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I. INTRODUCTION. It may seem unnecessary at this late date to

discuss the relationship of electromagnetic theory to geometrical op-

tics. The content of both fields is well known and everyone knows
also that geometrical optics is the limit for vanishing wave length of

electromagnetic theory. Moreover, since Maxwell's theory supersedes

the older geometrical optics, presumably, then, geometrical optics

could be discarded. The optical industry continues to use it but per-

haps that is because it is behind the times.

There are, however, at least three major reasons for pursuing and
clarifying the relationship in question. The first is the purely theo-

retical or academic problem of building a mathematical bridge between
the two domains, electromagnetic theory and geometrical optics. The

older bases for asserting that geometrical optics is a limiting case of

electromagnetic theory are vague and from a mathematical standpoint

highly unsatisfactory.

The second major reason for the investigation is a practical one.

To solve problems of electromagnetic theory, whether in the range of

radio frequencies or visible light frequencies, one should solve Max-
well's equations with the appropriate initial and boundary conditions.

However, as is well known, Maxwell's equations can be solved ex-

actly in only a few problems. Hence physicists and engineers, es-

pecially those concerned with ultra-high frequency problems, have
resorted to the simpler methods of geometrical optics. Although these
methods have proved remarkably efficacious in the optical domain,

they are intrinsically limited; they do not furnish information about

some of the most important phenomena such as diffraction, polariza-

tion, and interference, to say nothing about the numerical accuracy
of what geometrical optics does yield. Hence the practical question

becomes whether the establishment of a better link between Maxwell's
theory and geometrical optics will provide more accurate approximate
methods of solving electromagnetic problems. Insofar as ultra-high

frequency problems are concerned, the answer, based on work of the

last ten years, can already be given affirmatively. It is also a fact

that optical people are now looking more and more into diffraction



4 Electromagnetic Theory and Geometrical Optics

effects and one might venture that the practice of optics is on the

verge of entering into an electromagnetic treatment of optical problems.

The investigation serves a third purpose. In principal it is con-

cerned with the relationship between a wave theory and a non-periodic

phenomenon with the latter in some sense a limiting case of the wave
theory as a parameter, the wave length in the case of electromagnetic

phenomena, goes to zero. However there are many branches of physics,

acoustics, hydrodynamics, magnetohydrodynamics and quantum me-
chanics, which also treat wave theories. Hence in each case there

should be a corresponding "optical" theory or if one exists, as in the

case of quantum mechanics, the present theory should shed light on
the two complementary domains. We shall in fact see that the elec-

tromagnetic investigations to be surveyed here do indeed lead to new
creations or new insights into other branches of physics.

2. SOME RELEVANT HISTORY. To appreciate just what the problem of

reconciling geometrical optics and electromagnetic theory amounts to

we shall examine briefly the historical background.

The science of geometrical optics was founded in the seventeenth

century. To the law of relection, known since Euclid's day, Rend
Descartes and Willebrord Snell added the law of refraction; Robert

Boyle and Robert Hooke discovered interference; Olaf Romer established

the finiteness of the velocity of light; F. M. Grimaldi and Hooke dis-

covered diffraction; Erasmus Bartholinus discovered double refraction

in Iceland spar; and Newton discovered dispersion.

Two physical theories of light were created in the seventeenth
century. Christiaan Huygens formulated the "wave" theory of light^

and Newton formulated a theory of propagation of particles^ . Huygens
thought of light as a longitudinal motion of ether and as spreading out

at a finite velocity from a point source. The farthermost position

reached by the light in space filled out a surface which he called the

front of the wave. In homogeneous media this surface is a sphere.

To explain further how light propagates, Huygens supposed that when
the disturbance reached any point in the ether this point imparted
its motion to all neighboring points. Thus if the wave front at time

ti should be the surface Si and if P is a typical point on Si , the

point P communicated its motion to all points in its neighborhood and
from P the light spread out in all directions. Its velocity in these
various directions depended upon the nature of the medium. Thus in

some small interval of time (and in an isotropic medium) the front of

the light emanating from a point would be a sphere with P as a center.

The same would be true at any other point of the surface Si , except
that the radii of the spheres might differ as the medium differs along

Si . The new position of the front at some time t^ greater than ti

is the envelope in the mathematical sense of the family of spheres
attached one to each point of Si . (There is according to this theory

also a backward wave. This backward wave troubled scientists until
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Figure 1

Kirchhoff showed under his formulation that it

does not exist. We shall not pursue this his-

torical point.) To explain reflection and re-

fraction Huygens supposed that the same phe-

nomenon takes place at each point on the re-

flecting or refracting interface when the front

reaches it, except, of course, that no waves
penetrate the reflecting surface.

There are many more details to Huygens'

theory which explain the phenomena of geo-

metrical optics including double refraction.

However, more relevant for us is the fact that

Huygens considered light as a series of suc-

cessive impulses each travelling as already

described and he did not explain the relation-

ship of the impulses to each other. Thus the

periodicity of light is not contained in Huygens' theory. Also, though

the phenomenon of diffraction had already been observed by Hooke and

Grimaldi, Huygens apparently did not know it and he did not consider

it though his theory could have covered at least a crude theory of

diffraction.

The second major theory of light was Newton's. He suggested in

opposition to Huygens' "wave" theory, that a source of light emits a

stream of particles in all directions in which the light propagates.

These particles are distinct from the ether in which the particles move.

In homogeneous space these particles travel in straight lines unless

deflected by foreign bodies such as reflecting and refracting bodies.

Newton did introduce a kind of periodicity, "fits", which he used to

explain bright and dark rings appearing in certain phenomena of refrac-

tion. However, the nature of the periodicity was vague. His theory

was on the whole crude for the variety of phenomena he tried to embrace
and he made many ad hoc assumptions. Nevertheless, Newton devel-

oped this mechanical theory so thoroughly that its completeness— it

included diffraction— and Newton's own great reputation caused others,

aside from Euler, to accept it for 100 years. Huygens' work was, on
the whole, ignored. Both men, incidentally, obtained some inkling of

polarization through reasoning about double refraction in Iceland spar.

Despite the recognition in the seventeenth century of phenomena
such as diffraction, a limited theory of light called geometrical optics

was erected on the basis of four principles. In homogeneous media
light travels in straight lines. The light rays from a source travel out

independently of one another. That light rays obey the law of reflec-

tion was the third principle, and that they obey the law of refraction

for abrupt or continuous changes in the medium was the fourth. (The
phenomenon of double refraction in crystals was embraced by supposing
that the medium has two indices of refraction which depend upon po-

sition and the direction of the propagation.
)
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All of these laws follow from Format's Principle of Least Time. This

principle presupposes that any medium is characterized by a function

n(x, y, z) called the index of refraction (the absolute index or index

to a vacuum) . The optical distance between two points Pj with co-
ordinates (xi,yi,Zi) and P^ with coordinates ( x^ , y^ , z^ ) over
any given path is defined to be the line integral

j n(x,y,z)ds

Pi

taken over that path. Fermat's principle as stated by him and others

following him, says that the optical path, the path which light actual-

ly takes, between Pi and P2 , is that curve of all those joining Pj

and P2 which makes the value of the integral least. This formulation

is physically incorrect, as can be shown by examples, and the correct

statement is that the first variation of this integral, in the sense of the

calculus of variations, must be zero. This principle could be and was
applied to the design of numerous optical instruments. It is to be
noted that this principle or any other formulation of geometrical optics

says nothing about the nature of light.

