed surface. Taking into account all the segments which lie

within the closed surface, we find

ff/%*+*, (4)

the double integration being confined to the closed surface, but

the triple integration being extended to the whole enclosed space.

Hence, if X, Y, Z are continuous and finite within a closed surface

$, the total surface-integral of R over that surface will be

COS dS = -

the triple integration being extended over the whole space within S.

Let us next suppose that X, Y, Z are not continuous within the

closed surface, but that at a certain surface F(x, y, z)
= the

values of Z, Y, Z alter abruptly from X, Y, Z on the negative side

of the surface to X , Y t
Z on the positive side.
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If this discontinuity occurs, say, between ss
l
and #2 ?

^ne value

where in the expression under the integral sign only the finite

values of the derivative of X are to be considered.

In this case therefore the total surface-integral of R over the

closed surface will be expressed by

(7)

or, if V, m ,
n are the direction-cosines of the normal to the surface

of discontinuity, and d$ an element of that surface,

//* --

-Z)} dS
, (8)

where the integration of the last term is to be extended over the

surface of discontinuity.

If at every point where X, Y, Z are continuous

and at every surface where they are discontinuous

VX + m T+n Z = I X+m Y+n Z, (10)

then the surface-integral over every closed surface is zero, and the

distribution of the vector quantity is said to be Solenoidal.

We shall refer to equation (9) as the General solenoidal con

dition, and to equation (10) as the Superficial solenoidal condition.

22.] Let us now consider the case in which at every point

within the surface S the equation

dX dY dZ

is satisfied. We have as a consequence of this the surface-integral

over the closed surface equal to zero.

Now let the closed surface 8 consist of three parts $
1}

$
,
and

$
2 . Let S

l
be a surface of any form bounded by a closed line L^.

Let $ be formed by drawing lines from every point of L^ always
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coinciding with the direction of E. If J, m, n are the direction-

cosines of the normal at any point of the surface Sot we have

cose = Xl+Ym +Zn= 0. (12)

Hence this part of the surface contributes nothing towards the

value of the surface-integral.

Let S
2
be another surface of any form bounded by the closed

curve L2
in which it meets the surface SQ

.

Let Qlt Q , Q2 be the surface-integrals of the surfaces Slt
SQ ,

S2)

and let Q be the surface-integral of the closed surface S. Then

Q= &amp;lt;21+ go+Q2
= 0; (13)

and we know that Q =
; (

14
)

therefore Q*=-Qi &amp;gt;

(15)

or, in other words, the surface-integral over the surface S
2

is equal

and opposite to that over S
l
whatever be the form and position

of 2 , provided that the intermediate surface SQ is one for which E

is always tangential.

If we suppose L a closed curve of small area, will be a

tubular surface having the property that the surface-integral over

every complete section of the tube is the same.

Since the whole space can be divided into tubes of this kind

provided dX dY
dZ_ __

/
16

\

~5 &quot;T&quot;
&quot;&quot;7

~r 7
&quot;-&quot;

) V /

das dy dz

a distribution of a vector quantity consistent with this equation is

called a Solenoidal Distribution.

On Tubes and Lines of Flow.

If the space is so divided into tubes that the surface-integral

for every tube is unity, the tubes are called Unit tubes, and the

surface-integral over any finite surface 8 bounded by a closed

curve L is equal to the number of such tubes which pass through

S in the positive direction, or, what is the same thing, the number

which pass through the closed curve L.

Hence the surface-integral of 8 depends only on the form of

its boundary L, and not on the form of the surface within its

boundary.
On Periphrastic Eeglons.

If, throughout the whole region bounded externally by the single

closed surface /S, the solenoidal condition

dX dY
+ ^ =0

dos
+

dy dz
~
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is satisfied, then the surface-integral taken over any closed surface

drawn within this region will be zero, and the surface-integral

taken over a bounded surface within the region will depend only

on the form of the closed curve which forms its boundary.

It is not, however, generally true that the same results follow

if the region within which the solenoidal condition is satisfied is

bounded otherwise than by a single surface.

For if it is bounded by more than one continuous surface, one of

these is the external surface and the others are internal surfaces,

and the region S is a periphractic region, having within it other

regions which it completely encloses.

If within one of these enclosed regions, say, that bounded by the

closed surface S19
the solenoidal condition is not satisfied, let

A
=

be the surface-integral for the surface enclosing this region, and

let Q2 , Q3 ,
&c. be the corresponding quantities for the other en

closed regions S2 ,
$
3 , &c.

Then, if a closed surface $ is drawn within the region S, the

value of its surface-integral will be zero only when this surface

S does not include any of the enclosed regions S
lt

S2t &c * -^ ^
includes any of these, the surface-integral is the sum of the surface-

integrals of the different enclosed regions which lie within it.

For the same reason, the surface-integral taken over a surface

bounded by a closed curve is the same for such surfaces only, bounded

by the closed curve, as are reconcileable with the given surface by
continuous motion of the surface within the region S.

When we have to deal with a periphractic region, the first thing

to be done is to reduce it to an aperiphractic region by drawing

lines 2/u .Z/2,
&c. joining the internal surfaces S

lt
$2 ,

&c. to the

external surface S. Each of these lines, provided it joins surfaces

which were not already in continuous connexion, reduces the

periphractic number by unity, so that the whole number of lines

to be drawn to remove the periphraxy is equal to the periphractic

number, or the number of internal surfaces. In drawing these lines

we must remember that any line joining surfaces which are already

connected does not diminish the periphraxy, but introduces cyclosis.

When these lines have been drawn we may assert that if the

solenoidal condition is satisfied in the region S, any closed surface

drawn entirely within S, and not cutting any of the lines, has its

surface-integral zero. If it cuts any line, say L^ ,
once or any odd
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number of times, it encloses the surface S
1
and the surface-integral

The most familiar example of a periphractic region within which

the solenoidal condition is satisfied is the region surrounding a mass

attracting or repelling inversely as the square of the distance.

In this case we have

AO AO AO

where m is the mass, supposed to be at the origin of coordinates.

At any point where r is finite

dX dY dZ_
dx dy dz

but at the origin these quantities become infinite. For any closed

surface not including the origin, the surface-integral is zero. If a

closed surface includes the origin, its surface-integral is 4 urn.

If, for any reason, we wish to treat the region round m as if it

were not periphractic, we must draw a line from m to an infinite

distance, and in taking surface-integrals we must remember to add

4 Tim whenever this line crosses from the negative to the positive

side of the surface.

On Right-handed and Left-handed Relations in Space.

23.] In this treatise the motions of translation along any axis

and of rotation about that axis will be assumed to be of the same

sign when their directions correspond to those of the translation

and rotation of an ordinary or right-handed screw *.

For instance, if the actual rotation of the earth from west to east

is taken positive, the direction of the earth s axis from south to

north will be taken positive, and if a man walks forward in the

positive direction, the positive rotation is in the order, head, right-

hand, feet, left-hand.

* The combined action of the muscles of the arm when we turn the upper side of

the right-hand outwards, and at the same time thrust the hand forwards, will

impress the right-handed screw motion on the memory more firmly than any verbal

definition. A common corkscrew may be used as a material symbol of the same

relation.

Professor W. H. Miller has suggested to me that as the tendrils of the vine are

right-handed screws and those of the hop left-handed, the two systems of relations in

space might be called those of the vine and the hop respectively.
The system of the vine, which we adopt, is that of Linnaeus, and of screw-makers

in all civilized countries except Japan. De Candolle was the first who called the

hop-tendril right-handed, and in this he is followed by Listing, and by most writers

on the circular polarization of light. Screws like the hop-tendril are made for the

couplings of railway-carriages, and for the fittings of wheels on the left side of or

dinary carriages, but they are always called left-handed screws by those who use

them.
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If we place ourselves on the positive side of a surface, the positive

direction along its bounding curve will be opposite to the motion

of the hands of a watch with its face towards us.

This is the right-handed system which is adopted in Thomson
and Tait s Natural Philosophy-, 243, and in Tait s Quaternions.

The opposite, or left-handed system, is adopted in Hamilton s

Quaternions (Lectures, p. 76, and Elements, p. 108, and p. 117 note).

The operation of passing from the one system to the other is called,

by Listing, Perversion.

The reflexion of an object in a mirror is a perverted image of the

object.

When we use the Cartesian axes of oc, y, z, we shall draw them

so that the ordinary conventions about the cyclic order of the

symbols lead to a right-handed system of directions in space. Thus,
if x is drawn eastward and y northward, z must be drawn upward.
The areas of surfaces will be taken positive when the order of

integration coincides with the cyclic order of the symbols. Thus,
the area of a closed curve in the plane of xy may be written either

/ x dy or \yAx\

the order of integration being SB, y in the first expression, and y, x

in the second.

This relation between the two products dx dy and dy dx may
be compared with the rule for the product of two perpendicular

vectors in the method of Quaternions, the sign of which depends
on the order of multiplication ;

and with the reversal of the sign

of a determinant when the adjoining rows or columns are ex

changed.
For similar reasons a volume-integral is to be taken positive when

the order of integration is in the cyclic order of the variables x, y, z,

and negative when the cyclic order is reversed.

We now proceed to prove a theorem which is useful as esta

blishing a connexion between the surface-integral taken over a

finite surface and a line-integral taken round its boundary,

24.] THEOREM IV. A line-integral taken round a closed curve

may be expressed in terms of a surface-integral taken over a

surface bounded by the curve.

Let Z, 7, Z be the components of a vector quantity 51 whose line-

integral is to be taken round a closed curve s.

Let S be any continuous finite surface bounded entirely by the
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closed curve s, and let
, 77, f be the components of another vector

quantity 33, related to X, 7, Z by the equations

t:_d^_clY _dX dZ dY dX
-dy&quot;dz

r7-^^ ^-~fa&quot;~dy

Then the surface-integral of 33 taken over the surface 8 is equal to

the line-integral of 51 taken round the curve s. It is manifest that

f, 77, f satisfy of themselves the solenoidal condition

Let /, m, n be the direction-cosines of the normal to an element

of the surface dS, reckoned in the positive direction. Then the

value of the surface-integral of 33 may be written

8. (2)

In order to form a definite idea of the meaning of the element

dS, we shall suppose that the values of the coordinates #,
y&amp;gt;

z for

every point of the surface are given as functions of two inde

pendent variables a and p. If p is constant and a varies, the point

(#, y, z) will describe a curve on the surface, and if a series of values

is given to j3, a series of such curves will be traced, all lying on

the surface 8. In the same way, by giving a series of constant

values to a, a second series of curves may be traced, cutting the

first series, and dividing the whole surface into elementary portions,

any one of which may be taken as the element dS.

The projection of this element on the plane of y z is, by the

ordinary formula,

dp dp da

The expressions for m dS and n dS are obtained from this by sub

stituting a?, y, z in cyclic order.

The surface-integral which we have to find is

(4)

or, substituting the values of
, 77, f in terms of X, Yy Z&amp;gt;

ff f dX dX dY
7
dY

, 7
dZ dZ\ 1Q (^

(m-=-- n-j- +n-7
--

l-j- +l-=--m )dS. (5)JJ \ dz dy dx dz dy dx

The part of this which depends on X may be written

dX ,dz dx dz dx\ dX ,dx dy dx dy^i, , , ,

dz (la d~p

*
dp To)

~~

~dy
(da dp

&quot;

dp TV)]
*fti

fft

JJ i
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... _ ,. dXdx dx , . .

adding and subtracting ~r~ ~r~ ~ry this becomes

//!

dx da

dx ,dXdx dXdy dX dz\

dfi ^dx da dy da dz da)

dx fdX dx dX dy

, v

Let us now suppose that the curves for which a is constant form

a series of closed curves surrounding a point on the surface for

which a has its minimum value, a , and let the last curve of the

series, for which a = a
x ,

coincide with the closed curve s.

Let us also suppose that the curves for which j3 is constant form

a series of lines drawn from the point at which a = a to the closed

curve s, the first, /3 ,
and the last, ft, being identical.

Integrating (8) by parts, the first term with respect to a and the

second with respect to /3, the double integrals destroy each other

and the expression becomes

)
rfa. (9)V ^Vft)

Since the point (a, ft) is identical with the point (a, /3 ),
the

third and fourth terms destroy each other
;
and since there is

but one value of x at the point where a = a
,
the second term is

zero, and the expression is reduced to the first term :

Since the curve a = a
x

is identical with the closed curve 5, we

may write the expression in the form

where the integration is to be performed round the curve 5. We

may treat in the same way the parts of the surface-integral which

depend upon T and Z, so that we get finally,

where the first integral is extended over the surface $, and the

second round the bounding curve 5 *.

* This theorem was given by Professor Stokes, Smith s Prize Examination, 1854,

question 8. It is proved in Thomson and Tait s Natural Philosophy, 190 (j).
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On the effect of the operator V on a vectorfunction.

25.] We have seen that the operation denoted by V is that by
which a vector quantity is deduced from its potential. The same

operation, however, when applied to a vector function, produces

results which enter into the two theorems we have just proved

(III and IV). The extension of this operator to vector displace

ments, and most of its further development, is due to Professor

Tait*.

Let a be a vector function of
/o,

the vector of a variable point.

Let us suppose, as usual, that

p = iso+jy + kz,

and o- = iX+jY + JcZ\

where X, Y, Z are the components of &amp;lt;r in the directions of the

axes.

We have to perform on a- the operation

. d .d . d
V = *T- +J-J- + &T&quot;dx dy dz

Performing this operation, and remembering the rules for the

multiplication of i, j, k, we find that Vo- consists of two parts,

one scalar and the other vector.

The scalar part is

/dX dY dZ\ rj,, TTT
tfVo- = (-=- + -T- + -i-}, see Theorem III,W# dy dz

and the vector part is

.dZ dY .,dX dZ . ,dY dX

If the relation between X, Y} Z and 77, f is that given by

equation (1) of the last theorem, we may write

YVff = i{+jri + &{. See Theorem IV.

It appears therefore that the functions of X, Y, Z which occur

in the two theorems are both obtained by the operation V on the

vector whose components are X, J, Z. The theorems themselves

may be written

III8V
&quot; ds =f/S * Uv dS) (

m
)

and fstrdp
= ((S .V&amp;lt;rUvds\ (IV)

* See Proc. R. S. Edin., April 28, 1862. On Green s and other allied Theorems,

Trans. R. S. Edin., 1869-70, a very valuable paper; and On some Quaternion

Integrals, Proc. R. S. Edin., 1870-71.
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where ds is an element of a volume, da of a surface, dp of a curve,

and Uv a unit-vector in the direction of the normal.

To understand the meaning
1 of these functions of a vector, let us

suppose that a is the value of a- at a point P, and let us examine

the value of cr o-Q
in the neighbourhood of P.

If we draw a closed surface round P, then, if the I

surface-integral of &amp;lt;r over this surface is directed \^ S
inwards, /SVo- will be positive, and the vector

&amp;lt;r (7 near the point P will be on the whole p

directed towards P, as in the figure (l).
d . \.

I propose therefore to call the scalar part of

V&amp;lt;r the convergence of &amp;lt;r at the point P. Tig. i.

To interpret the vector part of
V&amp;lt;r,

let us

suppose ourselves to be looking in the direction of the vector

whose components are
rj,

and let us examine

the vector &amp;lt;rcr near the point P. It will appear
*

as in the figure (2), this vector being arranged on

the whole tangentially in the direction opposite to

the hands of a watch.
j,. 2

I propose (with great diffidence) to call the vector

part of V&amp;lt;r the rotation of &amp;lt;7 at the point P.

In Fig. 3 we have an illustration of rotation com- /

bined with convergence. \
Let us now consider the meaning of the equation \

TV o-=0. /
This implies that Vo- is a scalar, or that the vector rig. 3.

&amp;lt;r is the space-variation of some scalar function ^.

26.] One of the most remarkable properties of the operator V is

that when repeated it becomes

an operator occurring in all parts of Physics, which we may refer to

as Laplace s Operator.

This operator is itself essentially scalar. When it acts on a

scalar function the result is scalar, when it acts on a vector function

the result is a vector.

If, with any point P as centre, we draw a small sphere whose

radius is r, then if q is the value of q at the centre, and q the

mean value of q for all points within the sphere,
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so that the value at the centre exceeds or falls short of the mean

value according as V2
q is positive or negative.

I propose therefore to call V 2
q the concentration of q at the

point P, because it indicates the excess of the value of q at that

point over its mean value in the neighbourhood of the point.

If q is a scalar function, the method of finding its mean value is

well known. If it is a vector function, we must find its mean

value by the rules for integrating vector functions. The result

of course is a vector.



PART I.

ELECTROSTATIC S.

CHAPTEK I.

DESCRIPTION OF PHENOMENA.

Electrification by Friction.

27.] EXPERIMENT I*. Let a piece of glass and a piece of resin,

neither of which exhibits any electrical properties, be rubbed to

gether and left with the rubbed surfaces in contact. They will

still exhibit no electrical properties. Let them be separated. They
will now attract each other.

If a second piece of glass be rubbed with a second piece of

resin, and if the pieces be then separated and suspended in the

neighbourhood of the former pieces of glass and resin, it may be

observed

(1) That the two pieces of glass repel each other.

(2) That each piece of glass attracts each piece of resin.

(3) That the two pieces of resin repel each other.

These phenomena of attraction and repulsion are called Elec

trical phenomena, and the bodies which exhibit them are said to

be electrified, or to be charged with electricity.

Bodies may be electrified in many other ways, as well as by
friction.

The electrical properties of the two pieces of glass are similar

to each other but opposite to those of the two pieces of resin :

the glass attracts what the resin repels and repels what the resin

attracts.

* See Sir W. Thomson On the Mathematical Theory of Electricity, Cambridge
and Dublin Mathematical Journal) March, 1848.
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If a body electrified in any manner whatever behaves as the

glass does, that is, if it repels the glass and attracts the resin, the

body is said to be vitreously electrified, and if it attracts the glass

and repels the resin it is said to be resinously electrified. All

electrified bodies are found to be either vitreously or resinously

electrified.

It is the established practice of men of science to call the vitreous

electrification positive, and the resinous electrification negative.

The exactly opposite properties of the two kinds of electrification

justify us in indicating them by opposite signs, but the applica

tion of the positive sign to one rather than to the other kind must

be considered as a matter of arbitrary convention, just as it is a

matter of convention in mathematical diagrams to reckon positive

distances towards the right hand.

No force, either of attraction or of repulsion, can be observed

between an electrified body and a body not electrified. When, in

any case, bodies not previously electrified are observed to be acted

on by an electrified body, it is because they have become electrified

by induction.

Electrification by Induction.

28.] EXPERIMENT II*. Let a hollow vessel of metal be hung

up by white silk threads, and let a similar thread

be attached to the lid of the vessel so that the vessel

may be opened or closed without touching it.

Let the pieces of glass and resin be similarly sus

pended and electrified as before.

Let the vessel be originally unelectrified, then if

an electrified piece of glass is hung up within it by
its thread without touching the vessel, and the lid

closed, the outside of the vessel will be found to

be vitreously electrified, and it may be shewn that

the electrification outside of the vessel is exactly the

Fig. 4. same in whatever part of the interior space the glass

is suspended.

If the glass is now taken out of the vessel without touching it,

the electrification of the glass will be the same as before it was

put in, and that of the vessel will have disappeared.

This electrification of the vessel, which depends on the glass

* This, and several experiments which follow, are due to Faraday, On Static

Electrical Inductive Action, Phil. Mag., 1843, or Exp. Res., vol. ii. p. 279.
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being within it, and which vanishes when the glass is removed, is

called electrification by Induction.

Similar effects would be produced if the glass were suspended
near the vessel on the outside, but in that case we should find

an electrification, vitreous in one part of the outside of the vessel

and resinous in another. When the glass is inside the vessel

the whole of the outside is vitreously and the whole of the inside

resinously electrified.

Electrification by Conduction.

29.] EXPERIMENT III. Let the metal vessel be electrified by
induction, as in the last experiment, let a second metallic body
be suspended by wliite silk threads near it, and let a metal wire,

similarly suspended, be brought so as to touch simultaneously the

electrified vessel and the second body.
The second body will now be found to be vitreously electrified,

and the vitreous electrification of the vessel will have diminished.

The electrical condition has been transferred from the vessel to

the second body by means of the wire. The wire is called a con

ductor of electricity, and the second body is said to be electrified

ly conduction.

Conductors and Insulators.

EXPERIMENT IV. If a glass rod, a stick of resin or gutta-percha,

or a white silk thread, had been used instead of the metal wire, no

transfer of electricity would have taken place. Hence these latter

substances are called Non-conductors of electricity. Non-conduc

tors are used in electrical experiments to support electrified bodies

without carrying off their electricity. They are then called In

sulators.

The metals are good conductors ; air, glass, resins, gutta-percha,

vulcanite, paraffin, &c. are good insulators; but, as we shall see

afterwards, all substances resist the passage of electricity, and all

substances allow it to pass, though in exceedingly different degrees.

This subject will be considered when we come to treat of the

motion of electricity. For the present we shall consider only two

classes of bodies, good conductors, and good insulators.

In Experiment II an electrified body produced electrification in

the metal vessel while separated from it by air, a non-conducting

medium. Such a medium, considered as transmitting these electrical

effects without conduction, has been called by Faraday a Dielectric

VOL. I. D
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medium,, and the action which takes place through it is called

Induction.

In Experiment III the electrified vessel produced electrification

in the second metallic body through the medium of the wire. Let

us suppose the wire removed, and the electrified piece of glass taken

out of the vessel without touching it, and removed to a sufficient

distance. The second body will still exhibit vitreous electrifica

tion, but the vessel, when the glass is removed, will have resinous

electrification. If we now bring the wire into contact with both

bodies, conduction will take place along the wire, and all electri

fication will disappear from both bodies, shewing that the elec

trification of the two bodies was equal and opposite.

30.] EXPERIMENT V. In Experiment II it was shewn that if

a piece of glass, electrified by rubbing it with resin, is hung up in

an insulated metal vessel, the electrification observed outside does

not depend on the position of the glass. If we now introduce the

piece of resin with which the glass was rubbed into the same vessel,

without touching it or the vessel, it will be found that there is

no electrification outside the vessel. From this we conclude that

the electrification of the resin is exactly equal and opposite to that

of the glass. By putting in any number of bodies, electrified in

any way, it may be shewn that the electrification of the outside of

the vessel is that due to the algebraic sum of all the electrifica

tions, those being reckoned negative which are resinous. We have

thus a practical method of adding the electrical effects of several

bodies without altering the electrification of each.

31.] EXPERIMENT VI. Let a second insulated metallic vessel, B,

be provided, and let the electrified piece of glass be put into the

first vessel A, and the electrified piece of resin into the second vessel

B. Let the two vessels be then put in communication by the metal

wire, as in Experiment III. All signs of electrification will dis

appear.

Next, let the wire be removed, and let the pieces of glass and of

resin be taken out of the vessels without touching them. It will

be found that A is electrified resinously and B vitreously.

If now the glass and the vessel A be introduced together into a

larger insulated vessel C, it will be found that there is no elec

trification outside C. This shews that the electrification of A is

exactly equal and opposite to that of the piece of glass, and that

ofB may be shewn in the same way to be equal and opposite to that

of the piece of resin.
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We have thus obtained a method of charging a vessel with a

quantity of electricity exactly equal and opposite to that of an

electrified body without altering the electrification of the latter,

and we may in this way charge any number of vessels with exactly

equal quantities of electricity of either kind, which we may take

for provisional units.

32.] EXPERIMENT VII. Let the vessel B, charged with a quan

tity of positive electricity, which we shall call, for the present,

unity, be introduced into the larger insulated vessel C without

touching it. It will produce a positive electrification on the out

side of C. Now let B be made to touch the inside of C. No change
of the external electrification will be observed. If B is now taken

out of C without touching it, and removed to a sufficient distance,

it will be found that B is completely discharged, and that C has

become charged with a unit of positive electricity.

We have thus a method of transferring the charge of B to C.

Let B be now recharged with a unit of electricity, introduced

into C already charged, made to touch the inside of C, and re

moved. It will be found that B is again completely discharged,
so that the charge of C is doubled.

If this process is repeated, it will be found that however highly
C is previously charged, and in whatever way B is charged, when
B is first entirely enclosed in C, then made to touch C, and finally

removed without touching C, the charge of B is completely trans

ferred to C, and B is entirely free from electrification.

This experiment indicates a method of charging a body with

any number of units of electricity. We shall find, when we come
to the mathematical theory of electricity, that the result of this

experiment affords an accurate test of the truth of the theory.

33.] Before we proceed to the investigation of the law of

electrical force, let us enumerate the facts we have already estab

lished.

By placing any electrified system inside an insulated hollow con

ducting vessel, and examining the resultant effect on the outside

of the vessel, we ascertain the character of the total electrification

of the system placed inside, without any communication of elec

tricity between the different bodies of the system.
The electrification of the outside of the vessel may be tested

with great delicacy by putting it in communication with an elec

troscope.

We may suppose the electroscope to consist of a strip of gold
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leaf hanging between two bodies charged, one positively, and the

other negatively. If the gold leaf becomes electrified it will incline

towards the body whose electrification is opposite to its own. By

increasing the electrification of the two bodies and the delicacy of

the suspension, an exceedingly small electrification of the gold leaf

may be detected.

When we come to describe electrometers and multipliers we

shall find that there are still more delicate methods of detecting

electrification and of testing the accuracy of our theories, but at

present we shall suppose the testing to be made by connecting the

hollow vessel with a gold leaf electroscope.

This method was used by Faraday in his very admirable de

monstration of the laws of electrical phenomena *.

34.] I. The total electrification of a body, or system of bodies,

remains always the same, except in so far as it receives electrifi

cation from or gives electrification to other bodies.

In all electrical experiments the electrification of bodies is found

to change, but it is always found that this change is due to want

of perfect insulation, and that as the means of insulation are im

proved, the loss of electrification becomes less. We may therefore

assert that the electrification of a body placed in a perfectly in

sulating medium would remain perfectly constant.

II. When one body electrifies another by conduction, the total

electrification of the two bodies remains the same, that is, the one

loses as much positive or gains as much negative electrification as

the other gains of positive or loses of negative electrification.

For if the two bodies are enclosed in the hollow vessel, no change

of the total electrification is observed.

III. When electrification is produced by friction, or by any

other known method, equal quantities of positive and negative elec

trification are produced.

For the electrification of the whole system may be tested in

the hollow vessel, or the process of electrification may be carried

on within the vessel itself, and however intense the electrification of

the parts of the system may be, the electrification of the whole,

as indicated by the gold leaf electroscope, is invariably zero.

The electrification of a body is therefore a physical quantity

capable of measurement, and two or more electrifications can be

combined experimentally with a result of the same kind as when

* On Static Electrical Inductive Action, Phil. May., 1843, or Exp. Res., vol. ii.

p. 249.
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two quantities are added algebraically. We therefore are entitled

to use language fitted to deal with electrification as a quantity as

well as a quality, and to speak of any electrified body as c

charged

with a certain quantity of positive or negative electricity.

35.] While admitting electricity, as we have now done, to the

rank of a physical quantity, we must not too hastily assume that

it is, or is not, a substance, or that it is, or is not, a form of

energy, or that it belongs to any known category of physical

quantities. All that we have hitherto proved is that it cannot

be created or annihilated, so that if the total quantity of elec

tricity within a closed surface is increased or diminished, the in

crease or diminution must have passed in or out through the closed

surface.

This is true of matter, and is expressed by the equation known as

the Equation of Continuity in Hydrodynamics.
It is not true of heat, for heat may be increased or diminished

within a closed surface, without passing in or out through the

surface, by the transformation of some other form of energy into

heat, or of heat into some other form of energy.

It is not true even of energy in general if we admit the imme

diate action of bodies at a distance. For a body outside the closed

surface may make an exchange of energy with a body within

the surface. But if all apparent action at a distance is the

result of the action between the parts of an intervening medium,

it is conceivable that in all cases of the increase or diminution

of the energy within a closed surface we may be able, when the

nature of this action of the parts of the medium is clearly under

stood, to trace the passage of the energy in or out through that

surface.

There is, however, another reason which warrants us in asserting

that electricity, as a physical quantity, synonymous with the total

electrification of a body, is not, like heat, a form of energy. An
electrified system has a certain amount of energy, and this energy

can be calculated by multiplying the quantity of electricity in

each of its parts by another physical quantity, called the Potential

of that part, and taking half the sum of the products. The quan

tities Electricity and Potential, when multiplied together,

produce the quantity Energy. It is impossible, therefore, that

electricity and energy should be quantities of the same category, for

electricity is only one of the factors of energy, the other factor

being Potential.
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Energy, which is the product of these factors, may also be con

sidered as the product of several other pairs of factors, such as

A Force x A distance through which the force is to act.

A Mass x Gravitation acting through a certain height.

A Mass x Half the square of its velocity.

A Pressure x A volume of fluid introduced into a vessel at

that pressure.

A Chemical Affinity x A chemical change, measured by the number

of electro-chemical equivalents which enter

into combination.

If we ever should obtain distinct mechanical ideas of the nature of

electric potential, we may combine these with the idea of energy
to determine the physical category in which Electricity is to be

placed.

36.] In most theories on the subject, Electricity is treated as

a substance, but inasmuch as there are two kinds of electrification

which, being combined, annul each other, and since we cannot

conceive of two substances annulling each other, a distinction has

been drawn between Free Electricity and Combined Electricity.

Theory of Two Fluids.

In what is called the Theory of Two Fluids, all bodies, in their

unelectrified state, are supposed to be charged with equal quan
tities of positive and negative electricity. These quantities are

supposed to be so great that no process of electrification has ever

yet deprived a body of all the electricity of either kind. The pro

cess of electrification, according to this theory, consists in taking

a certain quantity P of positive electricity from the body A and

communicating it to .5, or in taking a quantity N of negative

electricity from B and communicating it to A, or in some com

bination of these processes.

The result will be that A will have P +N units of negative

electricity over and above its remaining positive electricity, which

is supposed to be in a state of combination with an equal quantity

of negative electricity. This quantity P-fN is called the Free elec

tricity, the rest is called the Combined, Latent, or Fixed electricity.

In most expositions of this theory the two electricities are called

Fluids, because they are capable of being transferred from one

body to another, and are, within conducting bodies, extremely

mobile. The other properties of fluids, such as their inertia,
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weight, and elasticity, are not attributed to them by those who

have used the theory for merely mathematical purposes; but the

use of the word Fluid has been apt to mislead the vulgar, including

many men of science who are not natural philosophers, and who

have seized on the word Fluid as the only term in the statement

of the theory which seemed intelligible to them.

We shall see that the mathematical treatment of the subject has

been greatly developed by writers who express themselves in terms

of the Two Fluids theory. Their results, however, have been

deduced entirely from data which can be proved by experiment,

and which must therefore be true, whether we adopt the theory of

two fluids or not. The experimental verification of the mathe

matical results therefore is no evidence for or against the peculiar

doctrines of this theory.

The introduction of two fluids permits us to consider the negative

electrification of A and the positive electrification of B as the effect

of any one of three different processes which would lead to the same

result. We have already supposed it produced by the transfer of

P units of positive electricity from A to B, together with the

transfer of N units of negative electricity from to A. But if

P +N units of positive electricity had been transferred from A

to B, or if P+N units of negative electricity had been transferred

from B to A, the resulting free electricity on A and on B would

have been the same as before, but the quantity of combined

electricity in A would have been less in the second case and greater

in the third than it was in the first.

It would appear therefore, according to this theory, that it is

possible to alter not only the amount of free electricity in a body,

but the amount of combined electricity. But no phenomena have

ever been observed in electrified bodies which can be traced to the

varying amount of their combined electricities. Hence either the

combined electricities have no observable properties, or the amount

of the combined electricities is incapable of variation. The first

of these alternatives presents no difficulty to the mere mathema

tician, who attributes no properties to the fluids except those of

attraction and repulsion, for he conceives the two fluids simply to

annul one another, like +e and e, and their combination to be a

true mathematical zero. But to those who cannot use the word

Fluid without thinking of a substance it is difficult to conceive how

the combination of the two fluids can have no properties at all, so

that the addition of more or less of the combination to a body shall
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not in any way affect it, either by increasing its mass or its weight,
or altering some of its other properties. Hence it has been supposed

by some, that in every process of electrification exactly equal quan
tities of the two fluids are transferred in opposite directions, so

that the total quantity of the two fluids in any body taken to

gether remains always the same. By this new law they contrive

to save appearances, forgetting that there would have been no need

of the law except to reconcile the two fluids theory with facts,

and to prevent it from predicting non-existent phenomena.

Theory of One Fluid.

37.] In the theory of One Fluid everything is the same as in

the theory of Two Fluids except that, instead of supposing the two

substances equal and opposite in all respects, one of them, gene

rally the negative one, has been endowed with the properties and

name of Ordinary Matter, while the other retains the name of The

Electric Fluid. The particles of the fluid are supposed to repel

one another according to the law of the inverse square of the

distance, and to attract those of matter according to the same

law. Those of matter are supposed to repel each other and attract

those of electricity.

If the quantity of the electric fluid in a body is such that a

particle of the electric fluid outside the body is as much repelled

by the electric fluid in the body as it is attracted by the matter

of the body, the body is said to be Saturated. If the quantity of

fluid in the body is greater than that required for saturation, the

excess is called the Redundant fluid, and the body is said to be

Overcharged. If it is less, the body is said to be Undercharged,
and the quantity of fluid which would be required to saturate it

is sometimes called the Deficient fluid. The number of units of

electricity required to saturate one gramme of ordinary matter

must be very great, because a gramme of gold may be beaten out

to an area of a square metre, and when in this form may have a

negative charge of at least 60,000 units of electricity. In order to

saturate the gold leaf, this quantity of electric fluid must be

communicated to it, so that the whole quantity required to saturate

it must be greater than this. The attraction between the matter

and the fluid in two saturated bodies is supposed to be a very little

greater than the repulsion between the two portions of matter and

that between the two portions of fluid. This residual force is sup

posed to account for the attraction of gravitation.
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This theory does not, like the Two-Fluid theory, explain too

much. It requires us, however, to suppose the mass of the electric

fluid so small that no attainable positive or negative electrification

has yet perceptibly increased or diminished either the mass or the

weight of a body, and it has not yet been able to assign sufficient

reasons why the vitreous rather than the resinous electrification

should be supposed due to an excess of electricity.

One objection has sometimes been urged against this theory by
men who ought to have reasoned better. It has been said that

the doctrine that the particles of matter uncombined with elec

tricity repel one another, is in direct antagonism with the well-

established fact that every particle of matter attracts every other

particle throughout the universe. If the theory of One Fluid were

true we should have the heavenly bodies repelling one another.

But it is manifest that the heavenly bodies, according to this

theory, if they consisted of matter uncombined with electricity,

would be in the highest state of negative electrification, and would

repel each other. We have no reason to believe that they are in

such a highly electrified state, or could be maintained in that

state. The earth and all the bodies whose attraction has been

observed are rather in an unelectrified state, that is, they contain

the normal charge of electricity, and the only action between them

is the residual force lately mentioned. The artificial manner, how

ever, in which this residual force is introduced is a much more

valid objection to the theory.

In the present treatise I propose, at different stages of the in

vestigation, to test the different theories in the light of additional

classes of phenomena. For my own part, I look for additional

light on the nature of electricity from a study of what takes place

in the space intervening between the electrified bodies. Such is the

essential character of the mode of investigation pursued by Faraday
in his Experimental Researches, and as we go on I intend to exhibit

the results, as developed by Faraday, W. Thomson, &c., in a con

nected and mathematical form, so that we may perceive what

phenomena are explained equally well by all the theories, and what

phenomena indicate the peculiar difficulties of each theory.

Measurement of the Force between Electrified Bodies.

38.] Forces may be measured in various ways. For instance,

one of the bodies may be suspended from one arm of a delicate

balance, and weights suspended from the other arm, till the body,
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when unelectrified, is in equilibrium. The other body may then

be placed at a known distance beneath the first, so that the

attraction or repulsion of the bodies when electrified may increase

or diminish the apparent weight of the first. The weight which

must be added to or taken from the other arm, when expressed

in dynamical measure, will measure the force between the bodies.

This arrangement was used by Sir W. Snow Plan-is, and is that

adopted in Sir W. Thomson s absolute electrometers. See Art. 217.

It is sometimes more convenient to use a torsion-balance, in

which a horizontal arm is suspended by a fine wire or fibre, so as

to be capable of vibrating about the vertical wire as an axis, and

the body is attached to one end of the arm and acted on by the

force in the tangential direction, so as to turn the arm round the

vertical axis, and so twist the suspension wire through a certain

angle. The torsional rigidity of the wire is found by observing

the time of oscillation of the arm, the moment of inertia of the

arm being otherwise known, and from the angle of torsion and

the torsional rigidity the force of attraction or repulsion can be

deduced. The torsion-balance was devised by Michell for the de

termination of the force of gravitation between small bodies, and

was used by Cavendish for this purpose. Coulomb, working in

dependently of these philosophers, reinvented it, thoroughly studied

its action, and successfully applied it to discover the laws of electric

and magnetic forces
;
and the torsion-balance has ever since been

used in all researches where small forces have to be measured. See

Art. 215.

39.] Let us suppose that by either of these methods we can

measure the force between two electrified bodies. We shall suppose

the dimensions of the bodies small compared with the distance

between them, so that the result may not be much altered by

any inequality of distribution of the electrification on either body,

and we shall suppose that both bodies are so suspended in air as

to be at a considerable distance from other bodies on which they

might induce electrification.

It is then found that if the bodies are placed at a fixed distance

and charged respectively with e and e of our provisional units of

electricity, they will repel each other with a force proportional

to the product of e and /. If either e or / is negative, that is,

if one of the charges is vitreous and the other resinous, the force

will be attractive, but if both e and / are negative the force is again

repulsive.
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We may suppose the first body, A, charged with m units of

vitreous and n units of resinous electricity, which may be con

ceived separately placed within the body, as in Experiment V.

Let the second body, B, be charged with m units of positive

and ri units of negative electricity.

Then each of the m positive units in A will repel each of the m

positive units in B with a certain force, say/; making a total effect

equal to m m f.

Since the effect of negative electricity is exactly equal and

opposite to that of positive electricity, each of the m positive units

in A will attract each of the n negative units in B with the same

force/ making a total effect equal to mnf.

Similarly the n negative units in A will attract the mf

positive

units in B with a force nmf, and will repel the n negative units

in B with a force nnf.

The total repulsion will therefore be (mm + nn)f\ and the total

attraction will be (mn + m n)f.

The resultant repulsion will be

(mm -{- nn
f mnf nm }f or (m n) (in n

)f.

Now m n= e is the algebraical value of the charge on A, and

m n = e is that of the charge on B, so that the resultant re

pulsion may be written eef, the quantities e and e being always

understood to be taken with their proper signs.

Variation of the Force with the Distance.

40.] Having established the law of force at a fixed distance,

we may measure the force between bodies charged in a constant

manner and placed at different distances. It is found by direct

measurement that the force, whether of attraction or repulsion,

varies inversely as the square of the distance, so that if,/ is the

repulsion between two units at unit distance, the repulsion at dis

tance r will
be/&amp;gt;~

2
,
and the general expression for the repulsion

between e units and e
f
units at distance r will be

Definition of the Electrostatic Unit of Electricity.

41.] We have hitherto used a wholly arbitrary standard for our

unit of electricity, namely, the electrification of a certain piece of

glass as it happened to be electrified at the commencement of our

experiments. We are now able to select a unit on a definite
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principle, and in order that this unit may belong to a general

system we define it so thatymay be unity, or in other words

The electrostatic unit of electricity is that quantity of positive elec

tricity which) when placed at unit of distance from an equal quantity,

repels it with unit offorce.
This unit is called the Electrostatic unit to distinguish it from

the Electromagnetic unit, to be afterwards defined.

We may now write the general law of electrical action in the

simple form F=ee r~ 2
; or,

The repulsion between two small bodies charged respectively with e and

e
f
units of electricity is numerically equal to the product of the charges

divided
~by

the square of the distance.

Dimensions of the Electrostatic Unit of Quantity.

42.] If [Q] is the concrete electrostatic unit of quantity itself,

and
&amp;lt;?,

e the numerical values of particular quantities; if
\_L~\

is

the unit of length, and r the numerical value of the distance
;
and

if [F] is the unit of force, and F the numerical value of the force,

then the equation becomes

whence [Q] =

This unit is called the Electrostatic Unit of electricity. Other

units may be employed for practical purposes, and in other depart

ments of electrical science, but in the equations of electrostatics

quantities of electricity are understood to be estimated in electro

static units, just as in physical astronomy we employ a unit of

mass which is founded on the phenomena of gravitation, and which

differs from the units of mass in common use.

Proof of the Law of Electrical Force.

43.] The experiments of Coulomb with the torsion-balance may
be considered to have established the law of force with a certain

approximation to accuracy. Experiments of this kind, however,

are rendered difficult, and in some degree uncertain, by several

disturbing causes, which must be carefully traced and corrected for.

In the first place, the two electrified bodies must be of sensible

dimensions relative to the distance between them, in order to be

capable of carrying charges sufficient to produce measurable forces.
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The action of each, body will then produce an effect on the dis

tribution of electricity on the other, so that the charge cannot be

considered as evenly distributed over the surface, or collected at

the centre of gravity ;
but its effect must be calculated by an

intricate investigation. This, however, has been done as regards
two spheres by Poisson in an extremely able manner, and the

investigation has been greatly simplified by Sir W. Thomson in

his Theory of Electrical Images. See Arts. 172-175.

Another difficulty arises from the action of the electricity

induced on the sides of the case containing the instrument. By
making the inner surface of the instrument of metal, this effect

can be rendered definite and measurable.

An independent difficulty arises from the imperfect insulation

of the bodies, on account of which the charge continually de

creases. Coulomb investigated the law of dissipation, and made

corrections for it in his experiments.

The methods of insulating charged conductors, and of measuring
electrical effects, have been greatly improved since the time of

Coulomb, particularly by Sir W. Thomson
;

but the perfect ac

curacy of Coulomb s law of force is established, not by any direct

experiments and measurements (which may be used as illustrations

of the law), but by a mathematical consideration of the pheno
menon described as Experiment VII, namely, that an electrified

conductor J5, if made to touch the inside of a hollow closed con

ductor C and then withdrawn without touching C, is perfectly dis

charged, in whatever manner the outside of C may be electrified.

By means of delicate electroscopes it is easy to shew that no

electricity remains on B after the operation, and by the mathe

matical theory given at Art. 74, this can only be the case if the

force varies inversely as the square of the distance, for if the law

were of any different form B would be electrified.

The Electric Field.

44.] The Electric Field is the portion of space in the neigh
bourhood of electrified bodies, considered with reference to electric

phenomena. It may be occupied by air or other bodies, or it may
be a so-called vacuum, from which we have withdrawn every sub

stance which we can act upon with the means at our disposal.

If an electrified body be placed at any part of the electric field

it will, in general, produce a sensible disturbance in the electri

fication of the other bodies.
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But if the body is very small, and its charge also very small,

the electrification of the other bodies will not be sensibly disturbed,

and we may consider the position of the body as determined by
its centre of mass. The force acting on the body will then be

proportional to its charge, and will be reversed when the charge
is reversed.

Let e be the charge of the body, and F the force acting on the

body in a certain direction, then when e is very small F is propor

tional to e, or F R ey

where R depends on the distribution of electricity on the other

bodies in the field. If the charge e could be made equal to

unity without disturbing the electrification of other bodies we

should have F = R.

We shall call R the Resultant Electromotive Intensity at the

given point of the field. When we wish to express the fact that

this quantity is a vector we shall denote it by the German letter (.

Electromotive Force and Potential.

45.1 If the small body carrying the small charge e be moved

from one given point, A, to another B, along a given path, it

will experience at each point of its course a force Re, where R
varies from point to point of the course. Let the whole work

done on the body by the electrical force be Ee, then E is called

the Total Electromotive Force along the path A E. If the path

forms a complete circuit, and if the total electromotive force round

the circuit does not vanish, the electricity cannot be in equi

librium but a current will be produced. Hence in Electrostatics

the electromotive force round any closed circuit must be zero, so

that if A and B are two points on the circuit, the electromotive

force from A to B is the same along either of the two paths into

which the circuit is broken, and since either of these can be altered

independently of the other, the electromotive force from A to B is

the same for all paths from A to B.

If B is taken as a point of reference for all other points, then

the electromotive force from A to B is called the Potential of A.

It depends only on the position of A. In mathematical investi

gations, B is generally taken at an infinite distance from the

electrified bodies.

A body charged positively tends to move from places of greater

positive potential to places of smaller positive, or of negative,
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potential, and a body charged negatively tends to move in the

opposite direction.

In a conductor the electrification is free to move relatively to

the conductor. If therefore two parts of a conductor have different

potentials, positive electricity will move from the part having

greater potential to the part having less potential as long as that

difference continues. A conductor therefore cannot be in electrical

equilibrium unless every point in it has the same potential. This

potential is called the Potential of the Conductor.

Equipotential Surfaces.

46.] If a surface described or supposed to be described in the

electric field is such that the electric potential is the same at every

point of the surface it is called an Equipotential surface.

An electrified particle constrained to rest upon such a surface

will have no tendency to move from one part of the surface to

another, because the potential is the same at every point. An

equi potential surface is therefore a surface of equilibrium or a level

surface.

The resultant force at any point of the surface is in the direction

of the normal to the surface, and the magnitude of the force is such

that the work done on an electrical unit in passing from the surface

Fto the surface V is V V .

No two equipotential surfaces having different potentials can

meet one another, because the same point cannot have more than

one potential, but one equipotential surface may meet itself, and

this takes place at all points and along all lines of equilibrium.

The surface of a conductor in electrical equilibrium is necessarily

an equipotential surface. If the electrification of the conductor is

positive over the whole surface, then the potential will diminish as

we move away from the surface on every side, and the conductor

will be surrounded by a series of surfaces of lower potential.

But if (owing to the action of external electrified bodies) some

regions of the conductor are charged positively and others ne

gatively, the complete equipotential surface will consist of the

surface of the conductor itself together with a system of other

surfaces, meeting the surface of the conductor in the lines which

divide the positive from the negative regions. These lines will

be lines of equilibrium, and an electrified particle placed on one

of these lines will experience no force in any direction.

When the surface of a conductor is charged positively in some

^W-a Crt
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parts and negatively in others, there must be some other electrified

body in the field besides itself. For if we allow a positively

electrified particle, starting from a positively charged part of the

surface, to move always in the direction of the resultant force

upon it, the potential at the point will continually diminish till

the point reaches either a negatively charged surface at a potential

less than that of the first conductor, or moves off to an infinite

distance. Since the potential at an infinite distance is zero, the

latter case can only occur when the potential of the conductor is

positive.

In the same way a negatively electrified particle, moving off

from a negatively charged part of the surface, must either reach

a positively charged surface, or pass off to infinity, and the latter

case can only happen when the potential of the conductor is

negative.

Therefore, if both positive and negative charge exist on

a conductor, there must be some other body in the field whose

potential has the same sign as that of the conductor but a greater

numerical value, and if a conductor of any form is alone in the

field the charge of every part is of the same sign as the potential

of the conductor.

The interior surface of a hollow conducting vessel containing

no charged bodies is entirely free from charge. For if any part of

the surface were charged positively, a positively electrified particle

moving in the direction of the force upon it, must reach a nega

tively charged surface at a lower potential. But the whole in

terior surface has the same potential. Hence it can have no

charge.

A conductor placed inside the vessel and communicating with

it, may be considered as bounded by the interior surface. Hence

such a conductor has no charge.

Lines of Force.

47.] The line described by a point moving always in the direc

tion of the resultant intensity is called a Line of force. It cuts the

equipotential surfaces at right angles. The properties of lines of

force will be more fully explained afterwards, because Faraday has

expressed many of the laws of electrical action in terms of his

conception of lines of force drawn in the electric field, and in

dicating both the direction and the intensity at every point.
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Electric Tension.

48.] Since the surface of a conductor is an equipotential surface,

the resultant force is normal to the surface, and it will be shewn
in Art. 78 that it is proportional to the superficial density of the

electrification. Hence the electricity on any small area of the

surface will be acted on by a force tending from the conductor

and proportional to the product of the resultant force and the

density, that is, proportional to the square of the resultant force.

This force, which acts outwards as a tension on every part of

the conductor, will be called electric Tension. It is measured like

ordinary mechanical tension, by the force exerted on unit of area.

The word Tension has been used by electricians in several vague
senses, and it has been attempted to adopt it in mathematical

language as a synonym for Potential
; but on examining the cases

in which the word has been used, I think it will be more con
sistent with usage and with mechanical analogy to understand by
tension a pulling force of so many pounds weight per square inch
exerted on the surface of a conductor or elsewhere. We shall find

that the conception of Faraday, that this electric tension exists not

only at the electrified surface but all along the lines of force, leads

to a theory of electric action as a phenomenon of stress in a

medium.

Electromotive Force.

49.] When two conductors at different potentials are connected

by a thin conducting wire, the tendency of electricity to flow

along the wire is measured by the difference of the potentials of

the two bodies. The difference of potentials between two con

ductors or two points is therefore called the Electromotive force

between them.

Electromotive force cannot in all cases be expressed in the

form of a difference of potentials. These cases, however, are not

treated of in Electrostatics. We shall consider them when we
come to heterogeneous circuits, chemical actions, motions of mag
nets, inequalities of temperature, &c.

Capacity of a Conductor.

50.] If one conductor is insulated while all the surrounding con

ductors are kept at the zero potential by being put in commu
nication with the earth, and if the conductor, when charged with

VOL. i. E
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a quantity E of electricity, has a potential F, the ratio of E to V
is called the Capacity of the conductor. If the conductor is com

pletely enclosed within a conducting vessel without touching- it,

then the charge on the inner conductor will be equal and op

posite to the charge on the inner surface of the outer conductor,

and will be equal to the capacity of the inner conductor multiplied

by the difference of the potentials of the two conductors.

Electric Accumulators.

A system consisting of two conductors whose opposed surfaces

are separated from each other by a thin stratum of an insulating

medium is called an electric Accumulator. The two conductors are

called the Electrodes and the insulating medium is called the

Dielectric. The capacity of the accumulator is directly propor

tional to the area of the opposed surfaces and inversely proportional

to the thickness of the stratum between them. A Leyden jar is an

accumulator in which glass is the insulating medium. Accumu

lators are sometimes called Condensers, but I prefer to restrict

the term condenser to an instrument which is used not to hold

electricity but to increase its superficial density.

PROPERTIES OP BODIES IN RELATION TO STATICAL ELECTRICITY.

Resistance to the Passage of Electricity through a Body.

51.] When a charge of electricity is communicated to any part

of a mass of metal the electricity is rapidly transferred from places

of high to places of low potential till the potential of the whole

mass becomes the same. In the case of pieces of metal used in

ordinary experiments this process is completed in a time too short

to be observed, but in the case of very long and thin wires, such

as those used in telegraphs, the potential does not become uniform

till after a sensible time, on account of the resistance of the wire

to the passage of electricity through it.

The resistance to the passage of electricity is exceedingly dif

ferent in different substances, as may be seen from the tables at

Arts. 36 2, 366, and 369, which will be explained in treating of

Electric Currents.

All the metals are good conductors, though the resistance of lead

is 1 2 times that of copper or silver, that of iron 6 times, and that

of mercury 60 times that of copper. The resistance of all metals

increases as their temperature rises.
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Many liquids conduct electricity by electrolysis. This mode of

conduction will be considered in Part II. For the present, we may
regard all liquids containing water and all damp bodies as con

ductors, far inferior to the metals, but incapable of insulating a

charge of electricity for a sufficient time to be observed. The re

sistance of electrolytes diminishes as the temperature rises.

On the other hand, the gases at the atmospheric pressure, whether

dry or moist, are insulators so nearly perfect when the electric tension

is small that we have as yet obtained no evidence of electricity

passing through them by ordinary conduction. The gradual loss of

charge by electrified bodies may in every case be traced to imperfect
insulation in the supports, the electricity either passing through the

substance of the support or creeping over its surface. Hence, when
two charged bodies are hung up near each other, they will preserve
their charges longer if they are electrified in opposite ways, than if

they are electrified in the same way. For though the electromotive

force tending to make the electricity pass through the air between

them is much greater when they are oppositely electrified, no per

ceptible loss occurs in this way. The actual loss takes place through
the supports, and the electromotive force through the supports is

greatest when the bodies are electrified in the same way. The result

appears anomalous only when we expect the loss to occur by the

passage of electricity through the air between the bodies. The

passage of electricity through gases takes place, in general, by dis

ruptive discharge, and does not begin till the electromotive force

has reached a certain value. The value of the electromotive force

which can exist in a dielectric without a discharge taking place

is called the Electric Strength of the dielectric. The electric

strength of air diminishes as the pressure is reduced from the atmo

spheric pressure to that of about three millimetres of mercury.
When the pressure is still further reduced, the electric strength

rapidly increases
;
and when the exhaustion is carried to the highest

degree hitherto attained, the electromotive force required to produce
a spark of a quarter of an inch is greater than that which will give
a spark of eight inches in air at the ordinary pressure.

A vacuum, that is to say, that which remains in a vessel after

we have removed everything which we can remove from it, is there

fore an insulator of very great electric strength.
The electric strength of hydrogen is much less than that of air.

Certain kinds of glass when cold are marvellously perfect in

sulators, and Sir W. Thomson has preserved charges of electricity
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for years in bulbs hermetically sealed. The same glass, however,

becomes a conductor at a temperature below that of boiling water.

Gutta-percha, caoutchouc, vulcanite, paraffin, and resins are good

insulators, the resistance of gutta-percha at 75 F. being about

6 x 1
19 times that of copper.

Ice, crystals, and solidified electrolytes, are also insulators.

Certain liquids, such as naphtha, turpentine, and some oils, are

insulators, but inferior to the best solid insulators.

DIELECTllICS.

Specific Inductive Capacity.

52.] All bodies whose insulating power is such that when they

are placed between two conductors at different potentials the elec

tromotive force acting on them does not immediately distribute

their electricity so as to reduce the potential to a constant value, are

called by Faraday Dielectrics.

It appears from the hitherto unpublished researches of Cavendish

that he had, before 1773, measured the capacity of plates of glass,

rosin, beeswax, and shellac, and had determined the ratio in which

their capacity exceeded that of plates of air of the same dimensions.

Faraday, to whom these researches were unknown, discovered

that the capacity of an accumulator depends on the nature of the

insulating medium between the two conductors, as well as on the

dimensions and relative position of the conductors themselves.

By substituting other insulating media for air as the dielectric of

the accumulator, without altering it in any other respect, he found

that when air and other gases were employed as the insulating

medium the capacity of the accumulator remained sensibly the

same, but that when shellac, sulphur, glass, &c. were substituted

for air, the capacity was increased in a ratio which was different

for each substance.

By a more delicate method of measurement Boltzmann succeeded

in observing the variation of the inductive capacity of gases at

different pressures.

This property of dielectrics, which Faraday called Specific In

ductive Capacity, is also called the Dielectric Constant of the sub

stance. It is defined as the ratio of the capacity of an accumulator

when its dielectric is the given substance, to its capacity when the

dielectric is a vacuum.

If the dielectric is not a good insulator, it is difficult to measure
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its inductive capacity, because the accumulator will not hold a

charge for a sufficient time to allow it to be measured ; but it is

certain that inductive capacity is a property not confined to good

insulators, and it is probable that it exists in all bodies.

Absorption of Electricity.

53.] It is found that when an accumulator is formed of certain

dielectrics, the following phenomena occur.

When the accumulator has been for some time electrified and is

then suddenly discharged and again insulated, it becomes recharged
in the same sense as at first, but to a smaller degree, so that it may
be discharged again several times in succession, these discharges

always diminishing. This phenomenon is called that of the Re

sidual Discharge.

The instantaneous discharge appears always to be proportional

to the difference of potentials at the instant of discharge, and the

ratio of these quantities is the true capacity of the accumulator;

but if the contact of the discharger is prolonged so as to include

some of the residual discharge, the apparent capacity of the accu

mulator, calculated from such a discharge, will be too great.

The accumulator if charged and left insulated appears to lose its

charge by conduction, but it is found that the proportionate rate

of loss is much greater at first than it is afterwards, so that the

measure of conductivity, if deduced from what takes place at first,

would be too great. Thus, when the insulation of a submarine

cable is tested, the insulation appears to improve as the electrifi

cation continues.

Thermal phenomena of a kind at first sight analogous take place

in the case of the conduction of heat when the opposite sides of a

body are kept at different temperatures. In the case of heat we

know that they depend on the heat taken in and given out by the

body itself. Hence, in the case of the electrical phenomena, it

has been supposed that electricity is absorbed and emitted by the

parts of the body. We shall see, however, in Art. 329, that the

phenomena can be explained without the hypothesis of absorp

tion of electricity, by supposing the dielectric in some degree

heterogeneous.

That the phenomenon called Electric Absorption is not an

actual absorption of electricity by the substance may be shewn by

charging the substance in any manner with electricity while it is

surrounded by a closed metallic insulated vessel. If, when the
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substance is charged and insulated, the vessel be instantaneously

discharged and then left insulated, no charge is ever communicated

to the vessel by the gradual dissipation of the electrification of the

charged substance within it.

54.] This fact is expressed by the statement of Faraday that

it is impossible to charge matter with an absolute and independent

charge of one kind of electricity *.

In fact it appears from the result of every experiment which

has been tried that in whatever way electrical actions may take

place among a system of bodies surrounded by a metallic vessel, the

charge on the outside of that vessel is not altered.

Now if any portion of electricity could be forced into a body
so as to be absorbed in it, or to become latent, or in any way
to exist in it, without being connected with an equal portion of

the opposite electricity by lines of induction, or if, after having

being absorbed, it could gradually emerge and return to its ordi

nary mode of action, we should find some change of electrification

in the surrounding vessel.

As this is never found to be the case, Faraday concluded that

it is impossible to communicate an absolute charge to matter, and

that no portion of matter can by any change of state evolve or

render latent one kind of electricity or the other. He therefore

regarded induction as the essential function both in the first

development and the consequent phenomena of electricity.
3 His

induction is (1298) a polarized state of the particles of the

dielectric, each particle being positive on one side and negative

on the other, the positive and the negative electrification of each

particle being always exactly equal.

Disruptive DiscJiarge f.

55.] If the electromotive intensity at any point of a dielectric

is gradually increased, a limit is at length reached at which there

is a sudden electrical discharge through the dielectric, generally

accompanied with light and sound, and with a temporary or per

manent rupture of the dielectric.

The intensity of the electromotive force when this takes place

is a measure of what we may call the electngjitrength
of the di

electric. It depends on the nature of the dielectric, and is greater

in dense air than in rare air, and greater in glass than in air, but

* Exp. Res., vol. i. series xi. H ii. On the Absolute Charge of Matter, and (1244).

f See Faraday, Exp. Res., vol. i., series xii. and xiii.
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in every case, if the electromotive force be made great enough,

the dielectric gives way and its insulating power is destroyed, so

that a current of electricity takes place through it. It is for this

reason that distributions of electricity for which the electromotive

intensity becomes anywhere infinite cannot exist.

The Electric Glow.

Thus, when a conductor having a sharp point is electrified, the

theory, based on the hypothesis that it retains its charge, leads

to the conclusion that as we approach the point the superficial

density of the electricity increases without limit, so that at the

point itself the surface-density, and therefore the resultant electrical

force, would be infinite. If the air, or other surrounding dielectric,

had an invincible insulating power, this result would actually occur ;

but the fact is, that as soon as the resultant force in the neigh

bourhood of the point has reached a certain limit, the insulating

power of the air gives way, so that the air close to the point

becomes a conductor. At a certain distance from the point the

resultant force is not sufficient to break through the insulation

of the air, so that the electric current is checked, and the electricity

accumulates in the air round the point.

The point is thus surrounded by particles of air charged with

electricity of the same kind with its own. The effect of this charged

air round the point is to relieve the air at the point itself from

part of the enormous electromotive force which it would have ex

perienced if the conductor alone had been electrified. In fact the

surface of the electrified body is no longer pointed, because the

point is enveloped by a rounded mass of charged air, the surface

of which, rather than that of the solid conductor, may be regarded

as the outer electrified surface.

If this portion of charged air could be kept still, the electrified

body would retain its charge, if not on itself at least in its

neighbourhood, but the charged particles of air being free to move

under the action of electrical force, tend to move away from the

electrified body because it is charged with the same kind of elec

tricity. The charged particles of air therefore tend to move off

in the direction of the lines of force and to approach those sur

rounding bodies which are oppositely electrified. When they are

gone, other uncharged particles take their place round the point,

and since these cannot shield those next the point itself from the

excessive electric tension, a new discharge takes place, after which
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the newly charged particles move off, and so on as long as the body
remains electrified.

In this way the following phenomena are produced : At and

close to the point there is a steady glow, arising from the con

stant discharges which are taking place between the point and the

air very near it.

The charged particles of air tend to move off in the same general

direction, and thus produce a current of air from the point, con

sisting of the charged particles, and probably of others carried along

by them. By artificially aiding this current we may increase the

glow, and by checking the formation of the current we may pre
vent the continuance of the glow *.

The electric wind in the neighbourhood of the point is sometimes

very rapid, but it soon loses its velocity, and the air with its charged

particles is carried about with the general motions of the atmo

sphere, and constitutes an invisible electric cloud. When the

charged particles come near to any conducting surface, such as a

wall, they induce on that surface a charge opposite to their own,
and are then attracted towards the wall, but since the electro

motive force is small they may remain for a long time near the

wall without being drawn up to the surface and discharged. They
thus form an electrified atmosphere clinging to conductors, the

presence of which may sometimes be detected by the electrometer.

The electrical forces, however, acting between large masses of

charged air and other bodies are exceedingly feeble compared with

the ordinary forces which produce winds, and which depend on

inequalities of density due to differences of temperature, so that it is

very improbable that any observable part of the motion of ordinary
thunder clouds arises from electrical causes.

The passage of electricity from one place to another by the

motion of charged particles is called Electrical Convection or Con-

vective Discharge.

The electrical glow is therefore produced by the constant passage
of electricity through a small portion of air in which the tension

is very high, so as to charge the surrounding particles of air which

are continually swept off by the electric wind, which is an essential

part of the phenomenon.
The glow is more easily formed in rare air than in dense air,

and more easily when the point is positive than when it is negative.

* See Priestley s History of Electricity, pp. 117 and 591
;
and Cavendish s Elec

trical Researches, Phil. Trans., 1771, 4, or Art. 125 of Reprint of Cavendish.
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This and many other differences between positive and negative elec

trification must be studied by those who desire to discover some

thing- about the nature of electricity. They have not, however,

been satisfactorily brought to bear upon any existing theory.

The Electric Brush.

56.] The electric brush is a phenomenon which may be pro

duced by electrifying a blunt point or small ball so as to produce

an electric field in which the tension diminishes as the distance

increases, but in a less rapid manner than when a sharp point is

used. It consists of a succession of discharges, ramifying as they

diverge from the ball into the air, and terminating either by

charging portions of air or by reaching some other conductor. It

is accompanied by a sound, the pitch of which depends on the

interval between the successive discharges, and there is no current

of air as in the case of the glow.

The Electric Spark.

57.] When the tension in the space between two conductors is

considerable all the way between them, as in the case of two balls

whose distance is not great compared with their radii, the discharge,

when it occurs, usually takes the form of a spark, by which nearly

the whole electrification is discharged at once.

In this case, when any part of the dielectric has given way,

the parts on either side of it in the direction of the electric force

are put into a state of greater tension so that they also give way,

and so the discharge proceeds right through the dielectric, just as

when a little rent is made in the edge of a piece of paper a tension

applied to the paper in the direction of the edge causes the paper to

be torn through, beginning at the rent, but diverging occasionally

where there are weak places in the paper. The electric spark in

the same way begins at the point where the electric tension first

overcomes the insulation of the dielectric, and proceeds from that

point, in an apparently irregular path, so as to take in other weak

points, such as particles of dust floating in air.

All these phenomena differ considerably in different gases, and in

the same gas at different densities. Some of the forms of electrical

discharge through rare gases are exceedingly remarkable. In some

cases there is a regular alternation of luminous and dark strata, so

that if the electricity, for example, is passing along a tube contain

ing a very small quantity of gas, a number of luminous disks will
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be seen arranged transversely at nearly equal intervals along
1 the

axis of the tube and separated by dark strata. If the strength of

the current be increased a new disk will start into existence, and
it and the old disks will arrange themselves in closer order. In
a tube described by Mr. Gassiot* the light of each of the disks

is bluish on the negative and reddish on the positive side, and

bright red in the central stratum.

These, and many other phenomena of electrical discharge, are

exceedingly important, and when they are better understood they
will probably throw great light on the nature of electricity as well

as on the nature of gases and of the medium pervading space. At

present, however, they must be considered as outside the domain of

the mathematical theory of electricity.

Electric Phenomena of Tourmaline.

58.] Certain crystals of tourmaline, and of other minerals, possess
what may be called Electric Polarity. Suppose a crystal of tour

maline to be at a uniform temperature, and apparently free from

electrification on its surface. Let its temperature be now raised,

the crystal remaining insulated. One end will be found positively

and the other end negatively electrified. Let the surface be de

prived of this apparent electrification by means of a flame or other

wise, then if the crystal be made still hotter,, electrification of the

same kind as before will appear, but if the crystal be cooled the

end which was positive when the crystal was heated will become

negative.

These electrifications are observed at the extremities of the crys-

tallographic axis. Some crystals are terminated by a six-sided

pyramid at one end and by a three-sided pyramid at the other.

In these the end having the six-sided pyramid becomes positive

when the crystal is heated.

Sir W. Thomson supposes every portion of these and other hemi-

hedral crystals to have a definite electric polarity, the intensity

of which depends on the temperature. When the surface is passed

through a flame, every part of the surface becomes electrified to

such an extent as to exactly neutralize, for all external points,

the effect of the internal polarity. The crystal then has no ex

ternal electrical action, nor any tendency to change its mode of

electrification. But if it be heated or cooled the interior polariza-

* Intellectual Observer, March, 1866.
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tion of each particle of the crystal is altered,, and can no longer

be balanced by the superficial electrification, so that there is a

resultant external action.

Plan of this Treatise.

59.] In the following
1 treatise I propose first to explain the

ordinary theory of electrical action, which considers it as depending

only on the electrified bodies and on their relative position, with

out taking account of any phenomena which may take place in the

intervening media. In this way we shall establish the law of the

inverse square, the theory of the potential, and the equations of

Laplace and Poisson. We shall next consider the charges and

potentials of a system of electrified conductors as connected by
a system of equations, the coefficients of which may be supposed

to be determined by experiment in those cases in which our present

mathematical methods are not applicable, and from these we shall

determine the mechanical forces acting between the different elec

trified bodies.

We shall then investigate certain general theorems by which

Green, Gauss, and Thomson have indicated the conditions of so

lution of problems in the distribution of electricity. One result

of these theorems is, that if Poisson s equation is satisfied by any

function, and if at the surface of every conductor the function

has the value of the potential of that conductor, then the func

tion expresses the actual potential of the system at every point.

We also deduce a method of finding problems capable of exact

solution.

In Thomson s theorem, the total energy of the system is ex

pressed in the form of the integral of a certain quantity extended

over the whole space between the electrified bodies, and also in

the form of an integral extended over the electrified surfaces

only. The equality of these two expressions may be thus inter

preted physically. We may conceive the physical relation between

the electrified bodies, either as the result of the state of the

intervening medium, or as the result of a direct action between

the electrified bodies at a distance. If we adopt the latter con

ception, we may determine the law of the action, but we can go
no further in speculating on its cause. If, on the other hand,

we adopt the conception of action through a medium, we are

led to enquire into the nature of that action in each part of the

medium.
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It appears from the theorem, that if we are to look for the seat

of the electric energy in the different parts of the dielectric me
dium, the amount of energy in any small part must depend on
the square of the resultant electromotive intensity at that place

multiplied by a coefficient called the specific inductive capacity of

the medium.

It is better, however, in considering the theory of dielectrics

from the most general point of view, to distinguish between the

electromotive intensity at any point and the electric polarization of

the medium at that point, since these directed quantities, though
related to one another, are not, in some solid substances, in the

same direction. The most general expression for the electric

energy of the medium per unit of volume is half the product of

the electromotive intensity and the electric polarization multiplied

by the cosine of the angle between their directions. In all fluid

dielectrics the electromotive intensity and the electric polarization
are in the same direction and in a constant ratio.

If we calculate on this hypothesis the total energy residing
in the medium, we shall find it equal to the energy due to the

electrification of the conductors on the hypothesis of direct action

at a distance. Hence the two hypotheses are mathematically

equivalent.

If we now proceed to investigate the mechanical state of the

medium on the hypothesis that the mechanical action observed

between electrified bodies is exerted through and by means of the

medium, as in the familiar instances of the action of one body
on another by means of the tension of a rope or the pressure of

a rod, we find that the medium must be in a state of mechanical

stress.

The nature of this stress is, as Faraday pointed out *, a tension

along the lines of force combined with an equal pressure in all

directions at right angles to these lines. The magnitude of these

stresses is proportional to the energy of the electrification per unit

of volume, or, in other words, to the square of the resultant electro

motive intensity multiplied by the specific inductive capacity of the

medium.

This distribution of stress is the only one consistent with the

observed mechanical action on the electrified bodies, and also with

the observed equilibrium of the fluid dielectric which surrounds

them. I have therefore thought it a warrantable step in scientific

*
Exp. Res., series xi. 1297.
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procedure to assume the actual existence of this state of stress, and

to follow the assumption into its consequences. Finding the phrase
electric tension used in several vague senses, I have attempted to

confine it to what I conceive to have been in the mind of some

of those who have used it, namely, the state of stress in the

dielectric medium which causes motion of the electrified bodies,

and leads, when continually augmented, to disruptive discharge.
Electric tension, in this sense, is a tension of exactly the same

kind, and measured in the same way, as the tension of a rope,

and the dielectric medium, which can support a certain tension

and no more, may be said to have a certain strength in exactly
the same sense as the rope is said to have a certain strength.

Thus, for example, Thomson has found that air at the ordinary

pressure and temperature can support an electric tension of 9600

grains weight per square foot before a spark passes.

60.] From the hypothesis that electric action is not a direct

action between bodies at a distance, but is exerted by means of

the medium between the bodies, we have deduced that this medium

must be in a state of stress. We have also ascertained the cha

racter of the stress, and compared it with the stresses which may
occur in solid bodies. Along the lines of force there is tension,

and perpendicular to them there is pressure, the numerical mag
nitude of these forces being equal, and each proportional to the

square of the resultant intensity at the point. Having established

these results, we are prepared to take another step, and to form

an idea of the nature of the electric polarization of the dielectric

medium.

An elementary portion of a body may be said to be polarized

when it acquires equal and opposite properties on two opposite

sides. The idea of internal polarity may be studied to the greatest

advantage as exemplified in permanent magnets, and it will be

explained at greater length when we come to treat of magnetism.
The electric polarization of an elementary portion of a dielectric

is a forced state into which the medium is thrown by the action

of electromotive force, and which disappears when that force is

removed. We may conceive it to consist in what we may call

an electrical displacement, produced by the electromotive intensity.

When the electromotive force acts on a conducting medium it

produces a current through it, but if the medium is a non-con

ductor or dielectric, the current cannot flow through the medium,

but the electricity is displaced within the medium in the direction
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of the electromotive intensity, the extent of this displacement

depending- on the magnitude of the electromotive intensity, so that

if the electromotive intensity increases or diminishes, the electric

displacement increases and diminishes in the same ratio.

The amount of the displacement is measured hy the quantity

of electricity which crosses unit of area, while the displacement

increases from zero to its actual amount. This, therefore, is the

measure of the electric polarization.

The analogy between the action of electromotive force in pro

ducing electric displacement and of ordinary mechanical force in

producing the displacement of an elastic body is so obvious that

I have ventured to call the ratio of the electromotive intensity to

the corresponding electric displacement the coefficient of electric

elasticity of the medium. This coefficient is different in different

media, and varies inversely as the specific inductive capacity of each

medium.

The variations of electric displacement evidently constitute electric

currents. These currents, however, can only exist during the

variation of the displacement, and therefore, since the displace

ment cannot exceed a certain value without causing disruptive

discharge, they cannot be continued indefinitely in the same direc

tion, like the currents through conductors.

In tourmaline, and other pyro-electric crystals, it is probable that

a state of electric polarization exists, which depends upon tem

perature, and does not require an external electromotive force to

produce it. If the interior of a body were in a state of permanent
electric polarization, the outside would gradually become charged

in such a manner as to neutralize the action of the internal

polarization for all points outside the body. This external super

ficial charge could not be detected by any of the ordinary tests,

and could not be removed by any of the ordinary methods for

discharging superficial electrification. The internal polarization of

the substance would therefore never be discovered unless by some

means, such as change of temperature, the amount of the internal

polarization could be increased or diminished. The external elec

trification would then be no longer capable of neutralizing the

external effect of the internal polarization, and an apparent elec

trification would be observed, as in the case of tourmaline.

If a charge e is uniformly distributed over the surface of a sphere,

the resultant force at any point of the medium surrounding the

sphere is numerically equal to the charge e divided by the square of
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the distance from the centre of the sphere. This resultant force,

according to our theory, is accompanied by a displacement of elec

tricity in a direction outwards from the sphere.
If we now draw a concentric spherical surface of radius r, the

whole displacement, E9 through this surface will be proportional to

the resultant force multiplied by the area of the spherical surface. -

But the resultant force is directly as the charge e and inversely as

the square of the radius, while the area of the surface is directly
^^ ut

P*t

as the square of the radius.
* **+**

Hence the whole displacement, E, is proportional to the charge e,

and is independent of the radius.

To determine the ratio between the charge e, and the quantity
of electricity, E, displaced outwards through any one of the

spherical surfaces, let us consider the work done upon the medium
in the region between two concentric spherical surfaces, while the

displacement is increased from E to E + E. If 7
1
and F

2
denote

the potentials at the inner and the outer of these surfaces respect

ively, the electromotive force by which the additional displacement
is produced is V F

2 , so that the work spent in augmenting the

displacement is (Vl
F~

2 )
8 E.

If we now make the inner surface coincide with that of the

electrified sphere, and make the radius of the other infinite, V
becomes

F&quot;,
the potential of the sphere, and F&quot;

2 becomes zero, so

that the whole work done in the surrounding medium is FbE.
But by the ordinary theory, the work done in augmenting the

charge is Tbe, and if this is spent, as we suppose, in augmenting
the displacement, bE = be, and since E and e vanish together,
E = e, or

The displacement outwards through any spherical surface concentric

with the sphere is equal to the charge on the sphere.

To fix our ideas of electric displacement, let us consider an accu

mulator formed of two conducting plates A and B, separated by a

stratum of a dielectric C. Let W be a conducting wire joining
A and B, and let us suppose that by the action of an electromotive

force a quantity Q of positive electricity is transferred along the

wire from B to A. The positive electrification of A and the

negative electrification of B will produce a certain electromotive

force acting from A towards B in the dielectric stratum, and this

will produce an electric displacement from A towards B within the

dielectric. The amount of this displacement, as measured by the

quantity of electricity forced across an imaginary section of the
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dielectric dividing it into two strata, will be, according to our

theory, exactly Q. See Arts. 75, 76, 111.

It appears, therefore, that at the same time that a quantity

Q of electricity is being transferred along the wire by the electro

motive force from J5 towards A, so as to cross every section of

the wire, the same quantity of electricity crosses every section

of the dielectric from A towards by reason of the electric dis

placement.
The displacements of electricity during the discharge of the accu

mulator will be the reverse of these. In the wire the discharge

will be Q from A to
B&amp;gt;

and in the dielectric the displacement will

subside, and a quantity of electricity Q will cross every section

from B towards A.

Every case of charge or discharge may therefore be considered

as a motion in a closed circuit, such that at every section of

the circuit the same quantity of electricity crosses in the same

time, and this is the case, not only in the voltaic circuit where

it has always been recognised, but in those cases in which elec

tricity has been generally supposed to be accumulated in certain

places.

61.] We are thus led to a very remarkable consequence of the

theory which we are examining, namely, that the motions of elec

tricity are like those of an incompressible fluid, so that the total

quantity within an imaginary fixed closed surface remains always
the same. This result appears at first sight in direct contradiction

to the fact that we can charge a conductor and then introduce

it into the closed space, and so alter the quantity of electricity

within that space. But we must remember that the ordinary

theory takes no account of the electric displacement in the sub

stance of dielectrics which we have been investigating, but confines

its attention to the electrification at the bounding surfaces of the

conductors and dielectrics. In the case of the charged conductor

let us suppose the charge to be positive, then if the surrounding

dielectric extends on all sides beyond the closed surface there will

be electric polarization, accompanied with displacement from within

outwards all over the closed surface, and the surface-integral of the

displacement taken over the surface will be equal to the charge on

the conductor within.

Thus when the charged conductor is introduced into the closed

space there is immediately a displacement of a quantity of elec

tricity equal to the charge through the surface from within out-
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wards, and the whole quantity within the surface remains the

same.

The theory of electric polarization will be discussed at greater

length in Chapter V, and a mechanical illustration of it will be

given in Art. 334, but its importance cannot be fully understood

till we arrive at the study of electromagnetic phenomena.

62.] The peculiar features of the theory are :

That the energy of electrification resides in the dielectric medium,
whether that medium be solid, liquid, or gaseous, dense or rare,

or even what is called a vacuum, provided it be still capable of

transmitting electrical action.

That the energy in any part of the medium is stored up in

the form of a state of constraint called electric polarization, the

amount of which depends on the resultant electromotive intensity

at the place.

That electromotive force acting on a dielectric produces what

we have called electric displacement, the relation between the in

tensity and the displacement being in the most general case of a

kind to be afterwards investigated in treating of conduction, but in

the most important cases the displacement is in the same direc-

tion as the force, and is numerically equal to the intensity mul-

tiplied by K, where K is the specific inductive capacity of the

That the energy per unit of volume of the dielectric arising from

the electric polarization is half the product of the electromotive

intensity and the electric displacement, multiplied, if necessary, by
the cosine of the angle between their directions.

That in fluid dielectrics the electric polarization is accompanied

by a tension in the direction of the lines of induction, combined

with an equal pressure in all directions at right angles to the

lines of induction, the tension or pressure per unit of area being

numerically equal to the energy per unit of volume at the same

place.

That the surface of any elementary portion into which we may
conceive the volume of the dielectric divided must be conceived

to be charged so that the surface-density at any point of the

surface is equal in magnitude to the displacement through that

point of the surface reckoned inwards. If the displacement is in

the positive direction, the surface of the element will be charged

negatively on the positive side of the element, and positively on

VOL. i. F
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the negative side. These superficial charges will in general destroy

one another when consecutive elements are considered, except
where the dielectric has an internal charge, or at the surface of

the dielectric.

That whatever electricity may be, and whatever we may under

stand by the movement of electricity, the phenomenon which we
have called electric displacement is a movement of electricity in the

same sense as the transference of a definite quantity of electricity

through a wire is a movement of electricity, the only difference

being that in the dielectric there is a force which we have called

electric elasticity which acts against the electric displacement, and

forces the electricity back when the electromotive force is removed;

whereas in the conducting wire the electric elasticity is continually

giving way, so that a current of true conduction is set up, and

the resistance depends, not on the total quantity of electricity dis

placed from its position of equilibrium, but on the quantity which

crosses a section of the conductor in a given time.

That in every case the motion of electricity is subject to the

same condition as that of an incompressible fluid, namely, that

at every instant as much must flow out of any given closed surface

as flows into it.

It follows from this that every electric current must form a

closed circuit. The importance of this result will be seen when we

investigate the laws of electro-magnetism.

Since, as we have seen, the theory of direct action at a distance

is mathematically identical with that of action by means of a

medium, the actual phenomena may be explained by the one

theory as well as by the other, provided suitable hypotheses be

introduced when any difficulty occurs. Thus, Mossotti has deduced

the mathematical theory of dielectrics from the ordinary theory

of attraction merely by giving an electric instead of a magnetic

interpretation to the symbols in the investigation by which Poisson

has deduced the theory of magnetic induction from the theory of

magnetic fluids. He assumes the existence within the dielectric of

small conducting elements, capable of having their opposite surfaces

oppositely electrified by induction, but not capable of losing or

gaining electricity on the whole, owing to their being insulated

from each other by a non-conducting medium. This theory of

dielectrics is consistent with the laws of electricity, and may be

actually true. If it is true, the specific inductive capacity of

a dielectric may be
greater&amp;gt;

but cannot be less, than that of a
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vacuum. No instance has yet been found of a dielectric having
an inductive capacity less than that of a vacuum, but if such should

be discovered, Mossotti s physical theory must be abandoned,

although his formulae would all remain exact, and would only

require us to alter the sign of a coefficient.

In many parts of physical science, equations of the same form

are found applicable to phenomena which are certainly of quite

different natures, as, for instance, electric induction through di

electrics, conduction through conductors, and magnetic induction.

In all these cases the relation between the force and the effect

produced is expressed by a set of equations of the same kind,

so that when a problem in one of these subjects is solved, the

problem and its solution may be translated into the language
of the other subjects and the results in their new form will still

be true.



CHAPTEE II.

ELEMENTARY MATHEMATICAL THEORY OF STATICAL

ELECTRICITY.

Definition of Electricity as a Mathematical

63.] We have seen that the properties of charged bodies are

such that the charge of one body may be equal to that of an

other, or to the sum of the charges of two bodies, and that when

two bodies are equally and oppositely charged they have no elec

trical effect on external bodies when placed together within a closed

insulated conducting vessel. We may express all these results in

a concise and consistent manner by describing an electrified body as

charged with a certain quantity of electricity, which we may denote

by e. When the charge is positive, that is, according to the usual

convention, vitreous, e will be a positive quantity. When the

charge is negative or resinous, e will be negative, and the quantity

-e may be interpreted either as a negative quantity of vitreous

electricity or as a positive quantity of resinous electricity.

The effect of adding together two equal and opposite charges of

electricity, +&amp;lt;? and e, is to produce a state of no charge expressed

by zero. We may therefore regard a body not charged as virtually

charged with equal and opposite charges of indefinite magnitude,

and a charged body as virtually charged with unequal quantities of

positive and negative electricity, the algebraic sum of these charges

constituting the observed electrification. It is manifest, however,

that this way of regarding an electrified body is entirely artificial,

and may be compared to the conception of the velocity of a body as

compounded of two or more different velocities, no one of which

is the actual velocity of the body.

ON ELECTRIC DENSITY.

Distribution in Three Dimensions.

64] Definition. The electric volume-density at a given point

in space is the limiting ratio of the quantity of electricity within
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a sphere whose centre is the given point to the volume of the

sphere, when its radius is diminished without limit.

We shall denote this ratio by the symbol p, which may be posi

tive or negative.

Distribution over a Surface.

It is a result alike of theory and of experiment, that, in certain

cases, the charge of a body is entirely on the surface. The density

at a point on the surface, if defined according to the method given

above, would be infinite. We therefore adopt a different method

for the measurement of surface-density.

Definition. The electric density at a given point on a surface is

the limiting ratio of the quantity of electricity within a sphere

whose centre is the given point to the area of the surface contained

within the sphere, when its radius is diminished without limit.

We shall denote the surface-density by the symbol o-.

Those writers who supposed electricity to be a material fluid

or a collection of particles, were obliged in this case to suppose

the electricity distributed on the surface in the form of a stratum

of a certain thickness 0, its density being /&amp;gt; ,
or that value of p

which would result from the particles having the closest contact

of which they are capable. It is manifest that on this theory

P 6 = (T.

When o- is negative, according to this theory, a certain stratum

of thickness is left entirely devoid of positive electricity, and

filled entirely with negative electricity, or, on the theory of one

fluid, with matter.

There is, however, no experimental evidence either of the elec

tric stratum having any thickness, or of electricity being a fluid

or a collection of particles. We therefore prefer to do without the

symbol for the thickness of the stratum, and to use a special symbol

for surface-density.

Distribution on a Line.

It is sometimes convenient to suppose electricity distributed

on a line, that is, a long narrow body of which we neglect the

thickness. In this case we may define the line-density at any point

to be the limiting ratio of the charge on an element of the

line to the length of that element when the element is diminished

without limit.
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If A denotes the line-density, then the whole quantity of elec

tricity on a curve is e I \ds, where ds is the element of the curve.

Similarly, if cr is the surface-density, the whole quantity of elec

tricity on the surface is

where dS is the element of surface.

If p is the volume-density at any point of space, then the whole

electricity within a certain volume is

e = / / / p dx dy dz.

where dx dy dz is the element of volume. The limits of integration

in each case are those of the curve, the surface, or the portion of

space considered.

It is manifest that 0, A, o- and p are quantities differing in kind,

each being one dimension in space lower than the preceding, so that

if I be a line, the quantities #, IX, I
2
a; and I

3
p will be all of the

same kind, and if [Z] be the unit of length, and [A], [o-], [p] the

units of the different kinds of density, [Y], [A], [X
2

&amp;lt;r],

and [^
3
/o]

will each denote one unit of electricity.

Definition of the Unit of Electricity.

65.] Let A and B be two points the distance between which

is the unit of length. Let two bodies, whose dimensions are small

compared with the distance AS, be charged with equal quantities

of positive electricity and placed at A and B respectively, and

let the charges be such that the force with which they repel each

other is the unit of force, measured as in Art. 6. Then the charge

of either body is said to be the unit of electricity.

If the charge of the body at B were a unit of negative electricity,

then, since the action between the bodies would be reversed, we

should have an attraction equal to the unit of force. If the charge

of A were also negative, and equal to unity, the force would be

repulsive, and equal to unity.

Since the action between any two portions of electricity is not

affected by the presence of other portions, the repulsion between

e units of electricity at A and e units at B is ee\ the distance

AB being unity. See Art?: 39. Asvti 4/

Law of Force between Charged Bodies.