The mathematical theory of geometrical optics received its defini-

tive formulation in the work of William R. Hamilton during the years

1824 to 1844.^ Though Hamilton was aware of Fresnel's work, which
we shall mention shortly, he was indifferent to the physical interpreta-

tion, that is Huygens' or Newtons's, and to a possible extension to in-

clude interference. He was concerned to build a deductive, mathemati-
cal science of optics. Though his work is described as geometrical op-

tics, he did include doubly refracting media (which are sometimes re-

garded as outside the pale of strict geometrical optics) and dispersion.

Hamilton's chief idea was a characteristic function, of which he

gave several types. The basic one of these expressed the optical

length of the ray which joined a point in the object space to a point in

the image space as a function of the positions of these two points. The
partial derivatives of this function give the direction of the light ray at

the point in question. Hamilton also introduced three other types of

characteristic functions. He shows that from a knowledge of any one
of these, all problems in optics involving, for example, lenses, mir-

rors, crystals, and propagation in the atmosphere, can be solved.

From Hamilton's work the equivalence of Fermat's principle and
Huygens' principle is clear.

As we have already observed, geometrical optics cannot be regarded

as an adequate theory of light because it does not take into account in-

terference, diffraction, polarization, or even a measure of the intensity

of light. In the early part of the nineteenth century new experimental
work by Thomas Young, Augustin Fresnel, E. L. Malnus, D.F.J. Arago,

J. B. Biot, D. Brewster, W. H. Wollaston and others made it clear that

a wave theory of light was needed to account for all these phenomena.
Fresnel extended Huygens' theory by adding periodicity in space and
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time to Huygens' wave fronts. Thereby interference was incorporated

and Fresnel used the extended theory to explain diffraction as the

mutual interference of the secondary waves emitted by those portions

of the original wave front which have not been obstructed by the dif-

fracting obstacle.

Up to this time (1818) thinking on the wave theory of light (and for

that matter even the corpuscular theory) had been guided by the anal-

ogy with sound. Young in 1817 suggested transverse rather than longi-

tudinal wave motion. Young's suggestion caused Fresnel to think about

waves in solids and to suggest that rigidity should give rise to trans-

verse waves. This idea was important for the yet to be developed

theory of waves in elastic solids and also for the ether. He sought

then to base the theory of light on the dynamical properties of ether.

However, Fresnel's theoretical foundations were incomplete and

even inconsistent. He tried to explain the physical nature of light

propagating through isotropic and anisotropic media by regarding the

ether as a quasi-elastic medium and the light as a displacement of the

ether particles. When an ether particle was displaced, the other parti-

cles exerted a restoring force proportional to displacement. But the

phenomena of interference, the intensity in reflection and refraction,

and particularly polarization, led to the conclusion that the vibrations

of the ether particles must be transverse, whereas an elastic medium
can support transverse and longitudinal waves. Nor could the ether

be a rare gas because there only longitudinal waves are transmitted

and there is no elastic resistance. Hence Fresnel assumed his ether

was infinitely compressible. It was like a gas but with elasticity in

place of viscosity. The theory of waves in elastic media was not well

developed in Fresnel's time so that his approach was over-simple, and

he could not readily eliminate the longitudinal waves which an elastic

medium can support.

A number of great mathematical physicists, C. L. Navier, S. D.

Poisson, A. L. Cauchy, G. Green, F. Neumann, G. Lame and J. W.
Strutt ( Lord Rayleigh) worked on the theory of waves in elastic media
and the application of this theory to light*. In all this work the ether

was an elastic medium which existed in isotropic and anisotropic

media. Some of the theories supposed that the ether particles inter-

acted with the particles of ponderable matter through which the light

passed. This approach to light was pursued even after Maxwell's time

but was never quite satisfactory. One of the principal difficulties was
to explain away longitudinal waves. Another was the lack of a con-

sistent explanation of the phenomena of reflection and refraction at the

boundaries of isotropic and anisotropic media. A third was that dis-

persion was not explained.

Of additional efforts preceding Maxwell's work, we shall mention
the work of James MacCullagh. MacCullagh in 1839 (published 1848)

changed the nature of the elastic solid which represented ether. In-

stead of a solid which resists compression and distortion, he introduced
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one whose potential energy depends only on the rotation of the volume
elements. Waves in MacCullagh's ether could be only transverse and
the vector e which represented a wave motion satisfied the equation

~ a^e
HlAb = p

—

—-
9t

Moreover, div e = . MacCullagh did have to introduce independent

boundary conditions. ( Whittaker, following Heaviside, points out that

this e amounts to the magnetic field intensity of Maxwell.
)

This solid ether of MacCullagh placed difficulties in the way of rep-

resenting the relationship between ether and ordinary matter (when
light travels through matter) and obliged him to postulate a particular

force (later called Kirchhoff's force) in order to explain the differing

elasticity of the ether on the two sides of a surface which separates

diversely refracting media. What is significant about MacCullagh's
work is that his differential equations are closely related to Maxwell's
though physically the former's theory bore no relation to electromagnetism.

The most satisfactory theory of light which we have today came
about not through the study of light per se but through the development
of electricity and magnetism by Clerk Maxwell. We shall not pursue
here the history of the researches in electricity and magnetism of

Gauss, Oersted, Ampfere, Faraday, Riemann and others because their

contributions are still taught as a basis for Maxwell's electromagnetic
theory and so are largely familiar. It is well known that one of Max-
well's great discoveries was the realization that light must be an elec-

tromagnetic phenomenon. Maxwell wrote to a friend in January of 1865

"I have a paper afloat, with an electromagnetic theory of light, which
'till I am convinced to the contrary, I hold to be great guns. "

Though Maxwell did try unsuccessfully to obtain a mechanical the-

ory of electromagnetic phenomena in terms of pressures and tensions
in an elastic medium and after Maxwell, H. Hertz, W. Thomson, C.

A. Bjerknes and H. Poincare tried to improve mechanical models but

equally unsuccessfully, the acceptance of Maxwell's theory marked
the end of elastic theories of light. The adoption of Maxwell's theory

means also the adoption of a purely mathematical view, for the know-
ledge that light consists of a conjoined electric and magnetic field

travelling through space hardly explains the physical nature of light.

It merely reduces the number of mysteries in science by compounding
one of them.

We might mention that the possibility of linking light and electro-

magnetism was considered by several predecessors of Maxwell. Euler,

Young and Faraday had suggested this possibility on different grounds.

Riemann had observed the identity of the velocity of light with the ratio

of the electrostatic to the electromagnetic units of charge and so pro-

duced an ad hoc theory by extending the electrostatic potential equa-
tion

A(j) = 4TTp
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Thus he had a wave motion which for the proper value of c moved
with the velocity of light. However light was still a scalar in this

theory nor was there any physical justification for adding 9^(j)/8t^ .

Maxwell's assertion that light is an electromagnetic wave had
other arguments to recommend it than the wave equation to which his

equations reduce and the fact that the ratio of the electrostatic to the

electromagnetic unit of charge is the velocity of light. It is well

known that from the first two equations when expressed in rectangular

coordinates, for example, and in a non-conducting medium one can
obtain for any component of E or H precisely the same mathematical
equation which Navier and Poisson had derived for waves in an elastic

medium^ and these latter waves did explain many of the phenomena
of light. Moreover, Maxwell's equations possessed a superior fea-

ture. Navier, Poisson and other workers in the elastic theory of light

had to make the arbitrary assumption that the dilatation (divergence)
of the medium is to eliminate longitudinal waves. In Maxwell's
equations this condition is automatically present, that is, div D =

and div B = . One could also derive from his equations, as Helm-
holtz did, the proper boundary conditions at an interface between two
media without additional assumptions. Of course Hertz's experiment-
al confirmations, principally the existence of travelling electromag-
netic fields, at least showed that radio waves behave like light waves.
One must remember, however, that Maxwell's assertion about light was
bold and even questionable in his day. The sources of light available
then and even up to the present day are not monochromatic and so no
fine experimental confirmation could be expected. We are just at the

point today, in the development of lasers, of producing coherent mon-
ochromatic light.

Though there are unresolved difficulties in Maxwell's theory,

chiefly in connection with the interaction of electromagnetic waves
with matter (these problems are, of course, being investigated in

quantum electrodynamics), we must accept as our best theory that

light is an electromagnetic phenomenon subject to Maxwell's equations.
Geometrical optics then can be only an approximate representation in

several respects. First, wave length considerations do not enter, and
so interference is not taken into account. The vector character of the
field, that is, polarization, and diffraction, that is, the penetration
of the field behind obstacles, are not incorporated. Finally, since
wave length considerations do not enter, neither does dispersion.

3. EARLY EFFORTS TO LINK ELECTROMAGNETIC THEORY AND GEO-
METRICAL OPTICS. The first significant effort to derive geometrical
optics from the electromagnetic theory of light is due to Kirchhoff.

Kirchhoff sought a strong mathematical foundation for light and
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introduced a modification of Huygen's principle which incorporated

the interference in space and time. (The physical interpretation was
for him irrelevant. ) Since light was represented as a scalar function,

in this respect Kirchhoff's representation of light is not directly rele-

vant. Moreover, as is well known, there are difficulties in the use

of the Kirchhoff-Huygens principle which he tried to overcome by the

assumption of rather arbitrary boundary conditions on the diffracting

obstacle and these lead to mathematical inconsistencies.

Nevertheless, in 188Z Kirchhoff did show^ that when the wave
length of the source approaches the wave field given by the Kirch-

hoff integral approaches the field given by geometrical optics; specifi-

cally the diffracted field vanishes and there is sharp transition between
the illuminated field and the dark region. That is, the waves behave
like straight lines. Hence the idea was generally accepted by the end
of the nineteenth century that geometrical optics must be some sort of

limit of electromagnetic theory as the wave length goes to .

The most widely accepted argument for the connection between
electromagnetic theory and geometrical optics is that given by Som-
merfeld and Runge who followed a suggestion of P. Debye.^ In this

argument a function u , which may represent some component of E

or a component of a Hertz vector, is assumed to satisfy the scalar

reduced wave equation

Au + k^u = , (1)

wherein k = vTfl oj = 2 tt/X. . Here e and \j. may be functions of po-

sition and X is the variable wave length in the inhomogeneous med-
ium. The field is generated by a source, whose frequency is w and
whose wave length in a constant medium e o > H^o is \o so that

ko = V€otx^to = 2it/\o

Sommerfeld and Runge now make the assumption that

I ^ A, \ ^^0 S(x, y, z)
u(x,y, z) = A(x,y, z)e ' '

, (2)

that is, that u is determined by an amplitude function A and a phase
function S . The latter, incidentally, is called the eiconal function

(because, as we shall see in a moment, it satisfies the eiconal dif-

ferential equation) . While u will vary rapidly as Kq approaches
or ko approaches oo

, it is assumed that A and S do not vary

rapidly in x, y and z (relative to the wave length) and that they re-

main bounded as ko approaches oo . The form of (2) is a general-

ization of the form of plane waves which exhibit some of the properties

of geometrical optics.

By direct differentiation of ( 2) and substitution in equation (1),

one obtains
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1

^'^MhiW'^i^)ay/ ' \dz/ ko^ J

+ 2iko u[ I AS + grad log A- grad S] + 6^^^° ^AA = .

If we now divide through by ko u and assume that the resulting last

term on the left side, namely AA/ko^A , remains small as ko be-
comes infinite, then we may satisfy the last equation by requiring

that

(grad)' = n' , (3)

where n = k/ko , and

grad log A- grad S + |-AS = . (4)

Equation ( 3) is called the eiconal differential equation and its

solutions S = const, are the wave surfaces or wave fronts of geomet-
rical optics. The second equation can be written in terms of the di-

rectional derivative of log A in the direction of grad S . Since, by
(3), I

grad s| = n , we may write

grad S
, , „ 1 „n • grad log A +| AS =

and denoting the directional derivative in the direction of grad S by
d/ds , we have

d(logA) , ^n^

—

- + iAS = . (5)ds

The direction of grad S is normal to the surface S - const, and so
equation (5) gives as the behavior of log A along any normal (or-
thogonal trajectory) to the family of surfaces S = const, or along a
ray.

The fact that equation ( 3) is derived from the scalar wave equation
by letting Xq approach and the fact that the equation so obtained
is the eiconal equation already known in geometrical optics and from
which all of geometrical optics can be derived, provides the argument
for concluding that geometrical optics can be derived from Maxwell's
equations. Also the fact that the amplitude A travels along the rays
is in accord with geometrical optics, though of course A may vary in

other directions not revealed by the above derivation.

The Sommerfeld-Runge derivation of geometrical optics is open to
many objections. The derivation from the scalar wave equation is not
sufficiently general in that not all electromagnetic problems can be
reduced to the scalar wave equation. However this criticism has been
met in that the same kind of argument has been made for Maxwell's
equations. That is, one assumes
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^ikoS(x,y, z)

_ikSo (x,y, z)

E(x, y, z) = u(x, y, z)e

H{x,y, z) = v(x,y,z)e'

and one obtains the eiconal equation for S and vector equations for

u and V which are the analogues of (5) above.