66.] Coulomb shewed by experiment that the force between
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charged bodies whose dimensions are small compared with the

distance between them, varies inversely as the square of the dis

tance. Hence the repulsion between two such bodies charged with

quantities e and / and placed at a distance r is

72-*

We shall prove in Art. 74 that this law is the only one con

sistent with the observed fact that a conductor, placed in the inside

of a closed hollow conductor and in contact with it, is deprived of

all electrical charge. Our conviction of the accuracy of the law

of the inverse square of the distance may be considered to rest

on experiments of this kind, rather than on the direct measure

ments of Coulomb.

Resultant Force between Two Bodies.

67.] In order to calculate the resultant force between two bodies

we might divide each of them into its elements of volume, and

consider the repulsion between the electricity in each of the elements

of the first body and the electricity in each of the elements of the

second body. We should thus get a system of forces equal in

number to the product of the numbers of the elements into which

we have divided each body, and we should have to combine the

effects of these forces by the rules of Statics. Thus, to find the

component in the direction of x we should have to find the value

of the sextuple integral

/Y/Y/Y PP (
X ~X

)
dx dy dz dx dy dz

JJJJJJ
{ (#
_

a/)2 _j_ (y /)
2+ (z /)

2
}
%

where #, y, z are the coordinates of a point in the first body at

which the electrical density is
/o,

and #
, y , /, and p are the

corresponding quantities for the second body, and the integration

is extended first over the one body and then over the other.

Eesultant Intensity at a Point.

68.] In order to simplify the mathematical process, it is con

venient to consider the action of an electrified body, not on another

body of any form, but on an indefinitely small body, charged with

an indefinitely small amount of electricity, and placed at any point

of the space to which the electrical action extends. By making

the charge of this body indefinitely small we render insensible its

disturbing action on the charge of the first body.
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Let e be the charge of the small body, and let the force acting

on it when placed at the point (a?,y, z) be Re, and let the direction-

cosines of the force be I, m, n, then we may call R the resultant

electrical Intensity at the point (x, y, z).

If X, Y, Z denote the components of R, then

X=Rl, Y=Rm, Z=Rn.
In speaking of the resultant electrical intensity at a point, we

do not necessarily imply that any force is actually exerted there,

but only that if an electrified body were placed there it would be

acted on by a force Re, where e is the charge of the body*.

Definition. The Resultant electric Intensity at any point is the

force which would be exerted on a small body charged with the

unit of positive electricity, if it were placed there without disturbing
the actual distribution of electricity.

This force not only tends to move a body charged with

electricity, but to move the electricity within the body, so that

the positive electricity tends to move in the direction of R
and the negative electricity in the opposite direction. Hence

the quantity R is also called the Electromotive Intensity at the point

0, v&amp;gt; 4
When we wish to express the fact that the resultant intensity is

a vector, we shall denote it by the German letter (. If the body
is a dielectric, then, according to the theory adopted in this

treatise, the electricity is displaced within it, so that the quantity

of electricity which is forced in the direction of & across unit of

area fixed perpendicular to ( is

where 2) is the displacement, ( the resultant intensity, and K the

specific inductive capacity of the dielectric.

If the body is a conductor, the state of constraint is continually

giving way, so that a current of conduction is produced and main

tained as long as ( acts on the medium.

Line-Integral of Electric Intensity &amp;gt;

or Electromotive Force along

an Arc of a Curve.

f 69.] The Electromotive force along a given arc AP of a curve is

-I numerically measured by the work which would be done by the

* The Electric and Magnetic Intensity correspond, in electricity and mag
netism, to the intensity of gravity, commonly denoted by g, in the theory of heavy
bodies.
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electric force on a unit of positive electricity carried along the curve

from A, the beginning&quot;, to P, the end of the arc.

If s is the length of the arc, measured from A, and if the re

sultant intensity R at any point of the curve makes an angle e with

the tangent drawn in the positive direction, then the work done

on unit of electricity in moving along the element of the curve

ds will be R cos dS)

and the total electromotive force D will be

E = I R cos e ds,
J

the integration being extended from the beginning to the end

of the arc.

If we make use of the components of the intensity, the expres

sion becomes

o

If X, Y, and Z are such that Xdse+ Ydy+ Zdz is the complete

differential of F, a function of x, y, z, then

E = [
P

(Xdx+ Ydy+ Zdz} = - f*dF = VA- VP \

JA J A

where the integration is performed in any way from the point A
to the point P, whether along the given curve or along any other

line between A and P.

In this case Fis a scalar function of the position of a point in

space, that is, when we know the coordinates of the point, the value

of Fis determinate, and this value is independent of the position

and direction of the axes of reference. See Art. 16.

On Functions of the Position of a Point.

In what follows, when we describe a quantity as a function of

the position of a point, we mean that for every position of the point

the function has a determinate value. We do not imply that this

value can always be expressed by the same formula for all points of

space, for it may be expressed by one formula on one side of a

given surface and by another formula on the other side.

On Potential Functions.

70.] The quantity Xdx+Ydy + Zdz is an exact differential

whenever the force arises from attractions or repulsions whose in

tensity is a function of the distances from any number of points.
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For if ^ be the distance of one of the points from the point (#, y, 2),

and if R be the repulsion, then

Y - 7? *&quot;&quot;*i - 7?
^i

*i **1
- =

**1 ~T~
/!

l
&amp;lt;?#

with similar expressions for T^ and Zlt so that

T
l dy + Z dz = R dr

;

and since R
l is a function of r only, ^ dr^ is an exact differential

of some function of rlt say V^ .

Similarly for any other force E^ acting from a centre at dis

tance r
2 , Xzdx + Y2 dy+ Z2

dz = R2dr2
= -dV

2
.

But X = X
1 -j-X2 + &c. and T and Z are compounded in the same

way, therefore

The integral of this quantity, under the condition that it vanishes

at an infinite distance, is called the Potential Function.

The use of this function in the theory of attractions was intro

duced by Laplace in the calculation of the attraction of the earth.

Green, in his essay On the Application of Mathematical Analysis
to Electricity/ gave it the name of the Potential Function. Gauss,

working independently of Green, also used the word Potential.

Clausius and others have applied the term Potential to the work

which would be done if two bodies or systems were removed to

an infinite distance from one another. We shall follow the use of

the word in recent English works, and avoid ambiguity by adopting
the following definition due to Sir W. Thomson.

Definition of Potential. The Potential at a Point is the work

which would be done on a unit of positive electricity by the elec

tric forces if it were placed at that point without disturbing the

electric distribution, and carried from that point to an infinite

distance : or, what comes to the same thing, the work which

must be done by an external agent in order to bring the unit

of positive electricity from an infinite distance (or from any place

where the potential is zero) to the given point.

71.] Expressionsfor the Resultant Intensity and its components in

terms of the Potential.

Since the total electromotive force along any arc AB is
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if we put ds for the arc AB we shall have for the force resolved

in the direction of ds,

T&amp;gt;

dYH cos e = =-
;

ds

whence, by assuming ds parallel to each of the axes in succession,

we get

Y dV _ dV dV
JL= I = , Z r-

J

dx dy dz

2 dV
+ -5-

dV
+ -T-

dz

We shall denote the intensity itself, whose magnitude, or tensor,

is E and whose components are X, Y, Z, by the German letter (, as

in Arts. 17 and 68.

The Potential at all Points within a Conductor is the same.

72.] A conductor is a body which allows the electricity within

it to move from one part of the body to any other when acted on

by electromotive force. When the electricity is in equilibrium
there can be no electromotive force -acting within the conductor.

Hence R = throughout the whole space occupied by the con

ductor. From this it follows that

dV dV dV
-7- = &amp;gt; :r- = &amp;gt; -7-=;dx dy dz

and therefore for every point of the conductor

F=C,
where C is a constant quantity.

Since the potential at all points within the substance of the

conductor is C, the quantity C is called the Potential of the con

ductor. C may be defined as the work which must be done by
external agency in order to bring a unit of electricity from an

infinite distance to the conductor, the distribution of electricity

being supposed not to be disturbed by the presence of the unit.

It will be shewn at Art. 246 that in general when two bodies

of different kinds are in contact, an electromotive force acts from

one to the other through the surface of contact, so that when they
are in equilibrium the potential of the latter is higher than that

of the former. For the present, therefore, we shall suppose all our

conductors made of the same metal, and at the same temperature.
If the potentials of the conductors A and B be VA and ~PB re

spectively, then the electromotive force along a wire joining A and

B will be YA V*
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in the direction AS, that is, positive electricity will tend to pass

from the conductor of higher potential to the other.

Potential, in electrical science, has the same relation to Elec

tricity that Pressure, in Hydrostatics, has to Fluid, or that Tem

perature, in Thermodynamics, has to Heat. Electricity, Fluids,

and Heat all tend to pass from one place to another, if the Poten

tial, Pressure, or Temperature is greater in the first place than in

the second. A fluid is certainly a substance, heat is as certainly

not a substance, so that though we may find assistance from ana

logies of this kind in forming clear ideas of formal relations of

electrical quantities, we must be careful not to let the one or the

other analogy suggest to us that electricity is either a substance

like water, or a state of agitation like heat.

Potential due to any Electrical System.

73.] Let there be a single electrified point charged with a quantity

e of electricity, and let r be the distance of the point #
, y ,

/ from

it, then
f*&amp;gt;

r ,, ^
V= \

Edr = ~dr = -
Jr Jr r2 r

Let there be any number of electrified points whose coordinates

are (xl9 ylt zj, (x2 , y^ z^ &c. and their charges e
lt

&amp;lt;?

2 , &c., and

let their distances from the point (# , /, /) be rlt r
2 , &c., then the

potential of the system at
(of, y , /) will be

Let the electric density at any point (a?, y&amp;gt; z) within an elec

trified body be pt
then the potential due to the body is

where r = {(x-xj + (y-yj + (*-/)
2
}*,

the integration being extended throughout the body.

On the Proof of the Law of the Inverse Square.

74
.]

The fact that the force between electrified bodies is inversely

as the square of the distance may be considered to be established by

Coulomb s direct experiments with the torsion-balance. The results,

however, which we derive from such experiments must be regarded

as affected by an error depending on the probable error of each

experiment, and unless the skill of the operator be very great,



74 fr-]
PKOOF OF THE LAW OF FOECE. 77

the probable error of an experiment with the torsion-balance is

considerable.

A far more accurate verification of the law of force may be

deduced from an experiment similar to that described at Art 32

(Exp. VII).

Cavendish, in his hitherto unpublished work on electricity, makes

the evidence of the law of force depend on an experiment of this

kind.

He fixed a globe on an insulating- support, and fastened two

hemispheres by glass rods to two wooden frames hinged to an axis

so that the hemispheres, when the frames were brought together,

formed an insulated spherical shell concentric with the globe.

The globe could then be made to communicate with the hemispheres

by means of a short wire, to which a silk string was fastened so

that the wire could be removed without discharging the apparatus.

The globe being in communication with the hemispheres, he

charged the hemispheres by means of a Leyden jar, the potential

of which had been previously measured by an electrometer, and

immediately drew out the communicating wire by means of the

silk string, removed and discharged the hemispheres, and tested

the electrical condition of the globe by means of a pith ball electro

meter.

No indication of any charge of the globe could be detected by
the pith ball electrometer, which at that time (1773) was considered

the most delicate electroscope.

Cavendish next communicated to the globe a known fraction of

the charge formerly communicated to the hemispheres, and tested

the globe again with his electrometer.

He thus found that the charge of the globe in the original

experiment must have been less than
-fa-

of the charge of the whole

apparatus, for if it had been greater it would have been detected by
the electrometer.

He then calculated the ratio of the charge of the globe to that of

the hemispheres on the hypothesis that the repulsion is inversely as

a power of the distance differing slightly from 2, and found that if

this difference was -^ there would have been a charge on the globe

equal to -gV of that of the whole apparatus, and therefore capable of

being detected by the electrometer.

74 #.]
The experiment has recently been repeated at the Cavendish

Laboratory in a somewhat different manner.

The hemispheres were fixed on an insulating stand, and the globe
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fixed in its proper position within them by means of an ebonite

ring-. By this arrangement the insulating support of the globe

was never exposed to the action of any sensible electric force, and

therefore never became charged, so that the disturbing effect of

electricity creeping along the surface of the insulators was entirely

removed.

Instead of removing the hemispheres before testing the potential

of the globe, they were left in their position, but discharged to

earth. The effect of a given charge of the globe on the electro

meter was not so great as if the hemispheres had been removed,

but this disadvantage was more than compensated by the perfect

security afforded by the conducting vessel against all external

electric disturbances.

The short wire which made the connexion between the shell and

the globe was fastened to a small metal disk which acted as a lid to

a small hole in the shell, so that when the wire and the lid were

lifted up by a silk string, the electrode of the electrometer could be

made to dip into the hole and rest on the globe within.

The electrometer was Thomson s Quadrant Electrometer described

in Art. 219. The case of the electrometer and one of the electrodes

were always connected to earth, and the testing electrode was con

nected to earth till the electricity of the shell had been discharged.

To estimate the original charge of the shell, a small brass ball

was placed on an insulating support at a considerable distance from

the shell.

The operations were conducted as follows :

The shell was charged by communication with a Leyden jar.

The small ball was connected to earth so as to give it a negative

charge by induction, and was then left insulated.

The communicating wire between the globe and the shell was

removed by a silk string.

The shell was then discharged, and kept connected to earth.

The testing electrode was disconnected from earth, and made

to touch the globe, passing through the hole in the shell.

Not the slightest effect on the electrometer could be observed.

To test the sensitiveness of the apparatus the shell was discon

nected from earth and the small ball was discharged to earth. The

electrometer then showed a positive deflection, D.

The negative charge of the brass ball was about -f^ of the ori

ginal charge of the shell, and the positive charge induced by the

ball when the shell was put to earth was about | of that of the ball.
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Hence when the ball was put to earth the potential of the shell, as

indicated by the electrometer, was about T|F of its original potential.

But if the repulsion had been as rq~ 2
,
the potential of the globe

would have been 0-1478 q of that of the shell by equation 22, p. 81.

Hence if + d be the greatest deflexion of the electrometer which

could escape observation, and D the deflexion observed in the second

part of the experiment, q cannot exceed

+ J-.-
72 D

Now even in a rough experiment D was more than 300^ so that

q cannot exceed 1

- 21600

Theory of the Experiment.

74
cl\

To find the potential at any point due to a uniform spherical

shell, the repulsion between two units of matter being any given
function of the distance.

Let
(/*)

be the repulsion between two units at distance r, and

let/(r) be such that

(=/ ( ))
= j*w*. 0)

Let the radius of the shell be a, and its surface density cr, then, if

a denotes the whole mass of the shell,

a = 47T02
o-. (2)

Let b denote the distance of the given point from the centre

of the shell, and let r denote its distance from any given point

of the shell.

If we refer the point on the shell to spherical coordinates, the

pole being the centre of the shell, and the axis the line drawn

to the given point, then

r2 = a2 + b2 -2abcos0. (3)

The mass of the element of the shell is

o- a2 sin 6 d$ dd, (4)

and the potential due to this element at the given point is

&amp;lt;ja

2 siuO
^-^ded&amp;lt;t&amp;gt;; (5)

and this has to be integrated with respect to $ from $ = to

&amp;lt;J&amp;gt;

= 2 IT, which gives

27ro-fl2 sin&amp;lt;9^-^0, (6)

which has to be integrated from to B = TT.
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Differentiating (3) we find

(7)

Substituting the value of dO in (6) we obtain

2 *
erf

the integral of which is

-/r2 }, (9)

when r
x

is the greatest value of r, which is always a+ b, and ?\

is the least value of r, which is b a when the given point is out

side the shell and ab when it is within the shell.

If we write a for the whole charge of the shell, and V for its

potential at the given point, then for a point outside the shell

r=^L {/(*+)-/(*-)}. (10)

For a point on the shell itself

and for a point inside the shell

We have next to determine the potentials of two concentric

spherical shells, the radii of the outer and inner shells being a and b,

and their charges a and /3.

Calling the potential of the outer shell A, and that of the inner

J5, we have by what precedes

2 a 2

~
In the first part of the experiment the shells communicate by the

short wire and are both raised to the same potential, say V.

By putting A = B = V, and solving the equations (13) and (14)

for /3,
we find the charge of the inner shell

a/(2 a)
-

In the experiment of Cavendish, the hemispheres forming the

outer shell were removed to a distance which we may suppose in-
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finite, and discharged. The potential of the inner shell (or globe)

would then become

S^-^AZt). (16)

In the form of the experiment as repeated at the Cavendish

Laboratory the outer shell was left in its place, but connected to

earth, so that A 0. In this case we find for the potential of the

inner shell in terms of V

.]
Let us now assume, with Cavendish, that the law offeree

is some inverse power of the distance, not differing much from the

inverse square, and let us put

$(*) = / -; (18)

then /W== _l_ f* + i. (19)

If we suppose q to be small, we may expand this by the ex

ponential theorem in the form

+? lo& ? + (?logr)2
&quot;F&c - ; (20)

and if we neglect terms involving q
2

, equations (16) and (17) be

come

from which we , may determine q in terms of the results of the

experiment.

740.] Laplace gave the first demonstration that no function of

the distance except the inverse square satisfies the condition that a

uniform spherical shell exerts no force on a particle within it *.

If we suppose that /3 in equation (15) is always zero, we may
apply the method of Laplace to determine the form of /(r). We
have by (15),

a/(2*)-*/(*+*)+/( -a) = o.

Differentiating twice with respect to b, and dividing by #, we find

f&quot;(a + b) =f&quot;(a-l).

If this equation is generally true

f&quot; (r)
= C

,
a constant.

* Mec. Cel, I. 2.

VOL. I. G
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Hence, f (r)
= (7 r + C\;

and by (1) f* &amp;lt;f&amp;gt;(r)dr=
^-=(7 +^-,

Jf T T

We may observe, however, that though the assumption of

Cavendish, that the force varies as some power of the distance, may

appear less general than that of Laplace, who supposes it to be any
function of the distance, it is the only one consistent with the fact

that similar figures can be electrified so as to have similar electrical

properties.

For if the force were any function of the distance except a power
of the distance, the ratio of the force at two different distances

would not be a function of the ratio of the distances, but would

depend on the absolute value of the distances, and would therefore

involve the ratios of these distances to an absolutely fixed length.

Indeed Cavendish himself points out that on his own hypothesis

as to the constitution of the electric fluid, it is impossible for the

distribution of electricity to be accurately similar in two conductors

geometrically similar, unless the charges are proportional to the

volumes. For he supposes the particles of the electric fluid to be

closely pressed together near the surface of the body, and this is

equivalent to supposing that the law of repulsion is no longer the

inverse square, but that as soon as the particles come into contact,

their repulsion begins to increase at a much greater rate with any

further diminution of their distance.

Surface-Integral of Electric Induction, and Electric Displacement

through a surface.

75.] Let R be the resultant intensity at any point of the surface,

and e the angle which E makes with the normal drawn towards

the positive side of the surface, then R cos e is the component of

the intensity normal to the surface, and if dS is the element of the

surface, the electric displacement through dS will be, by Art. 68,

since we do not at present consider any dielectric except air, K=l.

We may, however, avoid introducing at this staye the theory of

electric displacement, by calling RcosedS the Induction through

the element dS. This quantity is well known in mathematical
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physics, but the name of induction is borrowed from Faraday.

The surface-integral of induction is

R cos dS,

and it appears by Art. 21, that if X, Y, Z are the components of R,

and if these quantities are continuous within a region bounded by a

closed surface S, the induction reckoned from within outwards is

/Yr, fff/dX dY dz\EcosedS =
/ / / (-y- + -y- + -J-) dxdydz,JJ JJJ \dx dy dz

the integration being extended through the whole space within the

surface.

Induction through a Closed Surface due to a Single Centre of Force.

76.] Let a quantity e of electricity be supposed to be placed at a

point 0, and let r be the distance of any point P from 0, the force

at that point is R = er~ 2 in the direction OP.

Let a line be drawn from in any direction to an infinite dis

tance. If is without the closed surface this line will either not

cut the surface at all, or it will issue from the surface as many
times as it enters. If is within the surface the line must first

issue from the surface, and then it may enter and issue any number

of times alternately, ending by issuing from it.

Let be the angle between OP and the normal to the surface

drawn outwards where OP cuts it, then where the line issues from

the surface, cos e will be positive, and where it enters, cos e will

be negative.

Now let a sphere be described with centre and radius unity,

and let the line OP describe a conical surface of small angular

aperture about as vertex.

This cone will cut off a small element d&amp;lt;& from the surface of the

sphere, and small elements dSlt dS2 ,
&c. from the closed surface at

the different places where the line OP intersects it.

Then, since any one of these elements dS intersects the cone at a

distance r from the vertex and at an obliquity e,

dS r2 sec e du&amp;gt;
;

and, since R = er~2
,
we shall have

R cos dS = edu&amp;gt;;

the positive sign being taken when r issues from the surface, and

the negative where it enters it.

If the point is without the closed surface, the positive values

G 2
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are equal in number to the negative ones, so that for any direction

and therefore / / R cos e dS = 0,

the integration being extended over the whole closed surface.

If the point is within the closed surface the radius vector OP
first issues from the closed surface, giving a positive value of e da,

and then has an equal number of entrances and issues, so that in

this case 2 R Cos e dS = e dv.

Extending the integration over the whole closed surface, we shall

include the whole of the spherical surface, the area of which is 4 TT,

so that rr rr
I I R cos e dS = e / / da = 47i&amp;lt;?.

Hence we conclude that the total induction outwards through a

closed surface due to a centre of force e placed at a point is

zero when is without the surface, and 4 tie when is within

the surface.

Since in air the displacement is equal to the induction divided

by 4-77, the displacement through a closed surface, reckoned out-

v wards, is equal to the electricity within the surface.

Corollary. It also follows that if the surface is not closed but

is bounded by a given closed curve, the total induction through

it is we, where o&amp;gt; is the solid angle subtended by the closed curve

at 0. This quantity, therefore, depends only on the closed curve,

and the form of the surface of which it is the boundary may be

changed in any way, provided it does not pass from one side to the

other of the centre of force.

On tJie Equations of Laplace and Poisson.

77.] Since the value of the total induction of a single centre

of force through a closed surface depends only on whether the

centre is within the surface or not, and does not depend on its

position in any other way, if there are a number of such centres

elt e
2 , &c. within the surface, and */, ez ,

&c. without the surface,

we shall have rr
/ / R cose dS = 4ne

;

where e denotes the algebraical sum of the quantities of electricity

at all the centres of force within the closed surface, that is, the

total electricity within the surface, resinous electricity being reck

oned negative.
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If the electricity is so distributed within the surface that the

density is nowhere infinite, we shall have by Art. 64,

4 TT e = 4 TT / / / p dx dy dz,

and by Art. 75,

/Y ff[fdx dY dz\ i

I RcostdS = I I /( + + }dacdydz.J J JJJ ^dx dy dz

If we take as the closed surface that of the element of volume

dx dy dzj we shall have, by equating these expressions,

dX dY dZ

and if a potential V exists, we find by Art. 7 1
,

d 2 7

This equation, in the case in which the density is zero, is called

Laplace s Equation. In its more general form it was first given by
Poisson. It enables us, when we know the potential at every point,

to determine the distribution of electricity.

We shall denote, as in Art. 26, the quantity

d27 .

and we may express Poisson s equation in words by saying that

the electric density multiplied by 4?r is the concentration of the

potential. Where there is no electrification, the potential has no

concentration, and this is the interpretation of Laplace s equation.

By Art. 72, V is constant within a conductor. Hence within a

conductor the volume-density is zero, and the whole charge must

be on the surface.

If we suppose that in the superficial and linear distributions of

electricity the volume-density p remains finite, and that the elec

tricity exists in the form of a thin stratum or a narrow fibre, then,

by increasing p and diminishing the depth of the stratum or the

section of the fibre, we may approach the limit of true superficial

or linear distribution, and the equation being true throughout the

process will remain true at the limit, if interpreted in accordance

with the actual circumstances.

Variation of the Potential at a Charged Surface.

78 #.] The potential function, F, must be physically continuous

in the sense defined in Art. 7, except at the bounding surface of
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two different media, in which case, as we shall see in Art. 246,

there may be a difference of potential between the substances,

so that when the electricity is in equilibrium, the potential at

a point in one substance is higher than the potential at the

contiguous point in the other substance by a constant quantity,

C, depending on the natures of the two substances and on their

temperatures.

But the first derivatives of V with respect to #, y, or z may be

discontinuous, and, by Art. 8, the points at which this discontinuity

occurs must lie in a surface, the equation of which may be expressed

in the form ^
_

$ fa ^ z
j
= . (l)

This surface separates the region in which
(/&amp;gt;

is negative from the

region in which
&amp;lt;p

is positive.

Let T[ denote the potential at any given point in the negative

region, and V% that at any given point in the positive region, then

at any point in the surface at which $ =
0, and which may be

said to belong to both regions,

r^c=rt , (2)

where C is the constant excess of potential, if any, in the substance

on the positive side of the surface.

Let /, m, n be the direction-cosines of the normal v
2
drawn from

a given point of the surface into the positive region. Those of the

normal v
l
drawn from the same point into the negative region will

be /, m, and n.

The rates of variation of V along the normals are

dV, .dK dV, dV,
-_!=-/ 1-^-^-fcl, (3)
di\ else ay dz

d72 7
dK dK dK

-T- = l-T~ + m-r- +n-j-- (4)
dv% ace ay dz

Let any line be drawn on the surface, and let its length, measured

from a fixed point in it, be
&amp;lt;?,

then at every point of the surface,

and therefore at every point of this line, V^ T[
= C. Differentiating

this equation with respect to s, we get

v dx dx ds v
dy dy ds V dz dz ds

m(o)
and since the normal is perpendicular to this line

, dx dy dzl~ + m -f + n-r = 0. (6)ds ds ds

-.-*

c ^ ^5
^o; A ^ ip ^

-* I *f . * *T
&quot;

j -^&quot; r^-xx
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From (3), (4), (5), (6) we find

dr, W__ l(
W

v
W

}y (7)W dx ^ h

dvj*

-_.( 5 +
&amp;lt;),

(8)
ay ay ^av

l
dvz

dK dK f dV^ dV^ ...
-=-*- --r1 = n

( -T + -j-M (9)
dz dz ^dv-L dv%

If we consider the variation of the electromotive intensity at a

point in passing through the surface, that component of the in

tensity which is normal to the surface may change abruptly at the

surface, but the other two components parallel to the tangent plane

remain continuous in passing through the surface.

783.] To determine the charge of the surface, let us consider a

closed surface which is partly in the positive region and partly in

the negative region, and which therefore encloses a portion of the

surface of discontinuity.

The surface integral,

extended over this surface, is equal to lire, where e is the quantity

of electricity within the closed surface.

Proceeding as in Art. 2 1
,
we find

dY

S
) (2)

where the triple integral is extended throughout the closed surface,

and the double integral over the surface of discontinuity.

Substituting for the terms of this equation their values from

(7), (8), (9),\ / v y \ /

But by the definition of the volume-density, p, and the surface-

density, ,, ^ = ^jjfpdxdydz +^fjads_ (12)

Hence, comparing the last terms of these two equations,

0. (13)

This equation is called the characteristic equation of V at an elec

trified surface of which the surface-density is &amp;lt;r.
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78&amp;lt;?.]
If V is a function of x,y, z which, throughout a given con

tinuous region of space, satisfies Laplace s equation

dtf df
and if throughout a finite portion of this region T is constant and

equal to C, then V must be constant and equal to C throughout the

whole region in which Laplace s equation is satisfied.

If V is not equal to C throughout the whole region, let 8 be the

surface which bounds the finite portion within which V C.

At the surface 8, V = C.

Let v be a normal drawn outwards from the surface 8. Since

8 is the boundary of the continuous region for which V C, the

value of Fas we travel from the surface along the normal begins

dV
to differ from C. Hence -= just outside the surface may be posi-

wV

tive or negative, but cannot be zero except for normals drawn from

the boundary line between a positive and a negative area.

But if v is the normal drawn inwards from the surface S, V C

j d?
and -j-r = 0.

civ

Hence, at every point of the surface except certain boundary lines,

dv dr.
+ --(= 47TO-)dv dv ^

is a finite quantity, positive or negative, and therefore the surface

8 has a continuous distribution of electricity over all parts of it

except certain boundary lines which separate positively from nega

tively charged areas.

Laplace s equation is not satisfied at the surface 8 except at

points lying on certain lines on the surface. The surface 8 there

fore, within which V C, includes the whole of the continuous

region within which Laplace s equation is satisfied.

Force Acting on a Charged Surface.

79.] The general expression for the components of the force

acting on a charged body parallel to the three axes are of the form

A =f[fp %dx dy dz, (14)

with similar expressions for B and C, the components parallel to y
and z.

But at a charged surface p is infinite, and X is discontinuous, so
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that we cannot calculate the force directly from expressions of this

form.

We have proved, however, that the discontinuity affects only

that component of the intensity which is normal to the charged

surface, the other two components being continuous.

Let us therefore assume the axis of x normal to the surface at

the given point, and let us also assume, at least in the first part

of our investigation, that X is not really discontinuous; but that

it changes continuously from X
1

to X2 while x changes from x
l

to #?2 . If the result of our calculation gives a definite limiting

value for the force when x^x^ is diminished without limit, we

may consider it correct when x
2
= x

,
and the charged surface has

no thickness.

Substituting for p its value as found in Art. 77,

A
i ffffdx t

AY ciz. vl 1
. , .

-- + + Xd* d* dz

Integrating this expression with respect to as from x = a?
x
to x = os

it becomes

This is the value of A for a stratum parallel to yz of which the

thickness is x^x^
Since Y and Z are continuous, + - is finite, and since X

dy dz

is also finite,

,dY d

where C is the greatest value of
(-j- -\--j-jX

between x x^ and

x

Hence when x.2 x-^
is diminished without limit this term must

ultimately vanish, leaving

(17)

where X1
is the value of X on the negative and X

2
on the positive

side of the surface.

But by Art. 78, Xj-^i = - =
***&amp;gt; (

18
)dx dx

so that we may write

A
=jj\(Xz +Xl}

(rdydz. (19)

Here dydz is the element of the surface, &amp;lt;r is the surface-density,
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and J (X2 -f Xj) is the arithmetical mean of the electromotive in

tensity on the two sides of the surface.

Hence an element of a charged surface is acted on by a force,

the component of which normal to the surface is equal to the charge

of the element into the arithmetical mean of the normal electro

motive intensities on the two sides of the surface.

Since the other two components of the electromagnetic intensity

are not discontinuous, there can be no ambiguity in estimating the

corresponding components of the force acting on the surface.

We may now suppose the direction of the normal to the surface to be

in any direction with respect to the axes, and write the general expres

sions for the components of the force on the element of surface dS,

A = (Xl +X2)&amp;lt;rdS,

J9 = i(rl+ ra)cr^, (20)

C =

Charged Surface of a Conductor.

80.] We have already shewn (Art. 72) that throughout the sub

stance of a conductor in electric equilibrium X = Y = Z 0, and

therefore V is constant.

dX dY dZ
Hence -z

\- 7 |-
-= = 4?rp = 0,

ax ay dz

and therefore p must be zero throughout the substance of the

conductor, or there can be no electricity in the interior of the con

ductor.

Hence a superficial distribution of electricity is the only possible

distribution in a conductor in equilibrium.

A distribution throughout the mass of a body can exist only

when the body is a non-conductor.

Since the resultant intensity within the conductor is zero, the

resultant intensity just outside the conductor must be in the direc

tion of the normal and equal to 47T0-, acting outwards from th&amp;gt;%

conductor.

This relation between the surface-density and the resultant in

tensity close to the surface of a conductor is known as Coulomb s

Law, Coulomb having ascertained by experiment that the intensity

of the electric force near a given point of the surface of a conductor

is normal to the surface and proportional to the surface-density at

the given point. The numerical relation

R = 4 77 (7

was established by Poisson.
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The force acting on an element, dS, of the charged surface of

a conductor is, by Art. 79, (since the intensity is zero on the inner

side of the surface,)

8 77

This force acts outwards from the conductor, whether the charge

of the surface is positive or negative.

Its value in dynes per square centimetre is

\R&amp;lt;r
= 2770-2 = R2

,

Sir

acting as a tension outwards from the surface of the conductor.

81.] If we now suppose an elongated body to be electrified, we

may, by diminishing its lateral dimensions, arrive at the conception

of an electrified line.

Let ds be the length of a small portion of the elongated body,

and let c be its circumference, and a the surface density of the

electricity on its surface; then, if A. is the charge per unit of

length, A = ca, and the resultant electrical intensity close to the

surface will be X
4 TTO- = 47T--

c

If, while A remains finite, c be diminished indefinitely, the in

tensity at the surface will be increased indefinitely. Now in every

dielectric there is a limit beyond which the intensity cannot be

increased without a disruptive discharge. Hence a distribution of

electricity in which a finite quantity is placed on a finite portion

of a line is inconsistent with the conditions existing in nature.

Even if an insulator could be found such that no discharge could

be driven through it by an infinite force, it would be impossible

to charge a linear conductor with a finite quantity of electricity,

for an infinite electromotive force would be required to bring the

electricity to the linear conductor.

In the same way it may be shewn that a point charged with

a finite quantity of electricity cannot exist in nature. It is con

venient, however, in certain cases, to speak of electrified lines and

points, and we may suppose these represented by electrified wires,

and by small bodies of which the dimensions are negligible com

pared with the principal distances concerned.

Since the quantity of electricity on any given portion of a wire

at a given potential diminishes indefinitely when the diameter of

the wire is indefinitely diminished, the distribution of electricity on

bodies of considerable dimensions will not be sensibly affected by
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the introduction of very fine metallic wires into the field, such as

are used to form electrical connexions between these bodies and the

earth, an electrical machine, or an electrometer.

On Lines of Force.

82.] If a line be drawn whose direction at every point of its

course coincides with that of the resultant intensity at that point,
the line is called a Line of Force.

In every part of the course of a line of force, it is proceeding
from a place of higher potential to a place of lower potential.

Hence a line of force cannot return into itself, but must have a

beginning and an end. The beginning of a line of force must be

in a positively charged surface, and the end of a line of force must

be in a negatively charged surface.

The beginning and the end of the line are called corresponding

points on the positive and negative surface respectively.

If the line of force moves so that its beginning traces a closed

curve on the positive surface, its end will trace a corresponding

closed curve on the negative surface, and the line of force itself

will generate a tubular surface called a tube of induction. Such a

tube is called a Solenoid *.

Since the force at any point of the tubular surface is in the

tangent plane, there is no induction across the surface. Hence

if the tube does not contain any electrified matter, by Art. 77

the total induction through the closed surface formed by the

tubular surface and the two ends is zero, and the values of

U cos e dS for the two ends must be equal in magnitude

but opposite in sign.

If these surfaces arc the surfaces of conductors

e=0 and R=

and / / R cos e dS becomes 4 IT / / a dS, or the charge of the sur

face multiplied by 4 TT.

Hence the positive charge of the surface enclosed within the

closed curve at the beginning of the tube is numerically equal to

the negative charge enclosed within the corresponding closed curve

at the end of the tube.

* From aw\T]vt a tube. Faraday uses (3271) the term Sphondyloid in the same

sense.
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Several important results may be deduced from the properties of

lines of force.

The interior surface of a closed conducting vessel is entirely
free from charge, and the potential at every point within it is

the same as that of the conductor, provided there is no insulated

and charged body within the vessel.

For since a line of force must begin at a positively charged
surface and end at a negatively charged surface, and since no

charged body is within the vessel, a line of force, if it exists

within the vessel, must begin and end on the interior surface of

the vessel itself.

But the potential must be higher at the beginning of a line

of force than at the end of the line, whereas we have proved that

the potential at all points of a conductor is the same.

Hence no line of force can exist in the space within a hollow

vessel, provided no charged body be placed inside it.

If a conductor within a closed hollow vessel is placed in com
munication with the vessel, its potential becomes the same as

that of the vessel, and its surface becomes continuous with the

inner surface of the vessel. The conductor is therefore free from

charge.

If we suppose any charged surface divided into elementary por
tions such that the charge of each element is unity, and if solenoids

having these elements for their bases are drawn through the field of

force, then the surface-integral for any other surface will be re

presented by the number of solenoids which it cuts. It is in this

sense that Faraday uses his conception of lines of force to indicate

not only the direction but the amount of the force at any place in

the field.

We have used the phrase Lines of Force because it has been used

by Faraday and others. In strictness, however, these lines should

be called Lines of Electric Induction.

In the ordinary cases the lines of induction indicate the direction

and magnitude of the resultant electromotive intensity at every

point, because the intensity and the induction are in the same

direction and in a constant ratio. There are other cases, how

ever, in which it is important to remember that these lines indi

cate primarily the induction, and that the intensity is directly

indicated by the equipotential surfaces, being normal to these

surfaces and inversely proportional to the distances of consecutive

surfaces.
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On Specific Inductive Capacity.

83tf
.]

In the preceding investigation of surface-integrals we have

adopted the ordinary conception of direct action ajt*. a distance, and

have not taken into consideration any effects Depending on the

nature of the dielectric medium in which the forces are observed.

But Faraday has observed that the quantity of electricity in

duced by a given electromotive force on the surface of a conductor

which bounds a dielectric is not the same for all dielectrics. The

induced electricity is greater for most solid and liquid dielectrics

than for air and gases. Hence these bodies are said to have a

greater specific inductive capacity than air, which he adopted as

the standard medium.

We may express the theory of Faraday in mathematical language

by saying that in a dielectric medium the induction across any

surface is the product of the normal electric force into the coefficient

of specific
inductive capacity of that medium. If we denote this

coefficient by Kt
then in every part of the investigation of sur

face-integrals we must multiply X, Y, and Z by K, so that the

equation of Poisson will become,.o. (i)
a x dy dy dz dz

At the surface of separation of two media whose inductive capa

cities are K-^ and K2 ,
and in which the potentials are ^ and 2̂ ,

the

characteristic equation may be written

K W +f W+t** = 0., (2)1

dvi dv%

where vlt v2 are the normals drawn in the two media, and &amp;lt;r is

the true surface-density on the surface of separation; that is to

say, the quantity of electricity which is actually on the surface

in the form of a charge, and which can be altered only by con

veying electricity to or from the spot.

Apparent distribution of Electricity.

835.] If we begin with the actual distribution of the potential and

deduce from it the volume density /&amp;gt;

and the surface density a- on

the hypothesis that K is everywhere equal to unity, we may call p

the apparent volume density and &amp;lt;/ the apparent surface density,

because a distribution of electricity thus defined would account for

the actual distribution of potential, on the hypothesis that the law
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of electric force as given in Art. 66 requires no modification on

account of the different properties of dielectrics.

The apparent charge of electricity within a given region may
increase or diminish without any passage of electricity through the

bounding surface of the region. We must therefore distinguish it

from the true charge, which satisfies the equation of continuity.
In a heterogeneous dielectric in which K varies continuously, if

p be the apparent volume-density,

+ -TT+ -TV +4w/= 0. (3)
dy

2 dz2

Comparing this with the equation above, we find

dKdV dKdV dKdV
47r(pKp) +_-+__--- + __ - = 0. (4)r dx dx dy dy dz dz v

/ 7

The true electrification, indicated by p, in the dielectric whose

variable inductive capacity is denoted by K, will produce the same

potential at every point as the apparent electrification, denoted by
/&amp;gt;

,
would produce in a dielectric whose inductive capacity is every

where equal to unity.

The apparent surface charge, o-
,
is that deduced from the electrical

forces in the neighbourhood of the surface, using the ordinary
characteristic equation

dE dK
-
r^+rrj-+4irc/=0. (5)
di\ dvz

If a solid dielectric of any form is a perfect insulator, and if

its surface receives no charge, then the true electrification remains

zero, whatever be the electrical forces acting on it.

r , T 2Hence JT ^-1- +jr _2- = 0.1 2

The surface-density o- is that of the apparent electrification

produced at the surface of the solid dielectric by induction. It

disappears entirely when the inducing force is removed, but if

during the action of the inducing force the apparent electrification

of the surface is discharged by passing a flame over the surface,

then, when the inducing force is taken away, there will appear a

true electrification opposite to a *.

* See Faraday s Remarks on Static Induction, Proceedings of the Royal In
stitution, Feb. 12, 1858.



CHAPTEE III.

ON ELECTKICAL WORK AND ENERGY IN A SYSTEM

OF CONDUCTORS.

84.] On the IVorJc which must be done
~by

an external agent in order

to charge an electrified system in a given manner.

The work spent in bringing a quantity of electricity be from an

infinite distance (or from any place where the potential is zero) to a

given part of the system where the potential is F, is, by the defi

nition of potential (Art. 70), 7be.

The effect of this operation is to increase the charge of the given

part of the system by be, so that if it was e before, it will become

e + be after the operation.

We may therefore express the work done in producing a given

alteration in the charges of the system by the integral

; 0)

where the summation, (2), is to be extended to all parts of the

electrified system.

It appears from the expression for the potential in Art. 73,

that the potential at a given point may be considered as the sum

of a number of parts, each of these parts being the potential due

to a corresponding part of the charge of the system.

Hence if 7 is the potential at a given point due to a system

of charges which we may call 2 (e\ and V the potential at the

same point due to another system of charges which we may call

2 (/), the potential at the same point due to both systems of

charges existing together would be 7 + V .

If, therefore, every one of the charges of the system is altered in

the ratio of n to 1, the potential at any given point in the system

will also be altered in the ratio of n to 1 .
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Let us, therefore, suppose that the operation of charging the

system is conducted in the following manner. Let the system
be originally free from charge and at potential zero, and let the

different portions of the system be charged simultaneously, each

at a rate proportional to its final charge.
Thus if e is the final charge, and V the final potential of any

part of the system, then, if at any stage of the operation the

charge is ne, the potential will be nF, and we may represent
the process of charging by supposing n to increase continuously
from to 1.

While n increases from n to n + bn, any portion of the system
whose final charge is e, and whose final potential is F, receives

an increment of charge e bn, its potential being n7, so that the

work done on it during this operation is eVnbn.

Hence the whole work done in charging the system is

(2)

or half the sum of the products of the charges of the different

portions of the system into their respective potentials.

This is the work which must be done by an external agent in

order to charge the system in the manner described, but since

the system is a conservative system, the work required to bring
the system into the same state by any other process must be the

same.

We may therefore call

W=\-S.(e7) (3)

the electric energy of the system, expressed in terms of the charges
of the different parts of the system and their potentials.

85
.]

Let us next suppose that the system passes from the state

(e, 7) to the state (/, 7
) by a process in which the different

charges increase simultaneously at rates proportional for each to

its total increment e e.

If at any instant the charge of a given portion of the system
is e+n(ie)j its potential will be V+n(V V}, and the work
done in altering the charge of this portion will be

(S-e)[7+n(7 -7)]dn = \(e -e) (7+ 7 );

so that if we denote by W the energy of the system in the state

(*-, n
w-w=^(s-e)(7 +7). (4)

VOL. I. H
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But W=\^(eV\
and r =iS(4T).

Substituting these values in equation (4) we find

S(*F )
= S(*T). (5)

Hence if, in the same fixed system of electrified conductors, we

consider two different states of electrification, the sum of the

products of the charges in the first state into the potentials of

the corresponding portions of the conductors in the second state,

is equal to the sum of the products of the charges in the second

state into the potentials of the corresponding conductors in the

first state.

This result corresponds, in the elementary theory of electricity,

to Green s Theorem in the analytical theory. By properly choosing

the initial and final state of the system, we may deduce a number

of useful results.

85
b.~\

From (4)
and (5) we find another expression for the in

crement of the energy, in which it is expressed in terms of the

increments of potential,

w-w=\v(&amp;lt;f+e)(r -r). (
6
)

If the increments are infinitesimal, we may write (4) and (6)

and if we denote by We
and Wv the expressions for W in terms

of the charges and the potentials of the system respectively, and

by A r ,
er ,

and Vr a particular conductor of the system, its charge,

and its potential, then

r =

(9)

86.] If in any fixed system of conductors, any one of them,

which we may denote by A t ,
is without charge, both in the initial

and final state, then for that conductor e
i
= 0, and e{

= 0, so

that the terms depending on A
t
vanish from both members of

equation (5).

If another conductor, say A tt ,
is at potential

zero in both states

of the system, then Tu = and 7U = 0, so that the terms depending

on Au vanish from both members of equation (5).

If, therefore, all the conductors except two, Ar
and A

s ,
are either
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insulated and without charge, or else connected to the earth,

equation (5) is reduced to the form

&amp;lt;TV + etf = er rr+ e. ff (10)

If in the initial state

er = 1 and e
s 0,

and in the final state

&amp;lt;?/=
and e = 1,

equation (10) becomes Yf=J
r

s ; (11)

or if a unit charge communicated to Ar raises A
s
to a potential V,

then a unit charge communicated to A
s
will raise Ar to the same

potential T
7

, provided that every one of the other conductors of

the system is either insulated and without charge, or else connected

to earth so that its potential is zero.

This is the first instance we have met with in electricity of a

reciprocal relation. Such reciprocal relations occur in every branch

of science, and often enable us to deduce the solution of new

problems from those of simpler problems already solved.

Thus from the fact that at a point outside a conducting sphere

whose charge is 1 the potential is r~l
,
where r is the distance

from the centre, we conclude that if a small body whose charge
is 1 is placed at a distance r from the centre of a conducting sphere

without charge, it will raise the potential of the sphere to r~l
.

Let us next suppose that in the initial state

T
r
= 1 and V

&
= 0,

and in the final state

rr = and 77= 1,

equation (10) becomes e
8
= e

r \ (12)

or if, when A r is raised to unit potential, a charge e is induced

on A
s ,

then if A
8 is raised to unit potential, an equal charge e will

be induced on Ar .

Let us suppose in the third place, that in the initial state

Pr = 1 and e
s
= 0,

and that in the final state

7?= and */= 1,

equation (10) becomes in this case

/+7. = 0. (13)

Hence if when A
8

is without charge, the operation of charging
A

r to potential unity raises A
s
to potential F9

then if A
r is kept

H 2,



100 SYSTEM OF CONDUCTOKS. [87.

at potential zero, a unit charge communicated to A
s
will induce

on Ar a negative charge, the numerical value of which is V.

In all these cases we may suppose some of the other conductors

to be insulated and without charge, and the rest to be connected to

earth.

The third case is an elementary form of one of Green s theorems.

As an example of its use let us suppose that we have ascertained

the distribution of electric charge on the different elements of a

conducting system at potential zero, induced by a charge unity

communicated to a given body A8
of the system.

Let
rjr be the charge of Ar under these circumstances. Then

if we suppose As
without charge, and the other bodies raised each

to a different potential, the potential of A
8
will be

^=-2(1,,^. (14)

Thus if we have ascertained the surface density at any given

point of a hollow conducting vessel due to a unit charge placed at

a given point within it, then, if we know the value of the potential

at every point of a surface of the same size and form as the interior

surface of the vessel, we can deduce the potential at a point within

it the position of which corresponds to that of the unit charge.

Hence if the potential is known for all points of a closed surface

it may be determined for any point within the surface, if there be

no electrified body within it, and for any point outside, if there

be no electrified body outside.

Tfaory of a system of conductors.

87.] Let Alt
A.

2 ,
... A n be n conductors of any form; let elf e

2 ,

... en be their charges; and V^ 7
2 ,

...7n their potentials.

Let us suppose that the dielectric medium which separates the

conductors remains the same, and does not become charged with

electricity during the operations to be considered.

We have shown in Art. 84 that the potential of each conductor

is a homogeneous linear function of the n charges.

Hence since the electric energy of the system is half the sum

of the products of the potential of each conductor into its charge,

the electric energy must be a homogeneous quadratic function of

the n charges, of the form

The suffix e indicates that W is to be expressed as a function
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of the charges. When W is written without a suffix it denotes

the expression (3), in which both charges and potentials occur.

From this expression we can deduce the potential of any one

of the conductors. For since the potential is defined as the work

which must be done to bring a unit of electricity from potential -.y

zero to the given potential, and since this work is spent in -

increasing W, we have only to differentiate W
e
with respect to the

charge of the given conductor to obtain its potential. We thus

obtain

(16)

n = /?1M ^... + prn er ... +pnn en ,

a system of n linear equations which express the n potentials in

terms of the n charges.

The coefficients prs &c., are called coefficients of potential. Each

has two suffixes, the first corresponding with that of the charge,
and the second with that of the potential.

The coefficient prr ,
in which the two suffixes are the same,

denotes the potential of Ar when its charge is unity, that of all

the other conductors being zero. There are n coefficients of this

kind, one for each conductor.

The coefficient jorg ,
in which the two suffixes are different, denotes

the potential of A
8
when Ar receives a charge unity, the charge of

each of the other conductors, except Ar , being zero.

We have already proved in Art. 86 thatj?rs = psr ,
but we may

prove it more briefly by considering that

_ .-- r, 7 i
lrs ~ der

~
der de

s

~
de

s
der

~
de

e

~ Ar *

The number of different coefficients with double suffix is there

fore \n(n\\ being one for each pair of conductors.

By solving the equations (16) for elt e
2 &c., we obtain n equations

giving the charges in terms of the potentials

(18)
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We have in this case also qrs = qsr ,
for

de d dWv _ ^dWy __des _ ,

}

^*-W
8
-W

s
~Wr

~~-

dvr dV
K
~dvr

- qsr

By substituting the values of the charges in the equation for

the electric energy

r=i[^+ ... +errr ...+eK] t (20)

we obtain an expression for the energy in terms of the potentials

A coefficient in which the two suffixes are the same is called the

Electric Capacity of the conductor to which it belongs.

Definition. The Capacity of a conductor is its charge when its

own potential is unity, and that of all the other conductors is

zero..

This is the proper definition of the capacity of a conductor when

no further specification is made. But it is sometimes convenient

to specify the condition of some or all of the other conductors in

a different manner, as for instance to suppose that the charge of

certain of them is zero, and we may then define the capacity of the

conductor under these conditions as its charge when its potential is

unity.

The other coefficients are called coefficients of induction. Any

one of them, as qrs denotes the charge of Ar when As
is raised to

potential unity, the potential of all the conductors except As being

zero.

The mathematical calculation of the coefficients of potential and

of capacity is in general difficult. We shall afterwards prove that

they have always determinate values, and in certain special cases

we shall calculate these values. We shall also shew how they may

be determined by experiment.

When the capacity of a conductor is spoken of without specifying

the form and position of any other conductor in the same system,

it is to be interpreted as the capacity of the conductor when no

other conductor or electrified body is within a finite distance of the

conductor referred to.

It is sometimes convenient, when we are dealing with capacities

and coefficients of induction only, to write them in the form [A . P],

this symbol being understood to denote the charge on A when P is

raised to unit potential.

In like manner [(A+ B) . (P+ Q)] would denote the charge on
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A + B when P and Q are both raised to potential 1, and it is

manifest that since

\_(A+B) (P+ Q)] = [AP] + [AQ] + [SP] + [SQ]

the compound symbols may be combined by addition and multipli

cation as if they were symbols of quantity.

The symbol [A . A~\
denotes the charge on A when the potential

of A is 1, that is to say, the capacity of A.

In like manner [(A + B) (A + Q)] denotes the sum of the charges

on A and B when A and Q are raised to potential 1, the potential

of all the conductors except A and Q, being zero.

It may be decomposed into

[A.A] + [A.S] + [A.Q-] + [S.Q].

The coefficients of potential cannot be dealt with in this way.

The coefficients of induction represent charges, and these charges

can be combined by addition, but the coefficients of potential

represent potentials, and if the potential of A is \ and that of

B is ?
2 ,

the sum ^4-^ has no physical meaning bearing on the

phenomena, though 7J ?
2 represents the electromotive force from

AtoB.
The coefficients of induction between two conductors may be

expressed in terms of the capacities of the conductors and that of

the two conductors together, thus :

Dimensions of the coefficients.

88.] Since the potential of a charge e at a distance r is -
,

the dimensions of a charge of electricity are equal to those of the

product of a potential into a line.

The coefficients of capacity and induction have therefore the

same dimensions as a line, and each of them may be represented

by a straight line, the length of which is independent of the

system of units which we employ.

For the same reason, any coefficient of potential may be repre

sented as the reciprocal of a line.

On certain conditions which the coefficients must

89 a.] In the first place, since the electric energy of a system

is an essentially positive quantity, its expression as a quadratic
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function of the charges or of the potentials must be positive,

whatever values, positive or negative, are given to the charges
or the potentials.

Now the conditions that a homogeneous quadratic function of n
variables shall be always positive are n in number, and may be

written

Ai &amp;gt; 0,

Pl2
&amp;gt; o,

Pin
- -

&amp;gt; 0.

r
(22)

Pnl -Pnn

These n conditions are necessary and sufficient to ensure that

W shall be essentially positive *.

But since in equation (16) we may arrange the conductors in any

order, every determinant must be positive which is formed sym
metrically from the coefficients belonging to any combination of the

n conductors, and the number of these combinations is 2
n

1.

Only n, however, of the conditions so found can be independent.

The coefficients of capacity and induction are subject to con

ditions of the same form.

89
.]

The coefficients ofpotential are all positive, lut none of the

coefficients prs is greater than prr orpss
.

For let a charge unity be communicated to Ar ,
the other con

ductors being uncharged. A system of equipotential surfaces will

be formed. Of these one will be the surface ofAr ,
and its potential

will be prr . If A
8
is placed in a hollow excavated in Ar so as to be

completely enclosed by it, then the potential of A
s
will also be prr .

If, however, As
is outside of Ar its potential prs will lie between

prr and zero.

For consider the lines of force issuing from the charged con

ductor Ar . The charge is measured by the excess of the number

of lines which issue from it over those which terminate in it.

Hence, if the conductor has no charge, the number of lines which

enter the conductor must be equal to the number which issue from

it. The lines which enter the conductor come from places of greater

potential, and those which issue from it go to places of less poten-

* See Williamson s Differential Calculus, 3rd edition, p. 407.



89 d.] PEOPERTIES OF THE COEFFICIENTS. 105

tial. Hence the potential of an uncharged conductor must be

intermediate between the highest and lowest potentials in the field,

and therefore the highest and lowest potentials cannot belong to

any of the uncharged bodies.

The highest potential must therefore be prr ,
that of the charged

body Ar ,
the lowest must be that of space at an infinite distance,

which is zero, and all the other potentials such as prs
must lie

between prr and zero.

If A
s completely surrounds A

t , i\ienprs
=prt

.

89
&amp;lt;?.]

None of the coefficients of induction are positive, and the sum

of all those belonging to a single conductor is not numerically

greater than the coefficient of capacity of that conductor
,
which

is always positive.

For let Ar be maintained at potential unity while all the other

conductors are kept at potential zero, then the charge on Ar is qrr ,

and that on any other conductor A
s
is qrs

.

The number of lines of force which issue from Ar is qrr . Of these

some terminate in the other conductors, and some may proceed to

infinity, but no lines of force can pass between any of the other

conductors or from them to infinity, because they are all at poten
tial zero.

No line of force can issue from any of the other conductors such

as AS9 because no part of the field has a lower potential than A
s

.

If A
s

is completely cut off from Ar by the closed surface of one

of the conductors, then qrs
is zero. If A

s
is not thus cut off, qr8

is a

negative quantity.

If one of the conductors A
t completely surrounds Ar) then all

the lines of force from Ar fall on A
t
and the conductors within it,

and the sum of the coefficients of induction of these conductors with

respect to Ar will be equal to qrr with its sign changed. But if

Ar is not completely surrounded by a conductor the arithmetical

sum of the coefficients of induction qrs ,
&c. will be less than qrr .

We have deduced these two theorems independently by means

of electrical considerations. We may leave it to the mathematical

student to determine whether one is a mathematical consequence
of the other,

89
d.~\

When there is only one conductor in the field its coefficient

of potential on itself is the reciprocal of its capacity.

The centre of mass of the electricity when there are no external

forces is called the electric centre of the conductor. If the conductor
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is symmetrical about a centre of figure, this point is the electric

centre. If the dimensions of the conductor are small compared with

the distances considered, the position of the electric centre may be

estimated sufficiently nearly by conjecture.

The potential at a distance c from the electric centre must be

between P , n i
, P /-,2 x

where e is the charge, and a is the greatest distance of any part of

the surface of the body from the electric centre.

For if the charge be concentrated in two points at distances a on

opposite sides of the electric centre, the first of these expressions

.is the potential at a point in the line joining the charges, and the

second at a point in a line perpendicular to the line joining the

charges. For all other distributions within the sphere whose radius

is a the potential is intermediate between those values.

If there are two conductors in the field, their mutual coefficient

of potential is -
. where c cannot differ from c, the distance between

c

a2
_j_

2

the electric centres, by more than -
;
a and b being the greatest

cC
c

distances of any part of the surfaces of the bodies from their re

spective electric centres.

89
.]

If a new conductor is brought into the field the coefficient

of potential of any one of the others on itself is diminished.

For let the new body, B, be supposed at first to be a non-conductor

free from charge in any part, then when one of the conductors, A^
receives a charge elt the distribution of the electricity on the con

ductors of the system will not be disturbed by B, as B is still

without charge in any part, and the electric energy of the system

will be simply i^i = 4*i
2

/&amp;gt;u-

3 /(A

Now let B become a conductor. Electricity will flow from

places of higher to places of lower potential, and in so doing will

diminish the electric energy of the system, so that the quantity

2 e
i

2
Pi\ must diminish.

But e
l
remains constant, therefore p1L must diminish.

Also if B increases by another body b being placed in contact

with it, pll will be further diminished.

For let us first suppose that there is no electric communication

between B and b
;

the introduction of the new body b will

diminish j?11 . Now let a communication be opened between B



90&.] APPEOXIMATE VALUES OF THE COEFFICIENTS. 107

and I. If any electricity flows through it, it flows from a place
of higher to a place of lower potential, and therefore, as we have

shown, still further diminishespn .

Hence the diminution of j?n by the body B is greater than

that which would be produced by any body the surface of which

can be inscribed in B, and less than that produced by any body the

surface of which can be described about B.

We shall shew in Chapter XI, that a sphere of diameter b at a

distance r diminishes the value of pn by a quantity which is

#3

approximately ^ ^

Hence if the body B is of any other figure, and if & is its

greatest diameter, the diminution of the value of pn must be less

3

than % .

Hence if the greatest diameter of B is so small compared with

its distance from A
1
that we may neglect quantities of the order

# 3

i -4- ,
we may consider the reciprocal of the capacity of A

l
when

alone in the field as a sufficient approximation to pllt

90 #.] Let us therefore suppose that the capacity ofA
1
when alone

in the field is Klt and that of A
2 ,
K

2 ,
and let the mean distance

between A and A2
be r, where r is very great compared with the

dimensions of A
1
and A2) then we may write

1 1 1

Ai-^. A*--, ^-T2

;

^^-i + ^r-
1
,

Hence

Of these coefficients qn and q22 are the capacities of A
i
and A

2

when, instead of being each alone at an infinite distance from any
other body, they are brought so as to be at a distance r from each

other.

90
#.]

When two conductors are placed so near together that

their coefficient of mutual induction is large, the combination is

called a Condenser.

Let A and B be the two conductors or electrodes of a con

denser.
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Let L be the capacity of A, JVthat of 5, and if the coefficient

of mutual induction. (We must remember that M is essentially

negative, so that the numerical value of L +M and M+N is less

than L or N.)
Let us suppose that a and are the electrodes of another con

denser at a distance R from the first, R being very great com
pared with the dimensions of either condenser, and let the

coefficients of capacity and induction of the condenser al when
alone be I, m, n. Let us calculate the effect of one of the

condensers on the coefficients of the other.

Let D = LN-M* and d = ln-m 2
;

then the coefficients of potential for each condenser by itself are

PAR = D- l
M, pab =d~ l

m,

PBB = D-*L, pbb
= d~l

l.

The values of these coefficients will not be sensibly altered when
the two condensers are at a distance R.

The coefficient of potential of any two conductors at distance R
is R 1

,
so that

PAa = PAb = PSa = J?Bb = R~ l

The equations of potential are therefore

V = D-iNe-I)

Va =

Solving these equations for the charges, we find

r T

-W-

&quot;

fi*

where L
t
M

,
N are what L, M, N become when the second con

denser is brought into the field.
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If only one conductor, a, is brought into the field, m=n=0, and

q_AA = L = L + -

(M+N)l

El(L+M)

If there are only the two simple conductors, A and a,

M=N=m=.n 0,

L 2
l ELI

qAA = L + ~E^rr ^=-W^LI&amp;gt;

expressions which are the same as those found in Art. 90#.

The quantity L + 2M+N is the total charge of the condenser

when its electrodes are at potential 1. It cannot exceed half the

greatest diameter of the condenser.

L+M is the charge of the first electrode, and M+N that of the

second when both are at potential 1. These quantities must be

each of them positive and less than the capacity of the electrode by
itself. Hence the corrections to be applied to the coefficients of

capacity of a condenser are much smaller than those for a simple
conductor of equal capacity.

Approximations of this kind are often useful in estimating the

capacities of conductors of irregular form placed at a finite distance

from other conductors.

91.] When a round conductor, Ast of small size compared with

the distances between the conductors, is brought into the field, the

coefficient of potential of A
l
on A2 will be increased when A^ is

inside and diminished when A3 is outside of a sphere whose

diameter is the straight line A
L
A2 .

For if A
1 receives a unit charge there will be a distribution of

electricity on A
Bi -\-e being on the side furthest from Alt and e on

the side nearest Alt The potential at A2 due to this distribution

on A
3

will be positive or negative as +e or -~e is nearest to A
2 ,

and if the form of A
3 is not very elongated this will depend on

whether the angle Al
A

3
A

2
is obtuse or acute, and therefore on

whether A
z is inside or outside the sphere described on A

1
A

2 as

diameter.
$/* A. &amp;lt;

If A
3 is of an elongated form it is easy to see that if it is placed

with its longest axis in the direction of the tangent to the circle
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g^ drawn through the points Alt Aa ,
A

2
it may increase the potential

of AZ3 even when it is entirely outside the sphere, and how by

placing it with its longest axis in the direction of the radius of

.the sphere, it may diminish the potential of A2 ,
even when entirely

within the sphere. But this proposition is only intended for

forming a rough estimate of the phenomena to be expected in

a given arrangement of apparatus.

92.] If a new conductor, A^ is introduced into the field, the

capacities of all the conductors already there are increased, and the

numerical values of the coefficients of induction between every pair
.

of them are diminished.

Let us suppose that A
1

is at potential unity and all the rest at

potential zero. Since the charge of the new conductor is negative

it will induce a positive charge on every other conductor, and

will therefore increase the positive charge of A
l
and diminish the

negative charge of each of the other conductors.

93
.]

Work done ~by
the electricforces during the displacement of

a system of insulated charged conductors.

Since the conductors are insulated, their charges remain_constant

during the displacement. Let their potentials be 7^ V^ . . . ~Pn before

and JJ ,
7
2 ,

...7n after the displacement. The electrical energy is

before the displacement, and

after the displacement.

The work done by the electric forces during the displacement is

the excess of the initial energy W over the final energy W, or

~nr ~ttf
f l 5 I P ( r 7 1 1- 2 L V AT

This expression gives the work done during any displacement,

small or large, of an insulated system.

To find the force tending to produce a particular kind of dis

placement, let be the variable whose variation corresponds to the

kind of displacement, and let 4&amp;gt; be the corresponding force, reckoned

positive when the electric force tends to increase
&amp;lt;,

then

dW
or 4&amp;gt;

= TT

where W
e

denotes the expression for the electric energy as a

quadratic function of the charges.



93 C.]
MECHANICAL FOECES. Ill

93
*.]

To prove that - + = -

d&amp;lt;p d(f&amp;gt;

We have three different expressions for the energy of the system,

(i) r=is(n,
a definite function of the n charges and n potentials

(2) ^=j2S( r .A .),

where r and s may be the same or different,, and both rs and sr are

to be included in the summation.

This is a function of the n charges and of the variables which

define the configuration. Let $ be one of these.

(3) rr =iss(^. ?r&amp;lt;),

where the summation is to be taken as before. This is a function

of the n potentials and of the variables which define the configura
tion of which

&amp;lt;j&amp;gt;

is one.

Since W=W
e
=Wv,

-2W= 0.

Now let the n charges, the n potentials, and $ vary in any con

sistent manner, and we must have

Now the n charges, the n potentials, and $ are not all independent
of each other, for in fact only n + 1 of them can be independent.
But we have already proved that

so that the first sum of terms vanishes identically, and it follows

from this, even if we had not already proved it that

dWv
~~dJ^

6s &amp;gt;

and that lastly, ^
,

dWY = _

Work done by the electricforces during the displacement of a

whose potentials are maintained constant.

AW
93

&amp;lt;?.]

It follows from the last equation t^at the force 4&amp;gt; = ^
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and if the system is displaced under the condition that all the

potentials remain constant, the work done by the electric forces is

r r

or the work done by the electric forces in this case is equal to the

increment of the electric energy.

Here, then, we have an increase of energy together with a quan

tity of work done by the system. The system must therefore be

supplied with energy from some external source, such as a voltaic

battery, in order to maintain the potentials constant during the

displacement.

The work done by the battery is therefore equal to the sum of

the work done by the system and the increment of energy, or,

since these are equal, the work done by the battery is twice the

work done by the system of conductors during the displacement.

On the comparison of similar electrified systems.

94.] If two electrified systems are similar in a geometrical sense,

so that the lengths of corresponding lines in the two systems are

as L to L
,
then if the dielectric which separates the conducting

bodies is the same in both systems, the coefficients of induction

and of capacity will be in the proportion of L to If. For if we

consider corresponding portions, A and A\ of the two systems, and

suppose the quantity of electricity on A to be e, and that on A

to be /, then the potentials 7 and 7 at corresponding points

B and B
,
due to this electrification, will be

But AB is to A B as L to L t
so that we must have

e-.Snir: L V.

But if the inductive capacity of the dielectric is different in the

two systems, being K in the first and K in the second, then if the

potential at any point of the first system is to that at the cor

responding point of the second as V to V
,
and if the quantities

of electricity on corresponding parts are as E to E
,
we shall have

By this proportion we may find the relation between the total

charges of corresponding parts of two systems, which are

in the first place geometrically similar, in the second place com

posed of dielectric media of which the specific inductive capacity
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at corresponding points is in the proportion of K to K
,
and in

the third place so electrified that the potentials of corresponding

points are as V to V .

From this it appears that if q be any coefficient of capacity or

induction in the first system, and % the corresponding one in the

second, q .cf .-.LK-.L K ;

and if p and p
f

denote corresponding coefficients of potential in

the two systems, \ j

P:J3 :: ^K :

VTC
If one of the bodies be displaced in the first system, and the

corresponding body in the second system receive a similar dis

placement, then these displacements are in the proportion of L
to L\ and if the forces acting on the two bodies are as F to /&quot;

,

then the work done in the two systems will be as FL to I&quot;J/.

But the total electrical energy is half the sum of the charges
of electricity multiplied each by the potential of the charged

body, so that in the similar systems, if W and W be the total

electrical energy in the two systems respectively,

W: W \ : eV \ e V,

and the difference of energy after similar displacements in the two

systems will be in the same proportion. Hence, since FL is pro

portional to the electrical work done during the displacement,

FLiFL nerie Y .

Combining these proportions, we find that the ratio of the

resultant force on any body of the first system to that on the

corresponding body of the second system is

f&amp;gt;2 f/2
or F - F

The first of these proportions shews that in similar systems the

force is proportional to the square of the electromotive force and
to the inductive capacity of the dielectric, but is independent of the
actual dimensions of the system.

Hence two conductors placed in a liquid whose inductive capacity
is greater than that of air, and electrified to given potentials, will

attract each other more than if they had been electrified to the
same potentials in air.

The second proportion shews that if the quantity of electricity
on each body is given, the forces are proportional to the squares

VOL. I. !
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of the charges and inversely to the squares of the distances, and

also inversely to the inductive capacities of the media.

Hence, if two conductors with given charges are placed in a

liquid whose inductive capacity is greater than that of air, they

will attract each other less than if they had been surrounded with

air and charged with the same quantities of electricity.



CHAPTEE IV.

GENERAL THEOREMS.

95
a.~\

IN the second chapter we have calculated the potential

function and investigated some of its properties on the hypothesis

that there is a direct action at a distance between electrified bodies,

which is the resultant of the direct actions between the various

electrified parts of the bodies.

If we call this the direct method of investigation, the inverse

method will consist in assuming that the potential is a function

characterised by properties the same as those which we have already

established, and investigating the form of the function.

In the direct method the potential is calculated from the dis

tribution of electricity by a process of integration, and is found

to satisfy certain partial differential equations. In the inverse

method the partial differential equations are supposed given, and

we have to find the potential and the distribution of electricity.

It is only in problems in which the distribution of electricity

is given that the direct method can be used. When we have to

find the distribution on a conductor we must make use of the

inverse method.

We have now to shew that the inverse method leads iu every

case to a determinate result, and to establish certain general

theorems deduced from Poisson s partial differential equation

The mathematical ideas expressed by this equation are of a

different kind from those expressed by the definite integral

r+x r+oo r + oo n

r=
I

tu
J ao J ao J

&amp;lt;x&amp;gt;

In the differential equation we express that the sum of the second

derivatives of Y in the neighbourhood of any point is related to
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the density at that point in a certain manner, and no relation

is expressed between the value of V at that point and the value

of p at any point at a finite distance from it.

In the definite integral, on the other hand, the distance of

the point (of, /, z \ at which p exists, from the point (x, y, z\ at

which V exists, is denoted by r, and is distinctly recognised in the

expression to be integrated.

The integral, therefore, is the appropriate mathematical expression

for a theory of action between particles at a distance, whereas the

differential equation is the appropriate expression for a theory of

action exerted between contiguous parts of a medium.

We have seen that the result of the integration satisfies the

differential equation. We have now to shew that it is the only

solution of that equation satisfying certain conditions.

We shall in this way not only establish the mathematical equi

valence of the two expressions,
but prepare our minds to pass from

the theory of direct action at a distance to that of action between

contiguous parts of a medium.

955.] The theorems considered in this chapter relate to the

properties of certain volume-integrals taken throughout a finite

region of space which we may refer to as the electric field.

The element of these integrals, that is to say, the quantity

under the integral sign, is either the square of a certain vector

quantity whose direction and magnitude varies from point to point

in the field, or the product of one vector into the resolved part of

another in its own direction.

Of the different modes in which a vector quantity may be dis

tributed in space, two are of special importance.

The first is that in which the vector may be represented

as the space-variation [Art. 17] of a scalar function called the

Potential.

Such a distribution may be called an Irrotational distribution.

The resultant force arising from the attraction or repulsion of any

combination of centres of force, the law of each being any given

function of the distance, is distributed irrotationally.

The second mode of distribution is that in which the convergence

[Art. 25] is zero at every point. Such a distribution may be

called a Solenoidal distribution. The velocity of an incompressible

fluid is distributed in a solenoidal manner.

When the central forces which, as we have said, give rise to an

irrotatioaal distribution of the resultant force, vary according to
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the inverse square of the distance, then, if these centres are outside

the field, the distribution within the field will be solenoidal as well

as irrotational.

When the motion of an incompressible fluid which, as we have

said, is solenoidal, arises from the action of central forces depending
1

on the distance, or of surface pressures, on a frictionless fluid

originally at rest, the distribution of velocity is irrotational as well

as solenoidal.

When we have to specify a distribution which is at once irrota

tional and solenoidal, we shall call it a Laplacian distribution;

Laplace having- pointed out some of the most important properties

of such a distribution.

The volume integrals discussed in this chapter are, as we shall

see, expressions for the energy of the electric field. In the first

group of theorems, beginning with Green s Theorem, the energy is

expressed in terms of the electromotive intensity, a vector which is

distributed irrotationally in all cases of electric equilibrium. It is

shewn that if the surface-potential be given, then of all irrotational

distributions, that which is also solenoidal has the least energy;

whence it also follows that there can be only one Laplacian distri

bution consistent with the surface potentials.

In the second group of theorems, including Thomson s Theorem,! i

the energy is expressed in terms of the electric displacement,^
vector of which the distribution is solenoidal. It is shewn that

if the surface-charges are given, then of all solenoidal distributions

that has least energy which is also irrotational, whence it also

follows that there can be only one Laplacian distribution consistent

with the given surface-charges.

The demonstration of all these theorems is conducted in the same

way. In order to avoid the repetition in every case of the steps

of a surface integration conducted with reference to rectangular

axes, we make use in each case of the result of Theorem III, Art.

21,* where the relation between a volume-integral and the corre

sponding surface-integral is fully worked out. All that we have to

do, therefore, is to substitute for X, 7, and Z in that Theorem the

components of the vector on which the particular theorem depends.

In the first edition of this book the statement of each theorem

was cumbered with a multitude of alternative conditions which

* This theorem seems to have been first given by Ostrogradsky in a paper read in

1828, but published in 1831 in the Mem. de VAcad. de St. Petersbourg, T. I. p. 39. It

may be regarded, however, as a form of the equation of continuity.
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were intended to shew the generality of the theorem and the variety

of cases to which it might be applied, but which tended rather to

confuse in the mind of the reader what was assumed with what was

to be proved.

In the present edition each theorem is at first stated in a more

definite, if more restricted, form, and it is afterwards shewn what

further degree of generality the theorem admits of.

We have hitherto used the symbol V for the potential, and we

shall continue to do so whenever we are dealing with electrostatics

only. In this chapter, however, and in those parts of the second

volume in which the electric potential occurs in electro-magnetic

investigations, we shall use ^ as a special symbol for the electric

potential.
f

Green s Theorem.

96
a.~\

The following important theorem was given by George

Green, in his Essay on the Application of Mathematics to Elec

tricity and Magnetism.
The theorem relates to the space bounded by the closed surface

s. We may refer to this finite space as the Field. Let v be a

normal drawn from the surface 8 into the field, and let I, m, n be

the direction cosines of this normal, then

7 d^ d$ dV d^
-=- -f m +n-j- = -j- (1)dx dy dz dv

will be the rate of variation of the function ^ in passing along
dy

the normal v. Let it be understood that the value of r- is to be
dv

taken at the surface itself, where v = 0.

Let us also write, as in Arts. 26 and 77,

(
dx* df dz*

~

and when there are two functions, y and
&amp;lt;,

let us write

********** ** = _&vvf,
v&amp;lt;l) . (3)

dx dx dy dy dz dz

The reader who is not acquainted with the method of Quater

nions may, if it pleases him, regard the expressions V 2x and

tf.V^V^ as mere conventional abbreviations for the quantities to

which they are equated above, and as in what follows we shall

employ ordinary Cartesian methods, it will not be necessary to

remember the Quaternion interpretation of these expressions. The
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reason, however, why we use as our abbreviations these expressions

and not single letters arbitrarily chosen, is, that in the language
of Quaternions they represent fully the quantities to which they

are equated. The operator V applied to the scalar function y

gives the space-variation of that function, and the expression

xS.V^V^ is the scalar part of the product of two space-variations,

or the product of either space-variation into the resolved part of the

dy
other in its own direction. The expression -=- is usually written

in Quaternions S.UvVy, Uv being a unit-vector in the direction

of the normal. There does not seem much advantage in using

this notation here, but we shall find the advantage of doing so

when we come to deal with anisotropic media.

Statement of Green s Theorem.

Let y and 3&amp;gt; be two functions of a?, y, z, which, with their first

derivatives, are finite and continuous within the acyclic region s,

bounded by the closed surface 5, then

ds

(4)

where the double integrals are to be extended over the whole

closed surface
&amp;lt;?,

and the triple integrals throughout the field, s,

enclosed by that surface.

To prove this, let us write, in Art. 21, Theorem III,

,

dx dy
_ , 7

d&amp;lt;b d$&amp;gt;

then TZcos e =*- +

(6)

, dX dY dZ , sd
2 d2 d2

and h --r- + ^r- = *dx dy dz ^ dx*

, by (2) and (3). (7)

dx dx ~dy dy dz dz

But by Theorem III

dY
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or by (6) and (?)

(8)
=
jjjS.

Since in the second member of this equation ^ and &amp;lt; may be

interchanged, we may do so in the first, and we thus obtain the

complete statement of Green s Theorem, as given in equation (4).

96
.]
We have next to shew that Green s Theorem is true when

one of the functions, say ^, is a many-valued one, provided that

its first derivatives are single-valued, and do not become infinite

within the acyclic region s.

Since V^ and V^ are single-valued, the second member of equa
tion (4) is single-valued ;

but since ^ is many-valued, any one

element of the first member, as ^ V 2
$&amp;gt;,

is many-valued. If,

however, we select one of the many values of ^j as tyQ ,
at the point

A within the region s, then the value of # at any other point, P,

will be definite. For, since the selected value of ^ is continuous

within the region, the value of ^ at P must be that which is

arrived at by continuous variation along any path from A to P,

beginning with the value ^ at A. If the value at P were different

for two paths between A and P, then these two paths must embrace

between them a closed curve at which the first derivatives of ^
become infinite. Now this is contrary to the specification, for

since the first derivatives do not become infinite within the region

s, the closed curve must be entirely without the region ; and since

the region is acyclic, two paths within the region cannot embrace ^

anything outside the region.

Hence, if ^ is given as the value of ^ at the point A, the value

at P is definite.

If any other value of *, say ^ -f HK, had been chosen as the

value at A, then the value at P would have been ^ + UK.. But the

value of the first member of equation (4) would be the same as before,

for the change amounts to increasing the first member by

[//&quot;-///-}
and this, by Theorem III, is zero.

96
c.~\

If the region s is doubly or multiply connected, we may
reduce it to an acyclic region by closing each of its circuits

with a diaphragm.
Let

&amp;lt;?!

be one of these diaphragms, and ^ the corresponding

cyclic constant, that is to say, the increment of ^ in going once
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round the circuit in the positive direction. Since the region s lies

on both sides of the diaphragm s
lf every element of s

1
will occur

twice in the surface integral.

If we suppose the normal v
l
drawn towards the positive side of

ds1) and i\ drawn towards the negative side,

at*!
av

L

and ^ = v^ + K,

so that the element of the surface-integral arising from ds-^
will be

= K
l -j- i i T7-1
dv

l

l

dv\

Hence if the region 9 is multiply connected, the first term of equa
tion (4) must be written

//*
ll

l *-&amp;gt;// *-*-*// *.-///**-* ; w
where the first surface-integral is to be taken over the bounding

surface, and the others over the different diaphragms, each element

of surface of a diaphragm being taken once only, and the normal

being drawn in the positive direction of the circuit.

This modification of the theorem in the case of multiply-

connected regions was first shewn to be necessary by Helmholtz
&quot;*,

and was first applied to the theorem by Thomson f.

96 d~\ Let us now suppose, with Green, that one of the functions,

say 4&amp;gt;,
does not satisfy the condition that it and its first derivatives

do not become infinite within the given region, but that it becomes

infinite at the point P, and at that point only, in that region, and

that very near to P the value of &amp;lt;J&amp;gt; is &amp;lt;J&amp;gt; -f e/r% t
where 4&amp;gt; is a finite

and continuous quantity, and r is the distance from P. This will be

the case if 3&amp;gt; is the potential of a quantity of electricity e concen

trated at the point P, together with any distribution of electricity

the volume density of which is nowhere infinite within the region

considered.

Let us now suppose a very small sphere whose radius is a to

be described about P as centre
;

then since in the region outside

this sphere, but within the surface s, 4&amp;gt; presents no singularity, we

* Ueber Integrate der hydrodynamischen Gleichungen welche den Wirbelbewe-

gungen entsprechen, Crelle, 1858. Translated by Prof. Tait, Phil. Mag., 1867 (I).

t On Vortex Motion, Trans. R. S. Edin. xxv. part i. p. 241 (1867).

% The mark / separates the numerator from the denominator of a fraction.
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may apply Green s Theorem to this region, remembering that the

surface of the small sphere is to be taken account of in forming
the surface-integral.

In forming the volume-integrals we have to subtract from the

volume-integral arising from the whole region that arising from

the small sphere.

Now / / / 4&amp;gt;V

2
^idxdydz for the sphere cannot be numerically

greater than

or g

where the suffix, gt attached to any quantity, indicates that the

greatest numerical value of that quantity within the sphere is to be

taken.

This volume-integral, therefore, is of the order a2
,
and may be

neglected when a diminishes and ultimately vanishes.

The other volume-integral

cannot be numerically greater than

and is of the order a 3
, and may be neglected when a vanishes.

The surface-integral / /
$&amp;gt; -=- ds cannot be numerically greater

Now by Theorem III

// *--* ****dv

and this cannot be numerically greater than (V
2

^i^tf
3

,
and

&amp;lt;,

at the surface is approximately -, so that / / &amp;lt;I&amp;gt;

-j-
ds cannot be nu

merically greater than

and is therefore of the order a 2
, and may be neglected when a

vanishes.

But the surface-integral on the other side of the equation, namely

*&quot;*-
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does not vanish, for / /
- ds = 4 ire ;

and if ^ be the value of ^ at the point P,

/Y d&
I I ^ -y- ds 4 ne %.J J dv

Equation (4) therefore becomes in this case

97
.]
We may illustrate this case of Green s Theorem by em

ploying it as Green does to determine the surface-density of a

distribution which will produce a potential whose values inside and

outside a given closed surface are given. These values must

coincide at the surface, also within the surface V2
4* = 0, and outside

V 2 # = 0.

Green begins with the direct process, that is to say, the distribu

tion of the surface density, cr, being given, the potentials at an

internal point P and an external point P
/
are found by integrating

the expressions

(9)//
where r and / are measured from the points P and P/

respectively.

Now let 4&amp;gt;
=

1/r, then applying Green s Theorem to the space

within the surface, and remembering that V 2
4&amp;gt;
= and V 2 * = 0,

we find _ 1

where tyP is the value of ^ at P.

Again, if we apply the theorem to the space between the surface s

and a surface surrounding it at an infinite distance a, the part of the

surface-integral belonging to the latter surface will be of the order

I/a and may be neglected, and we have

1/ *-
Now at the surface, * = ^, and since the normals v and v are

drawn in opposite directions,

.1 ,1
d- d-
r r

dv dv
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Hence on adding equations (10) and (ll), the left-hand members

destroy each other, and we have

-*
-//&amp;gt;&amp;lt;+)&quot;

97
.]

Green also proves that if the value of the potential at

every point of a closed surface s be given arbitrarily, the potential

at any point inside or outside the surface may be determined.

For this purpose he supposes the function &amp;lt;J&amp;gt; to be such that

near the point P its value is sensibly 1/r,
while at the surface s its

value is zero, and at every point within the surface V2
4&amp;gt;
= 0.

That such a function must exist, Green proves from the physical

consideration that if s is a conducting surface connected to the

earth, and if a unit of electricity is placed at the point P, the

potential within s must satisfy the above conditions. For since

s is connected to the earth the potential must be zero at every

point of 5, and since the potential arises from the electricity at P
and the electricity induced on ?, V 2

4&amp;gt; at every point within

the surface.

Applying Green s Theorem to this case, we find

rr d$&amp;gt; _

4Typ=zJJyd8, (13)

where, in the surface-integral, ^ is the given value of the potential

at the element of surface ds ;
and since, if

o&amp;gt;
is the density of the

electricity induced on s by unit of electricity at P,

we may write equation (13)

4^ + ^=0, (14)
dv

(15)

where a is the surface-density of the electricity induced on ds by
a charge equal to unity at the point P.

Hence if the value of &amp;lt;r is known at every point of the surface

for a particular position of P, then we can calculate by ordinary

integration the potential at the point P, supposing the potential

at every point of the surface to be given, and the potential

within the surface to be subject to the condition

V 2^ = 0.

We shall afterwards prove that if we have obtained a value of

^ which satisfies these conditions, it is the only value of *
which satisfies them.
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y&quot;

Green s Function.

S
98.] Let a closed surface s be maintained at potential zero. Let

P and Q be two points on the positive side of the surface s (we may
suppose either the inside or the outside positive), and let a small

body charged with unit of electricity be placed at P ; the potential

at. the point Q will consist of two parts, of which one is due to the

direct action of the electricity at P, while the other is due to the

action of the electricity induced on s by P. The latter part of the

potential is called Green s Function, and is denoted by G
pq

.

This quantity is a function of the positions of the two points P
and Q) the form of the function depending on the surface s. It

has been calculated for the case in which $ is a sphere, and for a

very few other cases. It denotes the potential at Q due to the

electricity induced on s by unit of electricity at P.

The actual potential at any point Q due to the electricity at P
and to the electricity induced on s is l/rpq -f Gpq ,

where r
pq

denotes

the distance between P and Q.

At the surface s, and at all points on the negative side of s, the

potential is zero, therefore

pa

where the suffix a indicates that a point A on the surface s is taken

instead of Q.

Let v
pa

denote the surface-density induced by P at a point A

of the surface s, then, since G
pq

is the potential at Q due to the

superficial distribution,

&amp;lt;?
=

where ds is an element of the surface s at A
,
and the integration

is to be extended over the whole surface s.

But if unit of electricity had been placed at Q, we should have

had by equation (l),

where a-
qa

is the density at A of the electricity induced by Q, els is

an element of surface, and ratf is the distance between A and A .
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Substituting this value of l/rqci in the expression for G
pq ,

we find

Since this expression is not altered by changing p
into

q
and

into
p ,
we find that

^a = Gw 5 (
6
)

a result which we have already shewn to be necessary in Art. 87,

but which we now see to be deducible from the mathematical process

by which Green s function may be calculated.