^

Though the Sommerfeld-Runge procedure can be applied to Maxwell's
equations as well as the scalar wave equation, it is not a satisfactory

derivation of geometrical optics from electromagnetic theory. The as-
sumption ( 2) represents a very restricted class of fields because it

assumes that the function A is independent of ko . This assumption
is fulfilled for plane waves but is not true of the fields encountered
even in relatively simple problems of propagation in unbounded media.
Hence the argument shows only that a very restricted class of fields

gives rise to a geometrical optics field. Secondly, the argument that

the A and S determined as solutions of (3) and (4) are limits of the

A and S in u = Ae"'' ° when kg is infinite is incomplete. The dif-

ferential equations (3) and (4) are a limit of the differential equation

(1), but this fact must be brought to bear on the solutions. Thirdly,

since initial and boundary conditions play no role in the entire deri-

vation the limiting field determined by A and S serves no purpose
in representing a geometric optics approximation to some desired field.

Finally, the derivation seems to offer no insight into the relationship
between wave theory and geometrical optics which might be used to

make some gradual transition from one to the other.

Another procedure commonly used to link geometrical optics and
Maxwell's theory is to take time harmonic plane wave solutions of

Maxwell's equations and to apply the electromagnetic boundary con-
ditions at a plane interface between two homogeneous media. As a

consequence one deduces the law of reflection and Snell's law of re-

fraction. Thus the basic laws of geometrical optics are derived. The
same procedure is used in homogeneous anisotropic media. As a mat-
ter of fact, even the Fresnel formulas for the amplitudes of the reflec-

ted and refracted waves are also derivable in this way.
There are several objections to this procedure. Plane waves and

plane boundaries are especially simple. There is no indication from
such a derivation as to what may happen for curved wave fronts and
curved boundaries. The argument is commonly given that the laws of

plane waves in homogeneous media suffice for the approximate elec-
tromagnetic treatment of such phenomena in which the wave fronts are

no longer plane but where the curvature of the wave front can be neg-
lected over domains whose linear dimensions are large compared to the
wave length of light. The analogous remark is often made about curved
boundaries. But in geometrical optics the laws of reflection and re-

fraction do hold for curved fronts and curved boundaries and even in

inhomogeneous media. These facts are not obtained by the argument
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based on plane waves.

Secondly, in order to use the results obtained from this argument

in geometrical optical problems, the practice is to assume that any

normal to the wave front is a ray and that each ray behaves at any one

point of an interface as though it were independent of all the other

rays. But the plane wave argument treats the infinitely extended plane

wave and the infinite plane boundary and the argument does not isolate

what may happen for any individual ray at a single boundary point. Yet

the laws are used thus even at a point on a curved boundary such as

the surface of a lens.

Thirdly plane waves have infinite energy and are a highly ideal

concept. No physical source sends out plane waves. Finally plane

waves have a wave length. Since this fact does not show up in the

laws derived, it is ignored."^

All one can really say from the study of plane waves is that they

obey some of the laws of geometrical optics but they do not suffice to

derive geometrical optics from Maxwell's equations.

4. THE RELATIONSHIP OF GEOMETRICAL OPTICS TO ELECTROMAG-
NETIC THEORY. I should now like to present two new views of geo-

metrical optics from the standpoint of electromagnetic theory. The

new viewpoints are valid in both isotropic and anisotropic media, but

I shall treat isotropic media. We have Maxwell's equations, which,

for simplicity, I shall treat in non-conducting media, namely

(7)

curl H - - E, = - F ^— c —t c —

t

curl E + ^ H. =0

The term containing F , or strictly the real part of ( 1/4tt)F , rep-

resents a source current density. In the present discussion its role

is irrelevant and one can suppose instead that initial values of E and

H , which are functions of x, y, z and t , are specified instead.

There may also be boundary conditions.

The first view of geometrical optics is that the geometrical optics

field corresponding to any electromagnetic field at any point (x, y, z)

of space consists of the singularities of E and H as functions of

time t . By the singularities we mean, of course, the discontinuities

of E and H or of any of their successive time derivatives as func-

tions of t . This definition is, in a sense, too general. If we wish

to obtain classical geometrical optics we should restrict ourselves to

singularities which are finite discontinuities with respect to time in

E , H and their successive time derivatives. There may very well be

singularities at which E and H are continuous, but some time der-

ivative is discontinuous or where the discontinuities of E and H are

finite but those of some time derivative are not.
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(x^.y^)

Before pursuing this concept analytically, let us examine it geo-
metrically. We shall consider two space dimensions. If we suppose

that some source located in the

plane t = begins to act at time

t = , then we know that a field

spreads out into space which at

a particular time to covers only

a bounded region of ( x, y, t) -

space, the shaded region in

Fig. 2. That is, during the

time < t < to the field will

traverse the interior of a cone
which lies between t = and
t =to . At a point such as P

or ( xq , yo , to ) the field will

be for t < to and at t =to

there will be a jump in the value

of E and H from to a finite

value. This finite value of E

and H is the geometrical optics

field at P . Alternatively, the

geometrical optics E and H
are the limits approached by

E(xo,yo,t) and H(xo,yo,t)
as t approaches to through

values greater than to . At times t > to the field may continue to

be non-zero at the points (xo,yo,t) but this field is not a part of the

geometrical optics field; it is part of the wave field E(x,y, t) , H(x, y, t)

which satisfies Maxwell's equations. Thus the geometrical optics

field for all t values is the set of E and H. values which exist only

on the surface of the cone.

The cone itself is given by some equation cf)( x, y, t) =0 in (x, y, t) -

space. One can introduce rays in this space-time picture as the gen-
erators of this cone and follow the geometrical optics field along such
a ray. (Mathematically these rays have a precise definition as the bi-

characteristics of Maxwell's equations.
)

There is a second geometrical picture which may be more useful in

physical thinking. At each time t the locus of (j)(x, y, t) = is a

curve. We may plot these curves as a family of curves in (x, y) -

space (Fig. 3). These curves are the wave fronts of geometrical op-
tics. Analytically, we suppose that 4)(x, y, t) = can be written as

t = 4j(x, y)/c and for each value of t there is one curve of this family

of wave fronts. The usual rays of geometrical optics are (in isotropic

media) the orthogonal trajectories of this family of wave fronts. In-

sofar as the geometrical optics field is concerned, at each point on a

wave front and at the time to given by the equation ijj/c = to of this

front the values of E and H change from for t < to to some

Figure 2
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non-zero value. This jump in E and H is the geometrical optics

field at that point. At the same point and at later times t > to ,

there may indeed be values of

E and H but these belong to

the wave solution of Maxwell's
equation and not to the geo-

metrical optics field.