If we assume any distribution of electricity whatever, and place

in the field a point charged with unit of electricity, and if the

surface of potential zero completely separates the point from the

assumed distribution, then if we take this surface for the surface s,

and the point for P, Green s function, for any point on the same

side of the surface as P, will be the potential of the assumed dis

tribution on the other side of the surface. In this way we may
construct any number of cases in which Green s function can be

found for a particular position of P. To find the form of the

function when the form of the surface is given and the position

of P is arbitrary, is a problem of far greater difficulty, though,

as we have proved, it is mathematically possible.

Let us suppose the problem solved, and that the point P is

taken within the surface. Then for all external points the potential

of the superficial distribution is equal and opposite to that of P.

The superficial distribution is therefore centrobaric*, and its action

on all external points is the same as that of a unit of negative

electricity placed at P.

99 a.] If in Green s Theorem we make ^=4&amp;gt;, we find

If # is the potential of a distribution of electricity in space with a

volume-density p and on conductors whose surfaces are sv s.2 , &c.,

and whose potentials are *
1} *2 &c

&quot;&amp;gt;

w^n surface-densities c^, cr2 , &c.,

then V 2 * =477,0, (17)

where e
}
is the charge of the surface sv

* Thomson and Tail s Natural Philosophy, 526.
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Dividing (16) by Sir, we find

(*1 6
l + *2*2 + &C.) +

The first term is the electric energy of the system arising from the

surface-distributions, and the second is that arising from the distri

bution of electricity through the field, if such a distribution exists.

Hence the second member of the equation expresses the whole

electric energy of the system, the potential * being a given function

of #, y t
z.

As we shall often have occasion to employ this volume-integral,
we shall denote it by the abbreviation W^ so that

-///[&amp;lt;&amp;gt;
+

( &amp;gt; *)&amp;gt;** &amp;lt;

If the only charges are those on the surfaces of the conductors,

p= 0, and the second term of the first member of equation (20)

disappears.

The first term is the expression for the energy of the charged

system expressed, as in Art. 84, in terms of the charges and the

potentials of the conductors, and this expression for the energy we
denote by W.

99 #.]
Let ^ be a function of x, y, z

t subject to the condition that

its value at the closed surface s is ty, a known quantity for every

point of the surface. The value of *P at points not on the surface

s is perfectly arbitrary.

Let us also write

the integration being extended throughout the space within the

surface; then we shall prove that if ^ is a particular form of ty

which satisfies the surface condition and also satisfies Laplace s

Equation ^2 ^ __
(23)

at every point within the surface, then W^ the value of W corre

sponding to ^j, is less than that corresponding to any function which

differs from ^ at any point within the surface.

For let ^ be any function coinciding with ^ at the surface but

not at every point within it, and let us write

* = 4
1 + *2 ; (24)

then ^2 is a function which is zero at every point of the surface.
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The value of W for ^ will be evidently

By Green s Theorem the last term may be written

The volume-integral vanishes because V 2
4^ = within the

surface, and the surface-integral vanishes because at the surface

4&amp;gt;

2
= 0. Hence equation (25) is reduced to the form

Now the elements of the integral W^ being sums of three squares,

are incapable of negative values, so that the integral itself can only

be positive or zero. Hence if W2 is not zero it must be positive,

and therefore W greater than Wr But if W
2

is zero, every one of

its elements must be zero, and therefore

~^f
= ^ = W2 =

at every point within the surface, and *
2
must be a constant within

the surface. But at the surface ^2
= 0, therefore ^2

= at every

point within the surface, and ^ = 3*v so that if W is not greater

than W^ V must be identical with ^ at every point within the

surface.

It follows from this that ^ is the only function of #, y, z which

becomes equal to 5 at the surface, and which satisfies Laplace s

Equation at every point within the surface.

For if these conditions are satisfied by any other function #
3 ,

then W9
must be less than any other value of W. But we have

already proved that W^ is less than any other value, and therefore

than Wy Hence no function different from ^ can satisfy the

conditions.

The case which we shall find most useful is that in which the

field is bounded by one exterior surface, s, and any number of

finterior surfaces, S
L ,

s
2 , &c., and when the conditions are that the

v*/j6 value of * shall be zero at s, ^ at sv *2
at *

2 ,
and so on, where

*,. ^o, &c. are constant for each surface, as in a system of conductors,V 2

the potentials of which are given.

Of all values of ^ satisfying these conditions, that gives the

minimum value of W^ for which V 2# = at every point in the

field.

ti

^0^-
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Thomson s Theorem.

Lemma.
100

a.] Let ^ be any function of x, y, z which is finite and
continuous within the closed surface s, and which at certain closed

surfaces, slt szt s
p9

&cv has the values ^, ^2 , Vpt &c. constant for

each surface.

Let M, v, w be functions of #, y, z, which we may consider as the

components of a vector ( subject to the solenoidal condition

and let us put in Theorem III

X=*, Y=Vv, Z=Vw\ (29)
we find as the result of these substitutions

/Y/V d* d* dy^+JJJ (
U
-^ +^ + ^^-)^y^ = o

5 (so)

the surface-integrals being extended over the different surfaces and
the volume-integrals being taken throughout the whole field.

Now the first volume-integral vanishes in virtue of the solenoidal

condition for u, v, w, and the surface-integrals vanish in the follow

ing cases :

(1) When at every point of the surface * =.0.

(2) When at every point of the surface lu + mv + nw = 0.

(3) When the surface is entirely made up of parts which satisfy
either (l) or (2).

(4) When ^ is constant over the whole closed surface, and

nw) ds = 0.

Hence in these four cases the volume-interal

1003.] Now consider a field bounded by the external closed

surface s, and the internal closed surfaces s
lt s

2 ,
&c.

Let * be a function of a?, y, z, which within the field is finite

and continuous and satisfies Laplace s Equation

V2xP=0, (32)
and has the constant, but not given, values V

19 #2 ,
&c. at the

surfaces slt s2 ,
&c. respectively, and is zero at the external

surface s.

VOL. i. K
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The charge of any of the conducting surfaces, as sl} is given

by the surface-integral

(33)

the normal v1 being drawn from the surface s
:
into the electric

field.

100 c.]
Now let /, y, h be functions of x, y, z, which we may

consider as the components of a vector
&amp;gt;, subject only to the

conditions that at every point of the field they must satisfy the

solenoidal equation
df da dJi /0 . x

-I- -I- = (34)
dx dy dz

l

and that at any one of the internal closed surfaces, as slt the surface-

integral

(35)

where I, m, n are the direction cosines of the normal ^ drawn

outwards from the surface s
1
into the electric field, and e

l
is the

same quantity as in equation (33), being, in fact, the electric charge

of the conductor whose surface is s
1

.

We have to consider the value of the volume-integral

Wv = **///(/* +?+**) dxdydz, (36)

extended throughout the whole of the field within s and without

?
13

s2) &c., and to compare it with

the limits of integration being the same.

Let us write

d* 1 d*---
j- ~* -J-

4.77 dx 4-n- dy 477 dz

and W* = 2 T///V + v2 + w*}dxdydz; (39)

then since
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Now in the first place, n, v, w satisfy the solenoidal condition at

every point of the field, for by equations (38)

du dv dw df dg dli 1

and by the conditions expressed in equations (34) and (32), both

parts of the second member of (41) are zero.

In the second place, the surface-integral

Jj

*k, (42)

but by (35) the first term of the second member is e, and by (33)
the second term is 0, so that

JJ w)dsl
= 0.

(43)

Hence, since ^ is constant, the fourth condition of Art. 1 00 a is

satisfied, and the last term of equation (40) is zero, so that the

equation is reduced to the form

S. (44)

Now since the element of the integral W is the sum of three

squares, uz+v2+w z
,
it must be either positive or zero. If at any

point within the field u, v, and w are not each of them equal to zero,
the integral #6 must have a positive value, and #J must therefore
be greater than W*. But the values u = v= w = at every point
satisfy the conditions.

Hence, if at every point

f _ I d* id* 1 d*
~^&amp;lt; -4^ *=-n5- J ^

tlien ^ = 0J, (46)
and the value of W^ corresponding to these values of f, g, k

t
is less

than the value corresponding to any values of /, g, h, differing
from these.

Hence the problem of determining the displacement and po
tential, at every point of the field, when the charge on each
conductor is given, has one and only one solution.

This theorem in one of its more general forms was first stated

by Sir W. Thomson*. We shall afterwards show of what gene
ralization it is capable.

*
Cambridge md Dublin Mathematical Journal, February, 1848.
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This theorem may be modified by supposing that the

vector 2), instead of satisfying the solenoidal condition at every

point of the field, satisfies the condition

df da dk ,._

^ + ! +
&amp;lt;fo

=
&quot; &amp;lt;47)

where p is a finite quantity, whose value is given at every point in

the field, and may be positive or negative, continuous or discon

tinuous, its volume-integral within a finite region being, however,

finite.

We may also suppose that at certain surfaces in the field

lf+ mg + nh + If +m g + ri V = cr, (48)

when I, m, n and l\ m ,
n are the direction cosines of the normals

drawn from a point of the surface towards those regions in which

the components of the displacement are f, g, li and
/&quot;, /, V re

spectively, and a- is a quantity given at all points of the surface,

the surface-integral of which, over a finite surface, is finite.

100
&amp;lt;?.]

We may also alter the condition at the bounding surfaces

by supposing that at every point of these surfaces

lf+mff+nfi = &amp;lt;r, (49)

where o- is given for every point.

(In the original statement we supposed only the value of the

integral of a- over each of the surfaces to be given. Here we

suppose its value given for every element of surface, which comes

to the same thing as if, in the original statement, we had considered

every element as a separate surface.)

None of these modifications will affect the truth of the theorem

provided we remember that ^ must satisfy the corresponding

conditions, namely, the general condition,

d2* d*V d*y
f

.

TT + TT + TT-+ 47rP = &amp;gt; V
50

)

dx* dy* dz*

and the surface condition

++ (51)

For if, as before,

du dv dw _+ += J

then u, v, w will satisfy the general solenoidal condition

du

H^

and the surface condition
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and at the bounding- surface

lu+mv+nw = 0,

whence we find as before that

and that W^
Hence as before it is shewn that W^ is a unique minimum when

W 0, which implies that ( is everywhere zero, and therefore

1
d^_ _!_&amp;lt;?#

1 dV
~~4^n~dx ~~4^~dy

~
~4^ ~dz

101
a.~\

In our statement of these theorems we have hitherto

confined ourselves to that theory of electricity which assumes that

the properties of an electric system depend on the form and relative

position of the conductors, and on their charges, but takes no

account of the nature of the dielectric medium between the

conductors.

According- to that theory, for example, there is an invariable

relation between the surface density of a conductor and the electro

motive intensity just outside it, as expressed in the law of Coulomb

R = 47TCT.

But this is true only in the standard medium, which we may
take to be air. In other media the relation is different, as was

proved experimentally, though not published, by Cavendish, and

afterwards rediscovered independently by Faraday.

In order to express the phenomenon completely, we find it

necessary to consider two vector quantities, the relation between

which is different in different media. One of these is the electro

motive intensity, the other is the electric displacement. The

electromotive intensity is connected by equations of invariable

form with the potential, and the electric displacement is connected

by equations of invariable form with the distribution of electricity,

but the relation between the electromotive intensity and the electric

displacement depends on the nature of the dielectric medium, and

must be expressed by equations, the most general form of which

is as yet not fully determined, and can be determined only by ex

periments on dielectrics.

101
.]

The electromotive intensity is a vector defined in Art. 68,

as the mechanical force on a small quantity e of electricity divided

by e. We shall denote its components by the letters P
9 Q, It,

and the vector itself by (.

In electrostatics, the line integral of ( is always independent
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of the path of integration, or in other words ( is the space-variation

of a potential. Hence

^ ^7? ^
f --

7 (/ = --= &amp;gt; zt = --=
&amp;gt;

dx dy dz

or more briefly, in the language of Quaternions

101
&amp;lt;?.]

The electric displacement in any direction is defined

in Art. 68, as the quantity of electricity carried through a small

area A, the plane of which is normal to that direction, divided

by A. We shall denote the rectangular components of the electric

displacement by the letters /, g^ k, and the vector itself by 2).

The volume-density at any point is determined by the equation

df da dJi

P = -T- + -T + J-9dx dy dz

or in the language of Quaternions

P = -&V2).
The surface-density at any point of a charged surface is deter

mined by the equation

&amp;lt;r
= lf+mg + nh + If + m tf + n lt,

where f, g, Ji are the components of the displacement on one side

of the surface, the direction cosines of the normal drawn from the

surface on that side being /, m, n, and
/&quot;, /, h and I

,
m

,
n are the

components of the displacements, and the direction cosines of the

normal on the other side.

This is expressed in Quaternions by the equation

&amp;lt;r
= -[S.UvQ + S.Uv ],

where Uv, Uv are unit normals on the two sides of the surface,

and 8 indicates that the scalar part of the product is to be taken.

When the surface is that of a conductor, v being the normal

drawn outwards, then since/ , /, h and ) are zero, the equation is

reduced to the form
o- = (lf+ mg 4- nli) ,

= -S.Uv.
The whole charge of the conductor is therefore

=

8.

101 d.] The electric energy of the system is, as was shown in

Art. 84, half the sum of the products of the charges into their

respective potentials. Calling this energy W9
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where the volume-integral is to be taken throughout the electric

field, and the surface-integral over the surfaces of the conductors.

Writing in Theorem III, Art. 21,

we find

rr rrr ,df dg dii

\ l^ttf+mq -\-nli) ds / /
V ( + -~ + -j-

JJ vyn JJJ \lx dy dz

rrr, d-% dy
( f \-q +

JJJ \ J dx y
dy

Substituting this value for the surface-integral in W we find

or W=
\jjj(f

p + ^ 5

101
&amp;lt;?.]

We now come to the relation between & and (.

The unit of electricity is usually defined with reference to

experiments conducted in air. We now know from the experiments

of Boltzmann that the dielectric constant of air is somewhat greater

than that of a vacuum, and that it varies with the density. Hence,

strictly speaking, all measurements of electric quantity require to

be corrected to reduce them either to air of standard pressure and

temperature, or, what would be more scientific, to a vacuum, just

as indices of refraction measured in air require a similar correction,

the correction in both cases being so small that it is sensible only

in measurements of extreme accuracy.

In the standard medium

477$ = (g,

Or 47T/=P, 47H7 =Q, Tl7l = R.

In an isotropic medium whose dielectric constant is K

477,7 rr

There are some media, however, of which glass has been the most

carefully investigated, in which the relation between 2) and ($
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is more complicated, and involves the time variation of one or

both of these quantities, so that the relation must be of the form

^(&amp;gt;, @, 2), @, 5), , &c.) = 0.

We shall not attempt to discuss relations of this more general kind
at present, but shall confine ourselves to the case in which 3) is

a linear and vector function of (.

The most general form of such a relation may be written

where $ during the present investigation always denotes a linear

and vector function. The components of 2) are therefore homo

geneous linear functions of those of (, and may be written in

the form

where the first suffix of each coefficient K indicates the direction

of the displacement, and the second, that of the electromotive

intensity.

The most general form of a linear and vector function involves

nine independent coefficients. When the coefficients which have

the same pair, of suffixes are equal, the function is said to be

self-conjugate.

If we express ( in terms of 3) we shall have

R = 4 TT (kxnf+ Jc
yzg + kzs k).

101 /.] The work done by the electromotive intensity whose

components are P, Q, R, in producing a displacement whose com

ponents are dft dg, and dk, in unit of volume of the medium, is

dW=Pdf+Qdff+Rdh.
Since a dielectric under electric displacement is a conservative

system, W must be a function of f, g, h, and since f, gy
k may vary

independently, wre have

aw aw aw

Hence

T* f
dP

But -=- = &amp;lt;

dg
. dQ

and -7-^= 47i/&amp;lt;

df
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Hence if a dielectric is a conservative system, (and we know that

it is so, because it can retain its energy for an indefinite time),

and (f)~
l

is a self-conjugate function.

Hence it follows that $ also is self-conjugate, and

101
g.~\

The expression for the energy may therefore be written

in either of the forms

R2 + 2Kyz QR
KzxRP+2KxyPQ}dxdy dz,

+ 2 Jczx hf+ 2 7c
xy fg\ dx dy ch,

where the suffix denotes the vector in terms of which TFis to be

expressed. When there is no suffix, the energy is understood to be

expressed in terms of both vectors.

We have thus, in all, six different expressions for the energy
of the electric field. Three of these involve the charges and poten

tials of the surfaces of conductors, and are given in Art. 87.

The other three are volume-integrals taken throughout the

electric field, and involve the components of electromotive intensity

or of electric displacement, or of both.

The first three therefore belong to the theory of action at a

distance, and the last three to the theory of action by means of the

intervening medium.

These three expressions for W may be written,

101 ^.] To extend Green s Theorem to the case of a hetero

geneous anisotropic medium, we have only to write in Theorem III,
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and we obtain (remembering that the order of the suffixes of the

coefficients is indifferent),

rll

d

jjj [
Kxx dz~fa

+ K
~d^ ~tiu

+ K**
dz dzdx d vv

dy dy

,dy

1-.,,v \ else dy dy

^4&amp;gt;Nl 7 ,
7

5
--

5 ) \dxdydzd -dx /J

,7K-

Using quaternion notation the result may be written more briefly,

//* -S. ZTi; 4 (V 4&amp;gt;)

^-jj^ ^.
(V*V) 4^ ^r

= _
IJJ8.

Limits between which the electric capacity of a conductor must lie.

102 a.] The capacity of a conductor or system of conductors

has been already defined as the charge of that conductor or system
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of conductors when raised to potential unity, all the other con

ductors in the field being at potential zero.

The following method of determining limiting values between

which the capacity must lie, was suggested by a paper On the

Theory of Resonance/ by the Hon. J. W. Strutt, Phil. Trans. 1871.

See Art. 308.

Let
&amp;lt;?!

denote the surface of the conductor, or system of con

ductors, whose capacity is to be determined, and s the surface of

all other conductors. Let the potential of ^ be ^15 and that of sQ3

^ . Let the charge of s
1
be

&amp;lt;%.

That of s will be elf

Then if q is the capacity of s
1 ,

* =
^r&amp;gt;

and if W is the energy of the system with its actual distribution of

electricity W= i e
1 (^-* ), (2)

2W e 2

*=(+-ig5=2F-
To find an upper limit of the value of the capacity. Assume any

value of ^ which is equal to 1 at s
1
and equal to zero at &amp;lt;?

,
and

calculate the value of the volume-integral

extended over the whole field.

Then as we have proved (Art. 99$) that W cannot be greater

than %, the capacity, q, cannot be greater than 2%.
To find a lower limit of the value of the capacity. Assume any

system of values of
f&amp;gt; g, h, which satisfies the equation

and let it make

Calculate the value of the volume-integral

/ / (^f+ m^g + n
1 h)dsl

=
e-^. (6)

extended over the whole field
;
then as we have proved (Art. 100

c)

that W cannot be greater than
#$&amp;gt;,

the capacity, ^, cannot be less

than e^

&quot;?!
The simplest method of obtaining a system of values offt g, /i,

which will satisfy the solenoidal condition, is to assume a distribu

tion of electricity on the surface of &amp;lt;?

15
and another on &amp;lt;?

,
the sum
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of the charges being zero, then to calculate the potential,, #, due

to this distribution, and the electric energy of the system thus

arranged, which we may call W
ff .

If we then make

,_ 1 d^ id* 1 d*
&quot;47aT ~I7^ 77^

these values off, g, k will satisfy the solenoidal condition.

But in this case we can determine W^ without going through
the process of finding the volume-integral. For since this solution

makes V 2x = at all points in the field, we can obtain
W$&amp;gt;

in the

form of the surface-integrals,

^o *o, (9)

where the first integral is extended over the surface s
1
and the

second over the surface * .

If the surface s is at an infinite distance from s
1 ,

the potential
at s is zero and the second term vanishes.

102
$.] An approximation to the solution of any problem of the

distribution of electricity on conductors whose potentials are given

may be made in the following manner :

Let s
1
be the surface of a conductor or system of conductors

maintained at potential 1, and let SQ be the surface of all the other

conductors, including the hollow conductor which surrounds the

rest, which last, however, may in certain cases be at an infinite

distance from the others.

Begin by drawing a set of lines, straight or curved, from

*j
to s .

Along each of these lines, assume SP so that it is equal to 1 at s13

and equal to at s . Then if P is a point on one of these lines we

Ps
may take 4^ = - as a first approximation.

s
i
so

We shall thus obtain a first approximation to ^ which satisfies

the condition of being equal to unity at s
1
and equal to zero at s .

The value of W* calculated from ^
l
would be greater than W.

Let us next assume as a second approximation to the lines of

force

The vector whose components are a, b, c is normal to the surfaces

for which ^ is constant. Let us determine p so as to make a, 5, c

satisfy the solenoidal condition. We thus get
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_
dtf dy* dz* dxdx

&quot;

dy dy
&quot;*&quot;

&amp;lt;fe &amp;lt;fe

&quot;

V

If we draw a line from S
L
to s whose direction is always normal

to the surfaces for which ^is constant, and if we denote the length
of this line measured from s by s, then

dx d^ dy d*! dz d^
tt --= ) ti-j-

--j &amp;gt; .#-=-= -- -
} (12)

as dx ds ay as dz v

dty
where E is the resultant intensity = -y- so that

dpd V, dpd^f. dpdty __ dp
dx dx dy dy dz dz ds

and equation (11) becomes

^V 2^=H2 -~j (14-}
d^i \&quot;/

whence pCexp.\ 1
d^,

, (15)
J Jxr

the integral being a line integral taken along the line s.

Let us next assume that along the line s,

d^o dx , dy dz

then *2 = &amp;lt;7

o exp.-j^dd^, (17)

the integration being always understood to be performed along the

line s.

The constant C is now to be determined from the condition that

= 1 at SL when also ^ = 1
,
so that

* 2

l. (18)

ri r&amp;lt;

? exp.
JQ ^o

This gives a second approximation to *, and the process may
be repeated.

The results obtained from calculating W#Li Tf^ 2 , ^J2 , &c., give

capacities alternately above and below the true capacity and con

tinually approximating thereto.

The process as indicated above involves the calculation of the

form of the line s and integration along this line, operations which

are in general too difficult for practical purposes.
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In certain cases however we may obtain an approximation by a

simpler process.

102
c.]

As an illustration of this method, let us apply it to

obtain successive approximations to the equipotential surfaces and
lines of induction in the electric field between two surfaces which
are nearly but not exactly plane and parallel, one of which is

maintained at potential zero, and the other at potential unity.
Let the equations of the two surfaces be

i=/i(^) = (19)
for the surface whose potential is zero, and

z
z =/2 (

x
&amp;gt;y)

*
(20)

for the surface whose potential is unity, a and b being given
functions of x and y, of which b is always greater than a. The
first derivatives of a and b with respect to x and y are small quan
tities of which we may neglect powers and products of more than

two dimensions.

We shall begin by supposing that the lines of induction are

parallel to the axis of z, in which case

dh
/=&amp;gt; ff=\te=~ (21)

Hence Ji is constant along each individual line of induction, and

^ = 477 / Jidz = Tili(z a). (22)* a,

When z = I, * = 1, hence
1

AW/,_,A (
23

)

(24)\ /

and
\j/

_
j

b a

which gives a first approximation to the potential, and indicates a

series of equipotential surfaces the intervals between which,
measured parallel to z9 are equal.

To obtain a second approximation to the lines of induction, let us

assume that they are everywhere normal to the equipotential

surfaces as given by equation (24).

This is equivalent to the conditions

dx* y ~
dy dz

*s

where A is to be determined so that at every point of the field

df da dk , .

/ + -f + = 0, (26)dx dy dz
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and also so that the line-integral

taken along any line of induction from the surface a to the surface

b, shall be equal to 1 .

Let us assume

A= l+A + B(z-a) + C(z-a)
2

, (28)

and let us neglect powers and products of A, B, C, and at this stage
of our work powers and products of the first derivatives of a and b.

The solenoidal condition then gives (

~~

&quot;&quot;&quot;^^*W/&amp;lt;wZ
,

If instead of taking the line-integral along the new line of

induction, we take it along the old line of induction, parallel to

z, the second condition gives

Hence

and

We thus find for the second approximation to the components of

displacement,
X rda d(ba) za^T-^ ~~

(33)

--
,

I a

and for the second approximation to the potential,
Z a

^ ,ja a
*+&quot;-ji*~^j /{

&amp;lt;*

If o- and o-6 are the surface- densities and ^ and *6 the potentials
of the surfaces a and b respectively,



CHAPTEK V.

MECHANICAL ACTION BETWEEN TWO ELECTRICAL SYSTEMS.

103.] Let E1
and E2

be two electrical systems, the mutual action

between which we propose to investigate. Let the distribution of

electricity in E be defined by the volume-density, pl5 of the

element whose coordinates are x^y^z-^. Let p2
be the volume-

density of the element of E2 ,
whose coordinates are oc

2 , y2 ,
z2 .

Then the ^-component of the force acting on the element of E
l

on account of the repulsion of the element of E2
will be

Pi Pz
l

3

2

^i fy\ dzi dz dy2
dz2 ,

where r* =
(tf1
-*

2

and if A denotes the x component of the whole force acting on El

on account of the presence of E2

A =ffffff!*=pplpt &amp;lt;l*1 dy1
d*1

d*
t dys d*,, (1)

where the integration with respect to al9 yl} z^ is extended

throughout the region occupied by E1 ,
and the integration with

respect to x^y^z^ is extended throughout the region occupied

by E2
.

Since, however, pl
is zero except in the system Elt

and p2 is zero

except in the system E2 ,
the value of the integral will not be

altered by extending the limits of the integrations, so that we may

suppose the limits of every integration to be + oo.

This expression for the force is a literal translation into mathe

matical symbols of the theory which supposes the electric force

to act directly between bodies at a distance, no attention being

bestowed on the intervening medium.

If we now define ^2, the potential at the point x^y^z^ arising

from the presence of the system E2 , by the equation

*2 =fff^dx2 dy2
dz2 , (2)

^2
will vanish at an infinite distance, and will everywhere satisfy

the equation V 2 *2
= 4 7r/32 . (

3
)
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We may now express A in the form of a triple integral

A = jiiv pl do
l d/1 dZl ^

Here the potential #
2

is supposed to have a definite value at

every point of the field, and in terms of this, together with the

distribution, /&amp;gt;15 of electricity in the first system E^ the force A is

expressed, no explicit mention being made of the distribution of

electricity in the second system E%.

Now let *j be the potential arising from the first system,

expressed as a function of a?,y, z
9
and defined by the equation

*! will vanish at an infinite distance, and will everywhere satisfy

the equation

V 2 *l== 41^. (6)

We may now eliminate px from A and obtain

in which the force is expressed in terms of the two potentials only.

104.] In all the integrations hitherto considered, it is indifferent

what limits are prescribed, provided they include the whole of the

system Elt In what follows we shall suppose the systems El
and

E
2
to be such that a certain closed surface s contains within it the

whole of E
l
but no part of U2 .

Let us also write

p = Pl+P2 ,
* = *1+*a , (8)

then within s, p2
= 0, p =Pi&amp;gt;

and without s p1
= 0, p = p2 . (9)

Now Au = - Pi *i & &!

represents the resultant force, in the direction %} on the system El

arising from the electricity in the system itself. But on the theory

of direct action this must be zero, for the action of any particleP on

another Q is equal and opposite to that of Q on P. and since the

components of both actions enter into the integral, they will

destroy each other.

We may therefore write

VOL. I.
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where ^ is the potential arising from both systems, the integration

being now limited to the space within the closed surface s, which

includes the whole of the system E but none of E2 .

105.] If the action of E.2 on E^ is effected, not by direct action

at a distance, but by means of a distribution of stress in a medium

extending continuously from E
z to E

l ,
it is manifest that if we

know the stress at every point of any closed surface s which

completely separates E
l
from JE

2 ,
we shall be able to determine

completely the mechanical action of E
2
on E. For if the force on

El is not completely accounted for by the stress through $, there

must be direct action between something outside of s and some

thing inside of s.

Hence if it is possible to account for the action of E2 on El by
means of a distribution of stress in the intervening medium, it

must be possible to express this action in the form of a surface-

integral extended over any surface s which completely separates

E2 from El .

Let us therefore endeavour to express

1 rrfdV= - -
-j4TTJJJ doo

j j
doo \_ dx 2

dy* dz

in the form of a surface integral.

By Theorem III we may do so if we can determine X, Fand Z,

so that

dX_ dY_ dZ_~
* 2 )~ ~~

dx
&quot;

d
+

~d^

Taking the terms separately,

_

dx dx 2
~~

2 dx

_ d ,dV
d*^

d

dx dy
2

dy ^dx dy dy dxdy

^ _ _

dy dx dy~^ dx

. d sd^d^ I d
Similarly to d^

=
dz (jx~ -r)

-
2 dx

If, therefore, we write
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(14)

then A =

dy dz

dz dx

dx dy

dp dp*
dx dy

=
*1tPx&amp;gt;

(15)

the integration being extended throughout the space within ,

Transforming the volume-integral by Theorem III, Art. 2.1,

A = (16)

where ds is an element of any closed surface including the whole

of EI but none of U2 ,
and Imn are the direction cosines of the

normal drawn from ds outwards.

For the components of the force on E^ in the directions of y and

2, we obtain in the same way

\ds, (17)

(18)

If the action of the system E2
on E

1
does in reality take place

by direct action at a distance, without the intervention of any

medium, we must consider the quantities pxx &c. as mere abbreviated

forms for certain symbolical expressions, and as having no physical

significance.

But if we suppose that the mutual action between U2
and E^ is

kept up by means of stress in the medium between them, then since

the equations (16), (17), (18) give the components of the resultant

force arising from the action, on the outside of the surface
&amp;lt;$,

of

the stress whose six components are pxx &c., we must consider

pxx &c. as the components of a stress actually existing in the

medium.
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106.] To obtain a clearer view of the nature of this stress let

us alter the form of part of the surface s so that the element ds

may become part of an equipotential surface. (This alteration of

the surface is legitimate provided we do not thereby exclude any

part of EI or include any part of E2).

Let v be a normal to ds drawn outwards.

dy
Let E be the intensity of the electromotive force in

the direction of v, then

dy p dy= El, =- = Em, = En., ,dx dy dz

Hence the six components of stress are

8TT 47T

If a, b, c are the components of the force on ds per unit of area

1=
~STT

Hence the force exerted by the part of the medium outside ds

on the part of the medium inside ds is normal to the element and

directed outwards, that is to say, it is a tension like that of a rope,

and its value per unit of area is- E 2
.

Sir

Let us next suppose that the element ds is at right angles

to the equipotential surfaces which cut it, in which case

7 dV d$ dty
l-T-+m-T- + n = 0. (19)dx dy dz

jf/^*\
2

fdV\* f d^\
2

~}Now S fj = I --)
- (-) -

(-^) J

..
-=--,- (20)7

=-
dx dy dx dz

dy
Multiplying (19) by 2-y and subtracting from (20), we find



I07-] COMPONENTS OF STRESS. 149

_

Hence the components of the tension per unit of area of ds are

= -
~RH,

8 7T

Hence if the element ^ is at right angles to an equipotential

surface, the force which acts on it is normal to the surface, and its

numerical value per unit of area is the same as in the former case,

but the direction of the force is different, for it is a pressure instead

of a tension.

We have thus completely determined the type of the stress at

any given point of the medium.

The direction of the electromotive intensity at the point is a

principal axis of stress, and the stress in this direction is a tension

whose numerical value is

where R is the electromotive intensity.

Any direction at right angles to this is also a principal axis of

stress, and the stress along this axis is a pressure whose numerical

magnitude is also p.

The stress as thus denned is not of the most general type, for

it has two of its principal stresses equal to each other, and the

third has the same value with the sign reversed.

These conditions reduce the number of independent variables

which determine the stress from six to three, and accordingly it is

completely determined by the three components of the electro

motive intensity

dx dy dz

The three relations between the six components of stress are

9 f \ I \ v

P yz
~

(Pxx+Pn) (P**+Pxx)&amp;gt; }

P
2
zx
= (Pyy + Pzz) (Pxx+Pyy\ ( (

23
)

+^) )

107.] Let us now examine whether the results we have obtained
/2&amp;lt;5S1

y n&amp;gt;_ &amp;lt;
ot

(

-
&amp;lt;x c
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will require modification when a finite quantity of electricity is

collected on a finite surface so that the volume-density becomes

infinite at the surface.

In this case, as we have shown in Art. 78, the components
of the electromotive intensity are discontinuous at the surface.

Hence the components of stress will also be discontinuous at the

surface.

Let I m n be the direction cosines of the normal to ds. Let

P, Q, R be the components of the electromotive intensity on the

side on which the normal is drawn, and Pr

Q R their values

on the other side.

Then by Art. (78 a) if &amp;lt;r is the surface-density

P-P = 4770-/,

(24)

Let a be the ^-component of the resultant force acting- on

the surface per unit of area, arising
1 from the stress on both sides,

then

-L m (PQ-P Q ) + -

-L
O1T

(25)

Hence, assuming that the stress at any point is given by

equations (14), we find that the resultant force in the direction

of a? on a charged surface per unit of volume is equal to the

surface-density multiplied into the arithmetical mean of the x-

components of the electromotive intensity on the two sides of the

surface.
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This is the same result as we obtained in Art. 79 by a process

essentially similar.

Hence the hypothesis of stress in the surrounding- medium is

applicable to the case in which a finite quantity of electricity is

collected on a finite surface.

The resultant force on an element of surface is usually deduced

from the theory of action at a distance by considering a portion

of the surface, the dimensions of which are very small compared
with the radii of curvature of the surface.&quot;*

On the normal to the middle point of this portion of the surface

take a point P whose distance from the surface is very small com

pared with the dimensions of the portion of the surface. The

electromotive intensity at this point, due to the small portion of the

surface, will be approximately the same as if the surface had been

an infinite plane, that is to say 2-Tro- in the direction of the normal

drawn from the surface. For a point P just on the other side of

the surface the intensity will be the same, but in the opposite

direction.

Now consider the part of the electromotive intensity arising from

the rest of the surface and from other electrified bodies at a finite

distance from the element of surface. Since the points P and

are infinitely near one another, the components of the electromotive

intensity arising from electricity at a finite distance will be the

same for both points.

Let P be the a?-component of the electromotive intensity on

A or A arising from electricity at a finite distance, then the total

value of the ^-component for A will be

and for A P= P -2*&amp;lt;rl.

Hence P = i (P-fP ).

Now the resultant mechanical force on the element of surface

must arise entirely from the action of electricity at a finite distance,

since the action of the element on itself must have a resultant zero.

Hence the ^-component of this force per unit of area must be

a o-P
,

108.] If we define the potential (as in equation (2)) in terms

of a distribution of electricity supposed to be given, then it follows

* This method is due to Laplace. See Poisson, Sur la Distribution cle 1 electricit^

&c. Mem. de I lmtitut, 1811, p. 30.
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from the fact that the action and reaction between any pair of

electric particles are equal and opposite, that the ^-component of

the force arising from the action of a system on itself must be

zero, and we may write this in the form

But if we define ^ as a function of #, y, z which satisfies the

equation V 2^ =
at every point outside the closed surface s, and is zero at an infinite

distance, the fact, that the volume-integral extended throughout

any space including $ is zero, would seem to require proof.

One method of proof is founded on the theorem (Art. 100
a), that

if V 2v is given at every point, and ^ = at an infinite distance,

then the value of V at every point is determinate and equal to

(
27

)

where r is the distance between the element dx dy clz at which the

concentration of ^ is given = V 2^ and the point af if / at which

* is to be found.

This reduces the theorem to what we deduced from the first

definition of 3&amp;gt;.

But when we consider ^ as the primary function of no, y, z, from

which the others are derived, it is more appropriate to reduce (26)
to the form of a surface-integral,

dS&amp;gt; (28)

and if we suppose the surface S to be everywhere at a great
distance a from the surface s, which includes every point where

V2vP differs from zero, then we know that ^ cannot be numerically

greater than e/a, where 4: ire is the volume-integral of V 2v
,
and that

R cannot be greater than d^/da or e/a
2

,
and that the quantities

PxxiPxy&amp;gt;Px*
can none of them be greater than p or IP/Sir or

2
/8T7

4
. Hence the surface-integral taken over a sphere whose

radius is very great and equal to a cannot exceed &amp;lt;?

2
/2 a 2

, and

when a is increased without limit, the surface-integral must become

ultimately zero.

But this surface-integral is equal to the volume-integral (26),
and the value of this volume-integral is the same whatever be the

size of the space enclosed within S
t provided S encloses every point

at which V 2
s differs from zero. Hence, since the integral is zero
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when a is infinite, it must also be zero when the limits of integra

tion are denned by any surface which includes every point at

which V 2^ differs from zero.

109.] The distribution of stress considered in this chapter is pre

cisely that to which Faraday was led in his investigation of induc

tion through dielectrics. He sums up in the following words :

(1297) The direct inductive force, which may be conceived to

be exerted in lines between the two limiting and charged con

ducting surfaces, is accompanied by a lateral or transverse force

equivalent to a dilatation or repulsion of these representative lines

(1224.); or the attracting force which exists amongst the par

ticles of the dielectric in the direction of the induction is ac

companied by a repulsive or a diverging force in the transverse

direction.

(1298) Induction appears to consist in a certain polarized state

of the particles, into which they are thrown by the electrified body

sustaining the action, the particles assuming positive and negative

points or parts, which are symmetrically arranged with respect

to each other and the inducting surfaces or particles. The state

must be a forced one, for it is originated and sustained only by

force, and sinks to the normal or quiescent state when that force

is removed. It can be continued only in insulators_by the same

portion of electricity, because they only can retain this state of the

particles.

This is an exact account of the conclusions to which we have

been conducted by our mathematical investigation. At every point

of the medium there is a state of stress such that there is tension

along the lines of force and pressure in all directions at right angles

to these lines, the numerical magnitude of the pressure being equal

to that of the tension, and both varying as the square of the

resultant force at the point.

The expression electric tension has been used in various senses

by different writers. I shall always use it to denote the tension

along the lines of force, which, as we have seen, varies from point

to point, and is always proportional to the square of the resultant

force at the point.

110.] The hypothesis that a state of stress of this kind exists

in a fluid dielectric, such as air or turpentine, may at first sight

appear at variance with the established principle that at any point

in a fluid the pressures in all directions are equal. But in the

deduction of this principle from a consideration of the mobility
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and equilibrium of the parts of the fluid it is taken for granted
that no action such as that which we here suppose to take place

along the lines of force exists in the fluid. The state of stress

which we have been studying is perfectly consistent with the

mobility and equilibrium of the fluid, for we have seen that, if

any portion of the fluid is devoid of electric charge, it experi
ences no resultant force from the stresses on its surface,, however

intense these may be. It is only when a portion of the fluid

becomes charged that its equilibrium is disturbed by the stresses

on its surface, and we know that in this case it actually tends to

move. Hence the supposed state of stress is not inconsistent with

the equilibrium of a fluid dielectric.

The quantity W, which was investigated in Chapter IV, Art. 99,

may be interpreted as the energy in the medium due to the

distribution of stress. It appears from the theorems of that

chapter that the distribution of stress which satisfies the conditions

there given also makes W an absolute minimum. Now when the

energy is a minimum for any configuration, that configuration is

one of equilibrium, and the equilibrium is stable. Hence the

dielectric, when subjected to the inductive action of electrified

bodies, will of itself take up a state of stress distributed in the

way we have described.

It must be carefully borne in mind that we have made only one

step in the theory of the action of the medium. We have supposed

it to be in a state of stress, but we have not in any way accounted

for this stress, or explained how it is maintained. This step,

however, seems to me to be an important one, as it explains, by
the action of the consecutive parts of the medium, phenomena which

were formerly supposed to be explicable only by direct action at

a distance.

111.] I have not been able to make the next step, namely, to

account by mechanical considerations for these stresses in the

dielectric. I therefore leave the theory at this point, merely

stating what are the other parts of the phenomenon of induction

in dielectrics.

I. Electric Displacement. When induction is transmitted through

a dielectric, there is in the first place a displacement of electricity

in the direction of the induction. For instance, in a Leyden jar,

of which the inner coating is charged positively and the outer

coating negatively, the displacement of positive electricity in the

substance of the glass is from within outwards.
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Any increase of this displacement is equivalent, during the time

of increase, to a current of positive electricity from within outwards,

and any diminution of the displacement is equivalent to a current

in the opposite direction.

The whole quantity of electricity displaced through any area

of a surface fixed in the dielectric is measured by the quantity which

we have already investigated (Art. 75) as the surface-integral of

induction through that area, multiplied by K/lir, where K is the

specific inductive capacity of the dielectric.

II. Surface charge of the particles of the dielectric. Conceive any

portion of the dielectric, large or small, to be separated (in imagi

nation) from the rest by a closed surface, then we must suppose

that on every elementary portion of this surface there is a charge

measured by the total displacement of electricity through that

element of surface reckoned inwards.

In the case of the Leyden jar of which the inner coating is

charged positively, any portion of the glass will have its inner

side charged positively and its outer side negatively. If this

portion be entirely in the interior of the glass, its surface charge

will be neutralized by the opposite charge of the parts in contact

with it, but if it be in contact with a conducting body, which

is incapable of maintaining in itself the inductive state, the

surface charge will not be neutralized, but will constitute that

apparent charge which is commonly called the Charge of the

Conductor.

The charge therefore at the bounding surface of a conductor and

the surrounding dielectric, which on the old theory was called the

charge of the conductor, must be called in the theory of induction

the surface charge of the surrounding dielectric.

According to this theory, all charge is the residual effect of the

polarization of the dielectric. This polarization exists throughout
the interior of the substance, but it is there neutralized by the

juxtaposition of oppositely charged parts, so that it is only at the

surface of the dielectric that the effects of the charge become

apparent.

The theory completely accounts for the theorem of Art. 77, that

the total induction through a closed surface is equal to the total

quantity of electricity within the surface multiplied by 4-rr. For

what we have called the induction through the surface is simply the

electric displacement multiplied by 47r, and the total displacement

outwards is necessarily equal to the total charge within the surface.
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The theory also accounts for the impossibility of communicating
1

an absolute charge to matter. For every particle of the dielectric

has equal and opposite charges on its opposite sides, if it would not

be more correct to say that these charges are only the manifestations

of a single phenomenon, which we may call Electric Polarization.

A dielectric medium, when thus polarized, is the seat of electrical

energy, and the energy in unit of volume of the medium is nu

merically equal to the electric tension on unit of area, both quan
tities being equal to half the product of the displacement and the

resultant electromotive intensity, or

where p is the electric tension, 3) the displacement, ( the electro

motive intensity, and K the specific inductive capacity.

If the medium is not a perfect insulator, the state of constraint,

which we call electric polarization, is continually giving way. The

medium yields to the electromotive force, the electric stress is

relaxed, and the potential energy of the state of constraint is con

verted into heat. The rate at which this decay of the state of

polarization takes place depends on the nature of the medium.

In some kinds of glass, days or years may elapse before the polar

ization sinks to half its original value. In copper, a similar change

is effected in less than the billionth of a second.

We have supposed the medium after being polarized to be simply

left to itself. In the phenomenon called the electric current the

constant passage of electricity through the medium tends to restore

the state of polarization as fast as the conductivity of the medium

allows it to decay. Thus the external agency which maintains the

current is always doing work in restoring the polarization of the

medium, which is continually becoming relaxed, and the potential

energy of this polarization is continually becoming transformed

into heat, so that the final result of the energy expended in main

taining the current is to gradually raise the temperature of the

conductor, till as much heat is lost by conduction and radiation

from its surface as is generated in the same time by the electric

current.



CHAPTER VI.

ON POINTS AND LINES OF EQUILIBRIUM.

112.] IF at any point of the electric field the resultant force is

zero, the point is called a Point of equilibrium.
If every point on a certain line is a point of equilibrium, the line

is called a Line of equilibrium.

The conditions that a point shall be a point of equilibrium are

that at that point

dV cW dV
-J- = 0, -T- = 0, -y- = 0.
dx dy dz

At such a point, therefore, the value of V is a maximum, or

a minimum, or is stationary, with respect to variations of the

coordinates. The potential, however, can have a maximum or a

minimum value only at a point charged with positive or with

negative electricity, or throughout a finite space bounded by a

surface charged positively or negatively. If, therefore, a point
of equilibrium occurs in an uncharged part of the field it must
be a stationary point, and not a maximum or a minimum.

In fact, the first condition of a maximum or minimum is that

~dtf Hf
and 3?

must be all negative or all positive, if they have finite values.

Now, by Laplace s equation, at a point where there is no charge,
the sum of these three quantities is zero, and therefore this condition

cannot be satisfied.

Instead of investigating the analytical conditions for the cases

in which the components of the force simultaneously vanish, we
shall give a general proof by means of the equipotential surfaces.

If at any point, P, there is a true maximum value of 7, then, at

all other points in the immediate neighbourhood of P, the value
of V is less than at P. Hence P will be surrounded by a series of

closed equipotential surfaces, each outside the one before it, and at

all points of any one of these surfaces the electrical force will be
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directed outwards. But we have proved, in Art. 76, that the surface-

integral of the electromotive intensity taken over any closed surface

gives the total charge within that surface multiplied by 4 IT. Now,
in this case the force is everywhere outwards, so that the surface-

integral is necessarily positive, and therefore there is positive charge

within the surface, and, since we may take the surface as near

to P as we please, there is positive charge at the point P.

In the same way we may prove that if V is a minimum at P,

then P is negatively charged.

Next, let P be a point of equilibrium in a region devoid of charge,

and let us describe a sphere of very small radius round P, then,

as we have seen, the potential at this surface cannot be everywhere

greater or everywhere less than at P. It must therefore be greater

at some parts of the surface and less at others. These portions

of the surface are bounded by lines in which the potential is equal

to that at P. Along lines drawn from P to points at which

the potential is less than that at P the electrical force is from P,

and along lines drawn to points of greater potential the force

is towards P. Hence the point P is a point of stable equilibrium

for some displacements, and of unstable equilibrium for other

displacements.

113.] To determine the number of the points and lines of equi

librium, let us consider the surface or surfaces for which the

potential is equal to (7, a given quantity. Let us call the regions

in which the potential is less than C the negative regions, and

those in which it is greater than C the positive regions. Let

VQ be the lowest, and V^ the highest potential existing in the

electric field. If we make C =^, the negative region will in

clude only the point or conductor of lowest potential, and this

is necessarily charged negatively. The positive region consists

of the rest of space, and since it surrounds the negative region

it is periphractic. See Art. 18.

If we now increase the value of C, the negative region will

expand, and new negative regions will be formed round negatively

charged bodies. For every negative region thus formed the sur

rounding positive region acquires one degree of periphraxy.

As the different negative regions expand, two or more of them

may meet in a point or a line. If n+l negative regions meet,

the positive region loses n degrees of periphraxy, and the point

or the line in which they meet is a point or line of equilibrium

of the wth degree.
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When C becomes equal to 7 the positive region is reduced to

the point or the conductor of highest potential, and has therefore

lost all its periphraxy. Hence, if each point or line of equilibrium
counts for one, two, or n, according to its degree, the number so

made up by the points or lines now considered will be less by one

than the number of negatively charged bodies.

There are other points or lines of equilibrium which occur

where the positive regions become separated from each other,

and the negative region acquires periphraxy. The number of

these, reckoned according to their degrees, is less by one than

the number of positively charged bodies.

If we call a point or line of equilibrium positive when it is the

meeting-place of two or more positive regions, and negative when
the regions which unite there are negative, then, if there are p
bodies positively and n bodies negatively charged, the sum of

the degrees of the positive points and lines of equilibrium will be

pl, and that of the negative ones nl. The surface which sur

rounds the electrical system at an infinite distance from it is to be

reckoned as a body whose charge is equal and opposite to the sum
of the charges of the system.

But, besides this definite number of points and lines of equi
librium arising from the junction of different regions, there may
be others, of which we can only affirm that their number must be

even. For if, as any one of the negative regions expands, it meets

itself, it becomes a cyclic region, and it may acquire, by repeatedly

meeting itself, any number of degrees of cyclosis, each of which

corresponds to the point or line of equilibrium at which the cyclosis
was established. As the negative region continues to expand till

it fills all space, it loses every degree of cyclosis it has acquired,
and becomes at last acyclic. Hence there is a set of points or

lines of equilibrium at which cyclosis is lost, and these are equal in

number of degrees to those at which it is acquired.
If the form of the charged bodies or conductors is arbitrary, we

can only assert that the number of these additional points or lines

is even, but if they are charged points or spherical conductors, the

number arising in this way cannot exceed (n l) (ft 2), where n
is the number of bodies.

114.] The potential close to any point P may be expanded in

the series y= ^ + J5r

1 + J2
2+&c.;

where fflf H2 , &c. are homogeneous functions of #, y, z, whose
dimensions are 1, 2, &c. respectively.
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Since the first derivatives of V vanish at a point of equilibrium,

H-L
= 0, if P be a point of equilibrium.

Let Hn be the first function which does not vanish, then close to

the point P we may neglect all functions of higher degrees as

compared with Hn .

Now Hn =
is the equation of a cone of the degree n, and this cone is the cone

of closest contact with the equipotential surface at P.

It appears, therefore, that the equipotential surface passing

through P has, at that point, a conical point touched by a cone

of the second or of a higher degree. The intersection of this cone

with a sphere whose centre is the vertex is called the Nodal line.

If the point P is not on a line of equilibrium the nodal line

does not intersect itself, but consists of n or some smaller number

of closed curves.

If the nodal line intersects itself, then the point P is on a line

of equilibrium, and the equipotential surface through P cuts itself

in that line.

If there are intersections of the nodal line not on opposite points

of the sphere, then P is at the intersection of three or more lines

of equilibrium. For the equipotential surface through P must cut

itself in each line of equilibrium.

115.] If two sheets of the same equipotential surface intersect,

they must intersect at right angles.

For let the tangent to the line of intersection be taken as the

axis of z, then d*7/dz*
= 0. Also let the axis of x be a tangent

to one of the sheets, then d*7/da? = 0. It follows from this, by

Laplace s equation, that cl^V/df = 0, or the axis ofy is a tangent

to the other sheet.

This investigation assumes that H2
is finite. IfH2 vanishes, let

the tangent to the line of intersection be taken as the axis of z, and

let SB = r cos 0, and y = r sin 0, then, since

Id7. I d*7 _~~ ~~

the solution of which equation in ascending powers of r is

At a point of equilibrium Al
is zero. If the first term that does

not vanish is that in rn
t
then

V 7 = An r
n cos (n 6 + an) -} terms in higher powers of r.



Il6.] THEIR PROPERTIES. 161

This equation shews that n sheets of the equipotential surface

^= VQ intersect at angles each equal to ir/n. This theorem was

given by Rankine*.

It is only under certain conditions that a line of equilibrium can

exist in free space, but there must be a line of equilibrium on the

surface of a conductor whenever the surface density of the conductor

is positive in one portion and negative in another.

In order that a conductor may be charged oppositely on different

portions of its surface, there must be in the field some places where
the potential is higher than that of the body and others where it is

lower.

Let us begin with two conductors electrified positively to the

same potential. There will be a point of equilibrium between the

two bodies. Let the potential of the first body be gradually
diminished. The point of equilibrium will approach it, and, at a

certain stage of the process, will coincide with a point on its

surface. During the next stage of the process, the equipotential
surface round the second body which has the same potential as the

first body will cut the surface of the second body at right angles
in a closed curve, which is a line of equilibrium. This closed

curve, after sweeping over the entire surface of the conductor,
will again contract to a point ; and then the point of equilibrium
will move off on the other side of the first body, and will be at an

infinite distance when the charges of the two bodies are equal and

opposite.

Earnshaw s Theorem.

116.] A charged body placed in a field of electric force cannot

be in stable equilibrium.

First, let us suppose the electricity of the moveable body (A), and

also that of the system of surrounding bodies (.5), to be fixed in

those bodies.

Let V be the potential at any point of the moveable body due to

the action of the surrounding bodies (B), and let e be the electricity

on a small portion of the moveable body A surrounding this point.

Then the potential energy of A with respect to B will be

M = 2(7e),
where the summation is to be extended to every charged portion of A*

* Summary of the Properties of certain Stream Lines/ Phil. Mag., Oct. 1864.

See also, Thomson and Tait s Natural Philosophy, 780 ;
and Kankine and Stokes,

in the Proc. R. S., 1867, p. 468
;
also W. K. Smith, Proc. . S. Edin., 1869-70, p. 79.

VOL. I. M
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Let a, b}
c be the coordinates of any charged part of A with

respect to axes fixed in A, and parallel to those of #,y, #. Let the

absolute coordinates of the origin of these axes be f, rj, f

Let us suppose for the present that the body A is constrained to

move parallel to itself, then the absolute coordinates of the point

&, b, e will be

The potential of the body A with respect to B may now be

expressed as the sum of a number of terms, in each of which V

is expressed in terms of
, b, c and TJ,

and the sum of these

terms is a function of the quantities a, b, c, which are constant for

each point of the body, and of f, r\,
which vary when the body is

moved.

Since Laplace s equation is satisfied by each of these terms it is

satisfied by their sum, or

d*M d*M d*M

cie

&quot;

drf

&quot;

df
2

Now let a small displacement be given to A, so that

and let dM be the increment of the potential of A with respect to

the surrounding system B.

If this be positive, work will have to be done to increase r, and

there will be a force E = dM/dr tending to diminish/ and to restore

A to its former position, and for this displacement therefore the

equilibrium will be stable. If, on the other hand, this quantity is

negative, the force will tend to increase r, and the equilibrium will

be unstable.

Now consider a sphere whose centre is the origin and whose

radius is /, and so small that when the point fixed in the body

lies within this sphere no part of the moveable body A can coincide

with any part of the external system B. Then, since within the

sphere V
2JT = 0, the surface-integral

taken over the surface of the sphere, is zero.

Hence, if at any part of the surface of the sphere dM/dr is

positive, there must be some other part of the surface where it is

negative, and if the body A be displaced in a direction in which

dM/dr is negative, it will tend to move from its original position,

and its equilibrium is therefore necessarily unstable.

The body therefore is unstable even when constrained to move
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parallel to itself, and a fortiori it is unstable when altogether
free.

Now let us suppose that the body A is a conductor. We might
treat this as a case of equilibrium of a system of bodies, the move-

able electricity being considered as part of that system, and we

might argue that as the system is unstable when deprived of so

many degrees of freedom by the fixture of its electricity, it must

afortiori be unstable when this freedom is restored to it.

But we may consider this case in a more particular way, thus

First, let the electricity be fixed in A, and let A move through
the small distance dr. The increment of the potential of A due to

this cause has been already considered.

Next, let the electricity be allowed to move within A into its

position of equilibrium, which is always stable. During this motion

the potential will necessarily be diminished by a quantity which we

may call Cdr.

Hence the total increment of the potential when the electricity

is free to move will be

,dM ,

(-f- C
)
dr

and the force tending to bring A back towards its original position

will be

AMW ^

where C is always positive.

Now we have shewn that dM/dr is negative for certain directions

of r, hence when the electricity is free to move the instability in

these directions will be increased.



CHAPTER VII.

FORMS OF THE EQUIPOTENTIAL SURFACES AND LINES OF

INDUCTION IN SIMPLE CASES.

117.] WE have seen that the determination of the distribution

of electricity on the surface of conductors may be made to depend
on the solution of Laplace s equation

V being a function of os, y, and z, which is always finite and con

tinuous, which vanishes at an infinite distance, and which has

a given constant value at the surface of each conductor.

It is not in general possible by known mathematical methods

to solve this equation so as to fulfil arbitrarily given conditions,

but it is easy to write down any number of expressions for the

function V which shall satisfy the equation, and to determine in

each case the forms of the conducting surfaces, so that the function

V shall be the true solution.

It appears, therefore, that what we should naturally call the

inverse problem of determining the forms of the conductors when

the expression for the potential is given is more manageable than

the direct problem of determining the potential when the form of

the conductors is given.

In fact, every electrical problem of which we know the solution

has been constructed by this inverse process. It is therefore of

great importance to the electrician that he should know what

results have been obtained in this way, since the only method by
which he can expect to solve a new problem is by reducing it

to one of the cases in which a similar problem has been con

structed by the inverse process.

This historical knowledge of results can be turned to account in

two ways. If we are required to devise an instrument for making
electrical measurements with the greatest accuracy, we may select

those forms for the electrified surfaces which correspond to cases

of which we know the accurate solution. If, on the other hand,

we are required to estimate what will be the electrification of bodies
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whose forms are given, we may begin with some case in which one

of the equipotential surfaces takes a form somewhat resembling the

given form, and then by a tentative method we may modify the pro
blem till it more nearly corresponds to the given case. This method
is evidently very imperfect considered from a mathematical point
of view, but it is the only one we have, and if we are not allowed

to choose our conditions, we can make only an approximate cal

culation of the electrification. It appears, therefore, that what we
want is a knowledge of the forms of equipotential surfaces and
lines of induction in as many different cases as we can collect

together and remember. In certain classes of cases, such as those

relating to spheres, there are known mathematical methods by
which we may proceed. In other cases we cannot afford to despise
the humbler method of actually drawing tentative figures on paper,
and selecting that which appears least unlike the figure we require.

This latter method I think may be of some use, even in cases in

which the exact solution has been obtained, for I find that an eye-

knowledge of the forms of the equipotential surfaces often leads to

a right selection of a mathematical method of solution.

I have therefore drawn several diagrams of systems of equi

potential surfaces and lines of induction, so that the student may
make himself familiar with the forms of the lines. The methods by
which such diagrams may be drawn will be explained in Art. 123.

118.] In the first figure at the end of this volume we have the

sections of the equipotential surfaces surrounding two points

charged with quantities of electricity of the same kind and in the

ratio of 20 to 5.

Here each point is surrounded by a system of equipotential
surfaces which become more nearly spheres as they become smaller,

though none of them are accurately spheres. If two of these sur

faces, one surrounding each point, be taken to represent the surfaces

of two conducting bodies, nearly but not quite spherical, and if

these bodies be charged with the same kind of electricity, the

charges being as 4 to 1, then the diagram will represent the

equipotential surfaces, provided we expunge all those which are

drawn inside the two bodies. It appears from the diagram that

the action between the bodies will be the same as that between

two points having the same charges, these points being not exactly
in the middle of the axis of each body, but each somewhat more

remote than the middle point from the other body.

The same diagram enables us to see what will be the distribution
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of electricity on one of the oval figures, larger at one end than

the other, which surround both centres. Such a body, if charged
with 25 units of electricity and free from external influence, will

have the surface-density greatest at the small end, less at the large

end, and least in a circle somewhat nearer the smaller than the

larger end.

There is one equipotential surface, indicated by a dotted line,

which consists of two lobes meeting at the conical point P. That

point is a point of equilibrium, and the surface-density on a body
of the form of this surface would be zero at this point.

The lines of force in this case form two distinct systems, divided

from one another by a surface of the sixth degree, indicated by a

dotted line, passing through the point of equilibrium, and some

what resembling one sheet of the hyperboloid of two sheets.

This diagram may also be taken to represent the lines of force

and equipotential surfaces belonging to two spheres of gravitating

matter whose masses are as 4 to 1.

119.] In the second figure we have again two points whose

charges are as 20 to 5, but the one positive and the other negative.

In this case one of the equipotential surfaces, that, namely, corre

sponding to potential zero, is a sphere. It is marked in the diagram

by the dotted circle Q. The importance of this spherical surface

will be seen when we come to the theory of Electrical Images.
We may see from this diagram that if two round bodies are

charged with opposite kinds of electricity they will attract each

other as much as two points having the same charges but placed

somewhat nearer together than the middle points of the round bodies.

Here, again, one of the equipotential surfaces, indicated by a

dotted line, has two lobes, an inner one surrounding the point whose

charge is 5 and an outer one surrounding both bodies, the two

lobes meeting in a conical point P which is a point of equilibrium.

If the surface of a conductor is of the form of the outer lobe, a

roundish body having, like an apple, a conical dimple at one end of

its axis, then, if this conductor be electrified, we shall be able to

determine the surface-density at any point. That at the bottom of

the dimple will be zero.

Surrounding this surface we have others having a rounded 1

dimple which flattens and finally disappears in the equipotential

surface passing through the point marked M.

The lines of force in this diagram form two systems divided by a

surface which passes through the point of equilibrium.
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If we consider points on the axis on the further side of the point

B, we find that the resultant force diminishes to the double point P,

where it vanishes. It then changes sign, and reaches a maximum
at M, after which it continually diminishes.

This maximum, however, is only a maximum relatively to other

points on the axis, for if we consider a surface through M per

pendicular to the axis, M is a point of minimum force relatively to

neighbouring points on that surface.

120.] Figure III represents the equipotential surfaces and lines

of induction due to a point whose charge is 10 placed at A, and

surrounded by a field of force, which, before the introduction of the

charged point, was uniform in direction and magnitude at every

part.

The equipotential surfaces have each of them an asymptotic

plane. One of them, indicated by a dotted line, has a conical

point and a lobe surrounding the point A. Those below this surface

have one sheet with a depression near the axis. Those above have

a closed portion surrounding A and a separate sheet with a slight

depression near the axis.

If we take one of the surfaces below A as the surface of a con

ductor, and another a long way below A as the surface of another

conductor at a different potential, the system of lines and surfaces

between the two conductors will indicate the distribution of electric

force. If the lower conductor is very far from A its surface will

be very nearly plane, so that we have here the solution of the

distribution of electricity on two surfaces, both of them nearly

plane and parallel to each other, except that the upper one has

a protuberance near its middle point, which is more or less

prominent according to the particular equipotential surface we

choose.

121.] Figure IV represents the equipotential surfaces and lines

of induction due to three points A, B and C, the charge of A being

15 units of positive electricity, that of .3 12 units of negative

electricity, and that of C 20 units of positive electricity. These

points are placed in one straight line, so that

AB = 9, BC=16, AC =25.

In this case, the surface for which the potential is zero consists

of two spheres whose centres are A and C and their radii 15 and 20.

These spheres intersect in the circle which cuts the plane of the

paper at right angles in D and 2/
t
so that B is the centre of this

circle and its radius is 12. This circle is an example of a line



168 EQUIPOTENTIAL SURFACES [l22.

of equilibrium, for the resultant force vanishes at every point of

this line.

If we suppose the sphere whose centre is A to be a conductor

with a charge of 3 units of positive electricity, and placed under
the influence of 20 units of positive electricity at C, the state of

the case will be represented by the diagram if we leave out all the

lines within the sphere A. The part of this spherical surface within

the small circle Dl/ will be negatively charged by the influence

of C. All the rest of the sphere will be positively charged, and
the small circle Dlf itself will be a line of no charge.
We may also consider the diagram to represent the sphere whose

centre is (7, charged with 8 units of positive electricity, and in

fluenced by 1 5 units of positive electricity placed at A.

The diagram may also be taken to represent a conductor whose
surface consists of the larger segments of the two spheres meeting
in DD

, charged with 23 units of positive electricity.

We shall return to the consideration of this diagram as an
illustration of Thomson s Theory of Electrical Images. See Art. 168.

122.] These diagrams should be studied as illustrations of the

language of Faraday in speaking of lines of force, the forces of an

electrified body, &c.

The word Force denotes a restricted aspect of that action between

two material bodies by which their motions are rendered different

from what they would have been in the absence of that action.

The whole phenomenon, when both bodies are contemplated at

once, is called Stress, and may be described as a transference of

momentum from one body to the other. When we restrict our

attention to the first of the two bodies, we call the stress acting
on it the Moving Force, or simply the Force on that body, and

it is measured by the momentum which that body is receiving per
unit of time.

The mechanical action between two charged bodies is a stress^

and that on one of them is a force. The force on a small charged

body is proportional to its own charge, and the force per unit of

charge is called the Intensity of the force.

The word Induction was employed by Faraday to denote the

mode in which the charges of electrified bodies are related to

each other, every unit of positive charge being connected with

a unit of negative charge by a line, the direction of which,

in fluid dielectrics, coincides at every part of its course with

that of the electric intensity. Such a line is often called a
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line of Force, but it is more correct to call it a line of In

duction.

Now the quantity of electricity in a body is measured, according

to Faraday s ideas, by the number of lines of force, or rather of

induction, which proceed from it. These lines of force must all

terminate somewhere, either on bodies in the neighbourhood, or on

the walls and roof of the room, or on the earth, or on the heavenly

bodies, and wherever they terminate there is a quantity of elec

tricity exactly equal and opposite to that on the part of the body
from which they proceeded. By examining the diagrams this will

be seen to be the case. There is therefore no contradiction between

Faraday s views and the mathematical results of the old theory,

but, on the contrary, the idea of lines of force throws great light

on these results, and seems to afford the means of rising by a con

tinuous process from the somewhat rigid conceptions of the old

theory to notions which may be capable of greater expansion, so

as to provide room for the increase of our knowledge by further

researches.

123.] These diagrams are constructed in the following manner :

First, take the case of a single centre of force, a small electrified

body with a charge e. The potential at a distance r is V e/r ;

hence, if we make r = e/F, we shall find r, the radius of the sphere

for which the potential is V. If we now give to V the values

1, 2, 3, &c., and draw the corresponding spheres, we shall obtain

a series of equipotential surfaces, the potentials corresponding to

which are measured by the natural numbers. The sections of these

spheres by a plane passing through their common centre will be

circles, each of which we may mark with the number denoting its

potential. These are indicated by the dotted semi-circles on the

right hand of Fig. 6.

If there be another centre of force, we may in the same way draw

the equipotential surfaces belonging to it, and if we now wish to

find the form of the equipotential surfaces due to both centres

together, we must remember that if T[ be the potential due to one

centre, and 7J that due to the other, the potential due to both will be

7f+ J%= V. Hence, since at every intersection of the equipotential

surfaces belonging to the two series we know both 7^ and /, we

also know the value of V. If therefore we draw a surface which

passes through all those intersections for which the value of V is

the same, this surface will coincide with a true equipotential surface

at all these intersections; and if the original systems of surfaces
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are drawn sufficiently close, the new surface may be drawn with

any required degree of accuracy. The equipotential surfaces due to

two points whose charges are equal and opposite are represented by
the continuous lines on the right hand side of Fig. 6.

This method may be applied to the drawing of any system
of equipotential surfaces when the potential is the sum of two

potentials, for which we have already drawn the equipotential

surfaces.

The lines of force due to a single centre of force are straight

lines radiating from that centre. If we wish to indicate by these

lines the intensity as well as the direction of the force at any point,

we must draw them so that they mark out on the equipotential

surfaces portions over which the surface-integral of induction has

definite values. The best way of doing this is to suppose our

plane figure to be the section of a figure in space formed by the

revolution of the plane figure about an axis passing through the

centre of force. Any straight line radiating from the centre and

making an angle with the axis will then trace out a cone,

and the surface-integral of the induction through that part of any
surface which is cut off by this cone on the side next the positive

direction of the axis is 2 ire
(1 cos 6).

If we further suppose this surface to be bounded by its inter

section with two planes passing through the axis, and inclined at

the angle whose arc is equal to half the radius, then the induction

through the surface so bounded is

e
(
I cos 6) 2

&amp;lt;J&amp;gt;, say ;

and 9 = cos- 1
(l 2 V
V e

If we now give to 4&amp;gt; a series of values 1, 2, 3 ... e, we shall find

a corresponding series of values of 0, and if e be an integer, the

number of corresponding lines of force, including the axis, will be

equal to e.

We have thus a method of drawing lines of force so that the

charge of any centre is indicated by the number of lines which

diverge from it, and the induction through any surface cut off in the

way described is measured by the number of lines of force which

pass through it. The dotted straight lines on the left hand side

of Fig. 6 represent the lines of force due to each of two electrified

points whose charges are 10 and 10 respectively.

If there are two centres of force on the axis of the figure we

may draw the lines of force for each axis corresponding to values
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of
4&amp;gt;!

and &amp;lt;J&amp;gt;

2 ,
and then, by drawing lines through the consecutive

intersections of these lines for which the value of
&amp;lt;J&amp;gt;j

+ ^2 ^s ^e

same, we may find the lines of force due to both centres, and in

the same way we may combine any two systems of lines of force

which are symmetrically situated about the same axis. The con

tinuous curves on the left hand side of Fig. 6 represent the lines of

force due to the two charged points acting at once.

After the equipotential surfaces and lines of force have been

constructed by this method the accuracy of the drawing may be

tested by observing whether the two systems of lines are every

where orthogonal, and whether the distance between consecutive

equipotential surfaces is to the distance between consecutive lines

of force as half the mean distance from the axis is to the assumed

unit of length.

In the case of any such system of finite dimensions the line of force

whose index number is 4&amp;gt; has an asymptote which passes through

the electric centre (Art. 89 d) of the system, and is inclined to the

axis at an angle whose cosine is 1 2
&amp;lt;/&amp;lt;?,

where e is the total elec

trification of the system, provided &amp;lt;J&amp;gt; is less than e. Lines of force

whose index is greater than e are finite lines. If e is zero, they are

all finite.

The lines of force corresponding to a field of uniform force parallel

to the axis are lines parallel to the axis, the distances from the axis

being the square roots of an arithmetical series.

The theory of equipotential surfaces and lines of force in two

dimensions will be given when we come to the theory of conjugate

functions*.

* See a paper On the Flow of Electricity in Conducting Surfaces, by Prof. W. K.

Smith, Proc. B.S.Edin., 1869-70, p. 79.



CHAPTEE VIII.

SIMPLE CASES OF ELECTRIFICATION.

Two Parallel Planes.

124.] WE shall consider, in the first place, two parallel plane

conducting surfaces of infinite extent, at a distance e from each

other, maintained respectively at potentials A and B.

It is manifest that in this case the potential V will be a function

of the distance z from the plane A, and will be the same for all

points of any parallel plane between A and B, except near the

boundaries of the electrified surfaces, which by the supposition
are at an infinitely great distance from the point considered.

Hence, Laplace s equation becomes reduced to

the integral of which is

and since when z = 0, F= A, and when z = c, 7= B,
%

c

For all points between the planes, the resultant intensity is

normal to the planes, and its magnitude is

***%&amp;gt; &quot;B

In the substance of the conductors themselves, R 0. Hence
the distribution of electricity on the first plane has a surface-

density cr, where yrr
*

c

On the other surface, where the potential is B, the surface-

density or will be equal and opposite to o-, and
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Let us next consider a portion of the first surface whose area

is S, taken so that no part of S is near the boundary of the

surface.

The quantity of electricity on this surface is e
l
= So; and, by

Art. 79, the force acting on every unit of electricity is \R, so that

the whole force acting on the area S, and attracting it towards

the other plane, is

8 77 8 77 C2

Here the attraction is expressed in terms of the area S, the

difference of potentials of the two surfaces (A B), and the distance

between them c. The attraction, expressed in terms of the charge
e
l ,

on the area S, is _ 2 TT
2

~S~ 61

The electrical energy due to the distribution of electricity on the

area S, and that on the corresponding area S on the surface B
defined by projecting 8 on the surface B by a system of lines of

force, which in this case are normals to the planes, is

8 A-

STT

27T

The first of these expressions is the general expression of elec

trical energy (Art. 84).

The second gives the energy in terms of the area, the distance,
and the difference of potentials.

The third gives it in terms of the resultant force R, and the

volume So included between the areas S and $
,
and shews that the

energy in unit of volume is p where 8 TTJ?
= Rz

.

The attraction between the planes isjpS, or in other words, there

is an electrical tension (or negative pressure) equal to p on every
unit of area.

The fourth expression gives the energy in terms of the charge.
The fifth shews that the electrical energy is equal to the work

which would be done by the electric force if the two surfaces were

to be brought together, moving parallel to themselves, with their

electric charges constant.
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To express the charge in terms of the difference of potentials,

we have 1 S , . .

The coefficient q represents the charge due to a difference of

potentials equal to unity. This coefficient is called the Capacity

of the surface S, due to its position relatively to the opposite

surface.

Let us now suppose that the medium between the two surfaces

is no longer air hut some other dielectric substance whose specific

inductive capacity is K, then the charge due to a given difference

of potentials will be K times as great as when the dielectric is air,

e

The total energy will be

.~
KS 1

The force between the surfaces will be

2 ir

Hence the force between two surfaces kept at given potentials

varies directly as K, the specific capacity of the dielectric, but the

force between two surfaces charged with given quantities of elec

tricity varies inversely as K.

Two Concentric Spherical Surfaces.

125.] Let two concentric spherical surfaces of radii a and b, of

which b is the greater, be maintained at potentials A and B

respectively, then it is manifest that the potential V is a function

of r the distance from the centre. In this case, Laplace s equation

becomes

dr2 r dr
~~

The solution of this is

F= &amp;lt;?1+ 2r-i;

and the condition that 7=A when r = a, and V=B when r = b,

gives for the space between the spherical surfaces,
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AaBb A-B _,

If o-
15 o-

2
are the surface-densities on the opposed surfaces of a

solid sphere of radius a, and a spherical hollow of radius b, then

1 A-B 1 B-A

If ^ and 6?
2 are the whole charges of

electricity on these surfaces,

A-B

The capacity of the enclosed sphere is therefore
b-a

If the outer surface of the shell be also spherical and of radius c,

then, if there are no other conductors in the neighbourhood, the

charge on the outer surface is

e
3
= Be.

Hence the whole charge on the inner sphere is

e1=jL (A
-

S)}

and that of the outer shell

If we put b = oo, we have the case of a sphere in an infinite

space. The electric capacity of such a sphere is a, or it is numeri

cally equal to its radius.

The electric tension on the inner sphere per unit of area is

i PV-S?f=
-s^?-^syr-

The resultant of this tension over a hemisphere is va 2
_p = F

normal to the base of the hemisphere, and if this is balanced by a

surface tension exerted across the circular boundary of the hemi

sphere, the tension on unit of length being T, we have

F= 2vaT.

6* (A-B)* e*
Hence F ^-r--L--L-,

8 b-a 2 8a2

(A-B)
IGva (b-a)
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If a spherical soap bubble is electrified to a potential A, then, if

its radius is a, the charge will be Aa, and the surface-density

will be
\ A

&amp;lt;j
=

47T a

The resultant intensity just outside the surface will be 4770-,

and inside the bubble it is zero, so that by Art. 79 the electrical

force on unit of area of the surface will be 27rcr2
, acting outwards.

Hence the electrification will dimmish the pressure of the air

within the bubble by 2 TT o-
2

,
or

1 A2

877 o2
&quot;

But it may be shewn that if T is the tension which the liquid

film exerts across a line of unit length, then the pressure from

within required to keep the bubble from collapsing is 2 TJa. If the

electrical force is just sufficient to keep the bubble in equilibrium

when the air within and without is at the same pressure,

Two Infinite Coaxal Cylindric Surfaces.

126.] Let the radius of the outer surface of a conducting cylinder

be a, and let the radius of the inner surface of a hollow cylinder,

having the same axis with the first, be b. Let their potentials

be A and B respectively. Then, since the potential Fis in this

case a function of r, the distance from the axis, Laplace s equation

becomes j^y \dV
I o,

whence V= Ci -f (72 log r.

Since V= A when r = a, and F&quot;= B when r = #,

L

If o-
1}

o-
2

are the surface-densities on the inner and outer

surfaces,
A-B

4^ B-A

a log- Hog-
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If e
1
and e

z
are the charges on the portions of the two cylinders

between two sections transverse to the axis at a distance I from

each other, A-B _

e1== 2-7r#/o-1
=

J- j-l = e^
i

^
los

The capacity of a length I of the interior cylinder is therefore

If the space between the cylinders is occupied by a dielectric of

specific capacity K instead of air, then the capacity of the inner

cylinder is IK
* &quot;

7

log-

The energy of the electrical distribution on the part of the infinite

cylinder which we have considered is

Ef.

1

Fig. 5.

127.] Let there be two hollow cylindric conductors A and
B&amp;gt;

Fig. 5, of indefinite length, having the axis of x for their common

axis, one on the positive and the other on the negative side of the

origin, and separated by a short interval near the origin of co

ordinates.

Let a hollow cylinder C of length 2 1 be placed with its middle

point at a distance x on the positive side of the -origin, so as to

extend into both the hollow cylinders.

Let the potential of the positive hollow cylinder be A, that of

the negative one
,
and that of the internal one C, and let us put

a for the capacity per unit of length of C with respect to A, and

/3 for the same quantity with respect to B.

The surface densities of the parts of the cylinders at fixed

points near the origin and at points at given small distances

from the ends of the inner cylinder will not be affected by the

VOL. i. N
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value of x provided a considerable length of the inner cylinder

enters each of the hollow cylinders. Near the ends of the hollow

cylinders, and near the ends of the inner cylinder, there will be

distributions of electricity which we are not yet able to calculate,

but the distribution near the origin will not be altered by the

motion of the inner cylinder provided neither of its ends comes

near the origin, and the distributions at the ends of the inner

cylinder will move with it, so that the only effect of the motion

will be to increase or diminish the length of those parts of the

inner cylinder where the distribution is similar to that on an

infinite cylinder.

Hence the whole energy of the system will be, so far as it depends

on x,

Q = \a(l+x) (C-Af + \p(l-x) (C-.5)
3 + quantities

independent of oo
;

and the resultant force parallel to the axis of the cylinders will be

If the cylinders A and B are of equal section, a = /3, and

It appears, therefore, that there is a constant force acting 011

the inner cylinder tending to draw it into that one of the outer

cylinders from which its potential differs most.

If C be numerically large and A +B comparatively small, then

the force is approximately X= a (B A) C;

so that the difference of the potentials of the two cylinders can be

measured if we can measure X, and the delicacy of the measurement

will be increased by raising C, the potential of the inner cylinder.

This principle in a modified form is adopted in Thomson s

Quadrant Electrometer, Art. 219.

The same arrangement of three cylinders may be used as a

measure of capacity by connecting B and C. If the potential of

A is zero, and that of B and C is 7, then the quantity of electricity

on A will be E
3
=

(^13 + a (I +00)} V;

so that by moving C to the right till a becomes x + the capacity of

the cylinder C becomes increased by the definite quantity of, where

1

a and b being the radii of the opposed cylindric surfaces.



CHAPTEK IX.

SPHEEICAL HAKMONICS.

128.] The mathematical theory of spherical harmonics has been

made the subject of several special treatises. The Handbuch der

Kugelfunctionen of Dr. E. Heine, which is the most elaborate work
on the subject, has now (1878) reached a second edition in two

volumes, and Dr. F. Neumann has published his Beitrcige zur

Theorie der Kugelfunctionen (Leipzig, Teubner, 1878). The treat

ment of the subject in Thomson and Tait s Natural Philosophy is

considerably improved in the second edition (1879), and Mr. Tod-

hunter s Elementary Treatise on Laplace s Functions, Lame s Func

tions, and Vessel s Functions, together with Mr. Ferrers Elementary
Treatise on Spherical Harmonics and subjects connected with them,

have rendered it unnecessary to devote much space in a book on

electricity to the purely mathematical development of the subject.
I have retained however the specification of a spherical harmonic

in terms of its poles.

On Singular Points at which the Potential becomes Infinite.

129 a] If a charge, AQ) of electricity is uniformly spread over

the surface of a sphere the coordinates of whose centre are (a, d, c)

the potential at any point (#, y, z) outside the sphere is, by Art. 1 25,

r=4-
(i)

where r2 = (x-a)
2 + (y-b)

2 + (z-c)
2

. (2)

As the expression for V is independent of the radius of the

sphere, the form of the expression will be the same if we suppose
the radius infinitely small. The physical interpretation of the

expression would be that the charge A is placed on the surface

of an infinitely small sphere, which is sensibly the same as a

N 2,
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mathematical point. We have already (Arts. 55, 81) shewn that

there is a limit to the surface-density of electricity, so that it is

physically impossible to place a finite charge of electricity on a

sphere of less than a certain radius.

Nevertheless as the equation (l) represents a possible distri

bution of potential in the space surrounding- a sphere, we may
for mathematical purposes treat it as if it arose from a charge A

condensed at the mathematical point (a, b,
&amp;lt;?)

and we may call

the point an infinite point of order zero.

There are other kinds of singular points, the properties of which

we shall now investigate, but before doing so we must define

certain expressions which we shall find useful in dealing with

directions in space, and with the points on a sphere which cor

respond to them.

1295.] An axis is any definite direction in space. We may

suppose it defined by a mark made on the surface of a sphere at the

point where the radius drawn from the centre in the direction

of the axis meets the surface. This point is called the Pole of

the axis. An axis has therefore one pole only, not two.

If ju is the cosine of the angle between the axis h and any vector

r, and if ^ =^ (3)

p is the resolved part of r in the direction of the axis Ji.

Different axes are distinguished by different suffixes, and the

cosine of the angle between two axes is denoted by Amn ,
where m

and n are the suffixes specifying the axes.

Differentiation with respect to an axis, Ji,
whose direction cosines

are L, M, N, is denoted by

4 = J* +Jf+tf. (4)
dh dx dy dz

.

From these definitions it is evident that

(6)

Amn

If we now suppose that the potential at the point (#, y, z]
due to

a singular point of any order placed at the origin is
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then if such a point be placed at the extremity of the axis /,

the potential at (#, y, z] will be

4f[(*-Ll), (9- MX), (t-NXft,

and if a point in all respects the same, except that the sign of A is

reversed, be placed at the origin, the potential due to the pair

of points will be

= Ah ~f(x, y} z) + terms containing h*.
Cvnt

If we now diminish Ji and increase A without limit, their pro

duct continuing finite and equal to A
,
the ultimate value of the

potential of the pair of points will be

V =-A
^f(x,y,z). (8)

If/(#, y, z) satisfies Laplace s equation, then, since this equation

is linear, 7 ,
which is the difference of two functions, each of which

separately satisfies the equation, must itself satisfy it.

129 6
1

.]
Now the potential due to an infinite point of order zero

V, = A\, (9)

satisfies Laplace s equation, therefore every function formed from

this by differentiation with respect to any number of axes in suc

cession must also satisfy that equation.

A point of the first order may be formed by taking two points

of order zero, having equal and opposite charges AQ and AQ} and

placing the first at the origin and the second at the extremity

of the axis h^ . The value of 7^ is then diminished and that of A
Q

increased indefinitely, but so that the product A h^ is always equal

to A
L

. The ultimate result of this process, when the two points

coincide, is a point of the first order whose moment is A
l
and

whose axis is \. A point of the first order is therefore a double

point. Its potential is

-4$- Co)

By placing a point of the first order at the origin, whose moment

is Aly and another at the extremity of the axis h
z
whose moment

is Alt and then diminishing ^
2
and increasing Alt so that

A
l
k
2
= \Ay,, (ll)
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we obtain a point of the second order, whose potential is

V - i
li

d
VV*~ - 2/^

A 3
We may call a point of the second order a quadruple point

because it is constructed by making four points of order zero ap

proach each other. It has two axes h^ and ?i2 and a moment A
2 .

The directions of these axes and the magnitude of the moment

completely define the nature of the point.

By differentiating with respect to n axes in succession we obtain

the potential due to a point of the nih order. It will be the

product of three factors, a constant, a certain combination of

cosines, and /-(n+1 ). It is convenient, for reasons which will appear
as we go on, to make the numerical value of the constant such

that when all the axes coincide with the vector, the coefficient of

the moment is f-(
n+^. We therefore divide by n when we differ

entiate with respect to hn .

In this way we obtain a definite numerical value for a particular

potential, to which we restrict the name of The Solid Harmonic of

degree (n + 1), namely

F-f-y*--
1_ - (is)} 1.2.3...?* dhi dk 2

&quot;

dhn r

If this quantity is multiplied by a constant it is still the poten

tial due to a certain point of the nih order.

129
d.~\

The result of the operation (13) is of the form

F= rn r-(&quot;
+1

&amp;gt;, (14)

where Tn is a function of the n cosines ^ . . . jun of the angles

between r and the n axes, and of the \n(n 1) cosines A
12 ,

&c. of

the angles between pairs of the axes.

If we consider the directions of r and the n axes as determined

by points on a spherical surface, we may regard Tn as a quantity

varying from point to point on that surface, being a function of the

\n(n+\) distances between the n poles of the axes and the pole

of the vector. We therefore call Yn the Surface Harmonic of

order n.

130&.] We have next to shew that to every surface-harmonic

of order n there corresponds not only a solid harmonic of degree

(n+1) but another of degree n, or that

Hn = Yu r
n = rn r** +l (15)

satisfies Laplace s equation.
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For
/ !.* w

-w, I
* 7 *

ax dx

dx

Hence

Now, since ^ is a homogeneous function of a?, ^, and 2, of

negative degree # + 1
,

The first two terms therefore of the right-hand member of

equation (16) destroy each other, and, since Vn satisfies Laplace s

equation, the third term is zero, so that Hn also satisfies Laplace s&quot;

equation, and is therefore a solid harmonic of degree n.

This is a particular case of the more general theorem of electrical

inversion, which asserts that if F
(a?, y, z) is a function of #, ^,

and z which satisfies Laplace s equation, then there exists another

function, a a* x a 2
y a2~

- Jf
(

H-&amp;gt; s-&amp;gt;
2~)&amp;gt;

/ \ p ) f*

which also satisfies Laplace s equation. See Art. 162.

130#.] The surface harmonic Tn contains 2n arbitrary variables,

for it is defined by the positions of its n poles on the sphere, and

each of these is defined by two coordinates.

Hence the solid harmonics Vn and Hn also contain In arbitrary

variables. Each of these quantities, however, when multiplied by
a constant, will still satisfy Laplace s equation.

To prove that AHn is the most general rational homogeneous
function of degree n which can satisfy Laplace s equation, we

observe that K, the general rational homogeneous function of

degree n, contains $(n+l)(n+2) terms. But V ZK is a homo

geneous function of degree n 2, and therefore contains \n(n 1)

terms, and the condition V ZK= requires that each of these must

vanish. There are therefore \n(n 1) equations between the
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coefficients of the J (ti+ 1) (n+2) terms of the function K, leaving

2 ft + 1 independent constants in the most general form of the homo

geneous function of degree n which satisfies Laplace s equation.