To study the propagation of

the geometrical optics field in

( X, y) -space one follows it

along the rays. Now the wave
function E is a function of x,

y and t . However, for the

geometrical optics value of

E , t = \\i/c . Hence denot-

ing the geometrical optics E

by E''' we may write

r^Mx,y)=E(x,y,4^/c) .

^.^^^^ 3

As a function of x and y only, E^' varies continuously.

Now we can show by precise mathematical arguments^° that

4;^ + ^^
X y

nMx,y)

that is, that the wave fronts do indeed satisfy the eiconal equation

and that the values of E* and W'' along a ray satisfy the vector

transport equations

dE- ... 2
2 -=^ + E"'A iL + -( grad n- E"~) grad ib

dH''
, 2

2 -^ + H'"A 4j -(grad n-H'O grad ijj

(8)

where t is any convenient parameter along the rays x(t), y(T) and

H- / x ^ H- ^ y/
A lb \^ -grad ijj • grad log (j. + Al(j

These transport equations are the vector analogue of (5) above. How-
ever the present ones are derived by a precise mathematical argument.

When a front strikes a discontinuity in the medium, then reflected

and refracted fronts arise and the discontinuities of E and H , that

is E^* and II* , propagate with the reflected and refracted fronts and
satisfy the Fresnel laws at the discontinuity in the medium. The trans-

port equations again describe the propagation of the discontinuities of

E^ and H_ along the reflected and refracted rays.
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Thus far the approach to geometrical optics is no more than a new
mathematical formulation of classical geometrical optics, but indeed

one which relates geometrical optics to Maxwell's equations. Clas-
sical geometrical optics becomes the behavior of special values of the

electromagnetic field. Actually this approach gives more than classi-

cal optics, because it gives the vector amplitudes of the geometrical

optic fields and the Fresnel laws.

The above-described point of view yields a new insight at once.

Let us return to space-time^' . Consider the field ( Fig. Z) at (xo,yo,to).

As t increases beyond to the field £{xo,yo,t) , H{xo,yo,t) is non-
zero. Hence, if E and H are analytic within the cone, both E and
H should be expressible in power series whose variable is t-to which
represents the true field for t > to

'^
. The coefficients of the power

series for E , for example, should be E^(xo,yo,to) ,^ii, ••• ,

where we mean by these derivatives the values assumed by the func-

tions for t =t or alternatively the limits approached, for example,
by E^t(xo,yo,t) as t approaches to through values larger than to .

The values of E , H and their successive time derivatives at t =t

are because for values of t < to the field has not reached ( Xq , yo)

.

The quantities E^t( ^o j Yo > to ) , E^tt , - • are then discontinuities of the

successive time derivatives of E(x, y, t) on the surface cf)
= . Since

to = ijjCx^ojyo )/c each of these discontinuities may be expressed as a

function of Xo and yo only.

We may express the thought of the preceding paragraph in terms of

the pure space picture (Fig. 3). At any point (x, y) on the wave
front to =ijj(x, y)/c and at the time to , E, H, E^, _H ^ , . . . are dis-

continuous as functions of t . However, for t > to and for points

(x, y) on this wave front E and H are not zero and may be expressed
as Taylor's series in powers of t-to •

Thus under either interpretation we have the expansions

E(x,y,t) =E(x, y,to) + E t(
x, y, to ) ( t-to ) + E tt(

x, y, to )^-^y^ + -
•

•

for t > to ;

E(x,y,t) - for t < to ,

and the analogous expansions for H . Since to = i[i( x, y, )/c
,

E(x,y,t) =E(x,y,^) + E,( x, y, ^) ( t - ^ ) + E,^( x, y, ^) I^lff^ +• •

for t > -^
;

c

E{x, y, t) =0 for t <^ .
^

"^^

To obtain these power series we must be able to calculate the co-
efficients. We have already indicated how we can calculate

E(x, y, i|;/c) = E'''(x, y) . The method which leads to information about
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the discontinuities of E and H themselves, that is, which leads to

the transport equations, can be utilized^^ to obtain linear, first order,

ordinary differential equations for the discontinuities in E^, E^i , •
,

H^, H*.^, . . . as these propagate along the generators of the cone in

the space-time picture or with the wave front or along the rays in the

space picture. These differential equations, which we call the higher

transport equations, can be solved and so we can obtain the values of

these discontinuities at any point (x, y) at the time to = ^/c .

We can then obtain the power series in question and learn some-

thing about the time-dependent fields E(x, y, t) , H(x, y, t) in the

neighborhood of a wave front, that is, for times t near the time to

at which E and H first become non-zero at (x, y) . Stated other-

wise, we can obtain the series expansions (9) for E and H in which

the geometrical optics field is the first term.

The second view of georrtetrical optics to be presented derives from

considering time harmonic solutions of Maxwell's equations. The

fields we are dealing with then have the form (we now use three space

variables)

E(x,y,z,t) - u(x,y, z)e"^'^ , H(x,y,z,t) =v(x,y,z)e
(10)

wherein u and v are complex vectors. The key result, phrased for

simplicity on the assumption that only one family of wave fronts exists,

is that

ik4j(x, y, z) f , , ,
Ai(x, y, z) A2(x, y, z)

u(x,y,z) ~e ^^ '|Ao(x,y,z) +—— +
^.^^,

+'

ikdj(x,y,z)r
, ,

Bi(x,y,z) _B2(x,y,z)
v(x,y,z) ~e ^'

'|Bo(>^, y, z) +"= + ^^^^a +•

( 12)

wherein the series are asymptotic for large oj and ^ satisfies the

eiconal differential equation. The quantity k is co/c . Thus the

functions u and v , which are the amplitudes of the time-harmonic

field vectors E and H , may be represented asymptotically by series

asymptotic in l/co for large co .

Loosely one can now define the geometrical optics field as the limit

for large co of the field amplitudes u and v . Then the first terms of

these two series are the geometrical optics field. The definition as a

limit for infinite oj is not quite proper because the first terms of the

two series contain the factor e-^ '^ and these have no limit as co be-

comes infinite. One can however say that the geometrical optics field

consists of the first terms of series which are asymptotic for large w

provided we now include in geometrical optics the phase factor e^'^'^ .

This field then is not strictly the classical geometrical optics field but

contains an additional and by no means undesirable feature. We also

(11)
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see clearly how this geometrical optics field is related to the full
wave solution of Maxwell's equations.