But Nn ,
when multiplied by an arbitrary constant, satisfies the

required conditions, and has 2n+l arbitrary constants. It is

therefore of the most general form.

131 aJ\
We are now able to form a distribution of potential such

that neither the potential itself nor its first derivatives become

infinite at any point.

The function 7n = Yn r~(
n+l

&quot;&amp;gt; satisfies the condition of vanishing

at infinity, but becomes infinite at the origin.

The function ffn =Yn r
n

is finite and continuous at finite dis

tances from the origin, but does not vanish at an infinite distance.

But if we make a&quot;Ynr-(
n+ V the potential at all points outside

a sphere whose centre is the origin, and whose radius is a, and

a-(n+i)Yn r
n the potential at all points within the sphere, and if

on the sphere itself we suppose electricity spread with a surface

density o- such that

n , (18)

then all the conditions will be satisfied for the potential due to a

shell charged in this manner.

For the potential is everywhere finite and continuous, and

vanishes at an infinite distance ;
its first derivatives are everywhere

finite and are continuous except at the charged surface, where they

satisfy the equation

and Laplace s equation is satisfied at all points both inside and

outside of the sphere.

This, therefore, is a distribution of potential which satisfies the

conditions, and by Art. 100 a it is the only distribution which can

satisfy them.

131 #.]
The potential due to a sphere of radius a whose surface

density is given by the equation

47Ttf
2

&amp;lt;r = (2ft+l)rn , (20)

is, at all points external to the sphere, identical with that due to

the corresponding singular point of order n.

Let us now suppose that there is an electrical system which

we may call E, external to the sphere, and that * is the potential

due to this system, and let us find the value of 2(*e?) for the
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singular point. This is the part of the electric energy depending
on the action of the external system on the singular point.

If A
Q

is the charge of a single point of order zero, then the

potential energy in question is

^ =
4&amp;gt;*. (21)

If there are two such points, a negative one at the origin and a

positive one of equal numerical value at the extremity of the axis

kl} then the potential energy will be

/7vl; /72 q/-A*+^ (*^ 1
_ + 4V + &c

.),

and when AQ increases and h^ diminishes indefinitely, but so that

AQ&! = A.lf the value of the potential energy for a point of the first

order will be

* =
4jf (

22
)

Similarly for a point of order n the potential energy will be

* = i^^aB*;* (23)

131
&amp;lt;?.]

If we suppose the external system to be made up of

parts, any one of which is denoted by dEt
and the singular point

to be made up of parts any one of which is de, then

* = 2(1^). (24)

But if Va is the potential due to the singular point,

j; =
S(i&amp;lt;fc), (25)

and the potential energy due to the action of E on e is

JT=2(l&amp;gt;de)
= 22 (-dEde)

= ^Vn dE, (26)

the last expression being the potential energy due to the action of

e on E.

Similarly, if crds is an element of electricity on the shell, since

the potential due to the shell at the external system E is Fn ,

we have

2(*&amp;lt;r&amp;lt;fo). (27)

The last term contains a summation to be extended over the

* We shall find it convenient, in what follows, to denote the product of the positive
integral numbers 1.2.3...nbyw!

vr *
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surface of the sphere. Equating it to the first expression for F,

we have

-A (28)~
n\

n
dl^...dliu

If we remember that 4 TTO- a2 =
(2 n+ 1) 7n ,

and that An = an
,
this

becomes

T 7
^ 7r

&quot;+2

^
(29)

JL
.j
ff5 ^^ , ~~r tt IT j L \ /

This equation reduces the operation of taking the surface integral

o?VYn ds over every element of the surface of a sphere of radius a,

to that of differentiating * with respect to the n axes of the

harmonic and taking the value of the differential coefficient at

the centre of the sphere, provided that * satisfies Laplace s equa

tion at all points within the sphere, and Yn is a surface harmonic of

order n.

132.] Let us now suppose that * is a solid harmonic of positive

degree m of the form
* = a-m Ym r

m
. (30)

At the spherical surface, r = a, and * = Jm ,
so that equation

(29) becomes in this case

ffrr* 4w *-+&*, (si)
JJ

T T d*

-n\(2n+l)
a

dk,..Mn

where the value of the differential coefficient is to be taken at the

centre of the sphere.

When n is less than m, the result of the differentiation is a

homogeneous function of a?, y and z of degree m-n, the value of

which at the centre of the sphere is zero. If n is equal to m the

result of the differentiation is a constant, the value of which we

shall determine in Art. 134 b. If the differentiation is carried

further, the result is zero. Hence the surface-integral JJ
Ym Yn ds

vanishes whenever m and n are different.

The steps by which we have arrived at this result are all of

them purely mathematical, for though we have made use of terms

having a physical meaning, such as electrical energy, each of these

terms is regarded not as a physical phenomenon to be investigated,

but as a definite mathematical expression.
A mathematician has

as much right to make use of these as of any other mathematical

functions which he may find useful, and a physicist,
when he has
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to follow a mathematical calculation, will understand it all the

better if each of the steps of the calculation admits of a physical

interpretation.

133.] We shall now determine the form of the surface harmonic
Tn as a function of the position of a point P on the sphere with

respect to the n poles of the harmonic.

We have

3 l

and so on.

Every term of Tn therefore consists of products of cosines, those

of the form /u, with a single suffix, being&quot;
cosines of the angles

between P and the different poles, and those of the form A, with

double suffixes, being cosines of the angles between the poles.

Since each axis is introduced by one of the n differentiations, the

symbol of that axis must occur once and only once among the

suffixes of the cosines of each term.

Hence if in any term there are s cosines with double suffixes,

there must be n 2s cosines with single suffixes.

Let the sum of all products of cosines in which s of them have

double suffixes be written in the abbreviated form

2(M
M- 28 AS

).

In every one of the products all the suffixes occur once, and none
is repeated.

If we wish to express that a particular suffix, m, occurs among
the // s only or among the A s only, we write it as a suffix to the /*

or the A. Thus the equation

2 (^* A
)
= 2 (^-a- As

) + 2 (p-* \w
&amp;gt;) (33)

expresses that the whole set of products may be divided into two

parts, in one of which the suffix m occurs among the direction

cosines of the variable point P, and in the other among the cosines

of the angles between the poles.

Let us now assume that for a particular value of n

Yn = A n 1

2 (p*) -Mn
, i
s

O&quot;-

2 A 1
) + &c.

+ A. 8 2&amp;lt;y

i-2s As

) + &c., (34)

when the A 9

s are numerical coefficients. We may write the series

in the abbreviated form

Yn = S[A nt .2(n-* \
)], (35)

when S indicates a summation in which all values of s, including

zero, not greater than J, are to be taken.



188 SPHERICAL HARMONICS. [l OO-

To obtain the corresponding solid harmonic of negative degree

(n+ 1) and order n, we multiply by ?-(
n +i)

?
and obtain

^ = 5[^...
a- il &quot;- 1 2

(!&amp;gt;&quot;- V)]; (36)

putting rp p, as in equation (3).

If we differentiate Vn with respect to a new axis hm we obtain

and therefore

If we wish to obtain the terms containing s cosines with double

suffixes, we must diminish s by unity in the last term, and we find

-A. s-i2(^-
2s+1 Aw*)}]. (38)

Now the two classes of products are not distinguished from each

other in any way except that the suffix m occurs among the p s

in one and among the A s in the other. Hence their coefficients

must be the same, and since we ought to be able to obtain the

same result by putting n 4- 1 for n in the expression for Vn and

multiplying by n+l } we obtain the following equations,

(n+1) An+lt8
= (2-2-f 1)4,,. = -4...-1 (39)

If we put s = 0, we obtain

(n+l)An+L = (2n+l)An
-

t (40)

and therefore, since A
l
= 1,

A ^
(41)^ -^pTp

and from this we obtain the general value of the coefficient

and finally the trigonometrical expression for the surface harmonic,

as

Yn = S[(-)
s

n ji
n
7,

2

^\. S
(jut

n- 2s As

)1. (43)

This expression gives the value of the surface harmonic at any

point P of the spherical surface in terms of the cosines of the

distances of P from the different poles and of the distances of the

poles from each other.

It is easy to see that if any one of the poles be removed to

the opposite point of the spherical surface, the value of the

harmonic will have its sign reversed. For any cosine involving
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the index of this pole will have its sign reversed, and in each

term of the harmonic the index of the pole occurs once and only
once.

Hence if two or any even number of poles are removed to the

points respectively opposite to them, the value of the harmonic

will be unaltered.

Professor Sylvester, however,, has shewn (Phil. Mag., Oct. 1876)
that when the harmonic is given, the problem of finding the n

lines which coincide with the axes has one and only one solution,

though, as we have just seen, the directions to be reckoned positive

along these axes may be reversed in pairs.

134.] We are now able to determine the value of the surface

integral /
/
Ym Yn ds when the order of the two surface harmonics

is the same, though the directions of their axes may be in general
different.

For this purpose we have to form the solid harmonic Tm rn and

to differentiate it with respect to each of the n axes of Tn .

Any term of Tmrf of the form r
m
^
m~ 28

X.
8

may be written

r28_pm
m~28 \mm

8
. Differentiating this n times in succession with

respect to the n axes of J&quot;n ,
we find that in differentiating r2 *

with respect to s of these axes we introduce s of the j?n s, and

the numerical factor

2*(2* 2)...2, or 2s\

In continuing the differentiation with respect to the next s axes,

the
jt?n s become converted into Xwn s, but no numerical factor is

introduced, and in differentiating with respect to the remaining
n 2s axes, the pm s become converted into Amn s, so that the

result is 2 s
* ! \nn

* \mm
s Xmn

m-28
.

We have therefore, by equation (31),

.
-!(2 +l)

and by equation (43),

Hence performing the differentiations and remembering that

= n, we find
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135 #.]
The expression (46) for the surface-integral of the

product of two surface-harmonics assumes a remarkable form if

we suppose all the axes of one of the harmonics, Ym ,
to coincide

with each other, so that Ym becomes what we shall afterwards

define as the zonal harmonic of order m, denoted by the symbol Pm .

In this case all the cosines of the form \nm may be written
fj,n ,

where pn denotes the cosine of the angle between the common

axis of Pm and one of the axes of Yn . The cosines of the form

\mm will all become equal to unity, so that for 2AS

TOTO we must

put the number of combinations of s symbols, each of which is

distinguished by two suffixes out of n, no suffix being repeated.

Hence

The number of permutations of the remaining n2s indices of

the axes of Pm is (n 2
s)

I Hence

SW&quot;) = (-2.)!M&quot;- . (48)

Equation (46) therefore becomes, when all the axes of Ym coincide

with each other,

4Wa
y(), by equation (43), (50)

;^&amp;gt;vr
2K+1

where 7n(m)
denotes the value of Yn at the pole of Pm .

We may obtain the same result by the following shorter pro

cess :

Let a system of rectangular coordinates be taken so that the

axis of z coincides with the axis of Pm ,
and let Yn rn be expanded

as a homogeneous function of #, y, z of degree n.

At the pole of Pmi x =y = and z = r, so that if Czn
is the

term not involving x or y, C is the value of Yn at the pole of Pm .

Equation (31) becomes in this case

n
If m is equal to n, the result of differentiating Czn is n \ C, and

is zero for the othr terms. Hence

P ds - Cfm &amp;lt;t*
~^

C being the value of Yn at the pole of Pm .

135
.]

This result is- a very important one in the theory of
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spherical harmonics, as it shews how to determine a series of

spherical harmonics which expresses the value of a quantity having
any arbitrarily assigned finite and continuous value at each point
of a spherical surface.

For let F be the value of the quantity and ds the element of

surface at a point Q of the spherical surface, then if we multiply
Fds by Pn ,

the zonal harmonic whose pole is the point P of the

same surface, and integrate over the surface, the result, since

it depends on the position of the point P, may be considered as

a function of the position of P.

But since the value at P of the zonal harmonic whose pole is Q
is equal to the value at Q of the zonal harmonic of the same order

whose pole is P, we may suppose that for every element ds of the

surface a zonal harmonic is constructed having its pole at Q and

having a coefficient Fds.

We shall thus have a system of zonal harmonics superposed on
each other with their poles at every point of the sphere where F
has a value. Since each of these is a multiple of a surface harmonic
of order ny their sum is a multiple of a surface harmonic (not

necessarily zonal) of order n.

The surface integral / / FPnds considered as a function of the

point P is therefore a multiple of a surface harmonic Yn ; so that

is also that particular surface harmonic of the nih order which

belongs to the series of harmonics which expresses F, provided F
can be so expressed.

For if F can be expressed in the form

then if we multiply by Pn ds and take the surface integral over the
whole sphere, all terms involving products of harmonics of different

orders will vanish, leaving

Hence the only possible expansion of F in spherical harmonics is

f= si / U&amp;lt;JJ,.as4-&c. + (2n4-l) I I 4 P..d*4.Rr.(*. I.
(51)
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Conjugate Harmonics.

136.] We have seen that the surface integral of the product of

two harmonics of different orders is always zero. But even when

the two harmonics are of the same order, the surface integral of

their product may be zero. The two harmonics are then said to

be conjugate to each other. The condition of two harmonics of the

same order being conjugate to each other is expressed in terms of

equation (46) by making its members equal to zero.

If one of the harmonics is zonal, the condition of conjugacy is

that the value of the other harmonic at the pole of the zonal

harmonic must be zero.

If we begin with a given harmonic of the ni}l
order, then, in

order that a second harmonic may be conjugate to it, its 2n

variables must satisfy one condition.

If a third harmonic is to be conjugate to both, its 2 n variables

must satisfy two conditions. If we go on constructing harmonics,

each of which is conjugate to all those before it, the number of

conditions for each will be equal to the number of harmonics

already in existence, so that the (2rc+l)
th harmonic will have 2n

conditions to satisfy by means of its 2 n variables, and will therefore

be completely determined.

Any multiple ATn of a surface harmonic of the nih order can

be expressed as the sum of multiples of any set of 2 n + 1 conjugate

harmonics of the same order, for the coefficients of the 2n+l

conjugate harmonics are a set of disposable quantities equal in

number to the 2 n variables of Tn and the coefficient A.

In order to find the coefficient of any one of the conjugate

harmonics, say Yn , suppose that

Multiply by Yn*ds and find the surface integral over the sphere.

All the terms involving products of harmonics conjugate to each

other will vanish, leaving
2

, (52)

an equation which determines A ff
.

Hence if we suppose a set of 2n+l conjugate harmonics given,

any other harmonic of the nih order can be expressed in terms of

them, and this only in one way. Hence no other harmonic can be

conjugate to all of them.

137.] We have seen that if a complete system of 2^+1 har-
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monies of the nih order, all conjugate to each other, be given,

any other harmonic of that order can be expressed in terms of

these. In such a system of 2 n -f 1 harmonics there are 2n(2n+l)
variables connected by n(2n+l) equations, n(2n+l) of the

variables may therefore be regarded as arbitrary.
We might, as Thomson and Tait have suggested, select as a

system of conjugate harmonics one in which each harmonic has

its n poles distributed so that j of them coincide at the pole of the

axis of x, k at the pole of y, and l(= njJc) at the pole of z.

The n -f 1 distributions for which I = and the n distributions

for which 1=1 being given, all the others may be expressed in

terms of these.

The system which has been actually adopted by all mathe
maticians (including Thomson and Tait) is that in which n o- of

the poles are made to coincide at a point which we may call the

Positive Pole of the sphere, and the remaining &amp;lt;r poles are placed at

equal distances round the equator when their number is odd, or

at equal distances round one half of the equator when their number
is even.

In this case j/ls //2 ,
. . . /*_, are each of them equal to cos 0, which

we shall denote by /u. If we also write v for sin 0, nn-v+l ...i*.n are

of the form v cos (00), where is the azimuth of one of the poles
on the equator.

Also the value of X
pq is unity, if_p and q are both less than n o-,

zero when one is greater and the other less than this number, and
cos 7-77/0- when both are greater, r being an integral number less

than a:

138.] When all the poles coincide at the pole of the sphere,
o- = 0, and the harmonic is called a Zonal harmonic. As the
zonal harmonic is of great importance we shall reserve for it the

symbol Pn .

We may obtain its value either from the trigonometrical ex

pression (43) or more directly by differentiation, thus

-&amp;lt;-&amp;gt;(!)&amp;gt; ()
1 Q /O/M 1\ r

= [

/ 4 \

n_ *\nL)
2.(2rc-ir1.2.3...* 2.(2n-l)

n(n-l)(n-2) (-3) W*

= S|f-V... .

v
u&quot;-

2 *

VOL. I.
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where we must give to p every integral value from zero to the

greatest integer which does not exceed \n.

It is sometimes convenient to express Pn as a homogeneous
function of cos and sin 0, or, as we write them, /u,

and v,

P = ._
--

It is shewn in the mathematical treatises on this subject that

Pn (ju)
is the coefficient of hn in the expansion of (l 2^h + h2

)&quot;^.

The surface integral of the square of the zonal harmonic, or

(p. oo) ^ = ^ -

(55)

Hence (P. (M))
2 *M = (56)

139.] If we consider a zonal harmonic simply as a function of /u,

and without any explicit reference to a spherical surface, it may be

called a Legendre s Coefficient.

If we consider the zonal harmonic as existing on a spherical

surface the points of which are defined by the coordinates 6 and
&amp;lt;/&amp;gt;,

and if we suppose the pole of the zonal harmonic to be at the point

(0 , $ ),
then the value of the zonal harmonic at the point (0, &amp;lt;)

is a function of the four angles , $ , 0, $, and because it is a

function of ju,
the cosine of the arc joining the points (0, $) and

(O
f

, &amp;lt;p ),
it will be unchanged in value if 6 and

,
and also $ and $ ,

are made to change places. The zonal harmonic so expressed has

been called Laplace s Coefficient. Thomson and Tait call it the

Biaxal Harmonic.

Any homogeneous function of a?, y, z- which satisfies Laplace s equa

tion may be called a Solid harmonic, and the value of a solid

harmonic at the surface of a sphere whose centre is the origin may
be called a Surface harmonic, In this book we have defined a

surface harmonic by means of its n poles, so that it has only 2n

variables. The more general surface harmonic, which has 2#-M

variables, is the more restricted surface harmonic multiplied by an

arbitrary constant. The more general surface harmonic, when

expressed in terms of and $, is called a Laplace s Function.

140 #.] To obtain the other harmonics of the symmetrical system,

we have to differentiate with respect to &amp;lt;r axes in the plane of xy

inclined to each other at angles equal to
ir/cr.

This may be most
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conveniently done by means of the system of imaginary coordinates

given in Thomson and Tait s Natural Philosophy, vol. I, p. 148 (or

p. 185 of 2nd edition).

If we write

( = x + iy 9 n = x iy9 (57)

where i denotes \A 1, the operation of differentiating with respect

to the or axes may be written
J *. ^^ ,

if one of the axes coincides with the axis
^

if the axis of^ bisects the angle between two of the axes/~
l * ^

We shall find it convenient to express these operations by the

abbreviated symbols of operation Ds and DC, respectively. They

are, of course, real operations, and may be expressed without the

use of imaginary symbols thus

^^ 1.2

We shall also write

so that Ds and DC denote the operations of differentiating with
n n

respect to n axes, n o- of which coincide with the axis of #, while

the remaining o- make angles TT/CT
with each other in the plane of

xy, Ds being used when the axis of y coincides with one of the
n

axes,. and Do when the axis of y bisects the angle between two
n

of the axes.

The two tesseral surface harmonics of order n and type o- may
now be written

(63)

(64)
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Writing fx
= cos 0, v = sin 0, p

2 = #2
+/,

so that 2 = pr, p = vr, x p cos
&amp;lt;, y = p sin $,

we have J? I = (- 1)

in which we may write

(67)

We have now only to differentiate with respect to z, which we

may do either so as to obtain the result in terms of r and z, or as a

homogeneous function of z and p divided by a power of r,

n\ (2o-)\

(*-*) (
n-- l

) zn-*-* r* + &c.1
, (68)

2(2^1)

r ^ (^-^-.Q.-I)^ + &c
l

^

L 4 ((7+1)
If we write

2. 4. (2-l) (2-3)
and

2. 2^-1
I

(7())(K-g) (^-(7-1) ^-(7- 2) fc-(7-3) -(r_ 4 _

0-3) .^ ,r
1

(&amp;lt;r)
2
M
-^^!fc+ q-)! .(*)

then :

(2)IcrI

-- 3

so tli at these two functions differ only by a constant factor.

We may now write the expressions for the two tesseral harmonics

of order n and type o- in terms either of or ^,

- (74)

Wr
e must remember that when o- = 0, sin 0-$ = and cos

o-&amp;lt;f&amp;gt;

= 1
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For every value of a from 1 to n inclusive there is a pair of

(0) (0)

harmonics, but when a = 0, Ts = and Yc = 2P
tt ,

the zonal bar-
n n

monic. The whole number of harmonics of order n is therefore

2n+l, as it ought to be.

1400.] The numerical value of Y adopted in this treatise is that

which we find by differentiating- r~ l with respect to the n axes and

dividing by n \ It is the product of four factors, the sine or cosine

of 0-0, v*
9
a function of ^ (or of

//,
and

v), and a numerical co

efficient.

The product of the second and third factors, that is to say, the

part depending on 0, has been expressed in terms of three different

symbols which differ from each other only by their numerical

factors. When it is expressed as the product of v into a series of

descending powers of /u, the first term being /x
w~^ it is the function

which we, following Thomson and Tait, denote by 0.

The function which Heine (Ilandbuch der Kugelfunctionen, 47)
denotes by P^ and calls eine zugeordnete Function erster Art, or, as

Todhunter translates it, an Associated Function of the First Kind,
is related to ^ by the equation

0W = (_/p(). (75)

The series of descending powers of ju, beginning with
ju&quot;&quot;

17

,
is

expressed by Heine by the symbol *$\ and by Todhunter by the

symbol or
(a-, n).

This series may also be expressed in two other forms,

_-
(2n)l dp*

* (n

The last of these, in which the series is obtained by differentiating

the zonal harmonic with respect to jn, seems to have suggested the

symbol adopted by Ferrers, who defines it thus

When the same quantity is expressed as a homogeneous function

of /u and v, and divided by the coefficient of /^
n-

&amp;lt;r vv, it is what we
have already denoted by 3^

140
&amp;lt;?.]

The harmonics of the symmetrical system have been

classified by Thomson and Tait with reference to the form of the

spherical curves at which they become zero.
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The value of the zonal harmonic at any point of the sphere is

a function of the cosine of the polar distance, which if equated
to zero gives an equation of the nib

degree, all whose roots lie

between 1 and -f 1
,
and therefore correspond to n parallels of

latitude on the sphere.

The zones included between these parallels are alternately positive

and negative, the circle surrounding the pole being always positive.

The zonal harmonic is therefore suitable for expressing a function

which becomes zero at certain parallels of latitude on the sphere,

or at certain conical surfaces in space.

The other harmonics of the symmetrical system occur in pairs,

one involving the cosine and the other the sine of
&amp;lt;r$. They

therefore become zero at a- meridian circles on the sphere and also

at n a- parallels of latitude, so that the spherical surface is divided

into 2o-(n o- l) quadrilaterals or tesserae, together with 40-

triangles at the poles. They are therefore useful in investigations

relating to quadrilaterals or tesserae on the sphere bounded by
meridian circles and parallels of latitude.

They are all called Tesseral harmonics except the last pair, which

becomes zero at n meridian circles only, which divide the spherical

surface into 2n sectors. This pair are therefore called Sectorial

harmonics.

141.] We have next to find the surface integral of the square of

any tesseral harmonic taken over the sphere. This we may do by
the method of Art. 134. We convert the surface harmonic Y^

}
into

a solid harmonic of positive degree by multiplying it by r
n

,
we

differentiate this solid harmonic with respect to the n axes of the

harmonic itself, and then make x = y = z = 0, and we multiply the

&amp;lt;&quot;&amp;gt;

,, ,

result by .*
!(2+l)

These operations are indicated in our notation by

Writing the solid harmonic in the form of a homogeneous func

tion of z and f, rj, viz.,

r
nls =

; (79)

we find that on performing the differentiations with respect to z,

all the terms of the series except the first disappear, and the factor

(n a)l is introduced.
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Continuing the differentiation with respect to and
77
we get rid

also of these variables and introduce the factor a-!, so that the final

result is

)! (-*)! . ,

We shall denote the second member of this equation by the

abbreviated symbol [n, &amp;lt;r].

This expression is correct for all values of cr from 1 to n inclusive,

but there is no harmonic in sin
o-&amp;lt;/&amp;gt; corresponding to o- = 0.

In the same way we can shew that

zdl
(8!)*

for all values of a from 1 to n inclusive.

When o- = 0, the harmonic becomes the zonal harmonic, and

-//&amp;gt;*-

a result which may be obtained directly from equation (50) by

putting Tn = Pm and remembering that the value of the zonal

harmonic at its pole is unity.

142 #.] We can now apply the method of Art. 136 to determine

the coefficient of any given tesseral surface harmonic in the

expansion of any arbitrary function of the position of a point on

a sphere. For let F be the arbitrary function, and let A* be the

coefficient of Y^ in the expansion of this function in surface

harmonics of the symmetrical system

FJ? ds = 4? T?
1

* = ^& *], (83)JJ
where [n, a] is the abbreviation for the value of the surface integral

given in equation (80).

142
b.~\

Let ^ be any function which satisfies Laplace s equation,

and which has no singular values within a distance a of a point 0,

which we may take as the origin of coordinates. It is always

possible to expand such a function in a series of solid harmonics

of positive degree, having their origin at 0.

One way of doing this is to describe a sphere about as centre

with a radius less than a, and to expand the value of the potential

at the surface of the sphere in a series of surface harmonics.

Multiplying each of these harmonics by r/a raised to a power

equal to the order of the surface harmonic, we obtain the solid

harmonics of which the given function is the sum.
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But a more convenient method, and one which does not involve

integration, is by differentation with respect to the axes of the

harmonics of the symmetrical system.
For instance, let us suppose that in the expression of ^, there is

(&amp;lt;&amp;gt;) (&amp;lt;&amp;gt;)

a term of the form Ac Yc r
n

.

n n

If we perform on ^ and on its expansion the operation
d&quot;-* ,d* d 9

s

and put #, y, z equal to zero after differentiating
1

,
all the terms

((7)

of the expansion vanish except that containing
1 Ac.

n

Expressing the operator on ^ in terms of differentiators with

respect to the real axes, we obtain the equation

1.2

from which we can determine the coefficient of any harmonic of the

series in terms of the differential coefficients of ^ with respect to

x, y&amp;gt;

z at the origin.

143.] It appears from equation (50) that it is always possible

to express a harmonic as the sum of a system of zonal harmonics

of the same order, having their poles distributed over the surface

of the sphere. The simplification of this system, however, does not

appear easy. I have, however, for the sake of exhibiting to the

eye some of the features of spherical harmonics, calculated the zonal

harmonics of the third and fourth orders, and drawn, by the

method already described for the addition of functions, the equi-

potential lines on the sphere for harmonics which are the sums of

two zonal harmonics. See Figures VI to IX at the end of this

volume.

Fig. VI represents the difference of two zonal harmonics of the

third order whose axes are inclined 120 in the plane of the paper,

and this difference is the harmonic of the second type in which o- = 1
,

the axis being perpendicular to the paper.

In Fig. VII the harmonic is also of the third order, but the

axes of the zonal harmonics of which it is the sum are inclined

90, and the result is not of any type of the symmetrical system.
One of the nodal lines is a great circle, but the other two which are

intersected by it are not circles.

Fig. VIII represents the difference of two zonal harmonics of
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the fourth order whose axes are at right angles. The result is a

tesseral harmonic for which n = 4, a = 2.

Fig. IX represents the sum of the same zonal harmonics. The

result gives some notion of one type of the more general har

monic of the fourth order. In this type the nodal line on the

sphere consists of six ovals not intersecting each other. Within

these ovals the harmonic is positive, and in the sextuply connected

part of the spherical surface which lies outside the ovals, the har

monic is negative.

All these figures are orthogonal projections of the spherical

surface.

I have also drawn in Fig. V a plane section through the axis

of a sphere, to shew the equipotential surfaces and lines of force

due to a spherical surface electrified according to the values of a

spherical harmonic of the first order.

Within the sphere the equipotential surfaces are equidistant

planes, and the lines of force are straight lines parallel to the axis,

their distances from the axis being as the square roots of the

natural numbers. The lines outside the sphere may be taken as a

representation of those which would be due to the earth s magnetism
if it were distributed according to the most simple type.

144 #.] We are now able to determine the distribution of

electricity on a spherical conductor under the action of electric

forces whose potential is given.

By the methods already given we expand ^ the potential due

to the given forces, in a series of solid harmonics of positive

degree having their origin at the centre of the sphere.

Let Anr
nTn be one of these, then since within the conducting

sphere the potential is uniform, there must be a term An r
nYn

arising from the distribution of electricity on the surface of the

sphere, and therefore in the expansion of 4^0- there must be a term

In this way we can determine the coefficients of the harmonics of

all orders except zero in the expression for the surface density.

The coefficient corresponding to order zero depends on the charge,

e, of the sphere, and is given by 47rcr = a~2
e.

The potential of the sphere is

144
#.]

Let us next suppose that the sphere is placed in the

neighbourhood of conductors connected with the earth, and that
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Green s Function, G, has been determined in terms of x, y, z and

#
, y, /, the coordinates of any two points in the region in which

the sphere is placed.

If the surface density on the sphere is expressed in a series

of spherical harmonics, then the electrical phenomena outside the

sphere, arising
1 from this charge on the sphere, are identical with

those arising from an imaginary series of singular points all

at the centre of the sphere, the first of which is a single point

having a charge equal to that of the sphere and the others are

multiple points of different orders corresponding to the harmonics

which express the surface density.

Let Green s function be denoted by G
pt/,

where p indicates the

point whose coordinates are x, y, #, and p
f
the point whose co

ordinates are #
, y ,

/.

If a charge AQ is placed at the point p , then, considering

x , y\ z as constants, G
pp

&amp;gt; becomes a function of x, y, z and the

potential arising from the electricity induced an surrounding bodies

by 4, is * = A G
pp,. (1)

If, instead of placing the charge A at the point y, it were

distributed uniformly over a sphere of radius a having its centre

at y, the value of ^ at points outside the sphere would be the

same.

If the charge on the sphere is not uniformly distributed, let

its surface density be expressed,, as it always can, in a series of

spherical harmonics, thus

47T 2
n- = J + 3J

i
r

i -f&C. + (2+ l)AnYn . (2)

The potential arising from any term of this distribution, say

7n , (3)

will be -^-AnYn for points inside the sphere, and -^ A nYn for

points outside the sphere.

Now the latter expression, by equations (13), (14), Art. 129, is

equal to , ,. .
_

dn I.
(~ L

)
*n

n \dhr ..dhn r

or the potential outside the sphere, due to the charge on the

surface of the sphere, is equivalent to that due to a certain

multiple point whose axes are Ji^..Jin and whose moment is

A na
n

.

Hence the distribution of electricity on the surrounding con

ductors and the potential due to this distribution is the same as

that which would be due to such a multiple point.
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The potential, therefore, at the point p, or (#, y, z\ due to the

induced electrification of surrounding- bodies, is

flU J ll

* = A
&quot;^. d !h ...d k,

G W
where the accent over the d s indicates that the differentiations are

to be performed with respect to x
, y

f

,
z . These coordinates are

afterwards to be made equal to those of the centre of the sphere.
It is convenient to suppose Tn broken up into its 2n+l con

stituents of the symmetrical system. Let A (^ Y^ be one of these,

then d &quot;

iy&amp;lt;

&amp;gt;

rf V.,rf A.
&quot;

It is unnecessary here to supply the affix s or c
9
which indicates

whether sino-0 or coso-0 occurs in the harmonic

We may now write the complete expression for
$&amp;gt;,

(6)

But within the sphere the potential is constant, or

= constant- 7

Now perform on this expression the operation D^\ where the

differentiations are to be with respect to x y, z, and the values

of % and
o-j

are independent of those of n and o-. All the terms of

(7) will disappear except that in Y^\ and we find

_ 2 fa+Q-iVK-^)! 1 M
2 2&amp;lt;r

i

1
! ani +l i

=
A&amp;lt;

1) G+ 2S
[&amp;lt;^^X^]. (8)

We thus obtain a set of equations, the first member of each of

which contains one of the coefficients which we wish to determine.

The first term of the second member contains A
, the charge of

the sphere, and we may regard this as the principal term.

Neglecting, for the present, the other terms, we obtain as a

first approximation

If the shortest distance from the centre of the sphere to the

nearest of the surrounding conductors is denoted by d,
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If, therefore, I is large compared with a, the radius of the sphere,

the coefficients of the other spherical harmonics are very small

compared with AQ . The terms after the first on the right-hand

side of equation (8) will therefore be of an order of magnitude
a 2n+ n1+ l

similar to i-j\

We may therefore neglect them in a first approximation, and in

a second approximation we may insert in these terms the values

of the coefficients obtained by the first approximation, and so on

till we arrive at the degree of approximation required.

Distribution of electricity on a nearly spherical conductor.

145 a.] Let the equation of the surface of the conductor be

r = a(l+F), (1)

where F is a function of the direction of r, that is to say of and $,

and is a quantity the square of which may be neglected in this

investigation.

Let F be expanded in the form of a series of surface harmonics

F=/0+/iri +/272 + &C.+/,1
I ;, (2)

Of these terms, the first depends on the excess of the mean

radius above a. If therefore we assume that a is the mean radius,

that is to say, approximately the radius of a sphere whose volume

is equal to that of the given conductor, the coefficient / will

disappear.

The second term, that in /x , depends on the distance of the

centre of mass of the conductor, supposed of uniform density, from

the origin. If therefore we take that centre for origin, the

coefficient/i will also disappear.

We shall begin by supposing that the conductor has a charge J ,

and that no external electrical force acts on it. The potential

outside the conductor must therefore be of the form

~+&C . + A,t
Ya -, (3)

where the surface harmonics are not assumed to be of the same

types as in the expansion of F.

At the surface of the conductor the potential is that of the

conductor, namely, the constant quantity a.

Hence, expanding the powers of r in terms of a and F, and

neglecting the square and higher powers of F
9
we have
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(4)

Since the coefficients Alt &c. are evidently small compared with

A
,
we may begin by neglecting products of these coefficients

into F.

If we then write for F in its first term its expansion in spherical

harmonics, and equate to zero the terms involving harmonics of

the same order, we find

=
4&amp;gt;5

(5)

AJl^AtafiY^O, (6)

4,7. =4, a&quot;/.*&quot;.. (7)

It follows from these equations that the Y&quot;s must be of the

same type as the Y s, and therefore identical with them, and that

A
l
= and An = A anfn .

To determine the density at any point of the surface, we have

the equation fif $Y

where v is the normal and e is the angle which the normal makes

with the radius. Since in this investigation we suppose F and its

first differential coefficients with respect to 6 and to be small,

we may put cos e = 1
,
so that

.- (9)

Expanding the powers of r in terms of a and F
t
and neglecting

products of F into An ,
we find

^Yn . (10)

Expanding F in spherical harmonics and giving An its value

as already found, we obtain

Hence, if the surface differs from that of a sphere by a thin

stratum whose depth varies according to the values of a spherical

harmonic of order n, the ratio of the difference of the surface

densities at any two points to their sum will be n1 times,
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the ratio of the difference of the radii at the same two points to

their sum.

145 #.]
If a nearly spherical conductor is acted on by external

electric forces, let the potential, U, arising from these forces be

expanded in a series of spherical harmonics of positive degree,

having their origin. at the centre of volume of the conductor

U^S. + S.r T/+ J32 r Y2 + &c. + S, r*Yu , (12)

where the accent over Y indicates that this harmonic is not

necessarily of the same type as the harmonic of the same order

in the expansion of F.

If the conductor had been accurately spherical, the potential

arising from its surface charge at a point outside the conductor

would have been

v = A.
I -A ti- &c. - sn r. . (is)

Let the actual potential arising from the surface charge be

^f_l_ W^ where

^+...i (14)

the harmonics with a double accent being different from those

occurring either in F or in U, and the coefficients C being small

because Fis small.

The condition to be fulfilled is that, when r = a(l+F),

= constant = AQ
-
a

the potential of the conductor.

Expanding the powers of r in terms of a and F
t
and retaining

the first power ofF when it is multiplied by A or B, but neglecting

it when it is multiplied by the small quantity C, we find

7=0. (15)

To determine the coefiicients C, we must perform the multipli

cation indicated in the first term, and express the result in a series

of spherical harmonics. This series, with the signs reversed, will be

the series for W at the surface of the conductor.

The product of two spherical harmonics of orders n and m, is

a rational function of degree n + m in x/r, y/r, and z/r, and can

therefore be expanded in a series of spherical
harmonics of orders

not exceeding m+n. If, therefore, F can be expanded in spherical
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harmonics of orders not exceeding m, and if the potential due to

external forces can be expanded in spherical harmonics of orders

not exceeding n, the potential arising from the surface charge will

involve spherical harmonies of orders not exceeding m -f n.

This surface density can then be found from the potential by
the equation ,

(16)

1456?.] A nearly spherical conductor enclosed in a nearly spherical
and nearly concentric

Let the equation of the surface of the conductor be

r = a(l+F) 9 (17)

where F
=/&amp;gt; T,+ &c.

+tf&amp;gt; Y?\ (18)

Let the equation of the inner surface of the vessel be

r = 6(l + G), (,19)

where Q =
ffl
Y

l + &c. +&amp;gt;j\ (20)

the / s and /s being small compared with unity, and r (&amp;lt;7)

being
the surface harmonic of order n and type cr.

Let the potential of the conductor be a, and that of the vessel j3.

Let the potential at any point between the conductor and the
vessel be expanded in spherical harmonics, thus

*&amp;gt;, (21)

then we have to determine the constants of the forms k and k so

that when r = a (1 +F), V = a
,
and when r = I

(
1 + G) ,

* = ft.

It is manifest, from our former investigation, that all the /& s

and /fc s except h
Q and will be small quantities, the products of

which into jPmay be neglected. We may, therefore, write

= ^+^oi(l-^) + &e. + (4V + ^-lI)rr ! (22)

ft = A + (l-G) + &c . + (
&

&quot; + ?l) Y^. (23)

We have therefore 1

&amp;gt;

(24)

-,
(25)
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whence we find for the charge of the inner conductor

(27)

and for the coefficients of the harmonics of order n

(30)X /

where we must remember that the coefficients
/&quot;, ^n , /&, ^n are

those belonging to the same type as well as order.

The surface density on the inner conductor is given by the

equation

where A

146.] As an example of the application of zonal harmonics,

let us investigate the equilibrium of electricity on two spherical

conductors.

Let a and b be the radii of the spheres, and c the distance

between their centres. We shall also, for the sake of brevity,

write a = ex, and I =
cy&amp;gt;

so that x and y are numerical quantities

less than unity.

Let the line joining the centres of the spheres be taken as

the axis of the zonal harmonics, and let the pole of the zonal

harmonics belonging to either sphere be the point of that sphere

nearest to the other.

Let r be the distance of any point from the centre of the first

sphere, and s the distance of the same point from that of the second

sphere.

Let the surface density, &amp;lt;rlf of the first sphere be given by the

equation

4770-^2 = ^4 J
1
P
1 +34,P2 + &c. + (2^ + l)^ TO

Pm , (1)

so that A is the total charge of the sphere, and A lt
&c. are the

coefficients of the zonal harmonics Pl ,
&c.
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The potential due to this distribution of charge may be repre
sented by

for points inside the sphere, and by

1

a-+A2P^+&c.+Am Pm ^] (3)

for points outside.

Similarly, if the surface density on the second sphere is given
by the equation

n , (4)

the potential inside and outside this sphere may be represented

by equations of the form

(6)

where the general harmonics are related to the second sphere.
The charges of the sphere are A and B respectively.
The potential at every point within the first sphere is constant

and equal to a, the potential of that sphere, so that within the

first sphere Uf+ F= a. (7)

Similarly, if the potential of the second sphere is /3, for points
within that sphere, U+ 7 = (3. (8)

For points outside both spheres the potential is #, where

U+7=V. (9)

On the axis, between the centres of the spheres,

r+ s= c. (10)

Hence, differentiating with respect to r, and after differentiation

making r = 0, and remembering that at the pole each of the

zonal harmonics is unity, we find

1 dV

where, after differentiation, s is to be made equal to c.

VOL. i. p



210 SPHERICAL HARMONICS. [146.

If we perform the differentiations, and write a/c - x and b/c y,

these equations become

=
=

m &quot; *

=

By the corresponding operations for the second sphere we find;

-(13)

!

To determine the potentials, a and 0, of the two spheres we have

the equations (7) and (8),
which we may now write

If, therefore, we confine our attention to the coefficients Al
to Am

and B
l
to .Sw ,

we have m + n equations from which to determine

these quantities in terms of A and .#, the charges of the two

spheres, and by inserting the values of these coefficients in (14)

and (15) we may express the potentials of the spheres in terms of

their charges.

These operations may be expressed in the form of determinants,

but for purposes of calculation it is more convenient to proceed as

follows.

Inserting in equations (12) the values of Bl
...Bn from equa

tions (13), we find

(16)
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1 -f 1 . ly
2 + 20 .

2 + 10. 3 2

(18)

V5.2. (19)

By substituting in the second members of these equations the

approximate values of A
1 &c., and repeating the process for further

approximations, we may cany the approximation to the coefficient

to any extent in ascending powers and products of x and y If

we write

we find

30/+ 75/+154/ + 280

+ 288/+735/ + &C.

+ 780/ -f &c.

[144 + &c.

(20)

4- 9/+ 16jf*+ 25/+ 36/+
+18/+ 40/+ 75/4-126/4-

+30/+ 80/+175/ + 336/4-&C
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16+ 72/ + 209/+488/ + &C.

+ a?
10/[ 60+ 342/+1222/ + &C.

+ #12/ [150 + 1 050/+ &C.

64 + &C. (21)

It will be more convenient in subsequent operations to write

these coefficients in terms of a, b, and c, and to arrange the terms

according to their dimensions in c. This will make it easier to

differentiate with respect to c. We thus find

19
. (22)

+ (6 a
7 tf+ 9 a5 65

)
c&quot;

10

(
23

)

(24)

(25)
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(26)

-f 525tf9 69 + 336 7 n
)c-

18
. (27)

)c-
u

(28)

:i7
. (29)

(30)

(31)

(32)

15
. (33)

(34)

(35)

(36)

8
=*9

&amp;lt;r-

9
. (37)

The values of the r s and * s may be written down by exchanging
a and b in the ^ s and jo s respectively.

If we now calculate the potentials of the two spheres in terms

of these coefficients in the form

(38)

(39)

then I, m, n are the coefficients of potential (Art. 87), and of these

a2 c~3 + &c.
, (40)

~3
&c., (41)
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or, expanding in terms of a, d, c,

-f a

5750*$ + 209 3 ^10 +

(42)

(43)

The value of / can be obtained from that of n by exchanging a

and 6.

The potential energy of the system is, by Art. 87,

W=\lA*+mAB+\nB*, (44)

and the repulsion between the two spheres is, by Art. 9 3 a,

-rtJ.* (45)
dc d

The surface density at any point of either sphere is given by

equations (l) and (4) in terms of the coefficients An and _Z?n .



CHAPTEE X.

CONFOCAL QUADRIC SURFACES*.

147.] LET the general equation of a confocal system be

where A. is a variable parameter, which we shall distinguish by a

suffix for the species of quadric, viz. we shall take A
x for the hyper-

boloids of two sheets, A
2
for the hyperboloids of one sheet, and A

3

for the ellipsoids. The quantities

#, A
15 6, A

2 , c, A3

are in ascending order of magnitude. The quantity a is introduced

for the sake of symmetry, but in our results we shall always suppose

= 0.

If we consider the three surfaces whose parameters are A
1?

A 2 , A3 ,

we find, by elimination between their equations, that the value of

x2 at their point of intersection satisfies the equation

a*)(c*-a*) = (A1
2- 2

)(A2
2- 2

)(A3
2- 2

). (2)

The values of y
2 and z2

may be found by transposing a, &, c

symmetrically.

Differentiating this equation with respect to A 1? we find

If ds
l
is the length of the intercept of the curve of intersection of

A
2
and A3 cut off between the surfaces A

x
and A

1+ ^A1 ,
then

doc dy dz
1

d^

* This investigation is chiefly borrowed from a very interesting work, Leqons sur

les Fonctions Inverses dcs Tramcendantea et les Surfaces Isothermes. Par G.
~

Puris, 1857.
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The denominator of this fraction is the product of the squares of

the semi-axes of the surface AJ .

If we put

IV = A
3
2-A

2
2
, A2 = V-V and Aa =V-V (5)

and if we make a = 0, then

It is easy to see that D
2 and D

3
are the semi-axes of the central

section of A
:
which is conjugate to the diameter passing through

the given point, and that D2 is parallel to ds
2 ,

and D
3
to ds3 .

If we also substitute for the three parameters A l5 A
2 ,

A
3

their

values in terms of three functions a, ft, y, defined by the equations

(7)

-/Jr.

A2\ Ifi x 2 ^o
) (c A.2 ;

^3

then ^ = -D2D3 cla, ds
2
= -D^dfi, ds

3 --D^dy. (8)
c c c

148.] Now let V be the potential at any point a, /3, y, then the

resultant force in the direction of dsl is

CIL __
l
~ &quot;

^ =

^a^
&quot;

da ^$1
Since ^, ds

2 ,
and ^s3 are at right angles to each other, the

surface-integral over the element of area ds2 ds
3

is

&amp;lt;)

Now consider the element of volume intercepted between the

surfaces a, /3, y, and a + da, fi + dfi, y + dy. There will be eight

such elements, one in each octant of space.

We have found the surface-integral of the normal component of

the force (measured inwards) for the element of surface intercepted
from the surface a by the surfaces /3 and ft -f dj3, y and y -f dy.
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The surface-integral for the corresponding element of the surface

a-f da will be

, n , .
7

-f 3---dfidy + -j-^
-- da dj3 dyda c da2 c

since D^ is independent of a. The surface-integral for the two

opposite faces of the element of volume will be the sum of these

quantities, or

Similarly the surface-integrals for the other two pairs of faces

will be
_

and -J-

These six faces enclose an element whose volume is

7) 2 7) 2 7) 2
i -i -i

-*-
~\ J-/9 -*- \ til

ds^ ds
2 ds3 = -

|
-- da d(3 dy,

and if p is the volume-density within that element, we find by
Art. 77 that the total surface-integral of the element, together with

the quantity of electricity within it, multiplied by 4 IT is zero, or,

dividing by da dfi dy,

which is the form of Poisson s extension of Laplace s equation re

ferred to ellipsoidal coordinates.

If p = the fourth term vanishes, and the equation is equivalent
to that of Laplace.

For the general discussion of this equation the reader is referred

to the work of Lame already mentioned.

149.] To determine the quantities a, /3, y, we may put them in

the form of ordinary elliptic integrals by introducing the auxiliary

angles 0, $, and
\j/,

where

(12)

A
2
= v/c2 sin2

0-f
2 cos2

0, (13)

A
3
= csee\jr. (14)

If we put b =
kc&amp;gt;

and /fi + Jc
2 = 1, we may call k and k the two

complementary moduli of the confocal system, and we find

[
Q do

a = . =&amp;gt; (15)
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an elliptic integral of the first kind, which we may write according

to the usual notation F(k,Q).

In the same way we find

^-0 Vly?; 2 COS2
(/&amp;gt;

where
F(k&quot;)

is the complete function for modulus Jc,

y = = F(t)-F(t, *). (17)
JQ VI^COS2 ^

Here a is represented as a function of the angle 0, which is ac

cordingly a function of the parameter \19 /3 as a function of &amp;lt; and

thence of A
2 ,
and y as a function of

\j/
and thence of A3 .

But these angles and parameters may be considered as functions

of a, /3, y. The properties of such inverse functions, and of those

connected with them, are explained in the treatise of M. Lame on

that subject.

It is easy to see that since the parameters are periodic functions

of the auxiliary angles, they will be periodic functions of the

quantities a, /3, y : the periods of X
l
and A

3
are F(K), and that of A

2

is 2F(k ).

f
y- ,.:c^-

^ &amp;lt;*-*&quot;&quot;

Particular Solutions.

150.] If F is a linear function of a, /3,
or y, the equation is

satisfied. Hence we may deduce from the equation the distribution

of electricity on any two confocal surfaces of the same family

maintained at given potentials, and the potential at any point

between them.

The Hyperboloids of Two Sheets.

When a is constant the corresponding surface is a hyperboloid

of two sheets. Let us make the sign of a the same as that of x in

the sheet under consideration. We shall thus be able to study one

of these sheets at a time.

Let a
lt

a2 be the values of a corresponding to two single sheets,

whether of different hyperboloids or of the same one, and let ^, J

be the potentials at which they are maintained. Then, if we make

the conditions will be satisfied at the two surfaces and throughout

the space between them. If we make 7 constant and equal to h

in the space beyond the surface a lf and constant and equal to ^
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in the space beyond the surface a2 ,
we shall have obtained the

complete solution of this particular case.

The resultant force at any point of either sheet is

1

d*i da dsl

or *1
= =5 &amp;lt;

(20)
ttj

a
2
JD

2 JJ^

If PI be the perpendicular from the centre on the tangent plane

at any point, and P
l the product of the semi-axes of the surface,

then Pl DtD^P^
Hence we find /^-^ cpl

or the force at any point of the surface is proportional to the per

pendicular from the centre on the tangent plane.

The surface-density &amp;lt;r may be found from the equation

47T0- = JRl . (22)

The total quantity of electricity on a segment cut off by a plane

whose equation is x a from one sheet of the hyperboloid is

The quantity on the whole infinite sheet is therefore infinite.

The limiting forms of the surface are : ow&JJv =-A #~
S/Tsi-

~
~Z

(l) When a = F(k) the surface is the part of the plane of scz oa
&quot; z

the positive side of the positive branch of the hyperbola whose

equation is #2

45
-
,TZ^

=

(2) When a = the surface is the plane of yz.

(3) When a = F(k) the surface is the part of the plane of xz

on the negative side of the negative branch of the same hyperbola.

The Hyperboloid of One Sheet.

By making /3 constant we obtain the equation of the hyperboloid

of one sheet. The two surfaces which form the boundaries of the

electric field must therefore belong to two different hyperboloids.

The investigation will in other respects be the same as for the

hyperboloids of two sheets, and when the difference of potentials

is given the density at any point of the surface will be proportional

to the perpendicular from the centre on the tangent plane, and

the whole quantity on the infinite sheet will be infinite.
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Limiting Forms.

(1) When = the surface is the part of the plane of xz

between the two branches of the hyperbola whose equation is

written above, (24).

(2) When fi=F(k )
the surface is the part of the plane of xy

which is on the outside of the focal ellipse whose equation is

The Ellipsoids.

For any given ellipsoid y is constant. If two ellipsoids, yx
and

y2 ,
be maintained at potentials J^ and 7, then, for any point y in

the space between them, we have

(26)
7i-72

The surface-density at any point is

&amp;lt;7
== =5, (27)=yP

where p3
is the perpendicular from the centre on the tangent plane,

and P3 is the product of the semi-axes.

The whole charge of electricity on either surface is given by

and is finite.

When y = F(k) the surface of the ellipsoid is at an infinite

distance in all directions.

If we make P
2
= and y2

= F(k\ we find for the quantity of

electricity on an ellipsoid maintained at potential V in an infinitely

extended field, V
-- (29)

The limiting form of the ellipsoids occurs when y = 0, in which

case the surface is the part of the plane of xy within the focal

ellipse, whose equation is written above, (25).

The surface-density on either side of the elliptic plate whose

equation is (25), and whose eccentricity is #, is

&quot;

/r^~F~V &quot;?&quot;^^&quot;

Y
and its charge is Q = c ^rv (

31
)

1 (K)
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Particular Cases.

151.] If c remains finite, while 6 and therefore k is diminished

till it becomes ultimately zero, the system of surfaces becomes

transformed in the following manner :

The real axis and one of the imaginary axes of each of the

hyperboloids of two sheets are indefinitely diminished, and the

surface ultimately coincides with two planes intersecting in the

axis of z.

The quantity a becomes identical with 6, and the equation of the

system of meridional planes to which the first system is reduced is

(sin a)
2

(cosa)
2

As regards the quantity (3, if we take the definition given in

page 216 (7) we shall be led to an infinite value of the integral at

the lower limit. In order to avoid this we define ft in this

particular case as the value of the integral

: A2
2

If we now put A
2
= c sin

&amp;lt;/&amp;gt;, ft becomes

-
&amp;gt; i.e. loffcott&amp;lt;f&amp;gt;.

sin 9
e$ e~P

Whence cos &amp;lt;

=
-^ ^ &amp;gt;

2
and therefore sin 6 = -5

gP -f g-p

If we call the exponential quantity J (^ -f- e~P) the hyperbolic
cosine of ft, or more concisely the hypocosine of ft, or cosh ft, and if

we call \ (ePe~P) the hyposine of ft, or sinh /3, and if in the same

way we employ functions of a similar character analogous to the

other simple trigonometrical ratios, then A2
= c sech ft, and the

equation of the system of hyperboloids of one sheet is

(sech/3)
2

(tanh/3)
2
~ C*

The quantity y is reduced to \}r, so that A3
= c cosec y, and the

equation of the system of ellipsoids is

&amp;gt; J 2 /O ?\
&quot;7 w T 77 v&amp;gt;

= C (OI
(sec y)

2
(tan y)

2

Ellipsoids of this kind, which are figures of revolution about their

conjugate axes, are called planetary ellipsoids.
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The quantity of electricity on a planetary ellipsoid maintained at

potential V in an infinite field, is

-
*-/

_

(37)

where c sec y is the equatorial radius, and c tan y is the polar radius.

If y = 0, the figure is a circular disk of radius c, and

(38)

(39)

152.] Second Case. Let I = c, then 7c = 1 and = 0,

a = log tan- y whence A
a
= c tanha, (40)

and the equation of the hyperboloids of revolution of two sheets

becomes %* f+ z*

(tanha)
2

(secha)
2
~

The quantity /3 becomes reduced to
&amp;lt;,

and each of the hyper

boloids of one sheet is reduced to a pair of planes intersecting in

the axis of x whose equation is

_J^L * = 0. (42)
(sin /3)

2
(cos /3)

2

This is a system of meridional planes in which /3 is the longitude.

The quantity y as defined in page 216, (7) becomes in this case

infinite at the lower limit. To avoid this let us define it as the

/oo c(7\
value of the integral / ^ *

As 3
~~

r 7 ,

_ _ ri d\if ,

If we then put A
3
= c sec

\/r,
we find y = J ^T; whence

X
3
= c coth y, and the equation of the family of ellipsoids is

*2 _1!L. = C2 (43)
(cothy)

2 r
(cosechy)

2
&quot;

These ellipsoids, in which the transverse axis is the axis of revo

lution, are called ovary ellipsoids.

The quantity of electricity on an ovary ellipsoid maintained at

potential Tin an infinite field becomes in this case, by (29),

&&amp;gt;
&amp;lt;&amp;gt;

where c sec
\J/

is the polar radius.

If we denote the polar radius by A and the equatorial by By
the

result just found becomes
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1

If the equatorial radius is very small compared to the polar

radius, as in a wire with rounded ends,

AV
^ &quot;

log 2A \og
When both b and c become zero, their ratio remaining finite,

the system of surfaces becomes two systems of confocal cones, and
a system of spherical surfaces of which the radius is inversely

proportional to y.

If the ratio of b to c is zero or unity, the system of surfaces

becomes one system of meridian planes, one system of right cones

having a common axis, and a system of concentric spherical surfaces

of which the radius is inversely proportional to y. This is the

ordinary system of spherical polar coordinates.

Cylindric Surfaces.

153.] When c is infinite the surfaces are cylindric, the generating
lines being parallel to the axes of z. One system of cylinders is

hyperbolic, viz. that into which the hyperboloids of two sheets

degenerate. Since, when c is infinite, Jc is zero, and therefore 6 = a,

it follows that the equation of this system is

x2
?/
2

The other system is elliptic, and since when k = 0, (3 becomes

the equation of this system is

(cosh/3)
2 +

(sinh/3)
2
= **

(
48

)

These two systems are represented in Fig. X at the end of this

volume.

Confocal Paraboloids.

154.] If in the general equations we transfer the origin of co

ordinates to a point on the axis of x distant t from the centre of
the system, and if for x, A, b, and c we substitute l+ tc, t + \, t + b,

and t+ c respectively, and then make t increase indefinitely, we
obtain, in the limit, the equation of a system of paraboloids whose
foci are at the points x b and x = c, viz. the equation is
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If the variable parameter is A for the first system of elliptic

paraboloids, jut
for the hyperbolic paraboloids, and v for the second

system of elliptic paraboloids, we have A, b, p, c, v in ascending-

order of magnitude, and

(50)

c-d J

In order to avoid infinite values in the integrals (7) the cor

responding integrals in the paraboloidal system are taken between

different limits.

We write in this case

From these we find

\ = ic-f ) %(c-b)cosha,\

i-OOBA (51)

(52)

^) (cosh y
- cos /3- cosh a),

= 2 (c 5) sinh - sin - cosh -
&amp;gt;22 2

z = 2 (c ^) cosh |
cos

^
sinh

|

When 5 = c we have the case of paraboloids of revolution about

the axis of x, and $ = # (e
2a

The surfaces for which ft is constant are planes through the axis,

ft being the angle which such a plane makes with a fixed plane

through the axis.

The surfaces for which a is constant are confocal paraboloids.

When a= oo the paraboloid is reduced to a straight line terminat

ing at the origin.
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We may also find the values of a, /3, y in terms of r, 6, and $,

the spherical polar coordinates referred to the focus as orgin, and

the axis of the parabolas as axis of the sphere,

a = log (fk cos

y = log (r^ sin J0).

We may compare the case in which the potential is equal to a,

with the zonal solid harmonic r
i $;. Both satisfy Laplace s equa

tion, and are homogeneous functions of x, y, z, but in the case

derived from the paraboloid there is a discontinuity at the axis, and

i has a value not differing by any finite quantity from zero.

The surface-density on an electrified paraboloid in an infinite

field (including the case of a straight line infinite in one direction)

is inversely as the square root of the distance from the focus, or,

in the case of the line, from the extremity of the line.

VOL. I.



CHAPTER XI.

THEORY OF ELECTRIC IMAGES AND ELECTRIC INVERSION.

155.] WE have already shewn that when a conducting sphere

is under the influence of a known distribution of electricity, the

distribution of electricity on the surface of the sphere can be

determined by the method of spherical harmonics.

For this purpose we require to expand the potential of the in

fluencing- system in a series of solid harmonics of positive degree,

having the centre of the sphere as origin, and we then find a

corresponding series of solid harmonics of negative degree, which

express the potential due to the electrification of the sphere.

By the use of this very powerful method of analysis, Poisson

determined the electrification of a sphere under the influence of

a given electrical system, and he also solved the more difficult

problem to determine the distribution of electricity on two con

ducting spheres in presence of each other. These investigations

have been pursued at great length by Plana and others, who have

confirmed the accuracy of Poisson.

In applying this method to the most elementary case of a sphere

under the influence of a single electrified point, we require to expand

the potential due to the electrified point in a series of solid har

monics, and to determine a second series of solid harmonics which

express the potential, due to the electrification of the sphere, in the

space outside.

It does not appear that any of these mathematicians observed

that this second series expresses the potential due to an imaginary

electrified point, which has no physical existence as an electrified

point, but which may be called an electrical image, because the

action of the surface on external points is the same as that which

would be produced by the imaginary electrified point if the spherical

surface were removed.
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This discovery seems to have been reserved for Sir W. Thomson,
who has developed it into a method of great power for the solution

of electrical problems, and at the same time capable of being pre
sented in an elementary geometrical form.

His original investigations, which are contained in the Cambridge
and Dublin Mathematical Journal, 1848, are expressed in terms of

the ordinary theory of attraction at a distance, and make no use of

the method of potentials and of the general theorems of Chapter IV;

though they were probably discovered by these methods. Instead,

however, of following the method of the author, I shall make free

use of the idea of the potential and of equipotential surfaces, when
ever the investigation can be rendered more intelligible by such

means.

Theory of Electric Images.

156.] Let A and B, Figure 7, represent two points in a uniform

dielectric medium of infinite extent.

Let the charges of A and B be e
l

and
2 respectively. Let P be any

point in space whose distances from

A and B are r and r2 respectively.

Then the value of the potential at P
will be Y_ e

_\ + %
m

/.M

^ ^
Fig. 7.

The equipotential surfaces due to

this distribution of electricity are represented in Fig. I (at the end

of this volume) when e
1 and e

2 are of the same sign, and in Fig. II

when they are of opposite signs. We have now to consider that

surface for which V= 0, which is the only spherical surface in

the system. When e
1
and e

2 are of the same sign, this surface is

entirely at an infinite distance, but when they are of opposite signs
there is a plane or spherical surface at a finite distance for which

the potential is zero.

The equation of this surface is

e, e

7
1
+7

2

= (&amp;gt; -
(
2

)

Its centre is at a point C in AB produced, such that

and the radius of the sphere is

/)

A -D
e
l
6
2AB^?

The two points A and B are inverse points with respect to this
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sphere, that is to say, they lie in the same radius, and the radius is

a mean proportional between their distances from the centre.

Since this spherical surface is at potential zero, if we suppose

it constructed of thin metal and connected with the earth, there

will be no alteration of the potential at any point either outside or

inside, but the electrical action everywhere will remain that due to

the two electrified points A and B.

If we now keep the metallic shell in connection with the earth

and remove the point B, the potential within the sphere will become

everywhere zero, but outside it will remain the same as before.

For the surface of the sphere still remains at the same potential,

and no change has been made in the exterior electrification.

Hence, if an electrified point A be placed outside a spherical

conductor which is at potential zero, the electrical action at all

points outside the sphere will be that due to the point A together

with another point B within the sphere, which we may call the .

electrical image of A.

In the same way we may shew that if B is a point placed inside

the spherical shell, the electrical action within the sphere is that

due to B, together with its image A.

157.] Definition of an Electrical Image. An electrical image is

an electrified point or system of points on one side of a surface

which would produce on the other side of that surface the same

electrical action which the actual electrification of that surface

really does produce.

In Optics a point or system of points on one side of a mirror

or lens which if it existed would emit the system of rays which

actually exists on the other side of the mirror or lens, is called a

virtual image.

Electrical images correspond to virtual images in Optics in being

related to the space on the other side of the surface. They do not

correspond to them in actual position, or in the merely approximate

character of optical foci.

There are no real electrical images, that is, imaginary electrified

points which would produce, in the region on the same side of the

electrified surface, an effect equivalent to that of the electrified surface.

For if the potential in any region of space is equal to that due

to a certain electrification in the same region it must be actually

produced by that electrification. In fact, the electrification at any

point may be found from the potential near that point by the

application of Poisson s equation.
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Let a be the radius of the sphere.

Let/&quot;
be the distance of the electrified point A from the centre C.

Let e be the charge of this point.

Then the image of the point is at B, on the same radius of the

sphere at a distance
,
and the charge of the image is e &quot;.

&quot;

J /

We have shewn that this image
will produce the same effect on the

opposite side of the surface as the

actual electrification of the surface

does. We shall next determine the

surface-density of this electrification

at any point P of the spherical sur

face, and for this purpose we shall

make use of the theorem of Coulomb,

Art. 80, that if R is the resultant force at the surface of a con

ductor, and o- the superficial density,

R = 47T0-,

R being measured away from the surface.

We may consider R as the resultant of two forces, a repulsion

acting along AP, and an attraction e , -^j^ acting along PB.

Resolving these forces in the directions of AC and CP, we find

that the components of the repulsion are

Z&amp;gt;-/* /T

along AC, and -T-^T along CP.
AP3

Those of the attraction are

a I
x _ s&amp;gt; BC along AC, and e -^j along CP.
/~D t)*3

^
j

*-
-J?

S

BP = ~ AP, and B(

the attraction may be written

Now BP =
^ AP, and BC =

,
so that the components of

-ef-j^ along AC, and - ~
along CP.

The components of the attraction and the repulsion in the

direction of AC are equal and opposite, and therefore the resultant

force is entirely in the direction of the radius CP. This only

confirms what we have already proved,, that the sphere is an equi-

potential surface, and therefore a surface to which the resultant

force is everywhere perpendicular.
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The resultant force measured along- CP, the normal to the surface

in the direction towards the side on which A is placed, is

()

If A is taken inside the sphere f is less than a, and we must

measure R inwards. For this case therefore

*__,-!=:. (4 )a AP3

In all cases we may write

T?
AD. Ad I

R =
~~CP~~AP^

where AD, Ad are the segments of any line through A cutting the

sphere, and their product is to be taken positive in all cases.

158.] From this it follows, by Coulomb s theorem, Art. 80, that

the surface-density at P is

AD. Ad 1 . .

The density of the electricity at any point of the sphere varies

inversely as the cube of its distance from the point A.

The effect of this superficial distribution, together with that of

the point A, is to produce on the same side of the surface as the

point A a potential equivalent to that due to e at A, and its image

e j at B, and on the other side of the surface the potential is

e/

everywhere zero. Hence the effect of the superficial distribution

by itself is to produce a potential on the side of A equivalent to

that due to the image e
^

at B, and on the opposite side a
*J

potential equal and opposite to that of e at A.

The whole charge on the surface of the sphere is evidently e-

since it is equivalent to the image at B.

We have therefore arrived at the following theorems on the

action of a distribution of electricity on a spherical surface, the

surface-density being inversely as the cube of the distance from

ti point A either without or within the sphere.

Let the density be given by the equation

where C is some constant quantity, then by equation (6)

AD. Ad
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The action of this superficial distribution on any point separated
from A by the surface is equal to that of a quantity of electricity

*&amp;gt;
or liraC

AD. Ad
concentrated at A.

Its action on any point on the same side of the surface with A is

equal to that of a quantity of electricity

fAD.Ad
concentrated at B the image of A.

The whole quantity of electricity on the sphere is equal to the

first of these quantities ifA is within the sphere, and to the second
if A is without the sphere.

These propositions were established by Sir W. Thomson in his

original geometrical investigations with reference to the distribution

of electricity on spherical conductors, to which the student ought
to refer.

159.] If a system in which the distribution of electricity is

known is placed in the neighbourhood of a conducting sphere of

radius a, which Js maintainedjit ^potential zero by connection with^

-.i^jljife^nen the electrifications due to the several parts of the

system will be superposed.

Let Al} A.^ &c. be the electrified points of the system, fltf2 ,
&c.

their distances from the centre of the sphere, e
lt

e
2 , &c. their

charges, then the images B^ B
2 ,

&c. of these points will be in the
o Q

same radii as the points themselves, and at distances ~ &amp;gt;

~
, &c.

/I /2
from the centre of the sphere, and their charges will be

a a
-

f&amp;gt; , f&amp;gt; Xrr&amp;gt;e
l f

&amp;gt; 62 f
KC -

/I /2

The potential on the outside of the sphere due to the superficial
electrification will be the same as that which would be produced by
the system of images B^B.^ &c. This system is therefore called

the electrical image of the system A1} A2t &c.

If the sphere instead of being at potential zero is at potential F,
we must superpose a distribution of electricity on its outer surface

having the uniform surface-density

7
(T =

The effect of this at all points outside the sphere will be equal to

* ~~t,J^ /? I 1 1
*J Lb

T/*- ^Y J ^VCC/tt**-^ ^v t*-&jG~~&quot; _~ V77~^ &

fot^-t* ^&amp;lt;i^ 4s/ *-^ ij **-/ A 4. &~ -r
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that of a quantity Va of electricity placed at its centre, and at

all points inside the sphere the potential will be simply increased

by V.

The whole charge on the sphere due to an external system of

influencing points, Alt A2) &c. is

E=Fa-
ei ~-e&quot;-&C ., (9)
Jl J-2

from which either the charge E or the potential V may be cal

culated when the other is given.

When the electrified system is within the spherical surface the

induced charge on the surface is equal and of opposite sign to the

inducing charge, as we have before proved it to be for every closed

surface, with respect to points within it.

*160.] The energy due to the mutual action between an elec

trified point e, at a distance/from the centre of the sphere greater

than a the radius, and the electrification of the spherical surface

due to the influence of the electrified point and the charge of the

sphere, is

^ Ee 1 e*a*M= T~ * /&amp;gt;(/-*)
(IO)

where V is the potential, and E the charge of the sphere.

The repulsion between the electrified point and the sphere is

therefore, by Art. 92,

*
|The discussion in the text will perhaps be more easily understood if the problem

be regarded as an example of Art.
s

fi. Let us then suppose that what is described

as an electrified point is really a small spherical conductor, the radius of which is ?

and the potential v. We have thus a particular case of the problem of two spheres of

which one solution has already been given in Art. 146, and another will be given in

Art. 173. In the case before us however the radius 6 is so small that we may
consider the electricity of the small conductor to be uniformly distributed over its

surface and all the electric images except the first image of the small conductor to

be disregarded.

We thus have F = - + ,

f ea e

-r -/&amp;gt;-

+
F- .

The energy of the system is therefore, Art. 85,

2a / 2^6 /*(/*_)&amp;gt;

By means of the above equations we may also express the energy in terms of the

potentials : to the same order of approximation it is
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&amp;gt;

^

&quot;&quot;

Hence the force between the point and the sphere is always an

attraction in the following cases

(1) *When the sphere is uninsulated.

(2) When the sphere has no charge.

(3) When the electrified point is very near the surface.

In order that the force may be repulsive, the potential of the

/ 3

sphere must be positive and greater than e -r ^ 2x2
an^ ^e

\/ /

charge of the sphere must be of the same sign as e and greater

.

At the point of equilibrium the equilibrium is unstable, the force

being an attraction when the bodies are nearer and a repulsion

when they are farther off.

When the electrified point is within the spherical surface the

force on the electrified point is always away from the centre of

the sphere, and is equal to

The surface-density at the point of the sphere nearest to the

electrified point where it lies outside the sphere is

The surface-density at the point of the sphere farthest from the

electrified point is

When E) the charge of the sphere, lies between

the electrification will be negative next the electrified point and
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positive on the opposite side. There will be a circular line of division

between the positively and the negatively electrified parts of the

surface, and this line will be a line of equilibrium.

If ,___.-, (14)

the equipotential surface which cuts the sphere in the line of equi

librium is a sphere whose centre is the electrified point and whose

radius is v/ 2 a2 .

The lines of force and equipotential surfaces belonging to a case

of this kind are given in Figure IV at the end of this volume.

Images in an Infinite Plane Conducting Surface.

161.] If the two electrified points A and B in Art. 156 are

electrified with equal charges of electricity of opposite signs, the

surfaces of zero potential will be the plane, every point of which is

equidistant from A and B.

Hence, if A be an electrified point whose charge is
&amp;lt;?,

and AD
a perpendicular on the plane, produce AD
to B so that DB = AB, and place at B
a charge equal to e, then this charge

at B will be the image of A, and will

produce at all points on the same side of

the plane as A, an effect equal to that

of the actual electrification of the plane.

For the potential on the side of A due

to A and B fulfils the conditions that

y 2
7
7
&quot;= everywhere except at A, and that

V at the plane, and there is only one

form of V which can fulfil these conditions.

To determine the resultant force at the point P of the plane, we

observe that it is compounded of two forces each equal to
-j^ ,

one acting along AP and the other along PB. Hence the resultant

of these forces is in a direction parallel to AB and equal to

e AB

Hence JR, the resultant force measured from the surface towards

the space in which A lies, is

R- -*-, (15)-
Ap* \ I
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and the density at the point P is

eAD
(7 =

235

(16)

On Electrical Inversion.

162.] The method of electrical images leads directly to a method

of transformation by which we may derive from any electrical

problem of which we know the solution any number of other

problems with their solutions.

We have seen that the image of a point at a distance r from the

centre of a sphere of radius R, is in the same radius and at a distance

r such that rr = JR2 . Hence the image of a system of points, lines,

or surfaces is obtained from the original system by the method

known in pure geometry as the method of inversion, and described

by Chasles, Salmon, and other mathematicians.

If A and are two points, A and B their images., being the

centre of inversion, and R the radius of the

sphere of inversion,

OA.OA =R*= OB. OB .

Hence the triangles OAB, OB A are similar,

and AB : A B : : OA : OB ::OA.OB: R\
If a quantity of electricity e be placed at A,

its potential at B will be V=
AB

If e be placed at A its potential at B will be

r = 4-.~
A B

In the theory of electrical images

e:e ::OA:R::R: OA .

Hence 7 : V : : E : OB, (17)

or the potential at B due to the electricity at A is to the potential

at the image of B due to the electrical image of A as R is to OB.

Since this ratio depends only on OB and not on OA, the potential

at B due to any system of electrified bodies is to that at B due

to the image of the system as R is to OB.

If r be the distance of any point A from the centre, and / that

of its image A ,
and if e be the electrification of A, and J that of A

,

also if L, S, K be linear, superficial, and solid elements at A, and

L
,
S

,
K their images at A

,
and A, a, p, A , &amp;lt;/, p the corresponding

line surface and volume densities of electricity at the two points,

5-

,
ic

:
ft-

:

/W J
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V the potential at A due to the original system, and V the potential

at A due to the inverse system, then

/ _ L _ R 2 _ r 2 S _ R _ /* K _ RG _ r^ . ^

r~~ L
~ =

r*
~

fit* ~S&quot;&quot;&quot;^~1^

J

~K~~^~r~~R*
:

e R / X r R

% e r R A. It r

s m * m t .4.*,
7 r R
T =

# =7&quot;

f
I If in the original system a certain surface is that of a conductor,

and has therefore a constant potential P, then in the transformed

R
system the image of the surface will have a potential P . But

by placing at 0, the centre of inversion, a quantity of electricity

equal to PR, the potential of the transformed surface is reduced

to zero.

Hence, if we know the distribution of electricity on a conductor

when insulated in open space and charged to the potential P, we

can find by inversion the distribution on a conductor whose form is

the image of the first under the influence of an electrified point with

a charge PR placed at the centre of inversion, the conductor

being in connexion with the earth.

163.] The following geometrical theorems are useful in studying

cases of inversion.

Every sphere becomes, when inverted, another sphere, unless

it passes through the centre of inversion, in which case it becomes

a plane.

If the distances of the centres of the spheres from the centre of

inversion are a and
&amp;lt;/,

and if their radii are a and a , and if we

define the power of a sphere with respect to the centre of in

version to be the product of the segments cut off by the sphere

from a line through the centre of inversion, then the power of the

first sphere is a 2 - a2
,
and that of the second is a&quot;

2
a&quot;

2
. We

have in this case

CL CL & CL -tt

or the ratio of the distances of the centres of the first and second

spheres is equal to the ratio of their radii, and to the ratio of the

* See Thomson and Tait s Natural Philosophy, 515,
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power of the sphere of inversion to the power of the first sphere,

or of the power of the second sphere to the power of the sphere

of inversion.

The image of the centre of inversion with regard to one sphere

is the inverse point of the centre of the other sphere.

In the case in which the inverse surfaces are a plane and a

sphere, the perpendicular from the centre of inversion on the plane

is to the radius of inversion as this radius is to the diameter of

the sphere, and the sphere has its centre on this perpendicular and

passes through the centre of inversion.

Every circle is inverted into another circle unless it passes

through the centre of inversion, in which case it becomes a straight

line.

The angle between two surfaces, or two lines at their intersec

tion, is not changed by inversion.

Every circle which passes through a point, and the image of that

point with respect to a sphere, cuts the sphere at right angles.

Hence, any circle which passes through a point and cuts the

sphere at right angles passes through the image of the point.

164.] We may apply the method of inversion to deduce the

distribution of electricity on an uninsulated sphere under the in

fluence of an electrified point from the uniform distribution on

an insulated sphere not influenced by any other body.

If the electrified point be at J, take it for the centre of inversion,

and if A is at a distance f from the centre of the sphere whose

radius is a, the inverted figure will be a sphere whose radius is a

and whose centre is distanty, where

a f 7?2

f-
a
~
f ~f*-a*

The centre of either of these spheres corresponds to the inverse

point of the other with respect to A, or if C is the centre and B the

inverse point of the first sphere, C will be the inverse point, and J5

the centre of the second.

Now let a quantity / of electricity be communicated to the

second sphere, and let it be uninfluenced by external forces. It-

will become uniformly distributed over the sphere with a surface-

density j

Its action at any point outside the sphere will be the same as

that of a charge e
r

placed at 1? the centre of the sphere.
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At the spherical surface and within it the potential is

F
=7&amp;gt;

&amp;lt;

22
)

a constant quantity.

Now let us invert this system. The centre If becomes in the

inverted system the inverse point B, and the charge / at B/

-n

becomes e
-^

at B, and at any point separated from B by the
J

surface the potential is that due to this charge at B.

The potential at any point P on the spherical surface, or on the

same side as B, is in the inverted system

A
a AP

If we now superpose on this system a charge e at A, where

=-*&amp;gt; (23)

the potential on the spherical surface, and at all points on the same

side as B, will be reduced to zero. At all points on the same side

as A the potential will be that due to a charge e at A, and a charge

,**
But /*,= -,*.--.*, (24)

as we found before for the charge of the image at B.

To find the density at any point of the first sphere we have

a = criV ^
Substituting for the value of &amp;lt;/ in terms of the quantities be

longing to the first sphere, we find the same value as in Art. 158,
/ /&amp;gt;&amp;lt;&amp;gt; o\

(26)

On Finite Systems of Successive Images.

165.] If two conducting planes intersect at an angle which is a

submultiple of two right angles, there will be a finite system of

images which will completely determine the electrification.

For let AOB be a section of the two conducting planes per

pendicular to their line of intersection, and let the angle of inter

section AOB = -, let P be an electrified point, and let PO = r,

and POB = 6. Then, if we draw a circle with centre and radius
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OP, and find points which are the successive images of P in the

two planes beginning- with OS, we shall find Qi for the image of

P in OB, P2
for the image of Q l

in OA, Q3
for that of P

2
in OB,

P
3 for that of Q3 in OA, and Q2

for that of P3
in OB.

If we had begun with the image of P in AO we should have

found the same points in the reverse order Q2 ,
P

3 , Q3 ,
P

2 , Q19

provided AOB is a submultiple of two right angles.

For the alternate images P^
at angular intervals equal to

2AOB, and the intermediate

images QI9 Q2 , Q3
are at inter

vals of the same magnitude.

Hence, if 2AOB is a submultiple
of 2 ITj there will be a finite

number of images, and none of

these will fall within the angle
AOB. If, however, AOB is not

a submultiple of TT, it will be

impossible to represent the
, , , , -~ , . ,,

actual electrification as the re

sult of a finite series of electrified points.

are ranged round the circle

Fig. 10.

If AOB -, there will be n negative images Q1} Q2 , &c., each
ft

equal and of opposite sign to P, and n\ positive images P2 ,

P3 , &c., each equal to P, and of the same sign.

The angle between successive images of the same sign is

If we consider either of the conducting planes as a plane of sym

metry, we shall find the positive and negative images placed

symmetrically with regard to that plane, so that for every positive

image there is a negative image in the same normal, and at an

equal distance on the opposite side of the plane.

If we now invert this system with respect to any point, the two

planes become two spheres, or a sphere and a plane intersecting

at an angle
-

,
the influencing point P being within this angle.

The successive images lie on the circle which passes through P
and intersects both spheres at right angles.

To find the position of the images we may make use of the

principle that a point and its image are in the same radius of

the sphere, and draw successive chords of the circle beginning at

P and passing through the centres of the two spheres alternately.
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To find the charge which must be attributed to each image, take

any point in the circle of intersection, then the charge of each

image is proportional to its distance from this point, and its sign

is positive or negative according as it belongs to the first or the

second system.

166.] We have thus found the distribution of the images when

any space bounded by a conductor consisting of two spherical surfaces

meeting at an angle
-

,
and kept at potential zero, is influenced by

ft

an electrified point.

We may by inversion deduce the case of a conductor consisting

of two spherical segments meeting at a re-entering angle
-

, charged

to potential unity and placed in free space.

For this purpose we invert the system with respect to P. The

circle on which the images formerly lay now becomes a straight

line through the centres of the spheres.

If the figure (ll) represents

a section through the line of

centres AS, and if D, D are the

points where the circle of in

tersection cuts the plane of the

paper, then, to find the suc

cessive images, draw DA a

radius of the first circle, and

draw DC, D3, &c., making

Fig- 11-
angles-, ,

&c. with DA.
*=&amp;gt; n n

The points C, ,
&c. at which they cut the line of centres will

be the positions of the positive images, and the charge of each

will be represented by its distances from D. The last of these

images will be at the centre of the second circle.

To find the negative images draw DP, DQ, &c., making angles

-,
,
&c. with the line of centres. The intersections of these

lines with the line of centres will give the positions of the negative

images, and the charge of each will be represented by its distance

from D.

The surface-density at any point of either sphere is the sum

of the surface-densities due to the system of images. For instance,

the surface-density at any point S of the sphere whose centre

A, is
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7~) 7?

where ^, B, C, &c. are the positive series of images.
When S is on the circle of intersection the density is zero.

To find the total charge on each of the spherical segments, we

may find the surface-integral of the induction through that segment
due to each of the images.

The total charge on the segment whose centre is A due to the

image at A whose charge is DA is

where is the centre of the circle of intersection.

In the same way the charge on the same segment due to the

image at B is J (DB+ OB), and so on, lines such as OB measured

from to the left being reckoned negative.

Hence the total charge on the segment whose centre is A is

0(7+ &c.),

167.] The method of electrical images may be applied to any

space bounded by plane or spherical surfaces all of which cut one

another in angles which are submultiples of two right angles.

In order that such a system of spherical surfaces may exist, every
solid angle of the figure must be trihedral, and two of its angles

must be right angles, and the third either a right angle or a

submultiple of two right angles.

Hence the cases in which the number of images is finite are

(1) A single spherical surface or a plane.

(2) Two planes, a sphere and a plane, or two spheres intersecting

at an angle
-

(3) These two surfaces with a third, which may be either plane

or spherical, cutting both orthogonally.

(4) These three surfaces with a fourth cutting the first two

orthogonally and the third at an angle , . Of these four surfaces

one at least must be spherical.

We have already examined the first and second cases. In the

first case we have a single image. In the second case we have

2nl images arranged in two series in a circle which passes

through the influencing point and is orthogonal to both surfaces.

VOL. I. R
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In the third case we have, besides these images, their images with

respect to the third surface, that is, 4^1 images in all besides the

influencing point.

In the fourth case we first draw through the influencing point

a circle orthogonal to the first two surfaces, and determine on it

the positions and magnitudes of the n negative images and the

nl positive images. Then through each of these 2n points,

including the influencing point, we draw a circle orthogonal to

the third and fourth surfaces, and determine on it two series of

images, ri in each series. We shall obtain in this way, besides the

influencing point, 2nn l positive and 2nn negative images.

These 4 nn points are the intersections of n circles with ft other

circles, and these circles belong to the two systems of lines of

curvature of a cyclide.

If each of these points is charged with the proper quantity of

electricity, the surface whose potential is zero will consist of n+ ri

spheres, forming two series of which the successive spheres of the

first set intersect at angles
-

,
and those of the second set at angles

n

, ,
while every sphere of the first set is orthogonal to every sphere

n

of the second set.

Case of Two Spheres cutting Orthogonally. See Fig. IV at the

end of this volume.

168.] Let A and B, Fig. 12, be the centres of two spheres cutting

each other orthogonally in D and

I/, and let the straight line DJ/ cut

the line of centres in C. Then C

is the image of A with respect to

the sphere B, and also the image
of B with respect to the sphere

whose centre is A. If AD = a,

BD /3, then AB= \/a2
-f /3

2
,
and

Fig. 12. if We place at A, B, C quantities

a/3
of electricity equal to a, {3, and respectively, then both

spheres will be equipotential surfaces whose potential is unity.

We may therefore determine from this system the distribution of

electricity in the following cases :
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(l) On the conductor PDQD formed of the larger segments of

both spheres. Its potential is 1, and its charge is

a/3

This quantity therefore measures the capacity of such a figure

when free from the inductive action of other bodies.

The density at any point P of the sphere whose centre is A, and

the density at any point Q of the sphere whose centre is B, are

respectively

At the points of intersection, D, D , the density is zero.

If one of the spheres is very much larger than the other, the

density at the vertex of the smaller sphere is ultimately three times

that at the vertex of the larger sphere.

(2) The lens P DQ D formed by the two smaller segments of

the spheres, charged with a quantity of electricity =
a^

,

Va2 + /3
2

and acted on by points A and J9, charged with quantities a and /3,

is also at potential unity, and the density at any point is expressed

by the same formulae.

(3) The meniscus DPD Q formed by the difference of the

segments charged with a quantity a, and acted on by points B

and C, charged respectively with quantities (3 and -
,
is also

Va2
+/3

2

in equilibrium at potential unity.

(4) The other meniscus QDP D* under the action of A and C.

&quot;We may also deduce the distribution of electricity on the following
internal surfaces.

The hollow lens P DQ D under the influence of the internal

electrified point C at the centre of the circle DD .

The hollow meniscus under the influence of a point at the centre

of the concave surface.

The hollow formed of the two larger segments of both spheres
under the influence of the three points A, B, C.

But, instead of working out the solutions of these cases, we shall

apply the principle of electrical images to determine the density
of the electricity induced at the point P of the external surface of

the conductor PDQD by the action of a point at charged with

unit of electricity.

R 2
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Let OA = a, OB = b, OP = r,

^_0=a,

Invert the system with respect to a sphere of radius unity and

centre 0.

The two spheres will remain spheres, cutting each other ortho

gonally, and having their centres in the same radii with A and B.

If we indicate by accented letters the quantities corresponding to

the inverted system,

a

1_
~&amp;gt;

If, in the inverted system, the potential of the surface is unity,

then the density at the point P is

If, in the original system, the density at P is
&amp;lt;r,

then

a- 1

o- /&quot;

and the potential is -. By placing at a negative charge of

electricity equal to unity, the potential will become zero over the

surface, and the density at P will be

._ _ f j __ _____ I

This gives the distribution of electricity on one of the spherical

surfaces due to a charge placed at 0. The distribution on the

other spherical surface may be found by exchanging a and b, a and

/3, and putting q or AQ instead ofp.

To find the total charge induced on the conductor by the elec

trified point at 0, let us examine the inverted system.

In the inverted system we have a charge a at A
,
and ft

at B ,

a?3
and a negative charge /(

at a point C in the line dfff,

such that A C :C #::a *:p*.

If OA = of, OB = V, OC = c
t
we find

/2 _
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Inverting this system the charges become

245

&amp;lt;/ _a {?_ fi_

~tf~a* T == T
f /-&amp;gt;/ t

a f a/3
and

Hence the whole charge on the conductor due to a unit of

negative electricity at is

a
^3 a/3

a b J

Distribution of Electricity on Three Spherical Surfaces which

Intersect at Right Angles.

169.] Let the radii of the spheres be a, /3, y, then

+a* AB = V~~BC = CA =

Let PQR, Fig. 1 3, be the feet

of the perpendiculars from ABC
on the opposite sides of the tri

angle, and let be the inter

section of perpendiculars.

Then P is the image of B in

the sphere y, and also the image
of C in the sphere (3. Also is

the image ofP in the sphere a.

Let charges a, j3, and y be

placed at A, B, and C.

Then the charge to be placed

at Pis
Fig. 13.

A/i + 7
Also ^&amp;gt; =

sidered as the image of P, is

go tbat the ch at con.

^/3
2
y
2 + y

2 a2 + a 2
/3

2 /I 1 1

/V -^
+

^2
+

y
2

In the same way we may find the system of images which are
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electrically equivalent to four spherical surfaces at potential unity

intersecting at right angles.

If the radius of the fourth sphere is 8, and if we make the charge
at the centre of this sphere = 8, then the charge at the intersection

of the line of centres of any two spheres, say a and /3, with their

plane of intersection, is

1

The charge at the intersection of the plane of any three centres

ABC with the perpendicular from D is

and the charge at the intersection of the four perpendiculars is

1

1 I F
+ 7 +

a 2
&quot;

System of Four Spheres Intersecting at Eight Angles under the

Action of an Electrified Point.

170.] Let the four spheres be A, B, C, D, and let the electrified

point be 0. Draw four spheres Aly B^ Clt D^ of which any one,

A
L , passes through and cuts three of the spheres, in this case B,

C, and D, at right angles. Draw six spheres (ab), (ac), (ad), (be),

(bd), (cd), of which each passes through and through the circle

of intersection of two of the original spheres.

The three spheres B, Clt D will intersect in another point besides

0. Let this point be called A
,
and let B

,
C

,
and J/ be the

intersections of C19 D1 ,
Al} of D

i}
A

19
B

L ,
and of A1 , B^, C

1
re

spectively. Any two of these spheres, A19 B, will intersect one of

the six (cd) in a point (a lf).
There will be six such points.

Any one of the spheres, Alt
will intersect three of the six (ab),

(ac), (ad) in a point a. There will be four such points. Finally,

the six spheres (ab), (ac), (ad), (cd), (db), (be),
will intersect in one

point S.

If we now invert the system with respect to a sphere of radius

E and centre 0, the four spheres A, B, C, D will be inverted into

spheres, and the other ten spheres will become planes. Of the

points of intersection the first four A
,
B

,
C

,
V will become the
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centres of the spheres, and the others will correspond to the other

eleven points in the preceding article. These fifteen points form

the image of in the system of four spheres.

At the point A ,
which is the image of in the sphere A, we

must place a charge equal to the image of 0, that is, ,
where a

(t/

is the radius of the sphere A, and a is the distance of its centre

from 0. In the same way we must place the proper charges at

J5
,

&amp;lt;?

,
D .

The charges for each of the other eleven points may be found from

the expressions in the last article by substituting a
, /3 , y ,

6 for

a, /3, y, 5, and multiplying the result for each point by the distance

of the point from 0, where

& ft , y , 8

-?=rf P^^jsjp y~-
-,:*

1&amp;gt;&amp;gt; -3*IT-

[The cases discussed in Arts. 169, 170 may be dealt with as

follows : Taking three coordinate planes at right angles, let us

place at the system of eight points (
+ i + &amp;gt;

) charges

e, the minus charges being at the points which have 1 or 3

negative coordinates. Then it is obvious the coordinate planes are

at potential zero. Now let us invert with regard to any point and

we have the case of three spheres cutting orthogonally under the

influence of an electrified point. If we invert with regard to one of

the electrified points, we find the solution for the case of a con

ductor in the form of three spheres of radii a, (3, y cutting ortho

gonally and freely charged.

If to the above system of electrified points we superadd their

images in a sphere with its centre at the origin we see that, in

addition to the three coordinate planes, the surface of the sphere

forms also a part of the surface of zero potential.]

Two Spheres not Intersecting.

171.] When a space is bounded by two spherical surfaces which

do not intersect, the successive images of an influencing point

within this space form two infinite series, all of which lie beyond
the spherical surfaces, and therefore fulfil the condition of the

applicability of the method of electrical images.

Any two non-intersecting spheres may be inverted into two

concentric spheres by assuming as the point of inversion either

of the two common inverse points of the pair of spheres.
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&quot;We shall begin, therefore, with the case of two uninsulated

concentric spherical surfaces, subject to the induction of an elec

trified point placed between them.

Let the radius of the first be b, and that of the second be**, and

let the distance of the influencing point from the centre be r = be
u

.

Then all the successive images will be on the same radius as the

influencing point.

Let Q , Fig. 14, be the image of P in the first sphere, P3
that

of $o in the second sphere, Q1
that of P

l
in the first sphere, and

so on j then

and OP
8 .OQ s

_l

also OQ = be~u
,

OP
l
=

Oql
=

Hence OP
S
=

&c.

If the charge of P is denoted by P,

then
Fig. 14.

Next, let Q/ be the image of P in the second sphere, P/ that of

i in the first. &c.,

, OP/= fo
tt-2CT

,

Of these images all the P s are positive, and all the s negative,

all the P&quot;s and Q s belong to the first sphere, and all the P- S and

^ s to the second.

The images within the first sphere form a converging series, the

sum of which is

-P

This therefore is the quantity of electricity on the first or interior

sphere. The images outside the second sphere form a diverging

series, but the surface-integral of each with respect to the spherical

surface is zero. The charge of electricity on the exterior spherical

surface is therefore

1 ~iW-P
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If we substitute for these expressions their values in terms of

OA, OB, and OP, we find

OA PB
charge on A = P

^
charge on .B=_P AP

If we suppose the radii of the spheres to become infinite, the case

becomes that of a point placed between two parallel planes A and B.

In this case these expressions become

charge on A = P -^ &amp;gt;

AJj

charge on B = P -

Fig. 15.

172.] In order to pass from this case to that of any two spheres

not intersecting each

other, we begin by

finding the two com

mon inverse points 0,

through which all

circles pass that are

orthogonal to both

spheres. Then, if we

invert the system with

respect to either of

these points, the spheres

become concentric, as

in the first case.

If we take the point in Fig. 1 5 as centre of inversion, this

point will be situated in Fig. 14 somewhere between the two

spherical surfaces.

Now in Art. 1 7 1 we solved the case where an electrified point is

placed between two concentric conductors at zero potential. By
inversion of that case with regard to the point we shall therefore

deduce the distributions on two spherical conductors at potential

zero, exterior to one another, induced by an electrified point in their

neighbourhood. In Art. 173 it will be shewn how the results thus

obtained may be employed in finding the distributions on two

spherical charged conductors subject to their mutual influence only.

The radius OAPB in Fig. 1 4 on which the successive images lie

becomes in Fig. 1 5 an arc of a circle through and (7, and the

ratio of OfP to OP is equal to Ceu where C is a numerical quantity.
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, O P . (JA . VB
If we put =

log^p,
a==lo^o? P = lo

S~OB

then (3 a = w, ^ + a = 0.

All the successive images of P will lie on the arc OAPBO .

The position of the image of P in A is QQ
where

(70
6(Q )

= log-5j
= 2a-e.

That of
&amp;lt;9

in P is P1 where

Similarly

&amp;lt;&amp;gt;(P,)

=
In the same way if the successive images of P in B, A, B, &c.

are Q , P/, /, &c.,

e(QQ )
= 2p-e,

e(Ps )
= e-2 S*

To find the charge of any image P8
we observe that in the

inverted figure its charge is

7, /OP.PA/op-
In the original figure we must multiply this by OP

S
. Hence the

charge of P
s
in the dipolar figure is

/OPS .0 PS

V OP.C/P

If we make f = VOP.O P, and call the parameter of the

point P, then we may write

P AiP~ -

or the charge of any image is proportional to its parameter.

If we make use of the curvilinear coordinates 6 and
&amp;lt;/&amp;gt;,

such that

where 2/ is the distance 00
,
then

sinh&amp;lt;9 ^ sin
&amp;lt;^&amp;gt;

~~

cosh 6 cos
(f&amp;gt;

~
cosh ^ cos

&amp;lt;$&amp;gt;

# + y_ co =

(a?+ coth ^)
2+/ = P cosech2 (9

3



173-] TWO SPHERES NOT INTERSECTING. 251

cot (b =
7

&amp;gt; coth =
Iky

f=
^k _.

v cosh cos
e/)

Since the charge of each image is proportional to its parameter,

,
and is to be taken positively or negatively according as it is of

the form P or Q, we find

P v cosh 6 cos
JL

A/ cosh (6 -\-2svr)

P vcosh 6 cos

A/cosh (2 a 6 2 sir) cos
&amp;lt;p

P \/cosh cos $

A/cosh (0 2 SOT) cos ^

PA/cosh0
cos(/&amp;gt;.

Vcosh(2/3 + 2st3-)-

We have now obtained the positions and charges of the two

infinite series of images. We have next to determine the total

charge on the sphere A by finding the sum of all the images within

it which are of the form Q or P . We may write this

^-*,S=ao 1

P A/cosh cose/) 2*-i / i fn \
?

V cosh (0
2 sw) cos

e/&amp;gt;

, _. ^K *\ S QO i

P vcosh cos d&amp;gt; 2*s=o ~T i / x

vcosh(2a 2
&amp;lt;m) cose/&amp;gt;

In the same way the total induced charge on B is

1

P A/cosh cos JLs=i / i //i \

A/ cosh (0+ 25OTJ cose/)

^ ^ ^.-j .e rf\

P A/cosh cos &amp;lt; * s ~~

A/cosh (2/3 + 25OT-) cose/)

173.] We shall apply these results to the determination of the

* In these expressions we must remember that

2cosh0 = e
e + e~

e
, 2sinh0 = e

e-e~9
,

and the other functions of 9 are derived from these by the same definitions as the

corresponding trigonometrical functions.

The method of applying dipolar coordinates to this case was given by Thomson in

Liouville s Journal for 1847. See Thomson s reprint of Electrical Papers, 211, 212.

In the text I have made use of the investigation of Prof. Betti, Nuovo Cimento,
vol. xx, for the analytical method, but I have retained the idea of electrical images as

used by Thomson in his original investigation, Phil. Mag., 1853.
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coefficients of capacity and induction of two spheres whose radii are

a and I, and the distance between whose centres is c.

Let the sphere A be at potential unity, and the sphere at

potential zero.

Then the successive images of a charge a placed at the centre

of the sphere A will be those of the actual distribution of electricity.

All the images will lie on the axis between the poles and the

centres of the spheres, and it will be observed that of the four

systems of images determined in Art. 1 72, only the first and fourth

exist in this case.

If we put

k k
then sinh a = -- &amp;gt;

sinh ft
= Ta o

The values of 6 and $ for the centre of the sphere A are

= 2a, = 0.

Hence in the equations we must substitute a or k -^ r for P,
sinn a

2 a for 6 and for $, remembering that P itself forms part of the

charge of A. We thus find for the coefficient of capacity of A

for the coefficient of induction of A on B or of B on A

^5=00 1

?* = *Z*=l^h7^
We may, in like manner, by supposing B at potential unity and

A at potential zero, determine the value of gbb . We shall find,

with our present notation,

To calculate these quantities in terms of a and b, the radii of the

spheres, and of c the distance between their centres, we observe

that if

we mav write
~ K

-
,

cosh/3 =--, cosW =
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and make use of

sinh (a + /3)
= sinh a cosh /3 + cosh a sinh /3,

cosh (a -f 0) = cosh a cosh (3 + sinh a sinh (3.

By this process or by the direct calculation of the successive

images as shewn in Sir W. Thomson s paper, we find

* = a+A +
(c*-b* + a&quot;)ll*-b*-ac)

+&C
&quot;

adU = ~ - -
c c ^-^-

174.] We have then the following equations to determine the

charges Ea and Eb of the two spheres when electrified to potentials
Va and 7 respectively,

If we put qaa qbb
-^ =D =

,

then the equations to determine the potentials in terms of the

charges are Va = paa Ea +pab Eb ,

aa ,pab , and pbb are the coefficients of potential.
The total energy of the system is, by Art. 85,

+ 2 E,

The repulsion between the spheres is therefore, by Arts. 92, 93,

where c is the distance between the centres of the spheres.
Of these two expressions for the repulsion, the first, which

expresses it in terms of the potentials of the spheres and the
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variations of the coefficients of capacity and induction, is the most

convenient for calculation.

We have therefore to differentiate the q s with respect to c.

These quantities are expressed as functions of k, a, 0, and &, and

must be differentiated on the supposition that a and b are constant.

From the equations
. , . , sinhasinh/3

k = a smna = b smh/3 = c

dk cosh a cosh/3

we find

do sinh txr

da sinh a cosh /3

dc k sinh ur

dj3 __
cosh a sinh (3

dc k sinh t*r

dij? 1

whence we find

dqaa cosh a cosh 8 qaa -^u=oo (sc + b cosh
/3)

cosh (SVT
&amp;lt;

k
~

6dqab cosh a cosh ,8 qa

&quot;^

=

sinhtc- T
^65 _ cosh a cosh/8 q l&amp;gt;b -^ s =&amp;gt; (sc ^ cosh a) cosh

(ff + SCT)

&quot;^c~

=

sinh -BT 1 ^s=0
c(sinh(j3+ *tsr))

2

Sir William Thomsom has calculated the force between two

spheres of equal radius separated by any distance less than the

diameter of one of them. For greater distances it is not necessary

to use more than two or three of the successive images.

The series for the differential coefficients of the # s with respect

to c are easily obtained by direct differention.

_&
(*-& acf

dqab _ ab
^

c*(c2-a
2 -6 2 +

ab)&amp;gt; (c
2- a2 -b2-

ab)
2

2al2 c 2a2
b*c(2c

2-2a2-b2
) _ &c

(c
2-a2

)
2

(c
2 -a2 + be)

2
(c

2 -a 2-
be)

2
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Distribution of Electricity on Two Spheres in Contact.

175.] If we suppose the two spheres at potential unity and not

influenced by any other point, then, if we invert the system with

respect to the point of contact, we shall have two parallel planes,

distant and from the point of inversion, and electrified by

the action of a unit of electricity at that point.

There will be a series of positive images, each equal to unity, at

distances s
(- + r) from the origin, where * may have any integer

value from oc to +00.
There will also be a series of negative images each equal to 1

,

the distances of which from the origin, reckoned in the direction of

1 A K
0, are - + s (

~ + T )
a ^a b

When this system is inverted back again into the form of the

two spheres in contact, we have a corresponding series of negative

images, the distances of which from the point of contact are of the

form -
, where s is positive for the sphere A and negative

for the sphere B. The charge of each image, when the potential
of the spheres is unity, is numerically equal to its distance from the

point of contact, and is always negative.

There will also be a series of positive images whose distances

from the point of contact measured in the direction of the centre

of a, are of the form

WT
hen s is zero, or a positive integer, the image is in the

sphere A.

When s is a negative integer the image is in the sphere B.

The charge of each image is measured by its distance from the

origin and is always positive.

The total charge of the sphere A is therefore

. ^u=oo 1 ab
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Each of these series is infinite, but if we combine them in the form

the series becomes converging.

In the same way we find for the charge of the sphere J9,

&amp;lt;x&amp;gt;
db ab s=-o&amp;gt; 1

The expression for Ea is obviously equal to

-L-i
ab

a + b J 10
in which form the result in this case was given by Poisson.

It may also be shewn (Legendre Traite des Fonctions Mliptiques,

ii, 438) that the above series for Ea is equal to

*\l*

where y = -57712..., and #(#) = logT(l

The values of * have been tabulated by Gauss (Werket
Band iii,

pp. 161-162.)
If we denote for an instant b -r- (a + b) by a?, we find for the

difference of the charges Ea and EbJ

d , . ab
= -7- log sin TT# x

f/a? +

cot
a + b a + b

When the spheres are equal the charge of each for potential unity

= 1

Jj ^Z a y^. c _1
~

7~Z -, \

= flloge
2 = -69314718^.

When the sphere A is very small compared with the sphere B

the charge on A is

^a = j %=r y approximately ;

or
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The charge on B is nearly the same as if A were removed, or

Eb
= b.

The mean density on each sphere is found by dividing the charge

by the surface. In this way we get

_
245

&quot;

6

Hence, if a very small sphere is made to touch a very large one,

the mean density on the small sphere is equal to that on the large
n

sphere multiplied by , or 1.644936.

Application of Electrical Inversion to the case of a Spherical Bowl.

176.] One of the most remarkable illustrations of the power of

Sir W. Thomson s method of Electrical Images is furnished by his

investigation of the distribution of electricity on a portion of a

spherical surface bounded by a small circle. The results of this

investigation, without proof, were communicated to M. Liouville

and published in his Journal in 1847. The complete investigation
is given in the reprint of Thomson s Electrical Papers, Article XV.
I am not aware that a solution of the problem of the distribution

of electricity on a finite portion of any curved surface has been

given by any other mathematician.

As I wish to explain the method rather than to verify the

calculation, I shall not enter at length into either the geometry
or the integration, but refer my readers to Thomson s work.

Distribution of Electricity on an Ellipsoid.

177.] It is shewn by a well-known method&quot;* that the attraction

of a shell bounded by two similar and similarly situated and

concentric ellipsoids is such that there is no resultant attraction

on any point within the shell. If we suppose the thickness of

the shell to diminish indefinitely while its density increases, we

ultimate^ arrive at the conception of a surface-density varying
as the perpendicular from the centre on the tangent plane, and

since the resultant attraction of this superficial distribution on any

* Thomson and Tait s Natural Philosophy, 520, or Art. 150 of this book.

VOL. I. S
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point within the ellipsoid is zero, electricity, if so distributed on

the surface, will be in equilibrium.

Hence, the surface-density at any point of an ellipsoid undis

turbed by external influence varies as the distance of the tangent

plane from the centre.

Distribution of Electricity on a Disk.

By making two of the axes of the ellipsoid equal, and making

the third vanish, we arrive at the case of a circular disk, and at an

expression for the surface-density at any point P of such a disk

when electrified to the potential V and left undisturbed by external

influence. If o- be the surface-density on one side of the disk,

and if KPL be a chord drawn through the point P, then

7
(T =

Application of the Principle of Electric Inversion.

178.] Take any point Q as the centre of inversion, and let R
be the radius of the sphere of inversion. Then the plane of the

disk becomes a spherical surface passing through Q, and the disk

itself becomes a portion of the spherical surface bounded by a circle.

We shall call this portion of the surface the bowl.

If S is the disk electrified to potential F and free from external

influence, then its electrical image S will be a spherical segment at

potential zero, and electrified by the influence of a quantity V R of

electricity placed at Q.

We have therefore by the process of inversion obtained the solu

tion of the problem of the distribution of electricity on a bowl or a

plane disk when under the influence of an electrified point in the

surface of the sphere or plane produced.

Influence of an Electrified Point placed on the unoccupiedpart of the

Spherical Surface.

The form of the solution, as deduced by the principles already

given and by the geometry of inversion, is as follows :

If C is the central point or pole of the spherical bowl S, and

if a is the distance from C to any point in the edge of the segment,

then, if a quantity q of electricity is placed at a point Q in the

surface of the sphere produced, and if the bowl S is maintained

at potential zero, the density a- at any point P of the bowl will be

1
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CQ, CP, and QP being the straight lines joining the points, C} Q,
and P.

It is remarkable that this expression is independent of the radius

of the spherical surface of which the bowl is a part. It is therefore

applicable without alteration to the case of a plane disk.

Influence of any Number of Electrified Points.

Now let us consider the sphere as divided into two parts, one of

which, the spherical segment on which we have determined the

electric distribution, we shall call the bowl, and the other the

remainder, or unoccupied part of the sphere on which the in

fluencing point Q is placed.

If any number of influencing points are placed on the remainder

of the sphere, the electricity induced by these on any point of the

bowl may be obtained by the summation of the densities induced

by each separately.

179.] Let the whole of the remaining surface of the sphere be

uniformly electrified, the surface-density being p, then the density
at any point of the bowl may be obtained by ordinary integration

over the surface thus electrified.

We shall thus obtain the solution of the case in which the bowl

is at potential zero, and electrified by the influence of the remaining

portion of the spherical surface rigidly electrified with density p.

Now let the whole system be insulated and placed within a

sphere of diameter /^ and let this sphere be uniformly and rigidly

electrified so that its surface-density is p
f
.

There will be no resultant force within this sphere, and therefore

the distribution of electricity on the bowl will be unaltered, but

the potential of all points within the sphere will be increased by
a quantity V where y 2 77 pf.

Hence the potential at every point of the bowl will now be V.

Now let us suppose that this sphere is concentric with the sphere

of which the bowl forms a part, and that its radius exceeds that

of the latter sphere by an infinitely small quantity.

We have now the case of the bowl maintained at potential V and

influenced by the remainder of the sphere rigidly electrified with

superficial density p + p .

180.] We have now only to suppose p-fp = 0, and we get the

case of the bowl maintained at potential V and free from external

influence.
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If &amp;lt;r is the density on either surface of the bowl at a given point

when the bowl is at potential zero, and is influenced by the rest

of the sphere electrified to density p, then, when the bowl is main

tained at potential V, we must increase the density on the outside

of the bowl by p ,
the density on the supposed enveloping sphere.

The result of this investigation is that if/ is the diameter of

the sphere, a the chord of the radius of the bowl, and r the chord

of the distance of P from the pole of the bowl, then the surface-

density a on the inside of the bowl is

cr =

and the surface-density on the outside of the bowl at the same

point is y

In the calculation of this result no operation is employed more

abstruse than ordinary integration over part of a spherical surface.

To complete the theory of the electrification of a spherical bowl we

only require the geometry of the inversion of spherical surfaces.

181.] Let it be required to find the surface-density induced at

any point of the bowl by a quantity q of electricity placed at a

point Qy not now in the spherical surface produced.

Invert the bowl with respect to Q, the radius of the sphere of

inversion being R. The bowl 8 will be inverted into its image S
y

and the point P will have P for its image. We have now to

determine the density &amp;lt;/ at P when the bowl S is maintained at

potential V, such that q = V R, and is not influenced by any

external force.

The density o- at the point P of the original bowl is then

QP*

this bowl being at potential zero, and influenced by a quantity q of

electricity placed at Q.

The result of this process is as follows :

Let the figure represent a section through the centre, 0, of the

sphere, the pole, C, of the bowl, and the influencing point Q.

D is a point which corresponds in the inverted figure to the

unoccupied pole of the rim of the bowl, and may be found by the

following construction.

Draw through Q the chords EQE and FQF, then if we sup-
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pose the radius of the sphere of inversion to be a mean propor
tional between the segments into which a chord is divided at Q,

WF will be the image of EF. Bisect

the arc F CW in .27, so that F D =
ffW, and draw J/QD to meet the

sphere in D. D is the point re

quired. Also through 0, the centre

of the sphere, and Q draw HOQH
meeting the sphere in If and H .

Then if P be any point in the bowl,

the surface-density at P on the side

which is separated from Q by the

completed spherical surface, induced

by a quantity q of electricity at Q, Fig. ig.

will be

where a denotes the chord drawn from (?, the pole of the bowl,

to the rim of the bowl.

On the side next to Q the surface-density is

q

27r HH .PQ;



CHAPTEE XII.

THEORY OF CONJUGATE FUNCTIONS IN TWO DIMENSIONS.

182.] THE number of independent cases in which the problem
of electrical equilibrium has been solved is very small. The method

of spherical harmonics has been employed for spherical conductors,

and the methods of electrical images and of inversion are still more

powerful in the cases to which they can be applied. The case of

surfaces of the second degree is the only one, as far as I know,

in which both the equipotential surfaces and the lines of force are

known when the lines of force are not plane curves.

But there is an important class of problems in the theory of

electrical equilibrium, and in that of the conduction of currents,

in which we have to consider space of two dimensions only.

For instance, if throughout the part of the electric field under

consideration, and for a considerable distance beyond it, the surfaces

of all the conductors are generated by the motion of straight lines

parallel to the axis of z, and if the part of the field where thy*

ceases to be the case is so far from the part considered that the

electrical action of the distant part on the field may be neglected,

then the electricity will be uniformly distributed along each gene

rating line, and if we consider a part of the field bounded by two

planes perpendicular to the axis of z and at distance unity, the

potential and the distributions of electricity will be functions of x

and y only.

If pdxdy denotes the quantity of electricity in an element whose

base is dxdy and height unity, and ads the quantity on an element

of area whose base is the linear element ds and height unity, then

the equation of Poisson may be written
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When there is no free electricity, this is reduced to the equation

of Laplace, (py

The general problem of electric equilibrium may be stated as

follows :

A continuous space of two dimensions, bounded by closed curves

(?1} C2 , &c being given, to find the form of a function, F&quot;,
such that

at these boundaries its value may be Tlt F2 ,
&c. respectively, being

constant for each boundary, and that within this space V may be

everywhere finite, continuous, and single valued, and may satisfy

Laplace s equation.

I am not aware that any perfectly general solution of even this

question has been given, but the method of transformation given in

Art. 190 is applicable to this case, and is much more powerful than

any known method applicable to three dimensions.

The method depends on the properties of conjugate functions of

two variables.

4+fii,J

Definition of Conjugate Functions. . . ^ - {*+$

183.] Two quantities a and /3 are said to be conjugate functions

of x and y, if a -f \/ 1 ft is a function of x + \/ I y. d*t _ 2//* -t V /

It follows from this definition that
&quot;^A

(f if

*]*

da. d/3 da d/3 .=
-p&amp;gt;

and + -^ = 0; (l)dx dy dy dx

_ _
7 9 H--7-9- - ^5

&quot;

7 9 T 7 9
- V.

dx2
dy

1 dx*1

dy*

Hence both functions satisfy Laplace s equation. Also

da dj3 da d(3 da

dx dy dy dx dx
/ 3

da

dx

&amp;lt;*?
. . 7?2 &quot;r

(,\

Ty
~ E -

If x and y are rectangular coordinates, and if ds is the intercept

of the curve
((3
= constant) between the curves a and a -f da, and

ds
2 the intercept of a between the curves /3 and j3 + d(B, then

d* d*,^l_
da

~
d$ R

and the curves intersect at right angles.

If we suppose the potential V F + /a, where k is some con

stant, then V will satisfy Laplace s equation, and the curves (a) will

be equipotential curves. The curves (/3)
will be lines of force, and
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the surface-integral of E over unit-length of a cylindrical surface

whose projection on the plane of xy is the curve AB will be Jc(fiB /3
A

where ftA and ftB are the values of ft at the extremities of the curve.

If one series of curves corresponding to values of a in arithmetical

progression be drawn on the plane, and another series corresponding
to a series of values of ft having the same common difference, then

the two series of curves will everywhere intersect at right angles,

and, if the common difference is small enough, the elements into

which the plane is divided will be ultimately little squares, whose

sides, in different parts of the field, are in different directions and of

different magnitudes, being inversely proportional to R.

If two or more of the equipotential lines (a) are closed curves

enclosing a continuous space between them, we may take these for

the surfaces of conductors at potentials (^
7 + ^ a

i)j (^0+ ^2)5 &c -

respectively. The quantity of electricity upon any one of these be-

Jc

tween the lines of force /3X
and

/32
will be

(/32 ft).

The number of equipotential lines between two conductors will

therefore indicate their difference of potential, and the number of

lines of force which emerge from a conductor will indicate the

quantity of electricity upon it.

We must next state some of the most important theorems

relating to conjugate functions, and in proving them we may use

either the equations (l), containing the differential coefficients, or

the original definition, which makes use of imaginary symbols.

184.] THEOREM I. Ifx and y are conjugatefunctions with respect

to x and
y&amp;gt;

and if x&quot; and
y&quot;

are also conjugate functions with

respect to x and y, then the functions x + x&quot; and y +y&quot;
will

~be conjugatefunctions with respect to x and y.

dx dy . dx&quot;
dy&quot;7 orH - **

j 7 ,
cl llU. -. :: .

ax dy ax dy

.,, n d(x+x} d(y +y&quot;)
therefore

v

7
I = ^ /? J

.

dx dy

dx dy dx&quot;
dy&quot;Also ^ = ~-

,
and -^ = ~

:

dy dx dy dx

.-, d(x + ^?
//

) d(y + y&quot;\

tneretore -
; = - - :

dy dx

or x+x&quot; andy+y
7
are conjugate with respect to x and y.
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Graphic Representation of a Function which is the Sum of Two

Given Functions.

Let a function (a) of x and y be graphically represented by a

series of curves in the plane of xy, each of these curves corre

sponding to a value of a which belongs to a series of such values

increasing by a common difference, 8.

Let any other function, /3, of x and y be represented in the same

way by a series of curves corresponding to a series of values of /3

having the same common difference as those of a.

Then to represent the function a -f /3 in the same way, we must

draw a series of curves through the intersections of the two former

series, from the intersection of the curves (a) and
(/3)

to that of the

curves (a + 8) and
(/3 8), then through the intersection of (a + 2 6)

and
(/3 28), and so on. At each of these points the function will

have the same value, namely a+ /3. The next curve must be drawn

through the points of intersection of (a) and
(/3 + 8),

of (a + 8) and

(), of (a + 2 8) and
(/3 8),

and so on. The function belonging to

this curve will be a -f /3 -f 8.

In this way, when the series of curves (a) and the series
(/3)

are

drawn, the series (a -f/3) may be constructed. These three series of

curves may be drawn on separate pieces of transparent paper, and

when the first and second have been properly superposed, the third

may be drawn.

The combination of conjugate functions by addition in this way
enables us to draw figures of many interesting cases with very
little trouble when we know how to draw the simpler cases of

which they are compounded. We have, however, a far more

powerful method of transformation of solutions, depending on the

following theorem.

185.] THEOREM II. If x&quot; and
y&quot;

are conjugate functions with

respect to the variables of and y ,
and if x

f
and y are conjugate

functions with respect to x and y, then x&quot; and
y&quot;

will be con

jugatefunctions with respect to x and y.

dx&quot; dx&quot; dx dx&quot; dyFor -j= -rr^r+ -j-r-r-dx dx dx dy dx

dy&quot; dy dy&quot;
dx& / I

y7/1 7 / 7

dy dy dx dy
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daf dx&quot; daf daf dy
and -y =

-7-7-
-= h -7-7- -j-

r/y dx dy dy dy

_ df dy
r

dy&quot;
dx

dy dx daf dx

~~
dx

and these are the conditions that %&quot; and / should be conjugate

functions of x and y.

This may also be shewn from the original definition of conjugate

functions. For x&quot;+*/~^ly&quot;
is a function of x + V I/, and

a/ + v/^T/ is a function of #+ &amp;lt;/^l y. Hence, #&quot;+// I/
is a function of x+ \f \y.

In the same way we may shew that if x and / are conjugate

functions of x and y, then x and y are conjugate functions of x

and y .

This theorem may be interpreted graphically as follows :

Let a?
, y be taken as rectangular coordinates, and let the curves

corresponding to values of x&quot; and of/ taken in regular arithmetical

series be drawn on paper. A double system of curves will thus be

drawn cutting the paper into little squares. Let the paper be also

ruled with horizontal and vertical lines at equal intervals, and let

these lines be marked with the corresponding values of x and /.

Next, let another piece of paper be taken in which x and y are

made rectangular coordinates and a double system of curves x
, y

is drawn, each curve being marked with the corresponding value

of af or /. This system of curvilinear coordinates will correspond,

point for point, to the rectilinear system of coordinates a?
, / on the

first piece of paper.

Hence, if we take any number of points on the curve x&quot; on the

first paper, and note the values of x and / at these points, and

mark the corresponding points on the second paper, we shall find

a number of points on the transformed curve x&quot; . If we do the

same for all the curves #&quot;, / on the first paper, we shall obtain on

the second paper a double series of curves x&quot;, y&quot;
of a different form,

but having the same property of cutting the paper into little

squares.
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186.] THEOREM III. If 7 is any function of x and y ,
and if x

and y
f
are conjugate functions of x and y, then

,d*7 d*7^ , rr/d 2r

the integration being between the same limits.

For
d7 _d7dx d7dy
dx

~~
dx dx dy dx

dx*

dy d*7dy
f

~

dx dy dx

and
dx dy

dx dy ~dy ~dy

Adding
1 the last two equations, and remembering

1 the conditions

of conjugate functions (l),
we find

,dx
2

T~&amp;gt; 2
dx

+ T-
dx* dy*

Hence

(f(d*7 d*7

JJ \~d^
+

dO*

If F is a potential, then, by Poisson s equation

d 2 F d*V

J

_ +_
and we may write the result

dy ^ dy* \d
e/ 7

(
d*7

d*7^ ,dx_ df dd_ dy\
^dx * dy * Wa? dy dy dx*

F d*V^ ,dx dy dx dy\
* +

df^ (di iy
-
ar 5)

JJ p r/^^y =JJ p dafdtf,

or the quantity of electricity in corresponding portions of two sys

tems is the same if the coordinates of one system are conjugate

functions of those of the other.
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Additional Theorems on Conjugate Functions.

187.] THEOEEM IV. If x^ and y15 and also x.2 and y^ are con

jugate functions of x and y, then, if

X=x
l
x.2-yl y^

and Y = as
1 y2+ aa y19

X and Y will be conjugatefunctions of x and y.

For X+ V^lY=

THEOREM V. If &amp;lt; be a solution of the equation

_~
dx* df

TT 2 1

and if and = tan- 1

dy
R and will be conjugatefunctions of x and y.

For R and are conjugate functions of -~ and -
,
and these

d /^f are conjugate functions of x and y.
*

EXAMPLE I. Inversion.

188.] As an example of the general method of transformation

let us take the case of inversion in two dimensions.

If is a fixed point in a plane, and OA a fixed direction, and

if r OP = ae?, and 6 = AOP, and if x, y are the rectangular

coordinates of P with respect to 0,

. +/*_i_i2 ft fnr-l ?.
(5)

p and 6 are conjugate functions of x and y.

If p = np and 6 =n0, p and 6 will be conjugate functions of p

and 6. In the case in which n = 1 we have

-Ul /=-, and =-0, (6)
r

which is the case of ordinary inversion combined with turning the

figure 1 80 round OA.

A
Inversion in Two Dimensions.

P = log
- Vx2 +y2

, 6 = tan- 1 -
a x

In this case if r and / represent the distances of corresponding

points from 0, e and tf the total electrification of a body, 8 and 8

superficial elements, V and V solid elements, a- and (/ surface-
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densities, p and p volume densities, $ and corresponding po

tentials,

^-L.
S
~

r2

V
a&quot;

^
&quot;tf

= 1.

EXAMPLE II. Electric Images in Two Dimensions.

189.] Let A be the centre of a circle of radius AQ = b, and let

E be a charge at A, then the potential

at any point P is

AP
and if the circle is a section of a hollow

conducting cylinder, the surface-density
T7I

at any point Q is
J

-j
-

2 776
Fig. 17.

Invert the system with respect to a point 0, making
AO = ml, and a2 = (m

2
-l}l

2
;

then we have a charge at A equal to that at A, where AA =. -

The density at Q is

^ b2 -AA
27i b AQ 2

and the potential at any point P within the circle is

= 2 ^ (log OP _ log ^ P
x-

log w). (9)

This is equivalent to a combination of a charge E at A
,
and a

charge E at 0, which is the image of ^4
,
with respect to the

circle. The imaginary charge at is equal and opposite to that

at^f.

If the point P is defined by its polar coordinates referred to the

centre of the circle, and if we put

p = logr log 5
and pQ = log AA log b,

then AP
det&amp;gt;,

AA = be?*, AO = be~^
; (10)

and the potential at the point (p, B) is

$ = E log (e~
2^ 2 e~^ e? cos 4- e 2

?)

E log (&amp;lt;?PO

2 eK e? cos 6 + e2
?} + 2^/o . (11)

This is the potential at the point (p, 6) due to a charge E, placed
at the point (p Q) 0), with the condition that when p = 0,

(/&amp;gt;

= 0.
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In this case p and are the conjugate functions in equations (5) :

p is the logarithm of the ratio of the radius vector of a point to

the radius of the circle, and 6 is an angle.

The centre is the only singular point in this system of coordinates,

/i)
f)

-j-
ds round a closed curve is zero or 2 TT,

according as the closed curve excludes or includes the centre.

EXAMPLE III. Neumann s Transformation of this Case*.

190.] Now let a and ft be any conjugate functions of x and y,

such that the curves (a) are equipotential curves, and the curves

(/3)
are lines of force due to a system consisting of a charge of half

a unit at the origin, and an electrified system disposed in any

manner at a certain distance from the origin.

Let us suppose that the curve for which the potential is a is

a closed curve, such that no part of the electrified system except the

half-unit at the origin lies within this curve.

Then all the curves (a) between this curve and the origin will be

closed curves surrounding the origin, and all the curves (/3)
will

meet in the origin, and will cut the curves (a) orthogonally.

The coordinates of any point within the curve (a )
will be deter

mined by the values of a and /3 at that point, and if the point

travels round one of the curves (a) in the positive direction, the

value of /3 will increase by 2 TT for each complete circuit.

If we now suppose the curve (a )
to be the section of the inner

surface of a hollow cylinder of any form maintained at potential

zero under the influence of a charge of linear density E on a line of

which the origin is the projection, then we may leave the external

electrified system out of consideration, and we have for the potential

at any point (a) within the curve

= 2^(a-a ), (12)

and for the quantity of electricity on any part of the curve a

between the points corresponding to ^ and /32 ,

f$. (13)

If in this way, or in any other, we have determined the dis

tribution of potential for the case of a given curve of section when

the charge is placed at a given point taken as origin, we may pass

to the case in which the charge is placed at any other point by an

application of the general method of transformation.

* See Crelle s Journal, 1861.
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Let the values of a and /3 for the point at which the charge is

placed be 04 and ft, then substituting in equation (ll) a a for p,

and /3 ft for 0, we find for the potential at any point whose co

ordinates are a and /3,

2 e
a+ l-2 COS

(/3 ft) -f- &amp;lt;?2(

+ a
l-2o))

2&amp;lt;?

a-a
icos(/3 /31) + e

2
(
a- a

i))-2^(a1
-a

). (14)

This expression for the potential becomes zero when a= a
,
and is

finite and continuous within the curve a except at the point (a1? ft),

at which point the second term becomes infinite, and in its immediate

neighbourhood is ultimately equal to 2E log /, where / is the

distance from that point.

We have therefore obtained the means of deducing the solution

of Green s problem for a charge at any point within a closed curve

when the solution for a charge at any other point is known.

The charge induced upon an element of the curve a between the

points /3 and (3 -\-dfi by a charge E placed at the point (al5 ft) is
3

with the notation of Art. 183,

JL^ 7

&quot;477^
25

where ds1 is measured inwards and a is to be put equal to a after

differentiation.

This becomes, by (4) of Art. 183,

E 1 2(ai-a )

&quot;

2^ 1 - 2 &amp;lt;?(i-o) cos (/3-ft) + e^i-oo)
*

From this expression we may find the potential at any point

(
aij ft) within the closed curve, when the value of the potential at

every point of the closed curve is given as a function of ft and

there is no electrification within the closed curve.

For, by Art. 86, the part of the potential at (al5 ft), due to the

maintenance of the portion d(3 of the closed curve at the potential

V is nVt where n is the charge induced on d/3 by unit of electri

fication at (an ft). Hence, if F is the potential at a point on the

closed curve defined as a function of ft and $ the potential at

the point (al5 ft) within the closed curve, there being no electri-

fication within the curve,

2it o -
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EXAMPLE IV. Distribution of Electricity near an Edge of a

Conductor formed by Two Plane Faces.

191.] In the case of an infinite plane face of a conductor charged

with electricity to the surface-density &amp;lt;7

,
we find for the potential

at a distance y from the plane

where C is the value of the potential of the conductor itself.

Assume a straight line in the plane as a polar axis, and transform

into polar coordinates, and we find for the potential

7 = C^-n(rQ
ae^ sin0,

and for the quantity of electricity on a parallelogram of breadth

unity, and length ae? measured from the axis

E = &amp;lt;TQ aeP.

Now let us make p = np and 6 = nb
, then, since // and are

conjugate to p and 6, the equations

V = C 4 TT &amp;lt;r ae n ? sin n

and E=&amp;lt;rQ
ae*i

express a possible distribution of electricity and of potential.

If we write r for ae?
,
r will be the distance from the axis ;

we

may also put instead of for the angle. We shall have

V C

Twill be equal to C whenever n6 = TT or a multiple of TT.

Let the edge be a salient angle of the conductor, the inclination

of the faces being a, then the angle of the dielectric is 2 TT- a, so

that when = 27r a the point is in the other face of the con

ductor. We must therefore make

Then F= -

The surface-density o- at any distance r from the edge is

dE TT
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When the angle is a salient one a is less than 77, and the surface-

density varies according to some inverse power of the distance

from the edge, so that at the edge itself the density becomes

infinite,, although the whole charge reckoned from the edge to any
finite distance from it is always finite.

Thus, when a = the edge is infinitely sharp, like the edge of a

mathematical plane. In this case the density varies inversely as

the square root of the distance from the edge.

When a = - the edge is like that of an equilateral prism, and

the density varies inversely as the f power of the distance.

When a = - the edge is a right angle, and the density is in

versely as the cube root of the distance.

When a = the edge is like that of a regular hexagonal prism,O

and the density is inversely as the fourth root of the distance.

When a = 77 the edge is obliterated, and the density is constant.

When a = | TT the edge is like that in the inside of the hexagonal

prism, and the density is directly as the square root of the distance

from the edge.

When a = -| TT the edge is a re-entrant right angle, and the

density is directly as the distance from the edge.
When a = |77 the edge is a re-entrant angle of 60^, and the

density is directly as the square of the distance from the edge.
In reality, in all cases in which the density becomes infinite at

any point, there is a discharge of electricity into the dielectric at

that point, as is explained in Art. 55.

EXAMPLE V. Ellipses and Hyperbolas. Fig. X.

192.] We have seen that if

^ = e$ cos
\//-, y^ = e$ sin

\js, (1)

x and y will be conjugate functions of $ and
\j/.

Also, if #2 = er* cos
\l/, y^ = e~$ sin

\ff, (2)

#
2 and ^ will be conjugate functions. Hence, if

2 a? = ^ + #2 = (d?*-t-&amp;lt;r*)cosi/r, 2y = ^+^2
=

(e* &amp;lt;?-*) sim/r, (3)

x and y will also be conjugate functions of and
\f/.

In this case the points for which $ is constant lie in the ellipse
whose axes are e$ -\ e~$ and e$ e~^.

VOL. I. T
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The points for which ^ is constant lie in the hyperbola whose

axes are 2 cos
\|/~

and 2 sin \^.

On the axis of x, between %=. 1 and #= + 1
,

&amp;lt;j&amp;gt;

= 0, \f/
= cos- 1 ^. (4)

On the axis of x, beyond these limits on either side, we have

x&amp;gt; 1, V = 4&amp;gt;

= log(#W^2
-l), (5)

#&amp;lt;_!, \l/
= IT, (f)

=
log(&amp;gt;A

2
1 #).

Hence, if $ is the potential function, and
\j/

the function of flow,

we have the case of electricity flowing from the positive to the

negative side of the axis of OB through the space between the points

1 and -f-1, the parts of the axis beyond these limits being

impervious to electricity.

Since, in this case, the axis ofy is a line of flow, we may suppose

it also impervious to electricity.

We may also consider the ellipses to be sections of the equi-

potential surfaces due to an indefinitely long flat conductor of

breadth 2, charged with half a unit of electricity per unit of length.

If we make ^ the potential function, and $ the function of flow,

the case becomes that of an infinite plane from which a strip of

breadth 2 has been cut away and the plane on one side charged to

potential TT while the other remains at zero.

These cases may be considered as particular cases of the quadric

surfaces treated of in Chapter X. The forms of the curves are

given in Fig. X.

EXAMPLE VI. Fig. XI.

193.] Let us next consider x and / as functions of a? and y, where

sitan- 1
, (6)

af and y will be also conjugate functions of $ and
\fs.

The curves resulting from the transformation of Fig. X with

respect to these new coordinates are given in Fig. XI.

If x and / are rectangular coordinates, then the properties of the

axis of x in the first figure will belong to a series of lines parallel

to of in the second figure for which / = 6?/7r, where n is any

integer.

The positive values of of on these lines will correspond to values

of x greater than unity, for which, as we have already seen,

-l). (7)
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The negative values of af on the same lines will correspond to

values of % less than unity, for which, as we have seen,

f!

$ = 0, \jf
= cos-1

*? = cos&quot;
1 ^. (8)

The properties of the axis of y in the first figure will belong to a

series of lines in the second figure parallel to #
,
for which

y=^( +i). (9)

The value of
\/r along these lines is

\f/
= TT (n + J) for all points

both positive and negative, and

. / *: /!*L \

$ = log(y+ Vy*+ 1)
= log \e

b + V e b + i) .
(
10

)

[The curves for which &amp;lt; and
v/f

are constant may be traced

directly from the equations

As the figure repeats itself for intervals of -n b in the values of y
it will be sufficient to trace the lines for one such interval.

Now there will be two cases, according as $ or
\jf changes sign

with y . Let us suppose that so changes sign. Then any curve

for which
\jr

is constant will be symmetrical about the axis of a/,

cutting that axis orthogonally at some point on its negative side.

If we begin with this point for which
&amp;lt;/&amp;gt;

= 0, and gradually in

crease
&amp;lt;,

the curve will bend round from being at first orthogonal
to being, for large values of

&amp;lt;j&amp;gt;
3
at length parallel to the axis of sf.

The positive side of the axis of x is one of the system, viz. ^r is

there zero, and when/= + \ TT b, \jf
= J TT. The lines for which

\(,

has constant values ranging from to \i: form therefore a system
of curves embracing the positive side of the axes of x .

The curves for which &amp;lt; has constant values cut the system ^
orthogonally, the values of

&amp;lt;/&amp;gt; ranging from +00 to co . For

any one of the curves $ drawn above the axis of so the value of
&amp;lt;/&amp;gt;

is

positive, along the negative side of the axis of x the value is zero,

and for any curve below the axis of # the value is negative.
We have seen that the system \jr

is symmetrical about the axis

of a?; let PQR be any curve cutting that system orthogonally and

terminating in P and R in the lines /= + \-nl, the point Q being
in the axis of x. Then the curve PQR is symmetrical about the axis

of a?
,
but if c be the value of along PQ, the value of along QR

will be c. This discontinuity in the value of &amp;lt; will be accounted

T 2
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for by an electrical distribution in the case which will be discussed

in Art. 195.

If we next suppose that
\f/
and not $ changes sign with /, the

values of &amp;lt; will range from to oo . When
&amp;lt;j&amp;gt;

= we have the

negative side of the axis of #
,
and when $ = oo we have a line

at an infinite distance perpendicular to the axis of af. Along any

line PQR between these two the value of
(/&amp;gt;

is constant throughout

its entire length and positive.

Any value
\js

now experiences an abrupt change at the point

where the curve along which it is constant crosses the negative

side of the axis of of, the sign of
i/r changing there. The sig

nificance of this discontinuity will appear in Art. 197.

The lines we have shewn how to trace are drawn in Fig. XI

if we limit ourselves to two-thirds of that diagram, cutting oif the

uppermost third.]

194.] If we consider $ as the potential function, and ^ as the

function of flow, we may consider the case to be that of an in

definitely long strip of metal of breadth -nb with a non-conducting

division extending from the origin indefinitely in the positive

direction, and thus dividing the positive part of the strip into two

separate channels. We may suppose this division to be a narrow

slit in the sheet of metal.

If a current of electricity is made to flow along one of these

divisions and back again along the other, the entrance and exit of

the current being at an indefinite distance on the positive side of

the origin, the distribution of potential and of current will be given

by the functions &amp;lt; and ^ respectively.

If, on the other hand, we make ^ the potential, and &amp;lt; the

function of flow, then the case will be that of a current in the

general direction of/, flowing through a sheet in which a number

of non-conducting divisions are placed parallel to x, extending from

the axis of/ to an indefinite distance in the negative direction.

195.] We may also apply the results to two important cases in

statical electricity.

(1) Let a conductor in the form of a plane sheet, bounded by a

straight edge but otherwise unlimited, be placed in the plane of xz

on the positive side of the origin, and let two infinite conducting

planes be placed parallel to it and at distances \itb on either side.

Then, if ^ is the potential function, its value is for the middle

conductor and \ -n for the two planes.

Let us consider the quantity of electricity on a part of the middle
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conductor, extending to a distance 1 in the direction of z, and from

the origin to # = a.

The electricity on the part of this strip extending from #/ to #2

Hence from the origin to x = a the amount is

(ii)
7T

If a is large compared with I, this becomes

_ fl+loge
2 ,

12
j

Hence the quantity of electricity on the plane bounded by the

straight edge is greater than it would have been if the electricity

had been uniformly distributed over it with the same density that

it has at a distance from the boundary, and it is equal to the

quantity of electricity having the same uniform surface-density,

but extending to a breadth equal to I loge 2 beyond the actual

boundary of the plate.

This imaginary uniform distribution is indicated by the dotted

straight lines in Fig. XI. The vertical lines represent lines of

force, and the horizontal lines equipotential surfaces, on the hypo
thesis that the density is uniform over both planes, produced to

infinity in all directions.

196.] Electrical condensers are sometimes formed of a plate

placed midway between two parallel plates extending considerably

beyond the intermediate one on all sides. If the radius of curvature

of the boundary of the intermediate plate is great compared with

the distance between the plates, we may treat the boundary as

approximately a straight line, and calculate the capacity of the

condenser by supposing the intermediate plate to have its area

extended by a strip of uniform breadth round its boundary, and

assuming the surface-density on the extended plate the same as

it is in the parts not near the boundary.

Thus, if S be the actual area of the plate, L its circumference

and B the distance between the large plates, we have

(13)
7T



278 CONJUGATE FUNCTIONS. [196.

and the breadth of the additional strip is

, (14)

so that the extended area is

7T
(15)

The capacity of the middle plate is

Correctionfor the Thickness of the Plate.

Since the middle plate is generally of a thickness which cannot

be neglected in comparison with the distance between the plates,

we may obtain a better representation of the facts of the case by

supposing the section of the intermediate plate to correspond with

the curve
\fr

==
\//.

The plate will be of nearly uniform thickness, /3
= 26\j/ t

at a

distance from the boundary, but will be rounded near the edge.

The position of the actual edge of the plate is found by putting

/= 0, whence a/= \ ge
Cosi/r . (17)

The value of &amp;lt; at this edge is 0, and at a point for which # = a

it is a + b log c
2

Hence, altogether, the quantity of electricity on the plate is the

same as if a strip of breadth

(log,
2 + log e

cos 2-=) ,

7T ^ ^ -*-)

* ~^ i X ^&quot;/&quot; \ / 1 o \

had been added to the plate, the density being assumed to be every

where the same as it is at a distance from the boundary.

Density near the Edge.

The surface-density at any point of the plate is

x

_

4 77 dx v-i
**

\

- &c.A (19)
4:710
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The quantity within brackets rapidly approaches unity as of

increases, so that at a distance from the boundary equal to n times

the breadth of the strip a, the actual density is greater than the

normal density by about 2n+1 of the normal density.

In like manner we may calculate the density on the infinite planes

V & + i

When x = 0, the density is 2~* of the normal density.
At n times the breadth of the strip on the positive side, the

density is less than the normal density by about ~

At n times the breadth of the strip on the negative side, the

density is about of the normal density.

These results indicate the degree of accuracy to be expected in

applying this method to plates of limited extent, or in which

irregularities may exist not very far from the boundary. The same
distribution would exist in the case of an infinite series of similar

plates at equal distances, the potentials of these plates being

alternately 4- V and V. In this case we must take the distance

between the plates equal to B.

197.] (2) The second case we shall consider is that of an infinite

series of planes parallel to aoz at distances B = TT, and all cut off by
the plane of yz, so that they extend only on the negative side of this

plane. If we make
&amp;lt;$&amp;gt;

the potential function, we may regard these

planes as conductors at potential zero.

Let us consider the curves for which
&amp;lt;f&amp;gt;

is constant.

When y = n-nb, that is, in the prolongation of each of the planes,
we have x = a log J (** + *-*) (21)

when y =. (n+ ^Jbir, that is, in the intermediate positions

x = Hogi(^ erf). (22)

Hence, when $ is large, the curve for which $ is constant is

an undulating line whose mean distance from the axis of y is

approximately a - I (0-loge 2), (23)

and the amplitude of the undulations on either side of this line is
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When
(j&amp;gt;

is large this becomes be~2 $, so that the curve approaches
to the form of a straight line parallel to the axis of/ at a distance

a from that axis on the positive side.

If we suppose a plane for which x a, kept at a constant

potential while the system of parallel planes is kept at a different

potential, then, since b$ a+
t&amp;gt;\oge 2, the surface-density of the

electricity induced on the plane is equal to that which would have

been induced on it by a plane parallel to itself at a potential equal
to that of the series of planes, but at a distance greater than that

of the edges of the planes by b loge
2.

If B is the distance between two of the planes of the series,

IB = TT b, so that the additional distance is

. = **&*.
(25)

198.] Let us next consider the space included between two of

the equipotential surfaces, one of which consists of a series of parallel

waves, while the other corresponds to a large value of
&amp;lt;/&amp;gt;,

and may
be considered as approximately plane.

If D is the depth of these undulations from the crest to the trough
of each wave, then we find for the corresponding value of

&amp;lt;,

D

0=ilog4 1 -

(26)

F-l
The value of # at the crest of the wave is

6 log i(^+ &amp;lt;?-*). (27)
*
Hence, if A is the distance from the crests of the waves to the

opposite plane, the capacity of the system composed of the plane
surface and the undulated surface is the same as that of two planes

at a distance A -f a ,
where

= loge (28)

* Let 3&amp;gt; be the potential of the plane, &amp;lt;f&amp;gt;

of the undulating surface. The quantity
of electricity on the plane per unit area is 1 -=- 4 IT 6. Hence the capacity

= 1 -r 4 IT (A + a ), suppose.

Then ^4 +a = 6 ($-0).
But

(26).
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199.] If a single groove of this form be made in a conductor

having the rest of its surface plane, and if the other conductor is

a plane surface at a distance A, the capacity of the one conductor

with respect to the other will be diminished. The amount of this

diminution will be less than the -th part of the diminution due
n

to n such grooves side by side, for in the latter case the average
electrical force between the conductors will be less than in the

former case, so that the induction on the surface of each groove will

be diminished on account of the neighbouring grooves.
If L is the length, B the breadth, and D the depth of the groove,

the capacity of a portion of the opposite plane whose area is 8 will be

S-LB LB S LB a

If A is large compared with B or a, the correction becomes by (28)

L B\ 2

i
l0*-- -&amp;gt; (30)

l+e B

and for a slit of infinite depth, putting D = oo, the correction is

To find the surface-density on the series of parallel plates we

must find a = ---~ when d&amp;gt; = 0. We find
4ir dx

---
(32)

The average density on the plane plate at distance A from the

edges of the series of plates is &amp;lt;r
=

-,
Hence, at a distance from

4776

the edge of one of the plates equal to na the surface-density is

of this average density.

200.] Let us next attempt to deduce from these results the

distribution of electricity in the figure formed by rotating the

plane of the figure about the axis^= E. In this case, Poisson s

equation will assume the form

dV . .

&quot;- (33)

Let us assume
V$&amp;gt;

the function given in Art. 193, and de-
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termine the value of p from this equation. We know that the first

two terms disappear, and therefore

*
(34)

If we suppose that, in addition to the surface-density already

investigated, there is a distribution of electricity in space according
to the law just stated, the distribution of potential will be repre

sented by the curves in Fig. XI.

Now from this figure it is manifest that -^ is generally very

small except near the boundaries of the plates, so that the new

distribution may be approximately represented by what actually

exists, namely a certain superficial distribution near the edges of

the plates.

If therefore we integrate / / p dx
f

dy between the limits if
= and

y =-b }
and from x oo to x = +oc, we shall find the whole

l

additional charge on one side of the plates due to the curvature.

deb d\lr .

Since -7-7
= --=-, we have

dy dx

[
X

j , [ 1
I pdx I

J .a, - -co 47r
--n~ --T-,

- -co 47r R+y die

Integrating with respect to y t we find

2

p dxdy = - -
log ^r- (36)

Jo J-n 88^ &

This is half the total quantity of electricity which we must

suppose distributed in space near the edge of one of the cylindric

plates per unit of circumference. Since it is only close to the edge

of the plate that the density is sensible, we may suppose it all

condensed on the surface of the plate without altering sensibly its

action on the opposed plane surface, and in calculating the attraction

between that surface and the cylindric surface we may suppose this

electricity to belong to the cylindric surface.
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If there had been no curvature the superficial charge on the

positive surface of the plate per unit of length would have been

Hence, if we add to it the whole of the above distribution, this
TO

charge must be multiplied by the factor
(l
+ \ )

to get the total

charge on the positive side.

*In the case of a disk of radius R placed midway between two
infinite parallel plates at a distance B, we find for the capacity
ofthedisk k2

(38)

*
[In Art. 200, in estimating the total space distribution we might perhaps more

correctly take for it the integral ffpln (R + / ) dx dy , which gives, per unit circum-
1 7?

ference of the edge of radius E, - -
, thus leading to the same correction as in the

text.
6Z U

The case of the disk may be treated in like manner as follows :

Let the figure of Art. 195 revolve round a line perpendicular to the plates and at a
distance + R from the edge of the middle one. That edge will therefore envelope a
circle, which will be the edge of the disk. As in Art. 200, we begin with Poisson s

equation, which in this case will be

dW d*V I dV

We now assume that F = ^, the potential function of Art. 195. We must therefore

suppose electricity to exist in the region between the plates whose volume density /&amp;gt;

is

47r R-x dx
The total amount is B_

p.27r(R-x )dx dy .

Now if R is large in comparison with the distance between the plates this result
will be seen, on an examination of the potential lines in Fig. XI, to be sensibly the
same as B

Jo
-^ dx dy ; that is,

J-* dx

The total surface distribution if we include both sides of the disk is

=(&amp;gt;

If, therefore, the volume distribution between the plates be supposed to be concen

trated on the disk the expression for the capacity, the difference of the potentials
of the plates and disk being ^, becomes

R
T&amp;gt;

result differing from that in the text by nearly,]
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Theory of Thomsons Guard-ring.

201.] In some of Sir W. Thomson s electrometers, a large plane
surface is kept at one potential, and at a distance a from this surface

is placed a plane disk of radius R surrounded by a large plane plate

called a Guard-ring with a circular aperture of radius R concentric

with the disk. This disk and plate are kept at potential zero.

The interval between the disk and the guard-plate may be

regarded as a circular groove of infinite depth, and of breadth

R R, which we denote by B.

The charge on the disk due to unit potential of the large disk,

supposing the density uniform, would be -
4 a.

The charge on one side of a straight groove of breadth B and

length L ^^R, and of infinite depth, may be estimated by the

number of lines of force emanating from the large disk and falling

upon the side of the groove. Referring to Art. 197 and footnote

we see that the charge will therefore be

\LBx-,

RB
i.e. J 7 7 j

A + a

since in this case 4&amp;gt;
= 1, &amp;lt;/&amp;gt;

= 0, and therefore I = A + a.

But since the groove is not straight, but has a radius of curvature

R, this must be multiplied by the factor
(l + J )

-

The whole charge on the disk is therefore

R 2 RB , B^

(40)SA 8A A+a
The value of a cannot be greater than

^Ml
i
= 0.225 nearly.

7T

If B is small compared with either A or R this expression will

give a sufficiently good approximation to the charge on the disk

due to unity of difference of potential. The ratio of A to R

may have any value, but the radii of the large disk and of the

guard-ring must exceed R by several multiples of A.
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EXAMPLE VII. Fig. XII.
91

^

202.] Helmholtz, in his memoir on discontinuous fluid motion *,

has pointed out the application of several formulae in which the

coordinates are expressed as functions of the potential and its

conjugate function.

One of these may be applied to the case of an electrified plate
of finite size placed parallel to an infinite plane surface connected

with the earth.

Since xA$ and y^ A
\jf,

and also #2 = AeP cos
\jt

and y% = A e$ sin
\ff,

are conjugate functions of and
\ff,

the functions formed by adding
x to #

2 and y^ to y2
will be also conjugate. Hence, if

x =

y = A
v/r + A e$ sin

\/r.

then OB and y will be conjugate with respect to and
\lr}

and and

\lt
will be conjugate with respect to x and y.

Now let x and y be rectangular coordinates, and let kty be the

potential, then /0 will be conjugate to &\l/, k being any constant.

Let us put \j/
=

TT, then y = ATT, x = A (0 e&).

If varies from so to 0, and then from to +00, SB varies

from -co to A and from A to oo. Hence the equipotential

surface, for which
\j/
=

TT, is a plane parallel to x at a distance

b = irA from the origin, and extending from -co to x = A.

Let us consider a portion of this plane, extending from

x (A + a) to x = ^4 and from z = to z c,

let us suppose its distance from the plane of xz to be y = 6 = A it,

and its potential to be F= kty = fcir.

The charge of electricity on the portion of the plane considered

is found by ascertaining the values of &amp;lt; at its extremities.

We have therefore to determine
(/&amp;gt;

from the equation

cj)
will have a negative value fa and a positive value fa ;

at the edge
of the plane, where x = A, = 0.

Hence the charge on the one side is ckfa-^^n^ and that

on the other side is c/cfa-+- 47r.

* Konigl. A~kad. der Wissenschaften, zu Berlin, April 23, 1868.
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Both these charges are positive and their sum is

If we suppose that a is large compared with A,

-4-l+dre,A

If we neglect the exponential terms in fa we shall find that the

charge on the negative surface exceeds that which it would have

if the superficial density had been uniform and equal to that at a

distance from the boundary, by a quantity equal to the charge on a

strip of breadth A = - with the uniform superficial density.

The total capacity of the part of the plane considered is

The total charge is CV, and the attraction towards the infinite

plane, whose equation is y = and potential \j/
= 0, is

A

2
A^5 j

_ 7T Tt & *-

The equipotential lines and lines of force are given in Fig. XII.

EXAMPLE VIII. Theory of a Grating of Parallel Wires. Fig. XIII.

203.] In many electrical instruments a wire grating is used to

prevent certain parts of the apparatus from being electrified by

induction. We know that if a conductor be entirely surrounded

by a metallic vessel at the same potential with itself, no electricity

can be induced on the surface of the conductor by any electrified

body outside the vessel. The conductor, however, when completely

surrounded by metal, cannot be seen, and therefore, in certain cases,

an aperture is left which is covered with a grating of fine wire.

Let us investigate the effect of this grating in diminishing the

effect of electrical induction. We shall suppose the grating to

consist of a series of parallel wires in one plane and at equal

intervals, the diameter of the wires being small compared with the
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distance between them, while the nearest portions of the electrified

bodies on the one side and of the protected conductor on the other

are at distances from the plane of the screen, which are considerable

compared with the distance between consecutive wires.

204.] The potential at a distance / from the axis of a straight

wire of infinite length charged with a quantity of electricity A per
unit of length is F = 2 A log / -{- (7.

(
1
)

We may express this in terms of polar coordinates referred to an

axis whose distance from the wire is unity, in which case we must

make /2 = 1 - 2 r cos 9 + r2
, (2)

and if we suppose that the axis of reference is also charged with

the linear density X , we find

F=-
If we now make

then, by the theory of conjugate functions,

/ ^ 27T# -
\

2

F= \ log \l-2e a cos- - + e
a
) 2 A/ log +C, (5)

where x and y are rectangular coordinates, will be the value of the

potential due to an infinite series of fine wires parallel to z in the

plane of xz, and passing through points in the axis of x for which

# is a multiple of a.

Each of these wires is charged with a linear density A.

The term involving A indicates an electrification, producing a

constant force- in the direction of y.
a

The forms of the equipotential surfaces and lines of force when
A = are given in Fig. XIII. The equipotential surfaces near the

wires are nearly cylinders, so that we may consider the solution

approximately true, even when the wires are cylinders of a diameter

which is finite but small compared with the distance between them.

The equipotential surfaces at a distance from the wires become

more and more nearly planes parallel to that of the grating.

If in the equation we make y = 6
lt

a quantity large compared
with a. we find approximately,

V
l
= _ (A+ A

) + C nearly. (6)

If we next make y = &
2 ,

where #
2 is a positive quantity large

compared with a, we find approximately,



288 CONJUGATE FUNCTIONS. [205.

p2 = Zp
A +tf nearly. (7 )

If c is the radius of the wires of the grating, c being small

compared with a, we may find the potential of the grating itself

by supposing that the surface of the wire coincides with the equi-

potential surface which cuts the plane of osz at a distance c from the

axis of z. To find the potential of the grating we therefore put

x = c, and y 0, whence

7= -2 A log 2 sin ~+C- (
8
)

205.] We have now obtained expressions representing the elec

trical state of a system consisting of a grating of wires whose

diameter is small compared with the distance between them, and

two plane conducting surfaces, one on each side of the grating,

and at distances which are great compared with the distance

between the wires.

The surface-density ^ on the first plane is got from the equa

tion (6) d7
l

4

That on the second plane &amp;lt;r

a
from the equation (7)

=^ . (10)
2

If we now write a . v\ ,. + \

=-2i*( T)
and eliminate A and A/ from the equations (6), (7), (8), (9), (10),

we find

+b + )=-r1+ ri (l + )-r. (13)

When the wires are infinitely thin, a becomes infinite, and the

terms in which it is the denominator disappear, so that the case

is reduced to that of two parallel planes without a grating in

terposed.

If the grating is in metallic communication with one of the

planes, saythe first, 7= 7lt
and the right-hand side of the equation

for a-j
becomes F

x
- 72 . Hence the density ^ induced on the first

plane when the grating is interposed is to that which would have

been induced on it if the grating were removed, the second plane

being maintained at the same potential,
as 1 to 1 +
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We should have found the same value for the effect of the grating
in diminishing the electrical influence of the first surface on the

second, if we had supposed the grating connected with the second

surface. This is evident since b^ and b
2
enter into the expression

in the same way. It is also a direct result of the theorem of

Art. 88.

The induction of the one electrified plane on the other through
the grating is the same as if the grating were removed, and the

distance between the planes increased from b
l + b.2

to

If the two planes are kept at potential zero, and the grating
electrified to a given potential, the quantity of electricity on the

grating will be to that which would be induced on a plane of equal
area placed in the same position as

M2
: M2 + a

(
5
i + ^)-

This investigation is approximate only when 6
1
and d.2 are large

compared with a, and when a is large compared with c. The

quantity a is a line which may be of any magnitude. It becomes

infinite when c is indefinitely diminished.

If we suppose c = \ a there will be no apertures between the

wires of the grating, and therefore there will be no induction

through it. We ought therefore to have for this case a = 0. The

formula (11), however, gives in this case

a=-^log e 2, =-0.110,

which is evidently erroneous, as the induction can never be altered

in sign by means of the grating. It is easy, however, to proceed
to a higher degree of approximation in the case of a grating of

cylindrical wires. I shall merely indicate the steps of this process.

Method of Approximation.

206.] Since the wires are cylindrical, and since the distribution

of electricity on each is symmetrical with respect to the diameter

parallel to y, the proper expansion of the potential is of the form

7= &amp;lt;? logr + 2&amp;lt;Vcos^ (14)

where r is the distance from the axis of one of the wires, and the

angle between r and y, and, since the wire is a conductor, when
r is made equal to the radius V must be constant, and therefore

the coefficient of each of the multiple cosines of 6 must vanish.

VOL. i. u
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For the sake of conciseness let us assume new coordinates
, 77, &c.

such that

a = 27T#, a-Y]
=

2iry, ap = 27rr, a/3 = 2iib, &c., (15)

and let F
ft
= log (^+ e-(^)-2 cos

). (16)
Then if we make

F=^+4^+4/^ + &c. (17)

by giving proper values to the coefficients A we may express any

potential which is a function of
17
and cos f, and does not become

infinite except when
rj + (3

= and cos f = 1.

When /3
= the expansion of F in terms of p and is

,F = 2 logp + yV p
2 cos 2 TTYo P

4 cos 40 + &C. (18)

For finite values of (3 the expansion of F is

^ =
/3 + 2log(l-er0)+^^pcos0-

In the case of the grating with two conducting planes whose

equations are q = /3j
and

77
=

/32 ,
that of the plane of the grating

being 77
= 0, there will be two infinite series of images of the

grating. The first series will consist of the grating itself together

with an infinite series of images on both sides, equal and similarly

electrified. The axes of these imaginary cylinders lie in planes

whose equations are of the form

77= 2(/31 + |82), (20)
n being an integer.

The second series will consist of an infinite series of images for

which the coefficients A
, A.

2 , A^, &c. are equal and opposite to the

same quantities in the grating itself, while Al9 A3 ,
&c. are equal

and of the same sign. The axes of these images are in planes whose

equations are of the form

77
= 2/32 + 2aw(/31 + j92), (21)

m being an integer.

The potential due to any finite series of such images will depend

on whether the number of images is odd or even. Hence the

potential due to an infinite series is indeterminate, but if we add to

it the function r]-\-C}
the conditions of the problem will be suffi

cient to determine the electrical distribution.

We may first determine Y^ and Y2t
the potentials of the two

conducting planes, in terms of the coefficients A
,
A

1 , &c., and of

B and C. We must then determine ^ and cr
z ,

the surface-density

at any point of these planes. The mean values of o-j
and o-

2
are

given by the equations
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(22)

&quot;We must then expand the potentials due to the grating itself

and to all the images in terms of p and cosines of multiples of 6,

adding to the result jjp cos e+Cm
The terms independent of 6 then give V the potential of the

grating, and the coefficient of the cosine of each multiple of

equated to zero gives an equation between the indeterminate co

efficients.

In this way as many equations may be found as are sufficient

to eliminate all these coefficients and to leave two equations to

determine o-
x and &amp;lt;r

2 in terms of J\, 7, and V.

These equations will be of the form

-y). (23)
The quantity of electricity induced on one of the planes protected

by the grating, the other plane being at a given difference of

potential, will be the same as if the plates had been at a distance

^- instead of #,+&,.a + y
The values of a and y are approximately as follows,

(24)

U 2



CHAPTER XIII.

ELECTROSTATIC INSTRUMENTS.

On Elecfoostatic Instruments.

THE instruments which we have to consider at present may be

divided into the following* classes :

fl) Electrical machines for the production and augmentation of

electrification.

(2) Multipliers, for increasing electrification in a known ratio.

(3) Electrometers, for the measurement of electric potentials and

charges.

(4) Accumulators, for holding large electrical charges.

Electrical Machines.

207.] In the common electrical machine a plate or cylinder of

glass is made to revolve so as to rub against a surface of leather,

on which is spread an amalgam of zinc and mercury. The surface

of the glass becomes electrified positively and that of the rubber

negatively. As the electrified surface of the glass moves away
from the negative electrification of the rubber it acquires a high

positive potential. It then comes opposite to a set of sharp metal

points in connexion with the conductor of the machine. The posi

tive electrification of the glass induces a negative electrification

of the points, which is the more intense the sharper the points

and the nearer they are to the glass.

When the machine works properly there is a discharge through

the air between the glass and the points, the glass loses part of

its positive charge, which is transferred to the points and so to

the insulated prime conductor of the machine, and to any other

body with which it is in electric communication.

The portion of the glass which is advancing towards the rubber

has thus a smaller positive charge than that which is leaving it

at the same time, so that the rubber, and the conductors in com

munication with it, become negatively electrified.
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The highly positive surface of the glass where it leaves the

rubber is more attracted by the negative charge of the rubber than

the partially discharged surface which is advancing towards the

rubber. The electrical forces therefore act as a resistance to the force

employed in turning the machine. The work done in turning the

machine is therefore greater than that spent in overcoming ordinary

friction and other resistances, and the excess is employed in pro

ducing a state of electrification whose energy is equivalent to this

excess.

The work done in overcoming friction is at once converted into

heat in the bodies rubbed together. The electrical energy may
be also converted either into mechanical energy or into heat.

If the machine does not store up mechanical energy, all the

energy will be converted into heat, and the only difference between

the heat due to friction and that due to electrical action is that the

former is generated at the rubbing surfaces while the latter may be

generated in conductors at a distance *.

We have seen that the electrical charge on the surface of the

glass is attracted by the rubber. If this attraction were sufficiently

intense there would be a discharge between the glass and the

rubber, instead of between the glass and the collecting points. To

prevent this, flaps of silk are attached to the rubber. These become

negatively electrified and adhere to the glass, and so diminish the

potential near the rubber.

The potential therefore increases more gradually as the glass

moves away from the rubber, and therefore at any one point there

is less attraction of the charge on the glass towards the rubber, and

consequently less danger of direct discharge to the rubber.

In some electrical machines the moving part is of ebonite instead

of glass, and the rubbers of wool or fur. The rubber is then elec

trified positively and the prime conductor negatively.

The Electrophorus of Yolta.

208.] The electrophorus consists of a plate of resin or of ebonite

backed with metal, and a plate of metal of the same size. An

insulating handle can be screwed to the back of either of these

plates. The ebonite plate has a metal pin which connects the metal

* It is probable that in many cases where dynamical energy is converted into heat

by friction, part of the energy may be first transformed into electrical energy and
then converted into heat as the electrical energy is spent in maintaining currents of

short circuit close to the rubbing surfaces. See Sir W. Thomson, On the Electro-

dynamic Qualities of Metals. Phil. Trans., 1856, p. 650.
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plate with the metal back of the ebonite plate when the two plates

are in contact.

The ebonite plate is electrified negatively by rubbing it with

wool or cat s skin. The metal plate is then brought near the

ebonite by means of the insulating handle. No direct discharge

passes between the ebonite and the metal plate, but the potential

of the metal plate is rendered negative by induction, so that when

it comes within a certain distance of the metal pin a spark passes,

and if the metal plate be now carried to a distance it is found

to have a positive charge which may be communicated to a con

ductor. The metal at the back of the ebonite plate is found to

have a negative charge equal and opposite to the charge of the metal

plate.

In using the instrument to charge a condenser or accumulator

one of the plates is laid on a conductor in communication with

the earth, and the other is first laid on it, then removed and applied

to the electrode of the condenser, then laid on the fixed plate and

the process repeated. If the ebonite plate is fixed the condenser

will be charged positively. If the metal plate is fixed the condenser

will be charged negatively.

The work done by the hand in separating the plates is always

greater than the work done by the electrical attraction during the

approach of the plates, so that the operation of charging the con

denser involves the expenditure of work. Part of this work is

accounted for by the energy of the charged condenser, part is spent

in producing the noise and heat of the sparks, and the rest in

overcoming other resistances to the motion.

On Machines producing Electrification by Mechanical Work.

209.] In the ordinary frictional electrical machine the work done

in overcoming friction is far greater than that done in increasing

the electrification. Hence any arrangement by which the elec

trification may be produced entirely by mechanical work against

the electrical forces is of scientific importance if not of practical

value. The first machine of this kind seems to have been Nicholson s

Revolving Doubler, described in the Philosophical Transactions for

1788 as an instrument which by the turning of a Winch produces

the two states of Electricity without friction or communication with

the Earth/

210.] It was by means of the revolving doubler that Volta

succeeded in developing from the electrification of the pile an
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electrification capable of affecting- his electrometer. Instruments

on the same principle have been invented independently by Mr.

C. F. Varley
* and Sir W. Thomson.

These instruments consist essentially of insulated conductors of

various forms, some fixed and others moveable. The moveable

conductors are called Carriers, and the fixed ones may be called

Inductors, Receivers, and Regenerators. The inductors and receivers

are so formed that when the carriers arrive at certain points in

their revolution they are almost completely surrounded by a con

ducting
1

body. As the inductors and receivers cannot completely

surround the carrier and at the same time allow it to move freely

in and out without a complicated arrangement of moveable pieces,

the instrument is not theoretically perfect without a pair of re

generators, which store up the small amount of electricity which

the carriers retain when they emerge from the receivers.

For the present, however, we may suppose the inductors and

receivers to surround the carrier completely when it is within them,

in which case the theory is much simplified.

We shall suppose the machine to consist of two inductors A and

C, and of two receivers B and D, with two carriers F and G.

Suppose the inductor A to be positively electrified so that its

potential is A, and that the carrier j^is within it and is at potential

F. Then, if Q is the coefficient of induction (taken positive) between

A and F
t
the quantity of electricity on the carrier will be Q (FA).

If the carrier, while within the inductor, is put in connexion with

the earth, then F = 0, and the charge on the carrier will be QA,

a negative quantity. Let the carrier be carried round till it is

within the receiver B, and let it then come in contact with a spring

so as to be in electrical connexion with B. It will then, as was

shewn in Art. 32, become completely discharged, and will com

municate its whole negative charge to the receiver B.

The carrier will next enter the inductor C, which we shall suppose

charged negatively. While within C it is put in connexion with

the earth and thus acquires a positive charge, which it carries off

and communicates to the receiver D, and so on.

In this way, if the potentials of the inductors remain always

constant, the receivers B and D receive successive charges, which

are the same for every revolution of the carrier, and thus every

revolution produces an equal increment of electricity in the re

ceivers.

*
Specification of Patent, Jan. 27, I860, No. 206.



296 ELECTROSTATIC INSTRUMENTS. [2IO.

But by putting the inductor A in communication with the re

ceiver D, and the inductor C with the receiver B, the potentials

of the inducto -s will be continually increased, and the quantity

of electricity communicated to the receivers in each revolution will

continually increase.

For instance, let the potential of A and D be U, and that of B
and C, 7, then, since the potential of the carrier is zero when

it is within A, being in contact with earth, its charge is z = QU.

The carrier enters B with this charge and communicates it to B.

If the capacity of B and C is B, their potential will be changed

from 7to7-^U.
If the other carrier has at the same time carried a charge Q V

from C to D, it will change the potential of A and D from U to

C7_ .3L
Y, if Q is the coefficient of induction between the carrier

A.

and (7, and A the capacity of A and D. If, therefore, Un and 7n

be the potentials of the two inductors after n half revolutions, and

Un+l and 7n+1 after n+1 half revolutions,

F - V JT
n + I n~ ~ U n-

Q Q
If we write p

2 = -~ and
&amp;lt;f

=
-j-

&amp;gt; we find
X) 4

Hence

Un = U
((I -pqY + (1 4 H)&quot;) +|

F
O ((1 -^)

n-

+ r
((i -^)&quot; + (

It appears from these equations that the quantity pU+qV con

tinually diminishes, so that whatever be the initial state of elec

trification the receivers are ultimately oppositely electrified, so that

the potentials of A and B are in the ratio ofp to q.

On the other hand, the quantity pUqV continually increases,

so that, however little pUm&y exceed or fall short of qF at first,

the difference will be increased in a geometrical ratio in each
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revolution till the electromotive forces become so great that the

insulation of the apparatus is overcome.

Instruments of this kind may be used for various purposes.

For producing a copious supply of electricity at a high potential,

as is done by means of Mr. Varley s large machine.

For adjusting the charge of a condenser, as in the case of

Thomson s electrometer, the charge of which can be increased or

diminished by a few turns of a very small machine of this kind,

which is then called a Replenishes
For multiplying small differences of potential. The inductors

may be charged at first to an exceedingly small potential, as, for

instance, that due to a thermo-electric pair, then, by turning the

machine, the difference of potentials may be continually multiplied

till it becomes capable of measurement by an ordinary electrometer.

By determining by experiment the ratio of increase of this difference

due to each turn of the machine, the original electromotive force

with which the inductors were charged may be deduced from the

number of turns and the final electrification.

In most of these instruments the carriers are made to revolve

about an axis and to come into the proper positions with respect

to the inductors by turning an axle. The connexions are made by
means of springs so placed that the carriers come in contact with

them at the proper instants.

211.] Sir W. Thomson *, however, has constructed a machine for

multiplying electrical charges in which the carriers are drops of

water falling out of the inside of an inductor into an insulated

receiver. The receiver is thus continually supplied with electricity

of opposite sign to that of the inductor. If the inductor is electrified

positively, the receiver will receive a continually increasing charge
of negative electricity.

The water is made to escape from the receiver by means of a

funnel, the nozzle of which is almost surrounded by the metal of

the receiver. The drops falling from this nozzle are therefore

nearly free from electrification. Another inductor and receiver of

the same construction are arranged so that the inductor of the

one system is in connexion with the receiver of the other. The

rate of increase of charge of the receivers is thus no longer constant,

but increases in a geometrical progression with the time, the

charges of the two receivers being of opposite signs. This increase

goes on till the falling drops are so diverted from their course by
* Proc. E. S., June 20, 1867.
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the electrical action that they fall outside of the receiver or even

strike the inductor.

In this instrument the energy of the electrification is drawn

from that of the falling drops.

212.] Several other electrical machines have been constructed

in which the principle of electric induction is employed. Of these

the most remarkable is that of Holtz, in which the carrier is a glass

plate varnished with gum-lac and the inductors are pieces of

pasteboard. Sparks are prevented from passing between the parts

of the apparatus by means of two glass plates, one on each side

of the revolving carrier plate. This machine is found to be very

effective, and not to be much affected by the state of the atmo

sphere. The principle is the same as in the revolving doubler and

the instruments developed out of the same idea, but as the carrier

is an insulating plate and the inductors are imperfect conductors,

the complete explanation of the action is more difficult than in

the case where the carriers are good conductors of known form

and are charged and discharged at definite points.

213.] In the electrical machines already described sparks occur

whenever the carrier comes in

contact with a conductor at a

different potential from its

own.

Now we have shewn that

whenever this occurs there is

a loss of energy, and therefore

the whole work employed in

turning the machine is not con

verted into electrification in an

available form, but part is spent

in producing the heat and noise

of electric sparks.

I have therefore thought it desirable to shew how an electrical

machine may be constructed which is not subject to
this^loss

of

efficiency. I do not propose it as a useful form of machine, but

as an example of the method by which the contrivance called in

heat-engines a regenerator may be applied to an electrical machine

to prevent loss of work.

In the figure let A, B, C, A ,
Bf

,
C represent hollow fixed

conductors, so arranged that the carrier P passes in succession

within each of them. Of these A, A and J5, Bf

nearly surround the

Fig. 18.
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carrier when it is at the middle point of its passage, but C, C do not

cover it so much.

We shall suppose A, B, C to be connected with a Leyden jar

of great capacity at potential F&quot;,
and A , B , C to be connected with

another jar at potential V .

P is one of the carriers moving in a circle from A to (?
, &c.,

and touching in its course certain springs, of which a and a are

connected with A and A respectively, and e, e are connected with

the earth.

Let us suppose that when the carrier P is in the middle of A
the coefficient of induction between P and A is A. The capacity

of P in this position is greater than A, since it is not completely

surrounded by the receiver A. Let it be A -\-a.

Then if the potential of P is V, and that of A, 7, the charge

Now let P be in contact with the spring a when in the middle

of the receiver A, then the potential of P is
V&amp;gt;

the same as that

of A, and its charge is therefore aV.

If P now leaves the spring a it carries with it the charge aV.

As P leaves A its potential diminishes, and it diminishes still more

when it comes within the influence of
,
which is negatively

electrified.

If when P comes within G its coefficient of induction on C is

C
,
and its capacity is C + c

, then, if U is the potential of P
the charge on P is

(C +c )U+C 7 =.aTr.

If C F =ar,
then at this point U the potential of P will be reduced to zero.

Let P at this point come in contact with the spring / which is

connected with the earth. Since the potential of P is equal to that

of the spring there will be no spark at contact.

This conductor C
, by which the carrier is enabled to be connected

to earth without a spark, answers to the contrivance called a

regenerator in heat-engines. We shall therefore call it a He-

generator.

Now let P move on, still in contact with the earth-spring /, till

it comes into the middle of the inductor B, the potential of which

is V. If B is the coefficient of induction between P and B at

this point, then, since U = the charge on P will be BV.

When P moves away from the earth-spring it carries this charge

with it. As it moves out of the positive inductor B towards the
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negative receiver A its potential will be increasingly negative. At

the middle of A\ if it retained its charge, its potential would be

A 7

A + a

and if 7 is greater than a V its numerical value will be greater

than that of 7 . Hence there is some point before P reaches the

middle of A where its potential is 7 . At this point let it come

in contact with the negative receiver-spring a . There will be no

spark since the two bodies are at the same potential. Let P move

on to the middle of A
,
still in contact with the spring, and therefore

at the same potential with A . During this motion it communicates

a negative charge to A . At the middle of A it leaves the spring

and carries away a charge a 7 towards the positive regenerator

C, where its potential is reduced to zero and it touches the earth-

spring e. It then slides along the earth-spring into the negative

inductor J5
, during which motion it acquires a positive charge I? 7

which it finally communicates to the positive receiver A, and the

cycle of operations is repeated.