The introduction of this second definition of the geometrical optics
field raises the question of whether it is identical, except for the
phase factor, with the geometrical optical field previously introduced
as the discontinuities of E(x, y, z,t) and H(x, y, z, t) . The answer
is that the very derivation of the series (11) and (12) shows that^"*

Ao(x, y, z) = E(x, y, z,l1j/c) =E='=(x, y, z)

Bo(x, y, z) = H(x, y, z, i|j/c) -H*(x, y, z)

Ai(x, y, z) = E^(x, y, z, ijj/c)

Bi(x, y, z) = H^(x, y, z, ^/c) (13)

Moreover since we know that the above E, H, E^, H^... satisfy
linear, first order differential equations, "we'kno'w that the same is
true for the coefficients of the asymptotic series and so these coef-
ficients can be readily determined. To obtain the geometrical optics
field we have but to solve the eiconal equation

4^^ + 4j^ + ^^ = n^ ,X ^y ^z '

as must be done in any casej_ and then solve just the first transport
equations, one for Aq or E" and the other for Bq or H'''

The larger mathematical point of interest hereTs thatTf one is sat-
isfied to obtain an asymptotic series solution of a time harmonic prob-
lem in place of the exact solution, he can replace the solution of
Maxwell's partial differential equations by the solution of a series of
first order ordinary differential equations. This method must be dis-
tinguished from obtaining an exact solution of Maxwell's equations in
the form of an integral, say, and then evaluating the integral asymp-
totically by a method appropriate to the asymptotic evaluation of
integrals.

Both views of geometrical optics not only relate this theory directly
to Maxwell's equations by precise mathematical connections but ac-
complish even more. Since one can calculate terms beyond the first
ones in the series (11) and (12) this view of the relationship between
optics and electromagnetics permits us to improve on geometrical op-
tics approximations to electromagnetic problems. Likewise the Taylor
series expansion of the time-dependent E and H in the neighborhood
of to = lKx, y, z)/c improves on the geometrical optics field in the
direction of the full time-dependent solution. Thus our new views of
geometrical optics permit us to make better approximations to wave
solutions than geometrical optics itself. We see, incidentally, that
we have supplied the mathematical foundation for what Sommerfeld
and Runge did.
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The theory discussed thus far applies to the direct transmission,

reflection and refraction in homogeneous and inhomogeneous isotropic

media, and, insofar as geometrical optics as a study of discontinuities

is concerned, it has also been carried out for homogeneous and inhom-
ogeneous anisotropic media. Stated otherwise, wherever the rays of

classical geometrical optics had been defined, the new theory applies

also. For this class of problems one can obtain asymptotic series

solutions corresponding to given sources, initial conditions, and
boundary conditions.

5. SOME APPLICATIONS OF THE THEORY. The more careful study of

the relationship of geometrical optics to electromagnetic theory has
stimulated a number of investigations and has thrown new light on
older ones within the domain of electromagnetics and outside. We
see more clearly that the propagation of discontinuities is the first

approximation to aperiodic or time dependent solutions of various

equations of mathematical physics and the approximations obtained
by letting some parameter approach oo are the first terms in asymp-
totic series developments of time harmonic fields or of solutions of

the time free elliptic partial differential equations. I should like to

give some indication of the scope of the problems encompassed by
the theory presented in article 4.

Since many electromagnetic problems can be treated as scalar prob-

lems and since other branches of mathematical physics involve either

scalar quantities or different systems of partial differential equations,

I should like to point out first that the theory I have sketched for Max-
well's equations has been extended first of all to the general linear

second order hyperbolic partial differential equation^^

n
,

.

'^
I,

E a% + E b u^ + cu - f^^ (14)

i,j=l k=l

wherein u is a function of ( Xj , x^ , . . , , Xj^) and the coefficients a ,

b , and c are functions of x, , x^ , . . . , x„ , , and u;; =

9 u/9x-^9x-' . Thus treating x^^ as t , one may study the behavior
of the discontinuities [u], [ u^] ,

[u^^], ... of u and obtain trans-

port equations for their propagation along what are called the bicharac-
teristics of ( 1) or, in the ( Xj , . . . , x , ) -space, along the rays. One
may also discuss the asymptotic series representation of solutions

u(xi , . . . , Xj^_-|^) e"^^''^ , that is, of time-harmonic solutions of ( 1), and
ail of the relations between the time-dependent solution and the time-

independent solution which hold for Maxwell's equations apply here too.

The theory has been further extended^^ to symmetric linear hyper-
bolic systems of partial differential equations and thus can be applied
to more complicated systems of first order partial differential equations
than Maxwell's equations.

Insofar as applications to electromagnetic theory are concerned.
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the applications made in the last ten years have been numerous. A
large number of scalar problems involving scattering from the exterior

of smooth bodies has been treated by Keller, Seckler and Lewis'^.

Since the method of geometrical optics proper had been available the

progress in this work is to obtain improvements over the geometrical

optics field by calculating more terms of the asymptotic series solu-

tion of steady state problems. Still in the domain of electromagnetic

problems I should also like to call attention to the surprising result

obtained by Schensted^^ . Schensted calculated the asymptotic series

for the vector field diffracted by the exterior of a paraboloid of revo-

lution when a plane wave is incident along the axis (the normal is

directed along the axis) and found that the asymptotic series consists

only of the first term. In this case, then, the geometrical optics field

is also the exact electromagnetic solution.

Our theory has an important bearing on quantum mechanics. In

erecting the system of wave mechanics Schrodinger in 1926 gave the

following construction^"'. He considered a particle of mass m with

momentum p and total energy E in a field of force with potential

V(x, y, z). Then Hamilton's partial differential equation for the motion
is

aw ,j aw aw aw\
at

where H is the Hamiltonian function for the particle, namely,

H =^{p' + p' + p') + V(x, y, z)
2m X y z

and W is Hamilton's principal function. Thus the partial differential

equation in this case is

aw 1 f/awV /aw\^ /awxM ,„
=

In accordance with Hamilton's theory the principal function can be
written as

W = -Et + S(x, y, z)

where S is Hamilton's characteristic function. The equation for S

now is

On the basis of heuristic considerations, Schrodinger now intro-

duced a wave function ^ and was led to the time-independent (re-

duced) Schrodinger equation

VS+-^^(E-V)^ = (15)
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wherein ijj is a function of x, y and z . This derivation of the

Schrodinger equation indicated that wave mechanics is in some sense
a generalization of classical mechanics in the same vague way that

electromagnetic theory appeared in 1926 to be a generalization of ge-

ometrical optics. In fact Schrodinger was guided by that analogy and
spoke of "working from the Hamiltonian analogy on the lines of undu-

latory optics. "

In 193 3^° Birkhoff suggested that asymptotic series solutions for

the function ijj in (15) might be obtained by assuming a series

i^S,
, Vi

,

V2
,

. , 2 TTl^(x,y,z) ~e (vo +^ + j^+ ... ) , k =^ , (16)

where S and the v^ are functions of x, y and z . By substitution

for i|j in the partial differential equation (15) Birkhoff obtained a first

order non-linear partial differential equation for S (which corresponds

to our eiconal equation) and showed that the Vj^ satisfy a system of

recursive ordinary differential equations

dv
—^ + $v 3 A . , (17)
dr n n-1

where A^^.j^ is a known linear differential expression in Vq , Vi , . . .
,

Vn-1 •

The first order partial differential equation (eiconal equation) which
Birkhoff obtains is the Hamilton-Jacobi equation from which Schrodinger

started. Thus on a purely formal basis Birkhoff showed that classical

mechanics is derived from wave mechanics by the introduction of an

asymptotic series in practically the same formal way that Sommerfeld

and Runge derived the eiconal equation of optics from the scalar wave
equation except that Birkhoff assumed a full asymptotic series where

Sommerfeld and Runge assumed only the first term. However, the pre-

cise mathematical relationship of the Schrodinger equation to the

original Hamilton-Jacobi first order partial differential equation re-

mained unclear.