During this cycle the positive receiver has lost a charge #Fand

gained a charge B 7 . Hence the total gain of positive electricity

is BV -aV.

Similarly the total gain of negative electricity is B7a 7/
.

By making the inductors so as to be as close to the surface of

the carrier as is consistent with insulation, B and B may be made

large, and by making the receivers so as nearly to surround the

carrier when it is within them, a and a may be made very small,

and then the charges of both the Leyden jars will be increased in

every revolution.

The conditions to be fulfilled by the regenerators are

C 7 =a7, and C7=a V.

Since a and a are small the regenerators do not require to be

either large or very close to the carriers.

On Electrometers and Electroscopes.

214.] An electrometer is an instrument by means of which

electrical charges or electrical potentials may be measured. In

struments by means of which the existence of electric charges or

of differences of potential may be indicated, but which are not

capable of affording numerical measures, are called Electroscopes.

An electroscope if sufficiently sensitive may be used in electrical

measurements, provided we can make the measurement depend on
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the absence of electrification. For instance, if we have two charged
bodies A and B we may use the method described in Chapter I to

determine which body has the greater charge. Let the body A
be carried by an insulating support into the interior of an insulated

closed vessel C. Let C be connected to earth and again insulated.

There will then be no external electrification on C. Now let A
be removed, and B introduced into the interior of C, and the elec

trification of C tested by an electroscope. If the charge of B is

equal to that of A there will be no electrification, but if it is greater

or less there will be electrification of the same kind as that of B, or

the opposite kind.

Methods of this kind, in which the thing to be observed is the

non-existence of some phenomenon, are called null or zero methods.

They require only an instrument capable of detecting the existence

of the phenomenon.
In another class of instruments for the registration of phe

nomena the instruments may be depended upon to give always the

same indication for the same value of the quantity to be registered,

but the readings of the scale of the instrument are not proportional

to the values of the quantity, and the relation between these

readings and the corresponding value is unknown, except that the

one is some continuous function of the other. Several electrometers

depending on the mutual repulsion of parts of the instrument

which are similarly electrified are of this class. The use of such

instruments is to register phenomena, not to measure them. Instead

of the true values of the quantity to be measured, a series of

numbers is obtained, which may be used afterwards to determine

these values when the scale of the instrument has been properly

investigated and tabulated.

In a still higher class of instruments the scale readings are

proportional to the quantity to be measured, so that all that is

required for the complete measurement of the quantity is a know

ledge of the coefficient by which the scale readings must be

multiplied to obtain the true value of the quantity.

Instruments so constructed that they contain within themselves

the means of independently determining the true values of quan
tities are called Absolute Instruments.

CoulomVs Torsion Balance.

215.] A great number of the experiments by which Coulomb
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established the fundamental laws of electricity were made by mea

suring the force between two small spheres charged with electricity,
one of which was fixed while the other was held in equilibrium by
two forces, the electrical action between the spheres, and the

torsional elasticity of a glass fibre or metal wire. See Art. 38.

The balance of torsion consists of a horizontal arm of gum-lac,

suspended by a fine wire or glass fibre, and carrying at one end a

little sphere of elder pith, smoothly gilt. The suspension wire is

fastened above to the vertical axis of an arm which can be moved
round a horizontal graduated circle, so as to twist the upper end
of the wire about its own axis any number of degrees.

The whole of this apparatus is enclosed in a case. Another little

sphere is so mounted on an insulating stem that it can be charged
and introduced into the case through a hole, and brought so that

its centre coincides with a definite point in the horizontal circle

described by the suspended sphere. The position of the suspended

sphere is ascertained by means of a graduated circle engraved on

the cylindrical glass case of the instrument.

Now suppose both spheres charged, and the suspended sphere
in equilibrium in a known position such that the torsion-arm makes
an angle 6 with the radius through the centre of the fixed sphere.
The distance of the centres is then 2 a sin \ 0, where a is the radius

of the torsion-arm, and if F is the force between the spheres the

moment of this force about the axis of torsion is Fa cos J 9.

Let both spheres be completely discharged, and let the torsion-

arm now be in equilibrium at an angle (p with the radius through
the fixed sphere.

Then the angle through which the electrical force twisted the

torsion-arm must have been
#&amp;lt;/&amp;gt;,

and if M is the moment of

the torsional elasticity of the fibre, we shall have the equation

Hence, if we can ascertain M, we can determine F. the actual

force between the spheres at the distance 2 a sin \6.

To find M, the moment of torsion, let /be the moment of inertia

of the torsion-arm, and T the time of a double vibration of the arm

under the action of the torsional elasticity, then

In all electrometers it is of the greatest importance to know
what force we are measuring. The force acting on the suspended
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sphere is clue partly to the direct action of the fixed sphere, but

partly also to the electrification, if any, of the sides of the case.

If the case is made of glass it is impossible to determine the

electrification of its surface otherwise than by very difficult mea

surements at every point. If, however, either the case is made

of metal, or if a metallic case which almost completely encloses the

apparatus is placed as a screen between the spheres and the glass

case, the electrification of the inside of the metal screen will depend

entirely on that of the spheres, and the electrification of the glass

case will have no influence on the spheres. In this way we may
avoid any indefiniteness due to the action of the case.

To illustrate this by an example in which we can calculate all

the effects, let us suppose that the case is a sphere of radius #,

that the centre of motion of the torsion-arm coincides with the

centre of the sphere and that its radius is a
;
that the charges on

the two spheres are E1 and E, and that the angle between their

positions is 6
;
that the fixed sphere is at a distance a^ from the

centre, and that r is the distance between the two small spheres.

Neglecting for the present the effect of induction on the dis

tribution of electricity on the small spheres, the force between

them will be a repulsion

and the moment of this force round a vertical axis through the

centre will be

r*

The image of E^ due to the spherical surface of the case is&quot; a point

in the same radius at a distance with a charge E
v ,

and the

moment of the attraction between E and this image about the axis

of suspension is

a sin

a2 2 cos 6 +
2

^
sin

If 7j, the radius of the spherical case, is large compared with a
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and #
t ) the distances of the spheres from the centre, we may neglect

the second and third terms of the factor in the denominator. The

whole moment tending to turn the torsion-arm may then be written

sin fl JL _
JJL

_^ = M(6-

Electrometersfor the Measurement of Potentials.

216.] In all electrometers the moveable part is a body charged

with electricity, and its potential is different from that of certain

of the fixed parts round it. When, as in Coulomb s method, an

insulated body having a certain charge is used, it is the charge

which is the direct object of measurement. We may, however,

connect the balls of Coulomb s electrometer,, by means of fine wires,

with different conductors. The charges of the balls will then

depend on the values of the potentials of these conductors and on

the potential of the case of the instrument. The charge on each

ball will be approximately equal to its radius multiplied by the

excess of its potential over that of the case of the instrument,

provided the radii of the balls are small compared with their

distances from each other and from the sides or opening of the

case.

Coulomb s form of apparatus, however, is not well adapted for

measurements of this kind, owing to the smallness of the force

between spheres at the proper distances when the difference of po

tentials is small. A more convenient form is that of the Attracted

Disk Electrometer. The first electrometers on this principle were

constructed by Sir W. Snow Harris*. They have since been

brought to great perfection, both in theory and construction, by

Sir W. Thomson f.

When two disks at different potentials are brought face to face

with a small interval between them there will be a nearly uniform

electrification on the opposite faces and very little electrification

on the backs of the disks, provided there are no other conductors

or electrified bodies in the neighbourhood. The charge on the

positive disk will be approximately proportional to its area, and to

the difference of potentials of the disks, and inversely as the distance

between them. Hence, by making the areas of the disks large

* Phil. Trans. 1834.

t See an excellent report on Electrometers by Sir W. Thomson. Report of the

British Association, Dundee, 1867.
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and the distance between them small, a small difference of potential

may give rise to a measurable force of attraction.

The mathematical theory of the distribution of electricity over

two disks thus arranged is given at Art. 202, but since it is im

possible to make the case of the apparatus so large that we may
suppose the disks insulated in an infinite space, the indications of

the instrument in this form are not easily interpreted numerically.

217.] The addition of the guard-ring to the attracted disk is one
of the chief improvements which Sir W. Thomson has made on the

apparatus.

Instead of suspending the whole of one of the disks and determ

ining the force acting upon it, a central portion of the disk is

separated from the rest to form the attracted disk, and the outer

ring forming the remainder of the disk is fixed. In this way the

force is measured only on that part of the disk where it is most

regular, and the want of uniformity of the electrification near the

COUNTERPOISE

Fig. 19.

edge is of no importance, as it occurs on the guard-ring and not

on the suspended part of the disk.

Besides this, by connecting the guard-ring with a metal case

surrounding the back of the attracted disk and all its suspending
apparatus, the electrification of the back of the disk is rendered

VOL. i. x



306 ELECTROSTATIC INSTRUMENTS. [217.

impossible, for it is part of the inner surface of a closed hollow

conductor all at the same potential.

Thomson s Absolute Electrometer therefore consists essentially

of two parallel plates at different potentials, one of which is made
so that a certain area, no part of which is near the edge of the

plate, is moveable under the action of electric force. To fix our

ideas we may suppose the attracted disk and guard-ring uppermost.
The fixed disk is horizontal, and is mounted on an insulating stem

which has a measurable vertical motion given to it by means of

a micrometer screw. The guard-ring is at least as large as the

fixed disk
;

its lower surface is truly plane and parallel to the fixed

disk. A delicate balance is erected on the guard-ring to which

is suspended a light moveable disk which almost fills the circular

aperture in the guard-ring without rubbing against its sides. The

lower surface of the suspended disk must be truly plane, and we

must have the means of knowing when its plane coincides with that

of the lower surface of the guard-ring, so as to form a single plane

interrupted only by the narrow interval between the disk and its

guard-ring.

For this purpose the lower disk is screwed up till it is in contact

with the guard-ring, and the suspended disk is allowed to rest

upon the lower disk, so that its lower surface is in the same plane

as that of the guard-ring. Its position with respect to the guard-

ring is then ascertained by means of a system of fiducial marks.

Sir W. Thomson generally uses for this purpose a black hair

attached to the moveable part. This hair moves up or down just

in front of two black dots on a white enamelled ground and is

viewed along with these dots by means of a piano convex lens with

the plane side next the eye. If the hair as seen through the lens

appears straight and bisects the interval between the black dots

it is said to be in its sighted position, and indicates that the sus

pended disk with which it moves is in its proper position as regards

height. The horizontality of the suspended disk may be tested by

comparing the reflexion of part of any object from its upper surface

with that of the remainder of the same object from the upper

surface of the guard-ring.

The balance is then arranged so that when a known weight is

placed on the centre of the suspended disk it is in equilibrium

in its sighted position, the whole apparatus being freed from

electrification by putting every part in metallic communication.

A metal case is placed over the guard-ring so as to enclose the
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balance and suspended disk, sufficient apertures being left to see

the fiducial marks.

The guard-ring, case, and suspended disk are all in metallic

communication with each other, but are insulated from the other

parts of the apparatus.

Now let it be required to measure the difference of potentials
of two conductors. The conductors are put in communication with

the upper and lower disks respectively by means of wires, the

weight is taken off the suspended disk, and the lower disk is

moved up by means of the micrometer screw till the electrical

attraction brings the suspended disk down to its sighted position.

We then know that the attraction between the disks is equal to

the weight which brought the disk to its sighted position.

If W be the numerical value of the weight, and g the force of

gravity, the force is Wg, and if A is the area of the suspended

disk, D the distance between the disks, and V the difference of the

potentials of the disks *
9

-i-ir -A- -n-

* Let us denote the radius of the suspended disk by E, and that of the aperture
of the guard-ring by E

,
then the breadth of the annular interval between the

disk and the ring will be B =R R.
If the distance between the suspended disk and the large fixed disk is

Z&amp;gt;,
and

the difference of potentials between these disks is V, then, by the investigation in

Art. 201, the quantity of electricity on the suspended disk will be

(

I SD 8D D + a

where a = B ^
, or a = 0.220635 (E - R}.

If the surface of the guard-ring is not exactly in the plane of the surface of
the suspended disk, let us suppose that the distance between the fixed disk and
the guard-ring is not D but D + z = D , then it appears from the investigation in

Art. 225 that there will be an additional charge of electricity near the edge of

the disk on account of its height z above the general surface of the guard-ring.
The whole charge in this case is therefore, approximately,

^
\ 8D 8D

and in the expression for the attraction we must substitute for A, the area of the

disk, the corrected quantity

A =i & + X*-(K*-&)-- + 8 (B

where E = radius of suspended disk,
R = radius of aperture in the guard-ring,
D = distance between fixed and suspended disks,
D = distance between fixed disk and guard-ring,
a = 0.220635 (K-R).

When a is small compared with D we may neglect the second term, and when
D D is small we may neglect the last term.

X 2
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If the suspended disk is circular, of radius E, and if the radius of

the aperture of the guard-ring is R
,
then

A = *& +&, and V=

218.] Since there is always some uncertainty in determining the

micrometer reading corresponding to D = 0, and since any error

in the position of the suspended disk is most important when D
is small, Sir W. Thomson prefers to make all his measurements

depend on differences of the electromotive force V. Thus, if V and

V are two potentials, and D and I/ the corresponding distances,

For instance, in order to measure the electromotive force of a

galvanic battery, two electrometers are used.

By means of a condenser, kept charged if necessary by a re-

plenisher, the lower disk of the principal electrometer is maintained

at a constant potential. This is tested by connecting the lower

disk of the principal electrometer with the lower disk of a secondary

electrometer, the suspended disk of which is connected with the

earth. The distance between the disks of the secondary elec

trometer and the force required to bring the suspended disk to

its sighted position being constant, if we raise the potential of the

condenser till the secondary electrometer is in its sighted position,

we know that the potential of the lower disk of the principal

electrometer exceeds that of the earth by a constant quantity which

we may call V.

If we now connect the positive electrode of the battery to earth,

and connect the suspended disk of the principal electrometer to the

negative electrode, the difference of potentials between the disks

will be F+ v, if v is the electromotive force of the battery. Let

D be the reading of the micrometer in this case, and let D be the

reading when the suspended disk is connected with earth, then

In this way a small electromotive force v may be measured

by the electrometer with the disks at conveniently measurable

distances. When the distance is too small a small change of

absolute distance makes a great change in the force, since the

force varies inversely as the square of the distance, so that any
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error in the absolute distance introduces a large error in the result

unless the distance is large compared with the limits of error of

the micrometer screw.

The effect of small irregularities of form in the surfaces of the

disks and of the interval between them diminish according to the

inverse cube and higher inverse powers of the distance, and what

ever be the form of a corrugated surface, the eminences of which

just reach a plane surface, the electrical effect at any distance

which is considerable compared to the breadth of the corrugations,

is the same as that of a plane at a certain small distance behind

the plane of the tops of the eminences. See Arts. 197, 198.

By means of the auxiliary electrification, tested by the auxiliary

electrometer, a proper interval between the disks is secured.

The auxiliary electrometer may be of a simpler construction, in

which there is no provision for the determination of the force

of attraction in absolute measure, since all that is wanted is to

secure a constant electrification. Such an electrometer may be

called a gauge electrometer.

This method of using an auxiliary electrification besides the elec

trification to be measured is called the Heterostatic method of

electrometry, in opposition to the Idiostatic method in which the

whole effect is produced by the electrification to be measured.

In several forms of the attracted disk electrometer, the attracted

disk is placed at one end of an arm which is supported by being
attached to a platinum wire passing through its centre of gravity

and kept stretched by means of a spring. The other end of the

arm carries the hair which is brought to a sighted position by

altering the distance between the disks, and so adjusting the force

of the electric attraction to a constant value. In these electro

meters this force is not in general determined in absolute measure,

but is known to be constant, provided the torsional elasticity of

the platinum wire does not change.
The whole apparatus is placed in a Leyden jar, of which the inner

surface is charged and connected with the attracted disk and

guard-ring. The other disk is worked by a micrometer screw and

is connected first with the earth and then with the conductor whose

potential is to be measured. The difference of readings multiplied

by a constant to be determined for each electrometer gives the

potential required.

219.] The electrometers already described are not self-acting,

but require for each observation an adjustment of a micrometer
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screw, or some other movement which must be made by the

observer. They are therefore not fitted to act as self-registering

instruments, which must of themselves move into the proper

position. This condition is fulfilled by Thomson s Quadrant

Electrometer.

The electrical principle on which this instrument is founded may
be thus explained :

A and B are two fixed conductors which may be at the same

or at different potentials. C is a moveable conductor at a high

potential, which is so placed that part of it is opposite to the

surface ofA and part opposite to that ofB
t
and that the proportions

of these parts are altered as C moves.

For this purpose it is most convenient to make C moveable about

an axis, and make the opposed surfaces of A, of B, and of C portions

of surfaces of revolution about the same axis.

In this way the distance between the surface of C and the

opposed surfaces of A or of B remains always the same, and the

motion of C in the positive direction simply increases the area

opposed to B and diminishes the area opposed to A.

If the potentials of A and B are equal there will be no force

urging C from A to B, but if the potential of C differs from that

of B more than from that of A, then C will tend to move so as

to increase the area of its surface opposed to B.

By a suitable arrangement of the apparatus this force may be

made nearly constant for different positions of C within certain

limits, so that if C is suspended by a torsion fibre, its deflexions

will be nearly proportional to the difference of potentials between

A and B multiplied by the difference of the potential of C from

the mean of those of A and B.

C is maintained at a high potential by means of a condenser

provided with a replenisher and tested by a gauge electrometer,

and A and B are connected with the two conductors the difference

of whose potentials is to be measured. The higher the potential

of C the more sensitive is the instrument. This electrification of

6&quot;, being independent of the electrification to be measured, places

this electrometer in the heterostatic class.

We may apply to this electrometer the general theory of systems

of conductors given in Arts. 93, 127.

Let A, .8, C denote the potentials of the three conductors re

spectively. Let a, b, c be their respective capacities,^ the coefficient

of induction between B and C, q that between C and A, and r that
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between A and B. All these coefficients will in general vary with

the position of
&amp;lt;?,

and if C is so arranged that the extremities of A
and B are not near those of Cas long as the motion of Cis confined

within certain limits, we may ascertain the form of these coefficients.

If 6 represents the deflexion of C from A towards B, then the part

of the surface of A opposed to C will diminish as B increases.

Hence ifA is kept at potential 1 while B and Cave kept at potential

0, the charge on A will be a = # a0, where a and a are

constants, and a is the capacity of A.

If A and B are symmetrical, the capacity of B is 6 &Q + a0.

The capacity of C is not altered by the motion, for the only

effect of the motion is to bring a different part of C opposite to the

interval between A and B. Hence c = &amp;lt;? .

The quantity of electricity induced on C when B is raised to

potential unity is p = /&amp;gt;

a0.

The coefficient of induction between A and C is q qQ + a0.

The coefficient of induction between A and B is not altered by
the motion of (7, but remains r = r .

Hence the electrical energy of the system is

and if is the moment of the force tending to increase 6,

dW=
, A, J5, C being supposed constant,

dQ

da db dc dp do dr

or = a(A-B) (C-
In the present form of Thomson s Quadrant Electrometer the

conductors A and B are in the form of

a cylindrical box completely divided

into four quadrants, separately insu

lated, but joined by wires so that two

opposite quadrants are connected with

A and the two others with B.

The conductor C is suspended so as

to be capable of turning about a

vertical axis, and may consist of two

opposite flat quadrantal arcs supported

by their radii at their extremities.

In the position of equilibrium these quadrants should be partly

Fig. 20.



312 ELECTROSTATIC INSTRUMENTS. [220.

within A and partly within B} and the supporting radii should

be near the middle of the quadrants of the hollow base, so that

the divisions of the box and the extremities and supports of C

may be as far from each other as possible.

The conductor C is kept permanently at a high potential by
being connected with the inner coating of the Leyden jar which

forms the case of the instrument. B and A are connected, the first

with the earth, and the other with the body whose potential is to be

measured.

If the potential of this body is zero, and if the instrument be

in adjustment, there ought to be no force tending to make C move,
but if the potential of A is of the same sign as that of C, then

C will tend to move from A to B with a nearly uniform force, and

the suspension apparatus will be twisted till an equal force is

called into play and produces equilibrium. Within certain limits

the deflexions of C will be proportional to the product

By increasing the potential of C the sensibility of the instrument

may be increased, and for small values of \ (A -f B) the deflexions

will be nearly proportional to (AB) C.

On the Measurement of Electric Potential.

220.] In order to determine large differences of potential in ab

solute measure we may employ the attracted disk electrometer, and

compare the attraction with the effect of a weight. If at the same

time we measure the difference of potential of the same conductors

by means of the quadrant electrometer, we shall ascertain the

absolute value of certain readings of the scale of the quadrant

electrometer, and in this way we may deduce the value of the scale

readings of the quadrant electrometer in terms of the potential

of the suspended part, and the moment of torsion of the suspension

apparatus.

To ascertain the potential of a charged conductor of finite size

we may connect the conductor with one electrode of the electro

meter, while the other is connected to earth or to a body of

constant potential. The electrometer reading will give the potential

of the conductor after the division of its electricity between it

and the part of the electrometer with which it is put in contact.

If K denote the capacity of the conductor, and K that of this part
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of the electrometer, and if 7, V denote the potentials of these

bodies before making contact, then their common potential after

making contact will be

K+K
Hence the original potential of the conductor was

If the conductor is not large compared with the electrometer,

K will be comparable with K
t
and unless we can ascertain the

values of K and TL the second term of the expression will have

a doubtful value. But if we can make the potential of the electrode

of the electrometer very nearly equal to that of the body before

making contact, then the uncertainty of the values of K and K
will be of little consequence.

If we know the value of the potential of the body approximately,
we may charge the electrode by means of a replenisher or other

wise to this approximate potential, and the next experiment will

give a closer approximation. In this way we may measure the

potential of a conductor whose capacity is small compared with

that of the electrometer.

To Measure the Potential at any Point in the Air.

221.] First Method. Place a sphere, whose radius is small com

pared with the distance of electrified conductors, with its centre

at the given point. Connect it by means of a fine wire with the

earth, then insulate it, and carry it to an electrometer and ascertain

the total charge on the sphere.

Then, if V be the potential at the given point, and a the

radius of the sphere, the charge on the sphere will be Va = Q,

and if V be the potential of the sphere as measured by an elec

trometer when placed in a room whose walls are connected with

the earth, then Q ya)

whence V-\- V 0,

or the potential of the air at the point where the centre of the

sphere was placed is equal but of opposite sign to the potential of

the sphere after being connected to earth, then insulated, and

brought into a room.

This method has been employed by M. Delmann of Creuznach in



314 ELECTROSTATIC INSTRUMENTS. [222.

measuring the potential at a certain height above the earth s

surface.

Second Method. We have supposed the sphere placed at the

given point and first connected to earth, and then insulated, and

carried into a space surrounded with conducting matter at potential

zero.

Now let us suppose a fine insulated wire carried from the elec

trode of the electrometer to the place where the potential is to

be measured. Let the sphere be first discharged completely. This

may be done by putting it into the inside of a vessel of the same

metal which nearly surrounds it and making it touch the vessel.

Now let the sphere thus discharged be carried to the end of the

wire and made to touch it. Since the sphere is not electrified it

will be at the potential of the air at the place. If the electrode

wire is at the same potential it will not be affected by the contact,

but if the electrode is at a different potential it will by contact

with the sphere be made nearer to that of the air than it was

before. By a succession of such operations, the sphere being

alternately discharged and made to touch the electrode, the poten

tial of the electrode of the electrometer will continually approach

that of the air at the given point.

222.] To measure the potential of a conductor without touching

it, we may measure the potential of the air at any point in the

neighbourhood of the conductor, and calculate that of the conductor

from the result. If there be a hollow nearly surrounded by the

conductor, then the potential at any point of the air in this hollow

will be very nearly that of the conductor.

In this way it has been ascertained by Sir W. Thomson that if

two hollow conductors, one of copper and the other of zinc, are

in metallic contact, then the potential of the air in the hollow

surrounded by zinc is positive with reference to that of the air

in the hollow surrounded by copper.

Third Method. If by any means we can cause a succession of

small bodies to detach themselves from the end of the electrode,

the potential of the electrode will approximate to that of the sur

rounding air. This may be done by causing shot, filings, sand, or

water to drop out of a funnel or pipe connected with the electrode.

The point at which the potential is measured is that at which

the stream ceases to be continuous and breaks into separate parts

or drops.

Another convenient method is to fasten a slow match to the
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electrode. The potential is very soon made equal to that of the

air at the burning end of the match. Even a fine metallic point
is sufficient to create a discharge by means of the particles of the

air when the difference of potentials is considerable, but if we
wish to reduce this difference to zero, we must use one of the

methods stated above.

If we only wish to ascertain the sign of the difference of the

potentials at two places, and not its numerical value, we may cause

drops or filings to be discharged at one of the places from a nozzle

connected with the other place, and catch the drops or filings

in an insulated vessel. Each drop as it falls is charged with a

certain amount of electricity, and it is completely discharged into

the vessel. The charge of the vessel therefore is continually ac

cumulating, and after a sufficient number of drops have fallen, the

charge of the vessel may be tested by the roughest methods. The

sign of the charge is positive if the potential of the nozzle is positive

relatively to that of the surrounding air.

MEASUREMENT OF SURFACE-DENSITY OF ELECTRIFICATION.

Theory of the Proof Plane.

223.] In testing the results of the mathematical theory of the

distribution of electricity on the surface of conductors, it is necessary

to be able to measure the surface-density at different points of

the conductor. For this purpose Coulomb employed a small disk

of gilt paper fastened to an insulating stem of gum-lac. He ap

plied this disk to various points of the conductor by placing it

so as to coincide as nearly as possible with the surface of the

conductor. He then removed it by means of the insulating stem,

and measured the charge of the disk by means of his electrometer.

Since the surface of the disk, when applied to the conductor,

nearly coincided with that of the conductor, he concluded that

the surface-density on the outer surface of the disk was nearly

equal to that on the surface of the conductor at that place, and that

the charge on the disk when removed was nearly equal to that

on an area of the surface of the conductor equal to that of one side

of the disk. This disk, when employed in this way, is called

Coulomb s Proof Plane.

As objections have been raised to Coulomb s use of the proof

plane, I shall make some remarks on the theory of the experiment.
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This experiment consists in bringing a small conducting body
into contact with the surface of the conductor at the point where

the density is to be measured, and then removing the body and

determining its charge.

We have first to shew that the charge on the small body when

in contact with the conductor is proportional to the surface-

density which existed at the point of contact before the small body
was placed there.

We shall suppose that all the dimensions of the small body, and

especially its dimension in the direction of the normal at the point

of contact, are small compared with either of the radii of curvature

of the conductor at the point of contact. Hence the variation of

the resultant force due to the conductor supposed rigidly electrified

within the space occupied by the small body may be neglected,

and we may treat the surface of the conductor near the small body
as a plane surface.

Now the charge which the small body will take by contact with

a plane surface will be proportional to the resultant force normal

to the surface, that is, to the surface-density. We shall ascertain

the amount of the charge for particular forms of the body.

We have next to shew that when the small body is removed no

spark will pass between it and the conductor, so that it will carry

its charge with it. This is evident, because when the bodies are

in contact their potentials are the same, and therefore the density

on the parts nearest to the point of contact is extremely small.

When the small body is removed to a very short distance from

the conductor, which we shall suppose to be electrified positively,

then the electrification at the point nearest to the small body is

no longer zero but positive, but, since the charge of the small body

is positive, the positive electrification close to the small body will

be less than at other neighbouring points of the surface. Now
the passage of a spark depends in general on the magnitude of the

resultant force, and this on the surface-density. Hence, since we

suppose that the conductor is not so highly electrified as to be

discharging electricity from the other parts of its surface, it will

not discharge a spark to the small body from a part of its surface

which we have shewn to have a smaller surface-density.

224.] We shall now consider various forms of the small body.

Suppose it to be a small hemisphere applied to the conductor so

as to touch it at the centre of its flat side.

Let the conductor be a large sphere, and let us modify the form



225.] THE PROOF PLANE. 317

of the hemisphere so that its surface is a little more than a hemi

sphere, and meets the surface of the sphere afc right angles. Then
we have a case of which we have already obtained the exact solution.

See Art. 167.

If A and B be the centres of the two spheres cutting each other

at right angles, DD a diameter of the circle of intersection, and C
the centre of that circle, then if Fis the potential of a conductor

whose outer surface coincides with that of the two spheres, the

quantity of electricity on the exposed surface of the sphere A is

and that on the exposed surface of the sphere B is

\r(AD+BD+BC-CJ)
the total charge being the sum of these, or

If a and are the radii of the spheres, then, when a is large

compared with
/3, the charge on B is to that on A in the ratio of

Now let a- be the uniform surface-density on A when B is re

moved, then the charge on A is

4 TT a2 o-,

and therefore the charge on B is

377/3
2

cr(l-f
i- + &c.),v o a

or, when fi is very small compared with a, the charge on the

hemisphere B is equal to three times that due to a surface-density o-

extending over an area equal to that of the circular base of the

hemisphere.
It appears from Art. 175 that if a small sphere is made to touch

an electrified body, and is then removed to a distance from it, the

mean surface-density on the sphere is to the surface-density of the

body at the point of contact as ?r
2

is to 6, or as 1.645 to 1.

225.] The most convenient form for the proof plane is that of

a circular disk. We shall therefore shew how the charge on a

circular disk laid on an electrified surface is to be measured.

For this purpose we shall construct a value of the potential
function so that one of the equipotential surfaces resembles a circular

flattened protuberance whose general form is somewhat like that of

a disk lying on a plane.
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Let &amp;lt;r be the surface-density of a plane, which we shall suppose

to be that of xy.

The potential due to this electrification will be

Now let two disks of radius a be rigidly electrified with surface-

densities a and + (/. Let the first of these be placed on the plane

of xy with its centre at the origin, and the second parallel to it at

the very small distance c.

Then it may be shewn, as we shall see in the theory of mag
netism, that the potential of the two disks at any point is

a&amp;gt;&amp;lt;/c,

where a&amp;gt; is the solid angle subtended by the edge of either disk at

the point. Hence the potential of the whole system will be

F= 4 77 0-2-1- (/CO).

The forms of the equipotential surfaces and lines of induction

are given on the left-hand side of Fig. XX, at the end of Vol. II.

Let us trace the form of the surface for which V= 0. This

surface is indicated by the dotted line.

Putting the distance of any point from the axis of z = r, then,

when r is much less than a, and z is small, we find

o&amp;gt; = 27T 277 - + &c.
a

Hence, for values of r considerably less than
a&amp;gt;

the equation of

the zero equipotential surface is

zc= 4 TT vz +2 77 o- tf 2 71 &amp;lt;/ +&c. ;
a

&amp;lt;/c

or

Hence this equipotential surface near the axis is nearly flat.

Outside the disk, where r is greater than a, o&amp;gt; is zero when z is

zero, so that the plane of xy is part of the equipotential surface.

To find where these two parts of the surface meet, let us find at

dV
what point of this plane -=- = 0.

az

When r is very nearly equal to #, the solid angle o&amp;gt; becomes

approximately a lune of the sphere of unit radius whose angle is

tan-1
{z -*- (r-a)}, that is, w is 2 tan&quot;

1
{z -s-

(r a)}, so that

dV _ 2(/c

dz ra
Hence, when

dV a c ZQ ,

= 0, rn a-\ = a + , nearly.
dz 2 77 (T 77
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The equipotential surface F=0 is therefore composed of a disk-

like figure of radius r
, and nearly uniform thickness #

,
and of the

part of the infinite plane of xy which lies beyond this figure.

The surface-integral over the whole disk gives the charge of

electricity on it. It may be found, as in the theory of a circular

current in Part IV, Art. 704, to be

Q = 47ra(r c {log
?* a,

The charge on an equal area of the plane surface is ir(rr
2

,
hence

the charge on the disk exceeds that on an equal area of the plane
in the ratio of z , STTT .

1 + 8 - log
-- to unity,

where z is the thickness and r the radius of the disk, z being sup

posed small compared with r.

On Electric Accumulators and tJie Measurement of Capacity.

226.] An Accumulator or Condenser is an apparatus consisting of

two conducting surfaces separated byan insulating dielectric medium.

A Leyden jar is an accumulator in which an inside coating of

tinfoil is separated from the outside coating by the glass of which

the jar is made. The original Leyden phial was a glass vessel

containing water which was separated by the glass from the hand

which held it.

The outer surface of any insulated conductor may be considered

as one of the surfaces of an accumulator, the other being the earth

or the walls of the room in which it is placed, and the intervening
air being the dielectric medium.

The capacity of an accumulator is measured by the quantity of

electricity with which the inner surface must be charged to make

the difference between the potentials of the surfaces unity.

Since every electrical potential is the sum of a number of parts

found by dividing each electrical element by its distance from a

point, the ratio of a quantity of electricity to a potential must

have the dimensions of a line. Hence electrostatic capacity is a

linear quantity, or we may measure it in feet or metres without

ambiguity.

In electrical researches accumulators are used for two principal

purposes, for receiving and retaining large quantities of electricity

in as small a compass as possible, and for measuring definite quan
tities of electricity by means of the potential to which they raise

the accumulator.
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For the retention of electrical charges nothing has been devised

more perfect than the Leyden jar. The principal part of the loss

arises from the electricity creeping along the damp uncoated surface

of the glass from the one coating to the other. This may be checked

in a great degree by artificially drying the air within the jar, and

by varnishing the surface of the glass where it is exposed to the

atmosphere. In Sir W. Thomson s electroscopes there is a very

small percentage of loss from day to day, and I believe that none

of this loss can be traced to direct conduction either through air

or through glass when the glass is good, but that it arises chiefly

from superficial conduction along the various insulating stems and

glass surfaces of the instrument.

In fact, the same electrician has communicated a charge to

sulphuric acid in a large bulb with a long neck, and has then her

metically sealed the neck by fusing it, so that the charge was com

pletely surrounded by glass, and after some years the charge was

found still to be retained.

It is only, however, when cold, that glass insulates in this

way, for the charge escapes at once if the glass is heated to

a temperature below 100C.

When it is desired to obtain great capacity in small compass,

accumulators in which the dielectric is sheet caoutchouc, mica, or

paper impregnated with paraffin are convenient.

227.] For accumulators of the second class, intended for the

measurement of quantities of electricity, all solid dielectrics must be

employed with great caution on account of the property which they

possess called Electric Absorption.

The only safe dielectric for such accumulators is air, which has

this inconvenience, that if any dust or dirt gets into the narrow

space between the opposed surfaces, which ought to be occupied only

by air, it not only alters the thickness of the stratum of air, but

may establish a connexion between the opposed surfaces, in which

case the accumulator will not hold a charge.

To determine in absolute measure, that is to say in feet or metres,

the capacity of an accumulator, we must either first ascertain its

form and size, and then solve the problem of the distribution of

electricity on its opposed surfaces, or we must compare its capacity

with that of another accumulator, for which this problem has been

solved.

As the problem is a very difficult one, it is best to begin with an

accumulator constructed of a form for which the solution is known.
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Thus the capacity of an insulated sphere in an unlimited space is

known to be measured by the radius of the sphere.

A sphere suspended in a room was actually used by MM. Kohl-

rausch and Weber, as an absolute standard with which they com

pared the capacity of other accumulators.

The capacity, however, of a sphere of moderate size is so small

when compared with the capacities of the accumulators in common
use that the sphere is not a convenient standard measure.

Its capacity might be greatly increased by surrounding the-

sphere with a hollow concentric spherical surface of somewhat

greater radius. The capacity of the inner surface is then a fourth

proportional to the thickness of the stratum of air and the radii of

the two surfaces.

Sir W. Thomson has employed this arrangement as a standard of

capacity, but the difficulties of working the surfaces truly spherical,

of making them truly concentric, and of measuring their distance

and their radii with sufficient accuracy, are considerable.

We are therefore led to prefer for an absolute measure of capacity
a form in which the opposed surfaces are parallel planes.

The accuracy of the surface of the planes can be easily tested,

and their distance can be measured by a micrometer screw, and

may be made capable of continuous variation, which is a most

important property of a measuring instrument.

The only difficulty remaining arises from the fact that the planes
must necessarily be bounded, and that the distribution of electricity

near the boundaries of the planes has not been rigidly calculated.

It is true that if we make them equal circular disks, whose radius

is large compared with the distance between them, we may treat

the edges of the disks as if they were straight lines, and calculate

the distribution of electricity by the method due to Helmholtz, and

described in Art. 202. But it will be noticed that in this case

part of the electricity is distributed on the back of each disk, and

that in the calculation it has been supposed that there are no

conductors in the neighbourhood, which is not and cannot be the

case in a small instrument.

228.] We therefore prefer the following arrangement, due to

Sir W. Thomson, which we may call the Guard-ring arrangement,

by means of which the quantity of electricity on an insulated disk

may be exactly determined in terms of its potential.

VOL. I.
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The Guard-ring Accumulator.

Bb is a cylindrical vessel of conducting material of which the
outer surface of the upper face is accurately plane. This upper

surface consists of two parts,

a disk A, and a broad ring
SB surrounding the disk,

separated from it by a very
small interval all round, just

sufficient to prevent sparks

passing. The upper surface
LJ

B
J
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Now let the vessel Bb be put in connexion with the earth. The

charge on the disk A will no longer be uniformly distributed, but it

will remain the same in quantity, and if we now discharge A we
shall obtain a quantity of electricity, the Value of which we know
in terms of 7

t
the original difference of potentials and the measur

able quantities R, R
f
and A.

On the Comparison of the Capacity of Accumulators.

229.] The form of accumulator which is best fitted to have its

capacity determined in absolute measure from the form and dimen

sions of its parts is not generally the most suitable for electrical

experiments. It is desirable that the measures of capacity in actual

use should be accumulators having only two conducting surfaces, one

of which is as nearly as possible surrounded by the other. The

guard-ring accumulator, on the other hand, has three independent

conducting portions which must be charged and discharged in a

certain order. Hence it is desirable to be able to compare the

capacities of two accumulators by an electrical process, so as to test

accumulators which may afterwards serve as secondary standards.

I shall first shew how to test the equality of the capacity of two

guard-ring accumulators.

Let A be the disk, B the guard-ring with the rest of the con

ducting vessel attached to it, and C the large disk of one of these

accumulators, and let A , _5
,
and C be the corresponding parts of

the other.

If either of these accumulators is of the more simple kind, having

only two conductors, we have only to suppress B or Bf

9
and to

suppose A to be the inner and C the outer conducting surface, (?,

in this case being understood to surround A.

Let the following connexions be made.

Let B be kept always connected with C
,
and B with C, that is,

let each guard-ring be connected with the large disk of the other

condenser.

(1) Let A be connected with B and C and with /, the electrode

of a Leyden jar, and let A be connected with B and C and with

the earth.

(2) Let A, B, and Cf

be insulated from /.

(3) Let A be insulated from B and C , and A from & and C.

(4) Let B and (7 be connected with B and C and with the

earth.

(5) Let A be connected with A .

Y 2
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(6) Let A and A be connected with an electroscope E.

We may express these connexions as follows :

(1) o = C=i =^/

|

A= =C =J.

(2) =C=3 =A
|

A= =C \J.

(3) Q = C=B \A | A\B=C .

(4)
= C= \A | A\ J5=0 =0.

(5)
= &amp;lt;?=JS |^ = A\3=C =0.

(6) = &amp;lt;?=
|

A =E= A \3=C =0.

Here the sign of equality expresses electrical connexion, and the

vertical stroke expresses insulation.

In (l) the two accumulators are charged oppositely, so that A is

positive and A negative, the charges on A and A being uniformly

distributed on the upper surface opposed to the large disk of each

accumulator.

In (2) the jar is removed, and in (3) the charges on A and A are

insulated.

In (4) the guard-rings are connected with the large disks, so that

the charges on A and A
, though unaltered in magnitude, are now

distributed over their whole surface.

In (5) A is connected with A . If the charges are equal and of

opposite signs, the electrification will be entirely destroyed, and

in (6) this is tested by means of the electroscope E.

The electroscope E will indicate positive or negative electrification

according as A or A has the greater capacity.

By means of a key of proper construction, the whole of these

operations can be performed in due succession in a very small

fraction of a second, and the capacities adjusted till no electri

fication can be detected by the electroscope, and in this way the

capacity of an accumulator may be adjusted to be equal to that of

any other, or to the sum of the capacities of several accumulators,

so that a system of accumulators may be formed, each of which has

its capacity determined in absolute measure, i.e. in feet or in metres,

while at the same time it is of the construction most suitable for

electrical experiments.

This method of comparison will probably be found useful in

determining the specific capacity for electrostatic induction of

different dielectrics in the form of plates or disks. If a disk of

the dielectric is interposed between A and C, the disk being con

siderably larger than A, then the capacity of the accumulator will
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be altered and made equal to that of the same accumulator when A
and C are nearer tog-ether. If the accumulator with the dielectric

plate, and with A and C at distance #, is of the same capacity as

the same accumulator without the dielectric, and with A and C at

distance x
, then, if a is the thickness of the plate, andK its specific

dielectric inductive capacity referred to air as a standard,

x

The combination of three cylinders, described in Art. 127, has

been employed by &quot;Sir W. Thomson as an accumulator whose capa

city may be increased or diminished by measurable quantities.

The experiments of MM. Gibson and Barclay with this ap

paratus are described in the Proceedings of the Royal Society, Feb. 2,

1871, and Phil. Trans., 1871, p. 573. They found the specific in

ductive capacity of paraffin to be 1.975, that of air being unity.
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ELECTRO KINEMATICS.

CHAPTEK I.

THE ELECTEIC CUEEENT.

230.] WE have seen, in Art. 45, that when a conductor is in

electrical equilibrium the potential at every point of the conductor

must be the same.

If two conductors A and B are charged with electricity so that

the potential of A is higher than that of B, then, if they are put

in communication by means of a metallic wire C touching both of

them, part of the charge of A will be transferred to B, and the

potentials of A and B will become in a very short time equalized.

231.] During this process certain phenomena are observed in

the wire C, which are called the phenomena of the electric conflict

or current.

The first of these phenomena is the transference of positive

electrification from A to B and of negative electrification from B
to A. This transference may be also effected in a slower manner

by bringing a small insulated body into contact with A and B
alternately. By this process, which we may call electrical con

vection, successive small portions of the electrification of each body
are transferred to the other. In either case a certain quantity of

electricity, or of the state of electrification, passes from one place

to another along a certain path in the space between the bodies.

Whatever therefore may be our opinion of the nature of elec

tricity, we must admit that the process which we have described

constitutes a current of electricity. This current may be described
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as a current of positive electricity from A to B, or a current of

negative electricity from B to A, or as a combination of these two

currents.

According to Fechner s and Weber s theory it is a combination

of a current of positive electricity with an exactly equal current

of negative electricity in the opposite direction through the same

substance. It is necessary to remember this exceedingly artificial

hypothesis regarding the constitution of the current in order to

understand the statement of some of Weber s most valuable ex

perimental results.

If, as in Art. 36, we suppose P units of positive electricity

transferred from A to B, and N units of negative electricity trans

ferred from B to A in unit of time, then, according to Weber s

theory, P = N, and P or N is to be taken as the numerical measure

of the current.

We, on the contrary, make no assumption as to the relation

between P and N, but attend only to the result of the current,

namely, the transference of P +N of positive electrification from A
to B, and we shall consider P -f-N the true measure of the current.

The current, therefore, which Weber would call 1 we shall call 2.

On Steady Currents.

232.] In the case of the current between two insulated con

ductors at different potentials the operation is soon brought to

an end by the equalization of the potentials of the two bodies,

and the current is therefore essentially a Transient current.

But there are methods by which the difference of potentials of

the conductors may be maintained constant, in which case the

current will continue to flow with uniform strength as a Steady

Current.

The Voltaic Battery.

The most convenient method of producing a steady current is by

means of the Voltaic Battery.

For the sake of distinctness we shall describe DanielPs Constant

Battery :

A solution of sulphate of zinc is placed in a cell of porous earth

enware, and this cell is placed in a vessel containing a saturated

solution of sulphate of copper. A piece of zinc is dipped into the

sulphate of zinc, and a piece of copper is dipped into the sulphate

of copper. Wires are soldered to the zinc and to the copper above
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the surface of the liquid. This combination is called a cell or

element of Daniell s battery. See Art. 272.

233.] If the cell is insulated by being- placed on a non-con

ducting stand, and if the wire connected with the copper is put
in contact with an insulated conductor A, and the wire connected

with the zinc is put in contact with H, another insulated conductor

of the same metal as A, then it may be shewn by means of a delicate

electrometer that the potential of A exceeds that of B by a certain

quantity. This difference of potentials is called the Electromotive

Force of the Daniell s Cell.

If A and B are now disconnected from the cell and put in

communication by means of a wire, a transient current passes

through the wire from A to B, and the potentials of A and B
become equal. A and B may then be charged again by the cell,

and the process repeated as long as the cell will work. But if

A and B be connected by means of the wire C, and at the same

time connected with the battery as before, then the cell will main

tain a constant current through C, and also a constant difference

of potentials between A and B. This difference will not, as we
shall see, be equal to the whole electromotive force- of the cell, for

part of this force is spent in maintaining the current through the

cell itself.

A number of cells placed in series so that the zinc of the first

cell is connected by metal with the copper of the second, and

so on, is called a Voltaic Battery. The electromotive force of

such a battery is the sum of the electromotive forces of the cells

of which it is composed. If the battery is insulated it may be

charged with electricity as a whole, but the potential of the copper
end will always exceed that of the zinc end by the electromotive

force of the battery, whatever the absolute value of either of these

potentials may be. The cells of the battery may be of very various

construction, containing different chemical substances and different

metals, provided they are such that chemical action does not go
on when no current passes.

234.] Let us now consider a voltaic battery with its ends insulated

from each other. The copper end will be positively or vitreously

electrified, and the zinc end will be negatively or resinously

electrified.

Let the two ends of the battery be now connected by means of

a wire. An electric current will commence, and will in a very short

time attain a constant value. It is then said to be a Steady Current.
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Properties of the Current.

235.] The current forms a closed circuit in the direction from

copper to zinc through the wires, and from zinc to copper through
the solutions.

If the circuit be broken by cutting any of the wires which

connect the copper of one cell with the zinc of the next in order, the

current will be stopped, and the potential of the end of the wire

in connexion with the copper will be found to exceed that of the

end of the wire in connexion with the zinc by a constant quantity,

namely, the total electromotive force of the circuit.

Electrolytic Action of the Current.

236.] As long as the circuit is broken no chemical action goes
on in the cells, but as soon as the circuit is completed, zinc is

dissolved from the zinc in each of the Darnell s cells, and copper is

deposited on the copper.

The quantity of sulphate of zinc increases, and the quantity of

sulphate of copper diminishes unless more is constantly supplied.

The quantity of zinc dissolved and also that of copper deposited is

the same in each of the Daniell s cells throughout the circuit, what

ever the size of the plates of the cell, and if any of the cells be of a

different construction, the amount of chemical action in it bears

a constant proportion to the action in the Daniell s cell. For

instance, if one of the cells consists of two platinum plates dipped
into sulphuric acid diluted with water, oxygen will be given off

at the surface of the plate where the current enters the liquid,

namely, the plate in metallic connexion with the copper of Daniell s

cell, and hydrogen at the surface of the plate where the current

leaves the liquid, namely, the plate connected with the zinc of

Daniell s cell.

The volume of the hydrogen is exactly twice the volume of the

oxygen given off in the same time, and the weight of the oxygen is

exactly eight times the weight of the hydrogen.
In every cell of the circuit the weight of each substance dissolved,

deposited, or decomposed is equal to a certain quantity called the

electrochemical equivalent of that substance, multiplied by the

strength of the current and by the time during which it has

been flowing.

For the experiments which established this principle, see the

seventh and eighth series of Faraday s Experimental Researches;
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and for an investigation of the apparent exceptions to the rule, see

Miller s Chemical Physics and Wiedemann s Galvanismus.

237.] Substances which are decomposed in this way are called

Electrolytes. The process is called Electrolysis. The places where

the current enters and leaves the electrolyte are called Electrodes.

Of these the electrode by which the current enters is called the

Anode, and that by which it leaves the electrolyte is called the

Cathode. The components into which the electrolyte is resolved

are called Ions : that which appears at the anode is called the

Anion, and that which appears at the cathode is called the Cation.

Of these terms, which were, I believe, invented by Faraday with

the help of Dr. Whewell, the first three, namely, electrode, elec

trolysis, and electrolyte have been generally adopted, and the mode

of conduction of the current in which this kind of decomposition
and transfer of the components takes place is called Electrolytic

Conduction.

If a homogeneous electrolyte is placed in a tube of variable

section, and if the electrodes are placed at the ends of this tube,

it is found that when the current passes, the anion appears at

the anode and the cation at the cathode, the quantities of these

ions being electrochemically equivalent, and such as to be together

equivalent to a certain quantity of the electrolyte. In the other

parts of the tube, whether the section be large or small, uniform

or varying, the composition of the electrolyte remains unaltered.

Hence the amount of electrolysis which takes place across every

section of the tube is the same. Where the section is small the

action must therefore be more intense than where the section is

large, but the total amount of each ion which crosses any complete

section of the electrolyte in a given time is the same for all sections.

The strength of the current may therefore be measured by the

amount of electrolysis in a given time. An instrument by which

the quantity of the electrolytic products can be readily measured

is called a Toltameter.

The strength of the current, as thus measured, is the same

at every part of the circuit, and the total quantity of the elec

trolytic products in the voltameter after any given time is pro

portional to the amount of electricity which passes any section in

the same time.

238.] If we introduce a voltameter at one part of the circuit

of a voltaic battery, and break the circuit at another part, we may

suppose the measurement of the current to be conducted thus.
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Let the ends of the broken circuit be A and B, and let A be the

anode and B the cathode. Let an insulated ball be made to touch

A and B alternately, it will carry from A to B a certain measurable

quantity of electricity at each journey. This quantity may be

measured by an electrometer, or it may be calculated by mul

tiplying the electromotive force of the circuit by the electrostatic

capacity of the ball. Electricity is thus carried from A to B on the

insulated ball by a process which may be called Convection. At

the same time electrolysis goes on in the voltameter and in the

cells of the battery, and the amount of electrolysis in each cell may
be compared with the amount of electricity carried across by the

insulated ball. The quantity of a substance which is electrolysed

by one unit of electricity is called an Electrochemical equivalent

of that substance.

This experiment would be an extremely tedious and troublesome

one if conducted in this way with a ball of ordinary magnitude
and a manageable battery, for an enormous number of journeys

would have to be made before an appreciable quantity of the electro

lyte was decomposed. The experiment must therefore be considered

as a mere illustration, the actual measurements of electrochemical

equivalents being conducted in a different way. But the experi

ment may be considered, as an illustration of the process of elec

trolysis itself, for if we regard electrolytic conduction as a species

of convection in which an electrochemical equivalent of the anion

travels with negative electricity in the direction of the anode, while

an equivalent of the cation travels with positive electricity in

the direction of the cathode, the whole amount of transfer of elec

tricity being one unit, we shall have an idea of the process of

electrolysis, which, so far as I know, is not inconsistent with known

facts, though, on account of our ignorance of the nature of electricity

and of chemical compounds, it may be a very imperfect repre

sentation of what really takes place.

Magnetic Action of the Current.

239.] Oersted discovered that a magnet placed near a straight

electric current tends to place itself at right angles to the plane

passing through the magnet and the current. See Art. 475.

If a man were to place his body in the line of the current so

that the current from copper through the wire to zinc should flow

from his head to his feet, and if he were to direct his face towards

the centre of the magnet, then that end of the magnet which tends
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to point to the north would, when the current flows, tend to point
towards the man s right hand.

The nature and laws of this electromagnetic action will be dis

cussed when we come to the fourth part of this treatise. What
we are concerned with at present is the fact that the electric

current has a magnetic action which is exerted outside the current,

and by which its existence can be ascertained and its intensity

measured without breaking the circuit or introducing anything into

the current itself.

The amount of the magnetic action has been ascertained to be

strictly proportional to the strength of the current as measured

by the products of electrolysis in the voltameter, and to be quite

independent of the nature of the conductor in which the current

is flowing, whether it be a metal or an electrolyte.

240.] An instrument which indicates the strength of an electric

current by its magnetic effects is called a Galvanometer.

Galvanometers in general consist of one or more coils of silk-

covered wire within which a magnet is suspended with its axis

horizontal. When a current is passed through the wire the magnet
tends to set itself with its axis perpendicular to the plane of the

coils. If we suppose the plane of the coils to be placed parallel

to the plane of the earth s equator, and the current to flow round

the coil from east to west in the direction of the apparent motion

of the sun, then the magnet within will tend to set itself with

its magnetization in the same direction as that of the earth con

sidered as a great magnet, the north pole of the earth being similar

to that end of the compass needle which points south.

The galvanometer is the most convenient instrument for mea

suring the strength of electric currents. We shall therefore assume

the possibility of constructing such an instrument in studying the

laws of these currents, reserving the discussion of the principles of

the instrument for our fourth part. When therefore we say that

an electric current is of a certain strength we suppose that the

measurement is effected by the galvanometer*
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CONDUCTION AND EESISTANCE.

241.] IF by means of an electrometer we determine the electric

potential at different points of a circuit in which a constant electric

current is maintained, we shall find that in any portion of the

circuit consisting- of a single metal of uniform temperature through-

outj the potential at any point exceeds that at any other point

farther on in the direction of the current by a quantity depending
on the strength of the current and on the nature and dimensions

of the intervening portion of the circuit. The difference of the

potentials at the extremities of this portion of the circuit is called

the External electromotive force acting on it. If the portion of

the circuit under consideration is not homogeneous, but contains

transitions from one substance to another, from metals to elec

trolytes, or from hotter to colder parts, there may be, besides the

external electromotive force, Internal electromotive forces which

must be taken into account.

The relations between Electromotive Force,, Current, and Resist

ance were first investigated by Dr. G. S. Ohm, in a work published

in 1827, entitled Die Galvanische Kette Mathematisch Bearbeitet,

translated in Taylor s Scientific Memoirs. The result of these in

vestigations in the case of homogeneous conductors is commonly
called Ohm s Law.

Ohm s Law.

The electromotive force acting between the extremities of any part

of a circuit is the product of the strength of the current and the

resistance of that part of the circuit,

Here a new term is introduced, the Resistance of a conductor,

which is defined to be the ratio of the electromotive force to

the strength of the current which it produces. The introduction
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of this term would have been of no scientific value unless Ohm
had shewn, as he did experimentally, that it corresponds to a real

physical quantity, that is, that it has a definite value which is

altered only when the nature of the conductor is altered.

In the first place, then, the resistance of a conductor is inde

pendent of the strength of the current flowing through it.

In the second place the resistance is independent of the electric

potential at which the conductor is maintained, and of the density

of the distribution of electricity on the surface of the conductor.

It depends entirely on the nature of the material of which the

conductor is composed, the state of aggregation of its parts, and its

temperature.

The resistance of a conductor may be measured to within one

ten thousandth or even one hundred thousandth part of its value,

and so many conductors have been tested that our assurance of the

truth of Ohm s Law is now very high. In the sixth chapter we

shall trace its applications and consequences.

Generation of Heat
~by

the Current.

242.] We have seen that when an electromotive force causes

a current to flow through a conductor, electricity is transferred

from a place of higher to a place of lower potential. If the transfer

had been made by convection, that is, by carrying successive charges

on a ball from the one place to the other, work would have been

done by the electrical forces on the ball, and this might have

been turned to account. It is actually turned to account in a

partial manner in those dry pile circuits where the electrodes have

the form of bells, and the carrier ball is made to swing like a

pendulum between the two bells and strike them alternately. In

this way the electrical action is made to keep up the swinging

of the pendulum and to propagate the sound of the bells to a

distance. In the case of the conducting wire we have the same

transfer of electricity from a place of high to a place of low potential

without any external work being done. The principle of the Con

servation of Energy therefore leads us to look for internal work in

the conductor. In an electrolyte this internal work consists partly

of the separation of its components. In other conductors it is

entirely converted into heat.

The energy converted into heat is in this case the product of

the electromotive force into the quantity of electricity which passes.

But the electromotive force is the product of the current into the
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resistance, and the quantity of electricity is the product of the

current into the time. Hence the quantity of heat multiplied by
the mechanical equivalent of unit of heat is equal to the square of

the strength of the current multiplied into the resistance and into

the time.

The heat developed by electric currents in overcoming the re

sistance of conductors has been determined by Dr. Joule, who first

established that the heat produced in a given time is proportional
to the square of the current, and afterwards by careful absolute

measurements of all the quantities concerned, verified the equation

JN= C2
Rt,

where / is Joule s dynamical equivalent of heat, H the number of

units of heat, C the strength of the current, R the resistance of the

conductor, and t the time during which the current flows. These

relations between electromotive force, work, and heat, were first fully

explained by Sir W. Thomson in a paper on the application of the

principle of mechanical effect to the measurement of electromotive

forces*.

243.] The analogy between the theory of the conduction of elec

tricity and that of the conduction of heat is at first sight almost

complete. If we take two systems geometrically similar, and such

that the conductivity for heat at any part of the first is proportional
to the conductivity for electricity at the corresponding part of the

second, and if we also make the temperature at any part of the

first proportional to the electric potential at the corresponding point
of the second, then the flow of heat across any area of the first

will be proportional to the flow of electricity across the corre

sponding area of the second.

Thus, in the illustration we have given, in which flow of elec

tricity corresponds to flow of heat, and electric potential to tem

perature, electricity tends to flow from places of high to places

of low potential, exactly as heat tends to flow from places of high
to places of low temperature.

244.] The theory of potential and that of temperature may
therefore be made to illustrate one another

;
there is, however, one

remarkable difference between the phenomena of electricity and

those of heat.

Suspend a conducting body within a closed conducting vessel by
a silk thread, and charge the vessel with electricity. The potential

* Phil Mag., Dec. 1851.
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of the vessel and of all within it will be instantly raised, but

however long and however powerfully the vessel be electrified, and

whether the body within be allowed to come in contact with the

vessel or not, no signs of electrification will appear within the

vessel, nor will the body within shew any electrical effect when

taken out.

But if the vessel is raised to a high temperature, the body
within will rise to the same temperature, but only after a con

siderable time, and if it is then taken out it will be found hot,

and will remain so till it has continued to emit heat for some time.

The difference between the phenomena consists in the fact that

bodies are capable of absorbing and emitting heat, whereas they

have no corresponding property with respect to electricity. A body

cannot be made hot without a certain amount of heat being

supplied to it, depending on the mass and specific heat of the body,

but the electric potential of a body may be raised to any extent

in the way already described without communicating any electricity

to the body.

245.] Again, suppose a body first heated and then placed inside

the closed vessel. The outside of the vessel will be at first at the

temperature of surrounding bodies, but it will soon get hot, and

will remain hot till the heat of the interior body has escaped.

It is impossible to perform a corresponding electrical experiment.

It is impossible so to electrify a body, and so to place it in a

hollow vessel, that the outside of the vessel shall at first shew no

signs of electrification but shall afterwards become electrified. It

was for some phenomenon of this kind that Faraday sought in

vain under the name of an absolute charge of electricity.

Heat may be hidden in the interior of a body so as to have no

external action, but it is impossible to isolate a quantity of elec

tricity so as to prevent it from being constantly in inductive

relation with an equal quantity of electricity of the opposite kind.

There is nothing therefore among electric phenomena which

corresponds to the capacity of a body for heat. This follows at

once from the doctrine which is asserted in this treatise, that

electricity obeys the same condition of continuity as an incom

pressible fluid. It is therefore impossible to give a bodily charge

of electricity to any substance by forcing an additional quantity of

electricity into it. See Arts. 61, 111, 329, 334.
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ELECTROMOTIVE FORCE BETWEEN BODIES IN CONTACT.

The Potentials of Different Substances in Contact.

246.] IF we define the potential of a hollow conducting vessel

as the potential of the air inside the vessel, we may ascertain this

potential by means of an electrometer as described in Part I,

Art. 222.

If we now take two hollow vessels of different metals, say copper
and zinc, and put them in metallic contact with each other, and

then test the potential of the air inside each vessel, the potential

of the air inside the zinc vessel will be positive as compared with

that inside the copper vessel. The difference of potentials depends
on the nature of the surface of the insides of the vessels, being

greatest when the zinc is bright and when the copper is coated

with oxide.

It appears from this that when two different metals are in

contact there is in general an electromotive force acting from the

one to the other, so as to make the potential of the one exceed

that of the other by a certain quantity. This is Volta s theory of

Contact Electricity.

If we take a certain metal, say copper, as the standard, then

if the potential of iron in contact with copper at the zero potential

is /, and that of zinc in contact with copper at zero is Z, then

the potential of zinc in contact with iron at zero will be Z /.

It appears from this result, which is true of any three metals,

that the differences of potential of any two metals at the same

temperature in contact is equal to the difference of their potentials

when in contact with a third metal, so that if a circuit be formed

of any number of metals at the same temperature there will be

electrical equilibrium as soon as they have acquired their proper

potentials, and there will be no current kept up in the circuit.

VOL. I. Z
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247.] If, however, the circuit consist of two metals and an elec

trolyte, the electrolyte, according- to Volta s theory, tends to reduce

the potentials of the metals in contact with it to equality, so that

the electromotive force at the metallic junction is no longer balanced,

and a continuous current is kept up. The energy of this current

is supplied by the chemical action which takes place between the

electrolyte and the metals.

248.] The electric effect may, however, be produced without

chemical action if by any other means we can produce an equali

zation of the potentials of two metals in contact. Thus, in an

experiment due to Sir W. Thomson *, a copper funnel is placed in

contact with a vertical zinc cylinder, so that when copper filings

are allowed to pass through the funnel, they separate from each

other and from the funnel near the middle of the zinc cylinder,

and then fall into an insulated receiver placed below. The receiver

is then found to be charged negatively, and the charge increases

as the filings continue to pour into it. At the same time the zinc

cylinder with the copper funnel in it becomes charged more and

more positively.

. If now the zinc cylinder were connected with the receiver by a

wire, there would be a positive current in the wire from the cylinder

to the receiver. The stream of copper filings, each filing charged

negatively by induction, constitutes a negative current from the

funnel to the receiver, or, in other words, a positive current from

the receiver to the copper funnel. The positive current, therefore,

passes through the air (by the filings) from zinc to copper, and

through the metallic junction from copper to zinc, just as in the

ordinary voltaic arrangement, but in this case the force which keeps

up the current is not chemical action but gravity, which causes the

filings to fall, in spite of the electrical attraction between the

positively charged funnel and the negatively charged filings.

249.] A remarkable confirmation of the theory of contact elec

tricity is supplied by the discovery of Peltier, that, when a current

of electricity crosses the junction of two metals, the junction is

heated when the current is in one direction, and cooled when it

is in the other direction. It must be remembered that a current

in its passage through a metal always produces heat, because it

meets with resistance, so that the cooling effect on the whole

conductor must always be less than the heating effect. We must

therefore distinguish between the generation of heat in each metal,

* North British Keview, 1864, p. 353; and Proc. R. S., June 20, 1867.
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due to ordinary resistance, and the generation or absorption of heat

at the junction of two metals. We shall call the first the frictional

generation of heat by the current, and, as we have seen, it is

proportional to the square of the current, and is the same whether

the current be in the positive or the negative direction. The second

we may call the Peltier effect, which changes its sign with that

of the current.

The total heat generated in a portion of a compound conductor

consisting of two metals may be expressed by

H=~C*t-UCt,

where // is the quantity of heat, / the mechanical equivalent of

unit of heat, R the resistance of the conductor, C the current, and

t the time
;
n being the coefficient of the Peltier effect, that is,

the heat absorbed at the junction by unit of current in unit of

time.

Now the heat generated is mechanically equivalent to the work

done against electrical forces in the conductor, that is, it is equal

to the product of the current into the electromotive force producing

it. Hence, if E is the external electromotive force which causes

the current to flow through the conductor,

JN= CEt =RC 2
1- Jn Ct,

whence E =RCJU.
It appears from this equation that the external electromotive

force required to drive the current through the compound conductor

is less than that due to its resistance alone by the electromotive

force JYl. Hence JU represents the electromotive contact force

at the junction acting in the positive direction.

This application, due to Sir W. Thomson *, of the dynamical

theory of heat to the determination of a local electromotive force

is of great scientific importance, since the ordinary method of

connecting two points of the compound conductor with the elec

trodes of a galvanometer or electroscope by wires would be useless,

owing to the contact forces at the junctions of the wires with

the materials of the compound conductor. In the thermal method,

on the other hand, we know that the only source of energy is the

current of electricity, and that no work is done by the current

in a certain portion of the circuit except in heating that portion

of the conductor. If, therefore, we can measure the amount of the

* Proc. K. S. Edin., Dec. 15, 1851
;
and Trans. E. S. Edin., 1854.

Z 2
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current and the amount of heat produced or absorbed, we can

determine the electromotive force required to urge the current

through that portion of the conductor, and this measurement is

entirely independent of the effect of contact forces in other parts of

the circuit.

The electromotive force at the junction of two metals, as de

termined by this method, does not account for Volta s electromotive

force as described in Art. 246. The latter is in general far greater

than that of this Article, and is sometimes of opposite sign. Hence

the assumption that the potential of a metal is to be measured by
that of the air in contact with it must be erroneous, and the greater

part of Volta s electromotive force must be sought for, not at the

junction of the two metals, but at one or both of the surfaces which

separate the metals from the air or other medium which forms the

third element of the circuit.

250.] The discovery by Seebeck of thermoelectric currents in

circuits of different metals with their junctions at different tem

peratures, shews that these contact forces do not always balance

each other in a complete circuit. It is manifest, however, that

in a complete circuit of different metals at uniform temperature the

contact forces must balance each other. For if this were not the

case there would be a current formed in the circuit, and this current

might be employed to work a machine or to generate heat in the

circuit, that is, to do work, while at the same time there is no

expenditure of energy, as the circuit is all at the same temperature,

and no chemical or other change takes place. Hence, if the Peltier

effect at the junction of two metals a and b be represented by Ha6

when the current flows from a to $, then for a circuit of two metals

at the same temperature we must have

na& + nba
= o,

and for a circuit of three metals a, 6, c, we must have

n6o+ n ca+nab = o.

It follows from this equation that the three Peltier effects are not

independent, but that one of them can be deduced from the other

two. For instance, if we suppose c to be a standard metal, and

if we write Pa = /flac and Pb
= JUbc ,

then

Jnat = Pa-Pb .

The quantity Pa is a function of the temperature, and depends on

the nature of the metal a.

251.] It has also been shewn by Magnus that if a circuit is
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formed of a single metal no current will be formed in it, however
the section of the conductor and the temperature may vary in

different parts.

Since in this case there is conduction of heat and consequent
dissipation of energy, we cannot, as in the former case, consider this

result as self-evident. The electromotive force, for instance, between
two portions of a circuit might have depended on whether the
current was passing from a thick portion of the conductor to a thin

one, or the reverse, as well as on its passing rapidly or slowly from a

hot portion to a cold one, or the reverse, and this would have made
a current possible in an unequally heated circuit of one metal.

Hence, by the same reasoning as in the case of Peltier s phe
nomenon, we find that if the passage of a current through a

conductor of one metal produces any thermal effect which is re

versed when the current is reversed, this can only take place when
the current flows from places of high to places of low temperature,
or the reverse, and if the heat generated in a conductor of one
metal in flowing from a place where the temperature is a? to a

place where it is y, is H, then

and the electromotive force tending to maintain the current will

be S
xy .

If os, y, z be the temperatures at three points of a homogeneous
circuit, we must have

s
yz +szx +szv

= o,

according to the result of Magnus. Hence, if we suppose z to be

the zero temperature, and if we put

QX =SXZ and Q v
= S

yz)

^ find S
xv =Q*-Q y ,

where Qx is a function of the temperature #, the form of the

function depending on the nature of the metal.

If we now consider a circuit of two metals a and b in which

the temperature is x where the current passes from a to #, and

y where it passes from I to a, the electromotive force will be

where Pax signifies the value of P for the metal a at the tempera
ture x or

Since in unequally heated circuits of different metals there are in
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general thermoelectric currents, it follows that P and Q are in

general different for the same metal and same temperature.

252.] The existence of the quantity Q was first demonstrated by
Sir W. Thomson, in the memoir we have referred to, as a deduction

from the phenomenon of thermoelectric inversion discovered by

Gumming &quot;*,
who found that the order of certain metals in the ther

moelectric scale is different at high and at low temperatures, so that

for a certain temperature two metals may be neutral to each other.

Thus, in a circuit of copper and iron if one junction be kept at the

ordinary temperature while the temperature of the other is raised,

a current sets from copper to iron through the hot junction, and

the electromotive force continues to increase till the hot junction

has reached a temperature T, which, according to Thomson, is

about 284C. When the temperature of the hot junction is raised

still further the electromotive force is reduced, and at last, if the

temperature be raised high enough, the current is reversed. The

reversal of the current may be obtained more easily by raising the

temperature of the colder junction. If the temperature of both

junctions is above T the current sets from iron to copper through
the hotter junction, that is, in the reverse direction to that ob

served when both junctions are below T.

Hence, if one of the junctions is at the neutral temperature T
and the other is either hotter or colder, the current will set from

copper to iron through the junction at the neutral temperature.

253.] From this fact Thomson reasoned as follows :

Suppose the other junction at a temperature lower than T.

The current may be made to work an engine or to generate heat in

a wire, and this expenditure of energy must be kept up by the

transformation of heat into electric energy, that is to say, heat

must disappear somewhere in the circuit. Now at the tempera
ture T iron and copper are neutral to each other, so that no

reversible thermal effect is produced at the hot junction, and at

the cold junction there is, by Peltier s principle, an evolution of

heat by the current. Hence the only place where the heat can dis

appear is in the copper or iron portions of the circuit, so that either

a current in iron from hot to cold must cool the iron, or a current

in copper from cold to hot must cool the copper, or both these

effects may take place. By an elaborate series of ingenious experi

ments Thomson succeeded in detecting the reversible thermal action

of the current in passing between parts of different temperatures,

* Cambridge Transactions, 1823.
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and he found that the current produced opposite effects in copper

and in iron*.

When a stream of a material fluid passes along
1 a tube from

a hot part to a cold part it heats the tube, and when it passes

from cold to hot it cools the tube, and these effects depend on

the specific capacity for heat of the fluid. If we supposed elec

tricity, whether positive or negative,, to be a material fluid, we

might measure its specific heat by the thermal effect on an un

equally heated conductor. Now Thomson s experiments shew that

positive electricity in copper and negative electricity in iron carry

heat with them from hot to cold. Hence, if we supposed either

positive or negative electricity to be a fluid, capable of being

heated and cooled, and of communicating heat to other bodies, we

should find the supposition contradicted by iron for positive elec

tricity and by copper for negative electricity, so that we should

have to abandon both hypotheses.

This scientific prediction of the reversible effect of an electric

current upon an unequally heated conductor of one metal is another

instructive example of the application of the theory of Conservation

of Energy to indicate new directions of scientific research. Thomson

has also applied the Second Law of Thermodynamics to indicate

relations between the quantities which we have denoted by P
and Q, and has investigated the possible thermoelectric properties

of bodies whose structure is different in different directions. He

has also investigated experimentally the conditions under which

these properties are developed by pressure, magnetization, &c.

254.] Professor Taitf has recently investigated the electro

motive force of thermoelectric circuits of different metals, having

their junctions at different temperatures. He finds that the elec

tromotive force of a circuit may be expressed very accurately by

the formula

where ^ is the absolute temperature of the hot junction, t
2
that

of the cold junction, and tQ
the temperature at which the two metals

are neutral to each other. The factor a is a coefficient depending

on the nature of the two metals composing the circuit. This law

has been verified through considerable ranges of temperature by

Professor Tait and his students, and he hopes to make the thermo

electric circuit available as a thermometric instrument in his

* On the Electrodynamic Qualities of Metals. Phil. Trans., 1856,

t Proc. R. S. Edin., Session 1870-71, p. 308, also Dec. 18, 1871.
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experiments on the conduction of heat, and in other cases in which
the mercurial thermometer is not convenient or has not a sufficient

range.

According to Tait s theory, the quantity which Thomson calls

the specific heat of electricity is proportional to the absolute tem

perature in each pure metal, though its magnitude and even its

sign vary in different metals. From this he has deduced by ther-

modynamic principles the following results. Let 7ca t, kb t, Jcc t

be the specific heats of electricity in three metals a, b, c, and let

Tbc ,
Tca ,

Tab be the temperatures at which pairs of these metals are

neutral to each other, then the equations

(kb-kc}Tbc +(kc -ka)
Tca +(ka-kb)Tab = 0,

express the relation of the neutral temperatures, the value of the

Peltier effect, and the electromotive force of a thermoelectric circuit.



CHAPTER IV.

ELECTROLYSIS.

Electrolytic Conduction.

255.] I HAVE already stated that when an electric current in

any part of its circuit passes through certain compound substances

called Electrolytes, the passage of the current is accompanied by
a certain chemical process called Electrolysis, in which the substance

is resolved, into two components called Ions, of which one, called

the Anion, or the electronegative component, appears at the Anode,

or place where the current enters the electrolyte, and the other,

called the Cation, appears at the Cathode, or the place where the

current leaves the electrolyte.

The complete investigation of Electrolysis belongs quite as much
to Chemistry as to Electricity. We shall consider it from an

electrical point of view, without discussing its application to the

theory of the constitution of chemical compounds.
Of all electrical phenomena electrolysis appears the most likely

to furnish us with a real insight into the true nature of the electric

current, because we find currents of ordinary matter and currents

of electricity forming essential parts of the same phenomenon.
It is probably for this very reason that, in the present imperfectly

formed state of our ideas about electricity, the theories of electro

lysis are so unsatisfactory.

The fundamental law of electrolysis, which was established by

Faraday, and confirmed by the experiments of Beetz, Hittorf, and

others down to the present time, is as follows :

The number of electrochemical equivalents of an electrolyte which

are decomposed by the passage of an electric current during a given
time is equal to the number of units of electricity which are trans

ferred .by the current in the same time.

The electrochemical equivalent of a substance is that quantity
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of the substance which is electrolysed by a unit current passing

through the substance for a unit of time, or, in other words, by the

passage of a unit of electricity. When the unit of electricity is

defined in absolute measure the absolute value of the electro

chemical equivalent of each substance can be determined in grains
or in grammes.
The electrochemical equivalents of different substances are pro

portional to their ordinary chemical equivalents. The ordinary
chemical equivalents, however, are the mere numerical ratios in

which the substances combine, whereas the electrochemical equi
valents are quantities of matter of a determinate magnitude, de

pending on the definition of the unit of electricity.

Every electrolyte consists of two components, which, during the

electrolysis, appear where the current enters and leaves the elec

trolyte, and nowhere else. Hence, if we conceive a surface described

within the substance of the electrolyte, the amount of electrolysis

which takes place through this surface, as measured by the elec

trochemical equivalents of the components transferred across it

in opposite directions, will be proportional to the total electric

current through the surface.

The actual transfer of the ions through the substance of the

electrolyte in opposite directions is therefore part of the phenomenon
of the conduction of an electric current through an electrolyte. At

every point of the electrolyte through which an electric current

is passing there are also two opposite material currents of the anion

and the cation, which have the same lines of flow with the electric

current, and are proportional to it in magnitude.
It is therefore extremely natural to suppose that the currents of

the ions are convection currents of electricity, and, in particular,

that every molecule of the cation is charged with a certain fixed

quantity of positive electricity, which is the same for the molecules

of all cations, and that every molecule of the anion is charged with

an equal quantity of negative electricity.

The opposite motion of the ions through the electrolyte would

then be a complete physical representation of the electric current.

We may compare this motion of the ions with the motion of gases

and liquids through each other during the process of diffusion,

there being this difference between the two processes, that, in

diffusion, the different substances are only mixed together and the

mixture is not homogeneous, whereas in electrolysis they are chemi

cally combined and the electrolyte is homogeneous. In diffusion
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the determining
1 cause of the motion of a substance in a given

direction is a diminution of the quantity of that substance per

unit of volume in that direction, whereas in electrolysis the motion

of each ion is due to the electromotive force acting on the charged
molecules.

256.] Clausius*, who has bestowed much study on the theory

of the molecular agitation of bodies, supposes that the molecules

of all bodies are in a state of constant agitation, but that in solid

bodies each molecule never passes beyond a certain distance from

its original position, whereas in fluids a molecule, after moving
a certain distance from its original position, is just as likely to

move still farther from it as to move back again. Hence the

molecules of a fluid apparently at rest are continually changing
their positions, and passing irregularly from one part of the fluid

to another. In a compound fluid he supposes that not only the

compound molecules travel about in this way, but that, in the

collisions which occur between the compound molecules, the mole

cules of which they are composed are often separated and change

partners, so that the same individual atom is at one time associated

with one atom of the opposite kind, and at another time with another.

This process Clausius supposes to go on in the liquid at all times, but

when an electromotive force acts on the liquid the motions of the

molecules, which before were indifferently in all directions, are now
influenced by the electromotive force, so that the positively charged
molecules have a greater tendency towards the cathode than towards

the anode, and the negatively charged molecules have a greater

tendency to move in the opposite direction. Hence the molecules

of the cation will daring their intervals of freedom struggle towards

the cathode, but will continually be checked in their course by

pairing for a time with molecules of the anion, which are also

struggling through the crowd, but in the opposite direction.

257.] This theory of Clausius enables us to understand how it is,

that whereas the actual decomposition of an electrolyte requires an

electromotive force of finite magnitude, the conduction of the

current in the electrolyte obeys the law of Ohm, so that every

electromotive force within the electrolyte, even the feeblest, produces

a current of proportionate magnitude.

According to the theory of Clausius, the decomposition and

recomposition of the electrolyte is continually going on even when

there is no current, and the very feeblest electromotive force is

*
Fogg. Ann. bd. ci. s. 338 (1857).
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sufficient to give this process a certain degree of direction, and so

to produce the currents of the ions and the electric current, which

is part of the same phenomenon. Within the electrolyte, however,

the ions are never set free in finite quantity, and it is this liberation

of the ions which requires a finite electromotive force. At the

electrodes the ions accumulate, for the successive portions of the

ions, as they arrive at the electrodes, instead of finding- molecules of

the opposite ion ready to combine with them, are forced into com

pany with molecules of their own kind, with which they cannot

combine. The electromotive force required to produce this effect

is of finite magnitude, and forms an opposing electromotive force

which produces a reversed current when other electromotive forces

are removed. When this reversed electromotive force, owing to

the accumulation of the ions at the electrode, is observed, the

electrodes are said to be Polarized.

258.] One of the best methods of determining whether a body

is or is not an electrolyte is to place it between platinum electrodes

and to pass a current through it for some time, and then, dis

engaging the electrodes from the voltaic battery, and connecting

them with a galvanometer, to observe whether a reverse current,

due to polarization of the electrodes, passes through the galvano

meter. Such a current, being due to accumulation of different

substances on the two electrodes, is a proof that the substance has

been electrolytically decomposed by the original current from the

battery. This method can often be applied where it is difficult,

by direct chemical methods, to detect the presence of the products

of decomposition at the electrodes. See Art. 271.

259.] So far as we have gone the theory of electrolysis appears

very satisfactory. It explains the electric current, the nature of

which we do not understand, by means of the currents of the

material components of the electrolyte, the motion of which,

though not visible to the eye, is easily demonstrated. It gives a

clear explanation, as Faraday has shewn, why an electrolyte which

conducts in the liquid state is a non-conductor when solidified, for

unless the molecules can pass from one part to another no elec

trolytic conduction, can take place, so that the substance must

be in a liquid state, either by fusion or by solution, in order to be

a conductor.

But if we go on, and assume that the molecules of the ions

within the electrolyte are actually charged with certain definite

quantities of electricity, positive and negative,
so that the elec-
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trolytic current is simply a current of convection, we find that this

tempting hypothesis leads us into very difficult ground.
In the first place, we must assume that in every electrolyte each

molecule of the cation, as it is liberated at the cathode, commu
nicates to the cathode a charge of positive electricity, the amount
of which is the same for every molecule, not only of that cation

but of all other cations. In the same way each molecule of the

auion when liberated, communicates to the anode a charge of

negative electricity, the numerical magnitude of which is the same
as that of the positive charge due to a molecule of a cation, but
with sign reversed.

If, instead of a single molecule, we consider an assemblage of

molecules, constituting an electrochemical equivalent of the ion,

then the total charge of all the molecules is, as we have seen, one

unit of electricity, positive or negative.

260.] We do not as yet know how many molecules there are

in an electrochemical equivalent of any substance, but the molecular

theory of chemistry, which is corroborated by many physical con

siderations, supposes that the number of molecules in an elec

trochemical equivalent is the same for all substances. We may
therefore, in molecular speculations, assume that the number of

molecules in an electrochemical equivalent is JV, a number unknown
at present, but which we may hereafter find means to determine *.

Each molecule, therefore, on being liberated from the state of

combination, parts with a charge whose magnitude is
,
and is

positive for the cation and negative for the anion. This definite

quantity of electricity we shall call the molecular charge. If it

were known it would be the most natural unit of electricity.

Hitherto we have only increased the precision of our ideas by
exercising our imagination in tracing the electrification of molecules

and the discharge of that electrification.

The liberation of the ions and the passage of positive electricity
from the anode and into the cathode are simultaneous facts. The

ions, when liberated, are not charged with electricity, hence, when

they are in combination, they have the molecular charges as above

described.

The electrification of a molecule, however, though easily spoken
of, is not so easily conceived.

We know that if two metals are brought into contact at any
* See note to Art. 5.
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point, the rest of their surfaces will be electrified, and if the metals

are in the form of two plates separated by a narrow interval of air,

the charge on each plate may become of considerable magnitude.

Something like this may be supposed to occur when the two

components of an electrolyte are in combination. Each pair of

molecules may be supposed to touch at one point, and to have the

rest of their surface charged with electricity due to the electro

motive force of contact.

But to explain the phenomenon, we ought to shew why the

charge thus produced on each molecule is of a fixed amount, and

why, when a molecule of chlorine is combined with a molecule of

zinc, the molecular charges are the same as when a molecule of

chlorine is combined with a molecule of copper, although the elec

tromotive force between chlorine and zinc is much greater than

that between chlorine and copper. If the charging of the molecules

is the effect of the electromotive force of contact, why should

electromotive forces of different intensities produce exactly equal

charges ?

Suppose, however, that we leap over this difficulty by simply

asserting the fact of the constant value of the molecular charge,

and that we call this constant molecular charge, for convenience in

description, one molecule of electricity.

This phrase, gross as it is, and out of harmony with the rest of

this treatise, will enable us at least to state clearly what is known

about electrolysis, and to appreciate the outstanding difficulties.

Every electrolyte must be considered as a binary compound of

its anion and its cation. The anion or the cation or both may be

compound bodies, so that a molecule of the anion or the cation

may be formed by a number of molecules of simple bodies. A
molecule of the anion and a molecule of the cation combined to

gether form one molecule of the electrolyte.

In order to act as an anion in an electrolyte, the molecule which

so acts must be charged with what we have called one molecule

of negative electricity, and in order to act as a cation the molecule

must be charged with one molecule of positive electricity.

These charges are connected with the molecules only when they

are combined as anion and cation in the electrolyte.

When the molecules are electrolysed, they part with their charges

to the electrodes, and appear as unelectrified bodies when set free

from combination.

If the same molecule is capable of acting as a cation in one
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electrolyte and as an anion in another, and also of entering into

compound bodies which are not electrolytes, then we must suppose
that it receives a positive charge of electricity when it acts as a

cation, a negative charge when it acts as an anion, and that it

is without charge when it is not in an electrolyte.

Iodine, for instance, acts as an anion in the iodides of the metals

and in hydriodic acid, but is said to act as a cation in the bromide
of iodine.

This theory of molecular charges may serve as a method by
which we may remember a good many facts about electrolysis.
It is extremely improbable that when we come to understand the

true nature of electrolysis we shall retain in any form the theory of

molecular charges, for then we shall have obtained a secure basis

on which to form a true theory of electric currents, and so become

independent of these provisional theories.

261.] One of the most important steps in our knowledge of

electrolysis has been the recognition of the secondary chemical

processes which arise from the evolution of the ions at the elec

trodes.

In many cases the substances which are found at the electrodes

are not the actual ions of the electrolysis, but the products of the

action of these ions on the electrolyte.

Thus, when a solution of sulphate of soda is electrolysed by a

current which also passes through dilute sulphuric acid, equal

quantities of oxygen are given off at the anodes, and equal quan
tities of hydrogen at the cathodes, both in the sulphate of soda

and in the dilute acid.

But if the electrolysis is conducted in suitable vessels, such as

U-shaped tubes or vessels with a porous diaphragm, so that the

substance surrounding each electrode can be examined separately,
it is found that at the anode of the sulphate of soda there is an

equivalent of sulphuric acid as well as an equivalent of oxygen,
and at the cathode there is an equivalent of soda as well as two

equivalents of hydrogen.
It would at first sight seem as if, according to the old theory

of the constitution of salts, the sulphate of soda were electrolysed
into its constituents sulphuric acid and soda, while the water of the

solution is electrolysed at the same time into oxygen and hydrogen.
But this explanation would involve the admission that the same
current which passing through dilute sulphuric acid electrolyses
one equivalent of water, when it passes through solution of sulphate
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of soda electrolyses one equivalent of the salt as well as one equi
valent of the water, and this would be contrary to the law of

electrochemical equivalents.

But if we suppose that the components of sulphate of soda are

not SO3 and NaO but SO4 and Na, not sulphuric acid and soda

but sulphion and sodium then the sulphion travels to the anode

and is set free, but being unable to exist in a free state it breaks

up into sulphuric acid and oxygen, one equivalent of each. At
the same time the sodium is set free at the cathode, and there

decomposes the water of the solution, forming one equivalent of

soda and two of hydrogen.
In the dilute sulphuric acid the gases collected at the electrodes

are the constituents of water, namely one volume of oxygen and

two volumes of hydrogen. There is also an increase of sulphuric

acid at the anode, but its amount is not equal to an equivalent.

It is doubtful whether pure water is an electrolyte or not. The

greater the purity of the water, the greater the resistance to elec

trolytic conduction. The minutest traces of foreign matter are

sufficient to produce a great diminution of the electrical resistance

of water. The electric resistance of water as determined by different

observers has values so different that we cannot consider it as a

determined quantity. The purer the water the greater its resistance,

and if we could obtain really pure water it is doubtful whether it

would conduct at all.

As long as water was considered an electrolyte, and was, indeed,

taken as the type of electrolytes, there was a strong reason for

maintaining that it is a binary compound, and that two volumes

of hydrogen are chemically equivalent to one volume of oxygen.

If, however, we admit that water is not an electrolyte, we are free

to suppose that equal volumes of oxygen and of hydrogen are

chemically equivalent.

The dynamical theory of gases leads us to suppose that in perfect

gases equal volumes always contain an equal number of molecules,

and that the principal part of the specific heat, that, namely, which

depends on the motion of agitation of the molecules among each

other, is the same for equal numbers of molecules of all gases.

Hence we are led to prefer a chemical system in which equal

volumes of oxygen and of hydrogen are regarded as equivalent,

and in which water is regarded as a compound of two equivalents

of hydrogen and one of oxygen, and therefore probably not capable

of direct electrolysis.
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While electrolysis fully establishes the close relationship between

electrical phenomena and those of chemical combination, the fact

that every chemical compound is not an electrolyte shews that

chemical combination is a process of a higher order of complexity
than any purely electrical phenomenon. Thus the combinations of

the metals with each other, though they are good conductors, and

their components stand at different points of the scale of electri

fication by contact, are not, even when in a fluid state, decomposed

by the current. Most of the combinations of the substances which

act as anions are not conductors, and therefore are not electrolytes.

Besides these we have many compounds, containing the same com

ponents as electrolytes, but not in equivalent proportions, and these

are also non-conductors, and therefore not electrolytes.

On the Conservation of Energy in Electrolysis.

262.] Consider any voltaic circuit consisting partly of a battery,

partly of a wire, and partly of an electrolytic cell.

During the passage of unit of electricity through any section of

the circuit, one electrochemical equivalent of each of the substances

in the cells, whether voltaic or electrolytic, is electrolysed.

The amount of mechanical energy equivalent to any given
chemical process can be ascertained by converting the whole energy
due to the process into heat, and then expressing the heat in

dynamical measure by multiplying the number of thermal units by
Joule s mechanical equivalent of heat.

Where this direct method is not applicable, if we can estimate

the heat given out by the substances taken first in the state before

the process and then in the state after the process during their

reduction to a final state, which is the same in both cases, then the

thermal equivalent of the process is the difference of the two quan
tities of heat.

In the case in which the chemical action maintains a voltaic

circuit, Joule found that the heat developed in the voltaic cells is

less than that due to the chemical process within the cell, and that

the remainder of the heat is developed in the connecting wire, or,

when there is an electromagnetic engine in the circuit, part of the

heat may be accounted for by the mechanical work of the engine.

For instance, if the electrodes of the voltaic cell are first con

nected by a short thick wire, and afterwards by a long thin wire,

the heat developed in the cell for each grain of zinc dissolved is

greater in the first case than in the second, but the heat developed

VOL. i. A a
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in the wire is greater in the second case than in the first. The

sum of the heat developed in the cell and in the wire for each grain

of zinc dissolved is the same in both cases. This has been estab

lished by Joule by direct experiment.

The ratio of the heat generated in the cell to that generated
in the wire is that of the resistance of the cell to that of the wire,

so that if the wire were made of sufficient resistance nearly the

whole of the heat would be generated in the wire, and if it were

made of sufficient conducting power nearly the whole of the heat

would be generated in the cell.

Let the wire be made so as to have great resistance, then the

heat generated in it is equal in dynamical measure to the product

of the quantity of electricity which is transmitted, multiplied by
the electromotive force under which it i& made to pass through
the wire.

263.] Now during the time in which an electrochemical equi

valent of the substance in the cell undergoes the chemical process

which gives rise to the current, one unit of electricity passes

through the wire. Hence, the heat developed by the passage of

one unit of electricity is in this case measured by the electromotive

force. But this heat is that which one electrochemical equivalent

of the substance generates, whether in the cell or in the wire, while

undergoing the given chemical process.

Hence the following important theorem, first proved by Thomson

(Phil. Mag., Dec. 1851) :

The electromotive force of an electrochemical apparatus is in

absolute measure equal to the mechanical equivalent of the chemical

action on one electrochemical equivalent of the substance.

The thermal equivalents of many chemical actions have been

determined by Andrews, Hess, Favre and Silbermann, &c., and from

these their mechanical equivalents can be deduced by multiplication

by the mechanical equivalent of heat.

This theorem not only enables us to calculate from purely thermal

data the electromotive forces of different voltaic arrangements, and

the electromotive forces required to effect electrolysis in different

cases, but affords the means of actually measuring chemical affinity.

It has long been known that chemical affinity, or the tendency

which exists towards the going on of a certain chemical change,

is stronger in some cases than in others, but no proper measure

of this tendency could be made till it was shewn that this tendency

in certain cases is exactly equivalent to a certain electromotive
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force, and can therefore be measured according to the very same

principles used in the measurement of electromotive forces.

Chemical affinity being therefore, in certain cases, reduced to

the form of a measurable quantity, the whole theory of chemical

processes, of the rate at which they go on, of the displacement of

one substance by another, &c., becomes much more intelligible than

when chemical affinity was regarded as a quality sui generis, and

irreducible to numerical measurement.

When the volume of the products of electrolysis is greater than

that of the electrolyte, work is done during the electrolysis in

overcoming the pressure. If the volume of an electrochemical

equivalent of the electrolyte is increased by a volume v when

electrolysed under a pressure p, then the work done during the

passage of a unit of electricity in overcoming pressure is vp, and

the electromotive force required for electrolysis must include a

part equal to VJQ, which is spent in performing this mechanical

work.

If the products of electrolysis are gases which, like oxygen and

hydrogen, are much rarer than the electrolyte, and fulfil Boyle s

law very exactly, vp will be very nearly constant for the same

temperature, and the electromotive force required for electrolysis

will not depend in any sensible degree on the pressure. Hence it

has been found impossible to check the electrolytic decomposition
of dilute sulphuric acid by confining the decomposed gases in a

small space.

When the products of electrolysis are liquid or solid the quantity

vp will increase as the pressure increases, so that if v is positive
an increase of pressure will increase the electromotive force required
for electrolysis.

In the same way, any other kind of work done during electro

lysis will have an effect on the value of the electromotive force,

as, for instance, if a vertical current passes between two zinc

electrodes in a solution of sulphate of zinc a greater electromotive

force will be required when the current in the solution flows

upwards than when it flows downwards, for, in the first case, it

carries zinc from the lower to the upper electrode, and in the

second from the upper to the lower. The electromotive force

required for this purpose is less than the millionth part of that

of a Daniell s cell per foot.

A a 2
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ELECTROLYTIC POLARIZATION.

264.] WHEN an electric current is passed through an electrolyte

bounded by metal electrodes, the accumulation of the ions at the

electrodes produces the phenomenon called Polarization, which con

sists in an electromotive force acting in the opposite direction to the

current, and producing an apparent increase of the resistance.

When a continuous current is employed, the resistance appears
to increase rapidly from the commencement of the current, and

at last reaches a value nearly constant. If the form of the vessel

in which the electrolyte is contained is changed; the resistance is

altered in the same way as a similar change of form of a metallic

conductor would alter its resistance, but an additional apparent

resistance, depending on the nature of the electrodes, has always
to be added to the true resistance of the electrolyte.

265.] These phenomena have led some to suppose that there is

a finite electromotive force required for a current to pass through
an electrolyte. It has been shewn, however, by the researches of

Lenz, Neumann, Beetz, Wiedemann*, Paalzowf, and recently by
those of MM. F. Kohlrausch and W. A. NippoldtJ, that the con

duction in the electrolyte itself obeys Ohm s Law with the same

precision as in metallic conductors, and that the apparent resistance

at the bounding surface of the electrolyte and the electrodes is

entirely due to polarization.

266.] The phenomenon called polarization manifests itself in

the case of a continuous current by a diminution in the current,

indicating a force opposed to the current. Resistance is also per

ceived as a force opposed to the current, but we can distinguish

* Galvanismus, bd. i. f Berlin Monatshericht, July, 1868.

J Pogg. Ann. bd. cxxxviii. s. 286 (October, 1869).



267.] DISTINGUISHED FROM RESISTANCE. 357

between the two phenomena by instantaneously removing or re

versing the electromotive force.

The resisting force is always opposite in direction to the current,

and the external electromotive force required to overcome it is

proportional to the strength of the current, and changes its direc

tion when the direction of the current is changed. If the external

electromotive force becomes zero the current simply stops.

The electromotive force due to polarization, on the other hand,
is in a fixed direction, opposed to the current which produced it.

If the electromotive force which produced the current is removed,
the polarization produces a current in the opposite direction.

The difference between the two phenomena may be compared
with the difference between forcing a current of water through
a long capillary tube, and forcing water through a tube of moderate

length up into a cistern. In the first case if we remove the pressure

which produces the flow the current will simply stop. In the

second case, if we remove the pressure the water will begin to flow

down again from the cistern.

To make the mechanical illustration more complete, we have only
to suppose that the cistern is of moderate depth, so that when a

certain amount of water is raised into it, it begins to overflow.

This will represent the fact that the total electromotive force due

to polarization has a maximum limit.

267.] The cause of polarization appears to be the existence at

the electrodes of the products of the electrolytic decomposition of

the fluid between them. The surfaces of the electrodes are thus

rendered electrically different, and an electromotive force between

them is called into action, the direction of which is opposite to that

of the current which caused the polarization.

The ions, which by their presence at the electrodes produce the

phenomena of polarization, are not in a perfectly free state, but

are in a condition in which they adhere to the surface of the

electrodes with considerable force.

The electromotive force due to polarization depends upon the

density with which the electrode is covered with the ion, but it

is not proportional to this density, for the electromotive force does

not increase so rapidly as this density.

This deposit of the ion is constantly tending to become free,

and either to diffuse into the liquid, to escape as a gas, or to be

precipitated as a solid.

The rate of this dissipation of the polarization is exceedingly
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small for slight degrees of polarization, and exceedingly rapid near

the limiting value of polarization.

268.] We have seen, Art. 262, that the electromotive force acting
in any electrolytic process is numerically equal to the mechanical

equivalent of the result of that process on one electrochemical

equivalent of the substance. If the process involves a diminution

of the intrinsic energy of the substances which take part in it,

as in the voltaic cell, then the electromotive force is in the direction

of the current. If the process involves an increase of the intrinsic

energy of the substances, as in the case of the electrolytic cell,

the electromotive force is in the direction opposite to that of the

current, and this electromotive force is called polarization.

In the case of a steady current in which electrolysis goes on

continuously, and the ions are separated in a free state at the

electrodes, we have only by a suitable process to measure the

intrinsic energy of the separated ions, and compare it with that

of the electrolyte in order to calculate the electromotive force

required for the electrolysis. This will give the maximum polari

zation.

But during the first instants of the process of electrolysis the

ions when deposited at the electrodes are not in a free state, and

their intrinsic energy is less than their energy in a free state,

though greater than their energy when combined in the electrolyte.

In fact, the ion in contact with the electrode is in a state which

when the deposit is very thin may be compared with that of

chemical combination with the electrode, but as the deposit in

creases in density, the succeeding portions are no longer so in

timately combined with the electrode, but simply adhere to it, and

at last the deposit, if gaseous, escapes in bubbles, if liquid, diffuses

through the electrolyte, and if solid, forms a precipitate.

In studying polarization we have therefore to consider

(1) The superficial density of the deposit, which we may call

&amp;lt;T. This quantity a- represents the number of electrochemical

equivalents of the ion deposited on unit of area. Since each

electrochemical equivalent deposited corresponds to one unit of

electricity transmitted by the current, we may consider a as re

presenting either a surface-density of matter or a surface-density of

electricity.

(2) The electromotive force of polarization, which we may call p.

This quantity p is the difference between the electric potentials

of the two electrodes when the current through the electrolyte
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is so -feeble that the proper resistance of the electrolyte makes no

sensible difference between these potentials.

The electromotive force p at any instant is numerically equal

to the mechanical equivalent of the electrolytic process going on at

that instant which corresponds to one electrochemical equivalent of

the electrolyte. This electrolytic process, it must be remembered,

consists in the deposit of the ions on the electrodes, and the state

in which they are deposited depends on the actual state of the

surface of the electrodes, which may be modified by previous

deposits.

Hence the electromotive force at any instant depends on the

previous history of the electrode. It is, speaking very roughly,

a function of o-, the density of the deposit, such that p = when

o- = 0, but j approaches a limiting value much sooner than a- does.

The statement, however, that p is a function of a cannot be

considered accurate. It would be more correct to say that p is

a function of the chemical state of the superficial layer of the

deposit, and that this state depends on the density of the deposit

according to some law involving the time.

269.] (3) The third thing we must take into account is the

dissipation of the polarization. The polarization when left to itself

diminishes at a rate depending partly on the intensity of the

polarization or the density of the deposit, and partly on the nature

of the surrounding medium, and the chemical, mechanical, or thermal

action to which the surface of the electrode is exposed.

If we determine a time T such that at the rate at which

the deposit is dissipated, the whole deposit would be removed in

the time T, we may call T the modulus of the time of dissipation.

When the density of the deposit is very small, T is very large,

and may be reckoned by days or months. When the density of

the deposit approaches its limiting value T diminishes very rapidly,

and is probably a minute fraction of a second. In fact, the rate

of dissipation increases so rapidly that when the strength of the

current is maintained constant, the separated gas, instead of con

tributing to increase the density of the deposit, escapes in bubbles

as fast as it is formed.

270.] There is therefore a great difference between the state of

polarization of the electrodes of an electrolytic cell when the polari

zation is feeble, and when it is at its maximum value. For instance,

if a number of electrolytic cells of dilute sulphuric acid with

platinum electrodes are arranged in series, and if a small electro-



360 ELECTROLYTIC POLARIZATION&quot;.

motive force, such as that of one Darnell s cell, be made to act

on the circuit, the electromotive force will produce a current of

exceedingly short duration, for after a very short time the elec

tromotive force arising from the polarization of the cell will balance

that of the Daniell s cell.

The dissipation will be very small in the case of so feeble a state

of polarization, and it will take place by a very slow absorption
of the gases and diffusion through the liquid. The rate of this

dissipation is indicated by the exceedingly feeble current which

still continues to flow without any visible separation of gases.

If we neglect this dissipation for the short time during which

the state of polarization is set up, and if we call Q the total

quantity of electricity which is transmitted by the current during
this time, then if A is the area of one of the electrodes, and &amp;lt;r

the density of the deposit, supposed uniform,

Q=A&amp;lt;r.

If we now disconnect the electrodes of the electrolytic apparatus
from the DauielPs cell, and connect them with a galvanometer

capable of measuring the whole discharge through it, a quantity
of electricity nearly equal to Q will be discharged as the polari

zation disappears.

271.] Hence we may compare the action of this apparatus, which

is a form of Hitter s Secondary Pile, with that of a Leyden jar.

Both the secondary pile and the Leyden jar are capable of being

charged with a certain amount of electricity, and of being after

wards discharged. During the discharge a quantity of electricity

nearly equal to the charge passes in the opposite direction. The

difference between the charge and the discharge arises partly from

dissipation, a process which in the case of small charges is very

slow, but which, when the charge exceeds a certain limit, becomes

exceedingly rapid. Another part of the difference between the charge
and the discharge arises from the fact that after the electrodes

have been connected for a time sufficient to produce an apparently

complete discharge, so that the current has completely disappeared,

if we separate the electrodes for a time, and afterwards connect

them, we obtain a second discharge in the same direction as the

original discharge. This is called the residual discharge, and is a

phenomenon of the Leyden jar as well as of the secondary pile.

The secondary pile may therefore be compared in several respects

to a Leyden jar. There are, however, certain important differences.

The charge of a Leyden jar is very exactly proportional to the
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electromotive force of the charge, that is, to the difference of

potentials of the two surfaces, and the charge corresponding- to unit

of electromotive force is called the capacity of the jar, a constant

quantity. The corresponding quantity, which may be called the

capacity of the secondary pile, increases when the electromotive

force increases.

The capacity of the jar depends on the area of the opposed

surfaces, on the distance between them, and on the nature of the

substance between them, but not on the nature of the metallic

surfaces themselves. The capacity of the secondary pile depends
on the area of the surfaces of the electrodes, but not on the distance

between them, and it depends on the nature of the surface of the

electrodes, as well as on that of the fluid between them. The

maximum difference of the potentials of the electrodes in each

element of a secondary pile is very small compared with the maxi

mum difference of the potentials of those of a charged Leyden jar,

so that in order to obtain much electromotive force a pile of many
elements must be used.

On the other hand, the superficial density of the charge in the

secondary pile is immensely greater than the utmost superficial

density of the charge which can be accumulated on the surfaces

of a Leyden jar, insomuch that Mr. C. F. Varley *, in describing
the construction of a condenser of great capacity, recommends a

series of gold or platinum plates immersed in dilute acid as prefer

able in point of cheapness to induction plates of tinfoil separated

by insulating material.

The form in which the energy of a Leyden jar is stored up
is the state of constraint of the dielectric between the conducting

surfaces, a state which I have already described under the name

of electric polarization, pointing out those phenomena attending
this state which are at present known, and indicating the im

perfect state of our knowledge of what really takes place. See

Arts. 62, 111.

The form in which the energy of the secondary pile is stored

up is the chemical condition of the material stratum at the surface

of the electrodes, consisting of the ions of the electrolyte and the

substance of the electrodes in a relation varying from chemical

combination to superficial condensation, mechanical adherence, or

simple juxtaposition.

The seat of this energy is close to the surfaces of the electrodes,

*
Specification of C. F. Varley, Electric Telegraphs, &c., Jan. 1860.



362 ELECTKOLYTIC POLARIZATION.

and not throughout the substance of the electrolyte, and the form

in which it exists may be called electrolytic polarization.

After studying* the secondary pile in connexion with the Leyden
jar, the student should again compare the voltaic battery with

some form of the electrical machine, such as that described in

Art. 211.

Mr. Varley has lately
* found that the capacity of one square

inch is from 175 to 542 microfarads and upwards for platinum

plates in dilute sulphuric acid, and that the capacity increases with

the electromotive force, being about 175 for 0.02 of a Daniell s

cell, and 542 for 1.6 Daniell s cells.

But the comparison between the Leyden jar and the secondary

pile may be carried still farther, as in the following
1

experiment,

due to Buff f. It is only when the glass of the jar is cold that

it is capable of retaining a charge. At a temperature below 100
CC

the glass becomes a conductor. If a test-tube containing mercury
is placed in a vessel of mercuiy, and if a pair of electrodes are

connected, one with the inner and the other with the outer portion

of mercury, the arrangement -constitutes a Leyden jar which will

hold a charge at ordinary temperatures. If the electrodes are con

nected with those of a voltaic battery, no current will pass as long
as the glass is cold, but if the apparatus is gradually heated a

current will begin to pass, and will increase rapidly in intensity as

the temperature rises, though the glass remains apparently as hard

as ever.

This current is manifestly electrolytic, for if the electrodes are

disconnected from the battery, and connected with a galvanometer,

a considerable reverse current passes, due to polarization of the

surfaces of the glass.

If, while the battery is in action the apparatus is cooled, the

current is stopped by the cold glass as before, but the polarization

of the surfaces remains. The mercury may be removed, the surfaces

may be washed with nitric acid and with water, and fresh mercuiy

introduced. If the apparatus is then heated, the current of polar

ization appears as soon as the glass is sufficiently warm to conduct it.

We may therefore regard glass at 100C, though apparently a

solid body, as an electrolyte, and there is considerable reason

to believe that in most instances in which a dielectric has a

slight degree of conductivity the conduction is electrolytic. The

* Proc. E. S. Jan. 12, 1871.

t Annalen der Chemie und Pharmacie, bd. xc. 257 (1854).
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existence of polarization may be regarded as conclusive evidence of

electrolysis, and if the conductivity of a substance increases as the

temperature rises, we have good grounds for suspecting that it is

electrolytic.

On Constant Voltaic Elements.

272.] When a series of experiments is made with a voltaic

battery in which polarization occurs, the polarization diminishes

during the time the current is not flowing, so that when it

begins to flow again the current is stronger than after it has

flowed for some time. If, on the other hand, the resistance of the

circuit is diminished by allowing the current to flow through a

short shunt, then, when the current is again made to flow through

the ordinary circuit, it is at first weaker than its normal strength

on account of the great polarization produced by the use of the

short circuit.

To get rid of these irregularities in the current, which are

exceedingly troublesome in experiments involving exact measure

ments, it is necessary to get rid of the polarization, or at least

to reduce it as much as possible,

It does not appear that there is much polarization at the surface

of the zinc plate when immersed in a solution of sulphate of zinc

or in dilute sulphuric ;acid. The principal seat of polarization is

at the surface of the negative metal. When the fluid in which

the negative metal is immersed is dilute sulphuric acid, it is seen

to become covered with bubbles of hydrogen gas, arising from the

electrolytic decomposition of the fluid. Of course these bubbles,

by preventing the fluid from touching the metal, diminish the

surface of contact and increase the resistance of the circuit. But

besides the visible bubbles it is certain that there is a thin coating

of hydrogen, probably not in a free state, adhering to the metal,

and as we have seen that this coating is able to produce an elec

tromotive force in the reverse direction, it must necessarily diminish

the electromotive force of the battery.

Various plans have been adopted to get rid of this coating of

hydrogen. It may be diminished to some extent by mechanical

means, such as stirring the liquid, or rubbing the surface of the

negative plate. In Smee s battery the negative plates are vertical,

and covered with finely divided platinum from which the bubbles of

hydrogen easily escape, and in their ascent produce a current of

liquid which helps to brush off other bubbles as they are formed.

A far more efficacious method, however, is to employ chemical
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means. These are of two kinds. In the batteries of Grove and

Bunsen the negative plate is immersed in a fluid rich in oxygen,
and the hydrogen, instead of forming a coating on the plate,

combines with this substance. In Grove s battery the plate is

of platinum immersed in strong nitric acid. In Bunsen s first

battery it is of carbon in the same acid. Chromic acid is also used

for the same purpose, and has the advantage of being free from the

acid fumes produced by the reduction of nitric acid.

A different mode of getting rid of the hydrogen is by using

copper as the negative metal, and covering the surface with a coat

of oxide. This, however, rapidly disappears when it is used as

the negative electrode. To renew it Joule has proposed to make

the copper plates in the form of disks, half immersed in the liquid,

and to rotate them slowly, so that the air may act on the parts

exposed to it in turn.

The other method is by using as the liquid an electrolyte, the

cation of which is a metal highly negative to zinc.

In DanielFs battery a copper plate is immersed in a saturated

solution of sulphate of copper. When the current flows through
the solution from the zinc to the copper no hydrogen appears on

the copper plate, but copper is deposited on it. When the solution

is saturated, and the current is not too strong, the copper appears

to act as a true cation, the anion S O4 travelling towards the zinc.

When these conditions are not fulfilled hydrogen is evolved at

the cathode, but immediately acts on the solution, throwing down

copper, and uniting with SO4 to form oil of vitriol. When this

is the case, the sulphate of copper next the copper plate is replaced

by oil of vitriol, the liquid becomes colourless, and polarization by

hydrogen gas again takes place. The copper deposited in this way
is of a looser and more friable structure than that deposited by true

electrolysis.

To ensure that the liquid in contact with the copper shall be

saturated with sulphate of copper, crystals of this substance must

be placed in the liquid close to the copper, so that when the solution

is made weak by the deposition of the copper, more of the crystals

may be dissolved.

We have seen that it is necessary that the liquid next the copper

should be saturated with sulphate of copper. It is still more

necessary that the liquid in which the zinc is immersed should be

free from sulphate of copper. If any of this salt makes its way
to the surface of the zinc it is reduced, and copper is deposited



272.] THOMSON S FORM OF DANIELL S CELL. 365

on the zinc. The zinc, copper, and fluid then form a little circuit

in which rapid electrolytic action goes on, and the zinc is eaten

away by an action which contributes nothing
1 to the useful effect

of the battery.

To prevent this, the zinc is immersed either in dilute sulphuric
acid or in a solution of sulphate of zinc, and to prevent the solution

of sulphate of copper from mixing with this liquid, the two liquids

are separated by a division consisting of bladder or porous earthen

ware, which allows electrolysis to take place through it, but

effectually prevents mixture of the fluids by visible currents.

In some batteries sawdust is used to prevent currents. The

experiments of Graham, however, shew that the process of diffusion

goes on nearly as rapidly when two liquids are separated by a

division of this kind as when they are in direct contact, provided
there are no visible currents, and it is probable that if a septum
is employed which diminishes the diffusion, it will increase in

exactly the same ratio the resistance of the element, because elec

trolytic conduction is a process the mathematical laws of which

have the same form as those of diffusion, and whatever interferes

with one must interfere equally with the other. The only differ

ence is that diffusion is always going on, whereas the current flows

only when the battery is in action.

In all forms of Daniell s battery the final result is that the

sulphate of copper finds its way to the zinc and spoils the battery.
To retard this result indefinitely, Sir W. Thomson * has constructed

Daniell s battery in the following form.

ELECTRODES

SIPHON

Fig. 22.

In each cell the copper plate is placed horizontally at the bottom
* Proc.R. S.

t
Jau. 19,1871.
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and a saturated solution of sulphate of zinc is poured over it. The

zinc is in the form of a grating- and is .placed horizontally near the

surface of the solution. A glass tube is placed vertically in the

solution with its lower end just above the surface of the copper

plate. Crystals of sulphate of copper are dropped down this tube,

and, dissolving in the liquid, form a solution of greater density
than that of sulphate of zinc alone, so that it cannot get to the

zinc except by diffusion. To retard this process of diffusion, a

siphon, consisting of a glass tube stuffed with cotton wick, is

placed with one extremity midway between the zinc and copper,

and the other in a vessel outside the cell, so that the liquid is

very slowly drawn off near the middle of its depth. To supply
its place, water, or a weak solution of sulphate of zinc, is added

above when required. In this way the greater part of the sulphate

of copper rising through the liquid by diffusion is drawn off by the

siphon before it reaches the zinc, and the zinc is surrounded by

liquid nearly free from sulphate of copper, and having a very slow

downward motion in the cell, which still further retards the upward
motion of the sulphate of copper. During the action of the battery

copper is deposited on the copper plate, and SO4 travels slowly

through the liquid to the zinc with which it combines, forming

sulphate of zinc. Thus the liquid at the bottom becomes less dense

by the deposition of the copper, and the liquid at the top becomes

more dense by the addition of the zinc. To prevent this action

from changing the order of density of the strata, and so producing

instability and visible currents in the vessel, care must be taken to

keep the tube well supplied with crystals of sulphate of copper,

and to feed the cell above with a solution of sulphate of zinc suffi

ciently dilute to be lighter than any other stratum of the liquid

in the cell.

Daniell s battery is by no means the most powerful in common

use. The electromotive force of Grove s cell is 192,000,000, of

Daniell s 107,900,000 and that of Bunsen s 188,000,000.

The resistance of Daniell s cell is in general greater than that of

Grove s or Bunsen s of the same size.

These defects, however, are more than counterbalanced in all

cases where exact measurements are required, by the fact that

Daniell s cell exceeds every other known arrangement in constancy

of electromotive force. It has also the advantage of continuing

in working order for a long time, and of emitting no gas.



CHAPTER VI.

LINEAR ELECTRIC CURRENTS.

On Systems of Linear Conductors.

273.] ANY conductor may be treated as a linear conductor if it

is arranged so that the current must always pass in the same manner

between two portions of its surface which are called its electrodes.

For instance, a mass of metal of any form the surface of which is

entirely covered with insulating material except at two places, at

which the exposed surface of the conductor is in metallic contact

with electrodes formed of a perfectly conducting material, may be

treated as a linear conductor. For if the current be made to enter

at one of these electrodes and escape at the other the lines of flow

will be determinate, and the relation between electromotive force,

current and resistance will be expressed by Ohm s Law, for the

current in every part of the mass will be a linear function of E.

But if there be more possible electrodes than two, the conductor

may have more than one independent current through it, and these

may not be conjugate to each other. See Art. 2.82.

Ohm s Law.

274.] Let E be the electromotive force in a linear conductor

from the electrode At to the electrode A
2 . (See. Art. 69.) Let

C be the strength of the electric current along the conductor, that

is to say, let C units of electricity pass across every section in

the direction A:
A

2
in unit of time, and let R be the resistance of

the conductor, then the expression of Ohm s Law is

E = CR. (1)

Linear Conductors arranged in Series.

275.] Let A19 A. be the electrodes of the first conductor and let

the second conductor be placed with one of its electrodes in contact
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with A
2 ,

so that the second conductor has for its electrodes A
2 , A%.

The electrodes of the third conductor may be denoted by A
3

and A4 .

Let the electromotive forces along these conductors be denoted

by E12 , EH ,
UM) and so on for the other conductors.

Let the resistances of the conductors be

Then, since the conductors are arranged in series so that the same

current C flows through each, we have by Ohm s Law,

-#12
= CRY1 , ^23 = ^23 #34 = ^34 (

2
)

If E is the resultant electromotive force, and R the resultant

resistance of the system, we must have by Ohm s Law,

E = CE. (3)

NOW ^=^ + 43 + ^34, (4)

the sum of the separate electromotive forces,

= C (^12+ ^23 + ^34) hy equations (2).

Comparing this result with
(3),

we find

Or, the resistance of a series of conductors is the sum of the resistances

of the conductors taken separately.

Potential at any Point of the Series.

Let A and C be the electrodes of the series, B a point between

them, a, c, and I the potentials of these points respectively. Let

E
l
be the resistance of the part from A to B, R2

that of the part

from B to C, and R that of the whole from A to C, then, since

ab = R
1 C, tc = R.

2 C, and a-c = EC,

the potential at B is

3 =^^f, (6)
/L

which determines the potential at B when the potentials at A and

C are given.

Resistance of a Multiple Conductor.

276.] Let a number of conductors ABZ, ACZ, ADZ be arranged

side by side with their extremities in contact with the same two

points A and Z. They are then said to be arranged in multiple

arc.

Let the resistances of these conductors be R^ R2J JR
2 respect-
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ively, and the currents C^ C2 ,
C3 ,

and let the resistance of the

multiple conductor be R, and the total current C. Then, since the

potentials at A and Z are the same for all the conductors, they have

the same difference, which we may call E. We then have

E = Cl R! = C2 R2
= CB R3

= CR,

but C^Q+Cz + Cv

whence i=i + i + i
3

-

(
?
)

Or, the reciprocal of the resistance of a multiple conductor is the sum

of the reciprocals of the component conductors.

If we call the reciprocal of the resistance of a conductor the

conductivity of the conductor, then we may say that the con

ductivity of a multiple conductor is the sum of the conductivities of
the component conductors.

Ciirrent in any Branch of a Multiple Conductor.

From the equations of the preceding article, it appears that if

C is the current in any branch of the multiple conductor, and

R
1
the resistance of that branch,

4=C|, (8)

where C is the total current, and R is the resistance of the multiple

conductor as previously determined.

Longitudinal Resistance of Conductors of Uniform Section.

277.] Let the resistance of a cube of a given material to a current

parallel to one of its edges be p, the side of the cube being unit of

length, p is called the specific resistance of that material for unit

of volume.

Consider next a prismatic conductor of the same material whose

length is I, and whose section is unity. This is equivalent to I

cubes arranged in series. The resistance of the conductor is there

fore Ip.

Finally, consider a conductor of length I and uniform section s.

This is equivalent to s conductors similar to the last arranged in

multiple arc. The resistance of this conductor is therefore

7?
l?M =
S

When we know the resistance of a uniform wire we can determine

VOL. i. B b
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the specific resistance of the material of which it is made if we can

measure its length and its section.

The sectional area of small wires is most accurately determined

by calculation from the length, weight, and specific gravity of the

specimen. The determination of the specific gravity is sometimes

inconvenient, and in such cases the resistance of a wire of unit

length and unit mass is used as the specific resistance per unit of

weight/
If r is this resistance, I the length, and m the mass of a wire, then

pf
1 = m

On the Dimensions of the Quantities involved in these Equations.

278.] The resistance of a conductor is the ratio of the electro

motive force acting on it to the current produced. The conduct

ivity of the conductor is the reciprocal of this quantity, or in

other words, the ratio of the current to the electromotive force

producing it.

Now we know that in the electrostatic system of measurement

the ratio of a quantity of electricity to the potential of the con

ductor on which it is spread is the capacity of the conductor, and

is measured by a line. If the conductor is a sphere placed in an

unlimited field, this line is the radius of the sphere. The ratio

of a quantity of electricity to an electromotive force is therefore a

line, but the ratio of a quantity of electricity to a current is the

time during which the current flows to transmit that quantity.

Hence the ratio of a current to an electromotive force is that of a

line to a time, or in other words, it is a velocity.

The fact that the conductivity of a conductor is expressed in the

electrostatic system of measurement by a velocity may be verified

by supposing a sphere of radius r charged to potential F, and then

connected with the earth by the given conductor. Let the sphere

contract, so that as the electricity escapes through the conductor

the potential of the sphere is always kept equal to V. Then the

charge on the sphere is rV at any instant, and the current is

-=7 (rV), but, since V is constant, the current is -=7- F, and the
dt dt

electromotive force through the conductor is V.

The conductivity of the conductor is the ratio of the current to

dr
the electromotive force, or

,
that is, the velocity with which the

dt

radius of the sphere must diminish in order to maintain the potential
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constant when the charge is allowed to pass to earth through the

conductor.

In the electrostatic system, therefore, the conductivity of a con
ductor is a velocity, and of the dimensions [I/T

1

].
The resistance of the conductor is therefore of the dimensions

The specific resistance per unit of volume is of the dimension of

[T], and the specific conductivity per unit of volume is of the
dimension of [2

7-1

].

The numerical magnitude of these coefficients depends only on
the unit of time, which is the same in different countries.

The specific resistance per unit of weight is of the dimensions

279.] We shall afterwards find that in the electromagnetic
system of measurement the resistance of a conductor is expressed
by a velocity, so that in this system the dimensions of the resist

ance of a conductor are [Z7
7 &quot; 1

].

The conductivity of the conductor is of course the reciprocal of
this.

The specific resistance per unit of volume in this system is of the

dimensions [Z
2!7-1

],
and the specific resistance per unit of weight

is of the dimensions [L~
1T~ 1

M].

On Linear Systems of Conductors in general.

280.] The most general case of a linear system is that of n

points, A
lt
A

2 ,...An , connected together in pairs by \n(nr-l}
linear conductors. Let the conductivity (or reciprocal of the re

sistance) of that conductor which connects any pair of points, say
A

p and A
qt

be called K
pq9 and let the current from A

p to A
q
be C

pq
.

Let P
p and P

q
be the electric potentials at the points Ap and A

q

respectively, and let the internal electromotive force, if there be

any, along the conductor from A
p to A

q
be E

pq
.

The current from Ap to A
q is, by Ohm s Law,

c
f,
= K

ft (Pf-P,+Efq}. (i)

Among these quantities we have the following sets of relations :

The conductivity of a conductor is the same in either direction,
or K

pq
= K

qp .

(2)
The electromotive force and the current are directed quantities,

sothat E
pq
= -Z

qp ,
and CM = -CW .

(3)
Let P1} P2 , ...Pn be the potentials at A19 A2 , ... An respectively,

and let Qlt Q2) ... Qn be the quantities of electricity which enter

B b 2
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the system in unit of time at each of these points respectively.

These are necessarily subject to the condition of continuity

Qi + Q*... + Qn=0, (4)

since electricity can neither be indefinitely accumulated nor pro

duced within the system.

The condition of {

continuity at any point Ap
is

QP
= C

pl+Cp2+ &c. + Cpn . (5)

Substituting the values of the currents in terms of equation

(l), this becomes

Qf
= (Zrl +K + &c. + ,)Pr- (KAPl +KAP2 + &c. +*)

+ (KtlEtl + &X.+KtxEf,). (6)

The symbol Kpp does not occur in this equation. Let us therefore

give it the value

Kn =-(K, l +K# + te. +Kr.)i (7)

that is, let K
pp

be a quantity equal and opposite to the sum of

all the conductivities of the conductors which meet in A
p

. We
may then write the condition of continuity for the point Ap ,

TT TF D ( Q.\-

pn
ti
pn

(
p

. (8)

By substituting 1
, 2, &c. n for j) in this equation we shall obtain

n equations of the same kind from which to determine the n

potentials Plt P2 , &c., Pn .

Since, however, if we add the system of equations (8) the result

is identically zero by (3), (4) and (7), there will be only nl in

dependent equations. These will be sufficient to determine the

differences of the potentials of the points, but not to determine the

absolute potential of any. This, however, is not required to calcu

late the currents in the system.

If we denote by D the determinant

TT JT T?A1U ^-12 -^iCn-l)

^21 &amp;gt; -^22* ^2(n-l)&amp;gt; (9)

and by Bpq ,
the minor of K

pq , we find for the value of I
p
Pn ,

rt
S

pt-QJDM +is. (10)

In the same way the excess of the potential of any other point^

say A
q ,

over that of An may be determined. We may then de

termine the current between A
p
and A

q
from equation (l), and so

solve the problem completely.
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281.] We shall now demonstrate a reciprocal property of any
two conductors of the system, answering to the reciprocal property
we have already demonstrated for statical electricity in Art. 88.

The coefficient of Qq
in the expression for Pp is -~. That of Qp

in the expression for P
q

is - -

Now D
pq

differs from D
qp only by the substitution of the symbols

such as K
qp

for K
pq

. But, by equation (2), these two symbols are

equal, since the conductivity of a conductor is the same both ways.

Hence pq =--Dqp . (11)

It follows from this that the part of the potential at Ap arising-

from the introduction of a unit current at Aq is equal to the part of

the potential at A
q arising from the introduction of a unit current

at Ap .

We may deduce from this a proposition of a more practical form.

Let A, .B, C, D be any four points of the system, and let the

effect of a current Q, made to enter the system at A and leave it

at B, be to make the potential at C exceed that at D by P. Then,

if an equal current Q be made to enter the system at C and leave

it at D, the potential at A will exceed that at B by the same

quantity P.

If an electromotive force E be introduced, acting in the conductor

from A to B, and if this causes a current C from X to 7, then the

same electromotive force E introduced into the conductor from X to

T will cause an equal current C from AtoJB.

The electromotive force E may be that of a voltaic battery intro

duced between the points named, care being taken that the resist

ance of the conductor is the same before and after the introduction

of the battery.

282 #.] If an electromotive force Epq
act along the conductor

Ap Aq ,
the current produced along another conductor of the system

Ar A s
is easily found to be

There will be no current if

But, by (11), the same equation holds if, when the electromotive

force acts along A r
At9 there is no current in A

p
A

q
. On account

of this reciprocal relation the two conductors referred to are said to

be conjugate.

The theory of conjugate conductors has been investigated by
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Kirchhoff, who has stated the conditions of a linear system in the

following manner, in which the consideration of the potential is

avoided.

(1) (Condition of continuity. ) At any point of the system the
sum of all the currents which flow towards that point is zero.

(2) In any complete circuit formed by the conductors the sum
of the electromotive forces taken round the circuit is equal to the
sum of the products of the current in each conductor multiplied by
the resistance of that conductor.

We obtain this result by adding equations of the form (1) for the

complete circuit, when the potentials necessarily disappear.
*282

.] If the conducting wires form a simple network and if

we suppose that a current circulates round each mesh, then the
actual current in the wire which forms a thread of each of two

neighbouring meshes will be the difference between the two
currents circulating in the two meshes, the currents being reckoned

positive when they circulate in a direction opposite to the motion
of the hands of a watch. It is easy to establish in this case the

following proposition : Let x be the current, E the electromotive

force, and R the total resistance in any mesh
;

let also y, z, ... be
currents circulating in neighbouring meshes which have threads

in common with that in which x circulates, the resistances of those

parts being s, t, . . . ; then

Rxsytz&c. = E.

To illustrate the use of this rule we will take the arrangement
known as Wheatstone s Bridge, adopting the figure and notation of

Art. 347. We have then the three following equations repre

senting the application of the rule in the case of the three circuits

OUC, OCA, OAB in which the currents x, y, z respectively circulate,
Viz.

(0+/3+y)a -yy -$Z=Et

y # + (#+y+ a)j/ az = o,

(3 x ay + (c + a + p)z= 0.

From these equations we may now determine the value of x y
the galvanometer current in the branch OA, but the reader is

referred to Art. 347 et seq. where this and other questions connected

with Wheatstone s Bridge are discussed.

Heat Generated in the System.

283.] The mechanical equivalent of the quantity of heat generated

*
[Extracted from notes of Professor Maxwell s lectures by Mr. J. A. Fleming, B.A.,

St. John s College.]
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in a conductor whose resistance is R by a current C in unit of time

is, by Art. 242, Jff = EC\ (13)

We have therefore to determine the sum of such quantities as

RC 2 for all the conductors of the system.

For the conductor from Ap to A
q
the conductivity is Kpq ,

and the

resistance Em ,
where K

pq . Rpq
= 1. (14)

The current in this conductor is, according to Ohm s Law,

Cpq = Kpq (Pp-Pq). (15)

We shall suppose, however, that the value of the current is not

that given by Ohm s Law, but X
pq ,

where

XM =CM+Ypq . (16)

To determine the heat generated in the system we have to find

the sum of all the quantities of the form

7? Y2j.i
pq

A.
pq ,

or JH=^{Rpq C\q + 2RM Cpq YM+Rpq Y\ &amp;lt;1

}. (17)

Giving Cpq its value, and remembering the relation between K
iHi

and Rpq ,
this becomes

2 [(P,-P.) (Cpq + 2Yfq) + Rpq Y\q}. (18)

Now since both C and X must satisfy the condition of continuity

at Ap ,
we have Qp

=
Cpl + CP2 + &c. + Cpn , (19)

Qp
= Xpl +XP2 + te&amp;gt;. +Xpn9 (20)

therefore = Ypl + YP2 + &c. + Tpn . (21)

Adding together therefore all the terms of (18), we find

z(jzMz%.)=sp,g,+ssM7V (22)

Now since 72 is always positive and Y 2
is essentially positive, the

last term of this equation must be essentially positive. Hence the

first term is a minimum when Yis zero in every conductor, that is,

when the current in every conductor is that given by Ohm s Law.

Hence the following theorem :

284.] In any system of conductors in which there are no internal

electromotive forces the heat generated by currents distributed in

accordance with Ohm s Law is less than if the currents had been

distributed in any other manner consistent with the actual con

ditions of supply and outflow of the current.

The heat actually generated when Ohm s Law is fulfilled is

mechanically equivalent to I,P
p Qq)

that is, to the sum of the

products of the quantities of electricity supplied at the different

external electrodes, each multiplied by the potential at which it is

supplied.



CHAPTEE VII.

CONDUCTION IN THREE DIMENSIONS.

Notation of Electric Currents.

285.] AT any point let an element of area dS be taken normal

to the axis of x, and let Q units of electricity pass across this area

from the negative to the positive side in unit of time, then, if

^becomes ultimately equal to u when dS is indefinitely diminished,

u is said to be the Component of the electric current in the direction

of x at the given point.

In the same way we may determine v and w, the components of

the current in the directions ofy and z respectively.

286.] To determine the component of the current in any other

direction OR through the given point 0, let I, m, n be the direction-

cosines of OR
;
then if we cut off from the axes of x, y. z portions

equal to r r , r
y &amp;gt; &amp;gt; and -
I m n

respectively at A, B and C, the triangle ABC
will be normal to OR.

The area of this triangle ABC will be

^ = $jf_,Imn

and by diminishing r this area may be diminished

without limit.

The quantity of electricity which leaves the tetrahedron ABCO

by the triangle ABC must be equal to that which enters it through
the three triangles OBC, OCA, and OAB.

The area of the triangle OBC is \ ,
and the component of
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the current normal to its plane is u, so that the quantity which

enters through this triangle is \ r2

The quantities which enter through the triangles OCA and OAB

respectively are w
\r*-v and Jr^.

If y is the component of the velocity in the direction OR, then

the quantity which leaves the tetrahedron through ABC is

i/2 JL
Imn

Since this is equal to the quantity which enters through the three

other triangles,

i
.

nl Im

, . , . , 2 Imn
multiplying by ^ ,

we get

y = lu + mv + nw. (1)

If we put
2 + v 2 + w* = F 2

,

and make
,
m

,
such that

u = IT, v = mT, and ; = T
;

then y = T (IV + mm + w^
x

). (2)

Hence, if we define the resultant current as a vector whose

magnitude is F, and whose direction-cosines are Vy
m

,
n

t
and if

y denotes the current resolved in a direction making an angle 9

with that of the resultant current, then

y = T cos 6
; (3)

shewing that the law of resolution of currents is the same as that

of velocities, forces, and all other vectors.

287.] To determine the condition that a given surface may be a

surface of flow, let

F(B,y,*) = \ (4)

be the equation of a family of surfaces any one of which is given by

making A constant
; then, if we make

dk

dx

d\

dy

d\ 1
)

N*

the direction-cosines of the normal, reckoned in the direction in

which A increases, are

7
d\ d\ ^T dXl=N-=-t m = N-^-j n = N-r-- (6)
dx dy dz ^
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d\}

dz]

Hence, if y is the component of the current normal to the surface,

^f ^A dX dX

\ dx dy

If y = there will be no current through the surface, and the

surface may be called a Surface of Flow, because the lines of motion

are in the surface.

288.] The equation of a surface of flow is therefore

u/\ ci/X CvX . .

dx dy dz
~~

^

If this equation is true for all values of A, all the surfaces of the

family will be surfaces of flow.

289.] Let there be another family of surfaces, whose parameter
is A

, then, if these are also surfaces of flow, we shall have

d\ dX dX
u-^j- + v r- + w--r- 0. (9)dx dv dz v

If there is a third family of surfaces of flow, whose parameter
is

A&quot;,
then ,, ,, ,,

-

das dy dz

If we eliminate between these three equations, n, v, and w dis

appear together, and we find

Vbl\.

dX

dx

dX&quot;
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291.] If bS denotes the section of a tube of flow by a plane
normal to x, we have by the theory of the change of the inde

pendent variables,

SA . BA = bS( -
T-)&amp;gt; (13)v

ay dz dz dy

and by the definition of the components of the current

Hence

(15)

dz dz

cr .1 ! T ,d\ d\r
dX d\\

Similarly v = L (-=- ,
) ,

\dz dx dx dz

j.
/cl/X dX cl&amp;gt;X clX \

dy dx

292.] It is always possible when one of the functions A or A is

known, to determine the other so that L may be equal to unity.
For instance, let us take the plane of yz, and draw upon it a series

of equidistant lines .parallel to y t
to represent the sections of the

family A
x

by this plane. In other words, let the function A
x
be

determined by the condition that when cc = A = z. If we then

make L = 1, and therefore (when x 0)

judy
then in the plane (oc = 0) the amount of electricity which passes

through any portion will be

\\udydz =JJd^ ^A . (16)

Having determined the nature of the sections of the surfaces of

flow by the plane of yz, the form of the surfaces elsewhere is

determined by the conditions (8) and (9). The two functions A

and A thus determined are sufficient to determine the current at

every point by equations (15), unity being substituted for L.

On Lines of Mow.

293.] Let a series of values of A and of A be chosen, the suc

cessive differences in each series being unity. The two series of

surfaces defined by these values will divide space into a system
of quadrilateral tubes through each of which there will be a unit

current. By assuming the unit sufficiently small, the details of

the current may be expressed by these tubes with any desired

amount of minuteness, Then if any surface be drawn cutting the
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system of tubes, the quantity of the current which passes through
this surface will be expressed by the number of tubes which cut it,

since each tube carries unity of current.

The actual intersections of the surfaces may be called Lines of

Flow. When the unit is taken sufficiently small, the number of

lines of flow which cut a surface is approximately equal to the

number of tubes of flow which cut it, so that we may consider

the lines of flow as expressing not only the direction of the current

but its strength, since each line of flow through a given section

corresponds to a unit current.

On Current-Sheets and Current-Functions.

294.] A stratum of a conductor contained between two con

secutive surfaces of flow of one system, say that of
A&quot;,

is called

a Current- Sheet. The tubes of flow within this sheet are deter

mined by the function A. If \A and \P denote the values of A at

the points A and P respectively, then the current from right to

left across any line drawn on the sheet from A to P is XP A^.

If AP be an element, ds, of a curve drawn on the sheet, the current

which crosses this element from right to left is

d\ 7
ds.

ds

This function A, from which the distribution of the current in

the sheet can be completely determined, is called the Current-

Function.

Any thin sheet of metal or conducting matter bounded on both

sides by air or some other non-conducting medium may be treated

as a current-sheet, in which the distribution of the current may
be expressed by means of a current-function. See Art. 647.

Equation of Continuity?

295.] If we differentiate the three equations (15) with respect to

#, y, z respectively, remembering that L is a function of A and
A&quot;,

wefind *
+
*

+ ^ = . (17)
dx dy dz

The corresponding equation in Hydrodynamics is called the

Equation of &amp;lt;

Continuity/ The continuity which it expresses is

the continuity of existence, that is, the fact that a material sub

stance cannot leave one part of space and arrive at another, without

going through the space between. It cannot simply vanish in the
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one place and appear in the other, but it must travel along* a con

tinuous path, so that if a closed surface be drawn, including- the

one place and excluding
1 the other, a material substance in passing*

from the one place to the other must go through the closed surface.

The most general form of the equation in hydrodynamics is

d(pu) d(pv) d(P w) dp _
dx dy ~dT^dt~ ( }

where p signifies the ratio of the quantity of the substance to the

volume it occupies, that volume being in this case the differential

element of volume, and (pu), (pv), and (pw) signify the ratio of the

quantity of the substance which crosses an element of area in unit

of time to that area, these areas being normal to the axes of x3 y^ and

z respectively. Thus understood, the equation is applicable to any
material substance, solid or fluid, whether the motion be continuous

or discontinuous, provided the existence of the parts of that sub

stance is continuous. If anything, though not a substance, is

subject to the condition of continuous existence in time and space,

the equation will express this condition. In other parts of Physical

Science, as, for instance, in the theory of electric and magnetic

quantities, equations of a similar form occur. We shall call such

equations
{

equations of continuity to indicate their form, though
we may not attribute to these quantities the properties of matter,

or even continuous existence in time and space.

The equation (17), which we have arrived at in the case of

electric currents, is identical with (18) if we make p = 1, that is,

if we suppose the substance homogeneous and incompressible. The

equation, in the case of fluids, may also be established by either

of the modes of proof given in treatises on Hydrodynamics. In

one of these we trace the course and the deformation of a certain

element of the fluid as it moves along. In the other, we fix our

attention on an element of space, and take account of all that

enters or leaves it. The former of these methods cannot be applied

to electric currents, as we do not know the velocity with which the

electricity passes through the body, or even whether it moves in

the positive or the negative direction of the current. All that we
know is the algebraical value of the quantity which crosses unit

of area in unit of time, a quantity corresponding to (pu] in the

equation (18). We have no means of ascertaining the value of

either of the factors p or u, and therefore we cannot follow a par
ticular portion of electricity in its course through the body. The
other method of investigation, in which we consider what passes
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through the walls of an element of volume, is applicable to electric

currents, and is perhaps preferable in point of form to that which

we have given, but as it may be found in any treatise on Hydro

dynamics we need not repeat it here.

Quantity of Electricity which passes through a given Surface.

296.] Let F be the resultant current at any point of the surface.

Let dS be an element of the surface, and let e be the angle between

T and the normal to the surface, then the total current through
the surface will be r r

I

jTcosedS,

the integration being extended over the surface.

As in Art. 2 1
,
we may transform this integral into the form

in the case of any closed surface, the limits of the triple integration

being those included by the surface. This is the expression for

the total efflux from the closed surface. Since in all cases of steady

currents this must be zero whatever the limits of the integration,

the quantity under the integral sign must vanish, and we obtain

in this way the equation of continuity (17).



CHAPTER VIII.

RESISTANCE AND CONDUCTIVITY IN THREE DIMENSIONS.

On the most General Relations between Current and Electro

motive Force.

297.] LET the components of the current at any point be u, v, w.

Let the components of the electromotive force be X, J, Z.

The electromotive force at any point is the resultant force on
a unit of positive electricity placed at that point. It may arise

(1) from electrostatic action, in which case if 7 is the potential,

X = ~~^ Ys= ~
fy

Z=
&quot;~Tz&amp;gt;

W
or (2) from electromagnetic induction, the laws of which we shall

afterwards examine; or (3) from thermoelectric or electrochemical

action at the point itself, tending to produce a current in a given
direction.

We shall in general suppose that X, Y} Z represent the com

ponents of the actual electromotive force at the point, whatever
be the origin of the force, but we shall occasionally examine the

result of supposing it entirely due to variation of potential.

By Ohm s Law the current is proportional to the electromotive

force. Hence X, J&quot;,
Z must be linear functions of ^, v, w. We

may therefore assume as the equations of Resistance,

--* -^.

(2)

We may call the coefficients E the coefficients of longitudinal
resistance in the directions of the axes of coordinates.

The coefficients P and Q may be called the coefficients of trans

verse resistance. They indicate the electromotive force in one
direction required to produce a current in a different direction.
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If we were at liberty to assume that a solid body may be treated

as a system of linear conductors, then, from the reciprocal property

(Art. 281) of any two conductors of a linear system, we might shew

that the electromotive force along z required to produce a unit

current parallel to y must be equal to the electromotive force along

y required to produce a unit current parallel to z. This would

shew that P = Qi an(i similarly we should find P
2
= Q.2 ,

and

P3
= Q3 . When these conditions are satisfied the system of co

efficients is said to be Symmetrical. When they are not satisfied it

is called a Skew system.

We have great reason to believe that in every actual case the

system is symmetrical, but we shall examine some of the con

sequences of admitting the possibility of a skew system.

298.] The quantities u
t v, w may be expressed as linear functions

of X, Y9
Z by a system of equations, which we may call Equations

of Conductivity,
,

j

,
V

)

v = &X+r2 Y+pl Z, V (3)

we may call the coefficients r the coefficients of Longitudinal con

ductivity, and p and q those of Transverse conductivity.

The coefficients of resistance are inverse to those of conductivity.

This relation may be defined as follows :

Let [PQjB] be the determinant of the coefficients of resistance,

and [pqr\ that of the coefficients of conductivity, then

P
1Q1

R
1
-P2Q2

R
2
-P3QA (4)

[PQE] [pgr] = 1, (6)

[PQR] Pl = (P2
P3
- qi R& [pgr] Pl

= 0^3-?i *i), (7)

&c. &c.

The other equations may be formed by altering the symbols

P, Q, R,p, q, r, and the suffixes 1, 2, 3 in cyclical order.

Rate of Generation of Heat.

299.] To find the work done by the current in unit of time

in overcoming resistance, and so generating heat, we multiply the

components of the current by the corresponding components of the

electromotive force. We thus obtain the following expressions for

W
t the quantity of work expended in unit of time :
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= Xu+Yv + Zw; (8)

, (9)

. (10)

By a proper choice of axes, either of the two latter equations may
be deprived of the terms involving the products of u, v, w or of

X, Y, Z. The system of axes, however, which reduces W to the form

is not in general the same as that which reduces it to the form

It is only when the coefficients P13 P2 ,
P

3
are equal respectively

to Qu Q%) Qs that the two systems of axes coincide.

If with Thomson * we write

^ = ff-2 ;)

and p = s + t,
&amp;lt;i

s t\\
then we have

ttlltt
and [PQS-] fl =

(13)

If therefore we cause -S^ 52 , ^ to disappear, *j will not also dis

appear unless the coefficients T are zero.

Condition of

300.] Since the equilibrium of electricity is stable, the work

spent in maintaining the current must always be positive. The
conditions that W may be positive are that the three coefficients

jftl5 R2J R3 ,
and the three expressions

(14)
lBlSt-(Pt +&amp;lt;^f,)

must all be positive.

There are similar conditions for the coefficients of conductivity.

* Trans. R. S. Edin., 1853-4, p. 165.

VOL. I. C C
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Equation of Continuity in a Homogeneous Medium.

301.] If we express the components of the electromotive force

as the derivatives of the potential V, the equation of continuity

du dv dw

becomes in a homogeneous medium

i^2-2T!- 3T-T &amp;lt; i-7 r-2j-r 3jr* dx? L
dy*

6 dz* dydz
* dzdx dxdy

If the medium is not homogeneous there will be terms arising

from the variation of the coefficients of conductivity in passing
from one point to another.

This equation corresponds to Laplace s equation in an isotropic

medium.

302.] If we put

[rs]
= r

l
r
2
r
3 +2s1

s
2
s
B
-r1

s
1
2-r

2
s
2
2 -r.

d
s
3
2

, (17)

and [AS] = A
1
A

2
A

3+2B1
B

2B3
-A

1
B

1
2-A

2
B

2
2-A

3 B&amp;lt;

2
, (18)

where |/f]-^i r
z
r
s

s
i
2

)
}

[rs\B1=: ^a-r-i*!,
|-

(19)

and so on, the system A, B will be inverse to the system r, s, and

if we make

A
l
x2 + A2 y* + A3 z

2 + 2
lyz+2 2 zz+2 B, xy = [AS] P

2
, (20)

we shall find that

7T p
is a solution of the equation.

In the case in which the coefficients T are zero, the coefficients A
and B become identical with R and 8. When T exists this is not

the case.

In the case therefore of electricity flowing out from a centre in an

infinite, homogeneous, but not isotropic, medium, the equipotential

surfaces are ellipsoids, for each of which p is constant. The axes of

these ellipsoids are in the directions of the principal axes of con

ductivity, and these do not coincide with the principal axes of

resistance unless the system is symmetrical.

By a transformation of this equation we may take for the axes

of a?, ?/,
z the principal axes of conductivity. The coefficients of the

forms s and B will then be reduced to zero, and each coefficient
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of the form A will be the reciprocal of the corresponding coefficient

of the form r. The expression for p will be

,2 f/2 2 A 2

^-+^ + - =^-- (22)
^1 f

2
T
3 ? l r

2
r
3

303.] The theory of the complete system of equations of resist

ance and of conductivity is that of linear functions of three vari

ables, and it is exemplified in the theory of Strains *, and in other

parts of physics. The most appropriate method of treating it is

that by which Hamilton and Tait treat a linear and vector function

of a vector. We shall not, however, expressly introduce Quaternion

notation.

The coefficients 2\, T
2 ,
Tz may be regarded as the rectangular

components of a vector T, the absolute magnitude and direction

of which are fixed in the body, and independent of the direction of

the axes of reference. The same is true of t^ t^ 3 ,
which are the

components of another vector t.

The vectors T and t do not in general coincide in direction.

Let us now take the axis of z so as to coincide with the vector

T, and transform the equations of resistance accordingly. They
will then have the form

(23)
Z S

2
u -f S-L

v +R3 w.

It appears from these equations that we may consider the elec

tromotive force as the resultant of two forces, one of them depending

only on the coefficients R and S, and the other depending on T alone.

The part depending on E and 8 is related to the current in the

same way that the perpendicular on the tangent plane of an

ellipsoid is related to the radius vector. The other part, depending
on 1] is equal to the product of T into the resolved part of the

current perpendicular to the axis of T, and its direction is per

pendicular to T and to the current,, being always in the direction in

which the resolved part of the current would lie if turned 90 in

the positive direction round T.

If we consider the current and T as vectors, the part of the

electromotive force due to T is the vector part of the product,

Tx current.

The coefficient T may be called the Rotatory coefficient. We
have reason to believe that it does not exist in any known sub-

* See Thomson and Tait s Natural Philo^y, 154.

C C 2
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stance. It should be found, if anywhere, in magnets, which have

a polarization in one direction, probably due to a rotational phe
nomenon in the substance.

304.] Assuming then that there is no rotatory coefficient, we

shall shew how Thomson s Theorem given in Art. 100 may be

extended to prove that the heat generated by the currents in the

system in a given time is a unique minimum.

To simplify the algebraical work let the axes of coordinates be

chosen so as to reduce expression (9), and therefore also in this case

expression (10), to three terms; and let us consider the general

characteristic equation (16) which thus reduces to

Also, let a, b, c be three functions of x, y, z satisfying the condition

da db dc . .

-7- + -7- + -7-= 0; (25)
dso d dz

and let

3 dz

Finally, let the triple-integral

(27)

be extended over spaces bounded as in the enunciation of Art. 100 ;

such viz. that Fis constant over certain portions or else the normal

component of the vector #, #, c is given, the latter condition being

accompanied by the further restriction that the integral of this

component over the whole bounding surface must be zero : then W
will be a minimum when

u = 0, v = 0, w = 0.

For we have in this case

7-^=1, r
2
R

2 =l, 7-3
^

3 =1;
and therefore, by (26),
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du dv dw
But since -

?
- + + = 0, (29)dx dy dz

the third term vanishes by virtue of the conditions at the limits.

The first term of (28) is therefore the unique minimum value of W.

305.] As this proposition is of great importance in the theory of

electricity, it may be useful to present the following proof of the

most general case in a form free from analytical operations.

Let us consider the propagation of electricity through a conductor

of any form, homogeneous or heterogeneous.
Then we know that

(1) If we draw a line along the path and in the direction of

the electric current, the line must pass from places of high potential

to places of low potential.

(2) If the potential at every point of the system be altered in

a given uniform ratio,, the currents will be altered in the same ratio,

according to Ohm s Law.

(3) If a certain distribution of potential gives rise to a certain

distribution of currents, and a second distribution of potential gives
rise to a second distribution of currents, then a third distribution in

which the potential is the sum or difference of those in the first

and second will give rise to a third distribution of currents, such

that the total current passing through a given finite surface in the

third case is the sum or difference of the currents passing through
it in the first and second cases. For, by Ohm s Law, the additional

current due to an alteration of potentials is independent of the

original current due to the original distribution of potentials.

(4) If the potential is constant over the whole of a closed surface,

and if there are no electrodes or intrinsic electromotive forces

within it, then there will be no currents within the closed surface,

and the potential at any point within it will be equal to that at the

surface.

If there are currents within the closed surface they must either

be closed curves, or they must begin and end either within the

closed surface or at the surface itself.

But since the current must pass from places of high to places of

low potential, it cannot flow in a closed curve.

Since there are no electrodes within the surface the current

cannot begin or end within the closed surface, and since the

potential at all points of the surface is the same, there can be

no current along lines passing from one point of the surface to

another.
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Hence there are no currents within the surface, and therefore

there can be no difference of potential, as such a difference would

produce currents, and therefore the potential within the closed

surface is everywhere the same as at the surface.

(5) If there is no electric current through any part of a closed

surface, and no electrodes or intrinsic electromotive forces within

the surface, there will be no currents within the surface, and the

potential will be uniform.

We have seen that the currents cannot form closed curves, or

begin or terminate within the surface, and since by the hypothesis

they do not pass through the surface, there can be no currents, and

therefore the potential is constant.

(6) If the potential is uniform over part of a closed surface, and

if there is no current through the remainder of the surface, the

potential within the surface will be uniform for the same reasons.

(7) If over part of the surface of a body the potential of every

point is known, and if over the rest of the surface of the body the

current passing through the surface at each point is known, then

only one distribution of potentials at points within the body can

exist.

For if there were two different values of the potential at any

point within the body, let these be 7
l
in the first case and F2

in

the second case, and let us imagine a third case in which the

potential of every point of the body is the excess of potential in the

first case over that in the second. Then on that part of the surface

for which the potential is known the potential in the third case will

be zero, and on that part of the surface through which the currents

are known the currents in the third case will be zero, so that by

(6) the potential everywhere within the surface will be zero, or

there is no excess of 7
l
over 7Z)

or the reverse. Hence there is

only one possible distribution of potentials. This proposition is

true whether the solid be bounded by one closed surface or by

several.

On the Approximate Calculation of the Resistance of a Conductor

of a given Form.

306.] The conductor here considered has its surface divided into

three portions. Over one of these portions the potential is main

tained at a constant value. Over a second portion the potential has

a constant value different from the first. The whole of th&amp;lt;fremainder

of the surface is impervious to electricity. We may suppose the
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conditions of the first and second portions to be fulfilled by applying

to the conductor two electrodes of perfectly conducting
1

material,

and that of the remainder of the surface by coating it with per

fectly non-conducting material.

Under these circumstances the current in every part of the

conductor is simply proportional to the difference between the

potentials of the electrodes. Calling this difference the electro

motive force, the total current from the one electrode to the other

is the product of the electromotive force by the conductivity of the

conductor as a whole, and the resistance of the conductor is the

reciprocal of the conductivity.

It is only when a conductor is approximately in the circumstances

above defined that it can be said to have a definite resistance, or

conductivity as a whole. A resistance coil, consisting of a thin

wire terminating in large masses of copper, approximately satisfies

these conditions, for the potential in the massive electrodes is nearly

constant, and any differences of potential in different points of the

same electrode may be neglected in comparison with the difference

of the potentials of the two electrodes.

A very useful method of calculating the resistance of such con

ductors has been given, so far as I know, for the first time, by

Lord Rayleigh, in a paper on the Theory of Resonance *.

It is founded on the following considerations.

If the specific resistance of any portion of the conductor be

changed, that of the remainder being unchanged, the resistance of

the whole conductor will be increased if that of the portion is

increased, and diminished if that of the portion be diminished.

This principle may be regarded as self-evident, but it may easily

be shewn that the value of the expression for the resistance of a

system of conductors between two points selected as electrodes,

increases as the resistance of each member of the system in

creases.

It follows from this that if a surface of any form be described

in the substance of the conductor, and if we further suppose this

surface to be an infinitely thin sheet of a perfectly conducting

substance, the resistance of the conductor as a whole will be

diminished unless the surface is one of the equipotential surfaces

in the natural state of the conductor, in which case no effect will

be produced by making it a perfect conductor, as it is already in

electrical equilibrium.

* Phil. Trans., 1871, p. 77. See Art. 102.
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If therefore we draw within the conductor a series of surfaces,

the first of which coincides with the first electrode, and the last

with the second, while the intermediate surfaces are bounded by
the non-conducting surface and do not intersect each other, and

if we suppose each of these surfaces to be an infinitely thin sheet

of perfectly conducting- matter, we shall have obtained a system
the resistance of which is certainly not greater than that of the

original conductor, and is equal to it only when the surfaces we

have chosen are the natural equipotential surfaces.

To calculate the resistance of the artificial system is an operation

of much less difficulty than the original problem. For the resist

ance of the whole is the sum of the resistances of all the strata

contained between the consecutive surfaces, and the resistance of

each stratum can be found thus :

Let dS be an element of the surface of the stratum, v the thick

ness of the stratum perpendicular to the element, p the specific

resistance, E the difference of potential of the perfectly conducting

surfaces, and dC the current through dS, then

dC=E-dS, (1)

and the whole current through the stratum is

the integration being extended over the whole stratum bounded by
the non-conducting surface of the conductor.

Hence the conductivity of the stratum is

ds, (a)E JJ pv

and the resistance of the stratum is the reciprocal of this quantity.

If the stratum be that bounded by the two surfaces for which

the function F has the values Fand F+dF respectively, then

(IF

and the resistance of the stratum is

-VFdS
P

To find the resistance of the whole artificial conductor, we have

only to integrate with respect to F
}
and we find
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P

The resistance R of the conductor in its natural state is greater

than the value thus obtained, unless all the surfaces we have chosen

are the natural equipotential surfaces. Also, since the true value

of R is the absolute maximum of the values of R
l
which can thus

be obtained, a small deviation of the chosen surfaces from the true

equipotential surfaces will produce an error of R which is com

paratively small.

This method of determining a lower limit of the value of the

resistance is evidently perfectly general, and may be applied to

conductors of any form, even when p, the specific resistance, varies

in any manner within the conductor.

The most familiar example is the ordinary method of determining
the resistance of a straight wire of variable section. In this case

the surfaces chosen are planes perpendicular to the axis of the

wire, the strata have parallel faces, and the resistance of a stratum

of section S and thickness ds is

77?
1
=

and that of the whole wire of length s is

^

where S is the transverse section and is a function of s.

This method in the case of wires whose section varies slowly

with the length gives a result very near the truth, but it is really

only a lower limit, for the true resistance is always greater than

this, except in the case where the section is perfectly uniform.

307.] To find the higher limit of the resistance, let us suppose

a surface drawn in the conductor to be rendered impermeable to

electricity. The effect of this must be to increase the resistance of

the conductor unless the surface is one of the natural surfaces of

flow. By means of two systems of surfaces we can form a set

of tubes which will completely regulate the flow, and the effect, if

there is any, of this system of impermeable surfaces must be to

increase the resistance above its natural value.

The resistance of each of the tubes may be calculated by the

method already given for a fine wire, and the resistance of the

whole conductor is the reciprocal of the sum of the reciprocals of

the resistances of all the tubes. The resistance thus found is greater
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than the natural resistance, except when the tubes follow the

natural lines of flow.

In the case already considered, where the conductor is in the

form of an elongated solid of revolution, let us measure as along- the

axis, and let the radius of the section at any point be b. Let one

set of impermeable surfaces be the planes through the axis for each

of which
&amp;lt;j)

is constant, and let the other set be surfaces of revolution

for which y
z
=\l/l

z
, (9)

where
\j/

is a numerical quantity between and 1.

Let us consider a portion of one of the tubes bounded by the

surfaces $ and ( + f7$, \jf
and

\}/ -\-d\ff, x and x-\- dx.

The section of the tube taken perpendicular to the axis is

ydyd$ = l*dtyd&amp;lt;t&amp;gt;. (10)

If 6 be the angle which the tube makes with the axis

tan0 =^~ (11)

The true length of the element of the tube is clx sec 0, and its

true section is i ^ d^^ cos ^

so that its resistance is

Let A =J jf
dx, and B =

j Q &amp;lt;fo, (13)

the integration being extended over the whole length, x, of the

conductor, then the resistance of the tube d\\r dcf) is

2^

d\^f (,

and its conductivity is

To find the conductivity of the whole conductor, which is the

sum of the conductivities of the separate tubes, we must integrate

this expression between &amp;lt;

= and $ = 2 TT, and between i/r
=

and
\//
= 1 . The result is

i-JurCi +
J). (&quot;)

which may be less, but cannot be greater, than the true con

ductivity of the conductor.
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77 -n

When is always a small quantity will also be small, and we
CISC -L

may expand the expression for the conductivity, thus

The first term of this expression, ^-,
is that which we should

J3.

have found by the former method as the superior limit of the con

ductivity. Hence the true conductivity is less than the first term

but greater than the whole series. The superior value of the

resistance is the reciprocal of this, or

If, besides supposing the flow to be guided by the surfaces &amp;lt; and

\l/,
we had assumed that the flow through each tube is proportional

to d\l/d(p, we should have obtained as the value of the resistance

under this additional constraint

(17)

which is evidently greater than the former value, as it ought to be,

on account of the additional constraint. In Lord Rayleigh s paper

this is the supposition made, and the superior limit of the resistance

there given has the value (17), which is a little greater than that

which we have obtained in (16).

308.] We shall now apply the same method to find the correction

which must be applied to the length of a cylindrical conductor of

radius a when its extremity is placed in metallic contact with a

massive electrode, which we may suppose of a different metal.

For the lower limit of the resistance we shall suppose that an

infinitely thin disk of perfectly conducting matter is placed between

the end of the cylinder and the massive electrode, so as to bring

the end of the cylinder to one and the same potential throughout.

The potential within the cylinder will then be a function of its

length only, and if we suppose the surface of the electrode where

the cylinder meets it to be approximately plane, and all its dimen

sions to be large compared with the diameter of the cylinder, the

distribution of potential will be that due to a conductor in the form

of a disk placed in an infinite medium. See Arts. 151, 177.

If E is the difference of the potential of the disk from that of

the distant parts of the electrode, C the current issuing from the
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surface of the disk into the electrode, and p the specific resistance

of the electrode
;
then if Q is the amount of electricity on the disk,

which we assume distributed as in Art. 151, we have
171

p C = i.47r = 2u , by Art. 151,
7T

(18)

Hence, if the length of the wire from a given point to the

electrode is L, and its specific resistance p, the resistance from that

point to any point of the electrode not near the junction is

K
L

&quot;E = f^ +
Ta

and this may be written

R= -P-fL +L^, (
i 9)

-no? \
p 4 J

where the second term within brackets is a quantity which must

be added to the length of the cylinder or wire in calculating its

resistance, and this is certainly too small a correction.

To understand the nature of the outstanding error we may
observe, that whereas we have supposed the flow in the wire up
to the disk to be uniform throughout the section, the flow from

the disk to the electrode is not uniform, but is at any point in

versely proportional to the minimum chord through that point. In

the actual case the flow through the disk will not be uniform,

but it will not vary so much from point to point as in this supposed

case. The potential of the disk in the actual case will not be

uniform, but will diminish from the middle to the edge.

309.] We shall next determine a quantity greater than the true

resistance by constraining the flow through the disk to be uniform

at every point. We may suppose electromotive forces introduced

for this purpose acting perpendicular to the surface of the disk.

The resistance within the wire will be the same as before, but

in the electrode the rate of generation of heat will be the surface-

integral of the product of the flow into the potential. The rate of

C
flow at any point is -, and the potential is the same as that of

an electrified surface whose surface-density is o-, where

being the specific resistance.
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We have therefore to determine the potential energy of the

electrification of the disk with the uniform surface-density o\

* The potential at the edge of a disk of uniform density cr is easily

found to be 4 a a: The work done in adding a strip of breadth

da at the circumference of the disk is 2 na a-da . 4#o-, and the

whole potential energy of the disk is the integral of this,

or P=~a*o2
.

(21)

In the case of electrical conduction the rate at which work is

done in the electrode whose resistance is Bf is C2R . But from the

general equation of conduction the current across the disk per unit

area is of the form 1 dy

p dv

47T
or

-7-0&quot;.

P

Hence the rate at which work is done is

4*

7
We have therefore

V=jP, (22)

whence, by (20) and (21),

7? - 8p/
&quot;

SirV
and the correction to be added to the length of the cylinder is

/ 8

Js^*
this correction being greater than the true value. The true cor-

/

rection to be added to the length is therefore - an, where n is a

7T 8
P

number lying between - and
,
or between 0.785 and 0.849-

4 o TT

fLord Rayleigh, by a second approximation, has reduced the

superior limit of n to 0.8282.

* See a Paper by Professor Cayley, London Math. Soc. Proc. vi. p. 47.

f Phil. Mag., Nov. 1872. Lord Eayleigh subsequently obtained -8242 as the

superior limit. See London Math. Soc. Proc. viii. p. 74.



CHAPTER IX.

CONDUCTION THROUGH HETEROGENEOUS MEDIA.

On the Conditions to le Fulfilled at the Surface of Separation

between Two Conducting Media.

310.] THERE are two conditions which the distribution of currents

must fulfil in general, the condition that the potential must be

continuous, and the condition of continuity of the electric currents.

At the surface of separation between two media the first of these

conditions requires that the potentials at two points on opposite
sides of the surface, but infinitely near each other, shall be equal.

The potentials are here understood to be measured by an elec

trometer put in connexion with the given point by means of an

electrode of a given metal. If the potentials are measured by the

method described in Arts. 222, 246, where the electrode terminates

in a cavity of the conductor filled with air, then the potentials at

contiguous points of different metals measured in this way will

differ by a quantity depending on the temperature and on the

nature of the two metals.

The other condition at the surface is that the current through

any element of the surface is the same when measured in either

medium.

Thus, if V\ and ^ are the potentials in the two media, then at

any point in the surface of separation

*;
= r (^

and if u
19 vl9 w^ and w29 v

2 , w.2 are the components of currents in the

two media, and I, m, n the direction-cosines of the normal to the

surface of separation,

Uil+vL
m -\-w^n = U

2 l + v
2
m + w2

n. (2)

In the most general case the components u, v, w are linear
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functions of the derivatives of F, the forms of which are given in

the equations
u =
v =23 X+r.Y+ Jp1 Z, (3)

where X, J, Z are the derivatives of V with respect to as, yt
z

respectively.

Let us take the case of the surface which separates a medium

having these coefficients of conduction from an isotropic medium

having a coefficient of conduction equal to r.

Let X
,
Y

,
Zf

be the values of X, Y} Z in the isotropic medium,
then we have at the surface

r=7 , (4)

or Xdx + Ydy + Zdz = X dx + Y dy + Z dz, (5)

when I dx -\- m dy &amp;gt;\-

n dz = 0. (6)

This condition gives

X =X+4Tr&amp;lt;rl, 7 = r+47ro-M, Z =Z + 4iT(yn, (?)

where cr is the surface-density.

We have also in the isotropic medium

u = rX
,

v = rY
,

w = rZ
, (8)

and at the boundary the condition of flow is

u l+tfm+w n = ul-\-vm+ wn, (9)

or r(lX+mY-\- nZ+kvcr)

whence

a(rar))Z. (11)

The quantity a- represents the surface-density of the charge

on the surface of separation. In crystallized and organized sub

stances it depends on the direction of the surface as well as on

the force perpendicular to it. In isotropic substances the coeffi

cients p and q are zero, and the coefficients / are all equal, so that

4:7(7 = (A _ i) (IX+mY+nZ), (12)

where ^ is the conductivity of the substance, r that of the external

medium, and I, m, n the direction-cosines of the normal drawn

towards the medium whose conductivity is r,

When both media are isotropic the conditions may be greatly
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simplified, for if Jc is the specific resistance per unit of volume, then

1 dV I dV l dVU=j^-t V= y-y-J W = y -
, (13)k dx K dy k dz v

and if v is the normal drawn at any point of the surface of separa

tion from the first medium towards the second, the condition of

continuity is I dF
l

I dV
2

~J 7
&quot;~~

~7 7
*

V * ^
)% dv #

2 du

If O
l
and 62 are the angles which the lines of flow in the first and

second media respectively make with the normal to the surface

of separation, then the tangents to these lines of flow are in the

same plane with the normal and on opposite sides of it, and

#]_
tan S

l
= k

2
tan

2 . (15)

This may be called the law of refraction of lines of flow.

311.] As an example of the conditions which must be fulfilled

when electricity crosses the surface of separation of two media,

let us suppose the surface spherical and of radius a, the specific

resistance being k^ within and k
2
without the surface.

Let the potential, both within and without the surface, be ex

panded in solid harmonics, and let the part which depends on

the surface harmonic S
4 be

r
1
= (4i +.B1 i-&amp;lt;

&amp;gt;)*&amp;lt;

, (i)

r. = (A,t+st r-&amp;gt;)
s

t (2)

within and without the sphere respectively.

At the surface of separation where r = a we must have

Fi=F2 and l&quot;i
&quot;i.

(3)^ dr k.2 dr

From these conditions we get the equations

These equations are sufficient, when we know two of the four

quantities Alt A^ Blt
B

2 ,
to deduce the other two.

Let us suppose A
l
and B known, then we find the following

expressions for A
2
and B

2 ,

r^v-r./i-,

(2+l)
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SPHERICAL SHELL. 01

In this way we can find the conditions which each term of the

harmonic expansion of the potential must satisfy for any number of

strata bounded by concentric spherical surfaces.

312.] Let us suppose the radius of the first spherical surface

to be al} and let there be a second spherical surface of radius a
2

greater than %, beyond which the specific resistance is k
z . If there

are no sources or sinks of electricity within these spheres there

will be no infinite values of Y
t
and we shall have B

l
= 0.

We then find for A
3 and JB

3 ,
the coefficients for the outer medium,

(6)

The value of the potential in the outer medium depends partly
on the external sources of electricity, which produce currents in

dependently of the existence of the sphere of heterogeneous matter

within, and partly on the disturbance caused by the introduction of

the heterogeneous sphere.

The first part must depend on solid harmonics of positive degrees

only, because it cannot have infinite values within the sphere. The
second part must depend on harmonics of negative degrees, because

it must vanish at an infinite distance from the centre of the sphere.
Hence the potential due to the external electromotive forces must

be expanded in a series of solid harmonics of positive degree. Let

AS be the coefficient of one of these, of the form

Then we can find A19 the corresponding coefficient for the inner

sphere by equation (6), and from this deduce A
2 ,
B

2 ,
and .Z?

3 . Of
these 3 represents the effect on the potential in the outer medium
due to the introduction of the heterogeneous spheres.

Let us now suppose 3
= &lt so that the case is that of a hollow

shell for which k /
2 , separating an inner from an outer portion of

the same medium for which k = klt

If we put

o = !

VOL. I. D d
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then A1
= ^(2*+ l)

2 CA
B ,

B.2 = 2i+l

The difference between A3 the undisturbed coefficient, and A
l
its

value in the hollow within the spherical shell, is

- A, = (k,- ktfi (i + 1) (l
-

)

2 +1

) CA,. (8)4r

Since this quantity is always positive whatever be the values

of k and 2 ,
it follows that, whether the spherical shell conducts

better or worse than the rest of the medium, the electrical action

in the space occupied by the shell is less than it would otherwise

be. If the shell is a better conductor than the rest of the

medium it tends to equalize the potential all round the inner

sphere. If it is a worse conductor, it tends to prevent the

electrical currents from reaching the inner sphere at all.

The case of a solid sphere may be deduced from this by making

#! = 0, or it may be worked out independently.