It is now apparent from our theory of asymptotic series solution of

partial differential equations that the series (16) adopted purely for-

mally by Birkhoff does indeed provide an asymptotic series solution of

the Schrodinger equation (15) and that the corresponding eiconal equa-

tion is the Hamilton-Jacobi equation

my<^y<w -^'-v.

Here S is Hamilton's characteristic function. We now know too that

this last equation holds precisely in the limit for small h . In other

words classical mechanics is indeed the limiting case of quantum
mechanics.

But our theory goes farther in the domain of quantum mechanics.
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To solve the reduced Schrodinger equation for its eigenfunctions and
eigenvalues, physicists used separation of variables and obtained
the one-dimensional ordinary differential equation

Srr^m
4^"(>^) +-p- (E-V(x))4; = , -oo<x<oo (18)

wherein m is a mass, V( x) is the potential energy and E is the
total energy

( and the eigenvalue parameter) and then (1926) applied
the approximation method now known as the WKB method after its in-
novators Wentzel, Kramers and Brillouin to approximate the eigenval-
ues. At this time (1926) the precise nature of this approximation re-
mained unclear.

In 1908 Birkhoff had given^' a theory of asymptotic solution of the
n-th order ordinary differential equation

g z
, ,

d z n—^+ pa^_^(x, p) —~^ + ••• + P ao(x, p)z = (19)
dx dx

and had shown that each solution z^ can be expressed in the asymp-
totic form

x

p/wi(t)dt ^

^(^'P) ~ e ^ £ z (x)p"^ (20)
j=0

''

where the vj^(t) are the solutions of the indicial equation

1

% ^ ^n-l^""'^^"^
~ + ••• + ao(x, 0) =

and the z^j can be successively determined by solving a recursive
system of rather simple ordinary differential equations. Birkhoff
showed in the second of his 1933 papers that his 1908 paper readily
covers the one-dimensional Schrodinger equation and the first term of
( 20) yields the WKB solution of Ihis reduced or time free Schrodinger
equation.

Our theory now permits us to say that the first term in the series
(16), namely s^^vq

, wherein all three variables x, y and z are
present, is the direct generalization to partial differential equations
of the WKB approximation used in one-dimensional problems.

This latter point may need and warrant elaboration. Let us consider
the second order wave equation

Our theory for the asymptotic series solution of time harmonic solu-
tions of this equation tells us that the time harmonic solution
u ^ v(x, y,z)e ^"^ can be represented in the form
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wherein k is co/c , ijj is a solution of the eiconal equation

dj^ + dj^ + iL^ = n^ , (23)
^x ^y ^z

and the v^ satisfy the recursive system of first order linear ordinary

differential equations

r\ 1

n-— V +— AJjV = -Av , ( Z4)
ds n 2 ^ n n-1

where d/ds is the derivative along the rays in ( x, y, z)-space^^.

Now in the case of one space dimension, the equation ( 21) becomes
for u = v(x)e"^"*

z

v"(x) + \ n'v(x) = . (25)

The eiconal equation is

(4^'(x))' = n^ (26)

and the equation for vo becomes (v^_-^ is for n=0)

n^ + ^4^"(x)vo = . (27)

In view of (26)

^'(x) ^ + |^"(x)vo = .

This equation is readily solvable and gives

1

Vo = c

Then by ( 22) the first term in the asymptotic approximation to v is

X

ikj n dx

_ 1 ikij; ^ 1

V ~ C e ^ = C —3 e

\/i1j'(x) n/h

This result for v obtained from the first term of our asymptotic series

agrees precisely with the WKB solution of equation (25)^^.

In view of the fact that the first term of our asymptotic series is a

generalization to partial differential equations of the WKB method for

one-dimensional equations, we can now go a step further in quantum
mechanical and related problems. The asymptotic theory of partial
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differential equations can be used for the three-dimensional Schrodinger

equation and other equations when separation of variables is not pos-

sible. Thus Keller^^ has derived the half integer quantum numbers for

the three-dimensional Schrodinger equation by using the first terjn of

the asymptotic series solution for ^ , that is, by assuming that ijj

is represented approximately (for large k or small h ) by

M ikS (x, y, z,t)
V n

iPo = Zj a (x, y, z)e

n=l

and the condition that ijjq must be single-valued. The summation of

terms merely takes care of the fact that there may be many series if

S is multiple-valued or in optical terms, if many families of wave
fronts pass a given point.

The work described in the preceding paragraph was applied to the

Schrodinger equation in unbounded domains. However the same method
has been used to find asymptotic values of the large eigenvalues and
the corresponding eigenfunctions in bounded domains and indeed for

the reduced wave equation^ . That is, the method is applied to

(A + k^)u = ,

where k is the eigenvalue parameter, the equation is valid in some
domain D , and a boundary condition, for example, 9u/9u = , is

imposed on the boundary B of D . The method was also applied to

the (reduced Schrodinger equation with a spherically symmetric poten-

tial V( r) , namely,

A^u + ( -k^ - V(r) )u = ,

where -k^ is the eigenvalue parameter. Here the domain B is all

of space.

Whereas the application of the theory of article 4 to quantum me-
chanics utilizes the time-harmonic high frequency point of view other

applications recently have made utilized the study of discontinuities.

Acoustics had been developed from the wave theory point of view al-

most from the start of this science. One can however introduce a ge-
ometrical acoustics, as Keller^° and Friedlander^^ have and find that

the point of view of discontinuities permits one to study weak shock
waves in gases. If one assumes for a fluid motion that the shock
waves in the medium are weak and so can ignore the interaction of the

shock and the medium behind the shock (the side into which the shock
is proceeding) and if one neglects viscosity and heat conduction in

the fluid then the shock waves are the discontinuities in the (excess)
pressure and the change or discontinuity in pressure at the front is

the shock strength. One obtains as in geometrical optics an eiconal
equation for the wave or shock front. The rays are orthogonal to the
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fronts and one derives a transport equation for the variation of the

shock strength along a ray. One can also treat the reflection and

transmission of the shocks across boundaries as in geometrical optics.

It is also possible to obtain asymptotic series solutions of the lin-

earized acoustic equations for periodic waves of high frequency by

using the theory presented earlier for periodic solutions of Maxwell's

equations or the general second order scalar equation^® . Then the

theory for weak shocks provides an approximation to the periodic so-

lutions in the same way that geometrical optics is an approximation

to wave solutions of Maxwell's equations.

The usefulness of a "geometrical optics" of water wave theory as

well as of asymptotic approximation for high frequency periodic water

waves has also been favorably considered^'' . For water waves in

shallow water the wave amplitude u(x, y, t) satisfies the partial dif-

ferential equation

(ghu ) + (ghu ) = uX X y y ft

wherein g is the acceleration due to gravity and h(x, y) is the var-

iable depth measured from the equilibrium water surface. In this do-

main of application the treatment of breakers and surf near a beach
can be handled effectively by either the study of the discontinuities

of the time dependent equation or by examing the high frequency ap-

proximation to periodic waves. We know of course that the first term

of either approximation is the same except that the phase factor e"""
"^

is present in the latter case^° .

Another class of applications deals with the linearized equations

of motion in elastic isotropic media^^ . Here for small amplitude shear

and compressional waves one can obtain the propagation of pulses or

the asymptotic form of periodic waves of high frequency in both ho-

mogeneous and inhomogeneous media. For homogeneous isotropic

media the linearized equation of elastic wave motion is

P—f= = (X+ii)V(V-u) + fxV^u

Here u is the displacement vector (in rectangular coordinates), p

is the density of the medium and \ and \i are Lame's constants. A
more complicated equation holds for inhomogeneous media.

One starts with an asymptotic series solution of the form

00 A
V -^ ioj(S-t)

u = /_, e

(ico)"

where A and S are functions if x, y and z and w is the angular— n '
^ ^

frequency of the solutions sought. In this case, one gets two different
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eiconal equations and two different sets of transport equations, one

for compressional and one for transverse waves (because the original

differential equation is different from Maxwell's), but the method of

obtaining the asymptotic series solutions is that sketched above for

Maxwell's equations. The "rays" are the orthogonal trajectories to

the solutions of the eiconal equations.

Geometrical optics as the study of discontinuities has application

to current problems of magnetohydrodynamics. Here we are definitely

in the realm of anisotropic media. For electromagnetic theory proper

the geometrical optics of anisotropic media is, as in the case of iso-

tropic media, the transport of the discontinuities of E and H . From
this viewpoint we derive first the eiconal equation or the Hamiltonian
as it is more commonly called in the case of anisotropic media. In

such media the energy of the electromagnetic field does not propagate
along the normals to the wave fronts but along distinct curves called
rays. The variation of these discontinuities along the rays also satis-
fy transport equations which prove to be first order ordinary differential

equations.

The method of electromagnetics has been applied to plasmas. If one
approaches a plasma as a perfect (non-viscous), compressible, infin-

itely conducting fluid, one applies the equations of fluid dynamics and
electromagnetics. For weak shocks the equations may be linearized
and one obtains four vector partial differential equations in the velocity
vector u , the magnetic field intensity H , the density p , and the
entropy S per unit mass. A discontinuity surface is one across which
u

, H or p is discontinuous. For these equations the study of the
propagation of the discontinuities leads to three families of fronts
(each with its own speed called Alfven, slow and fast) in any one
normal direction and accordingly three families of rays. The surface
of wave normals is accordingly more complicated than the Fresnel sur-
face for crystals. It is then possible to obtain transport equations for

each of the discontinuities along each family of rays. The results are
extremely useful, for such shock waves can be generated^^ .

It is also possible to apply the asymptotic theory to periodic waves
of high frequency in plasmas but this has not been carried out as yet.

6. SOME OPEN PROBLEMS. The theory developed for Maxwell's equa-
tions permits us to obtain useful approximate solutions for time depen-
dent and for time harmonic problems provided that the corresponding
geometrical optics approximation exists, that is, in problems where
the wave fronts and rays of classical geometric optics are defined.
Physically this limitation means a restriction to propagation, reflection
and refraction in homogeneous and inhomogeneous isotropic and aniso-
tropic media. Even in these phenomena, no caustics must be present.
In view of the importance of diffraction phenomena and in view of the
difficulties encountered in solving diffraction problems it would of

course be highly desirable to extend the theory of article 4 to cover
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such problems.

The first difficulty one faces in attempting such an extension is

that the theory already developed presupposes the existence of geo-
metrical optics; that is, we must be able to obtain the wave fronts as

solutions of the eiconal equation and their orthogonal trajectories, the

rays. In fact the transport equations describe the behavior of the co-

efficients of the asymptotic series along the rays. Certainly then

when there are no wave fronts and rays, the theory thus far developed
has no meaning. Also where the rays form an envelope or come together

at a focus, the transport equations break down because the phase func-

tion 4j(x, y, z) becomes singular. The first major step in the extension

of our theory is to extend geometrical optics itself. This idea has al-

ready been tackled by a number of men. It has been developed and

systematically handled by J. B. Keller^^ who also suggests the unify-

ing principle that diffracted rays can be obtained from an extension of

Fermat's principle. Now Fermat's principle for classical geometrical

optics is deducible from Maxwell's equations by the process sketched
in article 4 (for the very reason that geometrical optics is deducible.

)

However, the problem remains as to whether the extended Fermat prin-

ciple, which encompasses rays and wave fronts not in classical geo-
metrical optics, can be deduced from Maxwell's equations. The de-

duction already carried out presupposes E(x,y,z,t) , H(x,y,z,t) and
their successive time derivatives have finite discontinuities on the

wave fronts. This condition limits the wave fronts and rays to those

of geometrical optics.

Granted the extension of geometrical optics, the next step in dif-

fraction problems is to derive the form of the asymptotic series solu-

tion which is valid in diffraction regions. The theory already available

proves that in the case of pure propagation, reflection and refraction

the form of the asymptotic series is that of a power series in 1/co and
that the series is truly asymptotic to the time harmonic solutions of

Maxwell's equations. The corresponding step is missing for series

valid in diffraction regions^"* . At the present writing all that we have
been able to do is to assume a form recommended by the asymptotic
expansion of solutions obtained in an entirely different manner. Thus
the problem of diffraction by a circular cylinder can be solved and its

solution expanded asymptotically. The form of this asymptotic series

or some generalization of it has been used to solve problems involving

other shapes.

The third step would be to learn how to determine the coefficients

of the asymptotic series. If it should prove to be the case that these

coefficients also satisfy transport equations, then the initial values of

the solutions of these transport equations would also have to be
determined.

In view of the applicability of the theory already developed for elec-
tromagnetics to many other branches of physics, the problems just

sketched merit attention. Though some progress has been made beyond
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what was described in the earlier parts of this paper, the accomplish-

ments are not broad enough to warrant attention in this survey.
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