313.] The most important term in the harmonic expansion is

that in which i = 1, for which

1

(
(9)

i Ql- I- C&amp;lt; A A Q I (9 If _i_ I- \ r4
Lj

t)
A&amp;gt;J

K&amp;lt; \J*O-n j 2
~~~

2 \ 1 2/ 3

The case of a solid sphere of resistance /
2 may be deduced from

this by making ^ = 0. We then have

&quot;

__ 21 3 A
jL/ j . -. tA/n ^iQ

^i + 2/^2
2

It is easy to shew from the general expressions that the value

of -Z?
3
in the case of a hollow sphere having a nucleus of resistance

&15
surrounded by a shell of resistance /

2 ,
is the same as that of

a uniform solid sphere of the radius of the outer surface, and of

resistance K, where

-
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314.] If there are n spheres of radius a^ and resistance $15 placed
in a medium whose resistance is /

2&amp;gt;

at such distances from each

other that their effects in disturbing* the course of the current

may be taken as independent of each other, then if these spheres

are all contained within a sphere of radius #
2 ,

the potential at a

great distance from the centre of this sphere will be of the form.

V = Ar +ncos0, (12)

where the value of B is

The ratio of the volume of the n small spheres to that of the

sphere which contains them is

&amp;gt;-$
.

&amp;lt;&quot;&amp;gt;

The value of the potential at a great distance from the sphere

may therefore be written

Now if the whole sphere of radius a
2
had been made of a material

of specific resistance K, we should have had

That the one expression should be equivalent to the other,

2^+ ^ +X^i-^) *
*

This, therefore, is the specific resistance of a compound medium

consisting of a substance of specific resistance k.2 ,
in which are

disseminated small spheres of specific resistance kl} the ratio of the

volume of all the small spheres to that of the whole being p. In

order that the action of these spheres may not produce effects

depending on their interference, their radii must be small compared
with their distances, and therefore^? must be a small fraction.

This result may be obtained in other ways, but that here given

involves only the repetition of the result already obtained for a

single sphere.

When the distance between the spheres is not great compared
^ _ fc

with their radii, and when r f-
is considerable, then other

2 K
l -f- #2

terms enter into the result, which we shall not now consider.

In consequence of these terms certain systems of arrangement of

D d 2,
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the spheres cause the resistance of the compound medium to be

different in different directions.

Application of the Principle of Images.

315.] Let us take as an example the case of two media separated

by a plane surface, and let us suppose that there is a source S

of electricity at a distance a from the plane surface in the first

medium, the quantity of electricity flowing from the source in unit

of time being 8.

If the first medium had been infinitely extended the current

at any point P would have been in the direction SP, and the

potential at P would have been where E = - and /, = SP.
r-L

477

In the actual case the conditions may be satisfied by taking
a point 7, the image of S in the second medium, such that 7$

is normal to the plane of separation and is bisected by it. Let r2

be the distance of any point from 7, then at the surface of separation

i _ 2 /x
J~v- -3T

Let the potential F^ at any point in the first medium be that

due to a quantity of electricity E placed at 8
t together with an

imaginary quantity E2
at 7, and let the potential F

2
at any point

of the second medium be that due to an imaginary quantity El
at

8, then if E E2 E
lY ---

j_
-A and F2

= -
i (3)

*i ^ r
i

the superficial condition V^ = F
2 gives

(4)
and the condition

Aj Av
~~

A2 dv

gives 1-(E-E2)=E1 , (6)

The potential in the first medium is therefore the same as would

be produced in air by a charge E placed at 8
t
and a charge E%

at 7 on the electrostatic theory, and the potential in the second

medium is the same as that which would be produced in air by
a charge El

at S.
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The current at any point of the first medium is the same as would

have been produced by the source 8 together with a source
2
~

1 S
K-\ -\- /C.)

placed at I if the first medium had been infinite, and the current

at any point of the second medium is the same as would have been

2k S
produced by a source

2

placed at/? if the second medium had

been infinite.

We have thus a complete theory of electrical images in the case

of two media separated by a plane boundary. Whatever be the

nature of the electromotive forces in the first medium, the potential

they produce in the. first medium may be found by combining their

direct effect with the effect of their image.
If we suppose the second medium a perfect conductor, then

2
= 0, and the image at / is equal and opposite to the source

at 8. This is the case of electric images, as in Thomson s theory
in electrostatics.

If we suppose the second medium a perfect insulator, then

k
2 oo, and the image at / is equal to the source at 8 and of the

same sign. This is the case of images in hydrokinetics when the

fluid is bounded by a rigid plane surface.

316.] The method of inversion, which is of so much use in

electrostatics when the. bounding surface is supposed to be that

of a perfect conductor, is not applicable to the more general case

of the surface separating two conductors of unequal electric resist

ance. The method of inversion in two dimensions is, however,

applicable, as well as the more general method of transformation in

two dimensions given in Art. 190 *.

Conduction through a Plate separating Two Media.

317.] Let us next consider the effect of a plate of thickness AS of

a medium whose resist

ance is k.2 ,
and separating \

two media whose resist

ances are k^ and / 3 ,
in &quot;t

J J~

altering the potential due

to a source S in the first

medium.

The potential will be Fis- 24 -

* See Kirchhoff, Pogg. Ann. Ixiv. 497, and Ixvii. 344 : Quincke, Pogg. xcvii. 382;
and Smith, Proc. R. S. Edin., 1869-70, p. 79.
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equal to that due to a system of charges placed in air at certain

points along
1 the normal to the plate through S.

Make

AI=SA, BI^SB, AJ^I.A, BI^^B, AJ2
=I

2A, &c.
;

then we have two series of points at distances from each other equal

to twice the thickness of the plate.

318.] The potential in the first medium at any point P is equal to

PS PI
that at a point P in the second

*P8 T PI P I
L

^ P 7
2

and that at a point P
x/

in the third

r
+ + +&c

&quot; (10)

where /, 7
,
&c. represent the imaginary charges placed at the

points 7, &c., and the accents denote that the potential is to be

taken within the plate.

Then, by the last Article, for the surface through A we have,

(11)
J !

For the surface through B we find

7. 7. o 7.

^_^ ^/&amp;gt;s=
_^3

yt3 + ^
2

^2 +

Similarly for the surface through A again,

7. _ 7, 07:7/i 2r &quot;

and for the surface through 7?,

- 9 Jf
/ TT_ ^^3 T/ / 14 \

1&amp;gt; /1 - J -

If we make = = and =

we find for the potential in the first medium,

r=
Ts

-
p -J
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For the potential in the third medium we find

If the first medium is the same as the third, then k^ = 3
and

p = p ,
and the potential on the other side of the plate will be

If the plate is a very much better conductor than the rest of the

medium, p is very nearly equal to 1. If the plate is a nearly perfect

insulator, p is nearly equal to 1, and if the plate differs little in

conducting power from the rest of the medium, p is a small quantity

positive or negative.

The theory of this case was first stated by Green in his Theory
of Magnetic Induction (Essay, p. 65). His result, however, is

correct only when p is nearly equal to 1 *. The quantity g which

he uses is connected with p by the equations

2p k-^
k
2 3y k- k

2

If we put p =- ,
we shall have a solution of the problem of

1 ~\~ 2i 7T K

the magnetic induction excited by a magnetic pole in an infinite

plate whose coefficient of magnetization is K.

On Stratified Conductors.

319.] Let a conductor be composed of alternate strata of thick

ness c and &amp;lt;f of two substances whose coefficients of conductivity

are different. Required the coefficients of resistance and* conduc

tivity of the compound conductor.

Let the plane of the strata be normal to Z. Let every symbol

relating to the strata of the second kind be accented, and let

every symbol relating to the compound conductor be marked with

a bar thus, X. Then

Y= X = X
, (c + c )u = cu+c u

,

(c + c)~Z = cZ+ c Z
,

w = w = w .

We must first determine u, u, v&amp;gt; v, Z and Z in terms of

X, Y and w from the equations of resistance, Art. 297, or those

* See Sir W. Thomson s Note on Induced Magnetism in a Plate, Camb. and

Dub. ]\LatU. Journ., Nov. 1845, or Reprint, art. ix. 156.
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of conductivity, Art. 298. If we put D for the determinant of the
coefficients of resistance, we find

vr
3
D = RiJ-

Similar equations with the symbols accented give the values
of u ,

v and Z . Having found u, v and w in terms of X, Fand ^
we may write down the equations of conductivity of the stratified

conductor. If we make k = and /$ = ~, we find

_ -

_

=

. .

_

. .

320.] If neither of the two substances of which the strata are

formed has the rotatory property of Art. 303, the value of any
P or p will be equal to that of its corresponding Q or q. From
this it follows that in the stratified conductor also

Pi = L Pz = 2 &amp;gt; Ps
= ?s

or there is no rotatory property developed by stratification, unless

it exists in the materials.

321.] If we now suppose that there is no rotatory property, and
also that the axes of a, y and z are the principal axes, then the

j} and q coefficients vanish, and

If we begin with both substances isotropic, but of different
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conductivities, then the result of stratification- will be to make
the resistance greatest in the direction of a normal to the strata,

and the resistance in all directions in the plane of the strata will

be equal.

322.] Take an isotropic substance of conductivity r, cut it into

exceedingly thin slices of thickness #, and place them alternately

with slices of a substance whose conductivity is s, and thickness ka.

Let these slices be normal to x. Then cut this compound con

ductor into thicker slices, of thickness b, normal to yt
and alternate

these with slices whose conductivity is s and thickness k
z
b.

Lastly, cut the new conductor into still thicker slices, of thick

ness c, normal to z, and alternate them with slices whose con

ductivity is s and thickness kz c.

The result of the three operations will be to cut the substance

whose conductivity is r into rectangular parallelepipeds whose

dimensions are a, b and c, where ~b is exceedingly small compared
with c

9
and a is exceedingly small compared with b, and to embed

these parallelepipeds in the substance whose conductivity is s, so

that they are separated from each other k^a in the direction of xy

kjb in that of y, and k$c in that of z. The conductivities of the

conductor so formed in the directions of #, yy and z are to be found

by three applications in order of the results of Art. 321. We
thereby obtain

{!

_ -f- c-c + / 4- / s

3
=

r + C
1

The accuracy of this investigation depends upon the three dimen

sions of the parallelepipeds being of different orders of magnitude,
so that we may neglect the conditions to be fulfilled at their edges

and angles. If we make klt k
2
and k% each unity, then

s 3r+5s

If r = 0, that is, if the medium of which the parallelepipeds

are made is a perfect insulator, then



410 CONDUCTION IN HETEROGENEOUS MEDIA. [323.

If r oo, that is, if the parallelepipeds are perfect conductors,

fl == ~T~ S, Tn ~~~
,9 V 9 ?1

^^
4^ ) 2

~~
2 J 3 *5

In every case, provided ^ =
2
= /

3 ,
it may be shewn that

r
i&amp;gt;

r
2 and

7*3
are in ascending order of magnitude, so that the

greatest conductivity is in the direction of the longest dimensions
of the parallelepipeds, and the greatest resistance in the direction

of their shortest dimensions.

323.] In a rectangular parallelepiped of a conducting solid, let

there be a conducting channel made from one angle to the opposite,
the channel being a wire covered with insulating material, and
let the lateral dimensions of the channel be so small that the

conductivity of the solid is not affected except on account of the

current conveyed along the wire.

Let the dimensions of the parallelepiped in the directions of the

coordinate axes be a, b, c, and let the conductivity of the channel,

extending from the origin to the point (abc\ be abcK.
The electromotive force acting between the extremities of the

channel is aX+bY+cZ,
and if C be the current along the channel

C =Kabc(aX+bY+cZ\
The current across the face be of the parallelepiped is bcu, and

this is made up of that due to the conductivity of the solid and
of that due to the conductivity of the channel, or

bcu = bc(

or u = (^ + Ka 2
)Z+ (p3 + Ka b}Y+ fa + Kca) Z.

In the same way we may find the values of v and w. The
coefficients of conductivity as altered by the effect of the channel

will be

Pi + Kbc,

In these expressions, the additions to the values of plt &c., due

to the effect of the channel, are equal to the additions to the values

of qlt &c. Hence the values of p^ and q1
cannot be rendered

unequal by the introduction of linear channels into every element

of volume of the solid, and therefore the rotatory property of

Art. 303, if it does not exist previously in a solid, cannot be

introduced by such means.
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3.24.] To construct a framework of linear conductors which shall

have any given coefficients of conductivity forming a symmetrical

system.

Let the space be divided into equal small cubes, of which let the

figure represent one. Let the coordinates of the

points 0, L} M, N, and their potentials be as

follows : x y z Potential

000 X+Y+Z
L 1 1 X
M 1 1 Y
#&quot;110 Z

Let these four points be connected by six conductors,

OL, OM, ON, MN, NL, LM,

of which the conductivities are respectively

A, B, C, P, Q, E.

The electromotive forces along these conductors will be

Y+Z, Z+X, X+Y, Y-Z, Z-X, X-Y,
and the currents

A (Y+Z), B(Z + X\ C(X+Y\ P(Y-Z), Q(Z-X), R(X-Y).
Of these currents, those which convey electricity in the positive

direction of so are those along LM, LN, OM and ON, and the

quantity conveyed is

u = (B+C+q + R)X+(C-R)Y +(B-q)Z.

Similarly

v = (C-R)X +(C+A
w=(B-Q)X +(A-P)Y

whence we find by comparison with the equations of conduction.

Art. 298,

4 A = r
:6 + r3 r

1 +2p1 ,
4P = r

2+ r
3
-r

1
-2

jp1 ,

4 Q = r3+ r
l

r2 2_p2 ,



CHAPTER X.

CONDUCTION IN DIELECTRICS.

325.] WE have seen that when electromotive force acts on a

dielectric medium it produces in it a state which we have called

electric polarization, and which we have described as consisting
of electric displacement within the medium in a direction which,
in isotropic media, coincides with that, of the electromotive force,

combined with a superficial charge on every element of volume

into which we may suppose the dielectric divided, which is negative
on the side towards which the force acts, and positive on the side

from which it acts.

When electromotive force acts on a conducting medium it also

produces what is called an electric current.

Now dielectric media, with very few, if any, exceptions, are also

more or less imperfect conductors, and many media which are not

good insulators exhibit phenomena of dielectric induction. Hence

we are led to study the state of a medium in which induction and

conduction are going on at the same time.

For simplicity we shall suppose the medium isotropic at every

point, but not necessarily homogeneous at different points. In this

case, the equation of Poisson becomes,- by Art. 83,

d /rdV d dV d /d

where K is the specific inductive capacity.

The equation of continuity of electric currents becomes

jlfl^U^fi^H Afl^-^=o (2
dx^r dx } ~^

dy\r dy&amp;gt;

+ dz\ dz dt
~

{

where r is the specific resistance referred to unit of volume.

When K or r is discontinuous, these equations must be trans

formed into those appropriate to surfaces of discontinuity.
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In a strictly homogeneous medium r and K are both constant, so

that we find

d^V d 2T d 2V p dp
dx2

dy* dz2
~ K &quot;

dt

whence p Ce Kr
; (4)

Kr --
or, if we put T = , p Ce T

.

(5)

This result shews that under the action of any external electric

forces on a homogeneous medium, the interior of which is originally

charged in any manner with electricity, the internal charges will

die away at a rate which does not depend on the external forces,

so that at length there will be no charge of electricity within

the medium, after which no external forces can either produce or

maintain a charge in any internal portion of the medium, pro
vided the relation between electromotive force, electric polarization

and conduction remains the same. When disruptive discharge
occurs these relations cease to be true, and internal charge may
be produced.

On Conduction through a Condenser.

326.] Let 67 be the capacity of a condenser, R its resistance, and

E the electromotive force which acts on it, that is, the difference of

potentials of the surfaces of the metallic electrodes.

Then the quantity of electricity on the side from which the

electromotive force acts will be CE, and the current through the

substance of the condenser in the direction of the electromotive

force will be -=-

If the electrification is supposed to be produced by an electro

motive force E acting in a circuit of which the condenser forms

part, and if -~ represents the current in that circuit, then

Let a battery of electromotive force E
Q and resistance rt be

introduced into this circuit, then
jj f\ 1jl Ijl Tfl rJtfl
CtlcJ JJjnJl/ &quot;j

.^Ct/jll

dt r^ li dt

Hence, at any time tlt

wherer =!fv
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Next, let the circuit r^ be broken for a time t.
2 ,

E( = E
2)
= El6~^ where T

2
= CR. (9)

Finally, let the surfaces of the condenser be connected by means

of a wire whose resistance is r
3
for a time t^,

_^_ ntr
E( = St)

=E^ i where 7
3
= %g .

(10)

If QB is the total discharge through this wire in the time t
3 ,

-*--\ - f

-2-f -^-^- *)*(*-*) &amp;lt;&quot;&amp;gt;

In this way we may find the discharge through a wire which

is made to connect the surfaces of a condenser after being charged

for a time f^, and then insulated for a time t
2 . If the time of

charging is sufficient, as it generally is, to develope the whole

charge, and if the time of discharge is sufficient for a complete

discharge, the discharge is

_

327.] In a condenser of this kind, first charged in any way, next

discharged through a wire of small resistance, and then insulated,

no new electrification will appear. In most actual condensers,

however, we find that after discharge and insulation a new charge

is gradually developed, of the same kind as the original charge,

but inferior in intensity. This is called the residual charge. To

account for it we must admit that the constitution of the dielectric

medium is different from that which we have just described. We
shall find, however, that a medium formed of a conglomeration of

small pieces of different simple media would possess this property.

Theory of a Composite Dielectric.

328.] We shall suppose, for the sake of simplicity, that the

dielectric consists of a number of plane strata of different materials

and of area unity, and that the electric forces act in the direction

of the normal to the strata.

Let a
lt a

2 ,
&c. be the thicknesses of the different strata.

Xlf X2 ,
&c. the resultant electrical forces within the strata.

&amp;gt;

&c. the currents due to conduction through the strata.

&c - tne electric displacements.

!, u2 ,
&c. the total currents, due partly to conduction and partly

to variation of displacement.



328.] STKATIFIED DIELECTEIC. 415

rlt r
2 , &c. tlie specific resistances referred to unit of volume.

Klt E2 ,
&c. the specific inductive capacities.

T ,
k
2 , &G. the reciprocals of the specific inductive capacities.

FJ the electromotive force due to a voltaic battery, placed in

the part of the circuit leading from the last stratum towards the

first, which we shall suppose good conductors.

Q the total quantity of electricity which has passed through this

part of the circuit up to the time t.

RQ
the resistance of the battery with its connecting wires.

o-12 the surface-density of electricity on the surface which separates

the first and second strata.

Then in the first stratum we have, by Ohm s Law,

X
1
= r

1p1 .

(1)

By the theory of electrical displacement,

^ = 4^^. (2)

By the definition of the total current,

dfi
Ui=Pi +

^&amp;gt;
(3)

with similar equations for the other strata, in each of which the

quantities have the suffix belonging to that stratum.

To determine the surface-density on any stratum, we have an

equation of the form ^ _y2
__ f^

u\

and to determine its variation we have

By differentiating (4) with respect to t, and equating the result

to
(5),

we obtain

f2
=u&amp;gt;J&amp;gt; (6)

or, by taking account of (3),

]_

= u
2
=. &c. = u. (7)

That is, the total current u is the same in all the strata, and is

equal to the current through the wire and battery.

We have also, in virtue of equations (l) and (2),

1 . 1 dX.=^ + 4^-lT &amp;lt;

8
&amp;gt;

from which we may find X
x by the inverse operation on u

y
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The total electromotive force E is

E=a
l
X

1 + a
2
X

z + &c., (10)

or ^ = ,
1
l + )-V,2

I + )-

1

+ &c.
5 (11)

an equation between U, the external electromotive force, and u
t
the

external current.

If the ratio of r to Tc is the same in all the strata, the equation

reduces itself to

w
&amp;gt; (12)

which is the case we have already examined, and in which, as we

found, no phenomenon of residual charge can take place.

If there are n substances having different ratios of r to k, the

general equation (11), when cleared of inverse operations, will be

a linear differential equation, of the nth order with respect to E
and of the (n l)th order with respect to u, t being the independent

variable.

From the form of the equation it is evident that the order of

the different strata is indifferent, so that if there are several strata

of the same substance we may suppose them united into one

without altering the phenomena.

329.] Let us now suppose that at first f^ , f^ ,
&c. are all zero,

and that an electromotive force E is suddenly made to act, and let

us find its instantaneous effect.

Integrating (8) with respect to t
t
we find

q = fudt - fx^+ -^r-Zj+const. (13)
J T-i J 4 77Kj

Now, since X
1

is always in this case finite, / X
1
df must be in

sensible when t is insensible, and therefore, since Xl
is originally

zero, the instantaneous effect will be

X
1
= 4w 1 Q. (14)

Hence, by equation (10),

E = 47T (Vl+V2 + &C
) Q&amp;gt; (

15
)

and if C be the electric capacity of the system as measured in this

instantaneous way,
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This is the same result that we should have obtained if we had

neglected the conductivity of the strata.

Let us next suppose that the electromotive force E is continued

uniform for an indefinitely long time, or till a uniform current of

conduction equal to p is established through the system.
We have then X

1
= r j) 9 etc., and therefore by (10),

E = fa % + r2 a2 + &c.)j?. (
1 7)

If R be the total resistance of the system,

E = = r1 fl
1 + r2 2 + &o. (18)

In this state we have by (2),

so that
^-(Jij. ___),. (19)

If we now suddenly connect the extreme strata by means of a

conductor of small resistance, E will be suddenly changed from its

original value E
Q to zero, and a quantity Q of electricity will pass

through the conductor.

To determine Q we observe that if
!&quot;/

be the new value of Xlt

then by (13), ^ =^ +4^. (20)

Hence, by (10), putting E = 0,

= a
1
X

1 + &c. + 4 v (a1 &1+ a
2
&
2+ &G.)Q, (21)

or o = fio+ -Q. (22)

Hence Q = CU where C is the capacity, as given by equation

(T6). The instantaneous discharge is therefore equal to the in

stantaneous charge.
Let us next suppose the connexion broken immediately after this

discharge. We shall then have u = 0, so that by equation (8),

_47T/ti

Xi = r* n
, (23)

where X is the initial value after the discharge.

Hence, at any time t,

The value of S at any time is therefore

=^o{(^p-4Mi*iC)r^
1|

+ (^p-^^^r^ +ftc.!,
(24)

VOL. I. E 6
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and the instantaneous discharge after any time t is EG. This is

called the residual discharge.

If the ratio of r to Jc is the same for all the strata, the val ue of E
will be reduced to zero. If, however, this ratio is not the same, let

the terms be arranged according to the values of this ratio in

descending order of magnitude.
The sum of all the coefficients is evidently zero, so that when

t = 0, E = 0. The coefficients are also in descending order of

magnitude, and so are the exponential terms when t is positive.

Hence, when t is positive, E will be positive, so that the residual

discharge is always of the same sign as the primary discharge.

When t is indefinitely great all the terms disappear unless any
of the strata are perfect insulators, in which case ^ is infinite for

that stratum, and R is infinite for the whole system, and the final

value of E is not zero but

E = E
Q (l-^ na

l
k

l C). (25)

Hence, when some, but not all, of the strata are perfect insulators,

a residual discharge may be permanently preserved in the system.

330.] We shall next determine the total discharge through a wire

of resistance 11Q kept permanently in connexion with the extreme

tstrata of the system, supposing the system first charged by means

of a long-continued application of the electromotive force E.

At any instant we have

E = a
i
r
1p1 + a

a
r
2 p2+ bc.+S u = 0, (26)

and also, by (3),
u- = pl + (27)

Hence (R + BQ}u = a,r +V2

2 + &c. (28)

Integrating with respect to t in order to find Q, we get

(R +S&amp;lt;))Q = a, r, (//-/,) + a. r, (//-/2) + &e., (29)

where/j is the initial, and/i the final value of/].

In this case //= 0, and by (2) and (20) fa = E ( *, C)

Hence (R+R ) Q = A_ (f! + + &c.)
-E

9 CR, (30)

where the summation is extended to all quantities of this form

belonging to every pair of strata.
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It appears from this that Q is always negative, that is to say, in

the opposite direction to that of the current employed in charging
the system.

This investigation shews that a dielectric composed of strata of

different kinds may exhibit the phenomena known as electric

absorption and residual discharge, although none of the substances
of which it is made exhibit these phenomena when alone. An
investigation of the cases in which the materials are arranged
otherwise than in strata would lead to similar results, though
the calculations would be more complicated, so that we may
conclude that the phenomena of electric absorption may be ex

pected in the case of substances composed of parts of different

kinds, even though these individual parts should be microscopically
small.

It by no means follows that every substance which exhibits this

phenomenon is so composed, for it may indicate a new kind of

electric polarization of which a homogeneous substance may be

capable, and this in some cases may perhaps resemble electro

chemical polarization much more than dielectric polarization.
The object of the investigation is merely to point out the true

mathematical character of the so-called electric absorption, and to

shew how fundamentally it differs from the phenomena of heat
which seem at first sight analogous.

331.] If we take a thick plate of any substance and heat it

on one side, so as to produce a flow of heat through it, and if

we then suddenly cool the heated side to the same temperature
as the other, and leave the plate to itself, the heated side of the

plate will again become hotter than the other by conduction from
within.

Now an electrical phenomenon exactly analogous to this can
be produced, and actually occurs in telegraph cables, but its mathe
matical laws, though exactly agreeing with those of heat, differ

entirely from those of the stratified condenser.

In the case of heat there is true absorption of the heat into

the substance with the result of making it hot. To produce a truly

analogous phenomenon in electricity is impossible, but we may
imitate it in the following way in the form of a lecture-room

experiment.

Let Alt AZ9 &c. be the inner conducting surfaces of a series of

condensers, of which
,
JB

, 2t &c. are the outer surfaces.

Let Al} AZ, &c. be connected in series by connexions of resist-

E e 2



420 CONDUCTION IN DIELECTRICS. [33I-

ance R, and let a current be passed along this series from left to

right.

Let us first suppose the plates _Z?
,
JSlt J?2 ,

each insulated and

free from charge. Then the total quantity of electricity on each of

the plates B must remain zero, and since the electricity on the

plates A is in each case equal and opposite to that of the opposed

Fig. 26.

surface they will not be electrified, and no alteration of the current

will be observed.

But let the plates B be all connected together, or let each be

connected with the earth. Then, since the potential of Al is

positive, while that of the plates B is zero, A1 will be positively

electrified and B
l negatively.

If Pls P2 &amp;gt;

&c. are the potentials of the plates Als Az , &c., and C

the capacity of each, and if we suppose that a quantity of electricity

equal to Q passes through the wire on the left, Ql through the

connexion S19 and so on, then the quantity which exists on the

plate Al
is Q Q19

and we have

Co-i=tfi3.

Similarly Qi~Q2
=

&amp;lt;?

2
P

2&amp;gt;

and so on.

But by Ohm s Law we have

If we suppose the values of C the same for each plate, and those

of R the same for each wire, we shall have a series of equations of

the form
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cU

If there are n quantities of electricity to be determined, and if

either the total electromotive force, or some other equivalent con

ditions be given, the differential equation for determining any one

of them will be linear and of the nth order.

By an apparatus arranged in this way, Mr. Varley succeeded in

imitating the electrical action of a cable 12,000 miles long.

When an electromotive force is made to act along the wire on

the left hand, the electricity which flows into the system is at first

principally occupied in charging the different condensers beginning

with Alt and only a very small fraction of the current appears

at the right hand till a considerable time has elapsed. If galvano

meters be placed in circuit at R19 E2) &c. they will be affected

by the current one after another, the interval between the times of

equal indications being greater as we proceed to the right.

332.] In the case of a telegraph cable the conducting wire is

separated from conductors outside by a cylindrical sheath of gutta-

percha, or other insulating material* Each portion of the cable

thus becomes a condenser, the outer surface of which is always at

potential zero. Hence, in a given portion of the cable, the quantity

of free electricity at the surface of the conducting wire is equal

to the product of the potential into the capacity of the portion of

the cable considered as a condenser.

If aly a
2
are the outer and inner radii of the insulating sheath,

and if K is its specific dielectric capacity, the capacity of unit of

length of the cable is, by Art. 126,

.--V o&amp;gt;

2io
^5

Let v be the potential at any point of the wire, which we may
consider as the same at every part of the same section.

Let Q be the total quantity of electricity which has passed

through that section since the beginning of the current. Then the

quantity which at the time t exists between sections at x and at

,
is , dO \ dO^

and this is, by what we have said, equal to cvtix.
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Hence CV =~^ ^

Again, the electromotive force at any section is
^-,

and by

Ohm s Law, dv 7 dO
-E-*;r ^

where k is the resistance of unit of length of the conductor, and

^ is the strength of the current. Eliminating Q between (2) and

(3), we find *dv _ d*v ,.
k dt~ dx*

(

This is the partial differential equation which must be solved

in order to obtain the potential at any instant at any point of the

cable. It is identical with that which Fourier gives to determine

the temperature at any point of a stratum through which heat

is flowing in a direction normal to the stratum. In the case of

heat c represents the capacity of unit of volume, or what Fourier

denotes by CD, and k represents the reciprocal of the conductivity.

If the sheath is not a perfect insulator, and if ^ is the resist

ance of unit of length of the sheath to conduction through it in a

radial direction, then if ft is the specific resistance of the insulating

material, it is easy to shew that

^
The equation (2) will no longer be true, for the electricity is

expended not only in charging the wire to the extent represented

by cv, but in escaping at a rate represented by y.
Hence the rate

of expenditure of electricity will be

whence, by comparison with (3),
we get

dv
__

d2v k
k dt~ da* k

and this is the equation of conduction of heat in a rod or ring

as given by Fourier *.

333.] If we had supposed that a body when raised to a high

potential becomes electrified throughout its substance as if elec

tricity were compressed into it, we should have arrived
at^

equa

tions of this very form. It is remarkable that Ohm himself,

* Theorie de la Chaleur, Art. 105.
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~A
&amp;lt;-

-A -

- -Do-

misled by the analogy between electricity and heat, entertained

an opinion of this kind, and was thus, by means of an erroneous

opinion, led to employ the equations of Fourier to express the

true laws of conduction of electricity through a long wire, long

before the real reason of the appropriateness of these equations had

been suspected.

Mechanical Illustration of the Properties of a Dielectric.

334.] Five tubes of equal sectional area A, B, (7, D and P are

arranged in circuit as in the figure. ^^^
A, B} C and D are vertical and equal, f P * p

* \
and P is horizontal.

The lower halves of A, B, C, D
are filled with mercury, their upper

halves and the horizontal tube P are

filled with water.

A tube with a stopcock Q con

nects the lower part of A and B
with that of C and D, and a piston

P is made to slide in the horizontal

tube.

Let us begin by supposing that

the level of the mercury in the four

tubes is the same, and that it is

indicated by A
,
BQ , (?

,
D

,
that

the piston is at P
,
and that the

stopcock Q is shut.

Now let the piston be moved from P to P!, a distance a. Then,

since the sections of all the tubes are equal, the level of the mercury

in A and C will rise a distance a, or to Al
and Clt and the mercury

in B and D will sink an equal distance a, or to Bl
and J)

l .

The difference of pressure on the two sides of the piston will

be represented by 4 a.

This arrangement may serve to represent the state of a dielectric

acted on by an electromotive force 4 a.

The excess of water in the tube D may be taken to represent

a positive charge of electricity on one side of the dielectric, and the

excess of mercury in the tube A may represent the negative charge

on the other side. The excess of pressure in the tube P on the

side of the piston next D will then represent the excess of potential

on the positive side of the dielectric.
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If the piston is free to move it will move back to P and be

in equilibrium there. This represents the complete discharge of

the dielectric.

During the discharge there is a reversed motion of the liquids

throughout the whole tube, and this represents that change of

electric displacement which we have supposed to take place in a

dielectric.

I have supposed every part of the system of tubes filled with

incompressible liquids, in order to represent the property of all

electric displacement that there is no real accumulation of elec

tricity at any place.

Let us now consider the effect of opening the stopcock Q while

the piston P is at Pl .

The level of A
L
and D

L
will remain unchanged, but that of B and

C will become the same, and will coincide with BQ and C .

The opening of the stopcock Q corresponds to the existence of

a part of the dielectric which has a slight conducting power, but

which does not extend through the whole dielectric so as to form

an open channel.

The charges on the opposite sides of the dielectric remain in

sulated, but their difference of potential diminishes.

In fact, the difference of pressure on the two sides of the piston

sinks from \a to 2 a during the passage of the fluid through Q.

If we now shut the stopcock Q and allow the piston P to move

freely, it will come to equilibrium at a point P2 , and the discharge

will be apparently only half of the charge.

The level of the mercury in A and B will be \a above its

original level, and the level in the tubes C and D will be \a

below its original level. This is indicated by the levels A^ J5
2 ,

C,, D,.

If the piston is now fixed and the stopcock opened, mercury will

flow from B to C till the level in the two tubes is again at I? and

C . There will then be a difference of pressure == a on the two

sides of the piston P. If the stopcock is then closed and the piston

P left free to move, it will again come to equilibrium at a point P3 ,

half way between P2 and PQ . This corresponds to the residual

charge which is observed when a charged dielectric is first dis

charged and then left to itself. It gradually recovers part of its

charge, and if this is again discharged a third charge is formed, the

successive charges diminishing in quantity. In the case of the

illustrative experiment each charge is half of the preceding, and the



334-] HYDROSTATICAL ILLUSTRATION. 425

discharges, which are \, J, &c. of the original charge, form a series

whose sum is equal to the original charge.

If, instead of opening and closing the stopcock, we had allowed it

to remain nearly, but not quite, closed during the whole experiment,
we should have had a case resembling that of the electrification of a

dielectric which is a perfect insulator and yet exhibits the pheno
menon called electric absorption.
To represent the case in which there is true conduction through

the dielectric we must either make the piston leaky, or we must
establish a communication; between the top of the tube A and the

top of the tube D.

In this way we may construct a mechanical illustration of the

properties of a dielectric of any kind, in which the two electricities

are represented by two real fluids, and the electric potential is

represented by fluid pressure. Charge and discharge are repre
sented by the motion of the piston P, and electromotive force by
the resultant force on the piston.



CHAPTEE XL

THE MEASUREMENT OF ELECTRIC RESISTANCE.

335.] IN the present state of electrical science, the determination

of the electric resistance of a conductor may be considered as the

cardinal operation in electricity, in the same sense that the deter

mination of weight is the cardinal operation in chemistry.
The reason of this is that the determination in absolute measure

of other electrical magnitudes, such as quantities of electricity,

electromotive forces, currents, &c., requires in each case a com

plicated series of operations, involving generally observations of

time, measurements of distances, and determinations of moments

of inertia, and these operations, or at least some of them, must

be repeated for every new determination, because it is impossible
to preserve a unit of electricity, or of electromotive force, or of

current, in an unchangeable state, so as to be available for direct

comparison.

But when the electric resistance of a properly shaped conductor

of a properly chosen material has been once determined, it is found

that it always remains the same for the same temperature, so that

the conductor may be used as a standard of resistance, with which

that of other conductors can be compared, and the comparison of

two resistances is an operation which admits of extreme accuracy.

When the unit of electrical resistance has been fixed on, material

copies of this unit, in the form of * Resistance Coils, are prepared

for the use of electricians, so that in every part of the world

electrical resistances may be expressed in terms of the same unit.

These unit resistance coils are at present the only examples of

material electric standards which can be preserved, copied, and used

for the purpose of measurement. Measures of electrical capacity,

which are also of great importance, are still defective, on account

of the disturbing influence of electric absorption.

336.] The unit -of resistance may be an entirely arbitrary one,

as in the case of Jacobi s Etalon, which was a certain copper

wire of 22.4932 grammes weight, 7.61975 metres length, and 0.667
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millimetres diameter. Copies of this have been made by Leyser of

Leipsig, and are to be found in different places.

According to another method the unit may be defined as the

resistance of a portion of a definite substance of definite dimensions.

Thus, Siemens unit is defined as the resistance of a column of

mercury of one metre long, and one square millimetre section, at

the temperature 0C.

337.] Finally, the unit may be defined with reference to the

electrostatic or the electromagnetic system of units. In practice

the electromagnetic system is used in all telegraphic operations,

and therefore the only systematic units actually in use are those

of this system.

In the electromagnetic system, as we shall she-w at the proper

place, a resistance is a quantity homogeneous with a velocity, and

may therefore be expressed as a velocity. See Art. 628.

338.] The first actual measurements on this system were made

by Weber, who employed as his unit one millimetre per second.

Sir W. Thomson afterwards used one foot per second as a unit,

but a large number of electricians have now agreed to use the

unit of the British Association, which professes to represent a

resistance which, expressed as a velocity, is ten millions of metres

per second. The magnitude of this unit is more convenient than

that of Weber s unit, which is too small. It is sometimes referred

to as the B.A. unit, but in order to connect it with the name of

the discoverer of the laws of resistance, it is called the Ohm.

339.] To recollect its value in absolute measure it is useful

to know that ten millions of metres is professedly the distance

from the pole to the equator, measured along the meridian of Paris.

A body, therefore, which in one second travels along a meridian

from the pole to the equator would have a velocity which, on the

electromagnetic system, is professedly represented by an Ohm.
I say professedly, because, if more accurate researches should

prove that the Ohm, as constructed from the British Association s

material standards, is not really represented by this velocity, elec

tricians would not alter their standards, but would apply a cor

rection. In the same way the metre is professedly one ten-millionth

of a certain quadrantal arc, but though this is found not to be

exactly true, the length of the metre has not been altered, but the

dimensions of the earth are expressed by a less simple number.

According to the system of the British Association, the absolute

value of the unit is originally chosen so as to represent as nearly
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as possible a quantity derived from the electromagnetic absolute

system.

340.] When a material unit representing this abstract quantity

has been made, other standards are constructed by copying this unit,

a process capable of extreme accuracy of much greater accuracy

than, for instance, the copying of foot-rules from a standard foot.

These copies, made of the most permanent materials, are dis

tributed over all parts of the world, so that it is not likely that

any difficulty will be found in obtaining copies of them if the

original standards should be lost.

But such units as that of Siemens can without very great

labour be reconstructed with considerable accuracy, so that as the

relation of the Ohm to Siemens unit is known, the Ohm can be

reproduced even without having a standard to copy, though the

labour is much greater and the accuracy much less than by the

method of copying.

Finally, the Ohm may be reproduced

by the electromagnetic method by which

it was originally determined. This method,

which is considerably more laborious than

the determination of a foot from the seconds

pendulum, is probably inferior in accuracy

to that last mentioned. On the other hand,

the determination of the electromagnetic

unit in terms of the Ohm with an amount

of accuracy corresponding to the progress

of electrical science, is a most important

physical research and well worthy of being

repeated.

The actual resistance coils constructed

to represent the Ohm were made of an

alloy of two parts of silver and one of pla

tinum in the form of wires. from .5 milli

metres to .8 millimetres diameter, and from

one to two metres in length. These wires

were soldered to stout copper electrodes.

The wire itself was covered with two layers

of silk, imbedded in solid paraffin, and. enclosed in a thin brass

case, so that it can be easily brought to a temperature at which

its resistance is accurately one Ohm. This temperature is marked

on the insulating support of the coil. (See Fig. 28.)

Fig. 28.
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On the Forms of Resistance Coils.

341.] A Resistance Coil is a conductor capable of being easily

placed in the voltaic circuit, so as to introduce into the circuit

a known resistance.

The electrodes or ends of the coil must be such that no appre
ciable error may arise from the mode of making- the connexions.

For resistances of considerable magnitude it is sufficient that the

electrodes should be made of stout copper wire or rod well amal

gamated with mercury at the ends, and that the ends should be

made to press on flat amalgamated copper surfaces placed in mercury

cups.

For very great resistances it is sufficient that the electrodes

should be thick pieces of brass, and that the connexions should

be made by inserting a wedge of brass or copper into the interval

between them. This method is found very convenient.

The resistance coil itself consists of a wire well covered with

silk, the ends of which are soldered permanently to the elec

trodes.

The coil must be so arranged that its temperature may be easily

observed. For this purpose the wire is coiled on a tube and

covered with another tube, so that it may be placed in a vessel

of water, and that the water may have access to the inside and the

outside of the coil.

To avoid the electromagnetic effects of the current in the coil

the wire is first doubled back on itself and then coiled on the tube,

so that at every part of the coil there are equal and opposite
currents in the adjacent parts of the wire.

When it is desired to keep two coils at the same temperature the

wires are sometimes placed side by side and coiled up together.
This method is especially useful when it is more important to

secure equality of resistance than to know the absolute value of

the resistance, as in the case of the equal arms of Wheatstone s

Bridge, (Art. 347).

When measurements of resistance were first attempted, a resist

ance coil, consisting of an uncovered wire coiled in a spiral groove
round a cylinder of insulating material, was much used. It was

called a Rheostat. The accuracy with which it was found possible

to compare resistances was soon found to be inconsistent with the

use of any instrument in which the contacts are not more perfect

than can be obtained in the rheostat. The rheostat, however, is
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still used for adjusting the resistance where accurate measurement is

not required.

Resistance coils are generally made of those metals whose resist

ance is greatest and which vary least with temperature. German

silver fulfils these conditions very well, but some specimens are

found to change their properties during the lapse of years. Hence,

for standard coils, several pure metals, and also an alloy of platinum

and silver, have been employed, and the relative resistance of these

during several years has been, found constant up to the limits of

modern accuracy.

342.] For very great resistances, such as several millions of

Ohms, the wire must be either very long or very thin, and the

construction of the coil is expensive and difficult. Hence tellurium

and selenium have been proposed as materials for constructing

standards of great resistance. A very ingenious and easy method

of construction has been lately proposed by Phillips *. On a piece

of ebonite or ground glass a fine pencil-line is drawn. The ends

of this filament of plumbago are connected to metallic electrodes,

and the whole is then covered with insulating varnish. If it

should be found that the resistance of such a pencil-line remains

constant, this will be the best method of obtaining a resistance of

several millions of Ohms.

343.] There are various arrangements by which resistance coils

may be easily introduced into a circuit.

For instance, a series of coils of which the resistances are 1,2,

4, 8, 16, &c., arranged according to the powers of 2, may be placed

in a box in series.

Fig. 29.

The electrodes consist of stout brass plates, so arranged on the

outside of the box that by inserting a brass plug or wedge between

* Phil. Mag., July, 1870.
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two of them as a shunt, the resistance of the corresponding coil

may be put out of the circuit. This arrangement was introduced

by Siemens.

Each interval between the electrodes is marked with the resist

ance of the corresponding coil, so that if we wish to make the

resistance box equal to 107 we express 107 in the binary scale as

64 + 32 + 8 + 2+1 or 1101011. We then take the plugs out

of the holes corresponding to 64, 32, 8, 2 and 1, and leave the

plugs in 16 and 4.

This method, founded on the binary scale, is that in which the

smallest number of separate coils is needed, and it is also that

which can be most readily tested. For if we have another coil

equal to 1 we can test the equality of 1 and
1&quot;,

then that of 1 + l

and 2, then that of 1: + I + 2 and 4, and so on.

The only disadvantage of the arrangement is that it requires

a familiarity with the binary scale of notation, which is not

generally possessed by those accustomed to express every number

in the decimal scale.

344.] A box of resistance coils may be arranged in a different

way for the purpose of mea

suring conductivities instead of

resistances.

The coils are placed so that

one end of each is connected

with a long thick piece of

metal which forms one elec

trode of the box, and the other

end is connected with a stout piece of brass plate as in the former

case.

The other electrode of the box is a long brass plate, such that

by inserting brass plugs between it and the electrodes of the coils

it may be connected to the first electrode through any given set of

coils. The conductivity of the box is then the sum of the con

ductivities of the coils.

In the figure, in which the resistances of the coils are 1, 2, 4, &c.,

and the plugs are inserted at 2 and 8, the conductivity of the

box is J + 1-
= f ,

and the resistance of the box is therefore
J-

or 1.6.

This method of combining resistance coils for the measurement

of fractional resistances was introduced by Sir W. Thomson under

the name of the method of multiple arcs. See Art. 276.

Fig. 30.
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On the Comparison of Resistances.

345.1 If E is the electromotive force of a battery, and R the

resistance of the battery and its connexions, including the galvan

ometer used in measuring the current, and if the strength of the

current is I when the battery connexions are closed, and I13 7
2

when additional resistances r
lt

r
2

are introduced into the circuit,

then, by Ohm s Law,

Eliminating E, the electromotive force of the battery, and R

the resistance of the battery and its connexions, we get Ohm s

formula r
t _ (I /

t)
/
2

==

This method requires a measurement of the ratios of I, 1^ and 7
2 ,

and this implies a galvanometer graduated for absolute mea

surements.

If the resistances ^ and r
2
are equal, then 7j and I

2
are equal,

and we can test the equality of currents by a galvanometer which

is not capable of determining their ratios.

But this is rather to be taken as an example of a faulty method

than as a practical method of determining resistance. The electro

motive force E cannot be maintained rigorously constant, and the

internal resistance of the battery is also exceedingly variable, so

that any methods in which these are assumed to be even for a short

time constant are not to be depended on.

346.] The comparison of resistances can be made with extreme

accuracy by either of two methods, in which the result is in-

dependent of variations of R and E.
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The first of these methods depends on the use of the differential

galvanometer, an instrument in which there are two coils, the

currents in which are independent of each other, so that when
the currents are made to flow in opposite directions they act in

opposite directions on the needle, and when the ratio of these

currents is that of m to n they have no resultant effect on the

galvanometer needle.

Let /i ,
J
2 be the currents through the two coils of the galvan

ometer, then the deflexion of the needle may be written

8 = ml-^nl^.

Now let the battery current 7 be divided between the coils of

the galvanometer, and let resistances A and B be introduced into

the first and second coils respectively. Let the remainder of the

resistance of the coils and their connexions be a and (3 respect

ively, and let the resistance of the battery and its connexions

between C and D be r} and its electromotive force U.

Then we find, by Ohm s Law, for the difference of potentials

between C and D,

and since

4-J^S, 4 = *^. I=* D

The deflexion of the galvanometer needle is therefore

and if there is no observable deflexion, then we know that the

quantity enclosed in brackets cannot differ from zero by more than

a certain small quantity, depending on the power of the battery,

the suitableness of the arrangement, the delicacy of the galvano

meter, and the accuracy of the observer.

Suppose that B has been adjusted so that there is no apparent
deflexion.

Now let another conductor A be substituted for A, and let

A be adjusted till there is no apparent deflexion. Then evidently

to a first approximation A A.

To ascertain the degree of accuracy of this estimate, let the

altered quantities in the second observation be accented, then

VOL. i. r f
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Hence n (A -A) = ~ &-|^ .

If b and 5
,
instead of being both apparently zero, had been only

observed to be equal,, then, unless we also could assert that E = ff,

the right-hand side of the equation might not be zero. In fact,

the method would be a mere modification of that already described.

The merit of the method consists in the fact that the thing
observed is the absence of any deflexion, or in other words, the

method is a Null method, one in which the non-existence of a force

is asserted from an observation in which the force, if it had been

different from zero by more than a certain small amount, would

have produced an observable effect.

Null methods are of great value where they can be employed, but

they can only be employed where we can cause two equal and

opposite quantities of the same kind to enter into the experiment

together.

In the case before us both 8 and 8 are quantities too small to be

observed, and therefore any change in the value of E will not affect

the accuracy of the result.

The actual degree of accuracy of this method might be ascer

tained by making a number of observations in each of which A
is separately adjusted, and comparing the result of each observation

with the mean of the whole series.

But by putting A out of adjustment by a known quantity, as,

for instance, by inserting at A or at B an additional resistance

equal to a hundredth part of A or of J3, and then observing

the resulting deviation of the galvanometer needle, we can estimate

the number of degrees corresponding to an error of one per cent.

To find the actual degree of precision we must estimate the smallest

deflexion which could not escape observation, and compare it with

the deflexion due to an error of one per cent.

* If the comparison is to be made between A and B, and if the

positions of A and B are exchanged, then the second equation

becomes

* This investigation is taken from Weber s treatise on Galvanometry. Gottingen

Transactions, x. p. 65.
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= ~b
i

D jy
whence (m+ ri) (BA) = -=- S

^-
S .

If m and n, A and H, a and /3 are approximately equal, then

Here 8 6 may be taken to be the smallest observable deflexion

of the galvanometer.
If the galvanometer wire be made longer and thinner, retaining

the same total mass, then n will vary as the length of the wire

and a as the square of the length. Hence there will be a minimum
,

value of-^ =
-- when

If we suppose r, the battery resistance, small compared with A,

this gives a=J^;
or, the resistance of each coil of the galvanometer should le one-third

of the resistance to be measured.

We then find 8 A &quot;-

*-A =
o !&(*-*)

If we allow the current to flow through one only of the coils

of the galvanometer, and if the deflexion thereby produced is A

(supposing the deflexion strictly proportional to the deflecting

force), then

mE 3nfl.,&amp;gt; , 1 AA = .
- = 7- if r = and a = -A.

4 A 3

B-A _ 2 S-57

~I~ ~3~A~

In the differential galvanometer two currents are made to

produce equal and opposite effects on the suspended needle. The

force with which either current acts on the needle depends not

only on the strength of the current, but on the position of the

windings of the wire with respect to the needle. Hence, unless

the coil is very carefully wound, the ratio of m to n may change
when the position of the needle is changed, and therefore it is

necessary to determine this ratio by proper methods during each

F f 2
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course of experiments if any alteration of the position of the needle

is suspected.

The other null method, in which Wheatstone s Bridge is used,

requires only an ordinary galvanometer, and the observed zero

deflexion of the needle is due, not to the opposing action of two

currents, but to the non-existence of a current in the wire. Hence

we have not merely a null deflexion, but a null current as the

phenomenon observed, and no errors can arise from want of

regularity or change of any kind in the coils of the galvanometer.
The galvanometer is only required to be sensitive enough to detect

the existence and direction of a current, without in any way

determining its value or comparing its value with that of another

current.

347.] Wheatstone s Bridge consists essentially of six conductors

connecting four points. An electromotive

force E is made to act between two of the

points by means of a voltaic battery in

troduced between B and C. The current

between the other two points and A is

measured by a galvanometer.

Under certain circumstances this current

becomes zero. The conductors BC and OA
are then said to be conjugate to each other,

which implies a certain relation between the resistances of the

other four conductors, and this relation is made use of in measuring

resistances.

If the current in OA is zero, the potential at must be equal

to that at A. Now when we know the potentials at B and C we

can determine those at and A by the rule given in Art. 275,

provided there is no current in OA,

/3 + y

whence the condition is 1$ = C yj

where b, c, /3, y are the resistances in CA, AB, BO, and OC re

spectively.

To determine the degree of accuracy attainable by this method

we must ascertain the strength of the current in OA when this

condition is not fulfilled exactly.

Let A, B, C and be the four points. Let the currents along

C, CA and AB be x, y and z, and the resistances of these
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conductors a, b and c. Let the currents along OA, OB and OC be

, 17,
and the resistances a, (B and y. Let an electromotive force

E act along BC. Required the current f along OJ.

Let the potentials at the points A, B, C and be denoted

by the symbols A, B, C and 0. The equations of conduction are

ax^B-C+E, a=0-A,
ly = CW, 17

= 0-B,

with the equations of continuity

-z= 0,

zx = 0,

- = 0.

By considering the system as made up of three circuits 0C,
OCA and OAJB, in which the currents are #, y, z respectively, and

applying Kirchhoff s rule to each cycle, we eliminate the values

of the potentials 0, A, B, C, and the currents
, 17, and obtain the

following equations for a?, y and #,

=0,

-y

yx

Hence, if we put

ay

a

-a

we find

and

X7

_

777

348.] The value of D may be expressed in the symmetrical form,

or, since we suppose the battery in the conductor a and the

galvanometer in a, we may put B the battery resistance for a and

G the galvanometer resistance for a. We then find

If the electromotive force E were made to act along OA, the

resistance of OA being still a, and if the galvanometer were placed
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in BC, the resistance of BC being still a, then the value of D
would remain the same, and the current in BC due to the electro

motive force E acting along OA would be equal to the current

in OA due to the electromotive force E acting in BC.

But if we simply disconnect the battery and the galvanometer,

and without altering their respective resistances connect the battery

to and A and the galvanometer to B and C, then in the value of

D we must exchange the values of B and G. If I/ be the value

of D after this exchange, we find

Let us suppose that the resistance of the galvanometer is greater

than that of the battery.

Let us also suppose that in its original position the galvanometer
connects the junction of the two conductors of least resistance /3, y

with the junction of the two conductors of greatest resistance b, c,

or, in other words, we shall suppose that if the quantities #, c, y, /3

are arranged in order of magnitude, b and c stand together, and

y and /3 stand together. Hence the quantities # ft and cy are

of the same sign, so that their product is positive, and therefore

D B is of the same sign as B G.

If therefore the galvanometer is made to connect the junction of

the two greatest resistances with that of the two least, and if

the galvanometer resistance is greater than that of the battery,

then the value of D will be less, and the value of the deflexion

of the galvanometer greater, than if the connexions are exchanged.

The rule therefore for obtaining the greatest galvanometer de

flexion in a given system is as follows :

Of the two resistances, that of the battery and that of the

galvanometer, connect the greater resistance so as to join the two

greatest to the two least of the four other resistances.

349.] We shall suppose that we have to determine the ratio of

the resistances of the conductors AB and AC, and that this is to be

done by finding a point on the conductor HOC, such that when

the points A and are connected by a wire, in the course of which

a galvanometer is inserted, no sensible deflexion of the galvano

meter needle occurs when the battery is made to act between B
and C.

The conductor BOG may be supposed to be a wire of uniform

resistance divided into equal parts, so that the ratio of the resist

ances of BO and OC may be read off at once.
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Instead of the whole conductor being a uniform wire, we may
make the part near of such a wire, and the parts on each side

may be coils of any form, the resistance of which is accurately

known.

We shall now use a different notation instead of the symmetrical
notation with which we commenced.

Let the whole resistance of SAC be R.

Let c mR and b =
(1 m) E.

Let the whole resistance of BOC be 8.

Let /3
= nS and y = (1 -n) 8.

The value of n is read off directly, and that of m is deduced from

it when there is no sensible deviation of the galvanometer.

Let the resistance of the battery and its connexions be J9, and

that of the galvanometer and its connexions G.

We find as before

lmn) BRS,

and if is the current in the galvanometer wire

t
ERS . .

=-2j-(*-*)

In order to obtain the most accurate results we must make the

deviation of the needle as great as possible compared with the value

of (n m). This may be done by properly choosing the dimensions

of the galvanometer and the standard resistance wire.

It will be shewn, when we come to Galvanometry, Art. 716,

that when the form of a galvanometer wire is changed while

its mass remains constant, the deviation of the needle for unit

current is proportional to the length, but the resistance increases

as the square of the length. Hence the maximum deflexion is

shewn to occur when the resistance of the galvanometer wire is

equal to the constant resistance of the rest of the circuit.

In the present case, if 8 is the deviation,

where C is some constant, and G is the galvanometer resistance

which varies as the square of the length of the wire. Hence we

find that in the value of D, when 5 is a maximum, the part

involving G must be made equal to the rest of the expression.

If we also put m = n, as is the case if we have made a correct

observation, we find the best value of G to be
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This result is easily obtained by considering- the resistance from

A to through&quot;
the system, remembering that C, being conjugate

to AO, has no effect on this resistance.

In the same way we. should find that if the total area of the

acting surfaces of the battery is given, the most advantageous

arrangement of the battery is when

Finally, we shall determine the value of 8 such that a given

change in the value of n may produce the greatest galvanometer

deflexion. By differentiating the expression for f we find

If we have a great many determinations of resistance to make

in which the actual resistance has nearly the same value, then it

may be worth while to prepare a galvanometer and a battery for

this purpose. In this case we find that the best arrangement is

and if n = i G= \R.

On the Use of Wheatstone s Bridge.

350.] We have already explained the general theory of Wheat

stone s Bridge, we shall now consider some of its applications.

Fig. 33.

The comparison which can be effected with the greatest exact

ness is that of two equal resistances.
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Let us suppose that ft is a standard resistance coil, and that

we wish to adjust y to be equal in resistance to (3.

Two other coils, b and c, are prepared which are equal or nearly

equal to each other, and the four coils are placed with their electrodes

in mercury cups so that the current of the battery is divided

between two branches, one consisting of (3 and y and the other

of b and c. The coils b and c are connected by a wire PR, as

uniform in its resistance as possible, and furnished with a scale

of equal parts.

The galvanometer wire connects the junction of ft and y with

a point Q of the wire PR, and the point of contact at Q is made
to vary till on closing first the battery circuit and then the

galvanometer circuit, no deflexion of the galvanometer needle is

observed.

The coils ft and y are then made to change places, and a new

position is found for Q. If this new position is the same as the

old one, then we know that the exchange of ft and y has produced
no change in the proportions of the resistances, and therefore y
is rightly adjusted. If Q has to be moved, the direction and

amount of the change will indicate the nature and amount of the

alteration of the length of the wire of y, which will make its

resistance equal to that of ft.

If the resistances of the coils b and c, each including part of the

wire PR up to its zero reading, are equal to that of b and c

divisions of the wire respectively, then, if x is the scale reading

of Q in the first case, and y that in the second,

c-\-x _ ft c+y _ y

bx ~
y b y

~~

ft

y
2

whence - = l +

Since b y is nearly equal to c -f x, and both are great with

respect to as or y, we may write this

and

When y is adjusted as well as we can, we substitute for I and c

other coils of (say) ten times greater resistance.

The remaining difference between ft and y will now produce

a ten times greater difference in the position of Q than with the
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original coils I and
&amp;lt;?,

and in this way we can continually increase

the accuracy of the comparison.

The adjustment by means of the wire with sliding contact piece

is more quickly made than by means of a resistance box, and it is

capable of continuous variation.

The battery must never be introduced instead of the galvano

meter into the wire with a sliding contact, for the passage of a

powerful current at the point of contact would injure the surface

of the wire. Hence this arrangement is adapted for the case in

which the resistance of the galvanometer is greater than that of the

battery.

When y, the resistance to be measured, a the resistance of the

battery, and a the resistance of the galvanometer, are given, the

best values of the other resistances have been shewn by Mr. Oliver

Heaviside (Phil. Mag. Feb. 1873) to be

On the Measurement of Small Resistances.

351.] When a short and thick conductor is introduced into a

circuit its resistance is so small compared with the resistance

occasioned by unavoidable faults in the connexions, such as want

of contact or imperfect soldering, that no correct value of the

resistance can be deduced from experi

ments made in the way described above.

The object of such experiments is

generally to determine the specific re

sistance of the substance, and it is re

sorted to in cases when the substance

cannot be obtained in the form of a

long thin wire, or when the resistance

to transverse as well as to longitudinal

conduction has to be measured.

Sir W. Thomson* has described a method applicable to such

cases, which we may take as an example of a system of nine

conductors.
* Proc. R. S., June 6, 1861.
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The most important part of the method consists in measuring
the resistance, not of the whole length of the conductor, but of

the part between two marks on the conductor at some little dis

tance from its ends.

The resistance which we wish to measure is that experienced

by a current whose intensity is uniform in any section of the

conductor, and which flows in a direction parallel to its axis.

Now close to the extremities, when the current is introduced

by means of electrodes, either soldered, amalgamated, or simply

pressed to the ends of the conductor, there is generally a want of

uniformity in the distribution of the current in the conductor.

At a short distance from the extremities the current becomes

Fig. 35.

sensibly uniform. The student may examine for himself the

investigation and the diagrams of Art. 193, where a current is

introduced into a strip of metal with parallel sides through one

of the sides, but soon becomes itself parallel to the sides.

The resistances of the conductors between certain marks 8
t
8

and T, T are to be compared.
The conductors are placed in series, and with connexions as

perfectly conducting as possible, in a battery circuit of small resist

ance. A wire S7T is made to touch the conductors at S and T,

and S VT is another wire touching them at S and T .

The galvanometer wire connects the points Fand V of these wires.

The wires 8VT and S V T are of resistance so great that the

resistance due to imperfect connexion at /S, T, S or T may be

neglected in comparison with the resistance of the wire, and V
t
V

are taken so that the resistances in the branches of either wire

leading to the two conductors are nearly in the ratio of the resist

ances of the two conductors.

Calling 7/and F the resistances of the conductors SS and T T.

A and C those of the branches /STand FT.
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Calling P and R those of the branches 8 V and V T.
Q that of the connecting piece S T .

IB that of the battery and its connexions.

G that of the galvanometer and its connexions.

The symmetry of the system may be understood from the
skeleton diagram. Fig. 34.

The condition that B the battery and G the galvanometer may
be conjugate conductors is, in this case,

(*L A Q
C&quot; A + \~C~ A&amp;gt; P+Q + fi

~

Now the resistance of the connector Q is as small as we can

make it. If it were zero this equation would be reduced to

L-iL
C
~
A

and the ratio of the resistances of the conductors to be compared
would be that of C to A, as in Wheatstone s Bridge in the ordinary
form.

In the present case the value of Q is small compared with P
or with R, so that if we assume the points V, V so that the ratio

of R to C is nearly equal to that of P to A, the last term of the

equation will vanish, and we shall have

FiHiiCiA.
The success of this method depends in some degree on the per

fection of the contact between the wires and the tested conductors

at S, S 9
T and T. In the following method, employed by Messrs.

Matthiessen and Hockin*, this condition is dispensed with.

Fig. 36.

352.] The conductors to be tested are arranged in the manner
*

Laboratory. Matthiessen and Hockin on Alloys.
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already described, with the connexions as well made as possible,

and it is required to compare the resistance between the marks SS
on the first conductor with the resistance between the marks T T&amp;lt;ji\

the second.

Two conducting points or sharp edges are fixed in a piece of

insulating material so that the distance between them can be

accurately measured. This apparatus is laid on the conductor to

be tested, and the points of contact with the conductor are then

at a known distance SS . Each of these contact pieces is connected

with a mercury cup, into which one electrode of the galvanometer

may be plunged.

The rest of the apparatus is arranged, as in Wheatstone s Bridge,
with resistance coils or boxes A and C, and a wire PR with a

sliding contact piece Q, to which the other electrode of the galva
nometer is connected.

Now let the galvanometer be connected to S and Q, and let

A
1
and C^ be so arranged, and the position of Q so determined, that

there is no current in the galvanometer wire.

Then we know that XS A

where XS, PQ, &c. stand for the resistances in these conductors.

From this we get

XS_
XT

Now let the electrode of the galvanometer be connected to Sf

,

and let resistance be transferred from C to A (by carrying resistance

coils from one side to the other) till electric equilibrium of the

galvanometer wire can be obtained by placing Q at some point
of the wire, say Q2 . Let the values of C and A be now C

2 and A2)

and let A2+C2 +PR = A^ + C^+PR = R.

Then we have, as before,

XS
XY R

Whence

In the same way, placing the apparatus on the second conductor
at TT and again transferring resistance, we get, when the electrode

isinr, XT &amp;gt;

_
XY R
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and when it is in T,

XT

TUTUWhence

XY R
T T ^4
-=-= = ^- ^A-! R

We can now deduce the ratio of the resistances SS and T T, for

T T&quot; A-A^q,Qt
When great accuracy is not required we may dispense with the

resistance coils A and C, and we then find

88 Q.Q,
2&quot;2~ 6364

The readings of the position of Q on a wire of a metre in length
cannot be depended on to less than a tenth of a millimetre, and the

resistance of the wire may vary considerably in different parts

owing to inequality of temperature, friction, &c. Hence, when

great accuracy is required, coils of considerable resistance are intro

duced at A and C, and the ratios of the resistances of these coils

can be determined more accurately than the ratio of the resistances

of the parts into which the wire is divided at Q.

It will be observed that in this method the accuracy of the

determination depends in no degree on the perfection of the con

tacts at S, y or T, T .

This method may be called the differential method of using
Wheatstone s Bridge, since it depends on the comparison of ob

servations separately made.

An essential condition of accuracy in this method is that the

resistance of the connexions should continue the same during the

course of the four observations required to complete the deter

mination. Hence the series of observations ought always to be

repeated in order to detect any change in the resistances.

On the Comparison of Great Resistances.

353.] When the resistances to be measured are very great, the

comparison of the potentials at different points of the system may
be made by means of a delicate electrometer, such as the Quadrant

Electrometer described in Art. 219.

If the conductors whose resistances are to be measured are placed

in series, and the same current passed through them by means of a

battery of great electromotive force, the difference of the potentials
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at the extremities of each conductor will be proportional to the

resistance of that conductor. Hence, by connecting the electrodes

of the electrometer with the extremities, first of one conductor

and then of the other, the ratio of their resistances may be de

termined.

This is the most direct method of determining resistances. It

involves the use of an electrometer whose readings may be depended

on, and we must also have some guarantee that the current remains

constant during the experiment.

Four conductors of great resistance may also be arranged as in

Wheatstone s Bridge, and the bridge itself may consist of the

electrodes of an electrometer instead of those of a galvanometer.
The advantage of this method is that no permanent current is

required to produce the deviation of the electrometer, whereas the

galvanometer cannot be deflected unless a current passes through
the wire.

354.] When the resistance of a conductor is so great that the

current which can be sent through it by any available electromotive

force is too small to be directly measured by a galvanometer, a

condenser may be used in order to accumulate the electricity for

a certain time, and then, by discharging the condenser through a

galvanometer, the quantity accumulated may be estimated. This

is Messrs. Bright and Clark s method of testing the joints of

submarine cables.

355.] But the simplest method of measuring the resistance of

such a conductor is to charge a condenser of great capacity and to

connect its two surfaces with the electrodes of an electrometer

and also with the extremities of the conductor. If E is the dif

ference of potentials as shewn by the electrometer, S the capacity
of the condenser, and Q the charge on either surface, E the resist

ance of the conductor and x the current in it, then, by the theory
of condensers, Q 23.

By Ohm s Law, E = Ex,

and by the definition of a current,

* *.
dt

Hence -Q=ES^ f

t

and Q = Q e~**
9

where QQ is the charge at first when 1 = 0.
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Similarly E = E
Q
e Rs

where EQ is the original reading of the electrometer, and
same after a time t. From this we find

t

the

which gives R in absolute measure. In this expression a knowledge
of the value of the unit of the electrometer scale is not required.

If Sj the capacity of the condenser, is given in electrostatic

measure as a certain number of metres, then R is also given in

electrostatic measure as the reciprocal of a velocity.
If S is given in electromagnetic measure its dimensions are

y ,
and R is a velocity.

Since the condenser itself is not a perfect insulator it is necessary
to make two experiments. In the first we determine the resistance

of the condenser itself, RQ ,
and in the second, that of the condenser

when the conductor is made to connect its surfaces. Let this be R .

Then the resistance, R, of the conductor is given by the equation

JL. JL l

R R/

RQ
This method has been employed by MM. Siemens.

Thomson s * Methodfor the Determination of the Resistance of
the Galvanometer.

356.] An arrangement similar to Wheatstone s Bridge has been

Gtllvanometer

Fig. 37.

employed with advantage by Sir W. Thomson in determining the

* Proc. R. 8., Jan. 19, 1871.
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resistance of the galvanometer when in actual use. It was sug
gested to Sir W. Thomson by Mance s Method. See Art. 357.

Let the battery be placed, as before, between B and C in the

figure of Article 347, but let the galvanometer be placed in CA
instead of in OA. If &j3cy is zero, then the conductor OA is

conjugate to JBC, and, as there is no current produced in OA by the

battery in BC, the strength of the current in any other conductor
is independent of the resistance in OA. Hence, if the galvano
meter is placed in CA its deflexion will remain the same whether
the resistance of OA is small or great. We therefore observe

whether the deflexion of the galvanometer remains the same when
and A are joined by a conductor of small resistance, as when

this connexion is broken, and if, by properly adjusting the re

sistances of the conductors, we obtain this result, we know that

the resistance of the galvanometer is

where c, y, and /3 are resistance coils of known resistance.

It will be observed that though this is not a null method, in the

sense of there being no current in the galvanometer, it is so in

the sense of the fact observed being the negative one, that the

deflexion of the galvanometer is not changed when a certain con

tact is made. An observation of this kind is of greater value

than an observation of the equality of two different deflexions of

the same galvanometer, for in the latter case there is time for

alteration in the strength of the battery or the sensitiveness of

the galvanometer, whereas when the deflexion remains constant,

in spite of certain changes which we can repeat at pleasure, we are

sure that the current is quite independent of these changes.
The determination of the resistance of the coil of a galvanometer

can easily be effected in the ordinary way of using Wheatstone s

Bridge by placing another galvanometer in OA. By the method

now described the galvanometer itself is employed to measure its

own resistance.

Mance s * Method of determining the Resistance of the Battery.

357.] The measurement of the resistance of a battery when in

action is of a much higher order of difficulty, since the resistance

of the battery is found to change considerably for some time after

* Proc, R. S., Jan. 19, 1871.

VOL. I. G g
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the strength of the current through it is changed. In many of the

methods commonly used to measure the resistance of a battery such

alterations of the strength of the current through it occur in the

course of the operations, and therefore the results are rendered

doubtful.

In Mance s method, which is free from this objection, the battery
is placed in BC and the galvanometer in CA. The connexion

between and B is then alternately made and broken.

Now the deflexion of the galvanometer needle will remain un

altered, however the resistance in OB be changed, provided that

OB and AC are conjugate. This may be regarded as a particular

case of the result proved in Art, 347, or may be seen directly on

the elimination of z and ft from the equations of that article, viz.

we then have

If y is independent of a?, and therefore of ft, we must have

a a = cy. The resistance of the battery is thus obtained in terms

of c, y, a.

When the condition a a = cy is fulfilled, the current through
the galvanometer is then

Ea Ey
-&amp;gt; or

To test the sensibility of the method let us suppose that the

condition cy = a a is nearly, but not accurately, fulfilled, and that

Fig. 38.

y is the current through the galvanometer when and B are

connected by a conductor of no sensible resistance, and yl
the

current when and B are completely disconnected.

To find these values we must make ft equal to and to oo in the

general formula for y^ and compare the results.
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The general value for y is

cy + py + ya + afi ^
where D denotes the same expression as in Art. 348. Making use

of the values of y given above we can then easily shew that the

expressions for y and yl are approximately

y ,

c(cy-gq) y
2

and y
y(y-fa) E

From these values we find

cyaa
y y (c+a)(a+y)

The resistance, c, of the conductor AB should be equal to a,

that of the battery; a and y should be equal and as small as

possible; and b should be equal to a-fy.
Since a galvanometer is most sensitive when its deflexion is

small, we should bring the needle nearly to zero by means of fixed

magnets before making contact between and B.
In this method of measuring the resistance of the battery, the

current in the galvanometer is not in any way interfered with

during the operation, so that we may ascertain the resistance of

the battery for any given strength of current in the galvanometer
so as to determine how the strength of the current affects the

resistance *.

If y is the current in the galvanometer, the actual current

through the battery is a&amp;gt; with the key down and ^ with the

key up, where

&quot;^

y y(ct+ &amp;lt;?)

&amp;gt; a-J-

the resistance of the battery is

cy
a = -,

and the electromotive force of the battery is

*
[In the Philosophical Magazine for 1857, vol. i. pp. 515-525, Mr. Oliver Lodge

has pointed out as a defect in Mance s method that as the electromotive force of the

battery depends upon the current passing through the battery, the deflexion of the

galvanometer needle cannot be the same in the two cases when the key is down or up,
if the equation a a = cy is true. Mr. Lodge describes a modification of Mance s

method which he has employed with success.]

Gg 2
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The method of Art. 356 for finding the resistance of the galva
nometer differs from this only in making and breaking contact

between and A instead of between and J9, and by exchanging
a and /3 we obtain for this case

On the Comparison of Electromotive Forces.

358.] The following method of comparing the electromotive forces

of voltaic and thermoelectric arrangements, when no current passes

through them, requires only a set of resistance coils and a constant

battery.

Let the electromotive force E of the battery be greater than that

of either of the electromotors to be compared, then, if a sufficient

E
Fig. 39.

resistance, P19 be interposed between the points Alt Bl
of the

primary circuit EB
1
A

1 E, the electromotive force from B
l

to A
L

may be made equal to that of the electromotor U1
. If the elec

trodes of this electromotor are now connected with the points

Alt Bl
no current will flow through the electromotor. By placing

a galvanometer G
1

in the circuit of the electromotor Elt
and

adjusting the resistance between A
1
and Blt till the galvanometer

G
l
indicates no current, we obtain the equation

where E^ is the resistance between Al
and B^ and C is the strength

of the current in the primary circuit.

In the same way, by taking a second electromotor E2
and placing

its electrodes at A
2
and j5

2 ,
so that no current is indicated by the

galvanometer G
2)
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where R
2 is the resistance between A

2
and B

2
. If the observations

of the galvanometers G and G
2 are simultaneous, the value of C,

the current in the primary circuit, is the same in both equations,
and we find

In this way the electromotive force of two electromotors may be

compared. The absolute electromotive force of an electromotor may
be measured either electrostatically by means of the electrometer,

or electromagnetically by means of an absolute galvanometer.
This method, in which, at the time of the comparison, there

is no current through either of the electromotors, is a modification

of Poggendorff s method, and is due to Mr. Latimer Clark, who
has deduced the following values of electromotive forces :

Daniell I. Amalgamated Zinc HSO4 + 4 aq.

II. HS04 + 12 aq.

III. HS04 +12aq.
Bunsen I.

-**
?&amp;gt;

Grove HS04 + 4 aq.

Concentrated
solution of

CuS04

CuS04

CuN06

HNO6

sp. g. 1. 38

HN06

Copper

Copper

Copper
Carbon

Carbon

Volts.

= 1.079

= 0.978

= 1.00

= 1.964

= 1.888

Platinum = 1.956

A Volt is an electromotive force equal to 100,000,000 units of the centimetre-gramme-

second system.
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ON THE ELECTRIC RESISTANCE OF SUBSTANCES.

359.] THERE are three classes in which we may place different

substances in relation to the passage of electricity through them.

The first class contains all the metals and their alloys, some

sulphurets, and other compounds containing metals, to which we

must add carbon in the form of gas-coke, and selenium in the

crystalline form.

In all these substances conduction takes place without any

decomposition, or alteration of the chemical nature of the substance,

either in its interior or where the current enters and leaves the

body. In all of them the resistance increases as the temperature

rises.

The second class consists of substances which are called electro

lytes, because the current is associated with a decomposition of

the substance into two components which appear at the electrodes.

As a rule a substance is an electrolyte only when in the liquid

form, though certain colloid substances, such as glass at 100C,

which are apparently solid, are electrolytes. It would appear from

the experiments of Sir B. C. Brodie that certain gases are capable

of electrolysis by a powerful electromotive force.

In all substances which conduct by electrolysis the resistance

diminishes as the temperature rises.

The third class consists of substances the resistance of which is

so great that it is only by the most refined methods that the

passage of electricity through them can be detected. These are

called Dielectrics. To this class belong a considerable number

of solid bodies, many of which are electrolytes when melted, some

liquids, such as turpentine, naphtha, melted paraffin, &c., and all

gases and vapours. Carbon in the form of diamond, and selenium

in the amorphous form, belong to this class.

The resistance of this class of bodies is enormous compared with

that of the metals. It diminishes as the temperature rises. It
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is difficult, on account of the great resistance of these substances,

to determine whether the feeble current which we can force through
them is or is not associated with electrolysis,

On the Electric Resistance of Metals.

360.] There is no part of electrical research in which more

numerous or more accurate experiments have been made than in

the determination of the resistance of metals. It is of the utmost

importance in the electric telegraph that the metal of which the

wires are made should have the smallest attainable resistance.

Measurements of resistance must therefore be made before selecting

the materials. When any fault occurs in the line, its position is

at once ascertained by measurements of resistance, and these mea

surements, in which so many persons are now employed, require

the use of resistance coils, made of metal the electrical properties

of which have been carefully tested.

The electrical properties of metals and their alloys have been

studied with great care by MM. Matthiessen, Vogt, and Hockin,

and by MM. Siemens, who have done so much to introduce exact

electrical measurements into practical work.

It appears from the researches of Dr. Matthiessen, that the effect

of temperature on the resistance is nearly the same for a considerable

number of the pure metals, the resistance at 100
CC being to that

at
CC in the ratio of 1.414 to 1, or of 100 to 70.7. For pure iron

the ratio is 1.645, and for pure thallium 1.458.

The resistance of metals hns been observed by Dr. C.W. Siemens*

through a much wider range of temperature, extending from the

freezing point to 350C, and in certain cases to 1000C. He finds

that the resistance increases as the temperature rises, but that the

rate of increase diminishes as the temperature rises. The formula,

which he finds to agree very closely both with the resistances

observed at low temperatures by Dr. Matthiessen and with his

own observations through a range of 1000
C

C, is

where T is the absolute temperature reckoned from 273
C

C, and

a, /3, y are constants. Thus, for

Platinum ...... r = 0.039369 T* + 0.00216407 T-0.241 3,

Copper ......... r = 0.026577 T? + 0.0031443 T-0. 22751,

Iron ............ r = 0.072515 T*: 4 0.0038133 T- 1.23971.

* Proc. R. S., April 27, 1871.
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From data of this kind the temperature of a furnace may be

determined by means of an observation of the resistance of a

platinum wire placed in the furnace.

Dr. Matthiessen found that when two metals are combined to

form an alloy, the resistance of the alloy is in most cases greater

than that calculated from the resistance of the component metals

and their proportions. In the case of alloys of gold and silver, the

resistance of the alloy is greater than that of either pure gold or

pure silver, and, within certain limiting proportions of the con

stituents, it varies very little with a slight alteration of the pro

portions. For this reason Dr. Matthiessen recommended an alloy

of two parts by weight of gold and one of silver as a material

for reproducing the unit of resistance.

The effect of change of temperature on electric resistance is

generally less in alloys than in pure metals.

Hence ordinary resistance coils are made of German silver, on

account of its great resistance and its small variation with tem

perature.

An alloy of silver and platinum is also used for standard coils.

361.] The electric resistance of some metals changes when the

metal is annealed
;

and until a wire has been tested by being

repeatedly raised to a high temperature without permanently

altering its resistance, it cannot be relied on as a measure of

resistance. Some wires alter in resistance in course of time without

having been exposed to changes of temperature. Hence it is

important to ascertain the specific resistance of mercury, a metal

which being fluid has always the same molecular structure, and

which can be easily purified by distillation and treatment with

nitric acid. Great care has been bestowed in determining the

resistance of this metal by W. and C. F. Siemens, who introduced

it as a standard. Their researches have been supplemented by
those of Matthiessen and Hockin.

The specific resistance of mercury was deduced from the observed

resistance of a tube of length I containing a weight w of mercury,

in the following manner.

No glass tube is of exactly equal bore throughout, but if a small

quantity of mercury is introduced into the tube and occupies a

length A of the tube, the middle point of which is distant x from

one end of the tube, then the area s of the section near this point

Q
will be s -, where C is some constant.

A
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The weight of mercury which fills the whole tube is

w p fsdx
= pCl, (-)

where n is the number of points, at equal distances along the

tube, where A has been measured, and p is the mass of unit of

volume.

The resistance of the whole tube is

T~i 1*7R = I
- dx = -^
s C

t

n

where r is the specific resistance per unit of volume.

1 72

Hence wR = rp 2 (A) 2 (-} -= ,
v vx/ nz

wR n2

and r =

gives the specific resistance of unit of volume.

To find the resistance of unit of length and unit of mass we must

multiply this by the density.

It appears from the experiments of Matthiessen and Hockin that

the resistance of a uniform column of mercury of one metre in

length, and weighing one gramme at 0C, is 13.071 Ohms, whence

it follows that if the specific gravity of mercury is 13.595, the

resistance of a column of one metre in length and one square
millimetre in section is 0.96146 Ohms.

362.] In the following table R is the resistance in Ohms of a

column one metre long and one gramme weight at 0C, and r is

the resistance in centimetres per second of a cube of one centi

metre, according to the experiments of Matthiessen *.

1

Silver
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On the Electric Resistance of Electrolytes.

363.] The measurement of the electric resistance of electrolytes

is rendered difficult on account of the polarization of the electrodes,

which causes the observed difference of potentials of the metallic

electrodes to be greater than the electromotive force which actually

produces the current.

This difficulty can be overcome in various ways. In certain

cases we can get rid of polarization by using electrodes of proper

material, as, for instance, zinc electrodes in a solution of sulphate

of zinc. By making the surface of the electrodes very large com

pared with the section of the part of the electrolyte whose resist

ance is to be measured, and by using only currents of short duration

in opposite directions alternately, we can make the measurements

before any considerable intensity of polarization has been excited

by the passage of the current.

Finally, by making two different experiments, in one of which

the path of the current through the electrolyte is much longer than

in the other, and so adjusting the electromotive force that the

actual current, and the time during which it flows, are nearly the

same in each case, we can eliminate the effect of polarization

altogether.

364.] In the experiments of Dr. Paalzow * the electrodes were

in the form of large disks placed in separate flat vessels filled with

the electrolyte, and the connexion was made by means of a long

siphon filled with the electrolyte and dipping into both vessels.

Two such siphons of different lengths were used.

The observed resistances of the electrolyte in these siphons

being R:
and R.

2 ,
the siphons were next filled with mercury, and

their resistances when filled with mercury were found to be li^

and R.
2

.

The ratio of the resistance of the electrolyte to that of a mass

of mercury at 0C of the same form was then found from the

formula
It R

p = ]pn7p
*

To deduce from the values of p the resistance of a centimetre in

length having a section of a square centimetre, we must multiply

them by the value of r for mercury at 0C. See Art. 361.

* Berlin Monatslericht, July, 1868.
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The results given by Paalzow are as follow :

Mixhires of Sulphuric Acid and Water.

m Resistance compared
with mercury.

H
2
SO4 15C 96950

H
2
SO4 + 14H 2 19

CC 14157

H
2SO4 + 13H 2 22C 13310

H
2SO4+499H 2O 22

CC 184773

Sulphate of Zinc and Water.

ZnSO4 -H 23H 2 23
CC 194400

ZnSO4 + 24H 2 23C 191000

ZnSO4+105H 2O 23
CC 354000

Sulphate of Copper and Water.

CuSO4 + 45H 2 22C 202410

CuSO4+105H 2O 22
CC 339341

Sulphate of Magnesium and Water.

MgSO4+ 34H 2 22C 199180

MgSO4 +107H 2O 22C 324600

Hydrochloric Acid and Water.

HC1 + 15H 2 23
CC 13626

HC1 +500H 2 23C 86679

365.] MM. F. Kohlrausch and W. A. Nippoldt* have de

termined the resistance of mixtures of sulphuric acid and water.

They used alternating magneto-electric currents, the electromotive

force of which varied from \ to -fT of that of a Grove s cell, and

by means of a thermoelectric copper-iron pair they reduced the

electromotive force to -^/ou $ of that of a Grove s cell. They found

that Ohm s law was applicable to this electrolyte throughout the

range of these electromotive forces.

The resistance is a minimum in a mixture containing about one-

third of sulphuric acid.

The resistance of electrolytes diminishes as the temperature
increases. The percentage increment of conductivity for a rise of

1C is given in the following table.

*
Pogg., Ann. cxxxviii. p. 286, Oct. 1869.
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Resistance of Mixtures of Sulphuric Acid and Water at 22C in terms

of Mercury at 0C. MM. Kohlrausch and Nippoldt.

Specific gravity
at 185
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of the resistance deduced from the current will give a greater value

if a certain time is allowed to elapse than if taken immediately after

applying- the battery.

Thus, with Hooper s insulating material the apparent resistance

at the end of ten minutes was four times, and at the end of

nineteen hours twenty-three times that observed at the end of

one minute. When the direction of the electromotive force is

reversed, the resistance falls as low or lower than at first and then

gradually rises.

These phenomena seem to be due to a condition of the gutta-

percha, which, for want of a better name, we may call polarization,

and which we may compare on the one hand with that of a series

of Leyden jars charged by cascade, and, on the other, with Bitter s

secondary pile, Art. 271.

If a number of Leyden jars of great capacity are connected in

series by means of conductors of great resistance (such as wet

cotton threads in the experiments of M. Gaugain), then an electro

motive force acting on the series will produce a current, as indicated

by a galvanometer, which will gradually diminish till the jars are

fully charged.

The apparent resistance of such a series will increase, and if the

dielectric of the jars is a perfect insulator it will increase without

limit. If the electromotive force be removed and connexion made

between the ends of the series, a reverse current will be observed,

the total quantity of which, in the case of perfect insulation, will be

the same as that of the direct current. Similar effects are observed

in the case of the secondary pile, with the difference that the final

insulation is not so good, and that the capacity per unit of surface

is immensely greater.

In the case of the cable covered with gutta-percha, &c ,
it is found

that after applying the battery for half an hour, and then con

necting the wire with the external electrode, a reverse current takes

place, which goes on for some time, and gradually reduces the

system to its original state.

These phenomena are of the same kind with those indicated

by the residual discharge of the Leyden jar, except that the

amount of the polarization is much greater in gutta-percha, &c.

than in glass.

This state of polarization seems to be a directed property of the

material, which requires for its production not only electromotive

force, but the passage, by displacement or otherwise, of a con-
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siderable quantity of electricity, and this passage requires a con

siderable time. When the polarized state has been set up, there

is an internal electromotive force acting- in the substance in the

reverse direction, which will continue till it has either produced

a reversed current equal in total quantity to the first, or till the

state of polarization has quietly subsided by means of true con

duction through the substance.

The whole theory of what has been called residual discharge,

absorption of electricity, electrification, or polarization, deserves

a careful investigation, and will probably lead to important dis

coveries relating to the internal structure of bodies.

367.] The resistance of the greater number of dielectrics di

minishes as the temperature rises.

Thus the resistance of gutta-percha is about twenty times as great

at 0C as at 24
C
C. Messrs. Bright and Clark have found that the

following formula gives results agreeing with their experiments.

If T is the resistance of gutta-percha at temperature T centigrade,

then the resistance at temperature T+ 1 will be

R = rx 0.8878
,

the number varies between 0.8878 and 0.9.

Mr. Hockin has verified the curious fact that it is not until some

hours after the gutta-percha has taken its temperature that the

resistance reaches its corresponding value.

The effect of temperature on the resistance of india-rubber is not

so great as on that of gutta-percha.

The resistance of gutta-percha increases considerably on the

application of pressure.

The resistance, in Ohms, of a cubic metre of various specimens of

gutta-percha used in different cables is as follows *.

Name of Cable.

Red Sea 267x 10 12 to .362xl0 12

Malta-Alexandria 1.23 x 10 12

Persian Gulf... 1.80 x 10 12

Second Atlantic 3.42 x 10 12

Hooper s Persian Gulf Core. ..74. 7 x 10 12

Gutta-percha at 24
CC 3.53 x 10 12

368.] The following table, calculated from the experiments of

* Jenkin s Cantor Lectures.
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M. Buff, described in Art. 271, shews the resistance of a cubic

metre of glass in Ohms at different temperatures.

Temperature. Kesistance.

200
CC 227000

250 13900

300 1480

350 1035

400 735

369.] Mr. C. F. Varley
* has recently investigated the conditions

of the current through rarefied gases, and finds that the electro

motive force E is equal to a constant EQ together with a part

depending on the current according to Ohm s Law, thus

For instance, the electromotive force required to cause the

current to begin in a certain tube was that of 323 DanielPs cells,

but an electromotive force of 304 cells was just sufficient to

maintain the current. The intensity of the current, as measured

by the galvanometer, was proportional to the number of cells above

304. Thus for 305 cells the deflexion was 2, for 306 it was 4,

for 307 it was 6, and so on up to 380, or 304 + 76 for which the

deflexion was 150, or 76 x 1.97.

From these experiments it appears that there is a kind of

polarization of the electrodes, the electromotive force of which

is equal to that of 304 DanielFs cells, and that up to this electro

motive force the battery is occupied in establishing this state of

polarization. When the maximum polarization is established, the

excess of electromotive force above that of 304 cells is devoted to

maintaining the current according to Ohm s Law.

The law of the current in a rarefied gas is therefore very similar

to the law of the current through an electrolyte in which we have

to take account of the polarization of the electrodes.

In connexion with this subject we should study Thomson s results,

described in Art. 57, in which the electromotive force required

to produce a spark in air was found to be proportional not to the

distance, but to the distance together with a constant quantity.

The electromotive force corresponding to this constant quantity

may be regarded as the intensity of polarization of the electrodes.

370.] MM. Wiedemann and Riihlmann have recently f investi-

* Proc. R.
,
Jan. 12, 1871.

t Bericlite der Konigl. Sachs. Gesellschaft, Oct. 20, 1871.
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gated the passage of electricity through gases. The electric current

was produced by Holtz s machine, and the discharge took place

between spherical electrodes within a metallic vessel containing
rarefied gas. The discharge was in general discontinuous, and the

interval of time between successive discharges was measured by
means of a mirror revolving along with the axis of Holtz s machine.

The images of the series of discharges were observed by means of

a heliometer with a divided object-glass, which was adjusted till

one image of each discharge coincided with the other image of

the next discharge. By this method very consistent results were

obtained. It was found that the quantity of electricity in each

discharge is independent of the strength of the current and of

the material of the electrodes, and that it depends on the nature

and density of the gas, and on the distance and form of the

electrodes.

These researches confirm the statement of Faraday* that the

electric tension (see Art. 48) required to cause a disruptive discharge

to begin at the electrified surface of a conductor is a little less

when the electrification is negative than when it is positive, but

that when a discharge does take place, much more electricity passes

at each discharge when it begins at a positive surface. They also

tend to support the hypothesis stated in Art. 57, that the stratum

of gas condensed on the surface of the electrode plays an important

part in the phenomenon, and they indicate that this condensation

is greatest at the positive electrode.

* Exp. lies., 1501.
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